
 ExGrid

Exontrol's new exGrid control an easy-to-implement grid control, provides swift and robust
performance and a wide range of formatting features that distinguish it from other grids.
The ExGrid is a multi-purpose data visualization system that can display information as a
tree, a grid or list, or a combination of both - in either data-bound or unbound mode. This
unique synergy between a traditional grid and a traditional tree view allows you to create
cutting-edge and visually appealing application interfaces for your end-users.

Features include:

Ability to display the data hierarchical (tree) , tabular (list) or as card view
Print and Print Preview support.
WYSWYG Template/Layout Editor support (Ability to load and save control's content
to template format).
Skinnable Interface support (ability to apply a skin to the any background part)
Custom Row Designer (Have your rows display however you want with the control
row layout capabilities)
ADO and DAO support
Undo/Redo support
It includes editors like: mask, date, drop down list, check box list, memo fields, spin,
slider, OLE Object viewer, color, buttons and more.
Ability to use custom ActiveX control as built-in editors.
ActiveX hosting (you can place any ActiveX component as a child item of the control).
/NET Control hosting (you can place any /NET control as a child item of the control).
Filter support

Filter-Prompt support, allows you to filter the items as you type while the filter bar
is always visible on the bottom part of the list area.
Filter-On-Type support. Ability to filter items by a column, as you type.
Ability to filter items using patterns that include wild card characters like *, ? or #,
items between two dates, numbers, checkboxes with an easy UI interface.
Ability to filter items using OR, AND or NOT operators between columns.

Ability to show the control's element from right-to-left for Hebrew, Arabic and other
RTL languages.
Conditional Format support
Computed Fields support
Total Fields support (Aggregate functions: sum, min, max, count, avg)
Owner Draw Support.
Sorting by Single or Multiple Column support
Ability to specify unsortable items.
Single/Multiple Lines or Multiple Levels Header support

Multiple selection
Incremental search
Mouse wheel support
Ability to load icons and pictures from BASE64 encoded strings.
Background picture support.
Ability to handle more than 2,000,000,000 records, using the virtual mode.
Ability to get data using IUnboundHandler notification interface
Support for dragging, sorting or resizing columns as well
Any cell supports Built-in HTML format.
"Split Cells" support.
"Merge Cells" support.
Locked/fixed rows/items support.
Cell's built-in editor support.
Not selectable items support.
Ability to group data using divider items. Allows you to merge cells as well.
Support for drag and drop the items
Ability to apply attributes like: font, color, icon, picture, radio buttons, check boxes to
any cell
Ability to assign multiple icons to a cell.
Item can have different height, multi-line items
Cells can have HTML multiple lines tooltips
and more

Ž ExGrid is a trademark of Exontrol. All Rights Reserved.

How to get support?

To keep your business applications running, you need support you can count on.

Here are few hints what to do when you're stuck on your programming:

Check out the samples - they are here to provide some quick info on how things should
be done
Check out the how-to questions using the eXHelper tool
Check out the help - includes documentation for each method, property or event
Check out if you have the latest version, and if you don't have it send an update
request here.
Submit your problem(question) here.

Don't forget that you can contact our development team if you have ideas or requests for
new components, by sending us an e-mail at support@exontrol.com (please include the
name of the product in the subject, ex: exgrid) . We're sure our team of developers will try
to find a way to make you happy - and us too, since we helped.

Regards,
Exontrol Development Team

https://www.exontrol.com

https://exontrol.com/exhelper.jsp
https://exontrol.com/update.jsp
https://exontrol.com/techsupport.jsp
https://www.exontrol.com

How to start?

The following screen shot, shows a general idea how parts and objects of the control are
arranged:

click to enlarge

The following steps shows you progressively how to start programming the Exontrol's
ExGrid component:

Load / Save Data. The control provides several ways to serialize your data, as listed:

LoadXML / SaveXML methods, to load / save data using XML format.
DataSource property, to load / update / save data from a table, query,
dataset and so on.
GetItems / PutItems methods, to load / save data from a/to safe array of
data.

For instance,

With Grid1
 .LoadXML "https://www.exontrol.net/testing.xml"
End With

loads control's data from specified URL.

Columns. The control supports multiple columns, so always you can add / remove /
move / hide any column

Add method, adds a new column.
ExpandColumns property specifies the columns to be shown/hidden when the
column is expanded or collapsed.

For instance,

With Grid1
 With .Columns.Add("Check")
 .Position = 0
 .Def(exCellHasCheckBox) = True
 End With
End With

adds a new column that displays check-boxes, and that's the first visible column.

Editors. Any cell / column of the control supports built-in editors, that let user edits
data

EditType method, specifies the built-in to be assigned to a cell or column.
Editor property, gets access to the column's built-in editor
CellEditorVisible property specifies the built-in editor for a particular cell.

For instance,

With Grid1
 With .Columns.Add("Date")
 .Editor.EditType = DateType
 End With
End With

adds a new column that displays and edits column's data as date type.

Items. Any item can hold a collection of child items. Any item is divided in cells, once
cell for each column in the control.

AddItem method, adds a new item.
InsertItem method, inserts a child item
InsertControlItem method, inserts a child item that hosts another control

inside.

For instance,

With Grid1
 With .Items
 .AddItem "new item"
 End With
End With

adds a new item.

Cells. An item contains a collection of cells, one cell for each column in the control. Any
cell can be split or merge with one or more neighbor cells.

CellValue property, specifies the cell's value.

For instance,

With Grid1
 With .Items
 h = .InsertItem(.FocusItem,"","item 1.1")
 .CellValue(h,1) = "item 1.2"
 .CellValue(h,2) = "item 1.3"
 .ExpandItem(.FocusItem) = True
 End With
End With

adds a new child item of the focused item, and fills the cell's value for the second
and third column.

Send comments on this topic.
Š 1999-2016 Exontrol. All rights reserved.

https://exontrol.com/sg.jsp?content=techsupport&order=start.html&product=ExGrid
https://www.exontrol.com

constants AlignmentEnum
Specifies the source's alignment. Use the Alignment property to specify the column's
alignment. Use the CellHAlignment property to specify the cell's alignment.

Name Value Description
LeftAlignment 0 The source is left aligned
CenterAlignment 1 The source is center aligned
RightAlignment 2 The source is right aligned

constants AppearanceEnum
The AppearanceEnum enumeration is used to specify the appearance of the control's
header bar. See also the HeaderAppearance property.

Name Value Description
None2 0 The source has no borders.
Flat 1 Flat border
Sunken 2 Sunken border
Raised 3 Raised border
Etched 4 Etched border
Bump 5 Bump border

constants ArrowHandleEnum
The ArrorHandleEnum expression specifies the options for exLeftArrow, exRightArrow,
exDownArrow or exUpArrow values when the Option property is used.

Name Value Description

exHandleEditor 0

The editor handles the arrow key. The key moves
the cursor, if exists, inside the edit control. If the
editor displays a caret, the F2 key selects or
unselects the entire text.

exHandleControl -1

The control handles the arrow key. The key moves
the focus to a new cell. If the editor displays a
caret, the F2 key selects or unselects the entire
text. If the entire text is selected the key moves the
focus to a new cell. If the text is not fully selected,
the key moves the cursor to the next position, and if
it is not available the next cell is focused.

exHandleEditSel 1

The editor handles the arrow key. The key moves
the focus to a new cell, if the editor displays a caret
and the key is pressed. If the text is not fully
selected, the key moves the caret inside the editor.
The F2 key selects or unselects the text inside the
editor.

constants AutoDragEnum
The AutoDragEnum type indicates what the control does when the user clicks and start
dragging a row or an item. The AutoDrag property indicates the way the component
supports the AutoDrag feature. The AutoDrag feature indicates what the control does when
the user clicks an item and start dragging. For instance, using the AutoDrag feature you can
automatically lets the user to drag and drop the data to OLE compliant applications like
Microsoft Word, Excel and so on. The SingleSel property specifies whether the control
supports single or multiple selection. The drag and drop operation starts once the user
clicks and moves the cursor up or down, if the SingleSel property is True, and if SingleSel
property is False, the drag and drop starts once the user clicks, and waits for a short
period of time. If SingleSel property is False, moving up or down the cursor selects the
items by drag and drop.

The AutoDragEnum type supports the following values:

Name Value Description

exAutoDragNone 0
AutoDrag is disabled. You can use the
OLEDropMode property to handle the OLE Drag
and Drop event for your custom action.

exAutoDragPosition 1

The item can be dragged from a position to
another, but not outside of its group. If your items
are arranged as a flat list, no hierarchy, this option
can be used to allow the user change the item's
position at runtime by drag and drop. This option
does not change the parent of any dragged item.
The dragging items could be the focused item or a
contiguously selection. Click the selection and
moves the cursor up or down, so the position of the
dragging items is changed. The draggable collection
is a collection of sortable items between 2 non-
sortable items (SortableItem property). The drag
and drop operation can not start on a non-sortable
or non-selectable item (SelectableItem property).
In other words, you can specify a range where an
item can be dragged using the SortableItem
property. Just set the SortableItem property on
False, for margins, and so the items can be
dragged between these items only.
The item can be dragged to any position or to any
parent, while the dragging object keeps its
indentation. This option can be used to allow the

exAutoDragPositionKeepIndent2

user change the item's position at runtime by drag
and drop. In the same time, the parent's item could
be changed but keeping the item's indentation. The
dragging items could be the focused item or a
contiguously selection. Click the selection and
moves the cursor up or down, so the position or
parent of the dragging items is changed. The drag
and drop operation can not start on a non-sortable
or non-selectable item (SelectableItem property).
In other words, you can specify a range where an
item can be dragged using the SortableItem
property. Just set the SortableItem property on
False, for margins, and so the items can be
dragged between these items only.

exAutoDragPositionAny 3

The item can be dragged to any position or to any
parent, with no restriction. The dragging items could
be the focused item or a contiguously selection. The
parent of the dragging items could change with no
restrictions, based on the position of the dragging
item. Click the selection and moves the cursor up or
down, so the position or parent of the dragging
items is changed. Click the selection and moves the
cursor left or right, so the item's indentation is
decreased or increased. The drag and drop
operation can not start on a non-sortable or non-
selectable item (SelectableItem property). In other
words, you can specify a range where an item can
be dragged using the SortableItem property. Just
set the SortableItem property on False, for
margins, and so the items can be dragged between
these items only.

Click here to watch a movie on how
exAutoDragCopyText works.

exAutoDragCopy 8

Drag and drop the selected items to a target
application, and paste them as image or text.
Pasting the data to the target application depends
on the application. You can use the
exAutoDragCopyText to specify that you want to
paste as Text, or exAutoDragCopyImage as an
image.

https://www.youtube.com/watch?v=crG33cuKwC4

exAutoDragCopyText 9

Drag and drop the selected items to a target
application, and paste them as text only. Ability to
drag and drop the data as text, to your favorite
Office applications, like Word, Excel, or any other
OLE-Automation compliant. The drag and drop
operation can start anywhere

Click here to watch a movie on how
exAutoDragCopyText works.

exAutoDragCopyImage 10

Drag and drop the selected items to a target
application, and paste them as image only. Ability to
drag and drop the data as it looks, to your favorite
Office applications, like Word, Excel, or any other
OLE-Automation compliant. The drag and drop
operation can start anywhere

Click here to watch a movie on how
exAutoDragCopyImage works.

exAutoDragCopySnapShot 11

Drag and drop a snap shot of the current
component. This option could be used to drag and
drop the current snap shot of the control to your
favorite Office applications, like Word, Excel, or any
other OLE-Automation compliant.

exAutoDragScroll 16

The component is scrolled by clicking the item and
dragging to a new position. This option can be used
to allow user scroll the control's content with NO
usage of the scroll bar, like on your IPhone. Ability
to smoothly scroll the control's content. The feature
is useful for touch screens or tables pc, so no need
to click the scroll bar in order to scroll the control's
content. Use the ScrollBySingleLine property on
False, to allow scrolling pixel by pixel when user
clicks the up or down buttons on the vertical scroll
bar. Use the ContinueColumnScroll property on True
to allow scrolling the columns pixel by pixel.

Click here or to watch a movie on how
exAutoDragScroll works.

exAutoDragPositionOnShortTouch. The object can

https://www.youtube.com/watch?v=4uA7ZI0W3Sk
https://www.youtube.com/watch?v=vunKapyV34g
https://www.youtube.com/watch?v=LIu7eo86GP8
https://www.youtube.com/watch?v=TDFns1Jt53g

exAutoDragPositionOnShortTouch256 be dragged from a position to another, but not
outside of its group.

exAutoDragPositionKeepIndentOnShortTouch512

exAutoDragPositionKeepIndentOnShortTouch. The
object can be dragged to any position or to any
parent, while the dragging object keeps its
indentation.

exAutoDragPositionAnyOnShortTouch768
exAutoDragPositionAnyOnShortTouch. The object
can be dragged to any position or to any parent,
with no restriction.

exAutoDragCopyOnShortTouch2048
exAutoDragCopyOnShortTouch. Drag and drop the
selected objects to a target application, and paste
them as image or text.

exAutoDragCopyTextOnShortTouch2304
exAutoDragCopyTextOnShortTouch. Drag and drop
the selected objects to a target application, and
paste them as text only.

exAutoDragCopyImageOnShortTouch2560
exAutoDragCopyImageOnShortTouch. Drag and
drop the selected objects to a target application,
and paste them as image only.

exAutoDragCopySnapShotOnShortTouch2816 exAutoDragCopySnapShotOnShortTouch. Drag and
drop a snap shot of the current component.

exAutoDragScrollOnShortTouch4096
exAutoDragScrollOnShortTouch. The component is
scrolled by clicking the object and dragging to a
new position.

exAutoDragPositionOnRight 65536
exAutoDragPositionOnRight. The object can be
dragged from a position to another, but not outside
of its group.

exAutoDragPositionKeepIndentOnRight131072
exAutoDragPositionKeepIndentOnRight. The object
can be dragged to any position or to any parent,
while the dragging object keeps its indentation.

exAutoDragPositionAnyOnRight196608
exAutoDragPositionAnyOnRight. The object can be
dragged to any position or to any parent, with no
restriction.

exAutoDragCopyOnRight 524288
exAutoDragCopyOnRight. Drag and drop the
selected objects to a target application, and paste
them as image or text.

exAutoDragCopyTextOnRight 589824
exAutoDragCopyTextOnRight. Drag and drop the
selected objects to a target application, and paste
them as text only.

exAutoDragCopyImageOnRight655360
exAutoDragCopyImageOnRight. Drag and drop the
selected objects to a target application, and paste
them as image only.

exAutoDragCopySnapShotOnRight720896exAutoDragCopySnapShotOnRight. Drag and drop
a snap shot of the current component.

exAutoDragScrollOnRight 1048576
exAutoDragScrollOnRight. The component is
scrolled by clicking the object and dragging to a
new position.

exAutoDragPositionOnLongTouch16777216
exAutoDragPositionOnLongTouch. The object can
be dragged from a position to another, but not
outside of its group.

exAutoDragPositionKeepIndentOnLongTouch33554432

exAutoDragPositionKeepIndentOnLongTouch. The
object can be dragged to any position or to any
parent, while the dragging object keeps its
indentation.

exAutoDragPositionAnyOnLongTouch50331648
exAutoDragPositionAnyOnLongTouch. The object
can be dragged to any position or to any parent,
with no restriction.

exAutoDragCopyOnLongTouch134217728
exAutoDragCopyOnLongTouch. Drag and drop the
selected objects to a target application, and paste
them as image or text.

exAutoDragCopyTextOnLongTouch150994944
exAutoDragCopyTextOnLongTouch. Drag and drop
the selected objects to a target application, and
paste them as text only.

exAutoDragCopyImageOnLongTouch167772160
exAutoDragCopyImageOnLongTouch. Drag and
drop the selected objects to a target application,
and paste them as image only.

exAutoDragCopySnapShotOnLongTouch184549376exAutoDragCopySnapShotOnLongTouch. Drag and
drop a snap shot of the current component.

exAutoDragScrollOnLongTouch268435456
exAutoDragScrollOnLongTouch. The component is
scrolled by clicking the object and dragging to a
new position.

constants AutoSearchEnum
Specifies the kind of searching while user types characters within a column. Use the
AutoSearch property to allow 'start with' incremental search or 'contains' incremental search
feature in the control.

Name Value Description

exStartWith 0

Defines the 'starts with' incremental search within
the column. If the user type characters within the
column the control looks for items that start with the
typed characters.

exContains 1

Defines the 'contains' incremental search within the
column. If the user type characters within the
column the control looks for items that contain the
typed characters.

constants BackgroundPartEnum
The BackgroundPartEnum type indicates parts in the control. Use the Background property
to specify a background color or a visual appearance for specific parts in the control. A
Color expression that indicates the background color for a specified part. The last 7 bits in
the high significant byte of the color to indicates the identifier of the skin being used. Use
the Add method to add new skins to the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits in the high significant byte of the
color being applied to the background's part.

Name Value Description

exHeaderFilterBarButton 0

Specifies the background color for the drop down
filter bar button. Use the DisplayFilterButton
property to specify whether the drop down filter bar
button is visible or hidden.

exFooterFilterBarButton 1

Specifies the background color for the closing
button in the filter bar (-1 hides the closing button in
the filter bar). Use the ClearFilter method to remove
the filter from the control.

exCellButtonUp 2

Specifies the background color for the cell's button,
when it is up. Use the CellHasButton property to
assign a button to a cell.

exCellButtonDown 3

Specifies the background color for the cell's button,
when it is down. Use the CellHasButton property to
assign a button to a cell.

exDropDownButtonUp 4

Specifies the visual appearance for the drop down
button, when it is up. Usually the editors with a drop
down portion displays a drop down button.

exDropDownButtonDown 5

Specifies the visual appearance for the drop down
button, when it is down. Usually the editors with a
drop down portion displays a drop down button.

exButtonUp 6

Specifies the visual appearance for the button
inside the editor, when it is up. Use the AddButton
method to add new buttons to an editor.

exButtonDown 7

Specifies the visual appearance for the button
inside the editor, when it is down. Use the
AddButton method to add new buttons to an editor.

exDateHeader 8

Specifies the visual appearance for the header in a
calendar control. The DateType editor allows user
to select dates from a drop down calendar panel.

exDateTodayUp 9

Specifies the visual appearance for the today button
in a calendar control, when it is up. The DateType
editor allows user to select dates from a drop down
calendar panel.

exDateTodayDown 10

Specifies the visual appearance for the today button
in a calendar control, when it is down. The
DateType editor allows user to select dates from a
drop down calendar panel.

exDateScrollThumb 11

Specifies the visual appearance for the scrolling
thumb in a calendar control. The DateType editor
allows user to select dates from a drop down
calendar panel.

exDateScrollRange 12

Specifies the visual appearance for the scrolling
range in a calendar control. The DateType editor
allows user to select dates from a drop down
calendar panel.

exDateSeparatorBar 13

Specifies the visual appearance for the separator
bar in a calendar control. The DateType editor
allows user to select dates from a drop down
calendar panel.

exDateSelect 14

Specifies the visual appearance for the selected
date in a calendar control. The DateType editor
allows user to select dates from a drop down
calendar panel.

exSliderRange 15
exSliderRange. Specifies the visual appearance for
the slider's bar.

exSliderThumb 16 exSliderThumb. Specifies the visual appearance for
the thumb of the slider.

exSelectInPlace 17

Specifies the visual appearance for the selection
when a drop down editor is focused and closed.
The option is valid for drop-down list editors
(CheckListType, DropDownList).

exShowFocusRect 19

Specifies the visual appearance to display the cell
with the focus. The ShowFocusRect property
retrieves or sets a value indicating whether the
control draws a thin rectangle around the focused
item.

exSelBackColorFilter 20

Specifies the visual appearance for the selection in
the drop down filter window. Use the
exBackColorFilter option to specify the background
color in the drop down filter window.

exSelForeColorFilter 21

Specifies the foreground color for the selection in
the drop down filter window. Use the
exForeColorFilter option to specify the foreground
color in the drop down filter window.

exSpinUpButtonUp 22

Specifies the visual appearance for the up spin
button when it is not pressed.

exSpinUpButtonDown 23

Specifies the visual appearance for the up spin
button when it is pressed.

exSpinDownButtonUp 24

Specifies the visual appearance for the down spin
button when it is not pressed.

exSpinDownButtonDown 25

Specifies the visual appearance for the down spin
button when it is pressed.

exBackColorFilter 26

Specifies the background color for the drop down
filter window. If not specified, the BackColorHeader
property specifies the drop down filter's background
color. Use the exSelBackColorFilter option to
specify the selection background visual appearance
in the drop down filter window.

Specifies the foreground color for the drop down
filter window. If not specified, the ForeColorHeader

exForeColorFilter 27

property specifies the drop down filter's foreground
color. Use the exSelForeColorFilter option to
specify the selection foreground color in the drop
down filter window.

exSortBarLinkColor 28

Indicates the color or the visual appearance of the
links between columns in the control's sort bar.

exCursorHoverColumn 32

Specifies the visual appearance for the column
when the cursor hovers the column. By default, the
exCursorHoverColumn property is zero, and it has
no effect, so the visual appearance for the column
is not changed when the cursor hovers the header.

exDragDropBefore 33

Specifies the visual appearance for the drag and
drop cursor before showing the items. This option
can be used to apply a background to the dragging
items, before painting the items.

exDragDropAfter 34

Specifies the visual appearance for the drag and
drop cursor after showing the items. This option can
be used to apply a semi-transparent/opaque
background to the dragging items, after painting the
items. If the exDragDropAfter option is set on white
(0x00FFFFFF), the image is not showing on OLE

Drag and drop.

exDragDropListTop 35

Specifies the graphic feedback of the item from the
drag and drop cursor if the cursor is in the top half
of the row. Please note, that if a visual effect is
specified for exDragDropListOver AND
exDragDropListBetween states, and a visual effect
is specified for exDragDropListTop OR/AND
exDragDropListBottom state(s), the
exDragDropListTop visual effect is displayed ONLY
if the cursor is over the first visible item, and the
exDragDropListBottom visual effect is shown ONLY
for the last visible item. Use the ItemFromPoint
property to retrieve the hit test code for the part
from the cursor. This option can be changed during
the OLEDragOver event to change the visual effect
for the item from the cursor at runtime.

exDragDropListBottom 36

Specifies the graphic feedback of the item from the
drag and drop cursor if the cursor is in the bottom
half of the row. Please note, that if a visual effect is
specified for exDragDropListOver AND
exDragDropListBetween states, and a visual effect
is specified for exDragDropListTop OR/AND
exDragDropListBottom state(s), the
exDragDropListTop visual effect is displayed ONLY
if the cursor is over the first visible item, and the
exDragDropListBottom visual effect is shown ONLY
for the last visible item. Use the ItemFromPoint
property to retrieve the hit test code for the part
from the cursor. This option can be changed during
the OLEDragOver event to change the visual effect
for the item from the cursor at runtime.

exDragDropForeColor 37
Specifies the foreground color for the items being
dragged. By default, the foreground color is black.

Specifies the graphic feedback of the item from the
cursor if it is over the item. Please note, that if a
visual effect is specified for exDragDropListOver
AND exDragDropListBetween states, and a visual
effect is specified for exDragDropListTop OR/AND
exDragDropListBottom state(s), the

exDragDropListOver 38 exDragDropListTop visual effect is displayed ONLY
if the cursor is over the first visible item, and the
exDragDropListBottom visual effect is shown ONLY
for the last visible item. Use the ItemFromPoint
property to retrieve the hit test code for the part
from the cursor. This option can be changed during
the OLEDragOver event to change the visual effect
for the item from the cursor at runtime.

exDragDropListBetween 39

Specifies the graphic feedback of the item when the
drag and drop cursor is between items. Please
note, that if a visual effect is specified for
exDragDropListOver AND exDragDropListBetween
states, and a visual effect is specified for
exDragDropListTop OR/AND
exDragDropListBottom state(s), the
exDragDropListTop visual effect is displayed ONLY
if the cursor is over the first visible item, and the
exDragDropListBottom visual effect is shown ONLY
for the last visible item. Use the ItemFromPoint
property to retrieve the hit test code for the part
from the cursor. This option can be changed during
the OLEDragOver event to change the visual effect
for the item from the cursor at runtime.

exDragDropAlign 40

Specifies the alignment of the drag and drop image
relative to the cursor. By default, the
exDragDropAlign option is 0, which initially the drag
and drop image is shown centered relative to the
position of the cursor.

The valid values are listed as follows (hexa
representation):

0x00000000, (default), the drag and drop
image is shown centered relative to the cursor,
and shows up.
0x01000000, (left), the drag and drop image is
shown to the left of the cursor.
0x02000000, (right), the drag and drop image
is shown to the right of the cursor.
0x04000000, (center-down), the drag and drop
image is shown centered relative to the cursor,
and shows down.

0xFF000000, (as- is), the drag and drop image
is shown as it is clicked.

exHeaderFilterBarActive 41

Specifies the visual appearance of the drop down
filter bar button, while filter is applied to the column.

exToolTipAppearance 64

Indicates the visual appearance of the borders of
the tooltips. Use the ToolTipPopDelay property
specifies the period in ms of time the ToolTip
remains visible if the mouse pointer is stationary
within a control. The ToolTipDelay property
specifies the time in ms that passes before the
ToolTip appears. Use the CellToolTip property to
specify the cell's tooltip. Use the ToolTipWidth
property to specify the width of the tooltip window.
Use the ItemBar(,,exBarToolTip) property to specify
a tooltip for a bar. Use the Link(,exLinkToolTip)
property to specify the tooltip to be shown when the
cursor hovers the link. Use the ShowToolTip method
to display a custom tooltip

exToolTipBackColor 65
Specifies the tooltip's background color.

exToolTipForeColor 66

Specifies the tooltip's foreground color.

exColumnsFloatBackColor 87

Specifies the background color for the Columns
float bar.

exColumnsFloatScrollBackColor88

Specifies the background color for the scroll bars in
the Columns float bar.

exColumnsFloatScrollPressBackColor89

Specifies the background color for the scroll bars in
the Columns float bar, while the scroll part is
pressed.

exColumnsFloatScrollUp 90

Specifies the visual appearance of the up scroll bar.

exColumnsFloatScrollDown 91

Specifies the visual appearance of the down scroll
bar.

exColumnsFloatAppearance 92

Specifies the visual appearance for the
frame/borders of the Column's float bar. The option
has effect only if set before calling the
ColumnsFloatBarVisible property.

exColumnsFloatCaptionBackColor93

Specifies the visual appearance for caption, if the
Background(exColumnsFloatAppearance) property
is specified.

exColumnsFloatCaptionForeColor94

Specifies the foreground color for the caption, if the
Background(exColumnsFloatAppearance) property
is specified.

exColumnsFloatCloseButton 95

exColumnsFloatCloseButton. Specifies the visual
appearance for the closing button, if the
Background(exColumnsFloatAppearance) property
is specified.

By default, the exListOLEDropPosition is 0, which
means no effect. Specifies the visual appearance
of the dropping position over the list part of the
control, when it is implied in a OLE Drag and Drop

exListOLEDropPosition 96

operation. The exListOLEDropPosition has effect
only if different than 0, and the OLEDropMode
property is not exOLEDropNone. For instance, set
the Background(exListOLEDropPosition) property
on RGB(0,0,255), and a blue line is shown at the
item where the cursor is hover the list part of the
control, during an OLE Drag and Drop position. The
OLEDragDrop event notifies your application once
an object is drop in the control.

exCursorHoverCellButton 157

Defines the visual appearance of the cell's button
when the cursor hovers over it. By default, the
exCursorHoverCellButton property is set to zero,
indicating that the current theme manages the
display of the cell's button during cursor hover. If
the exCursorHoverCellButton property is set to -1,
there will be no change in the visual appearance of
the cell's button when the cursor hovers over it. The
CellHasButton property determines whether a
button is displayed inside the cell.

>

exSelBackColorHide 166

Specifies the selection's background color, when
the control has no focus. This has effect while the
control's HideSelection property is False

exSelForeColorHide 167

Specifies the selection's foreground color, when the
control has no focus. This has effect while the
control's HideSelection property is False

exTreeGlyphOpen 180

Specifies the visual appearance for the +/- buttons
when it is collapsed. This option is valid while
HasButtons property is exPlus (by default), and
any of
Background(exTreeGlyphOpen)/Background(exTreeGlyphClose)
is not-zero.

exTreeGlyphClose 181

Specifies the visual appearance for the +/- buttons
when it is expanded. This option is valid while
HasButtons property is exPlus (by default), and
any of
Background(exTreeGlyphOpen)/Background(exTreeGlyphClose)
is not-zero

exColumnsPositionSign 182

Specifies the visual appearance for the position sign
between columns, when the user changes the
position of the column by drag an drop. The
AllowDragging property specifies whether the user
can change the column's position by drag an drop.

exTreeLinesColor 186

Specifies the color to show the tree-lines
(connecting lines from the parent to the children).
The HasLines property enhances the graphic
representation of a tree control's hierarchy by
drawing lines that link child items to their
corresponding parent item.

exVSUp 256

 align="top"> The up button in normal state.
exVSUpP 257 The up button when it is pressed.
exVSUpD 258 The up button when it is disabled.
exVSUpH 259 The up button when the cursor hovers it.

exVSThumb 260

 align="top"> The thumb part (exThumbPart) in
normal state.

exVSThumbP 261 The thumb part (exThumbPart) when it is pressed.
exVSThumbD 262 The thumb part (exThumbPart) when it is disabled.

exVSThumbH 263 The thumb part (exThumbPart) when cursor hovers
it.

exVSDown 264

 align="top"> The down button in normal state.
exVSDownP 265 The down button when it is pressed.

exVSDownD 266 The down button when it is disabled.
exVSDownH 267 The down button when the cursor hovers it.

exVSLower 268

 align="top"> The lower part (
exLowerBackPart) in normal state.

exVSLowerP 269 The lower part (exLowerBackPart) when it is
pressed.

exVSLowerD 270 The lower part (exLowerBackPart) when it is
disabled.

exVSLowerH 271 The lower part (exLowerBackPart) when the
cursor hovers it.

exVSUpper 272

 align="top"> The upper part (
exUpperBackPart) in normal state.

exVSUpperP 273 The upper part (exUpperBackPart) when it is
pressed.

exVSUpperD 274 The upper part (exUpperBackPart) when it is
disabled.

exVSUpperH 275 The upper part (exUpperBackPart) when the
cursor hovers it.

exVSBack 276

 align="top"> The background part (
exLowerBackPart and exUpperBackPart) in normal
state.

exVSBackP 277
The background part (exLowerBackPart and
exUpperBackPart) when it is pressed.

The background part (exLowerBackPart and

exVSBackD 278 exUpperBackPart) when it is disabled.

exVSBackH 279 The background part (exLowerBackPart and
exUpperBackPart) when the cursor hovers it.

exHSLeft 384 The left button in normal state.
exHSLeftP 385 The left button when it is pressed.
exHSLeftD 386 The left button when it is disabled.
exHSLeftH 387 The left button when the cursor hovers it.

exHSThumb 388 The thumb part (exThumbPart) in
normal state.

exHSThumbP 389 The thumb part (exThumbPart) when it is pressed.
exHSThumbD 390 The thumb part (exThumbPart) when it is disabled.

exHSThumbH 391 The thumb part (exThumbPart) when the cursor
hovers it.

exHSRight 392 The right button in normal state.
exHSRightP 393 The right button when it is pressed.
exHSRightD 394 The right button when it is disabled.
exHSRightH 395 The right button when the cursor hovers it.

exHSLower 396 The lower part (exLowerBackPart)
in normal state.

exHSLowerP 397 The lower part (exLowerBackPart) when it is
pressed.

exHSLowerD 398 The lower part (exLowerBackPart) when it is
disabled.

exHSLowerH 399 The lower part (exLowerBackPart) when the cursor
hovers it.

exHSUpper 400 The upper part (exUpperBackPart)
in normal state.

exHSUpperP 401 The upper part (exUpperBackPart) when it is
pressed.

exHSUpperD 402 The upper part (exUpperBackPart) when it is
disabled.

exHSUpperH 403 The upper part (exUpperBackPart) when the cursor
hovers it.

exHSBack 404
 The background part

(exLowerBackPart and exUpperBackPart) in normal
state.

exHSBackP 405 The background part (exLowerBackPart and
exUpperBackPart) when it is pressed.

exHSBackD 406 The background part (exLowerBackPart and
exUpperBackPart) when it is disabled.

exHSBackH 407 The background part (exLowerBackPart and
exUpperBackPart) when the cursor hovers it.

exSBtn 324 All button parts (L1-L5, LButton,
exThumbPart, RButton, R1-R6), in normal state.

exSBtnP 325 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when it is pressed.

exSBtnD 326 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when it is disabled.

exSBtnH 327 All button parts (L1-L5, LBUtton, exThumbPart,
RButton, R1-R6), when the cursor hovers it .

exScrollHoverAll 500

Enables or disables the hover-all feature. By default
(Background(exScrollHoverAll) = 0), the left/top,
right/bottom and thumb parts of the control'
scrollbars are displayed in hover state while the
cursor hovers any part of the scroll bar (hover-all
feature). The hover-all feature is available on
Windows 11 or greater, if only left/top, right/bottom,
thumb, lower and upper-background parts of the
scrollbar are visible, no custom visual-appearance
is applied to any visible part. The hover-all feature
is always on If Background(exScrollHoverAll) = -1.
The Background(exScrollHoverAll) = 1 disables the
hover-all feature.

The thumb-extension part in normal state. The
ScrollPartVisible property indicates whether the

exVSThumbExt 503

specified scroll part is visible or hidden. The
exExtentThumbPart part indicates the thumb-
extension part..

exVSThumbExtP 504 The thumb-extension part when it is pressed.
exVSThumbExtD 505 The thumb-extension part when it is disabled.
exVSThumbExtH 506 The thumb-extension when the cursor hovers it.

exHSThumbExt 507

The thumb-extension in normal state.

exHSThumbExtP 508 The thumb-extension when it is pressed.
exHSThumbExtD 509 The thumb-extension when it is disabled.

exHSThumbExtH 510 The thumb-extension when the cursor hovers it.

exScrollSizeGrip 511

 Specifies the visual appearance of the control's
size grip when both scrollbars are shown.

If you refer a part of the scroll bar please notice the following:

All BackgroundPartEnum expressions that starts with exVS changes a part in a vertical
scroll bar
All BackgroundPartEnum expressions that starts with exHS changes a part in the
horizontal scroll bar
Any BackgroundPartEnum expression that ends with P (and starts with exVS or exHS
) specifies a part of the scrollbar when it is pressed.
Any BackgroundPartEnum expression that ends with D (and starts with exVS or exHS
) specifies a part of the scrollbar when it is disabled.
Any BackgroundPartEnum expression that ends with H (and starts with exVS or exHS
) specifies a part of the scrollbar when the cursor hovers it.
Any BackgroundPartEnum expression that ends with no H, P or D (and starts with
exVS or exHS) specifies a part of the scrollbar on normal state

constants BackModeEnum
Specifies the background mode when painting the selected items. Use the SelBackMode
property to specify the control's selection back mode.

Name Value Description
exOpaque 0 The selection is opaque.
exTransparent 1 The selection is transparent.
exGrid 2 The selection is half transparent half opaque

constants CellSelectEnum
Specifies how the control selects cells or items within the control. Use the FullRowSelect
property to enables full-row selection.

Name Value Description
exColumnSel 0 (False) Enables single-cell selection in the control.
exItemSel -1 (True) Enables full-row selection in the control.
exRectSel 1 Enables rectangle selection in the control.

When the FullRowSelect property is exColumnSel the selection looks like:

When the FullRowSelect property is exItemSel the selection looks like:

When the FullRowSelect property is exRectSel the selection looks like:

constants CellSingleLineEnum
The CellSingleLineEnum type defines whether the cell's caption is displayed on a single or
multiple lines. The CellSingleLine property retrieves or sets a value indicating whether the
cell is displayed using one line, or more than one line. The Def(exCellSingleLine) property
specifies that all cells in the column display their content using multiple lines. The
CellSingleLineEnum type supports the following values:

Name Value Description

exCaptionSingleLine -1

Indicates that the cell's caption is displayed on a
single line. In this case any \r\n or
 HTML tags
is ignored. For instance the "This is the first
line.\r\nThis is the second line.\r\nThis is the third
line." shows as:

exCaptionWordWrap 0

Specifies that the cell's caption is displayed on
multiple lines, by wrapping the words. Any \r\n or

 HTML tag breaks the line. For instance the
"This is the first line.\r\nThis is the second
line.\r\nThis is the third line." shows as:

exCaptionBreakWrap 1

Specifies that the cell's caption is displayed on
multiple lines, by wrapping the breaks only. Only
The \r\n or
 HTML tag breaks the line. For
instance the "This is the first line.\r\nThis is the
second line.\r\nThis is the third line." shows as:

constants CheckStateEnum
Specifies the cell's state if CellHasCheckBox or CellHasRadioButton property is True.

Name Value Description
Unchecked 0 The cell is not checked.
Checked 1 The cell is checked.

PartialChecked 2
The cell is partially checked. To allow partially
checks for a cell, the PartialCheck property should
be True.

constants ColumnsFloatBarVisibleEnum
The ColumnsFloatBarVisibleEnum type specifies whether the control's Columns float-bar is
visible or hidden. The ColumnsFloatBarVisibleEnum type supports the following values:

Name Value Description

exColumnsFloatBarHidden 0 Indicates that the control's Columns float-panel is
not visible (hidden)

exColumnsFloatBarVisibleIncludeHiddenColumns-1

Specifies that the control's Columns float-panel
shows only hidden-columns (dragable-columns
only). The Visible property specifies whether the
column is visible or hidden.

exColumnsFloatBarVisibleIncludeGroupByColumns1

Specifies that the control's Columns float-panel
shows only columns that can be group- by
(dragable-columns only). The AllowGroupBy
property specifies whether the column can be
group-by.

exColumnsFloatBarVisibleIncludeCheckColumns2

Indicates that the control's Columns float-panel
shows visible and hidden columns with a check-box
associated (dragable-columns only), The Visible
property specifies whether the column is visible or
hidden.

constants DefColumnEnum
The Def property retrieves or sets a value that indicates the default value of given
properties for all cells in the same column.

Name Value Description

exCellHasCheckBox 0

Assigns check boxes to all cells in the column, if it is
True. Similar with the CellHasCheckBox property.

(Boolean expression, False)

exCellHasRadioButton 1

Assigns radio buttons to all cells in the column, if it
is True. Similar with the CellHasRadioButton
property.

(Boolean expression, False)

exCellHasButton 2

Specifies that all cells in the column are buttons, if it
is True. Similar with the CellHasButton property.

(Boolean expression, False)

exCellButtonAutoWidth 3

Specifies that all buttons in the column fit the cell's
caption, if it is True. Similar with the
CellButtonAutoWidth property.

(Boolean expression, False)

exCellBackColor 4

Specifies the background color for all cells in the
column. Use the CellBackColor property to assign a
background color for a specific cell. The property
has effect only if the property is different than zero.

(Long expression)

exCellForeColor 5

Specifies the foreground color for all cells in the
column. Use the CellForeColor property to assign a
foreground color for a specific cell. The property
has effect only if the property is different than zero.

(Long expression)

exCellVAlignment 6

Specifies the column's vertical alignment. By
default, the Def(exCellVAlignment) property is
exMiddle. Use the CellVAlignment property to
specify the vertical alignment for a particular cell.

(VAlignmentEnum expression, exMiddle)

exHeaderBackColor 7

Specifies the column's header background color.
The property has effect only if the property is
different than zero. Use this option to change the
background color for a column in the header area.
The exHeaderBackColor option supports skinning,
so the last 7 bits in the high significant byte of the
color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control.

(Color expression)

exHeaderForeColor 8

Specifies the column's header background color.
The property has effect only if the property is
different than zero.

(Color expression)

exCellSingleLine 16

Specifies that all cells in the column displays its
content into single or multiple lines. Similar with the
CellSingleLine property. If using the CellSingleLine /
Def(exCellSingleLine) property, we recommend to
set the ScrollBySingleLine property on True so all
items can be scrolled.

(CellSingleLineEnum type, previously Boolean
expression)

exCellValueFormat 17
Similar with the CellValueFormat property,

(ValueFormatEnum expression, exText)

Specifies a formula that defines the total fields
applied to all unformatted and non-leaf cells within
the column. This option is effective when displaying

exTotalColumn 20

hierarchical data, allowing aggregate functions like
sum or count to be shown for parent items.
Essentially, the exTotalColumn option applies a
consistent formula to all unformatted and non-leaf
cells within the column. A cell is considered
unformatted if its FormatCell property is empty. The
ItemHasChildren property indicates whether an item
has one or more child items. The formula should be
of aggregate(list,direction,formula) format as
defined in exTotalField of ValueFormatEnum type.
The CellValueFormat property on exTotalField
specifies that a particular cell displays an aggregate
function.

For instance:

count(current,dir,1) counts the number of child
items (not implies recursively child items).
count(current,all,1) counts the number of all
child items (implies recursively child items).
count(current,rec,1) counts the number of leaf
items (implies recursively leaf items).
count(current,rec,1) counts the number of leaf
items (a leaf item is an item with no child items
).
sum(parent,dir,%1=0?0:1) counts the not-zero
values in the second column (%1)
sum(parent,dir,%1 + %2) indicates the sum of
all cells in the second (%1) and third (%2)
column that are directly descendent from the
parent item.
sum(all,rec,%1 + %2) sums all leaf cells in the
second (%1) and third (%2) columns.

(String expression)

Specifies the template for the column's filter when
the Filter property or the 'Filter For' field is
populated. This property customizes the filter
pattern for the column when the FilterType property
is set to exPattern. It supports the <%filter%>
keyword, which replaces the original filter input. For
example, setting Def(exFilterPatternTemplate) to "*

exFilterPatternTemplate 21 <%filter%>*" filters for all items containing the
specified sequence, while setting it to "Item*
<%filter%>" filters for all items starting with 'Item'
and ending with the typed characters. If the
Column.Def(exFilterPatternTemplate) property is
empty, the filter is applied as it is (no effect).

(String expression)

exCellFormatLevel 32

Specifies the format layout for the cells. The
CellFormatLevel property indicates the format
layout for a specified cell. Use the FormatLevel
property to specify the layout of the column in the
control's header bar.

(CRD string expression)

exCellOwnerDraw 33

Assigns an owner draw object for the entire column.
Use the CellOwnerDraw property to assign an
owner draw object to a single cell.

(an object that implements the
IOwnerDrawHandler interface)

exCellDrawPartsOrder 34

Specifies the order of the drawing parts for the
entire column. By default, this option is
"check,icon,icons,picture,caption", which means that
the cell displays its parts in the following order:
check box/ radio buttons (
CellHasCheckBox/CellRadioButton), single icon (
CellImage), multiple icons (CellImages), custom
size picture (CellPicture), and the cell's caption.
Use the exCellDrawPartsOrder option to specify a
new order for the drawing parts in the cells of the
column. The RightToLeft property automatically flips
the order of the columns.

(String expression,
"check,icon,icons,picture,caption")

exCellPaddingLeft 48

Gets or sets the left padding (space) of the cells
within the column.

(Long expression)

exCellPaddingRight 49

Gets or sets the right padding (space) of the cells
within the column.

(Long expression)

exCellPaddingTop 50

Gets or sets the top padding (space) of the cells
within the column.

(Long expression)

exCellPaddingBottom 51

Gets or sets the bottom padding (space) of the
cells within the column.

(Long expression)

exHeaderPaddingLeft 52

Gets or sets the left padding (space) of the
column's header.

(Long expression)

exHeaderPaddingRight 53

Gets or sets the right padding (space) of the
column's header.

(Long expression)

exHeaderPaddingTop 54

Gets or sets the top padding (space) of the
column's header.

(Long expression)

exHeaderPaddingBottom 55

Gets or sets the bottom padding (space) of the
column's header.

(Long expression)

exColumnResizeContiguously 64

Gets or sets a value that indicates whether the
control's content is updated while the user is
resizing the column.

(Boolean expression, False)

constants DescriptionTypeEnum
The control's Description property defines descriptions for several control parts.

Name Value Description

exFilterBarAll 0

Defines the caption of (All) in the filter bar window.
If the Description(exFilterBarAll) property is empty,
the (All) predefined item in the drop down filter
window is not shown.

exFilterBarBlanks 1

Defines the caption of (Blanks) in the filter bar
window. If the Description(exFilterBarBlanks)
property is empty, the (Blanks) predefined item in
the drop down filter window is not shown.

exFilterBarNonBlanks 2

Defines the caption of (NonBlanks) in the filter bar
window. If the Description(exFilterBarNonBlanks)
property is empty, the (NonBlanks) predefined item
in the drop down filter window is not shown.

exFilterBarFilterForCaption 3 Defines the caption of "Filter For:" in the filter bar
window.

exFilterBarFilterTitle 4 Defines the title for the filter tooltip.
exFilterBarPatternFilterTitle 5 Defines the title for the filter pattern tooltip.

exFilterBarTooltip 6 Defines the tooltip for the filter window when it
displays no pattern field.

exFilterBarPatternTooltip 7 Defines the tooltip for filter pattern window
exFilterBarFilterForTooltip 8 Defines the tooltip for "Filter For:" window

exFilterBarIsBlank 9 Defines the caption of the function 'IsBlank' in the
control's filter bar.

exFilterBarIsNonBlank 10 Defines the caption of the function 'not IsBlank' in
the control's filter bar.

exFilterBarAnd 11
Customizes the ' and ' text in the control's filter bar
when multiple columns are used to filter the items in
the control.

exFilterBarDate 12

Specifies the "Date:" caption being displayed in the
drop down filter window when DisplayFilterPattern
property is True, and DisplayFilterDate property is
True.
Specifies the "to" sequence being used to split the
from date and to date in the Date field of the drop

exFilterBarDateTo 13
down filter window. For instance, the "to
12/13/2004" specifies the items before 12/13/2004,
"12/23/2004 to 12/24/2004" filters the items
between 12/23/2004 and 12/24/2004, or "Feb 12
2004 to" specifies all items after a date.

exFilterBarDateTooltip 14

Describes the tooltip that shows up when cursor is
over the Date field. "You can filter the items into a
given interval of dates. For instance, you can filter
all items dated before a specified date (to
2/13/2004), or all items dated after a date (Feb
13 2004 to) or all items that are in a given interval (
2/13/2004 to 2/13/2005)."

exFilterBarDateTitle 15
Describes the title of the tooltip that shows up when
the cursor is over the Date field. By default, the
exFilterBarDateTitle is "Date".

exFilterBarDateTodayCaption 16
Specifies the caption for the 'Today' button in a date
filter window. By default, the
exFilterBarDateTodayCaption property is "Today".

exFilterBarDateMonths 17

Specifies the name for months to be displayed in a
date filter window. The list of months should be
delimitated by space characters. By default, the
exFilterBarDateMonths is "January February March
April May June July August September October
November December".

exFilterBarDateWeekDays 18

Specifies the shortcut for the weekdays to be
displayed in a date filter window. The list of shortcut
for the weekdays should be separated by space
characters. By default, the
exFilterBarDateWeekDays is "S M T W T F S".
The first shortcut in the list indicates the shortcut for
the Sunday, the second shortcut indicates the
shortcut for Monday, and so on.

exFilterBarChecked 19

Defines the caption of (Checked) in the filter bar
window. The exFilterBarChecked option is
displayed only if the FilterType property is exCheck.
If the Description(exFilterBarChecked) property is
empty, the (Checked) predefined item is not shown
in the drop down filter window. If the user selects
the (Checked) item the control filter checked items.
The CellState property indicates the state of the
cell's checkbox.

exFilterBarUnchecked 20

Defines the caption of (Unchecked) in the filter bar
window. The exFilterBarUnchecked option is
displayed only if the FilterType property is exCheck.
If the Description(exFilterBarUnchecked) property is
empty, the (Unchecked) predefined item is not
shown in the drop down filter window. If the user
selects the (Unchecked) item the control filter
unchecked items. The CellState property indicates
the state of the cell's checkbox.

exFilterBarIsChecked 21

Defines the caption of the 'IsChecked' function in
the control's filter bar. The 'IsChecked' function may
appear only if the user selects (Checked) item in
the drop down filter window, when the FilterType
property is exCheck.

exFilterBarIsUnchecked 22

Defines the caption of the 'not IsChecked' function
in the control's filter bar. The 'not IsChecked'
function may appear only if the user selects
(Unchecked) item in the drop down filter window,
when the FilterType property is exCheck.

exFilterBarOr 23
Customizes the 'or' operator in the control's filter
bar when multiple columns are used to filter the
items in the control.

exFilterBarNot 24 Customizes the 'not' operator in the control's filter
bar.

exFilterBarExclude 25

Specifies the 'Exclude' caption being
displayed in the drop down filter. The
Exclude option is displayed in the drop down
filter window only if the FilterList property
includes the exShowExlcude flag.

exColumnsFloatBar 26

Specifies the caption to be shown on control's
Columns float bar. The ColumnsFloatBarVisible
property specifies whether the hidden columns float
bar is visible or hidden.

constants DividerAlignmentEnum
Defines the alignment for a divider line into a divider item. Use the ItemDividerLineAlignment
property to align the line in a divider item. Use the ItemDivider property to add a divider
item.

Name Value Description

DividerBottom 0 The divider line is displayed on bottom side of the
item.

DividerCenter 1 The divider line is displayed on center of the item.
DividerTop 2 The divider line is displayed at the top of the item.

DividerBoth 3 The divider line is displayed at the top and bottom
of the item.

constants DividerLineEnum
Defines the type of divider line. The ItemDividerLine property uses the DividerLineEnum
type. Use the ItemDivider property to define a divider item.

Name Value Description
EmptyLine 0 No line
SingleLine 1 Single line
DoubleLine 2 Double line
DotLine 3 Dotted line
DoubleDotLine 4 Double Dotted line
ThinLine 5 Thin line
DoubleThinLine 6 Double thin line

constants DropDownWidthType
The DropDownWidthType expression specifies the width of the drop down portion of an
editor. The DropDownAutoWidth property specifies the width of the drop down portion of
the editor. The DropDownMinWidth property specifies the minimum width for the drop down
portion.

Name Value Description

exDropDownAutoWidth -1
The drop down width is automatically computed to
let all predefined items in the editor fi the drop down
portion.

exDropDownEditorWidth 0
The width of the drop down portion of the editor is
specified by the width of the cell that holds the
editor.

exDropDownAutoEditorWidth 1

The width of the drop down portion of the editor is
specified by the width of the cell that holds the
editor. The width of the drop down can't be less
than the width required to let all predefined items
being visible. The width of the drop down portion is
always greater than the DropDownMinWidth
value.

constants EditorOptionEnum
Specifies different options for a built-in editor. The Option property specifies the editor's
options. Use the DefaultEditorOption property to specify default option for the editors of a
specified type. The following options are supported:

Name Value Description

exMemoHScrollBar 1

Adds the horizontal scroll bar to a MemoType or
MemoDropDownType editor.

(boolean expression, by default it is false)

exMemoVScrollBar 2

Adds the vertical scroll bar to a MemoType or
MemoDropDownType editor.

(boolean expression, by default it is false)

exMemoAutoSize 3

Specifies whether the MemoType editor is resized
when user alters the text.

(boolean expression, by default it is true)

exColorListShowName 4

Specifies whether a ColorListType editor displays
the name of the color.

(boolean expression, by default it is false)

exColorShowPalette 5

Specifies whether the ColorList editor displays the
palette colors list.

(boolean expression, by default it is true)

exColorShowSystem 6

Specifies whether the ColorType editor shows the
system colors list.

(boolean expression, by default it is true)

exMemoDropDownWidth 7

Specifies the width for a MemoDropDownType
editor.

(long expression, by default it is 128)

exMemoDropDownHeight 8

Specifies the height for a MemoDropDownType
editor.

(long expression, by default it is 116)

exMemoDropDownAcceptReturn9

Specifies whether the Return key is used to add
new lines into a MemoDropDownType editor.

(boolean expression, by default it is true)

exEditRight 10

Right-aligns text in a single-line or multiline edit
control.

(boolean expression, by default it is false)

exProgressBarBackColor 11

Specifies the background color for a progress bar
editor. Use the exProgressBarMarkTicker option to
specify the background color or visual appearance
of the progress bar.

(color expression, by default it is 0x80000000 |
COLOR_HIGHLIGHT)

exProgressBarAlignment 12

Specifies the alignment of the caption inside of a
progress bar editor.

(AlignmentEnum expression, by default it is
LeftAlignment)

exProgressBarMarkTicker 13

Retrieves or sets a value that indicates whether the
ticker of a progress bar editor is visible or hidden. If
value is 0 (false), no progress's background is
shown. If -1(true), the progress's background is
shown using the current visual theme, else the solid
color or the EBN object is applied on the progress's
background.

(color expression, by default it is -1)

exDateAllowNullDate 14

Allows you to specify an empty date to a DateType
editor.

(boolean expression, by default it is true)

exCheckValue0 15

Specifies the check box state being displayed for
unchecked state.

(long expression, valid values are 0, 1 or 2, by
default it is 0)

exCheckValue1 16

Specifies the check box state being displayed for
checked state.

(long expression, valid values are 0, 1 or 2, by
default it is 1)

exCheckValue2 17

Specifies the check box state being displayed for
partial checked state. (long expression, valid values
are 0, 1 or 2). For instance, if your cells load
boolean values (True is -1, False is 0), the control
displays the partial-check icon for True values. You
can call Grid1.DefaultEditorOption(exCheckValue2)
= 1 before loading the CheckValueType editor, and
so the partial-check cells show as check icons.

(long expression, valid values are 0, 1 or 2, by
default it is 2)

exEditPassword 18

Specifies a value that indicates whether an edit
control displays all characters as an asterisk (*) as
they are typed (passwords).

(boolean expression, by default it is false)

exEditPasswordChar 19

Specifies a value that indicates the password
character.

(character expression, by default it is '*')

exLeftArrow 20

(VK_LEFT) Specifies whether the left arrow key is
handled by the control or by the editor. By default,
the Option(exLeftArrow) property is
exHandleControl. Use the exLeftArrow option to
disable focusing a new cell if the user presses the
left arrow key while editing. The option is valid for

all editors.

(ArrowHandleEnum expression, by default it is
exHandleControl)

exRightArrow 21

(VK_RIGHT) Specifies whether the right arrow key
is handled by the control or by the editor. By
default, the Option(exRightArrow) property is
exHandleControl. Use the exRightArrow option to
disable focusing a new cell if the user presses the
right arrow key while editing. The option is valid for
all editors.

(ArrowHandleEnum expression, by default it is
exHandleControl)

exUpArrow 22

(VK_UP) Specifies whether the up arrow key is
handled by the control or by the editor. By default,
the Option(exUpArrow) property is
exHandleControl. Use the exUpArrow option to
disable focusing a new cell if the user presses the
up arrow key while editing. The option is valid for all
editors.

(ArrowHandleEnum expression, by default it is
exHandleControl)

exDownArrow 23

(VK_DOWN) Specifies whether the down arrow key
is handled by the control or by the editor. By
default, the Option(exDownArrow) property is
exHandleControl. Use the exDownArrow option to
disable focusing a new cell if the user presses the
down arrow key while editing. The option is valid for
all editors.

(ArrowHandleEnum expression, by default it is
exHandleControl)

(VK_HOME) Specifies whether the home key is
handled by the control or by the current editor. By
default, the Option(exHomeKey) property is True.
Use the exHomeKey option to disable focusing a
new cell if the user presses the home key while

exHomeKey 24 editing. The option is valid for all editors.

(boolean expression, by default it is true)

exEndKey 25

(VK_END) Specifies whether the end key is handled
by the control or by the current editor. By default,
the Option(exEndKey) property is True. Use the
exEndKey option to disable focusing a new cell if
the user presses the end key while editing. The
option is valid for all editors.

(boolean expression, by default it is true)

exPageUpKey 26

(VK_PRIOR) Specifies whether the page up key is
handled by the control or by the current editor. By
default, the Option(exPageUpKey) property is True.
Use the exPageUpKey option to disable focusing a
new cell if the user presses the page up key while
editing. The option is valid for all editors.

(boolean expression, by default it is true)

exPageDownKey 27

(VK_NEXT) Specifies whether the page down key
is handled by the control or by the current editor. By
default, the Option(exPageDownKey) property is
True. Use the exPageDownKey option to disable
focusing a new cell if the user presses the page
down key while editing. The option is valid for all
editors.

(boolean expression, by default it is true)

exDropDownImage 28

Displays the predefined icon in the control's cell, if
the user selects an item from a drop down editor.
By default, the exDropDownImage property is True.
The option is valid for DropDownListType, PickEdit
and ColorListType editors.

(boolean expression, by default it is true)

Specifies the caption for the 'Today' button in a

exDateTodayCaption 29 DateType editor.

(string expression, by default it is "Today")

exDateMonths 30

Specifies the name for months to be displayed in a
DateType editor. The list of months should be
delimitated by spaces.

(string expression, by default it is "January
February March April May June July August
September October November December")

exDateWeekDays 31

Specifies the shortcut for the weekdays to be
displayed in a DateType editor. The list of shortcut
for the weekdays should be separated by spaces.
The first shortcut in the list indicates the shortcut for
the Sunday, the second shortcut indicates the
shortcut for Monday, and so on.

(string expression, by default it is ""S M T W T F
S")

exDateFirstWeekDay 32

Specifies the first day of the week in a DateType
editor. The valid values for the
Editor.Option(exDateFirstWeekDay) property are
like follows: 0 - Sunday, 1 - Monday, 2 - Tuesday, 3
- Wednesday, 4 - Thursday, 5 - Friday and 6 -
Saturday.

(long expression, valid values are 0 to 6, by
default it is 0)

exDateShowTodayButton 33

Specifies whether the 'Today' button is visible or
hidden in a DateType editor.

(boolean expression, by default it is true)

exDateMarkToday 34

Gets or sets a value that indicates whether the
today date is marked in a DateType editor.

(boolean expression, by default it is false)

exDateShowScroll 35 Specifies whether the years scroll bar is visible or
hidden in a DateType editor.

(boolean expression, by default it is true)

exEditLimitText 36

Limits the length of the text that the user may enter
into an edit control. By default, the
Editor.Option(exEditLimitText) is zero, and so no
limit is applied to the edit control.

(long expression, by default it is 0)

exAutoDropDownList 37

The exAutoDropDownList has no effect
Editor.Option(exAutoDropDownList) property is 0 (
default). Automatically shows the drop down list
when user starts typing characters into a
DropDownList editor, if the
Editor.Option(exAutoDropDownList) property is -1.
If the Editor.Option(exAutoDropDownList) property
is +1, the control selects a new item that matches
typed characters without opening the drop down
portion of the editor.

(long expression, valid values are -1, 0 and +1, by
default it is 0)

exExpandOnSearch 38

Expands items while user types characters into a
drop down editor. The exExpandOnSearch type has
effect for drop down type editors.

(boolean expression, by default it is false)

exAutoSearch 39

Specifies the kind of searching while user types
characters within the drop down editor. The
exExpandOnSearch type has effect for drop down
type editors.

(AutoSearchEnum expression, valid values are 0
and 1, by default it is exStartWith)

Specifies the proposed change when user clicks a
spin control. The exSpinStep should be a positive
number, else clicking the spin has no effect. Integer

exSpinStep 40

or floating points allowed as well. For instance, if
the exSpinStep is 0.01, the proposed change when
user clicks the spin is 0.01. If the exSpinStep
property is 0, the spin control is hidden (useful if
you have a slider control).

(positive numeric expression, by default it is 1)

exSliderWidth 41

Specifies the width in pixels of the slider control.
The exSliderWidth value could be 0, when the slider
control is hidden, a positive value that indicates the
width in pixels of the slider in the control, a negative
number when its absolute value indicates the
percent of the cell's size being used by the slider.
For instance, Option(exSliderWidth) = 0, hides the
slider, Option(exSliderWidth) = 100, shows a slider
of 100 pixels width, Option(exSliderWidth) = -50,
uses half of the cell's client area to display a slider
control. By default the Option(exSliderWidth)
property is 64 pixels. Use the exSpinStep to hide
the spin control.

(long expression, by default it is 64)

exSliderStep 42

Specifies a value that represents the proposed
change in the slider control's position. The
exSliderTickFrequency property specifies the
frequency to display ticks on a slider control. The
exSliderMin and exSliderMax determines the range
of values for the slider control.

(numeric expression , by default it is 1)

exSliderMin 43
Specifies the slider's minimum value.

(numeric expression, by default it is 0)

exSliderMax 44
Specifies the slider's maximum value.

(numeric expression, by default it is 100)

Keeps the selection background color while the

exKeepSelBackColor 45

editor is visible. The exKeepSelBackColor option is
valid for all editors. Use the exKeepSelBackColor to
let the editor to display the control's selection
background color when it is visible.

(boolean expression, by default it is false)

exEditDecimalSymbol 46

Specifies the symbol that indicates the decimal
values while editing a floating point number. Use the
exEditDecimaSymbol option to assign a different
symbol for floating point numbers, when Numeric
property is exFloat.

(long expression, that indicates the ASCII code for
the character being used as decimal symbol, by
default, it is the "Decimal symbol" settings as in the
Regional Options, in your control panel)

exDateWeeksHeader 47

Sets or gets a value that indicates whether the
weeks header is visible or hidden in a DateType
editor.

(boolean expression, by default it is false)

exEditSelStart 48

Sets the starting point of text selected, when an
EditType editor is opened. If the exEditSelStart
property is 0, the text gets selected from the first
character. If the exEditSelStart property is -1, the
cursor is placed at the end of the text.

(long expression, by default it is 0)

exEditSelLength 49

Sets the number of characters selected, when an
EditType editor is opened. If the exEditSelLength is
0, no text is selected, instead the exEditSelStart
changes the position of the cursor. If the
exEditSelLength property is -1, the text from the
exEditSelStart position to the end gets selected.

(long expression, by default it is -1)

Specifies the background color for a locked edit

exEditLockedBackColor 50

control. By default, the exEditLockedBackColor
property is a system color that indicates the face
color for three-dimensional display elements and for
dialog box backgrounds.

(color expression, by default it is 0x80000000 |
COLOR_3DFACE)

exEditLockedForeColor 51

Specifies the foreground color for a locked edit
control.

(color expression, by default it is 0)

exShowPictureType 52

Specifies whether a PictureType editor displays the
type of the picture.

(boolean expression, by default it is true)

exSliderTickFrequency 53

Gets or sets the interval between tick marks slider
types. By default, the exSliderTickFrequency
property is 0 which makes the slider to display no
ticks. The exSliderTickFrequency property specifies
the frequency to display ticks on a slider control.
The exSliderStep proposed change in the slider
control's position. The exSliderMin and exSliderMax
determines the range of values for the slider
control. The exSliderWidth option specifies the
width of the slider within the cell.

(numeric expression, by default it is 0)

exPickAllowEmpty 54

Specifies whether the editor of PickEditType
supports empty value.

(boolean expression, by default it is false)

exDropDownBackColor 55

Specifies the drop down's background color. If 0
the exDropDownBackColor has no effect.

(color expression, by default it is 0)

Specifies the drop down's foreground color. If 0 the

exDropDownForeColor 56 exDropDownBackColor has no effect.

(color expression, by default it is 0)

exDropDownColumnCaption 57

Specifies the HTML caption for each column within
the drop down list, separated by Ś character
(vertical broken bar, ALT + 221). For instance, "
<sha ;;0>Name</sha>Ś<sha ;;0>ID</sha>" defines
two columns for the drop down editor. The header
of the drop down list is visible, if the
exDropDownColumnCaption is not empty.

(string expression, by default it is "")

exDropDownColumnWidth 58

Specifies the width for each column within the drop
down list, separated by Ś character (vertical broken
bar, ALT + 221). For instance, "Ś32" defines the
width of the second column to 32 pixels, within a
drop down multiple columns editor.

(string expression, by default it is "")

exDropDownColumnPosition 59

Specifies the position for each column within the
drop down list, separated by Ś character (vertical
broken bar, ALT + 221). For instance, "Ś0" defines
sets the second column to be first visible-column,
within a drop down multiple columns editor.

(string expression, by default it is "")

exDropDownColumnAutoResize60

Specifies whether the drop down list resizes
automatically its visible columns to fit the drop down
width. Specifies whether the drop down multiple
columns editor displays horizontal-scroll bar.

(boolean expression, by default it is true)

exSliderTickStyle 63 exSliderTickStyle. Gets or sets the style to display
the slider' ticks.

exCalcExecuteKeys 100

Specifies whether the calculator editor executes the
keys while focused and the drop down portion is
hidden.

(boolean expression, by default it is true)

exCalcCannotDivideByZero 101

Specifies the message whether a division by zero
occurs in a calendar editor.

(string expression, by default it is "Cannot divide
by zero.")

exCalcButtonWidth 102

Specifies the width in pixels of the buttons in the
calculator editor.

(long expression, by default it is 24)

exCalcButtonHeight 103

Specifies the height in pixels of the buttons in the
calculator editor.

(long expression, by default it is 24)

exCalcButtons 104

Specifies buttons in a calendar editor. The property
specifies the buttons and the layout of the buttons in
the control. A string expression that indicates the list
of buttons being displayed. The rows are separated
by chr(13)+chr(10) (vbCrLf) sequence, and the
buttons inside the row are separated by ';'
character.

(string expression)

exCalcPictureUp 105

Specifies the picture when the button is up in a drop
down calendar editor. A Picture object that
indicates the node's picture.

(A Picture object that implements IPicture interface,
a string expression that indicates the base64
encoded string that holds a picture object (use the
eximages tool to save your picture as base64
encoded format, by default it is "")

Specifies the picture when the button is down in a
drop down calendar editor. A Picture object that
indicates the node's picture.

https://exontrol.com/eximages.jsp

exCalcPictureDown 106 (A Picture object that implements IPicture interface,
a string expression that indicates the base64
encoded string that holds a picture object (use the
eximages tool to save your picture as base64
encoded format, by default it is "")

exEditAllowOverType 200

Specifies whether the editor supports overtype
mode. The option is valid for EditType and
MemoType editors.

(boolean expression, by default it is false)

exEditOverType 201

Retrieves or sets a value that indicates whether the
editor is in insert or overtype mode. The option is
valid for EditType and MemoType editors.

(boolean expression, by default it is false)

exEditAllowContextMenu 202

Specifies whether the editor displays the edit's
default context menu when the user right clicks the
field.

(boolean expression, by default it is true)

https://exontrol.com/eximages.jsp

constants EditorVisibleEnum
The EditorVisibleEnum type specifies the way the control shows the field's editor. The
EnsureVisibleEnum type support the following values:

Name Value Description
exEditorHidden 0 The editor is hidden.
exEditorVisible 1 The editor is always visible.

exEditorVisibleOnFocus -1 The editor is visible when the cell receives the
focus.

constants EditTypeEnum
Use the EditType property to specify the editor for a cell or a column. Any editor can have a
check box (use CellHasCheckBox property) , radio button (use CellHasRadioButton
property) associated, or multiple buttons to the left or right side (use AddButton method).
The Mask property is applied to most of all editors that has associated a standard edit
control. Use the Option property to assign different options for a given editor. Use the
DefaultEditorOption property to specify default option for the editors of a specified type.
The CellValue property indicates the value for the editor. A cell or a column supports the
following type of editors:

Name Value Description
ReadOnly 0 The column or the cell has no editor associated.

EditType 1

A standard text edit field.

The editor supports the following options:

exEditRight, Right-aligns text in a single-line or
multiline edit control.
exEditPassword, Specifies a value that
indicates whether an edit control displays all
characters as an asterisk (*) as they are typed
(passwords).
exEditPasswordChar, Specifies a value that
indicates the password character.
exEditLimitText, Limits the length of the text
that the user may enter into an edit control.
exEditDecimalSymbol, Specifies the symbol
that indicates the decimal values while editing a
floating point number. The Numeric property
should be on exFloat.
exEditSelStart, Sets the starting point of text
selected, when an EditType editor is opened.
exEditSelLength, Sets the number of
characters selected, when an EditType editor
is opened.
exEditLockedBackColor property. Specifies the
background color for a locked edit control.
exEditLockedForeColor property. Specifies the
foreground color for a locked edit control.

It provides an intuitive interface for your

DropDownType 2

users to select values from pre-defined
lists presented in a drop-down window,
but it accepts new values at runtime too.
The DropDownType editor has
associated a standard text edit field too. Use
AddItem or InsertItem method to add predefined
values to the drop down list. The DropDownRows
property specifies the maximum number of visible
rows into the drop-down list. The editor displays the
CellValue value, not the identifier of the selected
item. The EditType options are supported too.

The following sample adds a column with a
DropDownType editor:

With .Columns.Add("Editor").Editor
 .EditType = DropDownType
 .AddItem 0, "Single Bed", 1
 .AddItem 1, "Double Bed", 2
 .AddItem 2, "Apartment", 3
 .AddItem 3, "Suite", 4
 .AddItem 4, "Royal Suite", 5
End With
.Items.CellValue(.Items(0), "Editor") = "Apartment"

The editor supports the following options:

exDropDownBackColor, specifies the drop
down's background color
exDropDownForeColor, specifies the drop
down's foreground color
exDropDownColumnCaption, specifies the
HTML caption for each column within the drop
down list, separated by Ś character (vertical
broken bar, ALT + 221)
exDropDownColumnWidth, specifies the width
for each column within the drop down list,
separated by Ś character (vertical broken bar,
ALT + 221).
exDropDownColumnPosition, specifies the
position for each column within the drop down
list, separated by Ś character (vertical broken

bar, ALT + 221).
exDropDownColumnAutoResize, specifies
whether the drop down list resizes
automatically its visible columns to fit the drop
down width

DropDownListType 3

It provides an intuitive interface
for your users to select values
from predefined lists presented
in a drop-down window. The
DropDownListType editor has
no standard edit field
associated. Use the AddItem or
InsertItem method to add predefined values to the
drop down list. The DropDownRows property
specifies the maximum number of visible rows into
the drop-down list. The editor displays the caption
of the item that matches the CellValue value. The
item's icon is also displayed if it exists.

The following sample adds a column with a
DropDownListType editor:

With .Columns.Add("Editor").Editor
 .DropDownAutoWidth = False
 .EditType = DropDownListType
 .AddItem 0, "Single Bed", 1
 .AddItem 1, "Double Bed", 2
 .AddItem 2, "Apartments", 3
 .InsertItem 3, "1 Bed Apartment", 4, 2
 .InsertItem 4, "2 Bed Apartment", 5, 2
 .AddItem 5, "Suite", 4
 .InsertItem 6, "Royal Suite", 1, 5
 .InsertItem 7, "Deluxe Suite", 2, 5
 .ExpandAll
End With
.Items.CellValue(.Items(0), "Editor") = 3

The editor supports the following options:

exDropDownImage, displays the predefined
icon in the control's cell, if the user selects an
item from a drop down editor.
exDropDownBackColor, specifies the drop
down's background color
exDropDownForeColor, specifies the drop
down's foreground color
exDropDownColumnCaption, specifies the
HTML caption for each column within the drop
down list, separated by Ś character (vertical
broken bar, ALT + 221)
exDropDownColumnWidth, specifies the width
for each column within the drop down list,
separated by Ś character (vertical broken bar,
ALT + 221).
exDropDownColumnPosition, specifies the
position for each column within the drop down
list, separated by Ś character (vertical broken
bar, ALT + 221).
exDropDownColumnAutoResize, specifies
whether the drop down list resizes
automatically its visible columns to fit the drop
down width

SpinType 4

The SpinType allows your users to view and
change numeric values using a familiar up/down
button (spin control) combination. The AddItem or
InsertItem method has no effect, if the EditType is
SpinType. Use the exSpinStep option to specify the
proposed change when user clicks the spin. Use the
Numeric property to specify whether the edit control
allows only numeric values only. Use the
exSpinUpButtonUp, exSpinUpButtonDown,
exSpinDownButtonUp and exSpinDownButtonDown
to change the visual appearance for the spin
control.

The MemoType is designed to
provide an unique and intuitive
interface, which you can implement within your
application to assist users in working with textual

MemoType 5
information. If all information does not fit within the
edit box, the window of the editor is enlarged. The
AddItem or InsertItem method has no effect, if the
EditType is MemoType. You can use options like
exMemoHScrollBar, exMemoVScrollBar and so on.

CheckListType 6

It provides an intuitive interface for
your users to check values from
predefined lists presented in a
drop-down window. Each item has
a check box associated. The editor
displays the list of item captions, separated by
comma, that is OR combination of CellValue value.
Use the The AddItem or InsertItem method to add
new predefined values to the drop down list. The
DropDownRows property specifies the maximum
number of visible rows into the drop-down list. Use
the CheckImage property to change the check box
appearance.

The following sample adds a column with a
CheckListType editor:

With .Columns.Add("Editor").Editor
 .EditType = CheckListType
 .AddItem 1, "Single Bed", 1
 .AddItem 2, "Double Bed", 2
 .AddItem 4, "Apartment", 3
 .AddItem 8, "Suite", 4
 .AddItem 16, "Royal Suite", 5
End With
.Items.CellValue(.Items(0), "Editor") = 5

The editor supports the following options:

exDropDownBackColor, specifies the drop
down's background color
exDropDownForeColor, specifies the drop
down's foreground color

DateType 7

The DateType is a date/calendar
control (not the Microsoft
Calendar Control). The dropdown
calendar provides an efficient and
appealing way to edit dates at
runtime. The DateType editor has
a standard edit control
associated. The user can easy
select a date by selecting a date
from the drop down calendar, or
by typing directly the date. The editor displays the
CellValue value as date. To change how the way
how the control displays the date you can use
FormatColumn event. The AddItem or InsertItem
method has no effect, if the EditType is DateType.

The following sample adds a column with a
DateType editor:

With .Columns.Add("Editor").Editor
 .EditType = DateType
End With
.Items.CellValue(.Items(0), "Editor") = Date

MaskType 8

You can use the MaskType to enter
any data that includes literals and requires a mask
to filter characters during data input. You can use
this control to control the entry of many types of
formatted information such as telephone numbers,
social security numbers, IP addresses, license keys
etc. The Mask property specifies the editor's mask.
The MaskChar property specifies the masking
character. The AddItem or InsertItem method has
no effect, if the EditType is MaskType. The Mask
property can use one or more literals: #,x,X,A,?
<,>,*,\,{nMin,nMax},[...].

The following sample shows how to mask a column
for input phone numbers:

With .Columns.Add("Editor").Editor

 .EditType = MaskType
 .Mask = "(###) ### - ####"
End With
.Items.CellValue(.Items(0), "Editor") = "(214) 345 -
789"

ColorType 9

You can include a color selection
control in your applications via the
ColorType editor. Check the
ColorListType also. The editor has
a standard edit control and a color
drop-down window. The color
drop-down window contains two
tabs that can be used to select
colors, the "Pallette" tab shows a grid of colors,
while the "System" tab shows the current windows
color constants. The AddItem or InsertItem
methodhas no effect, if the EditType is
ColorType. You can use options like
exColorShowPalette or exColorShowSystem.

The following sample adds a column with a
ColorType editor:

With .Columns.Add("Editor").Editor
 .EditType = ColorType
End With
.Items.CellValue(.Items(0), "Editor") = vbRed

FontType 10

Provides an intuitive way for
selecting fonts. The FontType
editor contains a standard edit
control and a font drop-down
window. The font drop-down
window contains a list with all

system fonts. The AddItem or InsertItem method
has no effect, if the EditType is FontType. The
DropDownRows property specifies the maximum
number of visible rows into the drop=down list.

The following sample adds a column with a
FontType editor:

With .Columns.Add("Editor").Editor
 .EditType = FontType
End With
.Items.CellValue(.Items(0), "Editor") = "Times New
Roman"

PictureType 11

The PictureType provides an
elegant way for displaying
the fields of OLE Object
type and cells that have a
reference to an IPicture
interface. An OLE Object
field can contain a picture, a
Microsoft Clip Gallery, a
package, a chart,
PowerPoint slide, a word document, a WordPad
document, a wave file, an so on. In MS Access you
can specify the field type to OLE Object. The
DropDownMinWidth property specifies the minimum
width for the drop=down window. The drop-down
window is scaled based on the picture size. The
AddItem or InsertItem method has no effect, if the
EditType is PictureType. If your control is bounded
to a ADO recordset, it automatically detects the
OLE Object fields, so setting the editor's type to
PictureType is not necessary. If your control is not
bounded to an ADO recordset you can use the
following sample to view OLE objects in the column
"OLEObject" (the sample uses the NWIND
database installed in your VB folder.

Change the path if necessary, in the following
sample:

' Creates an ADO Recordset
Dim rs As Object
Set rs = CreateObject("ADODB.Recordset")
rs.Open "Employees",

"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=
D:\Program Files\Microsoft Visual
Studio\VB98\NWIND.MDB", 3

' Adds a column of PictureType edit
Dim c As Column
Set c = .Columns.Add("OLEObject")
With c.Editor
.EditType = PictureType
End With
.Items.CellValue(.Items(0), "OLEObject") =
rs("Photo").Value

ButtonType 12

The ButtonType editor consists into a
standard edit field and a "..." button.
The ButtonClick event is fired if the user has clicked
the button. The AddItem or InsertItem method has
no effect, if the EditType is ButtonType. Of course,
you can apply for multiple buttons using the
AddButton method, for any types.

ProgressBarType 13

Uses the CellValue property to
specify the percent being displayed in the
ProgressBarTpe editor. The CellValue property
should be between 0 and 100.

It provides an intuitive interface for
your users to select values from
pre-defined lists presented in a
drop-down window. The
PickEditType editor has a standard
edit field associated, that useful for searching items
while typing. The DropDownRows property
specifies the maximum number of visible rows into
the drop=down list. Use AddItem or InsertItem
method to add new predefined values to the drop

PickEditType 14

down list. The editor displays the caption of the
item that matches the CellValue value. The item's
icon is also displayed if it exists.

The following sample shows how to add values to a
drop down list:

With .Columns.Add("Editor").Editor
 .EditType = PickEditType
 .AddItem 0, "Single Bed", 1
 .AddItem 1, "Double Bed", 2
 .AddItem 2, "Apartment", 3
 .AddItem 3, "Suite", 4
 .AddItem 4, "Royal Suite", 5
End With
.Items.CellValue(.Items(0), "Editor") = "Apartment"

The editor supports the following options:

exDropDownBackColor, specifies the drop
down's background color
exDropDownForeColor, specifies the drop
down's foreground color
exDropDownColumnCaption, specifies the
HTML caption for each column within the drop
down list, separated by Ś character (vertical
broken bar, ALT + 221)
exDropDownColumnWidth, specifies the width
for each column within the drop down list,
separated by Ś character (vertical broken bar,
ALT + 221).
exDropDownColumnPosition, specifies the
position for each column within the drop down
list, separated by Ś character (vertical broken
bar, ALT + 221).
exDropDownColumnAutoResize, specifies
whether the drop down list resizes
automatically its visible columns to fit the drop
down width

The LinkEditType control allows
your application to edit and display hyperlink

LinkEditType 15 addresses.

UserEditorType 16

The control is able to use
ActiveX controls as a built-in
editor. The control uses the
UserEditor property to define
the user control. If it succeeded
the UserEditorObject property
retrieves the newly created object. Events like:
UserEditOpen, UserEditClose and
UserEditorOleEvent are fired when the control uses
custom editors. The setup installs the VB\UserEdit,
VC\User.Edit samples that uses Exontrol's
ExComboBox component as a new editor into the
ExGrid component (a multiple columns combobox
control).

ColorListType 17

You can include a color
selection control in your
application via the
ColorListType editor,
also. The editor hosts a
predefined list of colors.
By default. the following
colors are added: Black, White, Dark Red, Dark
Green, Dark Yellow, Dark Blue, Dark Magenta,
Dark Cyan, Light Grey, Dark Grey, Red, Green,
Yellow, Blue, Magenta, Cyan. The AddItem method
adds a new color to your color list editor. You can
use the exColorListShowName option to display the
color's name.

The following sample adds few custom colors to the
ColorListType editor:

With .Columns.Add("Editor").Editor
 .EditType = ColorListType
 .AddItem 128, "Dark Red"

https://exontrol.com/excombobox.jsp

 .AddItem RGB(0, 128, 0), "Dark Green"
 .AddItem RGB(0, 0, 128), "Dark Blue"
End With
.Items.CellValue(.Items(0), "Editor") = 128

MemoDropDownType 18

It provides a multiple lines edit
control that's displayed into a drop
down window.

The Editor.Option(exMemoDropDownWidth)
specifies the width (in pixels) of the
MemoDropDownType editor when it is
dropped.
The Editor.Option(exMemoDropDownHeight)
specifies the height (in pixels) of the
MemoDropDownType editor when it is
dropped.
The Editor.Option(
exMemoDropDownAcceptReturn) specifies
whether the user closes the
MemoDropDownType editor by pressing the
ENTER key. If the Editor.Option(
exMemoDropDownAcceptReturn) is True, the
user inserts new lines by pressing the ENTER
key. The user can close the editor by pressing
the CTRL + ENTER key. If the Editor.Option(
exMemoDropDownAcceptReturn) is False, the
user inserts new lines by pressing the CTRL +
ENTER key. The user can close the editor by
pressing the ENTER key.
The Editor.Option(exMemoHScrollBar) adds
the horizontal scroll bar to a MemoType or
MemoDropDownType editor.
The Editor.Option(exMemoVScrollBar) adds
the vertical scroll bar to a MemoType or
MemoDropDownType editor
Use the Items.CellSingleLine property to
specify whether the cell displays multiple lines

The AddItem or InsertItem method has no effect, if
the EditType is MemoDropDownType.

CheckValueType 19

Displays check boxes in the column or cell. The
CellValue property indicates the state of the cell's
check box. See also: CellHasCheckBox property.
The CheckValueType editor supports the following
options:

exCheckValue0. Specifies the check box state
being displayed for unchecked state
exCheckValue1. Specifies the check box state
being displayed for checked state
exCheckValue2. Specifies the check box state
being displayed for partial-check state

For instance, if your cells load boolean values (
True is -1, False is 0), the control displays the
partial-check icon for True values. You can call the
following code before loading the CheckValueType
editor:

Grid1.DefaultEditorOption(exCheckValue2) = 1

in order to replace the partial-check appearance, to
check state appearance.

SliderType 20

Adds a slider control to a cell. Use
the exSliderWidth, exSliderStep,
exSliderMin, exSliderMax options to control the
slider properties. Use the exSpinStep option to hide
the spin control. Use the exSpinUpButtonUp,
exSpinUpButtonDown, exSpinDownButtonUp and
exSpinDownButtonDown to change the visual
appearance for the spin control. Use the
exSliderRange and exSliderThumb to change the
visual appearance for the slider control.

CalculatorType 21

Adds a drop down calculator to a
node. Use the
exCalcExecuteKeys,
exCalcCannotDivideByZero,
exCalcButtonWidth,
exCalcButtonHeight,
exCalcButtons, exCalcPictureUp,
exCalcPictureDown to specify different options for
calculator editor.

CloneType 268435456

The CloneType flag specifies that the current
column uses the editor of a different column. The
Column.Editor.EditType property must be
CloneType + Index, where Index is the index of the
column whose editor is used instead, in the current
column. For instance, you have more columns that
displays same data, and so you can use the same
drop down for it, to select a different value. In other
words, you define the editor once, and uses it on
any other columns. For instance,
Column.Editor.EditType = CloneType + 2, indicates
that the Column uses the editor of the column with
the index 2.

All editors support the following options:

exLeftArrow, Disables focusing a new cell if the user presses the left arrow key while
editing.
exRightArrow, Disables focusing a new cell if the user presses the right arrow key
while editing.
exUpArrow, Disable focusing a new cell if the user presses the up arrow key while
editing.
exDownArrow, Disable focusing a new cell if the user presses the down arrow key
while editing.
exHomeKey, Disable focusing a new cell if the user presses the home key while
editing.
exEndKey, Disables focusing a new cell if the user presses the end key while editing.
exPageUpKey, Disable focusing a new cell if the user presses the page up key while
editing.
exKeepSelBackColor. Keeps the selection background color while editor is visible.

constants exClipboardFormatEnum
Defines the clipboard format constants. Use GetFormat property to check whether the
clipboard data is of given type

Name Value Description

exCFText 1 Null-terminated, plain ANSI text in a global memory
bloc

exCFBitmap 2 A bitmap compatible with Windows 2.X

exCFMetafile 3
A Windows metafile with some additional
information about how the metafile should be
displayed

exCFDIB 8 A global memory block containing a Windows
device-independent bitmap (DIB)

exCFPalette 9 A color-palette handle
exCFEMetafile 14 A Windows enhanced metafile

exCFFiles 15 A collection of files. Use Files property to get the
collection of files

exCFRTF -16639A RTF document

constants exOLEDragOverEnum

State transition constants for the OLEDragOver event.

Name Value Description

exOLEDragEnter 0 Source component is being dragged within the
range of a target.

exOLEDragLeave 1 Source component is being dragged out of the
range of a target.

exOLEDragOver 2 Source component has moved from one position in
the target to another.

constants exOLEDropEffectEnum

Drop effect constants for OLE drag and drop events.

Name Value Description

exOLEDropEffectNone 0 Drop target cannot accept the data, or the drop
operation was cancelled

exOLEDropEffectCopy 1
Drop results in a copy of data from the source to
the target. The original data is unaltered by the
drag operation.

exOLEDropEffectMove 2
Drop results in data being moved from drag source
to drop source. The drag source should remove the
data from itself after the move.

exOLEDropEffectScroll -2147483648Not implemented.

constants exOLEDropModeEnum

Constants for the OLEDropMode property, that defines how the control accepts OLE drag
and drop operations. Use the OLEDropMode property to set how the component handles
drop operations.

Name Value Description

exOLEDropNone 0 The control is not used OLE drag and drop
functionality

exOLEDropManual 1
The control triggers the OLE drop events, allowing
the programmer to handle the OLE drop operation
in code

Here's the list of events related to OLE drag and drop: OLECompleteDrag, OLEDragDrop,
OLEDragOver, OLEGiveFeedback, OLESetData, OLEStartDrag.

constants ExpandButtonEnum
Defines how the control displays the expanding/collapsing buttons.

Name Value Description
exNoButtons 0 The control displays no expand buttons.

exPlus -1 A plus sign is displayed for collapsed items, and a
minus sign for expanded items.()

exArrow 1 The control uses icons to display the expand
buttons.()

exCircle 2 The control uses icons to display the expand
buttons. ()

exWPlus 3 The control uses icons to display the expand
buttons. ()

exCustom 4 The HasButtonsCustom property specifies the index
of icons being used for +/- signs on parent items.

constants FilterBarVisibleEnum
The FilterBarVisibleEnum type defines the flags you can use on FilterBarPromptVisible
property. The FilterBarCaption property defines the caption to be displayed on the control's
filter bar. The FilterBarPromptVisible property , specifies how the control's filter bar is
displayed and behave. The FilterBarVisibleEnum type includes several flags that can be
combined together, as described bellow:

Name Value Description

exFilterBarHidden 0
No filter bar is shown while there is no filter applied.
The control's filter bar is automatically displayed as
soon a a filter is applied.

exFilterBarPromptVisible 1

The exFilterBarPromptVisible flag specifies that the
control's filter bar displays the filter prompt. The
exFilterBarPromptVisible, exFilterBarVisible,
exFilterBarCaptionVisible flag , forces the control's
filter-prompt, filter bar or filter bar description (
even empty) to be shown. If missing, no filter
prompt is displayed. The FilterBarPrompt property
to specify the HTML caption being displayed in the
filter bar when the filter pattern is missing.

exFilterBarVisible 2

The exFilterBarVisible flag forces the control's filter
bar to be shown, no matter if any filter is applied. If
missing, no filter bar is displayed while the control
has no filter applied.

or combined with exFilterBarPromptVisible

exFilterBarCaptionVisible 4

The exFilterBarVisible flag forces the control's filter
bar to display the FilterBarCaption property.

exFilterBarSingleLine 16

The exFilterBarVisible flag specifies that the caption
on the control's filter bar id displayed on a single
line. The exFilterBarSingleLine flag , specifies that
the filter bar's caption is shown on a single line, so

 HTML tag or \r\n are not handled. By default,
the control's filter description applies word
wrapping. Can be combined to exFilterBarCompact
to display a single-line filter bar. If missing, the
caption on the control's filter bar is displayed on
multiple lines. You can change the height of the
control's filter bar using the FilterBarHeight
property.

exFilterBarToggle 256

The exFilterBarToggle flag specifies that the user
can close the control's filter bar (removes the
control's filter) by clicking the close button of the
filter bar or by pressing the CTRL + F, while the
control's filter bar is visible. If no filter bar is
displayed, the user can display the control's filter
bar by pressing the CTRL + F key. While the
control's filter bar is visible the user can navigate
though the list or control's filter bar using the ALT +
Up/Down keys. If missing, the control's filter bar is
always shown if any of the following flags is present
exFilterBarPromptVisible, exFilterBarVisible,
exFilterBarCaptionVisible.

exFilterBarShowCloseIfRequired512

The exFilterBarShowCloseIfRequired flag indicates
that the close button of the control's filter bar is
displayed only if the control has any currently filter
applied. The Background(exFooterFilterBarButton)
property on -1 hides permanently the close button
of the control's filter bar.

exFilterBarShowCloseOnRight1024

The exFilterBarShowCloseOnRight flag specifies
that the close button of the control's filter bar should
be displayed on the right side. If the control's
RightToLeft property is True, the close button of the
control's filter bar would be automatically displayed
on the left side.

exFilterBarCompact 2048

The exFilterBarCompact flag compacts the control's
filter bar, so the filter-prompt will be displayed to
the left, while the control's filter bar caption will be
displayed to the right. This flag has effect only if
combined with the exFilterBarPromptVisible. This
flag can be combined with the exFilterBarSingleLine
flag, so all filter bar will be displayed compact and
on a single line.

exFilterBarTop 8192

The exFilterBarTop flag displays the filter-bar on top
(between control's header and items section as
shown:

By default, the filter-bar is shown aligned to the
bottom (between items and horizontal-scroll bar) as
shown:

constants FilterIncludeEnum
The FilterIncludeEnum type defines the items to include when control's filter is applied. The
FilterInclude property specifies the items being included, when the list is filtered. The
FilterIncludeEnum type supports the following values:

Name Value Description

exItemsWithoutChilds 0 Items (and parent-items) that match the filter are
shown (no child-items are included)

exItemsWithChilds 1 Items (parent and child-items) that match the filter
are shown

exRootsWithoutChilds 2 Only root-items (excludes child-items) that match
the filter are displayed

exRootsWithChilds 3 Root-items (and child-items) that match the filter
are displayed

exMatchingItemsOnly 4 Shows only the items that matches the filter (no
parent or child-items are included)

exMatchIncludeParent 240

Specifies that the item matches the filter if any of its
parent-item matches the filter. The
exMatchIncludeParent flag can be combined with
any other value.

constants FilterListEnum
The FilterListEnum type specifies the type of items being included in the column's drop
down list filter. The FilterList property specifies the items being included to the column's
drop down filter-list, including other options for filtering. Use the DisplayFilterPattern and/or
DisplayFilterDate property to display the pattern field, a date pattern or a calendar control
inside the drop down filter window.

The FilterList can be a bit-combination of exAllItems, exVisibleItems or exNoItems with any
other flags being described bellow:

Name Value Description
exAllItems 0 The filter's list includes all items in the column.

exVisibleItems 1
The filter's list includes only visible (filtered) items
from the column. The visible items include child
items of collapsed items.

exNoItems 2
The filter's list does not include any item from the
column. Use this option if the drop down filter
displays a calendar control for instance.

exLeafItems 3 The filter's list includes the leaf items only. A leaf
item is an item with no child items.

exRootItems 4 The filter's list includes the root items only.

exSortItemsDesc 16

If the exSortItemsDesc flag is set the values in the
drop down filter's list gets listed descending. If none
of the exSortItemsAsc or exSortItemsDesc is
present, the list is built as the items are displayed in
the control.

exSortItemsAsc 32

If the exSortItemsAsc flag is set the values in the
drop down filter's list gets listed ascending. If none
of the exSortItemsAsc or exSortItemsDesc is
present, the list is built as the items are displayed in
the control.

exIncludeInnerCells 64

The exIncludeInnerCells flag specifies whether the
inner cells values are included in the drop down
filter's list. The SplitCell method adds an inner cell,
on in other words splits a cell.

exSingleSel 128

If this flag is present, the filter's list supports single
selection. By default, (If missing), the user can
select multiple items using the CTRL key. Use the
exSingleSel property to prevent multiple items

selection in the drop down filter list.

exShowCheckBox 256

The filter's list displays a check box for each
included item. Clicking the checkbox, makes the
item to be include din the filter. If this flag is
present, the filter is closed once the user presses
ENTER or clicks outside of the drop down filter
window. By default, (this flag is missing), clicking
an item closes the drop down filter, if the CTRL key
is not pressed. This flag can be combined with
exHideCheckSelect.

The following screen shot shows the drop down
filter with or with no exShowCheckBox flag:

 or

exHideCheckSelect 512

The selection background is not shown for checked
items in the filter's list. This flag can be combined
with exShowCheckBox.

The following screen shot shows no selection
background for the checked items:

This flag allows highlighting the focus cell value in
the filter's list. The focus cell value is the cell's
content at the moment the drop down filter window
is shown. For instance, click an item so a new item
is selected, and click the drop down filter button. A

exShowFocusItem 1024

item being focused in the drop down filter list is the
one you have in the control's selection. This flag has
effect also, if displaying a calendar control in the
drop down filter list.

The following screen shot shows the focused item
in the filter's list (The Integration ... item in the
background is the focused item, and the same is in
the filter's list) :

exShowPrevSelectOpaque 2048

By default, the previously selection in the drop down
filter's list is shown using a semi-transparent color.
Use this flag to show the previously selection using
an opaque color. The exSelFilterForeColor and
exSelFilterBackColor options defines the filter's list
selection foreground and background colors.

exEnableToolTip 4096

This flag indicates whether the filter's tooltip is
shown. The
Description(exFilterBarTooltip,exFilterBarPatternTooltip,
...) properties defines the filter's tooltips.

exShowExclude 8192

This flag indicates whether the Exclude option is
shown in the drop down filter window. This option
has effect also if the drop down filter window shows
a calendar control.

The following screen shot shows the Exclude field in
the drop down filter window:

exShowBlanks 16384 This flag indicates whether the (Blanks) and
(NonBlanks) items are shown in the filter's list

constants FilterPromptEnum
The FilterPromptEnum type specifies the type of prompt filtering. Use the
FilterBarPromptType property to specify the type of filtering when using the prompt. The
FilterBarPromptColumns specifies the list of columns to be used when filtering. The
FilterBarPromptPattern property specifies the pattern for filtering. The pattern may contain
one or more words being delimited by space characters.

The filter prompt feature supports the following values:

Name Value Description

exFilterPromptContainsAll 1

The list includes the items that contains all specified
sequences in the filter. Can be combined with
exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptContainsAny 2

The list includes the items that contains any of
specified sequences in the filter. Can be combined
with exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptStartWith 3

The list includes the items that starts with any
specified sequences in the filter. Can be combined
with exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptEndWith 4

The list includes the items that ends with any
specified sequences in the filter. Can be combined
with exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptPattern 16

The filter indicates a pattern that may include wild
characters to be used to filter the items in the list.
Can be combined with
exFilterPromptCaseSensitive. The
FilterBarPromptPattern property may include wild
characters as follows:

'?' for any single character
'*' for zero or more occurrences of any
character
'#' for any digit character

' ' space delimits the patterns inside the filter

exFilterPromptCaseSensitive 256

Filtering the list is case sensitive. Can be combined
with exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith, exFilterPromptEndWith or
exFilterPromptPattern.

exFilterPromptStartWords 4608

The list includes the items that starts with specified
words, in any position. Can be combined with
exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith or exFilterPromptEndWith.

exFilterPromptEndWords 8704

The list includes the items that ends with specified
words, in any position. Can be combined with
exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith or exFilterPromptEndWith.

exFilterPromptWords 12800

The filter indicates a list of words. Can be combined
with exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith or exFilterPromptEndWith.

constants FilterTypeEnum
The FilterTypeEnum type defines the type of filter applies to a column. Use the FilterType
property to specify the type of filter being used. Use the Filter property to specify the filter
being used. The value for Filter property depends on the FilterType property. Use the
Description property to customize the captions for control filter bar window. The FilterList
property indicates the values the drop-down filter includes. The FilterTypeEnum type
supports the following values:

Name Value Description

exAll 0

No filter applied. Use the Description property to
change the "(All)" caption in the drop down filter.

exBlanks 1

Only blank items are included. Use the Description
property to change the "(Blanks)" caption in the
drop down filter. The Filter property has no effect.

exNonBlanks 2

Only non blanks items are included. Use the
Description property to change the "(NonBlanks) "
caption in the drop down filter. The Filter property
has no effect.

exPattern 3

Only items that match the pattern are included. The
Filter property defines the pattern. A pattern may
contain the wild card characters '?' for any single
character, '*' for zero or more occurrences of any
character, '#' for any digit character, and [chars]
indicates a group of characters. If any of the *, ?, #
or | characters are preceded by a \ (escape
character) it masks the character itself. The
Def(exFilterPatternTemplate) property specifies the
template for the column's filter when the Filter
property or the 'Filter For' field is populated. The
exFilterDoCaseSensitive flag can be combined with
exPattern or exFilter types, indicating that case-
sensitive filtering should be performed.

For instance:

"*1", only items that ends with 1 are included
"A*|B*", only items that starts with a/A or b/B

Only items (of date type) within the specified range
are included. The Filter property defines the interval
of dates being used to filter items. The interval of
dates should be as [dateFrom] to [dateTo]. Use the
Description property to change the "to" conjunction
used to split the dates in the interval. If the
dateFrom value is missing, the control includes only

exDate 4

the items before the dateTo date, if the dateTo
value is missing, the control includes the items after
the dateFrom date. If both dates (dateFrom and
dateTo) are present, the control includes the items
between this interval of dates. The
DisplayFilterDate property specifies whether the
drop down filter window displays a date selector to
specify the interval dates to filter for.

For instance:

"2/13/2004 to" includes all items after
2/13/2004 inclusive
"2/13/2004 to Feb 14 2005" includes all items
between 2/13/2004 and 2/14/2004

exNumeric 5

Only items (of numeric type) within the specified
range are included. The Filter property may include
operators like <, <=, =, <>, >= or > and numbers to
define rules to include numbers in the control's list.
If the FilterType property is exNumeric, the drop
down filter window doesn't display the filter list that
includes items "(All)", "(Blanks)", ... and so on.

For instance:

"100", filter items with the value 100
"> 10 < 100", indicates all numbers greater
than 10 and less than 100

exCheck 6

Only checked or unchecked items are included. The
CellState property indicates the state of the cell's
checkbox. The Filter property on "0" filters for
unchecked items, while "1" filters for checked items.
A checked item has the the CellState property
different than zero. An unchecked item has the
CellState property on zero.

For instance:

"0", only unchecked items are included
"1", only checked items are included

exImage 10

Only items showing the specified icons (icon index)
are included. The CellImage property indicates the
cell's icon. Multiple icons are separated by the '|'
character. The Filter property defines the list of
icons, separated by the '|' character, to apply the
filter.

For instance:

"1", only items that displays the icons with the
index 1 are included
"2|3", only items displaying the icons with index
2 or 3 are included

Only the items that are in the Filter property are

exFilter 240

included. Multiple items are separated by the '|'
character. The exShowCheckBox flag of FilterList
property displays a check box for each included
item. The exFilterDoCaseSensitive flag can be
combined with exPattern or exFilter types,
indicating that case-sensitive filtering should be
performed.

For instance:

"Item 1", only items with the caption 'Item 1'
are included
"Item 3|Item 3", only items displaying icons
with an index of 2 or 3 are included

exFilterDoCaseSensitive 256

If this flag is present, the column filtering is case-
sensitive. If this flag is missing, the filtering is case-
insensitive by default. The exFilterDoCaseSensitive
flag can be used to enable case-sensitive filtering
within the column. However, this flag is not applied
to the filter prompt feature. The
exFilterDoCaseSensitive flag can be combined with
exPattern or exFilter types.

exFilterExclude 512

The flag indicates that the Exclude field of the
column is checked, meaning items that match the
filter are excluded from the list. The exShowExclude
flag of FilterList property indicates whether the
Exclude option is shown in the drop down filter
window.

constants FormatApplyToEnum
The FormatApplyToEnum expression indicates whether a format is applied to an item or to
a column. Any value that's greater than 0 indicates that the conditional format is applied to
the column with the value as index. A value less than zero indicates that the conditional
format object is applied to items. Use the ApplyTo property to specify whether the
conditional format is applied to items or to columns.

Name Value Description
exFormatToItems -1 Specifies whether the condition is applied to items.

exFormatToColumns 0

Specifies whether the condition is applied to
columns. The 0 value indicates that the conditional
format is applied to the first column. The 1 value
indicates the conditional format is applied to the
second column. The 2 value indicates the
conditional format is applied to the third column, and
so on.

constants GridLinesEnum
Defines how the control paints the grid lines.

Name Value Description
exNoLines 0 The control displays no grid lines.

exAllLines -1 The control displays vertical and horizontal grid
lines.

exRowLines -2 The control paints grid lines only for current rows.
exHLines 1 Only horizontal grid lines are shown.
exVLines 2 Only vertical grid lines are shown.

constants GridLinesStyleEnum
The GridLinesStyle type specifies the style to show the control's grid lines. The
GridLineStyle property indicates the style of the gridlines being displayed in the view if the
DrawGridLines property is not zero. The GridLinesStyle enumeration specifies the style for
horizontal or/and vertical gridlines in the control.

Name Value Description
exGridLinesDot 0 The control's gridlines are shown as dotted.

exGridLinesHDot4 1 The horizontal control's gridlines are shown as
dotted.

exGridLinesVDot4 2 The vertical control's gridlines are shown as dotted.
exGridLinesDot4 3 The control's gridlines are shown as solid.

exGridLinesHDash 4 The horizontal control's gridlines are shown as
dashed.

exGridLinesVDash 8 The vertical control's gridlines are shown as
dashed.

exGridLinesDash 12 The control's gridlines are shown as
dashed.

exGridLinesHSolid 16 The horizontal control's gridlines are shown as solid.
exGridLinesVSolid 32 The vertical control's gridlines are shown as solid.
exGridLinesSolid 48 The control's gridlines are shown as solid.

exGridLinesGeometric 512

The control's gridlines are drawn using a geometric
pen. The exGridLinesGeometric flag can be
combined with any other flag. A geometric pen can
have any width and can have any of the attributes
of a brush, such as dithers and patterns. A
cosmetic pen can only be a single pixel wide and
must be a solid color, but cosmetic pens are
generally faster than geometric pens. The width of
a geometric pen is always specified in world units.
The width of a cosmetic pen is always 1.

constants HierarchyLineEnum
Defines how the control paints the hierarchy lines.

Name Value Description

exNoLine 0 The control displays no lines when painting the
hierarchy.

exDotLine -1 The control uses a dotted line to paint the hierarchy.
exSolidLine 1 The control uses a solid line to paint the hierarchy.
exThinLine 2 The control uses a thin line to paint the hierarchy.

constants HitTestInfoEnum
The HitTestInfoEnum expression defines the hit area within a cell. Use the ItemFromPoint
property to determine the hit test code within the cell.

Name Value Description
exHTCell 0 In the cell's client area.

exHTExpandButton 1
In the +/- button associated with a cell. The
HasButtons property specifies whether the cell
displays a +/- sign to let user expands the item.

exHTCellIndent 2

In the indentation associated with a cell. The Indent
property retrieves or sets the amount, in pixels, that
child items are indented relative to their parent
items.

exHTCellInside 4 On the icon, picture, check or caption associated
with a cell.

exHTCellCaption 20 (HEXA 14) In the caption associated with a cell.
The CellValue property specifies the cell's value.

exHTCellCheck 36

(HEXA 24) In the check/radio button associated
with a cell. The CellHasCheckBox or
CellHasRadioButton property specifies whether the
cell displays a checkbox or a radio button.

exHTCellIcon 68
HEXA 44) In first icon associated with a cell. The
CellImage or CellImages property specifies the
cell's icon displayed next to the cell's caption.

exHTCellPicture 132 (HEXA 84). In a picture associated to a cell.

exHTCellCaptionIcon 1044

(HEXA 414) In the icon's area inside the cell's
caption. The tag inserts an icon inside the
cell's caption. The tag is valid only if the
CellValueFormat property exHTML

exHTBottomHalf 2048

(HEXA 800) The cursor is in the bottom half of the
row. If this flag is not set, the cursor is in the top
half of the row. This is an OR combination with the
rest of predefined values. For instance, you can
check if the cursor is in the bottom half of the row
using HitTestCode AND 0x800

exHTBetween 4096

The cursor is between two rows. This is an OR
combination with the rest of predefined values. For
instance, you can check if the cursor is between

two items using HitTestCode AND 0x1000

constants LinesAtRootEnum
Defines how the control displays the lines at root. The LinesAtRoot property defines the
way the tree lines are shown. The HasLines property defines the type of the line to be
shown. The HasButtons property defines the expand/collapse buttons for parent items.

The LinesAtRootEnum type support the following values:

Name Value Description

exNoLinesAtRoot 0

No lines at root items.

exLinesAtRoot -1

The control links the root items.

The control shows no links between roots, and
divides them as being in the same group.

exGroupLinesAtRoot 1

exGroupLines 2

The lines between root items are no shown, and the
links show the items being included in the group.

exGroupLinesInside 3

The lines between root items are no shown, and the
links are shown between child only.

The lines between root items are no shown, and the
links are shown for first and last visible child item.

exGroupLinesInsideLeaf 4

exGroupLinesOutside 5

The lines between root items are no shown, and the
links are shown for first and last visible child item. A
parent item that contains flat child items only, does
not indent the child part. By a flat child we mean an
item that does not contain any child item.

constants InplaceAppearanceEnum
Defines the editor's appearance. Use the Appearance property to change the editor's
appearance. Use the PopupAppearance property to define the appearance of the editor's
drop-down window, if it exists.

Name Value Description
NoApp 0 No border
FlatApp 1 Flat appearance
SunkenApp 2 Sunken appearance
RaisedApp 3 Raised appearance
EtchedApp 4 Etched appearance
BumpApp 5 Bump appearance
ShadowApp 6 Shadow appearance
InsetApp 7 Inset appearance
SingleApp 8 Single appearance

constants NumericEnum
Use the Numeric property to specify the format of numbers when editing a field.

Name Value Description

exInteger -1

Allows editing numbers of integer type. The format
of the integer number is: [+/-]digit, where digit is
any combination of digit characters. This flag can
be combined with exDisablePlus, exDisableMinus or
exDisableSigns flags. For instance, the 0x3FF (hexa
representation, 1023 decimal) value indicates an
integer value with no +/- signs.

exAllChars 0 Allows all characters. No filtering.

exFloat 1

Allows editing floating point numbers. The format of
the floating point number is: [+/-
]digit[.digit[[e/E/d/D][+/-]digit]], where digit is any
combination of digit characters. Use the
exEditDecimalSymbol option to assign a new
symbol for '.' character (decimal values). This flag
can be combined with exDisablePlus,
exDisableMinus or exDisableSigns flags.

exFloatInteger 2

Allows editing floating point numbers without
exponent characters such as e/E/d/D, so the
accepted format is [+/-]digit[.digit]. Use the
exEditDecimalSymbol option to assign a new
symbol for '.' character (decimal values). This flag
can be combined with exDisablePlus,
exDisableMinus or exDisableSigns flags.

exDisablePlus 256
Prevents using the + sign when editing numbers. If
this flag is included, the user can not add any + sign
in front of the number.

exDisableMinus 512
Prevents using the - sign when editing numbers. If
this flag is included, the user can not add any - sign
in front of the number.

exDisableSigns 768

Prevents using the +/- signs when editing numbers.
If this flag is included, the user can not add any +/-
sign in front of the number. For instance
exFloatInteger + exDisableSigns allows editing
floating points numbers without using the exponent
and plus/minus characters, so the allowed format is

digit[.digit]

constants PictureDisplayEnum
Specifies how a picture object is displayed.

Name Value Description
UpperLeft 0 Aligns the picture to the upper left corner.
UpperCenter 1 Centers the picture on the upper edge.
UpperRight 2 Aligns the picture to the upper right corner.

MiddleLeft 16 Aligns horizontally the picture on the left side, and
centers the picture vertically.

MiddleCenter 17 Puts the picture on the center of the source.

MiddleRight 18 Aligns horizontally the picture on the right side, and
centers the picture vertically.

LowerLeft 32 Aligns the picture to the lower left corner.
LowerCenter 33 Centers the picture on the lower edge.
LowerRight 34 Aligns the picture to the lower right corner.
Tile 48 Tiles the picture on the source.
Stretch 49 The picture is resized to fit the source.

constants ReadOnlyEnum
The ReadOnly property makes the control read-only. Use the Enabled property to disable
the control. Use the Locked property to lock a specific editor. Use the CellEditorVisible
property to hide the cell's editor.

Name Value Description

exReadWrite 0
(boolean False) The control allows changes. The
user can use the cell's editor to change the cell's
value.

exReadOnly -1 (boolean True) The control is read only and the
cell's editor is not visible.

exLocked 1

The control is read only, and the cell's editor is
visible but locked. For instance, if the cell's editor
contains a drop down portion, the user can display
the drop down portion of the control, but it can't
select a new value. Also, if the editor contains
multiple buttons they are active as the control is not
read only.

constants ScrollBarEnum
The ScrollBarEnum type specifies the vertical or horizontal scroll bar in the control. Use the
ScrollBars property to specify whether the vertical or horizontal scroll bar is visible or
hidden. Use the ScrollPartVisible property to specify the visible parts in the control's scroll
bars.

Name Value Description
exVScroll 0 Indicates the vertical scroll bar.
exHScroll 1 Indicates the horizontal scroll bar.

constants ScrollBarsEnum
Specifies which scroll bars will be visible on a control. The ScrollBars property of the control
specifies the scroll bars being visible in the control. By default, the ScrollBars property is
exBoth, which indicates that both scroll bars of the component are being displayed only
when they require.

The horizontal scroll bar is not shown, if the ColumnAutoResize property is True, or if
the ScrollBars property is exNoScroll. The horizontal scroll bar is shown if required, if
the ScrollBars property is exBoth or exHorizontal, else it is always shown if the
ScrollBars property is exDisableBoth or exDisableNoHorizontal
The vertical scroll bar of the control is shown if required, if the ScrollBars is exBoth or
exVertical, else if it is always shown if the ScrollBars property is exDisableBoth or
exDisableVertical. For instance, if the ScrollBars property is exBoth OR
exVScrollOnThumbRelease, the control's content is scrolled when the user releases
the vertical thumb. If your data displays items with different heights, you should set the
ScrollBySingleLine property on True.

Use the Scroll method to programmatically scroll the control's content to specified position.
The ScrollPos property determines the position of the control's scroll bars. The ScrollWidth
property specifies the width in pixels, of the vertical scroll bar. The ScrollHeight property
specifies the height in pixels of the horizontal scroll bar. The ScrollOrderParts property
specifies the order to display the parts of the scroll bar (buttons, thumbs and so on). The
ScrollPartCaption property specifies the caption to be shown on any part of the scroll bar.
Use the SelectPos property to select items giving its position.

The ScrollBars property supports a bitwise OR combination of the following values:

Name Value Description

exNoScroll 0 No scroll bars are shown. This flag should not be
combined with any other.

exHorizontal 1
Only horizontal scroll bars are shown. This flag can
be combined with any other flag greater or equal
with 256.

exVertical 2
Only vertical scroll bars are shown. This flag can be
combined with any other flag greater or equal with
256.

exBoth 3
Both horizontal and vertical scroll bars are shown.
This flag can be combined with any other flag
greater or equal with 256.

exDisableNoHorizontal 5
The horizontal scroll bar is always shown, it is
disabled if it is unnecessary. This flag can be

combined with any other flag greater or equal with
256.

exDisableNoVertical 10

The vertical scroll bar is always shown, it is
disabled if it is unnecessary. This flag can be
combined with any other flag greater or equal with
256.

exDisableBoth 15

Both horizontal and vertical scroll bars are always
shown, disabled if they are unnecessary. This flag
can be combined with any other flag greater or
equal with 256.

exHScrollOnThumbRelease 256

Scrolls the control's content when the user releases
the thumb of the horizontal scroll bar. Use this
option to specify that the user scrolls the control's
content when the thumb of the scroll box is
released.

exVScrollOnThumbRelease 512

Scrolls the control's content when the user releases
the thumb of the vertical scroll bar. Use this option
to specify that the user scrolls the control's content
when the thumb of the scroll box is released.

exHScrollEmptySpace 1024

Allows empty space, when control's content is
horizontally scrolled to the end. If this flag is set, the
last visible column, is displayed on leftmost position
of the control, when the user horizontally scrolls to
the end.

exVScrollEmptySpace 2048

Allows empty space, when control's content is
vertically scrolled to the end. If this flag is set, the
last visible item, is displayed on top of the control,
when the user vertically scrolls to the end.

constants ScrollEnum
The ScrollEnum expression indicates the type of scroll that control supports. Use the Scroll
method to scroll the control's content by code.

Name Value Description
exScrollUp 0 Scrolls up the control by a single line.
exScrollDown 1 Scrolls down the control by a single line.
exScrollVTo 2 Scrolls vertically the control to a specified position.

exScrollLeft 3
Scrolls the control to the left by a single pixel, or by
a single column if the ContinueColumnScroll
property is True.

exScrollRight 4
Scrolls the control to the right by a single pixel, or
by a single column if the ContinueColumnScroll
property is True.

exScrollHTo 5 Scrolls horizontaly the control to a specified
position.

constants ScrollPartEnum
The ScrollPartEnum type defines the parts in the control's scrollbar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollPartCaption property to specify the caption being displayed in any part of the control's
scrollbar. The control fires the ScrollButtonClick event when the user clicks any button in the
control's scrollbar.

Name Value Description
exExtentThumbPart 65536 The thumb-extension part.

exLeftB1Part 32768 (L1) The first additional button, in the left or top
area. By default, this button is hidden.

exLeftB2Part 16384 (L2) The second additional button, in the left or top
area. By default, this button is hidden.

exLeftB3Part 8192 (L3) The third additional button, in the left or top
area. By default, this button is hidden.

exLeftB4Part 4096 (L4) The forth additional button, in the left or top
area. By default, this button is hidden.

exLeftB5Part 2048 (L5) The fifth additional button, in the left or top
area. By default, this button is hidden.

exLeftBPart 1024 (<) The left or top button. By default, this button is
visible.

exLowerBackPart 512 The area between the left/top button and the
thumb. By default, this part is visible.

exThumbPart 256 The thumb part or the scroll box region. By default,
the thumb is visible.

exUpperBackPart 128 The area between the thumb and the right/bottom
button. By default, this part is visible.

exBackgroundPart 640
The union between the exLowerBackPart and the
exUpperBackPart parts. By default, this part is
visible.

exRightBPart 64 (>) The right or down button. By default, this button
is visible.

exRightB1Part 32 (R1) The first additional button in the right or down
side. By default, this button is hidden.

exRightB2Part 16 (R2) The second additional button in the right or
down side. By default, this button is hidden.

exRightB3Part 8 (R3) The third additional button in the right or down
side. By default, this button is hidden.

exRightB4Part 4 (R4) The forth additional button in the right or down
side. By default, this button is hidden

exRightB5Part 2 (R5) The fifth additional button in the right or down
side. By default, this button is hidden.

exRightB6Part 1 (R6) The sixth additional button in the right or down
side. By default, this button is hidden.

exPartNone 0 No part.

constants SortOnClickEnum
Specifies the action that control takes when user clicks the column's header. The
SortOnClick Property specifies whether the control sorts a column when its caption has
been clicked.

Name Value Description

exNoSort 0 The column is not sorted when user clicks the
column's header.

exDefaultSort -1 The control sorts the column when user clicks the
column's header.

exUserSort 1 The control displays the sort icons, but it doesn't
sort the column.

constants SortOrderEnum
Specifies the column's order type. Use the SortOrder property to specify the column's sort
order

Name Value Description
SortNone 0 The column is not sorted.
SortAscending 1 The column is sorted ascending.
SortDescending 2 The column is sorted descending.

constants SortTypeEnum
The SortTypeEnum enumeration defines the types of sorting in the control. Use the
SortType property to specifies the type of column's sorting.

Name Value Description
SortString 0 (Default) Values are sorted as strings.

SortNumeric 1 Values are sorted as numbers. Any non-numeric
value is evaluated as 0.

SortDate 2 Values are sorted as dates. Group ranges are one
day.

SortDateTime 3 Values are sorted as dates and times. Group
ranges are one second.

SortTime 4 Values are sorted using the time part of a date and
discarding the date. Group ranges are one second.

SortUserData 5 The column gets sorted numerical using the
CellData property.

SortCellData 6 The column gets sorted numerical using the
CellSortData property.

SortCellDataString 7 The CellSortData property indicates the values
being sorted. The values are sorted as string.

exSortByValue 16 The column gets sorted by cell's value rather than
cell's caption.

exSortByState 32 The column gets sorted by cell's state rather than
cell's caption.

exSortByImage 48 The column gets sorted by cell's image rather than
cell's caption.

constants ItemsAllowSizingEnum
The ItemsAllowSizingEnum type specifies whether the user can resize items individuals or
all items at once, at runtime. Use the ItemsAllowSizing property to specify whether the user
can resize items individuals or all items at once, at runtime. Curently, the
ItemsAllowSizingEnum type supports the following values:

Name Value Description
exNoSizing 0 The user can't resize the items at runtime.

exResizeItem -1 Specifies whether the user resizes the item from
the cursor.

exResizeAllItems 1 Specifies whether the user resizes all items at
runtime.

constants UIVisualThemeEnum
The UIVisualThemeEnum expression specifies the UI parts that the control can shown using
the current visual theme. The UseVisualTheme property specifies whether the UI parts of
the control are displayed using the current visual theme.

Name Value Description
exNoVisualTheme 0 exNoVisualTheme
exDefaultVisualTheme 16777215exDefaultVisualTheme
exHeaderVisualTheme 1 exHeaderVisualTheme
exFilterBarVisualTheme 2 exFilterBarVisualTheme
exButtonsVisualTheme 4 exButtonsVisualTheme
exCalendarVisualTheme 8 exCalendarVisualTheme
exSliderVisualTheme 16 exSliderVisualTheme
exSpinVisualTheme 32 exSpinVisualTheme
exCheckBoxVisualTheme 64 exCheckBoxVisualTheme
exProgressVisualTheme 128 exProgressVisualTheme
exCalculatorVisualTheme 256 exCalculatorVisualTheme

constants ValidateValueType
The ValidateValueType specifies the type of validation that control supports. The
CauseValidateValue property specifies whether the ValidateValue event is fired before
Change event, so the user can validate the values being entered. The ValidateValue event is
not fired if the CauseValidateValue property is False ~ exNoValidate. The ValidateValue
event is fired once the user tries to leaves the focused cell (exValidateCell) or focused
item (exValidateItem). The ValidateValueType enumeration supports the following values:

Name Value Description

exValidateCell -1
The ValidateValue event is called just before leaving
the cell. Use this option to validate the values per
cell.

exNoValidate 0 The ValidateValue event is not fired.

exValidateItem 1
The ValidateValue event is fired when the user
leaves the focused item. Use this option to validate
the values per item.

constants VAlignmentEnum
Specifies the source's vertical alignment.

Name Value Description
exTop 0 exTop
exMiddle 1 exMiddle
exBottom 2 exBottom

constants ValueFormatEnum
Defines how the cell's value is shown. The CellValueFormat property indicates the way the
cell displays its content. The Def(exCellValueFormat) property indicates the format for all
cells within the column. The CellValue property indicates the cell's value, content or
formula. The ComputedField property indicates the formula to compute all cells in the
column. The FormatColumn property indicates the format to be applied for cells in the
columns.The ValueFormatEnum type supports can be a combination of the following values:

Name Value Description
exText 0 Standard text. No HTML tags are displayed

The control uses built-in HTML tags to display the
caption using HTML format. The control supports
the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor
element that can be clicked. An anchor is a
piece of text or some other object (for example
an image) which marks the beginning and/or
the end of a hypertext link.The <a> element is
used to mark that piece of text (or inline
image), and to give its hypertextual relationship
to other documents. The control fires the
AnchorClick(AnchorID, Options) event when
the user clicks the anchor element. The
FormatAnchor property customizes the visual
effect for anchor elements.

The control supports expandable HTML
captions feature which allows you to
expand(show)/collapse(hide) different
information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor
stores the HTML line/lines to show once the
user clicks/collapses/expands the caption.

exp, stores the plain text to be shown
once the user clicks the anchor, such as
<a ;exp=show lines>

about:blank

e64, encodes in BASE64 the HTML text to
be shown once the user clicks the anchor,
such as <a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
 that displays show lines- in gray
when the user clicks the + anchor. The
gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the <fgcolor 808080>show
lines<a>-</fgcolor> The
Decode64Text/Encode64Text methods of
the eXPrint can be used to decode/encode
e64 fields.

Any ex-HTML caption can be transformed to an
expandable-caption, by inserting the anchor ex-
HTML tag. For instance, <solidline>
Header</solidline>
Line1<r><a
;exp=show lines>+
Line2
Line3
shows the Header in underlined and bold on the
first line and Line1, Line2, Line3 on the rest.
The show lines is shown instead of Line1,
Line2, Line3 once the user clicks the + sign.

 ... displays portions
of text with a different font and/or different
size. For instance, the bit draws the bit text using
the Tahoma font, on size 12 pt. If the name of
the font is missing, and instead size is present,
the current font is used with a different size.
For instance, bit displays the
bit text using the current font, but with a
different size.
<fgcolor rrggbb> ... </fgcolor> or
<fgcolor=rrggbb> ... </fgcolor> displays text
with a specified foreground color. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or
<bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.

exHTML 1

<solidline rrggbb> ... </solidline> or
<solidline=rrggbb> ... </solidline> draws a
solid-line on the bottom side of the current text-
line, of specified RGB color. The <solidline> ...
</solidline> draws a black solid-line on the
bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values
of the color in hexa values.
<dotline rrggbb> ... </dotline> or
<dotline=rrggbb> ... </dotline> draws a dot-line
on the bottom side of the current text-line, of
specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom
side of the current text-line. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<upline> ... </upline> draws the line on the
top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon
inside the text. The number indicates the index
of the icon being inserted. Use the Images
method to assign a list of icons to your chart.
The last 7 bits in the high significant byte of the
number expression indicates the identifier of
the skin being used to paint the object. Use the
Add method to add new skins to the control. If
you need to remove the skin appearance from
a part of the control you need to reset the last
7 bits in the high significant byte of the color
being applied to the part. The width is optional
and indicates the width of the icon being
inserted. Using the width option you can
overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the
width is 18 pixels.
key[:width] inserts a custom
size picture into the text being previously
loaded using the HTMLPicture property. The
Key parameter indicates the key of the picture

being displayed. The Width parameter
indicates a custom size, if you require to
stretch the picture, else the original size of the
picture is used.
& glyph characters as & (&), < (<),
> (>), &qout; (") and &#number; (the
character with specified code), For instance,
the € displays the EUR character. The
& ampersand is only recognized as markup
when it is followed by a known letter or a
#character and a digit. For instance if you want
to display bold in HTML caption you
can use bold
<off offset> ... </off> defines the vertical
offset to display the text/element. The offset
parameter defines the offset to display the
element. This tag is inheritable, so the offset is
keep while the associated </off> tag is found.
You can use the <off offset> HTML tag in
combination with the to define
a smaller or a larger font to be displayed. For
instance: Text with <off 6>subscript
displays the text such as: Text with subscript
The Text with <off -6>superscript
displays the text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines
a gradient text. The text color or <fgcolor>
defines the starting gradient color, while the
rr/gg/bb represents the red/green/blue values
of the ending color, 808080 if missing as gray.
The mode is a value between 0 and 4, 1 if
missing, and blend could be 0 or 1, 0 if
missing. The HTML tag can be used to
define the height of the font. Any of the rrggbb,
mode or blend field may not be specified. The
<gra> with no fields, shows a vertical gradient
color from the current text color to gray
(808080). For instance the <gra
FFFFFF;1;1>gradient-center</gra>
generates the following picture:

<out rrggbb;width> ... </out> shows the text
with outlined characters, where rr/gg/bb
represents the red/green/blue values of the
outline color, 808080 if missing as gray, width
indicates the size of the outline, 1 if missing.
The text color or <fgcolor> defines the color to
show the inside text. The HTML tag can
be used to define the height of the font. For
instance the <out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>
 generates the following picture:

<sha rrggbb;width;offset> ... </sha> define
a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the
shadow color, 808080 if missing as gray, width
indicates the size of shadow, 4 if missing, and
offset indicates the offset from the origin to
display the text's shadow, 2 if missing. The text
color or <fgcolor> defines the color to show
the inside text. The HTML tag can be
used to define the height of the font. For
instance the <sha>shadow</sha>
 generates the following picture:

or <sha 404040;5;0>
<fgcolor=FFFFFF>outline anti-
aliasing</fgcolor></sha> gets:

Indicates a computed field. The CellValue property
indicates the formula to compute the field. A
computed field can display its content using the
values from any other cell in the same item/row. For
instance %1 + %2 indicates that the cell displays
the addition from the second and third cells in the
same item (cells are 0 based). For instance, if the

exComputedField 2

cells are of numeric format the result is the sum of
two values, while if any of the cell is of string type it
performs a concatenation of the specified cells. The
ComputedField property indicates the formula to
compute all cells in the column. The
exComputedField can be combined with exText or
exHTML. For instance, the exComputedField +
exHTML indicates that the computed field may
display HTML tags.

The syntax for the CellValue property should be:
formula where %n indicates the cell from the n-
index. The operation being supported are listed
bellow.

For instance %1 + %2 indicates the sum of all cells
in the second and third column from the current
item.

Indicates a total/subtotal field. The CellValue
property indicates the formula for total field that
includes an aggregate function such as: sum, min,
max, count, avg. The exTotalField can be combined
with exText or exHTML. For instance, the
exTotalField + exHTML indicates that the total field
may display HTML tags.

The syntax for the CellValue property should be:
aggregate(list,direction,formula) where:

aggregate must be one of the following:

sum - calculates the sum of values.
min - retrieves the minimum value.
max - retrieves the maximum value.
count - counts the number of items.
avg - calculates the average of values.

list must be one of the following:

a long expression that specifies the index of
the item being referred.
a predefined string expression as follows:

all - indicates all items, so the formula is

exTotalField 4

being applied to all items. The direction
has no effect.
current - the current item.
parent - the parent item.
root - the root item.

direction must be one of the following:

dir - collects the direct descendents.
rec - collects the leaf descendents (leaf items
). A leaf item is an item with no child items.
all - collects all descendents.

Currently, the following items are excluded by
aggregate functions:

not-sortable items. The SortableItem property
specifies whether the item can be sorted (a
sortable item can change its position after
sorting, while a not-sortable item keeps its
position after sorting.
not-selectable items. The SelectableItem
property specifies whether the user can
selects/focus the specified item.
divider items. The ItemDivider property
specifies whether the item displays a single
cell, instead displaying whole cells.

In conclusion, aggregate functions counts ONLY
items that are:

sortable, SortableItem is True, by default.
selectable, SelectableItem is True, by default.
not divider, ItemDivider is -1, by default.

In short, setting a different value for any of these
properties causes the item to be ignored by the
aggregate functions. The Def(exTotalColumn)
property specifies a formula that defines the total
fields applied to all unformatted and non-leaf cells
within the column.

For instance:

count(current,dir,1) counts the number of child
items (not implies recursively child items).
count(current,all,1) counts the number of all
child items (implies recursively child items).
count(current,rec,1) counts the number of leaf
items (implies recursively leaf items).
count(current,rec,1) counts the number of leaf
items (a leaf item is an item with no child items
).
sum(parent,dir,%1=0?0:1) counts the not-zero
values in the second column (%1)
sum(parent,dir,%1 + %2) indicates the sum of
all cells in the second (%1) and third (%2)
column that are directly descendent from the
parent item.
sum(all,rec,%1 + %2) sums all leaf cells in the
second (%1) and third (%2) columns.

The formula on the CellValue property (if the CellValueFormat property indicates the
exComputedField or exTotalField) may include the formatting operators as follows:

The expression supports cell's identifiers as follows:

%0, %1, %2, ...{any} specifies the value of the cell in the column with the index 0, 1
2, ... The CellValue property defines the cell's value. For example, "%0 format ``"
formats the value in the cell at index 0 using the current regional settings, while
"int(%1)" converts the value in the cell at index 1 to an integer.
%C0, %C1, %C2, ...{string} specifies the caption of the cell, or the string the cell
displays in the column with the index 0, 1 2, ... The CellCaption property gets the
cell's formatted caption. The cell's displayed string may differ from its actual value.
For example, if a cell displays HTML content, %0 returns the HTML format including
the tags, while %C0 returns the cell's content as a plain string without HTML tags. For
instance, "upper(%C1)" converts the caption of the cell at index 1 to uppercase, while
"%C0 left 2" returns the leftmost two characters of the caption in the cell at index 0.
%CD0, %CD1, %CD2, ...{any} specifies the cell's extra data in the column with the
index 0, 1 2, ... The CellData property associates any extra/user data to a cell. For
example, "%CD0 = your user data" specifies all cells in the column with index 0
whose CellData property is equal to your user data.
%CS0, %CS1, %CS2, ...{number} specifies the cell's state in the column with the
index 0, 1 2, ... The CellState property defines the state of a cell, indicating whether it
is checked or unchecked. For example, "%CS0" identifies all checked items in the
column with index 0, while "not %CS1" identifies all unchecked items in the column

with index 1.
%CT0, %CT1, %CT2, ... {boolean} returns true if the cell displays a total field;
otherwise, it returns false. The exTotalField / exTotalColumn flag specifies whether
the cell displays a total field. For instance, "%CT1" refers to all cells in the second
column that display totals, while "not %CT1" refers to all cells in the second column
that do not display totals.
%CE0, %CE1, %CE2, ... {boolean} returns true if the cell is editable; otherwise, it
returns false.. For example, "%CE0" refers to all editable cells in the first column,
while "not %CE1" refers to all cells in the second column that are read-only.
%CC0, %CC1, %CC2, ... {number} retrieve the number of child items (this keyword
consistently returns identical results for all cells since it pertains to the item that hosts
each cell). The ChildCount property returns the number of child items. For example,
"%CC0" identifies all parent items, while "%CC0 = 0" identifies all leaf items.
%CX0, %CX1, %CX2, ... {boolean} returns true if the item hosting the cell is
expanded, or false if it is collapsed (this keyword consistently returns identical results
for all cells since it pertains to the item that hosts each cell). The ExpandItem property
specifically indicates whether the item is expanded or collapsed. For example,
"%CX0" refers to all expanded items, while "not %CX0" identifies all collapsed items

This property/method supports predefined constants and operators/functions as described
here.

Usage examples:

1. "1", the cell displays 1
2. "%0 + %1", the cell displays the sum between cells in the first and second columns.
3. "%0 + %1 - %2", the cell displays the sum between cells in the first and second

columns minus the third column.
4. "(%0 + %1)*0.19", the cell displays the sum between cells in the first and second

columns multiplied with 0.19.
5. "(%0 + %1 + %2)/3", the cell displays the arithmetic average for the first three

columns.
6. "%0 + %1 < %2 + %3", displays 1 if the sum between cells in the first two columns is

less than the sum of third and forth columns.
7. "proper(%0)'" formats the cells by capitalizing first letter in each word
8. "currency(%1)'" displays the second column as currency using the format in the control

panel for money
9. "len(%0) ? currency(dbl(%0)) : ''" displays the currency only for not empty/blank

cells.
10. "int(date(%1)-date(%2)) + 'D ' + round(24*(date(%1)-date(%2) - floor(date(%1)-

date(%2)))) + 'H''" displays interval between two dates in days and hours, as xD yH
11. "2:=((1:=int(0:= date(%1)-date(%0))) = 0 ? '' : str(=:1) + ' day(s)') + (3:=round(24*

(=:0-floor(=:0))) ? (len(=:2) ? ' and ' : '') + =:3 + ' hour(s)' : '')" displays the interval
between two dates, as x day(s) [and y hour(s)], where the x indicates the number of
days, and y the number of hours. The hour part is missing, if 0 hours is displayed, or
nothing is displayed if dates are identical.

constants ViewModeEnum
The ViewModeEnum type specifies the ways the control may display the data. The
ViewMode property specifies the way the control is displaying data. The ViewModeOption
property specifies options for given view modes.

Name Value Description
exTableView 0 Shows the items as rows in a table.

exCardView 1 Displays each record's information as fields on a
card.

constants ViewModeOptionEnum
The ViewModeOptionEnum type indicates the set of options user can access for different
types of views. The ViewMode property specifies the way the control displays its data. The
ViewModeOption property specifies the option for a given view. The options that start with
exCardView have effect only if the ViewMode property is exCardView. The options that
start with exTableView have effect only if the ViewMode property is exTableView. All other
options are valid for all modes.

Name Value Description

exBorderWidth 0
Specifies the width in pixels of the empty border
inside the view. The option is valid for all view
modes.

exBorderHeight 1
Specifies the height in pixels of the empty border
inside the view. The option is valid for all view
modes.

exCardViewWidth 2

Specifies the width in pixels of the card. If this
option is 0, the width of the card is the same with
the control's visible area as follows, if the
ColumnAutoResize property is True, the width of
the card is the same as the control's client area. If
the ColumnAutoResize property is False, the width
of the card is the sum of the width of all visible
columns. If this option is 0, the user can't resize the
cards at runtime, and so the
exCardViewVResizeLine has no effect. (long
expression, 128)

exCardViewHeight 3

Specifies the height in pixels of the card, not
including the height of the card's title. The height of
the card's title is determined by the
DefaultItemHeight property. Use the
exCardViewTitleFormat option on empty string to
hide the titles of the cards. If the exCardViewHeight
option is 0, the height of the card is computed as
follows, if the exCardViewColumns option is 0, the
height of the card is the same as the height of the
control's client area, else the height of the card is
the result of division the height of the control's client
area by exCardViewColumns option. If this option is
0, the user can't resize the card at runtime, and so
the exCardViewHResizeLine option has no effect. (
long expression, 144)

exCardViewFormat 4
Specifies the arrangement of the fields in the cards.
The exCardViewFormat supports CRD format.
(string expression, "1/2/3/4/5/6/7")

exCardViewTitleFormat 5

Specifies the arrangement of the fields in the title of
the card. The exCardViewTitleFormat supports
CRD format. If the exCardViewTitleFormat option is
empty, the cards are displayed without a title. If the
card is collapsed, the card displays only its title.
Use the ExpandCard property to expand or collapse
programmatically a card. The HasButtons property
indicates whether the control displays an
expand/collapse button in the title of the card.
(string expression, "0")

exCardViewTitleBackColor 6
Specifies the visual appearance of the title of the
card. As all color properties, it supports displaying
a skin object as well. (color expression, 0)

exCardViewTitleForeColor 7 Specifies the foreground color for cells in the title of
the card. (color expression, 0)

exCardViewBackColor 8

Specifies the visual appearance of the card without
the title. As all color properties, it supports
displaying a skin object as well. (color expression,
0)

exCardViewBorderWidth 9
Specifies the width in pixels of the empty border
between cards. Specifies the distance in pixels
between two cards. (long expression, 4)

exCardViewBorderHeight 10
Specifies the height in pixels of the empty border
between cards. Specifies the distance in pixels
between two cards. (long expression, 4)

exCardViewLeftToRight 11

Retrieves or sets a value that indicates whether the
cards are arranged from left to right or from top to
right. If the exCardViewLeftToRight option is True,
the exCardViewColumns indicates the number of
columns of cards being displayed. If the
exCardViewLeftToRight option is False, the
exCardViewColumns indicates the number of rows
of cards being displayed. (boolean expression,
True)
Specifies the number of columns of cards being
displayed as follows if the exCardViewLeftToRight
option is True, the exCardViewColumns indicates

exCardViewColumns 12 the number of columns of cards being displayed, If
the exCardViewLeftToRight option is False, the
exCardViewColumns indicates the number of rows
of cards being displayed. (long expression, 0)

exCardViewTitleReadOnly 13 Specifies whether the title of the card is read only.
(boolean expression, 4)

exCardViewVResizeLine 14

Gets or sets a value that indicates whether the
control draws the vertical resizing lines. The resizing
lines are not shown if the exCardViewWidth
property is 0. Use the ItemsAllowSizing property to
allow resizing the cards at run-time. (boolean
expression, False)

exCardViewHResizeLine 15

Gets or sets a value that indicates whether the
control draws the horizontal resizing lines. The
resizing lines are not shown if the
exCardViewHeight property is 0. Use the
ItemsAllowSizing property to allow resizing the
cards at run-time. (boolean expression, False)

Appearance object
The component lets the user changes its visual appearance using skins, each one providing
an additional visual experience that enhances viewing pleasure. Skins are relatively easy to
build and put on any part of the control. The Appearance object holds a collection of skins.
The Appearance object supports the following properties and methods:

Name Description
Add Adds or replaces a skin object to the control.
Clear Removes all skins in the control.
Remove Removes a specific skin from the control.

RenderType Specifies the way colored EBN objects are displayed on
the component.

method Appearance.Add (ID as Long, Skin as Variant)
Adds or replaces a skin object to the control.

Type Description

ID as Long

A Long expression that indicates the index of the skin
being added or replaced. The value must be between 1
and 126, so Appearance collection should holds no more
than 126 elements.
The Skin parameter of the Add method can a STRING as
explained bellow, a BYTE[] / safe arrays of VT_I1 or
VT_UI1 expression that indicates the content of the EBN
file. You can use the BYTE[] / safe arrays of VT_I1 or
VT_UI1 option when using the EBN file directly in the
resources of the project. For instance, the VB6 provides
the LoadResData to get the safe array o bytes for
specified resource, while in VB/NET or C# the internal
class Resources provides definitions for all files being
inserted. (ResourceManager.GetObject("ebn",
resourceCulture))

If the Skin parameter points to a string expression, it can
be one of the following:

A path to the skin file (*.EBN). The ExButton
component or ExEBN tool can be used to create,
view or edit EBN files. For instance, "C:\Program
Files\Exontrol\ExButton\Sample\EBN\MSOffice-
Ribbon\msor_frameh.ebn"
A BASE64 encoded string that holds the skin file (
*.EBN). Use the ExImages tool to build BASE 64
encoded strings of the skin file (*.EBN). The
BASE64 encoded string starts with "gBFLBCJw..."
An Windows XP theme part, if the Skin parameter
starts with "XP:". Use this option, to display any UI
element of the Current Windows XP Theme, on any
part of the control. In this case, the syntax of the Skin
parameter is: "XP:ClassName Part State" where the
ClassName defines the window/control class name in
the Windows XP Theme, the Part indicates a long
expression that defines the part, and the State
indicates the state of the part to be shown. All known
values for window/class, part and start are defined at

https://exontrol.com/ebn.jsp
https://exontrol.com/ebn.jsp
https://exontrol.com/exbutton.jsp
https://exontrol.com/exebn.jsp
https://exontrol.com/ebn.jsp
https://exontrol.com/eximages.jsp
https://exontrol.com/ebn.jsp

Skin as Variant

the end of this document. For instance the
"XP:Header 1 2" indicates the part 1 of the Header
class in the state 2, in the current Windows XP
theme.

The following screen shots show a few Windows XP
Theme Elements, running on Windows Vista and
Windows 10:

A copy of another skin with different coordinates (
position, size), if the Skin parameter starts with
"CP:". Use this option, to display the EBN, using
different coordinates (position, size). By default, the
EBN skin object is rendered on the part's client area.
Using this option, you can display the same EBN, on a
different position / size. In this case, the syntax of the
Skin parameter is: "CP:ID Left Top Right Bottom"

where the ID is the identifier of the EBN to be used (
it is a number that specifies the ID parameter of the
Add method), Left, Top, Right and Bottom
parameters/numbers specifies the relative position to
the part's client area, where the EBN should be
rendered. The Left, Top, Right and Bottom
parameters are numbers (negative, zero or positive
values, with no decimal), that can be followed by the
D character which indicates the value according to the
current DPI settings. For instance, "CP:1 -2 -2 2 2",
uses the EBN with the identifier 1, and displays it on a
2-pixels wider rectangle no matter of the DPI settings,
while "CP:1 -2D -2D 2D 2D" displays it on a 2-pixels
wider rectangle if DPI settings is 100%, and on on a
3-pixels wider rectangle if DPI settings is 150%.

The following screen shot shows the same EBN being
displayed, using different CP: options:

Return Description

Boolean A Boolean expression that indicates whether the new skin
was added or replaced.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control, when the "XP:"
prefix is not specified in the Skin parameter (available for Windows XP systems). By using
a collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the BeginUpdate and EndUpdate methods to maintain performance while do multiple
changes to the control. Use the Refresh method to refresh the control.

The identifier you choose for the skin is very important to be used in the
background properties like explained bellow. Shortly, the color properties uses 4 bytes (
DWORD, double WORD, and so on) to hold a RGB value. More than that, the first byte (
most significant byte in the color) is used only to specify system color. if the first bit in the
byte is 1, the rest of bits indicates the index of the system color being used. So, we use the
last 7 bits in the high significant byte of the color to indicate the identifier of the skin being
used. So, since the 7 bits can cover 127 values, excluding 0, we have 126 possibilities to
store an identifier in that byte. This way, a DWORD expression indicates the background
color stored in RRGGBB format and the index of the skin (ID parameter) in the last 7 bits
in the high significant byte of the color. For instance, the BackColor = BackColor Or
&H2000000 indicates that we apply the skin with the index 2 using the old color, to the
object that BackColor is applied (the node, the item, the cell and so on).

The skin method may change the visual appearance for the following parts in the control:

control's border, Appearance property
control's header bar, BackColorHeader property
control's filter bar, FilterBarBackColor property
control's sort bar, BackColorSort property
the caption of the control's sort bar, BackColorSortCaption property
selected item or cell, SelBackColor property

item, ItemBackColor property
cell, CellBackColor property
CellImage, CellImages, HeaderImage, CheckImage or RadioImage,
HasButtonsCustom property
cell's button, "drop down" filter bar button, "close" filter bar button, tooltips, and so
on, Background property

For instance, the following VB sample changes the visual appearance for the selected item.
The SelBackColor property indicates the selection background color. Shortly, we need to
add a skin to the Appearance object using the Add method, and we need to set the last 7
bits in the SelBackColor property indicates the index of the skin that we want to use.

The following VB sample applies the " " skin to the selected item(s):

With Grid1
 With .VisualAppearance
 .Add &H23, App.Path + "\selected.ebn"
 End With
 .SelForeColor = RGB(0, 0, 0)
 .SelBackColor = .SelBackColor Or &H23000000
End With

The sample adds the skin with the index 35 (Hexa 23), and applies to the selected item
using the SelBackColor property.

The following VB sample changes the visual appearance of the selected item, using a
Windows XP part from the current theme:

With Grid1
 With .VisualAppearance
 .Add &H23, "XP:ScrollBar 2 1"
 End With
 .SelForeColor = RGB(0, 0, 0)
 .SelBackColor = &H23000000
End With

The following C++ sample applies a new appearance to the selected item(s):

#include "Appearance.h"
m_grid.GetVisualAppearance().Add(0x23,
COleVariant(_T("D:\\Temp\\ExGrid_Help\\selected.ebn")));

m_grid.SetSelBackColor(m_grid.GetSelBackColor() | 0x23000000);
m_grid.SetSelForeColor(0);

The following C++ sample change the visual appearance of the selected item(s), using a
Windows XP part from the current theme:

#include "Appearance.h"
m_grid.GetVisualAppearance().Add(0x23, COleVariant(_T("XP:ScrollBar 2 1")));
m_grid.SetSelBackColor(0x23000000);
m_grid.SetSelForeColor(0);

The following VB.NET sample applies a new appearance to the selected item(s):

With AxGrid1
 With .VisualAppearance
 .Add(&H23, "D:\Temp\ExGrid_Help\selected.ebn")
 End With
 .SelForeColor = Color.Black
 .Template = "SelBackColor = 587202560"
End With

The VB.NET sample uses the Template property to assign a new value to the SelBackColor
property. The 587202560 value represents &23000000 in hexadecimal.

The following VB.NET sample changes the visual appearance of the selected item, using a
Windows XP part from the current theme:

With AxGrid1
 With .VisualAppearance
 .Add(&H23, "XP:ScrollBar 2 1")
 End With
 .SelForeColor = Color.Black
 .Template = "SelBackColor = 587202560"
End With

The following C# sample applies a new appearance to the selected item(s):

axGrid1.VisualAppearance.Add(0x23, "D:\\Temp\\ExGrid_Help\\selected.ebn");
axGrid1.Template = "SelBackColor = 587202560";

The following C# sample changes the visual appearance of the selected item, using a
Windows XP part from the current theme:

axGrid1.VisualAppearance.Add(0x23, "XP:ScrollBar 2 1");
axGrid1.Template = "SelBackColor = 587202560";

The following VFP sample applies a new appearance to the selected item(s):

With thisform.Grid1
 With .VisualAppearance
 .Add(35, "D:\Temp\ExGrid_Help\selected.ebn")
 EndWith
 .SelForeColor = RGB(0, 0, 0)
 .SelBackColor = .SelBackColor + 587202560
EndWith

The 587202560 value represents &23000000 in hexadecimal. The 32 value represents &23
in hexadecimal

The following VFP sample changes the visual appearance of the selected item, using a
Windows XP part from the current theme:

With thisform.Grid1
 With .VisualAppearance
 .Add(35, "XP:ScrollBar 2 1")
 EndWith
 .SelForeColor = RGB(0, 0, 0)
 .SelBackColor = 587202560
EndWith

The first screen shot was generated using the following template (On Windows XP):

BeginUpdate

VisualAppearance.Add(1,"XP:Header 1 1")
VisualAppearance.Add(2,"XP:ScrollBar 2 1")
VisualAppearance.Add(3,"XP:Window 18 1")
VisualAppearance.Add(4,"XP:Window 16 1")
BackColorHeader = 16777216
SelBackColor = 33554432

Background(1) = 50331648
Background(0) = 67108864
Background(20) = 33554432
Background(21) = 1
SelForeColor = 0

MarkSearchColumn = False
ShowFocusRect = False
LinesAtRoot = -1
ConditionalFormats
{
 Add("%2 > 15")
 {
 Bold = True
 ForeColor = RGB(0,128,0)
 ApplyTo = 2
 }
 Add("%2 > 10 and %2 < 18")
 {
 Bold = True
 ForeColor = RGB(255,128,0)
 ApplyTo = 2
 }

}
Columns
{
 Add("A")
 {
 DisplayFilterButton = True
 Editor.EditType = 4
 }
 Add("B").Editor.EditType = 4
 Add("A+B").ComputedField = "%0 + %1"
}
Items
{

 Dim h, h1
 h = InsertItem(,,"Group 1")
 CellEditorVisible(h,0) = False
 CellEditorVisible(h,1) = False
 CellValueFormat(h,2) = 1
 h1 = InsertItem(h,,16)
 CellValue(h1,1) = 17
 h1 = InsertItem(h,,2)
 CellValue(h1,1) = 11
 h1 = InsertItem(h,,2)
 CellValue(h1,1) = 9
 ExpandItem(h) = True
 h = InsertItem(,,"Group 2")
 CellEditorVisible(h,0) = False
 CellEditorVisible(h,1) = False
 CellValueFormat(h,2) = 1
 h1 = InsertItem(h,,16)
 CellValue(h1,1) = 9
 h1 = InsertItem(h,,12)
 CellValue(h1,1) = 11
 h1 = InsertItem(h,,2)
 CellValue(h1,1) = 2
 ExpandItem(h) = True
 SelectItem(h) = True
}
EndUpdate

The second screen shot was generated using the following template:

BeginUpdate
Images("gBJJgBAIFAAJAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaGEaAIAEEbjMjlErlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx2PyGRyWTymVy2XzGZzWbzmdz2f0Gh0Wj0ml02npqAQEZ1WoskQAGq1dVYG1ib/2+x2dO1sb2Gwzuw2rA3PDAHG2VK3u/h/F23I3dF1vJ4HN5m4yvG6/H5/d4nQ6M+7XN43l7261ew3s96nNifc4nv6u44GM4W2+/x3ez83xnjlutALcP6+D0Ny7b1pi6cANy97kva+kBQawjxwjAbbNijLjQzAqewrAsCPBA8JPzDqWOS+TyNtFEJQfBjtvqu8PxnFbWw2/kMJxAELOc77zwhHsQPOlsgRS7Dmxc9MWxtDD3L5ErtwJDkOREmsaR9LECyBGEVSymL5tzJKMyW1cWR4wMuR5KLzyknE1yzEU3p/CUjTG3ExTBDcnL/D8xTxCU2znMkRx45MQxymk6UVQsFtnPbBTjElByBDamQQ1s0yCnMwU4906MRLdB0vJTsKg9VMU+ldKqBRcJse7bfUBIauVgjUSqTMDXLLTNdV60SLB8llgo8kCRJIACSo2QFk03R7Q2daFS1taSMnOZ6Vned9sW0lFspWdAX23cVu24jdrJXaN0WoiZ5oof5+H+cB/kmiB4B+cAfkAiBwAeYAHkAH6HnAA5gAGQAH2tgbZgHbOFIyAJ3HeYADo0AeI4LZAAAPcGC2XjWLgGYCSgfkB4OOB+GgGfwAHgD9rHgAbcH4D6HnyB5/mCf+AoocaKIC")

VisualAppearance
{
 ' Header

Add(1,"gBFLBCJwBAEHhEJAEGg4BawDg6AADACAxRDAMgBQKAAzQFAYZhoHKGAAGEYxRgmFgAQhFcZQSKUOQTDKNYyAWCQCgkOA3STDIxxCKIbhrEAYQIjeCROD1F4hThHMBzVDEcQ1CKUQAkeYKEhyII+T5PE6UPRELSDIaERhoWa6Bo2IZKTLVUTxCKQahLLivIhGUYKfgmY5lVpVcbQHRlNSfFFscp1DJ0YRHNiaJqtGa7Lj2WpASYNdRxFIEDz3DasLwwcALPwOUocVTiYAYTb2DzBNDJbBsaxLCxzEoWZRbNTWfQNZRhIIbBqkCQJVjee6hZJpFwjHo8E5TILWLy1e7dCo3F6/ZrmFjxDR1M4rEASIRDHL+GiACYJGCcBwGKJEFwYg2hwJACGAXAMgQTZtkaBpQhERAkEuSoZgYIpvAAVgtC4PQXHuPgen+D5Tmedp5H4Po/h+P5rnufB/l+OAFn6AIgAeRAAgCYIIBYCoBCCSAmA2ApgmgDgHHyRInkIFQlmEeBmBaBphggcgagcYgIH4IoHiISIGCWCJiGiJgfHuYQwjiIAUAMOI+DGDAjCiVg0g2Yw4mYNoOiOCJuD6DxkAichCg+ZA4mIBh8GQSQmEGEokFkNhMhOZI5EYOYRl6cogFQDJlGkYhXhYZZJG4XoWiYCR2GGF5mCmFhkhmZg5iYZoaiWeRQC4KgFHkYhxhwJwplYdIdmcOZmHaHongmbh+h8aAJnKAofmgOZ2G4K5FiCToIiKKIaC6DojGkCgyhKI5pDoRoUiWaRqGaFYmmmChyhGIZFlCYIvigag6gqJIpmoaomiWKpqgqMoqisawKj6MorisSpGjWKhqAqTo2i6a4qnaN4vmuSwCj6KgmmKXBgA8bBrCKR4yGySwuk6MotAsNpRjObQrFaVI1m0OxmlaNosnsFBljILZyl6YY4m4C4WmKOYuEuHpqjobpLiKbo6m6e42nCPJuEsFBnBCCx7l6eY+C+K52nyP5vjwBp+kCMAMA8BpBHCDATAqQZwjufhuC+RoxAsEJEjEHBPBaRRxgwUwakWcY8GcHJHnGbIHB2SJyAyEwZkORpxBiP5KHKPIrCyS5ymyRwtkycwMlMMpNHODJfDqTYzkyZw9kwcJxk8KpQgufQTEaUJ0g0FxJlGdItDcTJTnSPRHE6VI1A0TxWlGZpjCMQpWgQbRzF6Vp2A0dxhledgthcZJZnYPYnGaWo2g2LxulkNYRlwJwMgbgtimHOLod4GxfD1F2G8TYzh9i9HeNwB6Oh3j8BeAUYYbwphxE8D0RLg07NNEeCEZI8R+CvBKMsOQnBfg1GYPMTgxwejNHmPwU4FAfgKFMH8JI0w6C9B+FUag9ROhHC6NUeo/Q3hhGyPYLorwxjbHsJ0Y4WRigQC6C8PQZx7j+AeH0cI+APAnEKOIfIHgfiVHGHkTwTxNjlHyN4R4hQbgaHIDgXI6h9D+FuLEdo+wvDvFmO8fYnwDi9HgPwT4HxmjxD6B8F40x3h6EIF8V49wND/EOOWLonxHjrHyP4b4zx4j9H8P8d49B/ifHGP8QATxmj2EMCccYARCBcAQIEKAHgDBAEwBsAQ4A6AREEBAJwBxghYBKAUUApALiDCgCkG4IQKAhAONAPgIRBjQEUBAEAYgBEB")

 ' HeaderFilterBarButton

Add(2,"gBFLBCJwBAEHhEJAEGg4BAQEg6AADACAxRDAMgBQKAAzQFAYZhoHKGAAGEYxRgmFgAQhFcZQSKUOQTDKNYyAWCQCgkOA3STDIxxCKIbhrEAYQIjeCROD1F4hThHMBzVDEcQ1CKUQAkeYKEhyII+T5PE6UPRELSDIaERhoWa6Bo2IZKTLVUTxCKQahLLivIhGUYKfgmY5lVpVcbQHRlNSfFFscp1DJ0YRHNiaJqtGa7Lj2WpASYNdRxFIEDz3DasLwwcALPwOUocVTiYAYTb2DzBNDJbBsaxLCxzEoWZRbNTWfQNZRhIIbBqkCQJVjee6hZJpFwjHo8E5TILWLy1e7dCo3F6/ZrmFjxDR1MgACzjBIhqCUQTuACzRZGPj+RwNAOF5cGm95sCQEwJAkQhBhwa5ei4E5cgGGINgcUwojiRBvDuG49iaU4EgATALgGEIJj8aJQloEgoEIQhXC0MwGBEc5AAoYpJHCdAugIYI4CoDIDmCaBGA2BJhAgUgSgUYYIF4GoFiGSBmB2BpgkAAgegiYgIhYH4JmISIiCaChhmiCgOBKII4kCF4MiMSJGDaDJjHiVg4g6Y4onYOYPmOSQCD6EBkEiagKguApigAUAMmSKQyEuExlAkPhShOJRJEYVYUmUaRmFiFplHkdhaheJQ4gYDIXmYSRyGWGAmgmHhqhmJpJFIYoCgqARQDOHBnDmSh0h2ZxpmYdYemeCZyHqHxoAmfoCh+KBKAaBYeiacI4igFZnDoMoLiMaQKD6EojikShGhWJJpGoZoYiaaR6HaGonimCgki8FoDDqDolikKhqiaKIqmoeo2iqK4qkqPoyiwaxKkKNosmseoyiIFxDgKPo8i+K5an6QowGwSwCkaMJsHsFpIjKbIrDaSYzmySxCkSLpsmsRpWjUbYLEqWo1m2OxmkOIhLHGAA9jgbg7gqZI5m4a4mmWOpuguMpqjsbwLj6co7i8S5GnWOouAGFpjj6Cx7nKfo+nAC53AGP5wCwFwEkGcA8CcBpCjCDAvA6P5uAGHBCC2cQsFME5FHGDBfBqRYxkwZwdkacZsgcIJInGfIXCKSYxioJI/BqRAsi8LZLZaRwwkycp8lcMpNjKQ5/DqTZzkyUw9k4NAMn8QvVCGPBGC+dBtCMR5SHSTQvE6Uo1A0NxKk6NRNFcUZTnULRnFiVp1H0dxakqBw9B8YQvnYPYXGKWZ2E2IxmlodRdjcbpaHcDYvHKWo3E2I4dYuRogmCMMMXoCBtjmH6L0eAGx3gDF+PALgLwEjDHgHwJ4DRihxA4F8Dowg3gjFwJwMgcguCnBOMoeYHBfg1GWHMTgzwdjNHmN0B4QRojzH6C8Io0w5uiE8D0RI3QvhbGs1UR4YRsj1H6K8MrQhOi/DqNwe4nW0DdHuP0U4VAfgKFMH8RI4w8C+B+JUcg+RPBHE668fwbxQjpH0F4V4ox1j6E8McuoEAvAvF0GcfY/wHi9HiPwD4JxijyH6B8H41R5h9LGNuJg3xHjFCIJocgOBcj6H8P8W48R+j/C+O8eQ/xvjkAAH8aABgBBABwA1RYRACptHyPoBAt4HiGF4BAQQUAfAKCCBgFYBBwC0AyIMCAbgFjBGwDUA4oByAfEIFAJwBhDAoBGAkQgXAUCFCgJ4CwQhMBbAUOEOgMRDAQGcBcYYWAygNFCKQG4hwoCpCIKIYgVwHjRCoEEQ40QFAgBEBIARAQ=")

Add(3,"gBFLBCJwBAEHhEJAEGg4BBAEg6AADACAxRDAMgBQKAAzQFAYZhoHKGAAGEYxRgmFgAQhFcZQSKUOQTDKNYyAWCQCgkOA3STDIxxCKIbhrEAYQIjeCROD1F4hThHMBzVDEcQ1CKUQAkeYKEhyII+T5PE6UPRELSDIaERhoWa6Bo2IZKTLVUTxCKQahLLivIhGUYKfgmY5lVpVcbQHRlNSfFFscp1DJ0YRHNiaJqtGa7Lj2WpASYNdRxFIEDz3DasLwwcALPwOUocVTiYAYTb2DzBNDJbBsaxLCxzEoWZRbNTWfQNZRhIIbBqkCQJVjee6hZJpFwjHo8E5TILWLy1e7dCo3F6/ZrmFjxDR1MgACzjBIhqCUQTuACzRZGTj+RBpCAHJ1mm950CQEQJmQQJCDwa5ei4E5cgGGINgcUwojiRhsDeHJ9gYIxpkIQAmAWQJIESX48GgbQJAo+gVksTJBgQXJwAKGIyFwPQLiCKAyAuAxhAgPgSgOIRIEYFYEmEaBmBiBphHgdgageIZIDQAIHmISIGCaCAigiFgpgmYooH4I4DkTHwxCWYw4lYMoNmMSJiDaDhjkibg+g6JAInYQYPmQKQWDuApinCOIgBQAw5C4TYTCSaRGFCFJknkVhShWJRJF4WoWGWSRiF6FplnkUgigMZgJhYXYZiZVxohqZh5jYVYYmCMogFQDJnCmUhzh0Z4Jl4eodieSZmH2HpnmoBoAiCZ56BaAohieOZAC4KgFHmUoNiMKJqEaEIkmiehWhKJYpEoXoaiYaZKGKHommmehmgoK5FiCTokimKhah6KoqGqSoii6KpqnqNowiyawqlaMYtmsSpii2KJFlCYIvi8a56nqQIwmwKwWkGMZsEsIpGjIbJLC6Toyi0Cw2lGMRrksPpSjWbRrGaU42m2CxylqMQoiKXBgA8bgrhKY45G6C4emqOYukuJptjqbprkacI8m6e5WnKPYujuBBljkL4yl6fY/m+TAGn6QIwAwDwGj6T58CcCpBkOXArAuQRxAwEwSkMMRMAKYQZkQIpfBiRoxhwbwekccgMHMIpHnIPIDA6SethMKpIHKPIXC6SpoiKfBrBCMwslMM5NHODJfDqTYzkyZw9k6cxciMPpQnQDQXD+UZ0EycwxBuRBin8TJTjSXQ/FKVB1E0QxWlSdR9QuUI1g0dxVleNYdgcXpMEcPQ3GUL52H2JxmlqdoNjMapbHcDYXEKWo3D2Ox2lwO4fYfh6i1GiEYIwyxfgIG4AcAovx4CcAeAsYI8BuBPAiMUeA/A3gVGOHETgfwSjEDeKMXAnAyByG4McF6sxODfB6M0OgHB3hDWiF0F4SV6B9CeE1qI1AoieB6Ikbof2Sh2C6K8NI2x7B9GeG0bodwOjfD6N4fAHRziFG+PgPoxwuA/AUKYP4kXRA+C+7ofQHgzilHOPoPwjxUjrH0N4Z4qx2j7A8OcUI1wIBeCeMIM4/A/gvGKPMfgnwjjNHoP0T4Xxuj1D8B8N44x7j+C+K8ZoRQNDkBwLkfg/w/jXHwP8b49AAh/FgA4AAQAkAFACGAIgBxAhQA0AYIAmANgAE+MARYfw4BIDWMEJALQCDgGI3kGAXgGhBGwDkA44BuAhEGNARQEAhA4CaAUcAiAxCCFgKgIowhkBdAUOEQgLRDAwF8BkIYWA0gNHCJwkY0B1AcCGLgPoCxKBSBaEUSIDQKjECwIUCIogRAiBACAgI")

 ' SelectedItem
 Add(4,
"gBFLBCJwBAEHhEJAEGg4BV4Fg6AABACAxWgKBADQKAAyDIKsEQGGIZRhhGIwAgaFIXQKMUIxVAcLQxCgCYRhYABRiUAoJkjkMYhSDOFgzARHcxRPDgARrDyZQAkOQ5FDGFo+ShFQxTRC9CQpHaEYqkeA3fgmTYXTxJM7yfQVFxlCwTIwFGQqJgmVpPABYERyWKoSzJMyERpGCyIDqqbJXVxFYj3DCscw/KIYaqlGS5Ni+IZ2TLNMz4BAdEQfKSEaAgOToboaE5GB5GeRRbT1HYtKDEcQhepIbpaH5YQjkMBibBNZ4pAavcroeK7FqeI5ua7ach5fisB5EAARYREGrcEqPGZ5ShjGJ1MK0CxzIwDboBPbNdwXP56cIAAx8IJbD0GJQGoIQ1jgGAbhmTZXGsLZ7AsTpKDEVolG0QAaJyA4bleZgCiEJpjHmSJaGENgLgwRpTgUCAhAMEIElCSZ+EUAxkCQKB2huJR0BgRQPkAPZuFOCpSGgewckOUACBSBYhFgXgagYYZIGIHoGmGeB2CCCJiCiFghgmYhIiIJoFmEEZtEwAAilKFB9JWUooi2DRjHiWg4g6Y4onYOYPmOSQCD6EBkEkDhGhCJIJBYSYRmOCJIFKCxhmMBIuCwZQpFIU4VGWCReFqFYlkkZjpGWaYGGCGJlnmFhihmJhJh4F4Hg+eY0kULILFmPhxhwJwplYdIdmcOZmHaHongmbh+h8aAJnKAofmgOgGHKGxPnmLgXiIDISli+BonoOtEGkKhWhGJZpEoYoWiYaZKG6HomioCh2iGJ5pAoIoKgUaIDDCOgvCqKoyiuKxrAqPuCisSpGjWLJrGqZo4i6ax6naOoviuSo2iaBRmkmNJQC+DALB6SYyCyKw2kyM5sjsRpOjSLUIFaNRtgsUpajWbY7GaSowlAOguG0NQMCMEpkjmLhbh6ao6G6S4im6OpunuNpwjybwrlacY9m8S5inaOZuAsFJ/DYDBjCMAJAjAHAPAaQRwgwEwKkGcI8CcDJDnCbBHA2RJxAwUwSkCb5bgifw3AyMwzByR4xlwfwikgchMgMJpInIfIXCiSpyiyNwpkucpMkMLpHnGGoiG0OAMnMQw4k6M4cm8PpPHR2BCk+dA9AcRJRnQbQnEWUp0g0MxKk6cxVgYbQ5eSUxUlWNRdF8WpWHWTRjF6Vp1n0dxglidgthcYZZnYTYjGaVZ1BoIJoDWTYNj8cZcDcLZXHSXZ3D2M4dovQ3gbG8P0Xw8ANjnAKL8eAfAHDlFsM0U4WRbBtHiFwM4FxjDyA4H8Eoxw5CcEeCsZI8huDPBiM0eQ/B3g1GeHMTgbwIB/eYPkX40h6D9BuFEao9QuhvCmNceonRDhdGwPYTonw2jZDuB0V4cxtj1A67AOInA+j/EGOAPAXgXiJHGPgPwTxGjlDyB4L7zB9AeDOKUc4+g/CPEKNETw5wcjPHYPsPw1xcjvH2N8B4ux4j8A+CcYo8h+gfB+NUeYfRPhPiiPsToGR4B0E6D8T74A/DfGePEfo/h/jvHoP8T44x/iACgAYAQQAEANAAOAHgBQ/DPGQHUBwoR4gDDBA4QQEAnAJCCFgEYBRwCkAwIIaAZgHBBFwD0AwoQCAdEIDAPwBhdAxHkDsA4ZATiFBgKICoQhsBZAWOELgMRCjQGUBgIYOA2gNDCMQGghwoDeA6MMTAVQEiHDQO0D4MUXDEBQIkCI4gaBJEQLEFwJAiDIEqBMMQhAniKCiDoFQRQMCrAoOIBYowPhDF4HcYouBdgXBEPQMIjAIiOBeMYLAxQMijBIGcRoURTA2CMIg144w+BtEWNENAeBHgRikGMXgdqgjuB6EcbA8wPjjHIIAR40gDBCCQDkBoIBSBEEKJEGQHgdTVHsDwQ4lBHiSBkEIJISQsgpBKOQTgmRJDSDUEwJIuQegnDKAQTglApB+CiMpboI0kj0A+HIUwVRlCpCyCscodBYiVFkM4LASwkhlBaGUYgtxLhSG0F4JYmQ9guHKEujggxqB6GYDkRYMQTA0GSJkCYLgxjMGyJUGYpgyDPE0FMIwagmgJFaDQcwvBqiYGmAgPYjw4j5BuGYfg3hOATEcHEJwWRhg5HOCQdAnBpimDsE4XI3QdCnEIO0TwMxfBumqPoHwRxmD3E+DMcQfQnjZHyD8c58xPjUAVKYHQDQghoCKAQUIVAPTnEyPUHohxoD6A+LQIwiRogqBSEUdAtQMiiFoG4RlfwahHDSAUD4pAqB6EkFIDQSwkDoEXRxLAfgpC6C2EsFIdQYimAoM4S40wtBlCaKkUoNxThUHMJ4KYig+hOHSP0HopRqCojeNEfoUQ1A9CMKkuApQqDaEmFMdQZQoCpGqEYVQVQdCtCoKoYoVRVg1C8KIV41AxCMGoEUMIrAqiOFkFYLQzQsjrCKGkVoVRXCzBIOQUAUwIhqBSK4JArhdAiFUO0Lg6xeh1FeAgUwtxKDSAEQEA=")

Add(5,"gBFLBCJwBAEHhEJAEGg4Ba4Fg6AABACAxWgKBADQKAAyDIKsEQGGIZRhhGIwAgaFIXQKMUIxVAcLQxCgCYRhYABRiUAoJkjkMYhSDOFgzARHcxRPDgARrDyZQAkOQ5FDGFo+ShFQxTRC9CQpHaEYqkeA3fgmTYXTxJM7yfQVFxlCwTIwFGQqJgmVpPABYERyWKoSzJMyERpGCyIDqqbJXQiBUYCHTkOxzD6oRhqaSZLi2L4hXbMcyzPgMByRB6pIRoCA5OhuRoTUYHUZ5Ha0By/JyMLxqOgYbpaH5YQjkUBibBITy7SzMKYzGK7FqeI5ua7ach5fBMYwHUQABJhEQdHwWdYkSZKGK4ZSwbQLHKjAL3cCtdreFquawJM77CIXD0GILEWNqJGaBx9HiRRwHGHAwACT4KDaaxRGENYdMUN4Gmab46BGHRticZZ1jeRJqlSLZ+hsb5eHWW5XDEAwcAcUZMGgGRGECOBiBsRwFAgEBAkQ1Yyu8QJZAkCgQheOAAG8FxgGEFA/ACd59E4KxJiGbBzA8QAIh4KYKCKKI2CyC5ijiRgugyIwIk4NoNGOCJSDqDZjjiZgqgkB42ioQApEeURIl4M5MGOXJnDmZIpDIS4TGUCQ+FKE4lEkRhVhSZRpGYWIWmUeR2FqF4lKmRoRAUKQCDGGIPFOFJlhoZo5iobIbmaaZGG2HJnAmUhyh0Z4Jl4eodieSZmH2HpmkmCgqgwT56BScw4k4OgegmIgoioNoMiOaI6EaDokikChOhaJRpgoUoaiWaY6GaCohWiDgqigDwTgSYYpGoeoaiiKpqiqNopiuapKkKLosGsSpOjaLIrgqVo5i2aoKgKIoKCoA48l8N5sCsEpDjEbILB6SoxiySwmk2MpsmsRpQjSbJ7FaUo1i0SwWj6CgoEoFJtDcTZbH6YY4C4K4WmSOZuDuJpmjqLoLi6bo7G8C4ynKO5vDuRpijaUA6g6BQ6k2MxunyP4vlufwCkAcBMAMBpAnAfAXAiQpwiwNwJkOcJMEMDo/m+Cx0n8OhNhMZwYkaMYcG8HpHHIDBzCKR7sgcJJJnIbInCWSpygyMwqkacRbmjw4NHMYw07MXJfDqThzkyYw+k6c58ncQJQnQLQXEGUZ0E0IxGk2cwbAKBQ5g0UxbFCVI1B0TxWlUdfmFqVZ1j0ZxcledZtgcXZYnYDYTGKVJ0lWBoFDkDQzFMbJbjaXY/HKXB3E2Qx2lydx9lcPEXo7wtjuHmL8d4nADD9FuO0GoARiBoE0FwH4ExiBxC4G8DIxx4h8EeB0ZIcgOCfU+PMDgpwajLHmHwZ4FRhDQFOAETwaA6BdBOEcaQ9QOg/CqNMOonQnsVHqN0R4YRsj1H6K8Mo2w7CdBeEAP4m3WCdG8Pcfo9xAjhHwF4F4gxxj4OoI0cg+RPBfE6OUPQHg3ijHOPgDo2RcBlEyJ4X4sx2B7C8O8XI7x9h/AeL2DYHwPjNHkP0D4JxqjzH6H8J4tRuibCMEESo+B/B/EuOkfY/hvjPHWP0f4Hxzj0H+GAAY/xABPH0AIIAGAFgAG+KMXYGwBgYDIEAXEsAQB0AiIICATgDjBCwCUAooBSAXEGFAMwDggiIB6AYcA/AOiBGcOwNYDAgiNPCDwEwhQICuXkNgKYCxwhkBgIUaAxgNBDBwG0BgoRiA1EODAbwFAdmBBgIYEgPxEAxAECEIgWBEgRHEBwJIiBogqBIEQXAnQJhiEIEwRQUQfApGKBgQg7hjCQGABgKIZgWjFFQLkC44h6BhEWLERwMAjBIGKBkMYRAziNCiJoGwRhMDbA0OIcYuwNACHwGAI4OB1gdBGLQPIjwIjuB2McbA9QPijHIH8SAUgDBCCQAkBoIByA8EKI6aIZwFjBD6CMMgfBHCSAkE4JISQsgjBKOQUgmBJDSDNWgXIPQTClAIJ0SgMg/BInmJgFwhRyCnEqDIUQVQlDZCyCscoXBYiVGkMoLASwchtBaGUYgtBLhSG8F0ZYmQqUWCwLgC4cwDBhGYCkRIMRzA0GSJgWYLgyBMGSJUGZhRniaCmDoNQTQMirBoOYEYuwMgiGwFwZouRdg3BMPQcInAJiODeM4LIxQcinBIOcToUxTB2CcIkboOhzh8HaJuaIYxFhBDeD0M4vB7CfAmO4PoTxsjzB+OccoABPjUAMIIKAOgGhAFQEUAooQaAeD5PMRQLBCitAeKIGgQhEhRC0CkIo6BOgZFENQNQjAoi6B6EcNIBQOCkCoH4SI0gNAkosBgWAFg6CmsgKoLISx0h1BiKUWgzhMBTCUGUJoaRig3FOFQbQngpiaD2E4dIYxdgYBELgLA1AdCLCiCoGoSRUlwFGNQbQlQpiqDKE8VQVQjZlAUK0Kg6hehVFQM0UoMQVABD8CsAofQvisBqIIWIVgtDJCzUENIrBqiqFoFYXQ3QthrEKGwVwVRfC5GsIUIAoBLDiCGEgWodQoBXG0P0L47ACiBFgFYBwwgsBbAaGEagKgxBMESJgUwJACB5DGNEeokQji2CcMjGoJQyhRHKIwFIpACEBA")

Add(6,"gBFLBCJwBAEHhEJAEGg4BaAFg6AADACAxRDAMgBQKAAzQFAYZhxBaERiGIZ4JhUAIIRZGMQxXAcMQ1DICYRhQABRiUAoJDKMchxEKcPBmAiPZhjEYocheMoWSLIcijDD0eRRDyDZrjaL5ZgmHonQK/cI0VDMdRLHqXKApCYYeCaGgpSJRUI1HRgAS7CqVRpEWwbDgkNQwWTAdj2TSkEgNDQRaxjWZ6EgmO5TSjKYxSbJEQzpGSaIDwGZrfACRYEU7dVQxDQcNYbAYPJpwOh6LxWTZ2YjBGJ4FScPyrBLIYDFWCRHpqA5cZZOEQ2FYkRzXVy0JDzaCZQxCCQlQiIOjYLaUSRNFC+IZqMZhWw+FrGAbvIJbXakPZbVYSZ52AQuHcHY7lqAABhoDZllcEAxjwcCOD4GJbisGZPmmYQ1ggHIPg0dJnmCNYWG2D5OlkFYpmUPYaE6Xxzk+OxylAMZAHUHJGgGFBkAuBghjQcBQAEBAMEIExDCgNQWA2EIQiGahuFWIBhBYPwAnedReD+T5yjSGgekcMJ0ACCRiHiGgogqYoojYKYLmKSJCC6DBjEiTg2gyI4IlYOYNmKCIIHuCAUiieIlB8RQjHiTwxg8c4cmeEhkjkKhMhOZJpEYTYUmUCRSFKFRlgkXhahWJZJGYXYUiQYwaEMFIjmiPhhD0ThThYaIaiaGYuG6GxnAmMhyhuZw5kYdIdmcaZmHWHpngmch6hqZgYiIL4QA8M4MmOIRoHoGoIiKaIqDaCdXEoQoOiQaRKE6FokimChWhmJZogkAoCgoJADkSYQ4GoKoSiOKRqgqHoqimKpKiaLYqmqapGjCLJqnqVoyi2KxKhaHoJigOIAm8N5NnqfpBjALArBaRIxmwOwmkaMosgsLpOjMbQLDKUozm0OxGkKLpQDqAggDsTZTHaXI3i2Wx+mKOBuEuApmjibh7haaI6m6K42mmO5ukuQpujebYKnSfw6k2MxuniPovhubp+j8cALnMAo/nAPAHASQZwGwJwFkKcIMDMCo+m8Wxon8OhNhMZwUkWMRcF8GpGHGTBjB6RpxnwdwgkicgshcIZJnITIjCaRZxBiGhADoDRzGMMJMjMHJPDaTRzgyU2ynOPJnDyT5zm0Bw9lCdANBMQpMnKWB8n8OYNFMWxMlONJdD8UpUHUTRDFaVJ1H0VxYladYtHcWZXnWTYDF6U7QACZA0k0TYfGmWg2i2Nxsludo9kcbpcjcBsTw7RdDvA2KYeoux3h7GcNUWQxADgRFEGkOAXATgHGEPEDgPwKjDDiJwJ6ex4jcEeCEZI8R+CvBKMsOQnAXgAD+JwAweRQjOHmPwe4QRoj0C6C8IY0x6CdCOE0ag9ROhfC6NUOwHQ3hjGuPQDg2ReBmEyN0X4cxuB3C6O8PI3x7h+AeH0cIeAPAfEaOIfIHgTiVHGPkPwTw6jNE2IYLImR0D6D8JcVI6x9DeGeKsdo+1Fi1HcPwDw/xijvD4J8B4yx4j6E4NkWgZAMhfC+NsewfRviPHCPkfo/xXjlH2H4T4vx6j8H+J8Y4/B/DfH2P0Pozg2BsAYGESIAQwA8AMIECALgChAGwBMAY4AyAQECNAIwCggg4BaAQUAxAKiDBgF4AgORYisBiAYGgHxCAwEEBEIQWAkgJHCBwFIhBoCqAoEIXAXQFhhEICxIovgMjDAwER1ooBhAYEgOYDowxUB5AeOEegQRDixAcCAIgSBCgRDEEQI4iQovFCIJgTYEhwjjE2BoIYAAwhFBwKsCoIhaBZEWBENwKxijYFqBcUQ5AviMCiIYGQRgEDNAwOMHgZRFSwDQAscIgQNhjD4G4RwERnA5COFgcYHRxikDwI4aI5gfBHFwP0DwpACB9EgDEfwOJqQsAKPQQ4kQZAiCKEgbIGQRjkC4JESI0glBICSDkFoJQyDEEoJMKQXgmjJEyBR1oYBdAXEkIYKIygUhJBSOUGgqRKCyFcFQJQyQqgrDKIQV4lgpC6C0EsDKIBygjE2BkMQ4AujLFyHsF4JR6DBEwBMBwXxmBZEKDEUwJBjiZCmCYMwTBEidBkOYPgzRLywDIIsMIcwahmF4NYTYEw3BtCaNkWYNxzDkHAJsaYhg5BOByM0HApwiDlE6DMTwbJqCOBaAUXg7xPAzGEHkJ4WR0g9HOJwfInhpjqD4E8XI/QfhoAIPwUAUx/TFAyOR1oKBZAWFo8ac4GQhjoDqBEUItAnCICiEoEoRQ0DFAuKMKgWhHBRE0DsIw6AxibAwGIYAWRpA6CXYoGoKRSgUFcJMaQ2gqhLFSGUF4pgqDGE0FMBQbQmDpF6DUUksAwCKHCGMJ4aR+g+FQBUBwocRiDCiOoEoSBUDVBNkIXQnQpCqEKE0VQNQfCgBoJQYQkACj4FYBUeoZhWjVFULkK46h6hhFWLURwsArBKGKFkNYRQzitCqJoWwVhNDbCwJIAQgQriJASCIKodBAhdHWMUPIrwqjuF8FcbQ/QvjsAKIEIgCba5CEAI8SI1REhHEsC0Do2GwhjFYGUR4RwkD5BAAAAQAiAg==")

Add(7,"gBFLBCJwBAEHhEJAEGg4BYIEg6AADACAxRDAMgBQKAAzQFAYZhxBaERiGIZ4JhUAIIRZGMQxXAcMQ1DKPIYAAYhVCWIokSZCIyjBJMBxXFqLAChGLpSh2CQnQiHMbzXIEZwSBSETaNc4jNKEbAuGIbJwRcKQIQGIQmaZjEZoJCiCQpQiIM7BRCzeAfHieH7VVKjbLMPQAWZaFj2TZlVzdNS4LZuGz7SrWdJ3XLeNzXVbFUzGPaBX7AC71FL0Ui9KorOIYVhOF4dRrIMYyLD8TxHFKXZZmOS5XjGOY1RbCSive4GBS5MalabpWoaXpWW5TV7WNg1bYdUzPNqybhtO47PrVUzgf7gGJWJZeC4TQ7FchxfJcNxnE6bZbnOh6DofD+K5SmsdQ4jwB5+nqU5bGSLYXD4DwXgeR5mnKeg8h6Lw/i+U5snee4+D6X4fkOaZynGdp7jYfpbDEdI8H8X53noAIAmAKAWAGAZgEgIgGgIYJIC4DoCiECA2BGA5gAeZRnG+XADECPgwCGKByBuBxiAgfgigeIhIgYJYImIaImCiCpiHiNgqguIpIHYFhAl2ZwAlQMIMEiXg5g4I4onYPIPmOOQGD6EIkAkDhGhEZIJBISoRmSOQmDqDJhgOfJYDGDIJE4VYVCUaRmFiFplHkdhaheJZJH4YoYGYSYCGaGJmHmFhWhQIxTnyXAykySY+HGHAnCmVh0h2Zw5mYdoeieCZuH6HxoAmcoCh+aA6AYcobB+N0bDOTQKC6DYjCiahGhCJJonoVoSiWKRKF6GomGmShih6JppnodoOiIAAHGyZA0k0SoeimKgqiqNosiuao6kaLosisCpOjaLRrgqUo6i2a46maKopB2M4glcNgsCsEpDjEbILB6SoxiySwmsWbJrEaUI0myexWlKNYtEsFpAHADozGyW43G2ex6mCOJuKMYY5m4S4imaOhukuLpujq9w2nGO5uAsbJ/DuTZzH6eI+i+G5un6PxwAucwCj+cA8AcBJBnAbAnAWQpwgwMwKj6bxjkyYw4nELBTBORRxgwXziDGTBnB2RpxmyBwgkicZ8hcIpJjITBWnYPZOHOHwskuMpcj8MpMHMTJDDaTJzHyVw4k6c4sncOZPnOTQDD6S/BGCaQ6HQbQjEeUh0k0LxOlKNQNDcUZTnULRXFSVZ1D0ZxWlaNYNCcRQ6g6I5jGCWI2B2DxmlkdoNhMapZnaPYnaKdptkcbZcncDZTHKLALwxxkjYDsG8LY5h7i+HgBsf4BRfhwE4A8BYwR4DcCeBEYo8B+BvAqMcOImx3DyDsJ0U4zwUjLDkLwX4NVaCcGOD0Zo8x+DvCCuoLoLwhr5E6EcJoyoAjRG8Hceo3RDhfGwPYTonw2jZDuB0V4cxtj3C6O8PI3x7h+AeH0cIeAOiPC0HgTwJxriRHKHkHwXxOjmH0B4M4pRzj6D8I8VI6x9DeGeKsdo+wPDnFqOSAI2RyB5D4F8E4xx5D9A+X8eYfRPhPG2PUfo3xHjhHyP0f4rxyj7D8J8F4wg9AeEON8fA/xPjrH+IAKABgBBAAQA0AA4AeAFECBAFwBQgDYAmAMcAZAICBGePEPYDxgjqB6GAWgGBBDwDM5cXAPQDChAIB0QgMA/ARCEFgJICRwgcLoNAVQFAgiYBUD0Y4uB+CGAgMoDAwwcBtAaGEYgNBDhQG8B0YYmA8gPHCPQIIhxYgOBAEQJAhQGAXFhIgEY5gShEGQJcCYYhCBPEUFEHQKgigYFWBQcQtAsiLAiG4FYxRsC1AuKIcgTREgjHQH0B42BkgZFGCwM4jQoimBsEYRA3QNDjD4G0RwERnA5COFgcYHRxikDwI4aIkZgjhHwD8EY9BACPHkWoJAOQGggFIEQQokQZAeCKEgbIGQRjkC4JESI0glBICQBgfQPwjjoH8JMCQagmDJFyD0E4ZQCCcEoFIPwURlAZCSCkcoNBUiUFkK4KgShkhVBMBIQM0xjhuC0EsLIbQWjlGILkS4Uh3BeCWNkPoLgmgJFGDAEo/BejMCkPsGIyxyDJEwNMFQZAmCyHuDARgEQAkBA")

 ' DropDownButton

Add(14,"gBFLBCJwBAEHhEJAEGg4BbYFg6AADACAxRDAMgBQKAAzQFAYZhxBaERiGIZ4JhUAIIRZGMQxXAcMQ1DICYRhQABRiUAoJDKMchxEKcPBmAiPZhjEYocheMoWSLIcijDD0eRRDyDZrjaL5ZgmHonQK/dJABRTfxxBKdZ5lagKIjGHgmRoKMhUNBNKybJilYplMZRFqOZYJDSMFjwHZNVytLaMRLuCZpXhqOomShKUQjFJsURDOqZJogPArUwCRYESTUU7xDQcNYbAYPJpwSh4Jp+X5iVBiNQVHCNKw/K6EchgMTYJrKHZdZTSeT3GKVSTNEa2dgtKQ8fyjEIJCLCIg1ZgFH8VVTKMrVKKwbYfCzjQLuMC9cz2c47cDfMK8IJbD2DoElYIB1FqVAMA2TZnAANZxB0dYjGeZY3EUaoxmCPpYAGJgAAgPAclueACloLQaH0PpTmgHwaFEdRHgCdAkA4QhBFQJARHeXJkHkHgEhCEQMG8HAHhCABvBmAgBjgbwcgaUYEGwC4GCGNBwFAAQEAwQgTEMKIFBYDYQhCIQJHcAAGm2JwGBEY5yAEfIUlKNIaB6RwwnQAIOGOOJqDyD5jmkBg9hCZAJBIQoRGSCQeEqEYkkkJhNhKY5IlgexXmUIoUH0FILlKKIthYZY5GoXIXmWaYGF2GJmAmEhihkZoJh4aoZiaSYmG2GplkkWBShSJAzASLgsGcaZiHeHhnkmbh+h6KAJnaAYfmgKgWgSIZoDoJoGiKKIKC4PIQlSUwUjILRpCoUoTiUaYKF6GolimShmsWaZqgaIIommeoWiKKYqEoVRNiOY5FDSSQtguGo+jGLArCqVo0i2aw6maNouiuCpuj6LxsAqcpCi+bA7AaMoqmOKhBEoMwLiKcpMjOLJbD6Uo0G0SxC4mbR7FaWI2m2Kx2lmN5tkuApejObIEA6LRSg0Ap4kCOhujuKpsjubprkabY8m9T5yj0b4Ll6eo9i+S5mn2PpukuFpKD+TRDAiRJBHAfAbAiQpwiwNwJkOcJMEMDpEHETBPBaRIxgwVwZkWcIMAqZw/k2AwYkiSByDyCwkkmchsicJZKnKDIzCqSxzAyPwykuMxMkcNZMnITB6DoUxNkMLJMk8c58nsQJQnQLQXEGUZ0E0IxGlIdJNC8TpSjUDQ3FGU50AyaRgD+TgDDyUJWHWPRrFyV51m2BxdlidgNhMYpZHaDYfGqWY2k2JxtlqdZNFkTQ5A0GYUw6RdhuF2L4eovB3ibGMP0Xo7x9jvACMEeAXAXgDGGPATgRwGi7HcEoKI0A1ibA4H8EYyA5BcFeCkZY8g+DPBaM0OYHBvg9GcPQDg5wijPHoH0B4JRjCfHOzQNo9QuhnCuNYewHQ/hlGuHYTojw1jZHsN0Z4cRuj2H6O8Oo3w7idDeFAO4mxzD/ESOMPAvgfiVHIPkTwRxOjlHyP4N4oR0j6C8K8UY6x9CeGOK0cY9QDiZGMHEfY3wDi/HgPwT4HxmjxD6B8F40x5j9C+G8bI9x+h/EeN0fIfgPgPCgHsTg5wfjxkyD8b4/B/hgAGPwQATx/ABGABcewjwQAkASIAaALgBDAZAAMUACxUAfAGKQOgwQcArAKCAWgGRBgQDcAsYI2AagHFAOIJwgx4COAcEIJAQQEjhBoCYQQQxUB1AeIgLICxQhsBeIYKAxgNBDAQG0Bg4RcDqCSMkCwHBhjYDiA8cKBBDjRAIHUHQgR5A7AOGQI4iQYgiBKEQbAmQJjiC4FERI0QlAoCKDgVoFQxDECoIsKIXgWjFEwJUCIhw0DtA+DEQwMRjAoGSBkcYNA0iMFiK4GgRhkDVA2GMQgbxHBRF0DoI4GB1gcHHMID4QxeB3GOLgfYHwRj0ECJACQDgfjICyAUEIpASCHEiFIEwRgkCJA6CIcgfBGiPGiOgPAjwIj1BKGQXglhJgSDcE0JI2QZgnHIOQUAkxpCGCkEoHITQUClCIKUSoMhPBKF0IEewPBDiUFeJYGQwgshLCyGkFo5ROC5EsNIdQXAli5D6C8owvBMBSH8GEZgGQygrEOKAegHw5gmDKMwVImQZjmDoNETIswnF5CSKUGoZhiDXE2FMLVfxMi7BsOYJcwxBjUD0M4HIywcgnBoOkToExXBzGcNkaoOxThkHeJ4KYxg9BPASO0Hg5xeD1E4NMRAexHhxHyD8M4/B/CgAoA4QIUAtADCCOgEoCBQDUS6FAXQHQhCoEKA0UQNAfB+suPoHwRxmgXFGDQMQjQojaByEcdA3QQijGoIoSAUgdWADSEUEgpQqCeEqNITQNQiiHGgPoD4tBjCZGmCoNITR0i1ByKYWg7hOBTGUHUJ4ajzCoCoPoUQVANCLCgOkRcw4Lh+CoLq6YKg6hRFUBUJwpxqtPCqKoUoVxVhVDMK4KoihehWHUP0LoqRqgoD9XIfoWQ1g9DNSEVwtQrDaGmFsdYZQ4CtGqMYXQVwdDtC4KsYodRXg1G8LIWAJBVCVGUG0QIsArAOGEFgLYDQwjsCKIkWIVgXDDBOCQdGKheA7CUBYJoJxshbBKGUVgpRLizCSAkFIFR5ACICA")

Add(15,"gBFLBCJwBAEHhEJAEGg4Bf4Fg6AADACAxRDAMgBQKAAzQFAYZhxBaERiGIZ4JhUAIIRZGMQxXAcMQ1DICYRhQABRiUAoJDKMchxEKcPBmAiPZhjEYocheMoWSLIcijDD0eRRDyDZrjaL5ZgmHonQK/dJAAhDAJxHCEZznWTqAoiMYeCZGQoyFQ0EytJR/QAsCoIDDINQlSrZchjKKFUQTNi3JijYBoaCOXIdTbRFQyNJEVQiGSWZQkG6ZSjSZZdYQAFCwJItJx/CKhYyyGAwejXBo2QLXdJ2HCsdYbKKqIhqaL6YgnFYDCzCIj4jhqYacXd/a4dSqqb5tWruFBQTKGKQSEqERB1TCYDx4MZWSjLVTDMK2JwtZwDdhBLg9b4LBGWxZGyc5dkiFxHhKVhvJyTQ3BKdYMmOXx5FCHhnHoM4lkyQhrH0a5HheZ41lobJ7h+4paDwFRsFqNp5nUZgAAYDAAFwApQlIBoCBOZANk0SgXhQeAOEIQJ0CQFBCEEJxRgkR4RmgZQDBCRpxkAeQIAacYYCAHAHFGTBoBkRhAjgYgbEcBQABAQJECENAygyURglkCQKB8FwFF0BgRGOcgVH0VgCjSGgekcMJ0ACEhkjkKhMhOZJpEYTYUmUCRSFKFRlgkXhahWJZJGYXYWmSSQYHsWJmCKFB9BSDZjDyRg9k4c4eGyG4mlmPhyhwZxJkIdocmceZWHiHpnimdh5h+Z5KAIdYaEwaYYFKGIlDoEJ1DkThaC6DYjCiahGhCJJonoVoSiWKRKF6GomGmShih6JppnodoOiEJJJE0YA8k4M4OiiKoqhqLouisawKjKMormsOpGjSLZrGqZo1i6a4KnKOoqlYCoWEwWAPBOBJhjEbB7BqSIymyKw2kmM5sksQpOjQbRLE6VuJAsVpZjWbILAYSophSI48l8N5uCuEpjjkboLh6ao5i6S4mm2OpumuRpwjybp7laco9i8S4Wl4QJsDUKJtDcTZbn8AZADALAXASQZwDwJwGkKMIMC8DpDHEDAzBKQ5xDwRwCj6bgDnyaw2k2PBvB2RwxmyBwgkicZ8hcIpJjITIfCqShykyIwukqcp8jcHpGC+U58mkNhNhyXw54ALJ3DyT5zj0Bw+lCNANA8RpRHSDQTEqUZ0j0Jw6k0JIlgCaA1k2DRPFWVQ1G0ZxYladR9HcWpXjWTR/GKWB2E2Axmlidh9hcVpUBYJQomYNRNG2PxxlwNwtlcOkXY7g9jOHaL0N4GxvD9F8PADY5wCi/HgHwBw5RbAsAOCEUwag4hcDOBcYw8gOB/aYtwR4KxkjyG4M8GIzR5D8HeDUZ7tg3gQFKBwIwiRSjSHoP0G4URqj1C6G8KY1x6idEOF1lAnRPhtGyHcDorw5jbHqB0DI/g4AZHMIcQI4Q8A+A+I0cQ+WRiVc0H4J4mRzj5G8I8TY6R9AeFOKUcI9xjDxE0GdsQ5xbjuH4B4f4xR3h8E+A8ZY8R+DfCeNEeo/B/hvGqPcPonpAhuAyGYM46R9h+F+L+RY/xPjHH4P4b4+x+hJEgAIAQPxsALAAGAIgBxAhPHqN8BooRIAyFAHQCAgR4BGAUEEHALQCCgGIBUQYMAegvCCKgHoBRwD8A2IQKAhgJBAHuHwGwBgYDIEKBAVQFBhC4C6AsMIhAWCGCgL4DIJRyCrAaCEYgMRDgwGcB0IY2A8gPG6PAawGBBgaBCEQJAhwIhiCIEcRIUXjhEEwJsCQ4g6BREUBEJwJxihYFKBUUQpAih3GGFAMIDAkC5AuKIdgXxGBREMDIIwCBmgYHGDwMojQIiuBqEYbA0wNjjDIHARo0Q+y0BCIAGAo0VCOHiOYHwRxcD9A8KQAgfRIAxH8EEJAWQEghHIBwRIkBpAqoOJcPgNACjwGAJICQSgkDJByC0EoZBiCUEmFILwTRkiZByCccg9BQiTFkI4KASgkhFBJPsZwFxBD6CqEoZIVwVhlEIK8SwUhdBaCWBkNYLByi0FyJcCQ7gtjLGyHUF4pRyCto8DCcYyREgxFMCwY4mQpgmDMEwRInQZDmD4M0TQEwnBpCaFkUYNRzCkGwJoaYHRvgMFiHAFw5h6DgE2PMQwcgnA5GaDgU4RByidBmJ4OoThsjZB2OcLg8ROjTGU3gC4fAZBFFgLkT4Ex1B8GeLkfoPw0AEH4KAKY/hAjQA0AkII6AagJFALQF00hlAVB9PsY4FhBDeoSEoE4RQ0DFAuKMKgWhHBRE0DsIw6B6ghFIBQRwjxpBaCKEkVIJQK0eAoFkBYWgshLFSG0F4pgqDGE0FMBQbQmDpXcKcCg7hOhTG0HMJ46RyhAFONQXtywYhgBYOoGoSBUD1BNjwXQnQpCqEKE0VQNQfCpCqFrNA6hOhZFUNUNQrAqViBgEUOAsWPCKFgNYHQzQshrCKGQVoVRPC1GsJobIWx1h1DiK0WozhcBXCUOULA2wxTmAEPwKwCh9D5C+KsdofxYBWAMMILACwGhgHYD0QosQLAuouNsCYYx2BlEgLAUogQpAtHoMoTI6xohgFmFYNwzgsjbB6GcdqOBaBWEcNICgpQEChEoEIIoSB4DZBgFoagvw1jtDKLDQwxhtAlBIMQLAyAEEBA==")

}
BackColorHeader = 16777216 '0x01BBGGRR
BackColorSortBarCaption = 33488896 '0x01BBGGRR
FilterBarBackColor = 16777216 '0x01BBGGRR
Background(0) = 33554432 '0x02BBGGRR

Background(1) = 50331648 '0x03BBGGRR
Background(2) = 67108864 '0x04BBGGRR
Background(3) = 83886080 '0x05BBGGRR
Background(4) = 234881024 '0x0EBBGGRR
Background(5) = 251658240 '0x0FBBGGRR
Background(6) = 83886080 '0x05BBGGRR
Background(7) = 67108864 '0x04BBGGRR
Background(8) = 67108864 '0x04BBGGRR
Background(9) = 67108864 '0x04BBGGRR
Background(10) = 100663296 '0x06BBGGRR
Background(11) = 100663296 '0x06BBGGRR
Background(12) = 100663296 '0x06BBGGRR
Background(13) = 100663296 '0x06BBGGRR
Background(14) = 100663296 '0x06BBGGRR
BackGround(15) = RGB(208,207,224)
BackGround(16) = 67108864
BackGround(17) = RGB(216, 215, 232)

SelBackColor = 67108864 '0x04BBGGRR
BackColorSortBar = RGB(61,101,183)
FilterBarForeColor = RGB(255,255,255)
ForeColorHeader = RGB(255,255,255)
ForeColorSortBar = RGB(255,255,255)
SelForeColor = 0

MarkTooltipCells = True
MarkSearchColumn = False
Indent = 15
LinesAtRoot = 1
HasButtons = 4
HasButtonsCustom(0) = 4
HasButtonsCustom(1) = 5
SortBarVisible = True
DefaultItemHeight = 20
HeaderHeight = 20
SortBarHeight = 20

BackColor = RGB(255,255,255)
BackColorLevelHeader = RGB(255,255,255)
DrawGridLines = -1
ScrollBySingleLine = True
ShowFocusRect = False

Columns
{
 "Name"
 {
 DisplayFilterButton = True
 DisplayFilterDate = True
 Width = 96
 AutoSearch = 1
 HeaderImage = 1
 HeaderImageAlignment = 2
 }
 "Value"
 {
 HeaderBold = True
 Editor
 {
 EditType = 3
 AddItem(1,"1. First",1)
 AddItem(2,"2. Second",2)
 AddItem(3,"3. Third",3)
 }
 }
 1
 {
 AllowSizing = False
 HTMLCaption = "1 First"
 Def(0) = True
 LevelKey = 1
 Width = 18
 PartialCheck = True
 }

 2
 {
 AllowSizing = False
 HTMLCaption = "2 Second"
 Def(0) = True
 LevelKey = 1
 Width = 18
 PartialCheck = True
 }
 3
 {
 AllowSizing = False
 HTMLCaption = "3 Third"
 Def(0) = True
 LevelKey = 1
 Width = 18
 PartialCheck = True
 }
 ""
 {
 LevelKey = 1
 Width = 20
 }
}
Items
{
 Dim h, h1,hx
 h = AddItem("exGridprovides swift and robust performance and a wide range of
formatting features that distinguish it from other grids.")
 CellSingleLine(h,0) = False
 CellValueFormat(h,0) = 1
 CellEditorVisible(h,1) = False
 CellToolTip(h,0) = ""
 CellMerge(h,0) = 1

 h1 = InsertItem(h,,"Child 1")
 CellValueFormat(h1,0) = 1

 CellHasCheckBox(h1,0) = True
 CellValue(h1,1) = 1
 CellToolTip(h1,0) = "exGrid
provides swift and robust performance and a wide range of formatting features that
distinguish it from other grids"
 CellImage(h1,0) = 1

 h1 = InsertItem(h,,"Child 2")
 CellValueFormat(h1,0) = 1
 CellHasCheckBox(h1,0) = True
 CellValue(h1,1) = 2
 CellForeColor(h1,1)= RGB(0,0,255)
 CellImage(h1,0) = 2

 h1 = InsertItem(h,,"Child 3")
 CellValueFormat(h1,0) = 1
 CellHasCheckBox(h1,0) = True
 CellValue(h1,1) = 3
 CellImage(h1,0) = 3
 CellState(h1,3) = 1

' ExpandItem(h) = True

 h = AddItem("")
 ItemDivider(h) = 1
 SelectableItem(h) = False
 ItemHeight(h)= 38
 CellPicture(h,1) =
"gBHJJGHA5MIgAEIe4AAAFAoEDQXCoaEIdEkVi4lEgqEovEIVF8cF40F0jGw5FQdHI0EsrF0rk49mI+IY0Cs1Ds1Es1FxDHs9mU+HxOHodoglJxHG1JoZHI5OKFPKBPLFFqolLBHFxYKA2rg+rhHrlULRXLBaMBjI4lMZQFxjLRHuBPMZjtJjNBttZtKAlvguNpjK+BMBtNt5NpwPBaGx4MZPPBtK+RNB4O2KP55QRjHyCvWeMCCOxoQR/OGlzR/QKCRKBRmcRl6Rh2K6M02212tRiSRKXNo23w+S52I/DJ6XP5X5BgS6JPKXSSBUJ/I/TJ6hRJXUPRUKcUSsOw28A+Vh/J6sRPn7KsSRo9h5VicRKsUvfV6zWyJI62SRX/gwFsTg4FsUpJQITRgESG0Eh8YBJCeYEBGAV5JQnBBXlEZcFGXB8OCuZZOCfEAwGWUo8mWXBNRQURqkkH0WiOasQmqUowRoNBqlePJqmEVZwFeOBwGXHxllnIRdnqaskG9JZiADJ8oSjKUpypKsrSvLEsy1LcuS7L0vzBMMxTHMkyzNM8xIYAAQnyAgAoYf4ABZNSEzqIAETif4Eg4JBYFAYJBgKC5ABgaZTFCTISAkKBECgEJxgMRwPBkQwqAQYJAAEYRAhYLA0AwCFAAOBAFAMFAoBEUpiAUDIZDMZhIECcZxiABYqD0LBYBgE4oEiERAmsHBYHAYBTCCDAeHkFBGgmI5igoDwYDYbxMD0YYjAUGgdAsCASFiAJGA2G47mEbxklEMIhkgDgjkYCwWGiAJDg+GwLkSGhImkUYDgyIJBAAVp0CgIQWmEAADgIGQMBgYA3mCXQqHIdAsmYUpTHCCoiG8QBMhAKBBkQBQRCIBggjmA4nEUCISAQZQsFCApHnSHAwiULAwDgeFMgKDwtE4YAABERhJgqEY7DMBA2CwcACAgBoNi0PJYgAIYChQHI9AmLgogIYxMh0aBRhmFJBCuKBMgqXocnYVJnA6N5PhOG5cDcf5wGgYIUEGAQGgMGx0EEcBAAGGQRggFB3g6IBgD4QIfj8DgckkP4fAYiY8BISAGDSeCDg+MZkDiYYxhUNA4kODYQAIIxBAoLQ0CCQgpiwYBgiINACmKWBhAaHoIFiIoPBuagoCDwYokAYQKi+bJwnECoKnYWAAj8H5kFAYQHDgIgQkEAweBEchtASFw+EgaQEhoMgQCGB44kQaICASFAWCgTAvhIMBAECAgJEALAAgHA8CEGCIEAo/wQDhGKHwDQVAQCEEWGQbQoRIgGByCQU4XAmgHAYAAQQBwLgof0AIDAHAQDCAUDMbgFxhgRAyCweAwRPguBIHEQwHXaCwGOB8P4+AggFDsFALQxAiBwAaGF0UAhIihEEF8DcEhgh2D8NAWIRgLhdFQOEA4dw6AcGiIEUwRjEgDBAGQOgEREAgECLwGACgEAdB8DwGAow5AIHYPQR4BQbj0HCAAAQVB8CKEAHwe4EQ6BAAGIEGIUBAgKF4BUJY0CGgMkOAAZwVg9hQCAAAHZAQ"

 CellWidth(h,1) = 42
 CellValue(h,1) = "Not selectable item"
 CellEditorVisible(h,1) = False
 CellValueFormat(h,1) = 1
 CellHAlignment(h,1) = 1

 h1 = SplitCell(h2,1)

 CellWidth(,h1) = 18
 CellHasCheckBox(,h1) = True
 CellEditorVisible(,h1) = False

 h = AddItem("Root 2")
 CellEditorVisible(h,1) = False
 ItemBold(h) = True
 CellMerge(h,0) = 1
 CellMerge(h,0) = 2
 CellEditor(h,0)
 {
 EditType = 1
 }

 h1 = InsertItem(h,,"Child 1")
 CellValueFormat(h1,0) = 1
 CellValueFormat(h1,1) = 1
 CellHasCheckBox(h1,0) = True
 CellValue(h1,1) = 3
 CellImage(h1,0) = 1
 CellEditor(h1,1)
 {
 EditType = 3
 DropDownAutoWidth = False
 AddItem(1,"CObject class", 1)
 InsertItem(2,"CCmdTarget class", 2, 1)
 InsertItem(3,"CWnd class", 3, 2)
 InsertItem(6,"S y n c", 1, 1)
 AddItem(4,"Exceptions", 1)
 InsertItem(7,"System Exceptions", 2,4)
 AddItem(5,"File Services", 2)
 ExpandAll
 ItemToolTip(1) = "CObject tooltip
You can assign a tooltip to a predefined value in a drop down list editor. Multiple-lines,
HTML format supported."
 Option(37) = 1
 }

 CellMerge(h1,1) = 2
 CellMerge(h1,1) = 3

 h1 = InsertItem(h,,"Child 2")
 CellValueFormat(h1,0) = 1
 CellValueFormat(h1,1) = 1
 CellHasCheckBox(h1,0) = True
 CellValue(h1,1) = 3
 CellImage(h1,0) = 1
 CellEditor(h1,1)
 {
 EditType = 21
 Option(105) =
"gBCJr2AwAg0HG0HFEHDEMg4BAENg4AYEFADEB0GjETjgAf8fV6dQB4JQukkmksnlUplkol0rl8tmEzkshQEff82VCCLi/Vqvn1An9BolDo1CpFFpNHpVNn87Lk2k7DWCzqlWqtXrVZrlYr1br9dsFjsVVmE4fb0elOpdttlvplxV7+fj8nFnj78er1Y60W99v9+wGDwWFwOHwmIw2JwD+fr9u8tnD6eLxZq8X2XzOYzWdzmfzehz2i0GjzT9fL5yMutDyeTRYDC2Gy2Oz2213G03W33e53mzfr6fWrk9otTZZDJ5HK5PL53N6HM6XP6fR6nLul2j94f96erhaDR8Hi8Pj83l9Hk9Xn9fp9njx2Q7eSj+UeLkajV/H6/P7/z+wA/kBP/AcAwI/bUNU+bWI+fbXHWbhuQhCUIwnC0KwxCkNQvDcMw5CbguHBbiwatR5nGccTxTFEVRbFkXxXGMXRlGEZxU7LiJKnDvHuc5zx7H8fSBIchSLIMjyJJEjSTID4xyFzJsqfB1HVKcqypK0syxLcry7LUvS5L8rQTJ7WnkfJ2nbNE1TTNc3TbOE2TlN85zjOk1xDMsSnofR3nfPs/z9QFB0FQtA0PQlEUNRNARxEcdLyvcHHlSdKtdS1KUvTVM05TFPU3ScnUfKD6sq71Tr3VB61VVlU1dVdX1bWB6zJUczH4e571xXVc13X1e2BXlhV/Ydg2JXc81tPcQ2Y4Vmn1Z9o2dadoWpaVqn1Rx/u47z428x9vn7cNx3BctxXNclz3VPR/3Td10XhdV33leLVp0nicXzfV935ft/X/fqoJsnCpJlgyY4QmmE4PhWBo+gIA="

 Option(106) =
"gBCJr2AwAg0HG0HFEHDEMg4BAENg4AYEFADEB0GjETjgAf8fV6dQB4JQukkmksnlUplkol0rl8tmEzkshQEff82VCCLjfaDIe7nc9BodColHo1JotLpFMpVNok+ZE7Lk2k9SerlctZrdarlfr1hrtjsFksVltFaqUwnDzcbjt1wt9xulzu1yvF1vN3vV6nFrls4d7gcGDwuEw2JxGLw+NxWOxmPx9/n9sj7tbzezGazObz2d0Gc0Wf0eh0mkyjIyz/dLabWt1+u2Gz2W12O32m42253Op1bobDZ4HC4PD43F5HE5XH5fJ5nM32Bj7mazXcjUavX7PY7Xd7nf7fh73i8Hj7XRl04cbSafr9vs93x+Hz9/1+X2+n3+/ok84cJoGib5nGfAUCQHAsEQPBUDQZBMGwXB0Cv4kqcG6ZhmwtDELwzDkNw9DUQQ7EMPxFEUJhcnBtmSZZsmQZMWxfF0YRnGUaxjG8aRxG0cxhE6cGuYxkSBIUgyHI0iyRIklSPJckyZJkfI+apiGMaZhGJK0sSvLMuS3L0tTBLswy/MUsyif5omAYU0zXNU2TfN04zbOc4TpOU6zrM5nl8YBml4X0/UBP9A0JQdDUFRFC0TQ9FUDM9AmYXRe0jSdJUpS9LUzStN0xTlNU7SkzmUXBdmSWxc1NVFT1TVlV1dVVYVbWNX1lVMz1SY5aFvXNd11Xlf19YNe2HYFiWFYteTOYpZFqYZYFnZ1oWfaNqWna1pWxats2vbVoxOqScGCVxY3Fclx3LdFz3Vc12XTdt13dcr0J0nlwJxe98XzfV935fp/qkqibJwqyZYKmODpphGDYTgSPoC"

 }

 h1 = InsertItem(h,,"Child 3")
 CellValueFormat(h1,0) = 1
 CellValueFormat(h1,1) = 1
 CellHasCheckBox(h1,0) = True
 CellValue(h1,1) = 7
 CellImage(h1,0) = 2
 CellEditor(h1,1)
 {
 EditType = 6
 AddItem(1,"1. MN",1)
 AddItem(2,"2. FR",2)
 AddItem(4,"4. GD",3)
 AddItem(8,"8. BT",1)
 }

 h1 = InsertItem(h,,"Child 4")
 CellValueFormat(h1,0) = 1

 CellHasCheckBox(h1,0) = True
 CellValue(h1,1) = 70
 CellImage(h1,0) = 3
 CellEditor(h1,1)
 {
 EditType = 13
 }

 h1 = InsertItem(h,,12)
 CellMerge(h1,0) = 1
 CellImage(h1,0) = 1
 CellValue(h1,1) = 34
 CellEditor(h1,0)
 {
 Numeric = -1
 EditType = 20
 Option(45) = True
 Option(41) = 120
 }
 ExpandItem(h) = True
}
EndUpdate

On Windows XP, the following table shows how the common controls are broken into parts
and states:

Control/ClassName Part States

BUTTON BP_CHECKBOX = 3

CBS_UNCHECKEDNORMAL =
1 CBS_UNCHECKEDHOT = 2
CBS_UNCHECKEDPRESSED
= 3
CBS_UNCHECKEDDISABLED
= 4 CBS_CHECKEDNORMAL =
5 CBS_CHECKEDHOT = 6
CBS_CHECKEDPRESSED = 7
CBS_CHECKEDDISABLED = 8
CBS_MIXEDNORMAL = 9
CBS_MIXEDHOT = 10
CBS_MIXEDPRESSED = 11

CBS_MIXEDDISABLED = 12

BP_GROUPBOX = 4 GBS_NORMAL = 1
GBS_DISABLED = 2

BP_PUSHBUTTON = 1

PBS_NORMAL = 1 PBS_HOT
= 2 PBS_PRESSED = 3
PBS_DISABLED = 4
PBS_DEFAULTED = 5

BP_RADIOBUTTON = 2

RBS_UNCHECKEDNORMAL =
1 RBS_UNCHECKEDHOT = 2
RBS_UNCHECKEDPRESSED
= 3
RBS_UNCHECKEDDISABLED
= 4 RBS_CHECKEDNORMAL =
5 RBS_CHECKEDHOT = 6
RBS_CHECKEDPRESSED = 7
RBS_CHECKEDDISABLED = 8

BP_USERBUTTON = 5
CLOCK CLP_TIME = 1 CLS_NORMAL = 1

COMBOBOX CP_DROPDOWNBUTTON = 1

CBXS_NORMAL = 1
CBXS_HOT = 2
CBXS_PRESSED = 3
CBXS_DISABLED =

EDIT EP_CARET = 2

EP_EDITTEXT = 1

ETS_NORMAL = 1 ETS_HOT =
2 ETS_SELECTED = 3
ETS_DISABLED = 4
ETS_FOCUSED = 5
ETS_READONLY = 6
ETS_ASSIST = 7

EXPLORERBAR EBP_HEADERBACKGROUND = 1

EBP_HEADERCLOSE = 2
EBHC_NORMAL = 1
EBHC_HOT = 2
EBHC_PRESSED = 3

EBP_HEADERPIN = 3

EBHP_NORMAL = 1
EBHP_HOT = 2
EBHP_PRESSED = 3
EBHP_SELECTEDNORMAL =
4 EBHP_SELECTEDHOT = 5
EBHP_SELECTEDPRESSED =
6
EBM_NORMAL = 1 EBM_HOT

EBP_IEBARMENU = 4 = 2 EBM_PRESSED = 3

EBP_NORMALGROUPBACKGROUND = 5

EBP_NORMALGROUPCOLLAPSE = 6
EBNGC_NORMAL = 1
EBNGC_HOT = 2
EBNGC_PRESSED = 3

EBP_NORMALGROUPEXPAND = 7
EBNGE_NORMAL = 1
EBNGE_HOT = 2
EBNGE_PRESSED = 3

EBP_NORMALGROUPHEAD = 8
EBP_SPECIALGROUPBACKGROUND = 9

EBP_SPECIALGROUPCOLLAPSE = 10
EBSGC_NORMAL = 1
EBSGC_HOT = 2
EBSGC_PRESSED = 3

EBP_SPECIALGROUPEXPAND = 11
EBSGE_NORMAL = 1
EBSGE_HOT = 2
EBSGE_PRESSED = 3

EBP_SPECIALGROUPHEAD = 12

HEADER HP_HEADERITEM = 1 HIS_NORMAL = 1 HIS_HOT =
2 HIS_PRESSED = 3

HP_HEADERITEMLEFT = 2 HILS_NORMAL = 1 HILS_HOT
= 2 HILS_PRESSED = 3

HP_HEADERITEMRIGHT = 3 HIRS_NORMAL = 1 HIRS_HOT
= 2 HIRS_PRESSED = 3

HP_HEADERSORTARROW = 4 HSAS_SORTEDUP = 1
HSAS_SORTEDDOWN = 2

LISTVIEW LVP_EMPTYTEXT = 5
LVP_LISTDETAIL = 3
LVP_LISTGROUP = 2

LVP_LISTITEM = 1

LIS_NORMAL = 1 LIS_HOT =
2 LIS_SELECTED = 3
LIS_DISABLED = 4
LIS_SELECTEDNOTFOCUS =
5

LVP_LISTSORTEDDETAIL = 4

MENU MP_MENUBARDROPDOWN = 4
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUBARITEM = 3
MS_NORMAL = 1
MS_SELECTED = 2

MS_DEMOTED = 3

MP_CHEVRON = 5
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUDROPDOWN = 2
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUITEM = 1
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_SEPARATOR = 6
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MENUBAND MDP_NEWAPPBUTTON = 1

MDS_NORMAL = 1 MDS_HOT
= 2 MDS_PRESSED = 3
MDS_DISABLED = 4
MDS_CHECKED = 5
MDS_HOTCHECKED = 6

MDP_SEPERATOR = 2

PAGE PGRP_DOWN = 2
DNS_NORMAL = 1 DNS_HOT
= 2 DNS_PRESSED = 3
DNS_DISABLED = 4

PGRP_DOWNHORZ = 4

DNHZS_NORMAL = 1
DNHZS_HOT = 2
DNHZS_PRESSED = 3
DNHZS_DISABLED = 4

PGRP_UP = 1
UPS_NORMAL = 1 UPS_HOT
= 2 UPS_PRESSED = 3
UPS_DISABLED = 4

PGRP_UPHORZ = 3

UPHZS_NORMAL = 1
UPHZS_HOT = 2
UPHZS_PRESSED = 3
UPHZS_DISABLED = 4

PROGRESS PP_BAR = 1
PP_BARVERT = 2
PP_CHUNK = 3
PP_CHUNKVERT = 4

REBAR RP_BAND = 3

RP_CHEVRON = 4
CHEVS_NORMAL = 1
CHEVS_HOT = 2

CHEVS_PRESSED = 3
RP_CHEVRONVERT = 5
RP_GRIPPER = 1

RP_GRIPPERVERT = 2

SCROLLBAR SBP_ARROWBTN = 1

ABS_DOWNDISABLED,
ABS_DOWNHOT,
ABS_DOWNNORMAL,
ABS_DOWNPRESSED,
ABS_UPDISABLED,
ABS_UPHOT,
ABS_UPNORMAL,
ABS_UPPRESSED,
ABS_LEFTDISABLED,
ABS_LEFTHOT,
ABS_LEFTNORMAL,
ABS_LEFTPRESSED,
ABS_RIGHTDISABLED,
ABS_RIGHTHOT,
ABS_RIGHTNORMAL,
ABS_RIGHTPRESSED

SBP_GRIPPERHORZ = 8
SBP_GRIPPERVERT = 9

SBP_LOWERTRACKHORZ = 4

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_LOWERTRACKVERT = 6

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_THUMBBTNHORZ = 2

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_THUMBBTNVERT = 3

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_UPPERTRACKHORZ = 5

SCRBS_NORMAL = 1
SCRBS_HOT = 2

SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_UPPERTRACKVERT = 7

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_SIZEBOX = 10 SZB_RIGHTALIGN = 1
SZB_LEFTALIGN = 2

SPIN SPNP_DOWN = 2
DNS_NORMAL = 1 DNS_HOT
= 2 DNS_PRESSED = 3
DNS_DISABLED = 4

SPNP_DOWNHORZ = 4

DNHZS_NORMAL = 1
DNHZS_HOT = 2
DNHZS_PRESSED = 3
DNHZS_DISABLED = 4

SPNP_UP = 1
UPS_NORMAL = 1 UPS_HOT
= 2 UPS_PRESSED = 3
UPS_DISABLED = 4

SPNP_UPHORZ = 3

UPHZS_NORMAL = 1
UPHZS_HOT = 2
UPHZS_PRESSED = 3
UPHZS_DISABLED = 4

STARTPANEL SPP_LOGOFF = 8

SPP_LOGOFFBUTTONS = 9
SPLS_NORMAL = 1
SPLS_HOT = 2
SPLS_PRESSED = 3

SPP_MOREPROGRAMS = 2

SPP_MOREPROGRAMSARROW = 3 SPS_NORMAL = 1 SPS_HOT
= 2 SPS_PRESSED = 3

SPP_PLACESLIST = 6
SPP_PLACESLISTSEPARATOR = 7
SPP_PREVIEW = 11
SPP_PROGLIST = 4
SPP_PROGLISTSEPARATOR = 5
SPP_USERPANE = 1
SPP_USERPICTURE = 10

STATUS SP_GRIPPER = 3
SP_PANE = 1
SP_GRIPPERPANE = 2

TAB TABP_BODY = 10
TABP_PANE = 9

TABP_TABITEM = 1

TIS_NORMAL = 1 TIS_HOT =
2 TIS_SELECTED = 3
TIS_DISABLED = 4
TIS_FOCUSED = 5

TABP_TABITEMBOTHEDGE = 4

TIBES_NORMAL = 1
TIBES_HOT = 2
TIBES_SELECTED = 3
TIBES_DISABLED = 4
TIBES_FOCUSED = 5

TABP_TABITEMLEFTEDGE = 2

TILES_NORMAL = 1
TILES_HOT = 2
TILES_SELECTED = 3
TILES_DISABLED = 4
TILES_FOCUSED = 5

TABP_TABITEMRIGHTEDGE = 3

TIRES_NORMAL = 1
TIRES_HOT = 2
TIRES_SELECTED = 3
TIRES_DISABLED = 4
TIRES_FOCUSED = 5

TABP_TOPTABITEM = 5

TTIS_NORMAL = 1 TTIS_HOT
= 2 TTIS_SELECTED = 3
TTIS_DISABLED =
TTIS_FOCUSED = 5

TABP_TOPTABITEMBOTHEDGE = 8

TTIBES_NORMAL = 1
TTIBES_HOT = 2
TTIBES_SELECTED = 3
TTIBES_DISABLED = 4
TTIBES_FOCUSED

TABP_TOPTABITEMLEFTEDGE = 6

TTILES_NORMAL = 1
TTILES_HOT = 2
TTILES_SELECTED = 3
TTILES_DISABLED = 4
TTILES_FOCUSED

TABP_TOPTABITEMRIGHTEDGE = 7

TTIRES_NORMAL
TTIRES_HOT = 2
TTIRES_SELECTED = 3
TTIRES_DISABLED = 4
TTIRES_FOCUSED

TASKBAND TDP_GROUPCOUNT = 1

TDP_FLASHBUTTON = 2
TDP_FLASHBUTTONGROUPMENU = 3

TASKBAR TBP_BACKGROUNDBOTTOM = 1
TBP_BACKGROUNDLEFT = 4
TBP_BACKGROUNDRIGHT = 2
TBP_BACKGROUNDTOP = 3

TBP_SIZINGBARBOTTOM = 5
TBP_SIZINGBARBOTTOMLEFT = 8
TBP_SIZINGBARRIGHT = 6
TBP_SIZINGBARTOP = 7

TOOLBAR TP_BUTTON = 1

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_DROPDOWNBUTTON = 2

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SPLITBUTTON = 3

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SPLITBUTTONDROPDOWN = 4

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SEPARATOR = 5

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SEPARATORVERT = 6

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TOOLTIP TTP_BALLOON = 3 TTBS_NORMAL = 1
TTBS_LINK = 2

TTP_BALLOONTITLE = 4 TTBS_NORMAL = 1
TTBS_LINK = 2

TTP_CLOSE = 5
TTCS_NORMAL = 1
TTCS_HOT = 2
TTCS_PRESSED = 3

TTP_STANDARD = 1 TTSS_NORMAL = 1
TTSS_LINK = 2

TTP_STANDARDTITLE = 2 TTSS_NORMAL = 1
TTSS_LINK = 2

TRACKBAR TKP_THUMB = 3

TUS_NORMAL = 1 TUS_HOT =
2 TUS_PRESSED = 3
TUS_FOCUSED = 4
TUS_DISABLED = 5

TKP_THUMBBOTTOM = 4

TUBS_NORMAL = 1
TUBS_HOT = 2
TUBS_PRESSED = 3
TUBS_FOCUSED = 4
TUBS_DISABLED = 5

TKP_THUMBLEFT = 7

TUVLS_NORMAL = 1
TUVLS_HOT = 2
TUVLS_PRESSED = 3
TUVLS_FOCUSED
TUVLS_DISABLED = 5

TKP_THUMBRIGHT = 8

TUVRS_NORMAL = 1
TUVRS_HOT = 2
TUVRS_PRESSED = 3
TUVRS_FOCUSED = 4
TUVRS_DISABLED = 5

TKP_THUMBTOP = 5

TUTS_NORMAL = 1
TUTS_HOT = 2
TUTS_PRESSED = 3
TUTS_FOCUSED = 4
TUTS_DISABLED = 5

TKP_THUMBVERT = 6

TUVS_NORMAL = 1
TUVS_HOT = 2
TUVS_PRESSED = 3
TUVS_FOCUSED = 4
TUVS_DISABLED = 5

TKP_TICS = 9 TSS_NORMAL = 1
TKP_TICSVERT = 10 TSVS_NORMAL = 1
TKP_TRACK = 1 TRS_NORMAL = 1
TKP_TRACKVERT = 2 TRVS_NORMAL = 1

TRAYNOTIFY TNP_ANIMBACKGROUND = 2
TNP_BACKGROUND = 1

TREEVIEW TVP_BRANCH = 3

TVP_GLYPH = 2
GLPS_CLOSED = 1
GLPS_OPENED = 2

TVP_TREEITEM = 1

TREIS_NORMAL = 1
TREIS_HOT = 2
TREIS_SELECTED = 3
TREIS_DISABLED = 4
TREIS_SELECTEDNOTFOCUS
= 5

WINDOW WP_CAPTION = 1 CS_ACTIVE = 1 CS_INACTIVE
= 2 CS_DISABLED = 3

WP_CAPTIONSIZINGTEMPLATE = 30

WP_CLOSEBUTTON = 18
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_DIALOG = 29

WP_FRAMEBOTTOM = 9 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMEBOTTOMSIZINGTEMPLATE = 36

WP_FRAMELEFT = 7 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMELEFTSIZINGTEMPLATE = 32

WP_FRAMERIGHT = 8 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMERIGHTSIZINGTEMPLATE = 34

WP_HELPBUTTON = 23
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_HORZSCROLL = 25
HSS_NORMAL = 1 HSS_HOT
= 2 HSS_PUSHED = 3
HSS_DISABLED = 4

WP_HORZTHUMB = 26
HTS_NORMAL = 1 HTS_HOT =
2 HTS_PUSHED = 3

HTS_DISABLED = 4

WP_MAX_BUTTON

MAXBS_NORMAL = 1
MAXBS_HOT = 2
MAXBS_PUSHED = 3
MAXBS_DISABLED = 4

WP_MAXCAPTION = 5
MXCS_ACTIVE = 1
MXCS_INACTIVE = 2
MXCS_DISABLED = 3

WP_MDICLOSEBUTTON = 20
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_MDIHELPBUTTON = 24
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_MDIMINBUTTON = 16

MINBS_NORMAL = 1
MINBS_HOT = 2
MINBS_PUSHED = 3
MINBS_DISABLED = 4

WP_MDIRESTOREBUTTON = 22
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_MDISYSBUTTON = 14
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_MINBUTTON = 15

MINBS_NORMAL = 1
MINBS_HOT = 2
MINBS_PUSHED = 3
MINBS_DISABLED = 4

WP_MINCAPTION = 3
MNCS_ACTIVE = 1
MNCS_INACTIVE = 2
MNCS_DISABLED = 3

WP_RESTOREBUTTON = 21
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_SMALLCAPTION = 2 CS_ACTIVE = 1 CS_INACTIVE
= 2 CS_DISABLED = 3

WP_SMALLCAPTIONSIZINGTEMPLATE = 31

WP_SMALLCLOSEBUTTON = 19
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4
FS_ACTIVE = 1 FS_INACTIVE

WP_SMALLFRAMEBOTTOM = 12 = 2

WP_SMALLFRAMEBOTTOMSIZINGTEMPLATE
= 37

WP_SMALLFRAMELEFT = 10 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMELEFTSIZINGTEMPLATE =
33

WP_SMALLFRAMERIGHT = 11 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMERIGHTSIZINGTEMPLATE =
35

WP_SMALLHELPBUTTON
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_SMALLMAXBUTTON

MAXBS_NORMAL = 1
MAXBS_HOT = 2
MAXBS_PUSHED = 3
MAXBS_DISABLED = 4

WP_SMALLMAXCAPTION = 6
MXCS_ACTIVE = 1
MXCS_INACTIVE = 2
MXCS_DISABLED = 3

WP_SMALLMINCAPTION = 4
MNCS_ACTIVE = 1
MNCS_INACTIVE = 2
MNCS_DISABLED = 3

WP_SMALLRESTOREBUTTON
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_SMALLSYSBUTTON
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_SYSBUTTON = 13
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_VERTSCROLL = 27
VSS_NORMAL = 1 VSS_HOT
= 2 VSS_PUSHED = 3
VSS_DISABLED = 4

WP_VERTTHUMB = 28
VTS_NORMAL = 1 VTS_HOT =
2 VTS_PUSHED = 3
VTS_DISABLED = 4

method Appearance.Clear ()
Removes all skins in the control.

Type Description

Use the Clear method to clear all skins from the control. Use the Remove method to
remove a specific skin. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being applied
to the background's part.

The skin method may change the visual appearance for the following parts in the control:

control's border, Appearance property
control's header bar, BackColorHeader property
control's filter bar, FilterBarBackColor property
control's sort bar, BackColorSort property
the caption of the control's sort bar, BackColorSortCaption property
selected item or cell, SelBackColor property
item, ItemBackColor property
cell, CellBackColor property
CellImage, CellImages, HeaderImage, CheckImage or RadioImage,
HasButtonsCustom property
cell's button, "drop down" filter bar button, "close" filter bar button, tooltips, and so
on, Background property

method Appearance.Remove (ID as Long)
Removes a specific skin from the control.

Type Description

ID as Long A Long expression that indicates the index of the skin
being removed.

Use the Remove method to remove a specific skin. The identifier of the skin being removed
should be the same as when the skin was added using the Add method. Use the Clear
method to clear all skins from the control. If you need to remove the skin appearance from
a part of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the background's part.

The skin method may change the visual appearance for the following parts in the control:

control's border, Appearance property
control's header bar, BackColorHeader property
control's filter bar, FilterBarBackColor property
control's sort bar, BackColorSort property
the caption of the control's sort bar, BackColorSortCaption property
selected item or cell, SelBackColor property
item, ItemBackColor property
cell, CellBackColor property
CellImage, CellImages, HeaderImage, CheckImage or RadioImage,
HasButtonsCustom property
cell's button, "drop down" filter bar button, "close" filter bar button, tooltips, and so
on, Background property

property Appearance.RenderType as Long
Specifies the way colored EBN objects are displayed on the component.

Type Description

Long A long expression that indicates how the EBN objects are
shown in the control, like explained bellow.

By default, the RenderType property is 0, which indicates an A-color scheme. The
RenderType property can be used to change the colors for the entire control, for parts of
the controls that uses EBN objects. The RenderType property is not applied to the currently
XP-theme if using.

The RenderType property is applied to all parts that displays an EBN object. The properties
of color type may support the EBN object if the property's description includes "A color
expression that indicates the cell's background color. The last 7 bits in the high significant
byte of the color to indicates the identifier of the skin being used. Use the Add method to
add new skins to the control. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being
applied to the background's part." In other words, a property that supports EBN objects
should be of format 0xIDRRGGBB, where the ID is the identifier of the EBN to be applied,
while the BBGGRR is the (Red,Green,Blue, RGB-Color) color to be applied on the selected
EBN. For instance, the 0x1000000 indicates displaying the EBN as it is, with no color
applied, while the 0x1FF0000, applies the Blue color (RGB(0x0,0x0,0xFF), RGB(0,0,255)
on the EBN with the identifier 1. You can use the EBNColor tool to visualize applying EBN
colors.

Click here to watch a movie on how you can change the colors to be applied on EBN
objects.

For instance, the following sample changes the control's header appearance, by using an
EBN object:

With Control
 .VisualAppearance.Add 1,"c:\exontrol\images\normal.ebn"
 .BackColorHeader = &H1000000
End With

In the following screen shot the following objects displays the current EBN with a different
color:

"A" in Red (RGB(255,0,0), for instance the bar's property exBarColor is 0x10000FF
"B" in Green (RGB(0,255,0), for instance the bar's property exBarColor is 0x100FF00

https://exontrol.com/skintut.jsp#colors
https://www.youtube.com/watch?v=-PcCepMVclQ

"C" in Blue (RGB(0,0,255), for instance the bar's property exBarColor is 0x1FF0000
"Default", no color is specified, for instance the bar's property exBarColor is
0x1000000

The RenderType property could be one of the following:

-3, no color is applied. For instance, the BackColorHeader = &H1FF0000 is displayed
as would be .BackColorHeader = &H1000000, so the 0xFF0000 color (Blue color) is
ignored. You can use this option to allow the control displays the EBN colors or not.

-2, OR-color scheme. The color to be applied on the part of the control is a OR bit
combination between the original EBN color and the specified color. For instance, the
BackColorHeader = &H1FF0000, applies the OR bit for the entire Blue channel, or in
other words, it applies a less Blue to the part of the control. This option should be used
with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

-1, AND-color scheme, The color to be applied on the part of the control is an AND bit
combination between the original EBN color and the specified color. For instance, the
BackColorHeader = &H1FF0000, applies the AND bit for the entire Blue channel, or in
other words, it applies a more Blue to the part of the control. This option should be
used with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

0, default, the specified color is applied to the EBN. For instance, the
BackColorHeader = &H1FF0000, applies a Blue color to the object. This option could
be used to specify any color for the part of the components, that support EBN objects,
not only solid colors.

0xAABBGGRR, where the AA a value between 0 to 255, which indicates the
transparency, and RR, GG, BB the red, green and blue values. This option applies the
same color to all parts that displays EBN objects, whit ignoring any specified color in
the color property. For instance, the RenderType on 0x4000FFFF, indicates a 25%
Yellow on EBN objects. The 0x40, or 64 in decimal, is a 25 % from in a 256 interal, and
the 0x00FFFF, indicates the Yellow (RGB(255,255,0)). The same could be if the
RenderType is 0x40000000 + vbYellow, or &H40000000 + RGB(255, 255, 0), and so,
the RenderType could be the 0xAA000000 + Color, where the Color is the RGB format
of the color.

The following picture shows the control with the RenderType property on 0x4000FFFF
(25% Yellow, 0x40 or 64 in decimal is 25% from 256):

The following picture shows the control with the RenderType property on 0x8000FFFF
(50% Yellow, 0x80 or 128 in decimal is 50% from 256):

The following picture shows the control with the RenderType property on 0xC000FFFF
(75% Yellow, 0xC0 or 192 in decimal is 75% from 256):

The following picture shows the control with the RenderType property on 0xFF00FFFF
(100% Yellow, 0xFF or 255 in decimal is 100% from 255):

Column object
The ExGrid control supports multiple columns. The Columns object contains a collection of
Column objects. By default, the control doesn't add any default column, so the user has to
add at least one column, before inserting any new items. The Column object supports the
following properties and methods:

Name Description
Alignment Specifies the column's alignment.

AllowDragging Retrieves or sets a value indicating whether the user will
be able to drag the column.

AllowGroupBy Specifies if the column can be grouped by.

AllowSizing
Retrieves or sets a value indicating whether the user will
be able to change the width of the visible columns by
dragging.

AllowSort Returns or sets a value that indicates whether the user
can sort the column by clicking the column's header.

AutoSearch Specifies the kind of searching while user types
characters within the columns.

AutoWidth Computes the column's width required to fit the entire
column's content.

Caption Retrieves or sets the text displayed to the column's
header.

ComputedField Retrieves or sets a value that indicates the formula of the
computed column.

CustomFilter Retrieves or sets a value that indicates the list of custom
filters.

Data Associates an extra data to the column.

Def Retrieves or sets a value that indicates the default value of
given properties for all cells in the same column.

DefaultSortOrder Specifies whether the default sort order is ascending or
descending.

DisplayExpandButton Shows or hides the expanding/collapsing button in the
column's header.

DisplayFilterButton Specifies whether the column's header displays the filter
button.
Specifies whether the drop down filter window displays a

DisplayFilterDate date selector to specify the interval dates to filter for.

DisplayFilterPattern Specifies whether the dropdown filterbar contains a
textbox for editing the filter as pattern.

DisplaySortIcon Retrieves or sets a value indicating whether the sort icon
is visible on column's header, while the column is sorted.

Editor Gets the column's editor object.

Enabled Returns or sets a value that determines whether a
column's header can respond to user-generated events.

ExpandColumns Specifies the list of columns to be shown when the current
column is expanded.

Expanded Expands or collapses the column.

Filter Specifies the column's filter when the filter type is exFilter,
exPattern, exDate, exNumeric, exCheck or exImage

FilterBarDropDownWidth Specifies the width of the drop down filter window
proportionally with the width of the column.

FilterList Specifies whether the drop down filter list includes visible
or all items.

FilterOnType Filters the column as user types characters in the drop
down filter window.

FilterType Specifies the column's filter type.

FireFormatColumn
Retrieves or sets a value that indicates whether the
control fires FormatColumn to format the value of a cell
hosted by column.

FormatColumn Specifies the format to display the cells in the column.

FormatLevel Retrieves or sets a value that indicates the layout of
columns being displayed in the column's header.

GroupByFormatCell Indicates the format of the cell to be displayed when the
column gets grouped by.

GroupByTotalField Indicates the aggregate formula to be displayed when the
column gets grouped by.

HeaderAlignment Specifies the alignment of the column's caption.

HeaderBold Retrieves or sets a value that indicates whether the
column's caption should appear in bold.

HeaderImage
Retrieves or sets a value indicating the index of an Image
in the Images collection, which is displayed to the column's

header.

HeaderImageAlignment Retrieves or sets the alignment of the image in the
column's header.

HeaderItalic Retrieves or sets a value that indicates whether the
column's caption should appear in italic.

HeaderStrikeOut Retrieves or sets a value that indicates whether the
column's caption should appear in strikeout.

HeaderUnderline Retrieves or sets a value that indicates whether the
column's caption should appear in underline.

HeaderVertical Specifies whether the column's header is vertically
displayed.

HTMLCaption Retrieves or sets the text in HTML format displayed in the
column's header.

Index Returns a value that represents the index of an object in a
collection.

Key Retrieves or sets a the column's key.

LevelKey Retrieves or sets a value that indicates the key of the
column's level.

MaxWidthAutoResize Retrieves or sets a value that indicates the maximum
column's width when the WidthAutoResize is True.

MinWidthAutoResize Retrieves or sets a value that indicates the minimum
column's width when the WidthAutoResize is True.

PartialCheck Specifies whether the column supports partial check
feature.

Position Retrieves or sets a value that indicates the position of the
column in the header bar area.

Selected Retrieves or sets a value that indicates whether the cell in
the column is selected.

ShowFilter Shows the column's filter window.
SortOrder Specifies the column's sort order.

SortPosition Returns or sets a value that indicates the position of the
column in the sorting columns collection.

SortType Returns or sets a value that indicates the way a control
sorts the values for a column.

ToolTip Specifies the column's tooltip description.
Retrieves or sets a value indicating whether the column is

Visible visible or hidden.

Width Retrieves or sets the column's width.

WidthAutoResize
Retrieves or sets a value that indicates whether the
column is automatically resized according to the width of
the contents within the column.

property Column.Alignment as AlignmentEnum
Retrieves or sets the alignment of the caption in the column's header.

Type Description

AlignmentEnum An AlignmentEnum expression that indicates the column's
alignment.

Use the Alignment property to align cells in a column.By default the column is left aligned.
Use the Alignment property to change the column's alignment. Use the HeaderAlignment
property to align the column's caption inside the column's header. By default, all columns
are aligned to left. If the column displays the hierarchy lines, and if the Alignment property is
RightAlignment the hierarchy lines are painted from right to left side. Use the HasLines
property to display the control's hierarchy lines. Use the CellHAlignment property to align a
particular cell. Use the HeaderImageAlignment property to align the image in the column's
header, if it exists. Use the HeaderImage property to attach an icon to the column's
header. Use the Def(exCellDrawPartsOrder) property to specify the order of the drawing
parts inside the cell. The RightToLeft property automatically flips the order of the columns.

The following VB sample shows how you can display the cell's check box after the text:

With Grid1
 With .Columns.Add("Column")
 .Def(exCellHasCheckBox) = True
 .Def(exCellDrawPartsOrder) = "caption,check"
 End With
 With .Items
 .CellHasCheckBox(.AddItem("Caption 1"),0) = True
 .CellHasCheckBox(.AddItem("Caption 2"),0) = True
 End With
End With

The following VB.NET sample shows how you can display the cell's check box after the
text:

With AxGrid1
 With .Columns.Add("Column")
 .Def(EXGRIDLib.DefColumnEnum.exCellHasCheckBox) = True
 .Def(EXGRIDLib.DefColumnEnum.exCellDrawPartsOrder) = "caption,check"
 End With
 With .Items

 .CellHasCheckBox(.AddItem("Caption 1"),0) = True
 .CellHasCheckBox(.AddItem("Caption 2"),0) = True
 End With
End With

The following C++ sample shows how you can display the cell's check box after the text:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXGRIDLib' for the library: 'ExGrid 1.0 Control Library'

 #import <ExGrid.dll>
 using namespace EXGRIDLib;
*/
EXGRIDLib::IGridPtr spGrid1 = GetDlgItem(IDC_GRID1)->GetControlUnknown();
EXGRIDLib::IColumnPtr var_Column = ((EXGRIDLib::IColumnPtr)(spGrid1->GetColumns()-
>Add(L"Column")));
 var_Column->PutDef(EXGRIDLib::exCellHasCheckBox,VARIANT_TRUE);
 var_Column->PutDef(EXGRIDLib::exCellDrawPartsOrder,"caption,check");
EXGRIDLib::IItemsPtr var_Items = spGrid1->GetItems();
 var_Items->PutCellHasCheckBox(var_Items->AddItem("Caption
1"),long(0),VARIANT_TRUE);
 var_Items->PutCellHasCheckBox(var_Items->AddItem("Caption
2"),long(0),VARIANT_TRUE);

The following C# sample shows how you can display the cell's check box after the text:

EXGRIDLib.Column var_Column = (axGrid1.Columns.Add("Column") as
EXGRIDLib.Column);
 var_Column.set_Def(EXGRIDLib.DefColumnEnum.exCellHasCheckBox,true);

var_Column.set_Def(EXGRIDLib.DefColumnEnum.exCellDrawPartsOrder,"caption,check");
EXGRIDLib.Items var_Items = axGrid1.Items;
 var_Items.set_CellHasCheckBox(var_Items.AddItem("Caption 1"),0,true);
 var_Items.set_CellHasCheckBox(var_Items.AddItem("Caption 2"),0,true);

The following VFP sample shows how you can display the cell's check box after the text:

with thisform.Grid1

 with .Columns.Add("Column")
 .Def(0) = .T.
 .Def(34) = "caption,check"
 endwith
 with .Items
 .DefaultItem = .AddItem("Caption 1")
 .CellHasCheckBox(0,0) = .T.
 .DefaultItem = .AddItem("Caption 2")
 .CellHasCheckBox(0,0) = .T.
 endwith
endwith

The following Delphi sample shows how you can display the cell's check box after the text:

with AxGrid1 do
begin
 with (Columns.Add('Column') as EXGRIDLib.Column) do
 begin
 Def[EXGRIDLib.DefColumnEnum.exCellHasCheckBox] := TObject(True);
 Def[EXGRIDLib.DefColumnEnum.exCellDrawPartsOrder] := 'caption,check';
 end;
 with Items do
 begin
 CellHasCheckBox[TObject(AddItem('Caption 1')),TObject(0)] := True;
 CellHasCheckBox[TObject(AddItem('Caption 2')),TObject(0)] := True;
 end;
end

property Column.AllowDragging as Boolean
Retrieves or sets a value indicating whether the user will be able to drag the column.

Type Description

Boolean A boolean expression indicating whether the user will be
able to drag the column.

Use the AllowDragging property to forbid user to change the column's position by dragging.
If the AllowDragging is false, the column's position cannot be changed by dragging it to
another position. Use the AllowSizing property to allow user resizes a column at runtime.

property Column.AllowGroupBy as Boolean
Specifies if the column can be grouped by.

Type Description

Boolean A Boolean expression that specifies whether the user can
drag and drop the column to be grouped by,

By default, the AllowGroupBy property is True. The AllowGroupBy property has effect only
if the control's AllowGroupBy property is True. Use the AllowGroupBy property on False, to
prevent a specific column to be sorted/grouped by. The same you can achieve if the
AllowSort property is False. The SortBarVisible property specifies whether the control's
sort bar is visible or hidden. If the control's sort bar is visible, the user can drag and drop
columns to it, so the column get sorted and items grouped. The Group/Ungroup method
groups or ungroup the control's list. For instance, you can remove the grouping items, by
calling the Ungroup method. The GroupByTotalField property determines the formula to be
applied to the column when it gets grouped. The GroupByFormatCell property determines
the format of the cell to be displayed in the grouping item, when the column gets sorted.

property Column.AllowSizing as Boolean
Retrieves or sets a value indicating whether the user will be able to change the width of the
visible column by dragging.

Type Description

Boolean
A boolean expression that indicates whether the user will
be able to change the width of the visible columns by
dragging.

Use the AllowSizing property to fix the column's width. Use the ColumnAutoResize property
of the control to fit the columns to the control's client area. Use the AllowDragging property
to forbid user to change the column's position by dragging. Use the Width property to
specify the column's width. Use the ColumnsAllowSizing property to allow resizing the
columns, when the control's header bar is not visible. Use the HeaderVisible property to
show or hide the control's header bar.

property Column.AllowSort as Boolean
Returns or sets a value that indicates whether the user can sort the column by clicking the
column's header.

Type Description

Boolean A boolean expression that indicates whether the column
gets sorted when the user clicks the column's header.

Sorting by a single column in the control is a simple matter of clicking on the column head.
Sorting by multiple columns, however, is not so obvious. But it's actually quite easy. First,
sort by the first criterion, by clicking on the column head. Then hold the Shift key down as
you click on a second heading. Another option is dragging the column's header to the
control's sort bar. The SortBarVisible property shows the control's sort bar. Use the
AllowSort property to avoid sorting a column when the user clicks the column's header. Use
the SortOnClick property to specify the action that control executes when the user clicks
the column's head. The control fires the Sort event when the control sorts a column (the
user clicks the column's head) or when the sorting position is changed in the control's sort
bar. Use the AllowDragging property to specify whether the column's header can be
dragged. Use the DefaultSortOrder property to specify the column's default sort order,
when the user first clicks the column's header. The EnsureOnSort property prevents
scrolling the control's content when the user sorts items.

property Column.AutoSearch as AutoSearchEnum
Specifies the kind of searching while user types characters within the columns.

Type Description

AutoSearchEnum An AutoSearchEnum expression that defines the type of
incremental searching.

By default, the AutoSearch property is exStartWith. The AutoSearch property has effect
only if the AutoSearch property of the control is True. Use the AutoSearch property to
define a 'contains' incremental search. If the AutoSearch property is exContains, the control
searches for items that contains the typed characters. The searching column is defined by
the SearchColumnIndex property. Use the ExpandOnSearch property to expand items while
user types characters in the control.

property Column.AutoWidth as Long
Computes the column's width required to fit the entire column's content.

Type Description

Long A long value that indicates the required width of the column
to fit the entire column's content.

Use the AutoWidth property to arrange the columns to fit the entire control's content. The
AutoWidth property doesn't change the column's width. Use Width property to change the
column's width at runtime. Use the ColumnAutoResize property to specify whether the
control resizes all visible columns to fit the control's client area.

The following VB function resizes all columns:

Private Sub autoSize(ByVal t As EXGRIDLibCtl.Grid)
 t.BeginUpdate
 Dim c As Column
 For Each c In t.Columns
 c.Width = c.AutoWidth
 Next
 t.EndUpdate
 t.Refresh
End Sub

The following C++ sample resizes all visible columns:

#include "Columns.h"
#include "Column.h"
void autoSize(CGrid& grid)
{
 grid.BeginUpdate();
 CColumns columns = grid.GetColumns();
 for (long i = 0;i < columns.GetCount(); i++)
 {
 CColumn column = columns.GetItem(COleVariant(i));
 if (column.GetVisible())
 column.SetWidth(column.GetAutoWidth());
 }
 grid.EndUpdate();

}

The following VB.NET sample resizes all visible columns:

Private Sub autoSize(ByRef grid As AxEXGRIDLib.AxGrid)
 grid.BeginUpdate()
 Dim i As Integer
 With grid.Columns
 For i = 0 To .Count - 1
 If .Item(i).Visible Then
 .Item(i).Width = .Item(i).AutoWidth
 End If
 Next
 End With
 grid.EndUpdate()
End Sub

The following C# sample resizes all visible columns:

private void autoSize(ref AxEXGRIDLib.AxGrid grid)
{
 grid.BeginUpdate();
 for (int i = 0; i < grid.Columns.Count - 1; i++)
 if (grid.Columns[i].Visible)
 grid.Columns[i].Width = grid.Columns[i].AutoWidth;
 grid.EndUpdate();
}

The following VFP sample resizes all visible columns:

with thisform.Grid1
 .BeginUpdate()
 for i = 0 to .Columns.Count - 1
 if (.Columns(i).Visible)
 .Columns(i).Width = .Columns(i).AutoWidth
 endif
 next
 .EndUpdate()
endwith

property Column.Caption as String
Retrieves or sets the text displayed in the column's header.

Type Description
String A string expression that indicates the column's caption.

Each property of Items object that has an argument ColIndex can use the column's caption
to identify a column. Adding two columns with the same caption is accepted and these are
differentiated by their indexes. Use the HTLMCaption property to display the column's
caption using HTML tags. To hide a column use the Visible property of the Column object.
Use the HeaderVertical property to display vertically the column's caption. Use the
HeaderImage property to assign an icon to a column. The column's caption is displayed
using the following font attributes: HeaderBold, HeaderItalic, HeaderUnderline,
HeaderStrikeout. Use the Add method to add new columns and to specify their captions.
Use the FormatLevel property to display multiple levels in the column's header.

property Column.ComputedField as String
Retrieves or sets a value that indicates the formula of the computed column.

Type Description

String

A String expression that indicates the formula to compute
the field/cell. The formula is applied to all cells in the
column with the CellValueFormat property on exText (the
exText value is by default).

By default, the ComputedField property is empty (no effect). A computed field or cell
displays the result of a complex arithmetic formula. This formula can incorporate a variety of
elements, including mathematical operators (such as addition, subtraction, multiplication,
and division), variables (representing values that can change), and constants (fixed values).
The combination of these elements allows for dynamic calculations within the cell, reflecting
real-time changes based on the formula's components. If the ComputedField property is not
empty, all cells in the column, that have the CellValueFormat property on exText, uses the
same formula to display their content. For instance, you can use the CellValueFormat
property on exHTML, for cells in the column, that need to display other things than column's
formula, or you can use the CellValueFormat property on exComputedField, to change the
formula for a particular cell. Use the FormatColumn property to format the column. The
Def(exTotalColumn) property specifies a formula that defines the total fields applied to all
unformatted and non-leaf cells within the column.

Use the CellValueFormat property to change the type for a particular cell. Use the CellValue
property to specify the cell's content. For instance, if the CellValueFormat property is
exComputedField, the Caption property indicates the formula to compute the cell's content.

The Def(exCellValueFormat) property is changed to exComputedField, each time the
ComputeField property is changed to a not empty value. If the ComputedField property is
set to an empty string, the Def(exCellValueFormat) property is set to exText. Call the
Refresh method to force refreshing the control.

The expression may be a combination of variables, constants, strings, dates and
operators. A string is delimited by ", ` or ' characters, and inside they can have the starting
character preceded by \ character, ie "\"This is a quote\"". A date is delimited by #
character, ie #1/31/2001 10:00# means the January 31th, 2001, 10:00 AM.

Samples:

1. "1", the cell displays 1
2. "%0 + %1", the cell displays the sum between cells in the first and second columns.
3. "%0 + %1 - %2", the cell displays the sum between cells in the first and second

columns minus the third column.

4. "(%0 + %1)*0.19", the cell displays the sum between cells in the first and second
columns multiplied with 0.19.

5. "(%0 + %1 + %2)/3", the cell displays the arithmetic average for the first three
columns.

6. "%0 + %1 < %2 + %3", displays 1 if the sum between cells in the first two columns is
less than the sum of third and forth columns.

7. "proper(%0)'" formats the cells by capitalizing first letter in each word
8. "currency(%1)'" displays the second column as currency using the format in the control

panel for money
9. "len(%0) ? currency(dbl(%0)) : ''" displays the currency only for not empty/blank

cells.
10. "int(date(%1)-date(%2)) + 'D ' + round(24*(date(%1)-date(%2) - floor(date(%1)-

date(%2)))) + 'H''" displays interval between two dates in days and hours, as xD yH
11. "2:=((1:=int(0:= date(%1)-date(%0))) = 0 ? '' : str(=:1) + ' day(s)') + (3:=round(24*

(=:0-floor(=:0))) ? (len(=:2) ? ' and ' : '') + =:3 + ' hour(s)' : '')" displays the interval
between two dates, as x day(s) [and y hour(s)], where the x indicates the number of
days, and y the number of hours. The hour part is missing, if 0 hours is displayed, or
nothing is displayed if dates are identical.

The expression supports cell's identifiers as follows:

%0, %1, %2, ...{any} specifies the value of the cell in the column with the index 0, 1
2, ... The CellValue property defines the cell's value. For example, "%0 format ``"
formats the value in the cell at index 0 using the current regional settings, while
"int(%1)" converts the value in the cell at index 1 to an integer.
%C0, %C1, %C2, ...{string} specifies the caption of the cell, or the string the cell
displays in the column with the index 0, 1 2, ... The CellCaption property gets the
cell's formatted caption. The cell's displayed string may differ from its actual value.
For example, if a cell displays HTML content, %0 returns the HTML format including
the tags, while %C0 returns the cell's content as a plain string without HTML tags. For
instance, "upper(%C1)" converts the caption of the cell at index 1 to uppercase, while
"%C0 left 2" returns the leftmost two characters of the caption in the cell at index 0.
%CD0, %CD1, %CD2, ...{any} specifies the cell's extra data in the column with the
index 0, 1 2, ... The CellData property associates any extra/user data to a cell. For
example, "%CD0 = your user data" specifies all cells in the column with index 0
whose CellData property is equal to your user data.
%CS0, %CS1, %CS2, ...{number} specifies the cell's state in the column with the
index 0, 1 2, ... The CellState property defines the state of a cell, indicating whether it
is checked or unchecked. For example, "%CS0" identifies all checked items in the
column with index 0, while "not %CS1" identifies all unchecked items in the column
with index 1.
%CT0, %CT1, %CT2, ... {boolean} returns true if the cell displays a total field;

otherwise, it returns false. The exTotalField / exTotalColumn flag specifies whether
the cell displays a total field. For instance, "%CT1" refers to all cells in the second
column that display totals, while "not %CT1" refers to all cells in the second column
that do not display totals.
%CE0, %CE1, %CE2, ... {boolean} returns true if the cell is editable; otherwise, it
returns false.. For example, "%CE0" refers to all editable cells in the first column,
while "not %CE1" refers to all cells in the second column that are read-only.
%CC0, %CC1, %CC2, ... {number} retrieve the number of child items (this keyword
consistently returns identical results for all cells since it pertains to the item that hosts
each cell). The ChildCount property returns the number of child items. For example,
"%CC0" identifies all parent items, while "%CC0 = 0" identifies all leaf items.
%CX0, %CX1, %CX2, ... {boolean} returns true if the item hosting the cell is
expanded, or false if it is collapsed (this keyword consistently returns identical results
for all cells since it pertains to the item that hosts each cell). The ExpandItem property
specifically indicates whether the item is expanded or collapsed. For example,
"%CX0" refers to all expanded items, while "not %CX0" identifies all collapsed items

This property/method supports predefined constants and operators/functions as described
here.

property Column.CustomFilter as String
Retrieves or sets a value that indicates the list of custom filters.

Type Description
String A String expression that defines the list of custom filters.

By default, the CustomFilter property is empty. The CustomFilter property has effect only if
it is not empty, and the FilterType property is not exImage, exCheck or exNumeric. Use the
DisplayFilterPattern property to hide the text box to edit the pattern, in the drop down filter
window. The All predefined item and the list of custom filter is displayed in the drop down
filter window, if the CustomFilter property is not empty. The Blanks and NonBlanks
predefined items are not defined, when custom filter is displayed. Use the
Description(exFilterBarAll) property on empty string to hide the All predefined item, in the
drop down filter window. Use the DisplayFilterButton property to show the button on the
column's header to drop down the filter window. Use the Background property to define the
visual appearance for the drop down button.

The CustomFilter property defines the list of custom filters as pairs of (caption,pattern)
where the caption is displayed in the drop down filter window, and the pattern is get
selected when the user clicks the item in the drop down filter window (the FilterType
property is set on exPattern, and the Filter property defines the custom pattern being
selected). The caption and the pattern are separated by a "||" string (two vertical bars,
character 124). The pattern expression may contains multiple patterns separated by a
single "|" character (vertical bar, character 124). A pattern may contain the wild card
characters '?' for any single character, '*' for zero or more occurrences of any character, '#'
for any digit character. If any of the *, ?, # or | characters are preceded by a \ (escape
character) it masks the character itself. If the pattern is not present in the (caption,pattern)
pair, the caption is considered as being the pattern too. The pairs in the list of custom
patterns are separated by "|||" string (three vertical bars, character 124). So, the syntax
of the CustomFilter property should be of: CAPTION [|| PATTERN [| PATTERN]] [|||
CAPTION [|| PATTERN [| PATTERN]]].

For example, you may have a list of documents and instead of listing the name of each
document in the filter drop down list for the names column you may want to list the
following:

Excel Spreadsheets
Word Documents
Powerpoint Presentations
Text Documents

And define the filter patterns for each line above as follows:

*.xls
*.doc
*.pps
*.txt, *.log

and so the CustomFilter property should be "Excel Spreadsheets (*.xls)||*.xls|||Word
Documents||*.doc|||Powerpoint Presentations||*.pps|||Text Documents
(*.log,*.txt)||*.txt|*.log". The following screen shot shows this custom filter format:

property Column.Data as Variant
Associates an extra data to the column.

Type Description

Variant A Variant expression that indicates the column's extra
data.

Use the Data property to assign any extra data to a column. Use the CellData property to
assign an extra data to a cell. Use the ItemData property to assign an extra data to an
item.

property Column.Def(Property as DefColumnEnum) as Variant
Retrieves or sets a value that indicates the default value of given properties for all cells in
the same column.

Type Description

Property as DefColumnEnum A DefColumnEnum expression that indicates the property
being changed.

Variant A Variant value that specifies the newly value.

Use the Def property to specify a common value for given properties for all cells in the
column. For instance, you can use the Def property to assign check boxes to all cells in the
column, without enumerating them.

The following VB sample adds a header row column:

With Grid1.Columns.Add("H")
 .Def(exCellHasButton) = True
 .Position = 0
 .AllowDragging = False
 .HeaderAlignment = CenterAlignment
 .Width = 16
End With

The following VB sample assigns checkboxes for all cells in the first column:

Grid1.Columns(0).Def(exCellHasCheckBox) = True

The following C++ sample adds a header row column:

#include "Column.h"
#include "Columns.h"
CColumns columns = m_grid.GetColumns();
CColumn column(V_DISPATCH(&columns.Add("H")));
column.SetHeaderAlignment(1);
column.SetDef(2, COleVariant(VARIANT_TRUE));
column.SetPosition(0);
column.SetWidth(16);
column.SetAllowDragging(FALSE);

The following C++ sample assigns checkboxes for all cells in the first column:

COleVariant vtCheckBox(VARIANT_TRUE);
m_grid.GetColumns().GetItem(COleVariant((long) 0)).SetDef(/*exCellHasCheckBox*/ 0,
vtCheckBox);

The following VB.NET sample adds a header row column:

With AxGrid1.Columns.Add("H")
 .Def(EXGRIDLib.DefColumnEnum.exCellHasButton) = True
 .Position = 0
 .AllowDragging = False
 .HeaderAlignment = EXGRIDLib.AlignmentEnum.CenterAlignment
 .Width = 16
End With

The following VB.NET sample assigns checkboxes for all cells in the first column:

With AxGrid1.Columns(0)
 .Def(EXGRIDLib.DefColumnEnum.exCellHasCheckBox) = True
End With

The following C# sample adds a header row column:

EXGRIDLib.Columns columns = axGrid1.Columns;
EXGRIDLib.Column column = columns.Add("H") as EXGRIDLib.Column;
column.set_Def(EXGRIDLib.DefColumnEnum.exCellHasButton, true);
column.Position = 0;
column.HeaderAlignment = EXGRIDLib.AlignmentEnum.CenterAlignment;

column.AllowDragging = false;
column.Width = 16;

The following C# sample assigns checkboxes for all cells in the first column:

axGrid1.Columns[0].set_Def(EXGRIDLib.DefColumnEnum.exCellHasCheckBox, true);

The following VFP sample adds a header row column:

with thisform.Grid1.Columns.Add("H")
 .Position = 0
 .Def(2) = .t.
 .AllowDragging = .f.
 .Width = 16
endwith

The following VFP sample assigns checkboxes for all cells in the first column:

with thisform.Grid1.Columns(0)
 .Def(0) = .t.
endwith

property Column.DefaultSortOrder as Boolean
Specifies whether the default sort order is ascending or descending.

Type Description
Boolean A boolean expression that specifies the default sort order.

Use the DefaultSortOrder property to specify the default sort order, when the column's
header is clicked. Use the SortOnClick property to specify when user can sort the columns
by clicking the control's header. Use the SortOrder property to sort a column. Use the
SortChildren method to sort items at runtime. Use the SingleSort property to allow sorting
by multiple columns.

property Column.DisplayExpandButton as Boolean
Shows or hides the expanding/collapsing button in the column's header.

Type Description

Boolean
A Boolean expression that specifies whether the column's
header displays a +/- (expanding button), to let user
expands or collapse the column, when it is clicked.

By default, the DisplayExpandButton property is True. The DisplayExpandButton property
displays the header's expanding button, only, if it contains child columns specified using the
ExpandColumns property. The HasButtons property indicates the way the +/- (expanding
button) is shown. Use the DisplayExpandButton property on True and ExpandColumns
property to display the columns on multiple levels. The Expanded property expands
programmatically a column. The control fires the LayoutChanged event when the user
expands or collapse a column. Use the ExpandItem property to expand or collapse an item.
The Index property indicates the column's index. The Visible property specifies whether a
column is Visible or hidden.

property Column.DisplayFilterButton as Boolean
Shows or hides the column's filter bar button.

Type Description

Boolean A boolean expression that indicates whether the column's
filter bar button is visible or hidden.

By default, the DisplayFilterButton property is False. The column's filter button is displayed
on the column's caption. Use the FilterOnType property to enable the Filter-On-Type
feature, that allows you to filter the control's data based on the characters you type.

The DisplayFilterPattern property determines whether the column's filter window includes
the "Filter For" (pattern) field. Use the DisplayFilterDate property to include a date selector
to the column's drop down filter window. Use the FilterBarDropDownHeight property to
specify the height of the drop down filter window. Use the FilterBarDropDownWidth
property to specify the width of the drop down filter window. Use the FilterType property to
specify the type of the column's filter. Use the FilterType property to filter items based on
the caption, check state or icons. Use the FilterList property to specify the list of items
being included in the column's drop down filter list. Use the FilterInclude property to specify
whether the child items should be included to the list when the user applies the filter. Use
the Background(exHeaderFilterBarButton) property to change the visual appearance for the
drop down filter button. Use the FilterCriteria property to filter items using the AND, OR and
NOT operators. Use the CustomFilter property to define you custom filters. Use the
ShowFilter method to show programmatically the column's drop down filter window.

property Column.DisplayFilterDate as Boolean
Specifies whether the drop down filter window displays a date selector to specify the
interval dates to filter for.

Type Description

Boolean
A boolean expression that indicates whether the drop
down filter window displays a date selector to filter items
into a given interval.

By default, the DisplayFilterDate property is False. Use the DisplayFilterDate property to
filter items that match a given interval of dates. The DisplayFilterDate property includes a
date button to the right of the Date field in the drop down filter window. The
DisplayFilterDate property has effect only if the DisplayFilterPattern property is True. If the
user clicks the filter's date selector the control displays a built-in calendar editor to help
user to include a date to the date field of the drop down filter window. Use the Description
property to customize the strings being displayed on the drop down filter window. If the
Date field in the filter drop down window is not empty, the FilterType property of the Column
object is set on exDate, and the Filter property of the Column object points to the interval
of dates being used when filtering.

property Column.DisplayFilterPattern as Boolean
Specifies whether the dropdown filter bar contains a textbox for editing the filter as pattern.

Type Description

Boolean A boolean expression that indicates whether the pattern
field is visible or hidden.

Use the DisplayFilterButton property to show the column's filter button. If the
DisplayFilterButton property is False the drop down filter window doesn't include the "Filter
For" or "Date" field. Use the DisplayFilterDate property to filter items that match a given
interval of dates. Use the FilterCriteria property to filter items using the AND, OR and NOT
operators. Use the CustomFilter property to define you custom filters. The "Filter For"
(pattern) field in the drop down filter window is always shown if the FilterOnType property is
True, no matter of the DisplayFilterPattern property.

The drop down filter window displays the "Filter For" field if the DisplayFilterPattern
property is True, and the DisplayFilterDate property is False. If the drop down filter window
displays "Filter For" field, and user types the filter inside, the FilterType property of the
Column is set to exPattern, and Filter property of the Column object specifies the filter
being typed.

The drop down filter window displays the "Date" field if the DisplayFilterPattern property is
True, and the DisplayFilterDate property is True. If the drop down filter window displays
"Date" field, and user types selects an interval of dates, the FilterType property of the
Column is set to exDate, and Filter property of the Column object specifies the interval of
dates being used in filtering.

Use the Description property to define the strings being displayed in the drop down filter
window.

property Column.DisplaySortIcon as Boolean
Retrieves or sets a value indicating whether the sort icon is visible in column's header, while
the column is sorted.

Type Description

Boolean
A boolean expression indicating whether the sort icon is
visible on column's header, if the column was sorted by
clicking in its header.

Use the DisplaySortIcon property to hide the icon of the column. Use the SortOnClick
property to disable sorting columns by clicking in column's header. Use the SortChildren
property of the Items object to sort by a column. Use the SortOrder property to sort a
column. Use the SingleSort property to allow multiple sort columns.

property Column.Editor as Editor
Gets the column's editor object.

Type Description
Editor An Editor object that is associated to the column.

Use the Editor object to assign the same type of editor to all cells in the column. The Editor
objects holds information about editing cells in the column. Use the EditType property to
specify the column's edit type. Use the CellEditor property to assign a particular editor to a
cell. Use the CellEditorVisible property to hide the cell's editor. Use the CellValue property
to assign a value to a cell.

The following VB sample assigns a date editor to the first column:

With Grid1.Columns(0).Editor
 .EditType = DateType
End With

The following C++ sample assigns a date editor to the first column:

#include "Column.h"
#include "Columns.h"
CColumn column = m_grid.GetColumns().GetItem(COleVariant(long(0)));
CEditor editor = column.GetEditor();
editor.SetEditType(7/*DateType*/);

The following VB.NET sample assigns a date editor to the first column:

With AxGrid1.Columns(0).Editor
 .EditType = EXGRIDLib.EditTypeEnum.DateType
End With

The following C# sample assigns a date editor to the first column:

EXGRIDLib.Editor editor = axGrid1.Columns[0].Editor;
editor.EditType = EXGRIDLib.EditTypeEnum.DateType;

The following VFP sample assigns a date editor to the first column:

with thisform.Grid1.Columns.Item(0).Editor

 .EditType = 7 && DateType
endwith

property Column.Enabled as Boolean
Returns or sets a value that determines whether a column's header can respond to user-
generated events.

Type Description

Boolean A boolean expression that determines whether a column's
header can respond to user-generated events.

Use the Enabled property to disable a column. If a column is disabled, the user can select
new items, but any checkbox, radio button, or editor in the cells of the column is disabled.
Use the CellEnabled property to disable a particular cell. Use the EnableItem property to
disable an item. Use the ReadOnly property to make your grid read only. Use the
SelectableItem property to specify the user can select an item.

property Column.ExpandColumns as String
Specifies the list of columns to be shown when the current column is expanded.

Type Description

String

A String expression that specifies the list of columns to be
shown/hidden when the current column is expanded or
collapsed. The list indicates the index of each column to
be shown/hidden separated by comma character. For
instance, "2,3" indicates that the columns with the index 2
and 3 are displayed bellow the current column.

By default, the ExpandColumns property is empty. Use the ExpandColumns property to
display the columns on multiple levels, or to allow your users to expand/collapse the
columns. The DisplayExpandButton property specifies whether the column's header
displays a +/- (expanding button), to let user expands or collapse the column, when it is
clicked. The Expanded property expands programmatically a column. The control fires the
LayoutChanged event when the user expands or collapse a column. Use the ExpandItem
property to expand or collapse an item. The Index property indicates the column's index.
The Visible property specifies whether a column is Visible or hidden.

The control performs showing/hiding the child columns as follow:

If the column is expanded, the child columns are shown, and the current column is
hidden, if the index of itself it is not included in the ExpandColumns property.
If the column is collapsed, the recursively child columns are hidden, and the current
column is shown.

The following screen shot shows the control's expandable header:

The following movie shows how you can use the Expandable Header support.

https://www.youtube.com/watch?v=wWP3pr6dlQo

property Column.Expanded as Boolean
Expands or collapses the column.

Type Description

Boolean A Boolean expression that specifies whether the column is
expanded or collapsed.

The Expanded property expands programmatically a column. The ExpandColumns property
specifies the list of columns to be shown when the current column is expanded. The
DisplayExpandButton property specifies whether the column's header displays a +/- (
expanding button), to let user expands or collapse the column, when it is clicked. The
control fires the LayoutChanged event when the user expands or collapse a column. Use
the ExpandItem property to expand or collapse an item. The Index property indicates the
column's index. The Visible property specifies whether a column is Visible or hidden.

property Column.Filter as String
Specifies the column's filter when the filter type is exFilter, exPattern, exDate, exNumeric,
exCheck or exImage.

Type Description
String A string expression that specifies the column's filter.

If the FilterType property is exFilter the Filter property indicates the list of values being
included when filtering. The values are separated by '|' character. For instance if the
Filter property is "CellA|CellB" the control includes only the items that have captions
like: "CellA" or "CellB".

If the FilterType is exPattern the Filter property defines the list of patterns used in
filtering. The list of patterns is separated by the '|' character. A pattern filter may
contain the wild card characters like '?' for any single character, '*' for zero or more
occurrences of any character, '#' for any digit character. The '|' character separates
the options in the pattern. For instance: '1*|2*' specifies all items that start with '1' or
'2'.

If the FilterType property is exDate, the Filter property should be of "[dateFrom] to
[dateTo]" format, and it indicates that only items between a specified range of dates
will be included. If the dateFrom value is missing, the control includes only the items
before the dateTo date, if the dateTo value is missing, the control includes the items
after the dateFrom date. If both dates (dateFrom and dateTo) are present, the
control includes the items between this interval of dates. For instance, the "2/13/2004
to" includes all items after 2/13/2004 inclusive, or "2/13/2004 to Feb 14 2005" includes
all items between 2/13/2004 and 2/14/2004.

If the FilterType property is exNumeric, the Filter property may include operators like
<, <=, =, <>, >= or > and numbers to define rules to include numbers in the control's
list. The Filter property should be of the following format "operator number [operator
number ...]". For instance, the "> 10" indicates all numbers greater than 10. The "<>10
<> 20" filter indicates all numbers except 10 and 20. The "> 10 < 100" filter indicates
all numbers greater than 10 and less than 100. The ">= 10 <= 100 <> 50" filter
includes all numbers from 10 to 100 excepts 50. The "10" filter includes only 10 in the
list. The "=10 =20" includes no items in the list because after control filters only 10
items, the second rule specifies only 20, and so we have no items. The Filter property
may include unlimited rules. A rule is composed by an operator and a number. The
rules are separated by space characters.

If the FilterType property is exCheck the Filter property may include "0" for unchecked
items, and "1" for checked items. The CellState property specifies the state of the

cell's checkbox. If the Filter property is empty, the filter is not applied to the column,
when the ApplyFilter method is called. The drop down filter window displays the (All),
(Checked) and (Unchecked) items.

If the FilterType property is exImage the Filter property indicates the list of icons (index
of the icon being displayed) being filtered. The values are separated by '|' character.
The CellImage property indicates the index of the icon being displayed in the cell. For
instance, the '1|2' indicates that the filter includes the cells that display first or the
second icon (with the index 1 or 2). The drop down filter window displays the (All)
item and the list of icons being displayed in the column.

The Filter property has no effect if the FilterType property is one of the followings: exAll,
exBlanks and exNonBlanks

The ApplyFilter method should be called to update the control's content after changing the
Filter or FilterType property. The ClearFilter method clears the Filter and the FilterType
properties. Use the FilterInclude property to specify whether the child items should be
included to the list when the user applies the filter. Use the FilterCriteria property to filter
items using the AND, OR and NOT operators. Use the CustomFilter property to define you
custom filters. Use the ShowFilter method to show programmatically the column's drop
down filter window.

property Column.FilterBarDropDownWidth as Double
Specifies the width of the drop down filter window proportionally with the width of the
column.

Type Description

Double

A double expression that indicates the width of the drop
down filter window proportionally with the width of the
column. If the FilterBarDropDownWidth expression is
negative, the absolute value indicates the width of the drop
down filter window in pixels. Else, the value indicates how
many times the width of the column is multiply to get the
width of the drop down filter window

By default, the FilterBarDropDownWidth property is 1, and so, the width of the drop down
filter window coincides with the width of the column. Use the Width property to specify the
width of the column. Use FilterBarDropDownHeight property to specify the height of the
drop down filter window. Use the FilterBarHeight property to specify the height of the
control's filter bar. Use the DisplayFilterButton property to display a filter button to the
column's caption. Use the Description property to define predefined strings in the filter bar.

The following VB sample specifies that the width of the drop down filter window is double of
the column's width:

With Grid1.Columns(0)
 .FilterBarDropDownWidth = 2
End With

The following VB sample specifies that the width of the drop down filter window is 150
pixels:

With Grid1.Columns(0)
 .FilterBarDropDownWidth = -150
End With

property Column.FilterList as FilterListEnum
Specifies whether the drop down filter list includes visible or all items.

Type Description

FilterListEnum A FilterListEnum expression that indicates the items being
included in the drop down filter list.

By default, the FilterList property is exAllItems. Use the FilterList property to specify the
items being included in the column's drop down filter list. Use the DisplayFilterButton
property to display the column's filter bar button. The DisplayFilterDate property specifies
whether the drop down filter window displays a date selector to specify the interval dates to
filter for. Use the FilterCriteria property to filter items using the AND, OR and NOT
operators. Use the exSortItemsAsc flag to sort ascending the values in the drop down filter
list. For instance, the exAllItems OR exSortItemsAsc specifies that the drop down filter
window lists all items in ascending order. Add the exIncludeInnerCells flag if you require
adding the inner cells value to the drop down filter window.

property Column.FilterOnType as Boolean
Filters the column as user types characters in the drop down filter window.

Type Description

Boolean
A Boolean expression that specifies whether the column
gets filtered as the user types characters in the drop down
filter window.

By default, the FilterOnType property is False. The Filter-On-Type feature allows you to
filter the control's data based on the typed characters. Use the DisplayFilterButton property
to add a drop down filter button to the column's header. The Filter-On-Type feature works
like follows: User clicks the column's drop down filter button, so the drop down filter window
is shown. Use starts type characters, and the control filters the column based on the typed
characters as it includes all items that starts with typed characters, if the AutoSearch
property is exStartWith, or include in the filter list only the items that contains the typed
characters, if the AutoSearch property is exContains. Click the X button on the filterbar, and
so the control removes the filter, and so all data is displayed. The control fires the
FilterChange event to notify whether the control applies a new filter to control's data. Once,
the FilterOnType property is set on True, the column's FilterType property is changed to
exPattern, and the the Filter property indicates the typed string. Use the FilterCriteria
property to specify the expression being used to filter the control's data when multiple
columns are implied in the filter. Use the Description property to customize the text being
displayed in the drop down filter window. Use the FilterHeight property to specify the height
of the control's filterbar that's displayed on the bottom side of the control, once a filter is
applied. The "Filter For" (pattern) field in the drop down filter window is always shown if
the FilterOnType property is True, no matter of the DisplayFilterPattern property.

The following screen shot shows how the data gets filtered when the user types characters
in the Filter-On-Type columns:

Steps:

The user clicks the drop down filter window, in the column A
The "Filter For:" field is shown, and it waits for the user to start type characters.
As user types characters, the column gets filtered the items.

property Column.FilterType as FilterTypeEnum
Specifies the column's filter type.

Type Description

FilterTypeEnum A FilterTypeEnum expression that indicates the filter's
type.

The FilterType property defines the filter's type. By default, the FilterType is exAll. No filter
is applied if the FilterType is exAll. The Filter property defines the column's filter. Use the
DisplayFilterButton property to display the column's filter button. Use the FilterInclude
property to specify whether the child items should be included to the list when the user
applies the filter. Use the FilterCriteria property to filter items using the AND, OR and NOT
operators.

The ApplyFilter method should be called to update the control's content after changing the
Filter or FilterType property. The ClearFilter method clears the Filter and the FilterType
properties.

If the FilterType property is exNumeric, the drop down filter window doesn't display the filter
list that includes items "(All)", "(Blanks)", ... and so on.

property Column.FireFormatColumn as Boolean
Retrieves or sets a value that indicates whether the control fires FormatColumn to format
the value of a cell hosted by column.

Type Description

Boolean
A boolean expression that indicates whether the control
fires FormatColumn to format the value of a cell hosted by
column

By default, the FireFormatColumn property is False. The FormatColumn event is fired only
if the FireFormatColumn property of the Column object is True. The FormatColumn event
lets the user to provide the cell's caption before it is displayed on the control's list. For
instance, the FormatColumn event is useful when the column cells contains prices (numbers
), and you want to display that column formatted as currency, like $50 instead 50. Also, it is
useful to use the FormatColumn event when displaying computed cells.

The CellValue property of the cell is being shown as:

formatted using the FormatCell property, if it is valid
formatted using the FormatColumn property, if it is valid

In other words, all cells applies the format of the FormatColumn property, excepts the cells
with the FormatCell property being set. If the cell belongs to a column with the
FireFormatColumn property on True, the Value parameter of the FormatColumn event
shows the newly caption for the cell to be shown.

property Column.FormatColumn as String
Specifies the format to display the cells in the column.

Type Description

String A string expression that defines the format to display the
cell, including HTML formatting, if the cell supports it.

By default, the FormatColumn property is empty. The cells in the column use the provided
format only if is valid (not empty, and syntactically correct), to display data in the column.
The FormatColumn property provides a format to display all cells in the column using a
predefined format. The expression may be a combination of variables, constants, strings,
dates and operators, and value. The value operator gives the value to be formatted. A
string is delimited by ", ` or ' characters, and inside they can have the starting character
preceded by \ character, ie "\"This is a quote\"". A date is delimited by # character, ie
#1/31/2001 10:00# means the January 31th, 2001, 10:00 AM. The cell's HTML format is
applied only if the CellValueFormat or Def(exCellCaptionFormat) is exHTML. If valid, the
FormatColumn is applied to all cells for which the CellCaptionFormat property is not
exComputedField. This way you can specify which cells use or not the FormatColumn
property. The FormatCell property indicates the individually predefined format to be applied
to particular cells. The FormatColumn and FormatCell properties support auto-numbering
functions like explained bellow. The ComputedField property indicates the formula of the
computed column.

The CellValue property of the cell is being shown as:

formatted using the FormatCell property, if it is valid
formatted using the FormatColumn property, if it is valid

In other words, all cells applies the format of the FormatColumn property, excepts the cells
with the FormatCell property being set. If the cell belongs to a column with the
FireFormatColumn property on True, the Value parameter of the FormatColumn event
shows the newly caption for the cell to be shown.

For instance:

the "currency(value)" displays the column using the current format for the currency ie,
1000 gets displayed as $1,000.00
the "longdate(date(value))" converts the value to a date and gets the long format to
display the date in the column, ie #1/1/2001# displays instead Monday, January 01,
2001
the "'' + ((0:=proper(value)) left 1) + '' + (=:0 mid 2)" converts the name to
proper, so the first letter is capitalized, bolds the first character, and let unchanged the
rest, ie a "mihai filimon" gets displayed "Mihai Filimon".

the "len(value) ? ((0:=dbl(value)) < 10 ? '<fgcolor=808080>' : '') +
currency(=:0)" displays the cells that contains not empty daya, the value in currency
format, with a different font and color for values less than 10, and bolded for those that
are greater than 10, as can see in the following screen shot in the column (A+B+C):

The value keyword in the FormatColumn property indicates the value being formatted.

The expression supports cell's identifiers as follows:

%0, %1, %2, ...{any} specifies the value of the cell in the column with the index 0, 1
2, ... The CellValue property defines the cell's value. For example, "%0 format ``"
formats the value in the cell at index 0 using the current regional settings, while
"int(%1)" converts the value in the cell at index 1 to an integer.
%C0, %C1, %C2, ...{string} specifies the caption of the cell, or the string the cell
displays in the column with the index 0, 1 2, ... The CellCaption property gets the
cell's formatted caption. The cell's displayed string may differ from its actual value.
For example, if a cell displays HTML content, %0 returns the HTML format including
the tags, while %C0 returns the cell's content as a plain string without HTML tags. For
instance, "upper(%C1)" converts the caption of the cell at index 1 to uppercase, while
"%C0 left 2" returns the leftmost two characters of the caption in the cell at index 0.
%CD0, %CD1, %CD2, ...{any} specifies the cell's extra data in the column with the
index 0, 1 2, ... The CellData property associates any extra/user data to a cell. For
example, "%CD0 = your user data" specifies all cells in the column with index 0
whose CellData property is equal to your user data.
%CS0, %CS1, %CS2, ...{number} specifies the cell's state in the column with the
index 0, 1 2, ... The CellState property defines the state of a cell, indicating whether it
is checked or unchecked. For example, "%CS0" identifies all checked items in the
column with index 0, while "not %CS1" identifies all unchecked items in the column
with index 1.
%CT0, %CT1, %CT2, ... {boolean} returns true if the cell displays a total field;
otherwise, it returns false. The exTotalField / exTotalColumn flag specifies whether
the cell displays a total field. For instance, "%CT1" refers to all cells in the second
column that display totals, while "not %CT1" refers to all cells in the second column
that do not display totals.
%CE0, %CE1, %CE2, ... {boolean} returns true if the cell is editable; otherwise, it
returns false.. For example, "%CE0" refers to all editable cells in the first column,
while "not %CE1" refers to all cells in the second column that are read-only.

%CC0, %CC1, %CC2, ... {number} retrieve the number of child items (this keyword
consistently returns identical results for all cells since it pertains to the item that hosts
each cell). The ChildCount property returns the number of child items. For example,
"%CC0" identifies all parent items, while "%CC0 = 0" identifies all leaf items.
%CX0, %CX1, %CX2, ... {boolean} returns true if the item hosting the cell is
expanded, or false if it is collapsed (this keyword consistently returns identical results
for all cells since it pertains to the item that hosts each cell). The ExpandItem property
specifically indicates whether the item is expanded or collapsed. For example,
"%CX0" refers to all expanded items, while "not %CX0" identifies all collapsed items

This property/method supports predefined constants and operators/functions as described
here.

The following VB sample shows how can I display the column using currency:

With Grid1
 .Columns.Add("Currency").FormatColumn = "currency(dbl(value))"
 With .Items
 .AddItem "1.23"
 .AddItem "2.34"
 .AddItem "0"
 .AddItem 5
 .AddItem "10000.99"
 End With
End With

The following VB.NET sample shows how can I display the column using currency:

With AxGrid1
 .Columns.Add("Currency").FormatColumn = "currency(dbl(value))"
 With .Items
 .AddItem "1.23"
 .AddItem "2.34"
 .AddItem "0"
 .AddItem 5
 .AddItem "10000.99"
 End With
End With

The following C++ sample shows how can I display the column using currency:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExGrid 1.0 Control Library'

 #import "C:\\Windows\\System32\\ExGrid.dll"
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IGridPtr spGrid1 = GetDlgItem(IDC_G2ANTT1)->GetControlUnknown();
((EXG2ANTTLib::IColumnPtr)(spGrid1->GetColumns()->Add(L"Currency")))-
>PutFormatColumn(L"currency(dbl(value))");
EXG2ANTTLib::IItemsPtr var_Items = spGrid1->GetItems();
 var_Items->AddItem("1.23");
 var_Items->AddItem("2.34");
 var_Items->AddItem("0");
 var_Items->AddItem(long(5));
 var_Items->AddItem("10000.99");

The following C# sample shows how can I display the column using currency:

(axGrid1.Columns.Add("Currency") as EXG2ANTTLib.Column).FormatColumn =
"currency(dbl(value))";
EXG2ANTTLib.Items var_Items = axGrid1.Items;
 var_Items.AddItem("1.23");
 var_Items.AddItem("2.34");
 var_Items.AddItem("0");
 var_Items.AddItem(5);
 var_Items.AddItem("10000.99");

The following VFP sample shows how can I display the column using currency:

with thisform.Grid1
 .Columns.Add("Currency").FormatColumn = "currency(dbl(value))"
 with .Items
 .AddItem("1.23")
 .AddItem("2.34")
 .AddItem("0")
 .AddItem(5)
 .AddItem("10000.99")

 endwith
endwith

property Column.FormatLevel as String
Retrieves or sets a value that indicates the layout of columns being displayed in the
column's header.

Type Description

String

A string expression that indicates a CRD string that
layouts the column's header. The Index elements in the
CRD strings indicates the index of the column being
displayed. The Caption elements in the CRD string support
built-in HTML format.

By default, the FormatLevel property is empty. The FormatLevel property indicates the
layout of the column in the control's header bar. Use the HeaderVisible property to show or
hide the control's header bar. Use the HeaderHeight property to specify the height of the
level in the control's header bar. Use the FormatLevel property to display multiple levels in
the column's header. Use the LevelKey property to display neighbor columns on multiple
levels. If the FormatLevel property is empty, the control displays the Caption or the
HTMLCaption of the column. If the FormatLevel property is not empty it indicates the layout
of the column being displayed. For instance, the FormatLevel = "1,2" indicates that the
column's header is horizontally divided such as the left part displays the caption of the first
column, and the right part displays the caption of the second column. Use the Visible
property to specify whether a column is visible or hidden. Use the Add method to add new
columns to the control. Use the DataSource property to bound the control to a recordset.
Use the Def(exCellFormatLevel) property to specify the layout for all cells in the same
column. Use the CellFormatLevel property to indicate the layout for a specific cell.

The following VB sample arranges the columns as in the above screen shot (the sample
hides the columns and add instead two new columns { Personal Info, General Info }, where
the layout is displayed.

With Grid1
 .BeginUpdate
 Dim c As EXGRIDLibCtl.Column
 For Each c In .Columns
 c.Visible = False

 Next
 With .Columns.Add("Personal Info")
 .AllowSort = False
 .AllowDragging = False
 .Width = 196
 .FormatLevel = "18;17/(14:54,(2/1/3))"
 End With
 With .Columns.Add("General Info")
 .AllowSort = False
 .AllowDragging = False
 .Width = 382
 .FormatLevel = "18;18/((7/18;4):128,((((12/10/11),(5/6/9)),15)))"
 End With
 .EndUpdate
End With

Before running the sample the control's header bar looks like follows:

After running the sample the control's header bar looks like follows:

The following C++ sample arranges the columns as in the above screen shot (the sample
hides the columns and add instead two new columns { Personal Info, General Info }, where
the layout is displayed.

m_grid.BeginUpdate();
CColumns cols = m_grid.GetColumns();
long nCount = cols.GetCount();
for (long i = 0; i < nCount; i++)
 cols.GetItem(COleVariant(i)).SetVisible(FALSE);

CColumn col1(V_DISPATCH(&cols.Add("Personal Info")));
col1.SetAllowSort(FALSE);
col1.SetAllowDragging(FALSE);
col1.SetWidth(196);

col1.SetFormatLevel("18;18/(15:54,(2/1/4))");
CColumn col2(V_DISPATCH(&cols.Add("General Info")));
col2.SetAllowSort(FALSE);
col2.SetAllowDragging(FALSE);
col2.SetWidth(512);
col2.SetFormatLevel("18;19/((8/18;5):128,((((13/11/12),(6/7/10)),16)))");
m_grid.EndUpdate();

The following VB.NET sample arranges the columns as in the above screen shot (the
sample hides the columns and add instead two new columns { Personal Info, General Info },
where the layout is displayed.

With AxGrid1
 .BeginUpdate()
 Dim c As EXGRIDLib.Column
 For Each c In .Columns
 c.Visible = False
 Next
 With .Columns.Add("Personal Info")
 .AllowSort = False
 .AllowDragging = False
 .Width = 196
 .FormatLevel = "18;18/(15:54,(2/1/4))"
 .Def(EXGRIDLib.DefColumnEnum.exCellFormatLevel) = "15:54,(2/1/4)"
 End With
 With .Columns.Add("General Info")
 .AllowSort = False
 .AllowDragging = False
 .Width = 512
 .FormatLevel = "18;19/((8/18;5):128,((((13/11/12),(6/7/10)),16)))"
 .Def(EXGRIDLib.DefColumnEnum.exCellFormatLevel) = "(8/18;5):128,((((13/11/12),
(6/7/10)),16))"
 End With
 .EndUpdate()
End With

The following C# sample arranges the columns as in the above screen shot (the sample
hides the columns and add instead two new columns { Personal Info, General Info }, where

the layout is displayed.

axGrid1.BeginUpdate();
foreach(EXGRIDLib.Column c in axGrid1.Columns)
 c.Visible = false;
EXGRIDLib.Column c1 = axGrid1.Columns.Add("Personal Info") as EXGRIDLib.Column;
c1.AllowSort = false;
c1.AllowDragging = false;
c1.Width = 196;
c1.FormatLevel = "18;18/(15:54,(2/1/4))";
c1.set_Def(EXGRIDLib.DefColumnEnum.exCellFormatLevel,"15:54,(2/1/4)");

EXGRIDLib.Column c2 = axGrid1.Columns.Add("General Info") as EXGRIDLib.Column;
c2.AllowSort = false;
c2.AllowDragging = false;
c2.Width = 512;
c2.FormatLevel = "18;19/((8/18;5):128,((((13/11/12),(6/7/10)),16)))";
c2.set_Def(EXGRIDLib.DefColumnEnum.exCellFormatLevel,"(8/18;5):128,((((13/11/12),
(6/7/10)),16))");
axGrid1.EndUpdate();

The following VFP sample arranges the columns as in the above screen shot (the sample
hides the columns and add instead two new columns { Personal Info, General Info }, where
the layout is displayed.

with thisform.Grid1
 .BeginUpdate()
 with .Columns
 for i = 0 to .Count - 1
 .Item(i).Visible = .f.
 next
 with .Add("Personal Info")
 .AllowSort = .f.
 .AllowDragging = .f.
 .Width = 196
 .FormatLevel = "18;18/(15:54,(2/1/4))"
 .Def(32) = "15:54,(2/1/4)"
 endwith

 with .Add("General Info")
 .AllowSort = .f.
 .AllowDragging = .f.
 .Width = 512
 .FormatLevel = "18;19/((8/18;5):128,((((13/11/12),(6/7/10)),16)))"
 .Def(32) = "(8/18;5):128,((((13/11/12),(6/7/10)),16))"
 endwith
 endwith
 .EndUpdate()
endwith

property Column.GroupByFormatCell as String
Indicates the format of the cell to be displayed when the column gets grouped by.

Type Description

String A String expression that may specify HTML format,
<caption> and value keywords as explained bellow.

By default, the GroupByFormatCell property is "'<caption> (' + value + ')'", which
indicates that the grouping label is shown in bold, followed by the computed value of the
GroupByTotalField property. The GroupByFormatCell property determines the format of the
cell to be displayed in the grouping item, when the column gets sorted. The
GroupByTotalField property determines the formula to be applied to the column when it gets
grouped. When the control is performing a group-by operation, the
Items.FormatCell(Item,Items.GroupItem(Item)) property is set on GroupByFormatCell
property, where the Item is the handle of the item being added during grouping or the Item
parameter of the AddGroupItem event.

In conclusion,

the <caption> keyword in the GroupByFormatCell property is replaced with the
grouping label/value, and the result expression is passed to the FormatCell property.
the value keyword indicates the computed value of the GroupByTotalField property.

For instance:

the "'<caption> (' + currency(value) + ')'" displays the grouping label, and the
aggregate field as a currency, as specified in the regional settings.
the "'<caption> (' + currency(value) + `, inc. VAT ` + currency(1.19*value) +
')'" displays the grouping label, and the aggregate field, including a computed field (
VAT) as a currency, as specified in the regional settings.
the "'<caption> <fgcolor=808080>(Total ' + (value format ``) + ')
</fgcolor>'" displays the grouping label, and the aggregate field as a current
number format, as specified in the regional settings, with a different font and
foreground color.

The value keyword in the GroupByFormatCell property indicates the value to be formatted
(as a result of the GroupByTotalField property):

The expression supports cell's identifiers as follows:

%0, %1, %2, ...{any} specifies the value of the cell in the column with the index 0, 1
2, ... The CellValue property defines the cell's value. For example, "%0 format ``"
formats the value in the cell at index 0 using the current regional settings, while

"int(%1)" converts the value in the cell at index 1 to an integer.
%C0, %C1, %C2, ...{string} specifies the caption of the cell, or the string the cell
displays in the column with the index 0, 1 2, ... The CellCaption property gets the
cell's formatted caption. The cell's displayed string may differ from its actual value.
For example, if a cell displays HTML content, %0 returns the HTML format including
the tags, while %C0 returns the cell's content as a plain string without HTML tags. For
instance, "upper(%C1)" converts the caption of the cell at index 1 to uppercase, while
"%C0 left 2" returns the leftmost two characters of the caption in the cell at index 0.
%CD0, %CD1, %CD2, ...{any} specifies the cell's extra data in the column with the
index 0, 1 2, ... The CellData property associates any extra/user data to a cell. For
example, "%CD0 = your user data" specifies all cells in the column with index 0
whose CellData property is equal to your user data.
%CS0, %CS1, %CS2, ...{number} specifies the cell's state in the column with the
index 0, 1 2, ... The CellState property defines the state of a cell, indicating whether it
is checked or unchecked. For example, "%CS0" identifies all checked items in the
column with index 0, while "not %CS1" identifies all unchecked items in the column
with index 1.
%CT0, %CT1, %CT2, ... {boolean} returns true if the cell displays a total field;
otherwise, it returns false. The exTotalField / exTotalColumn flag specifies whether
the cell displays a total field. For instance, "%CT1" refers to all cells in the second
column that display totals, while "not %CT1" refers to all cells in the second column
that do not display totals.
%CE0, %CE1, %CE2, ... {boolean} returns true if the cell is editable; otherwise, it
returns false.. For example, "%CE0" refers to all editable cells in the first column,
while "not %CE1" refers to all cells in the second column that are read-only.
%CC0, %CC1, %CC2, ... {number} retrieve the number of child items (this keyword
consistently returns identical results for all cells since it pertains to the item that hosts
each cell). The ChildCount property returns the number of child items. For example,
"%CC0" identifies all parent items, while "%CC0 = 0" identifies all leaf items.
%CX0, %CX1, %CX2, ... {boolean} returns true if the item hosting the cell is
expanded, or false if it is collapsed (this keyword consistently returns identical results
for all cells since it pertains to the item that hosts each cell). The ExpandItem property
specifically indicates whether the item is expanded or collapsed. For example,
"%CX0" refers to all expanded items, while "not %CX0" identifies all collapsed items

This property/method supports predefined constants and operators/functions as described
here.

property Column.GroupByTotalField as String
Indicates the aggregate formula to be displayed when the column gets grouped by.

Type Description

String A String expression that indicates the formula to be
displayed on the grouping caption.

By default, the GroupByTotalField property is "count(current,rec,1)", which count recursively
leaf items (implies recursively leaf items) of the grouping item. At runtime, the computed
value of this formula is replaced in the HTML format being specified by the
GroupByFormatCell property, for the value keyword. When the control is performing a
group-by operation, the Items.CellValue(Item,Items.GroupItem(Item)) property is set on
GroupByTotalField property, and the Items.CellValueFormat(Item,Items.GroupItem(Item))
is exHTML + exTotalField (5), where the Item is the handle of the item being added during
grouping or the Item parameter of the AddGroupItem event. The GroupByTotalField
property determines the formula to be applied to the column when it gets grouped. The
GroupByFormatCell property determines the format of the cell to be displayed in the
grouping item, when the column gets sorted.

For instance

"count(current,dir,1)" counts the number of child items (not implies recursively child
items).
"count(current,all,1)" counts the number of all child items (implies recursively child
items).
"sum(parent,dir,%1=0?0:1)" counts the not-zero values in the second column (%1)
"sum(parent,dir,%1 + %2)" indicates the sum of all cells in the second (%1) and third
(%2) column that are directly descendent from the parent item.
"sum(all,rec,%1 + %2)" sums all leaf cells in the second (%1) and third (%2) columns.

The syntax for the GroupByTotalField property property should be:
aggregate(list,direction,formula) where:

aggregate must be one of the following:

sum - calculates the sum of values.
min - retrieves the minimum value.
max - retrieves the maximum value.
count - counts the number of items.
avg - calculates the average of values.

list must be one of the following:

a long expression that specifies the index of the item being referred.
a predefined string expression as follows:

all - indicates all items, so the formula is being applied to all items. The direction
has no effect.
current - the current item.
parent - the parent item.
root - the root item.

direction must be one of the following:

dir - collects the direct descendents.
rec - collects the leaf descendents (leaf items). A leaf item is an item with no child
items.
all - collects all descendents.

Currently, the following items are excluded by aggregate functions:

not-sortable items. The SortableItem property specifies whether the item can be
sorted (a sortable item can change its position after sorting, while a not-sortable item
keeps its position after sorting.
not-selectable items. The SelectableItem property specifies whether the user can
selects/focus the specified item.
divider items. The ItemDivider property specifies whether the item displays a single
cell, instead displaying whole cells.

In conclusion, aggregate functions counts ONLY items that are:

sortable, SortableItem is True, by default.
selectable, SelectableItem is True, by default.
not divider, ItemDivider is -1, by default.

Shortly, by setting to a different value to any of these properties, makes the item to be
ignored by the aggregate functions.

For instance

count(current,dir,1) counts the number of child items (not implies recursively child items
).
count(current,all,1) counts the number of all child items (implies recursively child items
).
count(current,rec,1) counts the number of leaf items (implies recursively leaf items).
count(current,rec,1) counts the number of leaf items (a leaf item is an item with no
child items).
sum(parent,dir,%1=0?0:1) counts the not-zero values in the second column (%1)

sum(parent,dir,%1 + %2) indicates the sum of all cells in the second (%1) and third
(%2) column that are directly descendent from the parent item.
sum(all,rec,%1 + %2) sums all leaf cells in the second (%1) and third (%2) columns.

property Column.HeaderAlignment as AlignmentEnum
Specifies the alignment of the column's caption.

Type Description

AlignmentEnum An AlignmentEnum expression that indicates the alignment
of the column's caption.

Use the HeaderAlignment property to align the column's caption inside the column's header.
Use the Alignment property to align the cells into a column. Use the HeaderImageAlignment
property to align the column's icon inside the column's header. Use the CellHAlignment
property to align a cell. The RightToLeft property automatically flips the order of the
columns

property Column.HeaderBold as Boolean
Retrieves or sets a value that indicates whether the column's caption should appear in bold.

Type Description

Boolean A boolean expression that indicates whether the column's
caption should appear in bold.

The HeaderBold property specifies whether the column's caption should appear in bold. Use
the CellBold or ItemBold properties to specify whether the cell or item should appear in
bold. Use the HTMLCaption property to specify portions of the caption using different
colors, fonts. Use the HeaderItalic, HeaderUnderline or HeaderStrikeOut property to specify
different font attributes when displaying the column's caption.

property Column.HeaderImage as Long
Retrieves or sets a value indicating the index of an Image in the Images collection, which is
displayed to the column's header.

Type Description

Long

A long expression that indicates the index of icon in the
Images collection, that's displayed on the column's header.
The last 7 bits in the high significant byte of the long
expression indicates the identifier of the skin being used to
paint the object. Use the Add method to add new skins to
the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits
in the high significant byte of the color being applied to the
part.

Use the HeaderImage property to add an icon to the column's header. The HeaderImage
property does not set the icon for any of the column cells. Use the CellImage property to
set an icon for a particular cell. Use the HeaderImageAlignment property to align the icon in
the column's header. If the index of the icon in the column's header doesn't exist in the
Images collection, no icon is displayed. Use the DisplaySortIcon property to specify
whether the control displays the sorting icon when the user sorts a column. Use the Images
method to assign a list of icons to the control at runtime. Use the built-in HTML tag to
insert multiple custom size picture/icons to the same header.

The following VB sample hides the icon in the column's header:

Grid1.Columns("Editor").HeaderImage = -1

The following C++ sample hides the icon in the header of the first column:

#include "Column.h"
#include "Columns.h"
CColumn column = m_grid.GetColumns().GetItem(COleVariant(long(0)));
column.SetHeaderImage(-1);

The following VB.NET sample hides the icon in the header of the first column:

With AxGrid1.Columns(0)
 .HeaderImage = -1
End With

The following C# sample hides the icon in the header of the first column:

EXGRIDLib.Column column = axGrid1.Columns[0];
column.HeaderImage = -1;

The following VFP sample hides the icon in the header of the first column:

with thisform.Grid1.Columns.Item(0)
 .HeaderImage = -1
endwith

property Column.HeaderImageAlignment as AlignmentEnum
Retrieves or sets the alignment of the image in the column's header.

Type Description

AlignmentEnum An AlignmentEnum expression that indicates the alignment
of the icon in the column's header.

By default, the image is left aligned. Use the HeaderImageAlignment property to aligns the
icon in the column's header. Use the HeaderImage property to attach an icon to the
column's header. The RightToLeft property automatically flips the order of the columns

property Column.HeaderItalic as Boolean
Retrieves or sets a value that indicates whether the column's caption should appear in italic.

Type Description

Boolean A boolean expression that indicates whether the column's
caption should appear in italic.

Use the HeaderItalic property to specify whether the column's caption should appear in
italic. Use the CellItalic or ItemItalic properties to specify whether the the cell or the item
should appear in italic. Use the HeaderBold, HeaderUnderline or HeaderStrikeOut property
to specify different font attributes when displaying the column's caption.

property Column.HeaderStrikeOut as Boolean
Retrieves or sets a value that indicates whether the column's caption should appear in
strikeout.

Type Description

Boolean A boolean expression that indicates whether the column's
caption should appear in strikeout.

Use the HeaderStrikeOut property to specify whether the column's caption should appear in
strikeout. Use the CellStrikeOut or ItemStrikeOut properties to specify whether the cell or
the item should appear in strikeout. Use the HeaderItalic, HeaderUnderline or HeaderBold
property to specify different font attributes when displaying the column's caption.

property Column.HeaderUnderline as Boolean
Retrieves or sets a value that indicates whether the column's caption should appear in
underline.

Type Description

Boolean A boolean expression that indicates whether the column's
caption should appear in underline.

Use the HeaderUnderline property to specify whether the column's caption should appear in
underline. Use the CellUnderline or ItemUnderline properties to specify whether the cell or
the item should appear in underline. Use the HeaderItalic, HeaderBold or HeaderStrikeOut
property to specify different font attributes when displaying the column's caption.

property Column.HeaderVertical as Boolean
Specifies whether the column's header is vertically displayed.

Type Description

Boolean A boolean expression that indicates whether the column's
caption is vertically printed.

Use the HeaderVertical property to display vertically the column's caption. Use the
HeaderAlignment property to align the caption in the column's header. Use the Caption
property to assign a caption to a column. Use the HTMLCaption property to specify an
HTML caption to a column. Use the HeaderImage property to assign an icon to a column.

property Column.HTMLCaption as String
Retrieves or sets the text in HTML format displayed in the column's header.

Type Description

String A string expression that indicates the column's caption
using built-in HTML tags.

If the HTMLCaption property is empty, the Caption property is displayed in the column's
header. If the HTMLCaption property is not empty, the control uses it when displaying the
column's header. Use the HeaderHeight property to change the height of the control's
header bar. Use the HeaderVertical property to display vertically the column's caption. Use
the HeaderAlignment property to align the caption in the column's header. Use the
HeaderImage property to assign an icon to a column. The list of built-in HTML tags
supported are here. Use the FormatLevel property to display multiple levels in the column's
header.

property Column.Index as Long
Returns a value that represents the index of an object in a collection.

Type Description
Long A long expression that indicates the column's index.

The Index property of the Column is read only. Use the Position property to change the
column's position. The Columns collection is zero based, so the Index property starts at 0.
The last added column has the Index set to Columns.Count - 1. When a column is removed
from the collection, the control updates all indexes. Use the Visible property to hide a
column. Use the Columns property to access column from it's index.

property Column.Key as String
Retrieves or sets a the column's key.

Type Description
String A string expression that defines the column's key

The column's key defines a column when using the Item property. Use the Index or the Key
property to identify a column, when using the Columns property.

property Column.LevelKey as Variant
Retrieves or sets a value that indicates the key of the column's level.

Type Description

Variant A Variant expression that indicates the key of the column's
level.

By default, the LevelKey is empty. The control's header displays multiple levels if there are
two or more neighbor columns with the same non empty level key. The HeaderHeight
property specifies the height of one level when multiple levels header is on. Use the
BackColorLevelHeader property to specify the control's level header area. Use the
PictureLevelHeader property to assign a picture on the control's header. The
BackColorHeader property specifies the background color for column's captions. Use the
FormatLevel property to display multiple levels in the column's header.

property Column.MaxWidthAutoResize as Long
Retrieves or sets a value that indicates the maximum column's width when the
WidthAutoResize is True.

Type Description

Long A long expression that the maximum column's width when
the WidthAutoResize is True.

If the WidthAutoResize property is False, the MaxWidthAutoResize and
MinWidthAutoResize properties have no effect. The MaxWidthAutoResize property
specifies the maximum column's width. The control recalculates the column's width each
time when an item is expanded or collapsed. If the MaxWidthAutoResize property is -1,
there is no maximum value for the column's width. Use the WidthAutoResize,
MaxWidthAutoResize and MinWidthAutoResize properties when you don't want to have
truncated the caption for cells in the column. Use the ColumnAutoResize property to specify
whether the control resizes the visible columns so they fit the control's client area.

property Column.MinWidthAutoResize as Long
Retrieves or sets a value that indicates the minimum column width when the
WidthAutoResize is True.

Type Description

Long A long expression that indicates the minimum column's
width when the WidthAutoResize is True.

If the WidthAutoResize property is False, the MaxWidthAutoResize and
MinWidthAutoResize properties have no effect. The MinWidthAutoResize property
specifies the minimum column's width. The control recalculates the column's width each time
when an item is expanded or collapsed. Use the WidthAutoResize, MaxWidthAutoResize
and MinWidthAutoResize properties when you don't want to have truncated the caption for
cells in the column. Use the ColumnAutoResize property to specify whether the control
resizes the visible columns so they fit the control's client area.

property Column.PartialCheck as Boolean
Specifies whether the column supports partial check feature.

Type Description

Boolean A boolean expression that indicates whether the column
supports partial check feature.

The PartialCheck property specifies that the column supports partial check feature. By
default, the PartialCheck property is False. Use the CellHasCheckBox property to associate
a check box to a cell. Use the Def property to assign a cell box for the entire column. Use
the CellState property to determine the cell's state. If the PartialCheck property is True, the
CellState property has three states: 0 - Unchecked, 1 - Checked and 2 - Partial Checked.
Use the CheckImage property to define the icons for each state. The control supports
partial check feature for any column that your control contains. Use the Add method to add
new columns to the control. The control fires the CellStateChanged event when the user
clicks a checkbox or a radio button in the control.

property Column.Position as Long
Retrieves or sets a value that indicates the position of the column in the header bar area.

Type Description

Long A long expression that indicates the position of the column
in the header bar area

The column's index is not the same with the column's position. The Index property of
Column cannot be changed by the user. Use the Position property to change the column's
position. The EnsureVisibleColumn method ensures that a given column fits the control's
client area. Use the Visible property to hide a column. Use the Width property to specify the
column's width.

The following VB6 sample enumerates the visible columns as they are displayed:

Private Sub enumColumns(ByVal g As EXGRIDLibCtl.Grid)
 Dim cArray() As EXGRIDLibCtl.Column
 With g
 ReDim Preserve cArray(.Columns.Count)
 For Each c In .Columns
 If (c.Visible) Then
 Set cArray(c.Position) = c
 End If
 Next
 End With
 For Each c In cArray
 If Not c Is Nothing Then
 Debug.Print c.Caption & "(" & c.Index & ")"
 End If
 Next
End Sub

property Column.Selected as Boolean
Retrieves or sets a value that indicates whether the cell in the column is selected.

Type Description

Boolean A boolean expression that specifies whether the cell in the
column is selected.

Use the Selected property to determine the cells being selected, when FullRowSelect
property is exRectSel. Use the SelectItem property to programmatically selects an item.
Use the SingleSel property to allow multiple items or cells in the selection. The control fires
the SelectionChanged event when user changes the selection.

The following VB sample copies the selected cells to the clipboard, if the FullRowSelect
property is exRectSel:

Private Sub Grid1_SelectionChanged()
 Dim strData As String
 With Grid1
 Dim i As Long, h As HITEM
 For i = 0 To .Items.SelectCount - 1
 h = .Items.SelectedItem(i)
 Dim c As Column
 For Each c In .Columns
 If (c.Selected) Then
 strData = strData + .Items.CellCaption(h, c.Index) + vbTab
 End If
 Next
 strData = strData + vbCrLf
 Next
 End With
 Clipboard.Clear
 Clipboard.SetText strData
End Sub

The following C++ sample copies the selected cells to the clipboard, if the FullRowSelect
property is exRectSel:

#include "Column.h"
#include "Columns.h"
#include "Items.h"
void OnSelectionChangedGrid1()
{
 CString strData;
 CColumns cols = m_grid.GetColumns();
 CItems items = m_grid.GetItems();
 for (long i = 0; i < items.GetSelectCount(); i++)
 {
 COleVariant vtItem(items.GetSelectedItem(i));
 for (long j = 0; j < cols.GetCount(); j++)
 {
 COleVariant vtColumn(j);
 if (cols.GetItem(vtColumn).GetSelected())
 strData += items.GetCellCaption(vtItem, vtColumn) + "\t";
 }
 strData += "\r\n";
 }
 if (OpenClipboard())
 {
 EmptyClipboard();
 HGLOBAL hGlobal = GlobalAlloc(GMEM_MOVEABLE | GMEM_DDESHARE,
strData.GetLength());
 CopyMemory(GlobalLock(hGlobal), strData.operator LPCTSTR(),
strData.GetLength());
 GlobalUnlock(hGlobal);
 SetClipboardData(CF_TEXT, hGlobal);
 CloseClipboard();
 }
}

The following VB.NET sample copies the selected cells to the clipboard, if the
FullRowSelect property is exRectSel:

Private Sub AxGrid1_SelectionChanged(ByVal sender As Object, ByVal e As
System.EventArgs) Handles AxGrid1.SelectionChanged
 Dim strData As String = ""
 With AxGrid1
 Dim i As Integer, h As Integer, j As Integer
 For i = 0 To .Items.SelectCount - 1
 h = .Items.SelectedItem(i)
 For j = 0 To .Columns.Count - 1
 Dim c As EXGRIDLib.Column = .Columns(j)
 If (c.Selected) Then
 strData = strData + .Items.CellCaption(h, c.Index) + vbTab
 End If
 Next
 strData = strData + vbCrLf
 Next
 End With
 Clipboard.Clear()
 Clipboard.SetText(strData)
End Sub

The following C# sample copies the selected cells to the clipboard, if the FullRowSelect
property is exRectSel:

private void axGrid1_SelectionChanged(object sender, System.EventArgs e)
{
 string strData = "";
 for (int i = 0; i < axGrid1.Items.SelectCount; i++)
 {
 for (int j = 0; j < axGrid1.Columns.Count; j++)
 if (axGrid1.Columns[j].Selected)
 {
 string cellData =
axGrid1.Items.get_CellCaption(axGrid1.Items.get_SelectedItem(i), j);
 strData += cellData + "\t";
 }
 strData += "\r\n";
 }

 Clipboard.Clear();
 Clipboard.SetText(strData);
}

The following VFP sample copies the selected cells to the clipboard, if the FullRowSelect
property is exRectSel (SelectionChanged event):

*** ActiveX Control Event ***

with thisform.Grid1.Items
 local strData, i, j, cols
 strData = ""
 cols = thisform.Grid1.Columns
 for i = 0 to .SelectCount - 1
 .DefaultItem = .SelectedItem(i)
 for j = 0 to cols.Count - 1
 if (cols.Item(j).Selected)
 strData = strData + .CellCaption(0,j) + chr(9)
 endif
 next
 strData = strData + chr(13) + chr(10)
 next
 _CLIPTEXT = strData
endwith

method Column.ShowFilter ([Options as Variant])
Shows the column's filter window.

Type Description

Options as Variant

A string expression that indicates the position (in screen
coordinates) and the size (in pixels) where the drop
down filter window is shown. The Options parameter is
composed like follows:

the first parameter indicates the X coordinate in
screen coordinate, -1 if the current cursor position is
used, or empty if the coordinate is ignored
the second parameter indicates the Y coordinate in
screen coordinate, -1 if the current cursor position is
used, or empty if the coordinate is ignored
the third parameter indicates the width in pixels of the
drop down window, or empty if the width is ignored
the forth parameter indicates the height in pixels of
the drop down window, or empty if the height is
ignored

By default, the drop down filter window is shown at its
default position bellow the column's header.

Use the ShowFilter method to show the column's drop down filter programmatically. By
default, the drop down filter window is shown only if the user clicks the filter button in the
column's header, if the DisplayFilterButton property is True. The drop down filter window if
the user selects a predefined filter, or enters a pattern to match. If the Options parameter
is missing, or all parameters inside the Options are missing, the size of the drop down filter
window is automatcially computed based on the FilterBarDropDownWidth property and
FilterBarDropDownHeight property. Use the ColumnFromPoint property to get the index of
the column from the point.

For instance, the following VB sample displays the column's drop down filter window when

the user right clicks the control:

Private Sub Grid1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single)
 If (Button = 2) Then
 With Grid1.Columns
 With .Item(Grid1.ColumnFromPoint(-1, 0))
 .ShowFilter "-1,-1,200,200"
 End With
 End With
 End If
End Sub

The following VB.NET sample displays the column's drop down filter window when the user
right clicks the control:

Private Sub AxGrid1_MouseUpEvent(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_MouseUpEvent) Handles AxGrid1.MouseUpEvent
 If (e.button = 2) Then
 With AxGrid1.Columns
 With .Item(AxGrid1.get_ColumnFromPoint(-1, 0))
 .ShowFilter("-1,-1,200,200")
 End With
 End With
 End If
End Sub

The following C# sample displays the column's drop down filter window when the user right
clicks the control:

private void axGrid1_MouseUpEvent(object sender,
AxEXGRIDLib._IGridEvents_MouseUpEvent e)
{
 if (e.button == 2)
 {
 EXGRIDLib.Column c = axGrid1.Columns[axGrid1.get_ColumnFromPoint(-1, 0)];
 c.ShowFilter("-1,-1,200,200");
 }
}

The following C++ sample displays the column's drop down filter window when the user
right clicks the control:

void OnMouseUpGrid1(short Button, short Shift, long X, long Y)
{
 m_grid.GetColumns().GetItem(COleVariant(m_grid.GetColumnFromPoint(-1, 0))
).ShowFilter(COleVariant("-1,-1,200,200"));
}

The following VFP sample displays the column's drop down filter window when the user
right clicks the control:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

if (button = 2) then
 With thisform.Grid1.Columns
 With .Item(thisform.Grid1.ColumnFromPoint(-1, 0))
 .ShowFilter("-1,-1,200,200")
 EndWith
 EndWith
endif

property Column.SortOrder as SortOrderEnum
Specifies the column's sort order.

Type Description

SortOrderEnum A SortOrderEnum expression that indicates the column's
sort order.

The SortOrder property determines the column's sort order. By default, the SortOrder
property is SortNone. Use the SortOrder property to sort a column at runtime. Use the
SortType property to determine the way how the column is sorted. Use the AllowSort
property to avoid sorting a column when the user clicks the column. Use the SingleSort
property to specify whether the control supports sorting by single or multiple columns. If the
control supports sorting by multiple columns, the SortOrder property adds or removes the
column to the sorting columns collection. For instance, if the SortOrder property is set to
SortAscending or SortDescending the column is added to the sorting columns collection. If
the SortOrder property is set to SortNone the control removes the column from its sorting
columns collection. The Sort event is fired when the user sorts a column. The SortPosition
property changes the position of the column in the control's sort bar. Use the
DefaultSortOrder property to specify the column's default sort order, when the user first
clicks the column's header. The EnsureOnSort property prevents scrolling the control's
content when the user sorts items. The SortableItem property specifies whether the item
keeps its position after sorting.

The control automatically sorts a column when the user clicks the column's header, if the
SortOnClick property is exDefaultSort. If the SortOnClick property is exNoSort, the control
disables sorting the items when the user clicks the column's header. There are two methods
to get the items sorted like follows:

Using the SortOrder property of the Column object::

Grid1.Columns(ColIndex).SortOrder = SortAscending

The SortOrder property adds the sorting icon to the column's header, if the
DisplaySortIcon property is True.

Using the SortChildren method of the Items collection. The SortChildren sorts the
items. The SortChildren method sorts the child items of the given parent item in the
control. SortChildren will not recourse through the tree, only the immediate children of
the item will be sorted. The following sample sort descending the list of root items on
the "Column 1"(if your control displays a list, all items are considered being root items

Grid1.Items.SortChildren 0, "Column 1", False

The SortType property of the Column object specifies the way how a column gets sorted.
By default, a column gets sorted as string. If you need to sort your dates, the following
snippet of code should be used:

With Grid1
 With .Columns(0)
 .SortType = SortDate
 End With
End With

If you need to sort a column using your special way you may want to use the SortType =
SortUserData, or SortType = SortCellData that sorts the column using CellData /
CellSortData property for each cell in the column. In this case, the CellData or CellSortData
property holds numeric values only.

property Column.SortPosition as Long
Returns or sets a value that indicates the position of the column in the sorting columns
collection.

Type Description

Long A long expression that indicates the position of the column
in the control's sort bar. The collection is 0 - based.

Use the SortPosition to change programmatically the position of the column in the control's
sort bar. Use the SingleSort property to allow sorting by multiple columns. Use the
SortBarVisible property to show the control's sort bar. Use the SortOrder property to add
columns to the control's sort bar. The control fires the Sort event when the user sorts a
column. Use the ItemBySortPosition property to get the columns being sorted in their order.
Use the AllowSort property to avoid sorting a column when the user clicks the column.

property Column.SortType as SortTypeEnum
Returns or sets a value that indicates the way the control sorts the values for a column.

Type Description

SortTypeEnum A SortTypeEnum expression that indicates the way how
control sorts the column.

By default, the column's sort type is string. Use the SortType property to specify how the
control sorts the column. Use the DisplaySortIcon property to hide the sort icon displayed
when the column was sorted. Use the SortChildren method to sort items. Use the
CellCaption property to get the string being displayed in the cell. Use the CellValue property
to specify the cell's value. Use the CellSortData to specify the data being sorted when the
SortType property is SortCellData or SortCellDataString. Use the CellData property to
specify the values being sorted if the SortType property is SortUserData. The Sort event is
fired when the user sorts a column. The SortPosition property changes the position of the
column in the sorting columns collection. the SingleSort property to specify whether the
control supports sorting by single or multiple columns. The SortOrder property determines
the column's sort order. The SortableItem property specifies whether the item keeps its
position after sorting.

property Column.ToolTip as String
Specifes the column's tooltip description.

Type Description

String A string expression that defines the column's tooltip. The
column's tooltip supports built-in HTML format.

By default, the ToolTip property is "..." (three dots). Use the ToolTip property to assign a
tooltip to a column. If the ToolTip property is "...", the control displays the column's caption if
it doesn't fit the column's header. Use the Caption or HTMLCaption property to specify the
caption of the column. The column's tooltip shows up when the cursor hovers the column's
header. Use the CellToolTip property to assign a tooltip to a cell. The control fires the
ToolTip event when the column's tooltip is about to be displayed. The ToolTipWidth property
specifies a value that indicates the width of the tooltip window, in pixels.

property Column.Visible as Boolean
Retrieves or sets a value indicating whether the column is visible or hidden.

Type Description

Boolean A boolean expression indicating whether the column is
visible or hidden.

Use the Visible property to hide a column. Use the Width property to resize the column. The
ColumnAutoResize property specifies whether the visible columns fit the control's client
area. Use the Position property to specify the column's position. Use the HeaderVisible
property to show or hide the control's header bar. Use the ColumnFromPoint property to
get the column from point. Use the Remove method to remove a column. Use the
FormatLevel property to display multiple levels in the column's header.

The following VB6 sample enumerates the visible columns as they are displayed:

Private Sub enumColumns(ByVal g As EXGRIDLibCtl.Grid)
 Dim cArray() As EXGRIDLibCtl.Column
 With g
 ReDim Preserve cArray(.Columns.Count)
 For Each c In .Columns
 If (c.Visible) Then
 Set cArray(c.Position) = c
 End If
 Next
 End With
 For Each c In cArray
 If Not c Is Nothing Then
 Debug.Print c.Caption & "(" & c.Index & ")"
 End If
 Next
End Sub

property Column.Width as Long
Retrieves or sets the column's width.

Type Description
Long A long expression that indicates the column's width.

The Width property resizes a column at runtime. Use the AutoWidth property to compute
the width that's required to fit all cells in the column. Use the WidthAutoResize property to
automatically resize the column while the user expands or collapses items. Use the Visible
property to hide a column. The ColumnAutoResize property specifies whether the visible
columns fit the control's client area. If the ColumnAutoResize property is True, the Width
property may not resize the column to the desired value, because all visible columns must fit
the control's client area. By default, the control adds horizontal scroll bar when required.
Use the ScrollBars property to add or remove the control's scroll bars. Use the Visible
property to hide the column. Use the FilterBarDropDownWidth property to specify the width
of the drop down filter window.

The following VB sample shows how to set the width for all columns:

Private Sub Grid1_AddColumn(ByVal Column As EXGRIDLibCtl.IColumn)
 Column.Width = 128
End Sub

The following VB.NET sample changes the column's width when a new column is added:

Private Sub AxGrid1_AddColumn(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_AddColumnEvent) Handles AxGrid1.AddColumn
 e.column.Width = 128
End Sub

The following C# sample changes the column's width when a new column is added:

private void axGrid1_AddColumn(object sender,
AxEXGRIDLib._IGridEvents_AddColumnEvent e)
{
 e.column.Width = 128;
}

The following C++ sample changes the column's width when a new column is added:

#include "Column.h"
#include "Columns.h"
void OnAddColumnGrid1(LPDISPATCH Column)
{
 CColumn column(Column);
 column.SetWidth(128);
}

The following VFP sample changes the column's width when a new column is added:

*** ActiveX Control Event ***
LPARAMETERS column

with column
 .Width = 128
endwith

property Column.WidthAutoResize as Boolean
Retrieves or sets a value that indicates whether the column is automatically resized
according to the width of the contents within the column.

Type Description

Boolean
A boolean expression that indicates whether the column is
automatically resized according to the width of the
contents within the column.

Use the WidthAutoResize property if you need to display the entire caption of each cell in
the column. If the WidthAutoResize property is True, the user is not able to resize the
column, so the AllowSizing property has no effect in this case. Use the ColumnAutoResize
property to specify whether the control resizes the visible columns so they fit the control's
client area. You can use the AutoWidth property to computes the column's width to fit its
content. For instance, if you have a tree with one column, and this property True, you can
simulate a simple tree, because the control will automatically add a horizontal scroll bar
when required. Use the HeaderVisible property to hide the control's header bar. Use the
BeginUpdate and EndUpdate method to maintain performance while adding columns and
items to the control. Use the MinWidthAutoResize property to specify the minimum column
width, while the WidthAutoResize property is True.

The following VB sample adds a single column that's resized when the user expands or
collapses an item:

Private Sub Form_Load()
 With Grid1
 .BeginUpdate
 .LinesAtRoot = True
 .Columns.Add("Column1").WidthAutoResize = True

 With .Items
 Dim h As HITEM
 h = .AddItem("Item 1")
 .InsertItem h, , "Item 2"
 h = .InsertItem(h, , "Item 3")
 .ExpandItem(.FindItem("Item 1")) = True
 End With
 .EndUpdate
 End With

End Sub

The following C++ sample adds a single column that's resized when the user expands or
collapses an item:

#include "Items.h"
#include "Column.h"
#include "Columns.h"
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
m_grid.BeginUpdate();
m_grid.SetLinesAtRoot(1);
CColumn column(V_DISPATCH(&m_grid.GetColumns().Add("Column 1")));
column.SetWidthAutoResize(TRUE);
CItems items = m_grid.GetItems();
long hItem = items.AddItem(COleVariant("Item 1"));
hItem = items.InsertItem(hItem, vtMissing, COleVariant("Item 2"));
items.InsertItem(hItem, vtMissing, COleVariant("Item 3"));
items.SetExpandItem(items.GetFindItem(COleVariant("Item 1"), vtMissing, vtMissing),
TRUE);
m_grid.EndUpdate();

The following VB.NET sample adds a single column that's resized when the user expands or
collapses an item:

With AxGrid1
 .BeginUpdate()
 .LinesAtRoot = EXGRIDLib.LinesAtRootEnum.exLinesAtRoot
 .Columns.Add("Column1").WidthAutoResize = True

 With .Items
 Dim h As Integer = .AddItem("Item 1")
 .InsertItem(h, , "Item 2")
 h = .InsertItem(h, , "Item 3")
 .ExpandItem(.FindItem("Item 1")) = True
 End With
 .EndUpdate()
End With

The following C# sample adds a single column that's resized when the user expands or

collapses an item:

axGrid1.BeginUpdate();
axGrid1.LinesAtRoot = EXGRIDLib.LinesAtRootEnum.exLinesAtRoot;
EXGRIDLib.Column column = axGrid1.Columns.Add("Column 1") as EXGRIDLib.Column ;
column.WidthAutoResize = true;
EXGRIDLib.Items items = axGrid1.Items;
int hItem = items.AddItem("Item 1");
hItem = items.InsertItem(hItem, null, "Item 2");
items.InsertItem(hItem, null, "Item 2");
items.set_ExpandItem(items.get_FindItem("Item 1", null, null), true);
axGrid1.EndUpdate();

The following VFP sample adds a single column that's resized when the user expands or
collapses an item:

with thisform.Grid1
 .BeginUpdate()
 .LinesAtRoot = .t.
 .Columns.Add("Column1").WidthAutoResize = .t.
 With .Items
 local h
 h = .AddItem("Item 1")
 .InsertItem(h, , "Item 2")
 h = .InsertItem(h, , "Item 3")
 .DefaultItem = .FindItem("Item 1")
 .ExpandItem(0) = .t.
 EndWith
 .EndUpdate()
endwith

Columns object
The Columns object holds a collection of Column objects. The Columns collection supports
the following properties and methods:

Name Description

Add Adds a Column object to the collection and returns a
reference to the newly created object.

Clear Removes all objects in a collection.
Count Returns the number of objects in a collection.
Item Returns a specific Column of the Columns collection.
ItemBySortPosition Returns a Column object giving its sorting position.
Remove Removes a specific member from the Columns collection.

SortBarColumn Returns the Column from control's SortBar giving its
position.

SortBarColumnsCount Retrieves the count of Columns, in the control's SortBar

method Columns.Add (ColumnCaption as String)
Adds a Column object to the collection and returns a reference to the newly created object.

Type Description
ColumnCaption as String A string expression that defines the column's caption
Return Description

Variant A Column object that represents the newly created
column.

By default, the control has no columns. Use Add method to add new columns to the control.
If the control contains no columns, you cannot add new items to the control. Use the
Remove method to remove a specific column. Each time when a column has been added to
columns collection the control fires the AddColumn event. If the control's DataSource
property points to an ADO recordset the user doesn't need to add columns to the control.
Instead, the Add method can be used to add computed fields for instance. Use the
AddItem, InsertItem, InsertControlItem, PutItems, DataSource properties to add new items
to the control. Use the BeginUpdate and EndUpdate methods to prevent control from
painting while adding columns or items. Use the Editor property to assign an editor to the
cells in the column. Use the Def property to specify default setting for cells in the column.
Use the FormatLevel property to display multiple levels in the column's header.

The following VB sample adds two new columns to the control:

With Grid1
 .Columns.Add "Column 1"
 With .Columns.Add("Column 2")
 With .Editor
 .EditType = CalculatorType
 End With
 End With
End With

The following C++ sample adds two new columns to the control:

#include "Column.h"
#include "Columns.h"
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
CColumns columns = m_grid.GetColumns();
columns.Add("Column 1");

CColumn column(V_DISPATCH(&columns.Add("Column 2")));
CEditor editor = column.GetEditor();
editor.SetEditType(21 /*CalculatorType*/);

The following VB.NET sample adds two new columns to the control:

With AxGrid1
 .Columns.Add("Column 1")
 Dim c As EXGRIDLib.Column = .Columns.Add("Column 2")
 With c.Editor
 .EditType = EXGRIDLib.EditTypeEnum.CalculatorType
 End With
End With

The following C# sample adds two new columns to the control:

EXGRIDLib.Column column = axGrid1.Columns.Add("Column 1") as EXGRIDLib.Column ;
column = axGrid1.Columns.Add("Column 2") as EXGRIDLib.Column;
column.Editor.EditType = EXGRIDLib.EditTypeEnum.CalculatorType;

The following VFP sample adds two new columns to the control:

with thisform.Grid1
 .Columns.Add("Column 1")
 With .Columns.Add("Column 2")
 with .Editor
 .EditType = 21 && CalculatorType
 endwith
 EndWith
endwith

method Columns.Clear ()
Removes all objects in a collection.

Type Description

Use the Clear method to remove all columns in the Columns collection. If the Clear method
is called, the control removes also all items. Use the Remove method to Remove a
particular column. The Clear method calls RemoveColumn event for each deleted column.
Use the RemoveAllItems method to remove all items in the control.

property Columns.Count as Long
Returns the number of objects in a collection.

Type Description
Long Counts the columns in the collection.

The Count property counts the columns in the collection. Use the Columns property to
access the control's Columns collection. Use the Item property to access a column by its
index or key. Use the Add method to add new columns to the control. Use the Remove
method to remove a column. Use the Clear method to clear the columns collection.

The following VB sample enumerates the columns in the control:

For Each c In Grid1.Columns
 Debug.Print c.Caption
Next

The following VB sample enumerates the columns in the control:

For i = 0 To Grid1.Columns.Count - 1
 Debug.Print Grid1.Columns(i).Caption
Next

The following VC sample enumerates the columns in the control:

#include "Columns.h"
#include "Column.h"
CColumns columns = m_grid.GetColumns();
for (long i = 0; i < columns.GetCount(); i++)
{
 CColumn column = columns.GetItem(COleVariant(i));
 OutputDebugString(column.GetCaption());
}

The following VB.NET sample enumerates the columns in the control:

With AxGrid1.Columns
 Dim i As Integer
 For i = 0 To .Count - 1
 Debug.WriteLine(.Item(i).Caption)

 Next
End With

The following C# sample enumerates the columns in the control:

EXGRIDLib.Columns columns =axGrid1.Columns;
for (int i = 0; i < columns.Count; i++)
{
 EXGRIDLib.Column column = columns[i];
 System.Diagnostics.Debug.WriteLine(column.Caption);
}

The following VFP sample enumerates the columns in the control:

with thisform.Grid1.Columns
 for i = 0 to .Count - 1
 wait window nowait .Item(i).Caption
 next
endwith

property Columns.Item (Index as Variant) as Column
Returns a specific Column of the Columns collection.

Type Description

Index as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption or
column's key.

Column A Column object being accessed.

Use the Item property to access to a specific column. The Count property counts the
columns in the control. Use the Columns property to access the control's Columns
collection. The SortBarColumn / SortBarColumnsCount properties can be used to
enumerate the columns in the control's sort bar. The Visible property indicates whether the
column is visible or hidden. The Position property specifies the position of the column. The
user can change the column's position by drag and drop, so the position of the column can
be changed at runtime. Instead the Index property is a read only property that gives the
index of the column in the collection.

The following VB6 sample enumerates the visible columns as they are displayed:

Private Sub enumColumns(ByVal g As EXGRIDLibCtl.Grid)
 Dim cArray() As EXGRIDLibCtl.Column
 With g
 ReDim Preserve cArray(.Columns.Count)
 For Each c In .Columns
 If (c.Visible) Then
 Set cArray(c.Position) = c
 End If
 Next
 End With
 For Each c In cArray
 If Not c Is Nothing Then
 Debug.Print c.Caption & "(" & c.Index & ")"
 End If
 Next
End Sub

The Item property is the default property of the Columns object so the following statements
are equivalents:

Grid1.Columns.Item ("Freight")
Grid1.Columns ("Freight")

The following VB sample enumerates the columns in the control:

For i = 0 To Grid1.Columns.Count - 1
 Debug.Print Grid1.Columns(i).Caption
Next

The following VC sample enumerates the columns in the control:

#include "Columns.h"
#include "Column.h"
CColumns columns = m_grid.GetColumns();
for (long i = 0; i < columns.GetCount(); i++)
{
 CColumn column = columns.GetItem(COleVariant(i));
 OutputDebugString(column.GetCaption());
}

The following VB.NET sample enumerates the columns in the control:

With AxGrid1.Columns
 Dim i As Integer
 For i = 0 To .Count - 1
 Debug.WriteLine(.Item(i).Caption)
 Next
End With

The following C# sample enumerates the columns in the control:

EXGRIDLib.Columns columns =axGrid1.Columns;
for (int i = 0; i < columns.Count; i++)
{
 EXGRIDLib.Column column = columns[i];
 System.Diagnostics.Debug.WriteLine(column.Caption);
}

The following VFP sample enumerates the columns in the control:

with thisform.Grid1.Columns
 for i = 0 to .Count - 1
 wait window nowait .Item(i).Caption
 next
endwith

property Columns.ItemBySortPosition (Position as Variant) as Column
Returns a Column object giving its sorting position.

Type Description

Position as Variant A long expression that indicates the position of column
being requested.

Column A Column object being accessed.

Use the ItemBySortPosition property to get the list of sorted columns in their order. Use the
SortPosition property to specify the position of the column in the sorting columns collection.
Use the SingleSort property to specify whether the control supports sorting by single or
multiple columns. Use the SortOrder property to sort a column programmatically. The
control fires the Sort event when the user sorts a column. The SortBarColumn /
SortBarColumnsCount properties can be used to enumerate the columns in the control's
sort bar.

The following VB sample displays the list of columns being sorted:

Dim s As String, i As Long, c As Column
i = 0
With Grid1.Columns
 Set c = .ItemBySortPosition(i)
 While (Not c Is Nothing)
 s = s + """" & c.Caption & """ " & IIf(c.SortOrder = SortAscending, "A", "D") & " "
 i = i + 1
 Set c = .ItemBySortPosition(i)
 Wend
End With
s = "Sort: " & s
Debug.Print s

The following VC sample displays the list of columns being sorted:

CString strOutput;
CColumns columns = m_grid.GetColumns();
long i = 0;
CColumn column = columns.GetItemBySortPosition(COleVariant(i));
while (column.m_lpDispatch)
{

 strOutput += "\"" + column.GetCaption() + "\" " + (column.GetSortOrder() == 1 ? "A" :
"D") + " ";
 i++;
 column = columns.GetItemBySortPosition(COleVariant(i));
}
OutputDebugString(strOutput);

The following VB.NET sample displays the list of columns being sorted:

With AxGrid1
 Dim s As String, i As Integer, c As EXGRIDLib.Column
 i = 0
 With AxGrid1.Columns
 c = .ItemBySortPosition(i)
 While (Not c Is Nothing)
 s = s + """" & c.Caption & """ " & IIf(c.SortOrder =
EXGRIDLib.SortOrderEnum.SortAscending, "A", "D") & " "
 i = i + 1
 c = .ItemBySortPosition(i)
 End While
 End With
 s = "Sort: " & s
 Debug.WriteLine(s)
End With

The following C# sample displays the list of columns being sorted:

string strOutput = "";
int i = 0;
EXGRIDLib.Column column = axGrid1.Columns.get_ItemBySortPosition(i);
while (column != null)
{
 strOutput += column.Caption + " " + (column.SortOrder ==
EXGRIDLib.SortOrderEnum.SortAscending ? "A" : "D") + " ";
 column = axGrid1.Columns.get_ItemBySortPosition(++i);
}
Debug.WriteLine(strOutput);

The following VFP sample displays the list of columns being sorted (the code is listed in the
Sort event) :

local s, i, c
i = 0
s = ""
With thisform.Grid1.Columns
 c = .ItemBySortPosition(i)
 do While (!isnull(c))
 with c
 s = s + "'" + .Caption
 s = s + "' " + IIf(.SortOrder = 1, "A", "D") + " "
 i = i + 1
 endwith
 c = .ItemBySortPosition(i)
 enddo
endwith
s = "Sort: " + s
wait window nowait s

method Columns.Remove (Index as Variant)
Removes a specific member from the Columns collection.

Type Description

Index as Variant
A long expression that indicates the column's index being
removed, or a string expression that indicates the column's
caption or column's key

The Remove method removes a specific column in the Columns collection. Use Clear
method to remove all Column objects. The RemoveColumn event is fired when a column is
about to be removed. Use the Visible property to hide a column.

property Columns.SortBarColumn (Position as Variant) as Column
Returns the Column from control's SortBar giving its position.

Type Description

Position as Variant A long expression that specifies the position where the
column is requested

Column A Column object that specifies the sorted/grouped column
at giving position, or empty if no column is found.

The SortBarColumn / SortBarColumnsCount properties can be used to enumerate the
columns in the control's sort bar. Use the SortOrder property of the Column object on
SortAscending / SortDescending to add a column to the sort bar, on SortNone to remove
the column from the control's sort bar. Use the SortType property to determine the way
how the column is sorted. Use the AllowSort property to avoid sorting a column when the
user clicks the column. Use the SingleSort property to specify whether the control supports
sorting by single or multiple columns. For instance, the SortBarColumnsCount counts the
number of grouped columns, if the control's AllowGroupBy property is True.

property Columns.SortBarColumnsCount as Long
Retrieves the count of Columns, in the control's SortBar

Type Description

Long A long expression that specifies the number of columns
being shown in the control's sort bar.

By default, the SortBarColumnsCount property is 0. The SortBarColumnsCount property
counts the columns being shown in the sort bar. The SortBarColumn /
SortBarColumnsCount properties can be used to enumerate the columns in the control's
sort bar. Use the SortOrder property of the Column object on SortAscending /
SortDescending to add a column to the sort bar, on SortNone to remove the column from
the control's sort bar. Use the SortType property to determine the way how the column is
sorted. Use the AllowSort property to avoid sorting a column when the user clicks the
column. Use the SingleSort property to specify whether the control supports sorting by
single or multiple columns. For instance, the SortBarColumnsCount counts the number of
grouped columns, if the control's AllowGroupBy property is True.

ConditionalFormat object
The conditional formatting feature allows you to apply formats to a cell or range of cells,
and have that formatting change depending on the value of the cell or the value of a
formula. Use the Add method to add new ConditionalFormat objects. Use the Item property
to access a ConditionalFormat object. The ConditionalFormat object supports the following
properties and method:

Name Description

ApplyTo Specifies whether the format is applied to items or
columns.

BackColor Retrieves or sets the background color for objects that
match the condition.

Bold Bolds the objects that match the condition.
ClearBackColor Clears the background color.
ClearForeColor Clears the foreground color.
Enabled Specifies whether the condition is enabled or disabled.

Expression Indicates the expression being used in the conditional
format.

Font Retrieves or sets the font for objects that match the
criteria.

ForeColor Retrieves or sets the foreground color for objects that
match the condition.

Italic Specifies whether the objects that match the condition
should appear in italic.

Key Checks whether the expression is syntactically correct.

StrikeOut Specifies whether the objects that match the condition
should appear in strikeout.

Underline Underlines the objects that match the condition.
Valid Checks whether the expression is syntactically correct.

property ConditionalFormat.ApplyTo as FormatApplyToEnum
Specifies whether the format is applied to items or columns.

Type Description

FormatApplyToEnum

A FormatApplyToEnum expression that indicates whether
the format is applied to items or to columns. If the ApplyTo
property is less than zero, the format is applied to the
items.

By default, the format is applied to items. The ApplyTo property specifies whether the
format is applied to the items or to the columns. If the ApplyTo property is greater or equal
than zero the format is applied to the column with the index ApplyTo. For instance, if the
ApplyTo property is 0, the format is applied to the cells in the first column. If the ApplyTo
property is 1, the format is applied to the cells in the second column, if the ApplyTo property
is 2, the format is applied to the cells in the third column, and so on. If the ApplyTo property
is -1, the format is applied to items.

The following VB sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

With Grid1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C++ sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

COleVariant vtEmpty;
CConditionalFormat cf = m_grid.GetConditionalFormats().Add("%1+%2<%0", vtEmpty);
cf.SetBold(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

With AxGrid1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C# sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

EXGRIDLib.ConditionalFormat cf = axGrid1.ConditionalFormats.Add("%1+%2<%0",null);
cf.Bold = true;
cf.ApplyTo = (EXGRIDLib.FormatApplyToEnum)1;

The following VFP sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

with thisform.Grid1.ConditionalFormats.Add("%1+%2<%0")
 .Bold = .t.
 .ApplyTo = 1
endwith

property ConditionalFormat.BackColor as Color
Retrieves or sets the background color for objects that match the condition.

Type Description

Color

A color expression that indicates the background color for
the object that match the criteria. The last 7 bits in the high
significant byte of the color to indicates the identifier of the
skin being used. Use the Add method to add new skins to
the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits
in the high significant byte of the color being applied to the
background's part.

Use the BackColor property to change the background color for items or cells in the column
when a certain condition is met. Use the ForeColor property to specify the foreground color
for objects that match the criteria. Use the ClearBackColor method to remove the
background color being set using previously the BackColor property. If the BackColor
property is not set, it retrieves 0. The ApplyTo property specifies whether the
ConditionalFormat object is applied to items or to cells in the column.

property ConditionalFormat.Bold as Boolean
Bolds the objects that match the condition.

Type Description

Boolean A boolean expression that indicates whether the objects
should appear in bold.

The ApplyTo property specifies whether the ConditionalFormat object is applied to items or
to cells in the column. The following VB sample bolds all cells in the second column (1), if
the sum between second and third column (2) is less than the value in the first column (0
):

With Grid1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C++ sample bolds all cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

COleVariant vtEmpty;
CConditionalFormat cf = m_grid.GetConditionalFormats().Add("%1+%2<%0", vtEmpty);
cf.SetBold(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample bolds all cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

With AxGrid1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C# sample bolds all cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

EXGRIDLib.ConditionalFormat cf = axGrid1.ConditionalFormats.Add("%1+%2<%0",null);
cf.Bold = true;
cf.ApplyTo = (EXGRIDLib.FormatApplyToEnum)1;

The following VFP sample bolds all cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

with thisform.Grid1.ConditionalFormats.Add("%1+%2<%0")
 .Bold = .t.
 .ApplyTo = 1
endwith

method ConditionalFormat.ClearBackColor ()
Clears the background color.

Type Description

Use the ClearBackColor method to remove the background color being set using previously
the BackColor property. If the BackColor property is not set, it retrieves 0.

method ConditionalFormat.ClearForeColor ()
Clears the foreground color.

Type Description

Use the ClearBackColor method to remove the foreground color being set using previously
the ForeColor property. If the ForeColor property is not set, it retrieves 0.

property ConditionalFormat.Enabled as Boolean
Specifies whether the condition is enabled or disabled.

Type Description

Boolean A boolean expression that indicates whether the
expression is enabled or disabled.

By default, all expressions are enabled. A format is applied only if the expression is valid
and enabled. Use the Expression property to specify the format's formula. The Valid
property checks whether the formula is valid or not valid. Use the Enabled property to
disable applying the format for the moment. Use the Remove method to remove an
expression from ConditionalFormats collection.

property ConditionalFormat.Expression as String
Indicates the expression being used in the conditional format.

Type Description

String

A formal expression that indicates the formula being used
in formatting. For instance, "%0+%1>%2", highlights the
cells or the items, when the sum between first two
columns is greater than the value in the third column

The conditional formatting feature allows you to apply formats to a cell or range of cells,
and have that formatting change depending on the value of the cell or the value of a
formula. The Expression property specifies a formula that indicates the criteria to format the
items or the columns. Use the ApplyTo property to specify when the items or the columns
are formatted. Use the Add method to specify the expression at adding time. The
Expression property may include variables, constants, operators or () parenthesis. A
variable is defined as %n, where n is the index of the column (zero based). For instance,
the %0 indicates the first column, the %1, indicates the second column, and so on. A
constant is a float expression (for instance, 23.45). Use the Valid property checks whether
the expression is syntactically correct, and can be evaluated. If the expression contains a
variable that is not known, 0 value is used instead. For instance, if your control has 2
columns, and the expression looks like "%2 +%1 ", the %2 does not exist, 0 is used
instead. When the control contains two columns the known variables are %0 and %1.

The expression may be a combination of variables, constants, strings, dates and
operators. A string is delimited by ", ` or ' characters, and inside they can have the starting
character preceded by \ character, ie "\"This is a quote\"". A date is delimited by two #
characters, ie #1/31/2001 10:00# means the January 31th, 2001, 10:00 AM.

The expression supports cell's identifiers as follows:

%0, %1, %2, ...{any} specifies the value of the cell in the column with the index 0, 1
2, ... The CellValue property defines the cell's value. For example, "%0 format ``"
formats the value in the cell at index 0 using the current regional settings, while
"int(%1)" converts the value in the cell at index 1 to an integer.
%C0, %C1, %C2, ...{string} specifies the caption of the cell, or the string the cell
displays in the column with the index 0, 1 2, ... The CellCaption property gets the
cell's formatted caption. The cell's displayed string may differ from its actual value.
For example, if a cell displays HTML content, %0 returns the HTML format including
the tags, while %C0 returns the cell's content as a plain string without HTML tags. For
instance, "upper(%C1)" converts the caption of the cell at index 1 to uppercase, while
"%C0 left 2" returns the leftmost two characters of the caption in the cell at index 0.
%CD0, %CD1, %CD2, ...{any} specifies the cell's extra data in the column with the

index 0, 1 2, ... The CellData property associates any extra/user data to a cell. For
example, "%CD0 = your user data" specifies all cells in the column with index 0
whose CellData property is equal to your user data.
%CS0, %CS1, %CS2, ...{number} specifies the cell's state in the column with the
index 0, 1 2, ... The CellState property defines the state of a cell, indicating whether it
is checked or unchecked. For example, "%CS0" identifies all checked items in the
column with index 0, while "not %CS1" identifies all unchecked items in the column
with index 1.
%CT0, %CT1, %CT2, ... {boolean} returns true if the cell displays a total field;
otherwise, it returns false. The exTotalField / exTotalColumn flag specifies whether
the cell displays a total field. For instance, "%CT1" refers to all cells in the second
column that display totals, while "not %CT1" refers to all cells in the second column
that do not display totals.
%CE0, %CE1, %CE2, ... {boolean} returns true if the cell is editable; otherwise, it
returns false.. For example, "%CE0" refers to all editable cells in the first column,
while "not %CE1" refers to all cells in the second column that are read-only.
%CC0, %CC1, %CC2, ... {number} retrieve the number of child items (this keyword
consistently returns identical results for all cells since it pertains to the item that hosts
each cell). The ChildCount property returns the number of child items. For example,
"%CC0" identifies all parent items, while "%CC0 = 0" identifies all leaf items.
%CX0, %CX1, %CX2, ... {boolean} returns true if the item hosting the cell is
expanded, or false if it is collapsed (this keyword consistently returns identical results
for all cells since it pertains to the item that hosts each cell). The ExpandItem property
specifically indicates whether the item is expanded or collapsed. For example,
"%CX0" refers to all expanded items, while "not %CX0" identifies all collapsed items

This property/method supports predefined constants and operators/functions as described
here.

Usage examples:

1. "1", highlights all cells or items. Use this form, when you need to highlight all cells or
items in the column or control.

2. "%0 >= 0", highlights the cells or items, when the cells in the first column have the value
greater or equal with zero

3. "%0 = 1 and %1 = 0", highlights the cells or items, when the cells in the first column
have the value equal with 0, and the cells in the second column have the value equal
with 0

4. "%0+%1>%2", highlights the cells or the items, when the sum between first two
columns is greater than the value in the third column

5. "%0+%1 > %2+%3", highlights the cells or items, when the sum between first two
columns is greater than the sum between third and forth column.

6. "%0+%1 >= 0 and (%2+%3)/2 < %4-5", highlights the cells or the items, when the sum
between first two columns is greater than 0 and the half of the sum between third and
forth columns is less than fifth column minus 5.

7. "%0 startwith 'A'" specifies the cells that starts with A
8. "%0 endwith 'Bc'" specifies the cells that ends with Bc
9. "%0 contains 'aBc'" specifies the cells that contains the aBc string

10. "lower(%0) contains 'abc'" specifies the cells that contains the abc, AbC, ABC, and
so on

11. "upper(%0)'" retrieves the uppercase string
12. "len(%0)>0'" specifies the not blanks cells
13. "len %0 = 0'" specifies the blanks cells

The conditional format feature may change the cells and items as follows:

Bold property. Bolds the cell or items
Italic property. Indicates whether the cells or items should appear in italic.
StrikeOut property. Indicates whether the cells or items should appear in strikeout.
Underline property. Underlines the cells or items
Font property. Changes the font for cells or items.
BackColor property. Changes the background color for cells or items, supports skins
as well.
ForeColor property. Changes the foreground color for cells or items.

The following VB samples bolds all items when the sum between first two columns is
greater than 0:

Grid1.ConditionalFormats.Add("%0+%1>0").Bold = True

The following C++ sample bolds all items when the sum between first two columns is
greater than 0:

COleVariant vtEmpty;
m_grid.GetConditionalFormats().Add("%0+%1>0", vtEmpty).SetBold(TRUE);

The following VB.NET sample bolds all items when the sum between first two columns is
greater than 0:

AxGrid1.ConditionalFormats.Add("%0+%1>0").Bold = True

The following C# sample bolds all items when the sum between first two columns is greater
than 0:

axGrid1.ConditionalFormats.Add("%0+%1>0", null).Bold = true

The following VFP sample bolds all items when the sum between first two columns is
greater than 0:

thisform.Grid1.ConditionalFormats.Add("%0+%1>0").Bold = .t.

property ConditionalFormat.Font as IFontDisp
Retrieves or sets the font for objects that match the criteria.

Type Description
IFontDisp A Font object that's applied to items or columns.

Use the Font property to change the font for items or columns that match the criteria. Use
the Font property only, if you need to change to a different font.

You can change directly the font attributes, like follows:

Bold property. Bolds the cell or items
Italic property. Indicates whether the cells or items should appear in italic.
StrikeOut property. Indicates whether the cells or items should appear in strikeout.
Underline property. Underlines the cells or items

The following VB sample changes the font for ALL cells in the first column:

With Grid1.ConditionalFormats.Add("1")
 .ApplyTo = 0
 Set .Font = New StdFont
 With .Font
 .Name = "Comic Sans MS"
 End With
End With

property ConditionalFormat.ForeColor as Color
Retrieves or sets the foreground color for objects that match the condition.

Type Description

Color A color expression that indicates the foreground color for
the object that match the criteria.

Use the ForeColor property to specify the foreground color for objects that match the
criteria. Use the BackColor property to change the background color for items or cells in the
column when a certain condition is met. Use the ClearForeColor method to remove the
foreground color being set using previously the ForeColor property. If the ForeColor
property is not set, it retrieves 0. The ApplyTo property specifies whether the
ConditionalFormat object is applied to items or to cells in the column.

property ConditionalFormat.Italic as Boolean
Specifies whether the objects that match the condition should appear in italic.

Type Description

Boolean A boolean expression that indicates whether the objects
should look in italic.

The ApplyTo property specifies whether the ConditionalFormat object is applied to items or
to cells in the column. The following VB sample makes italic the cells in the second column (
1), if the sum between second and third column (2) is less than the value in the first
column (0):

With Grid1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Italic = True
End With

The following C++ sample makes italic the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

COleVariant vtEmpty;
CConditionalFormat cf = m_grid.GetConditionalFormats().Add("%1+%2<%0", vtEmpty);
cf.SetItalic(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample makes italic the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

With AxGrid1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Italic = True
End With

The following C# sample makes italic the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

EXGRIDLib.ConditionalFormat cf = axGrid1.ConditionalFormats.Add("%1+%2<%0",null);
cf.Italic = true;
cf.ApplyTo = (EXGRIDLib.FormatApplyToEnum)1;

The following VFP sample makes italic the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

with thisform.Grid1.ConditionalFormats.Add("%1+%2<%0")
 .Italic = .t.
 .ApplyTo = 1
endwith

property ConditionalFormat.Key as Variant
Checks whether the expression is syntactically correct.

Type Description
Variant A String expression that indicates the key of the element

The Key property indicates the key of the element. Use the Add method to specify a key at
adding time. Use the Remove method to remove a formula giving its key.

property ConditionalFormat.StrikeOut as Boolean
Specifies whether the objects that match the condition should appear in strikeout.

Type Description

Boolean A Boolean expression that indicates whether the objects
should appear in strikeout.

The ApplyTo property specifies whether the ConditionalFormat object is applied to items or
to cells in the column. The following VB sample applies strikeout font attribute to cells in the
second column (1), if the sum between second and third column (2) is less than the value
in the first column (0):

With Grid1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C++ sample applies strikeout font attribute to cells in the second column (1),
if the sum between second and third column (2) is less than the value in the first column (
0):

COleVariant vtEmpty;
CConditionalFormat cf = m_grid.GetConditionalFormats().Add("%1+%2<%0", vtEmpty);
cf.SetBold(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample applies strikeout font attribute to cells in the second column (
1), if the sum between second and third column (2) is less than the value in the first
column (0):

With AxGrid1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C# sample applies strikeout font attribute to cells in the second column (1), if
the sum between second and third column (2) is less than the value in the first column (0
):

EXGRIDLib.ConditionalFormat cf = axGrid1.ConditionalFormats.Add("%1+%2<%0",null);

cf.Bold = true;
cf.ApplyTo = (EXGRIDLib.FormatApplyToEnum)1;

The following VFP sample applies strikeout font attribute to cells in the second column (1),
if the sum between second and third column (2) is less than the value in the first column (
0):

with thisform.Grid1.ConditionalFormats.Add("%1+%2<%0")
 .Bold = .t.
 .ApplyTo = 1
endwith

property ConditionalFormat.Underline as Boolean
Underlines the objects that match the condition.

Type Description

Boolean A boolean expression that indicates whether the objects
are underlined.

The ApplyTo property specifies whether the ConditionalFormat object is applied to items or
to cells in the column. The following VB sample underlines the cells in the second column (1
), if the sum between second and third column (2) is less than the value in the first column
(0):

With Grid1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Underline = True
End With

The following C++ sample underlines the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

COleVariant vtEmpty;
CConditionalFormat cf = m_grid.GetConditionalFormats().Add("%1+%2<%0", vtEmpty);
cf.SetUnderline(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample underlines the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

With AxGrid1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Underline = True
End With

The following C# sample underlines the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

EXGRIDLib.ConditionalFormat cf = axGrid1.ConditionalFormats.Add("%1+%2<%0",null);
cf.Underline = true;
cf.ApplyTo = (EXGRIDLib.FormatApplyToEnum)1;

The following VFP sample underlines the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

with thisform.Grid1.ConditionalFormats.Add("%1+%2<%0")
 .Underline = .t.
 .ApplyTo = 1
endwith

property ConditionalFormat.Valid as Boolean
Checks whether the expression is syntactically correct.

Type Description

Boolean A boolean expression that indicates whether the
Expression property is valid.

Use the Valid property to check whether the Expression formula is valid. The conditional
format is not applied to objects if expression is not valid, or the Enabled property is false.
An empty expression is not valid. Use the Enabled property to disable applying the format
to columns or items. Use the Remove method to remove an expression from
ConditionalFormats collection.

ConditionalFormats object
The conditional formatting feature allows you to apply formats to a cell or range of cells,
and have that formatting change depending on the value of the cell or the value of a
formula. The ConditionalFormats collection holds a collection of ConditionalFormat objects.
Use the ConditionalFormats property to access the control's ConditionalFormats collection
.The ConditionalFormats collection supports the following properties and methods:

Name Description

Add Adds a new expression to the collection and returns a
reference to the newly created object.

Clear Removes all expressions in a collection.
Count Returns the number of objects in a collection.
Item Returns a specific expression.
Remove Removes a specific member from the collection.

method ConditionalFormats.Add (Expression as String, [Key as Variant])
Adds a new expression to the collection and returns a reference to the newly created
object.

Type Description

Expression as String

A formal expression that indicates the formula being used
when the format is applied. Please check the Expression
property that shows the syntax of the expression that may
be used. For instance, the "%0 >= 10 and %1 > 67.23"
means all cells in the first column with the value less or
equal than 10, and all cells in the second column with a
value greater than 67.23

Key as Variant

A string or long expression that indicates the key of the
expression being added. If the Key parameter is missing,
by default, the current index in the ConditionalFormats
collection is used.

Return Description

ConditionalFormat A ConditionalFormat object that indicates the newly format
being added.

The conditional formatting feature allows you to apply formats to a cell or range of cells,
and have that formatting change depending on the value of the cell or the value of a
formula. Use the Add method to format cells or items based on values. Use the Add method
to add new ConditionalFormat objects to the ConditionalFormats collection. By default, the
ConditionalFormats collection is empty. A ConditionalFormat object indicates a formula and
a format to apply to cells or items. The ApplyTo property specifies whether the
ConditionalFormat object is applied to items or to cells in the column. Use the Expression
property to retrieve or set the formula. Use the Key property to retrieve the key of the
object. Use the Refresh method to update the changes on the control's content.

The conditional format feature may change the cells and items as follows:

Bold property. Bolds the cell or items
Italic property. Indicates whether the cells or items should appear in italic.
StrikeOut property. Indicates whether the cells or items should appear in strikeout.
Underline property. Underlines the cells or items
Font property. Changes the font for cells or items.
BackColor property. Changes the background color for cells or items, supports skins
as well.
ForeColor property. Changes the foreground color for cells or items.

The following VB sample bolds all items when the sum between first two columns is greater
than 0:

Grid1.ConditionalFormats.Add("%0+%1>0").Bold = True

The following VB sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

With Grid1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C++ sample bolds all items when the sum between first two columns is
greater than 0:

COleVariant vtEmpty;
m_grid.GetConditionalFormats().Add("%0+%1>0", vtEmpty).SetBold(TRUE);

The following C++ sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

COleVariant vtEmpty;
CConditionalFormat cf = m_grid.GetConditionalFormats().Add("%1+%2<%0", vtEmpty);
cf.SetBold(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample bolds all items when the sum between first two columns is
greater than 0:

AxGrid1.ConditionalFormats.Add("%0+%1>0").Bold = True

The following VB.NET sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

With AxGrid1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C# sample bolds all items when the sum between first two columns is greater

than 0:

axGrid1.ConditionalFormats.Add("%0+%1>0", null).Bold = true

The following C# sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

EXGRIDLib.ConditionalFormat cf = axGrid1.ConditionalFormats.Add("%1+%2<%0",null);
cf.Bold = true;
cf.ApplyTo = (EXGRIDLib.FormatApplyToEnum)1;

The following VFP sample bolds all items when the sum between first two columns is
greater than 0:

thisform.Grid1.ConditionalFormats.Add("%0+%1>0").Bold = .t.

The following VFP sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

with thisform.Grid1.ConditionalFormats.Add("%1+%2<%0")
 .Bold = .t.
 .ApplyTo = 1
endwith

method ConditionalFormats.Clear ()
Removes all expressions in a collection.

Type Description

Use the Clear method to remove all objects in the collection. Use the Remove method to
remove a particular object from the collection. Use the Enabled property to disable a
conditional format.

property ConditionalFormats.Count as Long
Returns the number of objects in a collection.

Type Description

Long A long expression that counts the number of elements in
the collection.

Use the Item and Count property to enumerate the elements in the collection. Use the
Expression property to get the expression of the format.

The following VB sample enumerates all elements in the ConditionalFormats collection:

Dim c As ConditionalFormat
For Each c In Grid1.ConditionalFormats
 Debug.Print c.Expression
Next

The following VB sample enumerates all elements in the ConditionalFormats collection:

Dim i As Integer
With Grid1.ConditionalFormats
 For i = 0 To .Count - 1
 Debug.Print .Item(i).Expression
 Next
End With

The following C++ sample enumerates all elements in the ConditionalFormats collection:

for (long i = 0; i < m_grid.GetConditionalFormats().GetCount(); i++)
{
 CConditionalFormat cf = m_grid.GetConditionalFormats().GetItem(COleVariant(i));
 OutputDebugString(cf.GetExpression());
}

The following VB.NET sample enumerates all elements in the ConditionalFormats collection:

Dim c As EXGRIDLib.ConditionalFormat
For Each c In AxGrid1.ConditionalFormats
 System.Diagnostics.Debug.Write(c.Expression)
Next

The following VB.NET sample enumerates all elements in the ConditionalFormats collection:

Dim i As Integer
With AxGrid1.ConditionalFormats
 For i = 0 To .Count - 1
 System.Diagnostics.Debug.Write(.Item(i).Expression)
 Next
End With

The following C# sample enumerates all elements in the ConditionalFormats collection:

foreach (EXGRIDLib.ConditionalFormat c in axGrid1.ConditionalFormats)
 System.Diagnostics.Debug.Write(c.Expression);

The following C# sample enumerates all elements in the ConditionalFormats collection:

for (int i = 0; i < axGrid1.ConditionalFormats.Count; i++)
 System.Diagnostics.Debug.Write(axGrid1.ConditionalFormats[i].Expression);

The following VFP sample enumerates all elements in the ConditionalFormats collection:

with thisform.Grid1.ConditionalFormats
 for i = 0 to .Count - 1
 wait .Item(i).Expression
 next
endwith

property ConditionalFormats.Item (Key as Variant) as ConditionalFormat
Returns a specific expression.

Type Description

Key as Variant
A long expression that indicates the index of the element
being accessed, or a string expression that indicates the
key of the element being accessed.

ConditionalFormat A ConditionalFormat object being returned.

Use the Item and Count property to enumerate the elements in the collection. Use the
Expression property to get the expression of the format. Use the Key property to get the
key of the format.

The following VB sample enumerates all elements in the ConditionalFormats collection:

Dim c As ConditionalFormat
For Each c In Grid1.ConditionalFormats
 Debug.Print c.Expression
Next

The following VB sample enumerates all elements in the ConditionalFormats collection:

Dim i As Integer
With Grid1.ConditionalFormats
 For i = 0 To .Count - 1
 Debug.Print .Item(i).Expression
 Next
End With

The following C++ sample enumerates all elements in the ConditionalFormats collection:

for (long i = 0; i < m_grid.GetConditionalFormats().GetCount(); i++)
{
 CConditionalFormat cf = m_grid.GetConditionalFormats().GetItem(COleVariant(i));
 OutputDebugString(cf.GetExpression());
}

The following VB.NET sample enumerates all elements in the ConditionalFormats collection:

Dim c As EXGRIDLib.ConditionalFormat

For Each c In AxGrid1.ConditionalFormats
 System.Diagnostics.Debug.Write(c.Expression)
Next

The following VB.NET sample enumerates all elements in the ConditionalFormats collection:

Dim i As Integer
With AxGrid1.ConditionalFormats
 For i = 0 To .Count - 1
 System.Diagnostics.Debug.Write(.Item(i).Expression)
 Next
End With

The following C# sample enumerates all elements in the ConditionalFormats collection:

foreach (EXGRIDLib.ConditionalFormat c in axGrid1.ConditionalFormats)
 System.Diagnostics.Debug.Write(c.Expression);

The following C# sample enumerates all elements in the ConditionalFormats collection:

for (int i = 0; i < axGrid1.ConditionalFormats.Count; i++)
 System.Diagnostics.Debug.Write(axGrid1.ConditionalFormats[i].Expression);

The following VFP sample enumerates all elements in the ConditionalFormats collection:

with thisform.Grid1.ConditionalFormats
 for i = 0 to .Count - 1
 wait .Item(i).Expression
 next
endwith

method ConditionalFormats.Remove (Key as Variant)
Removes a specific member from the collection.

Type Description

Key as Variant A Long or String expression that indicates the key of the
element to be removed.

Use the Remove method to remove a particular object from the collection. Use the Enabled
property to disable a conditional format. Use the Clear method to remove all objects in the
collection.

Editor object
The Editor object holds information about an editor. A cell or a column may have assigned
an editor. Use the Editor property to access the column's editor. Use the CellEditor property
to access the cell's editor. The Editor object supports the following properties and methods:

Name Description

AddButton Adds a new button to the editor with specified key and
aligns it to the left or right side of the editor.

AddItem Adds a new item to the editor's list.
Appearance Retrieves or sets the editor's appearance
ButtonWidth Specifies the width of the buttons in the editor.
ClearButtons Clears the buttons collection.
ClearItems Clears the items collection.
DropDown Displays the drop down list.

DropDownAlignment Retrieves or sets a value that indicates the item's
alignment in the editor's drop-down list.

DropDownAutoWidth
Retrieves or sets a value that indicates whether the
editor's drop-down window list is automatically computed
to fit the entire list.

DropDownMinWidth Specifies the minimum drop-down list width if the
DropDownAutoWidth is False.

DropDownRows Retrieves or sets a value that indicates the maximum
number of visible rows in the editor's drop- down list.

DropDownVisible Retrieves or sets a value that indicates whether the
editor's drop down button is visible or hidden.

EditType Retrieves or sets a value that indicates the type of the
contained editor.

ExpandAll Expands all items in the editor's list.
ExpandItem Expandes or collapses an item in the editor's list.
FindItem Finds an item given its value or caption.
InsertItem Inserts a child item to the editor's list.

ItemToolTip Gets or sets the text displayed when the mouse pointer
hovers over a predefined item.

Locked Determines whether the editor is locked or unlocked.
Retrieves or sets a value that indicates the mask used by

Mask the editor.

MaskChar Retrieves or sets a value that indicates the character used
for masking.

Numeric Specifies whether the editor enables numeric values only.
Option Specifies an option for the editor.

PartialCheck Retrieves or sets a value that indicates whether the
associated check box has two or three states.

PopupAppearance Retrieves or sets a value that indicates the drop-down
window's appearance.

RemoveButton Removes a button given its key.
RemoveItem Removes an item from the editor's predefined values list.
SortItems Sorts the list of items in the editor.

UserEditor Specifies the control's identifier and the control's runtime
license key when EditType is UserEditor.

UserEditorObject Gets the user editor object when EditType is UserEditor.

method Editor.AddButton (Key as Variant, [Image as Variant], [Align as
Variant], [ToolTip as Variant], [ToolTipTitle as Variant], [ShortcutKey as
Variant])
Adds a new button to the editor with the given Key and aligned to the left or to the right
side. You can specify the button's tooltip too.

Type Description

Key as Variant A Variant value that indicates the button's key. The
ButtonClick event passes this value to Key parameter

Image as Variant
A long expression that indicates the index of button's icon.
The index is valid for Images collection. By default the
button has no icon associated.

Align as Variant An AlignmentEnum expression that defines the button's
alignment.

ToolTip as Variant

A string expression that indicates the the button's tooltip
description. The tooltip shows up when cursor hovers the
button. The ToolTip parameter may include buitl-in HTML
tags.

ToolTipTitle as Variant A string expression that indicates the tooltip's title.

ShortcutKey as Variant

A short expression that indicates the shortcut key being
used to simulate clicking the button. The lower byte
indicates the code of the virtual key, and the higher byte
indicates the states for SHIFT, CTRL and ALT keys (last
insignificant bits in the higher byte). The ShortcutKey
expression could be 256 *((shift ? 1 : 0) + (ctrl ? 2 : 0)
+ (alt ? 4 : 0)) + vbKeyCode, For instance, a combination
like CTRL + F3 is 256 * 2 + vbKeyF3, SHIFT + CTRL + F2
is 256 *(1 + 2) + vbKeyF2, and SHIFT + CTRL + ALT + F5
is 256 * (1 + 2 + 4) + vbKeyF5.

Use the AddButton method to add multiple buttons to the editor. Make sure that you are
using unique keys for the buttons in the same editor, else the previous button is replaced.
The editor doesn't allow two buttons with the same key. Use the ButtonWidth property to
set the button's width. If the user clicks on one of the editor buttons, the ButtonClick event
is fired. Use CellHasButton property to display's the cell's caption as a button. Use the
RemoveButton method to remove a button that was previously added using the AddButton
method. Use the ClearButtons method to clear the entire collection of buttons added with
AddButton method. The control fires the ButtonClick event when the user clicks a button.

The following VB sample adds multiple buttons to the column's editor:

With Grid1
 With .Columns.Add("Column 1")
 .HeaderBold = True
 .HeaderImage = 1
 With .Editor
 .EditType = DropDownListType
 .DropDownAutoWidth = False

 .AddItem 0, "CS is bad", 3
 .AddItem 1, "xTras is the worst", 3
 .AddItem 2, "Yes, I agree!", 3

 .ButtonWidth = 24
 .AddButton "Key1", 1, , "This is a bit of text that should appear while the cursor is
over the button", "Information"
 .AddButton "Key2", 2
 .AddButton "Key3", 3, AlignmentEnum.RightAlignment
 .AddButton "Key3", 4, AlignmentEnum.RightAlignment
 End With
 End With
End With

The following VB sample adds an editor to the first visible item with three buttons, each of
the button has a shortcut key to activate it using the keyboard:

With Grid1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .ButtonWidth = 20
 .EditType = EditType

 .AddButton "A", 1, , "You can click the button <fgcolor=000080>'A'
</fgcolor> by pressing the F3 key.", , vbKeyF3
 .AddButton "B", 2, RightAlignment, "You can click the button <fgcolor=000080>
'B'</fgcolor> by pressing the CTRL + F3 key.", , vbKeyF3 + (256 * (2))
 .AddButton "C", 3, , "You can click the button <fgcolor=000080>'C'
</fgcolor> by pressing the CTRL + ALT + F3 key.", , vbKeyF3 + (256 * (2 + 4))
 End With
End With

The following C++ sample adds an EditType editor with a button to the first visible item:

#include "Items.h"
#include "Editor.h"
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
CItems items = m_grid.GetItems();
CEditor editor = items.GetCellEditor(COleVariant(items.GetFirstVisibleItem()),
COleVariant(long(0)));
editor.SetEditType(1 /*EditType*/);
editor.AddButton(COleVariant("A"), COleVariant("1"), vtMissing, vtMissing, vtMissing,
vtMissing);

The following VB.NET sample adds an EditType editor with a button to the first visible item:

With AxGrid1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = EXGRIDLib.EditTypeEnum.EditType
 .AddButton("A", 1)
 End With
End With

The following C# sample adds an EditType editor with a button to the first visible item:

EXGRIDLib.Items items = axGrid1.Items;

EXGRIDLib.Editor editor = items.get_CellEditor(items.FirstVisibleItem, 0);
editor.EditType = EXGRIDLib.EditTypeEnum.EditType;
editor.AddButton("A", 1, null, null, null, null);

The following VFP sample adds an EditType editor with a button to the first visible item:

with thisform.Grid1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = 1 && EditType
 .AddButton("A", 1)
 EndWith
endwith

method Editor.AddItem (Value as Long, Caption as String, [Image as
Variant])
Adds a new item to editor's predefined list.

Type Description
Value as Long A long expression that defines an unique predefined value

Caption as String

A string expression that specifies the HTML caption
associated with the value. The format of the Caption
parameter is "key|captionŚcaptionŚ...Ścaption", which
indicates an item with the giving key / identifier, which
displays multiple captions.

The Caption allows using the following special characters:

| character (pipe, vertical bar, ALT + 126) defines the
key or identifier of the item to add. Currently, the key
is used by a DropDownListType editor to specify
string codes rather numeric values for the cell's value
(CellValue property)
Ś character (vertical broken bar, ALT + 221) defines
captions for multiple columns. The Ś character can be
escaped, so \Ś displays the Ś character (available for
DropDownType, DropDownListType and PickEditType
editors, 20.0+)

For instance:

 "New York City" defines the "New York City"
item
 "NYC|New York City" the "New York City"
item with the "NYC" as key or identifier
"NYC|New York CityŚ783.8 km˛Ś8.42 mil"
defines the "New York City" item with the "NYC" as
key or identifier and sub-captions 783.8 km˛ and 8.42
mil (in separated columns)
"New York CityŚ783.8 km˛Ś8.42 mil" defines
the "New York City" item and sub-captions 783.8 km˛
and 8.42 mil (in separated columns)

Image as Variant
A long expression that indicates the index of the item's
icon (1-based). Use the Images method to assign a list of
icons to the control.

Use the AddItem method to add new items to the editor's predefined list. Use the
InsertItem method to insert child items to the editor's predefined list. If the AddItem method
uses a Value already defined, the old item is replaced. The AddItem method has effect for
the following type of editors: DropDownType, DropDownListType, PickEditType, and
CheckListType. Check each EditType value for what Value argument should contain. Use
the RemoveItem method to remove a particular item from the predefined list. Use the
ClearItems method to clear the entire list of predefined values. Use the SortItems to sort
the items. Use the ItemToolTip property to assign a tooltip to a predefined item into a drop
down list. Use the Refresh method update immediately the cell's content when adding new
items to a drop down list editor. The Caption parameter supports HTML tags listed here
here.

The following VB sample adds items to a CheckListType editor:

With Grid1
 With .Columns.Add("CheckList").Editor
 .EditType = CheckListType
 .AddItem &H1, "ReadOnly", 1
 .AddItem &H2, "Hidden", 2
 .AddItem &H4, "System", 3
 .AddItem &H10, "Directory", 4
 .AddItem &H20, "Archive", 5
 .AddItem &H80, "Normal", 7
 .AddItem &H100, "Temporary", 8
 End With
.Items.AddItem &H1 + &H2
End With

The following VB sample adds predefined values to drop down list editor:

With Grid1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = DropDownListType
 .AddItem 0, "No border", 1
 .AddItem 1, "Single Border", 2
 .AddItem 2, "Double Border", 3
 End With
End With

The following C++ sample adds predefined values to drop down list editor:

With Grid1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = DropDownListType
 .AddItem 0, "No border", 1
 .AddItem 1, "Single Border", 2
 .AddItem 2, "Double Border", 3
 End With
End With

The following VB.NET sample adds predefined values to drop down list editor:

With AxGrid1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = EXGRIDLib.EditTypeEnum.DropDownListType
 .AddItem(0, "No border", 1)
 .AddItem(1, "Single Border", 2)
 .AddItem(2, "Double Border", 3)
 End With
End With

The following C# sample adds predefined values to drop down list editor:

EXGRIDLib.Items items = axGrid1.Items;
EXGRIDLib.Editor editor = items.get_CellEditor(items.FirstVisibleItem, 0);
editor.EditType = EXGRIDLib.EditTypeEnum.DropDownListType ;
editor.AddItem(0, "No border", 1);
editor.AddItem(1, "Single border", 2);
editor.AddItem(2, "Double border", 3);

The following VFP sample adds predefined values to drop down list editor:

with thisform.Grid1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = 3 && DropDownList
 .AddItem(0, "No border", 1)
 .AddItem(1, "Single Border", 2)
 .AddItem(2, "Double Border", 3)

 EndWith
endwith

property Editor.Appearance as InplaceAppearanceEnum
Retrieves or sets the control's appearance

Type Description

InplaceAppearanceEnum An InplaceAppearanceEnum expression that defines the
editor's appearance.

Use the Appearance property to change the editor's border style. Use the
PopupAppearance property to define the appearance for editor's drop-down window, if it
exists. By default, the editor's Appearance is NoApp.

property Editor.ButtonWidth as Long
Specifies the width of the buttons in the editor.

Type Description

Long A long expression that defines the width of the buttons in
the editor, added using the AddButton method.

Use the ButtonWidth property to increase or decrease the width of buttons in the editor.
The button's height is the same with the ItemHeight property. If the ButtonWidth property is
zero (0), the control hides the buttons. Use the DropDownVisible property to hide the
editor's drop down button.

method Editor.ClearButtons ()
Clears the buttons collection.

Type Description

Use the ClearButtons method to clear the list of buttons that were added using the
AddButton method. Use the RemoveButton method to remove a particular button, given its
key. Use the ButtonWidth property to hide all the buttons.

method Editor.ClearItems ()
Clears the items collection.

Type Description

The ClearItems method clears the predefined values that were added using the AddItem or
InsertItem method. Use the RemoveItem method to remove a predefined value. Use the
DropDownVisible property to hide the drop-down window.

method Editor.DropDown ()
Displays the drop down list.

Type Description

The DropDown method shows the drop down portion of the cell's editor. The DropDown
method has effect only if the editor has a drop down portion. The following editors have a
drop down portion: DropDownType, DropDownListType, CheckListType, DateType,
ColorType, FontType, PictureType, PickEditType, ColorListType, MemoDropDownType or
CalculatorType. Use the AddItem, InsertItem method to add predefined value. Use the
RemoveItem method to remove a predefined value. Use the DropDownVisible property to
hide the drop down button, if it exists.

The following VB sample shows the drop down portion of an editor as soon as a cell is
focused:

Private Sub Grid1_FocusChanged()
 With Grid1
 Dim i As Long
 i = .FocusColumnIndex
 With Grid1.Items
 If (.CellEditorVisible(.FocusItem, i)) Then
 Dim e As EXGRIDLibCtl.Editor
 Set e = Grid1.Columns(i).Editor
 If .HasCellEditor(.FocusItem, i) Then
 Set e = .CellEditor(.FocusItem, i)
 End If
 If Not e Is Nothing Then
 e.DropDown
 End If
 End If
 End With
 End With
End Sub

The following C++ sample shows the drop down portion of an editor as soon as a cell is
focused:

#include "Columns.h"

#include "Column.h"
#include "Editor.h"
#include "Items.h"
void OnFocusChangedGrid1()
{
 if (IsWindow(m_grid.m_hWnd))
 {
 CItems items = m_grid.GetItems();
 COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
 COleVariant vtFocusCell(items.GetItemCell(items.GetFocusItem(),
COleVariant(m_grid.GetFocusColumnIndex())));
 if (m_grid.GetSelectColumnInner() > 0)
 vtFocusCell = items.GetInnerCell(vtMissing, vtFocusCell,
COleVariant(m_grid.GetSelectColumnInner()));
 if (items.GetCellEditorVisible(vtMissing, vtFocusCell))
 {
 CEditor editor;
 if (items.GetHasCellEditor(vtMissing, vtFocusCell))
 editor = items.GetCellEditor(vtMissing, vtFocusCell);
 else
 {
 CColumn column(m_grid.GetColumns().GetItem(COleVariant(
m_grid.GetFocusColumnIndex())));
 editor = column.GetEditor();
 }
 if (editor.m_lpDispatch != NULL)
 editor.DropDown();
 }
 }
}

The following VB.NET sample shows the drop down portion of an editor as soon as a cell is
focused:

Private Sub AxGrid1_FocusChanged(ByVal sender As Object, ByVal e As System.EventArgs)
Handles AxGrid1.FocusChanged
 With AxGrid1.Items
 Dim focusCell As Object = .ItemCell(.FocusItem, AxGrid1.FocusColumnIndex)

 If (AxGrid1.SelectColumnInner > 0) Then
 focusCell = .InnerCell(Nothing, focusCell, AxGrid1.SelectColumnInner)
 End If
 If (.CellEditorVisible(, focusCell)) Then
 Dim ed As EXGRIDLib.Editor =
AxGrid1.Columns(AxGrid1.FocusColumnIndex).Editor
 If (.HasCellEditor(, focusCell)) Then
 ed = .CellEditor(, focusCell)
 End If
 ed.DropDown()
 End If
 End With
End Sub

The following C# sample shows the drop down portion of an editor as soon as a cell is
focused:

private void axGrid1_FocusChanged(object sender, EventArgs e)
{
 EXGRIDLib.Items items = axGrid1.Items;
 object focusCell = items.get_ItemCell(items.FocusItem, axGrid1.FocusColumnIndex);
 if (axGrid1.SelectColumnInner > 0)
 focusCell = items.get_InnerCell(null, focusCell, axGrid1.SelectColumnInner);
 if (items.get_CellEditorVisible(null, focusCell))
 {
 EXGRIDLib.Editor editor = axGrid1.Columns[axGrid1.FocusColumnIndex].Editor;
 if (items.get_HasCellEditor(null, focusCell))
 editor = items.get_CellEditor(null, focusCell);
 if (editor != null)
 editor.DropDown();
 }
}

The following VFP sample shows the drop down portion of an editor as soon as a cell is
focused:

*** ActiveX Control Event ***

with thisform.Grid1.Items
 local ed
 ed = thisform.Grid1.Columns(thisform.Grid1.FocusColumnIndex).Editor
 if (.HasCellEditor(.FocusItem, thisform.Grid1.FocusColumnIndex))
 ed = .CellEditor(.FocusItem, thisform.Grid1.FocusColumnIndex)
 endif
 ed.DropDown()
endwith

property Editor.DropDownAlignment as AlignmentEnum
Retrieves or sets a value that indicates the item's alignment in the editor's drop-down list.

Type Description

AlignmentEnum
An AlignmentEnum expression that indicates the drop
down portion / item's alignment into the editor's drop-down
list.

Use the DropDownAlignment property to align the items in the editor's drop-down list. Also
the DropDownAlignment property aligns the drop down portion of the editor. Use the
Alignment property to align a column. Use the CellHAlignment property to align a cell. The
property has effect only for the drop down type editors.

The DropDownAlignment property accepts the following values (dropdown,caption):

0 - (right,left)
1 - (right,center)
2 - (right,right)
16 - (center,left)
17 - (center,center)
18 - (center,right)
32 - (left,left)
33 - (left,center)
34 - (left,right)

where the (center,right) means that the drop down portion is centered, and the captions are
aligned to the right

The following VB sample aligns the predefined items to the right (the editor is assigned to
the column):

With Grid1
 .TreeColumnIndex = -1
 With .Columns.Add("CheckList")
 .Alignment = RightAlignment
 With .Editor
 .EditType = CheckListType
 .DropDownAlignment = RightAlignment
 .AddItem &H1, "ReadOnly", 1
 .AddItem &H2, "Hidden", 2
 .AddItem &H4, "System", 3

 .AddItem &H10, "Directory", 4
 .AddItem &H20, "Archive", 5
 .AddItem &H80, "Normal", 7
 .AddItem &H100, "Temporary", 8
 End With
 End With
 .Items.AddItem &H1 + &H2
End With

In the above sample, the TreeColumnIndex is set to -1, because the Alignment property is
not applied for column that displays the hierarchy.

The following VB sample adds an editor that aligns its predefined items to the right:

With Grid1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .DropDownAlignment = RightAlignment
 .EditType = DropDownListType
 .AddItem 0, "No border"
 .AddItem 1, "Single Border"
 .AddItem 2, "Double Border"
 End With
End With

The following C++ sample adds an editor that aligns its predefined items to the right:

#include "Items.h"
#include "Editor.h"
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
CItems items = m_grid.GetItems();
CEditor editor = items.GetCellEditor(COleVariant(items.GetFirstVisibleItem()),
COleVariant(long(0)));
editor.SetEditType(3 /*DropDownList*/);
editor.SetDropDownAlignment(2 /*RightAlignment*/);
editor.AddItem(0, "No border", vtMissing);
editor.AddItem(1, "Single border", vtMissing);
editor.AddItem(2, "Double border", vtMissing);

The following VB.NET sample adds an editor that aligns its predefined items to the right:

With AxGrid1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .DropDownAlignment = EXGRIDLib.AlignmentEnum.RightAlignment
 .EditType = EXGRIDLib.EditTypeEnum.DropDownListType
 .AddItem(0, "No border")
 .AddItem(1, "Single Border")
 .AddItem(2, "Double Border")
 End With
End With

The following C# sample adds an editor that aligns its predefined items to the right:

EXGRIDLib.Items items = axGrid1.Items;
EXGRIDLib.Editor editor = items.get_CellEditor(items.FirstVisibleItem, 0);
editor.EditType = EXGRIDLib.EditTypeEnum.DropDownListType ;
editor.DropDownAlignment = EXGRIDLib.AlignmentEnum.RightAlignment;
editor.AddItem(0, "No border", null);
editor.AddItem(1, "Single border", null);
editor.AddItem(2, "Double border", null);

The following VFP sample adds an editor that aligns its predefined items to the right:

with thisform.Grid1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = 3 && DropDownList
 .DropDownAlignment = 2 && RightAlignment
 .AddItem(0, "No border")
 .AddItem(1, "Single Border")
 .AddItem(2, "Double Border")
 EndWith
endwith

property Editor.DropDownAutoWidth as DropDownWidthType
Retrieves or sets a value that indicates whether the editor's drop-down window list is
automatically computed to fit the entire list.

Type Description

DropDownWidthType
A DropDownWidthType expression that indicates whether
the editor's drop- down list width is automatically
computed to fit the entire list.

Use the DropDownAutoWidth property to specify when you let the control computes the
drop-down list width. The DropDownMinWidth property specifies the minimum width for the
drop down portion of the editor. By default, the DropDownAutoWidth property is
exDropDownAutoWidth. Use the DropDown method to programmatically show the drop
down portion of an editor. Use the DropDownRows property to specify the number of visible
rows in the drop down portion of the control.

property Editor.DropDownMinWidth as Long
Specifies the minimum drop-down list width if the DropDownAutoWidth is False.

Type Description

Long A long expression that specifies the minimum drop- down
list width if the DropDownAutoWidth is False

The DropDownMinWidth property has no effect if the DropDownAutoWidth property is True.
Use the DropDown method to programmatically show the drop down portion of an editor.
Use the DropDownRows property to specify the number of visible rows in the drop down
portion of the control.

property Editor.DropDownRows as Long
Retrieves or sets a value that indicates the maximum number of visible rows in the editor's
drop- down list.

Type Description

Long A long expression that indicates the maximum number of
visible rows in the editor's drop- down list.

Use the DropDownRows property to specify the maximum number of visible rows in the
editor's drop-down list. By default, the DropDownRows property is set to 7. The
DropDownRows property has effect for the following types: DropDownType,
DropDownListType, PickEditType, CheckListType and FontType. Use the AddItem method
to add predefined values to the drop down portion of the control.

property Editor.DropDownVisible as Boolean
Retrieves or sets a value that indicates whether the editor's drop down button is visible or
hidden.

Type Description

Boolean A boolean value that indicates whether the editor's drop
down button is visible or hidden.

Use the DropDownVisible property to hide the editor's drop-down button. Use the
ButtonWidth property to hide the editor buttons. Use the AddItem, InsertItem method to add
predefined values to the drop down list. Use the Refresh method update immediately the
cell's content when adding new items to a drop down list editor. If the drop down button is
hidden, the editor can't open its drop down portion if the user double clicks the editor, or
presses the F4 key.

The following VB sample to check whether the editor's drop down portion is visible:

Private Declare Function FindWindow Lib "user32" Alias "FindWindowA" (ByVal
lpClassName As String, ByVal lpWindowName As String) As Long

Private Function isDropped()
 ' Specifies whether the control's drop down portion is visible or not
 isDropped = Not FindWindow("HostPopupWindow", "") = 0
End Function

The following VB sample advance to the next line when the ENTER key is pressed, and
does the default action when an editor of drop down type is opened:

 Private Sub Grid1_KeyDown(KeyCode As Integer, Shift As Integer)
 If (KeyCode = 13) Then
 If Not isDropped() Then
 KeyCode = vbKeyDown
 End If
 End If
End Sub

The following VB sample hides the drop down button:

With Grid1.Items
 With .CellEditor(.FirstVisibleItem, 0)

 .EditType = EXGRIDLibCtl.DropDownListType
 .AddItem 0, "0 - No", 1
 .AddItem 1, "1 - Yes", 2
 .DropDownVisible = False
 End With
 .CellValue(.FirstVisibleItem, 0) = 1
 .CellValueFormat(.FirstVisibleItem, 0) = exHTML
End With

The following C++ sample hides the drop down button:

#include "Items.h"
#include "Editor.h"
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
CItems items = m_grid.GetItems();
COleVariant vtItem(items.GetFirstVisibleItem()), vtColumn(long(0));
CEditor editor = items.GetCellEditor(vtItem, vtColumn);
editor.SetEditType(3 /*DropDownListType*/);
editor.AddItem(0, "0 - No", vtMissing);
editor.AddItem(1, "1- Yes", vtMissing);
editor.SetDropDownVisible(FALSE);
items.SetCellValue(vtItem, vtColumn, COleVariant(long(1)));
items.SetCellValueFormat(vtItem, vtColumn, 1 /*exHTML*/);

The following VB.NET sample hides the drop down button:

With AxGrid1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = EXGRIDLib.EditTypeEnum.DropDownListType
 .AddItem(0, "0 - No", 1)
 .AddItem(1, "1 - Yes", 2)
 .DropDownVisible = False
 End With
 .CellValue(.FirstVisibleItem, 0) = 1
 .CellValueFormat(.FirstVisibleItem, 0) = EXGRIDLib.ValueFormatEnum.exHTML
End With

The following C# sample hides the drop down button:

EXGRIDLib.Items items = axGrid1.Items;
EXGRIDLib.Editor editor = items.get_CellEditor(items.FirstVisibleItem, 0);
editor.EditType = EXGRIDLib.EditTypeEnum.DropDownListType ;
editor.AddItem(0, "0 - No", 1);
editor.AddItem(1, "1 - Yes", 1);
editor.DropDownVisible = false;
items.set_CellValue(items.FirstVisibleItem, 0, 1);
items.set_CellValueFormat(items.FirstVisibleItem, 0, EXGRIDLib.ValueFormatEnum.exHTML);

The following VFP sample hides the drop down button:

with thisform.Grid1.Items
 .DefaultItem = .FirstVisibleItem
 With .CellEditor(0, 0)
 .EditType = 3 && DropDownListType
 .AddItem(0, "0 - No", 1)
 .AddItem(1, "1 - Yes", 2)
 .DropDownVisible = .f.
 EndWith
 .CellValue(0,0) = 1
 .CellValueFormat(0,0) = 1
endwith

property Editor.EditType as EditTypeEnum
Specifies the type of the column's editor.

Type Description

EditTypeEnum An EditTypeEnum expression that specifies the type of the
editor.

Use the EditType property to set the type of the editor. By default, the editor's type is
ReadOnly. If the control is bound to an ADO recordset the control looks for appropriate
editor for each field. Each column has its own editor, that means that all cells of the column
will use the column's editor when users edits a cell. The editor is visible only if the
CellEditorVisible property is True. If the EditType is UserEditorType the UserEditor
property should be called to initialize the user editor based on the ActiveX's identifier. Use
the CellEditor property to specify a particular editor for a specific cell. Use the Option
property to define options for a specific type of editor. Use the DefaultEditorOption property
to specify default option for the editors of a specified type. Use the Locked property to lock
an editor.

The following VB sample sets the column's editor to CheckListType:

Set c = .Columns.Add("Description")
With c.Editor
 .EditType = CheckListType
 .AddItem &H1000, "adFldCacheDeferred", 3
 .AddItem &H10, "adFldFixed", 3
 .AddItem &H40000, "adFldIsCollection", 3
 .AddItem &H20000, "adFldIsDefaultStream", 3
 .AddItem &H20, "adFldIsNullable", 3
 .AddItem &H10000, "adFldIsRowURL", 3
 .AddItem &H80, "adFldLong", 3
 .AddItem &H40, "adFldMayBeNull", 3
 .AddItem &H2, "adFldMayDefer", 3
 .AddItem &H4000, "adFldNegativeScale", 3
 .AddItem &H100, "adFldRowID", 3
 .AddItem &H200, "adFldRowVersion", 3
 .AddItem &H8, "adFldUnknownUpdatable", 3
 .AddItem &H4, "adFldUpdatable", 3
End With

In this case, the value of CellValue property for any cell in "Description" column should be
an OR combination of values added using AddItem, InsertItem methods.

The following VB sample adds an EditType editor to the first visible item:

With Grid1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = EXGRIDLibCtl.EditType
 End With
End With

The following C++ sample adds an EditType editor to the first visible item:

#include "Items.h"
#include "Editor.h"
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
CItems items = m_grid.GetItems();
CEditor editor = items.GetCellEditor(COleVariant(items.GetFirstVisibleItem()),
COleVariant(long(0)));
editor.SetEditType(1 /*EditType*/);

The following VB.NET sample adds an EditType editor to the first visible item:

With AxGrid1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = EXGRIDLib.EditTypeEnum.EditType
 End With
End With

The following C# sample adds an EditType editor to the first visible item:

EXGRIDLib.Items items = axGrid1.Items;
EXGRIDLib.Editor editor = items.get_CellEditor(items.FirstVisibleItem, 0);
editor.EditType = EXGRIDLib.EditTypeEnum.EditType ;

The following VFP sample adds an EditType editor to the first visible item:

with thisform.Grid1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = 1 && EdiType

 EndWith
endwith

method Editor.ExpandAll ()
Expands all items in the editor's list.

Type Description

By default, in your editor items that contain child items are collapsed. Use the ExpandAll
method to expand all items in the editor. Use the InsertItem method to insert child items.
Use the AddItem method to add predefined values to a drop down type editor. Use the
ExpandItem method to expand a predefined value. Call the ExpandAll method after inserting
the items. Use the SortItems method to sort the items in a drop down editor.

The following screen show shows a simple hierarchy into a built-in DropDownList editor:

property Editor.ExpandItem(Value as Variant) as Boolean
Expandes or collapses an item in the editor's list.

Type Description

Value as Variant
A long expression that indicates the value of the item being
expanded, a string expression that indicates the caption of
the item being expanded.

Boolean A boolean expression that indicates whether the item is
expanded or collapsed.

By default, the items in a drop down editor are collapsed. Use the ExpandItem to expand a
specified item. Use the ExpandAll method to expand all items in the editor. Use the
InsertItem method to insert a child item to your built-in editor. Use the AddItem method to
add new predefined values. Use the AddButton method to add a button to the editor. Use
the DropDownAutoWidth property on False, when inserting predefined values as child
items.

The following screen show shows a simple hierarchy into a built-in DropDownList editor:

The following VB sample adds a simple hierarchy to a DropDownList built-in editor:

Dim h1 As HITEM
With Grid1
 .BeginUpdate
 .Images
("gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDh+Dw1bwuJh0Sf8txeHyFXx+Ryk9wsnxbAzUpycYxWNiWMyujleXjOm0+gjKA1gA1iA0Wf0mz2WY1WwjWywuvz2N1GzyO11ON3mXxe6xfFzvAwXI1UY3mh5292PJ1vMw3T7Hbo3T73L7nhl3f5/i8034Xn9Xr9nt91Cio+lXyjsfkMjAEkk/69Hg97UpSeZ3pSeBnpScAHwO/iMmBBaMQalJAQc10JvylUJkAD8Dh+lJ8Q4k5/D+zjygAgI")

 .Images
("gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwV/YGFAGFYGDxVbxGHw2NxuLyVKyGPy2JxsPiT/yedn+RjOVzGGzWlh2bz2pl+gjGsx2jxOaQGz1Gmzma1Wq2aAk+uzOn2wA3fC2nB3OSxvDjXJ2m/znD4Oa13Hxei4m85ek4Hb5+06Hc6nh1uX1+o7G18HT8XrjXR0/n8/G9nzl/uznq+n5mXy/X9/z/wBAKaIqHyVQKjqPpCkYAJIk8Gpu3EBJS06TnmziTnBC6NHAH6UmAB8PAGlJAQejMSJVESUxSjRAAOlJwRck58RAk5/Ro9pPwnDSMoCA=")

 .Images
("gBJJgBggAAkGAAQhIAf8Nf4hhkOiRCJo2AEXjAAi0XFEYIEYhUXAIAEEZi8hk0plUrlktl0vmExmUzmk1m03nE5nU7lqAnwAYFBnlDolFo1HpFJmkOAE+QFAoVBYFQqdKq1XrFZrU2plMp1UsFfr9Srdls1ntEzrsNiL/ps/sU/sleuVRoVpvF5vVDtduulPudswNuslju1VveJxWLk19ttvwFCpmDsGToVxp+MzWbs2Ov+Vtk/t8XymUx2c1GppOOw1Ty1T0WismmtlM1W33FEz+zw9hzOxzOetm54nFoe8qfIsGF3/B2vDjGi43T6k45XXy/Nnva6vd7007HJ7MX4Hk7nS7/p9Utskz8vr+Hxono+X1+33/HGig+lX8jiPJAjCRpGjLMpwph/D+lJ+A+lJ8AOlJ4QIjJwJUxECpnCaMgGlUOJMYAEwilR+BylJ/j3Ey3JMgIA=")

 .Images
("gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDjUPACAxGExVRwzAx0Sf4AxzAyWPxCAxeZouTyGdzmfx+cy+a0k5xuP0+Uw8ZzGVymc0uxmmcw2pjGt2G4x+y3ks2kO12ey2J3MY2G95GF4G/yO24u343D1vJ3m14HW5vX5eh7mv3fU2XMw+J0flxPY4PH8Gl0Xn7XZ+HjzGj23r5H09+d/Hx/f29b0OU+LQNU/0CwNA8EQSm6Kh8lUGo6j6QpGACSJPCqbsNBSVuAk5+Mik54B+lJwAfEYDxNFCTmBE8VAGlJgRdFsXxijRwRojJ4RujB8xKk8OI0gIA==")

 .Columns.Add "Column 1"
 .ColumnAutoResize = True
 .HeaderVisible = False
 With .Items
 h1 = .InsertItem(, , "Child 1") ' Inserts a child itme
 .CellValueFormat(h1, 0) = exHTML
 .CellHasCheckBox(h1, 0) = True ' Associates a check box to a cell
 .CellValue(h1, 0) = 3 ' Sets the cell's value
 .CellImage(h1, 0) = 1 ' Associates an image to a cell
 With .CellEditor(h1, 0)
 .EditType = DropDownListType
 .DropDownAutoWidth = False
 .AddItem 1, "CObject class", 1
 .AddItem 2, "CCmdTarget class", 2, 1
 .AddItem 3, "CWnd class", 3, 2
 .AddItem 6, "S y n c", 1, 1
 .AddItem 4, "Exceptions", 1
 .AddItem 7, "System Exceptions", 2, 4
 .AddItem 5, "File Services", 2
 .ExpandAll
 End With
 End With
 .EndUpdate
End With

The following VB samples adds a simple hierarchy to a PickEditType buil-in editor:

With Grid1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = EXGRIDLibCtl.PickEditType
 .AddItem 0, "Organization"
 .InsertItem 1, "UN", , 0
 .InsertItem 2, "ONU", , 0
 .ExpandItem(0) = True

 End With
End With

The following C++ sample adds a simple hierarchy to a PickEditType built-in editor:

#include "Items.h"
#include "Editor.h"
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
CItems items = m_grid.GetItems();
CEditor editor = items.GetCellEditor(COleVariant(items.GetFirstVisibleItem()),
COleVariant(long(0)));
editor.SetEditType(14 /*PickEditType*/);
editor.AddItem(0, "Organization", vtMissing);
editor.InsertItem(1, "UN", vtMissing, COleVariant(long(0)));
editor.InsertItem(2, "ONU", vtMissing, COleVariant(long(0)));
editor.SetExpandItem(COleVariant(long(0)), TRUE);

The following VB.NET sample adds a simple hierarchy to a DropDownListType built-in
editor:

With AxGrid1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = EXGRIDLib.EditTypeEnum.DropDownListType
 .AddItem(0, "Organization")
 .InsertItem(1, "UN", , 0)
 .InsertItem(2, "ONU", , 0)
 .ExpandItem(0) = True
 End With
End With

The following C# sample adds a simple hierarchy to a DropDownListType built-in editor:

EXGRIDLib.Items items = axGrid1.Items;
EXGRIDLib.Editor editor = items.get_CellEditor(items.FirstVisibleItem, 0);
editor.EditType = EXGRIDLib.EditTypeEnum.DropDownListType;
editor.AddItem(0, "Organization", null);
editor.InsertItem(1, "UN",null, 0);
editor.InsertItem(2, "ONU",null, 0);
editor.set_ExpandItem(0, true);

The following VFP sample adds a simple hierarchy to a DropDownType built-in editor:

with thisform.Grid1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = 14 && PickEdiType
 .AddItem(0, "Organization")
 .InsertItem(1, "UN", , 0)
 .InsertItem(2, "ONU", , 0)
 .ExpandItem(0) = .t.
 EndWith
endwith

property Editor.FindItem (Value as Variant) as Variant
Finds an item given its value or caption.

Type Description

Value as Variant

A long expression that indicates the value of the item being
searched, a string expression that indicates the caption of
the item being searched. If searching for a caption (string
parameter), it can starts with ">" character, and so the
searching is case-insensitive. By default the searching is
case-sensitive. For instance, FindItem("One") looks for the
exactly caption "One", while if using as FindItem(">One"),
it searches case-insensitive for the word "one".

Variant
A string expression that indicates the caption of the item, if
the Value is a long expression, a long expression that
indicates the item's value if Value is a string expression.

The FindItem property retrieves an empty (VT_EMPTY) value if no item was found. Use
the FindItem property to search the caption of the predefined value, in case the Value
parameter is a long expression, or look for the predefined value when the Value parameter
is a string expression. Use the AddItem method to add predefined values. Use the
InsertItem method to add predefined values as child items.

In case you are using Items.CellEditor, the following sample finds the caption of selected
value within a cell's editor. For instance, the NewValue can be the NewValue parameter of
the Change event:

With Grid1
 With .Items
 If (.HasCellEditor(Item, ColIndex)) Then
 Debug.Print ("Caption: " & .CellEditor(Item, ColIndex).FindItem(NewValue))
 End If
 End With
End With

In case you are using Column.Editor, the following sample finds the caption of selected
value within a column's editor. For instance, the NewValue can be the NewValue parameter
of the Change event:

With Grid1
 With .Columns

 Debug.Print ("Caption: " & .Item(ColIndex).Editor.FindItem(NewValue))
 End With
End With

method Editor.InsertItem (Value as Long, Caption as String, [Image as
Variant], [Parent as Variant])
Inserts a child item to the editor's list.

Type Description
Value as Long A long expression that defines an unique predefined value

Caption as String

A string expression that specifies the HTML caption
associated with the value. The format of the Caption
parameter is "key|captionŚcaptionŚ...Ścaption", which
indicates an item with the giving key / identifier, which
displays multiple captions.

The Caption allows using the following special characters:

| character (pipe, vertical bar, ALT + 126) defines the
key or identifier of the item to add. Currently, the key
is used by a DropDownListType editor to specify
string codes rather numeric values for the cell's value
(CellValue property)
Ś character (vertical broken bar, ALT + 221) defines
captions for multiple columns. The Ś character can be
escaped, so \Ś displays the Ś character. (available
for DropDownType, DropDownListType and
PickEditType editors, 20.0+)

For instance:

 "New York City" defines the "New York City"
item
 "NYC|New York City" the "New York City"
item with the "NYC" as key or identifier
"NYC|New York CityŚ783.8 km˛Ś8.42 mil"
defines the "New York City" item with the "NYC" as
key or identifier and sub-captions 783.8 km˛ and 8.42
mil (in separated columns)
"New York CityŚ783.8 km˛Ś8.42 mil" defines
the "New York City" item and sub-captions 783.8 km˛
and 8.42 mil (in separated columns)

Image as Variant
A long expression that indicates the index of the item's
icon (1-based). Use the Images method to assign a list of
icons to the control.

Parent as Variant A long expression that defines the value of the parent item.

Use the InsertItem to insert child items to the editor's predefined list. Use the AddItem
method to add new items to the editor's list. Use the ExpandItem property to expand an
item. Use the ExpandAll items to expand all items. Use the ItemTooltip property to assign a
tooltip to a predefined item into a drop down editor.

The following screen show shows a simple hierarchy into a built-in DropDownList editor:

The following VB sample adds a simple hierarchy to a DropDownList built-in editor:

Dim h1 As HITEM
With Grid1
 .BeginUpdate
 .Images
("gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDh+Dw1bwuJh0Sf8txeHyFXx+Ryk9wsnxbAzUpycYxWNiWMyujleXjOm0+gjKA1gA1iA0Wf0mz2WY1WwjWywuvz2N1GzyO11ON3mXxe6xfFzvAwXI1UY3mh5292PJ1vMw3T7Hbo3T73L7nhl3f5/i8034Xn9Xr9nt91Cio+lXyjsfkMjAEkk/69Hg97UpSeZ3pSeBnpScAHwO/iMmBBaMQalJAQc10JvylUJkAD8Dh+lJ8Q4k5/D+zjygAgI")

 .Images
("gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwV/YGFAGFYGDxVbxGHw2NxuLyVKyGPy2JxsPiT/yedn+RjOVzGGzWlh2bz2pl+gjGsx2jxOaQGz1Gmzma1Wq2aAk+uzOn2wA3fC2nB3OSxvDjXJ2m/znD4Oa13Hxei4m85ek4Hb5+06Hc6nh1uX1+o7G18HT8XrjXR0/n8/G9nzl/uznq+n5mXy/X9/z/wBAKaIqHyVQKjqPpCkYAJIk8Gpu3EBJS06TnmziTnBC6NHAH6UmAB8PAGlJAQejMSJVESUxSjRAAOlJwRck58RAk5/Ro9pPwnDSMoCA=")

 .Images
("gBJJgBggAAkGAAQhIAf8Nf4hhkOiRCJo2AEXjAAi0XFEYIEYhUXAIAEEZi8hk0plUrlktl0vmExmUzmk1m03nE5nU7lqAnwAYFBnlDolFo1HpFJmkOAE+QFAoVBYFQqdKq1XrFZrU2plMp1UsFfr9Srdls1ntEzrsNiL/ps/sU/sleuVRoVpvF5vVDtduulPudswNuslju1VveJxWLk19ttvwFCpmDsGToVxp+MzWbs2Ov+Vtk/t8XymUx2c1GppOOw1Ty1T0WismmtlM1W33FEz+zw9hzOxzOetm54nFoe8qfIsGF3/B2vDjGi43T6k45XXy/Nnva6vd7007HJ7MX4Hk7nS7/p9Utskz8vr+Hxono+X1+33/HGig+lX8jiPJAjCRpGjLMpwph/D+lJ+A+lJ8AOlJ4QIjJwJUxECpnCaMgGlUOJMYAEwilR+BylJ/j3Ey3JMgIA=")

 .Images
("gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDjUPACAxGExVRwzAx0Sf4AxzAyWPxCAxeZouTyGdzmfx+cy+a0k5xuP0+Uw8ZzGVymc0uxmmcw2pjGt2G4x+y3ks2kO12ey2J3MY2G95GF4G/yO24u343D1vJ3m14HW5vX5eh7mv3fU2XMw+J0flxPY4PH8Gl0Xn7XZ+HjzGj23r5H09+d/Hx/f29b0OU+LQNU/0CwNA8EQSm6Kh8lUGo6j6QpGACSJPCqbsNBSVuAk5+Mik54B+lJwAfEYDxNFCTmBE8VAGlJgRdFsXxijRwRojJ4RujB8xKk8OI0gIA==")

 .Columns.Add "Column 1"
 .ColumnAutoResize = True
 .HeaderVisible = False
 With .Items
 h1 = .InsertItem(, , "Child 1") ' Inserts a child itme
 .CellValueFormat(h1, 0) = exHTML

 .CellHasCheckBox(h1, 0) = True ' Associates a check box to a cell
 .CellValue(h1, 0) = 3 ' Sets the cell's value
 .CellImage(h1, 0) = 1 ' Associates an image to a cell
 With .CellEditor(h1, 0)
 .EditType = DropDownListType
 .DropDownAutoWidth = False
 .AddItem 1, "CObject class", 1
 .InsertItem 2, "CCmdTarget class", 2, 1
 .InsertItem 3, "CWnd class", 3, 2
 .InsertItem 6, "S y n c", 1, 1
 .AddItem 4, "Exceptions", 1
 .InsertItem 7, "System Exceptions", 2, 4
 .AddItem 5, "File Services", 2
 .ExpandAll
 End With
 End With
 .EndUpdate
End With

The following VB samples adds a simple hierarchy to a PickEditType buil-in editor:

With Grid1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = EXGRIDLibCtl.PickEditType
 .AddItem 0, "Organization"
 .InsertItem 1, "UN", , 0
 .InsertItem 2, "ONU", , 0
 .ExpandItem(0) = True
 End With
End With

The following C++ sample adds a simple hierarchy to a PickEditType built-in editor:

#include "Items.h"
#include "Editor.h"
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
CItems items = m_grid.GetItems();
CEditor editor = items.GetCellEditor(COleVariant(items.GetFirstVisibleItem()),

COleVariant(long(0)));
editor.SetEditType(14 /*PickEditType*/);
editor.AddItem(0, "Organization", vtMissing);
editor.InsertItem(1, "UN", vtMissing, COleVariant(long(0)));
editor.InsertItem(2, "ONU", vtMissing, COleVariant(long(0)));
editor.SetExpandItem(COleVariant(long(0)), TRUE);

The following VB.NET sample adds a simple hierarchy to a DropDownListType built-in
editor:

With AxGrid1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = EXGRIDLib.EditTypeEnum.DropDownListType
 .AddItem(0, "Organization")
 .InsertItem(1, "UN", , 0)
 .InsertItem(2, "ONU", , 0)
 .ExpandItem(0) = True
 End With
End With

The following C# sample adds a simple hierarchy to a DropDownListType built-in editor:

EXGRIDLib.Items items = axGrid1.Items;
EXGRIDLib.Editor editor = items.get_CellEditor(items.FirstVisibleItem, 0);
editor.EditType = EXGRIDLib.EditTypeEnum.DropDownListType;
editor.AddItem(0, "Organization", null);
editor.InsertItem(1, "UN",null, 0);
editor.InsertItem(2, "ONU",null, 0);
editor.set_ExpandItem(0, true);

The following VFP sample adds a simple hierarchy to a DropDownType built-in editor:

with thisform.Grid1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = 14 && PickEdiType
 .AddItem(0, "Organization")
 .InsertItem(1, "UN", , 0)
 .InsertItem(2, "ONU", , 0)
 .ExpandItem(0) = .t.

 EndWith
endwith

property Editor.ItemToolTip(Value as Variant) as String
Gets or sets the text displayed when the mouse pointer hovers over a predefined item.

Type Description

Value as Variant

A long expression that indicates the value of the item
whose tooltip is accessed, a string expression that
indicates the caption of the item whose tooltip is
accessed.

String
A string expression that may include HTML tags, that
indicates the text being displayed when the mouse hovers
the item.

Use the ItemToolTip property to assign a tooltip for a drop down list value. Use the AddItem
or InsertItem methods to insert new items to the drop down predefined list. The ItemToolTip
property may include HTML tags that are listed here here.

The following VB sample adds a predefined value that displays a tooltip when the cursor
hovers the value in the drop down portion of the editor:

With Grid1.Columns(0).Editor
 .EditType = DropDownListType
 .AddItem 1, "Root Item"
 .ItemToolTip(1) = "This is a bit of text that should appear when the cursor
hovers the item."
 .InsertItem 2, "Child Item", , 1
End With

The following C++ sample adds a predefined value that displays a tooltip when the cursor
hovers the value in the drop down portion of the editor:

#include "Items.h"
#include "Editor.h"
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
CItems items = m_grid.GetItems();
CEditor editor = items.GetCellEditor(COleVariant(items.GetFirstVisibleItem()),
COleVariant(long(0)));
editor.SetEditType(3 /*DropDownListType*/);
editor.AddItem(0, "tooltip", vtMissing);
editor.SetItemToolTip(COleVariant("tooltip"), "This is a bit of text that should appear

when cursor hovers the item.");

The following VB.NET sample adds a predefined value that displays a tooltip when the
cursor hovers the value in the drop down portion of the editor:

With AxGrid1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = EXGRIDLib.EditTypeEnum.DropDownListType
 .AddItem(0, "tooltip")
 .ItemToolTip(0) = "This is a bit of text that should appear when cursor hovers the
item."
 End With
End With

The following C# sample adds a predefined value that displays a tooltip when the cursor
hovers the value in the drop down portion of the editor:

EXGRIDLib.Items items = axGrid1.Items;
EXGRIDLib.Editor editor = items.get_CellEditor(items.FirstVisibleItem, 0);
editor.EditType = EXGRIDLib.EditTypeEnum.DropDownListType;
editor.AddItem(0, "tooltip", null);
editor.set_ItemToolTip(0, "This is a bit of text that should appear when cursor hovers the
item.");

The following VFP sample adds a predefined value that displays a tooltip when the cursor
hovers the value in the drop down portion of the editor:

with thisform.Grid1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = 3 && DropDownListType
 .AddItem(0, "tooltip")
 .ItemToolTip(0) = "This is a bit of text that should appear when cursor hovers the
item."
 EndWith
endwith

property Editor.Locked as Boolean
Determines whether the editor is locked or unlocked.

Type Description

Boolean A boolean expression that indicates whether the editor is
locked or unlocked.

Use the Locked property to lock the editor. If the editor is locked, the user is not able to
change the control's content using the editor. Use the CellEditorVisible property to hide the
cell's editor. For instance, if the editor displays a drop down portion, even if locked, it is
visible, but the user can't select new items to change the cell's value. Use the ReadOnly
property to make the control read only. If the ReadOnly property is exLocked, all editors
are locked. If the editor is locked, the user still can use the editor's buttons. The control
fires the ButtonClick event when the user clicks a button. Use the
Option(exEditLockedBackColor) and Option(exEditLockedForeColor) property to specify
background and foreground colors while the edit control is locked.

property Editor.Mask as String
Retrieves or sets a value that indicates the mask used by the editor.

Type Description
String A string expression that defines the editor's mask.

Use the Mask property to filter characters during data input. Use the Mask property to
control the entry of many types of formatted information such as telephone numbers, social
security numbers, IP addresses, license keys etc. The Mask property has effect for the
following edit types: DropDownType, SpinType, DateType, MaskType, FontType,
PickEditType. The Numeric property specifies whether the editor enables numeric values
only. Use the MaskChar property to change the masking character. The Mask property is
composed by a combination of regular characters, literal escape characters, and
placeholders, masking characters. The Mask property can contain also alternative
characters, or range rules.

Starting from the version 8.0, the Mask property has been changed radically, to support
more special characters, validation, float numbers, and so on.

For instance, the following input-mask (ext-phone)

"!(999) 000 0000;1;;select=1,empty,overtype,warning=invalid character,invalid=The value
you entered isn't appropriate for the input mask '<%mask%>' specified for this
field."

indicates the following:

The pattern should contain 3 optional digits 999, and 7 required digits 000 0000,
aligned to the right, !.
The second part of the input mask indicates 1, which means that all literals are included
when the user leaves the field.
The entire field is selected when it receives the focus, select=1
The field supports empty value, so the user can leave the field with no content
The field enters in overtype mode, and insert-type mode is not allowed when user
pressed the Insert key
If the user enters any invalid character, a warning tooltip with the message "invalid
character" is displayed.
If the user tries to leave the field, while the field is not validated (all 7 required digits
completed), the invalid tooltip is shown with the message "The value you entered isn't

appropriate for the input mask '<%mask%>' specified for this field." The
<%mask%> is replaced with the first part of the input mask !(999) 000 0000

The four parts of an input mask, or the Mask property supports up to four parts, separated
by a semicolon (;). For instance, "`Time: `00:00:00;;0;overtype,warning=<fgcolor
FF0000>invalid character,beep", indicates the pattern "00:00" with the prefix Time:, the
masking character being the 0, instead _, the field enters in over-type mode, insert-type
mode is not allowed, and the field beeps and displays a tooltip in red with the message
invalid character when the user enters an invalid character.

Input masks are made up one mandatory part and three optional parts, and each part is
separated by a semicolon (;). If a part should use the semicolon (;) it must uses the \;
instead

The purpose of each part is as follows:

1. The first part (pattern) is mandatory. It includes the mask characters or string (series
of characters) along with placeholders and literal data such as, parentheses, periods,
and hyphens.

The following table lists the placeholder and literal characters for an input mask and
explains how it controls data entry:

#, a digit, +, - or space (entry not required).
0, a digit (0 through 9, entry required; plus [+] and minus [-] signs not allowed).
9, a digit or space (entry not required; plus and minus signs not allowed).
x, a lower case hexa character, [0-9],[a-f] (entry required)
X, an upper case hexa character, [0-9],[A-F] (entry required)
A, any letter, digit (entry required).
a, any letter, digit or space (entry optional).
L, any letter (entry require).
?, any letter or space (entry optional).
&, any character or a space (entry required).
C, any character or a space (entry optional).
>, any letter, converted to uppercase (entry required).
<, any letter, converted to lowercase (entry required).
*, any characters combinations
{ min,max } (Range), indicates a number range. The syntax {min,max} (Range),
masks a number in the giving range. The min and max values should be positive
integers. For instance the mask {0,255} masks any number between 0 and 255.
[...] (Alternative), masks any characters that are contained in the [] brackets. For

instance, the [abcdA-D] mask any character: a,b,c,d,A,B,C,D
\, indicates the escape character
ť, (ALT + 175) causes the characters that follow to be converted to uppercase,
until Ť(ALT + 174) is found.
Ť, (ALT + 174) causes the characters that follow to be converted to lowercase,
until ť(ALT + 175) is found.
!, causes the input mask to fill from right to left instead of from left to right.

Characters enclosed in double quotation ("" or ``) marks will be displayed literally. If
this part should display/use the semicolon (;) character is should be included between
double quotation ("" or ``) characters or as \; (escape).

2. The second part is optional and refers to the embedded mask characters and how they
are stored within the field. If the second part is set to 0 (default,
exClipModeLiteralsNone), all characters are stored with the data, and if it is set to 1
(exClipModeLiteralsInclude), the literals are stored, not including the
masking/placeholder characters, if 2 (exClipModeLiteralsExclude), just typed
characters are stored, if 3(exClipModeLiteralsEscape), optional, required, editable and
escaped entities are included. No double quoted text is included.

3. The third part of the input mask is also optional and indicates a single character or
space that is used as a placeholder. By default, the field uses the underscore (_). If
you want to use another character, enter it in the third part of your mask. Only the first
character is considered. If this part should display/use the semicolon (;) character is
should be \; (escape) (MaskChar property)

4. The forth part of the input, indicates a list of options that can be applied to input mask,
separated by comma(,) character.

The known options for the forth part are:

float, indicates that the field is edited as a decimal number, integer. The first part
of the input mask specifies the pattern to be used for grouping and decimal
separators, and - if negative numbers are supported. If the first part is empty, the
float is formatted as indicated by current regional settings. For instance,
"##;;;float" specifies a 2 digit number in float format. The grouping, decimal,
negative and digits options are valid if the float option is present.
grouping=value, Character used to separate groups of digits to the left of the
decimal. Valid only if float is present. For instance ";;;float,grouping=" indicates
that no grouping is applied to the decimal number (LOCALE_STHOUSAND)
decimal=value, Character used for the decimal separator. Valid only if float is

present. For instance ";;;float,grouping= ,decimal=\," indicates that the decimal
number uses the space for grouping digits to the left, while for decimal separator
the comma character is used (LOCALE_SDECIMAL)
negative=value, indicates whether the decimal number supports negative
numbers. The value should be 0 or 1. 1 means negative numbers are allowed.
Else 0 or missing, the negative numbers are not accepted. Valid only if float is
present.
digits=value, indicates the max number of fractional digits placed after the
decimal separator. Valid only if float is present. For instance, ";;;float,digits=4"
indicates a max 4 digits after decimal separator (LOCALE_IDIGITS)
password[=value], displays a black circle for any shown character. For instance,
";;;password", specifies that the field to be displayed as a password. If the value
parameter is present, the first character in the value indicates the password
character to be used. By default, the * password character is used for non-
TrueType fonts, else the black circle character is used. For instance,
";;;password=*", specifies that the field to be displayed as a password, and use
the * for password character. If the value parameter is missing, the default
password character is used.
right, aligns the characters to the right. For instance, "(999) 999-9999;;;right"
displays and masks a telephone number aligned to the right
readonly, the editor is locked, user can not update the content, the caret is
available, so user can copy the text, excepts the password fields.
inserttype, indicates that the field enters in insert-type mode, if this is the first
option found. If the forth part includes also the overtype option, it indicates that
the user can toggle the insert/over-type mode using the Insert key. For instance,
the "##:##;;0;inserttype,overtype", indicates that the field enter in insert-type
mode, and over-type mode is allowed. The "##:##;;0;inserttype", indicates that
the field enter in insert-type mode, and over-type mode is not allowed.
overtype, indicates that the field enters in over-type mode, if this is the first
option found. If the forth part includes also the inserttype option, it indicates that
the user can toggle the insert/over-type mode using the Insert key. For instance,
the "##:##;;0;overtype,inserttype", indicates that the field enter in over-type
mode, and insert-type mode is allowed. The "##:##;;0;overtype", indicates that
the field enter in over-type mode, and insert-type mode is not allowed.
nocontext, indicates that the field provides no context menu when user right
clicks the field. For instance, ";;;password,nocontext" displays a password field,
where the user can not invoke the default context menu, usually when a right
click occurs.
beep, indicates whether a beep is played once the user enters an invalid
character. For instance, "00:00;;;beep" plays a beep once the user types in
invalid character, in this case any character that's not a digit.

warning=value, indicates the html message to be shown when the user enters
an invalid character. For instance, "00:00:00;;;warning=invalid character"
displays a "invalid character" tooltip once the user types in invalid character, in
this case any character that's not a digit. The <%mask%> keyword in value,
substitute the current mask of the field, while the <%value%> keyword
substitutes the current value (including the literals). If this option should
display/use the semicolon (;) character is should be \; (escape)
invalid=value, indicates the html message to be displayed when the user enters
an inappropriate value for the field. If the value is missing or empty, the option
has no effect, so no validation is performed. If the value is a not-empty value, the
validation is performed. If the value is single space, no message is displayed
and the field is keep opened while the value is inappropriate. For instance, "!
(999) 000 0000;;;invalid=The value you entered isn't appropriate for the input
mask '<%mask%>' specified for this field." displays the "The value you
entered isn't appropriate for the input mask '...' specified for this field." tooltip
once the user leaves the field and it is not-valid (for instance, the field includes
entities required and uncompleted). The <%mask%> keyword in value,
substitute the current mask of the field, while the <%value%> keyword
substitutes the current value (including the literals). If this option should
display/use the semicolon (;) character is should be \; (escape). This option can
be combined with empty, validateas. The invalid option should be used, with the
CauseValidateValue property on True, so the user can not leaves the field while it
contains an invalid value.
validateas=value, specifies the additional validation is done for the current field.
If value is missing or 0 (exValidateAsNone), the option has no effect. The
validateas option has effect only if the invalid option specifies a not-empty value.
Currently, the value can be 1 (exValidateAsDate), which indicates that the field is
validated as a date. For instance, having the mask
"!00/00/0000;;0;empty,validateas=1,invalid=Invalid date!,warning=Invalid
character!,select=4,overtype", indicates that the field is validate as date (
validateas=1).
empty, indicates whether the field supports empty values. This option can be
used with invalid flag, which indicates that the user can leave the field if it is
empty. If empty flag is present, the field displays nothing if no entity is completed
(empty). Once the user starts typing characters the current mask is displayed.
For instance, having the mask "!(999) 000
0000;;;empty,select=4,overtype,invalid=invalid phone number,beep", it specifies
an empty or valid phone to be entered.
select=value, indicates what to select from the field when it got the focus. The
value could be 0 (nothing, exSelectNoGotFocus), 1 (select all,
exSelectAllGotFocus), 2 (select the first empty and editable entity of the field,

exSelectEditableGotFocus), 3 (moves the cursor to the beginning of the first
empty and editable entity of the field, exMoveEditableGotFocus), 4 (select the
first empty, required and editable entity of the field,
exSelectRequiredEditableGotFocus), 5 (moves the cursor to the beginning of
the first empty, required and editable entity of the field,
exMoveRequiredEditableGotFocus). For modes 2 and 4 the entire field is
selected if no matching entity is found. For instance, "`Time:`XX:XX;;;select=1"
indicates that the entire field (including the Time: prefix) is selected once it get
the focus. The "`Time:`XX:XX;;;select=3", moves the cursor to first X, if empty,
the second if empty, and so on
leading=value, specifies whether the spaces or masking/placeholder (0,9)
characters are replaced with giving value (0 if the value is missing). This option
has effect, only for DateType fields (Editor.EditType property is DateType), when
the field is entering in edit mode, or the user selects a new date from the drop
down calendar. For instance, "!99/99/9999;1;;empty,validateas=1,invalid=Invalid
date\, for the input mask
'<%mask%>'!,warning=Invalid
character!,select=4,overtype,leading", having the cell's value on #1/1/2001# it
displays 01/01/2001, instead 1/1/2001.

Experimental:
multiline, specifies that the field supports multiple lines.
rich, specifies that the field displays a rich type editor. By default, the standard edit
field is shown
disabled, shows as disabled the field.

The following special characters are supported only in versions prior to version 8.0

Here's the list of all rules and masking characters:

(Digit), Masks a digit character. [0-9]
x (Hexa Lower), Masks a lower hexa character. [0-9],[a-f]
X (Hexa Upper), Masks a upper hexa character. [0-9],[A-F]
A (AlphaNumeric), Masks a letter or a digit. [0-9], [a-z], [A-Z]
? (Alphabetic), Masks a letter. [a-z],[A-Z]
< (Alphabetic Lower), Masks a lower letter. [a-z]
> (Alphabetic Upper), Masks an upper letter. [A-Z]
* (Any), Mask any combination of characters.
\ (Literal Escape), Displays any masking characters. The following combinations are
valid: \#,\x,\X,\A,\?,\<,\>,\\,\{,\[
{nMin,nMax} (Range), Masks a number in a range. The nMin and nMax values should

be numbers. For instance the mask {0,255} will mask any number between 0 and 255.
[...] (Alternative), Masks any characters that are contained by brackets []. For
instance, the [abcA-C] mask any character: a,b,c,A,B,C

The following VB sample adds a mask for IP addresses:

With Grid1
 With .Columns.Add("Mask")
 With .Editor
 .EditType = EditTypeEnum.MaskType
 .Mask = "{0,255}\.{0,255}\.{0,255}\.{0,255}"
 End With
 End With
 .Items.AddItem "193.226.40.161"
End With

The following VB sample masks a phone number:

With Grid1
 With .Columns.Add("Mask")
 With .Editor
 .EditType = EditTypeEnum.MaskType
 .Mask = "(XXX) - XXX XXXX"
 End With
 End With
 .Items.AddItem "(095) - 889 1234"
End With

The following C++ adds a mask editor to filter characters while entering a phone number:

#include "Items.h"
#include "Editor.h"
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
CItems items = m_grid.GetItems();
CEditor editor = items.GetCellEditor(COleVariant(items.GetFirstVisibleItem()),
COleVariant(long(0)));
editor.SetEditType(8 /*MaskType*/);
editor.SetMask("(###) ### - ####");

The following VB.NET adds a mask editor to filter characters while entering a phone
number:

With AxGrid1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = EXGRIDLib.EditTypeEnum.MaskType
 .Mask = "(###) ### - ####"
 End With
End With

The following C# adds a mask editor to filter characters while entering a phone number:

EXGRIDLib.Items items = axGrid1.Items;
EXGRIDLib.Editor editor = items.get_CellEditor(items.FirstVisibleItem, 0);
editor.EditType = EXGRIDLib.EditTypeEnum.MaskType;
editor.Mask = "(###) ### - ####";

The following VFP adds a mask editor to filter characters while entering a phone number:

with thisform.Grid1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = 8 && MaskType
 .Mask = "(###) ### - ####"
 EndWith
endwith

property Editor.MaskChar as Long
Retrieves or sets a value that indicates the character used for masking.

Type Description

Long A long expression that indicates the ASCII code for the
masking character.

Use the MaskChar property to change the default masking character, which is '_'. The
MaskChar property has effect only if the Mask property is not empty, and the mask is
applicable to the editor's type.

property Editor.Numeric as NumericEnum
Specifies whether the editor enables numeric values only.

Type Description

NumericEnum A NumericEnum expression that indicates whether integer
or floating point numbers are allowed.

The Numeric property has effect only if the editor contains an edit box. Use the Numeric
property to add intelligent input filtering for integer, or floating points numbers. Use the
exSpinStep option to specify the proposed change when the user clicks a spin control, if the
cell's editor is of SpinType type. Use the exEditDecimaSymbol option to specify the symbol
being used by decimal value while editing a floating point number.

property Editor.Option(Name as EditorOptionEnum) as Variant
Specifies an option for the editor.

Type Description

Name as EditorOptionEnum An EditorOptionEnum expression that indicates the editor's
option being changed.

Variant A Variant expression that indicates the value for editor's
option

The Option property of Editor object provides the ability to add scroll bars to a memo editor
using the exMemoHScrollBar and exMemoVScrollBar options. Use the DefaultEditorOption
property to specify default option for the editors of a specified type.

For instance, the following VB sample adds both scroll bar to the editor of the first column:

With Grid1.Columns(0).Editor
 .Option(exMemoAutoSize) = False ' Disables auto resizing when user
alters the text
 .Option(exMemoVScrollBar) = True ' Adds the vertical scroll bar
 .Option(exMemoHScrollBar) = True ' Adds the horizontal scroll bar
End With

The following VB sample adds a cell with a password editor:

With Grid1.Items
 Dim h As HITEM
 h = .InsertItem(, , "password")
 With .CellEditor(h, 0)
 .EditType = EXGRIDLibCtl.EditType
 .Option(EXGRIDLibCtl.EditorOptionEnum.exEditPassword) = True
 End With
End With

The following VB sample indicates how to let user uses the left, right arrows, home and end
keys to move the cursor inside an editor that displays a caret, instead changing the focused
cell:

With Grid1.Columns(ColIndex).Editor
 .Option(exLeftArrow) = exHandleEditor
 .Option(exRightArrow) = exHandleEditor

 .Option(exHomeKey) = exHandleEditor
 .Option(exEndKey) = exHandleEditor
End With

The following C++ sample adds a password editor:

#include "Items.h"
#include "Editor.h"
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
CItems items = m_grid.GetItems();
CEditor editor = items.GetCellEditor(COleVariant(items.GetFirstVisibleItem()),
COleVariant(long(0)));
editor.SetEditType(1 /*EditType*/);
editor.SetOption(18 /*exEditPassword*/, COleVariant(VARIANT_TRUE));

The following VB.NET sample adds a password editor:

With AxGrid1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = EXGRIDLib.EditTypeEnum.EditType
 .Option(EXGRIDLib.EditorOptionEnum.exEditPassword) = True
 End With
End With

The following C# sample adds a password editor:

EXGRIDLib.Items items = axGrid1.Items;
EXGRIDLib.Editor editor = items.get_CellEditor(items.FirstVisibleItem, 0);
editor.EditType = EXGRIDLib.EditTypeEnum.EditType;
editor.set_Option(EXGRIDLib.EditorOptionEnum.exEditPassword, true);

The following VFP sample adds a password editor:

with thisform.Grid1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = 1 && EditType
 .Option(18) = .t. && exEditPassword
 EndWith
endwith

property Editor.PartialCheck as Boolean
Retrieves or sets a value that indicates whether the associated check box has two or three
states.

Type Description

Boolean A boolean expression that indicates whether the
associated check box has two or three states.

Use the PartialCheck property to allow three-states check boxes into the editor. Use the
CellHasCheckBox property to define a check box for the cell. Use the CellState property to
specify the cell's state. Use the PartialCheck property to allow partial check feature in a
column.

property Editor.PopupAppearance as InplaceAppearanceEnum
Retrieves or sets a value that controls the drop-down window's appearance.

Type Description

InplaceAppearanceEnum An InplaceAppearanceEnum expression that defines the
drop-down window's border style.

By default, the PopupAppearance property is ShadowApp. Use the PopupAppearance
property to change the drop-down window's border style. Use the Appearance property to
define the editor's appearance.

method Editor.RemoveButton (Key as Variant)
Removes a button given its key.

Type Description

Key as Variant
A Variant value that determines the button's key being
deleted. The Key should be the same as used in the
AddButton method.

Use the RemoveButton method to remove a button, given its key. Use the ButtonWidth
property to hide the editor buttons. Use the ClearButtons method to remove all buttons. Use
the DropDownVisible property to hide the drop down button. You can remove only buttons
added using the AddButton method.

method Editor.RemoveItem (Value as Long)
Removes an item from the editor's predefined values list.

Type Description

Value as Long
A long expression that indicates the index of the item being
removed, or a string expression that indicates the caption
of the item being removed.

Use the RemoveItem method to remove an item from the editor's predefined values list.
Use the ClearItems method to clear the entire list of editor items. Use the DropDownVisible
property to hide the drop down button. You can remove only items that were added using
AddItem or InsertItem method. Use the FindItem property to look for a predefined value in
the drop down list.

method Editor.SortItems ([Ascending as Variant], [Reserved as Variant])
Sorts the list of items in the editor.

Type Description

Ascending as Variant
A boolean expression that indicates the sort order of the
items. By default, is the Ascending parameter is True, if it
is missing.

Reserved as Variant Not used. For future use only.

Use the SortItems method to sort the items in a drop down editor. Use the ExpandAll
method to expand all items. Call the SortItems method after adding predefined values to the
drop down list. Use the AddItem or InsertItem method to add predefined values to the drop
down list. Use the SortOrder property to sort a column.

method Editor.UserEditor (ControlID as String, License as String)
Specifies the control's identifier and the control's runtime license key when EditType is
UserEditor.

Type Description

ControlID as String

A string expression that indicates the control's program
identifier. For instance, if you want to use a multiple
column combobox as an user editor, the control's identifier
could be: "Exontrol.ComboBox".

License as String
Optional. A string expression that indicates the runtime
license key in case is it required. It depends on what
control are you using.

The UserEditor property creates a new type of editor based on the ControlID parameter.
The EditType property has effect only if it is UserEditorType. Use the UserEditorObject
property to access the newly created object. The UserEditorObject property is nothing if
the control wasn't able to create the user editor based on the ControlID. Also, if the user
control requires a runtime license key, and the License parameter is empty or doesn't
match, the UserEditorObject property is nothing. The control fires the UserEditorOpen
event when a ActiveX editor is about to be shown. The control fires the UserEditorClose
event when the user editor is hidden. The control fires the UserEditorOleEvent event each
time when an user editor fires an event. The setup installs the VB\UserEditor, VC\User.Edit
sample that uses the Exontrol ExComboBox Component as a new editor.

The following VB sample adds a new column to an editor of of Exontrol.ComboBox type (
exComboBox component):

With Grid1
 .BeginUpdate
 With .Columns
 With .Add("Column 0").Editor
 .EditType = EditTypeEnum.UserEditorType
 ' Creates an ExComboBox control, and gets the object created
 .UserEditor "Exontrol.ComboBox", ""
 If Not .UserEditorObject Is Nothing Then
 With .UserEditorObject ' Points to an ExComboBox control
 ' The ExComboBox object
 .BeginUpdate
 .EndUpdate
 End With

https://exontrol.com/excombobox.jsp

 End If
 End With
 End With
 .EndUpdate
End With

The following VB sample adds the Exontrol's eXMaskEdit Component to mask floating point
numbers with digit grouping:

With Grid1.Items
 Dim h As HITEM
 h = .AddItem(100)
 With .CellEditor(h, 0)
 .EditType = UserEditorType
 .UserEditor "Exontrol.MaskEdit", ""
 With .UserEditorObject()
 .BackColor = vbWhite
 .MaskFloat = True
 .Mask = "-###.###.###,##"
 End With
 End With
End With

The following C++ sample adds the Exontrol's eXMaskEdit Component to mask floating
point numbers with digit grouping:

CItems items = m_grid.GetItems();
long hItem = items.AddItem(COleVariant((double)100));
CEditor editor = items.GetCellEditor(COleVariant(hItem), COleVariant(long(0)));
editor.SetEditType(16 /*UserEditorType*/);
editor.UserEditor("Exontrol.MaskEdit", "");
MaskEditLib::IMaskEditPtr spMaskEdit(editor.GetUserEditorObject());
if (spMaskEdit != NULL)
{
 spMaskEdit->put_MaskFloat(TRUE);
 spMaskEdit->put_Mask(L"-###.###.###,##");
 spMaskEdit->put_BackColor(RGB(255,255,255));
}

https://exontrol.com/exmaskedit.jsp

The sample requires calling the #import <maskedit.dll> to include the type library for the
eXMaskEdit component. The #import <maskedit.dll> defines the MaskEditLib namespace
used in the sample.

The following VB.NET sample adds the Exontrol's eXMaskEdit Component to mask floating
point numbers with digit grouping:

With AxGrid1.Items
 Dim h As Integer = .AddItem(1000)
 With .CellEditor(h, 0)
 .EditType = EXGRIDLib.EditTypeEnum.UserEditorType
 .UserEditor("Exontrol.MaskEdit", "")
 With .UserEditorObject()
 .BackColor = ToUInt32(Color.White)
 .MaskFloat = True
 .Mask = "-###.###.###,##"
 End With
 End With
End With

where the ToUInt32 function converts a Color expression to an unsigned long expression
and may look like follows:

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample adds the Exontrol's eXMaskEdit Component to mask floating point
numbers with digit grouping:

EXGRIDLib.Items items = axGrid1.Items;
int hItem = items.AddItem(100);
EXGRIDLib.Editor editor = items.get_CellEditor(hItem, 0);
editor.EditType = EXGRIDLib.EditTypeEnum.UserEditorType;
editor.UserEditor("Exontrol.MaskEdit", "");

MaskEditLib.MaskEdit maskEdit = editor.UserEditorObject as MaskEditLib.MaskEdit;
if (maskEdit != null)
{
 maskEdit.BackColor = ToUInt32(Color.White);
 maskEdit.MaskFloat = true;
 maskEdit.Mask = "-###.###.###,##";
}

where the MaskEditLib class is defined by adding a new reference to the ExMaskEdit
component to your project. The ToUInt32 function converts a Color expression to an
OLE_COLOR expression (unsigned long expression), and may look like follows:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample adds the Exontrol's eXMaskEdit Component to mask floating
point numbers with digit grouping:

With thisform.Grid1.Items
 local h
 h = .AddItem(100)
 With .CellEditor(h, 0)
 .EditType = 16 && UserEditorType
 .UserEditor("Exontrol.MaskEdit", "")
 With .UserEditorObject()
 .BackColor = RGB(255,255,255)
 .MaskFloat = .t.
 .Mask = "-###.###.###,##"
 EndWith
 EndWith
EndWith

property Editor.UserEditorObject as Object
Gets the user editor object when EditType is UserEditorType.

Type Description
Object An ActiveX object being used as an user editor.

Use the UserEditorOpen property to access to the ActiveX user editor. Use the UserEditor
property to initialize the ActiveX user editor. The UserEditorObject property retrieves the
ActiveX control created when UserEditor method was invoked. The type of object returned
by the UserEditorObject depends on the ControlID parameter of the UserEditor method.
For instance, the type of the created object when UserEditor("Exontrol.ComboBox") is
used, is EXCOMBOBOXLibCtl.ComboBox. The UserEditorObject property gets nothing if
the UserEditor method fails. The control fires the UserEditorOpen event when an user
editor is about to be shown. The control fires the UserEditorClose event when the control
closes an user editor. The control fires the UserEditorOleEvent event each time when an
user editor fires an event.

The following VB sample initializes an user editor of EXCOMBOBOXLibCtl.ComboBox:

With Grid1
 .BeginUpdate
 .DefaultItemHeight = 21
 .TreeColumnIndex = -1
 .ColumnAutoResize = True
 .MarkSearchColumn = False
 .FullRowSelect = False
 .DrawGridLines = exVLines
 With .Columns
 With .Add("Column 0").Editor
 .EditType = EditTypeEnum.UserEditorType
 ' Creates an ExComboBox control, and gets the object created
 .UserEditor "Exontrol.ComboBox", ""
 If Not .UserEditorObject Is Nothing Then
 With .UserEditorObject ' Points to an ExComboBox control
 ' Loads the ExComboBox object
 .BeginUpdate
 .LinesAtRoot = exGroupLinesAtRoot
 .ColumnAutoResize = True
 .IntegralHeight = True

 .HeaderVisible = False
 .AllowSizeGrip = True
 .MinHeightList = 100
 .AutoDropDown = True
 .HasButtons = exArrow
 .Indent = 18
 .MarkSearchColumn = False
 .BackColor = Grid1.BackColor
 With .Columns
 With .Add("Column 0")
 End With
 With .Add("Column 1")
 .Position = 0
 .Width = 16
 End With
 End With
 With .Items
 Dim h1 As HITEM, h2 As HITEM, h12 As HITEM, i As Long
 For i = 1 To 3
 h1 = .AddItem("Group " & i)
 .CellCaption(h1, 1) = i * 4 - 3
 h12 = .InsertItem(h1, , "Item 1")
 .CellCaption(h12, 1) = i * 4 - 2
 h12 = .InsertItem(h1, , "Item 2")
 .CellCaption(h12, 1) = i * 4 - 1
 h12 = .InsertItem(h1, , "Item 3")
 .CellCaption(h12, 1) = i * 4
 .ExpandItem(h1) = True
 Next
 End With
 .EndUpdate
 End With
 Else
 MsgBox "YOU NEED TO HAVE INSTALLED THE EXCOMBOBOX CONTROL, else you will
not be able to see the UserEditor column"
 End If
End With

With .Add("Column 1")
 With .Editor
 .EditType = EditTypeEnum.DateType
 .AddItem 10, "Ten"
 .AddItem 20, "Twenty"
 End With
End With
End With
For i = 1 To 11
 With .Items
 Dim h As HITEM
 h = .AddItem(i)
 End With
Next
 .EndUpdate
End With

The following VB sample adds the Exontrol's eXMaskEdit Component to mask floating point
numbers with digit grouping:

With Grid1.Items
 Dim h As HITEM
 h = .AddItem(100)
 With .CellEditor(h, 0)
 .EditType = UserEditorType
 .UserEditor "Exontrol.MaskEdit", ""
 With .UserEditorObject()
 .BackColor = vbWhite
 .MaskFloat = True
 .Mask = "-###.###.###,##"
 End With
 End With
End With

The following C++ sample adds the Exontrol's eXMaskEdit Component to mask floating
point numbers with digit grouping:

CItems items = m_grid.GetItems();

https://exontrol.com/exmaskedit.jsp

long hItem = items.AddItem(COleVariant((double)100));
CEditor editor = items.GetCellEditor(COleVariant(hItem), COleVariant(long(0)));
editor.SetEditType(16 /*UserEditorType*/);
editor.UserEditor("Exontrol.MaskEdit", "");
MaskEditLib::IMaskEditPtr spMaskEdit(editor.GetUserEditorObject());
if (spMaskEdit != NULL)
{
 spMaskEdit->put_MaskFloat(TRUE);
 spMaskEdit->put_Mask(L"-###.###.###,##");
 spMaskEdit->put_BackColor(RGB(255,255,255));
}

The sample requires calling the #import <maskedit.dll> to include the type library for the
eXMaskEdit component. The #import <maskedit.dll> defines the MaskEditLib namespace
used in the sample.

The following VB.NET sample adds the Exontrol's eXMaskEdit Component to mask floating
point numbers with digit grouping:

With AxGrid1.Items
 Dim h As Integer = .AddItem(1000)
 With .CellEditor(h, 0)
 .EditType = EXGRIDLib.EditTypeEnum.UserEditorType
 .UserEditor("Exontrol.MaskEdit", "")
 With .UserEditorObject()
 .BackColor = ToUInt32(Color.White)
 .MaskFloat = True
 .Mask = "-###.###.###,##"
 End With
 End With
End With

where the ToUInt32 function converts a Color expression to an unsigned long expression
and may look like follows:

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G

 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample adds the Exontrol's eXMaskEdit Component to mask floating point
numbers with digit grouping:

EXGRIDLib.Items items = axGrid1.Items;
int hItem = items.AddItem(100);
EXGRIDLib.Editor editor = items.get_CellEditor(hItem, 0);
editor.EditType = EXGRIDLib.EditTypeEnum.UserEditorType;
editor.UserEditor("Exontrol.MaskEdit", "");
MaskEditLib.MaskEdit maskEdit = editor.UserEditorObject as MaskEditLib.MaskEdit;
if (maskEdit != null)
{
 maskEdit.BackColor = ToUInt32(Color.White);
 maskEdit.MaskFloat = true;
 maskEdit.Mask = "-###.###.###,##";
}

where the MaskEditLib class is defined by adding a new reference to the ExMaskEdit
component to your project. The ToUInt32 function converts a Color expression to an
OLE_COLOR expression (unsigned long expression), and may look like follows:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample adds the Exontrol's eXMaskEdit Component to mask floating
point numbers with digit grouping:

With thisform.Grid1.Items
 local h
 h = .AddItem(100)

 With .CellEditor(h, 0)
 .EditType = 16 && UserEditorType
 .UserEditor("Exontrol.MaskEdit", "")
 With .UserEditorObject()
 .BackColor = RGB(255,255,255)
 .MaskFloat = .t.
 .Mask = "-###.###.###,##"
 EndWith
 EndWith
EndWith

ExDataObject object
Defines the object that contains OLE drag and drop information.

Name Description
Clear Deletes the contents of the ExDataObject object.

Files
Returns an ExDataObjectFiles collection, which in turn
contains a list of all filenames used by an ExDataObject
object.

GetData Returns data from an ExDataObject object in the form of a
variant.

GetFormat Returns a value indicating whether an item in the
ExDataObject object matches a specified format.

SetData Inserts data into an ExDataObject object using the
specified data format.

method ExDataObject.Clear ()
Deletes the contents of the DataObject object.

Type Description

The Clear method can be called only for drag sources. The OleDragDrop event notifies
your application that the user drags some data on the control.

property ExDataObject.Files as ExDataObjectFiles
Returns a DataObjectFiles collection, which in turn contains a list of all filenames used by a
DataObject object.

Type Description

ExDataObjectFiles An ExDataObjectFiles object that contains a list of
filenames used in OLE drag and drop operations

The Files property is valid only if the format of the clipboard data is exCFFiles. The
OleDragDrop event notifies your application that the user drags some data on the control.

method ExDataObject.GetData (Format as Integer)
Returns data from a DataObject object in the form of a variant.

Type Description

Format as Integer An exClipboardFormatEnum expression that defines the
data's format

Return Description

Variant A Variant value that contains the ExDataObject's data in
the given format

Use GetData property to retrieve the clipboard's data that has been dragged to the control.
It's possible for the GetData and SetData methods to use data formats other than
exClipboardFormatEnum , including user-defined formats registered with Windows via the
RegisterClipboardFormat() API function. The GetData method always returns data in a byte
array when it is in a format that it is not recognized. Use the Files property to retrieves the
filenames if the format of data is exCFFiles

method ExDataObject.GetFormat (Format as Integer)

Returns a value indicating whether the ExDataObject's data is of the specified format.

Type Description

Format as Integer A constant or value that specifies a clipboard data format
like described in exClipboardFormatEnum enum.

Return Description

Boolean A boolean value that indicates whether the ExDataObject's
data is of specified format.

Use the GetFormat property to verify if the ExDataObject's data is of a specified clipboard
format. The GetFormat property retrieves True, if the ExDataObject's data format matches
the given data format.

method ExDataObject.SetData ([Value as Variant], [Format as Variant])

Inserts data into a ExDataObject object using the specified data format.

Type Description
Value as Variant A data that is going to be inserted to ExDataObject object.

Format as Variant A constant or value that specifies the data format, as
described in exClipboardFormatEnum enum

Use SetData property to insert data for OLE drag and drop operations. Use the Files
property is you are going to add new files to the clipboard data. The OleDragDrop event
notifies your application that the user drags some data on the control.

ExDataObjectFiles object

The ExDataObjectFiles contains a collection of filenames. The ExDataObjectFiles object is
used in OLE Drag and drop events. In order to get the list of files used in drag and drop
operations you have to use the Files property.

Name Description
Add Adds a filename to the Files collection
Clear Removes all file names in the collection.
Count Returns the number of file names in the collection.
Item Returns an specific file name.
Remove Removes an specific file name.

method ExDataObjectFiles.Add (FileName as String)

Adds a filename to the Files collection

Type Description
FileName as String A string expression that indicates a filename.

Use Add method to add your files to ExDataObject object. The OleStartDrag event notifies
your application that the user starts dragging items.

method ExDataObjectFiles.Clear ()

Removes all file names in the collection.

Type Description

Use the Clear method to remove all filenames from the collection.

property ExDataObjectFiles.Count as Long

Returns the number of file names in the collection.

Type Description

Long A long value that indicates the count of elements into
collection.

You can use "for each" statements if you are going to enumerate the elements into
ExDataObjectFiles collection.

property ExDataObjectFiles.Item (Index as Long) as String

Returns a specific file name given its index.

Type Description
Index as Long A long expression that indicates the filename's index
String A string value that indicates the filename

method ExDataObjectFiles.Remove (Index as Long)

Removes a specific file name given its index into collection.

Type Description

Index as Long A long expression that indicates the index of filename into
collection.

Use Clear method to remove all filenames.

Grid object
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {101EE60F-7B07-48B0-A13A-F32BAE7DA165}. The object's program identifier is: "Exontrol.Grid". The
/COM object module is: "ExGrid.dll"

Exontrols new exGrid control an easy-to-implement grid control, provides swift and robust
performance and a wide range of formatting features that distinguish it from other grids. It
perfectly combines the exTree features with the very popular exEditors library. The object
model is rich, intuitive and flexible. The exGrid loads, edits and displays your hierarchical or
tabular data. Here's the list of supported properties and methods:

Name Description

AllowCopyTemplate
Specifies whether the Shift + Ctrl + Alt + Insert sequence
copies the control's content to the clipboard, in template
form.

AllowGroupBy Indicates whether the control supports Group-By view.

AllowSelectNothing Specifies whether the current selection is erased, once the
user clicks outside of the items section.

AllowUndoRedo Enables or disables the Undo/Redo feature.
AnchorFromPoint Retrieves the identifier of the anchor from point.
Appearance Retrieves or sets the control's appearance.
ApplyFilter Applies the filter.
ASCIILower Specifies the set of lower characters.
ASCIIUpper Specifies the set of upper characters.

AttachTemplate Attaches a script to the current object, including the
events, from a string, file, a safe array of bytes.

AutoDrag Gets or sets a value that indicates the way the component
supports the AutoDrag feature.

AutoEdit Specifies whether the cell is edited once that it is focused.
AutoSearch Enables or disables the incremental searching feature.

BackColor Retrieves or sets a value that indicates the control's
background color.

BackColorAlternate Specifies the background color used to display alternate
items in the control.

BackColorHeader Specifies the header's background color.
BackColorLevelHeader Specifies the multiple levels header's background color.

BackColorLock Retrieves or sets a value that indicates the control's
background color for the locked area.

BackColorSortBar Retrieves or sets a value that indicates the sort bar's
background color.

BackColorSortBarCaption Returns or sets a value that indicates the caption's
background color in the control's sort bar.

Background Returns or sets a value that indicates the background
color for parts in the control.

BeginUpdate
Maintains performance when items are added to the
control one at a time. This method prevents the control
from painting until the EndUpdate method is called.

CanRedo Retrieves a value that indicates whether the control can
perform a Redo operation.

CanUndo Retrieves a value that indicates whether the control can
perform an Undo operation.

CauseValidateValue
Returns or sets a value that determines whether the
ValidateValue event occurs before the user changes the
cell's value.

CheckImage Retrieves or sets a value that indicates the image used by
cells of checkbox type.

ClearFilter Clears the filter.

ColumnAutoResize
Returns or sets a value indicating whether the control will
automatically size its visible columns to fit on the control's
client width.

ColumnFromPoint Retrieves the column from point.
Columns Retrieves the control's column collection.

ColumnsAllowSizing Retrieves or sets a value that indicates whether a user
can resize columns at run-time.

ColumnsFloatBarSortOrder Specifies the sorting order for the columns being shown in
the control's columns floating panel.

ColumnsFloatBarVisible Retrieves or sets a value that indicates whether the the
columns float bar is visible or hidden.

ConditionalFormats Retrieves the conditional formatting collection.

ContinueColumnScroll
Retrieves or sets a value indicating whether the control will
automatically scroll the visible columns by pixel or by
column width.

Copy Copies the control's content to the clipboard, in the EMF
format.

CopyTo Exports the control's view to an EMF file.

CountLockedColumns Retrieves or sets a value indicating the number of locked
columns. A locked column is not scrollable.

DataSource Retrieves or sets a value that indicates the data source for
object.

DefaultEditorOption Specifies a default option for an editor.

DefaultItemHeight Retrieves or sets a value that indicates the default item
height.

Description Changes descriptions for control objects.

DetectAddNew Specifies whether the control detects when a new record
is added to the bounded recordset.

DetectDelete Specifies whether the control detects when a record is
deleted from the bounded recordset.

DiscardValidateValue Cancels the current validation process, and restores back
the modified cells.

DrawGridLines Retrieves or sets a value that indicates whether the grid
lines are visible or hidden.

Edit Edits the focused cell.
EditClose Closes the current editor.

Editing Specifies the window's handle of the built-in editor while
the control is running in edit mode.

EditingText Specifies the caption of the editor during editing.
Enabled Enables or disables the control.

EndBlockUndoRedo
Ends recording the UI operations and adds the undo/redo
operations as a block, so they all can be restored at once,
if Undo method is performed.

EndUpdate Resumes painting the control after painting is suspended
by the BeginUpdate method.

EnsureOnSort
Specifies whether the control ensures that the focused
item fits the control's client area, when the user sorts the
items.

EnsureVisibleColumn Scrolls the control's content to ensure that the column fits
the client area.
Retrieves or sets a value that indicates the current's event

EventParam parameter.

ExecuteTemplate Executes a template and returns the result.

ExpandOnDblClick Specifies whether the item is expanded or collapsed if the
user dbl clicks the item.

ExpandOnKeys
Specifies a value that indicates whether the control
expands or collapses a node when user presses arrow
keys.

ExpandOnSearch Expands items automatically while user types characters
to search for a specific item.

Export Exports the control's data to a CSV format.
FilterBarBackColor Specifies the background color of the control's filter bar.
FilterBarCaption Specifies the filter bar's caption.

FilterBarDropDownHeight Specifies the height of the drop down filter window
proportionally with the height of the control's list.

FilterBarFont Retrieves or sets the font for control's filter bar.
FilterBarForeColor Specifies the foreground color of the control's filter bar.

FilterBarHeight
Specifies the height of the control's filter bar. If the value is
less than 0, the filterbar is automatically resized to fit its
description.

FilterBarPrompt Specifies the caption to be displayed when the filter
pattern is missing.

FilterBarPromptColumns Specifies the list of columns to be used when filtering
using the prompt.

FilterBarPromptPattern Specifies the pattern for the filter prompt.
FilterBarPromptType Specifies the type of the filter prompt.
FilterBarPromptVisible Shows or hides the filter prompt.
FilterCriteria Retrieves or sets the filter criteria.

FilterInclude Specifies the items being included after the user applies
the filter.

FocusColumnIndex Specifies the index of focused column.
Font Retrieves or sets the control's font.

ForeColor Retrieves or sets a value that indicates the control's
foreground color.

ForeColorHeader Specifies the header's foreground color.

ForeColorLock
Retrieves or sets a value that indicates the control's
foreground color for the locked area.

ForeColorSortBar Retrieves or sets a value that indicates the sort bar's
foreground color.

FormatABC Formats the A,B,C values based on the giving expression
and returns the result.

FormatAnchor Specifies the visual effect for anchor elements in HTML
captions.

FreezeEvents Prevents the control to fire any event.
FullRowSelect Enables full-row selection in the control.
GetItems Gets the collection of items into a safe array,
GridLineColor Specifies the grid line color.

GridLineStyle Specifies the style for gridlines in the list part of the
control.

Group Forces the control to do a regrouping of the columns.

GroupUndoRedoActions Groups the next to current Undo/Redo Actions in a single
block.

HasButtons
Adds a button to the left side of each parent item. The
user can click the button to expand or collapse the child
items as an alternative to double-clicking the parent item.

HasButtonsCustom Specifies the index of icons for +/- signs when the
HasButtons property is exCustom.

HasLines
Enhances the graphic representation of a grid control's
hierarchy by drawing lines that link child items to their
corresponding parent item.

HeaderAppearance Retrieves or sets a value that indicates the header's
appearance.

HeaderEnabled Enables or disables the control's header.

HeaderHeight Retrieves or sets a value indicating the control's header
height.

HeaderSingleLine Specifies whether the control resizes the columns header
and wraps the captions in single or multiple lines.

HeaderVisible Retrieves or sets a value that indicates whether the the
grid's header is visible or hidden.

HideSelection Returns a value that determines whether selected item

appears highlighted when a control loses the focus.

HotBackColor
Retrieves or sets a value that indicates the hot-tracking
background color.

HotForeColor Retrieves or sets a value that indicates the hot-tracking
foreground color.

HTMLPicture Adds or replaces a picture in HTML captions.
hWnd Retrieves the control's window handle.
HyperLinkColor Specifies the hyperlink color.
Images Sets the control's image list at runtime.
ImageSize Retrieves or sets the size of icons the control displays.

Indent Retrieves or sets the amount, in pixels, that child items are
indented relative to their parent items.

IsGrouping Indicates whether the control is grouping the items.
ItemFromPoint Retrieves the item from point.
Items Retrieves the control's item collection.

ItemsAllowSizing Retrieves or sets a value that indicates whether a user
can resize items at run-time.

Layout Saves or loads the control's layout, such as positions of
the columns, scroll position, filtering values.

LinesAtRoot Link items at the root of the hierarchy.

LoadXML Loads an XML document from the specified location, using
MSXML parser.

MarkSearchColumn Retrieves or sets a value that indicates whether the
searching column is marked or unmarked

MarkTooltipCells Retrieves or sets a value that indicates wheter the control
marks the cells that have tooltips.

MarkTooltipCellsImage Specifies a value that indicates the index of icon being
displayed in the cells that have tooltips.

OLEDrag Causes a component to initiate an OLE drag/drop
operation.

OLEDropMode Returns or sets how a target component handles drop
operations

Picture Retrieves or sets a graphic to be displayed in the control.

PictureDisplay Retrieves or sets a value that indicates the way how the

graphic is displayed on the control's background

PictureDisplayLevelHeader
Retrieves or sets a value that indicates the way how the
graphic is displayed on the control's header background.

PictureLevelHeader Retrieves or sets a graphic to be displayed in the control's
header when multiple levels is on.

PutItems Adds an array of integer, long, date, string, double, float,
or variant arrays to the control.

RadioImage Retrieves or sets a value that indicates the image used by
cells of radio type.

RClickSelect Retrieves or sets a value that indicates whether an item is
selected using right mouse button.

ReadOnly Retrieves or sets a value that indicates whether the
control is readonly.

Redo Redoes the next action in the control's Redo queue.

RedoListAction Lists the Redo actions that can be performed in the
control.

RedoRemoveAction Removes the first redo actions that can be performed in
the control.

Refresh Refreshes the control's content.
RemoveSelection Removes the selected items (including the descendents)

ReplaceIcon Adds a new icon, replaces an icon or clears the control's
image list.

RightToLeft Indicates whether the component should draw right-to-left
for RTL languages.

SaveXML Saves the control's content as XML document to the
specified location, using the MSXML parser.

Scroll Scrolls the control's content.

ScrollBars Returns or sets a value that determines whether the
control has horizontal and/or vertical scroll bars.

ScrollButtonHeight Specifies the height of the button in the vertical scrollbar.
ScrollButtonWidth Specifies the width of the button in the horizontal scrollbar.

ScrollBySingleLine

Retrieves or sets a value that indicates whether the
control scrolls the lines to the end. If you have at least a
cell that has SingleLine false, you have to check the
ScrollBySingleLine property..

ScrollFont Retrieves or sets the scrollbar's font.
ScrollHeight Specifies the height of the horizontal scrollbar.
ScrollOrderParts Specifies the order of the buttons in the scroll bar.

ScrollPartCaption Specifies the caption being displayed on the specified
scroll part.

ScrollPartCaptionAlignment Specifies the alignment of the caption in the part of the
scroll bar.

ScrollPartEnable Indicates whether the specified scroll part is enabled or
disabled.

ScrollPartVisible Indicates whether the specified scroll part is visible or
hidden.

ScrollPos Specifies the vertical/horizontal scroll position.
ScrollThumbSize Specifies the size of the thumb in the scrollbar.

ScrollToolTip Specifies the tooltip being shown when the user moves the
scroll box.

ScrollWidth Specifies the width of the vertical scrollbar.

SearchColumnIndex Retrieves or sets a value indicating the column's index that
is used for auto search feature.

SelBackColor Retrieves or sets a value that indicates the selection
background color.

SelBackMode Retrieves or sets a value that indicates whether the
selection is transparent or opaque.

SelectByDrag Specifies whether the user selects multiple items by
dragging.

SelectColumnIndex Retrieves or sets a value that indicates the index of the
selected column, if the FullRowSelect property is False.

SelectColumnInner Retrieves or sets a value that indicates the index of the
inner cell that's selected.

SelectOnRelease Indicates whether the selection occurs when the user
releases the mouse button.

SelForeColor Retrieves or sets a value that indicates the selection
foreground color.

ShowFocusRect Retrieves or sets a value indicating whether the control
draws a thin rectangle around the focused item.

ShowImageList Specifies whether the control's image list window is visible

or hidden.

ShowLockedItems Retrieves or sets a value that indicates whether the
locked/fixed items are visible or hidden.

ShowToolTip Shows the specified tooltip at given position.

SingleSel Retrieves or sets a value that indicates whether the
control supports single or multiple selection.

SingleSort Returns or sets a value that indicates whether the control
supports sorting by single or multiple columns.

SortBarCaption Specifies the caption being displayed on the control's sort
bar when the sort bar contains no columns.

SortBarColumnWidth Specifies the maximum width a column can be in the
control's sort bar.

SortBarHeight Retrieves or sets a value that indicates the height of the
control's sort bar.

SortBarVisible Retrieves or sets a value that indicates whether control's
sort bar is visible or hidden.

SortOnClick
Retrieves or sets a value that indicates whether the
control sorts automatically the data when the user click on
column's caption.

StartBlockUndoRedo Starts recording the UI operations as a block of undo/redo
operations.

Statistics Gives statistics data of objects being hold by the control.
Template Specifies the control's template.

TemplateDef Defines inside variables for the next
Template/ExecuteTemplate call.

TemplatePut Defines inside variables for the next
Template/ExecuteTemplate call.

TooltipCellsColor Retrieves or sets a value that indicates the color used to
make the cells that have tooltips.

ToolTipDelay Specifies the time in ms that passes before the ToolTip
appears.

ToolTipFont Retrieves or sets the tooltip's font.
ToolTipMargin Defines the size of the control's tooltip margins.

ToolTipPopDelay Specifies the period in ms of time the ToolTip remains
visible if the mouse pointer is stationary within a control.

ToolTipWidth Specifies a value that indicates the width of the tooltip
window, in pixels.

ToTemplate Generates the control's template.

TreeColumnIndex Retrieves or sets a value that indicates the index of
column where the hierarchy lines are displayed.

UnboundHandler Specifies the control's unbound handler.
Undo Performs the last Undo operation.

UndoListAction Lists the Undo actions that can be performed in the
control.

UndoRedoQueueLength Gets or sets the maximum number of Undo/Redo actions
that may be stored to the control's queue.

UndoRemoveAction Removes the last the undo actions that can be performed
in the control.

Ungroup Ungroups the columns, if they have been previously
grouped.

UseTabKey Retrieves or sets a value indicating whether the control
uses tab key for changing the searching column.

UseVisualTheme Specifies whether the control uses the current visual
theme to display certain UI parts.

Version Retrieves the control's version.
ViewMode Specifies how the data is displayed on the control's view.
ViewModeOption Specifies options for the control's view mode.

VirtualMode Specifies a value that indicates whether the control is
running in the virtual mode.

VisualAppearance Retrieves the control's appearance.
VisualDesign Invokes the control's VisualAppearance designer.
WordFromPoint Retrieves the word from the cursor.

property Grid.AllowCopyTemplate as Boolean
Specifies whether the Shift + Ctrl + Alt + Insert sequence copies the control's content to the
clipboard, in template form.

Type Description

Boolean
A Boolean expression that indicates whether the Shift +
Ctrl + Alt + Insert sequence copies the control's content to
the clipboard, in template form.

By default, the AllowCopyTemplate property is True, only for trial-demo version, and False,
for the registered version. So, by default, the Shift + Ctrl + Alt + Insert sequence is working
in the trial version, and it doesn't work on the registered version. Use the Version property
to find out what version of the control you are running. Use the AllowCopyTemplate property
for debugging purpose. Use the AllowCopyTemplate property to easily copy the control's
content to the clipboard, as template form, and so you can send us a sample without being
necessary to send the entire sample to us. The AllowCopyTemplate property is not
serialized in the form's persistence, so you need to set it in the code for a particular value.
If the AllowCopyTemplate property is True, the user may use the Shift + Ctrl + Alt + Insert
sequence to copy the control's content to the clipboard, in template form. If the control
manages to copy the control's content to the clipboard, you should hear a beep. The
property uses the ToTemplate property to generate the control's template, at runtime. The
format of the clipboard being copied is plain text. Use the Template property to apply the
generated template to an empty control.

property Grid.AllowGroupBy as Boolean
Indicates whether the control supports Group-By view.

Type Description

Boolean A Boolean expression that specifies whether the user can
group the items.

By default, the AllowGroupBy property is False. Set the AllowGroupBy property on True,
to allow the user to group the items by dragging the column's header to control's sort
bar. The SortBarVisible property specifies whether the control's sort bar is visible or hidden.
If the control's sort bar is visible, the user can drag and drop columns to it, so the column
get sorted and items grouped. The AddGroupItem event is fired when a new grouping items
is added to the control's list. You can use the AddGroupItem event, to add headers or
footers during grouping, customize the aggregate formula to be displayed on different
columns, while dropping a column to the sortbar. The Column.AllowGroupBy property may
be used to prevent grouping a specific column. The AllowSort property indicates whether
the user can sort a column by clicking the column's header. The IsGrouping property
specifies whether the control is grouping/ungrouping items. During grouping, the control
keeps the items indentation, in other words, a child item will be a child after or before
grouping. The LayoutChanged event is fired when the user changes the layout of the
control, including dragging a column to the sort bar. The SortBarColumnsCount property
indicates the number of the columns being grouped. The SortBarColumn property indicates
the column being sorted giving its position in the sort bar. The Group/Ungroup method
groups or ungroup the control's list. For instance, you can remove the grouping items, by
calling the Ungroup method. The GroupByTotalField property determines the formula to be
applied to the column when it gets grouped. The GroupByFormatCell property determines
the format of the cell to be displayed in the grouping item, when the column gets sorted.

The following movies show how Group-By works:

 Group By support - the user can drag and drop one or more columns to the sort bar
or group-by bar so the columns get sorted and grouped accordingly.

 Keep Indent - You can keep the indentation of the sub-items/children, once the user
groups the rows.

 Header/Footer - Headers and footers support, to display aggregate functions like
sum, min, max, and so on.

 CRD support - Can be combined with the exCRD, so you can have the rows being
arranged the way you want.

In case you need more than a Group-By feature, you should check the Exontrol's eXPivot.

https://www.youtube.com/watch?v=wdQ8EwLZxCg
https://www.youtube.com/watch?v=nturzclaVvQ
https://www.youtube.com/watch?v=3BkPhhRwDFo
https://www.youtube.com/watch?v=d-Iki6B8ukY
https://www.exontrol.com/excrd.jsp
https://exontrol.com/expivot.jsp

The Exontrol's eXPivot tool is our approach to provide data summarization, as a pivot
table. A pivot-table can automatically sort, count, total or give the average of the data
stored in one table or spreadsheet. The user sets up and changes the summary's
structure by dragging and dropping fields graphically. The eXPivot component lets the
user changes its visual appearance using skins, each one providing an additional visual
experience that enhances viewing pleasure. Skins are relatively easy to build and put on
any part of the control.

The following screen shot shows the control grouping the orders and details by country (
the items keep their children when the control performs the grouping/ungrouping):

The following screen shot shows the control grouping the orders by country:

The AllowGroupBy property/feature has no effect if:

the control is running in virtual mode (VirtualMode property is True)
the UnboundHandler property refers to a IUnboundHandler object
ViewMode property is not exTableView.
SingleSort property is True.

property Grid.AllowSelectNothing as Boolean
Specifies whether the current selection is erased, once the user clicks outside of the items
section.

Type Description

Boolean
A Boolean expression that specifies whether the current
selection is erased, once the user clicks outside of the
items section.

By default, the AllowSelectNothing property is False. The AllowSelectNothing property
specifies whether the current selection is erased, once the user clicks outside of the items
section. For instance, if the control's SingleSel property is True, and AllowSelectNothing
property is True, you can un-select the single-selected item if pressing the CTRL + Space,
or by CTRL + click.

property Grid.AllowUndoRedo as Boolean
Enables or disables the control's Undo/Redo feature.

Type Description

Boolean A Boolean expression that specifies whether the
Undo/Redo operations are enabled or disabled.

By default, the AllowUndoRedo property is False. The Undo and Redo features let you
remove or repeat single or multiple actions, but all actions must be undone or redone in the
order you did or undid them you cant skip actions. For example, if you change the value of
three cells in an item and then decide you want to undo the first change you made, you
must undo all three changes. To undo an action you need to press Ctrl+Z, while for to redo
something you've undone, press Ctrl+Y. Setting the AllowUndoRedo property, clears the
previously undo-redo queue. If the AllowUndoRedo property is True, the CTRL+Z performs
the last undo operation, while the CTRL+Y redoes the next action in the control's Redo
queue. The CanUndo property retrieves a value that indicates whether the control may
perform the last Undo operation. The CanRedo property retrieves a value that specifies
whether the control can execute the next operation in the control's Redo queue. Call the
Undo method to Undo the last control operation. The Redo redoes the next action in the
control's redo queue. The UndoRedoQueueLength property gets or sets the maximum
number of Undo/Redo actions that may be stored to the control's queue, or in other words
how many operations the control's Undo/Redo manager may store.

The records of the Undo/Redo queue may contain actions in the following format:

"AddItem;ITEMINDEX", indicates that a new item has been created
"RemoveItem;ITEMINDEX", indicates that an item has been removed
"ChangeItemPos;ITEMINDEX", indicates that an item changes its position or / and
parent
"ChangeCellValue;ITEMINDEX;CELLINDEX", indicates that the cell's value has been
changed
"ChangeCellState;ITEMINDEX;CELLINDEX", indicates that the cell's state has been
changed

Also, the Undo/Redo queue may include:

"StartBlock", specifies that a block of operations begins
"EndBlock", specifies that a block of operations ends

The URChange(exUndo/exRedo) event notifies your application whenever an Undo/Redo
operation is performed. The UndoListAction property lists the Undo actions that can be
performed in the control. The RedoListAction property lists the Redo actions that can be
performed in the control. Use the UndoRemoveAction method to remove the last actions

from the undo queue. The RedoRemoveAction method removes the first action to be
performed if the Redo method is invoked.

property Grid.AnchorFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as String
Retrieves the identifier of the anchor from point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

String
A String expression that specifies the identifier (id) of the
anchor element from the point, or empty string if there is
no anchor element at the cursor.

Use the AnchorFromPoint property to determine the identifier of the anchor from the point.
Use the <a id;options> anchor elements to add hyperlinks to cell's caption. The control fires
the AnchorClick event when the user clicks an anchor element. Use the ShowToolTip
method to show the specified tooltip at given or cursor coordinates. The MouseMove event
is generated continually as the mouse pointer moves across the control. The
WordFromPoint property determines the word from the cursor.

The following VB sample displays (as tooltip) the identifier of the anchor element from the
cursor:

Private Sub Grid1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With Grid1
 .ShowToolTip .AnchorFromPoint(-1, -1)
 End With
End Sub

The following VB.NET sample displays (as tooltip) the identifier of the anchor element
from the cursor:

Private Sub AxGrid1_MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_MouseMoveEvent) Handles AxGrid1.MouseMoveEvent
 With AxGrid1
 .ShowToolTip(.get_AnchorFromPoint(-1, -1))
 End With

End Sub

The following C# sample displays (as tooltip) the identifier of the anchor element from the
cursor:

private void axGrid1_MouseMoveEvent(object sender,
AxEXGRIDLib._IGridEvents_MouseMoveEvent e)
{
 axGrid1.ShowToolTip(axGrid1.get_AnchorFromPoint(-1, -1));
}

The following C++ sample displays (as tooltip) the identifier of the anchor element from
the cursor:

void OnMouseMoveGrid1(short Button, short Shift, long X, long Y)
{
 COleVariant vtEmpty; V_VT(&vtEmpty) = VT_ERROR;
 m_grid.ShowToolTip(m_grid.GetAnchorFromPoint(-1, -1), vtEmpty, vtEmpty, vtEmpty
);
}

The following VFP sample displays (as tooltip) the identifier of the anchor element from
the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform
 With .Grid1
 .ShowToolTip(.AnchorFromPoint(-1, -1))
 EndWith
endwith

property Grid.Appearance as AppearanceEnum
Retrieves or sets the control's appearance.

Type Description

AppearanceEnum

An AppearanceEnum expression that indicates the
control's appearance, or a color expression whose last 7
bits in the high significant byte of the value indicates the
index of the skin in the Appearance collection, being
displayed as control's borders. For instance, if the
Appearance = 0x1000000, indicates that the first skin
object in the Appearance collection defines the control's
border. The Client object in the skin, defines the
client area of the control. The list/hierarchy,
scrollbars are always shown in the control's client
area. The skin may contain transparent objects, and
so you can define round corners. The normal.ebn file
contains such of objects. Use the eXButton's Skin
builder to view or change this file

Use the Appearance property to specify the control's border. Use the HeaderAppearance
property to change the control's header bar appearance. Use the Add method to add new
skins to the control. Use the BackColor property to specify the control's background color.
Use the Background(exToolTipAppearance) property indicates the visual appearance of the
borders of the tooltips.

The following VB sample changes the visual aspect of the borders of the control (please
check the above picture for round corners):

With Grid1

https://exontrol.com/exbutton.jsp

 .BeginUpdate
 .VisualAppearance.Add &H16, "c:\temp\normal.ebn"
 .Appearance = &H16000000
 .BackColor = RGB(250, 250, 250)
 .EndUpdate
End With

The following VB.NET sample changes the visual aspect of the borders of the control:

With AxGrid1
 .BeginUpdate()
 .VisualAppearance.Add(&H16, "c:\temp\normal.ebn")
 .Appearance = &H16000000
 .BackColor = Color.FromArgb(250, 250, 250)
 .EndUpdate()
End With

The following C# sample changes the visual aspect of the borders of the control:

axGrid1.BeginUpdate();
axGrid1.VisualAppearance.Add(0x16, "c:\\temp\\normal.ebn");
axGrid1.Appearance = (EXGRIDLib.AppearanceEnum)0x16000000;
axGrid1.BackColor = Color.FromArgb(250, 250, 250);
axGrid1.EndUpdate();

The following C++ sample changes the visual aspect of the borders of the control:

m_grid.BeginUpdate();
m_grid.GetVisualAppearance().Add(0x16, COleVariant("c:\\temp\\normal.ebn"));
m_grid.SetAppearance(0x16000000);
m_grid.SetBackColor(RGB(250,250,250));
m_grid.EndUpdate();

The following VFP sample changes the visual aspect of the borders of the control:

with thisform.Grid1
 .BeginUpdate
 .VisualAppearance.Add(0x16, "c:\temp\normal.ebn")
 .Appearance = 0x16000000

 .BackColor = RGB(250, 250, 250)
 .EndUpdate
endwith

method Grid.ApplyFilter ()
Applies the filter.

Type Description

The ApplyFilter method updates the control's content once that user sets the filter using the
Filter and FilterType properties. Use the ClearFilter method to clear the control's filter. Use
the DisplayFilterButton property to show the filter drop down button in the column's caption.
Use the FilterBarDropDownHeight property to specify the height of the drop down filter
window. Use the FilterInclude property to specify whether the child items should be included
to the list when the user applies the filter. Use the FilterCriteria property to filter items using
the AND, OR and NOT operators. Use the ShowFilter method to show programmatically
the column's drop down filter window.

property Grid.ASCIILower as String
Specifies the set of lower characters.

Type Description

String A string expression that indicates the set of lower
characters used by auto search feature.

The ASCIILower and ASCIIUpper properties helps you to specify the set of characters that
are used by the auto search feature. If you want to make the auto search feature case
sensitive you have to use ASCIIUpper = "" . By default, the ASCIILower property is =
"abcdefghijklmnopqrstuvwxyz�יגהאוחךכטןמלפצע�שבםףתס"

property Grid.ASCIIUpper as String
Specifies the set of upper characters.

Type Description

String A string expression that indicates the set of upper
characters used by auto search feature.

The ASCIILower and ASCIIUpper properties helps you to specify the set of characters that
are used by the auto search feature. If you want to make the auto search feature case
sensitive you have to use ASCIIUpper = "" . By default, the ASCIIUpper property is =
"ABCDEFGHIJKLMNOPQRSTUVWXYZÜÉÂÄŔĹÇĘËČĎÎĚÔÖŇŰŮÁÍÓÚŃ"

method Grid.AttachTemplate (Template as Variant)
Attaches a script to the current object, including the events, from a string, file, a safe array
of bytes.

Type Description
Template as Variant A string expression that specifies the Template to execute.

The AttachTemplate/x-script code is a simple way of calling control/object's properties,
methods/events using strings. The AttachTemplate features allows you to attach a x-script
code to the component. The AttachTemplate method executes x-script code (including
events), from a string, file or a safe array of bytes. This feature allows you to run any x-
script code for any configuration of the component /COM, /NET or /WPF. Exontrol owns the
x-script implementation in its easiest form and it does not require any VB engine or
whatever to get executed. The x-script code can be converted to several programming
languages using the eXHelper tool.

The following sample opens the Windows Internet Explorer once the user clicks the control
(/COM version):

AttachTemplate("handle Click(){ CreateObject(`internetexplorer.application`){ Visible =
True; Navigate(`https://www.exontrol.com`) } } ")

This script is equivalent with the following VB code:

Private Sub Grid1_Click()
 With CreateObject("internetexplorer.application")
 .Visible = True
 .Navigate ("https://www.exontrol.com")
 End With
End Sub

The AttachTemplate/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>
<lines> := <line>[<eol> <lines>] | <block>
<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]
<eol> := ";" | "\r\n"
<line> := <dim> | <createobject> | <call> | <set> | <comment> | <handle>[<eol>]{[<eol>]
<lines>[<eol>]}[<eol>]
<dim> := "DIM" <variables>
<variables> := <variable> [, <variables>]

<variable> := "ME" | <identifier>
<createobject> := "CREATEOBJECT(`"<type>"`)"
<call> := <variable> | <property> | <variable>"."<property> | <createobject>"."<property>
<property> := [<property>"."]<identifier>["("<parameters>")"]
<set> := <call> "=" <value>
<property> := <identifier> | <identifier>"("[<parameters>]")"
<parameters> := <value> [","<parameters>]
<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> | <call>
<boolean> := "TRUE" | "FALSE"
<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit16> := <digit10> | A | B | C | D | E | F
<integer> := <digit10>[<integer>]
<hexa> := <digit16>[<hexa>]
<color> := "RGB("<integer>","<integer>","<integer>")"
<date> := "#"<integer>"/"<integer>"/"<integer>" "[<integer>":"<integer>":"<integer>"]"#"
<string> := '"'<text>'"' | "`"<text>"`"
<comment> := "'"<text>
<handle> := "handle " <event>
<event> := <identifier>"("[<eparameters>]")"
<eparameters> := <eparameter> [","<eparameters>]
<parameters> := <identifier>

where:

<identifier> indicates an identifier of the variable, property, method or event, and should
start with a letter.
<type> indicates the type the CreateObject function creates, as a progID for /COM version
or the assembly-qualified name of the type to create for /NET or /WPF version
<text> any string of characters

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character.

The advantage of the AttachTemplate relative to Template / ExecuteTemplate is that the
AttachTemplate can add handlers to the control events.

property Grid.AutoDrag as AutoDragEnum
Gets or sets a value that indicates the way the component supports the AutoDrag feature.

Type Description

AutoDragEnum
An AutoDragEnum expression that specifies what the
control does once the user clicks and start dragging an
item.

By default, the AutoDrag property is exAutoDragNone(0). The AutoDrag feature indicates
what the control does when the user clicks an item and starts dragging it. For instance,
using the AutoDrag feature you can automatically lets the user to drag and drop the data to
OLE compliant applications like Microsoft Word, Excel and so on. The SingleSel property
specifies whether the control supports single or multiple selection. The AutoDrag feature
adds automatically Drag and Drop, but you can still use the OLEDropMode property to
handle the OLE Drag and Drop event for your custom action.

The drag and drop operation starts:

once the user clicks and moves the cursor up or down, if the SingleSel property is
True.
once the user clicks, and waits for a short period of time, if SingleSel property is False
(multiple items in selection is allowed). In this case, you can drag and drop any item
that is not selected, or a contiguously selection

Once the drag and drop operation starts the mouse pointer is changed to MOVE cursor if
the operation is possible, else if the Drag and Drop operation fails or if it is not possible, the
mouse pointer is changed to NO cursor.

If using the AutoDrag property on:

exAutoDragPosition

exAutoDragPositionKeepIndent
exAutoDragPositionAny

the Drag and Drop starts only:

item from cursor is a selectable (SelectableItem property on True, default) and
sortable item (SortableItem property on True, default).
if multiple items are selected, the selection is contiguously.

Use the AutoDrag property to allow Drag and Drop operations like follows:

Ability to change the column or row position without having to manually add the OLE
drag and drop events
Ability to drag and drop the data as text, to your favorite Office applications, like
Word, Excel, or any other OLE-Automation compliant
Ability to drag and drop the data as it looks, to your favorite Office applications, like
Word, Excel, or any other OLE-Automation compliant
Ability to smoothly scroll the control's content moving the mouse cursor up or down
and more ...

https://www.youtube.com/watch?v=crG33cuKwC4
https://www.youtube.com/watch?v=4uA7ZI0W3Sk
https://www.youtube.com/watch?v=vunKapyV34g
https://www.youtube.com/watch?v=LIu7eo86GP8

property Grid.AutoEdit as Boolean
Specifies whether the cell may be edited when it has the focus.

Type Description

Boolean A boolean expression that indicates whether the editing
operation starts once that a cell is focused.

Use the AutoEdit property to choose how the user edits the data. By default, the AutoEdit
property is True. Use the Edit method to start editing the focused cell. Use the EditType
property to define the column's editor. Use the ReadOnly property to make the control read
only. Use the FocusItem property to retrieve the focused item. Use the FocusColumnIndex
property to get the index of the column that's focused. Use the Editing property to check
whether the control is in edit mode, or to get the window's handle for the built-in editor
that's visible and focused.

The edit events are fired in the following order:

1. Edit event. Prevents editing cells, before showing the cell's editor.

2. EditOpen event. The edit operation started, the cell's editor is shown. The Editing
property gives the window's handle of the built-in editor being started.

3. Change event. The Change event is fired only if the user types ENTER key, or the user
selects a new value from a predefined data list.

4. EditClose event. The cell's editor is hidden and closed.

The following VB sample starts editing a cell when user presses the F4 key:

Private Sub Grid1_KeyDown(KeyCode As Integer, Shift As Integer)
 ' Starts editing data when the user presses the F4 key
 With Grid1
 If (Not .AutoEdit) Then
 If (KeyCode = vbKeyF4) Then .Edit
 End If
 End With
End Sub

The following C++ sample starts editing the focused cell when user presses the F4 key:

void OnKeyDownGrid1(short FAR* KeyCode, short Shift)

{
 if (*KeyCode == VK_F4)
 {
 COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
 if (m_grid.GetEditing() == 0)
 m_grid.Edit(vtMissing);
 }
}

The following VB.NET sample starts editing the focused cell when user presses the F4 key:

Private Sub AxGrid1_KeyDownEvent(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_KeyDownEvent) Handles AxGrid1.KeyDownEvent
 If (Convert.ToUInt32(e.keyCode) = Convert.ToUInt32(Keys.F4)) Then
 AxGrid1.Edit(Nothing)
 End If
End Sub

The following C# sample starts editing the focused cell when user presses the F4 key:

private void axGrid1_KeyDownEvent(object sender,
AxEXGRIDLib._IGridEvents_KeyDownEvent e)
{
 if (Convert.ToUInt32(e.keyCode) == Convert.ToUInt32(Keys.F4))
 axGrid1.Edit(null);
}

The following VFP sample starts editing the focused cell when user presses the F4 key:

private void axGrid1_KeyDownEvent(object sender,
AxEXGRIDLib._IGridEvents_KeyDownEvent e)
{
 if (Convert.ToUInt32(e.keyCode) == Convert.ToUInt32(Keys.F4))
 axGrid1.Edit(null);
}

property Grid.AutoSearch as Boolean
Enables or disables the incremental searching feature.

Type Description

Boolean A boolean expression that indicates whether the auto
search is enabled or disabled.

By default, the AutoSearch property is True. The auto-search feature is is commonly known
as incremental search. An incremental search begins searching as soon as you type the
first character of the search string. As you type in the search string, the control selects the
item (and highlight the portion of the string that match where the string (as you have typed
it so far) would be found. The control supports 'starts with' or 'contains' incremental search
as described in the AutoSearch property of the Column object. Use the ASCIILower and
ASCIIUpper properties to specify the set of lower and upper characters when auto search
feature is enabled. Use the ExpandOnSearch property to expand items automatically while
user types characters to search for a specific item. Use the MarkSearchColumn property to
specify whether the control draws a rectangle around the searching column. The
SearchColumnIndex property determines the index of the searching column.

The control highlights the characters as the user types them:

property Grid.BackColor as Color
Retrieves or sets a value that indicates the control's background color.

Type Description

Color A color expression that indicates the control's background
color

Use the BackColor property to set the control's background color. If the control contains
locked columns, (if the CountLockedColumns property is grater than 0, a locked column is
a column non scrolable), use the BackColorLock property to specify the background color
for locked columns. Use the CellBackColor property to set the cell's background color. Use
the ItemBackColor property to specify the item's background color. The control highlights
the selected items only if the SelBackColor and BackColor properties have different values,
and the SelForeColor and ForeColor properties have different values. Use the
Def(exCellBackColor) property to specify the background color for all cells in the column.

The following VB sample sets the background color for the first column:

With Grid1.Columns(0)
 .Def(exCellBackColor) = RGB(240, 240, 120)
End With

The following C++ sample sets the background color for the first column:

#include "Column.h"
#include "Columns.h"
CColumns columns = m_grid.GetColumns();
CColumn column = columns.GetItem(COleVariant(long(0)));
column.SetDef(4, COleVariant((long)RGB(240,240,240)));

The following VB.NET sample sets the background color for the first column:

With AxGrid1.Columns(0)
 .Def(EXGRIDLib.DefColumnEnum.exCellBackColor) = ToUInt32(Color.FromArgb(240,
240, 240))
End With

where the ToUInt32 function converts a Color expression to OLE_COLOR expression:

Shared Function ToUInt32(ByVal c As Color) As UInt32

 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample sets the background color for the first column:

axGrid1.Columns[0].set_Def(EXGRIDLib.DefColumnEnum.exCellBackColor,
ToUInt32(Color.FromArgb(240, 240, 240)));

where the ToUInt32 function converts a Color expression to OLE_COLOR expression:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample sets the background color for the first column:

with thisform.Grid1.Columns(0)
 .Def(4) = RGB(240,240,240)
endwith

property Grid.BackColorAlternate as Color
Specifies the background color used to display alternate items in the control.

Type Description

Color

A color expression that indicates the alternate background
color. If the first byte of four is 7F, the color is applied to
the items section only. For instance, a value of
0x7F0000FF indicates that the BackColorAlternate
property is red, and it applied to the items section only, so
the non-items section is not painted.

By default, the control's BackColorAlternate property is zero. Use the BackColorAlternate
property to specify the background color used to display alternate items in the control. The
control ignores the BackColorAlternate property if it is 0 (zero). Use the BackColor
property to specify the control's background color. Use the SelBackColor property to
specify the selection background color. Use the ItemBackColor property to specify the
item's background color. Use the CellBackColor property to specify the cell's background
color. Use the Def(exCellBackColor) property to specify the background color for all cells in
the column. If the first two bytes of the BackColorAlternate property are 0x7F, the non-
items area is not filled.

For instance, the following VB sample draws alternate rows, including the non-items area:

Grid1.BackColorAlternate = RGB(255, 190, 190)

The following VB sample draws alternate rows, excluding the non-items area:

Grid1.BackColorAlternate = &H7F000000 Or RGB(255, 190, 190)

The following VB.NET sample draws alternate rows, excluding the non-items area:

Dim sRGB As UInt32 = &H7F000000 Or ToUInt32(ControlPaint.LightLight(Color.Lavender))
AxGrid1.Template = "BackColorAlternate = " + sRGB.ToString()

or use the BackColorAlternate32 property provided by the /NET assembly version

where the ToUInt32 method converts a Color expression to a unsigned integer:

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample draws alternate rows, excluding the non-items area:

UInt32 sRGB = 0x7F000000 | ToUInt32(ControlPaint .LightLight(Color.Lavender));
axGrid1.Template = "BackColorAlternate = " + sRGB.ToString();

where the ToUInt32 method converts a Color expression to a unsigned integer.

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);

property Grid.BackColorHeader as Color
Specifies the header's background color.

Type Description

Color

A color expression that indicates the background color of
the control's header bar. The last 7 bits in the high
significant byte of the color indicates the identifier of the
skin being used. Use the Add method to add new skins to
the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits
in the high significant byte of the color being applied to the
background's part.

Use the BackColorHeader and ForeColorHeader properties to define colors used to paint
the control's header bar. Use the HeaderVisible property to show or hide the control's
header. Use the HeaderHeight property to specify the height of the control's header bar.
Use the LevelKey property to allow multiple levels header bar. Use the
BackColorLevelHeader property to specify the background color of the header when it
displays multiple levels. Use the HeaderHeight property to specify the height of the header
bar.

The following VB sample changes the visual appearance for the control's header. Shortly,
we need to add a skin to the Appearance object using the Add method, and we need to set
the last 7 bits in the BackColorHeader property to indicates the index of the skin that we
want to use. The sample applies the " " to the control' header bar:

With Grid1
 With .VisualAppearance
 .Add &H24, App.Path + "\header.ebn"
 End With
 .BackColorLevelHeader = RGB(255, 255, 255)
 .BackColorHeader = &H24000000
End With

The following C++ sample changes the visual aspect of the control' header bar:

#include "Appearance.h"

m_grid.GetVisualAppearance().Add(0x24,
COleVariant(_T("D:\\Temp\\ExGrid.Help\\header.ebn")));
m_grid.SetBackColorHeader(0x24000000);

The following VB.NET sample changes the visual aspect of the control' header bar:

With AxGrid1
 With .VisualAppearance
 .Add(&H24, "D:\Temp\ExGrid.Help\header.ebn")
 End With
 .Template = "BackColorHeader = 603979776"
End With

The 603979776 value indicates the &H24000000 in hexadecimal.

The following C# sample changes the visual aspect of the control' header bar:

axGrid1.VisualAppearance.Add(0x24, "D:\\Temp\\ExGrid.Help\\header.ebn");
axGrid1.Template = "BackColorHeader = 603979776";

The 603979776 value indicates the 0x24000000 in hexadecimal.

The following VFP sample changes the visual aspect of the control' header bar:

With thisform.Grid1
 With .VisualAppearance
 .Add(36, "D:\Temp\ExGrid.Help\header.ebn")
 EndWith
 .BackColorHeader = 603979776
EndWith

property Grid.BackColorLevelHeader as Color
Specifies the multiple levels header's background color.

Type Description

Color A color expression that indicates the background color of
the control's header bar.

Use the BackColorHeader and ForeColorHeader properties to define colors used to paint
the control's header bar. Use the BackColorLevelHeader property to specify the
background color of the control's header bar when multiple levels are displayed. Use the
LevelKey property to display the control's header bar using multiple levels. If the control
displays the header bar using multiple levels the HeaderHeight property gets the height in
pixels of a single level in the header bar. The control's header displays multiple levels if
there are two or more neighbor columns with the same non empty level key.

property Grid.BackColorLock as Color
Retrieves or sets a value that indicates the control's background color for the locked area.

Type Description

Color A color expression that indicates the background color for
locked columns.

The control contains locked columns if the CountLockedColumn property is grater than zero
(0). A locked column is fixed to the left side of the control, and it cannot be scrolled. If
the CountLockedColumn property is greater than 0, the BackColor property sets the
background color for the unlocked area. The unlocked area is the area that contains
scrollable columns. Use the Def(exCellBackColor) property to specify the background color
for all cells in the column. Use the CellBackColor property to set the cell's background color.

property Grid.BackColorSortBar as Color
Retrieves or sets a value that indicates the sort bar's background color.

Type Description

Color A color expression that indicates the background color of
the sort bar.

Use the BackColorSortBar property to specify the background color of the control's sort
bar. Use the SortBarVisible property to show the control's sort bar. Use the
BackColorSortBarCaption property to specify the background color of the caption of the
sort bar. The caption of the sort bar is visible, if there are no columns in the sort bar. Use
the SortBarCaption property to specify the caption of the sort bar. Use the
ForeColorSortBar property to specify the foreground color of the control's sort bar. Use the
BackColor property to specify the control's background color. Use the BackColorHeader
property to specify the background color of the control's header bar. Use the
BackColorLevelHeader property to specify the background color of the control's header bar
when multiple levels are displayed.

The following VB sample changes the appearance for the control's sort bar. The sample
uses the " " skin.

With Grid1
 .SortBarVisible = True
 With .VisualAppearance
 .Add &H60, App.Path + "\sortbar.ebn"
 End With
 .ForeColorSortBar = 0
 .BackColorSortBar = &H60000000
 .BackColorSortBarCaption = .BackColorSortBar
End With

The following C++ sample changes the appearance for the control's sort bar:

#include "Appearance.h"

m_grid.GetVisualAppearance().Add(0x60,
COleVariant(_T("D:\\Temp\\ExGrid.Help\\sortbar.ebn")));
m_grid.SetSortBarVisible(TRUE);
m_grid.SetBackColorSortBar(0x60000000);
m_grid.SetBackColorSortBarCaption(m_grid.GetBackColorSortBar());

The following VB.NET sample changes the appearance for the control's sort bar:

With AxGrid1
 .SortBarVisible = True
 With .VisualAppearance
 .Add(&H60, "D:\Temp\ExGrid.Help\sortbar.ebn")
 End With
 .Template = "BackColorSortBar = 1610612736"
 .Template = "BackColorSortBarCaption = 1610612736"
 .ForeColorSortBar = Color.Black
End With

The following C# sample changes the appearance for the control's sort bar:

axGrid1.VisualAppearance.Add(0x60, "D:\\Temp\\ExGrid.Help\\sortbar.ebn");
axGrid1.SortBarVisible = true;
axGrid1.Template = "BackColorSortBar = 1610612736";
axGrid1.Template = "BackColorSortBarCaption = 1610612736";
axGrid1.ForeColorSortBar = Color.Black;

The following VFP sample changes the appearance for the control's sort bar

With thisform.Grid1
 With .VisualAppearance
 .Add(96, "D:\Temp\ExGrid.Help\sortbar.ebn")
 EndWith
 .SortBarVisible =.t.
 .BackColorSortBar = 1610612736
 .BackColorSortBarCaption = .BackColorSortBar
 .ForeColorSortBar = 0
EndWith

property Grid.BackColorSortBarCaption as Color
Returns or sets a value that indicates the caption's background color in the control's sort
bar.

Type Description

Color A color expression that indicates the caption's background
color in the control's sort bar.

Use the SortBarCaption property to specify the caption of the sort bar, when the control's
sort bar contains no columns. Use the BackColorSortBar property to specify the
background color of the control's sort bar. Use the ForeColorSortBar property to specify
the foreground color of the caption in the control's sort bar.

The following VB sample changes the appearance for the control's sort bar. The sample
uses the " " skin.

With Grid1
 .SortBarVisible = True
 With .VisualAppearance
 .Add &H60, App.Path + "\sortbar.ebn"
 End With
 .ForeColorSortBar = 0
 .BackColorSortBar = &H60000000
 .BackColorSortBarCaption = .BackColorSortBar
End With

The following C++ sample changes the appearance for the control's sort bar:

#include "Appearance.h"
m_grid.GetVisualAppearance().Add(0x60,
COleVariant(_T("D:\\Temp\\ExGrid.Help\\sortbar.ebn")));
m_grid.SetSortBarVisible(TRUE);
m_grid.SetBackColorSortBar(0x60000000);

m_grid.SetBackColorSortBarCaption(m_grid.GetBackColorSortBar());

The following VB.NET sample changes the appearance for the control's sort bar:

With AxGrid1
 .SortBarVisible = True
 With .VisualAppearance
 .Add(&H60, "D:\Temp\ExGrid.Help\sortbar.ebn")
 End With
 .Template = "BackColorSortBar = 1610612736"
 .Template = "BackColorSortBarCaption = 1610612736"
 .ForeColorSortBar = Color.Black
End With

The following C# sample changes the appearance for the control's sort bar:

axGrid1.VisualAppearance.Add(0x60, "D:\\Temp\\ExGrid.Help\\sortbar.ebn");
axGrid1.SortBarVisible = true;
axGrid1.Template = "BackColorSortBar = 1610612736";
axGrid1.Template = "BackColorSortBarCaption = 1610612736";
axGrid1.ForeColorSortBar = Color.Black;

The following VFP sample changes the appearance for the control's sort bar

With thisform.Grid1
 With .VisualAppearance
 .Add(96, "D:\Temp\ExGrid.Help\sortbar.ebn")
 EndWith
 .SortBarVisible =.t.
 .BackColorSortBar = 1610612736
 .BackColorSortBarCaption = .BackColorSortBar
 .ForeColorSortBar = 0
EndWith

property Grid.Background(Part as BackgroundPartEnum) as Color
Returns or sets a value that indicates the background color for parts in the control.

Type Description
Part as
BackgroundPartEnum

A BackgroundPartEnum expression that indicates a part in
the control.

Color

A Color expression that indicates the background color for
a specified part. The last 7 bits in the high significant byte
of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

The Background property specifies a background color or a visual appearance for specific
parts in the control. If the Background property is 0, the control draws the part as default.
Use the Add method to add new skins to the control. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the BeginUpdate and EndUpdate methods to maintain performance while init the control.
Use the Refresh method to refresh the control.

The following VB sample changes the visual appearance for the "drop down" filter button.
The sample applies the skin " " to the "drop down" filter buttons:

With Grid1
 With .VisualAppearance
 .Add &H1, App.Path + "\fbardd.ebn"
 End With
 .Background(exHeaderFilterBarButton) = &H1000000
End With

The following C++ sample changes the visual appearance for the "drop down" filter button:

#include "Appearance.h"
m_grid.GetVisualAppearance().Add(0x01,
COleVariant(_T("D:\\Temp\\ExGrid.Help\\fbardd.ebn")));

m_grid.SetBackground(0 /*exHeaderFilterBarButton*/, 0x1000000);

The following VB.NET sample changes the visual appearance for the "drop down" filter
button:

With AxGrid1
 With .VisualAppearance
 .Add(&H1, "D:\Temp\ExGrid.Help\fbardd.ebn")
 End With
 .set_Background(EXTREELib.BackgroundPartEnum.exHeaderFilterBarButton,
&H1000000)
End With

The following C# sample changes the visual appearance for the "drop down" filter button:

axGrid1.VisualAppearance.Add(0x1, "D:\\Temp\\ExGrid.Help\\fbardd.ebn");
axGrid1.set_Background(EXTREELib.BackgroundPartEnum.exHeaderFilterBarButton,
0x1000000);

The following VFP sample changes the visual appearance for the "drop down" filter button:

With thisform.Grid1
 With .VisualAppearance
 .Add(1, "D:\Temp\ExGrid.Help\fbardd.ebn")
 EndWith
 .Object.Background(0) = 16777216
EndWith

The 16777216 value is the 0x1000000 value in hexadecimal

method Grid.BeginUpdate ()
Maintains performance when items are added to the control one at a time.

Type Description

The BeginUpdate method prevents the control from painting until the EndUpdate method is
called. Use BeginUpdate and EndUpdate statement each time when the control requires
more changes. Using the BeginUpdate and EndUpdate methods increase the speed of
changing the control properties by preventing it from painting during changing.

The following VB sample prevents the control from painting while it adds one column, and
one item, using the BeginUpdate and EndUpdate methods:

With Grid1
 .BeginUpdate
 .LinesAtRoot = LinesAtRootEnum.exLinesAtRoot
 .FullRowSelect = False
 .DefaultItemHeight = 24
 With .Columns.Add("Mask")
 With .Editor
 .EditType = EditTypeEnum.MaskType
 .Appearance = SingleApp
 .Mask = "{0,255}\.{0,255}\.{0,255}\.{0,255}"
 End With
 End With
 .Items.AddItem "193.226.40.161"
 .EndUpdate
End With

The following C++ sample prevents the control from painting while adding columns and
items:

#include "Column.h"
#include "Columns.h"
m_grid.BeginUpdate();
m_grid.SetColumnAutoResize(FALSE);
CColumns columns = m_grid.GetColumns();
for (long i = 0; i < 4; i++)
 columns.Add("NewColumn");

CItems items = m_grid.GetItems();
for (long j = 0; j < 10; j++)
{
 COleVariant vtItem(items.AddItem(COleVariant("new item ")));
 for (long k = 1 ; k < 4; k++)
 items.SetCellValue(vtItem, COleVariant(k), COleVariant("new item "));
}
m_grid.EndUpdate();

The following VB.NET sample prevents the control from painting while adding columns and
items:

With AxGrid1
 .BeginUpdate()
 .LinesAtRoot = EXGRIDLib.LinesAtRootEnum.exLinesAtRoot
 .FullRowSelect = False
 .DefaultItemHeight = 24
 With .Columns.Add("Mask")
 With .Editor
 .EditType = EXGRIDLib.EditTypeEnum.MaskType
 .Appearance = EXGRIDLib.AppearanceEnum.Etched
 .Mask = "{0,255}\.{0,255}\.{0,255}\.{0,255}"
 End With
 End With
 .Items.AddItem("193.226.40.161")
 .EndUpdate()
End With

The following C# sample prevents the control from painting while adding columns and items:

axGrid1.BeginUpdate();
EXGRIDLib.Columns columns = axGrid1.Columns;
columns.Add("Column 1");
columns.Add("Column 3");
EXGRIDLib.Items items = axGrid1.Items;
items.AddItem("new item");
items.AddItem("new item");
axGrid1.EndUpdate();

The following VFP sample prevents the control from painting while adding columns and
items:

with thisform.Grid1
 .BeginUpdate
 .LinesAtRoot = .t.
 .FullRowSelect = .f.
 .DefaultItemHeight = 24
 With .Columns.Add("Mask")
 With .Editor
 .EditType = 8
 .Appearance = 1
 .Mask = "{0,255}\.{0,255}\.{0,255}\.{0,255}"
 EndWith
 EndWith
 .Items.AddItem("193.226.40.161")
 .EndUpdate
endwith

property Grid.CanRedo as Boolean
Retrieves a value that indicates whether the control can perform a Redo operation.

Type Description

Boolean A Boolean expression that specifies whether the control
can perform the next action in the control's Redo queue.

For instance, you can use the CanRedo property to update the Redo button in your toolbar,
so the user knows that Redo operations in the control may be performed. The Redo redoes
the next action in the control's redo queue. If the AllowUndoRedo property is True, the
CTRL+Y redoes the next action in the control's Redo queue. The RedoListAction property
lists the Redo actions that can be performed in the control.

property Grid.CanUndo as Boolean
Retrieves a value that indicates whether the control can perform an Undo operation.

Type Description

Boolean A Boolean expression that specifies whether the control
can perform the last Undo operation.

For instance, you can use the CanUndo property to update the Undo button in your toolbar,
so the user knows that Undo operations in the control may be performed. Call the Undo
method to Undo the last control operation. By default, the if the AllowUndoRedo property is
True, the CTRL+Z performs the last Undo operation. The CanRedo property retrieves a
value that specifies whether the control can execute the next operation in the control's Redo
queue. The Redo redoes the next action in the control's redo queue. If the AllowUndoRedo
property is True, the CTRL+Y redoes the next action in the control's Redo queue. The
UndoListAction property lists the Undo actions that can be performed in the control. The
RedoListAction property lists the Redo actions that can be performed in the control.

property Grid.CauseValidateValue as ValidateValueType
Returns or sets a value that determines whether the ValidateValue event occurs before the
user changes the cell's value.

Type Description

ValidateValueType
A ValidateValueType expression that indicates whether the
ValidateValue event is fired when user leaves the focused
cell or focused item.

By default, the CauseValidateValue property is exNoValidate (False). The ValidateValue
event is fired only if the CauseValidateValue property is exValidateCell or exValidateItem,
once the user alters the focused cell and the user is trying to leave the focused cell or item.
Use the exValidateItem option to validate the item once a new item is focused, or use the
exValidateCell to validate the cell's value once the user leaves the focused cell. You can use
the ValidateValue event to prevent the user enters wrong values to the cells/items. In
conclusion, the user can focus a new cell (in the same item) while using validation, only if
the CauseValidateValue property is exValidateItem. Else, the user can not move the focus
to a new cell or items until the user validates the value (Cancel parameter of the
ValidateValue event is False). Call the DiscardValidateValue method to restore back the
values being changed during the validation.

The following VB sample displays a message box with Yes, No and Cancel buttons to
validate the changed value:

Private Sub Grid1_ValidateValue(ByVal Item As EXGRIDLibCtl.HITEM, ByVal ColIndex As
Long, ByVal NewValue As Variant, Cancel As Boolean)
 Cancel = True
 Dim iResult As Long
 i = MsgBox("Validate GRID1 :" & Grid1.Items.CellCaption(Item, ColIndex) & " " &
NewValue, vbYesNoCancel)
 If (i = vbCancel) Then
 Grid1.DiscardValidateValue
 Else
 Cancel = i = vbNo
 End If
End Sub

The ValidateValue event provides the Cancel parameter which can be used to validate the
value being changed. The sample calls the DiscardValidateValue method if user selects
Cancel, so the value are being restored. The validation is accepted once the user selects

the Yes button. If No, the validation continues, and if the control's AutoEdit property is True,
the control re-opens the editor for validation.

During the validation you may have the following order of the events:

Edit - prevent showing the editor for specified cell.
EditOpen - indicates that the editor for the focused cell is being opened.
EditClose - indicates that the editor for the focused cell is being closed.
ValidateValue - notifies your application that the value must be validated (Cancel
parameter on False)
Change - notifies the application once the user validates the newly value. In case the
control is bounded to a database, the change is performed to the database too.
Error - notifies the application for any error (for instance, if the change is not
supported by the database, the Error indicates the error being issued).

The ValidateValue event is not fired if the CellValue property is called during the event.

property Grid.CheckImage(State as CheckStateEnum) as Long
Retrieves or sets a value that indicates the image used by checkbox cells.

Type Description

State as CheckStateEnum
A CheckStateEnum expression that defines the state of
the check box being changed. 0 - unchecked, 1 - checked,
2 - partial checked.

Long

A long expression that indicates the index of the icon used.
The last 7 bits in the high significant byte of the long
expression indicates the identifier of the skin being used to
paint the object. Use the Add method to add new skins to
the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits
in the high significant byte of the color being applied to the
part. If the index is not valid the default icon is used.

Use CheckImage and RadioImage properties to define icons for radio and check box cells.
The CheckImage property defines the index of the icon being used by check boxes. Use the
CellHasCheckBox property to assign a checkbox to a cell. Use the CellHasRadioButton
property to assign a radio button to a cell. Use the CellImage or CellImages property to
assign one or multiple icons to a cell. Use the CellPicture property to assign a picture to a
cell. Use the CellStateChanged event to notify your application when the cell's state is
changed. Use the PartialCheck property to allow partial check feature within the column.
Use the Images method to load icons at runtime.

The following VB sample defines icons for the cells of check box type:

With Grid1
 .BeginUpdate
 .Columns.Add "Radio"
 For i = 0 To 2
 Dim h As HITEM
 h = .Items.AddItem("Option " & i)
 .Items.CellHasCheckBox(h) = True
 .Items.CellState(h) = i Mod 2

 Next
 .CheckImage(0) = 1
 .CheckImage(1) = 3
 .EndUpdate
End With

The following C++ sample changes the default appearance for check boxes:

CString s =
"gBJJgBAIDAAEg4ACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjMLjABAAgjUYkUnlUnAktg8ulsImMvmUwm01nE0nUznk3nc+ns5oM/oVAo1FpFEpVDplHnUrqFRqVTqkrptJq9Lp1ZmdVr1fsEYrthslls1ntEqmaZM0YtlutoAt9yuNzu11vFwvV0sVOu97v98wWBwl5qNrw2FwGJxmLtOPyF9hFzeOVAGVeOXy2YiT/zufh+gh2fudZymb1GZ0";

s = s +
"Or0esz2u0lxqGIjGc22W2G51u71+jueR4Fl2gAdXFzWZ2/I3G80W952C01x5PH6m65/WwWzl2n5Xd6vM7Gw3/B8le4fFdXE43T6fh5mlv1x9HU6YzTIz5v58Wyq3b+T1tS6hmPw/TwPe/jywSw7/Iw+cHQA7z2wM574KSucHvSzj7PxDYAQ690KQQlkGPU9L5s5AaMRSAEVxA2MFRhBbJriccaxLG8TwDCTrt8uLowa4z5w7Ib7w9IsPwnF8ZMFD";

s = s +
"EWQJFcoSfAkXPHGMrJ0ucanGAEtRxIMIPpAL9skpUsxtIUjyLDU0w5IrsSrEcZoxLr5yi2rLTtJyMTfEUrwU4cu0DM8vxNMD2OWz0KzLGkbS7DsmzXNtJPzOCNUBRsbRXSE8SlFUpwPP0/OGbtSS5TEtzpQkb0O71FKHM1UVPL1Cwyy0iPwzjQ0qjNL1jX1Z1XTlPTu1Ue1DK7hmvZQAVIbtTV/VNaWDCLLVcn1YWfbNo2BSMwszXcyWxQVfybHL";

s = s +
"MxW6dwWOyNk2XZRr2ZUtx2zctDWrHz4znWV523TdqW/PteRJfl90HaVzW87N1wTdt4XeAGH2bbVZXrWuATJV9GWhgtyVVhDOXVXuJ43juD3ti+Fz/EjFMGxuWsc6F85fmeWZqw0f5pl2bZhayEZStCuK3oSsaGrWiaPo2k6DpGl6Up2frOiofJXqaOo+kKMpIkiNEAtLXNCzuwEAAex7GjGy7IgwAbRs217Ttu2bVuOz7fuW67ptG8bTvW4bvt28";

s = s + "7C0YAICA";
m_grid.Images(COleVariant(s));
m_grid.SetCheckImage(0,1);
m_grid.SetCheckImage(1,2);
m_grid.SetCheckImage(2,3);

The following C# sample changes the default appearance for check boxes:

string s =
"gBJJgBAIDAAEg4ACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjMLjABAAgjUYkUnlUnAktg8ulsImMvmUwm01nE0nUznk3nc+ns5oM/oVAo1FpFEpVDplHnUrqFRqVTqkrptJq9Lp1ZmdVr1fsEYrthslls1ntEqmaZM0YtlutoAt9yuNzu11vFwvV0sVOu97v98wWBwl5qNrw2FwGJxmLtOPyF9hFzeOVAGVeOXy2YiT/zufh+gh2fudZymb1GZ0";

s = s +
"Or0esz2u0lxqGIjGc22W2G51u71+jueR4Fl2gAdXFzWZ2/I3G80W952C01x5PH6m65/WwWzl2n5Xd6vM7Gw3/B8le4fFdXE43T6fh5mlv1x9HU6YzTIz5v58Wyq3b+T1tS6hmPw/TwPe/jywSw7/Iw+cHQA7z2wM574KSucHvSzj7PxDYAQ690KQQlkGPU9L5s5AaMRSAEVxA2MFRhBbJriccaxLG8TwDCTrt8uLowa4z5w7Ib7w9IsPwnF8ZMFD";

s = s +
"EWQJFcoSfAkXPHGMrJ0ucanGAEtRxIMIPpAL9skpUsxtIUjyLDU0w5IrsSrEcZoxLr5yi2rLTtJyMTfEUrwU4cu0DM8vxNMD2OWz0KzLGkbS7DsmzXNtJPzOCNUBRsbRXSE8SlFUpwPP0/OGbtSS5TEtzpQkb0O71FKHM1UVPL1Cwyy0iPwzjQ0qjNL1jX1Z1XTlPTu1Ue1DK7hmvZQAVIbtTV/VNaWDCLLVcn1YWfbNo2BSMwszXcyWxQVfybHL";

s = s +
"MxW6dwWOyNk2XZRr2ZUtx2zctDWrHz4znWV523TdqW/PteRJfl90HaVzW87N1wTdt4XeAGH2bbVZXrWuATJV9GWhgtyVVhDOXVXuJ43juD3ti+Fz/EjFMGxuWsc6F85fmeWZqw0f5pl2bZhayEZStCuK3oSsaGrWiaPo2k6DpGl6Up2frOiofJXqaOo+kKMpIkiNEAtLXNCzuwEAAex7GjGy7IgwAbRs217Ttu2bVuOz7fuW67ptG8bTvW4bvt28";

s = s + "7C0YAICA";
axGrid1.Images(s);
axGrid1.set_CheckImage(0,1);
axGrid1.set_CheckImage(1,2);
axGrid1.set_CheckImage(2,3);

The following VB.NET sample changes the default appearance for check boxes:

With AxGrid1
 Dim s As String =
"gBJJgBAIDAAEg4ACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjMLjABAAgjUYkUnlUnAktg8ulsImMvmUwm01nE0nUznk3nc+ns5oM/oVAo1FpFEpVDplHnUrqFRqVTqkrptJq9Lp1ZmdVr1fsEYrthslls1ntEqmaZM0YtlutoAt9yuNzu11vFwvV0sVOu97v98wWBwl5qNrw2FwGJxmLtOPyF9hFzeOVAGVeOXy2YiT/zufh+gh2fudZymb1GZ0"

 s = s +
"Or0esz2u0lxqGIjGc22W2G51u71+jueR4Fl2gAdXFzWZ2/I3G80W952C01x5PH6m65/WwWzl2n5Xd6vM7Gw3/B8le4fFdXE43T6fh5mlv1x9HU6YzTIz5v58Wyq3b+T1tS6hmPw/TwPe/jywSw7/Iw+cHQA7z2wM574KSucHvSzj7PxDYAQ690KQQlkGPU9L5s5AaMRSAEVxA2MFRhBbJriccaxLG8TwDCTrt8uLowa4z5w7Ib7w9IsPwnF8ZMFD"

 s = s +
"EWQJFcoSfAkXPHGMrJ0ucanGAEtRxIMIPpAL9skpUsxtIUjyLDU0w5IrsSrEcZoxLr5yi2rLTtJyMTfEUrwU4cu0DM8vxNMD2OWz0KzLGkbS7DsmzXNtJPzOCNUBRsbRXSE8SlFUpwPP0/OGbtSS5TEtzpQkb0O71FKHM1UVPL1Cwyy0iPwzjQ0qjNL1jX1Z1XTlPTu1Ue1DK7hmvZQAVIbtTV/VNaWDCLLVcn1YWfbNo2BSMwszXcyWxQVfybHL"

 s = s +
"MxW6dwWOyNk2XZRr2ZUtx2zctDWrHz4znWV523TdqW/PteRJfl90HaVzW87N1wTdt4XeAGH2bbVZXrWuATJV9GWhgtyVVhDOXVXuJ43juD3ti+Fz/EjFMGxuWsc6F85fmeWZqw0f5pl2bZhayEZStCuK3oSsaGrWiaPo2k6DpGl6Up2frOiofJXqaOo+kKMpIkiNEAtLXNCzuwEAAex7GjGy7IgwAbRs217Ttu2bVuOz7fuW67ptG8bTvW4bvt28"

 s = s + "7C0YAICA"
 .Images(s)
 .set_CheckImage(0, 1)
 .set_CheckImage(1, 2)
 .set_CheckImage(2, 3)
End With

The following VFP sample changes the default appearance for check boxes:

with thisform.Grid1
 local s

 s =
"gBJJgBAIDAAEg4ACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjMLjABAAgjUYkUnlUnAktg8ulsImMvmUwm01nE0nUznk3nc+ns5oM/oVAo1FpFEpVDplHnUrqFRqVTqk"

 s = s +
"rptJq9Lp1ZmdVr1fsEYrthslls1ntEqmaZM0YtlutoAt9yuNzu11vFwvV0sVOu97v98wWBwl5qNrw2FwGJxmLtOPyF9hFzeOVAGVeOXy2YiT/zufh+gh2fudZymb1GZ0"

 s = s +
"Or0esz2u0lxqGIjGc22W2G51u71+jueR4Fl2gAdXFzWZ2/I3G80W952C01x5PH6m65/WwWzl2n5Xd6vM7Gw3/B8le4fFdXE43T6fh5mlv1x9HU6YzTIz5v58Wyq3b+T1"

 s = s +
"tS6hmPw/TwPe/jywSw7/Iw+cHQA7z2wM574KSucHvSzj7PxDYAQ690KQQlkGPU9L5s5AaMRSAEVxA2MFRhBbJriccaxLG8TwDCTrt8uLowa4z5w7Ib7w9IsPwnF8ZMFD"

 s = s +
"EWQJFcoSfAkXPHGMrJ0ucanGAEtRxIMIPpAL9skpUsxtIUjyLDU0w5IrsSrEcZoxLr5yi2rLTtJyMTfEUrwU4cu0DM8vxNMD2OWz0KzLGkbS7DsmzXNtJPzOCNUBRsbR"

 s = s +
"XSE8SlFUpwPP0/OGbtSS5TEtzpQkb0O71FKHM1UVPL1Cwyy0iPwzjQ0qjNL1jX1Z1XTlPTu1Ue1DK7hmvZQAVIbtTV/VNaWDCLLVcn1YWfbNo2BSMwszXcyWxQVfybHL"

 s = s +
"MxW6dwWOyNk2XZRr2ZUtx2zctDWrHz4znWV523TdqW/PteRJfl90HaVzW87N1wTdt4XeAGH2bbVZXrWuATJV9GWhgtyVVhDOXVXuJ43juD3ti+Fz/EjFMGxuWsc6F85f"

 s = s +
"meWZqw0f5pl2bZhayEZStCuK3oSsaGrWiaPo2k6DpGl6Up2frOiofJXqaOo+kKMpIkiNEAtLXNCzuwEAAex7GjGy7IgwAbRs217Ttu2bVuOz7fuW67ptG8bTvW4bvt28"

 s = s + "7C0YAICA"
 .Images(s)
 .CheckImage(0) = 1
 .CheckImage(1) = 2
 .CheckImage(2) = 3
endwith

The following template can be placed on the control's Template page:

Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1BAmBhOCwMKwuDw2ExWJxmIx2HyGLx+SyONyuTy2UzWZzmYz2X0Gbx1k0Od0uf0Wnw9g1d/omHTJmjOx2eyAG02+23G73W92u/3MZ0+84HE4PH43J30t2HL5XF53R6Fu5sZePXAHXePZ7Haib/7/hiHih/h3HD23e9XY8ft8vu8Hw822lnV7nb9fb+X79/9+Lytwtj7HVAj7wM/LyP/BUEuO9DrO7CD8PY/0GP48EApW+0EQRC0KwpDC1QHAsCHVA8IwNDr5PO0TcRJE0JO2GZMhnD0FxU+kMsFFsCw27BmRpGsgxAtMRRLF0XR7GEgvHFbOx3I0eOxGUaSmAEqxTD8cJVIoASRH0gR+jMwyXLLqR02xxzTLsRzZEskxRCkmNtB01yhEsqzxGcrT1K84zK5kzozI8CzHQswUOjMsQvLUiUCAE0nHR81UHO0X0tG7hRZNFJwLPMaO9T09xpDsho2+1ITqAFDQe7dV1VIFSUYtFTzVVFUUpVM3u9OVMydTdI1RKtcVBPli1HP760dW01THYcvzFREGVKs77G7a1JWBWtOUrL0lQRJrPNxZds0jXFu1FdFdwBWSNVpclsVTZ1W2jdVFzMhTcGvfQAWsbt4XHeM20s71wMvcVtXfW+BXPKtv3ZXrj4BgFzSjedWQNaazPtfRrgBjl+WviVt4DN0T4KyWD4ThF4YpktvOxjLHZTf+V4VbmK0tmLSUdj+e33fuaXfluMTnTSM5FlWhYXnGCYfmVf6DqObZJnOnZ3fDpORrLn604E6a5sGt6zr+xOnruzuMy+rtQ0zU7dtu4bZuTVbfue67puO1LGiwfJXvqPJAkSSAAkqUcKnDxtcpCKPK7/EkAAfIcgjPJcigwAcryfMctzXM8vz3Kc5z/RdDyvS8t0/O9JzfTcdxqAgA==")

CheckImage(1) = 2
CheckImage(0) = 1

CheckImage(2) = 3

method Grid.ClearFilter ()
Clears the filter.

Type Description

The method clears the Filter and FilterType properties for all columns in the control, excepts
for exNumeric and exCheck values where only the Filter property is set on empty. The
ApplyFilter method is automatically called when ClearFilter method is invoked. Use the
FilterBarHeight property to hide the control's filter bar. Use the FilterBarCaption property to
specify the caption in the control's filter bar. Use the Description property to change
predefined strings in the control's filter bar. Use the ShowFilter method to show
programmatically the column's drop down filter window.

property Grid.ColumnAutoResize as Boolean
Returns or sets a value indicating whether the control will automatically size its visible
columns to fit on the control's client width.

Type Description

Boolean
A boolean expression indicating whether the control will
automatically size its visible columns to fit on the control's
client width.

By default, the ColumnAutoResize property is True. Use the ColumnAutoResize property to
fit all visible columns in the control's client area. Use the Add method to add new columns to
the control's Columns collection. Use the Width property to change the column's width. Use
the Visible property to hide a column. Use the ContinueColumnScroll property to specify
whether the user scrolls the control's content column by column or pixel by pixel. If the
ColumnAutoResize property is True, the control does not display the control's horizontal
scroll bar. Use the ScrollBars property to show or hide the control's scroll bars. By default,
the control adds scroll bars when required.

property Grid.ColumnFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Long
Retrieves the column from point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Long

A long expression that indicates the column's index, or -1 if
there is no column at the point. The property gets a
negative value less or equal with 256, if the point is in the
area between columns where the user can resize the
column.

Use the ColumnFromPoint property to access the column from the point specified by the
{X,Y} coordinates. The ColumnFromPoint property gets the index of the column when the
cursor hovers the control's header bar. The X and Y coordinates are expressed in client
coordinates, so a conversion must be done in case your coordinates are relative to the
screen or to other window. If the X parameter is -1 and Y parameter is -1 the
ColumnFromPoint property determines the index of the column from the cursor. Use
the ItemFromPoint property to get the item or cell from the cursor. Use the HeaderVisible
property to show or hide the control's header. The ColumnFromPoint property returns -1 if
there is no column's caption at the cursor position. Use the Visible property to hide a
particular column. Use the LevelKey property to allow multiple levels header bar. Use the
HeaderHeight property to specify the height of the control's header bar. Use the
BackColorHeader property to specify the header's background color. Use the AllowSizing
property to disable resizing a column when user clicks the right margin of the column. Use
the SortOnClick property to specify the action that control takes when the column's caption
is clicked. The Background(exCursorHoverColumn) property specifies the visual
appearance of the column's header when the cursor hovers it. The WordFromPoint
property determines the word from the cursor.

The following VB sample prints the caption of the column from the point:

Private Sub Grid1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With Grid1

 Dim c As Long
 c = .ColumnFromPoint(-1, -1)
 If (c >= 0) Then
 With .Columns(c)
 Debug.Print .Caption
 End With
 End If
 End With
End Sub

The following VB sample prints the caption of the column from the point:

Private Sub Grid1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With Grid1
 Dim c As Long
 c = .ColumnFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If (c >= 0) Then
 With .Columns(c)
 Debug.Print .Caption
 End With
 End If
 End With
End Sub

The following C++ sample prints the caption of the column from the point:

#include "Columns.h"
#include "Column.h"
void OnMouseMoveGrid1(short Button, short Shift, long X, long Y)
{
 long nColIndex = m_grid.GetColumnFromPoint(X, Y);
 if (nColIndex >= 0)
 {
 CColumn column = m_grid.GetColumns().GetItem(COleVariant(nColIndex));
 OutputDebugString(column.GetCaption());
 }
}

The following VB.NET sample prints the caption of the column from the point:

Private Sub AxGrid1_MouseMoveEvent(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_MouseMoveEvent) Handles AxGrid1.MouseMoveEvent
 With AxGrid1
 Dim i As Integer = .get_ColumnFromPoint(e.x, e.y)
 If (i >= 0) Then
 With .Columns(i)
 Debug.WriteLine(.Caption)
 End With
 End If
 End With
End Sub

The following C# sample prints the caption of the column from the point:

private void axGrid1_MouseMoveEvent(object sender,
AxEXGRIDLib._IGridEvents_MouseMoveEvent e)
{
 int i = axGrid1.get_ColumnFromPoint(e.x,e.y);
 if (i >= 0)
 System.Diagnostics.Debug.WriteLine(axGrid1.Columns[i].Caption);
}

The following VFP sample prints the caption of the column from the point:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.Grid1
 i = .ColumnFromPoint(x, y)
 if (i >= 0)
 wait window nowait .Columns(i).Caption
 endif
endwith

property Grid.Columns as Columns
Retrieves the control's column collection.

Type Description
Columns The control's Columns object.

Use the Columns property to access the Columns collection. Use the Columns collection to
add, remove or change columns. Use the Add method to add a new column to the control.
Use the Items property to access the control's items collection. Use the AddItem,
InsertItem, InsertControlItem or PutItems method to add new items to the control. Use the
DataSource property to add new columns and items to the control. Adding new items fails if
the control has no columns.

The following VB sample adds two new columns to the control:

With Grid1
 .Columns.Add "Column 1"
 With .Columns.Add("Column 2")
 With .Editor
 .EditType = CalculatorType
 End With
 End With
End With

The following C++ sample adds two new columns to the control:

#include "Column.h"
#include "Columns.h"
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
CColumns columns = m_grid.GetColumns();
columns.Add("Column 1");
CColumn column(V_DISPATCH(&columns.Add("Column 2")));
CEditor editor = column.GetEditor();
editor.SetEditType(21 /*CalculatorType*/);

The following VB.NET sample adds two new columns to the control:

With AxGrid1
 .Columns.Add("Column 1")

 Dim c As EXGRIDLib.Column = .Columns.Add("Column 2")
 With c.Editor
 .EditType = EXGRIDLib.EditTypeEnum.CalculatorType
 End With
End With

The following C# sample adds two new columns to the control:

EXGRIDLib.Column column = axGrid1.Columns.Add("Column 1") as EXGRIDLib.Column ;
column = axGrid1.Columns.Add("Column 2") as EXGRIDLib.Column;
column.Editor.EditType = EXGRIDLib.EditTypeEnum.CalculatorType;

The following VFP sample adds two new columns to the control:

with thisform.Grid1
 .Columns.Add("Column 1")
 With .Columns.Add("Column 2")
 with .Editor
 .EditType = 21 && CalculatorType
 endwith
 EndWith
endwith

property Grid.ColumnsAllowSizing as Boolean
Retrieves or sets a value that indicates whether a user can resize columns at run-time.

Type Description

Boolean A Boolean expression that indicates whether a user can
resize columns at run-time.

By default, the ColumnsAllowSizing property is False. A column can be resized only if the
AllowSizing property is True. Use the DrawGridLines property to show or hide the control's
grid lines. Use the HeaderVisible property to show or hide the control's header bar. The
HeaderAppearance property specifies the appearance of the column in the control's header
bar.

property Grid.ColumnsFloatBarSortOrder as SortOrderEnum
Specifies the sorting order for the columns being shown in the control's columns floating
panel.

Type Description

SortOrderEnum A SortOrderEnum expression that specifies how the
columns in the columns floating panel are displayed.

By default, the ColumnsFloatBarSortOrder property is SortNone. Use the
ColumnsFloatBarSortOrder property to sort the columns to be displayed in the columns
floating panel. The ColumnsFloatBarVisible property shows or hides the columns floating
panel.

property Grid.ColumnsFloatBarVisible as ColumnsFloatBarVisibleEnum
Retrieves or sets a value that indicates whether the the columns float bar is visible or
hidden.

Type Description

ColumnsFloatBarVisibleEnum
A ColumnsFloatBarVisibleEnum expression that specifies
whether the control's Columns float-bar is visible or
hidden.

The ColumnsFloatBarVisible property indicates whether the control displays a floating panel
that shows the hidden columns, so the user can drag and drop columns on order to show or
hide the columns from the control. Use the ColumnsFloatBarSortOrder property to sort the
columns to be displayed in the columns floating panel.

The floating panel displays the following columns:

hidden columns, so the Visible property is False.
drag able column, so the AllowDragging property is True.

In other words, the AllowDragging property may be used to choose if a hidden column is
displayed in the floating bar. The control fires the LayoutChanged event as soon as a new
column is drop on the control's header, sort or group-by bar. The
Description(exColumnsFloatBar) property indicates the text to be displayed on the caption
of the floating bar. The Background(exColumnsFloatAppearance) property specifies the
visual appearance of the floating panel's frame.

The following screen shot shows the control's Columns float bar:

The following movies show how ColumnsFloatBarVisible works:

 The ColumnsFloatBarVisible property is used to show or hide columns by drag and
drop

https://www.youtube.com/watch?v=zU831iSGEqA

 The movie shows how you can customize the visual appearance of the control's
Columns floating bar

https://www.youtube.com/watch?v=mhggutNHzuw

property Grid.ConditionalFormats as ConditionalFormats
Retrieves the conditional formatting collection.

Type Description

ConditionalFormats A ConditionalFormats object that indicates the control's
ConditionalFormats collection.

The conditional formatting feature allows you to apply formats to a cell or range of cells,
and have that formatting change depending on the value of the cell or the value of a
formula. Use the Add method to format cells or items based on a formula. Use the Refresh
method to refresh the control, if a change occurs in the conditional format collection. Use
the CellValue property indicates the cell's caption or value.

The conditional format feature may change the cells and items as follows:

Bold property. Bolds the cell or items
Italic property. Indicates whether the cells or items should appear in italic.
StrikeOut property. Indicates whether the cells or items should appear in strikeout.
Underline property. Underlines the cells or items
Font property. Changes the font for cells or items.
BackColor property. Changes the background color for cells or items, supports skins
as well.
ForeColor property. Changes the foreground color for cells or items.

The ApplyTo property specifies whether the ConditionalFormat object is applied to items or
to a column.

property Grid.ContinueColumnScroll as Boolean
Retrieves or sets a value indicating whether the control will automatically scroll the visible
columns by pixel or by column width.

Type Description

Boolean
A boolean expression indicating whether the control will
automatically scroll the visible columns by pixel or by
column width.

Use the ContinueColumnScroll property to define how the control scrolls the columns. Use
the EnsureVisibleColumn method scrolls the control's content to ensure that the column fits
the client area. Use the Scroll method to scroll the control's columns, column by column, if
the ContinueColumnScroll property is False. Use the Visible property to hide a column. The
ScrollBySingleLine property retrieves or sets a value that indicates whether the control
scrolls the lines to the end, item by item. Use the ScrollBars property to hide the control's
scroll bars.

method Grid.Copy ()
Copies the control's content to the clipboard, in the EMF format.

Type Description

Use the Copy method to copy the control's content to the clipboard, in Enhanced Metafile
(EMF) format. The Enhanced Metafile format is a 32-bit format that can contain both vector
information and bitmap information. This format is an improvement over the Windows
Metafile Format and contains extended features, such as the following:

 Built-in scaling information
 Built-in descriptions that are saved with the file
 Improvements in color palettes and device independence

The EMF format is an extensible format, which means that a programmer can modify the
original specification to add functionality or to meet specific needs. You can paste this
format to Microsoft Word, Excel, Front Page, Microsoft Image Composer and any
application that know to handle EMF formats.

The Copy method copies the control's header if it's visible, and all visible items. Use the
CopyTo method to copy the control's view to an EMF file. The items are not expanded, they
are listed in the order as they are displayed on the screen. Use the HeaderVisible property
to show or hide the control's header. Use the ExpandItem property to expand or collapse an
item. The background of the copied control is transparent. You can use the Export method
to export the control's DATA in CSV format.

The following VB sample saves the control's content to a EMF file, when user presses the
CTRL+C key:

Private Sub Grid1_KeyDown(KeyCode As Integer, Shift As Integer)
 If (KeyCode = vbKeyC) And Shift = 2 Then
 Clipboard.Clear
 Grid1.Copy
 SavePicture Clipboard.GetData(), App.Path & "\test.emf"
 End If
End Sub

Now, you can open your MS Windows Word application, and you can insert the file using
the Insert\Picture\From File menu, or by pressing the CTRL+V key to paste the clipboard.

The following C++ function saves the clipboard's data (EMF format) to a picture file:

BOOL saveEMFtoFile(LPCTSTR szFileName)
{
 BOOL bResult = FALSE;
 if (::OpenClipboard(NULL))
 {
 CComPtr spPicture;
 PICTDESC pictDesc = {0};
 pictDesc.cbSizeofstruct = sizeof(pictDesc);
 pictDesc.emf.hemf = (HENHMETAFILE)GetClipboardData(CF_ENHMETAFILE);
 pictDesc.picType = PICTYPE_ENHMETAFILE;
 if (SUCCEEDED(OleCreatePictureIndirect(&pictDesc;, IID_IPicture, FALSE,
(LPVOID*)&spPicture;)))
 {
 HGLOBAL hGlobal = NULL;
 CComPtr spStream;
 if (SUCCEEDED(CreateStreamOnHGlobal(hGlobal = GlobalAlloc(GPTR, 0), TRUE,
&spStream;)))
 {
 long dwSize = NULL;
 if (SUCCEEDED(spPicture->SaveAsFile(spStream, TRUE, &dwSize;)))
 {
 USES_CONVERSION;
 HANDLE hFile = CreateFile(szFileName, GENERIC_WRITE, NULL, NULL,
CREATE_ALWAYS, NULL, NULL);
 if (hFile != INVALID_HANDLE_VALUE)
 {
 LARGE_INTEGER l = {NULL};
 spStream->Seek(l, STREAM_SEEK_SET, NULL);
 long dwWritten = NULL;
 while (dwWritten < dwSize)
 {
 unsigned long dwRead = NULL;
 BYTE b[10240] = {0};
 spStream->Read(&b;, 10240, &dwRead;);
 DWORD dwBWritten = NULL;
 WriteFile(hFile, b, dwRead, &dwBWritten;, NULL);
 dwWritten += dwBWritten;

 }
 CloseHandle(hFile);
 bResult = TRUE;
 }
 }
 }
 }
 CloseClipboard();
 }
 return bResult;
}

The following VB.NET sample copies the control's content to the clipboard (open the
mspaint application and paste the clipboard, after running the following code):

Clipboard.Clear()
With AxGrid1
 .Copy()
End With

The following C# sample copies the control's content to a file (open the mspaint application
and paste the clipboard, after running the following code):

Clipboard.Clear;
axGrid1.Copy();

property Grid.CopyTo (File as String) as Variant
Exports the control's view to an EMF file.

Type Description

File as String

A String expression that indicates the name of the file to
be saved. If present, the CopyTo property retrieves True,
if the operation succeeded, else False it is failed. If the
File parameter is missing or empty, the CopyTo property
retrieves an one dimension safe array of bytes that
contains the EMF content.

If the File parameter is not empty, the extension (
characters after last dot) determines the graphical/
format of the file to be saved as follows:

*.bmp *.dib *.rle, saves the control's content in BMP
format.
*.jpg *.jpe *.jpeg *.jfif, saves the control's content in
JPEG format.
*.gif, , saves the control's content in GIF format.
*.tif *.tiff, saves the control's content in TIFF format.
*.png, saves the control's content in PNG format.
*.pdf, saves the control's content to PDF format. The
File argument may carry up to 4 parameters
separated by the | character in the following order:
filename.pdf | paper size | margins | options. In
other words, you can specify the file name of the PDF
document, the paper size, the margins and options to
build the PDF document. By default, the paper size is
210 mm × 297 mm (A4 format) and the margins are
12.7 mm 12.7 mm 12.7 mm 12.7 mm. The units for
the paper size and margins can be pt for PostScript
Points, mm for Millimeters, cm for Centimeters, in
for Inches and px for pixels. If PostScript Points are
used if unit is missing. For instance, 8.27 in x 11.69 in,
indicates the size of the paper in inches. Currently, the
options can be single, which indicates that the
control's content is exported to a single PDF page.
For instance, the CopyTo("shot.pdf|33.11 in x 46.81
in|0 0 0 0|single") exports the control's content to an
A0 single PDF page, with no margins.
*.emf or any other extension determines the control to

save the control's content in EMF format.

For instance, the CopyTo("c:\temp\snapshot.png")
property saves the control's content in PNG format to
snapshot.png file.

Variant
A boolean expression that indicates whether the File was
successful saved, or a one dimension safe array of bytes,
if the File parameter is empty string.

The CopyTo method copies/exports the control's view to BMP, PNG, JPG, GIF, TIFF, PDF
or EMF graphical files, including no scroll bars. You can use the Export method to export
the control's DATA in CSV format. Use the Copy method to copy the control's content to the
clipboard.

The BMP file format, also known as bitmap image file or device independent bitmap
(DIB) file format or simply a bitmap, is a raster graphics image file format used to
store bitmap digital images, independently of the display device (such as a graphics
adapter)
The JPEG file format (seen most often with the .jpg extension) is a commonly used
method of lossy compression for digital images, particularly for those images produced
by digital photography.
The GIF (Graphics Interchange Format) is a bitmap image format that was introduced
by CompuServe in 1987 and has since come into widespread usage on the World Wide
Web due to its wide support and portability.
The TIFF (Tagged Image File Format) is a computer file format for storing raster
graphics images, popular among graphic artists, the publishing industry, and both
amateur and professional photographers in general.
The PNG (Portable Network Graphics) is a raster graphics file format that supports
lossless data compression. PNG was created as an improved, non-patented
replacement for Graphics Interchange Format (GIF), and is the most used lossless
image compression format on the Internet
The PDF (Portable Document Format) is a file format used to present documents in a
manner independent of application software, hardware, and operating systems. Each
PDF file encapsulates a complete description of a fixed-layout flat document, including
the text, fonts, graphics, and other information needed to display it.
The EMF (Enhanced Metafile Format) is a 32-bit format that can contain both vector
information and bitmap information. This format is an improvement over the Windows
Metafile Format and contains extended features, such as the following

 Built-in scaling information
 Built-in descriptions that are saved with the file
 Improvements in color palettes and device independence

The EMF format is an extensible format, which means that a programmer can modify
the original specification to add functionality or to meet specific needs. You can paste
this format to Microsoft Word, Excel, Front Page, Microsoft Image Composer and any
application that know to handle EMF formats.

The following VB sample saves the control's content to a file:

If (Grid1.CopyTo("c:\temp\test.emf")) Then
 MsgBox "test.emf file created, open it using the mspaint editor."
End If

The following VB sample prints the EMF content (as bytes, File parameter is empty string
):

Dim i As Variant
For Each i In Grid1.CopyTo("")
 Debug.Print i
Next

property Grid.CountLockedColumns as Long
Retrieves or sets a value indicating the number of locked columns.

Type Description

Long A long expression that indicates the number of locked
columns.

The control is able to display two types of columns: locked and unlocked columns. A locked
column is not scrollable, and it is fixed to the left side of the control. An unlocked control is
scrollable. Use the CountLockedColumns property to define the number of columns that are
in the locked area. Use the BackColorLock property to specify the background color for the
locked area. Use the ForeColorLock property to specify the foreground color for the locked
area. If the CountLockedColumns property is zero, no locked columns defined, then
 BackColorLock and ForeColorLock have no effect. Use the LockedItemCount property to
lock or unlock items to the top or bottom side of the control. Use the MergeCells method to
combine one or more cells in a single cell.

property Grid.DataSource as Object
Retrieves or sets a value that indicates the data source for the object.

Type Description

Object
An Object that defines the control's data. Currently, the
control accepts ADO.Recordset, ADODB.Recordset
objects, DAO recordsets

The DataSource property binds the control to an ADO, ADODB or DAO recordset. Setting
the DataSource property clears the control's columns collection. The DataSource property
adds a column for each field find in the recordset. Depending on type of the field, the
control sets the column's EditType property. For instance, an field of "OLE Object" type is
converted to PictureType edit type, a field of Date type, uses DateType edit type. The
DetectAddNew property detects adding new records to a recordset. The DetectDelete
property detects removing records from the recordset.

The DataSource property can load all data in the memory or just visible records (virtual
mode). The VirtualMode property indicates whether the control loads all records in memory
or just visible records. If the VirtualMode property is False (by default), all records are
loaded in memory. The user must call the VirtualMode property before setting the
DataSource, else an error occurs. If the VirtualMode property is True, before specifying the
DataSource, the control loads virtually the records, just visible records are loaded. Use the
control's virtual mode when you require to display and edit large databases, and you don't
want to load the entire database in memory. Aldo, running the virtual mode disables some
features including sorting and filtering, like explained in the VirtualMode property. The
control builds an internal object that implements the IUnboundHandler interface that provides
data for the control, when running in virtual mode, so the UnboundHandler property is not
empty.

The following template script loads virtually the Order table, using the Template feature of
the control (copy the following template and paste it to the control's WYSWYG Template
editor) (the sample uses Jet.OLEDB provider to handle MDB files) :

Dim rs
VirtualMode = True
ColumnAutoResize = False
rs = CreateObject("ADOR.Recordset")
{
 Open("Orders","Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\Program
Files\Exontrol\ExGrid\Sample\SAMPLE.MDB", 3, 3)
}

DataSource = rs
ConditionalFormats
{
 Add("%1 > 4").Bold = True
 Add("%1 = 1 or %1 = 3")
 {
 Underline = True
 ForeColor = RGB(255,0,0)
 ApplyTo = 1
 }
}

or (the sample uses VFPOLEDB provider to handle DBF files)

Dim rs
VirtualMode = True
ColumnAutoResize = False
rs = CreateObject("ADODB.Recordset")
{
 Open("Select * from Students","Provider=vfpoledb;Data Source=D:\Program
Files\Microsoft Visual Studio\Vfp98\Wizards\Template\Students And
Classes\Data\STUDENTS AND CLASSES.DBC;Collating Sequence=machine"1,1)
}
DataSource = rs

If the VirtualMode property is False, the control updates automatically the item associated
to the record in the control, if a change occurs in the current record. The control doesn't
update the Items collection if the records are deleted or added to the table, while the
DetectDelete and DetectAddNew properties are False.

Use the ConditionalFormats method to apply formats to a cell or range of cells, and have
that formatting change depending on the value of the cell or the value of a formula.

The following VB sample binds the "Employees" table in NWIND database to your control:

Dim rs As Object
Const dwProvider = "Microsoft.Jet.OLEDB.4.0" ' OLE Data provider
Const nCursorType = 3 ' adOpenStatic
Const nLockType = 3 ' adLockOptimistic

Const nOptions = 2 ' adCmdTable
Const strDatabase = "D:\Program Files\Microsoft Visual Studio\VB98\NWIND.MDB"

'Creates an recordset and opens the "Employees" table, from NWIND database
Set rs = CreateObject("ADODB.Recordset")
rs.Open "Employees", "Provider=" & dwProvider & ";Data Source= " & strDatabase,
nCursorType, nLockType, nOptions
With Grid1
 .BeginUpdate
 .AutoEdit = True
 .ColumnAutoResize = False
 .MarkSearchColumn = False
 .DrawGridLines = True
 Set .DataSource = rs
 .EndUpdate
End With

The following sample releases the data source that was previously bounded to the control

Set .DataSource = Nothing

The following C++ sample binds a table to the control:

#include "Items.h"
#include "Columns.h"
#include "Column.h"

#pragma warning(disable : 4146)
#import <msado15.dll> rename ("EOF", "adoEOF")
using namespace ADODB;

_Recordset21Ptr spRecordset;
if (SUCCEEDED(spRecordset.CreateInstance("ADODB.Recordset")))
{
 // Builds the connection string.
 CString strTableName = "Employees", strConnection =
"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=";
 CString strPath = "D:\\Program Files\\Microsoft Visual Studio\\VB98\\NWIND.MDB";

 strConnection += strPath;
 try
 {
 // Loads the table
 if (SUCCEEDED(spRecordset->Open(_variant_t((LPCTSTR)strTableName),
_variant_t((LPCTSTR)strConnection), adOpenStatic, adLockPessimistic, NULL)))
 {
 m_grid.BeginUpdate();
 m_grid.SetColumnAutoResize(FALSE);
 m_grid.SetDataSource(spRecordset);
 m_grid.EndUpdate();
 }
 }
 catch (_com_error& e)
 {
 AfxMessageBox(e.Description());
 }
}

The #import statement imports definitions for ADODB type library, that's used to fill the
control.

property Grid.DefaultEditorOption(Name as EditorOptionEnum) as
Variant
Specifies a default option for an editor.

Type Description

Name as EditorOptionEnum Specifies the name of the editor whose option is being
changed.

Variant A Variant expression that indicates the newly value for the
option.

Use the DefaultEditorOption property to specify default option for the editors of a specified
type. The DefaultEditorOption property affects the editors that are created after the calling
the DefaultEditorOption method. The DefaultEditorOption property doesn't affect the editors
being already created. Use the Option property to change the option for a particular editor.
For instance, you can use the DefaultEditorOption property to localize the name of the
months for all date editors using the exDateMonths option.

property Grid.DefaultItemHeight as Long
Retrieves or sets a value that indicates the default item height.

Type Description
Long A long expression that indicates the default item's height.

The DefaultItemHeight property specifies the height of the items. Changing the property
fails if the control contains already items. You can change the DefaultItemHeight property at
design time, or at runtime, before adding any new items to the Items collection. Use the
ItemHeight property to specify the height of a specified item. Use the ScrollBySingleLine
property when using the items with different heights. Use the CellSingleLine property to
specify whether the cell displays the caption using multiple lines. If the column's EditType
property is PictureType, the DefaultItemHeight property defines the height of the cell inside
picture. In CardView mode, the DefaultItemHeight property determines the height in pixels
of the title of the cards. Use the exCardViewTitleFormat option to hide the titles in
CardView mode.

property Grid.Description(Type as DescriptionTypeEnum) as String
Changes descriptions for different parts in the control.

Type Description
Type as
DescriptionTypeEnum A long expression that defines the part being changed

String A string value that indicates the part's description.

Use the Description property to customize the captions for control filter bar window. For
instance, the Description(exFilterAll) = "(Include All)" changes the "(All)" item description in
the filter bar window.

The following VB sample changes the description of (All) item in the drop down filter
window:

Grid1.Description(exFilterBarAll) = "(Toate)"

The following C++ sample changes the description of (All) item in the drop down filter
window:

m_grid.SetDescription(0 /*exFilterBarAll*/ , "(Toate)");

The following VB.NET sample changes the description of (All) item in the drop down filter
window:

With AxGrid1
 .set_Description(EXGRIDLib.DescriptionTypeEnum.exFilterBarAll, "(Toate)")
End With

The following C# sample changes the description of (All) item in the drop down filter
window:

axGrid1.set_Description(EXGRIDLib.DescriptionTypeEnum.exFilterBarAll, "(Toate)");

The following VFP sample changes the description of (All) item in the drop down filter
window:

thisform.Grid1.Description(0) = "(Toate)"

property Grid.DetectAddNew as Boolean
Specifies whether the control detects when a new record is added to the bounded
recordset.

Type Description

Boolean
A boolean expression that indicates whether the control
detects when a new record is added to the bounded
recordset.

By default, the DetectAddNew property is False. The DetectAddNew property detects
adding new records to a recordset. Use the DataSource property to bound the control to a
table. If the DetectAddNew property is True, and user adds a new record to the bounded
recordset, the control automatically adds a new item to the control (ADO, ADODB
recordset only). The /COM version of the component provides the DataSource property,
which can be used to bound the control's view to a DAO recordset. By default, once you
set the DataSource property to a recordset, all changes you do on the control will be
updated in the associated recordset. Because the DAO object does not provide any
notifications or events the control is not able to detect any AddNew or Delete method that
has been called. Instead, the control provides the AddItem and RemoveItem events that
notifies your application once a new item is added to the control, or when an item is
deleted. Based on these events, you will be able to manipulate the DAO recordset
appropriate as in the following samples. In addition, the control fires the Error event in case
any error occurs when handling the ADO or DAO recordsets, For instance, trying to update
a read-only field. In conclusion, if user changes a cell/value in the control, the associated
field in the recordset is automatically updated. If any error occurs on updating the
associated record, the Error event is fired which describes the error.

Handling the AddNew method in the control, using the DAO recordset on MS Access

Insert a Button and the Control to a form, and name them as cmdAddNew and Grid1
Add the Form_Load event of the form with the following code:

Private Sub Form_Load()
 With Grid1
 .BeginUpdate
 .DataSource = CurrentDb.OpenRecordset("Employees")
 .DetectAddNew = True
 .EndUpdate
 End With
End Sub

The code binds the control to a DAO recordset. Please notice, that the DetectAddNew
property is set after calling the DataSource method. Setting the DetectAddNew
property on True, makes the control associate new items with new records added
during the AddItem event as shown bellow.

Add the Click event of the cmdAddNew button with the following code

Private Sub cmdAddNew_Click()
 With Grid1.Items
 .EnsureVisibleItem .AddItem
 End With
End Sub

The code adds a new item to the control and ensures that the new item fits the
control's client area. The Items.AddItem call makes the control to fire the AddItem
event, which will actually add the new record to the database, as in the following code

Add the AddItem event of the Control with the following code:

Private Sub Grid1_AddItem(ByVal Item As Long)
 With Grid1
 If .DetectAddNew Then
 With .DataSource
 .AddNew
 !Lastname = "new"
 !FirstName = "new"
 .Update
 End With
 End If
 End With
End Sub

The code adds a new record to the bounded recordset. Here you need to insert or
update the required fields so the new record is added to the DAO recordset. Once the
event is finished, the new item is associated with the new record in the database, so
from now on, any change to the item will be reflected in the recordset.

Handling the AddNew method in the control, using the ADO recordset in VB

Insert a Button and the Control to a form, and name them as cmdAddNew and Grid1
Add the Form_Load event of the form with the following code:

Private Sub Form_Load()
 With Grid1
 Set rs = CreateObject("ADOR.Recordset")
 With rs
 .Open "Employees", "Provider=Microsoft.ACE.OLEDB.12.0;Data
Source=\sample.accdb", 3, 3
 End With
 .DataSource = rs
 .DetectAddNew = True
 End With
End Sub

The code binds the control to an ADO recordset.

Add the Click event of the cmdAddNew button with the following code

Private Sub cmdAddNew_Click()
 With Grid1.DataSource
 .AddNew Array("FirstName", "LastName"), Array("new", "new")
 .Update
 End With
End Sub

The code adds a new record to the attached recordset, and the control will add a new
associated item, because the DetectAddNew method is True.

property Grid.DetectDelete as Boolean
Specifies whether the control detects when a record is deleted from the bounded
recordset.

Type Description

Boolean
A boolean expression that indicates whether the control
detects when a record is deleted from the bounded
recordset.

By default, the DetectDelete property is False. If the DetectDelete property is True, the
control is notified when a record is deleted, and the associated item is removed from the
control's items collection (valid for the ADO, ADODB recordsets). The /COM version of
the component provides the DataSource property, which can be used to bound the control's
view to a DAO recordset. By default, once you set the DataSource property to a recordset,
all changes you do on the control will be updated in the associated recordset. Because the
DAO object does not provide any notifications or events the control is not able to detect any
AddNew or Delete method that has been called. Instead, the control provides the AddItem
and RemoveItem events that notifies your application once a new item is added to the
control, or when an item is deleted. Based on these events, you will be able to manipulate
the DAO recordset appropriate as in the following samples. In addition, the control fires the
Error event in case any error occurs when handling the ADO or DAO recordsets, For
instance, trying to update a read-only field. In conclusion, if user changes a cell/value in the
control, the associated field in the recordset is automatically updated. If any error occurs on
updating the associated record, the Error event is fired which describes the error.

Handling the Delete method in the control, using the DAO recordset on MS Access

Insert a Button and the Control to a form, and name them as cmdDelete and Grid1
Add the Form_Load event of the form with the following code:

Private Sub Form_Load()
 With Grid1
 .BeginUpdate
 .DataSource = CurrentDb.OpenRecordset("Employees")
 .DetectDelete = True
 .EndUpdate
 End With
End Sub

The code binds the control to a DAO recordset. The DetectDelete property on True,
makes the control to move the current record on the item to be deleted, and to remove

any reference to the record to be deleted.

Add the Click event of the cmdDelete button with the following code

Private Sub cmdRemove_Click()
 With Grid1.Items
 .RemoveItem .FocusItem
 End With
End Sub

The code removes the focused item. The Items.RemoveItem call makes the control to
fire the RemoveItem event, which will actually delete the associated record in the
database, as in the following code

Add the RemoveItem event of the Control with the following code:

Private Sub Grid1_RemoveItem(ByVal Item As Long)
 With Grid1
 If .DetectDelete Then
 With .DataSource
 .Delete
 End With
 End If
 End With
End Sub

The code deletes the current record.

Handling the Delete method in the control, using the ADO recordset in VB

Insert a Button and the Control to a form, and name them as cmdRemove and Grid1
Add the Form_Load event of the form with the following code:

Private Sub Form_Load()
 With Grid1
 Set rs = CreateObject("ADOR.Recordset")
 With rs
 .Open "Employees", "Provider=Microsoft.ACE.OLEDB.12.0;Data
Source=\sample.accdb", 3, 3
 End With

 .DataSource = rs
 .DetectDelete = True
 End With
End Sub

The code binds the control to an ADO recordset.

Add the Click event of the cmdDelete button with the following code

Private Sub cmdRemove_Click()
 With Grid1.DataSource
 .Delete
 End With
End Sub

The Delete method of the recordset removes the current record (select a new item to
the control, and the current record is changed), and due DetectDelete the associated
item is removed from the view.

method Grid.DiscardValidateValue ()
Cancels the current validation process, and restores back the modified cells.

Type Description

The DiscardValidateValue method has effect only if the CauseValidateValue property is not
zero. The DiscardValidateValue method restores the values for modified cell during the
validation. For instance, pressing the Cancel button during the ValidateValue event can
restore the values for modified cells, using the DiscardValidateValue method. The
DiscardValidateValue automatically closes the current editor. The EditClose method can be
used to programmatically closes the focused editor.

property Grid.DrawGridLines as GridLinesEnum
Retrieves or sets a value that indicates whether the grid lines are visible or hidden.

Type Description

GridLinesEnum A GridLinesEnum expression that indicates whether the
grid lines are visible or hidden.

Use the DrawGridLines property to add grid lines to the current view. Use the GridLineColor
property to specify the color for grid lines. The GridLineStyle property to specify the style
for horizontal or/and vertical gridlines in the control. Use the LinesAtRoot property specifies
whether the control links the root items of the control. Use the HasLines property to specify
whether the control draws the link between child items to their corresponding parent item.

method Grid.Edit ([Options as Variant])
Edits the focused cell.

Type Description

Options as Variant

Optional. If missing, the control edits the focused cell. A
long expression that indicates the handle of a locked item.
Use the LockedItem property to retrieve the handle of a
locked/fixed item.

The Edit method starts editing the focused cell, if the cell has an editor assigned. Use the
Editor property of the Column object, or CellEditor property to assign an editor to a cell.
The focused cell is determined by the intersection of the focused item and the focused
column. Use the FocusItem property to get the handle of the focused item. Use the
FocusColumnIndex property to determine the index of the focused column. The control fires
the Edit event when the edit operation is about to start. The edit operation doesn't start if
the control's ReadOnly property is True, or if the cell's editor is hidden (CellEditorVisible
property is False). Use the Editing property to check whether the control is in edit mode, or
to get the window's handle for the built-in editor that's visible and focused. The EditClose
method closes the current editor. Use the ValidateValue event to validate the values that
user enters.

The edit events are fired in the following order:

1. Edit event. Prevents editing cells, before showing the cell's editor.

2. EditOpen event. The edit operation started, the cell's editor is shown. The Editing
property gives the window's handle of the built-in editor being started.

3. Change event. The Change event is fired only if the user types ENTER key, or the user
selects a new value from a predefined data list.

4. EditClose event. The cell's editor is hidden and closed.

If the Options parameter is missing, the control edits the focused cell. The FocusItem and
FocusColumnIndex properties indicates the focused cell. If the Options parameter is
present, the control edits the item that Options parameter indicates.

For instance, the following VB sample edits a locked item when the user clicks a cell:

Private Sub Grid1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single)
 With Grid1
 If Button = 1 Then

 Dim h As EXGRIDLibCtl.HITEM, c As Long, hit As EXGRIDLibCtl.HitTestInfoEnum
 h = .ItemFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, c, hit)
 If Not h = 0 Then
 If (.Items.IsItemLocked(h)) Then
 .FocusColumnIndex = c
 .Edit h
 End If
 End If
 End If
 End With
End Sub

Call the DoEvents (Processes all Windows messages currently in the message queue)
method after Edit method to start immediately the edit operation.

The following C++ sample edits edits a locked item when the user clicks a cell:

void OnMouseUpGrid1(short Button, short Shift, long X, long Y)
{
 CItems items = m_grid.GetItems();
 long c = 0, hit = 0, h = m_grid.GetItemFromPoint(X, Y, &c, &hit);
 if (h != 0)
 if (items.GetIsItemLocked(h))
 {
 m_grid.SetFocusColumnIndex(c);
 m_grid.Edit(COleVariant(h));
 }
}

The following VB.NET sample edits edits a locked item when the user clicks a cell:

Private Sub AxGrid1_MouseUpEvent(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_MouseUpEvent) Handles AxGrid1.MouseUpEvent
 With AxGrid1
 Dim i As Integer, c As Integer, hit As EXGRIDLib.HitTestInfoEnum
 i = .get_ItemFromPoint(e.x, e.y, c, hit)
 If (Not (i = 0)) Then
 If (.Items.IsItemLocked(i)) Then
 .FocusColumnIndex = c

 .Edit(i)
 End If
 End If
 End With
End Sub

The following C# sample edits edits a locked item when the user clicks a cell:

private void axGrid1_MouseUpEvent(object sender,
AxEXGRIDLib._IGridEvents_MouseUpEvent e)
{
 int c = 0;
 EXGRIDLib.HitTestInfoEnum hit;
 int i = axGrid1.get_ItemFromPoint(e.x, e.y, out c, out hit);
 if (i != 0)
 {
 if (axGrid1.Items.get_IsItemLocked(i))
 {
 axGrid1.FocusColumnIndex = c;
 axGrid1.Edit(i);
 }
 }
}

The following VFP sample edits edits a locked item when the user clicks a cell:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

local c, hit
c = 0
hit = 0
with thisform.Grid1
 .Items.DefaultItem = .ItemFromPoint(x, y, @c, @hit)
 if (.Items.DefaultItem <> 0)
 if (.Items.IsItemLocked(0))
 .FocusColumnIndex = c
 .Object.Edit(.Items.DefaultItem)

 endif
 endif
endwith

method Grid.EditClose ()
Closes the current editor, if the control runs in the edit mode.

Type Description

Use the EditClose method to close programmatically the current editor. Use the Edit
method to start editing a cell. Use the Editing property to check whether the control runs in
the edit mode.

The following VB sample closes the editor when user hits the enter key:

Private Sub Grid1_KeyDown(KeyCode As Integer, Shift As Integer)
 With Grid1
 If Not (.Editing = 0) Then
 If (KeyCode = vbKeyReturn) Then
 .EditClose
 KeyCode = 0
 End If
 End If
 End With
End Sub

The following C++ sample closes the editor when user hits the enter key:

void OnKeyDownGrid1(short FAR* KeyCode, short Shift)
{
 if (*KeyCode == VK_RETURN)
 if (m_grid.GetEditing() != 0)
 {
 m_grid.EditClose();
 *KeyCode = 0;
 }
}

The following C# sample closes the editor when user hits the enter key:

private void axGrid1_KeyDownEvent(object sender,
AxEXGRIDLib._IGridEvents_KeyDownEvent e)
{

 if (Convert.ToUInt32(e.keyCode) == Convert.ToUInt32(Keys.Enter))
 if (axGrid1.Editing != 0)
 {
 axGrid1.EditClose();
 e.keyCode = 0;
 }
}

The following VB.NET sample closes the editor when user hits the enter key:

Private Sub AxGrid1_KeyDownEvent(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_KeyDownEvent) Handles AxGrid1.KeyDownEvent
 If (Convert.ToUInt32(e.keyCode) = Convert.ToUInt32(Keys.Enter)) Then
 With AxGrid1
 If Not (.Editing = 0) Then
 .EditClose()
 e.keyCode = 0
 End If
 End With
 End If
End Sub

The following VFP sample closes the editor when user hits the enter key:

*** ActiveX Control Event ***
LPARAMETERS keycode, shift

if (keycode = 13) &&vkReturn
 with thisform.Grid1.Object
 if (.Editing() != 0)
 .EditClose()
 keycode = 0
 endif
 endwith
endif

property Grid.Editing as Long
Specifies the window's handle of the built-in editor while the control is running in edit mode.

Type Description

Long
A long expression that indicates the window's handle for
the built-in editor that's focused while the control is running
in the edit mode.

Use the Editing property to check whether the control is in edit mode. Use the Editing
property to get the window's handle for the built-in editor while editing. Use the Edit method
to start editing the focused cell. Use the EditType property to define the column's editor.
Use the ReadOnly property to make the control read only. Call the EditClose method to
close the current editor. The EditingText property returns the caption being shown on the
editor while the control runs in edit mode. The Editing property returns a not-zero value only
if called during the EditOpen, Change or EditClose event.

The edit events are fired in the following order:

1. Edit event. Prevents editing cells, before showing the cell's editor.

2. EditOpen event. The edit operation started, the cell's editor is shown. The Editing
property gives the window's handle of the built-in editor being started.

3. Change event. The Change event is fired only if the user types ENTER key, or the user
selects a new value from a predefined data list.

4. EditClose event. The cell's editor is hidden and closed.

The following VB sample closes the current editor if the user presses the enter key:

Private Sub Grid1_KeyDown(KeyCode As Integer, Shift As Integer)
 With Grid1
 If Not (.Editing = 0) Then
 If (KeyCode = vbKeyReturn) Then
 .EditClose
 KeyCode = 0
 End If
 End If
 End With
End Sub

The following C++ sample closes the editor when user hits the enter key:

void OnKeyDownGrid1(short FAR* KeyCode, short Shift)
{
 if (*KeyCode == VK_RETURN)
 if (m_grid.GetEditing() != 0)
 {
 m_grid.EditClose();
 *KeyCode = 0;
 }
}

The following C# sample closes the editor when user hits the enter key:

private void axGrid1_KeyDownEvent(object sender,
AxEXGRIDLib._IGridEvents_KeyDownEvent e)
{
 if (Convert.ToUInt32(e.keyCode) == Convert.ToUInt32(Keys.Enter))
 if (axGrid1.Editing != 0)
 {
 axGrid1.EditClose();
 e.keyCode = 0;
 }
}

The following VB.NET sample closes the editor when user hits the enter key:

Private Sub AxGrid1_KeyDownEvent(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_KeyDownEvent) Handles AxGrid1.KeyDownEvent
 If (Convert.ToUInt32(e.keyCode) = Convert.ToUInt32(Keys.Enter)) Then
 With AxGrid1
 If Not (.Editing = 0) Then
 .EditClose()
 e.keyCode = 0
 End If
 End With
 End If
End Sub

The following VFP sample closes the editor when user hits the enter key:

*** ActiveX Control Event ***
LPARAMETERS keycode, shift

if (keycode = 13) &&vkReturn
 with thisform.Grid1.Object
 if (.Editing() != 0)
 .EditClose()
 keycode = 0
 endif
 endwith
endif

If your application still requires the string that user types into an text box inside the exGrid
control. you can use the following VB trick:

Private Sub Grid1_Change(ByVal Item As EXGRIDLibCtl.HITEM, ByVal ColIndex As Long,
NewValue As Variant)
 ' Finds the text inside the text box, in case that NewValue parameter is changed to a
valid data
 Debug.Print getWndText(getEditWnd(Grid1))
End Sub

Private Function getEditWnd(ByVal g As EXGRIDLibCtl.Grid) As Long
 Dim h As Long
 h = GetWindow(g.hwnd, GW_CHILD)
 While Not (h = 0)
 If (getWndClass(h) = "HolderBuiltIn") Then
 getEditWnd = GetWindow(h, GW_CHILD)
 Exit Function
 End If
 h = GetWindow(h, GW_HWNDNEXT)
 Wend
 getEditWnd = 0
End Function

Private Function getWndText(ByVal h As Long) As String

 Dim s As String
 s = Space(1024)
 GetWindowText h, s, 1024
 getWndText = To0(s)
End Function

Private Function getWndClass(ByVal h As Long) As String
 Dim s As String
 s = Space(1024)
 GetClassName h, s, 1024
 getWndClass = To0(s)
End Function

Private Function To0(ByVal s As String) As String
 To0 = Left$(s, InStr(s, Chr$(0)) - 1)
End Function

The sample requires the following API declarations:

Private Declare Function GetWindow Lib "user32" (ByVal hwnd As Long, ByVal wCmd As
Long) As Long
Private Declare Function GetWindowText Lib "user32" Alias "GetWindowTextA" (ByVal
hwnd As Long, ByVal lpString As String, ByVal cch As Long) As Long
Private Declare Function GetClassName Lib "user32" Alias "GetClassNameA" (ByVal hwnd
As Long, ByVal lpClassName As String, ByVal nMaxCount As Long) As Long
Private Const GW_CHILD = 5
Private Const GW_HWNDNEXT = 2

The following C++ sample displays a message box with the caption that user types inside
the text box of an editor:

HWND getEditWnd(HWND h)
{
 TCHAR szName[1024] = _T("");
 h = GetWindow(h, GW_CHILD);
 while (!(h == 0))
 {

 GetClassName(h, szName, 1024);
 if (_tcscmp(_T("HolderBuiltIn"), szName) == 0)
 return GetWindow(h, GW_CHILD);
 h = GetWindow(h, GW_HWNDNEXT);
 }
 return 0;
}

void OnChangeGrid1(long Item, long ColIndex, VARIANT FAR* NewValue)
{
 HWND h = getEditWnd(m_grid.m_hWnd);
 if (h)
 {
 TCHAR szText[1024] = _T("");
 ::GetWindowText(h, szText, 1024);
 ::MessageBox(NULL, szText,NULL, NULL);
 }
}

property Grid.EditingText as String
Specifies the caption of the editor during editing.

Type Description

String A String expression that specifies the caption of the field
during editing mode.

By default, the EditingText property is "". The EditingText property returns the caption being
shown on the editor while the control runs in edit mode. The control is in edit mode, if the
Editing property returns a not-zero value. The EditingText property has effect only if called
during the EditOpen, Change or EditClose event.

The edit events are fired in the following order:

1. Edit event. Prevents editing cells, before showing the cell's editor.

2. EditOpen event. The edit operation started, the cell's editor is shown. The Editing
property gives the window's handle of the built-in editor being started.

3. Change event. The Change event is fired only if the user types ENTER key, or the user
selects a new value from a predefined data list.

4. EditClose event. The cell's editor is hidden and closed.

property Grid.Enabled as Boolean
Enables or disables the control.

Type Description

Boolean A boolean expression that indicates whether the control is
enabled or disabled.

Use the Enabled property to disable the control. Use the ReadOnly property to prevent
users changing the control's content. Use the Locked property to lock or unlock an editor.
Use the ForeColor property to change the control's foreground color. Use the BackColor
property to change the control's background color. Use the EnableItem to disable an item.
Use the CellEnabled property to disable a cell. Use the Enabled property to disable a
column. Use the SelectableItem property to specify whether an user can select an item.

method Grid.EndBlockUndoRedo ()
Ends recording the UI operations and adds the undo/redo operations as a block, so they all
can be restored at once, if Undo method is performed.

Type Description

The StartBlockUndoRedo method starts recording the UI operations as a block on
undo/redo operations The method has effect only if the AllowUndoRedo property is True.
The EndBlockUndoRedo method collects all undo/redo operations since
StartBlockUndoRedo method was called and add them to the undo/redo queue as a block.
This way the next call on a Undo operation, the entire block is restored, so all UI operations
are restored. The EndBlockUndoRedo method must be called the same number of times as
the StartBlockUndoRedo method was called. For instance, if you have called the
StartBlockUndoRedo twice the EndBlockUndoRedo method must be called twice too, and
the collected operations are added to the control's queue of undo/redo operations at the
end.

method Grid.EndUpdate ()
Resumes painting the control after painting is suspended by the BeginUpdate method.

Type Description

Use BeginUpdate and EndUpdate statement each time when the control requires more
changes. Using the BeginUpdate and EndUpdate methods increase the speed of changing
the control properties by preventing it from painting during changing.

The following VB sample prevents the control from painting while it adds one column, and
one item, using the BeginUpdate and EndUpdate methods:

With Grid1
 .BeginUpdate
 .LinesAtRoot = LinesAtRootEnum.exLinesAtRoot
 .FullRowSelect = False
 .DefaultItemHeight = 24
 With .Columns.Add("Mask")
 With .Editor
 .EditType = EditTypeEnum.MaskType
 .Appearance = SingleApp
 .Mask = "{0,255}\.{0,255}\.{0,255}\.{0,255}"
 End With
 End With
 .Items.AddItem "193.226.40.161"
 .EndUpdate
End With

The following C++ sample prevents the control from painting while adding columns and
items:

#include "Column.h"
#include "Columns.h"
m_grid.BeginUpdate();
m_grid.SetColumnAutoResize(FALSE);
CColumns columns = m_grid.GetColumns();
for (long i = 0; i < 4; i++)
 columns.Add("NewColumn");
CItems items = m_grid.GetItems();

for (long j = 0; j < 10; j++)
{
 COleVariant vtItem(items.AddItem(COleVariant("new item ")));
 for (long k = 1 ; k < 4; k++)
 items.SetCellValue(vtItem, COleVariant(k), COleVariant("new item "));
}
m_grid.EndUpdate();

The following VB.NET sample prevents the control from painting while adding columns and
items:

With AxGrid1
 .BeginUpdate()
 .LinesAtRoot = EXGRIDLib.LinesAtRootEnum.exLinesAtRoot
 .FullRowSelect = False
 .DefaultItemHeight = 24
 With .Columns.Add("Mask")
 With .Editor
 .EditType = EXGRIDLib.EditTypeEnum.MaskType
 .Appearance = EXGRIDLib.AppearanceEnum.Etched
 .Mask = "{0,255}\.{0,255}\.{0,255}\.{0,255}"
 End With
 End With
 .Items.AddItem("193.226.40.161")
 .EndUpdate()
End With

The following C# sample prevents the control from painting while adding columns and items:

axGrid1.BeginUpdate();
EXGRIDLib.Columns columns = axGrid1.Columns;
columns.Add("Column 1");
columns.Add("Column 3");
EXGRIDLib.Items items = axGrid1.Items;
items.AddItem("new item");
items.AddItem("new item");
axGrid1.EndUpdate();

The following VFP sample prevents the control from painting while adding columns and
items:

with thisform.Grid1
 .BeginUpdate
 .LinesAtRoot = .t.
 .FullRowSelect = .f.
 .DefaultItemHeight = 24
 With .Columns.Add("Mask")
 With .Editor
 .EditType = 8
 .Appearance = 1
 .Mask = "{0,255}\.{0,255}\.{0,255}\.{0,255}"
 EndWith
 EndWith
 .Items.AddItem("193.226.40.161")
 .EndUpdate
endwith

property Grid.EnsureOnSort as Boolean
Specifies whether the control ensures that the focused item fits the control's client area,
when the user sorts the items.

Type Description

Boolean
A boolean expression that indicates whether the control
ensures that the focused item fits the control's client area
after sorting the items.

By default, the EnsureOnSort property is True. If the EnsureOnSort property is True, the
control calls the EnsureVisibleItem method to ensure that the focused item (FocusItem
property) fits the control's client area, once items get sorted. Use the SortOrder property
to sort a column. The SortChildren method sorts child items of an item. The EnsureOnSort
property prevents scrolling of the control when child items are sorted.

The following VB sample prevents scrolling the items, when the user calls the SortChildren
method:

Private Sub Grid1_BeforeExpandItem(ByVal Item As EXGRIDLibCtl.HITEM, Cancel As
Variant)
 With Grid1
 Dim bEnsureOnSort As Boolean
 bEnsureOnSort = .EnsureOnSort
 .EnsureOnSort = False
 .Items.SortChildren Item, 0, False
 .EnsureOnSort = bEnsureOnSort
 End With
End Sub

The sample sorts the child items, when the user expands an item.

method Grid.EnsureVisibleColumn (Column as Variant)
Scrolls the control's content to ensure that the column fits the client area.

Type Description

Column as Variant
A long expression that indicates the column's index being
scrolled, or a string expression that indicates the column's
caption or the column's key.

This method ensures that a column is at least partially visible. The control scrolls the
content if necessary. The control automatically calls EnsureVisibleColumn method when the
user clicks a cell in the column. Use the EnsureVisibleItem method to ensure that a
specified item fits the control's client area. Use the ScrollBars property to hide the control's
scroll bars. Use the Scroll method to programmatically scroll the control's content.

The following VB sample changes the searching column when user clicks a cell:

Private Sub Grid1_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With Grid1
 Dim c As Long, hit as Long
 Dim h As HITEM
 h = .ItemFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, c, hit)
 If Not (h = 0) Then
 .SearchColumnIndex = c
 End If
 End With
End Sub

The following VB sample ensures that a hidden column is going visible, and fits the control's
client area:

With Grid1
 .Columns("G").Visible = True
 DoEvents
 .EnsureVisibleColumn ("G")
End With

The following C++ sample ensures that a hidden column is going visible, and fits the
control's client area:

COleVariant vtColumn("G");
m_grid.GetColumns().GetItem(vtColumn).SetVisible(TRUE);
DoEvents();
m_grid.EnsureVisibleColumn(vtColumn);

where an equivalent of DoEvents in C++ is:

void DoEvents()
{
 MSG m = {0};
 while (PeekMessage(&m, NULL, NULL, NULL, PM_REMOVE))
 {
 TranslateMessage(&m);
 DispatchMessage(&m);
 }
}

Calling the DoEvents method it not required if before you are not changing the column's
layout. Making a column visible or hidden changes the arrangement of the columns, that's
processed later. The DoEvents method forces the control to arrange the column, before
calling the EnsureVisibleColumn method.

property Grid.EventParam(Parameter as Long) as Variant
Retrieves or sets a value that indicates the current's event parameter.

Type Description

Parameter as Long

A long expression that indicates the index of the parameter
being requested ie 0 means the first parameter, 1 means
the second, and so on. If -1 is used the EventParam
property retrieves the number of parameters. Accessing
an not-existing parameter produces an OLE error, such as
invalid pointer (E_POINTER)

Variant A VARIANT expression that specifies the parameter's
value.

The EventParam method is provided to allow changing the event's parameters passed by
reference, even if your environment does not support changing it (uniPaas 1.5 (formerly
known as eDeveloper), DBase, and so on). For instance, Unipaas event-handling logic
cannot update ActiveX control variables by updating the received arguments. The
EventParam(0) retrieves the value of the first parameter of the event, while the
EventParam(1) = 0, changes the value of the second parameter to 0 (the operation is
successfully, only if the parameter is passed by reference). The EventParam(-1) retrieves
the number of the parameters of the current event.

Let's take the event "event KeyDown (KeyCode as Integer, ByVal Shift as Integer)", where
the KeyCode parameter is passed by reference. For instance, put the KeyCode parameter
on 0, and the arrow keys are disabled while the control has the focus.

In most languages you will type something like:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 KeyCode = 0
End Sub

In case your environment does not support events with parameters by reference, you can
use a code like follows:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 Control1.EventParam(0) = 0
End Sub

In other words, the EventParam property provides the parameters of the current event for
reading or writing access, even if your environment does not allow changing parameters by

reference.

Calling the EventParam property outside of an event produces an OLE error, such as
pointer invalid, as its scope was designed to be used only during events.

method Grid.ExecuteTemplate (Template as String)
Executes a template and returns the result.

Type Description
Template as String A Template string being executed
Return Description

Variant A Variant expression that indicates the result after
executing the Template.

Use the ExecuteTemplate property to returns the result of executing a template file. Use the
Template property to execute a template without returning any result. Use the
ExecuteTemplate property to execute code by passing instructions as a string (template
string). For instance, you can use the EXPRINT.PrintExt =
CONTROL.ExecuteTemplate("me") to print the control's content.

For instance, the following sample retrieves the the handle of the first visible item:

Debug.Print Grid1.ExecuteTemplate("Items.FirstVisibleItem()")

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by

"\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property Grid.ExpandOnDblClick as Boolean
Specifies whether the item is expanded or collapsed if the user dbl clicks the item.

Type Description

Boolean A boolean expression that indicates whether an item is
expanded on dbl click.

Use the ExpandOnDblClick property to disable expanding or collapsing items when user dbl
clicks an item. Use the ExpandOnKeys property to specify whether the control expands or
collapses a node when user presses arrow keys. The ExpandOnSearch property specifies
whether the control expands nodes when incremental searching is on (AutoSearch property
is different than 0) and user types characters when the control has the focus. The control
fires the DblClick event when user double clicks the control. Use the ExpandItem property
to programmatically expand or collapse an item. In CardView mode, the ExpandOnDblClick
property specifies whether a card is expanded or collapsed when a card is double clicked.

property Grid.ExpandOnKeys as Boolean
Specifies a value that indicates whether the control expands or collapses a node when user
presses arrow keys.

Type Description

Boolean
A boolean expression that indicates whether the control
expands or collapses a node when user presses arrow
keys.

Use the ExpandOnKeys property to specify whether the control expands or collapses a
node when user presses arrow keys. By default, the ExpandOnKeys property is True. Use
the ExpandOnDblClick property to specify whether the control expands or collapses a node
when user dbl clicks a node. The ExpandOnSearch property specifies whether the control
expands nodes when incremental searching is on (AutoSearch property is different than 0)
and user types characters when the control has the focus. If the ExpandOnKeys property is
False, the user can't expand or collapse the items using the + or - keys on the numeric
keypad. Use the ExpandItem property to programmatically expand or collapse an item. In
CardView mode, the ExpandOnKeys property allows expanding or collapsing the cards
using the + or - keys on the numeric keypad.

The following VB sample expands or collapses the focused item if the user presses the + or
- keys on the numeric keypad, and ExpandOnKeys property is False:

Private Sub Grid1_KeyDown(KeyCode As Integer, Shift As Integer)
 With Grid1.Items
 If (KeyCode = vbKeyAdd) Then
 .ExpandItem(.FocusItem) = True
 End If
 If (KeyCode = vbKeySubtract) Then
 .ExpandItem(.FocusItem) = False
 End If
 End With
End Sub

The following C++ sample expands or collapses the focused item if the user presses the +
or - keys on the numeric keypad, and ExpandOnKeys property is False:

#include "Items.h"
void OnKeyDownGrid1(short FAR* KeyCode, short Shift)
{

 CItems items = m_grid.GetItems();
 switch (*KeyCode)
 {
 case VK_ADD:
 case VK_SUBTRACT:
 {
 items.SetExpandItem(items.GetFocusItem(), *KeyCode == VK_ADD ? TRUE : FALSE
);
 break;
 }
 }
}

The following VB.NET sample expands or collapses the focused item if the user presses
the + or - keys on the numeric keypad, and ExpandOnKeys property is False:

Private Sub AxGrid1_KeyDownEvent(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_KeyDownEvent) Handles AxGrid1.KeyDownEvent
 Select Case (e.keyCode)
 Case Keys.Add
 With AxGrid1.Items
 .ExpandItem(.FocusItem) = True
 End With
 Case Keys.Subtract
 With AxGrid1.Items
 .ExpandItem(.FocusItem) = False
 End With
 End Select
End Sub

The following C# sample expands or collapses the focused item if the user presses the + or
- keys on the numeric keypad, and ExpandOnKeys property is False:

private void axGrid1_KeyDownEvent(object sender,
AxEXGRIDLib._IGridEvents_KeyDownEvent e)
{
 if ((e.keyCode == Convert.ToInt16(Keys.Add)) || (e.keyCode ==
Convert.ToInt16(Keys.Subtract)))

 axGrid1.Items.set_ExpandItem(axGrid1.Items.FocusItem, e.keyCode ==
Convert.ToInt16(Keys.Add));
}

The following VFP sample expands or collapses the focused item if the user presses the +
or - keys on the numeric keypad, and ExpandOnKeys property is False:

*** ActiveX Control Event ***
LPARAMETERS keycode, shift

with thisform.Grid1.Items
 if (keycode = 107)
 .DefaultItem = .FocusItem
 .ExpandItem(0) = .t.
 else
 if (keycode = 109)
 .ExpandItem(0) = .f.
 endif
 endif
endwith

property Grid.ExpandOnSearch as Boolean
Expands items automatically while user types characters to search for a specific item.

Type Description

Boolean
A boolean expression that indicates whether the control
expands items while user types characters to search for
items.

Use the ExpandOnSearch property to expand items while user types characters to search
for items using incremental search feature. By default, the ExpandOnSearch property is
False. Use the AutoSearch property to enable or disable incremental searching feature.
Use the AutoSearch property of the Column object to specify the type of incremental
searching being used within the column. The ExpandOnSearch property has no effect when
the AutoSearch property is False. Use the exExpandOnSearch type to expand items while
user types characters in a drop down editor. For instance, if the ExpandOnSearch property
is True, the control fires the BeforeExpandItem event for items that have the
ItemHasChildren property is True, when user types characters.

method Grid.Export ([Destination as Variant], [Options as Variant])
Exports the control's data to a CSV or HTML format.

Type Description

Destination as Variant

A String expression that specifies the file/format to be
created. The Destination parameter indicates the format
to be created as follows:

"array" indicates that the Export method returns the
control's data as a two-dimensional array
if "htm" or "html", the control returns the HTML format
(including CSS style)
Any file-name that ends on ".htm" or ".html" creates
the file with the HTML format inside
missing, empty, or any other case the Export exports
the control's data in CSV format.

No error occurs, if the Export method can not create the
file.

Options as Variant A String expression that specifies the options to be used
when exporting the control's data, as explained bellow.

Return Description

Variant

The result of the Export method is a:

two-dimensional array, if the Destination is "array".
For instance Export("array","vis") method exports the
control's data as it is displayed into a two-dimensional
array (zero-based). The result includes the columns
headers into the first line, while the rest of lines
contains the control's visible data. For instance,
Export("array", "vis")(1, 5) returns the value of the cell
on the second column and fifth row.
string, that indicates the format being exported. It
could be CSV or HTML format based on the
Destination parameter

The Export method can export the control's DATA to a CSV or HTML format. The Export
method can export a collection of columns from selected, visible, check or all items. By
default, the control export all items, unless there is no filter applied on the control, where
only visible items are exported. No visual appearance is saved in CSV format, instead the

HTML format includes the visual appearance in CSS style.

Let's say we have the following control's DATA:

The following screen shot shows the control's DATA in CSV format:

The following screen shot shows the control's DATA in HTML format:

The Options parameter consists a list of fields separated by | character, in the following
order:

1. The first field could be all, vis, sel or chk, to export all, just visible, selected or
checked items. The all option is used, if the field is missing. The all option displays all
items, including the hidden or collapsed items. The vis option includes the visible items
only, not including the child items of a collapsed item, or not-visible items (item's height
is 0). The sel options lists the items being selected. The chk option lists all check and
visible items. If chk option is used, the first column in the columns list should indicate
the index of the column being queried for a check box state.

2. the second field indicates the column to be exported. All visible columns are exported,
if missing. The list of columns is separated by , character, and indicates the index of
the column to be shown on the exported data. The first column in the list indicates the
column being queried, if the option chk is used.

3. the third field indicates the character to separate the fields inside each exported line
[tab character-if missing]. This field is valid, only when exporting to a CSV format

4. the forth field could be ansi or unicode, which indicates the character-set to save the
control's content to Destination. For instance, Export(Destination,"|||unicode") saves
the control's content to destination in UNICODE format (two-bytes per character). By
default, the Export method creates an ANSI file (one-byte character)

The Destination parameter indicates the file to be created where exported date should be
saved. For instance, Export("c:\temp\export.html") exports the control's DATA to
export.html file in HTML format, or Export("","sel|0,1|;") returns the cells from columns 0, 1
from the selected items, to a CSV format using the ; character as a field separator.

The "CSV" refers to any file that:

CSV stands for Comma Separated Value
is plain text using a character set such as ASCII, Unicode,
consists of records (typically one record per line),
with the records divided into fields separated by delimiters (typically a single reserved
character such as tab, comma, or semicolon; sometimes the delimiter may include
optional spaces),
where every record has the same sequence of fields

The "HTML" refers to any file that:

HTML stands for HyperText Markup Language.
is plain text using a character set such as ASCII, Unicode
It's the way web pages are encoded to handle things like bold, italics and even color
text red.

You can use the Copy/CopyTo to export the control's view to
clipboard/EMF/BMP/JPG/PNG/GIF or PDF format.

property Grid.FilterBarBackColor as Color
Specifies the background color of the control's filter bar.

Type Description

Color

A color expression that defines the background color for
description of the control's filter. The last 7 bits in the high
significant byte of the color to indicates the identifier of the
skin being used. Use the Add method to add new skins to
the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits
in the high significant byte of the color being applied to the
background's part.

Use the FilterBarForeColor and FilterBarBackColor properties to define the colors used to
paint the description for control's filter. Use the FilterBarHeight property to hide the control's
filter bar header. Use the BackColor property to specify the control's background color. Use
the BackColorLevelHeader property to specify the background color of the header when it
displays multiple levels.

The following VB sample changes the visual appearance for control's filter bar. The sample
applies the skin " " to the "close" button in the control's filter bar, and the " " skin to the
filter bar caption area:

With Grid1
 With .VisualAppearance
 .Add &H2, App.Path + "\fbarclose.ebn"
 .Add &H12, App.Path + "\filterbar.ebn"
 End With
 .Background(exFooterFilterBarButton) = &H2000000
 .FilterBarBackColor = &H12000000

 .FilterBarForeColor = RGB(255, 255, 255)
End With

The following C++ sample changes the visual appearance for the "close" button in the
control's filter bar:

#include "Appearance.h"
m_grid.GetVisualAppearance().Add(0x2,
COleVariant(_T("D:\\Temp\\ExGrid.Help\\fbarclose.ebn")));
m_grid.GetVisualAppearance().Add(0x12,
COleVariant(_T("D:\\Temp\\ExGrid.Help\\filterbar.ebn")));
m_grid.SetBackground(1 /*exFooterFilterBarButton*/, 0x2000000);
m_grid.SetFilterBarBackColor(0x12000000);
m_grid.SetFilterBarForeColor(RGB(255,255,255));

The following VB.NET sample changes the visual appearance for the "close" button in the
control's filter bar:

With AxGrid1
 With .VisualAppearance
 .Add(&H2, "D:\Temp\ExGrid.Help\fbarclose.ebn")
 .Add(&H12, "D:\Temp\ExGrid.Help\filterbar.ebn")
 End With
 .Template = "FilterBarBackColor = 301989888"
 .FilterBarForeColor = Color.White
 .set_Background(EXTREELib.BackgroundPartEnum.exFooterFilterBarButton, &H2000000)
End With

The following C# sample changes the visual appearance for the "close" button in the
control's filter bar:

axGrid1.VisualAppearance.Add(0x2, "D:\\Temp\\ExGrid.Help\\fbarclose.ebn");
axGrid1.VisualAppearance.Add(0x12, "D:\\Temp\\ExGrid.Help\\filterbar.ebn");
axGrid1.set_Background(EXTREELib.BackgroundPartEnum.exFooterFilterBarButton,
0x2000000);

axGrid1.Template = "FilterBarBackColor = 301989888";
axGrid1.FilterBarForeColor = Color.White;

The following VFP sample changes the visual appearance for the "close" button in the
control's filter bar:

With thisform.Grid1
 With .VisualAppearance
 .Add(2, "D:\Temp\ExGrid.Help\fbarclose.ebn")
 .Add(18, "D:\Temp\ExGrid.Help\filterbar.ebn")
 EndWith
 .Object.Background(1) = 33554432
 .FilterBarBackColor = 301989888
 .FilterBarForeColor = RGB(255,255,255)
EndWith

The 301989888 value is the 0x12000000 value in hexadecimal.

property Grid.FilterBarCaption as String
Specifies the filter bar's caption.

Type Description

String A string value that defines the expression to display the
control's filter bar.

By default, the FilterBarCaption property is empty. You can use the FilterBarCaption
property to define the way the filter bar's caption is being displayed. The FilterBarCaption is
displayed on the bottom side of the control where the control's filter bar is shown. While the
FilterBarCaption property is empty, the control automatically builds the caption to be
displayed on the filter bar from all columns that participates in the filter using its name and
values. For instance, if the control filters items based on the columns "EmployeeID" and
"ShipVia", the control's filter bar caption would appear such as "[EmployeeID] = '...' and
[ShipVia] = '...'". The FilterBarCaption property supports expressions as explained bellow.

For instance:

"no filter", shows no filter caption all the time

"" displays no filter bar, if no filter is applied, else it displays the current filter

"`<r>` + value", displays the current filter caption aligned to the right. You can include
the exFilterBarShowCloseOnRight flag into the FilterBarPromptVisible property to
display the close button aligned to the right

"value replace ` and ` with `<fgcolor=FF0000> and </fgcolor>`", replace the AND
keyword with a different foreground color

"value replace ` and ` with `<off 4> and </off>` replace `|` with ` <off 4>or</off> `
replace ` ` with ` `", replaces the AND and | values

"value replace `[` with `<bgcolor=000000><fgcolor=FFFFFF> ` replace `]` with `
</bgcolor></fgcolor>`", highlights the columns being filtered with a different
background/foreground colors.

"value + ` ` + available", displays the current filter, including all available columns to be
filtered

"allui" displays all available columns

"((allui + `<fgcolor=808080>` + (matchitemcount < 0 ? ((len(allui) ? `` : ``) + `<r>` +
abs(matchitemcount + 1) + ` result(s)`) : (`<r><fgcolor=808080>`+ itemcount + `
item(s)`))) replace `[` with `<bgcolor=000000><fgcolor=FFFFFF> ` replace
`]` with ` </bgcolor></fgcolor>` replace `[<s>` with `<bgcolor=C0C0C0>

<fgcolor=FFFFFF> ` replace `</s>]` with ` </bgcolor></fgcolor>`)" displays all
available columns to be filtered with different background/foreground colors including
the number of items/results

Use the FilterBarForeColor and FilterBarBackColor properties to define the colors used to
paint the description for control's filter. Use the FilterBarHeight property to specify the
height of the control's filter bar. Use the FilterBarFont property to specify the font for the
control's filter bar. Use the Description property to define predefined strings in the filter bar
caption. The VisibleItemCount property specifies the number of visible items in the list. The
MatchItemCount property returns the number of matching items. The FilterBarPromptVisible
property specifies whether how/where the control's filter/prompt is shown.

The FilterBarCaption method supports the following keywords, constants, operators and
functions:

value or current keyword returns the current filter as a string. At runtime the value
may return a string such as "[EmployeeID] = '4| 5| 6' and [ShipVia] =
1", so the control automatically applies HTML format, which you can
change it. For instance, "upper(value)" displays the caption in uppercase or "value
replace `` with `<fgcolor=808080>` replace `` with `</fgcolor>`" displays the
column's name with a different foreground color.
itemcount keyword returns the total number of items as indicated by ItemCount
property. At runtime the itemcount is a positive integer that indicates the count of all
items. For instance, "value + `<r><fgcolor=808080>Total: ` + itemcount" includes in the
filter bar the number of items aligned to the right.
visibleitemcount keyword returns the number of visible items as indicated by
VisibleItemCount property. At runtime, the visibleitemcount is a positive integer if no
filter is applied, and negative if a filter is applied. If positive, it indicates the number of
visible items. The visible items does not include child items of a collapsed item. If
negative, a filter is applied, and the absolute value minus one, indicates the number of
visible items after filter is applied. 0 indicates no visible items, while -1 indicates that a
filter is applied, but no item matches the filter criteria. For instance, "value + `<r>
<fgcolor=808080>` + (visibleitemcount < 0 ? (`Result: ` + (abs(visibleitemcount) - 1)
) : (`Visible: ` + visibleitemcount))" includes "Visible: " plus number of visible items, if
no filter is applied or "Result: " plus number of visible items, if filter is applied, aligned
to the right
matchitemcount keyword returns the number of items that match the filter as
indicated by MatchItemCount property. At runtime, the matchitemcount is a positive
integer if no filter is applied, and negative if a filter is applied. If positive, it indicates the
number of items within the control (ItemCount property). If negative, a filter is applied,
and the absolute value minus one, indicates the number of matching items after filter is

applied. A matching item includes its parent items, if the control's FilterInclude property
allows including child items. 0 indicates no visible items, while -1 indicates that a filter
is applied, but no item matches the filter criteria. For instance, "value + `<r>
<fgcolor=808080>` + (matchitemcount < 0 ? (`Result: ` + (abs(matchitemcount) - 1)
) : (`Visible: ` + matchitemcount))" includes "Visible: " plus number of visible items, if
no filter is applied or "Result: " plus number of macthing items, if filter is applied,
aligned to the right
leafitemcount keyword returns the number of leaf items. A leaf item is an item with no
child items. At runtime, the leafitemcount is a positive number that computes the
number of leaf items (expanded or collapsed). For instance, the "value + `<r>
<fgcolor=808080>` + leafitemcount" displays the number of leaf items aligned
to the right with a different font and foreground color.
promptpattern returns the pattern in the filter bar's prompt, as a string. The
FilterBarPromptPattern specifies the pattern for the filter prompt. The control's filter
bar prompt is visible, if the exFilterBarPromptVisible flag is included in the
FilterBarPromptVisible property.
available keyword returns the list of columns that are not currently part of the control's
filter, but are available to be filtered. A column is available to be filtered, if the
DisplayFilterButton property of the Column object, is True. At runtime, the available
keyword may return a string such as "<fgcolor=C0C0C0>[<s>OrderDate</s>]
<fgcolor> </fgcolor>[<s>RequiredDate</s>]<fgcolor> </fgcolor>
[<s>ShippedDate</s>]<fgcolor> </fgcolor>[<s>ShipCountry</s>]<fgcolor> </fgcolor>
[<s>Select</s>]</fgcolor>", so the control automatically applies HTML format, which
you can change it. For instance, "value + ` ` + available", displays the current filter,
including all available columns to be filtered. For instance, the "value + `<r>` + available
replace `C0C0C0` with `FF0000`" displays the available columns aligned to the right
with a different foreground color.
allui keyword returns the list of columns that are part of the current filter and available
columns to be filtered. A column is available to be filtered, if the DisplayFilterButton
property of the Column object, is True. At runtime, the allui keyword may return a string
such as "[EmployeeID] = '4| 5| 6'<fgcolor> </fgcolor><fgcolor=C0C0C0>
[<s>OrderDate</s>]</fgcolor><fgcolor> </fgcolor><fgcolor=C0C0C0>
[<s>RequiredDate</s>]</fgcolor><fgcolor> </fgcolor><fgcolor=C0C0C0>
[<s>ShippedDate</s>]</fgcolor><fgcolor> </fgcolor>[ShipVia] =
1<fgcolor> </fgcolor><fgcolor=C0C0C0>[<s>ShipCountry</s>]</fgcolor>
<fgcolor> </fgcolor><fgcolor=C0C0C0>[<s>Select</s>]</fgcolor>", so the control
automatically applies HTML format, which you can change it. For instance, "allui",
displays the current filter, including all available columns to be filtered. For instance, the
"((allui + `<fgcolor=808080>` + (matchitemcount < 0 ? ((len(allui) ? `` : ``) + `<r>` +
abs(matchitemcount + 1) + ` result(s)`) : (`<r><fgcolor=808080>`+ itemcount + `
item(s)`))) replace `[` with `<bgcolor=000000><fgcolor=FFFFFF> ` replace
`]` with ` </bgcolor></fgcolor>` replace `[<s>` with `<bgcolor=C0C0C0>
<fgcolor=FFFFFF> ` replace `</s>]` with ` </bgcolor></fgcolor>`)" displays all

available columns to be filtered with different background/foreground colors including
the number of items/results
all keyword returns the list of all columns (visible or hidden) no matter if the
DisplayFilterButton property is True or False. At runtime, the all keyword may return a
string such as "<fgcolor=C0C0C0>[<s>OrderID</s>]</fgcolor><fgcolor> </fgcolor>
[EmployeeID] = '4| 5| 6'<fgcolor> </fgcolor><fgcolor=C0C0C0>
[<s>OrderDate</s>]</fgcolor><fgcolor> </fgcolor><fgcolor=C0C0C0>
[<s>RequiredDate</s>]</fgcolor><fgcolor>", so the control automatically applies
HTML format, which you can change it. For instance, "all", displays the current filter,
including all other columns. For instance, the "((all + `<fgcolor=808080>` + (
matchitemcount < 0 ? ((len(allui) ? `` : ``) + `<r>` + abs(matchitemcount + 1) + `
result(s)`) : (`<r><fgcolor=808080>`+ itemcount + ` item(s)`))) replace `[` with
`<bgcolor=000000><fgcolor=FFFFFF> ` replace `]` with ` </bgcolor>
</fgcolor>` replace `[<s>` with `<bgcolor=C0C0C0><fgcolor=FFFFFF> ` replace
`</s>]` with ` </bgcolor></fgcolor>`)" displays all columns with different
background/foreground colors including the number of items/results

Also, the FilterBarCaption property supports predefined constants and operators/functions
as described here.

Also, the FilterBarCaption property supports HTML format as described here:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The

about:blank

"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.

By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Grid.FilterBarDropDownHeight as Double
Specifies the height of the drop down filter window proportionally with the height of the
control's list.

Type Description

Double A double expression that indicates the height of the drop
down filter window.

Use the FilterBarDropDownHeight property to specify the height of the drop down window
filter window. By default, the FilterBarDropDownHeight property is 0.5. It means, the height
of the drop down filter window is half of the height of the control's list. Use the
FilterBarDropDownWidth property to specify the width of the drop down filter window. Use
the DisplayFilterButton property to display a filter button to the column's caption. Use the
ShowFilter method to show programmatically the column's drop down filter window.

If the FilterBarDropDownHeight property is negative, the absolute value of the
FilterBarDropDownHeight property indicates the height of the drop down filter window in
pixels. In this case, the height of the drop down filter window is not proportionally with the
height of the control's list area. For instance, the following sample specifies the height of the
drop down filter window being 100 pixels:

With Grid1
 .FilterBarDropDownHeight = -100
End With

If the FilterBarDropDownHeight property is greater than 0, it indicates the height of the drop
down filter window proportionally with the height of the control's height list. For instance, the
following sample specifies the height of the drop down filter window being the same with
the height of the control's list area:

With Grid1
 .FilterBarDropDownHeight = 1
End With

The drop down filter window always include an item.

property Grid.FilterBarFont as IFontDisp
Retrieves or sets the font for control's filter bar.

Type Description

IFontDisp A font object that indicates the font used to paint the
description for control's filter

Use the FilterBarFont property to specify the font for the control's filter bar object. Use the
Font property to set the control's font. Use the FilterBarHeight property to specify the height
of the filter bar. Use the FilterBarCaption property to define the control's filter bar caption.
Use the Refresh method to refresh the control.

property Grid.FilterBarForeColor as Color
Specifies the foreground color of the control's filter bar.

Type Description

Color A color expression that defines the foreground color of the
description of the control's filter.

Use the FilterBarForeColor and FilterBarBackColor properties to define colors used to paint
the description of the control's filter. Use the FilterBarFont property to specify the filter bar's
font. Use the FilterBarCaption property to specify the caption of the control's filter bar.

property Grid.FilterBarHeight as Long
Specifies the height of the control's filter bar description.

Type Description

Long A long expression that indicates the height of the filter bar
status.

The filter bar status defines the control's filter description. If the FilterBarHeight property is
less than 0 the control automatically updates the height of the filter's description to fit in the
control's client area. If the FilterBarHeight property is zero the filter's description is hidden.
If the FilterBarHeight property is grater than zero it defines the height in pixels of the filter's
description. Use the ClearFilter method to clear the control's filter. Use the FilterBarCaption
property to define the control's filter bar caption. Use the FilterBarFont property to specify
the font for the control's filter bar. Use the ShowFilter method to show programmatically the
column's drop down filter window.

property Grid.FilterBarPrompt as String
Specifies the caption to be displayed when the filter pattern is missing.

Type Description

String

A string expression that indicates the HTML caption being
displayed in the filter bar, when filter prompt pattern is
missing. The FilterBarPromptPattern property specifies
the pattern to filter the list using the filter prompt feature.

By default, the FilterBarPrompt property is "<i><fgcolor=808080>Start Filter...</fgcolor>
</i>". The FilterBarPromptPattern property specifies the pattern to filter the list using the
filter prompt feature. Changing the FilterBarPrompt property won't change the current filter.
The FilterBarPromptColumns property specifies the list of columns to be used when filtering
by prompt. The DisplayFilterButton property specifies whether the column's header displays
a filter button. The VisibleItemCount property retrieves the number of visible items in the list.
The control fires the FilterChanging event just before applying the filter, and FilterChange
once the list gets filtered. Use the FilterBarCaption property to change the caption in the
filter bar once a new filter is applied. The FilterBarFont property specifies the font to be
used in the filter bar. The FilterBarBackColor property specifies the background color or the
visual aspect of the control's filter bar. The FilterBarForeColor property specifies the
foreground color or the control's filter bar.

The FilterBarPrompt property supports HTML format as described here:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the

about:blank

anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part

of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the

color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

The FilterBarPrompt property has effect only if:

FilterBarPromptVisible property is True
FilterBarPromptPattern property is Empty.

property Grid.FilterBarPromptColumns as Variant
Specifies the list of columns to be used when filtering using the prompt.

Type Description

Variant

A long expression that indicates the index of the column to
apply the filter prompt, a string expression that specifies
the list of columns (indexes) separated by comma to apply
the filter prompt, or a safe array of long expression that
specifies the indexes of the columns to apply the filter. The
filter prompt feature allows you to filter the items as you
type while the filter bar is visible on the bottom part of the
list area.

By default, the FilterBarPromptColumns property is -1. If the FilterBarPromptColumns
property is -1, the filter prompt is applied for all columns, visible or hidden. Use the
FilterBarPromptColumns property to specify the list of columns to apply the filter prompt
pattern. The FilterBarPromptVisible property specifies whether the filter prompt is visible or
hidden. Use the FilterBarPrompt property to specify the HTML caption being displayed in
the filter bar when the filter pattern is missing. The FilterBarPromptPattern property
specifies the pattern to filter the list. Changing the FilterBarPromptPattern property does
not require calling the ApplyFilter method to apply the new filter, only if filtering is required
right a way. The FilterBarPromptType property specifies the type of filtering when the user
edits the prompt in the filter bar.

property Grid.FilterBarPromptPattern as String
Specifies the pattern for the filter prompt.

Type Description

String A string expression that specifies the pattern to filter the
list.

By default, the FilterBarPromptPattern property is empty. If the FilterBarPromptPattern
property is empty, the filter bar displays the FilterBarPrompt property, if the
FilterBarPromptVisible property is True. The FilterBarPromptPattern property indicates the
patter to filter the list. The pattern may include wild characters if the FilterBarPromptType
property is exFilterPromptPattern. The FilterBarPromptColumns specifies the list of columns
to be used when filtering. Changing the FilterBarPromptPattern property does not require
calling the ApplyFilter method to apply the new filter, only if filtering is required right a way.

property Grid.FilterBarPromptType as FilterPromptEnum
Specifies the type of the filter prompt.

Type Description

FilterPromptEnum A FilterPromptEnum expression that specifies how the
items are being filtered.

By default, the FilterBarPromptType property is exFilterPromptContainsAll. The filter prompt
feature allows you to filter the items as you type while the filter bar is visible on the bottom
part of the list area. The Filter prompt feature allows at runtime filtering data on hidden
columns too. Use the FilterBarPromptVisible property to show the filter prompt. Use the
FilterBarPrompt property to specify the HTML caption being displayed in the filter bar when
the filter pattern is missing. The FilterBarPromptPattern property specifies the pattern to
filter the list. Changing the FilterBarPromptPattern property does not require calling the
ApplyFilter method to apply the new filter, only if filtering is required right a way. The
FilterBarPromptColumns property specifies the list of columns to be used when filtering by
prompt. The DisplayFilterButton property specifies whether the column's header displays a
filter button. The VisibleItemCount property retrieves the number of visible items in the list.
The control fires the FilterChanging event just before applying the filter, and FilterChange
once the list gets filtered. Use the FilterBarCaption property to change the caption in the
filter bar once a new filter is applied.

The FilterBarPromptType property supports the following values:

exFilterPromptContainsAll, The list includes the items that contains all specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptContainsAny, The list includes the items that contains any of specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptStartWith, The list includes the items that starts with any specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptEndWith, The list includes the items that ends with any specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptPattern, The filter indicates a pattern that may include wild characters
to be used to filter the items in the list. The FilterBarPromptPattern property may

include wild characters as follows:
'?' for any single character
'*' for zero or more occurrences of any character
'#' for any digit character
' ' space delimits the patterns inside the filter

property Grid.FilterBarPromptVisible as FilterBarVisibleEnum
Shows or hides the control's filter bar including filter prompt.

Type Description

FilterBarVisibleEnum A FilterBarVisibleEnum expression that defines the way
the control's filter bar is shown.

By default, The FilterBarPromptVisible property is exFilterBarHidden. The filter prompt
feature allows you to filter the items as you type while the filter bar is visible on the bottom
part of the list area. The Filter prompt feature allows at runtime filtering data on hidden
columns too. Use the FilterBarPromptVisible property to show the filter prompt. Use the
FilterBarPrompt property to specify the HTML caption being displayed in the filter bar when
the filter pattern is missing. The FilterBarPromptPattern property specifies the pattern to
filter the list. Changing the FilterBarPromptPattern property does not require calling the
ApplyFilter method to apply the new filter, only if filtering is required right a way. The
FilterBarCaption property defines the caption to be displayed on the control's filter bar. The
FilterBarPromptType property specifies the type of filtering when the user edits the prompt
in the filter bar. The FilterBarPromptColumns property specifies the list of columns to be
used when filtering by prompt. The DisplayFilterButton property specifies whether the
column's header displays a filter button. The VisibleItemCount property retrieves the
number of visible items in the list. The control fires the FilterChanging event just before
applying the filter, and FilterChange once the list gets filtered.

The following screen show shows the filter prompt:

The following screen show shows the list once the user types "london":

property Grid.FilterCriteria as String
Retrieves or sets the filter criteria.

Type Description
String A string expression that indicates the filter criteria.

By default, the FilterCriteria property is empty. Use the FilterCriteria property to specify
whether you need to filter items using OR, NOT operators between columns. If the
FilterCriteria property is empty, or not valid, the filter uses the AND operator between
columns. Use the FilterCriteria property to specify how the items are filtered.

The FilterCriteria property supports the following operators:

not operator (unary operator)
and operator (binary operator)
or operator (binary operator)

Use the (and) parenthesis to define the order execution in the clause, if case. The
operators are grided in their priority order. The % character precedes the index of the
column (zero based), and indicates the column. For instance, %0 or %1 means that OR
operator is used when both columns are used, and that means that you can filter for values
that are in a column or for values that are in the second columns. If a column is not grided in
the FilterCriteria property, and the user filters values by that column, the AND operator is
used by default. For instance, let's say that we have three columns, and FilterCriteria
property is "%0 or %1". If the user filter for all columns, the filter clause is equivalent with (
%0 or %1) and %2, and it means all that match the third column, and is in the first or the
second column.

Use the Filter and FilterType properties to define a filter for a column. The ApplyFilter
method should be called to update the control's content after changing the Filter or
FilterType property, in code! Use the DisplayFilterButton property to display a drop down
button to filter by a column. Use the CustomFilter property to define you custom filters.

property Grid.FilterInclude as FilterIncludeEnum
Specifies the items being included after the user applies the filter.

Type Description

FilterIncludeEnum A FilterIncludeEnum expression that indicates the items
being included when the filter is applied.

By default, the FilterInclude property is exItemsWithoutChilds, which specifies that only
items (and parent-items) that match the filter are being displayed. Use the FilterInclude
property to specify whether the child- items should be displayed when the user applies the
filter. Use the Filter property and FilterType property to specify the column's filter. Use the
ApplyFilter to apply the filter at runtime. Use the ClearFilter method to clear the control's
filter. Use the FilterCriteria property to filter items using the AND, OR and NOT operators.
Use the FilterBarPromptVisible property to show the control's filter-prompt, that allows you
to filter items as you type.

The following table shows items to display, when filter for "A" items, using different values
for FilterInclude property:

no filter exItemsWithoutChilds
0

exItemsWithChilds
1

exRootsWithoutChilds
2

exRootsWithChilds
3

property Grid.FocusColumnIndex as Long
Specifies the index of focused column.

Type Description

Long A long expression that indicates the index of the focused
column.

Use the FocusColumnIndex property to determine the focused column. Use the FocusItem
property to determine the focused item. Use the TreeColumnIndex property to set the
column that displays the hierarchy. Use the SearchColumnIndex property to set the index of
the searching column. The SelectColumnInner property indicates the index of an inner cell
that has the focus.

The control fires the FocusChanged event when the user changes:

the focused item
the focused column or an inner cell gets the focus.

property Grid.Font as IFontDisp
Retrieves or sets the control's font.

Type Description
IFontDisp A Font object that defines the control's font.

Use the Font object to change the control's font. Use the CellBold, CellItalic, CellUnderline,
and CellStrikeOut properties to apply font attributes to cells. Use the ItemBold, ItemItalic,
ItemUnderline, and ItemStrikeOut properties to apply font attributes to items. Use the
HeaderBold, HeaderItalic, HeaderUnderline and HeaderStrikeOut properties to apply font
attributes to the column header. Use the FilterBarFont property to assign a different font for
the control's filter bar. Use the Refresh method to refresh the control. Use the BeginUpdate
and EndUpdate method to maintain performance while adding new columns or items.

The following VB sample assigns by code a new font to the control:

With Grid1
 With .Font
 .Name = "Tahoma"
 End With
 .Refresh
End With

The following C++ sample assigns by code a new font to the control:

COleFont font = m_grid.GetFont();
font.SetName("Tahoma");
m_grid.Refresh();

the C++ sample requires definition of COleFont class (#include "Font.h")

The following VB.NET sample assigns by code a new font to the control:

With AxGrid1
 Dim font As System.Drawing.Font = New System.Drawing.Font("Tahoma", 10,
FontStyle.Regular, GraphicsUnit.Point)
 .Font = font
 .CtlRefresh()
End With

The following C# sample assigns by code a new font to the control:

System.Drawing.Font font = new System.Drawing.Font("Tahoma", 10, FontStyle.Regular);
axGrid1.Font = font;
axGrid1.CtlRefresh();

The following VFP sample assigns by code a new font to the control:

with thisform.Grid1.Object
 .Font.Name = "Tahoma"
 .Refresh()
endwith

The following Template sample assigns by code a new font to the control:

Font
{
 Name = "Tahoma"
}

property Grid.ForeColor as Color
Retrieves or sets a value that indicates the control's foreground color.

Type Description

Color A color expression that indicates the control's foreground
color.

Use the ForeColor property to set the control's foreground color. If the control contains
locked columns, (if the CountLockedColumns property is grater than 0, a locked column is
a column non scrollable), use the ForeColorLock property to specify the foreground color
for locked columns. Use the CellForeColor property to set the cell's foreground color. Use
the ItemForeColor property to specify the item's foreground color. The control highlights the
selected items only if the SelBackColor and BackColor properties have different values, and
the SelForeColor and ForeColor properties have different values. Use the
Def(exCellForeColor) property to change the foreground color for all cells in the column.
The SelForeColor property is applied only if it is different that the control's foreground
color.

The following VB sample sets the foreground color for the first column:

With Grid1.Columns(0)
 .Def(exCellForeColor) = RGB(255, 0, 0)
End With

The following C++ sample sets the foreground color for the first column:

#include "Column.h"
#include "Columns.h"
CColumns columns = m_grid.GetColumns();
CColumn column = columns.GetItem(COleVariant(long(0)));
column.SetDef(5, COleVariant((long)RGB(255,0,0)));

The following VB.NET sample sets the foreground color for the first column:

With AxGrid1.Columns(0)
 .Def(EXGRIDLib.DefColumnEnum.exCellForeColor) = ToUInt32(Color.FromArgb(255, 0,
0))
End With

where the ToUInt32 function converts a Color expression to OLE_COLOR expression:

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample sets the foreground color for the first column:

axGrid1.Columns[0].set_Def(EXGRIDLib.DefColumnEnum.exCellForeColor,
ToUInt32(Color.FromArgb(255, 0, 0)));

where the ToUInt32 function converts a Color expression to OLE_COLOR expression:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample sets the foreground color for the first column:

with thisform.Grid1.Columns(0)
 .Def(5) = RGB(255,0,0)
endwith

property Grid.ForeColorHeader as Color
Specifies the header's foreground color.

Type Description

Color A color expression that indicates the foreground color of
the control's header bar.

Use the BackColorHeader and ForeColorHeader properties to define colors used to paint
the control's header bar. Use the HeaderVisible property to show or hide the control's
header. Use the HeaderHeight property to specify the height of the control's header bar.
Use the LevelKey property to allow multiple levels header bar.

property Grid.ForeColorLock as Color
Retrieves or sets a value that indicates the control's foreground color for the locked area.

Type Description

Color A color expression that indicates the control's foreground
color for the locked area.

The control contains locked columns if the CountLockedColumn property is greater than
zero (0). A locked column is fixed to the left side of the control, and it cannot be scrolled.
If the CountLockedColumn property is greater than 0, the ForeColor property sets the
foreground color for the unlocked area. The unlocked area is the area that contains
scrollable columns. Use the Def(exCellForeColor) property to change the foreground color
for all cells in the column.

property Grid.ForeColorSortBar as Color
Retrieves or sets a value that indicates the sort bar's foreground color.

Type Description

Color A color expression that indicates the foreground color of
the control's sort bar.

Use the ForeColorSortBar property to specify the foreground color of the caption in the
control's sort bar. Use the SortBarVisible property to show the control's sort bar. Use the
SortBarCaption property to specify the caption of the sort bar, when the control's sort bar
contains no columns. Use the BackColorSortBar property to specify the background color
of the control's sort bar. Use the BackColorSortBarCaption property to specify the caption's
background color in the control's sort bar. Use the ForeColor property to specify the
control's foreground color. Use the ForeColorHeader property to specify the background
color of the control's header bar.

method Grid.FormatABC (Expression as String, [A as Variant], [B as
Variant], [C as Variant])
Formats the A,B,C values based on the giving expression and returns the result.

Type Description
Expression as String A String that defines the expression to be evaluated.

A as Variant A VARIANT expression that indicates the value of the A
keyword.

B as Variant A VARIANT expression that indicates the value of the B
keyword.

C as Variant A VARIANT expression that indicates the value of the C
keyword.

Return Description

Variant A VARIANT expression that indicates the result of the
evaluation the Grid.

The FormatABC method formats the A,B,C values based on the giving expression and
returns the result.

For instance:

"A + B + C", adds / concatenates the values of the A, B and C
"value MIN 0 MAX 99", limits the value between 0 and 99
"value format ``", formats the value with two decimals, according to the control's panel
setting
"date(`now`)" returns the current time as double

The FormatABC method supports the following keywords, constants, operators and
functions:

A or value keyword, indicates a variable A whose value is giving by the A parameter
B keyword, indicates a variable B whose value is giving by the B parameter
C keyword, indicates a variable C whose value is giving by the C parameter

This property/method supports predefined constants and operators/functions as described
here.

property Grid.FormatAnchor(New as Boolean) as String
Specifies the visual effect for anchor elements in HTML captions.

Type Description

New as Boolean A Boolean expression that indicates whether to specify the
anchors never clicked or anchors being clicked.

String A String expression that indicates the HTMLformat to
apply to anchor elements.

By default, the FormatAnchor(True) property is "<u><fgcolor=0000FF>#" that indicates
that the anchor elements (that were never clicked) are underlined and shown in light blue.
Also, the FormatAnchor(False) property is "<u><fgcolor=000080>#" that indicates that the
anchor elements are underlined and shown in dark blue. The visual effect is applied to the
anchor elements, if the FormatAnchor property is not empty. For instance, if you want to do
not show with a new effect the clicked anchor elements, you can use the
FormatAnchor(False) = "", that means that the clicked or not-clicked anchors are shown
with the same effect that's specified by FormatAnchor(True). An anchor is a piece of text
or some other object (for example an image) which marks the beginning and/or the end of a
hypertext link. The <a> element is used to mark that piece of text (or inline image), and to
give its hypertextual relationship to other documents. The control fires the AnchorClick event
to notify that the user clicks an anchor element. This event is fired only if prior clicking the
control it shows the hand cursor. The AnchorClick event carries the identifier of the anchor,
as well as application options that you can specify in the anchor element. The hand cursor
is shown when the user hovers the mouse on the anchor elements.

method Grid.FreezeEvents (Freeze as Boolean)
Prevents the control to fire any event.

Type Description

Freeze as Boolean A Boolean expression that specifies whether the control'
events are froze or unfroze

The FreezeEvents(True) method freezes the control's events until the FreezeEvents(False)
method is called. You can use the FreezeEvents method to improve performance of the
control while loading data into it.

Purpose:

FreezeEvents(True) is used to temporarily stop (or "freeze") a control from responding
to any events (such as clicks, changes in value, etc.).
FreezeEvents(False) re-enables (or "unfreezes") event handling for the control,
allowing it to respond to events again.

Use Case:

Imagine you're making multiple updates to a control, such as a list, a form, or a UI
component, and you don't want the control to react to each individual change (e.g.,
trigger event handlers after each modification). You would use FreezeEvents(True) to
pause event handling while making the updates, then use FreezeEvents(False) once all
updates are complete.

Example Scenario:

Lets say you have a list where changing the selection triggers an event. You want to
programmatically add several items to the list, but you don't want the selection-
changed event to fire every time you add a new item:

control.FreezeEvents(True) // Stop event processing
// Perform multiple changes to the control
control.AddItem("Item 1")
control.AddItem("Item 2")
control.AddItem("Item 3")
control.FreezeEvents(False) // Resume event processing

Without freezing the events, the control might trigger its event handler each time an
item is added. Freezing prevents that, ensuring that the control remains "quiet" during
updates.

Benefits:

Improved performance: Prevents unnecessary event handling during batch updates.
Avoids unintended side effects: Stops event handlers from running when you dont want
them to (e.g., while setting up or modifying the control).

property Grid.FullRowSelect as CellSelectEnum
Enables full-row selection in the control.

Type Description

CellSelectEnum A CellSelectEnum expression that indicates whether the
entire row is selected.

Use the FullRowSelect property to determine when the item or cell is selected. If the
FullRowSelect property is exColumnSel, the SelectColumnIndex property determines the
selected column. By default, the FullRowSelect property is exItemSel, and so the entire
item is selected. If the FullRowSelect property is exRectSel property, the user can selects a
range of cells by dragging. Use the Selected property to determine whether a cell is
selected, if the FullRowSelect property is exRectSel. Use the SingleSel property to allow
multiple items/cells in the selection. For instance, the FullRowSelect = True (boolean value
) is the same as FullRowSelect = exItemSel, and FullRowSelect = False is the same as
FullRowSelect = exColumnSel.

The following VB sample copies the selected cells to the clipboard, if the FullRowSelect
property is exRectSel:

Private Sub Grid1_SelectionChanged()
 Dim strData As String
 With Grid1
 Dim i As Long, h As HITEM
 For i = 0 To .Items.SelectCount - 1
 h = .Items.SelectedItem(i)
 Dim c As Column
 For Each c In .Columns
 If (c.Selected) Then
 strData = strData + .Items.CellCaption(h, c.Index) + vbTab
 End If
 Next
 strData = strData + vbCrLf
 Next
 End With
 Clipboard.Clear
 Clipboard.SetText strData
End Sub

The following C++ sample copies the selected cells to the clipboard, if the FullRowSelect
property is exRectSel:

#include "Column.h"
#include "Columns.h"
#include "Items.h"
void OnSelectionChangedGrid1()
{
 CString strData;
 CColumns cols = m_grid.GetColumns();
 CItems items = m_grid.GetItems();
 for (long i = 0; i < items.GetSelectCount(); i++)
 {
 COleVariant vtItem(items.GetSelectedItem(i));
 for (long j = 0; j < cols.GetCount(); j++)
 {
 COleVariant vtColumn(j);
 if (cols.GetItem(vtColumn).GetSelected())
 strData += items.GetCellCaption(vtItem, vtColumn) + "\t";
 }
 strData += "\r\n";
 }
 if (OpenClipboard())
 {
 EmptyClipboard();
 HGLOBAL hGlobal = GlobalAlloc(GMEM_MOVEABLE | GMEM_DDESHARE,
strData.GetLength());
 CopyMemory(GlobalLock(hGlobal), strData.operator LPCTSTR(),
strData.GetLength());
 GlobalUnlock(hGlobal);
 SetClipboardData(CF_TEXT, hGlobal);
 CloseClipboard();
 }

}

The following VB.NET sample copies the selected cells to the clipboard, if the
FullRowSelect property is exRectSel:

Private Sub AxGrid1_SelectionChanged(ByVal sender As Object, ByVal e As
System.EventArgs) Handles AxGrid1.SelectionChanged
 Dim strData As String = ""
 With AxGrid1
 Dim i As Integer, h As Integer, j As Integer
 For i = 0 To .Items.SelectCount - 1
 h = .Items.SelectedItem(i)
 For j = 0 To .Columns.Count - 1
 Dim c As EXGRIDLib.Column = .Columns(j)
 If (c.Selected) Then
 strData = strData + .Items.CellCaption(h, c.Index) + vbTab
 End If
 Next
 strData = strData + vbCrLf
 Next
 End With
 Clipboard.Clear()
 Clipboard.SetText(strData)
End Sub

The following C# sample copies the selected cells to the clipboard, if the FullRowSelect
property is exRectSel:

private void axGrid1_SelectionChanged(object sender, System.EventArgs e)
{
 string strData = "";
 for (int i = 0; i < axGrid1.Items.SelectCount; i++)
 {
 for (int j = 0; j < axGrid1.Columns.Count; j++)
 if (axGrid1.Columns[j].Selected)
 {
 string cellData =
axGrid1.Items.get_CellCaption(axGrid1.Items.get_SelectedItem(i), j);

 strData += cellData + "\t";
 }
 strData += "\r\n";
 }
 Clipboard.Clear();
 Clipboard.SetText(strData);
}

The following VFP sample copies the selected cells to the clipboard, if the FullRowSelect
property is exRectSel (SelectionChanged event):

*** ActiveX Control Event ***

with thisform.Grid1.Items
 local strData, i, j, cols
 strData = ""
 cols = thisform.Grid1.Columns
 for i = 0 to .SelectCount - 1
 .DefaultItem = .SelectedItem(i)
 for j = 0 to cols.Count - 1
 if (cols.Item(j).Selected)
 strData = strData + .CellCaption(0,j) + chr(9)
 endif
 next
 strData = strData + chr(13) + chr(10)
 next
 _CLIPTEXT = strData
endwith

method Grid.GetItems (Options as Variant)
Gets the collection of items into a safe array,

Type Description

Options as Variant

Specifies a long expression as follows:

if 0, the result is a two-dimensional array with cell's
values. The list includes the collapsed items, and the
items are included as they are displayed (sorted,
filtered). This option exports the values of cells. This
option exports the values of the cells (CellValue
property).
if 1, the result the one-dimensional array of handles of
items in the control as they are displayed (sorted,
filtered). The list does not include the collapsed
items. For instance, the first element in the array
indicates the handle of the first item in the control,
which can be different that FirstVisibleItem result,
even if the control is vertically scrolled. This option
exports the handles of the items. For instance, you
can use the ItemToIndex property to get the index of
the item based on its handle.
else if other, and the number of columns is 1, the
result is a one-dimensional array that includes the
items and its child items as they are displayed (
sorted, filtered). In this case, the array may contains
other arrays that specifies the child items. The list
includes the collapsed items, and the items are
included as they are displayed (sorted, filtered). This
option exports the values of the cells (CellValue
property)

If missing, the Options parameter is 0. If the control
displays no items, the result is an empty object
(VT_EMPTY).

Return Description

Variant

A safe array that holds the items in the control. If the
control has a single column, the GetItems returns a single
dimension array (object[]), else The safe array being
returned has two dimensions (object[,]). The first

dimension holds the collection of columns, and the second
holds the cells.

The GetItems method to get a safe array that holds the items in the control. The GetItems
method gets the items as they are displayed, sorted and filtered. Also, the GetItems
method collect the child items as well, no matter if the parent item is collapsed. Use the
PutItems method to load an array to the control. The method returns nothing if the control
has no columns or items. Use the Items property to access the items collection. You can
use the GetItems(1) method to get the list of handles for the items as they are displayed,
sorted and filtered. The GetItems method returns an empty expression (VT_EMPTY), if
there is no items in the result.

/NET Assembly:

The following C# sample converts the returned value to a object[] when the control contains
a single column:

 object[] Items = (object[])exgrid1.GetItems()

or when the control contains multiple columns, the syntax is as follows:

 object[,] Items = (object[,])exgrid1.GetItems()

The following VB.NET sample converts the returned value to a Object() when the control
contains a single column:

 Dim Items As Object() = Exgrid1.GetItems()

or when the control contains multiple columns, the syntax is as follows:

 Dim Items As Object(,) = Exgrid1.GetItems()

/COM version:

The following VB sample gets the items from a control and put them to the second one:

With Grid2
 .BeginUpdate
 .Columns.Clear
 Dim c As EXGRIDLibCtl.Column
 For Each c In Grid1.Columns
 .Columns.Add c.Caption
 Next
 .PutItems Grid1.GetItems

 .EndUpdate
End With

The following C++ sample gets the items from a control an put to the second one:

#include "Items.h"
#include "Columns.h"
#include "Column.h"
m_grid2.BeginUpdate();
 CColumns columns = m_grid.GetColumns(), columns2 = m_grid2.GetColumns();
 for (long i = 0; i < columns.GetCount(); i++)
 columns2.Add(columns.GetItem(COleVariant(i)).GetCaption());
 COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
 COleVariant vtItems = m_grid.GetItems(vtMissing);
 m_grid2.PutItems(&vtItems, vtMissing);
m_grid2.EndUpdate();

The following C# sample gets the items from a control and put them to a second one:

axGrid2.BeginUpdate();
for (int i = 0; i < axGrid1.Columns.Count; i++)
 axGrid2.Columns.Add(axGrid1.Columns[i].Caption);
object vtItems = axGrid1.GetItems("");
axGrid2.PutItems(ref vtItems);
axGrid2.EndUpdate();

The following VB.NET sample gets the items from a control and put them to a second one:

With AxGrid2
 .BeginUpdate()
 Dim j As Integer
 For j = 0 To AxGrid1.Columns.Count - 1
 .Columns.Add(AxGrid1.Columns(j).Caption)
 Next
 Dim vtItems As Object
 vtItems = AxGrid1.GetItems("")
 .PutItems(vtItems)
 .EndUpdate()
End With

The following VFP sample gets the items from a control and put them to a second one:

local i
with thisform.Grid2
 .BeginUpdate()
 for i = 0 to thisform.Grid1.Columns.Count - 1
 .Columns.Add(thisform.Grid1.Columns(i).Caption)
 next
 local array vtItems[1]
 vtItems = thisform.Grid1.GetItems("")
 .PutItems(@vtItems)
 .EndUpdate()
endwith

property Grid.GridLineColor as Color
Specifies the grid line color.

Type Description
Color A color expression that indicates the color of the grid lines.

Use the GridLineColor property to specify the color for grid lines. Use the DrawGridLines
property to show the grid lines. The GridLineStyle property to specify the style for
horizontal or/and vertical gridlines in the control. Use the LinesAtRoot property specifies
whether the control links the root items of the control. Use the HasLines property to specify
whether the control draws the link between child items to their corresponding parent item.

property Grid.GridLineStyle as GridLinesStyleEnum
Specifies the style for gridlines in the list part of the control.

Type Description

GridLinesStyleEnum A GridLinesStyleEnum expression that specifies the style
to show the control's horizontal or vertical lines.

By default, the GridLineStyle property is exGridLinesDot. The GridLineStyle property has
effect only if the DrawGridLines property is not zero. The GridLineStyle property can be
used to specify the style for horizontal or/and vertical grid lines. Use the GridLineColor
property to specify the color for grid lines. Use the LinesAtRoot property specifies whether
the control links the root items of the control. Use the HasLines property to specify whether
the control draws the link between child items to their corresponding parent item.

The following VB sample shows dash style for horizontal gridlines, and solid style for
vertical grid lines:

GridLineStyle = GridLinesStyleEnum.exGridLinesHDash Or
GridLinesStyleEnum.exGridLinesVSolid

The following VB/NET sample shows dash style for horizontal gridlines, and solid style for
vertical grid lines:

GridLineStyle = exontrol.EXGRIDLib.GridLinesStyleEnum.exGridLinesHDash Or
exontrol.EXGRIDLib.GridLinesStyleEnum.exGridLinesVSolid

The following C# sample shows dash style for horizontal gridlines, and solid style for
vertical grid lines:

GridLineStyle = exontrol.EXGRIDLib.GridLinesStyleEnum.exGridLinesHDash |
exontrol.EXGRIDLib.GridLinesStyleEnum.exGridLinesVSolid;

The following Delphi sample shows dash style for horizontal gridlines, and solid style for
vertical grid lines:

GridLineStyle := Integer(EXGRIDLib.GridLinesStyleEnum.exGridLinesHDash) Or
Integer(EXGRIDLib.GridLinesStyleEnum.exGridLinesVSolid);

The following VFP sample shows dash style for horizontal gridlines, and solid style for
vertical grid lines:

GridLineStyle = 36

method Grid.Group ()
Forces the control to do a regrouping of the columns.

Type Description

The Group method forces the control to re-group the items. The AllowGroupBy property
specifies whether the control supports Group-By feature. The Group method has no effect
if the AllowGroupBy property is False. The Ungroup method un-groups the items in the
control's list. During execution any of these methods, the IsGrouping property returns True.
You can call the SortOrder property to sort and group by specified column. Use the
SortType property to determine the way how the column is sorted. The AddGroupItem
event is fired when a new grouping items is added to the control's list. You can use the
AddGroupItem event, to add headers or footers during grouping, customize the aggregate
formula to be displayed on different columns, while dropping a column to the sortbar. The
Column.AllowGroupBy property may be used to prevent grouping a specific column. The
AllowSort property indicates whether the user can sort a column by clicking the column's
header.

method Grid.GroupUndoRedoActions (Count as Long)
Groups the next to current Undo/Redo Actions in a single block.

Type Description

Count as Long
A Long expression that specifies the number of entries
being grouped in a single block of actions, in the
Undo/Redo queue.

A block may hold multiple Undo/Redo actions. Use the GroupUndoRedoActions method to
group two or more entries in the Undo/Redo queue in a single block, so when a next
Undo/Redo operation is performed, multiple actions may occur. For instance, moving
several bars in the same time (multiple bars selection) is already recorded as a single
block. Use the UndoRedoQueueLength property to specify the number of entries that
Undo/Redo queue may store.

A block starts with StartBlock and ends with EndBlock when listed by
UndoListAction/RedoListAction property as in the following sample:

StartBlock
RemoveItem;0
RemoveItem;1
RemoveItem;1
RemoveItem;1
EndBlock

property Grid.HasButtons as ExpandButtonEnum
Adds a button to the left side of each parent item. The user can click the button to expand
or collapse the child items as an alternative to double-clicking the parent item.

Type Description

ExpandButtonEnum
An ExpandButtonEnum expression that indicates whether
the control displays a + button to the left of each parent
item.

The HasButtons property has effect only if the data is displayed as a grid. Use the
InsertItem property to let the control displays your data as a grid. Use the TreeColumnIndex
property to select the column where the hierarchy is displayed. Use the LinesAtRoot
property to let the control displays a line that links the root items of the control. Use the
CellVAlignment property to specify where the +/- AND the cell's caption is displayed in the
item's client area. For instance, you can't have the +/- sign aligned to the top of the cell, and
its caption aligned to the bottom. The +/- signs are always centered to the cell's caption,
only the cell's caption can be aligned to the top or to the bottom of the cell's client area. The
HasButtonsCustom property specifies the index of icons being used for +/- signs on parent
items, when HasButtons property is exCustom. In CardView mode, the HasButtons
property specifies whether the control displays an expand/collapse button in the title of the
card. The ImageSize property defines the size (width/height) of the expand/collapse glyphs.

The following VB sample changes the +/- button appearance:

With Grid1
 .HasButtons = ExpandButtonEnum.exWPlus
End With

The following C++ sample changes the +/- button appearance:

m_grid.SetHasButtons(3 /*exWPlus*/);

The following VB.NET sample changes the +/- button appearance:

With AxGrid1
 .HasButtons = EXGRIDLib.ExpandButtonEnum.exWPlus
End With

The following C# sample changes the +/- button appearance:

axGrid1.HasButtons = EXGRIDLib.ExpandButtonEnum.exWPlus;

The following VFP sample changes the +/- button appearance:

with thisform.Grid1
 .HasButtons = 3 && exWPlus
endwith

property Grid.HasButtonsCustom(Expanded as Boolean) as Long
Specifies the index of icons for +/- signs when the HasButtons property is exCustom.

Type Description

Expanded as Boolean A boolean expression that indicates the sign being
changed.

Long A long expression that indicates the icon being used for +/-
signs on the parent items.

Use the HasButtonsCustom property to assign custom icons to the +/- signs on the parent
items. The HasButtonsCustom property has effect only if the HasButtons property is
exCustom. Use the Images, ReplaceIcon methods to add new icons to the control. The
ImageSize property defines the size (width/height) of the expand/collapse glyphs.

The following VB sample assigns different icons for +/- buttons:

With Grid1
 .BeginUpdate
 .Images
"gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx2PyGRyWTymVy2XzGZzWbzmdz2f0Gh0WjwEWH0r08ekEikgAkso184iGkicPjcU2+zjW4jTnZ++jbv4Tvjbu4fF48adAv5fI4XO4ka4fRjO+4G73UZ3na7IAgI="

 .LinesAtRoot = exLinesAtRoot
 .HeaderVisible = False
 .HasButtons = exCustom
 .HasButtonsCustom(False) = 1
 .HasButtonsCustom(True) = 2
 .FullRowSelect = False
 .Columns.Add "Column 1"
 With .Items
 Dim h As HITEM
 h = .AddItem("Item 1")
 .InsertItem .InsertItem(h, , "SubItem 1.1"), , "SubItem 1"
 .InsertItem h, , "SubItem 2"
 End With
 .EndUpdate
End With

The following C++ sample specifies different (as in the screen shot) +/- signs for the
control:

#include "Items.h"
#include "Columns.h"
#include "Column.h"
m_grid.BeginUpdate();
m_grid.Images(COleVariant(
"gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx2PyGRyWTymVy2XzGZzWbzmdz2f0Gh0WjwEWH0r08ekEikgAkso184iGkicPjcU2+zjW4jTnZ++jbv4Tvjbu4fF48adAv5fI4XO4ka4fRjO+4G73UZ3na7IAgI="
));
m_grid.SetLinesAtRoot(-1);
m_grid.SetHeaderVisible(FALSE);
m_grid.SetHasButtons(4 /*exCustom*/);
m_grid.SetHasButtonsCustom(FALSE, 1);
m_grid.SetHasButtonsCustom(TRUE, 2);
m_grid.GetColumns().Add("Column 1");
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
CItems items = m_grid.GetItems();
long h = items.AddItem(COleVariant("Item 1"));
items.InsertItem(h, vtMissing, COleVariant("SubItem 1"));
items.InsertItem(h, vtMissing, COleVariant("SubItem 2"));
m_grid.EndUpdate();

The following VB.NET sample specifies different (as in the screen shot) +/- signs for the
control:

With AxGrid1
 .BeginUpdate()

.Images("gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx2PyGRyWTymVy2XzGZzWbzmdz2f0Gh0WjwEWH0r08ekEikgAkso184iGkicPjcU2+zjW4jTnZ++jbv4Tvjbu4fF48adAv5fI4XO4ka4fRjO+4G73UZ3na7IAgI=")

 .LinesAtRoot = EXGRIDLib.LinesAtRootEnum.exLinesAtRoot
 .HeaderVisible = False
 .HasButtons = EXGRIDLib.ExpandButtonEnum.exCustom
 .set_HasButtonsCustom(False, 1)
 .set_HasButtonsCustom(True, 2)
 .Columns.Add("Column 1")
 With .Items

 Dim h As Long
 h = .AddItem("Item 1")
 .InsertItem(h, , "SubItem 1")
 .InsertItem(h, , "SubItem 2")
 End With
 .EndUpdate()
End With

The following C# sample specifies different (as in the screen shot) +/- signs for the
control:

axGrid1.BeginUpdate();
axGrid1.Images("gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx2PyGRyWTymVy2XzGZzWbzmdz2f0Gh0WjwEWH0r08ekEikgAkso184iGkicPjcU2+zjW4jTnZ++jbv4Tvjbu4fF48adAv5fI4XO4ka4fRjO+4G73UZ3na7IAgI=");

axGrid1.LinesAtRoot = EXGRIDLib.LinesAtRootEnum.exLinesAtRoot;
axGrid1.HeaderVisible = false;
axGrid1.HasButtons = EXGRIDLib.ExpandButtonEnum.exCustom;
axGrid1.set_HasButtonsCustom(false, 1);
axGrid1.set_HasButtonsCustom(true, 2);
axGrid1.Columns.Add("Column 1");
int h = axGrid1.Items.AddItem("Item 1");
axGrid1.Items.InsertItem(h, "", "SubItem 1");
axGrid1.Items.InsertItem(h, "", "SubItem 2");
axGrid1.EndUpdate();

The following VFP sample specifies different (as in the screen shot) +/- signs for the
control:

with thisform.Grid1
 .BeginUpdate()
 local s
 s =
"gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls"

 s = s +
"1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx2PyGRyWTymVy2XzGZzWbzmdz2f0Gh0WjwEWH0r08ekEikgAkso184iGkicPjcU2+zjW4jTnZ++jbv4Tvjbu4fF48adAv5fI4XO4ka4fRjO+4G73UZ3na7IAgI="

 .Images(s)

 .LinesAtRoot = -1
 .HeaderVisible = .f.
 .HasButtons = 4 &&exCustom
 local sT, sCR
 sCR = chr(13) + chr(10)
 sT = "HasButtonsCustom(True) = 2"+ sCR
 sT = sT + "HasButtonsCustom(False) = 1"+ sCR
 .Template = sT
 .Columns.Add("Column 1")
 With .Items
 local h
 h = .AddItem("Item 1")
 .InsertItem(h, , "SubItem 1")
 .InsertItem(h, , "SubItem 2")
 EndWith
 .EndUpdate()
endwith

property Grid.HasLines as HierarchyLineEnum
Enhances the graphic representation of a grid control's hierarchy by drawing lines that link
child items to their corresponding parent item.

Type Description

HierarchyLineEnum An HierarchyLinesEnum expression that indicates whether
the control displays the hierarchy lines.

Use the HasLines property to hide the hierarchy lines. Use the LinesAtRoot property to
allow control displays a line that links that root items of the control. Use the InsertItem
method to insert new items to the control. Use HasButtons property to hide the buttons
displayed at the left of each parent item. Use the DrawGridLines property to display grid
lines. The GridLineStyle property to specify the style for horizontal or/and vertical gridlines
in the control. Use the InsertControlItem property to insert an ActiveX item.

property Grid.HeaderAppearance as AppearanceEnum
Retrieves or sets a value that indicates the header's appearance.

Type Description

AppearanceEnum A boolean expression that specifies the appearance of the
columns header.

Use the HeaderAppearance property to define the appearance of the columns header bar.
The user can't resize the columns at runtime, if the HeaderAppearance property is None2.
Use the ColumnsAllowSizing property to allow resizing the columns, when the control's
header bar is not visible. Use the Appearance property to define the control's appearance.
Use the HeaderVisible property to hide the control's header bar.

property Grid.HeaderEnabled as Boolean
Enables or disables the control's header.

Type Description

Boolean A boolean expression that specifies whether the control's
header is enabled or disabled.

By default, the HeaderEnabled property is True. The HeaderEnabled property enables or
disables the control's header (including the control's sort/groupby-bar). If the header is
disabled, the user can't resize, sort or drag and drop any column. Also, if the header is
disabled, the control's sort/groupby-bar is disabled as well. The HeaderVisible property
shows or hides the control's header. The SortBarVisible property shows or hides the
control's sort/groupby-bar.

property Grid.HeaderHeight as Long
Retrieves or sets a value indicating the control's header height.

Type Description

Long A long expression that indicates the height of the control's
header bar.

By default, the HeaderHeight property is 18 pixels. Use the HeaderHeight property to
change the height of the control's header bar. Use the HeaderVisible property to hide the
control's header bar. Use the LevelKey property to display the control's header bar using
multiple levels. Use the FormatLevel property to display multiple levels in the column's
header. If the control displays the header bar using multiple levels the HeaderHeight
property gets the height in pixels of a single level in the header bar. The control's header
displays multiple levels if there are two or more neighbor columns with the same non empty
level key. Use the HTMLCaption property to display multiple lines in the column's caption.
Use the Add method to add new columns to the control. If the HeaderSingleLine property is
False, the HeaderHeight property specifies the maximum height of the control's header
when the user resizes the columns.

The following VB sample displays a header bar using multiple lines:

With Grid1
 .BeginUpdate
 .HeaderHeight = 32
 With .Columns.Add("Column 1")
 .HTMLCaption = "Line1
Line2"
 End With
 With .Columns.Add("Column 2")
 .HTMLCaption = "Line1
Line2"
 End With
 .EndUpdate
End With

The following C++ sample displays a header bar using multiple lines:

#include "Columns.h"
#include "Column.h"
m_grid.BeginUpdate();
m_grid.SetHeaderHeight(32);

m_grid.SetHeaderVisible(TRUE);
CColumn column1(V_DISPATCH(&m_grid.GetColumns().Add("Column 1")));
 column1.SetHTMLCaption("Line1
Line2");
CColumn column2(V_DISPATCH(&m_grid.GetColumns().Add("Column 2")));
 column2.SetHTMLCaption("Line1
Line2");
m_grid.EndUpdate();

The following VB.NET sample displays a header bar using multiple lines:

With AxGrid1
 .BeginUpdate()
 .HeaderVisible = True
 .HeaderHeight = 32
 With .Columns.Add("Column 1")
 .HTMLCaption = "Line1
Line2"
 End With
 With .Columns.Add("Column 2")
 .HTMLCaption = "Line1
Line2"
 End With
 .EndUpdate()
End With

The following C# sample displays a header bar using multiple lines:

axGrid1.BeginUpdate();
axGrid1.HeaderVisible = true;
axGrid1.HeaderHeight = 32;
EXGRIDLib.Column column1 = axGrid1.Columns.Add("Column 1") as EXGRIDLib.Column ;
column1.HTMLCaption = "Line1
Line2";
EXGRIDLib.Column column2 = axGrid1.Columns.Add("Column 2") as EXGRIDLib.Column;
column2.HTMLCaption = "Line1
Line2";
axGrid1.EndUpdate();

The following VFP sample displays a header bar using multiple lines:

with thisform.Grid1
 .BeginUpdate()
 .HeaderVisible = .t.
 .HeaderHeight = 32

 with .Columns.Add("Column 1")
 .HTMLCaption = "Line1
Line2"
 endwith
 with .Columns.Add("Column 2")
 .HTMLCaption = "Line1
Line2"
 endwith
 .EndUpdate()
endwith

property Grid.HeaderSingleLine as Boolean
Specifies whether the control resizes the columns header and wraps the captions in single
or multiple lines.

Type Description

Boolean A boolean expression that specifies whether the header
displays single or multiple lines.

By defauly, the HeaderSingleLine property is True. If the HeaderSingleLine property is False
the control breaks the column's caption as soon as the user resizes the column. In this
case the HeaderHeight property specifies the maximum height of the control's
header. The initial height is computed based on the control's Font property. The Caption
property specifies the caption of the column being displayed in the control's header. The
HTMLCaption property specifies the HTML caption of the column being displayed in the
column's header. Use the LevelKey property to display the control's header on multiple
levels.

The following screen show shows the control's header while it displays a multiple lines (
HeaderSingleLine = False):

The following screen shot shows the control's header on multiple levels using the LevelKey
property:

The following screen show shows the control's header while it displays a single line (
HeaderSingleLine = True):

property Grid.HeaderVisible as Boolean
Retrieves or sets a value that indicates whether the the control's header is visible or hidden.

Type Description

Boolean A boolean expression that indicates whether the columns
header bar is visible or hidden.

Use the HeaderVisible property to hide the columns header bar. Use the Visible property to
hide a particular column. Use the ColumnFromPoint property to access the column from
point. If the control's header bar is hidden, the ColumnFromPoint property returns -1. Use
the LevelKey property to allow multiple levels header bar. Use the FormatLevel property to
display multiple levels in the column's header. Use the HeaderHeight property to specify the
height of the control's header bar. Use the BackColorHeader property to specify the
header's background color. Use the AllowSizing property to disable resizing a column when
user clicks the right margin of the column. Use the SortOnClick property to specify the
action that control takes when the column's caption is clicked. Use the ColumnsAllowSizing
property to allow resizing the columns, when the control's header bar is not visible. The
Background(exCursorHoverColumn) property specifies the visual appearance of the
column's header when the cursor hovers it.

property Grid.HideSelection as Boolean
Returns a value that determines whether selected item appears highlighted when a control
loses the focus.

Type Description

Boolean A boolean expression that indicates whether the selected
item appears highlighted when a control loses the focus.

By default, the HideSelection property is False. You can use this property to indicate which
item is highlighted while another form, dialog box or control has the focus. Use the
HideSelection property to hide the selected items when the control loses the focus. Use the
SelBackColor property to indicate the background color for selected items. Use the
SelForeColor property to specify the foreground color for selected items. Use the
SelectItem property to select programmatically items. Use the SelectedItem and
SelectCount property to retrieve the list of selected items. Use the SelectableItem property
to specify whether an items can be selected.

property Grid.HotBackColor as Color
Retrieves or sets a value that indicates the hot-tracking background color.

Type Description

Color

A color expression that indicates the background color for
item from the cursor (hovering the item). Use the Add
method to add new skins to the control. If you need to
remove the skin appearance from a part of the control you
need to reset the last 7 bits in the high significant byte of
the color being applied to the background's part.

By default, the HotBackColor property is 0, which means that the HotBackColor property
has no effect. Use the HotBackColor property on a non-zero value to highlight the item from
the cursor. The HotForeColor property specifies the foreground color to highlight the item
from the cursor. The ItemFromPoint property gets the item from the cursor. The
SelBackColor property specifies the selection background color. The SelBackMode
property specifies the way the selected items are shown in the control.

The following sample displays a different background color mouse passes over an item.

VBA

With Grid1
 .BeginUpdate
 .Columns.Add "Def"
 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 With .Items
 .AddItem "Item A"
 .AddItem "Item B"
 .AddItem "Item C"
 End With
 .EndUpdate
End With

VB6

With Grid1
 .BeginUpdate
 .Columns.Add "Def"

 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 With .Items
 .AddItem "Item A"
 .AddItem "Item B"
 .AddItem "Item C"
 End With
 .EndUpdate
End With

VB.NET

With Exgrid1
 .BeginUpdate()
 .Columns.Add("Def")
 .HotBackColor = Color.FromArgb(0,0,128)
 .HotForeColor = Color.FromArgb(255,255,255)
 With .Items
 .AddItem("Item A")
 .AddItem("Item B")
 .AddItem("Item C")
 End With
 .EndUpdate()
End With

VB.NET for /COM

With AxGrid1
 .BeginUpdate()
 .Columns.Add("Def")
 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 With .Items
 .AddItem("Item A")
 .AddItem("Item B")
 .AddItem("Item C")
 End With
 .EndUpdate()

End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXGRIDLib' for the library: 'ExGrid 1.0 Control Library'

 #import <ExGrid.dll>
 using namespace EXGRIDLib;
*/
EXGRIDLib::IGridPtr spGrid1 = GetDlgItem(IDC_GRID1)->GetControlUnknown();
spGrid1->BeginUpdate();
spGrid1->GetColumns()->Add(L"Def");
spGrid1->PutHotBackColor(RGB(0,0,128));
spGrid1->PutHotForeColor(RGB(255,255,255));
EXGRIDLib::IItemsPtr var_Items = spGrid1->GetItems();
 var_Items->AddItem("Item A");
 var_Items->AddItem("Item B");
 var_Items->AddItem("Item C");
spGrid1->EndUpdate();

C++ Builder

Grid1->BeginUpdate();
Grid1->Columns->Add(L"Def");
Grid1->HotBackColor = RGB(0,0,128);
Grid1->HotForeColor = RGB(255,255,255);
Exgridlib_tlb::IItemsPtr var_Items = Grid1->Items;
 var_Items->AddItem(TVariant("Item A"));
 var_Items->AddItem(TVariant("Item B"));
 var_Items->AddItem(TVariant("Item C"));
Grid1->EndUpdate();

C#

exgrid1.BeginUpdate();
exgrid1.Columns.Add("Def");

exgrid1.HotBackColor = Color.FromArgb(0,0,128);
exgrid1.HotForeColor = Color.FromArgb(255,255,255);
exontrol.EXGRIDLib.Items var_Items = exgrid1.Items;
 var_Items.AddItem("Item A");
 var_Items.AddItem("Item B");
 var_Items.AddItem("Item C");
exgrid1.EndUpdate();

JavaScript

<OBJECT classid="clsid:CD481F4D-2D25-4759-803F-752C568F53B7" id="Grid1">
</OBJECT>

<SCRIPT LANGUAGE="JScript">
 Grid1.BeginUpdate()

 Grid1.Columns.Add("Def")

 Grid1.HotBackColor = 8388608

 Grid1.HotForeColor = 16777215

 var var_Items = Grid1.Items

 var_Items.AddItem("Item A")

 var_Items.AddItem("Item B")

 var_Items.AddItem("Item C")

 Grid1.EndUpdate()

</SCRIPT>

C# for /COM

axGrid1.BeginUpdate();
axGrid1.Columns.Add("Def");

axGrid1.HotBackColor = Color.FromArgb(0,0,128);
axGrid1.HotForeColor = Color.FromArgb(255,255,255);
EXGRIDLib.Items var_Items = axGrid1.Items;
 var_Items.AddItem("Item A");
 var_Items.AddItem("Item B");
 var_Items.AddItem("Item C");
axGrid1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Items

 anytype var_Items

 super()

 exgrid1.BeginUpdate()

 exgrid1.Columns().Add("Def")

 exgrid1.HotBackColor(WinApi::RGB2int(0,0,128))

 exgrid1.HotForeColor(WinApi::RGB2int(255,255,255))

 var_Items = exgrid1.Items()
 com_Items = var_Items

 com_Items.AddItem("Item A")

 com_Items.AddItem("Item B")

 com_Items.AddItem("Item C")

 exgrid1.EndUpdate()

}

VFP

with thisform.Grid1
 .BeginUpdate
 .Columns.Add("Def")
 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 with .Items
 .AddItem("Item A")
 .AddItem("Item B")
 .AddItem("Item C")
 endwith
 .EndUpdate
endwith

dBASE Plus

local oGrid,var_Items

oGrid = form.Activex1.nativeObject
oGrid.BeginUpdate()
oGrid.Columns.Add("Def")
oGrid.HotBackColor = 0x800000
oGrid.HotForeColor = 0xffffff
var_Items = oGrid.Items
 var_Items.AddItem("Item A")
 var_Items.AddItem("Item B")
 var_Items.AddItem("Item C")
oGrid.EndUpdate()

XBasic (Alpha Five)

Dim oGrid as P
Dim var_Items as P

oGrid = topparent:CONTROL_ACTIVEX1.activex
oGrid.BeginUpdate()
oGrid.Columns.Add("Def")
oGrid.HotBackColor = 8388608
oGrid.HotForeColor = 16777215
var_Items = oGrid.Items
 var_Items.AddItem("Item A")
 var_Items.AddItem("Item B")
 var_Items.AddItem("Item C")
oGrid.EndUpdate()

Delphi 8 (.NET only)

with AxGrid1 do
begin
 BeginUpdate();
 Columns.Add('Def');
 HotBackColor := Color.FromArgb(0,0,128);
 HotForeColor := Color.FromArgb(255,255,255);
 with Items do
 begin
 AddItem('Item A');
 AddItem('Item B');
 AddItem('Item C');
 end;
 EndUpdate();
end

Delphi (standard)

with Grid1 do
begin
 BeginUpdate();
 Columns.Add('Def');
 HotBackColor := RGB(0,0,128);

 HotForeColor := RGB(255,255,255);
 with Items do
 begin
 AddItem('Item A');
 AddItem('Item B');
 AddItem('Item C');
 end;
 EndUpdate();
end

Visual Objects

local var_Items as IItems

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:Columns:Add("Def")
oDCOCX_Exontrol1:HotBackColor := RGB(0,0,128)
oDCOCX_Exontrol1:HotForeColor := RGB(255,255,255)
var_Items := oDCOCX_Exontrol1:Items
 var_Items:AddItem("Item A")
 var_Items:AddItem("Item B")
 var_Items:AddItem("Item C")
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oGrid,var_Items

oGrid = ole_1.Object
oGrid.BeginUpdate()
oGrid.Columns.Add("Def")
oGrid.HotBackColor = RGB(0,0,128)
oGrid.HotForeColor = RGB(255,255,255)
var_Items = oGrid.Items
 var_Items.AddItem("Item A")
 var_Items.AddItem("Item B")
 var_Items.AddItem("Item C")
oGrid.EndUpdate()

property Grid.HotForeColor as Color
Retrieves or sets a value that indicates the hot-tracking foreground color.

Type Description

Color A color expression that indicates the foreground color for
item from the cursor (hovering the item).

By default, the HotForeColor property is 0, which means that the HotForeColor property
has no effect. Use the HotForeColor property on a non-zero value to highlight the item from
the cursor. The HotBackColor property specifies the background color to highlight the item
from the cursor. The ItemFromPoint property gets the item from the cursor. The
SelForeColor property specifies the selection foreground color.

The following sample displays a different background color mouse passes over an item.

VBA

With Grid1
 .BeginUpdate
 .Columns.Add "Def"
 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 With .Items
 .AddItem "Item A"
 .AddItem "Item B"
 .AddItem "Item C"
 End With
 .EndUpdate
End With

VB6

With Grid1
 .BeginUpdate
 .Columns.Add "Def"
 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 With .Items
 .AddItem "Item A"

 .AddItem "Item B"
 .AddItem "Item C"
 End With
 .EndUpdate
End With

VB.NET

With Exgrid1
 .BeginUpdate()
 .Columns.Add("Def")
 .HotBackColor = Color.FromArgb(0,0,128)
 .HotForeColor = Color.FromArgb(255,255,255)
 With .Items
 .AddItem("Item A")
 .AddItem("Item B")
 .AddItem("Item C")
 End With
 .EndUpdate()
End With

VB.NET for /COM

With AxGrid1
 .BeginUpdate()
 .Columns.Add("Def")
 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 With .Items
 .AddItem("Item A")
 .AddItem("Item B")
 .AddItem("Item C")
 End With
 .EndUpdate()
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXGRIDLib' for the library: 'ExGrid 1.0 Control Library'

 #import <ExGrid.dll>
 using namespace EXGRIDLib;
*/
EXGRIDLib::IGridPtr spGrid1 = GetDlgItem(IDC_GRID1)->GetControlUnknown();
spGrid1->BeginUpdate();
spGrid1->GetColumns()->Add(L"Def");
spGrid1->PutHotBackColor(RGB(0,0,128));
spGrid1->PutHotForeColor(RGB(255,255,255));
EXGRIDLib::IItemsPtr var_Items = spGrid1->GetItems();
 var_Items->AddItem("Item A");
 var_Items->AddItem("Item B");
 var_Items->AddItem("Item C");
spGrid1->EndUpdate();

C++ Builder

Grid1->BeginUpdate();
Grid1->Columns->Add(L"Def");
Grid1->HotBackColor = RGB(0,0,128);
Grid1->HotForeColor = RGB(255,255,255);
Exgridlib_tlb::IItemsPtr var_Items = Grid1->Items;
 var_Items->AddItem(TVariant("Item A"));
 var_Items->AddItem(TVariant("Item B"));
 var_Items->AddItem(TVariant("Item C"));
Grid1->EndUpdate();

C#

exgrid1.BeginUpdate();
exgrid1.Columns.Add("Def");
exgrid1.HotBackColor = Color.FromArgb(0,0,128);
exgrid1.HotForeColor = Color.FromArgb(255,255,255);
exontrol.EXGRIDLib.Items var_Items = exgrid1.Items;
 var_Items.AddItem("Item A");

 var_Items.AddItem("Item B");
 var_Items.AddItem("Item C");
exgrid1.EndUpdate();

JavaScript

<OBJECT classid="clsid:CD481F4D-2D25-4759-803F-752C568F53B7" id="Grid1">
</OBJECT>

<SCRIPT LANGUAGE="JScript">
 Grid1.BeginUpdate()

 Grid1.Columns.Add("Def")

 Grid1.HotBackColor = 8388608

 Grid1.HotForeColor = 16777215

 var var_Items = Grid1.Items

 var_Items.AddItem("Item A")

 var_Items.AddItem("Item B")

 var_Items.AddItem("Item C")

 Grid1.EndUpdate()

</SCRIPT>

C# for /COM

axGrid1.BeginUpdate();
axGrid1.Columns.Add("Def");
axGrid1.HotBackColor = Color.FromArgb(0,0,128);
axGrid1.HotForeColor = Color.FromArgb(255,255,255);
EXGRIDLib.Items var_Items = axGrid1.Items;
 var_Items.AddItem("Item A");

 var_Items.AddItem("Item B");
 var_Items.AddItem("Item C");
axGrid1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Items

 anytype var_Items

 super()

 exgrid1.BeginUpdate()

 exgrid1.Columns().Add("Def")

 exgrid1.HotBackColor(WinApi::RGB2int(0,0,128))

 exgrid1.HotForeColor(WinApi::RGB2int(255,255,255))

 var_Items = exgrid1.Items()
 com_Items = var_Items

 com_Items.AddItem("Item A")

 com_Items.AddItem("Item B")

 com_Items.AddItem("Item C")

 exgrid1.EndUpdate()

}

VFP

with thisform.Grid1
 .BeginUpdate
 .Columns.Add("Def")
 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 with .Items
 .AddItem("Item A")
 .AddItem("Item B")
 .AddItem("Item C")
 endwith
 .EndUpdate
endwith

dBASE Plus

local oGrid,var_Items

oGrid = form.Activex1.nativeObject
oGrid.BeginUpdate()
oGrid.Columns.Add("Def")
oGrid.HotBackColor = 0x800000
oGrid.HotForeColor = 0xffffff
var_Items = oGrid.Items
 var_Items.AddItem("Item A")
 var_Items.AddItem("Item B")
 var_Items.AddItem("Item C")
oGrid.EndUpdate()

XBasic (Alpha Five)

Dim oGrid as P
Dim var_Items as P

oGrid = topparent:CONTROL_ACTIVEX1.activex

oGrid.BeginUpdate()
oGrid.Columns.Add("Def")
oGrid.HotBackColor = 8388608
oGrid.HotForeColor = 16777215
var_Items = oGrid.Items
 var_Items.AddItem("Item A")
 var_Items.AddItem("Item B")
 var_Items.AddItem("Item C")
oGrid.EndUpdate()

Delphi 8 (.NET only)

with AxGrid1 do
begin
 BeginUpdate();
 Columns.Add('Def');
 HotBackColor := Color.FromArgb(0,0,128);
 HotForeColor := Color.FromArgb(255,255,255);
 with Items do
 begin
 AddItem('Item A');
 AddItem('Item B');
 AddItem('Item C');
 end;
 EndUpdate();
end

Delphi (standard)

with Grid1 do
begin
 BeginUpdate();
 Columns.Add('Def');
 HotBackColor := RGB(0,0,128);
 HotForeColor := RGB(255,255,255);
 with Items do
 begin
 AddItem('Item A');

 AddItem('Item B');
 AddItem('Item C');
 end;
 EndUpdate();
end

Visual Objects

local var_Items as IItems

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:Columns:Add("Def")
oDCOCX_Exontrol1:HotBackColor := RGB(0,0,128)
oDCOCX_Exontrol1:HotForeColor := RGB(255,255,255)
var_Items := oDCOCX_Exontrol1:Items
 var_Items:AddItem("Item A")
 var_Items:AddItem("Item B")
 var_Items:AddItem("Item C")
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oGrid,var_Items

oGrid = ole_1.Object
oGrid.BeginUpdate()
oGrid.Columns.Add("Def")
oGrid.HotBackColor = RGB(0,0,128)
oGrid.HotForeColor = RGB(255,255,255)
var_Items = oGrid.Items
 var_Items.AddItem("Item A")
 var_Items.AddItem("Item B")
 var_Items.AddItem("Item C")
oGrid.EndUpdate()

property Grid.HTMLPicture(Key as String) as Variant
Adds or replaces a picture in HTML captions.

Type Description

Key as String
A String expression that indicates the key of the picture
being added or replaced. If the Key property is Empty
string, the entire collection of pictures is cleared.

Variant

The HTMLPicture specifies the picture being associated to
a key. It can be one of the followings:

a string expression that indicates the path to the
picture file, being loaded.
a string expression that indicates the base64 encoded
string that holds a picture object, Use the eximages
tool to save your picture as base64 encoded format.
A Picture object that indicates the picture being added
or replaced. (A Picture object implements IPicture
interface),

If empty, the picture being associated to a key is removed.
If the key already exists the new picture is replaced. If the
key is not empty, and it doesn't not exist a new picture is
added.

The HTMLPicture property handles a collection of custom size picture being displayed in the
HTML captions, using the tags. By default, the HTMLPicture collection is empty. Use
the HTMLPicture property to add new pictures to be used in HTML captions. For instance,
the HTMLPicture("pic1") = "c:\winnt\zapotec.bmp", loads the zapotec picture and
associates the pic1 key to it. Any "pic1" sequence in HTML captions, displays
the pic1 picture. On return, the HTMLPicture property retrieves a Picture object (this
implements the IPictureDisp interface).

The following sample shows how to put a custom size picture in the column's header:

<CONTROL>.HTMLPicture("pic1") = "c:/temp/editors.gif"
<CONTROL>.HTMLPicture("pic2") = "c:/temp/editpaste.gif"

<COLUMN1>.HTMLCaption = "A pic1"
<COLUMN2>.HTMLCaption = "B pic2"
<COLUMN3>.HTMLCaption = "A pic1 + B pic2"

https://exontrol.com/eximages.jsp

The screen shot was generated using the following x-script:

BeginUpdate

HTMLPicture("pic1") = "c:/temp/editors.gif"
HTMLPicture("pic2") = "c:/temp/editpaste.gif"

MarkSearchColumn = False
ShowFocusRect = False
LinesAtRoot = -1
HeaderHeight = 38
BackColorHeader = RGB(255,255,255)
HeaderAppearance = 5
BackColor = RGB(255,255,255)

ConditionalFormats
{
 Add("%2 > 15")
 {
 Bold = True
 ForeColor = RGB(0,128,0)
 ApplyTo = 2
 }
 Add("%2 > 10 and %2 < 18")
 {
 Bold = True
 ForeColor = RGB(255,128,0)
 ApplyTo = 2
 }

}
Columns
{
 Add("A")
 {
 Editor.EditType = 4
 HTMLCaption="A pic1"
 }
 Add("B")
 {
 Editor.EditType = 4
 HTMLCaption="B pic2"
 }
 Add("A+B")
 {
 ComputedField = "%0 + %1"
 HTMLCaption = "A pic1 + B pic2"
 HeaderBold = True
 HeaderAlignment = 2
 Alignment = 2
 }
}
Items
{
 Dim h, h1
 h = InsertItem(,,"Group 1")
 CellEditorVisible(h,0) = False
 CellEditorVisible(h,1) = False
 CellValueFormat(h,2) = 1
 h1 = InsertItem(h,,16)
 CellValue(h1,1) = 17
 h1 = InsertItem(h,,2)
 CellValue(h1,1) = 11
 h1 = InsertItem(h,,2)
 CellValue(h1,1) = 9
 ExpandItem(h) = True
 h = InsertItem(,,"Group 2")

 CellEditorVisible(h,0) = False
 CellEditorVisible(h,1) = False
 CellValueFormat(h,2) = 1
 h1 = InsertItem(h,,16)
 CellValue(h1,1) = 9
 h1 = InsertItem(h,,12)
 CellValue(h1,1) = 11
 h1 = InsertItem(h,,2)
 CellValue(h1,1) = 2
 ExpandItem(h) = True
 SelectItem(h) = True
}
EndUpdate

property Grid.hWnd as Long
Retrieves the control's window handle.

Type Description

Long A long value that indicates the handle of the control's
window.

Use the hWnd property to get the handle of the control's window. Use the ItemWindowHost
property to get the handle of the container window that host an ActiveX control. Use the
Editing property to get the window's handle for the built-in editor that's visible and focused,
while control is running in the edit mode. The Microsoft Windows operating environment
identifies each form and control in an application by assigning it a handle, or hWnd. The
hWnd property is used with Windows API calls. Many Windows operating environment
functions require the hWnd of the active window as an argument.

property Grid.HyperLinkColor as Color
Specifies the hyperlink color.

Type Description

Color A color expression that defines the color used by hyperlink
cells.

The HyperLinColor property defines the cell's foreground color being used when cursor
hovers a cell that has the CellHyperLink property is True. Use the CellForeColor property to
change the cell's foreground color. Use the ItemForeColor property to change the item's
foreground color. Use the ForeColor property to specify a color for the entire control. Use
the SelForeColor property to specify the foreground color for selected items.

method Grid.Images (Handle as Variant)
Sets the control's image list at runtime.

Type Description

Handle as Variant

The Handle parameter can be:

A string expression that specifies the ICO file to add.
The ICO file format is an image file format for
computer icons in Microsoft Windows. ICO files
contain one or more small images at multiple sizes
and color depths, such that they may be scaled
appropriately. For instance,
Images("c:\temp\copy.ico") method adds the sync.ico
file to the control's Images collection (string, loads the
icon using its path)
A string expression that indicates the BASE64
encoded string that holds the icons list. Use the
Exontrol's ExImages tool to save/load your icons as
BASE64 encoded format. In this case the string may
begin with "gBJJ..." (string, loads icons using base64
encoded string)
A reference to a Microsoft ImageList control
(mscomctl.ocx, MSComctlLib.ImageList type) that
holds the icons to add (object, loads icons from a
Microsoft ImageList control)
A reference to a Picture (IPictureDisp implementation)
that holds the icon to add. For instance, the VB's
LoadPicture (Function LoadPicture([FileName], [Size],
[ColorDepth], [X], [Y]) As IPictureDisp) or
LoadResPicture (Function LoadResPicture(id, restype
As Integer) As IPictureDisp) returns a picture object
(object, loads icon from a Picture object)
A long expression that identifies a handle to an Image
List Control (the Handle should be of HIMAGELIST
type). On 64-bit platforms, the Handle parameter
must be a Variant of LongLong / LONG_PTR data
type (signed 64-bit (8-byte) integers), saved under
llVal field, as VT_I8 type. The LONGLONG /
LONG_PTR is __int64, a 64-bit integer. For instance,
in C++ you can use as Images(COleVariant(
(LONG_PTR)hImageList)) or Images(COleVariant(
(LONGLONG)hImageList)), where hImageList is of

https://exontrol.com/eximages.jsp

HIMAGELIST type. The GetSafeHandle() method of
the CImageList gets the HIMAGELIST handle (long,
loads icon from HIMAGELIST type)

The control provides an image list window, that's displayed at design time. The ImageSize
property defines the size (width/height) of the icons within the control's Images collection.
Use the ShowImageList property to hide the image list window, at design time. At design
time, the user can add new icons to the control's Images collection, by dragging icon files,
exe files, etc, to the images list window. At runtime, the user can use the Images and
ReplaceIcon method to change the Images collection. The Images collection is 1 based.
Use the CellImage, CellImages properties to assign icons to a cell. Use the CellPicture
property to load a picture in a cell.

The following VB sample adds two icons to the control's images collection using the
BASE64 encoding strings:

With Grid1
 .BeginUpdate
 .Images
"gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwCAw0Tf9dYGLAGLYGEvsQxGNxmSqmOymPzGYyFvwyAyeSzGiysPpObxmozWlxOWztlyWkx+x02j2usoOcjWqzOh020xOvrOf32J23G3GyyfHmu6jPO3vM4nA4vCqPU5nK12gjOg7WmmnEjfQ7O/03E6fm4PWpXow/f5Gz8AA0HM7uTmmY8W7xnE6T3vU5bGPYpz1vW9zvNu+UDuq+7XJk3j9ue5MAwRBsCKpAyNQs5T7wc+afN46SNOpDsMK/C0OQU/CjxK88NxJAMTrPFLDwk68AxNGa4QsrjqR3IEgyFIciI0iwfJXJCPJAkSSAAkqUSgnEHyKmCKI2eZ/yyjZwH/LsuB+cAfvGB5gAe8YBmAAaNkAAM2zZN0pIzNc1o3Ok2AOQADy4A5wT2jR8AfQKNn8B9Co2f5P0TREHoCA=="

 .Columns.Add("Column 1").HeaderImage = 1
 .Items.CellImage(.Items.AddItem("Item 1"), 0) = 2
 .EndUpdate
End With

The following template adds two icons to the control's images collection using the BASE64
encoding strings:

BeginUpdate

Images("gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwCAw0Tf9dYGLAGLYGEvsQxGNxmSqmOymPzGYyFvwyAyeSzGiysPpObxmozWlxOWztlyWkx+x02j2usoOcjWqzOh020xOvrOf32J23G3GyyfHmu6jPO3vM4nA4vCqPU5nK12gjOg7WmmnEjfQ7O/03E6fm4PWpXow/f5Gz8AA0HM7uTmmY8W7xnE6T3vU5bGPYpz1vW9zvNu+UDuq+7XJk3j9ue5MAwRBsCKpAyNQs5T7wc+afN46SNOpDsMK/C0OQU/CjxK88NxJAMTrPFLDwk68AxNGa4QsrjqR3IEgyFIciI0iwfJXJCPJAkSSAAkqUSgnEHyKmCKI2eZ/yyjZwH/LsuB+cAfvGB5gAe8YBmAAaNkAAM2zZN0pIzNc1o3Ok2AOQADy4A5wT2jR8AfQKNn8B9Co2f5P0TREHoCA==")

 Columns
 {
 Add("Column 1")
 {
 HeaderImage = 1
 }

 }
 Items
 {
 Dim h
 h = AddItem("Item 1")
 CellImage(h, 0) = 2
 }
EndUpdate

The following VB sample shows how to replace the entire list of icons, using a Microsoft
Image List control (ImageList1):

Grid1.Images ImageList1.hImageList

The control copies the images list, so destroying the source of the images list should not
affect the images in the control.

The following C++ sample loads icons from a BASE64 encoded string:

#include "Items.h"
#include "Columns.h"
#include "Column.h"
m_grid.BeginUpdate();
CString s =
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBnqAQEZwmCxFhYGLib";

s +=
"/xoAw9ZiFdxbAAGVxM5yOTzkPy+MzGRpmdx2kl2epGY1WgxmZl+Yyery2yyGHyeirGoo+03mM02Jzee029y2Ewum2+FnOTlGezHNx0b3/C3U258a4mP5HVvOw52s2fg2vH6ml8uf8OWmnMjXs9vRjXG8fa88068Z+/o/XJ8nm/zHrg4L/ti8TQts87svyljfuk+DlPfAbPPkicAJnCbs";

s +=
"NbDDLO2xz5PlBi3O8x0EsZD7zuG8T1vrCD5uZE7zxM+CXQNB78RKw8RRbF8Rwyu0UPS/UYsfBSbw4lEJx3AEkwvGbxSY/clsPIT3L600pxhHECx6lsjLA7LbxZH7XJfK0Dwi/8iNPJMjSo0clvjMLuTHLkJTNCqVTSms2Tkq8jTzOcVP/BsePUocQLDQ9AJ3LtFUbR1HqaiwfJXSaPJA";

s +=
"kSSAAkqUU2nE20gmp5oo6JwH+eZ31EjJwB+eBn1K/AHnBWIfvwAZwACYAHsMy9cIMyFeEBTrIADYKSWLX1ipLXxgJLYgDoyeDIA+cFngAfwAVWfFdIcAB8B+f1tn+YJ/D+f5Poyf5xoojKAg";

m_grid.Images(COleVariant(s));
m_grid.GetColumns().Add("Column 1");
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
CItems items = m_grid.GetItems();

long h = items.AddItem(COleVariant("Item 1"));
items.SetCellImage(COleVariant(h), COleVariant((long) 0), 1);
h = items.AddItem(COleVariant("Item 2"));
items.SetCellImages(COleVariant(h), COleVariant((long) 0), COleVariant("2,3"));
m_grid.EndUpdate();

The following C++ sample loads icon from a HIMAGELIST type:

SHFILEINFO sfi; ZeroMemory(&sfi, sizeof(sfi));
HIMAGELIST hSysImageList = (HIMAGELIST)SHGetFileInfo(_T("C:\\"), 0, &sfi, sizeof
(SHFILEINFO), SHGFI_SMALLICON | SHGFI_SYSICONINDEX);
m_grid.Images(_variant_t((long)hSysImageList));

The following VB.NET sample loads icons from a BASE64 encoded string:

Dim s As String
With AxGrid1
 .BeginUpdate()
 s =
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBnqAQEZwmCxFhYGLib/xoAw9ZiFdxbAAGVxM5yOTzkPy+MzGRpmdx2kl2epGY1WgxmZl+Yyery2yyGHyeirGoo+03mM02Jzee029y2Ewum2+FnOTlGezHNx0b3/C3U258a4mP5HVvOw52s2fg2vH6ml8uf8OWmnMjXs9vRjXG8fa88068Z+/o/XJ8nm/zHrg4L/ti8TQts87svyljfuk+DlPfAbPPkicAJnCbsNbDDLO2xz5PlBi3O8x0EsZD7zuG8T1vrCD5uZE7zxM+CXQNB78RKw8RRbF8Rwyu0UPS/UYsfBSbw4lEJx3AEkwvGbxSY/clsPIT3L600pxhHECx6lsjLA7LbxZH7XJfK0Dwi/8iNPJMjSo0clvjMLuTHLkJTNCqVTSms2Tkq8jTzOcVP/BsePUocQLDQ9AJ3LtFUbR1HqaiwfJXSaPJAkSSAAkqUU2nE20gmp5oo6JwH+eZ31EjJwB+eBn1K/AHnBWIfvwAZwACYAHsMy9cIMyFeEBTrIADYKSWLX1ipLXxgJLYgDoyeDIA+cFngAfwAVWfFdIcAB8B+f1tn+YJ/D+f5"

 s = s + "Poyf5xoojKAg"
 .Images(s)

 .Columns.Add("Column 1")
 With .Items
 Dim h As Integer
 h = .AddItem("Item 1")
 .CellImage(h, 0) = 1
 h = .AddItem("Item 2")
 .CellImages(h, 0) = "2,3"
 End With
 .EndUpdate()
End With

The following C# sample loads icons from a BASE64 encoded string:

axGrid1.BeginUpdate();
string s =

"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBnqAQEZwmCxFhYGLib/xoAw9ZiFdxbAAGVxM5yOTzkPy+MzGRpmdx2kl2epGY1WgxmZl+Yyery2yyGHyeirGoo+03mM02Jzee029y2Ewum2+FnOTlGezHNx0b3/C3U258a4mP5HVvOw52s2fg2vH6ml8uf8OWmnMjXs9vRjXG8fa88068Z+/o/XJ8nm/zHrg4L/ti8TQts87svyljfuk+DlPfAbPPkicAJnCbsNbDDLO2xz5PlBi3O8x0EsZD7zuG8T1vrCD5uZE7zxM+CXQNB78RKw8RRbF8Rwyu0UPS/UYsfBSbw4lEJx3AEkwvGbxSY/clsPIT3L600pxhHECx6lsjLA7LbxZH7XJfK0Dwi/8iNPJMjSo0clvjMLuTHLkJTNCqVTSms2Tkq8jTzOcVP/BsePUocQLDQ9AJ3LtFUbR1HqaiwfJXSaPJAkSSAAkqUU2nE20gmp5oo6JwH+eZ31EjJwB+eBn1K/AHnBWIfvwAZwACYAHsMy9cIMyFeEBTrIADYKSWLX1ipLXxgJLYgDoyeDIA+cFngAfwAVWfFdIcAB8B+f1tn+YJ/D+f5";

s = s + "Poyf5xoojKAg";
axGrid1.Images(s);
axGrid1.Columns.Add("Column 1");
int h = axGrid1.Items.AddItem("Item 1");
axGrid1.Items.set_CellImage(h, 0, 1);
h = axGrid1.Items.AddItem("Item 2");
axGrid1.Items.set_CellImages(h, 0,"2,3");
axGrid1.EndUpdate();

The following VFP sample loads icons from a BASE64 encoded string:

local s
With thisform.Grid1
 .BeginUpdate()
 s =
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrl"

 s = s +
"dr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBnqAQEZwmCxFhYGLib/xoAw9ZiFdxbAAGVxM5yOTzkPy+MzGRpmdx2kl2epGY1WgxmZl+Yyery2yyGHyeir"

 s = s +
"Goo+03mM02Jzee029y2Ewum2+FnOTlGezHNx0b3/C3U258a4mP5HVvOw52s2fg2vH6ml8uf8OWmnMjXs9vRjXG8fa88068Z+/o/XJ8nm/zHrg4L/ti8TQts87svyljfuk+DlPfAbPP"

 s = s +
"kicAJnCbsNbDDLO2xz5PlBi3O8x0EsZD7zuG8T1vrCD5uZE7zxM+CXQNB78RKw8RRbF8Rwyu0UPS/UYsfBSbw4lEJx3AEkwvGbxSY/clsPIT3L600pxhHECx6lsjLA7LbxZH7XJfK0D"

 s = s +
"wi/8iNPJMjSo0clvjMLuTHLkJTNCqVTSms2Tkq8jTzOcVP/BsePUocQLDQ9AJ3LtFUbR1HqaiwfJXSaPJAkSSAAkqUU2nE20gmp5oo6JwH+eZ31EjJwB+eBn1K/AHnBWIfvwAZwACYAHsMy9cIMyFeEBTrIADYKSWLX1ipLXxgJLYgDoyeDIA+cFngAfwAVWfFdIcAB8B+f1tn+YJ/D+f5"

 s = s + "Poyf5xoojKAg"
 .Images(s)

 .Columns.Add("Column 1")
 With .Items
 .DefaultItem = .AddItem("Item 1")

 .CellImage(0, 0) = 1
 .DefaultItem = .AddItem("Item 2")
 .CellImages(0, 0) = "2,3"
 EndWith
 .EndUpdate()
EndWith

property Grid.ImageSize as Long
Retrieves or sets the size of control' icons/images/check-boxes/radio-buttons.

Type Description

Long A long expression that defines the size of icons the control
displays

By default, the ImageSize property is 16 (pixels). The ImageSize property specifies the size
of icons being loaded using the Images method. The control's Images collection is cleared if
the ImageSize property is changed, so it is recommended to set the ImageSize property
before calling the Images method. The ImageSize property defines the size (width/height)
of the icons within the control's Images collection. For instance, if the ICO file to load
includes different types the one closest with the size specified by ImageSize property is
loaded by Images method. The ImageSize property does NOT change the height for the
control's font.

The ImageSize property defines the size to display the following UI elements:

any icon that a cell or column displays (number ex-html tag, CellImage,
CellImages)
check-box or radio-buttons (CellHasCheckBox, CellHasRadioButton)
expand/collapse glyphs (HasButtons, HasButtonsCustom)
header's sorting or drop down-filter glyphs

property Grid.Indent as Long
Retrieves or sets the amount, in pixels, that child items are indented relative to their parent
items.

Type Description

Long A long expression that indicates the amount, in pixels, that
child items are indented relative to their parent items

By default, the Indent property is 22 pixels. If the Indent property is 0, the child items are
not indented relative to their parent item. Use HasLines and LinesAtRoot properties to show
the hierarchy lines. Use the HasButtons property to define the +/- signs appearance. Use
the TreeColumnIndex property to define the index of the column that displays the hierarchy.
Use the InsertItem method to insert a child item. Use the InsertControlItem property to
insert an ActiveX item.

property Grid.IsGrouping as Boolean
Indicates whether the control is grouping the items.

Type Description

Boolean A Boolean expression that specifies whether the control is
grouping or ungrouping the items.

The IsGrouping property determines whether the control is grouping/ungrouping the items.
The AllowGroupBy property specifies whether the control supports Group-By feature. For
instance, during grouping, the control may expand or collapse items, you can use the
IsGrouping property to determine if the BeforeExpandItem/AfterExpandItem events occur
due user interaction or control's grouping operation. The GroupItem property indicates the
index of the column being grouped for specified grouping item. The Group/Ungroup method
groups or ungroup the control's list. During execution any of these methods, the IsGrouping
property returns True. The LayoutChanged event is fired when the user changes the layout
of the control, including dragging a column to the sort bar. The SortBarColumnsCount
property indicates the number of the columns being grouped. The SortBarColumn property
indicates the column being sorted giving its position in the sort bar.

property Grid.ItemFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS, ColIndex as Long, HitTestInfo as HitTestInfoEnum)
as HITEM
Retrieves the item given a point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

ColIndex as Long A long expression that indicates on return the column
where the point belongs.

HitTestInfo as
HitTestInfoEnum

A HitTestInfoEnum expression that determines on return
the position of the cursor within the cell.

HITEM An item's handle where the point is.

Use the ItemFromPoint property to get the item from the point specified by the {X,Y}. The X
and Y coordinates are expressed in client coordinates, so a conversion must be done in
case your coordinates are relative to the screen or to other window.

The ItemFromPoint property returns:

the handle of the item from the current cursor position, if the X and Y parameters are
-1. The ItemFromPoint property returns 0, if not item is found.
the number of rows from current cursor position to the last visible item, if the X is 0
and Y parameter is -1. The ItemFromPoint property returns 0, if the cursor hovers any
item, else it returns a positive value, that indicate the number of items between the last
visible item and the current cursor position. For instance, you can use this option, to
add items to the cursor, once the user clicks the empty area of the items section of the
control.

Use the ColumnFromPoint property to get the column from point (when the control's header
is visible). Use the SelectableItem property to specify the user can select an item. The
WordFromPoint property determines the word from the cursor.

The following VB sample prints the cell's value from the cursor:

Private Sub Grid1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As

Single)
 ' Prints the cell over the cursor (it doesn't include the inner cells)
 With Grid1
 Dim c As Long, hit As Long
 Dim h As HITEM
 h = .ItemFromPoint(-1, -1, c, hit)
 If Not (h = 0) Then
 Debug.Print .Items.CellCaption(h, c)
 End If
 End With
End Sub

The following VB sample prints the cell's value from the cursor (the sample doesn't print
the inner cells that are created using the SplitCell property of the Items object) :

Private Sub Grid1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 ' Prints the cell over the cursor (it doesn't include the inner cells)
 With Grid1
 Dim c As Long, hit As Long
 Dim h As HITEM
 h = .ItemFromPoint(-1, -1, c, hit)
 If Not (h = 0) Then
 Debug.Print .Items.CellValue(h, c)
 End If
 End With
End Sub

The following VB sample prints the cell's value from the cursor (the sample prints the
caption of the inner cells too):

Private Sub Grid1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 ' Prints the cell over the cursor (it includes the inner cells)
 With Grid1
 Dim c As Long, hit As Long
 Dim h As HITEM
 h = .ItemFromPoint(-1, -1, c, hit)

 If Not (h = 0) Or Not (c = 0) Then
 Debug.Print .Items.CellValue(h, c)
 End If
 End With
End Sub

The following VB sample displays the index of the icon being clicked, when the cell contains
multiple icons:

Private Sub Grid1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Dim i As HITEM, h As HitTestInfoEnum, c As Long
 With Grid1
 i = .ItemFromPoint(-1, -1, c, h)
 End With
 If Not (i = 0) Or Not (c = 0) Then
 If exHTCellIcon = (h And exHTCellIcon) Then
 Debug.Print "The index of icon being clicked is: " & (h And &HFFFF0000) /
65536
 End If
 End If
End Sub

The following VB sample displays the cell's value from the cursor when hovering the inner
controls (exgrid) too:

Private Function InsideItem(ByRef gObject As Object, ByRef c As Long, ByRef hit As
HitTestInfoEnum) As Long
 Dim i As Long
 i = gObject.ItemFromPoint(-1, -1, c, hit)
 If (i <> 0) Then
 If (IsEmpty(gObject.Items.ItemObject(i))) Then
 InsideItem = i
 Exit Function
 End If
 Set gObject = gObject.Items.ItemObject(i)
 With gObject
 i = gObject.ItemFromPoint(-1, -1, c, hit)

 InsideItem = i
 End With
 End If
End Function

And the MouseMove/ItemOLEEvent should look such as:

Private Sub Grid1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Dim c As Long, hit As HitTestInfoEnum, i As Long
 Dim g As Object
 Set g = Grid1.Object
 i = InsideItem(g, c, hit)
 Debug.Print g.Items.CellValue(i, c)
End Sub

Private Sub Grid1_ItemOleEvent(ByVal Item As EXGRIDLibCtl.HITEM, ByVal Ev As
EXGRIDLibCtl.IOleEvent)
 If (Ev.ID = -606) Then ' Inside Mouse Move
 Dim c As Long, hit As HitTestInfoEnum, i As Long
 Dim g As Object
 Set g = Grid1.Object
 i = InsideItem(g, c, hit)
 Debug.Print g.Items.CellValue(i, c)
 End If
End Sub

The following C++ sample displays the cell's from the point:

void OnMouseMoveGrid1(short Button, short Shift, long X, long Y)
{
 long c = 0, hit = 0;
 long h = m_grid.GetItemFromPoint(-1, -1, &c, &h);
 if ((h != 0) || (c != 0))
 {
 COleVariant vtItem(h), vtColumn(c);
 CItems items = m_grid.GetItems();
 CString strOutput;

 strOutput.Format("Cell: %s\n" , items.GetCellCaption(vtItem, vtColumn));
 OutputDebugString(strOutput);
 }
}

The following C++ sample displays the cell's from the point:

#include "Items.h"

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnMouseMoveGrid1(short Button, short Shift, long X, long Y)
{
 long c = 0, hit = 0, hItem = m_grid.GetItemFromPoint(-1, -1, &c, &hit);
 if ((hItem != 0) || (c != 0))
 {
 CItems items = m_grid.GetItems();
 COleVariant vtItem(hItem), vtColumn(c);
 CString strCaption = V2S(&items.GetCellValue(vtItem, vtColumn)), strOutput;
 strOutput.Format("Cell: '%s', Hit = %08X\n", strCaption, hit);
 OutputDebugString(strOutput);
 }
}

The following VB.NET sample displays the cell's from the point:

Private Sub AxGrid1_MouseMoveEvent(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_MouseMoveEvent) Handles AxGrid1.MouseMoveEvent
 With AxGrid1
 Dim i As Integer, c As Integer, hit As EXGRIDLib.HitTestInfoEnum
 i = .get_ItemFromPoint(-1, -1, c, hit)
 If (Not (i = 0) Or Not (c = 0)) Then
 Debug.WriteLine("Cell: " & .Items.CellValue(i, c) & " Hit: " & hit.ToString())
 End If
 End With
End Sub

The following C# sample displays the cell's from the point:

private void axGrid1_MouseMoveEvent(object sender,
AxEXGRIDLib._IGridEvents_MouseMoveEvent e)
{
 int c = 0;
 EXGRIDLib.HitTestInfoEnum hit;
 int i = axGrid1.get_ItemFromPoint(-1, -1, out c,out hit);
 if ((i != 0) || (c != 0))
 {
 object cap = axGrid1.Items.get_CellValue(i, c);
 string s = cap != null ? cap.ToString() : "";
 s = "Cell: " + s + ", Hit: " + hit.ToString();
 System.Diagnostics.Debug.WriteLine(s);
 }
}

The following VFP sample displays the cell's from the point:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

local c, hit
c = 0
hit = 0
with thisform.Grid1
 .Items.DefaultItem = .ItemFromPoint(-1, -1, @c, @hit)

 if (.Items.DefaultItem <> 0) or (c <> 0)
 wait window nowait .Items.CellValue(0, c) + " " + Str(hit)
 endif
endwith

property Grid.Items as Items
Retrieves the control's item collection.

Type Description
Items Defines the control' Items collection.

Use the Items property to access the Items collection. Use the Items collection to add,
remove or change the control items. Use the GetItems method to get the items collection
into a safe array. Use the PutItems method to load items from a safe array. Use the
Columns property to access the control's Columns collection. Use the AddItem, InsertItem
or InsertControlItem method to add new items to the control. Use the DataSource to add
new columns and items to the control. Adding new items fails if the control has no columns.

property Grid.ItemsAllowSizing as ItemsAllowSizingEnum
Retrieves or sets a value that indicates whether a user can resize items at run-time.

Type Description

ItemsAllowSizingEnum
An ItemsAllowSizingEnum expression that specifies
whether the user can resize a single item at runtime, or all
items, at once.

By default, the ItemsAllowSizing property is exNoSizing. Use the ItemsAllowSizing property
to specify whether all items are resizable. Use the ItemAllowSizing property of the Items
object to specify only when few items are resizable or not. Use the ItemHeight property to
specify the height of the item. The CellSingleLine property specifies whether a cell displays
its caption using multiple lines. The DefaultItemHeight property specifies the default height
of the items, before loading data to your control . The DefaultItemHeight property affects
only items that are going to be added. It doesn't affect items already added. In CardView
mode, uses the ViewModeOption(exCardViewVResizeLine) or
ViewModeOption(exCardViewHResizeLine) property to show or hide the resizing lines.
Also, the ItemsAllowSizing property allows resizing the cards at run-time.

property Grid.Layout as String
Saves or loads the control's layout, such as positions of the columns, scroll position, filtering
values.

Type Description
String A String expression that specifies the control's layout.

You can use the Layout property to store the control's layout and to restore the layout later.
For instance, you can save the control's Layout property to a file when the application is
closing, and you can restore the control's layout when the application is loaded. The Layout
property saves almost all of the control's properties that user can change at runtime (like
changing the column's position by drag and drop). The Layout property does NOT save the
control's data, so the Layout property should be called once you loaded the data from your
database, xml or any other alternative. Once the data is loaded, you can call the Layout
property to restore the View as it was saved. Before closing the application, you can call
the Layout property and save the content to a file for reading next time the application is
opened.

The Layout property saves/loads the following information:

columns size and position
current selection
scrolling position and size
expanded/collapsed items, if any
sorting columns
filtering options
SearchColumnIndex/FocusColumnIndex property, indicates the focusing column, or the
column where the user can use the control's incremental searching.
TreeColumnIndex property, which indicates the index of the column that displays the
hierarchy lines.

These properties are serialized to a string and encoded in BASE64 format.

The following movies show how Layout works:

 The Layout property is used to save and restore the control's view.

Generally, the Layout property can be used to save / load the control's layout (or as it is
displayed). Thought, you can benefit of this property to sort the control using one or more
columns as follows:

multiplesort="";singlesort="", removes any previously sorting
multiplesort="C3:1", sorts ascending the column with the index 3 (and add it to the sort

https://www.youtube.com/watch?v=TbWWnDJlD9w

bar if visible)
singlesort="C4:2", sorts descending the column with the index 4 (it is not added to sort
bar panel)
multiplesort="C3:1";singlesort="C4:2", sorts ascending the column with the index 3 (
and add it to the sort bar if visible), and sorts descending the column with the index 4.
In other words, it re-sort the control by columns 3 and 4.
multiplesort="C3:1 C5:2";singlesort="C4:2", sorts ascending the column with the index
3 (and add it to the sort bar if visible), sorts descending the column with the index 5 (
and add it to the sort bar if visible), and sorts descending the column with the index 4.
In other words, it re-sort the control by columns 3, 5 and 4.

The format of the Layout in non-encoded form is like follows:

c0.filtertype=0
c0.position=0
c0.select=0
c0.visible=1
c0.width=96
....
columns=13
collapse="0-3 5-63 80-81 83"
filterprompt=""
focus=8
focuscolumnindex=0
hasfilter=1
hscroll=0
multiplesort="C12:1 C2:2"
searchcolumnindex=3
select="39 2 13 8"
selectcolumnindex=0
singlesort="C5:2"
treecolumnindex=0
vscroll=12
vscrolloffset=0

property Grid.LinesAtRoot as LinesAtRootEnum
Link items at the root of the hierarchy.

Type Description

LinesAtRootEnum A LinesAtRootEnum expression that indicates whether the
control links the items at the root of the hierarchy.

The control paints the hierarchy lines to the right if the Column's Alignment property is
RightAlignment. The TreeColumnIndex property specifies the index of column where the
hierarchy lines are painted. Use the Indent property to increase or decrease the amount, in
pixels, that child items are indented relative to their parent items. Use the HasLines property
to enhances the graphic representation of a tree control's hierarchy by drawing lines that
link child items to their corresponding parent item. Use the InsertItem method to insert a
child item. Use the InsertControlItem property to insert an ActiveX item.

method Grid.LoadXML (Source as Variant)
Loads an XML document from the specified location, using MSXML parser.

Type Description

Source as Variant

An indicator of the object that specifies the source for the
XML document. The object can represent a file name, a
URL, an IStream, a SAFEARRAY, or an
IXMLDOMDocument.

Return Description

Boolean
A boolean expression that specifies whether the XML
document is loaded without errors. If an error occurs, the
method retrieves a description of the error occurred.

The LoadXML method uses the MSXML (MSXML.DOMDocument, XML DOM Document)
parser to load XML documents, previously saved using the SaveXML method. The control is
emptied when the LoadXML method is called, and so the columns and items collection are
emptied before loading the XML document. The LoadXML method adds a new column for
each <column> tag found in the <columns> collection. Properties like Caption,
HTMLCaption, Image, Visible, LevelKey, DisplayFilterButton, DisplayFilterPattern,
FilterType, Width and Position are fetched for each column found in the XML document. The
control fires the AddColumn event for each found column. The <items> xml element
contains a collection of <item> objects. Each <item> object holds information about an item
in the control, including its cells, or child items. Each item contains a collection of <cell>
objects that defines the cell for each column. The Expanded attribute specifies whether an
item is expanded or collapsed, and it carries the value of the ExpandItem property.

The XML format looks like follows:

- <Content Author Component Version ...>
 - <Columns>
 <Column Caption Position Width HTMLCaption LevelKey DisplayFilterButton
DisplayFilterPatter FilterType ... />
 <Column Caption Position Width HTMLCaption LevelKey DisplayFilterButton
DisplayFilterPatter FilterType ... />
 ...
 </Columns>
 - <Items>
 - <Item Expanded ...>
 <Cell Value ValueFormat Images Image ... />
 <Cell Value ValueFormat Images Image ... />

 ...
 - <Items>
 - <Item Expanded ...>
 - <Item Expanded ...>

 </Items>
 </Item>
 </Items>
 </Content>

property Grid.MarkSearchColumn as Boolean
Retrieves or sets a value that indicates whether the searching column is marked or
unmarked

Type Description

Boolean A boolean expression that indicates whether the searching
column is marked or unmarked.

The control marks the searching column by drawing a rectangle around it. The
SearchColumnIndex property determines the index of the searching column. Use the
MarkSearchColumn property to hide the searching column. By default, the
MarkSearchColumn property is True. The user can change the searching column by
pressing the TAB ort Shift + TAB key. Use the AutoSearch property to specify whether the
control enables the incremental searching feature. Use the AutoSearch property to specify
the type of incremental searching the control supports within the column. Use the
UseTabKey property to specify whether the control uses the TAB key.

property Grid.MarkTooltipCells as Boolean
Retrieves or sets a value that indicates whether the control marks the cells that have tool
tips.

Type Description

Boolean A boolean expression that indicates whether the control
marks the cells that have tool tips.

By default, the MarkTooltipCells property is False. If the MarkTooltipCells property is True,
the control paints on the right side of the cell a sign that indicates that the cell has
associated a tool tip. Use the CellTooltip property to associate a tool tip to a cell. Use the
TooltipCellsColor property to change the color used to sign cells that have tool tips. Use the
MarkTooltipCellsImage property to assign a different look for signs to mark the cells that
have tooltips.

property Grid.MarkTooltipCellsImage as Long
Specifies a value that indicates the index of icon being displayed in the cells that have
tooltips.

Type Description

Long A long expression that indicates the index of icon being
displayed when a cell has tooltip assigned.

By default, the MarkTooltipCellsImage property is 0. The MarkTooltipCellsImage property
has effect only if the MarkTooltipCells property is True. Use the Images method to assign
new icons to the control. By default, if the control can't find the icon specified by the
MarkTooltipCellsImage property, it paints the default sign to mark the cells that have the
tooltips.

The following screen shot shows how the control marks by default, the cells that have
tooltip:

The following screen shot shows how the control marks the cells that have tooltip, once that
MarkTooltipCellsImage property points to an icon in the Images collection:

method Grid.OLEDrag ()
Causes a component to initiate an OLE drag/drop operation.

Type Description

The method is only for internal use.

property Grid.OLEDropMode as exOLEDropModeEnum
Returns or sets how a target component handles drop operations

Type Description

exOLEDropModeEnum
An exOLEDropModeEnum expression that indicates the
OLE Drag and Drop mode. 0 means no drag and drop
support, 1 means manual support.

In the /NET Assembly, you have to use the AllowDrop property as explained here:

https://www.exontrol.com/sg.jsp?content=support/faq/net/#dragdrop

By default, the OLEDropMode property is exOLEDropNone. Curently, the control supports
only manual OLE Drag and Drop operation. Use the SelectByDrag property to disable
selecting multiple items by dragging. The SingleSel property controls the number of items
that the user may select. For instance, if the SingleSel property is True, the user can't
select multiple items, and so a single item may be selected at the time. If the SingleSel
property is False, the user can select multiple items using the mouse, keyboard or both.

The control provides the following options to define the visual effect when drag and drop
items:

 Background(exDragDropBefore), Specifies the visual appearance for the drag and
drop cursor before showing the items. This option can be used to apply a background
to the dragging items, before painting the items. By default, the control doesn't draw
any background for the items being dragged. For instance, use the
Background(exDragDropBefore) = SelBackColor property to specify the same
background color/skin for items being dragged as they are selected.
 Background(exDragDropAfter), Specifies the visual appearance for the drag and drop
cursor after showing the items. This option can be used to apply a semi-
transparent/opaque background to the dragging items, after painting the items. Use
this option to apply a transparent/opaque skin, after the items are painted. For
instance, using an color or an opaque skin you can show something else when
dragging the items.
Background(exDragDropListTop), Specifies the graphic feedback of the item from the
drag and drop cursor if the cursor is in the top half of the row. Use this option to
indicate the graphic to be displayed on the item, when the cursor is in the top half row.
By default, nothing is displayed.
Background(exDragDropListBottom), Specifies the graphic feedback of the item from
the drag and drop cursor if the cursor is in the bottom half of the row. Use this option to
indicate the graphic to be displayed on the item, when the cursor is in the bottom half
row. By default, nothing is displayed. Use the HitTestInfoEnum.exHTBottomHalf flag to
check whether the user drags the items in the top half or bottom half of the row.

https://exontrol.com/faq.jsp/net/#dragdrop

Background(exDragDropForeColor), Specifies the foreground color for the items being
dragged. By default, the foreground color is black.

See the OLEStartDrag and OLEDragDrop events for more details about implementing drag
and drop operations into the ExGrid control.

property Grid.Picture as IPictureDisp
Retrieves or sets a graphic to be displayed in the control.

Type Description
IPictureDisp A Picture object that indicates the control's picture.

Use the Picture property to load a picture on the control's background. Use the
PictureDisplay property to arrange the picture on the control's background. Use the
SelBackMode property to define how the selected items are painted. Use the
PictureLevelHeader property to display a picture on the control's header bar when it
displays the columns using multiple levels. Use the CellPicture property to assign a picture
to a cell. Use the BackColor property to specify the control's background color.

property Grid.PictureDisplay as PictureDisplayEnum
Retrieves or sets a value that indicates the way how the graphic is displayed on the
control's background

Type Description

PictureDisplayEnum A PictureDisplayEnum expression that indicates the way
how the control's picture is displayed.

Use the Picture property to load a picture into the control's background. Use the
PictureDisplay property to arrange how the control's picture is displayed on its background.
Use the SelBackMode property to define how the selected items are painted. Use the
CellPicture property to assign a picture to a cell. Use the BackColor property to specify the
control's background color.

property Grid.PictureDisplayLevelHeader as PictureDisplayEnum
Retrieves or sets a value that indicates the way how the graphic is displayed on the
control's header background.

Type Description

PictureDisplayEnum A PictureDisplayEnum expression that indicates the way
how the picture is displayed on the control's header.

Use the PictureDisplayLevelHeader property to arrange the picture on the control's multiple
levels header bar. Use the PictureLevelHeader property to load a picture on the control's
header bar when it displays multiple levels. The control's header bar displays multiple levels
if there are two or more neighbor columns with the same non empty level key. Use the
LevelKey property to specify the control's level key.

property Grid.PictureLevelHeader as IPictureDisp
Retrieves or sets a graphic to be displayed in the control's header when multiple levels is
on.

Type Description

IPictureDisp A Picture object being displayed on the control's header
bar when multiple levels is on.

Use the PictureLevelHeader property to display a picture on the control's header bar when
it displays the columns using multiple levels. Use the PictureDisplayLevelHeader property to
arrange the picture on the control's multiple levels header bar. The control's header bar
displays multiple levels if there are two or more neighbor columns with the same non empty
level key. Use the LevelKey property to specify the control's level key. Use the Picture
property to display a picture on the control's list area. Use the BackColorLevelHeader
property to specify the background color for parts of the control's header bar that are not
occupied by column's headers.

method Grid.PutItems (Items as Variant, [Parent as Variant])
Adds data to the control from a SafeArray containing numbers, strings, dates, or nested
SafeArrays of numbers, strings, and dates, positioning them as child items of the specified
parent item

Type Description

Items as Variant

An array that control uses to fill with. The array can be
one or two- dimensional. If the array is one-dimensional,
the control requires one column being added before calling
the PutItems method. If the Items parameter indicates a
two-dimensional array, the first dimension defines the
columns, while the second defines the number of items to
be loaded. For instance, a(2,100) means 2 columns and
100 items.

For instance:

PutItems Array("Item 1", "Item 2", "Item 3"), adds the
rows at the end of the list
PutItems Array("Root", Array("Child 1", "Child 2")),
adds data in a hierarchical structure, at the end of the
list
PutItems rs.GetRows(), appends data from a
recordset using the GetRows method of the
Recordset
PutItems rs.GetRows(10), inserts the first 10 records
from a Recordset using the GetRows method, at the
end of the list

where GetRows() method in ADO retrieves multiple
records from a Recordset object and stores them in a
two-dimensional array.

Indicates one of the following:

missing, empty or 0 {number}, specifies that the
data(Items) is being appended (added to the end of
the list)
a long expression, that specifies the handle of the
item where the array is being inserted
a string expression of of
"parent;IDColumn;ParentIDColumn" format, where,

Parent as Variant

'parent' denotes the handle of the item where the data
is being inserted, 'IDColumn' refers to the index of the
column containing row identifiers, and
'ParentIDColumn' indicates the index of the column
containing identifiers of parent rows. This way, you
can insert data hierarchically using parent-id
relationship. A parent-id relationship is a way of
organizing data in a hierarchical structure where each
element (or "child") is associated with a parent
element. Please be aware that the rows of the data
are inserted as they were provided by the Items
parameter. Therefore, it is important that the data
provided be sorted by the IDColumn so that the
parent row referred to by the ParentIDColumn value
is already present and can be used to insert the
current row as a child of it.

For instance:

PutItems Array("Item 1", "Item 2", "Item 3"),
Items.ItemByIndex(2), inserts the rows as children of
the item with index 2
PutItems Array("Root", Array("Child 1", "Child 2")),
Items.FirstVisibleItem, Inserts data as a hierarchical
structure, placing it as a child of the first visible item
PutItems rs.GetRows(), Items.ItemByIndex(0),
inserts the records from the recordset using the
GetRows method of the Recordset, placing them as
children of the item with index 0
PutItems rs.GetRows(), ";0;3", inserts the records
from the recordset using the GetRows method of the
Recordset, utilizing parent-child relationships. The first
column (index 0) contains the identifiers of the rows,
while the fourth column (index 3) contains the keys of
the parent rows.

where GetRows() method in ADO retrieves multiple
records from a Recordset object and stores them in a
two-dimensional array.

The PutItems method loads items from a safe array. The PutItems method may raise one
of the following exceptions:

The array dimension exceeds 2 (In simpler terms, a two-dimensional array (or 2D
array) is like a table with rows and columns. If an array exceeds 2 dimensions, it
means it has three or more dimensions, such as a 3D array (which can be thought of
as a collection of tables) or even higher dimensions) You need to provide a one-
dimensional or two-dimensional array
The number of columns does not match the array size (either the control has no
columns or the number of columns is too small). You need to add more columns (Add
property).
The element type of the array is not valid (the type of the array is either unknown or
not supported) You need to provide a valid type, which must be one of the following:
Variant, String, Integer, Long, Double, Float, or Date.

The PutItems method performs:

1. Insertion Order: The data is inserted into the system in the same order as it is
provided by the Items parameter. This means that the sequence of rows in the Items
parameter directly affects how the data is inserted.

2. Sorting Requirement: To ensure correct insertion, it's crucial that the data is sorted by
the IDColumn (when the Parent parameter is of "parent;IDColumn;ParentIDColumn"
format). This sorting ensures that parent rows are inserted before their corresponding
child rows.

3. Parent-Child Relationship: The sorting ensures that when a row refers to a parent
row using the ParentIDColumn value (when the Parent parameter is of
"parent;IDColumn;ParentIDColumn" format). The parent row is already present in the
control. This allows the current row to be inserted as a child of the parent row without
encountering errors or inconsistencies.

In essence, by sorting the data appropriately, you establish a clear hierarchy where parent
rows are inserted before child rows, maintaining the integrity of the parent-child
relationships within the dataset.

For instance, let's say we have the following data:

 EmployeeID EmployeeName DepartmentID ParentID
 1 John 101
 2 Alice 102 1
 3 Bob 101 1
 4 Sarah 102 1
 5 Emma 101 2
 6 Mike 102 2

Each row represents an employee.

EmployeeID uniquely identifies each employee (represents the column with the index 0)
EmployeeName denotes the name of the employee (represents the column with the
index 1)
DepartmentID indicates the department to which the employee belongs (represents the
column with the index 2)
ParentID establishes the relationship between employees (represents the column with
the index 3), where it references the EmployeeID of the parent employee. An empty
value indicates the absence of a parent, typically representing the head of the
department.

Having this data organized into a two-dimensional array, the statement PutItems d loads it
as a flat table:

whereas PutItems d, ";0;3" loads it as a tree structure:

where d is an array as defined next:

Dim d(3, 5) As Variant
d(0, 0) = "1": d(1, 0) = "John": d(2, 0) = "101": d(3, 0) = ""
d(0, 1) = "2": d(1, 1) = "Alice": d(2, 1) = "102": d(3, 1) = "1"
d(0, 2) = "3": d(1, 2) = "Bob": d(2, 2) = "101": d(3, 2) = "1"
d(0, 3) = "4": d(1, 3) = "Sarah": d(2, 3) = "102": d(3, 3) = "1"
d(0, 4) = "5": d(1, 4) = "Emma": d(2, 4) = "101": d(3, 4) = "2"
d(0, 5) = "6": d(1, 5) = "Mike": d(2, 5) = "102": d(3, 5) = "2"

Use the GetItems method to get a safe array with the items in the control. The PutItems
method fires AddItem event for each item added to Items collection. Use the Items property
to access the items collection. Use the ConditionalFormats method to apply formats to a
cell or range of cells, and have that formatting change depending on the value of the cell or

the value of a formula.

The following VB6 sample loads a flat array to a single column control (and shows as in the
following picture):

With Grid1
 .BeginUpdate
 .Columns.Add "Column 1"
 .PutItems Array("Item 1", "Item 2", "Item 3")
 .EndUpdate
End With

or similar for /NET Assembly version:

 With Exgrid1
 .BeginUpdate()
 .Columns.Add("Column 1")
 .PutItems(New String() {"Item 1", "Item 2", "Item 3"})
 .EndUpdate()
End With

The following VB6 sample loads a hierarchy to a single column control (and shows as in the
following picture):

With Grid1
 .BeginUpdate
 .LinesAtRoot = exLinesAtRoot
 .Columns.Add ""
 .PutItems Array("Root 1", Array("Child 1.1", Array("Sub Child 1.1.1", "Sub Child 1.1.2"),
"Child 1.2"), "Root 2", Array("Child 2.1", "Child 2.2"))
 .EndUpdate
End With

or similar for /NET Assembly version:

With Exgrid1
 .BeginUpdate()

 .LinesAtRoot = exontrol.EXGRIDLib.LinesAtRootEnum.exLinesAtRoot
 .Columns.Add("")
 .PutItems(New Object() {"Root 1", New Object() {"Child 1.1", New String() {"Sub Child
1.1.1", "Sub Child 1.1.2"}, "Child 1.2"}, "Root 2", New String() {"Child 2.1", "Child 2.2"}})
 .EndUpdate()
End With

The following VB6 sample loads a list of items, in a three columns control (as shown in the
following picture):

Dim v(2, 2) As String
v(0, 0) = "One": v(0, 1) = "Two": v(0, 2) = "Three"
v(1, 0) = "One": v(1, 1) = "Two": v(1, 2) = "Three"
v(2, 0) = "One": v(2, 1) = "Two": v(2, 2) = "Three"

With Grid1
 .BeginUpdate
 .Columns.Add "Column 1"
 .Columns.Add "Column 2"
 .Columns.Add "Column 3"

 .PutItems v
 .EndUpdate
End With

The following VB6 sample loads a list of items, in a three columns control (as shown in the
following picture):

Dim v(2, 2) As String

v(0, 0) = "One": v(0, 1) = "Two": v(0, 2) = "Three"
v(1, 0) = "One": v(1, 1) = "Two": v(1, 2) = "Three"
v(2, 0) = "One": v(2, 1) = "Two": v(2, 2) = "Three"

With Grid1
 .BeginUpdate
 .Columns.Add "Column 1"
 .Columns.Add "Column 2"
 .Columns.Add "Column 3"

 .Items.AddItem "Root"

 .PutItems v, .Items.FirstVisibleItem
 .EndUpdate
End With

The following VB sample loads the collection of records from an ADO recordset:

Dim rs As Object
Const dwProvider = "Microsoft.Jet.OLEDB.4.0" ' OLE Data provider
Const nCursorType = 3 ' adOpenStatic
Const nLockType = 3 ' adLockOptimistic
Const nOptions = 2 ' adCmdTable
Const strDatabase = "D:\Program Files\Microsoft Visual Studio\VB98\NWIND.MDB"

'Creates an recordset and opens the "Employees" table, from NWIND database
Set rs = CreateObject("ADODB.Recordset")
rs.Open "Employees", "Provider=" & dwProvider & ";Data Source= " & strDatabase,
nCursorType, nLockType, nOptions
With Grid1
 .BeginUpdate

 .ColumnAutoResize = False

 .MarkSearchColumn = False
 .DrawGridLines = True
 ' Adds a column for each field found
 With .Columns
 Dim f As Object
 For Each f In rs.Fields
 .Add f.Name
 Next
 End With

 ' Loads the collection of records
 .PutItems rs.GetRows()

 'Changes the editor of the "Photo" column
 .Columns("Photo").Editor.EditType = PictureType
 .EndUpdate
End With

The following C++ sample loads records from an ADO recordset, using the PutItems
method:

#include "Items.h"
#include "Columns.h"
#include "Column.h"

#pragma warning(disable : 4146)
#import <msado15.dll> rename ("EOF", "adoEOF")
using namespace ADODB;

_RecordsetPtr spRecordset;
if (SUCCEEDED(spRecordset.CreateInstance("ADODB.Recordset")))
{
 // Builds the connection string.
 CString strTableName = "Employees", strConnection =
"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=";
 CString strPath = "D:\\Program Files\\Microsoft Visual Studio\\VB98\\NWIND.MDB";

 strConnection += strPath;
 try
 {
 // Loads the table
 if (SUCCEEDED(spRecordset->Open(_variant_t((LPCTSTR)strTableName),
_variant_t((LPCTSTR)strConnection), adOpenStatic, adLockPessimistic, NULL)))
 {
 m_grid.BeginUpdate();
 m_grid.SetColumnAutoResize(FALSE);
 CColumns columns = m_grid.GetColumns();
 for (long i = 0; i < spRecordset->Fields->Count; i++)
 columns.Add(spRecordset->Fields->GetItem(i)->Name);
 COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
 m_grid.PutItems(&spRecordset->GetRows(-1), vtMissing);
 m_grid.EndUpdate();
 }
 }
 catch (_com_error& e)
 {
 AfxMessageBox(e.Description());
 }
}

The sample uses the #import statement to import ADODB recordset's type library. The
sample enumerates the fields in the recordset and adds a new column for each field found.
Also, the sample uses the GetRows method of the ADODB recordset to retrieves multiple
records of a Recordset object into a safe array. Please consult the ADODB documentation
for the GetRows property specification.

property Grid.RadioImage(Checked as Boolean) as Long
Retrieves or sets a value that indicates the image used by cells of radio type.

Type Description

Checked as Boolean A boolean expression that indicates the radio state being
changed. True means checked, False means un-checked.

Long

A long expression that indicates the index of icon used for
cells of radio type. The last 7 bits in the high significant
byte of the long expression indicates the identifier of the
skin being used to paint the object. Use the Add method to
add new skins to the control. If you need to remove the
skin appearance from a part of the control you need to
reset the last 7 bits in the high significant byte of the color
being applied to the part. If the index is not valid the
default icon is used.

Use RadioImage and CheckImage properties to define the icons used for radio and check
box cells. The RadioImage property defines the index of the icon being used by radio
buttons. Use the CellHasRadioButton property to assign a radio button to a cell. Use the
CellHasCheckBox property to assign a checkbox to a cell. Use the CellImage or CellImages
property to assign one or multiple icons to a cell. Use the CellPicture property to assign a
picture to a cell. Use the CellStateChanged event to notify your application when the cell's
state is changed. Use the PartialCheck property to allow partial check feature within the
column. Use the Images method to insert icons at runtime. The following samples require a
control with icons, else nothing will be changed.

The following VB sample changes the radio buttons appearance (the control's icons list
should be loaded before):

With Grid1
 .BeginUpdate
 .Columns.Add "Radio"
 For i = 0 To 2
 Dim h As HITEM
 h = .Items.AddItem("Option " & i)
 .Items.CellHasRadioButton(h) = True
 .Items.CellRadioGroup(h) = 1234
 Next

 .RadioImage(True) = 1 ' Changes the icon for checked radio cells.

 .RadioImage(False) = 2 ' Changes the icon for un-checked radio cells.
 .EndUpdate
End With

The following VB sample changes the default icon for the cells of radio type:

Grid1.RadioImage(True) = 1 ' Sets the icon for cells of radio type that are checked
Grid1.RadioImage(False) = 2 ' Sets the icon for cells of radio type that are
unchecked

The Grid1.RadioImage(True) = 0 makes the control to use the default icon for painting cells
of radio type that are checked.

The following C++ sample changes the default icon for the cells of radio type:

m_grid.SetRadioImage(TRUE, 1);
m_grid.SetRadioImage(FALSE, 2);

The following VB.NET sample changes the default icon for the cells of radio type:

With AxGrid1
 .set_RadioImage(True, 1)
 .set_RadioImage(False, 2)
End With

The following C# sample changes the default icon for the cells of radio type:

axGrid1.set_RadioImage(true, 1);
axGrid1.set_RadioImage(false, 2);

The following VFP sample changes the default icon for the cells of radio type:

with thisform.Grid1
 local sT, sCR
 sCR = chr(13) + chr(10)
 sT = "RadioImage(True) = 1"+ sCR
 sT = sT + "RadioImage(False) = 2"+ sCR
 .Template = sT
endwith

The VFP considers the RadioImage call as being a call for an array, so an error occurs if

the method is called directly, so we built a template string that we pass to the Template
property

property Grid.RClickSelect as Boolean
Retrieves or sets a value that indicates whether an item is selected using right mouse
button.

Type Description

Boolean A boolean expression that indicates whether an item is
selected using right mouse button.

Use the RClickSelect property to allow users select items using the right click. By default,
the RClickSelect property is False. The control fires the SelectionChanged event when user
selects an item. Use the SelectItem property to select programmatically select an item. Use
the SelectCount property to get the number of selected items. Use the SelectedItem
property to get the selected item. Use the FocusItem property to get the focused item. Use
the ItemFromPoint property to retrieve an item from the point.

property Grid.ReadOnly as ReadOnlyEnum
Retrieves or sets a value that indicates whether the control is read only.

Type Description

ReadOnlyEnum A ReadOnlyEnum expression that indicates whether the
control is read only.

The ReadOnly property makes the control read only. Use the Enabled property to disable
the control. Use the Locked property to lock an editor. If the control is read only, the Edit or
Change event is not fired. Use the CellEditorVisible property to hide the cell's editor. Use
the SelectableItem property to specify the user can select an item.

method Grid.Redo ()
Redoes the next action in the control's Redo queue.

Type Description

Call the Redo method to Redo the last control operation. The Redo method have effect only
if the AllowUndoRedo property is True. The CTRL+Y redoes the next action in the control's
Redo queue, while the CTRL+Z performs the last undo operation. Call the Undo method to
Undo the last control operation. The CanUndo property retrieves a value that indicates
whether the control may perform the last Undo operation. The CanRedo property retrieves
a value that specifies whether the control can execute the next operation in the control's
Redo queue. The URChange(exUndo/exRedo) event notifies your application whenever an
Undo/Redo operation is performed.

The records of the Undo/Redo queue may contain actions in the following format:

"AddItem;ITEMINDEX", indicates that a new item has been created
"RemoveItem;ITEMINDEX", indicates that an item has been removed
"ChangeItemPos;ITEMINDEX", indicates that an item changes its position or / and
parent
"ChangeCellValue;ITEMINDEX;CELLINDEX", indicates that the cell's value has been
changed
"ChangeCellState;ITEMINDEX;CELLINDEX", indicates that the cell's state has been
changed

Also, the Undo/Redo queue may include:

"StartBlock", specifies that a block of operations begins
"EndBlock", specifies that a block of operations ends

The RedoListAction property lists the Redo actions that can be performed in the control.
Use the RedoRemoveAction method to remove the first action from the redo queue.

property Grid.RedoListAction ([Action as Variant], [Count as Variant]) as
String
Lists the Redo actions that can be performed in the control.

Type Description

Action as Variant

[optional] A long expression that specifies the action being
listed. If missing or -1, all actions are listed.

The Action parameter can be one of the following:

exListUndoRedoAddItem(13) ~
"AddItem;ITEMINDEX", indicates that a new item has
been created
exListUndoRedoRemoveItem(14) ~
"RemoveItem;ITEMINDEX", indicates that an item
has been removed
exListUndoRedoChangeItemPos(15) ~
"ChangeItemPos;ITEMINDEX", indicates that an item
changes its position or / and parent
exListUndoRedoChangeCellValue(16) ~
"ChangeCellValue;ITEMINDEX;CELLINDEX",
indicates that the cell's value has been changed
exListUndoRedoChangeCellState(17) ~
"ChangeCellState;ITEMINDEX;CELLINDEX",
indicates that the cell's state has been changed

For instance, RedoListAction(13) shows only AddItem
actions in the redo stack.

Count as Variant

[optional] A long expression that indicates the number of
actions being listed. If missing or -1, all actions are listed.
For instance, RedoListAction(13,1) shows only the first
AddItem action being added to the redo stack.

String A String expression that lists the Redo actions that may be
performed.

The RedoListAction property lists the Redo actions that can be performed in the control.
The URChange(exUndo/exRedo) event notifies your application whenever an Undo/Redo
operation is performed. The UndoListAction property lists the actions that the user may
perform by doing Undo operations. The CanRedo property specifies whether a redo
operation can be performed if CTRL+Y key is pressed. Use the RedoRemoveAction
method to remove the first action from the redo queue.

The records of the Undo/Redo queue may contain actions in the following format:

"AddItem;ITEMINDEX", indicates that a new item has been created
"RemoveItem;ITEMINDEX", indicates that an item has been removed
"ChangeItemPos;ITEMINDEX", indicates that an item changes its position or / and
parent
"ChangeCellValue;ITEMINDEX;CELLINDEX", indicates that the cell's value has been
changed
"ChangeCellState;ITEMINDEX;CELLINDEX", indicates that the cell's state has been
changed

Also, the Undo/Redo queue may include:

"StartBlock", specifies that a block of operations begins
"EndBlock", specifies that a block of operations ends

Each action is on a single line, and each field is separated by ; character. The lines are
separated by "\r\n" characters (vbCrLf in VB).

Here's a sample format of the RedoListAction property may get:

AddItem;0
AddItem;1
AddItem;2
ChangeCellState;2;0
AddItem;3
ChangeCellState;3;0
StartBlock
RemoveItem;0
RemoveItem;1
RemoveItem;1
RemoveItem;1
EndBlock

The following VB sample splits the RedoListAction value and adds each action to a listbox
control:

List1.Clear
Dim s() As String
s = Split(Grid1.RedoListAction, vbCrLf)
For i = LBound(s) To UBound(s)

 List1.AddItem s(i)
Next

method Grid.RedoRemoveAction ([Action as Variant], [Count as
Variant])
Removes the last the redo actions that can be performed in the control.

Type Description

Action as Variant

[optional] A long expression that specifies the action being
removed. If missing or -1, all actions are removed.

The Action parameter can be one of the following:

exListUndoRedoAddItem(13) ~
"AddItem;ITEMINDEX", indicates that a new item has
been created
exListUndoRedoRemoveItem(14) ~
"RemoveItem;ITEMINDEX", indicates that an item
has been removed
exListUndoRedoChangeItemPos(15) ~
"ChangeItemPos;ITEMINDEX", indicates that an item
changes its position or / and parent
exListUndoRedoChangeCellValue(16) ~
"ChangeCellValue;ITEMINDEX;CELLINDEX",
indicates that the cell's value has been changed
exListUndoRedoChangeCellState(17) ~
"ChangeCellState;ITEMINDEX;CELLINDEX",
indicates that the cell's state has been changed

For instance, RedoListAction(13) removes only AddItem
actions in the redo stack.

Count as Variant

[optional] A long expression that indicates the number of
actions to be removed. If missing or -1, all actions are
removed. For instance, RedoListAction(13,1) removes
only the first AddItem action from the redo stack.

Use the RedoRemoveAction method to remove the first action from the redo queue. Use
the RedoRemoveAction() (with no parameters) to remove all redo actions. The
RedoListAction property retrieves the list of actions that an redo operation can perform.
The UndoRemoveAction method removes the last action to be performed if the Undo
method is invoked.

The records of the Undo/Redo queue may contain actions in the following format:

"AddItem;ITEMINDEX", indicates that a new item has been created
"RemoveItem;ITEMINDEX", indicates that an item has been removed
"ChangeItemPos;ITEMINDEX", indicates that an item changes its position or / and
parent
"ChangeCellValue;ITEMINDEX;CELLINDEX", indicates that the cell's value has been
changed
"ChangeCellState;ITEMINDEX;CELLINDEX", indicates that the cell's state has been
changed

Also, the Undo/Redo queue may include:

"StartBlock", specifies that a block of operations begins
"EndBlock", specifies that a block of operations ends

.

method Grid.Refresh ()
Refreshes the control's content.

Type Description

Use the Refresh method whenever you need to refresh the control. Use the BeginUpdate
and EndUpdate method ay time when the control requires more changes at one time. Use
the hWnd property to get the handle of the control's window.

The following VB sample calls the Refresh method:

Grid1.Refresh

The following C++ sample calls the Refresh method:

m_grid.Refresh();

The following VB.NET sample calls the Refresh method:

AxGrid1.CtlRefresh()

In VB.NET the System.Windows.Forms.Control class has already a Refresh method, so the
CtlRefresh method should be called.

The following C# sample calls the Refresh method:

axGrid1.CtlRefresh();

In C# the System.Windows.Forms.Control class has already a Refresh method, so the
CtlRefresh method should be called.

The following VFP sample calls the Refresh method:

thisform.Grid1.Object.Refresh()

method Grid.RemoveSelection ()
Removes the selected items (including the descendents)

Type Description

The RemoveSelection method removes the selected items (including the descendents). The
RemoveItem method removes a specific item (if it has not child items). The UnselectAll
method unselects all items in the list.

method Grid.ReplaceIcon ([Icon as Variant], [Index as Variant])
Adds a new icon, replaces an icon or clears the control's image list.

Type Description

Icon as Variant

A Variant expression that specifies the icon to add or
insert, as one of the following options:

a long expression that specifies the handle of the icon
(HICON)
a string expression that indicates the path to the
picture file
a string expression that defines the picture's content
encoded as BASE64 strings using the eXImages tool
a Picture reference, which is an object that holds
image data. It is often used in controls like
PictureBox, Image, or in custom controls (e.g.,
IPicture, IPictureDisp)

If the Icon parameter is 0, it specifies that the icon at the
given Index is removed. Furthermore, setting the Index
parameter to -1 removes all icons.

By default, if the Icon parameter is not specified or is
missing, a value of 0 is used.

Index as Variant

A long expression that defines the index of the icon to
insert or remove, as follows:

A zero or positive value specifies the index of the icon
to insert (when Icon is non-zero) or to remove (when
the Icon parameter is zero)
A negative value clears all icons when the Icon
parameter is zero

By default, if the Index parameter is not specified or is
missing, a value of -1 is used.

Return Description

Long A long expression that indicates the index of the icon in the
images collection

Use the ReplaceIcon property to add, remove or replace an icon in the control's images

https://exontrol.com/eximages.jsp

collection. Also, the ReplaceIcon property can clear the images collection. Use the Images
method to attach an image list to the control. The ImageSize property defines the size
(width/height) of the icons within the control's Images collection.

The following sample shows how to add a new icon to control's images list:

 i = Grid1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle), where i is the index to
insert the icon

The following sample shows how to replace an icon into control's images list::

 i = Grid1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle, 0), in this case the i is
zero, because the first icon was replaced.

The following sample shows how to remove an icon from control's images list:

 Grid1.ReplaceIcon 0, i, in this case the i is the index of the icon to remove

The following sample shows how to clear the control's icons collection:

 Grid1.ReplaceIcon 0, -1

property Grid.RightToLeft as Boolean
Indicates whether the component should draw right-to-left for RTL languages.

Type Description

Boolean A boolean expression that specifies whether the control is
drawn from right to left or from left to right.

By default, the RightToLeft property is False. The RightToLeft gets or sets a value indicating
whether control's elements are aligned to right or left. The RightTolLeft property affects all
columns, and future columns being added.

Changing the RightToLeft property on True does the following:

displays the vertical scroll bar on the left side of the control (Scrollbars property)
flips the order of the columns (Position property)
change the column's alignment to right, if the column is not centered (Alignment
property, HeaderAlignment property, HeaderImageAlignment property)
reverse the order of the drawing parts in the cells (Def(exCellDrawPartsOrder)
property to "caption,picture,icons,icon,check")
aligns the locked columns to the right (CountLockedColumns property)
aligns the control's group-by bar / sort bar to the right (SortBarVisible property)
the control's filter bar/prompt/close is aligned to the right (FilterBarPromptVisible
property)

The following screen shot shows how the control looks if the RightToLeft property is True:

(By default) Changing the RightToLeft property on False does the following:

displays the vertical scroll bar on the right side of the control (Scrollbars property)
flips the order of the columns (Position property)
change the column's alignment to left, if the column is not centered (Alignment
property, HeaderAlignment property, HeaderImageAlignment property)
reverse the order of the drawing parts in the cells (Def(exCellDrawPartsOrder)
property to "check,icon,icons,picture,caption")
aligns the locked columns to the left (CountLockedColumns property)
aligns the control's group-by bar / sort bar to the left (SortBarVisible property)

the control's filter bar/prompt/close is aligned to the left (FilterBarPromptVisible
property)

The following screen shot shows how the control looks if the RightToLeft property is False:

The following VB sample shows how to change the order of the columns from right to left

With Grid1
 .BeginUpdate
 .ScrollBars = exDisableBoth
 .LinesAtRoot = exLinesAtRoot
 With .Columns.Add("P1")
 .Def(exCellHasCheckBox) = True
 .PartialCheck = True
 End With
 With .Items
 h = .AddItem("Root")
 .InsertItem h,0,"Child 1"
 .InsertItem h,0,"Child 2"
 .ExpandItem(h) = True
 End With
 .RightToLeft = True
 .EndUpdate
End With

The following VB.NET sample shows how to change the order of the columns from right to
left

Dim h
With AxGrid1
 .BeginUpdate
 .ScrollBars = EXGRIDLib.ScrollBarsEnum.exDisableBoth
 .LinesAtRoot = EXGRIDLib.LinesAtRootEnum.exLinesAtRoot

 With .Columns.Add("P1")
 .Def(EXGRIDLib.DefColumnEnum.exCellHasCheckBox) = True
 .PartialCheck = True
 End With
 With .Items
 h = .AddItem("Root")
 .InsertItem h,0,"Child 1"
 .InsertItem h,0,"Child 2"
 .ExpandItem(h) = True
 End With
 .RightToLeft = True
 .EndUpdate
End With

The following C++ sample shows how to change the order of the columns from right to left

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXGRIDLib' for the library: 'ExGrid 1.0 Control Library'

 #import <ExGrid.dll>
 using namespace EXGRIDLib;
*/
EXGRIDLib::IGridPtr spGrid1 = GetDlgItem(IDC_GRID1)->GetControlUnknown();
spGrid1->BeginUpdate();
spGrid1->PutScrollBars(EXGRIDLib::exDisableBoth);
spGrid1->PutLinesAtRoot(EXGRIDLib::exLinesAtRoot);
EXGRIDLib::IColumnPtr var_Column = ((EXGRIDLib::IColumnPtr)(spGrid1->GetColumns()-
>Add(L"P1")));
 var_Column->PutDef(EXGRIDLib::exCellHasCheckBox,VARIANT_TRUE);
 var_Column->PutPartialCheck(VARIANT_TRUE);
EXGRIDLib::IItemsPtr var_Items = spGrid1->GetItems();
 long h = var_Items->AddItem("Root");
 var_Items->InsertItem(h,long(0),"Child 1");
 var_Items->InsertItem(h,long(0),"Child 2");
 var_Items->PutExpandItem(h,VARIANT_TRUE);
spGrid1->PutRightToLeft(VARIANT_TRUE);

spGrid1->EndUpdate();

The following C# sample shows how to change the order of the columns from right to left

axGrid1.BeginUpdate();
axGrid1.ScrollBars = EXGRIDLib.ScrollBarsEnum.exDisableBoth;
axGrid1.LinesAtRoot = EXGRIDLib.LinesAtRootEnum.exLinesAtRoot;
EXGRIDLib.Column var_Column = (axGrid1.Columns.Add("P1") as EXGRIDLib.Column);
 var_Column.set_Def(EXGRIDLib.DefColumnEnum.exCellHasCheckBox,true);
 var_Column.PartialCheck = true;
EXGRIDLib.Items var_Items = axGrid1.Items;
 int h = var_Items.AddItem("Root");
 var_Items.InsertItem(h,0,"Child 1");
 var_Items.InsertItem(h,0,"Child 2");
 var_Items.set_ExpandItem(h,true);
axGrid1.RightToLeft = true;
axGrid1.EndUpdate();

The following VFP sample shows how to change the order of the columns from right to left

with thisform.Grid1
 .BeginUpdate
 .ScrollBars = 15
 .LinesAtRoot = -1
 with .Columns.Add("P1")
 .Def(0) = .T.
 .PartialCheck = .T.
 endwith
 with .Items
 h = .AddItem("Root")
 .InsertItem(h,0,"Child 1")
 .InsertItem(h,0,"Child 2")
 .DefaultItem = h
 .ExpandItem(0) = .T.
 endwith
 .RightToLeft = .T.
 .EndUpdate
endwith

The following Delphi sample shows how to change the order of the columns from right to
left

with AxGrid1 do
begin
 BeginUpdate();
 ScrollBars := EXGRIDLib.ScrollBarsEnum.exDisableBoth;
 LinesAtRoot := EXGRIDLib.LinesAtRootEnum.exLinesAtRoot;
 with (Columns.Add('P1') as EXGRIDLib.Column) do
 begin
 Def[EXGRIDLib.DefColumnEnum.exCellHasCheckBox] := TObject(True);
 PartialCheck := True;
 end;
 with Items do
 begin
 h := AddItem('Root');
 InsertItem(h,TObject(0),'Child 1');
 InsertItem(h,TObject(0),'Child 2');
 ExpandItem[h] := True;
 end;
 RightToLeft := True;
 EndUpdate();
end

method Grid.SaveXML (Destination as Variant)
Saves the control's content as XML document to the specified location, using the MSXML
parser.

Type Description

Destination as Variant

This object can represent a file name, an XML document
object, or a custom object that supports persistence as
follows:

String - Specifies the file name. Note that this must be
a file name, rather than a URL. The file is created if
necessary and the contents are entirely replaced with
the contents of the saved document. For example:

Grid1.SaveXML("sample.xml")

XML Document Object. For example:

Dim xmldoc as Object
Set xmldoc = CreateObject("MSXML.DOMDocument")
Grid1.SaveXML(xmldoc)

Custom object supporting persistence - Any other
custom COM object that supports QueryInterface for
IStream, IPersistStream, or IPersistStreamInit can
also be provided here and the document will be saved
accordingly. In the IStream case, the IStream::Write
method will be called as it saves the document; in the
IPersistStream case, IPersistStream::Load will be
called with an IStream that supports the Read, Seek,
and Stat methods.

Return Description

Boolean A Boolen expression that specifies whether saving the
XML document was ok.

The SaveXML method uses the MSXML (MSXML.DOMDocument, XML DOM Document)
parser to save the control's data in XML documents. The LoadXML method loads XML
documents being created with SaveXML method. The SaveXML method saves each column
in <column> elements under the <columns> collection. Properties like Caption,
HTMLCaption, Image, Visible, LevelKey, DisplayFilterButton, DisplayFilterPattern,
FilterType, Width and Position are saved for each column in the control. The <items> xml
element saves a collection of <item> objects. Each <item> object holds information about

an item in the control, including its cells or child items. Each item saves a collection of
<cell> objects that defines the cell for each column. The Expanded attribute specifies
whether an item is expanded or collapsed, and it carries the value of the ExpandItem
property.

The control saves the control's data in XML format like follows:

- <Content Author Component Version ...>
 - <Chart FirstVisibleDate ...>
 - <Levels>
 <Level Label Unit Count />
 <Level Label Unit Count />
 ...
 </Levels>
 - <Links>
 <Link Key StartItem StartBar EndItem EndBar Visible StartPos EndPos Color Style
Width ShowDir Text ... />
 <Link Key StartItem StartBar EndItem EndBar Visible StartPos EndPos Color Style
Width ShowDir Text ... />
 ...
 </Links>
 </Chart>
 - <Columns>
 <Column Caption Position Width HTMLCaption LevelKey DisplayFilterButton
DisplayFilterPatter FilterType ... />
 <Column Caption Position Width HTMLCaption LevelKey DisplayFilterButton
DisplayFilterPatter FilterType ... />
 ...
 </Columns>
 - <Items>
 - <Item Expanded ...>
 <Cell Value ValueFormat Images Image ... />
 <Cell Value ValueFormat Images Image ... />
 ...
 - <Bars>
 <Bar Name Start End Caption HAlignCaption VAlignCaption Key ... />
 <Bar Name Start End Caption HAlignCaption VAlignCaption Key ... />
 ...

 </Bars>
 - <Items>
 - <Item Expanded ...>
 - <Item Expanded ...>

 </Items>
 </Item>
 </Items>
 </Content>

method Grid.Scroll (Type as ScrollEnum, [ScrollTo as Variant])
Scrolls the control's content.

Type Description

Type as ScrollEnum A ScrollEnum expression that indicates type of scrolling
being performed.

ScrollTo as Variant

A long expression that indicates the position where the
control is scrolled when Type is exScrollVTo or
exScrollHTo. If the ScrollTo parameter is missing, 0 value
is used.

Use the Scroll method to scroll the control's content by code. Use the Scrollbars property
specifies which scroll bars will be visible on the control. Use the ScrollPos property to get
the control's scroll position. Use the EnsureVisibleItem method to ensure that a specified
item fits the control's client area. Use the EnsureVisibleColumn method to ensure that a
specified column fits the control's client area. If the Type parameter is exScrollLeft,
exScrollRight or exScrollHTo the Scroll method scrolls horizontally the control's content pixel
by pixel, if the ContinueColumnScroll property is False, else the Scroll method scrolls
horizontally the control's content column by column. Use the ScrollPartVisible property to
add buttons to the control's scrollbars. Use the Background property to change the visual
appearance of the control's scrollbars.

If the Scroll(exScrollVTo) does not work please check if the ScrollBars property includes
the exVScrollOnThumbRelease, and use a code like follows:

With Grid1
 .ScrollBars = .ScrollBars And Not exVScrollOnThumbRelease
 .Scroll exScrollVTo, 10000
 .ScrollBars = .ScrollBars Or exVScrollOnThumbRelease
End With

The code removes temporary the exVScrollOnThumbRelease flag from the ScrollBars
property, performs the scrolling (jump to row 10000) , and restore back the
exVScrollOnThumbRelease flag.

The following VB sample scrolls vertically the control line by line:

Private Sub Command1_Click()
 Grid1.Scroll exScrollDown
End Sub

The following VB sample scrolls the control's content to the top:

Private Sub Command1_Click()
 Grid1.Scroll exScrollVTo, 0
End Sub

The following VB sample scrolls the control's content to the first item (scrolls to the top):

Grid1.Scroll exScrollVTo, 0

The following C++ sample scrolls the control's content to the top:

m_grid.Scroll(2 /*exScrollVTo*/, COleVariant((long)0));

The following C# sample scrolls the control's content to the top:

axGrid1.Scroll(EXGRIDLib.ScrollEnum.exScrollVTo, 0);

The following VB.NET sample scrolls the control's content to the top:

AxGrid1.Scroll(EXGRIDLib.ScrollEnum.exScrollVTo, 0)

The following VFP sample scrolls the control's content to the top:

with thisform.Grid1
 .Scroll(2, 0) && exScrollVTo
endwith

property Grid.ScrollBars as ScrollBarsEnum
Returns or sets a value that determines whether the control has horizontal and/or vertical
scroll bars.

Type Description

ScrollBarsEnum A ScrollBarsEnum expression that indicates which scroll
bars will be visible in the control.

By default, the control adds scroll bars when required. For instance, If the
ColumnAutoResize property is False and the width of the visible columns exceeds the width
of the control's client area, the control shows the horizontal scroll bar. Use the ScrollBars
property to hide the control's scroll bars. If the ColumnAutoResize property is True, the
control does not display the control's horizontal scroll bar. Use the ScrollBySingleLine
property to let users scroll the control's content item by item. Use the ContinueColumnScroll
property to specify whether the user scrolls the control's content column by column or pixel
by pixel. Use the EnsureVisibleItem method to ensure that an item fits the control's client
area. Use the EnsureVisibleColumn method to ensure that a specified column fits the
control's client area. Use the Scroll method to scroll programmatically the control. The
ScrollBars property doesn't indicate whether the control displays a scroll bar. Instead, the
WS_HSCROLL and WS_VSCROLL window styles indicate whether the window displays a
scroll bar. Use the hWnd property to determine the handle of the control's window. Use the
ScrollPartVisible property to add buttons to the control's scrollbars. Use the Background
property to change the visual appearance of the control's scrollbars.

property Grid.ScrollButtonHeight as Long
Specifies the height of the button in the vertical scrollbar.

Type Description

Long A long expression that defines the height of the button in
the vertical scroll bar.

By default, the ScrollButtonHeight property is -1. If the ScrollButtonHeight property is -1, the
control uses the default height (from the system) for the buttons in the vertical scroll bar.
Use the ScrollButtonWidth property to specify the width of the buttons in the horizontal
scroll bar. Use the ScrollWidth property to specify the width of the vertical scroll bar. Use
the ScrollBars property to specify which scroll bar is visible or hidden in the control. Use the
ScrollHeight property to specify the height of the horizontal scroll bar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollThumbSize property to define a fixed size for the scrollbar's thumb.

property Grid.ScrollButtonWidth as Long
Specifies the width of the button in the horizontal scrollbar.

Type Description

Long A long expression that defines the width of the button in
the horizontal scroll bar.

By default, the ScrollButtonWidth property is -1. If the ScrollButtonWidth property is -1, the
control uses the default width (from the system) for the buttons in the horizontal scroll bar.
Use the ScrollButtonHeight property to specify the height of the buttons in the vertical scroll
bar. Use the ScrollWidth property to specify the width of the vertical scroll bar. Use the
ScrollBars property to specify which scroll bar is visible or hidden in the control. Use the
ScrollHeight property to specify the height of the horizontal scroll bar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollThumbSize property to define a fixed size for the scrollbar's thumb.

property Grid.ScrollBySingleLine as Boolean
Retrieves or sets a value that indicates whether the control scrolls the lines to the end. If
you have at least a cell that has SingleLine false, you have to check the ScrollBySingleLine
property.

Type Description

Boolean A boolean expression that indicates whether the control
scrolls the lines one by one.

By default, the ScrollBySingleLine property is False. We recommend to set the
ScrollBySingleLine property on True if you have one of the following:

If you have at least a cell that has CellSingleLine property on exCaptionWordWrap /
exCaptionBreakWrap / False, or a column with Def(exCellSingleLine) on
exCaptionWordWrap / exCaptionBreakWrap / False
If your control contains at least an item that hosts an ActiveX control. See
InsertControlItem property.
If the control displays items with different height. Use the ItemHeight property to
specify the item's height.

Use the EnsureVisibleItem property to ensure that an item fits the control's client area. Use
the ScrollBars property to hide the control's scroll bars. Use the Scroll method to
programmatically scroll the control's content.

property Grid.ScrollFont (ScrollBar as ScrollBarEnum) as IFontDisp
Retrieves or sets the scrollbar's font.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical or
the horizontal scroll bar.

IFontDisp A Font object

Use the ScrollFont property to specify the font in the control's scroll bar. Use the
ScrolPartCaption property to specify the caption of the scroll's part. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar. By
default, when a part becomes visible, the ScrollPartEnable property is automatically called,
so the parts becomes enabled. Use the ScrollPartEnable property to specify enable or
disable parts in the control's scrollbar. Use the ScrollBars property to specify the visible
scrollbars in the control. Use the OffsetChanged event to notify your application that the
scroll position is changed. Use the OversizeChanged event to notify your application
whether the range for a specified scroll bar is changed. Use the ScrollPos property to
specify the position for the control's scroll bar. The control fires the ScrollButtonClick event
when the user clicks a part of the scroll bar.

property Grid.ScrollHeight as Long
Specifies the height of the horizontal scrollbar.

Type Description

Long A long expression that defines the height of the horizontal
scroll bar.

By default, the ScrollHeight property is -1. If the ScrollHeight property is -1, the control uses
the default height of the horizontal scroll bar from the system. Use the ScrollHeight property
to specify the height of the horizontal scroll bar. Use the ScrollBars property to specify
which scroll bar is visible or hidden in the control. Use the ScrollButtonWidth property to
specify the width of the buttons in the horizontal scroll bar. Use the ScrollWidth property to
specify the width of the vertical scroll bar. Use the ScrollButtonHeight property to specify
the height of the buttons in the vertical scroll bar. Use the ScrollPartVisible property to
specify the visible parts in the control's scroll bar. Use the ScrollThumbSize property to
define a fixed size for the scrollbar's thumb.

property Grid.ScrollOrderParts(ScrollBar as ScrollBarEnum) as String
Specifies the order of the buttons in the scroll bar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the order of buttons is displayed.

String

A String expression that indicates the order of the buttons
in the scroll bar. The list includes expressions like l, l1, ...,
l5, t, r, r1, ..., r6 separated by comma, each expression
indicating a part of the scroll bar, and its position indicating
the displaying order.

Use the ScrollOrderParts to customize the order of the buttons in the scroll bar. By default,
the ScrollOrderParts property is empty. If the ScrollOrderParts property is empty the
default order of the buttons in the scroll bar are displayed like follows:

so, the order of the parts is: l1, l2, l3, l4, l5, l, t, r, r1, r2, r3, r4, r5 and r6. Use the
ScrollPartVisible to specify whether a button in the scrollbar is visible or hidden. Use the
ScrollPartEnable property to enable or disable a button in the scroll bar. Use the
ScrollPartCaption property to assign a caption to a button in the scroll bar.

Use the ScrollOrderParts property to change the order of the buttons in the scroll bar. For
instance, "l,r,t,l1,r1" puts the left and right buttons to the left of the thumb area, and the l1
and r1 buttons right after the thumb area. If the parts are not specified in the
ScrollOrderParts property, automatically they are added to the end.

The list of supported literals in the ScrollOrderParts property is:

l for exLeftBPart, (<) The left or top button.
l1 for exLeftB1Part, (L1) The first additional button, in the left or top area.
l2 for exLeftB2Part, (L2) The second additional button, in the left or top area.
l3 for exLeftB3Part, (L3) The third additional button, in the left or top area.
l4 for exLeftB4Part, (L4) The forth additional button, in the left or top area.
l5 for exLeftB5Part, (L5) The fifth additional button, in the left or top area.
t for exLowerBackPart, exThumbPart and exUpperBackPart, The union between the
exLowerBackPart and the exUpperBackPart parts.
r for exRightBPart, (>) The right or down button.
r1 for exRightB1Part, (R1) The first additional button in the right or down side.

r2 for exRightB2Part, (R2) The second additional button in the right or down side.
r3 for exRightB3Part, (R3) The third additional button in the right or down side.
r4 for exRightB4Part, (R4) The forth additional button in the right or down side.
r5 for exRightB5Part, (R5) The fifth additional button in the right or down side.
r6 for exRightB6Part, (R6) The sixth additional button in the right or down side.

Any other literal between commas is ignored. If duplicate literals are found, the second is
ignored, and so on. For instance, "t,l,r" indicates that the left/top and right/bottom buttons
are displayed right/bottom after the thumb area.

property Grid.ScrollPartCaption(ScrollBar as ScrollBarEnum, Part as
ScrollPartEnum) as String
Specifies the caption being displayed on the specified scroll part.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the caption is displayed.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll where the text is displated

String A String expression that specifies the caption being
displayed on the part of the scroll bar.

Use the ScrolPartCaption property to specify the caption of the scroll's part. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar. By
default, when a part becomes visible, the ScrollPartEnable property is automatically called,
so the parts becomes enabled. Use the ScrollPartEnable property to specify enable or
disable parts in the control's scrollbar. Use the ScrollBars property to specify the visible
scrollbars in the control. Use the OffsetChanged event to notify your application that the
scroll position is changed. Use the OversizeChanged event to notify your application
whether the range for a specified scroll bar is changed. Use the ScrollPos property to
specify the position for the control's scroll bar. The control fires the ScrollButtonClick event
when the user clicks a part of the scroll bar. Use the ScrollFont property to specify the font
in the control's scroll bar. Use the ScrollOrderParts property to customize the order of the
buttons in the scroll bar.

By default, the following parts are shown:

exLeftBPart (the left or up button of the control)
exLowerBackPart (the part between the left/up button and the thumb part of the
control)
exThumbPart (the thumb/scrollbox part)
exUpperBackPart (the part between the the thumb and the right/down button of the
control)
exRightBPart (the right or down button of the control)

The following VB sample adds up and down additional buttons to the control's vertical scroll
bar :

With Grid1
 .BeginUpdate
 .ScrollBars = exDisableBoth
 .ScrollPartVisible(exVScroll, exLeftB1Part Or exRightB1Part) = True
 .ScrollPartCaption(exVScroll, exLeftB1Part) = "1"
 .ScrollPartCaption(exVScroll, exRightB1Part) = "2"
 .EndUpdate
End With

The following VB.NET sample adds up and down additional buttons to the control's vertical
scroll bar :

With AxGrid1
 .BeginUpdate()
 .ScrollBars = EXGRIDLib.ScrollBarsEnum.exDisableBoth
 .set_ScrollPartVisible(EXGRIDLib.ScrollBarEnum.exVScroll,
EXGRIDLib.ScrollPartEnum.exLeftB1Part Or EXGRIDLib.ScrollPartEnum.exRightB1Part, True)
 .set_ScrollPartCaption(EXGRIDLib.ScrollBarEnum.exVScroll,
EXGRIDLib.ScrollPartEnum.exLeftB1Part, "1")
 .set_ScrollPartCaption(EXGRIDLib.ScrollBarEnum.exVScroll,
EXGRIDLib.ScrollPartEnum.exRightB1Part, "2")
 .EndUpdate()
End With

The following C# sample adds up and down additional buttons to the control's vertical scroll
bar :

axGrid1.BeginUpdate();
axGrid1.ScrollBars = EXGRIDLib.ScrollBarsEnum.exDisableBoth;
axGrid1.set_ScrollPartVisible(EXGRIDLib.ScrollBarEnum.exVScroll,
EXGRIDLib.ScrollPartEnum.exLeftB1Part | EXGRIDLib.ScrollPartEnum.exRightB1Part, true);
axGrid1.set_ScrollPartCaption(EXGRIDLib.ScrollBarEnum.exVScroll,
EXGRIDLib.ScrollPartEnum.exLeftB1Part , "1");
axGrid1.set_ScrollPartCaption(EXGRIDLib.ScrollBarEnum.exVScroll,
EXGRIDLib.ScrollPartEnum.exRightB1Part, "2");
axGrid1.EndUpdate();

The following C++ sample adds up and down additional buttons to the control's vertical
scroll bar :

m_grid.BeginUpdate();
m_grid.SetScrollBars(15 /*exDisableBoth*/);
m_grid.SetScrollPartVisible(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ | 32
/*exRightB1Part*/, TRUE);
m_grid.SetScrollPartCaption(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ , _T("
1"));
m_grid.SetScrollPartCaption(0 /*exVScroll*/, 32 /*exRightB1Part*/ , _T("2")
);
m_grid.EndUpdate();

The following VFP sample adds up and down additional buttons to the control's vertical
scroll bar :

With thisform.Grid1
 .BeginUpdate
 .ScrollBars = 15
 .ScrollPartVisible(0, bitor(32768,32)) = .t.
 .ScrollPartCaption(0,32768) = "1"
 .ScrollPartCaption(0, 32) = "2"
 .EndUpdate
EndWith

*** ActiveX Control Event ***
LPARAMETERS scrollpart

wait window nowait ltrim(str(scrollpart))

property Grid.ScrollPartCaptionAlignment(ScrollBar as ScrollBarEnum,
Part as ScrollPartEnum) as AlignmentEnum
Specifies the alignment of the caption in the part of the scroll bar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the caption is displayed.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll where the text is displayed

AlignmentEnum An AlignmentEnum expression that specifies the alignment
of the caption in the part of the scrollbar.

The ScrollPartCaptionAlignment property specifies the alignment of the caption in the part
of the scroll bar. By default, the caption is centered. Use the ScrolPartCaption property to
specify the caption being displayed on specified part of the scroll bar. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar.

The following VB sample displays "left" aligned to the left on the lower part of the control's
horizontal scroll bar, and "right" aligned to the right on the upper part of the control's
horizontal scroll bar:

With Grid1
 .ScrollPartCaption(exHScroll,exLowerBackPart) = "left"
 .ScrollPartCaptionAlignment(exHScroll,exLowerBackPart) = LeftAlignment
 .ScrollPartCaption(exHScroll,exUpperBackPart) = "right"
 .ScrollPartCaptionAlignment(exHScroll,exUpperBackPart) = RightAlignment
 .ColumnAutoResize = False
 .Columns.Add 1
 .Columns.Add 2
 .Columns.Add 3
 .Columns.Add 4
End With

The following VB.NET sample displays "left" aligned to the left on the lower part of the
control's horizontal scroll bar, and "right" aligned to the right on the upper part of the
control's horizontal scroll bar:

With AxGrid1

.set_ScrollPartCaption(EXGRIDLib.ScrollBarEnum.exHScroll,EXGRIDLib.ScrollPartEnum.exLowerBackPart,"left")

.set_ScrollPartCaptionAlignment(EXGRIDLib.ScrollBarEnum.exHScroll,EXGRIDLib.ScrollPartEnum.exLowerBackPart,EXGRIDLib.AlignmentEnum.LeftAlignment)

.set_ScrollPartCaption(EXGRIDLib.ScrollBarEnum.exHScroll,EXGRIDLib.ScrollPartEnum.exUpperBackPart,"right")

.set_ScrollPartCaptionAlignment(EXGRIDLib.ScrollBarEnum.exHScroll,EXGRIDLib.ScrollPartEnum.exUpperBackPart,EXGRIDLib.AlignmentEnum.RightAlignment)

 .ColumnAutoResize = False
 .Columns.Add 1
 .Columns.Add 2
 .Columns.Add 3
 .Columns.Add 4
End With

The following C# sample displays "left" aligned to the left on the lower part of the control's
horizontal scroll bar, and "right" aligned to the right on the upper part of the control's
horizontal scroll bar:

axGrid1.set_ScrollPartCaption(EXGRIDLib.ScrollBarEnum.exHScroll,EXGRIDLib.ScrollPartEnum.exLowerBackPart,"left");

axGrid1.set_ScrollPartCaptionAlignment(EXGRIDLib.ScrollBarEnum.exHScroll,EXGRIDLib.ScrollPartEnum.exLowerBackPart,EXGRIDLib.AlignmentEnum.LeftAlignment);

axGrid1.set_ScrollPartCaption(EXGRIDLib.ScrollBarEnum.exHScroll,EXGRIDLib.ScrollPartEnum.exUpperBackPart,"right");

axGrid1.set_ScrollPartCaptionAlignment(EXGRIDLib.ScrollBarEnum.exHScroll,EXGRIDLib.ScrollPartEnum.exUpperBackPart,EXGRIDLib.AlignmentEnum.RightAlignment);

axGrid1.ColumnAutoResize = false;
axGrid1.Columns.Add(1.ToString());
axGrid1.Columns.Add(2.ToString());
axGrid1.Columns.Add(3.ToString());
axGrid1.Columns.Add(4.ToString());

The following C++ sample displays "left" aligned to the left on the lower part of the control's
horizontal scroll bar, and "right" aligned to the right on the upper part of the control's

horizontal scroll bar:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXGRIDLib' for the library: 'ExGrid 1.0 Control Library'

 #import "ExGrid.dll"
 using namespace EXGRIDLib;
*/
EXGRIDLib::IGridPtr spGrid1 = GetDlgItem(IDC_GRID1)->GetControlUnknown();
spGrid1->PutScrollPartCaption(EXGRIDLib::exHScroll,EXGRIDLib::exLowerBackPart,L"left");
spGrid1-
>PutScrollPartCaptionAlignment(EXGRIDLib::exHScroll,EXGRIDLib::exLowerBackPart,EXGRIDLib::LeftAlignment);

spGrid1-
>PutScrollPartCaption(EXGRIDLib::exHScroll,EXGRIDLib::exUpperBackPart,L"right");
spGrid1-
>PutScrollPartCaptionAlignment(EXGRIDLib::exHScroll,EXGRIDLib::exUpperBackPart,EXGRIDLib::RightAlignment);

spGrid1->PutColumnAutoResize(VARIANT_FALSE);
spGrid1->GetColumns()->Add(L"1");
spGrid1->GetColumns()->Add(L"2");
spGrid1->GetColumns()->Add(L"3");
spGrid1->GetColumns()->Add(L"4");

The following VFP sample displays "left" aligned to the left on the lower part of the control's
horizontal scroll bar, and "right" aligned to the right on the upper part of the control's
horizontal scroll bar:

with thisform.Grid1
 .ScrollPartCaption(1,512) = "left"
 .ScrollPartCaptionAlignment(1,512) = 0
 .ScrollPartCaption(1,128) = "right"
 .ScrollPartCaptionAlignment(1,128) = 2
 .ColumnAutoResize = .F.
 .Columns.Add(1)
 .Columns.Add(2)
 .Columns.Add(3)

 .Columns.Add(4)
endwith

property Grid.ScrollPartEnable(ScrollBar as ScrollBarEnum, Part as
ScrollPartEnum) as Boolean
Indicates whether the specified scroll part is enabled or disabled.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the part is enabled or disabled.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll bar being enabled or disabled.

Boolean A Boolean expression that specifies whether the
scrollbar's part is enabled or disabled.

By default, when a part becomes visible, the ScrollPartEnable property is automatically
called, so the parts becomes enabled. Use the ScrollPartVisible property to add or remove
buttons/parts in the control's scrollbar. Use the ScrollPartEnable property to specify enable
or disable parts in the control's scrollbar. Use the ScrollBars property to specify the visible
scrollbars in the control. Use the ScrolPartCaption property to specify the caption of the
scroll's part. Use the OffsetChanged event to notify your application that the scroll position
is changed. Use the OversizeChanged event to notify your application whether the range for
a specified scroll bar is changed. Use the ScrollPos property to specify the position for the
control's scroll bar. The control fires the ScrollButtonClick event when the user clicks a part
of the scroll bar. Use the ScrollOrderParts property to customize the order of the buttons in
the scroll bar.

property Grid.ScrollPartVisible(ScrollBar as ScrollBarEnum, Part as
ScrollPartEnum) as Boolean
Indicates whether the specified scroll part is visible or hidden.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the part is visible or hidden.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll bar being visible

Boolean A Boolean expression that specifies whether the
scrollbar's part is visible or hidden.

Use the ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar.
By default, when a part becomes visible, the ScrollPartEnable property is automatically
called, so the parts becomes enabled. Use the ScrollPartEnable property to specify enable
or disable parts in the control's scrollbar. Use the ScrollBars property to specify the visible
scrollbars in the control. Use the ScrolPartCaption property to specify the caption of the
scroll's part. Use the OffsetChanged event to notify your application that the scroll position
is changed. Use the OversizeChanged event to notify your application whether the range for
a specified scroll bar is changed. Use the ScrollPos property to specify the position for the
control's scroll bar. The control fires the ScrollButtonClick event when the user clicks a part
of the scroll bar. Use the Background property to change the visual appearance for any part
in the control's scroll bar. Use the ScrollOrderParts property to customize the order of the
buttons in the scroll bar.

By default, the following parts are shown:

exLeftBPart (the left or up button of the control)
exLowerBackPart (the part between the left/up button and the thumb part of the
control)
exThumbPart (the thumb/scrollbox part)
exUpperBackPart (the part between the the thumb and the right/down button of the
control)
exRightBPart (the right or down button of the control)

The following VB sample adds up and down additional buttons to the control's vertical scroll
bar :

With Grid1
 .BeginUpdate
 .ScrollBars = exDisableBoth
 .ScrollPartVisible(exVScroll, exLeftB1Part Or exRightB1Part) = True
 .ScrollPartCaption(exVScroll, exLeftB1Part) = "1"
 .ScrollPartCaption(exVScroll, exRightB1Part) = "2"
 .EndUpdate
End With

The following VB.NET sample adds up and down additional buttons to the control's vertical
scroll bar :

With AxGrid1
 .BeginUpdate()
 .ScrollBars = EXGRIDLib.ScrollBarsEnum.exDisableBoth
 .set_ScrollPartVisible(EXGRIDLib.ScrollBarEnum.exVScroll,
EXGRIDLib.ScrollPartEnum.exLeftB1Part Or EXGRIDLib.ScrollPartEnum.exRightB1Part, True)
 .set_ScrollPartCaption(EXGRIDLib.ScrollBarEnum.exVScroll,
EXGRIDLib.ScrollPartEnum.exLeftB1Part, "1")
 .set_ScrollPartCaption(EXGRIDLib.ScrollBarEnum.exVScroll,
EXGRIDLib.ScrollPartEnum.exRightB1Part, "2")
 .EndUpdate()
End With

The following C# sample adds up and down additional buttons to the control's vertical scroll
bar :

axGrid1.BeginUpdate();
axGrid1.ScrollBars = EXGRIDLib.ScrollBarsEnum.exDisableBoth;
axGrid1.set_ScrollPartVisible(EXGRIDLib.ScrollBarEnum.exVScroll,
EXGRIDLib.ScrollPartEnum.exLeftB1Part | EXGRIDLib.ScrollPartEnum.exRightB1Part, true);
axGrid1.set_ScrollPartCaption(EXGRIDLib.ScrollBarEnum.exVScroll,
EXGRIDLib.ScrollPartEnum.exLeftB1Part , "1");
axGrid1.set_ScrollPartCaption(EXGRIDLib.ScrollBarEnum.exVScroll,
EXGRIDLib.ScrollPartEnum.exRightB1Part, "2");
axGrid1.EndUpdate();

The following C++ sample adds up and down additional buttons to the control's vertical
scroll bar :

m_grid.BeginUpdate();
m_grid.SetScrollBars(15 /*exDisableBoth*/);
m_grid.SetScrollPartVisible(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ | 32
/*exRightB1Part*/, TRUE);
m_grid.SetScrollPartCaption(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ , _T("
1"));
m_grid.SetScrollPartCaption(0 /*exVScroll*/, 32 /*exRightB1Part*/ , _T("2")
);
m_grid.EndUpdate();

The following VFP sample adds up and down additional buttons to the control's vertical
scroll bar :

With thisform.Grid1
 .BeginUpdate
 .ScrollBars = 15
 .ScrollPartVisible(0, bitor(32768,32)) = .t.
 .ScrollPartCaption(0,32768) = "1"
 .ScrollPartCaption(0, 32) = "2"
 .EndUpdate
EndWith

*** ActiveX Control Event ***
LPARAMETERS scrollpart

wait window nowait ltrim(str(scrollpart))

property Grid.ScrollPos(Vertical as Boolean) as Long
Specifies the vertical/horizontal scroll position.

Type Description

Vertical as Boolean
A boolean expression that specifies the scrollbar being
requested. True indicates the Vertical scroll bar, False
indicates the Horizontal scroll bar.

Long A long expression that defines the scroll bar position.

Use the ScrollPos property to change programmatically the position of the control's scroll
bar. Use the ScrollPos property to get the horizontal or vertical scroll position.Use the
ScrollBars property to define the control's scroll bars. Use the Scroll method to scroll
programmatically the control's content. The control fires the OffsetChanged event when the
control's scroll position is changed.

The following VB sample scrolls to the row 10,000:

With Grid1
 .ScrollPos(True) = 10000
End With

The following VB sample gets the cell's coordinates to let user aligns nicely a context popup
menu:

Private Sub getCellPos(ByVal g As EXGRIDLibCtl.Grid, ByVal hItem As EXGRIDLibCtl.hItem,
ByVal nColumn As Long, X As Long, Y As Long)
 X = -g.ScrollPos(False)
 With g
 Dim c As EXGRIDLibCtl.Column
 For Each c In .Columns
 If (c.Visible) Then
 If (c.Position < .Columns(nColumn).Position) Then
 X = X + c.Width
 End If
 End If
 Next
 Y = 0
 If (.HeaderVisible) Then
 Y = Y + .HeaderHeight

 End If
 With .Items
 Dim i As EXGRIDLibCtl.hItem
 i = .FirstVisibleItem()
 While Not (i = hItem) And Not (i = 0)
 Y = Y + .ItemHeight(i)
 i = .NextVisibleItem(i)
 Wend
 End With
 End With
End Sub

The getCellPos method gets the x, y client coordinates of the cell (hItem, nColumn). The
hItem indicates the handle of the item, and the nColumn indicates the index of the column.
Use the ClientToScreen API function to convert the client coordinates to screen coordinates
like bellow:

Private Type POINTAPI
 x As Long
 y As Long
End Type
Private Declare Function ClientToScreen Lib "user32" (ByVal hwnd As Long, lpPoint As
POINTAPI) As Long

In VFP, use 1 instead .t. for changing the ScrollPos property like follows:

list1.object.scrollpos(1) = 123

instead

list1.scrollpos(.t.) = 123

In the following MouseDown handler the ItemFromPoint method determines the cell from
the cursor. The sample displays an exPopupMenu control at the beginning of the cell, when
user right clicks the cell:

Private Sub Grid1_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 If Button = 2 Then
 With Grid1

https://exontrol.com/expopupmenu.jsp

 Dim h As EXGRIDLibCtl.hItem, c As Long, hit As EXGRIDLibCtl.HitTestInfoEnum
 h = .ItemFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, c, hit)
 If Not (h = 0) Then
 ' Selects the item when user does a right click
 Grid1.Items.SelectItem(h) = True
 ' Gets the client coordinates of the cell
 Dim xCell As Long, yCell As Long
 getCellPos Grid1, h, c, xCell, yCell
 ' Converts the client coordinates to the screen coordinates
 Dim p As POINTAPI
 p.X = xCell
 p.Y = yCell
 ClientToScreen Grid1.hwnd, p
 ' Displays the exPopupMenu control at specified position
 PopupMenu1.HAlign = EXPOPUPMENULibCtl.exLeft
 Debug.Print "You have selected " & PopupMenu1.Show(p.X, p.Y)
 End If
 End With
 End If
End Sub

property Grid.ScrollThumbSize(ScrollBar as ScrollBarEnum) as Long
Specifies the size of the thumb in the scrollbar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical or
the horizontal scroll bar.

Long A long expression that defines the size of the scrollbar's
thumb.

Use the ScrollThumbSize property to define a fixed size for the scrollbar's thumb. By
default, the ScrollThumbSize property is -1, that makes the control computes automatically
the size of the thumb based on the scrollbar's range. If case, use the fixed size for your
thumb when you change its visual appearance using the Background(exVSThumb) or
Background(exHSThumb) property. Use the ScrollWidth property to specify the width of the
vertical scroll bar. Use the ScrollButtonWidth property to specify the width of the buttons in
the horizontal scroll bar. Use the ScrollHeight property to specify the height of the horizontal
scroll bar. Use the ScrollButtonHeight property to specify the height of the buttons in the
vertical scroll bar. Use the ScrollPartVisible property to specify the visible parts in the
control's scroll bar.

property Grid.ScrollToolTip(ScrollBar as ScrollBarEnum) as String
Specifies the tooltip being shown when the user moves the scroll box.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical
scroll bar or the horizontal scroll bar.

String A string expression being shown when the user clicks and
moves the scrollbar's thumb.

Use the ScrollToolTip property to specify whether the control displays a tooltip when the
user clicks and moves the scrollbar's thumb. By default, the ScrollToolTip property is empty.
If the ScrollToolTip property is empty, the tooltip is not shown when the user clicks and
moves the thumb of the scroll bar. The OffsetChanged event notifies your application that
the user changes the scroll position. Use the SortPartVisible property to specify the parts
being visible in the control's scroll bar. Use the ScrollBars property to specify the visible
scrollbars in the control.

The following VB sample displays a tooltip when the user clicks and moves the thumb in the
control's scroll bar:

Private Sub Grid1_OffsetChanged(ByVal Horizontal As Boolean, ByVal NewVal As Long)
 If (Not Horizontal) Then
 Grid1.ScrollToolTip(exVScroll) = "Record " & NewVal
 End If
End Sub

The following VB.NET sample displays a tooltip when the user clicks and moves the thumb
in the control's scroll bar:

Private Sub AxGrid1_OffsetChanged(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_OffsetChangedEvent) Handles AxGrid1.OffsetChanged
 If (Not e.horizontal) Then
 AxGrid1.set_ScrollToolTip(EXGRIDLib.ScrollBarEnum.exVScroll, "Record " &
e.newVal.ToString())
 End If
End Sub

The following C++ sample displays a tooltip when the user clicks and moves the thumb in
the control's scroll bar:

void OnOffsetChangedGrid1(BOOL Horizontal, long NewVal)
{
 if (!Horizontal)
 {
 CString strFormat;
 strFormat.Format(_T("%i"), NewVal);
 m_grid.SetScrollToolTip(0, strFormat);
 }
}

The following C# sample displays a tooltip when the user clicks and moves the thumb in the
control's scroll bar:

private void axGrid1_OffsetChanged(object sender,
AxEXGRIDLib._IGridEvents_OffsetChangedEvent e)
{
 if (!e.horizontal)
 axGrid1.set_ScrollToolTip(EXGRIDLib.ScrollBarEnum.exVScroll, "Record " +
e.newVal.ToString());
}

The following VFP sample displays a tooltip when the user clicks and moves the thumb in
the control's scroll bar:

*** ActiveX Control Event ***
LPARAMETERS horizontal, newval

If (1 # horizontal) Then
 thisform.Grid1.ScrollToolTip(0) = "Record " + ltrim(str(newval))
EndIf

property Grid.ScrollWidth as Long
Specifies the width of the vertical scrollbar.

Type Description

Long A long expression that defines the width of the vertical
scroll bar.

By default, the ScrollWidth property is -1. If the ScrollWidth property is -1, the control uses
the default width of the vertical scroll bar from the system. Use the ScrollWidth property to
specify the width of the vertical scroll bar. Use the ScrollBars property to specify which
scroll bar is visible or hidden in the control. Use the ScrollButtonWidth property to specify
the width of the buttons in the horizontal scroll bar. Use the ScrollHeight property to specify
the height of the horizontal scroll bar. Use the ScrollButtonHeight property to specify the
height of the buttons in the vertical scroll bar. Use the ScrollPartVisible property to specify
the visible parts in the control's scroll bar. Use the ScrollThumbSize property to define a
fixed size for the scrollbar's thumb.

property Grid.SearchColumnIndex as Long
Retrieves or sets a value indicating the index of the column that is used by the auto search
feature.

Type Description

Long A long expression that indicates the index of searching
column.

Use the SearchColumnIndex property to change the searching column. The control changes
the searching column when the user clicks on a column or when the user presses the TAB
key (in this case the UseTabKey property should be True). If the user starts typing
characters in the searching column, the control selects the item that matches the typed
characters. If you want to disable the auto search feature, you have to set the
SearchColumnIndex property to -1. Use the MarkSearchColumn property to hide the
marker of the searching column. If the searching column is moved, the focused column is
moved too. Use the FocusColumnIndex property to get the focused column.

property Grid.SelBackColor as Color
Retrieves or sets a value that indicates the selection background color.

Type Description

Color

A color expression that defines the selected items
background color. The last 7 bits in the high significant
byte of the color indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

Use the SelForeColor and SelBackColor properties to define colors for the selected items.
The control highlights the selected items only if the SelBackColor and BackColor properties
have different values, and the SelForeColor and ForeColor properties have different
values. The SelBackColor property may display transparent areas using EBN files. The
SelForeColor property is applied only if it is different that the control's foreground color. Use
the SingleSel property to specify whether the control supports single or multiple selection.
Use the SelectItem property to programmatically select an item giving its handle. The
SelectedItem and SelectCount properties get the collection of selected items. Use the
FocusItem property to get the focused item. The control fires the SelectionChanged event
when user changes the selection. Use the SelectableItem property to specify the user can
select an item. How do I assign a new look for the selected item?

The following VB sample changes the visual appearance for the selected item. The
SelBackColor property indicates the selection background color. Shortly, we need to add a
skin to the Appearance object using the Add method, and we need to set the last 7 bits in
the SelBackColor property indicates the index of the skin that we want to use. The sample
applies the " " to the selected item(s):

With Grid1
 With .VisualAppearance
 .Add &H23, App.Path + "\selected.ebn"
 End With
 .SelForeColor = RGB(0, 0, 0)
 .SelBackColor = .SelBackColor Or &H23000000
End With

The sample adds the skin with the index 35 (Hexa 23), and applies to the selected item
using the SelBackColor property.

The following C++ sample applies a new appearance to the selected item(s):

#include "Appearance.h"
m_grid.GetVisualAppearance().Add(0x23,
COleVariant(_T("D:\\Temp\\ExGrid_Help\\selected.ebn")));
m_grid.SetSelBackColor(m_grid.GetSelBackColor() | 0x23000000);
m_grid.SetSelForeColor(0);

The following VB.NET sample applies a new appearance to the selected item(s):

With AxGrid1
 With .VisualAppearance
 .Add(&H23, "D:\Temp\ExGrid_Help\selected.ebn")
 End With
 .SelForeColor = Color.Black
 .Template = "SelBackColor = 587202560"
End With

The VB.NET sample uses the Template property to assign a new value to the SelBackColor
property. The 587202560 value represents &23000000 in hexadecimal.

The following C# sample applies a new appearance to the selected item(s):

axGrid1.VisualAppearance.Add(0x23, "D:\\Temp\\ExGrid_Help\\selected.ebn");
axGrid1.Template = "SelBackColor = 587202560";

The following VFP sample applies a new appearance to the selected item(s):

With thisform.Grid1
 With .VisualAppearance
 .Add(35, "D:\Temp\ExGrid_Help\selected.ebn")
 EndWith
 .SelForeColor = RGB(0, 0, 0)
 .SelBackColor = .SelBackColor + 587202560
EndWith

How do I assign a new look for the selected item?

The component supports skinning parts of the control, including the selected item. Shortly,
the idea is that identifier of the skin being added to the Appearance collection is stored in
the first significant byte of property of the color type. In our case, we know that the
SelBackColor property changes the background color for the selected item. This is what we
need to change. In other words, we need to change the visual appearance for the selected
item, and that means changing the background color of the selected item. So, the following
code (blue code) changes the appearance for the selected item:

With Grid1
 .VisualAppearance.Add &H34, App.Path + "\aqua.ebn"
 .SelBackColor = &H34000000
End With

Please notice that the 34 hexa value is arbitrary chosen, it is not a predefined value. Shortly,
we have added a skin with the identifier 34, and we specified that the SelBackColor
property should use that skin, in order to change the visual appearance for the selected
item. Also, please notice that the 34 value is stored in the first significant byte, not in other
position. For instance, the following sample doesn't use any skin when displaying the
selected item:

With Grid1
 .VisualAppearance.Add &H34, App.Path + "\aqua.ebn"
 .SelBackColor = &H34
End With

This code (red code) DOESN'T use any skin, because the 34 value is not stored in the
higher byte of the color value. The sample just changes the background color for the
selected item to some black color (RGB(0,0,34)). So, please pay attention when you
want to use a skin and when to use a color. Simple, if you are calling &H34000000, you
have 34 followed by 6 (six) zeros, and that means the first significant byte of the color
expression. Now, back to the problem. The next step is how we are creating skins? or EBN
files? The Exontrol's exbutton component includes a builder tool that saves skins to EBN
files. So, if you want to create new skin files, you need to download and install the exbutton
component from our web site. Once that the exbutton component is installed, please follow
the steps.

Let's say that we have a BMP file, that we want to stretch on the selected item's
background.

1. Open the VB\Builder or VC\Builder sample
2. Click the New File button (on the left side in the toolbar), an empty skin is created.

https://exontrol.com/exbutton.jsp

3. Locate the Background tool window and select the Picture\Add New item in the
menu, the Open file dialog is opened.

4. Select the picture file (GIF, BMP, JPG, JPEG). You will notice that the visual
appearance of the focused object in the skin is changed, actually the picture you have
selected is tiled on the object's background.

5. Select the None item, in the Background tool window, so the focused object in the skin
is not displaying anymore the picture being added.

6. Select the Root item in the skin builder window (in the left side you can find the
hierarchy of the objects that composes the skin), so the Root item is selected, and so
focused.

7. Select the picture file you have added at the step 4, so the Root object is filled with the
picture you have chosen.

8. Resize the picture in the Background tool window, until you reach the view you want to
have, no black area, or change the CX and CY fields in the Background tool window,
so no black area is displayed.

9. Select Stretch button in the Background tool window, so the Root object stretches the
picture you have selected.

10. Click the Save a file button, and select a name for the new skin, click the Save button
after you typed the name of the skin file. Add the .ebn extension.

11. Close the builder

You can always open the skin with the builder and change it later, in case you want to
change it.

Now, create a new project, and insert the component where you want to use the skin, and
add the skin file to the Appearance collection of the object, using blue code, by changing
the name of the file or the path where you have selected the skin. Once that you have
added the skin file to the Appearance collection, you can change the visual appearance for
parts of the controls that supports skinning. Usually the properties that changes the
background color for a part of the control supports skinning as well.

property Grid.SelBackMode as BackModeEnum
Retrieves or sets a value that indicates whether the selection is transparent or opaque.

Type Description

BackModeEnum A BackModeEnum expression that indicates how the
selected items are painted.

By default, the SelBackMode property is exOpaque. Use the SelBackMode property to
specify how the selection appears. Use the SelBackMode property to specify how the
control displays the selection when the control has a picture on its background. Use the
SelBackColor property to specify the selection background color. Use the SelForeColor
property to specify the selection foreground color.

property Grid.SelectByDrag as Boolean
Specifies whether the user selects multiple items by dragging.

Type Description

Boolean A boolean expression that specifies whether the user may
select multiple items by drag and drop.

By default, SelectByDrag property is True. Use the SelectByDrag property to disable
selecting multiple items by dragging. The SelectByDrag property has effect only if the
control supports multiple selection. The SingleSel property controls the number of items that
the user may select. For instance, if the SingleSel property is True, the user can't select
multiple items, and so a single item may be selected at the time. If the SingleSel property is
False, the user can select multiple items using the mouse, keyboard or both. When the
SelectByDrag property is True, the user may click the non text area to start select items by
dragging. Use the SelectByDrag property on False when your control requires OLE drag
and drop operations, like when you select multiple items and drag them to a new position.
Use the OLEDropMode property to specify whether the OLE drag and drop operations
inside the control is allowed. For instance, if the SelectByDrag and OLEDropMode
properties are on, sometimes it is confused what control should do when user clicks and
start to select items.

property Grid.SelectColumnIndex as Long
Retrieves or sets a value that indicates the index of the selected column, if the
FullRowSelect property is False.

Type Description

Long A long expression that indicates the index of selected
column.

The property has effect only if the FullRowSelect property is False. Use the SelectedItem
property to determine the selected items. Use the SelectColumnInner property to get the
index of the inner cell that's selected or focused. Use the SplitCell property to split a
cell. Use the SelectableItem property to specify the user can select an item.

property Grid.SelectColumnInner as Long
Retrieves or sets a value that indicates the index of the inner cell that's selected.

Type Description

Long A long expression that indicates the index of the inner cell
that's focused or selected.

Use the SelectColumnInner property to get the index of the inner cell that's selected or
focused. The SelectColumnInner property may be greater than zero, if the control contains
inner cells. The SplitCell method splits a cell in two cells (creates an inner cell). The newly
created cell is called inner cell. Use the FocusColumnIndex property to retrieve the index of
the column that has the focus. The FocusItem property indicates the focused item. The
SelectColumnIndex property determines the index of the column that's selected when
FullRowSelect property is False. Use the FocusColumnIndex and SelectColumnInner
property to change the cell that has the focus inside.

The control fires the FocusChanged event when the user changes:

the focused item
the focused column or an inner cell gets the focus.

The following VB sample determines the focused cell:

Private Sub Grid1_FocusChanged()
 With Grid1
 Dim hFocusCell As EXGRIDLibCtl.HCELL
 hFocusCell = .Items.ItemCell(.Items.FocusItem, .FocusColumnIndex)
 Debug.Print "Focus = " & .Items.CellCaption(, hFocusCell) & " (" & hFocusCell & ")"
 End With
End Sub

The following VB sample determines the focused cell, if the control contains inner cells:

Private Sub Grid1_FocusChanged()
 With Grid1
 Dim hFocusCell As EXGRIDLibCtl.HCELL
 hFocusCell = .Items.ItemCell(.Items.FocusItem, .FocusColumnIndex)
 If (.SelectColumnInner > 0) Then
 ' Do we selected an inner cell?
 hFocusCell = .Items.InnerCell(, hFocusCell, .SelectColumnInner)

 End If
 Debug.Print "Focus = " & .Items.CellCaption(, hFocusCell) & " (" & hFocusCell & ")"
 End With
End Sub

The following C++ sample displays the focused cell:

#include "Items.h"
void OnFocusChangedGrid1()
{
 if (IsWindow(m_grid.m_hWnd))
 {
 CItems items = m_grid.GetItems();
 COleVariant vtItem(items.GetFocusItem()), vtColumn(
m_grid.GetFocusColumnIndex());
 CString strFormat;
 strFormat.Format("Focus on '%s'", V2S(&items.GetCellValue(vtItem, vtColumn)));
 OutputDebugString(strFormat);
 }
}

The following C++ sample displays the focused cell, if the control contains inner cells:

#include "Items.h"
void OnFocusChangedGrid1()
{
 if (IsWindow(m_grid.m_hWnd))
 {
 CItems items = m_grid.GetItems();
 COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
 COleVariant vtFocusCell(items.GetItemCell(items.GetFocusItem(),
COleVariant(m_grid.GetFocusColumnIndex())));
 if (m_grid.GetSelectColumnInner() > 0)
 vtFocusCell = items.GetInnerCell(vtMissing, vtFocusCell,
COleVariant(m_grid.GetSelectColumnInner()));
 CString strFormat;
 strFormat.Format("Focus on '%s'", V2S(&items.GetCellValue(vtMissing, vtFocusCell)
));

 OutputDebugString(strFormat);
 }
}

The following VB.NET sample displays the focused cell:

Private Sub AxGrid1_FocusChanged(ByVal sender As Object, ByVal e As System.EventArgs)
Handles AxGrid1.FocusChanged
 With AxGrid1.Items
 Debug.Print("Focus on '" & .CellValue(.FocusItem,
AxGrid1.FocusColumnIndex()).ToString() & "'")
 End With
End Sub

The following VB.NET sample displays the focused cell, if the control contains inner cells:

Private Sub AxGrid1_FocusChanged(ByVal sender As Object, ByVal e As System.EventArgs)
Handles AxGrid1.FocusChanged
 With AxGrid1.Items
 Dim focusCell As Object = .ItemCell(.FocusItem, AxGrid1.FocusColumnIndex)
 If (AxGrid1.SelectColumnInner > 0) Then
 focusCell = .InnerCell(Nothing, focusCell, AxGrid1.SelectColumnInner)
 End If
 Debug.Print("Focus on '" & .CellValue(Nothing, focusCell).ToString() & "'")
 End With
End Sub

The following C# sample displays the focused cell:

private void axGrid1_FocusChanged(object sender, EventArgs e)
{
 object focusValue = axGrid1.Items.get_CellValue(axGrid1.Items.FocusItem,
axGrid1.FocusColumnIndex);
 System.Diagnostics.Debug.WriteLine("Focus on '" + (focusValue != null ?
focusValue.ToString() : "") + "'");
}

The following C# sample displays the focused cell, if the control contains inner cells:

private void axGrid1_FocusChanged(object sender, EventArgs e)
{
 object focusCell = axGrid1.Items.get_ItemCell(axGrid1.Items.FocusItem,
axGrid1.FocusColumnIndex);
 if (axGrid1.SelectColumnInner > 0)
 focusCell = axGrid1.Items.get_InnerCell(null, focusCell, axGrid1.SelectColumnInner);
 object focusValue = axGrid1.Items.get_CellValue(null, focusCell);
 System.Diagnostics.Debug.WriteLine("Focus on '" + (focusValue != null ?
focusValue.ToString() : "") + "'");
}

The following VFP sample displays the focused cell:

*** ActiveX Control Event ***

with thisform.Grid1.Items
 .DefaultItem = .FocusItem
 wait window nowait .CellCaption(0, thisform.Grid1.FocusColumnIndex())
endwith

property Grid.SelectOnRelease as Boolean
Indicates whether the selection occurs when the user releases the mouse button.

Type Description

Boolean A Boolean expression that indicates whether the selection
occurs when the user releases the mouse button.

By default, the SelectOnRelease property is False. By default, the selection occurs, as
soon as the user clicks an object. The SelectOnRelease property indicates whether the
selection occurs when the user releases the mouse button. The SelectOnRelease property
has no effect if the SingleSel property is False, and SelectByDrag property is True.

property Grid.SelForeColor as Color
Retrieves or sets a value that indicates the selection foreground color.

Type Description

Color A color expression that defines the selection foreground
color.

Use the SelForeColor and SelBackColor properties to define colors for the selected items.
The control highlights the selected items only if the SelBackColor and BackColor properties
have different values, and the SelForeColor and ForeColor properties have different values.
Use the SelectItem property to programmatically select an item giving its handle. The
SelectedItem and SelectCount properties get the collection of selected items. Use the
FocusItem property to get the focused item. The control fires the SelectionChanged event
when user changes the selection. Use the SelectableItem property to specify the user can
select an item. The SelForeColor property is applied only if it is different that the control's
foreground color.

property Grid.ShowFocusRect as Boolean
Retrieves or sets a value indicating whether the control draws a thin rectangle around the
focused item.

Type Description

Boolean A boolean expression that indicates whether the marker
for the focused cell is visible or hidden.

Use the ShowFocusRect property to hide the rectangle drawn around the focused item.
Use the FocusItem property to get the focused item. Use the FocusColumnIndex property
to determine the focused column. If there is no focused item the FocusItem property
retrieves 0. At one moment, only one item can be focused. When the selection is changed
the focused item is changed too. Use the SelectCount property to get the number of
selected items. Use the SelectedItem property to get the selected item. Use the SelectItem
to select or unselect a specified item. If the control supports only single selection, you can
use the FocusItem property to get the selected/focused item because they are always the
same.

property Grid.ShowImageList as Boolean
Specifies whether the control's image list window is visible or hidden.

Type Description

Boolean A boolean expression that indicates whether the control's
images list window is visible or hidden.

By default, the ShowImageList property is True. Use the ShowImageList property to hide
the control's images list window. The control's images list window is visible only at design
time. Use the Images method to associate an images list control to the tree control. The
ImageSize property defines the size (width/height) of the icons within the control's Images
collection. Use the ReplaceIcon method to add, remove or clear icons in the control's
images collection. Use the CellImage, CellImages properties to assign icons to a cell. Use
the CellPicture property to assign a picture to a cell. Use the CheckImage or RadioImage
property to specify a different look for checkboxes or radio buttons in the cells.

property Grid.ShowLockedItems as Boolean
Retrieves or sets a value that indicates whether the locked/fixed items are visible or hidden.

Type Description

Boolean A boolean expression that specifies whether the locked
items are shown or hidden.

A locked or fixed item is always displayed on the top or bottom side of the control no matter
if the control's list is scrolled up or down. Use the ShowLockedItems property to show or
hide the locked items. Use the LockedItemCount property to add or remove items
fixed/locked to the top or bottom side of the control. Use the LockedItem property to
access a locked item by its position. Use the CellValue property assign a value to a cell.

method Grid.ShowToolTip (ToolTip as String, [Title as Variant],
[Alignment as Variant], [X as Variant], [Y as Variant])
Shows the specified tooltip at given position.

Type Description

ToolTip as String

The ToolTip parameter can be any of the following:

NULL(BSTR) or "<null>"(string) to indicate that the
tooltip for the object being hovered is not changed
A String expression that indicates the description of
the tooltip, that supports built-in HTML format (adds,
replaces or changes the object's tooltip)

Title as Variant

The Title parameter can be any of the following:

missing (VT_EMPTY, VT_ERROR type) or "<null>"
(string) the title for the object being hovered is not
changed.
A String expression that indicates the title of the
tooltip (no built-in HTML format) (adds, replaces or
changes the object's title)

Alignment as Variant

A long expression that indicates the alignment of the tooltip
relative to the position of the cursor. If missing
(VT_EMPTY, VT_ERROR) the alignment of the tooltip for
the object being hovered is not changed.

The Alignment parameter can be one of the following:

0 - exTopLeft
1 - exTopRight
2 - exBottomLeft
3 - exBottomRight
0x10 - exCenter
0x11 - exCenterLeft
0x12 - exCenterRight
0x13 - exCenterTop
0x14 - exCenterBottom

By default, the tooltip is aligned relative to the top-left
corner (0 - exTopLeft).

X as Variant

Specifies the horizontal position to display the tooltip as
one of the following:

missing (VT_EMPTY, VT_ERROR type), indicates
that the tooltip is shown on its default position /
current cursor position (ignored)
-1, indicates the current horizontal position of the
cursor (current x-position)
a numeric expression that indicates the horizontal
screen position to show the tooltip (fixed screen x-
position)
a string expression that indicates the horizontal
displacement relative to default position to show the
tooltip (moved)

Y as Variant

Specifies the vertical position to display the tooltip as one
of the following:

missing (VT_EMPTY, VT_ERROR type), indicates
that the tooltip is shown on its default position /
current cursor position (ignored)
-1, indicates the current vertical position of the cursor
(current y-position)
a numeric expression that indicates the vertical screen
position to show the tooltip (fixed screen y-position)
a string expression that indicates the vertical
displacement relative to default position to show the
tooltip (displacement)

Use the ShowToolTip method to display a custom tooltip at specified position or to update
the object's tooltip, title or position. You can call the ShowToolTip method during the
MouseMove event. Use the ToolTipPopDelay property specifies the period in ms of time the
ToolTip remains visible if the mouse pointer is stationary within a control. The ToolTipDelay
property specifies the time in ms that passes before the ToolTip appears. Use the
ToolTipWidth property to specify the width of the tooltip window. Use the ToolTipFont
property to change the tooltip's font. Use the Background(exToolTipAppearance) property
indicates the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color.

For instance:

ShowToolTip(`<null>`,`<null>`,,`+8`,`+8`), shows the tooltip of the object moved relative

to its default position
ShowToolTip(`<null>`,`new title`), adds, changes or replaces the title of the object's
tooltip
ShowToolTip(`new content`), adds, changes or replaces the object's tooltip
ShowToolTip(`new content`,`new title`), shows the tooltip and title at current position
ShowToolTip(`new content`,`new title`,,`+8`,`+8`), shows the tooltip and title moved
relative to the current position
ShowToolTip(`new content`,``,,128,128), displays the tooltip at a fixed position
ShowToolTip(``,``), hides the tooltip

The ToolTip parameter supports the built-in HTML format like follows:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

about:blank

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold

<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Grid.SingleSel as Boolean
Retrieves or sets a value that indicates whether the control supports single or multiple
selection.

Type Description

Boolean A boolean expression that indicates whether the control
support single or multiple selection.

The SingleSel property specifies whether the control support single or multiple selection. By
default, the SingleSel property is True, and so only a single item can be selected. Use the
SelectByDrag property to disable selecting multiple items by dragging. Use the FocusItem
to retrieve the handle of the focused item. If the control supports single selection, the
FocusItem property gets the handle of the selected item too. The SelectedItem and
SelectCount properties get the collection of selected items. Use the SelectItem property to
programmatically select an item giving its handle. The control fires SelectionChanged event
when the selection is changed. Use the SelBackColor and SelForeColor properties to
specify the background and foreground colors for selected items. Use the SelectableItem
property to specify the user can select an item. The FullRowSelect property specifies
whether the selection spans the entire width of the control. The control doesn't support
selection when using the virtual unbound mode. Use the SelectAll method to select all visible
items, when the control supports multiple selection. The SelectPos property
selects/unselects items by position. The Selection property selects/unselects items by
index.

property Grid.SingleSort as Boolean
Returns or sets a value that indicates whether the control supports sorting by single or
multiple columns.

Type Description

Boolean A boolean expression that indicates whether the control
supports sorting by single or multiple columns.

Use the SingleSort property to allow sorting by multiple columns. Sorting by a single column
in the control is a simple matter of clicking on the column head. Sorting by multiple columns,
however, is not so obvious. But it's actually quite easy. The user has two options to sort by
multiple columns:

First, sort by the first criterion, by clicking on the column head. Then hold the SHIFT
key down as you click on a second heading.
Click the column head and drag to the control's sort bar in the desired position.

By default, the SingleSort property is True, and so the user can have sorting by a single
column only. Use the SortBarVisible property to show the control's sort bar. The SingleSort
property is automatically set on False, if the SortBarVisible property is set to True. Use the
SortOnClick property to specify the action that control should execute when the user clicks
the control's header. Use the SortOrder property to sort a column programmatically. Use
the SortPosition property to specify the position of the column in the sorted columns list.
The control fires the Sort event when the user sorts a column. Use the ItemBySortPosition
property to get the columns being sorted in their order.

For instance, if the control contains multiple sorted columns, changing the SingleSort
property on True, erases all the columns in the sorting columns collection, and so no column
is sorted.

If the control display no sort bar (SortBarVisible property is False), the column's header
displays the position of the sorting order as shown bellow (multiple-columns sort):

property Grid.SortBarCaption as String
Specifies the caption being displayed on the control's sort bar when the sort bar contains no
columns.

Type Description

String A String expression that indicates the caption of the
control's sort bar.

The SortBarCaption property specifies the caption of the control's sort bar, when it contains
no sorted columns. Use the SortBarVisible property to show the control's sort bar. Use the
BackColorSortBar, BackColorSortBarCaption and ForeColorSortBar properties to specify
colors for the control's sort bar. Use the SortBarHeight property to specify the height of the
control's sort bar. Use the SortBarColumnWidth property to specify the width of the column
in the control's sort bar. By default, the SortBarCaption property is "Drag a column
header here to sort by that column.". Use the Font property to specify the control's font.
Use the ItemBySortPosition property to access the columns in the control's sort bar.

The SortBarCaption property may include built-in HTML tags like follows:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The

about:blank

Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously

loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Grid.SortBarColumnWidth as Long
Specifies the maximum width a column can be in the control's sort bar.

Type Description

Long

A long expression that indicates the width of the columns
in the control's sort bar. If the value is negative, all
columns in the sort bar are displayed with the same width
(the absolute value represents the width of the columns,
in pixels). If the value is positive, it indicates the maximum
width, so the width of the columns in the sort bar may
differ.

the SortBarColumnWidth property to specify the width of the column in the control's sort
bar. Use the SortBarVisible property to show the control's sort bar. Use the Width property
to specify the width of the column in the control's header bar. Use the SortBarHeight
property to specify the height of the control's sort bar. Use the SortBarCaption property to
specify the caption being displayed in the control's sort bar when it contains no columns.

property Grid.SortBarHeight as Long
Retrieves or sets a value that indicates the height of the control's sort bar.

Type Description

Long A long expression that indicates the height of the control's
sort bar, in pixels.

Use the SortBarHeight property to specify the height of the control's sort bar. Use the
SortBarVisible property to show the control's sort bar. By default, the SortBarHeight
property is 18 pixels. Use the HeaderHeight property to specify the height of the control's
header bar. Use the SortBarColumnWidth property to specify the width of the columns
being displayed in the control's sort bar. Use the BackColorSortBar,
BackColorSortBarCaption and ForeColorSortBar properties to specify colors for the
control's sort bar. Use the SortBarCaption property to specify the caption being displayed in
the control's sort bar when it contains no columns.

property Grid.SortBarVisible as Boolean
Retrieves or sets a value that indicates whether control's sort bar is visible or hidden.

Type Description

Boolean A boolean expression that indicates whether the sort bar is
visible or hidden.

Use the SortBarVisible property to show the control's sort bar. By default, the
SortBarVisible property is False. Use the SingleSort property to specify whether the control
supports sorting by single or multiple columns. Sorting by a single column in the control is a
simple matter of clicking on the column head. Sorting by multiple columns, however, is not
so obvious. But it's actually quite easy. The user has two options to sort by multiple
columns:

First, sort by the first criterion, by clicking on the column head. Then hold the SHIFT
key down as you click on a second heading.
Click the column head and drag to the control's sort bar in the desired position.

The control's sort bar displays the SortBarCaption expression, when it contains no columns,
like follows (the "Drag a column header ..." area is the control's sort bar) :

The sort bar displays the list of columns being sorted in their order as follows:

The SortOrder property adds or removes programmatically columns in the control's sort
bar. Use the SortPosition property to specify the position of the column in the sorting
columns collection. Use the ItemBySortPosition property to access the columns being
sorted. Use the SortOnClick property to specify the action that control should execute when
user clicks the column's header. Use the AllowSort property to specify whether the user
sorts a column by clicking the column's header. The control fires the Sort event when the
user sorts a column.

property Grid.SortOnClick as SortOnClickEnum
Retrieves or sets a value that indicates whether the control automatically sorts the data
when the user clicks on a column's caption.

Type Description

SortOnClickEnum
A SortOnClickEnum expression that indicates the action
that control takes whether the user clicks the column's
header.

Use the SortOnClick property to disable sorting items when the user clicks on the column's
header. Use the SortBarVisible property to show the control's sort bar. Use the SingleSort
property to allow sorting by single or multiple columns. Use the AllowSort property to avoid
sorting a column when user clicks the column. Use the DefaultSortOrder property to specify
the column's default sort order, when the user first clicks the column's header. Use the
SortChildren method to sort a column, at runtime. Use the DisplaySortIcon property to hide
the sort icon if the column is sorted. Use the HeaderVisible property to show or hide the
control's header. Use the BackColorHeader property to specify the header's background
color. Use the AllowSizing property to disable resizing a column when user clicks the right
margin of the column.

There are two methods to get the items sorted like follows:

Using the SortOrder property of the Column object::

Grid1.Columns(ColIndex).SortOrder = SortAscending

The SortOrder property adds the sorting icon to the column's header, if the
DisplaySortIcon property is True.

Using the SortChildren method of the Items collection. The SortChildren sorts the
items. The SortChildren method sorts the child items of the given parent item in the
control. SortChildren will not recourse through the tree, only the immediate children of
the item will be sorted. The following sample sorts descending the list of root items on
the "Column 1"(if your control displays a list, all items are considered being root items
).

Grid1.Items.SortChildren 0, "Column 1", False

The control fires the Sort event when the control sorts a column (the user clicks the
column's head) or when the sorting position is changed in the control's sort bar. Use the
Sort event to sort the data when the SortOnClk property is exUserSort.

method Grid.StartBlockUndoRedo ()
Starts recording the UI operations as a block of undo/redo operations.

Type Description

The StartBlockUndoRedo method starts recording the UI operations as a block on
undo/redo operations. The method has effect only if the AllowUndoRedo property is True.
The EndBlockUndoRedo method collects all undo/redo operations since
StartBlockUndoRedo method was called and add them to the undo/redo queue as a block.
This way the next call on a Undo operation, the entire block is restored, so all UI operations
are restored. The EndBlockUndoRedo method must be called the same number of times as
the StartBlockUndoRedo method was called. For instance, if you have called the
StartBlockUndoRedo twice the EndBlockUndoRedo method must be called twice too, and
the collected operations are added to the control's queue of undo/redo operations at the
end.

property Grid.Statistics as String
Gives statistics data of objects being hold by the control.

Type Description

String A String expression that gives information about objects
being loaded into the control.

The Statistics property gives statistics data of objects being hold by the control. The
Statistics property gives a rough idea on how many columns, items, cell, bars, links, notes
and so on are loaded into the control. Also, the Statistics property gives percentage usage
of base-memory of different objects within the memory.

The following output shows how the Statistics looks like, on a 32-bits machine:

Cells: 832 x 73 = 60,736 (60.40%)
Control: 1 x 20,440 = 20,440 (20.33%)
Column: 13 x 1,072 = 13,936 (13.86%)
Item: 64 x 72 = 4,608 (4.58%)
Items: 1 x 640 = 640 (0.64%)
Columns: 1 x 172 = 172 (0.17%)
Appearances: 1 x 28 = 28 (0.03%)
Appearance: 0 x 712 = 0 (0.00%)
CComVariant: 0 x 16 = 0 (0.00%)
Cells(Inner): 0 x 73 = 0 (0.00%)
CSmartVariant: 0 x 9 = 0 (0.00%)

The following output shows how the Statistics looks like, on a 64-bits machine:

Cells: 832 x 129 = 107,328 (61.90%)
Control: 1 x 33,392 = 33,392 (19.26%)
Column: 13 x 1,760 = 22,880 (13.20%)
Item: 64 x 128 = 8,192 (4.72%)
Items: 1 x 1,224 = 1,224 (0.71%)
Columns: 1 x 320 = 320 (0.18%)
Appearances: 1 x 48 = 48 (0.03%)
Appearance: 0 x 1,168 = 0 (0.00%)
CComVariant: 0 x 24 = 0 (0.00%)
Cells(Inner): 0 x 129 = 0 (0.00%)
CSmartVariant: 0 x 9 = 0 (0.00%)

property Grid.Template as String
Specifies the control's template.

Type Description
String A string expression that defines the control's template

The control's template uses the X-Script language to initialize the control's content. Use the
Template property page of the control to update the control's Template property. Use the
Template property to execute code by passing instructions as a string (template string).
Use the ToTemplate property to generate the control's content to template format. Use the
ExecuteTemplate property to get the result of executing a template script.

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name

of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier. For instance, the following
code creates an ADOR.Recordset and pass it to the control using the DataSource
property:

The following sample loads the Orders table:

Dim rs
ColumnAutoResize = False
rs = CreateObject("ADOR.Recordset")
{
Open("Orders","Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\Program
Files\Exontrol\ExGrid\Sample\SAMPLE.MDB", 3, 3)
}
DataSource = rs

property Grid.TemplateDef as Variant
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplateDef property has been added to allow programming languages such as
dBASE Plus to set control's properties with multiple parameters. It is known that
programming languages such as dBASE Plus or XBasic from AlphaFive, does not
support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef method. The first call of the TemplateDef
should be a declaration such as "Dim a,b" which means the next 2 calls of the TemplateDef
defines the variables a and b. The next call should be Template or ExecuteTemplate
property which can use the variable a and b being defined previously.

So, calling the TemplateDef property should be as follows:

with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith

This sample allocates a variable var_Column, assigns the value to the variable (the second
call of the TemplateDef), and the Template call uses the var_Column variable (as an object
), to call its Def property with the parameter 4.

Let's say we need to define the background color for a specified column, so we need to call
the Def(exCellBackColor) property of the column, to define the color for all cells in the
column.

The following VB6 sample shows setting the Def property such as:

With Control
 .Columns.Add("Column 1").Def(exCellBackColor) = 255
 .Columns.Add "Column 2"
 .Items.AddItem 0
 .Items.AddItem 1

 .Items.AddItem 2
End With

In dBASE Plus, calling the Def(4) has no effect, instead using the TemplateDef helps you to
use properly the Def property as follows:

local Control,var_Column

Control = form.Activex1.nativeObject
// Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith
Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The equivalent sample for XBasic in A5, is as follows:

Dim Control as P
Dim var_Column as P

Control = topparent:CONTROL_ACTIVEX1.activex
' Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
Control.TemplateDef = "Dim var_Column"
Control.TemplateDef = var_Column
Control.Template = "var_Column.Def(4) = 255"

Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The samples just call the Column.Def(4) = Value, using the TemplateDef. The first call of
TemplateDef property is "Dim var_Column", which indicates that the next call of the
TemplateDef will defines the value of the variable var_Column, in other words, it defines the
object var_Column. The last call of the Template property uses the var_Column member to
use the x-script and so to set the Def property so a new color is being assigned to the
column.

The TemplateDef, Template and ExecuteTemplate support x-script language (Template
script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please

make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

method Grid.TemplatePut (NewVal as Variant)
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

NewVal as Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplatePut method / TemplateDef property has been added to allow programming
languages such as dBASE Plus to set control's properties with multiple parameters. It is
known that programming languages such as dBASE Plus or XBasic from AlphaFive, does
not support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef / TemplatePut method. The first call of the
TemplateDef should be a declaration such as "Dim a,b" which means the next 2 calls of the
TemplateDef defines the variables a and b. The next call should be Template or
ExecuteTemplate property which can use the variable a and b being defined previously.

The TemplateDef, TemplatePut, Template and ExecuteTemplate support x-script language (
Template script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the

Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property Grid.TooltipCellsColor as Color
Retrieves or sets a value that indicates the color used to mark the cells that have tool tips.

Type Description

Color A color expression that specifies the color used to mark
the cells that have a tool tip associated.

The property has effect only if the MarkTooltipCells property is True. Use the CellToolTip
property to assign a tooltip to a cell. Use the ToolTipWidth property to specify the width of
the tooltip window. The control fires the ToolTip event when the column's tooltip is about to
be displayed.

property Grid.ToolTipDelay as Long
Specifies the time in ms that passes before the ToolTip appears.

Type Description

Long A long expression that specifies the time in ms that passes
before the ToolTip appears.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. Use
the ToolTipPopDelay property specifies the period in ms of time the ToolTip remains visible
if the mouse pointer is stationary within a control. Use the ToolTipWidth property to specify
the width of the tooltip window. Use the Background(exToolTipAppearance) property
indicates the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color. Use the
CellToolTip property to specify the cell's tooltip. Use the ShowToolTip method to display a
custom tooltip. Use the ToolTipFont property or HTML element to assign a new font
for tooltips.

property Grid.ToolTipFont as IFontDisp
Retrieves or sets the tooltip's font.

Type Description
IFontDisp A Font object being used to display the tooltip.

Use the ToolTipFont property to assign a font for the control's tooltip. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. Use the ToolTipWidth property to specify the width of the tooltip
window. Use the CellToolTip property to specify the cell's tooltip. You can use the
HTML element, in the tooltip's description to assign a different font for portions of text.

property Grid.ToolTipMargin as String
Defines the size of the control's tooltip margins.

Type Description

String

A string expression that defines the horizontal and vertical
margins (separated by comma) of the control's tooltip as
one of the following formats:

"value", where value is a positive number, that
specifies the horizontal and vertical margins, such as
"4" equivalent of "4,4"
"value,", where value is a positive number, that
specifies the horizontal margin, such as "4," equivalent
of "4,0"
",value", where value is a positive number, that
specifies the vertical margin, such as ",4" equivalent
of "0,4"
"horizontal,vertical", where horizontal and vertical are
positive numbers, that specifies the horizontal and
vertical margins, such as "4,4"

By default, the size of the tooltip margin is "4" (horizontal and vertical). For instance,
ToolTipMargin = "8" changes the horizontal and vertical margins are set to 8 pixels.
ToolTipMargin = "8,4" changes the horizontal margin to 8 pixels and the vertical margin to 4
pixels. The ToolTipWidth property specifies a value that indicates the width of the tooltip
window, in pixels. Use the ShowToolTip method to display a custom tooltip. Use the
ToolTipFont property to assign a font for the control's tooltip. The ToolTipPopDelay property
specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. The ToolTipDelay property specifies the time in ms that passes
before the ToolTip appears.

property Grid.ToolTipPopDelay as Long
Specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control.

Type Description

Long
A long expression that specifies the period in ms of time
the ToolTip remains visible if the mouse pointer is
stationary within a control.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. The
ToolTipDelay property specifies the time in ms that passes before the ToolTip appears. Use
the ToolTipWidth property to specify the width of the tooltip window. Use the ToolTipFont
property to assign a font for the control's tooltip. Use the
Background(exToolTipAppearance) property indicates the visual appearance of the borders
of the tooltips. Use the Background(exToolTipBackColor) property indicates the tooltip's
background color. Use the Background(exToolTipForeColor) property indicates the tooltip's
foreground color. Use the CellToolTip property to specify the cell's tooltip. Use the
ShowToolTip method to display a custom tooltip.

property Grid.ToolTipWidth as Long
Specifies a value that indicates the width of the tooltip window, in pixels.

Type Description

Long A long expression that indicates the width of the tooltip
window, in pixels.

Use the ToolTipWidth property to change the tooltip window width. The height of the tooltip
window is automatically computed based on tooltip's description. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. The ToolTipDelay property specifies the time in ms that passes
before the ToolTip appears. Use the ToolTipFont property to assign a font for the control's
tooltip. Use the Background(exToolTipAppearance) property indicates the visual appearance
of the borders of the tooltips. Use the Background(exToolTipBackColor) property indicates
the tooltip's background color. Use the Background(exToolTipForeColor) property indicates
the tooltip's foreground color. Use the CellToolTip property to specify the cell's tooltip. Use
the ShowToolTip method to display a custom tooltip.

property Grid.ToTemplate ([DefaultTemplate as Variant]) as String
Generates the control's template.

Type Description

DefaultTemplate as Variant

A String expression that indicates the default format used
to define the control's template at runtime, or a string
expression that indicates the path to the file being used to
define the default template (like c:\temp\teml.bin). If it is
missing (by default), the control's uses the default
implementation (listed bellow) to define the control's
template, at runtime. Each line in the DefaultTemplate
parameter, defines a property or an instruction to
generate the template.

String A String expression that indicates the control's template.

Use the ToTemplate property to save the control's content to a template string. The
ToTemplate property saves the control's properties based on the default template. Use the
ToTemplate property to copy the control's content to another instance. The ToTemplate
property can save pictures, icons, binary arrays, objects, collections, and so on based on
the DefaultTemplate parameter.

The DefaultTemplate parameter indicates the format of the template being used to generate
the control's template at runtime. If the DefaultTemplate parameter is missing, the control's
uses its default template listed bellow. The DefaultTemplate parameter defines the list of
properties and instructions that generates the control's template. Remove the properties
and objects, in the default template, that you don't need in the generated template script.
Use the Template property to apply the template to the control. Use the Template property
to execute code by passing instructions as a string (template string). The Template script
is composed by lines of instructions. Instructions are separated by "\n\r" (newline)
characters. The Template format contains a list of instructions that loads data and change
properties for the objects in the control. Use the AllowCopyTemplate property to copy the
control's content to the clipboard, in template format, using the the Shift + Ctrl + Alt + Insert
sequence.

The time to generate the control's template depends on:

the content of the DefaultTemplate parameter.
number of columns and items in the control including internal objects such as editors.
encoding the visual appearance as well as encoding the pictures and icons of the
control

For instance, let's say that we have the following DefaultTemplate parameter:

Appearance = 2
AutoEdit = -1

In this case the ToTemplate property generates code only for the properties Appearance
and AutoEdit, if they were changed to a different value.

If the DefaultTemplate parameters looks like:

Appearance
AutoEdit = -1

The ToTemplate property always generates code for the Appearance property, and it
generates code for the AutoEdit property only if this is changed to a value different than -1.

If the DefaultTemplate parameter is missing, the control uses its default template to
generate the template format. The default template format looks like follow, and it may
differ from a version to another.

[0 = BeginUpdate]
VisualAppearance
 [0 = Add(%ID,%CONTENT)]
[3 = HTMLPicture("%KEY")=LoadPicture("%PICTURE")]
[1 = Images(%VALUE)]
Appearance = 2
ASCIILower = "abcdefghijklmnopqrstuvwxyzüéâäŕĺçęëčďîěôöňűůáíóúń"
ASCIIUpper = "ABCDEFGHIJKLMNOPQRSTUVWXYZÜÉÂÄŔĹÇĘËČĎÎĚÔÖŇŰŮÁÍÓÚŃ"
AutoEdit = -1
AutoSearch = -1
BackColor = 2147483653
BackColorAlternate = 0
BackColorHeader = 2147483663
BackColorLevelHeader = 2147483663
BackColorLock = 2147483653
BackColorSortBar = 2147483664
BackColorSortBarCaption = 2147483663
Background(7) = 0
Background(6) = 0
Background(3) = 0
Background(2) = 0

Background(32) = 0
Background(8) = 0
Background(12) = 0
Background(11) = 0
Background(14) = 0
Background(13) = 0
Background(10) = 0
Background(9) = 0
Background(34) = 0
Background(33) = 0
Background(37) = 0
Background(36) = 0
Background(35) = 0
Background(5) = 0
Background(4) = 0
Background(1) = 0
Background(0) = 0
Background(404) = 0
Background(406) = 0
Background(407) = 0
Background(405) = 0
Background(384) = 0
Background(386) = 0
Background(387) = 0
Background(385) = 0
Background(396) = 0
Background(398) = 0
Background(399) = 0
Background(397) = 0
Background(392) = 0
Background(394) = 0
Background(395) = 0
Background(393) = 0
Background(388) = 0
Background(390) = 0
Background(391) = 0
Background(389) = 0

Background(400) = 0
Background(402) = 0
Background(403) = 0
Background(401) = 0
Background(324) = 0
Background(326) = 0
Background(327) = 0
Background(325) = 0
Background(511) = 0
Background(20) = 0
Background(17) = 0
Background(21) = 0
Background(15) = 0
Background(16) = 0
Background(25) = 0
Background(24) = 0
Background(23) = 0
Background(22) = 0
Background(276) = 0
Background(278) = 0
Background(279) = 0
Background(277) = 0
Background(264) = 0
Background(266) = 0
Background(267) = 0
Background(265) = 0
Background(268) = 0
Background(270) = 0
Background(271) = 0
Background(269) = 0
Background(260) = 0
Background(262) = 0
Background(263) = 0
Background(261) = 0
Background(256) = 0
Background(258) = 0
Background(259) = 0

Background(257) = 0
Background(272) = 0
Background(274) = 0
Background(275) = 0
Background(273) = 0
CauseValidateValue = 0
CheckImage(1) = 0
CheckImage(2) = 0
CheckImage(0) = 0
ColumnAutoResize = -1
ColumnsAllowSizing = 0
ContinueColumnScroll = -1
CountLockedColumns = 0
DefaultEditorOption(37) = 0
DefaultEditorOption(39) = 0
DefaultEditorOption(103) = 24
DefaultEditorOption(104) = "7,8,9,/,C\r\n4,5,6,*,1/x\r\n1,2,3,-,sqrt\r\n0,+/-,.,+,="
DefaultEditorOption(102) = 24
DefaultEditorOption(101) = "Cannot divide by zero."
DefaultEditorOption(100) = -1
DefaultEditorOption(106) = ""
DefaultEditorOption(105) = ""
DefaultEditorOption(15) = 0
DefaultEditorOption(16) = 1
DefaultEditorOption(17) = 2
DefaultEditorOption(4) = 0
DefaultEditorOption(5) = -1
DefaultEditorOption(6) = -1
DefaultEditorOption(14) = -1
DefaultEditorOption(32) = 0
DefaultEditorOption(34) = 0
DefaultEditorOption(30) = "January February March April May June July August
September October November December"
DefaultEditorOption(35) = -1
DefaultEditorOption(33) = -1
DefaultEditorOption(29) = "Today"
DefaultEditorOption(31) = "S M T W T F S"

DefaultEditorOption(47) = 0
DefaultEditorOption(23) = -1
DefaultEditorOption(28) = -1
DefaultEditorOption(46) = 46
DefaultEditorOption(36) = 0
DefaultEditorOption(50) = -2147483633
DefaultEditorOption(51) = 0
DefaultEditorOption(18) = 0
DefaultEditorOption(19) = 42
DefaultEditorOption(10) = 0
DefaultEditorOption(49) = -1
DefaultEditorOption(48) = 0
DefaultEditorOption(25) = -1
DefaultEditorOption(38) = 0
DefaultEditorOption(24) = -1
DefaultEditorOption(45) = 0
DefaultEditorOption(20) = -1
DefaultEditorOption(3) = -1
DefaultEditorOption(9) = -1
DefaultEditorOption(8) = 116
DefaultEditorOption(7) = 128
DefaultEditorOption(1) = 0
DefaultEditorOption(2) = 0
DefaultEditorOption(27) = -1
DefaultEditorOption(26) = -1
DefaultEditorOption(12) = 0
DefaultEditorOption(11) = -2147483635
DefaultEditorOption(13) = -1
DefaultEditorOption(21) = -1
DefaultEditorOption(52) = -1
DefaultEditorOption(44) = 100
DefaultEditorOption(43) = 0
DefaultEditorOption(42) = 1
DefaultEditorOption(41) = 64
DefaultEditorOption(40) = 1
DefaultEditorOption(22) = -1
DefaultItemHeight = 18

Description(0) = "(All)"
Description(11) = "and"
Description(1) = "(Blanks)"
Description(19) = "(Checked)"
Description(12) = "Date:"
Description(17) = "January February March April May June July August September
October November December"
Description(15) = "Date"
Description(13) = "to"
Description(16) = "Today"
Description(14) = "You can filter the items into a given interval of dates. For instance, you
can filter all items dated before a specified date (to 2/13/2004), or all items dated after
a date (Feb 13 2004 to) or all items that are in a given interval (2/13/2004 to
2/13/2005)."
Description(18) = "S M T W T F S"
Description(3) = "Filter For:"
Description(8) = "A pattern filter may contain the wild card characters '?' for any single
character, '*' for zero or more occurrences of any character, '#' for any digit character, '|'
determines the options in the pattern. For instance: '1*|2*' specifies all items that start with
'1' or '2'. If the filter is of numeric type you can filter numbers giving numeric rules. For
instance, ">10 <100" filter indicates all numbers greater than 10 and less than 100."
Description(4) = "Filter"
Description(9) = "IsBlank"
Description(21) = "IsChecked"
Description(10) = "not IsBlank"
Description(22) = "not IsChecked"
Description(2) = "(NonBlanks)"
Description(5) = "Pattern/Numeric Filter"
Description(7) = "You can select multiple filter items as many as you like by keeping the
CTRL key pressed. Start typing characters if you like to enter a filter as a pattern that may
include wild card characters like *,? or #. Press ENTER key to filter the items using the
typed pattern. If the filter is of numeric type you can filter numbers giving numeric rules.
For instance, ">10 <100" filter indicates all numbers greater than 10 and less than 100."
Description(6) = "You can select multiple filter items as many as you like by keeping the
CTRL key pressed. "
Description(20) = "(Unchecked)"
Description(24) = "not"

Description(23) = "or"
DetectAddNew = 0
DetectDelete = 0
DrawGridLines = 0
Enabled = -1
EnsureOnSort = -1
ExpandOnDblClick = -1
ExpandOnKeys = -1
ExpandOnSearch = 0
FilterBarBackColor = 2147483663
FilterBarCaption = ""
FilterBarDropDownHeight = 0.5
FilterBarFont
 Bold = -1
 Charset = 0
 Italic = 0
 Name = "Arial"
 Size = 8.25
 Strikethrough = 0
 Underline = 0
 Weight = 700
FilterBarForeColor = 2147483656
FilterBarHeight = -1
FilterInclude = 0
FilterCriteria = ""
FocusColumnIndex = 0
Font
 Bold = 0
 Charset = 0
 Italic = 0
 Name = "Arial"
 Size = 8.25
 Strikethrough = 0
 Underline = 0
 Weight = 400
ForeColor = 2147483656
ForeColorHeader = 2147483656

ForeColorLock = 2147483656
ForeColorSortBar = 2147483664
FullRowSelect = -1
GridLineColor = 8949832
HasButtons = -1
HasButtonsCustom(0) = 0
HasButtonsCustom(-1) = 0
HasLines = -1
HeaderAppearance = 3
HeaderHeight = 18
HeaderVisible = -1
HideSelection = 0
HyperLinkColor = 16737585
Indent = 22
ItemsAllowSizing = 0
LinesAtRoot = 0
MarkSearchColumn = -1
MarkTooltipCells = 0
MarkTooltipCellsImage = 0
OLEDropMode = 0
PictureDisplay = 48
[255 = Picture = LoadPicture("%VALUE")]
PictureDisplayLevelHeader = 48
[256 = PictureLevelHeader = LoadPicture("%VALUE")]
RadioImage(0) = 0
RadioImage(-1) = 0
RClickSelect = 0
ReadOnly = 0
ScrollBars = 3
ScrollBySingleLine = 0
ScrollFont(0)
 Bold = 0
 Charset = 0
 Italic = 0
 Name = "Arial"
 Size = 6.75
 Strikethrough = 0

 Underline = 0
 Weight = 400
ScrollFont(1)
 Bold = 0
 Charset = 0
 Italic = 0
 Name = "Arial"
 Size = 6.75
 Strikethrough = 0
 Underline = 0
 Weight = 400
ScrollButtonWidth = -1
ScrollButtonHeight = -1
ScrollWidth = -1
ScrollHeight = -1
ScrollThumbSize(0) = -1
ScrollThumbSize(1) = -1
ScrollToolTip(0) = ""
ScrollToolTip(1) = ""
ScrollOrderParts(0) = ""
ScrollOrderParts(1) = ""
[4 = ScrollPartVisible(%BAR,%PART) = True]
[5 = ScrollPartEnable(%BAR,%PART) = True]
[6 = ScrollPartCaption(%BAR,%PART) = %VALUE]
SearchColumnIndex = 0
SelBackColor = 2147483661
SelBackMode = 0
SelectByDrag = -1
SelectColumnIndex = 0
SelectColumnInner = 0
SelForeColor = 2147483662
ShowFocusRect = -1
ShowLockedItems = -1
SingleSel = -1
SingleSort = -1
SortBarCaption = "Drag a column header here to sort by that column."
SortBarColumnWidth = -96

SortBarHeight = 18
SortBarVisible = 0
SortOnClick = -1
TooltipCellsColor = 16737585
ToolTipDelay = 500
ToolTipPopDelay = 5000
ToolTipWidth = 196
TreeColumnIndex = 0
UseTabKey = -1
ViewMode = 0
ViewModeOption(0,0) = 0
ViewModeOption(0,1) = 0
ViewModeOption(1,0) = 0
ViewModeOption(1,1) = 0
ViewModeOption(1,2) = 128
ViewModeOption(1,3) = 144
ViewModeOption(1,4) = "1/2/3/4/5/6/7"
ViewModeOption(1,5) = "0"
ViewModeOption(1,6) = -1
ViewModeOption(1,7) = 0
ViewModeOption(1,8) = 0
ViewModeOption(1,9) = 5
ViewModeOption(1,10) = 5
ViewModeOption(1,11) = -1
ViewModeOption(1,12) = 0
ConditionalFormats
 _NewEnum = Add("%Expression","%Key")
 ApplyTo = -1
 BackColor = 0
 Bold = 0
 Enabled = -1
 ForeColor = 0
 Italic = 0
 StrikeOut = 0
 Underline = 0
 Font
 Bold = 0

 Charset = 0
 Italic = 0
 Name = "Arial"
 Size = 8.25
 Strikethrough = 0
 Underline = 0
 Weight = 400
Columns
 _NewEnum = "%Caption"
 Alignment = 0
 AllowDragging = -1
 AllowSizing = -1
 AllowSort = -1
 AutoSearch = 0
 ComputedField = ""
 Data
 Def(4)
 Def(3) = 0
 Def(5)
 Def(32) = ""
 Def(2) = 0
 Def(0) = 0
 Def(1) = 0
 Def(16) = -1
 Def(17) = 0
 DefaultSortOrder = 0
 DisplayFilterButton = 0
 DisplayFilterDate = 0
 DisplayFilterPattern = -1
 DisplaySortIcon = -1
 Editor
 Appearance = 0
 ButtonWidth = 13
 DropDownAlignment = 0
 DropDownAutoWidth = -1
 DropDownMinWidth = 164
 DropDownRows = 7

 DropDownVisible = -1
 EditType = 0
 Locked = 0
 Mask = ""
 MaskChar = 95
 Numeric = 0
 Option(37) = 0
 Option(39) = 0
 Option(103) = 24
 Option(104) = "7,8,9,/,C\r\n4,5,6,*,1/x\r\n1,2,3,-,sqrt\r\n0,+/-,.,+,="
 Option(102) = 24
 Option(101) = "Cannot divide by zero."
 Option(100) = -1
 Option(106) = ""
 Option(105) = ""
 Option(15) = 0
 Option(16) = 1
 Option(17) = 2
 Option(4) = 0
 Option(5) = -1
 Option(6) = -1
 Option(14) = -1
 Option(32) = 0
 Option(34) = 0
 Option(30) = "January February March April May June July August September
October November December"
 Option(35) = -1
 Option(33) = -1
 Option(29) = "Today"
 Option(31) = "S M T W T F S"
 Option(47) = 0
 Option(23) = -1
 Option(28) = -1
 Option(46) = 46
 Option(36) = 0
 Option(50) = -2147483633
 Option(51) = 0

 Option(18) = 0
 Option(19) = 42
 Option(10) = 0
 Option(49) = -1
 Option(48) = 0
 Option(25) = -1
 Option(38) = 0
 Option(24) = -1
 Option(45) = 0
 Option(20) = -1
 Option(3) = -1
 Option(9) = -1
 Option(8) = 116
 Option(7) = 128
 Option(1) = 0
 Option(2) = 0
 Option(27) = -1
 Option(26) = -1
 Option(12) = 0
 Option(11) = -2147483635
 Option(13) = -1
 Option(21) = -1
 Option(52) = -1
 Option(44) = 100
 Option(43) = 0
 Option(42) = 1
 Option(41) = 64
 Option(40) = 1
 Option(22) = -1
 PartialCheck = 0
 PopupAppearance = 6
 [0 = AddButton(%BUTTON)]
 [1 = AddItem(%ITEM)]
 [4 = ItemTooltip(%VALUE) = %TOOLTIP]
 [2 = InsertItem(%ITEM)]
 [4 = ItemTooltip(%VALUE) = %TOOLTIP]
 [3 = ExpandAll]

 [5 = UserEditor(%CONTROL,%LICENSE)]
 Enabled = -1
 FilterType = 0
 Filter = ""
 FilterList = 0
 FilterBarDropDownWidth = 1
 FireFormatColumn = 0
 FormatLevel = ""
 HeaderAlignment = 0
 HeaderBold = 0
 HeaderImage = 0
 HeaderImageAlignment = 0
 HeaderItalic = 0
 HeaderStrikeOut = 0
 HeaderUnderline = 0
 HeaderVertical = 0
 HTMLCaption = ""
 Key = ""
 LevelKey
 MaxWidthAutoResize = -1
 MinWidthAutoResize = 0
 PartialCheck = 0
 Position
 Selected = 0
 SortOrder = 0
 SortPosition = -1
 SortType = 0
 ToolTip = "..."
 Visible = -1
 Width = 64
 WidthAutoResize = 0
Items
 PathSeparator = "\"
 LockedItemCount(0) = 0
 LockedItemCount(2) = 0
 [1 = %H = LockedItem(%A,%I)]
 [10 = CellValue(%H,%C) = %VALUE]

 [11 = CellImage(%H,%C) = %VALUE]
 [12 = CellSingleLine(%H,%C) = %VALUE]
 [13 = CellValueFormat(%H,%C) = %VALUE]
 [14 = CellFormatLevel(%H,%C) = %VALUE]
 [15 = CellHasCheckBox(%H,%C) = %VALUE]
 [16 = CellHasRadioButton(%H,%C) = %VALUE]
 [17 = CellState(%H,%C) = %VALUE]
 [18 = CellToolTip(%H,%C) = %VALUE]
 [19 = CellHasButton(%H,%C) = %VALUE]
 [20 = CellButtonAutoWidth(%H,%C) = %VALUE]
 [21 = CellEnabled(%H,%C) = %VALUE]
 [22 = CellEditorVisible(%H,%C) = %VALUE]
 [23 = CellHAlignment(%H,%C) = %VALUE]
 [24 = CellVAlignment(%H,%C) = %VALUE]
 [25 = CellMerge(%H,%C) = %VALUE]
 [26 = CellBold(%H,%C) = %VALUE]
 [27 = CellItalic(%H,%C) = %VALUE]
 [28 = CellUnderline(%H,%C) = %VALUE]
 [29 = CellStrikeOut(%H,%C) = %VALUE]
 [30 = CellForeColor(%H,%C) = %VALUE]
 [31 = CellBackColor(%H,%C) = %VALUE]
 [32 = CellPicture(%H,%C) = %VALUE]
 [33 = CellPictureWidth(%H,%C) = %VALUE]
 [34 = CellPictureHeight(%H,%C) = %VALUE]
 [35 = CellData(%H,%C) = %VALUE]
 [110 = CellEditor(%H,%C)]
 Appearance = 0
 ButtonWidth = 13
 DropDownAlignment = 0
 DropDownAutoWidth = -1
 DropDownMinWidth = 164
 DropDownRows = 7
 DropDownVisible = -1
 EditType = 0
 Locked = 0
 Mask = ""
 MaskChar = 95

 Numeric = 0
 Option(37) = 0
 Option(39) = 0
 Option(103) = 24
 Option(104) = "7,8,9,/,C\r\n4,5,6,*,1/x\r\n1,2,3,-,sqrt\r\n0,+/-,.,+,="
 Option(102) = 24
 Option(101) = "Cannot divide by zero."
 Option(100) = -1
 Option(106) = ""
 Option(105) = ""
 Option(15) = 0
 Option(16) = 1
 Option(17) = 2
 Option(4) = 0
 Option(5) = -1
 Option(6) = -1
 Option(14) = -1
 Option(32) = 0
 Option(34) = 0
 Option(30) = "January February March April May June July August September
October November December"
 Option(35) = -1
 Option(33) = -1
 Option(29) = "Today"
 Option(31) = "S M T W T F S"
 Option(47) = 0
 Option(23) = -1
 Option(28) = -1
 Option(46) = 46
 Option(36) = 0
 Option(50) = -2147483633
 Option(51) = 0
 Option(18) = 0
 Option(19) = 42
 Option(10) = 0
 Option(49) = -1
 Option(48) = 0

 Option(25) = -1
 Option(38) = 0
 Option(24) = -1
 Option(45) = 0
 Option(20) = -1
 Option(3) = -1
 Option(9) = -1
 Option(8) = 116
 Option(7) = 128
 Option(1) = 0
 Option(2) = 0
 Option(27) = -1
 Option(26) = -1
 Option(12) = 0
 Option(11) = -2147483635
 Option(13) = -1
 Option(21) = -1
 Option(52) = -1
 Option(44) = 100
 Option(43) = 0
 Option(42) = 1
 Option(41) = 64
 Option(40) = 1
 Option(22) = -1
 PartialCheck = 0
 PopupAppearance = 6
 [0 = AddButton(%BUTTON)]
 [1 = AddItem(%ITEM)]
 [4 = ItemTooltip(%VALUE) = %TOOLTIP]
 [2 = InsertItem(%ITEM)]
 [4 = ItemTooltip(%VALUE) = %TOOLTIP]
 [3 = ExpandAll]
 [5 = UserEditor(%CONTROL,%LICENSE)]
 [1000 = ExpandItem(%H) = %VALUE]
 [1001 = SelectItem(%H) = %VALUE]
 [1002 = ItemHeight(%H) = %VALUE]
 [1003 = ItemDivider(%H) = %VALUE]

 [1004 = ItemDividerLine(%H) = %VALUE]
 [1005 = ItemDividerLineAlignment(%H) = %VALUE]
 [1006 = ItemHasChildren(%H) = %VALUE]
 [1007 = ItemBold(%H) = %VALUE]
 [1008 = ItemItalic(%H) = %VALUE]
 [1009 = ItemUnderline(%H) = %VALUE]
 [1010 = ItemStrikeOut(%H) = %VALUE]
 [1011 = ItemForeColor(%H) = %VALUE]
 [1012 = ItemBackColor(%H) = %VALUE]
 [1014 = ItemData(%H) = %VALUE]
 [0 = %H = %ADD(%VALUE)]
 [10 = CellValue(%H,%C) = %VALUE]
 [11 = CellImage(%H,%C) = %VALUE]
 [12 = CellSingleLine(%H,%C) = %VALUE]
 [13 = CellValueFormat(%H,%C) = %VALUE]
 [14 = CellFormatLevel(%H,%C) = %VALUE]
 [15 = CellHasCheckBox(%H,%C) = %VALUE]
 [16 = CellHasRadioButton(%H,%C) = %VALUE]
 [17 = CellState(%H,%C) = %VALUE]
 [18 = CellToolTip(%H,%C) = %VALUE]
 [19 = CellHasButton(%H,%C) = %VALUE]
 [20 = CellButtonAutoWidth(%H,%C) = %VALUE]
 [21 = CellEnabled(%H,%C) = %VALUE]
 [22 = CellEditorVisible(%H,%C) = %VALUE]
 [23 = CellHAlignment(%H,%C) = %VALUE]
 [24 = CellVAlignment(%H,%C) = %VALUE]
 [25 = CellMerge(%H,%C) = %VALUE]
 [26 = CellBold(%H,%C) = %VALUE]
 [27 = CellItalic(%H,%C) = %VALUE]
 [28 = CellUnderline(%H,%C) = %VALUE]
 [29 = CellStrikeOut(%H,%C) = %VALUE]
 [30 = CellForeColor(%H,%C) = %VALUE]
 [31 = CellBackColor(%H,%C) = %VALUE]
 [32 = CellPicture(%H,%C) = %VALUE]
 [33 = CellPictureWidth(%H,%C) = %VALUE]
 [34 = CellPictureHeight(%H,%C) = %VALUE]
 [35 = CellData(%H,%C) = %VALUE]

 [110 = CellEditor(%H,%C)]
 Appearance = 0
 ButtonWidth = 13
 DropDownAlignment = 0
 DropDownAutoWidth = -1
 DropDownMinWidth = 164
 DropDownRows = 7
 DropDownVisible = -1
 EditType = 0
 Locked = 0
 Mask = ""
 MaskChar = 95
 Numeric = 0
 Option(37) = 0
 Option(39) = 0
 Option(103) = 24
 Option(104) = "7,8,9,/,C\r\n4,5,6,*,1/x\r\n1,2,3,-,sqrt\r\n0,+/-,.,+,="
 Option(102) = 24
 Option(101) = "Cannot divide by zero."
 Option(100) = -1
 Option(106) = ""
 Option(105) = ""
 Option(15) = 0
 Option(16) = 1
 Option(17) = 2
 Option(4) = 0
 Option(5) = -1
 Option(6) = -1
 Option(14) = -1
 Option(32) = 0
 Option(34) = 0
 Option(30) = "January February March April May June July August September
October November December"
 Option(35) = -1
 Option(33) = -1
 Option(29) = "Today"
 Option(31) = "S M T W T F S"

 Option(47) = 0
 Option(23) = -1
 Option(28) = -1
 Option(46) = 46
 Option(36) = 0
 Option(50) = -2147483633
 Option(51) = 0
 Option(18) = 0
 Option(19) = 42
 Option(10) = 0
 Option(49) = -1
 Option(48) = 0
 Option(25) = -1
 Option(38) = 0
 Option(24) = -1
 Option(45) = 0
 Option(20) = -1
 Option(3) = -1
 Option(9) = -1
 Option(8) = 116
 Option(7) = 128
 Option(1) = 0
 Option(2) = 0
 Option(27) = -1
 Option(26) = -1
 Option(12) = 0
 Option(11) = -2147483635
 Option(13) = -1
 Option(21) = -1
 Option(52) = -1
 Option(44) = 100
 Option(43) = 0
 Option(42) = 1
 Option(41) = 64
 Option(40) = 1
 Option(22) = -1
 PartialCheck = 0

 PopupAppearance = 6
 [0 = AddButton(%BUTTON)]
 [1 = AddItem(%ITEM)]
 [4 = ItemTooltip(%VALUE) = %TOOLTIP]
 [2 = InsertItem(%ITEM)]
 [4 = ItemTooltip(%VALUE) = %TOOLTIP]
 [3 = ExpandAll]
 [5 = UserEditor(%CONTROL,%LICENSE)]
 [1000 = ExpandItem(%H) = %VALUE]
 [1001 = SelectItem(%H) = %VALUE]
 [1002 = ItemHeight(%H) = %VALUE]
 [1003 = ItemDivider(%H) = %VALUE]
 [1004 = ItemDividerLine(%H) = %VALUE]
 [1005 = ItemDividerLineAlignment(%H) = %VALUE]
 [1006 = ItemHasChildren(%H) = %VALUE]
 [1007 = ItemBold(%H) = %VALUE]
 [1008 = ItemItalic(%H) = %VALUE]
 [1009 = ItemUnderline(%H) = %VALUE]
 [1010 = ItemStrikeOut(%H) = %VALUE]
 [1011 = ItemForeColor(%H) = %VALUE]
 [1012 = ItemBackColor(%H) = %VALUE]
 [1013 = SelectableItem(%H) = %VALUE]
 [1014 = ItemData(%H) = %VALUE]
 [1015 = ExpandCard(%H) = %VALUE]
[2 = ApplyFilter]
ScrollPos(0) = 0
ScrollPos(-1) = 0
[0 = EndUpdate]

The indentation in the template is very important, so please make sure that you
respect the indentation of the inside objects and properties. If an item in the
template is indented it is related to the parent item/object.

Let's say that you need only the items creating on the template like follows:

BeginUpdate
Items
{

 Dim h0
 h0 = AddItem("Number")
 CellValue(h0,1) = "Is Not"
 CellValue(h0,2) = "aaa"
 CellData(h0,0) = 2
 CellData(h0,1) = 18
 CellData(h0,2) = "aaa"
}
EndUpdate

In this case the DefaultTemplate parameter should be:

[0 = BeginUpdate]
Items
 [0 = %H = %ADD(%VALUE)]
 [10 = CellValue(%H,%C) = %VALUE]
 [35 = CellData(%H,%C) = %VALUE]
[0 = EndUpdate]

in VB this is translated to:

Dim dt As String
dt = dt + "[0 = BeginUpdate]" + vbCrLf
dt = dt + "Items" + vbCrLf
dt = dt + vbTab + "[0 = %H = %ADD(%VALUE)]" + vbCrLf
dt = dt + vbTab + vbTab + "[10 = CellValue(%H,%C) = %VALUE]" + vbCrLf
dt = dt + vbTab + vbTab + "[35 = CellData(%H,%C) = %VALUE]" + vbCrLf
dt = dt + "[0 = EndUpdate]"
Debug.Print Grid1.ToTemplate(dt)

For instance, let's say that we need to save the layout (size and position) of the columns (
4 columns) in the control. In this case, we need to define a new DefaultTemplate parameter
that includes only the Columns section as follows:

Columns
 Item(0)
 Position
 Width = 64
 Item(1)

 Position
 Width = 64
 Item(2)
 Position
 Width = 64
 Item(3)
 Position
 Width = 64

In other words, the DefaultTemplate parameter holds the default values for properties in the
control, including inside objects. Using the ToTemplate property and the ExPropertiesList
browser you can write template files easily.

https://exontrol.com/expropertieslist.jsp

property Grid.TreeColumnIndex as Long
Retrieves or sets a value that indicates the index of column where the hierarchy lines are
displayed.

Type Description

Long A long expression that indicates the index of column that
displays the control's hierarchy.

Use the TreeColumnIndex property to change the column's index where the hierarchy lines
are painted. Use HasLines and LinesAtRoot properties to show the hierarchy lines. Use the
HasButtons property to define the +/- signs appearance. If the TreeColumnIndex property is
-1, the control doesn't paint the hierarchy. Use the Indent property to define the amount, in
pixels, that child items are indented relative to their parent items. Use the InsertItem
property to insert child items.

property Grid.UnboundHandler as IUnboundHandler
Specifies the control's unbound handler.

Type Description
IUnboundHandler An object that implements the IUnboundHandler interface.

The control supports unbound mode. In unbound mode, the user is responsible for retrieving
items. The unbound mode and virtual unbound modes were provided to let user displays
large number of items. In order to let the control works in unbound mode, the user has to
implement the IUnboundHandler notification interface. Use the VirtualMode property to run
the control in virtual mode. Use the RemoveAllItems method to remove all items from the
control, after setting the UnboundHandler property to nothing. Use the BeginUpdate and
EndUpdate methods, or Refresh method after setting the UnboundHandler property, to
reflect the changes in the control's client area.

If the VirtualMode property is True and the DataSource property is set (not empty), the
control provides an internal object that implements the IUnboundHandler interface to provide
data for the control from the data source.

The following VB sample shows how to implement the IUnboundHandler interface:

Option Explicit
Implements IUnboundHandler

Private Sub Form_Load()
 With Grid1
 .BeginUpdate
 .FullRowSelect = False

 ' Adds two columns
 With .Columns
 Dim i As Long
 For i = 0 To 1
 With .Add("Column " & i + 1).Editor
 .EditType = EditTypeEnum.EditType
 End With
 Next
 End With
 Set .UnboundHandler = Me

 .EndUpdate
 End With
End Sub

Private Property Get IUnboundHandler_ItemsCount(ByVal Source As Object) As Long
 ' The control requires the number of items. the Set .UnboundHandler = Me invokes the
IUnboundHandler_ItemsCount method
 IUnboundHandler_ItemsCount = 16
End Property

Private Sub IUnboundHandler_ReadItem(ByVal Index As Long, ByVal Source As Object,
ByVal ItemHandle As Long)
 ' The control requires an item
 With Grid1.Items
 .CellValue(ItemHandle, 0) = Index
 .CellValue(ItemHandle, 1) = Index + 1
 End With
End Sub

Running the UnboundMode in VFP 7.0 or greater

1. Create a PRG file, say, CLASS1.PRG to define a class to implement the
IUnboundHandler interface:

define class UnboundHandler as custom
 implements IUnboundHandler in "ExGrid.dll"

 function IUnboundHandler_get_ItemsCount(Source)
 return 10000000 && we are going to have that many virtual items
 endfunc

 function IUnboundHandler_ReadItem(Index, Source, ItemHandle)
 With Source.Items
 .DefaultItem = ItemHandle
 .CellValue(0, 0) = 'Virtual Item ' + transform(Index+1) && in this example,
just set text in Column 0
 EndWith
 endfunc

enddefine

2. Set up ExGrid's properties as follows (in the example, it is done by Form1.Init)

with thisform.Grid1
 .Columns.Add("Column 0")
 .UnboundHandler = newobject('UnboundHandler', 'class1.prg')
endwith

3. You can also use Virtual Mode to scan a table, say, MyCursor, in natural order.

function IUnboundHandler_get_ItemsCount(Source)
 return reccount('MyCursor')
endfunc

function IUnboundHandler_ReadItem(Index, Source, ItemHandle)
 select MyCursor
 go Index+1
 With Source.Items
 .DefaultItem = ItemHandle
 .CellValue(0, 0) = 'Virtual Item ' + MyCursor.Field1
 EndWith
endfunc
enddefine

Please check also the VirtualMode property that includes multiple samples. The setup
program installs a sample VC\UnboundMode, for C++ version.

method Grid.Undo ()
Performs the last Undo operation.

Type Description

Call the Undo method to Undo the last control operation. The Undo method have effect only
if the AllowUndoRedo property is True. The CTRL+Z performs the last undo operation,
while the CTRL+Y redoes the next action in the control's Redo queue. The Redo redoes the
next action in the control's redo queue. The CanUndo property retrieves a value that
indicates whether the control may perform the last Undo operation. The CanRedo property
retrieves a value that specifies whether the control can execute the next operation in the
control's Redo queue. The URChange(exUndo/exRedo) event notifies your application
whenever an Undo/Redo operation is performed.

The records of the Undo/Redo queue may contain actions in the following format:

"AddItem;ITEMINDEX", indicates that a new item has been created
"RemoveItem;ITEMINDEX", indicates that an item has been removed
"ChangeItemPos;ITEMINDEX", indicates that an item changes its position or / and
parent
"ChangeCellValue;ITEMINDEX;CELLINDEX", indicates that the cell's value has been
changed
"ChangeCellState;ITEMINDEX;CELLINDEX", indicates that the cell's state has been
changed

Also, the Undo/Redo queue may include:

"StartBlock", specifies that a block of operations begins
"EndBlock", specifies that a block of operations ends

The UndoListAction property lists the Undo actions that can be performed in the control.
Use the UndoRemoveAction method to remove the last actions from the undo queue.

property Grid.UndoListAction ([Action as Variant], [Count as Variant]) as
String
Lists the Undo actions that can be performed in the control.

Type Description

Action as Variant

[optional] A long expression that specifies the action being
listed. If missing or -1, all actions are listed.

The Action parameter can be one of the following:

exListUndoRedoAddItem(13) ~
"AddItem;ITEMINDEX", indicates that a new item has
been created
exListUndoRedoRemoveItem(14) ~
"RemoveItem;ITEMINDEX", indicates that an item
has been removed
exListUndoRedoChangeItemPos(15) ~
"ChangeItemPos;ITEMINDEX", indicates that an item
changes its position or / and parent
exListUndoRedoChangeCellValue(16) ~
"ChangeCellValue;ITEMINDEX;CELLINDEX",
indicates that the cell's value has been changed
exListUndoRedoChangeCellState(17) ~
"ChangeCellState;ITEMINDEX;CELLINDEX",
indicates that the cell's state has been changed

For instance, UndoListAction(13) shows only AddItem
actions in the undo stack.

Count as Variant

[optional] A long expression that indicates the number of
actions being listed. If missing or -1, all actions are listed.
For instance, UndoListAction(13,1) shows only the last
AddItem action being added to the undo stack

String A String expression that lists the Undo actions that may be
performed.

Use the UndoListAction property to show the list of actions that the user may perform by
doing Undo operations. The URChange(exUndo/exRedo) event notifies your application
whenever an Undo/Redo operation is performed. For instance, the
URChange(exUndoRedoUpdate) notifies whether a new operation is added/removed from
the undo/redo queue. Use the UndoRemoveAction method to remove the last actions from
the undo queue. The RedoListAction property lists the Redo actions that can be performed

in the control. The CanUndo property specifies whether an undo operation can be
performed if CTRL+Z key is pressed.

The records of the Undo/Redo queue may contain actions in the following format:

"AddItem;ITEMINDEX", indicates that a new item has been created
"RemoveItem;ITEMINDEX", indicates that an item has been removed
"ChangeItemPos;ITEMINDEX", indicates that an item changes its position or / and
parent
"ChangeCellValue;ITEMINDEX;CELLINDEX", indicates that the cell's value has been
changed
"ChangeCellState;ITEMINDEX;CELLINDEX", indicates that the cell's state has been
changed

Also, the Undo/Redo queue may include:

"StartBlock", specifies that a block of operations begins
"EndBlock", specifies that a block of operations ends

Each action is on a single line, and each field is separated by ; character. The lines are
separated by "\r\n" characters (vbCrLf in VB).

The following VB sample splits the UndoListAction value and adds each action to a listbox
control:

List1.Clear
Dim s() As String
s = Split(Grid1.UndoListAction, vbCrLf)
For i = LBound(s) To UBound(s)
 List1.AddItem s(i)
Next

property Grid.UndoRedoQueueLength as Long
Gets or sets the maximum number of Undo/Redo actions that may be stored to the
control's queue.

Type Description

Long
A Long expression that specifies the length of the
Undo/Redo queue. If -1, the queue is unlimited, 0 allows
no entries in the Undo/Redo queue.

By default, the UndoRedoQueueLength property is -1. Use the UndoRedoQueueLength
property to specify the number of entries that Undo/Redo queue may store. For instance, if
the UndoRedoQueueLength property is 1, the control retains only the last control operation.
Changing the UndoRedoQueueLength property may change the current Undo/Redo queue
based on the new length. The length being specified, does not affect the blocks in the
queue. A block may hold multiple Undo/Redo actions. Use the GroupUndoRedoActions
method to group two or more entries in the Undo/Redo queue in a single block, so when a
next Undo/Redo operation is performed, multiple actions may occur. For instance, moving
several bars in the same time (multiple bars selection) is already recorded as a single
block.

method Grid.UndoRemoveAction ([Action as Variant], [Count as
Variant])
Removes the last the undo actions that can be performed in the control.

Type Description

Action as Variant

[optional] A long expression that specifies the action being
removed. If missing or -1, all actions are removed from
the undo queue.

The Action parameter can be one of the following:

exListUndoRedoAddItem(13) ~
"AddItem;ITEMINDEX", indicates that a new item has
been created
exListUndoRedoRemoveItem(14) ~
"RemoveItem;ITEMINDEX", indicates that an item
has been removed
exListUndoRedoChangeItemPos(15) ~
"ChangeItemPos;ITEMINDEX", indicates that an item
changes its position or / and parent
exListUndoRedoChangeCellValue(16) ~
"ChangeCellValue;ITEMINDEX;CELLINDEX",
indicates that the cell's value has been changed
exListUndoRedoChangeCellState(17) ~
"ChangeCellState;ITEMINDEX;CELLINDEX",
indicates that the cell's state has been changed

For instance, UndoRemoveAction(13) removes only
AddItem actions in the undo stack.

Count as Variant

[optional] A long expression that indicates the number of
actions to be removed. If missing or -1, all actions are
removed. For instance, UndoRemoveAction(13,1) removes
only the last AddItem action from the undo stack

Use the UndoRemoveAction method to remove the last action from the undo queue. Use the
UndoRemoveAction() (with no parameters) to remove all undo actions. The UndoListAction
property retrieves the list of actions that an undo operation can perform. The
RedoRemoveAction method removes the first action to be performed if the Redo method is
invoked.

The records of the Undo/Redo queue may contain actions in the following format:

"AddItem;ITEMINDEX", indicates that a new item has been created
"RemoveItem;ITEMINDEX", indicates that an item has been removed
"ChangeItemPos;ITEMINDEX", indicates that an item changes its position or / and
parent
"ChangeCellValue;ITEMINDEX;CELLINDEX", indicates that the cell's value has been
changed
"ChangeCellState;ITEMINDEX;CELLINDEX", indicates that the cell's state has been
changed

Also, the Undo/Redo queue may include:

"StartBlock", specifies that a block of operations begins
"EndBlock", specifies that a block of operations ends

method Grid.Ungroup ()
Ungroups the columns, if they have been previously grouped.

Type Description

The Ungroup method removes the grouping items from the control's list. The AllowGroupBy
property specifies whether the control supports Group-By feature. The Ungroup method
has no effect if the AllowGroupBy property is False, or no columns is grouped. The Group
method forces the control to re-group the items. During execution any of these methods,
the IsGrouping property returns True. You can call the SortOrder property to sort and
group by specified column. Use the SortType property to determine the way how the
column is sorted. The AddGroupItem event is fired when a new grouping items is added to
the control's list. You can use the AddGroupItem event, to add headers or footers during
grouping, customize the aggregate formula to be displayed on different columns, while
dropping a column to the sortbar. The Column.AllowGroupBy property may be used to
prevent grouping a specific column. The AllowSort property indicates whether the user can
sort a column by clicking the column's header.

property Grid.UseTabKey as Boolean
Retrieves or sets a value indicating whether the control uses tab key for changing the
searching column.

Type Description

Boolean A boolean expression indicating whether the control uses
tab key for changing the searching column.

By default, the UseTabKey property is True. The UseTabKey property specifies whether the
control uses the TAB key to change the searching column. If the UseTabKey property is
False, the TAB key is used to navigate through the form's controls. Use the
SearchColumnIndex property to specify the index of the searching column.

property Grid.UseVisualTheme as UIVisualThemeEnum
Specifies whether the control uses the current visual theme to display certain UI parts.

Type Description

UIVisualThemeEnum
An UIVisualThemeEnum expression that specifies which UI
parts of the control are shown using the current visual
theme.

By default, the UseVisualTheme property is exDefaultVisualTheme, which means that all
known UI parts are shown as in the current theme. The UseVisualTheme property may
specify the UI parts that you need to enable or disable the current visual theme. The UI
Parts are like header, filterbar, check-boxes, buttons and so on. The UseVisualTheme
property has effect only a current theme is selected for your desktop. The UseVisualTheme
property. Use the Appearance property of the control to provide your own visual
appearance using the EBN files.

The following screen shot shows the control while the UseVisualTheme property is
exDefaultVisualTheme:

since the second screen shot shows the same data as the UseVisualTheme property is
exNoVisualTheme:

property Grid.Version as String
Retrieves the control's version.

Type Description
String A string expression that indicates the control's version.

The version property specifies the control's version.

property Grid.ViewMode as ViewModeEnum
Specifies how the data is displayed on the control's view.

Type Description

ViewModeEnum A ViewModeEnum expression that indicates the way how
data is displayed on the control's view.

By default, the ViewMode property is TableView. Currently, the control supports TableView
mode and CardView mode. Use the Add method to add new columns to the control. Use
the AddItem method to add new items/cards to your control. Use the PutItems, DataSource
method and related to load or bind the control to a data set.

The TableView mode shows the items as rows in a table. The user can customize the
layout of the fields in the row using the CellFormatLevel property.

The image below shows an example of TableView mode:

The CardView mode represents the view displaying data using cards. The user can
customize the layout of the fields in the card or in the title of the card using the
ViewModeOption(exCardViewFormat) ViewModeOption(exCardViewTitleFormat)
properties. The control allows displaying cards from left to right or top to bottom, auto-
arranging, resizing cards, expand or collapse cards support and much more.

The image below shows an example of CardView mode:

property Grid.ViewModeOption(Mode as ViewModeEnum, Option as
ViewModeOptionEnum) as Variant
Specifies options for the control's view mode.

Type Description

Mode as ViewModeEnum A ViewModeEnum expression that indicates the way how
data is displayed.

Option as
ViewModeOptionEnum

A ViewModeOptionEnum expression that indicates the
view's option being changed

Variant A Variant expression indicates the newly value for the
specified option.

The ViewModeOption property gets or sets a specified option for a particular view. Use the
ViewMode option to change the way how data is displayed in the control. Use the
BeginUpdate and EndUpdate methods to avoid painting the control while changing multiple
options.

For instance, the following VB sample changes the size of the control's borders when the
control is running in exTableView mode:

With Grid1
 .ViewModeOption(exTableView, exBorderWidth) = 2
 .ViewModeOption(exTableView, exBorderHeight) = 2
End With

property Grid.VirtualMode as Boolean
Specifies a value that indicates whether the control is running in the virtual mode.

Type Description

Boolean A boolean expression that indicates whether the control is
running in the virtual mode.

Generally, the user needs to run the control in virtual mode, if a table with large number of
records needs to be displayed. In virtual mode, the control handles maximum
2,147,483,647 records. The control is running in virtual mode, only if the VirtualMode
property is True, and the UnboundHandler property refers an object that implements
the IUnboundHandler interface. Implementing the IUnboundHandler interface is easy
because it has only two methods. The first one, ItemsCount specifies the number of
records that user needs to display in the control. The second method is ReadItem and it
provides data for a specific record. When control is running in the virtual mode, the control
loads only the items that need to be displayed. If the control is running in the unbound
mode (the VirtualMode property is False), the control allocates memory for all records
that need to be loaded. The data for each record is loaded only when it is required. The
virtual mode has few disadvantages like: the sorting is not available (the user needs to
provide sorting data), the control's filtering items is not available, the data cannot be
viewed as a hierarchy, the user cannot add items manually, selection is not available, and so
on. The main advantage of the virtual mode is that the control can displays large number of
records. The unbound mode requires a lot of memory, depending on number of loaded
records, but it allows almost all features of the control, including sorting, filtering and so on.

Use the ItemToVirtual property to convert the handle the item to the index of the virtual item.
Use the VirtualToItem property to get the handle of the item giving the index of the virtual
item. It is important to know, that the Items.VirtualToItem property ensures that the virtual
item fits the control's client area, so calling the EnsureVisibleItem method is not required in
this case. While running the control in virtual mode, you can use the Selection property to
specify/retrieve the control's selection, or the index-es of the virtual selected items.

Displaying a table, using the virtual mode (VB sample)

Editing a table, using the virtual mode (VB sample)

Adding a custom column, when the control is running in the virtual mode (VB sample)

Loading and editing a table using virtual mode in C++ (VC++ sample)

Running the VirtualMode in VFP 7.0 or greater (VFP sample)

Displaying a table, using the virtual mode

When you need to display large number of records, you need to provide an object that
implements the IUnboundHandler interface. The object provides the number of records that
needs to be displayed, and data for each record. The VirtualMode property needs to be set
on true, and the object you have written needs to be passed to the UnboundHandler
property.

The following VB sample adds a column, and 100 records. The index of each item is
displayed.

Create a new project (Project1)
Add a control to the form (Grid1)
Create a new class module (Class1) and add it to the project
Open the code of the class, and type "Implements IUnboundHandler"
Add the handler for the IUnboundHandler_ItemsCount property like follows:

Private Property Get IUnboundHandler_ItemsCount(ByVal Source As Object) As
Long
 IUnboundHandler_ItemsCount = 100
End Property

The control calls the IUnboundHandler_ItemsCount property when the UnboundHandler
property is set, to update the vertical scroll range.

Add the handler for the IUnboundHandler_ReadItem method like follows:

Private Sub IUnboundHandler_ReadItem(ByVal Index As Long, ByVal Source As
Object, ByVal ItemHandle As Long)
 With Source.Items
 .CellValue(ItemHandle, 0) = Index + 1
 End With
End Sub

The control calls the IUnboundHandler_ReadItem method each time when a virtual item
becomes visible.

Open the form's code and add handler for the Form_Load event like follows:

Private Sub Form_Load()
 With Grid1
 .BeginUpdate
 .Columns.Add "Column 1"

 .VirtualMode = True
 Set .UnboundHandler = New Class1
 .EndUpdate
 End With
End Sub

Save the project
Run the project

The sample runs the control in the virtual mode. The control calls the
IUnboundHandler_ItemsCount property when UnboundHandler property is set. The
IUnboundHandler_ReadItem method is invoked when a record needs to be displayed.

Now, that you got the idea of the virtual mode, let's start to complicate the things. Let's
suppose that we have a table and we need to display its records in the control.

Create a new project (Project1)
Add a control to the form (Grid1)
Create a new class module (Class1) and add it to the project
Add a new variable rs, of Object type like: Public rs as Object. In the following sample,
the rs variable holds a reference to an ADO.Recordset object
Add a new procedure AttachTable like follows:

Public Sub AttachTable(ByVal strTable As String, ByVal strPath As String, ByVal g
As EXGRIDLibCtl.Grid)
 Set rs = CreateObject("ADODB.Recordset")
 rs.Open strTable, "Provider=Microsoft.Jet.OLEDB.4.0;Data Source= " & strPath,
3, 3
 With g
 .BeginUpdate
 With .Columns
 Dim f As Variant
 For Each f In rs.Fields
 .Add f.Name
 Next
 End With
 .EndUpdate
 End With
End Sub

 The AttachTable subroutine opens a table using ADO, and insert in the control's
Columns collection a new column for each field found in the table.

Type "Implements IUnboundHandler" at the beginning of the class
Implement the IUnboundHandler_ItemsCount property like follows:

Private Property Get IUnboundHandler_ItemsCount(ByVal Source As Object) As
Long
 IUnboundHandler_ItemsCount = rs.RecordCount
End Property

 In this case the IUnboundHandler_ItemsCount property the number of records in the
table.

Implement the IUnboundHandler_ReadItem method like follows:

Private Sub IUnboundHandler_ReadItem(ByVal Index As Long, ByVal Source As
Object, ByVal ItemHandle As Long)
 rs.Move Index, 1
 Dim i As Long
 i = 0
 With Source.Items
 Dim f As Variant
 For Each f In rs.Fields
 .CellValue(ItemHandle, i) = f.Value
 i = i + 1
 Next
 End With
End Sub

The IUnboundHandler_ReadItem method moves the current record using the rs.Move
method, at the record with the specified index, and loads values for each cell n the
item. If you need to apply colors, font attributes, ... to the items in the control, your
handler may change the CellBold, CellForeColor, ... properties like follows:

Open the form's code, and add a new variable n like: Dim n As New Class1
Add a handler for the Form_Load event like follows:

Private Sub Form_Load()
 With Grid1
 .BeginUpdate

 n.AttachTable "Select * from Orders",
"D:\Exontrol\ExGrid\sample\sample.mdb", Grid1

 .VirtualMode = True
 Set .UnboundHandler = n

 .EndUpdate
 End With
End Sub

The AttachTable method opens the table, and fills the control's Columns collection. The
AttachTable method needs to be called before putting the control on virtual mode,
because properties of the rs object are called in the ItemsCount and ReadItem
methods.

Save the project
Run the project

Editing a table, using the virtual mode

In this case, we assume that you are already familiar with the "displaying a table, using
virtual mode". So, beside the steps that need to be followed in "displaying a table, using
virtual mode", the following steps need to be follow as well:

Add editors for each column that require being editable like follows:

With .Columns("OrderDate")
 With .Editor
 .EditType = DateType
 End With
End With

The Form_Load event should look like follows:

Private Sub Form_Load()
 With Grid1
 .BeginUpdate

 n.AttachTable "Select * from Orders",

"D:\Exontrol\ExGrid\sample\sample.mdb", Grid1

 .VirtualMode = True
 Set .UnboundHandler = n

 With .Columns("OrderDate")
 With .Editor
 .EditType = DateType
 End With
 End With

 .EndUpdate
 End With
End Sub

Important to notice is that setting editors is called after setting the UnboundHandler
property. Also, the "OrderDate" field needs to be changed if another table or database
is used. Until now, the sample is able to display the table, and it provides editors for
the columns. Until now, the user can change the values in the control but the data is
not saved to the table so please follow the steps:

Handle the control's Change event like follows:

Private Sub Grid1_Change(ByVal Item As EXGRIDLibCtl.HITEM, ByVal ColIndex As
Long, newValue As Variant)
 With Grid1.Items
 n.Change .ItemToVirtual(Item), ColIndex, newValue
 End With
End Sub

The Change event passes the NewValue to the object that implements the
IUnboundHandler interface, so we can make the change to the original place, in our
case the recordset.

The Change event is fired when user changes a value in the control. The Change event
is called even is the user changes the cell's value using the CellValue property, so the
IUnboundHandler_ReadItem needs a change like follows:

Private Sub IUnboundHandler_ReadItem(ByVal Index As Long, ByVal Source As
Object, ByVal ItemHandle As Long)

 nReading = nReading + 1
 rs.Move Index, 1
 Dim i As Long
 i = 0
 With Source.Items
 Dim f As Variant
 For Each f In rs.Fields
 .CellValue(ItemHandle, i) = f.Value
 i = i + 1
 Next
 End With
 nReading = nReading - 1
End Sub

Where is the change? The change is that we have added a counter nReading that is
increases when the IUnboundHandler_ReadItem method starts and it is decreased
when the function ends. Why such of counter? We have added the nReading counter
because, during the IUnboundHandler_ReadItem method the user calls CellValue, so
the Change event is fired and things get recursively as we do not want...

Add a new method to the Class1 object like follows (Change):

Public Sub Change(ByVal Index As Long, ByVal ColIndex As Long, ByVal newValue
As Variant)
 If nReading = 0 Then
 rs.Move Index, 1
 rs(ColIndex) = newValue
 End If
End Sub

Checking the nReading counter is required because the Change event is called even if
the user changes the cell's value using CellValue property. If such of checking is
omitted, a recursive call occurs. The nReading counter is increased when the
IUnboundHandler_ReadItem method starts, and the nReading counter is decreased
when the IUnboundHandler_ReadItem method ends.

The last thing that we need to add is to declare the variable (counter) nReading as
Long: Dim nReading As Long, and to initialize it in the Class1 constructor like follows:

Private Sub Class_Initialize()

 nReading = 0
End Sub

Save and run the project

Adding a custom column, when the control is running in the virtual mode.

Let's suppose that we want to display a column with the current position for each record in
the table. In this case, we need to add a new column, and we need to change the
ReadItem method like follows:

The Form_Load event should look like:

Private Sub Form_Load()
 With Grid1
 .BeginUpdate

 n.AttachTable "Select * from Orders",
"D:\Exontrol\ExGrid\sample\sample.mdb", Grid1

 .VirtualMode = True
 Set .UnboundHandler = n

 With .Columns("OrderDate")
 With .Editor
 .EditType = DateType
 End With
 End With

 With .Columns.Add("Position")
 .Position = 0
 End With

 .EndUpdate
 End With
End Sub

The IUnboundHandler_ReadItem method looks like following:

Private Sub IUnboundHandler_ReadItem(ByVal Index As Long, ByVal Source As
Object, ByVal ItemHandle As Long)
 nReading = nReading + 1
 rs.Move Index, 1
 Dim i As Long
 i = 0
 With Source.Items
 Dim f As Variant
 For Each f In rs.Fields
 .CellValue(ItemHandle, i) = f.Value
 i = i + 1
 Next
 .CellValue(ItemHandle, "Position") = Index + 1
 End With
 nReading = nReading - 1
End Sub

For instance, if you need to have a column that computes its value based on the other
columns, it can be done like this:

.CellValue(ItemHandle, "Column") = .CellValue(ItemHandle, "Quantity") *

.CellValue(ItemHandle, "UnitPrice")

Loading and editing a table using virtual mode in C++

The following tutorial will show how to run the control in virtual mode. The sample is a
simple MFC dialog based application. Anyway, if your application is different than a MFC
dialog based, the base things you need are here, so please find that the following
information are useful.

Create a new project using MFC AppWizard (exe) (ADOVirtual)
Select Dialog based, for the type of the application
Insert the control to the application's main dialog (Insert ActiveX Control)
Save the Project
Open the MFC Class Wizard, by pressing CTRL + W
Add a new member variable for IDC_GRID1 resource called m_grid. In the meanwhile,
please notice that the wizard will ask you 'The ActiveX Control "ExGrid ActiveX Control"
has not been inserted into the project. Developer Studio will do this now and generate
a C++ wrapper class for it', and you need to click ok, by following the steps that wizard
will ask you to do in order to insert the C++ wrapper classese. (CGrid, CItems,

CColumn, CEditor, COleFont, CPicture, CColumns)
Save the Project
Open the Dialog Properties, and click the "Clip siblings" and "Clip children"
Add a new MFC based class, CUnboundHandler derived from the CCmdTarget. We
define the CUnboundHandler class to implement the IUnboundHandler interface.
Import the control's definition using the #import directive like follows:

#import "c:\winnt\system32\exgrid.dll" rename("GetItems", "exGetItems")

The #import directive is used to incorporate information from a type library. The content
of the type library is converted into C++ classes, mostly describing the COM
interfaces. The path to the file need to be changed if the dll is somewhere else. After
building the project, the environment generates a namespace EXGRIDLib. The
generated namespace includes definition for IUnboundHandler interface. It can be
accessed using the declaration EXGRIDLib::IUnboundHandler

By default, the destructor of the CUnboundHandler class is declared as protected. The
destructor needs to be declared as public (Remove the protected keyword before
~CUnboundHandler).
Implementing the IUnboundHandler interface using the DECLARE_INTERFACE_MAP,
BEGIN_INTERFACE_PART and END_INTERFACE_PART macros. The following
snippet needs to be inserted in the class definition like

DECLARE_INTERFACE_MAP()

public:
 BEGIN_INTERFACE_PART(Handler, EXGRIDLib::IUnboundHandler)
 STDMETHOD(get_ItemsCount)(IDispatch * Source,long* pVal);
 STDMETHOD(raw_ReadItem)(long Index, IDispatch * Source, long
ItemHandle);
 END_INTERFACE_PART(Handler)

The CUnboundHandler class definition should look like follows (we have removed the
comments added by the wizard):

#import "c:\winnt\system32\exgrid.dll" rename("GetItems", "exGetItems")

class CUnboundHandler : public CCmdTarget
{
 DECLARE_DYNCREATE(CUnboundHandler)

 CUnboundHandler(); // protected constructor used by dynamic
creation

 DECLARE_INTERFACE_MAP()

public:
 BEGIN_INTERFACE_PART(Handler, EXGRIDLib::IUnboundHandler)
 STDMETHOD(get_ItemsCount)(IDispatch * Source, long* pVal);
 STDMETHOD(raw_ReadItem)(long Index, IDispatch * Source, long
ItemHandle);
 END_INTERFACE_PART(Handler)

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CUnboundHandler)
 //}}AFX_VIRTUAL

// Implementation
 virtual ~CUnboundHandler();

 // Generated message map functions
 //{{AFX_MSG(CUnboundHandler)
 // NOTE - the ClassWizard will add and remove member functions here.
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()
};

Add INTERFACE_PART definition in the UnboundHandler.cpp file like follows:

BEGIN_INTERFACE_MAP(CUnboundHandler, CCmdTarget)
 INTERFACE_PART(CUnboundHandler, __uuidof(EXGRIDLib::IUnboundHandler),
Handler)
END_INTERFACE_MAP()

Write the get_ItemsCount property like follows:

STDMETHODIMP CUnboundHandler::XHandler::get_ItemsCount(IDispatch *

Source, long* pVal)
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 if (pVal)
 {
 *pVal = 25000;
 return S_OK;;
 }
 return E_POINTER;
}

Write the raw_ReadItem method like follows:

STDMETHODIMP CUnboundHandler::XHandler::raw_ReadItem(long Index,
IDispatch * Source, long ItemHandle)
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);

 // gets the source control
 EXGRIDLib::IGrid* pGrid = NULL;
 if (SUCCEEDED(Source->QueryInterface(__uuidof(EXGRIDLib::IGrid),
(LPVOID*)&pGrid)))
 {
 // assigns the value for each cell.
 pGrid->Items->CellValue[ItemHandle][_variant_t((long)0)] = _variant_t(
Index);
 pGrid->Release();
 }
 return S_OK;
}

Add implementation for QueryInterface, AddRef and Release methods of IUnknown
interface like follows:

STDMETHODIMP CUnboundHandler::XHandler::QueryInterface(REFIID riid,
void** ppvObject)
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);

 if (ppvObject)
 {
 if (IsEqualIID(__uuidof(IUnknown), riid))
 {
 ppvObject = static_cast<IUnknown>(this);
 AddRef();
 return S_OK;
 }
 if (IsEqualIID(__uuidof(EXGRIDLib::IUnboundHandler), riid))
 {
 ppvObject = static_cast<EXGRIDLib::IUnboundHandler>(this);
 AddRef();
 return S_OK;
 }
 return E_NOINTERFACE;
 }
 return E_POINTER;
}

STDMETHODIMP_(ULONG) CUnboundHandler::XHandler::AddRef()
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 return 1;
}

STDMETHODIMP_(ULONG) CUnboundHandler::XHandler::Release()
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 return 0;
}

The CUnboundHandler class implementation should look like:

IMPLEMENT_DYNCREATE(CUnboundHandler, CCmdTarget)

BEGIN_INTERFACE_MAP(CUnboundHandler, CCmdTarget)
 INTERFACE_PART(CUnboundHandler, __uuidof(EXGRIDLib::IUnboundHandler),

Handler)
END_INTERFACE_MAP()

CUnboundHandler::CUnboundHandler()
{
}

CUnboundHandler::~CUnboundHandler()
{
}

STDMETHODIMP CUnboundHandler::XHandler::get_ItemsCount(IDispatch *
Source, long* pVal)
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 if (pVal)
 {
 *pVal = 25000;
 return S_OK;;
 }
 return E_POINTER;
}

STDMETHODIMP CUnboundHandler::XHandler::raw_ReadItem(long Index,
IDispatch * Source, long ItemHandle)
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);

 // gets the source control
 EXGRIDLib::IGrid* pGrid = NULL;
 if (SUCCEEDED(Source->QueryInterface(__uuidof(EXGRIDLib::IGrid),
(LPVOID*)&pGrid)))
 {
 // assigns the value for each cell.
 pGrid->Items->CellValue[ItemHandle][_variant_t((long)0)] = _variant_t(
Index);
 pGrid->Release();

 }
 return S_OK;
}

STDMETHODIMP CUnboundHandler::XHandler::QueryInterface(REFIID riid,
void** ppvObject)
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 if (ppvObject)
 {
 if (IsEqualIID(__uuidof(IUnknown), riid))
 {
 ppvObject = static_cast<IUnknown>(this);
 AddRef();
 return S_OK;
 }
 if (IsEqualIID(__uuidof(EXGRIDLib::IUnboundHandler), riid))
 {
 ppvObject = static_cast<EXGRIDLib::IUnboundHandler>(this);
 AddRef();
 return S_OK;
 }
 return E_NOINTERFACE;
 }
 return E_POINTER;
}

STDMETHODIMP_(ULONG) CUnboundHandler::XHandler::AddRef()
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 return 1;
}

STDMETHODIMP_(ULONG) CUnboundHandler::XHandler::Release()
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 return 0;

}

BEGIN_MESSAGE_MAP(CUnboundHandler, CCmdTarget)
 //{{AFX_MSG_MAP(CUnboundHandler)
 // NOTE - the ClassWizard will add and remove mapping macros here.
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

After all these steps we have defined the class CUnboundHandler that implements the
IUnboundHandler interface. All that we need to do from now, is to add a column to the
control, and to set the VirtualMode and UnboundHanlder properties like follows:

Open the definition of the application's main dialog (CADOVirtualDlg)
Include the definition of the CUnboundHandler class to CADOVirtualDlg using:

#include "UnboundHandler.h"

Add a new member of CUnboundHandler type to the CADOVirtualDlg class like:

CUnboundHandler m_unboundHandler;

Open the implementation file for the application's main dialog (CADOVirtualDlg)
Add the definition for CColumns class (a wrapper class for the control) at the
beginning of the file

 #include "Columns.h"

Locate the OnInitDialog() method and add the following code (after the "// TODO: Add
extra initialization here"):

m_grid.BeginUpdate();
 m_grid.GetColumns().Add(_T("Column 1"));
 m_grid.SetVirtualMode(TRUE);
 m_grid.SetUnboundHandler(&m_unboundHandler.m_xHandler);
m_grid.EndUpdate();

Save, Compile and Run the project

The tutorial shows how to put the control on virtual mode. The sample loads the numbers
from 0 to 24999.

Now, that we got the idea how to implement the IUnboundHandler let's say that we want to

change the sample to load an edit an ADO recordset. The following tutorials shows how to
display a table and how to add code in order to let user edits the data.

Open the definition of the CUnboundHandler class
Import the Microsoft ADO Type Library to the CUnboundHandler class like follows:

#import <msado15.dll> rename ("EOF", "adoEOF")

The #import directive generates the ADODB namspace. The ADODB namspace
includes all definitions in the Microsoft ADO Type Library.

Include a member of ADODB::_RecordsetPtr called m_spRecordset. The
m_spRecordset member will handle data in the ADO table.

ADODB::_RecordsetPtr m_spRecordset;

Add definition for AttachTable function like follows:

virtual void AttachTable(EXGRIDLib::IGrid* pGrid, LPCTSTR szTable, LPCTSTR
szDatabase);

Now, the CUnboundHandler class definition should look like follows:

#import "c:\winnt\system32\exgrid.dll" rename("GetItems", "exGetItems")
#import <msado15.dll> rename ("EOF", "adoEOF")

class CUnboundHandler : public CCmdTarget
{
 DECLARE_DYNCREATE(CUnboundHandler)

 CUnboundHandler(); // protected constructor used by dynamic creation

 DECLARE_INTERFACE_MAP()

public:
 BEGIN_INTERFACE_PART(Handler, EXGRIDLib::IUnboundHandler)
 STDMETHOD(get_ItemsCount)(IDispatch * Source, long* pVal);
 STDMETHOD(raw_ReadItem)(long Index, IDispatch * Source, long ItemHandle);
 END_INTERFACE_PART(Handler)

 virtual void AttachTable(EXGRIDLib::IGrid* pGrid, LPCTSTR szTable, LPCTSTR
szDatabase);

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CUnboundHandler)
 //}}AFX_VIRTUAL

// Implementation
 virtual ~CUnboundHandler();

 // Generated message map functions
 //{{AFX_MSG(CUnboundHandler)
 // NOTE - the ClassWizard will add and remove member functions here.
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()

 ADODB::_RecordsetPtr m_spRecordset;
};

Open the implementation file for CUnboundHandler class (UnboundHandler.cpp file)
Add the implementation for AttachTable function like follows:

void CUnboundHandler::AttachTable(EXGRIDLib::IGrid* pGrid, LPCTSTR szTable,
LPCTSTR szDatabase)
{
 if (SUCCEEDED(m_spRecordset.CreateInstance("ADODB.Recordset")))
 {
 try
 {
 CString strConnection = "Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=";
 strConnection += szDatabase;
 if (SUCCEEDED(m_spRecordset->Open(_variant_t(szTable),
_variant_t(strConnection), ADODB::adOpenStatic, ADODB::adLockPessimistic,
NULL)))

 {
 pGrid->BeginUpdate();
 for (long i = 0; i < m_spRecordset->Fields->GetCount(); i++)
 pGrid->GetColumns()->Add(m_spRecordset->Fields->GetItem(
_variant_t(i))->Name);
 pGrid->EndUpdate();
 }
 }
 catch (_com_error& e)
 {
 AfxMessageBox(e.Description());
 }

 }
}

The AttachTable function opens a recordset, and adds a new column to the
control's Columns collection for each field found in the recordset.

Change the get_ItemsCount property like follows:

STDMETHODIMP CUnboundHandler::XHandler::get_ItemsCount(IDispatch *
Source, long* pVal)
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 if (pVal)
 {
 *pVal = pThis->m_spRecordset->RecordCount;
 return S_OK;;
 }
 return E_POINTER;
}

The ItemsCount property specifies that the control displays all records in the recordset

Change the raw_ReadItem method like follows:

STDMETHODIMP CUnboundHandler::XHandler::raw_ReadItem(long Index,
IDispatch * Source, long ItemHandle)

{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 pThis->m_spRecordset->Move(Index, _variant_t(
(long)ADODB::adBookmarkFirst));

 // gets the source control
 EXGRIDLib::IGrid* pGrid = NULL;
 if (SUCCEEDED(Source->QueryInterface(__uuidof(EXGRIDLib::IGrid),
(LPVOID*)&pGrid)))
 {
 // assigns the value for each cell.
 for (long i = 0; i < pThis->m_spRecordset->Fields->GetCount(); i++)
 pGrid->Items->CellValue[_variant_t(ItemHandle)][_variant_t(i)] =
pThis->m_spRecordset->Fields->GetItem(_variant_t(i))->Value;
 pGrid->Release();
 }
 return S_OK;
}

The ReadItem method moves the position of the current record in the recordset, and
sets the value for each cell in the item.

The implementation for CUnbundHandler class should look like:

IMPLEMENT_DYNCREATE(CUnboundHandler, CCmdTarget)

BEGIN_INTERFACE_MAP(CUnboundHandler, CCmdTarget)
 INTERFACE_PART(CUnboundHandler, __uuidof(EXGRIDLib::IUnboundHandler),
Handler)
END_INTERFACE_MAP()

CUnboundHandler::CUnboundHandler()
{
}

CUnboundHandler::~CUnboundHandler()
{
}

STDMETHODIMP CUnboundHandler::XHandler::get_ItemsCount(IDispatch *
Source, long* pVal)
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 if (pVal)
 {
 *pVal = pThis->m_spRecordset->RecordCount;
 return S_OK;;
 }
 return E_POINTER;
}

STDMETHODIMP CUnboundHandler::XHandler::raw_ReadItem(long Index,
IDispatch * Source, long ItemHandle)
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 pThis->m_spRecordset->Move(Index, _variant_t(
(long)ADODB::adBookmarkFirst));

 // gets the source control
 EXGRIDLib::IGrid* pGrid = NULL;
 if (SUCCEEDED(Source->QueryInterface(__uuidof(EXGRIDLib::IGrid),
(LPVOID*)&pGrid)))
 {
 // assigns the value for each cell.
 for (long i = 0; i < pThis->m_spRecordset->Fields->GetCount(); i++)
 pGrid->Items->CellValue[_variant_t(ItemHandle)][_variant_t(i)]
= pThis->m_spRecordset->Fields->GetItem(_variant_t(i))->Value;
 pGrid->Release();
 }
 return S_OK;
}

void CUnboundHandler::AttachTable(EXGRIDLib::IGrid* pGrid, LPCTSTR
szTable, LPCTSTR szDatabase)
{

 if (SUCCEEDED(m_spRecordset.CreateInstance("ADODB.Recordset")))
 {
 try
 {
 CString strConnection = "Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=";
 strConnection += szDatabase;
 if (SUCCEEDED(m_spRecordset->Open(_variant_t(szTable),
_variant_t(strConnection), ADODB::adOpenStatic,
ADODB::adLockPessimistic, NULL)))
 {
 pGrid->BeginUpdate();
 for (long i = 0; i < m_spRecordset->Fields->GetCount(); i++)
 pGrid->GetColumns()->Add(m_spRecordset->Fields-
>GetItem(_variant_t(i))->Name);
 pGrid->EndUpdate();
 }
 }
 catch (_com_error& e)
 {
 AfxMessageBox(e.Description());
 }

 }
}

STDMETHODIMP CUnboundHandler::XHandler::QueryInterface(REFIID riid,
void** ppvObject)
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 if (ppvObject)
 {
 if (IsEqualIID(__uuidof(IUnknown), riid))
 {
 ppvObject = static_cast<IUnknown>(this);
 AddRef();
 return S_OK;

 }
 if (IsEqualIID(__uuidof(EXGRIDLib::IUnboundHandler), riid))
 {
 ppvObject = static_cast<EXGRIDLib::IUnboundHandler>(this);
 AddRef();
 return S_OK;
 }
 return E_NOINTERFACE;
 }
 return E_POINTER;
}

STDMETHODIMP_(ULONG) CUnboundHandler::XHandler::AddRef()
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 return 1;
}

STDMETHODIMP_(ULONG) CUnboundHandler::XHandler::Release()
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 return 0;
}

BEGIN_MESSAGE_MAP(CUnboundHandler, CCmdTarget)
 //{{AFX_MSG_MAP(CUnboundHandler)
 // NOTE - the ClassWizard will add and remove mapping macros here.
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

Locate the OnInitDialog method in the implementation file of the application's main
dialog (AdoVirtualDlg.cpp)
Add the following code to the OnInitDialog method:

EXGRIDLib::IGridPtr spGrid = NULL;
m_grid.GetControlUnknown()->QueryInterface(&spGrid);
m_grid.BeginUpdate();
 m_unboundHandler.AttachTable(spGrid, _T("Orders"),

_T("D:\\Exontrol\\ExGrid\\sample\\sample.mdb"));
 m_grid.SetVirtualMode(TRUE);
 m_grid.SetUnboundHandler(&m_unboundHandler.m_xHandler);
m_grid.EndUpdate();

The AttachTable function is called before setting the UnboundHandler property. The
AttachTable function opens a recordset giving the SQL phrase and the database. The
AttachTable function loads also the control's Columns collection from the Fields
collection of the recordset.

Save, Compile and Run the project

After all these your control will be able to display a table using the virtual mode. Now, we
need to add some changes in order to let user edits data in the control using the control's
collection of editors.

Include the definition for the CColumns, CColumn, CEditor, CItems classes in the
application's main dialog (CAdoVirtualDlg)

#include "Columns.h"
#include "Column.h"
#include "Editor.h"
#include "Items.h"

Locate the OnInitDialog method in the implementation file of the application's main
dialog (AdoVirtualDlg.cpp)
Add editors for the columns like following:

m_grid.GetColumns().GetItem(_variant_t(_T("OrderDate"))
).GetEditor().SetEditType(EXGRIDLib::DateType);
m_grid.GetColumns().GetItem(_variant_t(_T("RequiredDate"))
).GetEditor().SetEditType(EXGRIDLib::DateType);
m_grid.GetColumns().GetItem(_variant_t(_T("ShippedDate"))
).GetEditor().SetEditType(EXGRIDLib::DateType);

The sample includes editors of DateType to "OrderDate", "RequiredDate" and
"ShippedDate" columns. If the editor requires adding items or requires more changes,
you could save the editor object to a variable like in the following sample:

_variant_t vtMissing; vtMissing.vt = VT_ERROR;
CEditor editor = m_grid.GetColumns().GetItem(_variant_t(_T("EmployeeID"))

).GetEditor();
 editor.SetEditType(EXGRIDLib::DropDownListType);
 editor.AddItem(1, _T("Nancy Davolio"), vtMissing);
 editor.AddItem(2, _T("Fuller Andrew"), vtMissing);
 editor.AddItem(3, _T("Jannet Leverling"), vtMissing);
 editor.AddItem(4, _T("Margaret Peacock"), vtMissing);
 editor.AddItem(5, _T("Marius Buchanan"), vtMissing);
 editor.AddItem(6, _T("Michael Suyama"), vtMissing);
 editor.AddItem(7, _T("Robert King"), vtMissing);
 editor.AddItem(8, _T("Laura Callahan"), vtMissing);
 editor.AddItem(9, _T("Anne Dodsworth"), vtMissing);

Add a handler for the Change event of the control.

void CADOVirtualDlg::OnChangeGrid1(long Item, long ColIndex, VARIANT FAR*
NewValue)
{
 m_unboundHandler.Change(NewValue, m_grid.GetItems().GetItemToVirtual(
Item), ColIndex);
}

Open the definition file of the CUnboundHandler class (UnboundHandler.h file)
Add a new member variable of long type as:

 long m_nReading;

The Change event is called even if the user changes the cell's value using the Cellvalue
property. Because in the ReadItem method we are using the Cellvalue, we need to
increase the m_nReading counter when ReadItem method starts, and decreases it
when the function ends. So, we will be able to avoid recursive calls.

Add the definition of the Change function in the CUnboundHandler class:

virtual void Change(VARIANT* pvtNewValue, long Index, long ColIndex);

The CUnboundHandler class definition should look like:

#import "c:\winnt\system32\exgrid.dll" rename("GetItems", "exGetItems")
#import <msado15.dll> rename ("EOF", "adoEOF")

class CUnboundHandler : public CCmdTarget
{
 DECLARE_DYNCREATE(CUnboundHandler)

 CUnboundHandler(); // protected constructor used by dynamic creation

 DECLARE_INTERFACE_MAP()

public:
 BEGIN_INTERFACE_PART(Handler, EXGRIDLib::IUnboundHandler)
 STDMETHOD(get_ItemsCount)(IDispatch * Source, long* pVal);
 STDMETHOD(raw_ReadItem)(long Index, IDispatch * Source, long ItemHandle);
 END_INTERFACE_PART(Handler)

 virtual void AttachTable(EXGRIDLib::IGrid* pGrid, LPCTSTR szTable, LPCTSTR
szDatabase);
 virtual void Change(VARIANT* pvtNewValue, long Index, long ColIndex);

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CUnboundHandler)
 //}}AFX_VIRTUAL

// Implementation
 virtual ~CUnboundHandler();

 // Generated message map functions
 //{{AFX_MSG(CUnboundHandler)
 // NOTE - the ClassWizard will add and remove member functions here.
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()

 ADODB::_RecordsetPtr m_spRecordset;
 long m_nReading;
};

Init the counter in the CUnboundHandler class constructor like follows:

CUnboundHandler::CUnboundHandler()
{
 m_nReading = 0;
}

Change the raw_ReadItem method like follows:

STDMETHODIMP CUnboundHandler::XHandler::raw_ReadItem(long Index,
IDispatch * Source, long ItemHandle)
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 pThis->m_nReading++;
 pThis->m_spRecordset->Move(Index, _variant_t(
(long)ADODB::adBookmarkFirst));

 // gets the source control
 EXGRIDLib::IGrid* pGrid = NULL;
 if (SUCCEEDED(Source->QueryInterface(__uuidof(EXGRIDLib::IGrid),
(LPVOID*)&pGrid)))
 {
 // assigns the value for each cell.
 for (long i = 0; i < pThis->m_spRecordset->Fields->GetCount(); i++)
 pGrid->Items->CellValue[_variant_t(ItemHandle)][_variant_t(i)] =
pThis->m_spRecordset->Fields->GetItem(_variant_t(i))->Value;
 pGrid->Release();
 }
 pThis->m_nReading--;
 return S_OK;
}

Add implementation for the Change function like:

void CUnboundHandler::Change(VARIANT* pvtNewValue, long Index, long
ColIndex)
{
 if (m_nReading == 0)

 {
 m_spRecordset->Move(Index, _variant_t((long)ADODB::adBookmarkFirst));
 m_spRecordset->Fields->GetItem(_variant_t(ColIndex))->Value =
*pvtNewValue;
 m_spRecordset->Update();
 }
}

The Change function moves the position of the current record in the recordset, and
updates the table. The control automatically will reread the record in order to update
the date in the cells of the item, after Change event is processed.

Finally, the implementation of the CUnboundHandler class looks like:

IMPLEMENT_DYNCREATE(CUnboundHandler, CCmdTarget)

BEGIN_INTERFACE_MAP(CUnboundHandler, CCmdTarget)
 INTERFACE_PART(CUnboundHandler, __uuidof(EXGRIDLib::IUnboundHandler),
Handler)
END_INTERFACE_MAP()

CUnboundHandler::CUnboundHandler()
{
 m_nReading = 0;
}

CUnboundHandler::~CUnboundHandler()
{
}

STDMETHODIMP CUnboundHandler::XHandler::get_ItemsCount(IDispatch *
Source, long* pVal)
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 if (pVal)
 {
 *pVal = pThis->m_spRecordset->RecordCount;
 return S_OK;;

 }
 return E_POINTER;
}

STDMETHODIMP CUnboundHandler::XHandler::raw_ReadItem(long Index,
IDispatch * Source, long ItemHandle)
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 pThis->m_nReading++;
 pThis->m_spRecordset->Move(Index, _variant_t(
(long)ADODB::adBookmarkFirst));

 // gets the source control
 EXGRIDLib::IGrid* pGrid = NULL;
 if (SUCCEEDED(Source->QueryInterface(__uuidof(EXGRIDLib::IGrid),
(LPVOID*)&pGrid)))
 {
 // assigns the value for each cell.
 for (long i = 0; i < pThis->m_spRecordset->Fields->GetCount(); i++)
 pGrid->Items->CellValue[_variant_t(ItemHandle)][_variant_t(i)] =
pThis->m_spRecordset->Fields->GetItem(_variant_t(i))->Value;
 pGrid->Release();
 }
 pThis->m_nReading--;
 return S_OK;
}

void CUnboundHandler::AttachTable(EXGRIDLib::IGrid* pGrid, LPCTSTR szTable,
LPCTSTR szDatabase)
{
 if (SUCCEEDED(m_spRecordset.CreateInstance("ADODB.Recordset")))
 {
 try
 {
 CString strConnection = "Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=";
 strConnection += szDatabase;

 if (SUCCEEDED(m_spRecordset->Open(_variant_t(szTable),
_variant_t(strConnection), ADODB::adOpenStatic, ADODB::adLockPessimistic,
NULL)))
 {
 pGrid->BeginUpdate();
 for (long i = 0; i < m_spRecordset->Fields->GetCount(); i++)
 pGrid->GetColumns()->Add(m_spRecordset->Fields->GetItem(
_variant_t(i))->Name);
 pGrid->EndUpdate();
 }
 }
 catch (_com_error& e)
 {
 AfxMessageBox(e.Description());
 }

 }
}

void CUnboundHandler::Change(VARIANT* pvtNewValue, long Index,
long ColIndex)
{
 if (m_nReading == 0)
 {
 m_spRecordset->Move(Index, _variant_t(
(long)ADODB::adBookmarkFirst));
 m_spRecordset->Fields->GetItem(_variant_t(ColIndex))->Value =
*pvtNewValue;
 m_spRecordset->Update();
 }
}

STDMETHODIMP CUnboundHandler::XHandler::QueryInterface(REFIID riid,
void** ppvObject)
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 if (ppvObject)

 {
 if (IsEqualIID(__uuidof(IUnknown), riid))
 {
 ppvObject = static_cast<IUnknown>(this);
 AddRef();
 return S_OK;
 }
 if (IsEqualIID(__uuidof(EXGRIDLib::IUnboundHandler), riid))
 {
 ppvObject = static_cast<EXGRIDLib::IUnboundHandler>(this);
 AddRef();
 return S_OK;
 }
 return E_NOINTERFACE;
 }
 return E_POINTER;
}

STDMETHODIMP_(ULONG) CUnboundHandler::XHandler::AddRef()
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 return 1;
}

STDMETHODIMP_(ULONG) CUnboundHandler::XHandler::Release()
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 return 0;
}

BEGIN_MESSAGE_MAP(CUnboundHandler, CCmdTarget)
 //{{AFX_MSG_MAP(CUnboundHandler)
 // NOTE - the ClassWizard will add and remove mapping macros here.
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

If you need to apply colors, font attributes, ... for items or cells while the control is running

in the virtual mode, the changes should be done in the raw_ReadItem method like follows:

STDMETHODIMP CUnboundHandler::XHandler::raw_ReadItem(long Index,
IDispatch * Source, long ItemHandle)
{
 METHOD_PROLOGUE(CUnboundHandler, Handler);
 pThis->m_nReading++;
 pThis->m_spRecordset->Move(Index, _variant_t(
(long)ADODB::adBookmarkFirst));

 // gets the source control
 EXGRIDLib::IGrid* pGrid = NULL;
 if (SUCCEEDED(Source->QueryInterface(__uuidof(EXGRIDLib::IGrid),
(LPVOID*)&pGrid)))
 {
 // assigns the value for each cell.
 for (long i = 0; i < pThis->m_spRecordset->Fields->GetCount(); i++)
 pGrid->Items->CellValue[_variant_t(ItemHandle)][_variant_t(i)] =
pThis->m_spRecordset->Fields->GetItem(_variant_t(i))->Value;

 if (pGrid->Items->CellValue[_variant_t(ItemHandle)][_variant_t(
_T("ShipRegion"))] == _variant_t(_T("RJ")))
 pGrid->Items->put_ItemForeColor(ItemHandle , RGB(0,0,255));
 if (pGrid->Items->CellValue[_variant_t(ItemHandle)][_variant_t(
_T("ShipRegion"))] == _variant_t(_T("SP")))
 pGrid->Items->put_ItemBold(ItemHandle , TRUE);

 pGrid->Release();
 }
 pThis->m_nReading--;
 return S_OK;
}

While compiling the project the compiler displays warnings like: "warning C4146: unary
minus operator applied to unsigned type, result still unsigned". You have to include the :

#pragma warning(disable : 4146)

before importing the type libraries.

#pragma warning(disable : 4146)
#import "c:\winnt\system32\exgrid.dll" rename("GetItems", "exGetItems")
#import <msado15.dll> rename ("EOF", "adoEOF")

Running the VirtualMode in VFP 7.0 or greater

1. Create a PRG file, say, CLASS1.PRG to define a class to implement the
IUnboundHandler interface:

define class UnboundHandler as custom
 implements IUnboundHandler in "ExGrid.dll"

 function IUnboundHandler_get_ItemsCount(Source)
 return 10000000 && we are going to have that many virtual items
 endfunc

 function IUnboundHandler_ReadItem(Index, Source, ItemHandle)
 With Source.Items
 .DefaultItem = ItemHandle
 .CellValue(0, 0) = 'Virtual Item ' + transform(Index+1) && in this example,
just set text in Column 0
 EndWith
 endfunc

enddefine

2. Set up ExGrid's properties as follows (in the example, it is done by Form1.Init)

with thisform.Grid1
 .Columns.Add("Column 0")
 .VirtualMode = .t.
 .UnboundHandler = newobject('UnboundHandler', 'class1.prg')
endwith

3. You can also use Virtual Mode to scan a table, say, MyCursor, in natural order.

function IUnboundHandler_get_ItemsCount(Source)

 return reccount('MyCursor')
endfunc

function IUnboundHandler_ReadItem(Index, Source, ItemHandle)
 select MyCursor
 go Index+1
 With Source.Items
 .DefaultItem = ItemHandle
 .CellValue(0, 0) = 'Virtual Item ' + MyCursor.Field1
 EndWith
endfunc
enddefine

property Grid.VisualAppearance as Appearance
Retrieves the control's appearance.

Type Description
Appearance An Appearance object that holds a collection of skins.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control. By using a
collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part.

The skin method may change the visual appearance for the following parts in the control:

control's header bar, BackColorHeader property
control's filter bar, FilterBarBackColor property
control's sort bar, BackColorSort property
the caption of the control's sort bar, BackColorSortCaption property
selected item or cell, SelBackColor property
item, ItemBackColor property
cell, CellBackColor property
cell's button, "drop down" filter bar button, "close" filter bar button, and so on,
Background property

property Grid.VisualDesign as String
Invokes the control's VisualAppearance designer.

Type Description

String A String expression that encodes the control's Visual
Appearance.

By default, the VisualDesign property is "". The VisualDesign property helps you to define
fast and easy the control's visual appearance using the XP-Theme elements or EBN
objects. The VisualDesign property can be accessed on design mode, and it can be used to
design the visual appearance of different parts of the control by drag and drop XP or EBN
elements. The VisualAppearance designer returns an encoded string that can be used to
define different looks, just by calling the VisualDesign = encoded_string. If you require
removing the current visual appearance, you can call the VisualDesign on "" (empty string).
The VisualDesign property encodes EBN or XP-Theme nodes, using the Add method of the
Appearance collection being accessed through the VisualAppearance property.

For the /COM version, click the control in Design mode, select the Properties, and
choose the "Visual Design" page.
For the /NET version, select the VisualDesign property in the Properties browser, and
then click ... so the "Visual Design" page is displayed.
The /WPF version does not provide a VisualAppearance designer, instead you can use
the values being generated by the /COM or /NET to apply the same visual appearance.

Click here to watch a movie on how you define the control's visual appearance using
the XP-Theme
Click here to watch a movie on how you define the control's visual appearance using
the EBN files.

The left panel, should be user to add your EBN or XP-Theme elements. Once you add them
drag and drop the EBN or XP-Theme element from the left side to the part which visual
appearance you want to change.

The following picture shows the control's VisualDesign form (empty):

https://exontrol.com/ebn.jsp
https://www.youtube.com/watch?v=eFhIzjE52I8
https://www.youtube.com/watch?v=JqEUQRhKYWo

The following picture shows the control's VisualDesign form after applying some EBN
objects:

This layout generates the following code:

With Exgrid1
 .VisualDesign =
"gBFLBWIgBAEHhEJAEGg7oB0HBSQAwABsIfj/jEJAcKhYEjgCAscA8ThQBA8cAgIjgDh8KBAPjgJCUcAIhmgij6AhKAf4CBMIhgACIgg7+jYAgRCJ1BjkHoIBctHnTACAxRDAMgBQKAAzQFAYaByHKGAAGEYRXgmFgAQhFcZQSKUOQTDKMIziYBYfgkMIgSbJUgDCAkRRdDSOYDmGQYDiCIoRShOMpTXJ8bRfGigIqMVI2PACQ5FRZOUByTRcUAFH6QAijOopViWGpHUZRETxCKQahLLivIhGUYKfgmY5lTzPdSUDL8RSUACmLglORLNi+M4zSBPUZTRLlZT7OK3IzECKxBpaF5YVhSN72eKFHzTAa1cDyCCcFpWV5aYjCNgLEAAo7hyM5YiyEQcAwawkACNZlG6OhLnUNwXFCDZegAGhtFQawZgyRxLioOBsg6UhvByMJvnOegrDcDg1jiWJuiAew9m4GhAAiBIUA0JgziGVJkGUGJIA2QB4BkCIblqDQNiEIoIE6IhKBiC4ODsfJGHoTJLmydx7H2fwvg+U5hnaeZ9n6P4PHwDQ8mYP5fmgAZ/gAYBIA4BoAiCCAWAmAZgigBQDCaThTn4EIEiEGD8AUYYIFIGoFmGOBmByBJQDIYJkD+YgohII4JGKCIeCqCYikiJgtgqYpohUAwlE4M5+DSDYjFiXg6g4Y5ImIPoOmOeJ2ECDdM16P5kGkIhHhIZJJC4ToSiUCQ2FGE5lCkJQDCOTgTn4WIWiWG"
 & _

"RuF6FxmAkchiheZg5gYZIW0yMhZhqD55jIboamcCY2HGG5nCmVh0h2ZYUAyCQ4Xqbh9h8J5qT0IJnnoFoCiGKBKB4fhAkgYx8n+IxonoOoQiSaQqFaEYlmkShihaJhpAQDICDeD56H7ioqCqFokimag6iaJoqiqCouiIQJHnMdJ/iwaw6kqNItmsapmjWLprgqco6i8axEAwfA3A+ewOkWMWliaSIymwew2kqM4sksPpGaMGwSlUP5tHsZpWjabYLHKWo3G4Cx+mKMQQDGWJbD+bhriKZ46G6S4um7rILjacY7m8K9tByTYjn6eI+i+G5un6PxwAucwCj+cA8AcBI+lAMZAlkP5wiwMwLkMcQMD8EpDjETBHBWRJxGwNQDBsTYDn8HJHjGXB/CKSByEzQhInIfIXCiR/YiiVw/nKbJDC+TBzEyTw2kyM4MlcOZNnOLJFAMGZyn0AJ/lCNBNAcRpQnQPoFwkRSjpC0G4LwgRKDnCCP8VA6g9CWFSKsdQ2hnCrFaOsDQ5haiuHUIgDIWg6gfH2B4ZYsg2DbCcNEWo7B9huGqLcNomw/DMECJYI4YR/i6HcPsWw8RejvC2O4eYvx3icAMP0YA72YBwDuB8fgPwJjEDiFwN4GVgh8EeB0ZIcgOCfAoIES4pxAj/GYPMPg1wcjPHmN0B4O2QAdBOEUaQ84PCGDyB8foX2oB1G6I8MI2R6j9FeGUbYdhOi/C4IETIBxQj/G8Pcfo9xAjhHwF4F4gxxj4E8EcR"
 & _

"o5B8MwE4HsD4/g/ijHQHoLwrxUjrH0H4Z4rR2h7A8N8UggRNBnGCP8eA/A/gXGSPMfg3wnjLkCB8M41R7D8g8LIPoHx/iflYH4b4zx4j9H8P8d49JnjjH+H4YgDA3gPlyAEMAPADCBAgC4AoQBsJ/HAGQCAgRoBGAIVUZAPxDj8AuIMGAYgGhBGwDkA44BuAhEGNARQEAhA4BoEAZ42R9CFCOOYCwQhMBaD6EgDIAQBEIKGQcLtHSkBYKUUwppTwiUiKmVUq5WStldK+MgNwMyyFmBiMQtRbC3FwLkXQuxeC9F8L8YAwRhDDCOGGGQWAOQCCKBGCgTgQgjAzEyHwawNwQCgCMNAagMACgNAaBcTwAASgwCSEABQXwQiBEEGMMAqROhCBeEYUQ0QRDRNybs3pvzgnDOKJ4aoYhqgpFKD4boSRSjSFKdMOgvgxAAF2NAMo8w8hVHsJkPwlwnigDCEoVAVhqgJDoC8Y4YAGBOBcC0OAlRphpHkAsMAAwEgDFUEAeA1hsVXAyIoRY2AWgXEWA0TQyQxDTHIOoXIcADBXBuHUSIZAThUE6Iwf4VxYDAHAC4GYuQag6GmFEVQ5g5DbESLQOYSwGjjEACwfQjQOBbD6FYXoawwg6GcCYHwqgECEEoA0EwMxQjUHIGUbwQBtDbHEkoY6TUngQE8BYXwEAMCLFQDkfYgRtD9GiPVNIvwPi/GuPceQ/xQBvGCMwPwHx4AcAWAIIA0AmARAKJ8d4xABD7A2OcaI/wE"
 & _

"DCDgJQFICxhDQGYBofYQYFCwD4J+XYQwIBECiCwJIExhhnCIDoNAnhzj8CyBcIosQ+BlAwMZVIOgygeUOHEDoRwYjcD6B4ZAERYAAH4BgM8jQRDIHkDQSIJRkhSDYISfQpxIj/BQMoOQlBUgrGUNIZgnh9gWGPGMFwyx5D0GCDEZgUwWC2DoBUc4eR/g0GaHMKg2QbjNGmIwZwVAOqHYEE4WYvB6g8GeJMHIQg7L1H6AMIAUAqAtASEMZg5BojUD+NEKgZQLhGGkBQPoJQZiSEPAsJQ0h6C1BiE0aYVB2DOCMJwc4/QghRCoDUDoTQpDVAmDkBgchPj1C6FsKwVRqiNDCFkZg4x8jGD+1EYobwuDXEqN0PoMxHgHAiP8MA2A7AVESGO3ITBnA5A4Acfr6gsi2D6KUNA2hJg4GsG8T49heizDZvQdouQ3jICUDUYocRuCXBaMYQIoAQFHKEUQAAwiGFJKWU0hJTxUkMpWVYrBWiuFeAwNwNgMKagjCCISnJbS3lxLmXUu7LxEDIDUCUSQyRxAjCiIQUQEwWCXCMIAKQKBuB2AODYSAwByASBSAACwXwWgWEaOcaAORCgGDOAQDQ0RxBDCyKQPwmgAAHGEGoGYqAmgpuqAAKo3x4h5AIjlHaPUfpBSGJAAIoRCAiDaKoGgNhCCKBUFcHQoAxAuGgKUKY4hqiqGkMYfgexgAUBgEQbgJgLgNEIMH3wBxdjyY4I8Qg1hID5B4D4K4LRLjDBCHMLA+huANC2"
 & _

"J8YQlwaBMCaCMd6hRnBpE+HoIwIQ9hdEKM8VYawoCcC8BUSYtxqBuDuFsOwTgLgLhZhAhxA4BdBWhqg0hDhjgog5A6gdA2AXAThAgshxB1ANAegZBrmTBrgxB7A5hMgvA/gjB8Bth4A0BFhOg/gQgsBihzg6h9GqBlBiAHhsg+A5h+AmBPgfgJAVh2hyh1wcgtBXg+AThvBWgGhIAEBwgAhOAYAVBaAqhggHhgD1gghDBOAOEshHA8BTgEhYBThmAWBWgJgIBkh3gGhbgiheAegCgMhYgGAbA9hchxh2AmBhBMg4glheBugMAYg0BYgLheBxgJhpA6hch4AggrBhBGAIhlg8gKhYhzh2A+BvAdBRBoB+gQhagmBFBXAghkgGBiBKBhhiBhh0hwgThLBpBEBbgUi5BWBGBfAbARhaBagShZBpBoB2BsBVgjBmBiNNBJBeA8gZhcBTgWBqBCOcCPCDqPgAAyufqSOguhCnCgAmOjE7KWOkqXumOnOoCyupOqC1urKeOsqfuuOvOwOxOyOzO0O1O2O3O4O5O6O7O8O9O+O/PAPBPCPDPEPFPGPHPIPJPKArvLPMPNPOEeEfEgEhEiPRvSvTvUvVvWvXvYvZvavbvcvdvevfvgvhvivjvkvlvmvnvovpvqgyBoB8PtPuPvPwPxPyPzP0P1ATBEBcv3v4v5v6v7v8v9v+v/wAwBwChrgLgPhVBhBxA8AKhPAbgbhNhKhyh5hdAthXBCgxADhqh0h5hdsHBjg"
 & _

"zhGhtoEB+AsArhnhLhehUB5BfA4BfARBPgWB9h3hhBZB/AvA+BzhkhLhCh7hPg8g1BfhzAKBgB/hbhHgdg8B/hGAGAVh8AqhdAVBcgDgChZgIA2AOgChIF+ARBjhbRZgWgDgZBoBYRdBbgoBNh0gHhXhEAlCQKPOeAXqROgKTCaCgALKVRsOkKXOlivhqAzAbuogwqcRxKdusKfOtgEOuuvuwuxuyuzu0u1gohYASATARAGBCBBBxh5hcgKAHAgAChLhlgihRhFACPVAcBMhggDBqBMBIBtA9geBPBCAQgagVL4gXgQACAhFtBJgMhoB1A5AZBGJ4BcAMgEBNgyBFhpvYBFBOhbA+AAAGK6Aag0Alh3B2B5BeAdBXgnBNhyh7E1BgAwA3owgqhwhyg7A+hwhNBMBah/Aag8hHhkAyA5AsgeBTAfgNBfhihagYBsAiBXA6r9ghBQB6AtAegTBLgmhThogzhoBchqBXAJB9hVAxhYBsAWACh1B0hABeBtg3AbB9hOhzB3g+hdBtB2AsAdBWADBGhEBhAvhWhrBFgPApBlhNhngtA5hdAegHBLgkgxhjgvh0B4AEAWgJgOhEBhgshWAKhvAPgPhFhkB/h6A9A+BPBfgbhFheBhh3AQB9g9ATApgOhFBWgqgVAfgPhXhnh3tsBfg4AFh9B+BfBTAVhxB2hdhDAwhKAyAKBygMghApAKASB4giAnhJhYBMgcB/hegIBaATAnBhACB6ANAoBggjAggCB3VrgI"
 & _

"hQH1hSgAgcAmghgIg2AugLBigiBqAnAzBiVdglA1ANAjBEgbAmAJMwA+gLgjgyBWA4A0BjBYgUhaA2BNBiBogXAlAjhCBOBLAkBJHqARgLBlAZBAgUAkBkhZAogUgRhNBpAVB/AgBmADgEheA3BkhYhsgWAnAJgCBaBmgLBmBpgiBqgaBkhZgIhdgYE+gCB0A5gOBTgQgTAkAIhpAsgSgTWSg2gAAlBkhiBQgSgehIhphghkgdAXhWASB0A7tXgwgNAiHphAgNAihJAaBegZgmApgqB2gcI5BiAugTAhhpADgyB0BhAYBmgOglgqhpAao/grgrAKg2gyA7AaA2AZgIApArgCANgfBqArhKh1gkBnhrgCgRgIBACuTWiDgYzYRozZCSigAMTbCqTcOlKYAMTeTfRvzgOqzhqeutBxRzzkx1TmR2znzozpzqzrzsztzuzvzwzxzyzzz0z1z2z3z4z5z6z7z8gDT9z+z/0AgIUB0C0D0EgxUF0G0H0I0J0K0L0M0N0O0P0Q0R0S0T0U0V0W0X0Y0Z0a0b0c0d0e0f0g0h0i0j0k0l0m0n0o0p0q0r0s0t0u0v0w0x0y0z000102030405060708090+0/1A1B1C1D1E1F1G1Hhkhzh51KBfBfB5gHhcBBh2h0BMgmA7AVBagqBUB9g/AfJnhzh3h+B+ggAHhMhFB7hdg3BwhMAygMgCgcgjGLBCgEgeAogJhyB2AQAnAhA4BUgfgFFFg0w1vfAchIAggdh"
 & _

"IAUgCA0AMhjA0ggWUgjh+GhBihI1yAKhiByBqAkV1gCAKAiV3141516g+Jmhj19V+V/AI2A2B2C2D2E2F2GhOBQgUglAZBOBQFpgZA2BKAlAkBzBaBFBfhIAZgEhhA3gNoTA7AlgJvigWgZhmhJgqBntSNTBNgYhNhZgEgBBgAnBjgYtEAJAyBAgOuwApA2gCAlBJA6AOgFghAoAJh0gOgegOBJhZB9BhZXA4htA7AIhSAkgHWghSAsgRgmBpg6Bqgcgnhp22AYI5BSAegSP+hmARgGNjh6g2gTgrgOhKhCgygrhrBDgxgjBhgYgCgSg6AghZh2ginQhaBGB+g6ApAYgEAECTiDiVCDiWgAGKgdAZAQaH6HgW6JAZaEgAaLaF6GgagQAWgaaOaPaQCf6ECEaMgoAdAbaP6U6QCAg"

End With

If running the empty control we get the following picture:

If running the control using the code being generated by the VisualAppearance designer we
get:

property Grid.WordFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS, Highlight as Boolean, [Reserved as Variant]) as
String
Retrieves the word from the cursor.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Highlight as Boolean A Boolean expression that indicates whether the word
from the position is highlighted.

Reserved as Variant A long expression that specifies the part/parts of the
control to search for the word from the cursor.

String A String expression that indicates the word from the
cursor.

Use the WordFromPoint property to retrieve the word from the cursor. The X and Y
coordinates are expressed in client coordinates, so a conversion must be done in case your
coordinates are relative to the screen or to other window. If the X parameter is -1 and Y
parameter is -1 the WordFromPoint property determines the index word from the
cursor. By default, the WordFromPoint property looks for the words in the Items area but it
can search for words in any part of the control (Reserved parameter). Shortly, in the area
where the items are displayed. A word is being defined as the sequence of the characters
between two space/tab characters (empty characters). The word being returned does not
include any HTML tags, in case the cursor hovers an HTML text. Use the ItemFromPoint
property to get the item or cell from the cursor. Use the AnchorFromPoint property to
determine the identifier of the anchor from the point. Use the CellCaption property to
retrieve the entire cell's caption. Use the CellValue property to retrieve the cell's value.

The following VB sample displays the word from the cursor:

Private Sub Grid1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Debug.Print Grid1.WordFromPoint(-1, -1)
End Sub

The following VB sample highligths the word from the cursor, as soon as the cursor hovers

a word:

Private Sub Grid1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Debug.Print Grid1.WordFromPoint(-1, -1, True)
End Sub

The following screen shot shows the "rows" word being highlighted when the cursor hovers
it:

As soon as the cursor hovers another word it gets highlighted. The highlighting is
temporary so as soon as the control is repainted the highlight is lost. For instance, you
resize a column, scroll, or select a new item.

The following VB sample highlight the word from the cursor, and displays a context menu (
eXPopupMenu) when the user right clicks the control:

Private Sub Grid1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Debug.Print Grid1.WordFromPoint(-1, -1, True)
End Sub

Private Sub Grid1_RClick()
 Dim i As Long
 With PopupMenu1.Items
 .Clear

 .Add Grid1.WordFromPoint(-1, -1, True)
 End With
 i = PopupMenu1.ShowAtCursor()
End Sub

Currently, the Reserved parameter could be a combination (bitwise OR) of any of the
following:

(1) - Items area (the area where the items are shown)

(2) - Header area (the area where the column's caption is displayed)

(4) - SortBar area (the part of the control that shows the sorting columns, if multiple
columns sorting is enabled)

(8) - FilterBar area (the part of the control that displays the filter bar)

For instance, if the Reserved parameter is 1 + 2 (3), the WordFromPoint property retrieves
the word from Items or Header area as well. If missing the control looks for the word in the
Items section.

Items object
The Items object contains a collection of items. Each item is identified by a handle HITEM.
The HITEM is of long type. Each item contains a collection of cells. The number of cells is
determined by the number of Column objects in the control. To access the Items collection
use Items property of the control. Using the Items collection you can add, remove or
change the control items. The Items collection can be organized as a hierarchy or as a
tabular data. The Items collection supports the following properties and methods:

Name Description
AcceptSetParent Verifies whether the item can be child of another item.

AddItem Adds a new item, and returns a handle to the newly
created item.

CellBackColor Retrieves or sets the cell's background color.

CellBold Retrieves or sets a value that specifies whether the cell
should appear in bold.

CellButtonAutoWidth Retrieves or sets a value indicating whether the cell's
button fits the cell's caption.

CellCaption Gets the cell's display value.

CellChecked Retrieves the cell's handle that is checked giving the radio
group identifier.

CellData Specifies the cell's extra data.
CellEditor Creates and gets the cell's built-in editor.

CellEditorVisible Specifies whether column's editor is visible or hidden in the
cell.

CellEnabled Returns or sets a value that determines whether a cell can
respond to user-generated events.

CellFont Retrieves or sets the cell's font.
CellForeColor Retrieves or sets the cell's foreground color.
CellFormatLevel Specifies the arrangement of the fields inside the cell.

CellHAlignment Retrieves or sets a value that indicates the alignment of
the cell's caption.

CellHasButton Retrieves or sets a value indicating whether the cell has
associated a push button.

CellHasCheckBox Retrieves or sets a value indicating whether the cell has
associated a checkbox.

CellHasRadioButton Retrieves or sets a value indicating whether the cell has
associated a radio button.

CellHyperLink Specifies whether the cell's is highlighted when the cursor
mouse is over the cell.

CellImage Retrieves or sets a value that indicates the index of icon in
the cell.

CellImages Specifies an additional list of icons shown in the cell.

CellItalic Retrieves or sets a value that specifies whether the cell
should appear in italic.

CellItem Retrieves the handle of item that is the owner of a specfic
cell.

CellMerge Retrieves or sets a value that indicates the index of the
cell that's merged to.

CellOwnerDraw Specifies the cell's owner draw handler.
CellParent Retrieves the parent of an inner cell.
CellPicture Retrieves or sets the cell's picture.

CellPictureHeight Retrieves or sets a value that indicates the height of the
cell's picture.

CellPictureWidth Retrieves or sets a value that indicates the width of the
cell's picture.

CellRadioGroup Retrieves or sets a value indicating the radio group where
the cell is contained.

CellSingleLine Retrieves or sets a value indicating whether the cell's
caption is painted using one or more lines.

CellSortData Specifies the cell's sort data.

CellState Retrieves or sets the cell's state. Has effect only for check
and radio cells.

CellStrikeOut Retrieves or sets a value that specifies whether the cell
should appear in strikeout.

CellToolTip Retrieves or sets a value that indicates the cell's too tip

CellUnderline Retrieves or sets a value that specifies whether the cell
should appear in underline.

CellVAlignment Retrieves or sets a value that indicates how the cell's
caption is vertically aligned.

CellValue Specifies the cell's value.

CellValueFormat Specifies how the cell's caption is displayed.

CellWidth
Retrieves or sets a value that indicates the width of the
inner cell.

ChildCount Retrieves the number of children items.
ClearCellBackColor Clears the cell's background color.
ClearCellForeColor Clears the cell's foreground color.
ClearCellHAlignment Clears the cell's alignment.
ClearItemBackColor Clears the item's background color.
ClearItemForeColor Clears the item's foreground color.
CollapseAllCards Collapses all the cards.
ComputeValue Computes the value of a specified formula.

DefaultItem Retrieves or sets a value that indicates the handle of the
item used by Items properties in VFP.

DeleteCellEditor Deletes the cell's built-in editor created by CellEditor
property.

EnableItem Returns or sets a value that determines whether a item
can respond to user-generated events.

EndBlockUndoRedo
Ends recording the UI operations and adds the undo/redo
operations as a block, so they all can be restored at once,
if Undo method is performed.

EnsureVisibleItem Ensures the given item is in the visible client area.
ExpandAllCards Expands all the cards.
ExpandCard Expands or collapses the card.

ExpandItem Expands, or collapses, the child items of the specified
item.

FindItem Finds an item, looking for Value in ColIndex colum. The
searching starts at StartIndex item.

FindItemData Finds the item giving its data.

FindPath Finds the item, given its path. The control searches the
path on the SearchColumnIndex column.

FirstVisibleItem Retrieves the handle of the first visible item in the control.
FocusItem Retrieves the handle of item that has the focus.
FormatCell Specifies the custom format to display the cell's content.

Returns the fully qualified path of the referenced item in

FullPath the ExGrid control. The value is taken from the column
SearchColumnIndex.

GroupItem Indicates a group item if positive, and the value specifies
the index of the column that has been grouped.

HasCellEditor Specifies whether a cell has a built-in editor.
InnerCell Retrieves the inner cell.

InsertControlItem Inserts a new item of ActiveX type, and returns a handle
to the newly created item.

InsertItem Inserts a new item, and returns a handle to the newly
created item.

InsertObjectItem Inserts a new item that hosts the giving object, and returns
a handle to the newly created item.

IsItemLocked Returns a value that indicates whether the item is locked
or unlocked.

IsItemVisible Checks if the specific item is in the visible client area.

ItemAllowSizing Retrieves or sets a value that indicates whether a user
can resize the item at run-time.

ItemAppearance Specifies the item's appearance when the item hosts an
ActiveX control.

ItemBackColor Retrieves or sets a background color for a specific item.

ItemBold Retrieves or sets a value that indicates whether the item
should appear in bold.

ItemByIndex Retrieves the handle of the item given its index in Items
collection..

ItemCell Retrieves the cell's handle given the item and the column.
ItemChild Retrieves the child of a specified item.

ItemControlID Retrieves the item's control identifier that was used by
InsertControlItem.

ItemCount Retrieves the number of items.
ItemData Retrieves or sets the extra data for a specific item.

ItemDivider
Specifies whether the item acts like a divider item. The
value indicates the index of column used to define the
divider's title.

ItemDividerLine Defines the type of line in the divider item.
ItemDividerLineAlignment Specifies the alignment of the line in the divider item.

ItemFiltered Checks whether the item is included in the control's filter.
ItemFont Retrieves or sets the item's font.
ItemForeColor Retrieves or sets a foreground color for a specific item.

ItemHasChildren Adds an expand button to left side of the item even if the
item has no child items.

ItemHeight Retrieves or sets the item's height.

ItemItalic Retrieves or sets a value that indicates whether the item
should appear in italic.

ItemMaxHeight Retrieves or sets a value that indicates the maximum
height when the item's height is variable.

ItemMinHeight Retrieves or sets a value that indicates the minimum height
when the item's height is sizing.

ItemObject Retrieves the ActiveX object associated, if the item was
created using the InsertControlItem method.

ItemParent Returns the handle of the item's parent item.

ItemPosition Retrieves or sets a value that indicates the item's position
in the children list.

ItemStrikeOut Retrieves or sets a value that indicates whether the item
should appear in strikeout.

ItemToIndex Retrieves the index of item in the Items collection given its
handle.

ItemToVirtual Gets the index of the virtual item giving the handle of the
item.

ItemUnderline Retrieves or sets a value that indicates whether the item
should appear in underline.

ItemWidth Retrieves or sets a value that indicates the item's width
while it contains an ActiveX control.

ItemWindowHost
Retrieves the window's handle that hosts an ActiveX
control when the item was created using the
InsertControlItem method.

ItemWindowHostCreateStyle Retrieves or sets a value that indicates a combination of
window styles used to create the ActiveX window host.

LastVisibleItem Retrieves the handle of the last visible item.
LockedItem Retrieves the handle of the locked item.

LockedItemCount Specifies the number of items fixed on the top or bottom
side of the control.

MatchItemCount Retrieves the number of items that match the filter.

MergeCells Merges a list of cells.

NextSiblingItem Retrieves the next sibling of the item in the parent's child
list.

NextVisibleItem Retrieves the handle of next visible item.

PathSeparator Returns or sets the delimiter character used for the path
returned by the FullPath property.

PrevSiblingItem Retrieves the previous sibling of the item in the parent's
child list.

PrevVisibleItem Retrieves the handle of previous visible item.
RemoveAllItems Removes all items from the control.
RemoveItem Removes a specific item.
RemoveSelection Removes the selected items (including the descendents).

RootCount Retrieves the number of root objects in the Items
collection.

RootItem Retrieves the handle of the root item giving its index in the
root items collection.

SelectableItem Specifies whether the user can select the item.
SelectAll Selects all items.

SelectCount Retrieves the handle of selected item giving its index in
selected items collection.

SelectedItem Retrieves the selected item's handle given its index in
selected items collection.

Selection Selects items by index.
SelectItem Selects or unselects a specific item.
SelectPos Selects items by position.
SetParent Changes the parent of the given item.
SortableItem Specifies whether the item is sortable.

SortChildren
Sorts the child items of the given parent item in the
control. SortChildren will not recurse through the grid, only
the immediate children of Item will be sorted.

SplitCell Splits a cell, and returns the inner created cell.

StartBlockUndoRedo Starts recording the UI operations as a block of undo/redo

operations.
UnmergeCells Unmerges a list of cells.
UnselectAll Unselects all items.

UnsplitCell Unsplits a cell.

VirtualToItem Gets the handle of the item giving the index of the virtual
item.

VisibleCount Retrieves the number of visible items.
VisibleItemCount Retrieves the number of visible items.

property Items.AcceptSetParent (Item as HITEM, NewParent as HITEM) as
Boolean

Verifies whether the item can be the child of another item

Type Description
Item as HITEM A long expression that indicates the handle of the item.

NewParent as HITEM A long expression that indicates the handle of the parent
item.

Boolean A boolean expression that indicates whether the Item can
be child of the NewParent item.

The AcceptSetParent property doesn't change the parent item. Use the SetParent method
to change the item's parent. Use the ItemParent property to retrieve the item's parent. Use
the InsertItem method to add child items to another item. An item is called root, if it has no
parent (ItemParent() gets 0).

method Items.AddItem ([Value as Variant])

Adds a new item, and returns a handle to the newly created item.

Type Description

Value as Variant
A variant expression that indicates the cell's value for the
first column or a safe array that holds the values for each
column.

Return Description

HITEM A long expression that indicates the handle of the newly
created item.

Use the AddItem property to add new items/cards that have no parent (usually when your
control acts like a list or in CardView mode). Adding new items fails, if the control has no
columns. Use the Add method to add new columns to the control. Use InsertItem to insert
child items (usually when your control acts like a tree). Use the InsertControlItem to insert
ActiveX items. Use PutItems method to load an array of variants. When a new item is
added to the Items collection, the control fires the AddItem event. If the control contains
more than one column use the CellValue property to set the cell's value. Use the
CellValueFormat property to specify whether the value contains HTML format or computed
fields. If the control has no columns the AddItem method fails. Use Add method to insert
new columns to the control. The AddItem method is not available if the control is running in
the virtual mode. Use the LockedItemCount property to lock or unlock items to the top or
bottom side of the control. Use the MergeCells method to combine one or more cells in a
single cell. Use the SplitCell property to split a cell. If the CauseValidateValue property is
True, the control fires the ValidateValue property when the user adds a new item. Please
notice that the Change event is fired when adding a new item, if you are specifying a value
using the Value argument). Use the BeginUpdate and EndUpdate methods to maintain
performance while adding new columns and items. Use the CellEditor property to assign an
editor to a cell. Use the Editor property to assign an editor to all cells in the column. Use the
ConditionalFormats method to apply formats to a cell or range of cells, and have that
formatting change depending on the value of the cell or the value of a formula.

The following VB6 sample uses the VB Array function to add two items:

With Grid1
 .BeginUpdate

 .Columns.Add "Column 1"
 .Columns.Add "Column 2"
 .Columns.Add "Column 3"

 With .Items
 .AddItem Array("Item 1.1", "Item 1.2", "Item 1.3")
 .AddItem Array("Item 2.1", "Item 2.2", "Item 2.3")
 End With

 .EndUpdate
End With

In VB/NET using the /NET assembly, the Array equivalent is New Object such as follows:

With Grid1
 .BeginUpdate()

 .Columns.Add("Column 1")
 .Columns.Add("Column 2")
 .Columns.Add("Column 3")

 With .Items
 .AddItem(New Object() {"Item 1.1", "Item 1.2", "Item 1.3"})
 .AddItem(New Object() {"Item 2.1", "Item 2.2", "Item 2.3"})
 End With

 .EndUpdate()
End With

In C# using the /NET assembly, the Array equivalent is new object such as follows:

exgrid1.BeginUpdate();

exgrid1.Columns.Add("Column 1");
exgrid1.Columns.Add("Column 2");
exgrid1.Columns.Add("Column 3");

exgrid1.Items.AddItem(new object[] { "Item 1.1", "Item 1.2", "Item 1.3" });
exgrid1.Items.AddItem(new object[] { "Item 2.1", "Item 2.2", "Item 2.3" });

exgrid1.EndUpdate();

The following C# sample adds a new item to the control:

EXGRIDLib.Items items = axGrid1.Items;
int i = items.AddItem("new items");
EXGRIDLib.Editor editor = items.get_CellEditor(i, 0);
editor.EditType = EXGRIDLib.EditTypeEnum.EditType;

The following VB.NET sample adds a new item to the control:

With AxGrid1.Items
 Dim i As Integer = .AddItem("new item")
 With .CellEditor(i, 0)
 .EditType = EXGRIDLib.EditTypeEnum.EditType
 End With
End With

The following C++ sample adds a new item to the control:

#include "Items.h"
#include "Editor.h"
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
CItems items = m_grid.GetItems();
COleVariant vtItem(items.AddItem(COleVariant("new item"))), vtColumn(long(0));
CEditor editor = items.GetCellEditor(vtItem, vtColumn);
editor.SetEditType(1 /*EditType*/);

The following VFP sample adds a new item to the control:

with thisform.Grid1.Items
 .DefaultItem = .AddItem("new item")
 With .CellEditor(0, 0)
 .EditType = 1 && EditType
 EndWith
endwith

The following VB sample uses the VB Array function to add items to a multiple columns
control:

With Grid1
 .BeginUpdate

 .LinesAtRoot = exLinesAtRoot
 .HasLines = exNoLine
 .HasButtons = exArrow

 .Columns.Add "Column 1"
 .Columns.Add "Column 2"

 With .Items
 Dim h As HITEM
 h = .AddItem(Array("Cell 1", "Cell 2"))
 .InsertItem h, , Array("Sub Cell 1.1", "Sub Cell 2.1")
 .InsertItem h, , Array("Sub Cell 1.2", "Sub Cell 2.2")

 End With

 .EndUpdate
End With

The following VB sample adds items to the control:

' Adds two columns
With .Columns
 With .Add("Column 1").Editor
 .EditType = EditTypeEnum.ColorType
 End With
 With .Add("Column 2").Editor
 .EditType = EditTypeEnum.EditType
 End With
End With

'Adds few items
With .Items
 Dim h As HITEM
 h = .AddItem(vbRed)
 .CellValue(h, 1) = "Simple Text"
 h = .AddItem(vbBlue)

 .CellValue(h, 1) = "Simple Text"
End With

The following VB sample loads a table row by row:

' Creates an ADO Recordset
Set rs = CreateObject("ADODB.Recordset")
rs.Open "Employees", "Provider=Microsoft.Jet.OLEDB.4.0;Data Source= D:\Program
Files\Microsoft Visual Studio\VB98\NWIND.MDB", 3

With .Columns
 Dim f As Object
 For Each f In rs.Fields
 .Add f.Name
 Next
End With

' Adds an item for each record
With .Items
 rs.MoveFirst
 While Not rs.EOF
 .AddItem rs(0).Value
 rs.MoveNext
 Wend
End With

Private Sub Grid1_AddItem(ByVal Item As EXGRIDLibCtl.HITEM)
 ' Gets the value for each field, in the current record
 With Grid1.Items
 .ItemData(Item) = rs.Bookmark
 For i = 1 To Grid1.Columns.Count - 1
 .CellValue(Item, i) = rs(i).Value
 Next
 End With
End Sub

property Items.CellBackColor([Item as Variant], [ColIndex as Variant]) as
Color

Retrieves or sets the cell's background color.

Type Description
Item as Variant A long expression that indicates the item's handle

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key

Color A color expression that indicates the cell's background
color.

To change the background color for the entire item you can use ItemBackColor property.
Use the ClearCellBackColor method to clear the cell's background color. Use the BackColor
property to specify the control's background color. Use the CellForeColor property to
specify the cell's foreground color. Use the ItemForeColor property to specify the item's
foreground color. Use the SelectedItem property to specify whether an item is selected or
unselected. Use the Def(exCellBackColor) property to specify the background color for all
cells in the column. Use the Add method to add new skins to the control. You can define
new skins and to use it to mark some cells, like in the following samples. Use the
ConditionalFormats method to apply formats to a cell or range of cells, and have that
formatting change depending on the value of the cell or the value of a formula.

The following VB sample changes the cell's appearance. The sample uses the " " skin to
mark a cell:

With Grid1
 With .VisualAppearance
 .Add &H40, App.Path + "\cell.ebn"
 End With
 With .Items
 .CellBackColor(.FirstVisibleItem, 0) = &H40000000
 End With
End With

The following C++ sample changes the cell's appearance:

#include "Appearance.h"
#include "Items.h"
m_grid.GetVisualAppearance().Add(0x40,
COleVariant(_T("D:\\Temp\\ExGrid.Help\\cell.ebn")));
m_grid.GetItems().SetCellBackColor(COleVariant(m_grid.GetItems().GetFirstVisibleItem()),
COleVariant(long(0)), 0x40000000);

The following VB.NET sample changes the cell's appearance.

With AxGrid1
 With .VisualAppearance
 .Add(&H40, "D:\Temp\ExGrid.Help\cell.ebn")
 End With
 With .Items
 .CellBackColor(.FirstVisibleItem, 0) = &H40000000
 End With
End With

The following C# sample changes the cell's appearance.

axGrid1.VisualAppearance.Add(0x40, "D:\\Temp\\ExGrid.Help\\cell.ebn");
axGrid1.Items.set_CellBackColor(axGrid1.Items.FirstVisibleItem, 0, 0x40000000);

The following VFP sample changes the cell's appearance.

With thisform.Grid1
 With .VisualAppearance
 .Add(64, "D:\Temp\ExGrid.Help\cell.ebn")
 EndWith
 with .Items
 .DefaultItem = .FirstVisibleItem
 .CellBackColor(0,0) = 1073741824
 endwith
EndWith

In VB.NET or C# you require the following functions until the .NET framework will support
them:

You can use the following VB.NET function:

 Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
 End Function

You can use the following C# function:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following C# sample changes the background color for the focused cell:

axGrid1.Items.set_CellBackColor(axGrid1.Items.FocusItem, axGrid1.FocusColumnIndex,
ToUInt32(Color.Red));

The following VB.NET sample changes the background color for the focused cell:

With AxGrid1.Items
 .CellBackColor(.FocusItem, AxGrid1.FocusColumnIndex) = ToUInt32(Color.Red)
End With

The following C++ sample changes the background color for the focused cell:

#include "Items.h"
CItems items = m_grid.GetItems();
items.SetCellBackColor(COleVariant(items.GetFocusItem()), COleVariant(
m_grid.GetFocusColumnIndex()), RGB(255,0,0));

The following VB sample changes the background color for the focused cell:

With Grid1.Items
 .CellBackColor(.FocusItem, Grid1.FocusColumnIndex) = vbRed
End With

The following VFP sample changes the background color for the focused cell:

with thisform.Grid1.Items
 .DefaultItem = .FocusItem
 .CellBackColor(0, thisform.Grid1.FocusColumnIndex) = RGB(255,0,0)
endwith

Note: The intersection of an item with a column defines a cell. Each cell is uniquely
represented by its handle. The cell's handle is of HCELL type, that's equivalent with a long
type. All properties of Items object that have two parameters Item and ColIndex, refer a
cell.

The following lines are equivalents and each of them changes the bold font attribute of the
first cell on the first item.

With Grid1
 .Items.CellBold(, .Items.ItemCell(.Items(0), 0)) = True
 .Items.CellBold(.Items(0), 0) = True
 .Items.CellBold(.Items(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0), 0) = True
 .Items.CellBold(.Items(0), Grid1.Columns(0).Caption) = True
End With

property Items.CellBold([Item as Variant], [ColIndex as Variant]) as
Boolean

Retrieves or sets a value that specifies whether the cell should appear in bold.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key

Boolean A boolean expression that indicates whether the cell
should appear in bold.

Use the CellBold property to bold a cell. Use the ItemBold property to specify whether the
item should appear in bold. Use the HeaderBold property of the Column object to bold the
column's caption. Use the CellItalic, CellUnderline or CellStrikeOut property to apply
different font attributes to the cell. Use the ItemItalic, ItemUnderline or ItemStrikeOut
property to apply different font attributes to the item. Use the CellValueFormat property to
specify an HTML caption. Use the ConditionalFormats method to apply formats to a cell or
range of cells, and have that formatting change depending on the value of the cell or the
value of a formula.

The following VB sample bolds the focused cell:

With Grid1.Items
 .CellBold(.FocusItem, Grid1.FocusColumnIndex) = True
End With

The following C++ sample bolds the focused cell:

#include "Items.h"
CItems items = m_grid.GetItems();
items.SetCellBold(COleVariant(items.GetFocusItem()), COleVariant(
(long)m_grid.GetFocusColumnIndex()), TRUE);

The following C# sample bolds the focused cell:

axGrid1.Items.set_CellBold(axGrid1.Items.FocusItem, axGrid1.FocusColumnIndex , true);

The following VB.NET sample bolds the focused cell:

With AxGrid1.Items
 .CellBold(.FocusItem, AxGrid1.FocusColumnIndex) = True
End With

The following VFP sample bolds the focused cell:

with thisform.Grid1.Items
 .DefaultItem = .FocusItem
 .CellBold(0, thisform.Grid1.FocusColumnIndex) = .t.
endwith

The following VB sample bolds all cells in the first column:

Dim h As Variant
Grid1.BeginUpdate
With Grid1.Items
For Each h In Grid1.Items
 .CellBold(h, 0) = True
Next
End With
Grid1.EndUpdate

Note: The intersection of an item with a column defines a cell. Each cell is uniquely
represented by its handle. The cell's handle is of HCELL type, that's equivalent with a long
type. All properties of Items object that have two parameters Item and ColIndex, refer a
cell.

The following lines are equivalents and each of them changes the bold font attribute of the
first cell on the first item.

With Grid1
 .Items.CellBold(, .Items.ItemCell(.Items(0), 0)) = True
 .Items.CellBold(.Items(0), 0) = True
 .Items.CellBold(.Items(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0), 0) = True
 .Items.CellBold(.Items(0), Grid1.Columns(0).Caption) = True
End With

property Items.CellButtonAutoWidth([Item as Variant], [ColIndex as
Variant]) as Boolean
Retrieves or sets a value indicating whether the cell's button fits the cell's caption.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

Boolean A boolean expression indicating whether the cell's button
fits the cell's caption

By default, the CellButtonAutoWidth property is False. The CellButtonAutoWidth property
has effect only if the CellHasButton property is true. Use the Def property to specify that all
buttons in the column fit to the cell's content. If the CellButtonAutoWidth property is False,
the width of the button is the same as the width of the column. If the CellButtonAutoWidth
property is True, the button area covers only the cell's caption. Use the CellValue property
to specify the button's caption. Use the CellValueFormat property to assign an HTML
caption to the button. The control fires the ButtonClick property when the user clicks a
button.

property Items.CellCaption ([Item as Variant], [ColIndex as Variant]) as
String
Gets the cell's display value.

Type Description

Item as Variant

A long expression that indicates the item's handle. During
the ValidateValue event, you can uses -1 instead Item, to
access to the modified value. In other words during
ValidateValue event, the Items.CellValue(Item,ColIndex)
and Items.CellCaption(Item,ColIndex) properties retrieve
the original value/caption of the cell while the
Items.CellValue(-1,ColIndex) and
Items.CellCaption(-1,ColIndex) gets the modified value of
the specified cell.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

String A string expression that indicates the cell's value as it is
displayed on the user interface.

The CellCaption property retrieves the cell's display value as it is displayed on the control's
user interface. If the cell has no editor associated (no editor was assigned to the column
and no editor was assigned to the cell), the CellCaption property gets the string
representation of the cell's value. Use the CellValue property to change the cell's value. For
instance, if a cell has a drop down list editor, the CellCaption property retrieves the caption
of the predefined values. Use the CellImage property to assign an icon to a cell. Use the
CellImages property to assign multiple icons to a cell. Use the CellPicture property to
assign a custom size picture to a cell.

property Items.CellChecked (RadioGroup as Long) as HCELL

Retrieves the handle of the cell that is checked, given the radio group identifier.

Type Description
RadioGroup as Long A long expression that indicates the radio group identifier.

HCELL A long expression that indicates the cell's handle. Use the
CellItem property to retrieve the handle of the owner item.

A radio group contains a set of cells of radio types. Use the CellHasRadioButton property to
set the cell of radio type. To change the state for a cell you can use the CellState property.
To add or remove a cell to a given radio group you have to use CellHasRadioButton
property. Use the CellRadioGroup property to add cells in the same radio group. The
control fires the CellStateChanged event when the check box or radio button state is
changed.

The following VB sample groups all cells on the first column into a radio group, and display
the cell's checked on the radio group when the state of a radio group is changed:

Private Sub Grid1_AddItem(ByVal Item As EXGRIDLibCtl.HITEM)
 Grid1.Items.CellHasRadioButton(Item, 0) = True
 Grid1.Items.CellRadioGroup(Item, 0) = 1234 ' The 1234 is arbirary and it represents the
identifier for the radio group
End Sub

Private Sub Grid1_CellStateChanged(ByVal Item As EXGRIDLibCtl.HITEM, ByVal ColIndex As
Long)
 Debug.Print "In the 1234 radio group the """ & Grid1.Items.CellValue(,
Grid1.Items.CellChecked(1234)) & """ is checked."
End Sub

The following C++ sample groups the radio cells on the first column, and displays the
caption of the checked radio cell:

#include "Items.h"
COleVariant vtColumn(long(0));
CItems items = m_grid.GetItems();
m_grid.BeginUpdate();
for (long i = 0; i < items.GetItemCount(); i++)
{

 COleVariant vtItem(items.GetItemByIndex(i));
 items.SetCellHasRadioButton(vtItem, vtColumn, TRUE);
 items.SetCellRadioGroup(vtItem, vtColumn, 1234);
}
m_grid.EndUpdate();

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnCellStateChangedGrid1(long Item, long ColIndex)
{
 CItems items = m_grid.GetItems();
 long hCell = items.GetCellChecked(1234);
 COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
 OutputDebugString(V2S(&items.GetCellValue(vtMissing, COleVariant(hCell))));
}

The following VB.NET sample groups the radio cells on the first column, and displays the
caption of the checked radio cell:

With AxGrid1
 .BeginUpdate()
 With .Items
 Dim k As Integer
 For k = 0 To .ItemCount - 1
 .CellHasRadioButton(.ItemByIndex(k), 0) = True
 .CellRadioGroup(.ItemByIndex(k), 0) = 1234

 Next
 End With
 .EndUpdate()
End With

Private Sub AxGrid1_CellStateChanged(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_CellStateChangedEvent) Handles AxGrid1.CellStateChanged
 With AxGrid1.Items
 Debug.WriteLine(.CellCaption(, .CellChecked(1234)))
 End With
End Sub

The following C# sample groups the radio cells on the first column, and displays the caption
of the checked radio cell:

axGrid1.BeginUpdate();
EXGRIDLib.Items items = axGrid1.Items;
for (int i = 0; i < items.ItemCount; i++)
{
 items.set_CellHasRadioButton(items[i], 0, true);
 items.set_CellRadioGroup(items[i], 0, 1234);
}
axGrid1.EndUpdate();

private void axGrid1_CellStateChanged(object sender,
AxEXGRIDLib._IGridEvents_CellStateChangedEvent e)
{
 string strOutput = axGrid1.Items.get_CellCaption(0,
axGrid1.Items.get_CellChecked(1234)).ToString();
 strOutput += " state = " + axGrid1.Items.get_CellState(e.item, e.colIndex).ToString() ;
 System.Diagnostics.Debug.WriteLine(strOutput);
}

The following VFP sample groups the radio cells on the first column, and displays the
caption of the checked radio cell:

thisform.Grid1.BeginUpdate()
with thisform.Grid1.Items
 local i

 for i = 0 to .ItemCount - 1
 .DefaultItem = .ItemByIndex(i)
 .CellHasRadioButton(0,0) = .t.
 .CellRadioGroup(0,0) = 1234
 next
endwith
thisform.Grid1.EndUpdate()

Note : The intersection of an item with a column defines a cell. Each cell is uniquely
represented by its handle. The cell's handle is of HCELL type. All properties of Items object
that have two parameters Item and ColIndex, refer a cell.

The following lines are equivalents and each of them changes the bold font attribute of the
first cell on the first item.

With Grid1
 .Items.CellBold(, .Items.ItemCell(.Items(0), 0)) = True
 .Items.CellBold(.Items(0), 0) = True
 .Items.CellBold(.Items(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0), 0) = True
 .Items.CellBold(.Items(0), Grid1.Columns(0).Caption) = True
End With

property Items.CellData([Item as Variant], [ColIndex as Variant]) as
Variant

Specifies the cell's extra data.

Type Description
Item as Variant A long expression that indicates the item's handle

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

Variant A variant expression that indicates the cell's user data.

Use the CellData to associate an extra data to your cell. Use ItemData when you need to
associate an extra data with an item. The CellData value is not used by the control, it is only
for user use. Use the Data property to assign an extra data to a column. Use the SortType
property to get sorted the column by the CellData property.

Note: The intersection of an item with a column defines a cell. Each cell is uniquely
represented by its handle. The cell's handle is of HCELL type, that's equivalent with a long
type. All properties of Items object that have two parameters Item and ColIndex, refer a
cell.

The following lines are equivalents and each of them changes the bold font attribute of the
first cell on the first item.

With Grid1
 .Items.CellBold(, .Items.ItemCell(.Items(0), 0)) = True
 .Items.CellBold(.Items(0), 0) = True
 .Items.CellBold(.Items(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0), 0) = True
 .Items.CellBold(.Items(0), Grid1.Columns(0).Caption) = True
End With

property Items.CellEditor ([Item as Variant], [ColIndex as Variant]) as
Editor
Creates an gets the cell's built-in editor.

Type Description
Item as Variant A long expression that indicates the item's handle

ColIndex as Variant
A long expression that indicates the column's index or the
cell's handle, a string expression that indicates the
column's caption or key.

Editor An Editor object being created or accessed

The CellEditor property gets you the custom cell editor if it exists, else it creates it. The
CellEditor property creates an empty editor if it wasn't created before, so please pay
attention when creating custom cell editors on the fly. You can use the HasCellEditor
property to check whether a cell has associated a custom editor (created using the
CellEditor property). You can have different type of editors in the same column using the
CellEditor property. The CellEditor property builds a new editor for a specific cell. By
default, the cell's editor is the default column's editor. Use the EditType property to specify
an editor for the column. Use the DeleteCellEditor method to clear a particular cell editor
created using the CellEditor property. Use the CellEditorVisible property to hide the cell's
editor. You can use the BeginUpdate, EndUpdate method to refresh the control.

The following VB sample assigns a date type editor to the first cell:

With Grid1.Items
 Dim h As EXGRIDLibCtl.HITEM
 h = .ItemByIndex(0)
 If Not .HasCellEditor(h, 0) Then
 With .CellEditor(h, 0)
 .EditType = DateType
 End With
 End If
End With

The following VB sample assigns a spin type editor with min and max values:

With Grid1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = SliderType

 .Option(exSliderWidth) = 0
 .Option(exSliderMin) = 5
 .Option(exSliderMax) = 10
 End With
End With

The following C++ sample assigns a date type editor to the first cell:

#include "Items.h"
#include "Editor.h"
void OnButton1()
{
 CItems items = m_grid.GetItems();
 COleVariant vtItem(items.GetItemByIndex(0)), vtColumn((long)0);
 if (!items.GetHasCellEditor(vtItem, vtColumn))
 {
 CEditor editor = items.GetCellEditor(vtItem, vtColumn);
 editor.SetEditType(7 /*DateType*/);
 }
}

The following C++ sample assigns a spin type editor with min and max values:

#include "Items.h"
#include "Editor.h"
CItems items = m_grid.GetItems();
CEditor editor = items.GetCellEditor(COleVariant(items.GetFirstVisibleItem()),
COleVariant(long(0)));
editor.SetEditType(20 /*SliderType*/);
editor.SetOption(41 /*exSliderWidth */, COleVariant(long(0)));
editor.SetOption(43 /*exSliderMin*/, COleVariant(long(5)));
editor.SetOption(44 /*exSliderMax*/, COleVariant(long(10)));

The following VB.NET sample assigns a date type editor to the first cell:

With AxGrid1.Items
 Dim h As Integer = .ItemByIndex(0)
 If Not .HasCellEditor(h, 0) Then
 With .CellEditor(h, 0)

 .EditType = EXGRIDLib.EditTypeEnum.DateType
 End With
 End If
End With

The following VB.NET sample assigns a spin type editor with min and max values:

With AxGrid1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = EXGRIDLib.EditTypeEnum.SliderType
 .Option(EXGRIDLib.EditorOptionEnum.exSliderWidth) = 0
 .Option(EXGRIDLib.EditorOptionEnum.exSliderMin) = 5
 .Option(EXGRIDLib.EditorOptionEnum.exSliderMax) = 10
 End With
End With

The following C# sample assigns a date type editor to the first cell:

int h = axGrid1.Items[0];
if (!axGrid1.Items.get_HasCellEditor(h, 0))
{
 EXGRIDLib.Editor editor = axGrid1.Items.get_CellEditor(h, 0);
 if (editor != null)
 editor.EditType = EXGRIDLib.EditTypeEnum.DateType;
}

The following C# sample assigns a spin type editor with min and max values:

EXGRIDLib.Editor editor = axGrid1.Items.get_CellEditor(axGrid1.Items.FirstVisibleItem, 0);
editor.EditType = EXGRIDLib.EditTypeEnum.SliderType;
editor.set_Option(EXGRIDLib.EditorOptionEnum.exSliderWidth, 0);
editor.set_Option(EXGRIDLib.EditorOptionEnum.exSliderMin, 5);
editor.set_Option(EXGRIDLib.EditorOptionEnum.exSliderMax, 10);

The following VFP sample assigns a date type editor to the first cell:

with thisform.Grid1.Items
 thisform.Grid1.BeginUpdate()
 .DefaultItem = .ItemByIndex(0)

 if (!.HasCellEditor(0, 0))
 .CellEditor(0, 0).EditType = 7
 endif
 thisform.Grid1.EndUpdate()
endwith

The following VFP sample assigns a spin type editor with min and max values:

with thisform.Grid1.Items
 with .CellEditor(.FirstVisibleItem, 0)
 .EditType = 20 && SliderType
 .Option(41) = 0 && exSliderWidth
 .Option(43) = 5 && exSliderMin
 .Option(44) = 10 && exSliderMax
 endwith
endwith

property Items.CellEditorVisible([Item as Variant], [ColIndex as Variant])
as EditorVisibleEnum
Specifies whether a column's editor is visible or hidden into the cell.

Type Description
Item as Variant A long expression that indicates the item's handle

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key

EditorVisibleEnum An EditorVisibleEnum expression that indicates whether
the cell's editor visible, always visible or hidden.

Use the CellEditorVisible property to hide the cell's editor. Use the Editor or CellEditor
property to assign an editor to the entire column or to a specific cell. Use the Locked
property to lock an editor. If the cell's editor is hidden, the cell displays the CellValue
property as a plain text, if the CellValueFormat property is exText, else if the
CellValueFormat property is exHTML the cell displays the CellValue using built-in HTML
format.

The following VB sample hides the editor for the focused cell:

With Grid1.Items
 .CellEditorVisible(.FocusItem, Grid1.FocusColumnIndex) = False
End With

The following C++ sample hides the editor for the focused cell:

#include "Items.h"
CItems items = m_grid.GetItems();
items.SetCellEditorVisible(COleVariant(items.GetFocusItem()), COleVariant(
m_grid.GetFocusColumnIndex()), FALSE);

The following VB.NET sample hides the editor for the focused cell:

With AxGrid1.Items
 .CellEditorVisible(.FocusItem, AxGrid1.FocusColumnIndex) = False
End With

The following C# sample hides the editor for the focused cell:

EXGRIDLib.Items items = axGrid1.Items;
items.set_CellEditorVisible(items.FocusItem, axGrid1.FocusColumnIndex, false);

The following VFP sample hides the editor for the focused cell:

with thisform.Grid1.Items
 .DefaultItem = .FocusItem
 .CellEditorVisible(0, thisform.Grid1.FocusColumnIndex) = .f.
endwith

property Items.CellEnabled([Item as Variant], [ColIndex as Variant]) as
Boolean

Returns or sets a value that determines whether a cell can respond to user-generated
events.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

Boolean A boolean expression that indicates whether the cell is
enabled or disabled.

Use the CellEnabled property to disable a cell. A disabled cell looks grayed. Use the
EnableItem property to disable an item. Once that one cell is disabled it cannot be checked
or clicked. Use the SelectableItem property to specify the user can select an item. To
disable a column you can use Enabled property of the Column object.

Note: The intersection of an item with a column defines a cell. Each cell is uniquely
represented by its handle. The cell's handle is of HCELL type, that's equivalent with a long
type. All properties of Items object that have two parameters Item and ColIndex, refer a
cell.

The following lines are equivalents and each of them changes the bold font attribute of the
first cell on the first item.

With Grid1
 .Items.CellBold(, .Items.ItemCell(.Items(0), 0)) = True
 .Items.CellBold(.Items(0), 0) = True
 .Items.CellBold(.Items(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0), 0) = True
 .Items.CellBold(.Items(0), Grid1.Columns(0).Caption) = True
End With

property Items.CellFont ([Item as Variant], [ColIndex as Variant]) as
IFontDisp
Retrieves or sets the cell's font.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption or the
column's key.

IFontDisp A Font object that indicates the item's font.

By default, the CellFont property is nothing. If the CellFont property is noting, the cell uses
the item's font. Use the CellFont and ItemFont properties to specify different fonts for cells
or items. Use the CellBold, CellItalic, CellUnderline, CellStrikeout, ItemBold, ItemUnderline,
ItemStrikeout, ItemItalic or CellValueFormat to specify different font attributes. Use the
Refresh method to refresh the control's content on the fly. Use the BeginUpdate and
EndUpdate methods if you are doing multiple changes, so no need for an update each time
a change is done. Use the ItemHeight property to specify the height of the item.

The following VB sample changes the font for the focused cell:

With Grid1.Items
 .CellFont(.FocusItem, Grid1.FocusColumnIndex) =
Grid1.Font
 With .CellFont(.FocusItem, 0)
 .Name = "Comic Sans MS"
 .Size = 10
 .Bold = True
 End With
End With
Grid1.Refresh

The following C++ sample changes the font for the focused cell:

#include "Items.h"
#include "Font.h"
CItems items = m_grid.GetItems();
COleVariant vtItem(items.GetFocusItem()), vtColumn(
(long)m_grid.GetFocusColumnIndex());

items.SetCellFont(vtItem, vtColumn, m_grid.GetFont().m_lpDispatch);
COleFont font = items.GetCellFont(vtItem, vtColumn);
font.SetName("Comic Sans MS");
font.SetBold(TRUE);
m_grid.Refresh();

The following VB.NET sample changes the font for the focused cell:

With AxGrid1.Items
 .CellFont(.FocusItem, AxGrid1.FocusColumnIndex) = IFDH.GetIFontDisp(AxGrid1.Font)
 With .CellFont(.FocusItem, 0)
 .Name = "Comic Sans MS"
 .Bold = True
 End With
End With
AxGrid1.CtlRefresh()

where the IFDH class is defined like follows:

Public Class IFDH
 Inherits System.Windows.Forms.AxHost

 Sub New()
 MyBase.New("")
 End Sub

 Public Shared Function GetIFontDisp(ByVal font As Font) As Object
 GetIFontDisp = AxHost.GetIFontFromFont(font)
 End Function

End Class

The following C# sample changes the font for the focused cell:

axGrid1.Items.set_CellFont(axGrid1.Items.FocusItem, axGrid1.FocusColumnIndex ,
IFDH.GetIFontDisp(axGrid1.Font));
stdole.IFontDisp spFont = axGrid1.Items.get_CellFont(axGrid1.Items.FocusItem,
axGrid1.FocusColumnIndex);
spFont.Name = "Comic Sans MS";

spFont.Bold = true;
axGrid1.CtlRefresh();

where the IFDH class is defined like follows:

internal class IFDH : System.Windows.Forms.AxHost
{
 public IFDH() : base("")
 {
 }

 public static stdole.IFontDisp GetIFontDisp(System.Drawing.Font font)
 {
 return System.Windows.Forms.AxHost.GetIFontFromFont(font) as stdole.IFontDisp;
 }
}

The following VFP sample changes the font for the focused cell:

with thisform.Grid1.Items
 .DefaultItem = .FocusItem
 .CellFont(0,thisform.Grid1.FocusColumnIndex) = thisform.Grid1.Font
 with .CellFont(0,0)
 .Name = "Comic Sans MS"
 .Bold = .t.
 endwith
endwith
thisform.Grid1.Object.Refresh()

property Items.CellForeColor([Item as Variant], [ColIndex as Variant]) as
Color

Retrieves or sets the cell's foreground color.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

Color A color expression that indicates the cell's foreground
color

The CellForeColor property identifies the cell's foreground color. Use the
ClearCellForeColor property to clear the cell's foreground color. Use the ItemForeColor
property to specify the the item's foreground color. Use the Def(exCellForeColor) property
to specify the foreground color for all cells in the column. Use the ConditionalFormats
method to apply formats to a cell or range of cells, and have that formatting change
depending on the value of the cell or the value of a formula.

For instance, the following VB code changes the left top cell of your control:
Grid1.Items.CellForeColor(Grid1.Items(0), 0) = vbBlue

In VB.NET or C# you require the following functions until the .NET framework will provide:

You can use the following VB.NET function:

 Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
 End Function

You can use the following C# function:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;

 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VB sample changes the foreground color for the focused cell:

With Grid1.Items
 .CellForeColor(.FocusItem, Grid1.FocusColumnIndex) = vbRed
End With

The following C# sample changes the foreground color for the focused cell:

axGrid1.Items.set_CellForeColor(axGrid1.Items.FocusItem, axGrid1.FocusColumnIndex,
ToUInt32(Color.Red));

The following VB.NET sample changes the foreground color for the focused cell:

With AxGrid1.Items
 .CellForeColor(.FocusItem, AxGrid1.FocusColumnIndex) = ToUInt32(Color.Red)
End With

The following C++ sample changes the foreground color for the focused cell:

#include "Items.h"
CItems items = m_grid.GetItems();
items.SetCellForeColor(COleVariant(items.GetFocusItem()), COleVariant(
(long)m_grid.GetFocusColumnIndex()), RGB(255,0,0));

The following VFP sample changes the foreground color for the focused cell:

with thisform.Grid1.Items
 .DefaultItem = .FocusItem
 .CellForeColor(0, thisform.Grid1.FocusColumnIndex) = RGB(255,0,0)
endwith

Note: The intersection of an item with a column defines a cell. Each cell is uniquely
represented by its handle. The cell's handle is of HCELL type, that's equivalent with a long
type. All properties of Items object that have two parameters Item and ColIndex, refer a
cell.

The following lines are equivalents and each of them changes the bold font attribute of the
first cell on the first item.

With Grid1
 .Items.CellBold(, .Items.ItemCell(.Items(0), 0)) = True
 .Items.CellBold(.Items(0), 0) = True
 .Items.CellBold(.Items(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0), 0) = True
 .Items.CellBold(.Items(0), Grid1.Columns(0).Caption) = True
End With

property Items.CellFormatLevel([Item as Variant], [ColIndex as Variant])
as String
Specifies the arrangement of the fields inside the cell.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

String
A CRD string expression that indicates the layout of the
cell. The Index elements in the CRD string indicates the
index of the column being displayed.

By default, the CellFormatLevel property is empty. If the CellFormatLevel property is empty,
the cell displays it's caption. Use the CellValue property to assign a value to a cell. If the
CellFormatLevel property is not empty, it indicates the layout being displayed in the cell's
area. For instance, the CellFormatLevel = "1/2" indicates that the cell's area is vertically
divided such as the up part displays the caption of the cell in the first column, and the down
part displays the caption of the cell in the second column. The height of the item is NOT
changed, after calling the CellFormatLevel property. Use the ItemHeight property to specify
the height of the item. Use the DefaultItemHeight property to specify the default height of
the items before inserting them. Use the Def(exCellFormatLevel) property to specify the
layout for all cells in the same column. For instance, you can have a specify layout for some
cells using the Def(exCellFormatLevel) property (by default it is applied to all cells in the
column), and for other cells you can use the CellFormatLevel property to specify different
layouts, or to remove the default layout. Use the FormatLevel property to arrange the
columns in the control's header bar.

For instance, this layout [dgl=1]""[b=0]:4,(4;""[b=4]/0/4;""[b=1]),""[b=0]:4 adds a 4 pixels-
borders around any object its applies (in this case all columns), like in the following picture:

property Items.CellHAlignment ([Item as Variant], [ColIndex as Variant])
as AlignmentEnum
Retrieves or sets a value that indicates the alignment of the cell's caption.

Type Description
Item as Variant A long expression that indicates the handle of the item.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's key or the
column's caption.

AlignmentEnum An AlignmentEnum expression that indicates the alignment
of the cell's caption.

The CellHAlignment property aligns a particular cell. Use the Alignment property of the
Column object to align all the cells in the column. Use the CellVAlignment property to align
vertically the caption of the cell, when the item displays its content using multiple lines. Use
the ClearCellHAlignment method to clear the cell's alignment previously set by the
CellHAlignment property. If the CellHAlignment property is not set, the Alignment property of
the Column object indicates the cell's alignment. If the cell belongs to the column that
displays the hierarchy (TreeColumnIndex property), the cell can be aligned to the left or to
the right. Use the Def(exCellDrawPartsOrder) property to specify the order of the drawing
parts inside the cell.

The following VB sample right aligns the focused cell:

With Grid1.Items
 .CellHAlignment(.FocusItem, Grid1.FocusColumnIndex) =
AlignmentEnum.RightAlignment
End With

The following C++ sample right aligns the focused cell:

#include "Items.h"
CItems items = m_grid.GetItems();
items.SetCellHAlignment(COleVariant(items.GetFocusItem()), COleVariant(
(long)m_grid.GetFocusColumnIndex()), 2 /*RightAlignment*/);

The following VB.NET sample right aligns the focused cell:

With AxGrid1.Items
 .CellHAlignment(.FocusItem, AxGrid1.FocusColumnIndex) =

EXGRIDLib.AlignmentEnum.RightAlignment
End With

The following C# sample right aligns the focused cell:

axGrid1.Items.set_CellHAlignment(axGrid1.Items.FocusItem, axGrid1.FocusColumnIndex,
EXGRIDLib.AlignmentEnum.RightAlignment);

The following VFP sample right aligns the focused cell:

with thisform.Grid1.Items
 .DefaultItem = .FocusItem
 .CellHAlignment(0,thisform.Grid1.FocusColumnIndex) = 2 && RightAlignment
endwith

property Items.CellHasButton([Item as Variant], [ColIndex as Variant]) as
Boolean

Retrieves or sets a value indicating whether the cell has an associated push button.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

Boolean A boolean expression that indicates whether the cell
contains a button.

Each time when user clicks a cell that has CellHasButton property to True, the control fires
ButtonClick event. The caption of the push button is defined by the CellValue property. Use
the Def property to assign buttons to all cells in the column. Use the CellButtonAutoWidth
property to specify whether the buttons fit the cell's content. Use the CellEditor property to
assign an editor to a cell. Use the Editor property to assign the same editor to all cells in
the column. Use the AddButton method to add a new button to an editor. If you need
multiple buttons inside the same cell, you can split the cell in multiple pieces and add a
button to each piece. Use the SplitCell property to split a cell. Use the
Background(exCellButtonUp) or Background(exCellButtonDown) property to change the
visual appearance for the buttons in the control.

The following VB sample adds a header row column:

With Grid1.Columns.Add("H")
 .Def(exCellHasButton) = True
 .Position = 0

 .AllowDragging = False
 .HeaderAlignment = CenterAlignment
 .Width = 16
End With

The following VB sample assigns a button for each cell in the first column, as soon as a
new item is inserted:

Private Sub Grid1_AddItem(ByVal Item As EXGRIDLibCtl.HITEM)
 Grid1.Items.CellHasButton(Item, 0) = True
End Sub

Private Sub Grid1_ButtonClick(ByVal Item As EXGRIDLibCtl.HITEM, ByVal ColIndex As Long)
 MsgBox "The cell of button type has been clicked."
End Sub

The following VB sample assigns a button to the focused cell:

With Grid1.Items
 .CellHasButton(.FocusItem, Grid1.FocusColumnIndex) = True
End With

The following VB sample adds four buttons in the same cell:

With Grid1.Items
 Dim h As HITEM
 h = .FirstVisibleItem()
 .CellValue(h, 0) = "B1"
 .CellHasButton(h, 0) = True
 f = .SplitCell(h, 0)
 .CellValue(, f) = "B2"
 .CellHasButton(, f) = True
 f = .SplitCell(, f)
 .CellValue(, f) = "B3"
 .CellHasButton(, f) = True
 f = .SplitCell(, f)
 .CellValue(, f) = "B4"
 .CellHasButton(, f) = True
End With

The following C++ sample adds a header row column:

#include "Column.h"
#include "Columns.h"
CColumns columns = m_grid.GetColumns();
CColumn column(V_DISPATCH(&columns.Add("H")));
column.SetHeaderAlignment(1);
column.SetDef(2, COleVariant(VARIANT_TRUE));
column.SetPosition(0);
column.SetWidth(16);
column.SetAllowDragging(FALSE);

The following C++ sample assigns a button to the focused cell:

#include "Items.h"
CItems items = m_grid.GetItems();
items.SetCellHasButton(COleVariant(items.GetFocusItem()), COleVariant(
(long)m_grid.GetFocusColumnIndex()), TRUE);

The following VB.NET sample adds a header row column:

With AxGrid1.Columns.Add("H")
 .Def(EXGRIDLib.DefColumnEnum.exCellHasButton) = True
 .Position = 0
 .AllowDragging = False
 .HeaderAlignment = EXGRIDLib.AlignmentEnum.CenterAlignment
 .Width = 16
End With

The following VB.NET sample assigns a button to the focused cell:

With AxGrid1.Items
 .CellHasButton(.FocusItem, AxGrid1.FocusColumnIndex) = True
End With

The following C# sample adds a header row column:

EXGRIDLib.Columns columns = axGrid1.Columns;
EXGRIDLib.Column column = columns.Add("H") as EXGRIDLib.Column;

column.set_Def(EXGRIDLib.DefColumnEnum.exCellHasButton, true);
column.Position = 0;
column.HeaderAlignment = EXGRIDLib.AlignmentEnum.CenterAlignment;
column.AllowDragging = false;
column.Width = 16;

The following C# sample assigns a button to the focused cell:

axGrid1.Items.set_CellHasButton(axGrid1.Items.FocusItem, axGrid1.FocusColumnIndex,
true);

The following VFP sample adds a header row column:

with thisform.Grid1.Columns.Add("H")
 .Position = 0
 .Def(2) = .t.
 .AllowDragging = .f.
 .Width = 16
endwith

The following VFP sample assigns a button to the focused cell:

with thisform.Grid1.Items
 .DefaultItem = .FocusItem
 .CellHasButton(0,thisform.Grid1.FocusColumnIndex) = .t.
endwith

Note: The intersection of an item with a column defines a cell. Each cell is uniquely
represented by its handle. The cell's handle is of HCELL type, that's equivalent with a long
type. All properties of Items object that have two parameters Item and ColIndex, refer a
cell.

The following lines are equivalents and each of them changes the bold font attribute of the
first cell on the first item.

With Grid1
 .Items.CellBold(, .Items.ItemCell(.Items(0), 0)) = True
 .Items.CellBold(.Items(0), 0) = True
 .Items.CellBold(.Items(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0)) = True

 .Items.CellBold(.Items.ItemByIndex(0), 0) = True
 .Items.CellBold(.Items(0), Grid1.Columns(0).Caption) = True
End With

property Items.CellHasCheckBox([Item as Variant], [ColIndex as Variant])
as Boolean

Retrieves or sets a value indicating whether the cell has an associated checkbox.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

Boolean A boolean expression that indicates whether the cell
contains a check box button.

Use the CellState property to change the state of the cell of the check box type. The cell
cannot display in the same time a radio and a check button. The control fires
CellStateChanged event when the cell's state has been changed. Use the
CellHasRadioButton property to add a radio button to your cell. Use the PartialCheck
property to enable partial check feature. The CheckImage property specifies the icon being
displayed for different check box states. The EditType.CheckValueType value specifies
whether the editor displays a check box to represent the cell's value. Use the Def property
to assign check boxes for all cells in the column. Use the CellImage property to add a single
icon to a cell. Use the CellImages property to assign multiple icons to a cell. Use the
CellPicture property to load a custom size picture to a cell. Use the FilterType property on
exCheck to filter for checked or unchecked items. Use the Def(exCellDrawPartsOrder)
property to specify the order of the drawing parts inside the cell.

The following VB sample assigns a checkbox to all cells in the first column:

 With Grid1.Columns(0)
 .Def(exCellHasCheckBox) = True
End With

The following VB sample assigns a checkbox to all cells in the first column:

Dim h As Variant
Grid1.BeginUpdate
With Grid1.Items
For Each h In Grid1.Items
 .CellHasCheckBox(h) = True
Next
End With

Grid1.EndUpdate

The following VB sample uses the AddItem event to add a check box for all cells in the first
column:

Private Sub Grid1_AddItem(ByVal Item As EXGRIDLibCtl.HITEM)
 Grid1.Items.CellHasCheckBox(Item) = True
End Sub

The VB following sample uses the CellStateChanged event to display a message when a
cell of radio or check type has changed its state:

Private Sub Grid1_CellStateChanged(ByVal Item As EXGRIDLibCtl.HITEM, ByVal ColIndex As
Long)
 Debug.Print "The cell """ & Grid1.Items.CellValue(Item, ColIndex) & """ has changed its
state. The new state is " & IIf(Grid1.Items.CellState(Item, ColIndes) = 0, "Unchecked",
"Checked")
End Sub

The EditType.CheckValueType value specifies whether the editor displays a check box to
represent the cell's value. For instance, if you have a column of boolean values, you can use
the following VB code to assign check boxes to each cell in the column:

With Grid1.Columns("Check").Editor
 .EditType = CheckValueType
End With

In this case, the CellValue property for each cell in the column specifies the state of the
check box as follows:

0 (unchecked state). The control displays the unchecked state check box.
1 (checked state). The control displays the checked state check box.
2 (partial checked state). The control displays the partial checked state check box.

If the values in the column differs than 0, 1, or 2 you can call the
Editor.Option/DefaultEditorOption property to specify the check box states being
displayed. For instance, if your column contains boolean values, True (-1) and False (0),
you can use the following sample to get displayed the checked states instead partial
checked states.

With Grid1.Columns("Check").Editor
 .EditType = CheckValueType

 .Option(exCheckValue2) = 1
End With

The following VB sample adds a checkbox to the focused cell:

With Grid1.Items
 .CellHasCheckBox(.FocusItem, Grid1.FocusColumnIndex) = True
End With

The following C++ sample adds a checkbox to the focused cell:

#include "Items.h"
CItems items = m_grid.GetItems();
items.SetCellHasCheckBox(COleVariant(items.GetFocusItem()), COleVariant(
(long)m_grid.GetFocusColumnIndex()), TRUE);

The following C# sample adds a checkbox to the focused cell:

axGrid1.Items.set_CellHasCheckBox(axGrid1.Items.FocusItem, axGrid1.FocusColumnIndex,
true);

The following VB.NET sample adds a checkbox to the focused cell:

With AxGrid1.Items
 .CellHasCheckBox(.FocusItem, AxGrid1.FocusColumnIndex) = True
End With

The following VFP sample adds a checkbox to the focused cell:

with thisform.Grid1.Items
 .DefaultItem = .FocusItem
 .CellHasCheckBox(0,thisform.Grid1.FocusColumnIndex) = .t.
endwith

Note: The intersection of an item with a column defines a cell. Each cell is uniquely
represented by its handle. The cell's handle is of HCELL type, that's equivalent with a long
type. All properties of Items object that have two parameters Item and ColIndex, refer a
cell.

The following lines are equivalents and each of them changes the bold font attribute of the
first cell on the first item.

With Grid1
 .Items.CellBold(, .Items.ItemCell(.Items(0), 0)) = True
 .Items.CellBold(.Items(0), 0) = True
 .Items.CellBold(.Items(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0), 0) = True
 .Items.CellBold(.Items(0), Grid1.Columns(0).Caption) = True
End With

property Items.CellHasRadioButton([Item as Variant], [ColIndex as
Variant]) as Boolean

Retrieves or sets a value indicating whether the cell has an associated radio button.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

Boolean A boolean expression that indicates whether the cell
contains a radio button.

Use the CellState property to change the state of the cell of the radio type. The cell cannot
display in the same time a radio and a check button. The control fires CellStateChanged
event when the cell's state has been changed. Call the CellHasCheckBox property to add a
check box to the cell. Use the CellRadioGroup property To group or ungroup cells of radio
type. Use the Def property to assign radio buttons to all cells in the column. Use the
CellImage property to add a single icon to a cell. Use the CellImages property to assign
multiple icons to a cell. Use the CellPicture property to load a custom size picture to a cell.
Use the RadioImage property to change the radio button appearance. Use the Def(
exCellDrawPartsOrder) property to specify the order of the drawing parts inside the cell.

The following VB sample assigns a radio button to all cells in the first column:

With Grid1.Columns(0)
 .Def(exCellHasRadioButton) = True
End With

The following VB sample assigns a radio button to all cells in the first column, and groups all
of them in the same radio group (1234):

Dim h As Variant
Grid1.BeginUpdate
With Grid1.Items
For Each h In Grid1.Items
 .CellHasRadioButton(h, 0) = True
 .CellRadioGroup(h, 0) = 1234
Next
End With

Grid1.EndUpdate

The following VB sample assigns a radio button to all cells in the first column, when adding
a new item:

Private Sub Grid1_AddItem(ByVal Item As EXGRIDLibCtl.HITEM)
 Grid1.Items.CellHasRadioButton(Item, 0) = True
 Grid1.Items.CellRadioGroup(Item, 0) = 1234
End Sub

Call the Grid1.Items.CellValue(, Grid1.Items.CellChecked(1234)) to get the cell's value
that's checked in the group 1234.

The following VB sample assigns a radio button to the focused cell:

With Grid1.Items
 .CellHasRadioButton(.FocusItem, Grid1.FocusColumnIndex) = True
 .CellRadioGroup(.FocusItem, Grid1.FocusColumnIndex) = 1234
End With

The following C++ sample assigns a radio button to the focused cell:

#include "Items.h"
CItems items = m_grid.GetItems();
COleVariant vtItem(items.GetFocusItem()), vtColumn(m_grid.GetFocusColumnIndex());
items.SetCellHasRadioButton(vtItem, vtColumn, TRUE);
items.SetCellRadioGroup(vtItem, vtColumn, 1234);

The following VB.NET sample assigns a radio button to the focused cell:

With AxGrid1.Items
 .CellHasRadioButton(.FocusItem, AxGrid1.FocusColumnIndex) = True
 .CellRadioGroup(.FocusItem, AxGrid1.FocusColumnIndex) = 1234
End With

The following C# sample assigns a radio button to the focused cell:

axGrid1.Items.set_CellHasRadioButton(axGrid1.Items.FocusItem,
axGrid1.FocusColumnIndex, true);
axGrid1.Items.set_CellRadioGroup(axGrid1.Items.FocusItem, axGrid1.FocusColumnIndex,

1234);

The following VFP sample assigns a radio button to the focused cell:

with thisform.Grid1.Items
 .DefaultItem = .FocusItem
 .CellHasRadioButton(0,thisform.Grid1.FocusColumnIndex) = .t.
 .CellRadioGroup(0,thisform.Grid1.FocusColumnIndex) = 1234
endwith

Note: The intersection of an item with a column defines a cell. Each cell is uniquely
represented by its handle. The cell's handle is of HCELL type, that's equivalent with a long
type. All properties of Items object that have two parameters Item and ColIndex, refer a
cell.

The following lines are equivalents and each of them changes the bold font attribute of the
first cell on the first item.

With Grid1
 .Items.CellBold(, .Items.ItemCell(.Items(0), 0)) = True
 .Items.CellBold(.Items(0), 0) = True
 .Items.CellBold(.Items(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0), 0) = True
 .Items.CellBold(.Items(0), Grid1.Columns(0).Caption) = True
End With

property Items.CellHyperLink ([Item as Variant], [ColIndex as Variant]) as
Boolean
Specifies whether the cell is highlighted when the cursor mouse is over the cell.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

Boolean A boolean expression that indicates whether the cell is of
hyper link type.

A cell that has CellHyperLink property to True, is a cell of hyper link type. Use the
CellHyperLink property to add hyper links to your control. If the user clicks a cell of hyper
link type, the control fires the HyperLinkClick event. Use the CellForeColor property to
change the cell's foreground color. Use the HyperLinkColor property to change the color
that's used by control when the cursor is over a cell of hyper link type.

If you would like a HOT TRACKING sample you could use the ItemFromPoint property like
in the following sample. The sample changes the foreground and the background color for
the tracking item. Use the ItemBackColor property to change the item's background color.
Use the ClearItemBackColor property to clear the item's background color, after setting
using the ItemBackColor property. Use the ItemForeColor property to change the item's
foreground color. Use the ClearItemForeColor property to clear the item's foreground color.

Private Declare Function SetCapture Lib "user32" (ByVal hwnd As Long) As Long
Private Declare Function ReleaseCapture Lib "user32" () As Long
Dim hIA As HITEM

Private Sub Grid1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Dim hI As HITEM, c As Long, hit As HitTestInfoEnum
 With Grid1
 hI = .ItemFromPoint(-1, -1, c, hit)
 If (hI = 0) Then
 ReleaseCapture
 End If
 If Not hI = hIA Then
 With .Items

 If Not hIA = 0 Then
 .ClearItemBackColor (hIA)
 .ClearItemForeColor (hIA)
 End If
 If Not hI = 0 Then
 SetCapture Grid1.hwnd
 .ItemBackColor(hI) = vbRed
 .ItemForeColor(hI) = vbWhite
 End If
 End With
 hIA = hI
 End If
 End With
End Sub

property Items.CellImage ([Item as Variant], [ColIndex as Variant]) as
Long

Retrieves or sets a value that indicates the index of icon to display in the cell..

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

Long

A long value that indicates the index of the icon in Images
collection. The Images collection is 1 based. The last 7
bits in the high significant byte of the long expression
indicates the identifier of the skin being used to paint the
object. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the part.

The CellImage property assigns a single icon to a cell. Use the CellImage() = 0 to remove
the cell's icon, that was previous assigned using the CellImage property . Use the
CellImages property to assign multiple icons to a single cell. The CellImageClick event
occurs when the user clicks the cell's icon. The icon's size is always 16 x 16. Use the
CellPicture property to load a a picture of different size. Use the Images or ReplaceIcon
method to load icons to the control. Use the ItemFromPoint property to retrieve the part of
the control being clicked. Use the CellHasCheckBox property to add a check box to a cell.
Use the CellHasRadioButton property to assign a radio button to a cell. Use the FilterType
property on exImage to filter items by icons. Use the HTML tag to insert icons inside
the cell's caption. Use the Def(exCellDrawPartsOrder) property to specify the order of the
drawing parts inside the cell. The ImageSize property defines the size (width/height) of the
icons within the control's Images collection.

The following VB sample displays the first icon in the focused cell:

With Grid1.Items
 .CellImage(.FocusItem, Grid1.FocusColumnIndex) = 1
End With

The following VB sample changes the cell's icon for all icons in the first column, as soon as
new items are inserted to the control:

Private Sub Grid1_AddItem(ByVal Item As EXGRIDLibCtl.HITEM)

 Grid1.Items.CellImage(Item, 0) = 1
End Sub

The VB following sample changes the cell's image when the user clicks on the cell's image (
to run the following sample you have to add two images to the grid's images collection),

Private Sub Grid1_AddItem(ByVal Item As EXGRIDLibCtl.HITEM)
 Grid1.Items.CellImage(Item, 0) = 1
End Sub

Private Sub Grid1_CellImageClick(ByVal Item As EXGRIDLibCtl.HITEM, ByVal ColIndex As
Long)
 Grid1.Items.CellImage(Item, ColIndex) = Grid1.Items.CellImage(Item, ColIndex) Mod 2 +
1
End Sub

The following C++ sample displays the first icon in the focused cell:

#include "Items.h"
CItems items = m_grid.GetItems();
items.SetCellImage(COleVariant(items.GetFocusItem()), COleVariant(
(long)m_grid.GetFocusColumnIndex()), 1);

The following C# sample displays the first icon in the focused cell:

axGrid1.Items.set_CellImage(axGrid1.Items.FocusItem, axGrid1.FocusColumnIndex, 1);

The following VB.NET sample displays the first icon in the focused cell:

With AxGrid1.Items
 .CellImage(.FocusItem, AxGrid1.FocusColumnIndex) = 1
End With

The following VFP sample displays the first icon in the focused cell:

with thisform.Grid1.Items
 .DefaultItem = .FocusItem
 .CellImage(0,thisform.Grid1.FocusColumnIndex) = 1
endwith

Note: The intersection of an item with a column defines a cell. Each cell is uniquely
represented by its handle. The cell's handle is of HCELL type, that's equivalent with a long
type. All properties of Items object that have two parameters Item and ColIndex, refer a
cell.

The following lines are equivalents and each of them changes the bold font attribute of the
first cell on the first item.

With Grid1
 .Items.CellBold(, .Items.ItemCell(.Items(0), 0)) = True
 .Items.CellBold(.Items(0), 0) = True
 .Items.CellBold(.Items(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0), 0) = True
 .Items.CellBold(.Items(0), Grid1.Columns(0).Caption) = True
End With

property Items.CellImages ([Item as Variant], [ColIndex as Variant]) as
Variant
Specifies an additional list of icons shown in the cell.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Variant
A string expression that indicates the list of icons shown in
the cell. For instance, the "1,2,3" indicates that the icons
1, 2, 3 are displayed in the cell.

The CellImage property assign a single icon to the cell. Instead if multiple icons need to be
assigned to a single cell you have to use the CellImages property. The CellImages property
takes a list of additional icons and display them in the cell. The list is separated by ',' and
should contain numbers that represent indexes to Images list collection. Use the Images or
ReplaceIcon method to assign icons at runtime. Use the Def(exCellDrawPartsOrder)
property to specify the order of the drawing parts inside the cell. The ImageSize property
defines the size (width/height) of the icons within the control's Images collection.

The following VB sample assign the first and third icon to the cell:

With Grid1.Items
 .CellImages(.ItemByIndex(0), 1) = "1,3"
End With

The following VB sample displays the index of icon being clicked, when the cell contains
multiple icons (MouseUp event):

Private Sub Grid1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single)
 Dim i As HITEM, h As HitTestInfoEnum, c As Long
 With Grid1
 i = .ItemFromPoint(-1, -1, c, h)
 End With
 If (i <> 0) Then
 If exHTCellIcon = (h And exHTCellIcon) Then
 Debug.Print "The index of icon being clicked is: " & CLng((h And &HFFFF0000) /
65536)
 End If

 End If
End Sub

The following C++ sample assigns the first and the third icon to the cell:

#include "Items.h"
CItems items = m_grid.GetItems();
items.SetCellImages(COleVariant(items.GetFocusItem()), COleVariant(
(long)m_grid.GetFocusColumnIndex()), COleVariant("1,3"));

The following C++ sample displays the index of icon being clicked:

#include "Items.h"
void OnMouseUpGrid1(short Button, short Shift, long X, long Y)
{
 CItems items = m_grid.GetItems();
 long c = 0, hit = 0, h = m_grid.GetItemFromPoint(X, Y, &c, &hit);
 if (h != 0)
 {
 if ((hit & 0x44 /*exHTCellIcon*/) == 0x44)
 {
 CString strFormat;
 strFormat.Format("The index of icon being clicked is: %i\n", (hit >> 16));
 OutputDebugString(strFormat);
 }
 }
}

The following VB.NET sample assigns the first and the third icon to the cell:

With AxGrid1.Items
 .CellImages(.FocusItem, AxGrid1.FocusColumnIndex) = "1,3"
End With

The following VB.NET sample displays the index of icon being clicked:

Private Sub AxGrid1_MouseUpEvent(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_MouseUpEvent) Handles AxGrid1.MouseUpEvent
 With AxGrid1

 Dim i As Integer, c As Integer, hit As EXGRIDLib.HitTestInfoEnum
 i = .get_ItemFromPoint(e.x, e.y, c, hit)
 If (Not (i = 0)) Then
 Debug.WriteLine("The index of icon being clicked is: " & (hit And &HFFFF0000) /
65536)
 End If
 End With
End Sub

The following C# sample assigns the first and the third icon to the cell:

axGrid1.Items.set_CellImages(axGrid1.Items.FocusItem, axGrid1.FocusColumnIndex, "1,3");

The following C# sample displays the index of icon being clicked:

private void axGrid1_MouseUpEvent(object sender,
AxEXGRIDLib._IGridEvents_MouseUpEvent e)
{
 int c = 0;
 EXGRIDLib.HitTestInfoEnum hit;
 int i = axGrid1.get_ItemFromPoint(e.x, e.y, out c, out hit);
 if ((i != 0))
 {
 if ((Convert.ToUInt32(hit) &
Convert.ToUInt32(EXGRIDLib.HitTestInfoEnum.exHTCellIcon)) ==
Convert.ToUInt32(EXGRIDLib.HitTestInfoEnum.exHTCellIcon))
 {
 string s = axGrid1.Items.get_CellCaption(i, c).ToString();
 s = "Cell: " + s + ", Icon's Index: " + (Convert.ToUInt32(hit) >> 16).ToString();
 System.Diagnostics.Debug.WriteLine(s);
 }
 }
}

The following VFP sample assigns the first and the third icon to the cell:

with thisform.Grid1.Items
 .DefaultItem = .FocusItem
 .CellImages(0,thisform.Grid1.FocusColumnIndex) = "1,3"

endwith

The following VFP sample displays the index of icon being clicked:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

local c, hit
c = 0
hit = 0
with thisform.Grid1
 .Items.DefaultItem = .ItemFromPoint(x, y, @c, @hit)
 if (.Items.DefaultItem <> 0)
 if (bitand(hit, 68)= 68)
 wait window nowait .Items.CellCaption(0, c) + " " + Str(Int((hit - 68)/65536))
 endif
 endif
endwith

Add the code to the MouseUp, MouseMove or MouseDown event

property Items.CellItalic([Item as Variant], [ColIndex as Variant]) as
Boolean

Retrieves or sets a value that specifies whether the cell should appear in italic.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

Boolean A boolean expression that indicates whether the cell
should appear in italic.

Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply different font
attributes to the item. Use the CellItalic, CellUnderline, CellBold or CellStrikeOut property to
apply different font attributes to the cell. Use the CellValueFormat property to specify an
HTML caption. Use the ConditionalFormats method to apply formats to a cell or range of
cells, and have that formatting change depending on the value of the cell or the value of a
formula.

The following VB sample makes italic the focused cell:

With Grid1.Items
 .CellItalic(.FocusItem, Grid1.FocusColumnIndex) = True
End With

The following C++ sample makes italic the focused cell:

#include "Items.h"
CItems items = m_grid.GetItems();
items.SetCellItalic(COleVariant(items.GetFocusItem()), COleVariant(
(long)m_grid.GetFocusColumnIndex()), TRUE);

The following C# sample makes italic the focused cell:

axGrid1.Items.set_CellItalic(axGrid1.Items.FocusItem, axGrid1.FocusColumnIndex, true);

The following VB.NET sample makes italic the focused cell:

With AxGrid1.Items
 .CellItalic(.FocusItem, AxGrid1.FocusColumnIndex) = True

End With

The following VFP sample makes italic the focused cell:

with thisform.Grid1.Items
 .DefaultItem = .FocusItem
 .CellItalic(0, thisform.Grid1.FocusColumnIndex()) = .t.
endwith

Note: The intersection of an item with a column defines a cell. Each cell is uniquely
represented by its handle. The cell's handle is of HCELL type, that's equivalent with a long
type. All properties of Items object that have two parameters Item and ColIndex, refer a
cell.

The following lines are equivalents and each of them changes the bold font attribute of the
first cell on the first item.

With Grid1
 .Items.CellBold(, .Items.ItemCell(.Items(0), 0)) = True
 .Items.CellBold(.Items(0), 0) = True
 .Items.CellBold(.Items(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0), 0) = True
 .Items.CellBold(.Items(0), Grid1.Columns(0).Caption) = True
End With

property Items.CellItem (Cell as HCELL) as HITEM

Retrieves the handle of the item that is the owner of a specfic cell.

Type Description
Cell as HCELL A long expression that indicates the handle of a cell.
HITEM A long expression that indicates the item's handle.

Use the CellItem property to retrieve the item's handle. Use the ItemCell property to gets
the cell's handle given an item and a column. Most of the properties of the Items object that
have parameters [Item as Variant], [ColIndex as Variant], could use the handle of the cell to
identify the cell, instead the ColIndex parameter.

Note: The intersection of an item with a column defines a cell. Each cell is uniquely
represented by its handle. The cell's handle is of HCELL type, that's equivalent with a long
type. All properties of Items object that have two parameters Item and ColIndex, refer a
cell.

The following lines are equivalents and each of them changes the bold font attribute of the
first cell on the first item.

With Grid1
 .Items.CellBold(, .Items.ItemCell(.Items(0), 0)) = True
 .Items.CellBold(.Items(0), 0) = True
 .Items.CellBold(.Items(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0), 0) = True
 .Items.CellBold(.Items(0), Grid1.Columns(0).Caption) = True
End With

property Items.CellMerge([Item as Variant], [ColIndex as Variant]) as
Variant
Retrieves or sets a value that indicates the index of the cell that's merged to.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Variant
A long expression that indicates the index of the cell that's
merged with, a safe array that holds the indexes of the
cells being merged.

Use the CellMerge property to combine two or more cells in the same item in a single cell.
The data of the source cell is displayed in the new larger cell. All the other cells' data is not
lost. Use the ItemDivider property to display a single cell in the entire item. Use the
UnmergeCells method to unmerge the merged cells. Use the CellMerge property to
unmerge a single cell. Use the MergeCells method to combine one or more cells in a single
cell. Use the SplitCell property to split a cell. Use the Add method to add new columns to
the control.

The following VB sample merges the first three cells in the focused item:

With Grid1.Items
 .CellMerge(.FocusItem, 0) = 1
 .CellMerge(.FocusItem, 0) = 2
End With

The following C++ sample merges the first three cells in the focused item:

#include "Items.h"
CItems items = m_grid.GetItems();
COleVariant vtItem(items.GetFocusItem()), vtColumn(long(0));
items.SetCellMerge(vtItem, vtColumn, COleVariant(long(1)));
items.SetCellMerge(vtItem, vtColumn, COleVariant(long(2)));

The following VB.NET sample merges the first three cells in the focused item:

With AxGrid1.Items
 .CellMerge(.FocusItem, 0) = 1
 .CellMerge(.FocusItem, 0) = 2
End With

The following C# sample merges the first three cells in the focused item:

axGrid1.Items.set_CellMerge(axGrid1.Items.FocusItem, 0, 1);
axGrid1.Items.set_CellMerge(axGrid1.Items.FocusItem, 0, 2);

The following VFP sample merges the first three cells in the focused item:

with thisform.Grid1.Items
 .DefaultItem = .FocusItem
 .CellMerge(0,0) = 1
 .CellMerge(0,0) = 2
endwith

In other words, the sample shows how to display the first cell using the space occupied by
three cells

The following sample shows few methods to unmerge cells:

With Grid1
 With .Items
 .UnmergeCells .ItemCell(.RootItem(0), 0)
 End With
End With

With Grid1

 With .Items
 Dim r As Long
 r = .RootItem(0)
 .UnmergeCells Array(.ItemCell(r, 0), .ItemCell(r, 1))
 End With
End With

With Grid1
 .BeginUpdate
 With .Items
 .CellMerge(.RootItem(0), 0) = -1
 .CellMerge(.RootItem(0), 1) = -1
 .CellMerge(.RootItem(0), 2) = -1
 End With
 .EndUpdate
End With

You can merge the first three cells in the root item using any of the following methods:

 With Grid1
 With .Items
 .CellMerge(.RootItem(0), 0) = Array(1, 2)
 End With
End With

With Grid1
 .BeginUpdate
 With .Items
 Dim r As Long
 r = .RootItem(0)
 .CellMerge(r, 0) = 1
 .CellMerge(r, 0) = 2
 End With
 .EndUpdate
End With

With Grid1
 .BeginUpdate

 With .Items
 Dim r As Long
 r = .RootItem(0)
 .MergeCells .ItemCell(r, 0), .ItemCell(r, 1)
 .MergeCells .ItemCell(r, 0), .ItemCell(r, 2)
 End With
 .EndUpdate
End With

With Grid1
 With .Items
 Dim r As Long
 r = .RootItem(0)
 .MergeCells .ItemCell(r, 0), Array(.ItemCell(r, 1), .ItemCell(r, 2))
 End With
End With

With Grid1
 With .Items
 Dim r As Long
 r = .RootItem(0)
 .MergeCells Array(.ItemCell(r, 0), .ItemCell(r, 1), .ItemCell(r, 2))
 End With
End With

property Items.CellOwnerDraw ([Item as Variant], [ColIndex as Variant])
as IOwnerDrawHandler
Specifies the cell's owner draw handler.

Type Description

Item as Variant A long expression that indicates the item's handle being
painted

ColIndex as Variant
A long expression that indicates the column's index or
cell's handle, or a string expression that indicates the
column's caption

IOwnerDrawHandler An object that implements the IOwnerDrawHandler
interface

Use the CellOwnerDraw property to paint yourself the cell. The CellOwnerDraw property
specifies whether the user is responsible for painting the cell. By default, the
CellOwnerDraw property is nothing, and so the control does the painting. Using the
notification interfaces is faster than using events. For instance, let's say that we need cells
where for some values we need to get displayed other things. Use the
Def(exCellOwneDraw) property to assign an owner draw object for the entire column.

The following VB sample displays the CellValue when it is different than 5, and displays
another string when the CellValue property is 5:

Implements IOwnerDrawHandler
Private Type RECT
 left As Long
 top As Long
 right As Long
 bottom As Long
End Type
Private Declare Function DrawText Lib "user32" Alias "DrawTextA" (ByVal hdc As Long,
ByVal lpStr As String, ByVal nCount As Long, lpRect As RECT, ByVal wFormat As Long) As
Long
Private Const DT_VCENTER = &H4
Private Const DT_SINGLELINE = &H20

Private Sub Form_Load()
 With Grid1.Items
 .CellValue(.FirstVisibleItem, 0) = 5

 Set .CellOwnerDraw(.FirstVisibleItem, 0) = Me
 End With
End Sub

Private Sub IOwnerDrawHandler_DrawCell(ByVal hdc As Long, ByVal left As Long, ByVal
top As Long, ByVal right As Long, ByVal bottom As Long, ByVal Item As Long, ByVal
Column As Long, ByVal Source As Object)
 Dim s As String
 s = Source.Items.CellValue(Item, Column)
 If (s = "5") Then
 s = "just another string"
 End If
 Dim r As RECT
 r.left = left + 2
 r.right = right - 2
 r.top = top
 r.bottom = bottom
 DrawText hdc, s, Len(s), r, DT_VCENTER Or DT_SINGLELINE
End Sub

Private Sub IOwnerDrawHandler_DrawCellBk(ByVal hdc As Long, Options As Variant, ByVal
left As Long, ByVal top As Long, ByVal right As Long, ByVal bottom As Long, ByVal Item As
Long, ByVal Column As Long, ByVal Source As Object)

End Sub

The following VB6 sample displays half of the cell's background in green:

Implements IOwnerDrawHandler
Private Type RECT
 left As Long
 top As Long
 right As Long
 bottom As Long
End Type
Private Declare Function DrawText Lib "user32" Alias "DrawTextA" (ByVal hdc As Long,
ByVal lpStr As String, ByVal nCount As Long, lpRect As RECT, ByVal wFormat As Long) As

Long
Private Const DT_VCENTER = &H4
Private Const DT_SINGLELINE = &H20

Private Declare Function FillRect Lib "user32" (ByVal hdc As Long, lpRect As RECT, ByVal
hBrush As Long) As Long
Private Declare Function CreateSolidBrush Lib "gdi32" (ByVal crColor As Long) As Long
Private Declare Function DeleteObject Lib "gdi32" (ByVal hObject As Long) As Long

Private Sub Form_Load()
 With Grid1.Items
 Set .CellOwnerDraw(.FirstVisibleItem, 0) = Me
 End With
End Sub

Private Sub IOwnerDrawHandler_DrawCell(ByVal hdc As Long, ByVal left As Long, ByVal
top As Long, ByVal right As Long, ByVal bottom As Long, ByVal Item As Long, ByVal
Column As Long, ByVal Source As Object)
 Dim s As String
 s = Source.Items.CellValue(Item, Column)
 Dim r As RECT
 r.left = left + 2
 r.right = right - 2
 r.top = top
 r.bottom = bottom
 DrawText hdc, s, Len(s), r, DT_VCENTER Or DT_SINGLELINE
End Sub

Private Sub IOwnerDrawHandler_DrawCellBk(ByVal hdc As Long, Options As Variant, ByVal
left As Long, ByVal top As Long, ByVal right As Long, ByVal bottom As Long, ByVal Item As
Long, ByVal Column As Long, ByVal Source As Object)
 Dim r As RECT
 r.left = left + 2
 r.right = right - 2
 r.top = top
 r.bottom = bottom

 r.right = (r.left + r.right) / 2
 Dim brush As Long
 brush = CreateSolidBrush(rgb(0, 255, 0))
 FillRect hdc, r, brush
 DeleteObject brush

End Sub

property Items.CellParent ([Item as Variant], [ColIndex as Variant]) as
Variant
Retrieves the parent of an inner cell.

Type Description

Item as Variant
A long expression that indicates the handle of the item
where the cell is, or 0. If the Item parameter is 0, the
ColIndex parameter must indicate the handle of the cell.

ColIndex as Variant

A long expression that indicates the index of the column
where a cell is divided, or a long expression that indicates
the handle of the cell being divided, if the Item parameter
is missing or it is zero.

Variant A long expression that indicates the handle of the parent
cell.

Use the CellParent property to get the parent of the inner cell. The SplitCell method splits a
cell in two cells (the newly created cell is called inner cell). Use the InnerCell property to
get the inner cell. Use the CellItem property to get the item that's the owner of the cell. Use
the ItemCell property to get a master cell giving the handle of the item and the index of the
column. The CellParent property gets 0 if the cell is the master cell, not an inner cell. The
parent cell is always displayed to the left side of the cell. The inner cell (InnerCell) is
displayed to the right side of the cell.

The following VB sample determines whether the cell is a master cell or an inner cell:

Private Function isMaster(ByVal g As EXGRIDLibCtl.Grid, ByVal h As EXGRIDLibCtl.HITEM,
ByVal c As Long) As Boolean
 With g.Items
 isMaster = .CellParent(h, c) = 0
 End With
End Function

The following VB sample determines the master cell (the cell from where the splitting starts
):

Private Function getMaster(ByVal g As EXGRIDLibCtl.Grid, ByVal h As EXGRIDLibCtl.HITEM,
ByVal c As Long) As EXGRIDLibCtl.HCELL
 With g.Items
 Dim r As EXGRIDLibCtl.HCELL
 r = c

 If Not (h = 0) Then
 r = .ItemCell(h, c)
 End If
 While Not (.CellParent(, r) = 0)
 r = .CellParent(, r)
 Wend
 getMaster = r
 End With
End Function

The following C++ sample determines whether the cell is a master cell or an inner cell:

#include "Items.h"

static long V2I(VARIANT* pv, long nDefault = 0)
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return nDefault;

 COleVariant vt;
 vt.ChangeType(VT_I4, pv);
 return V_I4(&vt);
 }
 return nDefault;
}

BOOL isMaster(CGrid grid, long hItem, long nColIndex)
{
 return V2I(&grid.GetItems().GetCellParent(COleVariant(hItem), COleVariant(nColIndex
))) == 0;
}

The following C++ sample determines the master cell (the cell from where the splitting
starts):

long getMaster(CGrid grid, long hItem, long nColIndex)

{
 COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
 CItems items = grid.GetItems();
 long r = nColIndex;
 if (hItem)
 r = items.GetItemCell(hItem, COleVariant(nColIndex));
 long r2 = 0;
 while (r2 = V2I(&items.GetCellParent(vtMissing, COleVariant(r))))
 r = r2;
 return r;
}

The following VB.NET sample determines whether the cell is a master cell or an inner cell:

Private Function isMaster(ByVal g As AxEXGRIDLib.AxGrid, ByVal h As Long, ByVal c As
Long) As Boolean
 With g.Items
 isMaster = .CellParent(h, c) = 0
 End With
End Function

The following VB.NET sample determines the master cell (the cell from where the splitting
starts):

Shared Function getMaster(ByVal g As AxEXGRIDLib.AxGrid, ByVal h As Integer, ByVal c As
Integer) As Integer
 With g.Items
 Dim r As Integer
 r = c
 If Not (h = 0) Then
 r = .ItemCell(h, c)
 End If
 While Not (.CellParent(, r) = 0)
 r = .CellParent(, r)
 End While
 getMaster = r
 End With
End Function

The following C# sample determines whether the cell is a master cell or an inner cell:

private bool isMaster(AxEXGRIDLib.AxGrid grid, int h, int c)
{
 return Convert.ToInt32(grid.Items.get_CellParent(h, c)) != 0;
}

The following C# sample determines the master cell (the cell from where the splitting starts
):

private long getMaster(AxEXGRIDLib.AxGrid g, int h, int c)
{
 int r = c, r2 = 0;
 if (h != 0)
 r = Convert.ToInt32(g.Items.get_ItemCell(h,c));
 r2 = Convert.ToInt32(g.Items.get_CellParent(null, r));
 while (r2 != 0)
 {
 r = r2;
 r2 = Convert.ToInt32(g.Items.get_CellParent(null, r));
 }
 return r;
}

property Items.CellPicture ([Item as Variant], [ColIndex as Variant]) as
Variant
Retrieves or sets the cell's picture.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

Variant

A Picture object that indicates the cell's picture. (A Picture
object implements IPicture interface), a string expression
that indicates the base64 encoded string that holds a
picture object. Use the eximages tool to save your picture
as base64 encoded format.

The control can associate to a cell a check or radio button, an icon, multiple icons, a
picture and a caption. Use the CellPicture property to associate a picture to a cell. You can
use the CellPicture property when you want to display images with different widths into a
cell. Use the CellImage property to associate an icon from Images collection. Use the
CellImages property to assign multiple icons to a cell. Use the CellHasCheckBox property
to add a check box to a cell. Use the CellHasRadioButton property to assign a radio button
to a cell. The CellPictureWidth property specifies the width in pixels of the cell's picture. If it
is not specified, the picture's size determines the width to paint the picture inside the cell.
The CellPictureHeight property specifies the height in pixels of the cell's picture. If it is not
specified, the picture's size determines the height to paint the picture inside the cell. Use the
 built-in HTML tag to insert multiple custom size picture to the same cell. Use the Def(
exCellDrawPartsOrder) property to specify the order of the drawing parts inside the cell.

The following VB samples loads picture from a file:

Grid1.Items.CellPicture(h, 0) = LoadPicture("c:\winnt\logo.gif")

The following VB sample associates a picture to a cell by loading it from a base64 encoded
string:

Dim s As String
s =
"gBCJr+BAAg0HGwEgwog4jg4ig4BAEFg4AZEKisZjUbAAzg5mg6Zg7Mg7/g0ek8oGcgjsijskjsmAEsmcoM0sM0uM0wM0ylwATMoTMsTMuTMwTMymAAZkoZksZkuZkwZkymQAf8of8sf8uf8wf8mlEdskekEekUekkesUqGcet9nGdpGdrGdilkruE3js5vtrnstk9BltnosttdJl8npsvs9Rl9rqsxk9ZmNnrsxtdhmcfskg0FAzskkEmM02t810Fzmuku8znGn2Ggv030mBv0zwk50GHnOkxU7g07s1PmeQnekyeBmeWnugzM90mcn9p0UgkXZpmik2EoGpoPY1lBklB7tE2VD7F+oflwOHoGEovYw9F8uKo8Go9o41H7KpqAybFKAyykuwzKkvKzilrW7aQPK7aSJIkzGqY1Kmwe1imwk17jKY2SnwevynwkwLIKYwiowew6owkxUAKYxqpweyCpwkybJqYyyqwezKqwkzirrErDOu7IkJyIyysNSrLStYrMJteraDK2ti+K2kStwmwLMqwwiutKw6uwmxSvyoxqvtKyCvwmybOKwyywtKzKwwnN6OTxPM9T3Pk+z9P9AUDP5V0JQtDUPRFE0SAFFUbR1FAAa9JUnSlJlnSZo0xStJGtStI03UFJUvUdQmuVtKU/TdT1RSpoGvS5WVKa9U1lWdRVrTtWVBS9c1nWlI0vSlY09WVg18a9MgAEla0nWliUkABHjXYCDUzSVY2daFSoNaBHWnWZH1/blN1TY1"

s = s +

https://exontrol.com/eximages.jsp

"XgBadlDXdYSXRb9wWBclK2taF1gAI5HiPaN8oPdlNWbaF23KAwyWkNYyXxg9p3WNYjU/c1bWgABZoMiQS4YR984YNdpEeMgA2bgVtVHil0DVdY1CPhON44IGOI1XVPCPjl14RlmZ3XmZH3aWdYW1VF3DWMuWXXlw15PhlI3pgGJEfpGiZZgw1kTe1s0+g2Dalhmh6Pjgg5zrVx5/iV74bjGN41k9pCNl6D1dilKWDrGZ6ftmcZyNYAhKAGl7HemgoNs415XjI1XLmNm3sEho2jwdw4zmd+2+aFjFZVJWYpndf3xSPG2/koSWXW+I7JURZmtzO+XPe1K9RZ+S9HS1PllWfB9FiHEWZVBZWzeXdU32Fa973/SW34lr0nV1meH4/heb5/mWL4no+fUAAICA"

With Grid1
 .BeginUpdate
 .BackColor = vbWhite
 .Columns.Add "Column 1"
 .Items.CellPicture(.Items.AddItem("Item 1"), 0) = s
 .EndUpdate
End With

The following C++ loads a picture from a file:

#include
BOOL LoadPicture(LPCTSTR szFileName, IPictureDisp** ppPictureDisp)
{
 BOOL bResult = FALSE;
 if (szFileName)
 {
 OFSTRUCT of;
 HANDLE hFile = NULL;;
#ifdef _UNICODE
 USES_CONVERSION;
 if ((hFile = (HANDLE)OpenFile(W2A(szFileName), &of;, OF_READ |
OF_SHARE_COMPAT)) != (HANDLE)HFILE_ERROR)
#else
 if ((hFile = (HANDLE)OpenFile(szFileName, &of;, OF_READ | OF_SHARE_COMPAT)) !=
(HANDLE)HFILE_ERROR)
#endif
 {
 *ppPictureDisp = NULL;
 DWORD dwHighWord = NULL, dwSizeLow = GetFileSize(hFile, &dwHighWord;);
 DWORD dwFileSize = dwSizeLow;
 HRESULT hResult = NULL;
 if (HGLOBAL hGlobal = GlobalAlloc(GMEM_MOVEABLE, dwFileSize))
 if (void* pvData = GlobalLock(hGlobal))
 {
 DWORD dwReadBytes = NULL;

 BOOL bRead = ReadFile(hFile, pvData, dwFileSize, &dwReadBytes;, NULL);
 GlobalUnlock(hGlobal);
 if (bRead)
 {
 CComPtr spStream;
 _ASSERTE(dwFileSize == dwReadBytes);
 if (SUCCEEDED(CreateStreamOnHGlobal(hGlobal, TRUE, &spStream;)))
 if (SUCCEEDED(hResult = OleLoadPicture(spStream, 0, FALSE,
IID_IPictureDisp, (void**)ppPictureDisp)))
 bResult = TRUE;
 }
 }
 CloseHandle(hFile);
 }
 }
 return bResult;
}

IPictureDisp* pPicture = NULL;
if (LoadPicture("c:\\winnt\\zapotec.bmp", &pPicture;))
{
 COleVariant vtPicture;
 V_VT(&vtPicture;) = VT_DISPATCH;
 pPicture->QueryInterface(IID_IDispatch, (LPVOID*)&V;_DISPATCH(&vtPicture;));
 CItems items = m_grid.GetItems();
 items.SetCellPicture(COleVariant(items.GetFocusItem()), COleVariant(long(0)), vtPicture
);
 pPicture->Release();
}

The following VB.NET sample loads a picture from a file:

With AxGrid1.Items
 .CellPicture(.FocusItem, 0) =
IPDH.GetIPictureDisp(Image.FromFile("c:\winnt\zapotec.bmp"))
End With

where the IPDH class is defined like follows:

Public Class IPDH
 Inherits System.Windows.Forms.AxHost

 Sub New()
 MyBase.New("")
 End Sub

 Public Shared Function GetIPictureDisp(ByVal image As Image) As Object
 GetIPictureDisp = AxHost.GetIPictureDispFromPicture(image)
 End Function

End Class

The following C# sample loads a picture from a file:

axGrid1.Items.set_CellPicture(axGrid1.Items.FocusItem, 0,
IPDH.GetIPictureDisp(Image.FromFile("c:\\winnt\\zapotec.bmp")));

where the IPDH class is defined like follows:

internal class IPDH : System.Windows.Forms.AxHost
{
 public IPDH() : base("")
 {
 }

 public static object GetIPictureDisp(System.Drawing.Image image)
 {
 return System.Windows.Forms.AxHost.GetIPictureDispFromPicture(image);
 }
}

The following VFP sample loads a picture from a file:

with thisform.Grid1.Items
 .DefaultItem = .FocusItem
 .CellPicture(0, 0) = LoadPicture("c:\winnt\zapotec.bmp")
endwith

property Items.CellPictureHeight ([Item as Variant], [ColIndex as Variant])
as Long
Retrieves or sets a value that indicates the height of the cell's picture.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Long A long expression that indicates the height of the cell's
picture, or -1, if the property is ignored.

By default, the CellPictureHeight property is -1. Use the CellPicture property to assign a
custom size picture to a cell. Use the CellImage or CellImages property to assign one or
more icons to the cell. The CellPictureWidth property has effect on CellPicture property
only. Use the CellPictureWidth property to specify the width of the cell's picture. The
CellPictureWidth and CellPictureHeight properties specifies the size of the area where the
cell's picture is stretched. If the CellPictureWidth and CellPictureHeight properties are -1 (
by default), the cell displays the full size picture. If the CellPictureHeight property is greater
than 0, it indicates the height of the area where the cell's picture is stretched. Use the
ItemHeight property to specify the height of the item.

property Items.CellPictureWidth ([Item as Variant], [ColIndex as Variant])
as Long
Retrieves or sets a value that indicates the width of the cell's picture.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Long A long expression that indicates the width of the cell's
picture, or -1, if the property is ignored.

By default, the CellPictureWidth property is -1. Use the CellPicture property to assign a
custom size picture to a cell. Use the CellImage or CellImages property to assign one or
more icons to the cell. The CellPictureWidth property has effect on CellPicture property
only. Use the CellPictureHeight property to specify the height of the cell's picture. The
CellPictureWidth and CellPictureHeight properties specifies the size of the area where the
cell's picture is stretched. If the CellPictureWidth and CellPictureHeight properties are -1 (
by default), the cell displays the full size picture. If the CellPictureWidth property is greater
than 0, it indicates the width of the area where the cell's picture is stretched.

property Items.CellRadioGroup([Item as Variant], [ColIndex as Variant])
as Long

Retrieves or sets a value indicating which radio group a cell is contained in.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

Long A long expression that identifies the cell's radio group.

Use the CellRadioGroup property to add or remove a radio button from a group. In a radio
group only one radio button can be checked. A radio cell cannot be contained by two
different radio groups. Use the CellHasRadioButton property to add a radio button to a cell.
When the cell's state is changed the control fires the CellStateChanged event. The
CellState property specifies the cell's state. By default, when a cell of radio type is created
the radio cell is not grouped to any of existent radio groups

The following VB sample sets the radio type for all cells in the first column, and group all of
them in the same radio group (1234):

Dim h As Variant
Grid1.BeginUpdate
With Grid1.Items
For Each h In Grid1.Items
 .CellHasRadioButton(h, 0) = True
 .CellRadioGroup(h, 0) = 1234
Next
End With
Grid1.EndUpdate

or

Private Sub Grid1_AddItem(ByVal Item As EXGRIDLibCtl.HITEM)
 Grid1.Items.CellHasRadioButton(Item, 0) = True
 Grid1.Items.CellRadioGroup(Item, 0) = 1234
End Sub

To find out the radio cell that is checked in the radio group 1234 you can use: MsgBox

Grid1.Items.CellValue(, Grid1.Items.CellChecked(1234))

The following sample groups all cells of the first column into a radio group, and displays the
checked cell:

Private Sub Grid1_AddItem(ByVal Item As EXGRIDLibCtl.HITEM)
 Grid1.Items.CellHasRadioButton(Item, 0) = True
 Grid1.Items.CellRadioGroup(Item, 0) = 1234 ' The 1234 is arbirary and it represents the
identifier for the radio group
End Sub

Private Sub Grid1_CellStateChanged(ByVal Item As EXGRIDLibCtl.HITEM, ByVal ColIndex As
Long)
 Debug.Print "In the 1234 radio group the """ & Grid1.Items.CellValue(,
Grid1.Items.CellChecked(1234)) & """ is checked."
End Sub

The following VB sample assigns a radio button to the focused cell:

With Grid1.Items
 .CellHasRadioButton(.FocusItem, Grid1.FocusColumnIndex) = True
 .CellRadioGroup(.FocusItem, Grid1.FocusColumnIndex) = 1234
End With

The following C++ sample assigns a radio button to the focused cell:

#include "Items.h"
CItems items = m_grid.GetItems();
COleVariant vtItem(items.GetFocusItem()), vtColumn(m_grid.GetFocusColumnIndex());
items.SetCellHasRadioButton(vtItem, vtColumn, TRUE);
items.SetCellRadioGroup(vtItem, vtColumn, 1234);

The following VB.NET sample assigns a radio button to the focused cell:

With AxGrid1.Items
 .CellHasRadioButton(.FocusItem, AxGrid1.FocusColumnIndex) = True
 .CellRadioGroup(.FocusItem, AxGrid1.FocusColumnIndex) = 1234
End With

The following C# sample assigns a radio button to the focused cell:

axGrid1.Items.set_CellHasRadioButton(axGrid1.Items.FocusItem,
axGrid1.FocusColumnIndex, true);
axGrid1.Items.set_CellRadioGroup(axGrid1.Items.FocusItem, axGrid1.FocusColumnIndex,
1234);

The following VFP sample assigns a radio button to the focused cell:

with thisform.Grid1.Items
 .DefaultItem = .FocusItem
 .CellHasRadioButton(0,thisform.Grid1.FocusColumnIndex) = .t.
 .CellRadioGroup(0,thisform.Grid1.FocusColumnIndex) = 1234
endwith

Note: The intersection of an item with a column defines a cell. Each cell is uniquely
represented by its handle. The cell's handle is of HCELL type, that's equivalent with a long
type. All properties of Items object that have two parameters Item and ColIndex, refer a
cell.

The following lines are equivalents and each of them changes the bold font attribute of the
first cell on the first item.

With Grid1
 .Items.CellBold(, .Items.ItemCell(.Items(0), 0)) = True
 .Items.CellBold(.Items(0), 0) = True
 .Items.CellBold(.Items(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0), 0) = True
 .Items.CellBold(.Items(0), Grid1.Columns(0).Caption) = True
End With

property Items.CellSingleLine([Item as Variant], [ColIndex as Variant]) as
CellSingleLineEnum

Retrieves or sets a value indicating whether the cell is painted using one line, or more than
one line.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key

CellSingleLineEnum A CellSingleLineEnum expression that indicates whether
the cell displays its caption using one or more lines.

By default, the CellSingleLine property is exCaptionSingleLine / True, which indicates that
the cell's caption is displayed on a single line. Use the Def(exCellSingleLine) property to
specify that all cells in the column display their content using multiple lines. The control can
displays the cell's caption using more lines, if the CellSingleLine property is
exCaptionWordWrap or exCaptionBreakWrap. The CellSingleLine property wraps the cell's
caption so it fits in the cell's client area. If the text doesn't fit the cell's client area, the height
of the item is increased or decreased. When the CellSingleLine is exCaptionWordWrap /
exCaptionBreakWrap / False, the height of the item is computed based on each cell
caption. If the CellSingleLine property is exCaptionWordWrap / exCaptionBreakWrap /
False, changing the ItemHeight property has no effect. Use the ItemMaxHeight property to
specify the maximum height of the item when its height is variable. Use the CellVAlignment
property to align vertically a cell.

If using the CellSingleLine / Def(exCellSingleLine) property, we recommend to set the
ScrollBySingleLine property on True so all items can be scrolled.

The following VB sample displays the caption of the focused cell using multiple lines:

With Grid1.Items
 .CellSingleLine(.FocusItem, Grid1.FocusColumnIndex) = True
End With

The following C++ sample displays the caption of the focused cell using multiple lines:

#include "Items.h"
CItems items = m_grid.GetItems();
items.SetCellSingleLine(COleVariant(items.GetFocusItem()), COleVariant(
long(m_grid.GetFocusColumnIndex())), FALSE);

The following VB.NET sample displays the caption of the focused cell using multiple lines:

With AxGrid1.Items
 .CellSingleLine(.FocusItem, AxGrid1.FocusColumnIndex) = False
End With

The following C# sample displays the caption of the focused cell using multiple lines:

axGrid1.Items.set_CellSingleLine(axGrid1.Items.FocusItem, axGrid1.FocusColumnIndex,
false);

The following VFP sample displays the caption of the focused cell using multiple lines:

with thisform.Grid1.Items
 .DefaultItem = .FocusItem
 .CellSingleLine(0, thisform.Grid1.FocusColumnIndex) = .f.
endwith

Note: The intersection of an item with a column defines a cell. Each cell is uniquely
represented by its handle. The cell's handle is of HCELL type, that's equivalent with a long
type. All properties of Items object that have two parameters Item and ColIndex, refer a
cell.

The following lines are equivalents and each of them changes the bold font attribute of the
first cell on the first item.

With Grid1
 .Items.CellBold(, .Items.ItemCell(.Items(0), 0)) = True
 .Items.CellBold(.Items(0), 0) = True
 .Items.CellBold(.Items(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0), 0) = True
 .Items.CellBold(.Items(0), Grid1.Columns(0).Caption) = True
End With

property Items.CellSortData([Item as Variant], [ColIndex as Variant]) as
Variant

Specifies the cell's sort data.

Type Description
Item as Variant A long expression that indicates the item's handle

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

Variant A long expression that indicates the cell's sort data.

The CellSortData property specifies the value being sorted if the SortType property is
SortCellData or SortCellDataString. Use the CellData property to associate an extra data to
a cell. Use the CellValue property to specify the cell's value. Use the CellCaption property to
get the string being displayed in the cell.

Note: The intersection of an item with a column defines a cell. Each cell is uniquely
represented by its handle. The cell's handle is of HCELL type, that's equivalent with a long
type. All properties of Items object that have two parameters Item and ColIndex, refer a
cell.

The following lines are equivalents and each of them changes the bold font attribute of the
first cell on the first item.

With Grid1
 .Items.CellBold(, .Items.ItemCell(.Items(0), 0)) = True
 .Items.CellBold(.Items(0), 0) = True
 .Items.CellBold(.Items(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0), 0) = True
 .Items.CellBold(.Items(0), Grid1.Columns(0).Caption) = True
End With

property Items.CellState([Item as Variant], [ColIndex as Variant]) as Long

Retrieves or sets the cell's state. Affects only check and radio cells.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

Long A long value that indicates the cell's state.

Use the CellState property to change the cell's state. The CellState property has effect only
for check and radio cells. Use the CellHasCheckBox property to assign a check box to a
cell. Use the CellHasRadioButton property to add a radio button to a cell. The control fires
the CellStateChanged event when user changes the cell's state. Use the PartialCheck
property to allow partial check feature within the column. Use the CheckImage property to
change the check box appearance. Use the RadioImage property to change the radio
button appearance. Use the FilterType property on exCheck to filter for checked or
unchecked items.

The following VB sample adds a check box that's checked to the focused cell:

With Grid1.Items
 .CellHasCheckBox(.FocusItem, Grid.FocusColumnIndex) = True
 .CellState(.FocusItem, Grid.FocusColumnIndex) = 1
End With

The following C++ sample adds a check box that's checked to the focused cell:

#include "Items.h"
CItems items = m_grid.GetItems();
COleVariant vtItem(items.GetFocusItem()), vtColumn(
long(m_grid.GetFocusColumnIndex()));
items.SetCellHasCheckBox(vtItem, vtColumn, TRUE);
items.SetCellState(vtItem, vtColumn, 1);

The following VB.NET sample adds a check box that's checked to the focused cell:

With AxGrid1.Items
 .CellHasCheckBox(.FocusItem, AxGrid1.FocusColumnIndex) = True

 .CellState(.FocusItem, AxGrid1.FocusColumnIndex) = 1
End With

The following C# sample adds a check box that's checked to the focused cell:

axGrid1.Items.set_CellHasCheckBox(axGrid1.Items.FocusItem, axGrid1.FocusColumnIndex,
true);
axGrid1.Items.set_CellState(axGrid1.Items.FocusItem, axGrid1.FocusColumnIndex, 1);

The following VFP sample adds a check box that's checked to the focused cell:

with thisform.Grid1.Items
 .DefaultItem = .FocusItem
 .CellHasCheckBox(0, thisform.Grid1.FocusColumnIndex) = .t.
 .CellState(0,thisform.Grid1.FocusColumnIndex) = 1
endwith

The following sample shows how to change the state for a cell to checked state:
Grid1.Items.CellState(Grid1.Items(0), 0) = 1,

The following sample shows how to change the state for a cell to unchecked state:
Grid1.Items.CellState(Grid1.Items(0), 0) = 0,

The following sample shows how to change the state for a cell to partial checked state:
Grid1.Items.CellState(Grid1.Items(0), 0) = 2

The following sample displays a message when a cell of radio or check type has changed
its state:

Private Sub Grid1_AddItem(ByVal Item As EXGRIDLibCtl.HITEM)
 Grid1.Items.CellHasCheckBox(Item, 0) = True
End Sub

Private Sub Grid1_CellStateChanged(ByVal Item As EXGRIDLibCtl.HITEM, ByVal ColIndex As
Long)
 Debug.Print "The cell """ & Grid1.Items.CellValue(Item, ColIndex) & """ has changed its
state. The new state is " & IIf(Grid1.Items.CellState(Item, ColIndes) = 0, "Unchecked",
"Checked")
End Sub

Note: The intersection of an item with a column defines a cell. Each cell is uniquely

represented by its handle. The cell's handle is of HCELL type, that's equivalent with a long
type. All properties of Items object that have two parameters Item and ColIndex, refer a
cell.

The following lines are equivalents and each of them changes the bold font attribute of the
first cell on the first item.

With Grid1
 .Items.CellBold(, .Items.ItemCell(.Items(0), 0)) = True
 .Items.CellBold(.Items(0), 0) = True
 .Items.CellBold(.Items(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0), 0) = True
 .Items.CellBold(.Items(0), Grid1.Columns(0).Caption) = True
End With

property Items.CellStrikeOut([Item as Variant], [ColIndex as Variant]) as
Boolean
Retrieves or sets a value that specifies whether the cell should appear in strikeout.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption.

Boolean A boolean expression that indicates whether the cell
should appear in strikeout.

If the CellStrikeOut property is True, the cell's font is displayed with a horizontal line through
it. Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply different font
attributes to the item. Use the CellItalic, CellUnderline, CellBold or CellStrikeOut property to
apply different font attributes to the cell. Use the CellValueFormat property to specify an
HTML caption. Use the ConditionalFormats method to apply formats to a cell or range of
cells, and have that formatting change depending on the value of the cell or the value of a
formula.

The following VB sample draws a horizontal line through the caption of the cell that has the
focus:

With Grid1.Items
 .CellStrikeOut(.FocusItem, Grid.FocusColumnIndex) = True
End With

The following C++ sample draws a horizontal line through the caption of the cell that has the
focus:

#include "Items.h"
CItems items = m_grid.GetItems();
items.SetCellStrikeOut(COleVariant(items.GetFocusItem()), COleVariant(
(long)m_grid.GetFocusColumnIndex()), TRUE);

The following C# sample draws a horizontal line through the caption of the cell that has the
focus:

axGrid1.Items.set_CellStrikeOut(axGrid1.Items.FocusItem, axGrid1.FocusColumnIndex,
true);

The following VB.NET sample draws a horizontal line through the caption of the cell that has
the focus:

With AxGrid1.Items
 .CellStrikeOut(.FocusItem, AxGrid1.FocusColumnIndex) = True
End With

The following VFP sample draws a horizontal line through the caption of the cell that has the
focus:

with thisform.Grid1.Items
 .DefaultItem = .FocusItem
 .CellStrikeOut(0, thisform.Grid1.FocusColumnIndex) = .t.
endwith

Note: The intersection of an item with a column defines a cell. Each cell is uniquely
represented by its handle. The cell's handle is of HCELL type, that's equivalent with a long
type. All properties of Items object that have two parameters Item and ColIndex, refer a
cell.

The following lines are equivalents and each of them changes the bold font attribute of the
first cell on the first item.

With Grid1
 .Items.CellBold(, .Items.ItemCell(.Items(0), 0)) = True
 .Items.CellBold(.Items(0), 0) = True
 .Items.CellBold(.Items(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0), 0) = True
 .Items.CellBold(.Items(0), Grid1.Columns(0).Caption) = True
End With

property Items.CellToolTip([Item as Variant], [ColIndex as Variant]) as
String

Retrieves or sets a value that indicates the cell's tool tip text.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

String A string expression that indicates the cell's tooltip.

By default, the CellToolTip property is "..." (three dots). If the CellToolTip property is "..." the
control displays the cell's caption if it doesn't fit the cell's client area. If the CellToolTip
property is different than "...", the control shows a tooltip that displays the CellToolTip
value. The control fires the ToolTip event when the column's tooltip is about to be
displayed. Use the ToolTipWidth property to specify the width of the tooltip window. Use the
ShowToolTip method to display a custom tooltip.

The tooltip supports the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+

about:blank

" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being

inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the

following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

Note: The intersection of an item with a column defines a cell. Each cell is uniquely
represented by its handle. The cell's handle is of HCELL type, that's equivalent with a long
type. All properties of Items object that have two parameters Item and ColIndex, that refers
a cell.

property Items.CellUnderline([Item as Variant], [ColIndex as Variant]) as
Boolean

Retrieves or sets a value that indicates whether the cell is underlined.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

Boolean A boolean expression that indicates whether the cell is
underlined.

Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply different font
attributes to the item. Use the CellItalic, CellUnderline, CellBold or CellStrikeOut property to
apply different font attributes to the cell. Use the CellValueFormat property to specify an
HTML caption. Use the ConditionalFormats method to apply formats to a cell or range of
cells, and have that formatting change depending on the value of the cell or the value of a
formula.

The following VB sample underlines the focused cell:

With Grid1.Items
 .CellUnderline(.FocusItem, Grid1.FocusColumnIndex) = True
End With

The following C++ sample underlines the focused cell:

#include "Items.h"
CItems items = m_grid.GetItems();
items.SetCellUnderline(COleVariant(items.GetFocusItem()), COleVariant(
(long)m_grid.GetFocusColumnIndex()), TRUE);

The following C# sample underlines the focused cell:

axGrid1.Items.set_CellUnderline(axGrid1.Items.FocusItem, axGrid1.FocusColumnIndex,
true);

The following VB.NET sample underlines the focused cell:

With AxGrid1.Items

 .CellUnderline(.FocusItem, AxGrid1.FocusColumnIndex) = True
End With

The following VFP sample underlines the focused cell:

with thisform.Grid1.Items
 .DefaultItem = .FocusItem
 .CellUnderline(0, thisform.Grid1.FocusColumnIndex) = .t.
endwith

Note: The intersection of an item with a column defines a cell. Each cell is uniquely
represented by its handle. The cell's handle is of HCELL type, that's equivalent with a long
type. All properties of Items object that have two parameters Item and ColIndex, refer a
cell.

The following lines are equivalents and each of them changes the bold font attribute of the
first cell on the first item.

With Grid1
 .Items.CellBold(, .Items.ItemCell(.Items(0), 0)) = True
 .Items.CellBold(.Items(0), 0) = True
 .Items.CellBold(.Items(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0), 0) = True
 .Items.CellBold(.Items(0), Grid1.Columns(0).Caption) = True
End With

property Items.CellVAlignment ([Item as Variant], [ColIndex as Variant])
as VAlignmentEnum

Retrieves or sets a value that indicates how the cell's caption is vertically aligned.

Type Description
Item as Variant A long expression that indicates the item's handle

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

VAlignmentEnum A VAlignmentEnum expression that indicates the cell's
vertically alignment.

The CellVAlignment property aligns vertically the cell. The CellVAligment property aligns the
+/- sign if the item contains child items. The CellVAlignment property has effect if the item
displays cells using multiple lines. Use the CellSingleLine property to wrap the cell's caption
on multiple lines. Use the ItemHeight property to specify the height of the item. Use the

 built-in HTML format to break a line, when CellValueFormat property is exHTML. Use
the CellHAlignment property to align horizontally the cell. Use the Def(exCellVAlignment)
property to specify the same vertical alignment for the entire column.

The following screen shot shows the "Root 1" and "Root 2" cells that are aligned to the
bottom of the item, and the +/- signs are always displayed as CellVAlignment property
indicates.

By default, if the CellVAlignmnet property is not used, the sample looks like follows:

The screen shows were generated using the following template:

BeginUpdate
LinesAtRoot = -1
MarkSearchColumn = False
Indent = 18

Images("gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDh+Dw1bwuJh0Sf8txeHyFXx+Ryk9wsnxbAzUpycYxWNiWMyujleXjOm0+gjKA1gA1iA0Wf0mz2WY1WwjWywuvz2N1GzyO11ON3mXxe6xfFzvAwXI1UY3mh5292PJ1vMw3T7Hbo3T73L7nhl3f5/i8034Xn9Xr9nt91Cio+lXyjsfkMjAEkk/69Hg97UpSeZ3pSeBnpScAHwO/iMmBBaMQalJAQc10JvylUJkAD8Dh+lJ8Q4k5/D+zjygAgI")

Columns
{
 "Column 1"
 "Column 2"
}
Items
{
 Dim h, h2, h3
 h = AddItem("Root 1")
 CellVAlignment(h,0) = 2
 CellValue(h,1) = "This is a bit of text that should break the line"
 CellSingleLine(h,1) = False
 h2 = InsertItem(h,,"Child 1")
 InsertItem(h,,"Child 2"
 ExpandItem(h) = True
 h = AddItem("Root 2. This is an another root item. ")
 CellImage(h,0) = 1
 CellSingleLine(h,0) = False
 CellHasCheckBox(h,0) = 1
 CellVAlignment(h,0) = 2
 CellValue(h,1) = "This is a HTML cell
 that displays text using
multiple lines"
 CellSingleLine(h,1) = False
 CellValueFormat(h,1) = 1
 ItemHeight(h) = 42
 h2= InsertItem(h,,"Child 1")
 h2= InsertItem(h2,,"Child 1")
 InsertItem(h,,"Child 2")

 ExpandItem(h) = True
 SelectItem(h) = True
}
EndUpdate

Open the control in design mode, select its properties, locate the Template page, and paste
the code (the template).

The following VB sample aligns the focused cell to the bottom:

With Grid1.Items
 .CellVAlignment(.FocusItem, Grid1.FocusColumnIndex) =
VAlignmentEnum.BottomAlignment
End With

The following C++ sample right aligns the focused cell:

#include "Items.h"
CItems items = m_grid.GetItems();
items.SetCellVAlignment(COleVariant(items.GetFocusItem()), COleVariant(
(long)m_grid.GetFocusColumnIndex()), 2 /*BottomAlignment*/);

The following VB.NET sample right aligns the focused cell:

With AxGrid1.Items
 .CellVAlignment(.FocusItem, AxGrid1.FocusColumnIndex) =
EXGRIDLib.VAlignmentEnum.BottomAlignment
End With

The following C# sample right aligns the focused cell:

axGrid1.Items.set_CellVAlignment(axGrid1.Items.FocusItem, axGrid1.FocusColumnIndex,
EXGRIDLib.VAlignmentEnum.BottomAlignment);

The following VFP sample right aligns the focused cell:

with thisform.Grid1.Items
 .DefaultItem = .FocusItem
 .CellVAlignment(0,thisform.Grid1.FocusColumnIndex) = 2 && BottomAlignment

endwith

Note: The intersection of an item with a column defines a cell. Each cell is uniquely
represented by its handle. The cell's handle is of HCELL type, that's equivalent with a long
type. All properties of Items object that have two parameters Item and ColIndex, refer a
cell.

The following lines are equivalents and each of them changes the bold font attribute of the
first cell on the first item.

With Grid1
 .Items.CellBold(, .Items.ItemCell(.Items(0), 0)) = True
 .Items.CellBold(.Items(0), 0) = True
 .Items.CellBold(.Items(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0), 0) = True
 .Items.CellBold(.Items(0), Grid1.Columns(0).Caption) = True
End With

property Items.CellValue([Item as Variant], [ColIndex as Variant]) as
Variant

Specifies the cell's value.

Type Description

Item as Variant

A long expression that indicates the item's handle. During
the ValidateValue event, you can uses -1 instead Item, to
access to the modified value. In other words during
ValidateValue event, the Items.CellValue(Item,ColIndex)
and Items.CellCaption(Item,ColIndex) properties retrieve
the original value/caption of the cell while the
Items.CellValue(-1,ColIndex) and
Items.CellCaption(-1,ColIndex) gets the modified value of
the specified cell.

ColIndex as Variant

A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key. If the Item
parameter is missing or it is zero (0), the ColIndex
parameter is the handle of the cell being accessed.

Variant
A variant expression that indicates the cell's value or
content. The cell's value supports built-in HTML format if
the CellValueFormat property is exHTML.

Use the CellValue property to specify the value or the content for cells in the second, third
columns and so on. The CellValueFormat property indicates the way the cell displays its
content. The Def(exCellValueFormat) property indicates the format for all cells within the
column.

The cell shows its text based on the CellValueFormat property as follows:

exText, the CellValue indicates the text to be displayed without HTML formatting
exHTML, the CellValue indicates the text to be displayed with HTML formatting, such
as to bold a portion of text.
exComputedField, the CellValue property indicates a formula to display the cell's
content based on the values of any cell in the current item. For instance, the %1 + %2
+ %3 adds or concatenates the values from first 3 cells. The exComputedField can be
combined with exHTML that indicates that the computed field may display HTML
format. The ComputedField property specifies the formula to compute the entire
column. The ComputeValue property can be used to get the result of specified formula.
exTotalField, the CellValue indicates a formula to display the cell's content based on
the values of any cell from any column, any item or its descendents. For instance, the

sum(1,0,%1 + %2 + %3) gets the sum of first three columns from the direct
descendents of the first item. The exTotalField can be combined with exHTML that
indicates that the total field may display HTML format. The divider, unsortable or
unselectable items do not count for total fields. The ComputeValue property can be
used to get the result of specified formula. The Def(exTotalColumn) property specifies
a formula that defines the total fields applied to all unformatted and non-leaf cells within
the column.

The CellValue property of the cell is being shown as:

formatted using the FormatCell property, if it is valid
formatted using the FormatColumn property, if it is valid

In other words, all cells applies the format of the FormatColumn property, excepts the cells
with the FormatCell property being set. If the cell belongs to a column with the
FireFormatColumn property on True, the Value parameter of the FormatColumn event
shows the newly caption for the cell to be shown.

The Change event is called when the user changes the CellValue property. Use the CellData
property to associate an user data to a cell. The CellSortData property specifies the value
being sorted if the SortType property is SortCellData or SortCellDataString. The AddItem
or InsertItem method may specify the value for the first cell. Use the LockedItemCount
property to lock or unlock items to the top or bottom side of the control. Use the ItemCell
property to get the cell's handle based on the item and the column. Use the CellItem
property to get the handle of the item that's the owner of the cell. Use the SplitCell property
to split a cell. If the CauseValidateValue property is True, the control fires the ValidateValue
property when the user changes the CellValue property. Use the AddItem method to add
new predefined values to a drop down list editor. Use the CellEditor property to assign an
editor to a single cell. Use the Editor property to assign the same editor to all cells in the
column. Use the Add method to add new columns to the control. Use the
ConditionalFormats method to apply formats to a cell or range of cells, and have that
formatting change depending on the value of the cell or the value of a formula.

The following VB sample displays an HTML cell on multiple lines:

With Grid1.Items
 Dim h As HITEM
 h = .AddItem("Cell 1")
 .CellValue(h, 1) = "<r><dotline>HTML support
This is a bit of text
where built-in HTML support is enabled."
 .CellValueFormat(h, 1) = exHTML
 .CellSingleLine(h, 1) = False
 .CellEditorVisible(h, 1) = False

End With

The following C++ changes the value of the focused cell:

#include "Items.h"
CItems items = m_grid.GetItems();
COleVariant vtItem(items.GetFocusItem()), vtColumn(
long(m_grid.GetFocusColumnIndex()));
items.SetCellValue(vtItem, vtColumn, COleVariant("new value"));

The following VB.NET changes the value of the focused cell:

With AxGrid1.Items
 .CellValue(.FocusItem, AxGrid1.FocusColumnIndex) = "new value"
End With

The following C# changes the value of the focused cell:

axGrid1.Items.set_CellValue(axGrid1.Items.FocusItem, axGrid1.FocusColumnIndex, "new
value");

The following VFP changes the value of the focused cell:

with thisform.Grid1.Items
 .DefaultItem = .FocusItem
 .CellValue(0,thisform.Grid1.FocusColumnIndex) = "new value"
endwith

You may include strings like [m˛], [mł], [180ş], źml, or ˝m˛, žmł, and so on. Copy the symbol
from this page, and paste to your cell.

Note: The intersection of an item with a column defines a cell. Each cell is uniquely
represented by its handle. The cell's handle is of HCELL type, that's equivalent with a long
type. All properties of Items object that have two parameters Item and ColIndex, refer a
cell.

The following lines are equivalents and each of them changes the bold font attribute of the
first cell on the first item.

With Grid1
 .Items.CellBold(, .Items.ItemCell(.Items(0), 0)) = True

 .Items.CellBold(.Items(0), 0) = True
 .Items.CellBold(.Items(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0), 0) = True
 .Items.CellBold(.Items(0), Grid1.Columns(0).Caption) = True
End With

property Items.CellValueFormat([Item as Variant], [ColIndex as Variant])
as ValueFormatEnum
Specifies how the cell's caption is displayed.

Type Description
Item as Variant A long expression that indicates the item's handle

ColIndex as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption or
column's key.

ValueFormatEnum

A long expression that defines the way how the cell's value
is displayed. This value can be a combination of multiple
listed values using OR. For example, exHTML +
exTotalField indicates a total field that can display in HTML
format.

The component supports built-in HTML format. That means that you can use HTML tags
when displays the cell's value . By default, the CellValueFormat property is exText. If the
CellValueFormat is exText, the cell displays the CellValue property like it is. If the
CellValueFormat is exHTML, the cell displays the CellValue property using the HTML tags
specified in the ValueFormatEnum type. Use the Def property to specify whether all cells in
the column display HTML format. Use the CellVAlignment property to align vertically a cell.

The CellValue property of the cell is being shown as:

formatted using the FormatCell property, if it is valid
formatted using the FormatColumn property, if it is valid

In other words, all cells applies the format of the FormatColumn property, excepts the cells
with the FormatCell property being set. If the cell belongs to a column with the
FireFormatColumn property on True, the Value parameter of the FormatColumn event
shows the newly caption for the cell to be shown.

property Items.CellWidth([Item as Variant], [ColIndex as Variant]) as Long
Retrieves or sets a value that indicates the width of the inner cell.

Type Description

Item as Variant
A long expression that indicates the handle of the item
where the cell is, or 0. If the Item parameter is 0, the
ColIndex parameter must indicate the handle of the cell.

ColIndex as Variant

A long expression that indicates the index of the column
where a cell is divided, or a long expression that indicates
the handle of the cell being divided, if the Item parameter
is missing or it is zero.

Long A long expression that indicates the width of the cell.

The CellWidth property specifies the cell's width. The CellWidth property has effect only if
the cell contains inner cells. The SplitCell method splits a cell in two cells (the newly
created cell is called inner cell). Use the InnerCell property to get the inner cell. Use the
CellParent property to get the parent of the inner cell. Use the CellItem property to get the
item that's the owner of the cell. Use the BeginUpdate and EndUpdate methods to refresh
the cell's width when changing it on the fly.

The CellWidth property specifies the width of the cell, where the cell is divided in two or
multiple (inner) cells like follows:

if the CellWidth property is less than zero, the master cell calculates the width of the
inner cell, so all the inner cells with CellWidth less than zero have the same width in the
master cell.
if the CellWidth property is greater than zero, it indicates the width in pixels of the inner
cell.

By default, the CellWidth property is -1, and so when the user splits a cell the inner cell
takes the right half of the area occupied by the master cell.

The following VB sample specifies that the master cell should have 32 pixels, and the other
two inner cells get the same width:

With Grid1.Items
 Dim h As HITEM, f As HCELL

 h = .FirstVisibleItem
 .CellWidth(h, 0) = 32
 f = .ItemCell(h, 0)
 f = .SplitCell(, f)
 f = .SplitCell(, f)
End With

The following VB sample specifies that the inner cells should have 32 pixels:

With Grid1.Items
 Dim h As HITEM, f As HCELL
 h = .FirstVisibleItem
 f = .SplitCell(h, 0)
 .CellWidth(, f) = 32
End With

The following VB sample adds an inner cell to the focused cell with 48 pixels width:

Grid1.BeginUpdate
With Grid1.Items
 Dim h As Long
 h = .SplitCell(.FocusItem, 0)
 .CellBackColor(, h) = vbBlack
 .CellForeColor(, h) = vbWhite
 .CellHAlignment(, h) = CenterAlignment
 .CellValue(, h) = "inner"
 .CellWidth(, h) = 48
End With
Grid1.EndUpdate

The following C++ sample adds an inner cell to the focused cell with 48 pixels width:

#include "Items.h"
m_grid.BeginUpdate();
CItems items = m_grid.GetItems();
COleVariant vtItem(items.GetFocusItem()), vtColumn(long(0)), vtMissing; V_VT(
&vtMissing) = VT_ERROR;
COleVariant vtInner = items.GetSplitCell(vtItem, vtColumn);
items.SetCellWidth(vtMissing, vtInner, 48);

items.SetCellBackColor(vtMissing, vtInner, 0);
items.SetCellForeColor(vtMissing, vtInner, RGB(255,255,255));
items.SetCellValue(vtMissing, vtInner, COleVariant("inner"));
items.SetCellHAlignment(vtMissing, vtInner, 1);
m_grid.EndUpdate();

The following VB.NET sample adds an inner cell to the focused cell with 48 pixels width:

With AxGrid1
 .BeginUpdate()
 With .Items
 Dim iInner As Integer
 iInner = .SplitCell(.FocusItem, 0)
 .CellValue(, iInner) = "inner"
 .CellHAlignment(, iInner) = EXGRIDLib.AlignmentEnum.CenterAlignment
 .CellWidth(, iInner) = 48
 .CellBackColor(, iInner) = 0
 .CellForeColor(, iInner) = ToUInt32(Color.White)
 End With
 .EndUpdate()
End With

where the ToUInt32 function converts a Color expression to an OLE_COLOR expression
and may look like:

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample adds an inner cell to the focused cell with 48 pixels width:

EXGRIDLib.Items items = axGrid1.Items;
axGrid1.BeginUpdate();
object iInner = items.get_SplitCell(axGrid1.Items.FocusItem, 0);
items.set_CellValue(null, iInner, "inner");

items.set_CellHAlignment(null, iInner, EXGRIDLib.AlignmentEnum.CenterAlignment);
items.set_CellBackColor(null, iInner, ToUInt32(Color.Black));
items.set_CellForeColor(null, iInner, ToUInt32(Color.White));
items.set_CellWidth(null, iInner, 48);
axGrid1.EndUpdate();

where the ToUInt32 function converts a Color to an OLE_COLOR expression and looks like:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

property Items.ChildCount (Item as HITEM) as Long

Retrieves the number of children items.

Type Description
Item as HITEM A long expression that indicates the item's handle
Long A long value that indicates the number of child items.

Use the ChildCount property to count the number of child items. Use the ItemChild property
to get the handle of the first child item, if it exists. Use the ItemHasChildren property to built
a virtual tree. A virtual tree loads items when the user expands an item. Use the
ExpandItem property to expand or collapse an item. Use the InsertItem method to insert
child items. Use the InsertControlItem method to insert child ActiveX controls.

method Items.ClearCellBackColor ([Item as Variant], [ColIndex as
Variant])
Clears the cell's background color.

Type Description
Item as Variant An item's handle that indicates the owner of the cell.

ColIndex as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption
or column's key.

The ClearCellBackColor method clears the cell's background color when the CellBackColor
property is used. Use the ItemBackColor property to specify the item's background color.
Use the BackColor property to specify the control's background color

method Items.ClearCellForeColor ([Item as Variant], [ColIndex as
Variant])
Clears the cell's foreground color.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption
or column's key.

The ClearCellForeColor method clears the cell's foreground color when CellForeColor
property was used. Use the ItemForeColor property to specify the item's foreground color.
Use the ForeColor property to specify the control's foreground color.

method Items.ClearCellHAlignment ([Item as Variant], [ColIndex as
Variant])
Clears the cell's alignment.

Type Description
Item as Variant A long expression that indicates the handle of the item.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's key or the
column's caption.

Use the ClearCellHAlignment method to clear the alignment of the cell's caption previously
set using the CellHAlignment property. If the CellHAlignment property is not called, the
Alignment property of the Column object specifies the alignment of the cell's caption.

method Items.ClearItemBackColor (Item as HITEM)
Clears the item's background color.

Type Description
Item as HITEM A long expression that indicates the item's handle.

The ClearItemBackColor method clears the item's background color when ItemBackColor
property was used. Use the BackColor property to specify the control's background color.

method Items.ClearItemForeColor (Item as HITEM)
Clears the item's foreground color.

Type Description
Item as HITEM A long expression that indicates the item's handle.

The ClearItemForeColor method clears the item's foreground color when ItemForeColor
property was used. Use the ForeColor property to specify the control's foreground color.

method Items.CollapseAllCards ()
Collapses all the cards.

Type Description

Use the CollapseAllCards method to collapse all cards in the view. Use the ExpandCard
property to programmatically expand or collapse a specified card. Use the ExpandAllCards
method to expand all cards in the view. Use the ViewModeOption(exCardViewTitleFormat)
property to specify the arrangement of the fields in the title of the cards. Use the
HasButtons property to specify whether the control displays an expand/collapse button in
the title of the card. Use the ExpandOnKeys property to allow expanding or collapsing the
cards using the + or - keys on the numeric keypad. The ExpandOnDblClick property
specifies whether a card is expanded or collapsed when a card is double clicked.

property Items.ComputeValue ([Expression as Variant], [Item as Variant],
[ColIndex as Variant], [ValueFormatType as Variant]) as Variant
Computes the value of a specified formula.

Type Description
Expression as Variant A string expression that specifies the formula to compute
Item as Variant A long expression that specifies the handle of the item.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's key or the
column's caption.

ValueFormatType as Variant

A ValueFormatType expression that indicates the type of
the formula being interpreted by the Expression
parameter. For instance, if the ValueFormatType
parameter is exTotalField, the Expression parameter
should inidcate a total formula of type
aggregate(list,direction,formula)

Variant A string expression that indicates the result.

The ComputeValue property gets the result of a a computed or total field. The Item and
ColIndex property refers the cells used as the source for the formula. Use the
ComputeValue property to get the result of a total field. For instance, for a total field, the
CellValue property indicates the formula, while the ComputeValue can be used to get the
result of the formula at runtime.

The ComputeValue method returns the:

value of the computed field, where the ValueFormatType is exComputedField, and the
Expression indicates the formula for the computed field.
value of the total field, where the ValueFormatType is exTotalField, and the Expression
indicates a string as: aggregate(list,direction,formula)
text with no HTML formatting, where the ValueFormatType is exHTML, and the
Expression indicates the string including the HTML format.

For instance, based on the ValueFormatType and Expression parameters the result could
be:

exComputedField, dbl(%0) + dbl(%1), the sum between first two cells in the item
referred by Item.
exTotalField, sum(current,dir,dbl(%0) + dbl(%1)), the total of first two columns, for all
direct child items of the item being referred by Item.
exHTML, bold, returns bold (returns the result with no HTML formatting). In

this case, the Item and ColIndex have no effect.

property Items.DefaultItem as HITEM

Retrieves or sets a value that indicates the handle of the item used by Items properties in
VFP.

Type Description

HITEM Retrieves the handle of the item that's used by all
properties of Items object, that have a parameter Item.

The property is used in VFP implementation. The VFP fires "Invalid Subscript Range" error,
while it tries to process a number greater than 65000. Since, the HITEM is a long value that
most of the time exceeds 65000, the VFP users have to use this property, instead passing
directly the handles to properties. The following sample shows to change the cell's image:

.Items.DefaultItem = .Items.AddItem("Item 1")

.Items.CellImage(0,1) = 2

In VFP the following sample fires: "Invalid Subscript Range":

i = .Items.AddItem("Item 1")
.Items.CellImage(i,1) = 2

because the i variable is grater than 65000.

So, if you pass zero to a property that has a parameter titled Item, the control takes
instead the DefaultItem value.

method Items.DeleteCellEditor ([Item as Variant], [ColIndex as Variant])
Deletes the cell's built-in editor created by CellEditor property.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, or
cell's handle, a string expression that indicates the
column's caption or key.

Use the DeleteCellEditor method to delete the editor created using the CellEditor property.
Use the CellEditorVisible property to hide or show the cell's editor. Use the HasCellEditor
property to check whether the cell contains an editor (being created using the CellEditor
property). The DeleteCellEditor method has no effect if the cell contains an editor assigned
using the the Editor property of the Column object, or the cell has no editor.

property Items.EnableItem(Item as HITEM) as Boolean

Returns or sets a value that determines whether a item can respond to user-generated
events.

Type Description
Item as HITEM A long expression that indicates the item's handle

Boolean A boolean expression that indicates whether the item is
enabled or disabled.

Use the EnableItem property to disable an item. A disabled item looks grayed and it is
selectable. Use the SelectableItem property to specify the user can select an item. Once
that an item is disabled all the cells of the item are disabled, so CellEnabled property has
no effect. To disable a column you can use Enabled property of a Column object.

method Items.EndBlockUndoRedo ()
Ends recording the UI operations and adds the undo/redo operations as a block, so they all
can be restored at once, if Undo method is performed.

Type Description

The StartBlockUndoRedo method starts recording the UI operations as a block on
undo/redo operations (equivalent of EndBlockUndoRedo method of the control). The
method has effect only if the AllowUndoRedo property is True. The EndBlockUndoRedo
method collects all undo/redo operations since StartBlockUndoRedo method was called and
add them to the undo/redo queue as a block. This way the next call on a Undo operation,
the entire block is restored, so all UI operations are restored. The EndBlockUndoRedo
method must be called the same number of times as the StartBlockUndoRedo method was
called. For instance, if you have called the StartBlockUndoRedo twice the
EndBlockUndoRedo method must be called twice too, and the collected operations are
added to the control's queue of undo/redo operations at the end.

method Items.EnsureVisibleItem (Item as HITEM)

Ensures that the given item is in the visible client area.

Type Description
Item as HITEM A long expression that indicates the item's handle.

The EnsureVisibleItem scrolls the control's content until the item fits the visible client area.
The EnsureVisibleItem method expands the parent items. Use the IsItemVisible property to
check if an item fits the control's client area. Use the EnsureVisibleColumn method to scroll
the control's content so a column fits the control's client area. Use the Scroll method to
scroll the control's client area by code. The EnsureVisibleItem method should not be called
during BeginUpdate and EndUpdate methods. The EnsureOnSort property prevents
scrolling the control's content when the user sorts items.

The following VB sample ensures that the last added item fits the control's client area:

With Grid1.Items
 .EnsureVisibleItem .ItemByIndex(.ItemCount - 1)
End With

The following C++ sample ensures that the last added item fits the control's client area:

#include "Items.h"
m_grid.BeginUpdate();
CItems items = m_grid.GetItems();
items.EnsureVisibleItem(items.GetItemByIndex(items.GetItemCount() - 1));

The following VB.NET sample ensures that the last added item fits the control's client area:

With AxGrid1.Items
 .EnsureVisibleItem(.ItemByIndex(.ItemCount - 1))
End With

The following C# sample ensures that the last added item fits the control's client area:

axGrid1.Items.EnsureVisibleItem(axGrid1.Items[axGrid1.Items.ItemCount - 1]);

The following VFP sample ensures that the last added item fits the control's client area:

with thisform.Grid1.Items

 .EnsureVisibleItem(.ItemByIndex(.ItemCount-1))
endwith

method Items.ExpandAllCards ()
Expands all the cards.

Type Description

Use the ExpandAllCards method to expand all cards in the view. Use the ExpandCard
property to programmatically expand or collapse a specified card. Use the
CollapseAllCards method to collapse all cards in the view. Use the
ViewModeOption(exCardViewTitleFormat) property to specify the arrangement of the fields
in the title of the cards. Use the HasButtons property to specify whether the control displays
an expand/collapse button in the title of the card. Use the ExpandOnKeys property to allow
expanding or collapsing the cards using the + or - keys on the numeric keypad. The
ExpandOnDblClick property specifies whether a card is expanded or collapsed when a card
is double click

property Items.ExpandCard(Item as HITEM) as Boolean
Expands or collapses the card.

Type Description

Item as HITEM A long expression that indicates the handle of the card
being expanded or collapsed.

Boolean A boolean expression that indicates whether the card is
expanded or collapsed.

Use the ExpandCard property to programmatically expand or collapse a specified card.
Use the ExpandAllCards method to expand all cards in the view. Use the CollapseAllCards
method to collapse all cards in the view. Use the ViewModeOption(exCardViewTitleFormat)
property to specify the arrangement of the fields in the title of the cards. Use the
HasButtons property to specify whether the control displays an expand/collapse button in
the title of the card. Use the ExpandOnKeys property to allow expanding or collapsing the
cards using the + or - keys on the numeric keypad. The ExpandOnDblClick property
specifies whether a card is expanded or collapsed when a card is double clicked.

property Items.ExpandItem(Item as HITEM) as Boolean

Expands, or collapses, the child items of the specified item.

Type Description

Item as HITEM A long expression that indicates the handle of the item
being expanded or collapsed.

Boolean A boolean expression that indicates whether the item is
expanded or collapsed.

Use ExpandItem property to programmatically expand or collapse an item, in TableView
mode. Use the ExpandItem property to check whether an items is expanded or collapsed.
Before expanding/collapsing an item, the control fires the BeforeExpandItem event. Use the
BeforeExpandIvent to cancel expanding/collapsing of an item. After item was
expanded/collapsed the control fires the AfterExpandItem event. The following samples
shows how to expand the selected item:
Grid1.Items.ExpandItem(Grid1.Items.SelectedItem()) = True. The property has no effect if
the item has no child items. To check if the item has child items you can use ChildCount
property. Use the ItemHasChildren property to display a +/- expand sign to the item even if
it doesn't contain child items. The ExpandOnSearch property specifies whether the control
expands nodes when incremental searching is on (AutoSearch property is different than 0)
and user types characters when the control has the focus. Use the ExpandOnKeys property
to specify whether the user expands or collapses the focused items using arrow keys. Use
the InsertItem property to add child items. In CardView mode, use the ExpandCard
property to expand or collapse a card.

The following VB sample expands the selected item:
Grid1.Items.ExpandItem(Grid1.Items.SelectedItem()) = True.

The ExpandItem property has no effect if the item has no child items. Use ChildCount
property to determine whether an item contains child nodes. Use the ItemHasChildren
property to built a virtual grid. A virtual grid loads items when the the user expands an item.

The following VB sample expands the selected item:

Private Sub Grid1_SelectionChanged()
 Grid1.Items.ExpandItem(Grid1.Items.SelectedItem()) = True
End Sub

The following VB sample expands programmatically the focused item:

With Grid1.Items

 .ExpandItem(.FocusItem) = True
End With

The following C++ sample expands programmatically the focused item:

#include "Items.h"
CItems items = m_grid.GetItems();
items.SetExpandItem(items.GetFocusItem(), TRUE);

The following VB.NET sample expands programmatically the focused item:

AxGrid1.Items.ExpandItem(AxGrid1.Items.FocusItem) = True

The following C# sample expands programmatically the focused item:

axGrid1.Items.set_ExpandItem(axGrid1.Items.FocusItem, true);

The following VFP sample expands programmatically the focused item:

with thisform.Grid1.Items
 .DefaultItem = .FocusItem
 .ExpandItem(0) = .t.
endwith

property Items.FindItem (Value as Variant, [ColIndex as Variant],
[StartIndex as Variant]) as HITEM

Finds an item, looking for Caption in ColIndex colum. The searching starts at StartIndex
item.

Type Description

Value as Variant A Variant expression that indicates the caption that is
searched for.

ColIndex as Variant A string expression that indicates the column's caption, or
a long expression that indicates the column's index.

StartIndex as Variant A long value that indicates the index of item from where
the searching starts.

HITEM A long expression that indicates the item's handle that
matches the criteria.

Use the FindItem to search for an item. Finds a control's item that matches CellValue(Item,
ColIndex) = Caption. The StartIndex parameter indicates the index from where the
searching starts. If it is missing, the searching starts from the item with the 0 index. The
searching is case sensitive only if the ASCIIUpper property is empty. Use the AutoSearch
property to enable incremental search feature within the column.

The following VB sample selects the first item that matches "DUMON" on the first column:

Grid1.Items.SelectItem(Grid1.Items.FindItem("DUMON", 0)) = True

The following C++ sample finds and selects an item:

#include "Items.h"
CItems items = m_grid.GetItems();
COleVariant vtMissing;
long hFind = items.GetFindItem(COleVariant("King"), COleVariant("LastName"), vtMissing
);
if (hFind != NULL)
 items.SetSelectItem(hFind, TRUE);

The following C# sample finds and selects an item:

axGrid1.Items.set_SelectItem(axGrid1.Items.get_FindItem("Child 2", 0, 0), true);

The following VB.NET sample finds and selects an item:

With AxGrid1.Items
 Dim iFind As Integer
 iFind = .FindItem("Child 2", 0)
 If Not (iFind = 0) Then
 .SelectItem(iFind) = True
 End If
End With

The following VFP sample finds and selects an item:

with thisform.Grid1.Items
 .DefaultItem = .FindItem("Child 2",0)
 if (.DefaultItem <> 0)
 .SelectItem(0) = .t.
 endif
endwith

property Items.FindItemData (UserData as Variant, [StartIndex as
Variant]) as HITEM
Finds the item giving its data.

Type Description
UserData as Variant A variant value that indicates the value being searched

StartIndex as Variant A long expression that indicates the handle of the item
where the searching starts

HITEM A long expression that indicates the handle of the item
found.

Use the FindItemData property to search for an item giving its extra-data. Use the ItemData
property to associate an extra data to an item. Use the FindItem property to locate an item
given its caption. Use the FindPath property to search for an item given its path.

property Items.FindPath (Path as String) as HITEM

Finds an item given its path.

Type Description
Path as String A string expression that indicates the item's path

HITEM A long expression that indicates the item's handle that
matches the criteria.

The FindPath property searches the item on the column SearchColumnIndex. Use the
FullPath property in order to get the item's path. Use the FindItem to search for an item.

The following VB sample selects the item based on its path:

Grid1.Items.SelectItem(Grid1.Items.FindPath("Files and Folders\Hidden Files and
Folders\Do not show hidden files and folder")) = True

The following C++ sample selects the item based on its path:

#include "Items.h"
CItems items = m_grid.GetItems();
COleVariant vtMissing;
long hFind = items.GetFindPath("Files and Folders\\Hidden Files and Folders\\Do not
show hidden files and folder");
if (hFind != NULL)
 items.SetSelectItem(hFind, TRUE);

The following VB.NET sample selects the item based on its path:

With AxGrid1.Items
 Dim iFind As Integer
 iFind = .FindPath("Files and Folders\Hidden Files and Folders\Do not show hidden files
and folder")
 If Not (iFind = 0) Then
 .SelectItem(iFind) = True
 End If
End With

The following C# sample selects the item based on its path:

int iFind = axGrid1.Items.get_FindPath("Files and Folders\\Hidden Files and Folders\\Do
not show hidden files and folder");
if (iFind != 0)
 axGrid1.Items.set_SelectItem(iFind, true);

The following VFP sample selects the item based on its path:

with thisform.Grid1.Items
 .DefaultItem = .FindPath("Files and Folders\Hidden Files and Folders\Do not show
hidden files and folder")
 if (.DefaultItem <> 0)
 .SelectItem(0) = .t.
 endif
endwith

property Items.FirstVisibleItem as HITEM

Retrieves the handle of the first visible item in control.

Type Description

HITEM A long expression that indicates the item's handle that
indicates the first visible item.

Use the FirstVisibleItem, NextVisibleItem and IsItemVisible properties to get the items that
fit the client area. Use the NextVisibleItem property to get the next visible item. Use the
IsVisibleItem property to check whether an item fits the control's client area. Use the
RootItem property to get the first visible item in the list. The NextSiblingItem property
retrieves the next sibling of the item in the parent's child list. Use the PrevVisibleItem
property to retrieve the previous visible item.

The following VB sample enumerates the items that fit the control's client area:

Dim h As HITEM
Dim i As Long, j As Long, nCols As Long
nCols = Grid1.Columns.Count
With Grid1.Items
 h = .FirstVisibleItem
 While Not (h = 0) And .IsItemVisible(h)
 Dim s As String
 s = ""
 For j = 0 To nCols - 1
 s = s + .CellValue(h, j) + Chr(9)
 Next
 Debug.Print s
 h = .NextVisibleItem(h)
 Wend
End With

The following VB sample enumerates the visible items in the control as they are displayed (
sorted):

With Grid1.Items
 Dim h As HITEM
 h = .RootItem(0)
 While Not h = 0

 Debug.Print .CellValue(h, 0)
 h = .NextVisibleItem(h)
 Wend
End With

The following VB sample enumerates the items in the control as they are displayed (sorted
):. For instance, the sample lists the child items of items that are collapsed too:

 With Grid1.Items
 Dim h As HITEM
 h = .RootItem(0)
 While Not h = 0
 Debug.Print .CellValue(h, 0)
 h = .NextSiblingItem(h)
 Wend
End With

The following C++ sample enumerates the items that fit the control's client area:

#include "Items.h"
CItems items = m_grid.GetItems();
long hItem = items.GetFirstVisibleItem();
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
while (hItem && items.GetIsItemVisible(hItem, vtMissing))
{
 OutputDebugString(V2S(&items.GetCellValue(COleVariant(hItem), COleVariant(
long(0)))));
 hItem = items.GetNextVisibleItem(hItem);
}

where the V2S function converts a VARIANT value to a string expression and looks like:

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

The following VB.NET sample enumerates the items that fit the control's client area:

With AxGrid1.Items
 Dim hItem As Integer = .FirstVisibleItem
 While Not (hItem = 0)
 If (.IsItemVisible(hItem)) Then
 Debug.Print(.CellCaption(hItem, 0))
 hItem = .NextVisibleItem(hItem)
 Else
 Exit While
 End If
 End While
End With

The following C# sample enumerates the items that fit the control's client area:

EXGRIDLib.Items items = axGrid1.Items;
int hItem = items.FirstVisibleItem;
while ((hItem != 0) && (items.get_IsItemVisible(hItem, null)))
{
 object strCaption = items.get_CellCaption(hItem, 0);
 System.Diagnostics.Debug.WriteLine(strCaption != null ? strCaption.ToString() : "");
 hItem = items.get_NextVisibleItem(hItem);
}

The following VFP sample enumerates the items that fit the control's client area:

with thisform.Grid1.Items
 .DefaultItem = .FirstVisibleItem
 do while ((.DefaultItem <> 0) and (.IsItemVisible(0)))
 wait window .CellCaption(0, 0)
 .DefaultItem = .NextVisibleItem(0)

 enddo
endwith

property Items.FocusItem as HITEM

Retrieves the handle of item that has the focus.

Type Description

HITEM A long expression that indicates the item's handle that is
focused.

If there is no focused item the FocusItem property retrieves 0. At one moment, only one
item can be focused. When the selection is changed the focused item is changed too. Use
the FocusColumnIndex property to change the focused column. The SelectColumnInner
property indicates the index of an inner cell that has the focus. Use the Edit method to start
editing the focused cell. Select a new item to focus a new item. Use the SelectItem
property to select a new item. Use the Edit method to edit the focused cell, if the AutoEdit
property is False. If the control supports single selection, the FocusItem property gets the
selected item too. Use the SingleSel property to specify whether the control supports single
or multiple selection. Use the ShowFocusRect property to indicate whether the control
draws a marking rectangle around the focused item. You can change the focused item, by
selecting a new item using the SelectItem method. If the items is not selectable, it is not
focusable as well. Use the SelectableItem property to specify whether an item is
selectable/focusable.

The control fires the FocusChanged event when the user changes:

the focused item
the focused column or an inner cell gets the focus.

property Items.FormatCell([Item as Variant], [ColIndex as Variant]) as
String
Specifies the custom format to display the cell's content.

Type Description
Item as Variant A long expression that indicates the handle of the item.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's key or the
column's caption.

String
A string expression that indicates the format to be applied
on the cell's value, including HTML formatting, if the cell
supports it.

By default, the FormatCell property is empty. The format is being applied if valid (not
empty, and syntactically correct). The expression may be a combination of variables,
constants, strings, dates and operators, and value. The value operator gives the value to
be formatted. A string is delimited by ", ` or ' characters, and inside they can have the
starting character preceded by \ character, ie "\"This is a quote\"". A date is delimited by #
character, ie #1/31/2001 10:00# means the January 31th, 2001, 10:00 AM. The
FormatColumn property applies the predefined format for all cells in the columns. The
CellValue property indicates the cell's value.

The CellValue property of the cell is being shown as:

formatted using the FormatCell property, if it is valid
formatted using the FormatColumn property, if it is valid

In other words, all cells applies the format of the FormatColumn property, excepts the cells
with the FormatCell property being set. If the cell belongs to a column with the
FireFormatColumn property on True, the Value parameter of the FormatColumn event
shows the newly caption for the cell to be shown.

For instance:

the "currency(value)" displays the column using the current format for the currency ie,
1000 gets displayed as $1,000.00
the "longdate(date(value))" converts the value to a date and gets the long format to
display the date in the column, ie #1/1/2001# displays instead Monday, January 01,
2001
the "'' + ((0:=proper(value)) left 1) + '' + (=:0 mid 2)" converts the name to
proper, so the first letter is capitalized, bolds the first character, and let unchanged the
rest, ie a "mihai filimon" gets displayed "Mihai Filimon".

the "len(value) ? ((0:=dbl(value)) < 10 ? '<fgcolor=808080>' : '') +
currency(=:0)" displays the cells that contains not empty daya, the value in currency
format, with a different font and color for values less than 10, and bolded for those that
are greater than 10, as can see in the following screen shot in the column (A+B+C):

The value keyword in the FormatColumn property indicates the value to be formatted.

The expression supports cell's identifiers as follows:

%0, %1, %2, ...{any} specifies the value of the cell in the column with the index 0, 1
2, ... The CellValue property defines the cell's value. For example, "%0 format ``"
formats the value in the cell at index 0 using the current regional settings, while
"int(%1)" converts the value in the cell at index 1 to an integer.
%C0, %C1, %C2, ...{string} specifies the caption of the cell, or the string the cell
displays in the column with the index 0, 1 2, ... The CellCaption property gets the
cell's formatted caption. The cell's displayed string may differ from its actual value.
For example, if a cell displays HTML content, %0 returns the HTML format including
the tags, while %C0 returns the cell's content as a plain string without HTML tags. For
instance, "upper(%C1)" converts the caption of the cell at index 1 to uppercase, while
"%C0 left 2" returns the leftmost two characters of the caption in the cell at index 0.
%CD0, %CD1, %CD2, ...{any} specifies the cell's extra data in the column with the
index 0, 1 2, ... The CellData property associates any extra/user data to a cell. For
example, "%CD0 = your user data" specifies all cells in the column with index 0
whose CellData property is equal to your user data.
%CS0, %CS1, %CS2, ...{number} specifies the cell's state in the column with the
index 0, 1 2, ... The CellState property defines the state of a cell, indicating whether it
is checked or unchecked. For example, "%CS0" identifies all checked items in the
column with index 0, while "not %CS1" identifies all unchecked items in the column
with index 1.
%CT0, %CT1, %CT2, ... {boolean} returns true if the cell displays a total field;
otherwise, it returns false. The exTotalField / exTotalColumn flag specifies whether
the cell displays a total field. For instance, "%CT1" refers to all cells in the second
column that display totals, while "not %CT1" refers to all cells in the second column
that do not display totals.
%CE0, %CE1, %CE2, ... {boolean} returns true if the cell is editable; otherwise, it
returns false.. For example, "%CE0" refers to all editable cells in the first column,
while "not %CE1" refers to all cells in the second column that are read-only.

%CC0, %CC1, %CC2, ... {number} retrieve the number of child items (this keyword
consistently returns identical results for all cells since it pertains to the item that hosts
each cell). The ChildCount property returns the number of child items. For example,
"%CC0" identifies all parent items, while "%CC0 = 0" identifies all leaf items.
%CX0, %CX1, %CX2, ... {boolean} returns true if the item hosting the cell is
expanded, or false if it is collapsed (this keyword consistently returns identical results
for all cells since it pertains to the item that hosts each cell). The ExpandItem property
specifically indicates whether the item is expanded or collapsed. For example,
"%CX0" refers to all expanded items, while "not %CX0" identifies all collapsed items

The predefined operators for auto-numbering are:

number index 'format', indicates the index of the item. The first added item has the
index 0, the second added item has the index 1, and so on. The index of the item
remains the same even if the order of the items is changed by sorting. For instance, 1
index '' gets the index of the item starting from 1 while 100 index '' gets the index of the
item starting from 100. The number indicates the starting index, while the format is a
set of characters to be used for specifying the index. If the format is missing, the index
of the item is formatted as numbers. For instance: 1 index 'A-Z' gets the index as A, B,
C... Z, BA, BB, ... BZ, CA, The 1 index 'abc' gives the index as:
a,b,c,ba,bb,bc,ca,cb,cc,.... You can use other number formatting function to format the
returned value. For instance "1 index '' format '0||2|:'" gets the numbers grouped by 2
digits and separated by : character.

In the following screen shot the FormatColumn("Col 1") = "1 index ''"

In the following screen shot the FormatColumn("Col 1") = "1 index 'A-Z'"

number apos 'format' indicates the absolute position of the item. The first displayed
item has the absolute position 0 (scrolling position on top), the next visible item is 1,
and so on. The number indicates the starting position, while the format is a set of
characters to be used for specifying the position. For instance, 1 apos '' gets the

absolute position of the item starting from 1, while 100 apos '' gets the position of the
item starting from 100. If the format is missing, the absolute position of the item is
formatted as numbers.

In the following screen shot the FormatColumn("Col 1") = "1 apos ''"

In the following screen shot the FormatColumn("Col 1") = "1 apos 'A-Z'"

number pos 'format' indicates the relative position of the item. The relative position is
the position of the visible child item in the parent children collection. The number
indicates the starting position, while the format is a set of characters to be used for
specifying the position. For instance, 1 pos '' gets the relative position of the item
starting from 1, while 100 pos '' gets the relative position of the item starting from 100.
If the format is missing, the relative position of the item is formatted as numbers. The
difference between pos and opos can be seen while filtering the items in the control.
For instance, if no filter is applied to the control, the pos and opos gets the same
result. Instead, if the filter is applied, the opos gets the position of the item in the list
of unfiltered items, while the pos gets the position of the item in the filtered list.

In the following screen shot the FormatColumn("Col 2") = "'' + 1 pos '' + ' ' +
value"

In the following screen shot the FormatColumn("Col 2") = "'' + 1 pos 'A-Z' + ' '
+ value"

number opos 'format' indicates the relative old position of the item. The relative old
position is the position of the child item in the parent children collection. The number
indicates the starting position, while the format is a set of characters to be used for
specifying the position.For instance, 1 pos '' gets the relative position of the item
starting from 1, while 100 pos '' gets the relative position of the item starting from 100.
If the format is missing, the relative position of the item is formatted as numbers. The
difference between pos and opos can be seen while filtering the items in the control.
For instance, if no filter is applied to the control, the pos and opos gets the same
result. Instead, if the filter is applied, the opos gets the position of the item in the list
of unfiltered items, while the pos gets the position of the item in the filtered list.
number rpos 'format' indicates the relative recursive position of the item. The recursive
position indicates the position of the parent items too. The relative position is the
position of the visible child item in the parent children collection. The number indicates
the starting position, while the format is of the following type
"delimiter|format|format|...". If the format is missing, the delimiter is . character, and
the positions are formatted as numbers. The format is applied consecutively to each
parent item, from root to item itself.

In the following screen shot the FormatColumn("Col 1") = "1 rpos ''"

In the following screen shot the FormatColumn("Col 1") = "1 rpos ':|A-Z'"

In the following screen shot the FormatColumn("Col 1") = "1 rpos '.|A-Z|'"

In the following screen shot the FormatColumn("Col 1") = "1 apos ''" and
FormatColumn("Col 2") = "'' + 1 rpos '.|A-Z|' + ' ' +
value"

number rindex 'format', number rapos 'format' and number ropos 'format' are working
similar with number rpos 'format', excepts that they gives the index, absolute position,
or the old child position.

This property/method supports predefined constants and operators/functions as described
here.

property Items.FullPath (Item as HITEM) as String

Returns the fully qualified path of the referenced item in an ExGrid control.

Type Description
Item as HITEM A long expression that indicates the handle of the item.
String A string expression that indicates the fully qualified path.

Use the FullPath property in order to get the fully qualified path of the referenced item. Use
PathSeparator to change the separator used by FullPath property. Use the FindPath
property to get the item's selected based on its path. The fully qualified path is the
concatenation of the text in the given cell's caption property on the column
SearchColumnIndex with the CellValue property values of all its ancestors.

property Items.GroupItem (Item as HITEM) as Long
Indicates a group item if positive, and the value specifies the index of the column that has
been grouped.

Type Description

Item as HITEM A Long expression that specifies the handle of the item
being queried

Long
A Long expression that specifies index of the column being
grouped, or a negative value if the item is a regular item,
not a grouping item.

The GroupItem method determines the index of the column that indicates the column being
grouped. In other words, the CellCaption(Item,GroupItem(Item)) gets the default caption to
be displayed for the grouping item. The Ungroup method removes all grouping items. For
instance, when a column gets grouped by, the control sorts by that column, collects the
unique values being found, and add a new item for each value found, by adding the items of
the same value as children. The (AddGroupItem event is fired for each new item to be
inserted in the Items collection during the grouping.

The following samples show how to display the grouping items with a solid background
color, instead of a single line:

VBA

Private Sub Grid1_AddGroupItem(ByVal Item As Long)
 With Grid1
 With .Items
 .ItemDividerLine(Item) = 0
 .CellHAlignment(Item,.GroupItem(Item)) = 1
 .ItemBackColor(Item) = RGB(240,240,240)
 End With
 End With
End Sub

VB

Private Sub Grid1_AddGroupItem(ByVal Item As EXGRIDLibCtl.HITEM)
 With Grid1
 With .Items
 .ItemDividerLine(Item) = EmptyLine

 .CellHAlignment(Item,.GroupItem(Item)) = CenterAlignment
 .ItemBackColor(Item) = RGB(240,240,240)
 End With
 End With
End Sub

VB.NET

Private Sub Exgrid1_AddGroupItem(ByVal sender As System.Object,ByVal Item As Integer)
Handles Exgrid1.AddGroupItem
 With Exgrid1
 With .Items
 .set_ItemDividerLine(Item,exontrol.EXGRIDLib.DividerLineEnum.EmptyLine)

.set_CellHAlignment(Item,.get_GroupItem(Item),exontrol.EXGRIDLib.AlignmentEnum.CenterAlignment)

 .set_ItemBackColor(Item,Color.FromArgb(240,240,240))
 End With
 End With
End Sub

C++

void OnAddGroupItemGrid1(long Item)
{
 EXGRIDLib::IGridPtr spGrid1 = GetDlgItem(IDC_GRID1)->GetControlUnknown();
 EXGRIDLib::IItemsPtr var_Items = spGrid1->GetItems();
 var_Items->PutItemDividerLine(Item,EXGRIDLib::EmptyLine);
 var_Items->PutCellHAlignment(Item,var_Items-
>GetGroupItem(Item),EXGRIDLib::CenterAlignment);
 var_Items->PutItemBackColor(Item,RGB(240,240,240));
}

C++ Builder

void __fastcall TForm1::Grid1AddGroupItem(TObject *Sender,Exgridlib_tlb::HITEM Item)
{
 Exgridlib_tlb::IItemsPtr var_Items = Grid1->Items;

 var_Items->set_ItemDividerLine(Item,Exgridlib_tlb::DividerLineEnum::EmptyLine);
 var_Items->set_CellHAlignment(TVariant(Item),TVariant(var_Items-
>get_GroupItem(Item)),Exgridlib_tlb::AlignmentEnum::CenterAlignment);
 var_Items->set_ItemBackColor(Item,RGB(240,240,240));
}

C#

private void exgrid1_AddGroupItem(object sender,int Item)
{
 exontrol.EXGRIDLib.Items var_Items = exgrid1.Items;
 var_Items.set_ItemDividerLine(Item,exontrol.EXGRIDLib.DividerLineEnum.EmptyLine);

var_Items.set_CellHAlignment(Item,var_Items.get_GroupItem(Item),exontrol.EXGRIDLib.AlignmentEnum.CenterAlignment);

 var_Items.set_ItemBackColor(Item,Color.FromArgb(240,240,240));
}

JavaScript

<SCRIPT FOR="Grid1" EVENT="AddGroupItem(Item)" LANGUAGE="JScript">
 var var_Items = Grid1.Items;
 var_Items.ItemDividerLine(Item) = 0;
 var_Items.CellHAlignment(Item,var_Items.GroupItem(Item)) = 1;
 var_Items.ItemBackColor(Item) = 15790320;
</SCRIPT>

X++ (Dynamics Ax 2009)

void onEvent_AddGroupItem(int _Item)
{
 COM com_Items;
 anytype var_Items;
 ;
 var_Items = exgrid1.Items(); com_Items = var_Items;
 com_Items.ItemDividerLine(_Item,0/*EmptyLine*/);

com_Items.CellHAlignment(_Item,com_Items.GroupItem(_Item),1/*CenterAlignment*/);

 com_Items.ItemBackColor(_Item,WinApi::RGB2int(240,240,240));
}

VFP

*** AddGroupItem event - Occurs after a new Group Item has been inserted to Items
collection. ***
LPARAMETERS Item
 with thisform.Grid1
 with .Items
 .ItemDividerLine(Item) = 0
 .CellHAlignment(Item,.GroupItem(Item)) = 1
 .ItemBackColor(Item) = RGB(240,240,240)
 endwith
 endwith

with thisform.Grid1
 .BeginUpdate
 .HasLines = 0
 .ColumnAutoResize = .F.
 rs = CreateObject("ADOR.Recordset")
 with rs
 var_s = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\Program
Files\Exontrol\ExGrid\Sample\SAMPLE.MDB"
 .Open("Orders",var_s,3,3)
 endwith
 .DataSource = rs
 .SingleSort = .F.
 .SortBarVisible = .T.
 .AllowGroupBy = .T.
 .Columns.Item(1).SortOrder = .T. && .T.
 .EndUpdate
endwith

Delphi (standard)

procedure TForm1.Grid1AddGroupItem(ASender: TObject; Item : HITEM);
begin

 with Grid1 do
 begin
 with Items do
 begin
 ItemDividerLine[Item] := EXGRIDLib_TLB.EmptyLine;
 CellHAlignment[OleVariant(Item),OleVariant(GroupItem[Item])] :=
EXGRIDLib_TLB.CenterAlignment;
 ItemBackColor[Item] := $f0f0f0;
 end;
 end
end;

Visual Objects

METHOD OCX_Exontrol1AddGroupItem(Item) CLASS MainDialog
 // AddGroupItem event - Occurs after a new Group Item has been inserted to
Items collection.
 local var_Items as IItems
 var_Items := oDCOCX_Exontrol1:Items
 var_Items:[ItemDividerLine,Item] := EmptyLine
 var_Items:[CellHAlignment,Item,var_Items:[GroupItem,Item]] := CenterAlignment
 var_Items:[ItemBackColor,Item] := RGB(240,240,240)
RETURN NIL

property Items.HasCellEditor ([Item as Variant], [ColIndex as Variant]) as
Boolean
Specifies whether a cell has a built-in editor.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

Boolean A boolean expression that indicates whether the cell has a
built-in editor created using the CellEditor method.

Use the HasCellEditor property to check whether the cell has an individual editor being
added using the CellEditor method before. Use the HasCellEditor property to find if a cell
has a particular editor. The HasCellEditor property gets true only if the cell has its own
editor assigned, it never gets true, if the cell's column has an editor. Use the CellEditor
method to assign different editors in the same column. Use the Editor property to assign the
same editor for all cells in the column.

The following VB sample shows the drop down portion of the control when a cell is focused:

Private Sub Grid1_FocusChanged()
 With Grid1
 Dim i As Long
 i = .FocusColumnIndex
 With Grid1.Items
 If (.CellEditorVisible(.FocusItem, i)) Then
 Dim e As EXGRIDLibCtl.Editor
 Set e = Grid1.Columns(i).Editor
 If .HasCellEditor(.FocusItem, i) Then
 Set e = .CellEditor(.FocusItem, i)
 End If
 If Not e Is Nothing Then
 e.DropDown
 End If
 End If
 End With
 End With
End Sub

The following VB sample assigns a date type editor to the focused cell (the sample checks
first if the cell doesn't have already an editor):

With Grid1.Items
 Dim h As EXGRIDLibCtl.HITEM
 h = .FocusItem
 If Not .HasCellEditor(h, Grid1.FocusColumnIndex) Then
 With .CellEditor(h, Grid1.FocusColumnIndex)
 .EditType = DateType
 End With
 End If
End With

The following C++ sample assigns a date type editor to the focused cell (the sample
checks first if the cell doesn't have already an editor):

#include "Items.h"
#include "Editor.h"
CItems items = m_grid.GetItems();
COleVariant vtItem(items.GetFocusItem()), vtColumn(
long(m_grid.GetFocusColumnIndex()));
if (!items.GetHasCellEditor(vtItem, vtColumn))
{
 CEditor editor = items.GetCellEditor(vtItem, vtColumn);
 editor.SetEditType(7 /*DateType*/);
}

The following VB.NET sample assigns a date type editor to the focused cell (the sample
checks first if the cell doesn't have already an editor):

With AxGrid1.Items
 Dim hItem As Integer = .FocusItem
 If Not .HasCellEditor(hItem, AxGrid1.FocusColumnIndex) Then
 With .CellEditor(hItem, AxGrid1.FocusColumnIndex)
 .EditType = EXGRIDLib.EditTypeEnum.DateType
 End With
 End If
End With

The following C# sample assigns a date type editor to the focused cell (the sample checks
first if the cell doesn't have already an editor):

EXGRIDLib.Items items = axGrid1.Items;
int hItem = items.FocusItem;
if (hItem != null)
 if (!items.get_HasCellEditor(hItem, axGrid1.FocusColumnIndex))
 {
 EXGRIDLib.Editor editor = items.get_CellEditor(hItem, axGrid1.FocusColumnIndex);
 editor.EditType = EXGRIDLib.EditTypeEnum.DateType;
 }

The following VFP sample assigns a date type editor to the focused cell (the sample
checks first if the cell doesn't have already an editor):

with thisform.Grid1.Items
 .DefaultItem = .FocusItem
 if (!.HasCellEditor(0, thisform.Grid1.FocusColumnIndex))
 with .CellEditor(0, thisform.Grid1.FocusColumnIndex)
 .EditType = 7 && DateType
 endwith
 endif
endwith

property Items.InnerCell ([Item as Variant], [ColIndex as Variant], [Index
as Variant]) as Variant
Retrieves the inner cell.

Type Description

Item as Variant
A long expression that indicates the handle of the item
where the cell is, or 0. If the Item parameter is 0, the
ColIndex parameter must indicate the handle of the cell.

ColIndex as Variant

A long expression that indicates the index of the column
where a cell is divided, or a long expression that indicates
the handle of the cell being divided, if the Item parameter
is missing or it is zero.

Index as Variant
A long expression that indicates the index of the inner
being requested. If the Index parameter is missing or it is
zero, the InnerCell property retrieves the master cell.

Variant A long expression that indicates the handle of the inner
cell.

Use the InnerCell property to get the inner cell. The InnerCell(, , 0) property always
retrieves the same cell. The InnerCell(, , 1) retrieves the first inner cell, and so on. The
InnerCells property always retrieves a non empty value. For instance, if a cell contains only
two splitted cells, the InnerCell(, , 3), or InnerCell(, , 4), and so on, always retrievs the
last inner cell. The SplitCell method splits a cell in two cells (the newly created cell is called
inner cell). Use the CellParent property to get the parent of the inner cell. Use the CellItem
property to get the item that's the owner of the cell. Use the CellWidth property to specify
the width of the inner cell. Use the CellParent property to determine whether the cell is a
master cell or an inner cell. If the CellParent property gets 0, it means that the cell is
master, else it is inner.

The following VB sample specifies whether a cell contains inner cells (the function checks
whether a cell is splitted):

Private Function isSplit(ByVal g As EXGRIDLibCtl.Grid, ByVal h As EXGRIDLibCtl.HITEM,
ByVal c As Long) As Boolean
 With g.Items
 isSplit = IIf(Not .InnerCell(h, c, 0) = .InnerCell(h, c, 1), True, False)
 End With
End Function

The following VB sample gets the master cell:

Private Function getMaster(ByVal g As EXGRIDLibCtl.Grid, ByVal h As EXGRIDLibCtl.HITEM,
ByVal c As Long) As EXGRIDLibCtl.HCELL
 With g.Items
 Dim r As EXGRIDLibCtl.HCELL
 r = c
 If Not (h = 0) Then
 r = .ItemCell(h, c)
 End If
 While Not (.CellParent(, r) = 0)
 r = .CellParent(, r)
 Wend
 getMaster = r
 End With
End Function

The VB following sample enumerates the list of the inner cells (including the cell where the
splitting starts):

Private Sub enumSplit(ByVal g As EXGRIDLibCtl.Grid, ByVal h As EXGRIDLibCtl.HITEM,
ByVal c As Long)
 With g.Items
 Dim i As Long
 i = -1
 Do
 i = i + 1
 Debug.Print .CellCaption(, .InnerCell(h, c, i))
 Loop While Not (.InnerCell(h, c, i) = .InnerCell(h, c, i + 1))
 End With
End Sub

The VB following sample enumerates the list of inner cells, starting from the master cell:

enumSplit Grid1, 0, getMaster(Grid1, h, c)

The following VB sample counts the inner cells:

Private Function getInnerCount(ByVal g As EXGRIDLibCtl.Grid, ByVal h As
EXGRIDLibCtl.HITEM, ByVal c As Long) As Long
 With g.Items

 Dim i As Long
 i = -1
 Do
 i = i + 1
 Loop While Not (.InnerCell(h, c, i) = .InnerCell(h, c, i + 1))
 getInnerCount = i
 End With
End Function

The following VC sample specifies whether a cell contains inner cells (the function checks
whether a cell is splitted):

long V2I(VARIANT* pvtValue)
{
 COleVariant vtResult;
 vtResult.ChangeType(VT_I4, pvtValue);
 return V_I4(&vtResult);
}

BOOL isSplit(CGrid& grid, long h, long c)
{
 CItems items = grid.GetItems();
 return V2I(&items.GetInnerCell(COleVariant(h), COleVariant(c), COleVariant((long)0)
)) != V2I(&items.GetInnerCell(COleVariant(h), COleVariant(c), COleVariant((long)1)));
}

The following VC sample gets the master cell:

long getMaster(CGrid& grid, long h, long c)
{
 COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
 CItems items = grid.GetItems();
 long r = c;
 if (h != 0)
 r = items.GetItemCell(h, COleVariant(c));
 while (V2I(&items.GetCellParent(vtMissing, COleVariant(r))) != 0)
 r = V2I(&items.GetCellParent(vtMissing, COleVariant(r)));
 return r;

}

The following VC sample counts the inner cells:

long getInnerCount(CGrid& grid, long h, long c)
{
 CItems items = grid.GetItems();
 COleVariant vtItem(h), vtColumn(c);
 long i = -1;
 do
 {
 i++;
 }
 while (V2I(&items.GetInnerCell(vtItem, vtColumn, COleVariant(i))) != V2I(
&items.GetInnerCell(vtItem, vtColumn, COleVariant((long)(i + 1)))));
 return i;
}

The following VB.NET sample splits the first visible cell in two cells:

With AxGrid1.Items
 Dim i As Object
 i = .SplitCell(.FirstVisibleItem, 0)
 .CellValue(Nothing, i) = "inner cell"
End With

The following C# sample splits the first visible cell in two cells:

EXGRIDLib.Items items = axGrid1.Items;
object i = items.get_SplitCell(items.FirstVisibleItem, 0);
items.set_CellValue(null, i, "inner cell");

The following VFP sample splits the first visible cell in two cells:

with thisform.Grid1.Items
 local i
 i = .SplitCell(.FirstVisibleItem,0)
 local s, crlf
 crlf = chr(13) + chr(10)

 s = "Items" + crlf
 s = s + "{" + crlf
 s = s + "CellValue(," + str(i) + ") = " + chr(34) + "inner cell" + chr(34) + crlf
 s = s + "}"
 thisform.Grid1.Template = s
endwith

method Items.InsertControlItem (Parent as HITEM, ControlID as String,
[License as Variant])

Inserts a new item of ActiveX type, and returns a handle to the newly created item.

Type Description

Parent as HITEM

A long expression that indicates the handle of the parent
item where the ActiveX will be inserted. If the argument is
missing then the InsertControlItem property inserts the
ActiveX control as a root item. If the Parent property is
referring a locked item (ItemLocked property), the
InsertControlItem property doesn't insert a new child
ActiveX, instead insert the ActiveX control to the locked
item that's specified by the Parent property.

ControlID as String
A string expression that can be formatted as follows: a
prog ID, a CLSID, a URL, a reference to an Active
document , a fragment of HTML.

License as Variant

A string expression that indicates the runtime license key
for the component being inserted, if required. Only, the
vendor of the component you are going to use is able to
give you such of runtime license, so please contact the
control's vendor for such of key. Your development license
key is not compatible with the runtime license key, so it
can't be used here.

Return Description

HITEM A long expression that indicates the item's handle that
indicates the newly created item.

The control supports ActiveX hosting, so you can insert any ActiveX component as a child
item of the control. If you are using the /NET assembly you can use the InsertObjectItem
property to insert a /NET control as a child item of the control. The InsertControlItem
property creates the specified ActiveX control and hosts to a new child item of the control,
while the InsertObjectItem property hosts the already created object to a new child item of
the control. An inner control sends notifications/events to parent control through the
ItemOleEvent event.

The ControlID must be formatted in one of the following ways:

A ProgID such as "Exontrol.Grid"
A CLSID such as "{8E27C92B-1264-101C-8A2F-040224009C02}"
A URL such as "https://www.exontrol.com"

A reference to an Active document such as "c:\temp\myfile.doc", or
"c:\temp\picture.gif"
A fragment of HTML such as "MSHTML:<HTML><BODY>This is a line of
text</BODY></HTML>"
A fragment of XML

In case the control you want to insert fails, you can add the "A2X:" prefix to the ControlID
such as:

A ProgID such as "A2X:Exontrol.Grid"
A CLSID such as "A2X:{8E27C92B-1264-101C-8A2F-040224009C02}"
A URL such as "A2X:https://www.exontrol.com"
A reference to an Active document such as "A2X:c:\temp\myfile.doc", or
"c:\temp\picture.gif"
A fragment of HTML such as "A2X:MSHTML:<HTML><BODY>This is a line of
text</BODY></HTML>"

The InsertControlItem property creates an ActiveX control that's hosted by the exGrid
control. The look and feel of the inner ActiveX control depends on the identifier you
are using, and the version of the library that implements the ActiveX control, so you
need to consult the documentation of the inner ActiveX control you are inserting
inside the exGrid control.

Use the ItemHeight property to specify the height
of the item when it contains an ActiveX control.
Use the ItemWidth property to specify the width
of the ActiveX control, or the position in the item
where the ActiveX is displayed. Once that an
item of ActiveX type has been added you can get
the OLE control created using the ItemObject
property. To check if an item contains an ActiveX
control you can use ItemControlID property. Use
the ItemAllowSizing property to let user resizes
the item at runtime, and so the object being
hosted. To change the height of an ActiveX item
you have to use ItemHeight property. When the
control contains at least an item of ActiveX type,
it is recommended to set ScrollBySingleLine
property of control to true. Events from
contained components are fired through to your program using the exact same model used
in VB6 for components added at run time (See ItemOleEvent event, OleEvent and
OleEventParam). For instance, when an ActiveX control fires an event, the control
forwards that event to your container using ItemOleEvent event of the exTree control. Use
the BeginUpdate and EndUpdate methods to update the control's content when adding

ActiveX controls on the fly. Use the ItemControlID property to retrieve the control's
identifier.

You can use one of the following methods to find out information about the inner ActiveX
control:

Looking for the inner ActiveX control's documentation. For instance, if you are inserting
a "MSCAL.Calendar" control you need to know how to use and run the "Microsoft
Calendar Control" in order to call its properties or methods.
Using the OLE View tool (that's installed by MSDEV) to list the inner ActiveX control's
type library.
Using the Exontrol's exPropertiesList control to browse the inner ActiveX control
properties at runtime. Create a new project, insert an exGrid and exPropertiesList
control inside the main form, and use the following snippet of code:

Private Sub Form_Load()
 With Grid1
 .BeginUpdate
 .Columns.Add "Column 1"
 .Items.InsertControlItem , "Exontrol.ChartView"
 .EndUpdate
 With .Items
 PropertiesList1.Select .ItemObject(.ItemByIndex(0))
 End With
 End With
End Sub

This way the exPropertiesList control browses the object that's hosted by the first item
in the exGrid control, so you will be able to see the properties that you will be able to
call them for the inner ActiveX control. Please notice that some objects/identifier can't
be browsed by the exPropertiesList control so, the Select method may fail. Also, if the
exPropertiesList browser is empty when running the form, means that the control has
not browse able properties, instead it may have methods or properties with
parameters, that can't be browsed by the exPropertiesList control.

Using the Exontrol's exPropertiesList control to get the list of interfaces that the inner
object implements so it can guide you to the proper documentation. For instance, let's
say that we need to find out something about a HTML fragment like: "MSHTML:
<HTML><BODY>This is a line of text</BODY></HTML>", so you will need to run a
code like follows:

Private Sub Form_Load()

https://exontrol.com/expropertieslist.jsp

 With Grid1
 .BeginUpdate
 .Columns.Add "Column 1"
 .Items.InsertControlItem , "MSHTML:<HTML><BODY>This is a line of
text</BODY></HTML>"
 .EndUpdate
 With .Items
 Debug.Print PropertiesList1.Interfaces(.ItemObject(.ItemByIndex(0)))
 End With
 End With
End Sub

Once that you run the sample, the output window (Immediate window) lists the
interfaces that inner object implements, and so in our case we will notice a list like
follows:

IUnknown
IPersistFile
IPersist
IViewObject
IDataObject
IOleObject
IOleInPlaceObject
IOleWindow
IOleInPlaceActiveObject
IParseDisplayName
IOleContainer
IOleItemContainer
IOleCache
IViewObject2
IOleCache2
IDispatch
IShellPropSheetExt
IOleInPlaceObjectWindowless
ICustomDoc
IHTMLDocument3
IFPMarkupServices
DispHTMLAnchorElement

DispHTMLAreaElement
DispHTMLBaseFontElement
DispHTMLBlockElement
DispHTMLBody
DispHTMLTableCaption
DispIHTMLOptionButtonElement
DispHTMLCommentElement
DispHTMLDDElement
DispHTMLDivElement
DispHTMLDTElement
DispHTMLDivPosition
DispHTMLFormElement
DispHTMLStyleElement
DispHTMLFontElement
DispHTMLFrameElement
DispHTMLFrameSetSite
DispHTMLHeaderElement
DispHTMLTitleElement
DispHTMLMetaElement
DispHTMLBaseElement
DispHTMLIsIndexElement
DispHTMLNextIdElement
DispHTMLIFrame
DispHTMLImg
DispIHTMLInputImage
DispIHTMLInputButtonElement
DispHTMLButtonElement
DispIHTMLInputTextElement
DispHTMLTextAreaElement
DispHTMLLabelElement
DispHTMLLIElement
DispHTMLLinkElement
DispHTMLListElement
DispHTMLMapElement
DispHTMLMarqueeElement
DispHTMLNoShowElement
DispHTMLObjectElement

DispHTMLOListElement
DispHTMLOptionElement
DispHTMLParaElement
DispHTMLPhraseElement
DispHTMLEmbed
DispHTMLScriptElement
DispHTMLSelectElement
DispHTMLTable
DispHTMLTableCol
DispHTMLTableSection
DispHTMLTableRow
DispHTMLTableCell
DispHTMLTextElement
DispHTMLUListElement
DispHTMLUnknownElement
DispHTMLBRElement
DispHTMLDListElement
DispHTMLBGsound
DispHTMLHRElement
DispIHTMLTextContainer
DispIHTMLControlElement
DispHTMLFrameBase
DispIHTMLInputFileElement
DispHTMLSpanFlow
DispHTMLFieldSetElement
DispHTMLLegendElement
DispHTMLSpanElement
DispHTMLRichtextElement
DispHTMLCurrentStyle
DispCEventObj
DispHTMLStyle
DispHTMLRuleStyle
DispHTMLWindow2
DispHTMLWindowProxy
DispHTMLDocument
DispHTMLHtmlElement
DispHTMLHeadElement

DispHTMLGenericElement
DispHTMLDOMAttribute
DispHTMLDOMTextNode
DispHTMLAreasCollection
DispHTMLElementCollection
DispHTMLAttributeCollection
IFPMarkupContainer
DispHTCDefaultDispatch
DispHTCEventBehavior
DispDOMChildrenCollection
DispHTMLAppBehavior
DispHTMLInputElement
DispHTCDescBehavior
DispHTCPropertyBehavior
DispHTMLDocumentFragment
DispHTCAttachBehavior
DispHTCMethodBehavior
DispHTMLPopup
DispHTMLRenderStyle
DispHTMLDefaults
DispHTMLStyleSheet
DispHTMLDOMImplementation
DispHTMLParamElement
DispHTMLScreen
IHTMLDocument4
IHTMLDocument5
IHTMLDocument2
IPerPropertyBrowsing
IViewObjectEx
IInternetHostSecurityManager
IPointerInactive
IHTMLDocument
IServiceProvider
ITargetContainer
IHlinkTarget
IPersistMoniker
DataSource

IPersistStreamInit
IPersistHistory
IMonikerProp
IProvideClassInfo2
IDispatchEx
IProvideMultipleClassInfo
IProvideClassInfo
IConnectionPointContainer
IOleControl
ISpecifyPropertyPages
IOleDocument
IOleDocumentView
IOleCommandTarget
IObjectIdentity
IObjectSafety
ISupportErrorInfo

The list of interfaces you got is quite long, but gives you useful information to start
looking for the proper documentation that we need. In this list we need to locate the
interfaces that are derived from the IDispatch interface, because in any COM oriented
language you can call a property of an object only if it is derived from IDispatch
interface. The question is how can we know which interface derives from IDispatch
interface. In case you locate a IDispatchEx interface in your list, it means that it is
possible to find multiple interfaces that derives from the IDispatch, else if only a
IDispatch is located, one single interface can derive from the IDispatch. The list of
interfaces differs from the objects to objects. For instance, if you are running the same
code but using the "Exontrol.grid" identifier the list of interfaces looks like follows:

IUnknown
IPersistStorage
IPersist
IViewObject
IDataObject
IOleObject
IOleInPlaceObject
IOleWindow
IOleInPlaceActiveObject
IViewObject2
IDispatch

IOleInPlaceObjectWindowless
IViewObjectEx
IPersistStreamInit
IGrid
IProvideClassInfo2
IProvideClassInfo
IConnectionPointContainer
IOleControl
ISpecifyPropertyPages
IObjectSafety
IQuickActivate
ISupportErrorInfo

In our case the IHTMLDocument, IHTMLDocument2, IHTMLDocument3,
IHTMLDocument4, IHTMLDocument5 interfaces derive from IDispatch so we can call
any of properties of these interfaces like in the following code:

Private Sub Form_Load()
 With Grid1
 .BeginUpdate
 .Columns.Add "Column 1"
 .Items.InsertControlItem , "MSHTML:<HTML><BODY>This is a line of
text</BODY></HTML>"
 .EndUpdate
 With .Items
 Debug.Print .ItemObject(.ItemByIndex(0)).uniqueID()
 End With
 End With
End Sub

We arbitrary choose the uniqueID property that's a property of the IHTMLDocument3
interface. The documentation for these interfaces can be found in your MSDN
documentation or by looking on the net for these names. Another alternative is using
the OLEView tool in order to list the object's type library. Unfortunately, You need to
contact the vendor for particular ActiveX controls, because we can't provide
documentation for any ActiveX control you might use. We can provide
documentation only for our components. Let's say that you will need other HTML
fragment like: "MSHTML:<HTML><BODY bgcolor='#000000'>This is a line of
text</BODY></HTML>", and you will ask us why the control can't change the HTML's

background color? Obviously, the control just passes the HTML fragment to the Web
browser, and the Web browser handles in its own way. The idea is that the control is
not responsible for the look and the behavior of the inner ActiveX controls. Anyway, in
this particular case how can we solve the problem? If we see that some attributes are
not recognized, we can try to look for a property that can do the same thing. In this
case we are looking for the bkColor property of IHTMLDocument2 interface that sets
or retrieves a value that indicates the background color behind the object. So the code
should look like:

Private Sub Form_Load()
 With Grid1
 .BeginUpdate
 .Columns.Add "Column 1"
 .Items.InsertControlItem , "MSHTML:<HTML><BODY>This is a line of
text</BODY></HTML>"
 .EndUpdate
 With .Items
 With .ItemObject(.ItemByIndex(0))
 .bgColor = RGB(0, 0, 0)
 .fgcolor = RGB(255, 255, 255)
 End With
 End With
 End With
End Sub

Once an item of ActiveX type has been added you can get the OLE control that was
created using the ItemObject property. Use the ItemControlID property to check if an item
contains an ActiveX control. Use the ItemHeight property to change the item's height (the
item's height manages the control's height). When the control contains an item of ActiveX
type, it is recommend that you set the ScrollBySingleLine property of the control to true.
Events from contained components are fired through to your program using the exact same
model used in VB6 for components added at run time (See ItemOleEvent event, OleEvent
and OleEventParam). For instance, when an ActiveX control fires an event, the control
forwards that event to your container using ItemOleEvent event of the ExGrid control. The
InsertControlItem method is not available if the control is running in the virtual mode.

The following VB sample adds dynamically an ExGrid ActiveX Control and a Microsoft
Calendar Control:

' Inserts a new ActiveX control of Exontrol.Grid type
Dim hGrid As HITEM

hGrid = Grid1.Items.InsertControlItem(Grid1.Items(0), "Exontrol.Grid", runtimelicensekey)
' Sets the ActiveX control height
Grid1.Items.ItemHeight(hGrid) = 212
' Gets the ExGrid control created. Since the ProgID used to create the item is
"Exontrol.Grid"
' the object will be of EXGRIDLibCtl.Grid type
Dim objGrid As Object
Set objGrid = Grid1.Items.ItemObject(hGrid)
objGrid.Columns.Add "Column"
objGrid.Items.AddItem "One"
objGrid.Items.AddItem "Two"
objGrid.Items.AddItem "Three"

' Inserts a new ActiveX control of MSCAL.Calendar type
Dim hCalc As HITEM
hCalc = objGrid.Items.InsertControlItem(, "MSCal.Calendar")
Set objCalc = Grid1.Items.ItemObject(hCalc)
objCalc.ShowTitle = False
objCalc.ShowDateSelectors = False

where the runtimelicensekey is the exGrid's runtime license key. Please contact us to get
the exGrid's runtime license key. Your order number, or your registered e-mail address
is required, when requesting the control's runtime license key. Only, the vendor of the
component you are going to use is able to give you such of runtime license, so please
contact the control's vendor for such of key. Your development license key is not compatible
with the runtime license key, so it can't be used here. Please notice that your development
license key is not equivalent with the generated runtime license key. If you are using the
DEMO version for testing purpose, you don't need a runtime license key.

The following VB sample shows how to handle any event that a contained ActiveX fires:

Private Sub Grid1_ItemOleEvent(ByVal Item As EXGRIDLibCtl.HITEM, ByVal Ev As
EXGRIDLibCtl.IOleEvent)
 On Error Resume Next
 Dim i As Long
 Debug.Print "The " & Ev.Name & " was fired. "
 If Not (Ev.CountParam = 0) Then
 Debug.Print "The event has the following parameters: "
 For i = 0 To Ev.CountParam - 1

https://exontrol.com/sg.jsp?content=techsupport&order=RLK&product=ExGrid

 Debug.Print " - " & Ev(i).Name & " = " & Ev(i).Value
 Next
 End If
End Sub

Some of ActiveX controls requires additional window styles to be added to the container
window. For instance, the Web Brower added by the Grid1.Items.InsertControlItem(,
"https://www.exontrol.com") won't add scroll bars, so you have to do the following:

First thing is to declare the WS_HSCROLL and WS_VSCROLL constants at the top of your
module:

Private Const WS_VSCROLL = &H200000
Private Const WS_HSCROLL = &H100000

Then you need to to insert a Web control use the following lines:

Dim hWeb As HITEM
hWeb = Grid1.Items.InsertControlItem(, "https://www.exontrol.com")
Grid1.Items.ItemHeight(hWeb) = 196

Next step is adding the AddItem event handler:

Private Sub Grid1_AddItem(ByVal Item As EXGRIDLibCtl.HITEM)
 If (Grid1.Items.ItemControlID(Item) = "https://www.exontrol.com") Then
 ' Some of controls like the WEB control, requires some additional window styles (like
WS_HSCROLL and WS_VSCROLL window styles)
 ' for the window that host that WEB control, to allow scrolling the web page
 Grid1.Items.ItemWindowHostCreateStyle(Item) =
Grid1.Items.ItemWindowHostCreateStyle(Item) + WS_HSCROLL + WS_VSCROLL
 End If
End Sub

The following VB sample adds the Exontrol's ExCalendar Component:

With Grid1
 .BeginUpdate
 .ScrollBySingleLine = True
 With Grid1.Items
 Dim h As HITEM

https://www.exontrol.com

 h = .InsertControlItem(, "Exontrol.Calendar")
 .ItemHeight(h) = 182
 With .ItemObject(h)
 .Appearance = 0
 .BackColor = vbWhite
 .ForeColor = vbBlack
 .ShowTodayButton = False
 End With
 End With
 .EndUpdate
End With

The following VB sample binds the master control to a table, and displays related tables
when the user expands an item/record. The sample uses the DataSource property to bind a
record set to the control. The InsertControlItem method inserts an ActiveX inside the item.

Option Explicit

Public Function getRS(ByVal q As String) As Object
 Dim rs As Object, strDatabase
 strDatabase = App.Path + "\ExontrolDemo.mdb"
 Set rs = CreateObject("ADODB.Recordset")
 rs.Open q, "Provider = Microsoft.Jet.OLEDB.4.0; Data Source =" & strDatabase, 3, 3, 0
 Set getRS = rs
End Function

Private Sub Form_Load()
With Grid1
 .BeginUpdate
 .LinesAtRoot = exLinesAtRoot
 .MarkSearchColumn = False
 .ScrollBySingleLine = True
 .HideSelection = True
 Set .DataSource = getRS("Transactions")
 .EndUpdate
End With
End Sub

Private Sub Grid1_AddItem(ByVal Item As EXGRIDLibCtl.HITEM)
 With Grid1.Items
 .ItemHasChildren(Item) = .ItemParent(Item) = 0
 End With
End Sub

Private Sub Grid1_BeforeExpandItem(ByVal Item As EXGRIDLibCtl.HITEM, Cancel As
Variant)
 With Grid1.Items
 If .ItemHasChildren(Item) Then
 With .ItemObject(.InsertControlItem(Item, "Exontrol.Grid"))
 .BeginUpdate
 .MarkSearchColumn = False
 .HideSelection = True
 Set .DataSource = getRS("Select * from TransactionDetails where TrnDet_ID = "
& Grid1.Items.CellValue(Item, "Trn_ID"))
 .Columns(0).Visible = False
 .EndUpdate
 End With
 .ItemHasChildren(Item) = False
 End If
 End With
 Grid1.Refresh
End Sub

The following C++ sample adds the Exontrol's ExOrgChart Component:

#include "Items.h"

#pragma warning(disable : 4146)
#import <ExOrgChart.dll>

CItems items = m_grid.GetItems();
m_grid.BeginUpdate();
m_grid.SetScrollBySingleLine(TRUE);
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
long h = items.InsertControlItem(0, "Exontrol.ChartView", vtMissing);
items.SetItemHeight(h, 182);
EXORGCHARTLib::IChartViewPtr spChart(items.GetItemObject(h));
if (spChart != NULL)
{
 spChart->BeginUpdate();
 spChart->BackColor = RGB(255,255,255);
 spChart->ForeColor = RGB(0,0,0);
 EXORGCHARTLib::INodesPtr spNodes = spChart->Nodes;
 spNodes->Add("Child 1", "Root", "1", vtMissing, vtMissing);
 spNodes->Add("SubChild 1", "1", vtMissing, vtMissing, vtMissing);
 spNodes->Add("SubChild 2", "1", vtMissing, vtMissing, vtMissing);
 spNodes->Add("Child 2", "Root", vtMissing, vtMissing, vtMissing);
 spChart->EndUpdate();
}
m_grid.EndUpdate();

The sample uses the #import statement to include the ExOrgChart's Type Library. In this
sample, the ItemObject property retrieves an IChartView object. The path to the library
should be provided in case it is not located in your system folder.

The following C# sample adds the Exontrol's ExGrid Component:

axGrid1.BeginUpdate();
EXGRIDLib.Items items = axGrid1.Items;
axGrid1.ScrollBySingleLine = true;
int h = items.InsertControlItem(0, "Exontrol.Grid", "");
items.set_ItemHeight(h, 182);
object gridInside = items.get_ItemObject(h);
if (gridInside != null)
{

 EXGRIDLib.Grid grid = gridInside as EXGRIDLib.Grid;
 if (grid != null)
 {
 grid.BeginUpdate();
 grid.LinesAtRoot = EXGRIDLib.LinesAtRootEnum.exLinesAtRoot;
 grid.Columns.Add("Column 1");
 grid.Columns.Add("Column 2");
 grid.Columns.Add("Column 3");
 EXGRIDLib.Items itemsInside = grid.Items;
 int hInside = itemsInside.AddItem("Item 1");
 itemsInside.set_CellValue(hInside, 1, "SubItem 1");
 itemsInside.set_CellValue(hInside, 2, "SubItem 2");
 hInside = itemsInside.InsertItem(hInside, null, "Item 2");
 itemsInside.set_CellValue(hInside, 1, "SubItem 1");
 itemsInside.set_CellValue(hInside, 2, "SubItem 2");
 grid.EndUpdate();
 }
}
axGrid1.EndUpdate();

The following C# sample casts the ItemObject to IGrid interface:

int hX = axGrid1.Items.InsertControlItem(0, "Exontrol.Grid", "");
EXGRIDLib.IGrid spGrid = axGrid1.Items.get_ItemObject(hX) as EXGRIDLib.IGrid;
spGrid.Columns.Add("Inner Column");

The following VB.NET sample adds the Exontrol's ExOrgChart Component:

With AxGrid1
 .BeginUpdate()
 .ScrollBySingleLine = True
 With .Items
 Dim hItem As Integer
 hItem = .InsertControlItem(, "Exontrol.ChartView")
 .ItemHeight(hItem) = 182
 With .ItemObject(hItem)
 .BackColor = ToUInt32(Color.White)
 .ForeColor = ToUInt32(Color.Black)

 With .Nodes
 .Add("Child 1", , "1")
 .Add("SubChild 1", "1")
 .Add("SubChild 2", "1")
 .Add("Child 2")
 End With
 End With
 End With
 .EndUpdate()
End With

The following VB.NET sample casts the ItemObject to IGrid interface:

Dim hX As Long = .InsertControlItem(0, "Exontrol.Grid", "")
Dim spGrid As EXGRIDLib.IGrid = .ItemObject(hX)
spGrid.Columns.Add("Inner Column")

The following VFP sample adds the Exontrol's ExGrid Component:

with thisform.Grid1
 .BeginUpdate()
 .ScrollBySingleLine = .t.
 with .Items
 .DefaultItem = .InsertControlItem(0, "Exontrol.Grid")
 .ItemHeight(0) = 182
 with .ItemObject(0)
 .BeginUpdate()
 with .Columns
 with .Add("Column 1").Editor()
 .EditType = 1 && EditType editor
 endwith
 endwith
 with .Items
 .AddItem("Text 1")
 .AddItem("Text 2")
 .AddItem("Text 3")
 endwith
 .EndUpdate()

 endwith
 endwith
 .EndUpdate()
endwith

The following VB6 sample shows you how to handle an event from a outer-inner-inner
control. In other words, you have a master control (outer), which insert another control
(inner), which insert another control (inner).

Private Sub expandItem(ByVal grid As Object, ByVal item As Long, ByVal level As Long)
 Debug.Print "Expand item in " & level & " control"
End Sub

' BeforeExpandItem event - Fired before an item is about to be expanded (collapsed).
Private Sub Grid1_BeforeExpandItem(ByVal item As EXGRIDLibCtl.HITEM, Cancel As
Variant)
 expandItem Grid1.Object, item, 0
End Sub

' ItemOleEvent event - Fired when an ActiveX control hosted by an item has fired an event.
Private Sub Grid1_ItemOleEvent(ByVal item As EXGRIDLibCtl.HITEM, ByVal Ev As
EXGRIDLibCtl.IOleEvent)
 With Grid1
 'Debug.Print Ev.ToString()
 If (Ev.ID = 12) Then ' BeforeExpandItem
 expandItem Grid1.Items.ItemObject(item), Ev.Param(0).Value, 1
 Else
 If (Ev.ID = 14) Then ' ItemOLEEvent
 'Debug.Print Ev.Param(1).Value.ToString()
 If (Ev.Param(1).Value.ID = 12) Then ' BeforeExpandItem
 'Debug.Print "Expand item in inner-inner control"
 expandItem Grid1.Items.ItemObject(item).Items.ItemObject(Ev.Param(0).Value),
Ev.Param(1).Value.Param(0).Value, 2
 End If
 End If
 End If
 End With
End Sub

method Items.InsertItem ([Parent as HITEM], [UserData as Variant], [Value
as Variant])

Inserts a new item, and returns a handle to the newly created item.

Type Description

Parent as HITEM A long expression that indicates the item's handle that
indicates the parent item where the newly item is inserted

UserData as Variant A Variant expression that indicates the item's extra data.
Use the ItemData property to retrieve later this value.

Value as Variant
A Variant expression that indicates the cell's value on the
first column, or a safe array that holds values for each
column.

Return Description
HITEM Retrieves the handle of the newly created item.

Use the InsertItem property to add a new child to an item. The InsertItem property fires the
AddItem event. You can use the InsertItem(,,"Root") or AddItem("Root") to add a root item.
An item that has no parent is a root item. To insert an ActiveX control, use the
InsertControlItem property of the Items property. Use the CellValue property to specify the
values for cells in the second, third columns, and so on. Use the CellValueFormat property
to specify whether the value contains HTML format or computed fields. The InsertItem
method is not available if the control is running in the virtual mode. Use the
LockedItemCount property to lock or unlock items to the top or bottom side of the control.
Use the MergeCells method to combine one or more cells in a single cell. Use the SplitCell
property to split a cell. If the CauseValidateValue property is True, the control fires the
ValidateValue property when the user adds a new item. Use the ConditionalFormats method
to apply formats to a cell or range of cells, and have that formatting change depending on
the value of the cell or the value of a formula.

The following VB sample shows how to create a simple hierarchy (few items and one
column):

With Grid1
 .BeginUpdate
 .ColumnAutoResize = True
 .LinesAtRoot = exLinesAtRoot
 .FullRowSelect = False
 .MarkSearchColumn = False
 .Columns.Add "Default"

 With .Items
 Dim h As HITEM, hx As HITEM
 h = .InsertItem(, , "Root")
 hx = .InsertItem(h, , "This is an item that should break the line")
 .CellSingleLine(hx, 0) = False
 h = .InsertItem(h, , "Child 2")
 .InsertItem h, , "SubChild 2.1"
 h = .InsertItem(h, , "SubChild 2.2")
 End With
 .EndUpdate
End With

The following VB sample insert items and multiple columns as well:

With Grid1
 .BeginUpdate
 .HeaderVisible = True
 .ColumnAutoResize = True
 .LinesAtRoot = exLinesAtRoot
 .FullRowSelect = False
 .MarkSearchColumn = False
 .Columns.Add "Column 1"
 .Columns.Add "Column 2"
 With .Items
 Dim h As HITEM, hx As HITEM
 h = .InsertItem(, , "Root")
 hx = .InsertItem(h, , Array("This is an item that should break
the line", "Just another cell that holds some info"))
 .CellSingleLine(hx, 0) = False
 .CellSingleLine(hx, 1) = False
 h = .InsertItem(h, , "Child 2")
 .InsertItem h, , Array("SubChild 2.1", "SubItem 2.1")
 h = .InsertItem(h, , Array("SubChild 2.2", "SubItem 2.2"))
 End With
 .EndUpdate
End With

The following VB sample inserts a child item and expands the focused item:

With Grid1.Items
 .InsertItem .FocusItem, , "new child"
 .ExpandItem(.FocusItem) = True
End With

The following C++ sample inserts a child item and expands the focused item:

#include "Items.h"
CItems items = m_grid.GetItems();
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
long h = items.InsertItem(items.GetFocusItem(), vtMissing, COleVariant("new child"));
items.SetExpandItem(items.GetFocusItem(), TRUE);

The following VB.NET sample inserts a child item and expands the focused item:

With AxGrid1.Items
 Dim hItem As Integer = .InsertItem(.FocusItem, , "new child")
 .ExpandItem(.FocusItem) = True
End With

The following C# sample inserts a child item and expands the focused item:

int hItem = axGrid1.Items.InsertItem(axGrid1.Items.FocusItem, null, "new child");
axGrid1.Items.set_ExpandItem(axGrid1.Items.FocusItem, true);

The following VFP sample inserts a child item and expands the focused item:

with thisform.Grid1.Items
 .DefaultItem = .InsertItem(.FocusItem, "", "new child")
 .DefaultItem = .FocusItem
 .ExpandItem(0) = .t.
endwith

method Items.InsertObjectItem (Parent as HITEM, [UserData as Variant],
[Obj as Variant])
Inserts a new item that hosts the giving object, and returns a handle to the newly created
item.

Type Description

Parent as HITEM

A long expression that indicates the handle of the parent
item where the object will be inserted. If the argument is
missing then the InsertObjectItem property inserts the
object as a root item. If the Parent property is referring a
locked item (ItemLocked property), the InsertObjectItem
property doesn't insert a new child, instead places the
object to the locked item that's specified by the Parent
property.

UserData as Variant

A VARIANT expression being specified at creating time,
which can be accessed during the AddItem event. The
ItemData property indicates the extra data associated
with any item. The ItemData property is initalized with the
value of the UserData parameter.

Obj as Variant

A object being hosted. The most common type is
System.Windows.Forms.Control from the /NET
framework. Generally, the Obj could be any control that
can be placed to a form or dialog and it is visible at
runtime. The Obj can not be a windowless control (a
control that does not require a window, such a line or
circle). The Obj parameter could be also an ActiveX
control (that has already being placed in the form/dialog)
in this case, the Obj should be the result of the property
Object() (VB6, VFP). GetOcx() property. Finally, the Obj
parameter could be of long type (numeric) in which case
it should refer the handle of a window that follows to be
hosted in the newly created item. The handle of the
window can be obtained as m_hWnd member of MFC
classes, hWnd or Handle property in the /NET framework.
After creating the host, the ItemObject property can be
used to retrieve the originally object (Obj parameter).

Return Description

HITEM A long expression that indicates the item's handle that
indicates the newly created item.

The control supports /NET Control hosting, so you can insert any /NET component as a

child item of the control. This property is provided for the /NET assembly, but it is available
for the /COM environment too. The InsertObjectItem property hosts the already created
object to a new child item of the control while the InsertControlItem property creates the
specified ActiveX control and hosts to a new child item of the control. So, the difference
between the InsertObjectItem and InsertControlItem is that the InsertObjectItem does not
create the object, while the InsertControlItem creates the specified control. If you are using
the /NET assembly, the Obj should be the object to be inserted (usually of
System.Windows.Forms.Control type), while for the /COM environment, the Obj should be
the ActiveX control being already placed to a form, or a long expression that specifies the
handle of the window to be hosted in a new child item of the control.

The ItemHeight property specifes the height of the item, and so the height of the
hosted object.
The ItemWidth property specifies the width of hosted object, or the position/column in
the item where the object is displayed.
The ItemAllowSizing property indicates whether the user can resize the item at runtime,
and so the object being hosted.
The ItemObject property retrieves the originally object if the item was previously
created using the InsertObjectItem property, or the created ActiveX control if using the
InsertControlItem property.

The following screen shot shows the /NET assembly (master control) that hosts a
System.Windows.Forms.PropertyGrid control from the /NET framework (inner control):

The following samples describes:

inserting new child item to host your object
handing the events for the inner controls

The following VB/NET sample inserts a child item that hosts an inner exgrid/net component:

With Exgrid1
 .BeginUpdate()
 With .Items
 Dim hx As Integer = .InsertObjectItem(.FocusItem, Nothing, New
exontrol.EXGRIDLib.exgrid())
 If (hx <> 0) Then
 With .get_ItemObject(hx)
 .BeginUpdate()
 .Columns.Add("inner column")
 .Items.AddItem("inner item")
 .EndUpdate()
 End With
 End If
 End With
 .EndUpdate()
End With

The following C# sample inserts a child item that hosts an inner exgrid/net component:

exgrid1.BeginUpdate();
int hx = exgrid1.Items.InsertObjectItem(exgrid1.Items.FocusItem, null, new
exontrol.EXGRIDLib.exgrid());
if (hx != 0)
{
 exontrol.EXGRIDLib.exgrid innerGrid = exgrid1.Items.get_ItemObject(hx) as
exontrol.EXGRIDLib.exgrid;
 if (innerGrid != null)
 {
 innerGrid.BeginUpdate();
 innerGrid.Columns.Add("inner column");
 innerGrid.Items.AddItem("inner item");
 innerGrid.EndUpdate();
 }
}
exgrid1.EndUpdate();

The following screen shot shows the /NET assembly (master control) that hosts another
/NET assembly control (inner control):

The following VB/NET sample inserts a child item that hosts an inner
System.Windows.Forms.PropertyGrid component from the /NET framework:

With Exgrid1
 .BeginUpdate()
 With .Items
 Dim hx As Integer = .InsertObjectItem(.FocusItem, Nothing, New
System.Windows.Forms.PropertyGrid())
 If (hx <> 0) Then
 With .get_ItemObject(hx)
 .SelectedObject = Exgrid1
 End With
 End If
 End With
 .EndUpdate()
End With

The following C# sample inserts a child item that hosts an inner
System.Windows.Forms.PropertyGrid component from the /NET framework:

exgrid1.BeginUpdate();
int hx = exgrid1.Items.InsertObjectItem(exgrid1.Items.FocusItem, null, new
System.Windows.Forms.PropertyGrid());
if (hx != 0)

{
 System.Windows.Forms.PropertyGrid innerPropertyGrid =
exgrid1.Items.get_ItemObject(hx) as System.Windows.Forms.PropertyGrid;
 if (innerPropertyGrid != null)
 innerPropertyGrid.SelectedObject = exgrid1;
}
exgrid1.EndUpdate();

You can handle the events for the inner controls as you would do if they has been placed to
a form or dialog.

In C# you have to use the += operator while in VB/NET you can use the AddHandler as
shown in the following samples:

The following VB/NET sample adds a handler for the DblClick event:

' innerGrid_DblClick handles event for the inner grid, where the sender is the object iself
AddHandler innerGrid.DblClick, AddressOf innerGrid_DblClick

Private Sub innerGrid_DblClick(ByVal sender As Object, ByVal Shift As Short, ByVal X As
Integer, ByVal Y As Integer)
 MessageBox.Show("innergrid dbl click")
End Sub

The following C# sample adds a handler for the DblClick event:

// innerGrid_DblClick handles event for the inner grid, where the sender is the object iself
innerGrid.DblClick += new
exontrol.EXGRIDLib.exgrid.DblClickEventHandler(innerGrid_DblClick);

void innerGrid_DblClick(object sender, short Shift, int X, int Y)
{
 MessageBox.Show("innergrid dbl click");
}

The sender parameter of the event identifies the object itself that fired the event, so you
can use the handler for multiple instances of the same type. The sender will make the
distinction. Now, in case you want to identify actually the item in the master control that
hosts the sender, you can use the FindItemData property and set the UserData parameter
of the InsertObjectItem property the same as for the Obj parameter. This way the

FindItemData(sender) will indicates the handle of the hosts the sender. In this case inserting
the inner control should look like follows:

VB/NET

With Exgrid1
 .BeginUpdate()
 With .Items
 Dim innerGrid As exontrol.EXGRIDLib.exgrid = New exontrol.EXGRIDLib.exgrid()
 Dim hx As Integer = .InsertObjectItem(.FocusItem, innerGrid, innerGrid)
 If (hx <> 0) Then
 With innerGrid
 .BeginUpdate()
 .Columns.Add("inner column")
 .Items.AddItem("inner item")
 .EndUpdate()
 End With
 End If
 AddHandler innerGrid.DblClick, AddressOf innerGrid_DblClick
 End With
 .EndUpdate()
End With

C#

exgrid1.BeginUpdate();
exontrol.EXGRIDLib.exgrid innerGrid = new exontrol.EXGRIDLib.exgrid();
int hx = exgrid1.Items.InsertObjectItem(exgrid1.Items.FocusItem, innerGrid, innerGrid);
if (hx != 0)
{
 innerGrid.BeginUpdate();
 innerGrid.Columns.Add("inner column");
 innerGrid.Items.AddItem("inner item");
 innerGrid.EndUpdate();
}
innerGrid.DblClick += new
exontrol.EXGRIDLib.exgrid.DblClickEventHandler(innerGrid_DblClick);

exgrid1.EndUpdate();

property Items.IsItemLocked (Item as HITEM) as Boolean
Returns a value that indicates whether the item is locked or unlocked.

Type Description
Item as HITEM A long expression that indicates the handle of the item.

Boolean A boolean expression that indicates whether the item is
locked or unlocked.

Use the IsItemLocked property to check whether an item is locked or unlocked. A locked
item is always displayed on the top or bottom side of the control no matter if the control's
list is scrolled up or down. Use the LockedItemCount property to add or remove items
fixed/locked to the top or bottom side of the control. Use the LockedItem property to
access a locked item by its position. Use the ShowLockedItems property to show or hide
the locked items.

The following VB sample prints the locked item from the cursor:

Private Sub Grid1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 On Error Resume Next
 ' Converts the container coordinates to client coordinates
 X = X / Screen.TwipsPerPixelX
 Y = Y / Screen.TwipsPerPixelY
 Dim h As HITEM
 Dim c As Long
 Dim hit As EXGRIDLibCtl.HitTestInfoEnum
 ' Gets the item from (X,Y)
 With Grid1
 h = .ItemFromPoint(X, Y, c, hit)
 If Not (h = 0) Then
 If (.Items.IsItemLocked(h)) Then
 Debug.Print .Items.CellCaption(h, c)
 End If
 End If
 End With
End Sub

The following C++ sample prints the locked item from the cursor:

#include "Items.h"
void OnMouseMoveGrid1(short Button, short Shift, long X, long Y)
{
 long c = 0, hit = 0, hItem = m_grid.GetItemFromPoint(X, Y, &c, &hit);
 if (hItem != 0)
 {
 CItems items = m_grid.GetItems();
 if (items.GetIsItemLocked(hItem))
 {
 COleVariant vtItem(hItem), vtColumn(c);
 CString strCaption = V2S(&items.GetCellValue(vtItem, vtColumn)), strOutput;
 strOutput.Format("Cell: '%s', Hit = %08X\n", strCaption, hit);
 OutputDebugString(strOutput);
 }
 }
}

The following VB.NET sample prints the locked item from the cursor:

Private Sub AxGrid1_MouseMoveEvent(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_MouseMoveEvent) Handles AxGrid1.MouseMoveEvent
 With AxGrid1
 Dim i As Integer, c As Integer, hit As EXGRIDLib.HitTestInfoEnum
 i = .get_ItemFromPoint(e.x, e.y, c, hit)
 If Not (i = 0) Then
 With .Items
 If (.IsItemLocked(i)) Then
 Dim strCaption As String = .CellCaption(i, c)
 Debug.WriteLine("Cell: " & strCaption & " Hit: " & hit.ToString())
 End If
 End With
 End If
 End With
End Sub

The following C# sample prints the locked item from the cursor:

private void axGrid1_MouseMoveEvent(object sender,

AxEXGRIDLib._IGridEvents_MouseMoveEvent e)
{
 int c = 0;
 EXGRIDLib.HitTestInfoEnum hit;
 int i = axGrid1.get_ItemFromPoint(e.x, e.y, out c, out hit);
 if (i != 0)
 if (axGrid1.Items.get_IsItemLocked(i))
 {
 object cap = axGrid1.Items.get_CellValue(i, c);
 string s = cap != null ? cap.ToString() : "";
 s = "Cell: " + s + ", Hit: " + hit.ToString();
 System.Diagnostics.Debug.WriteLine(s);
 }
}

The following VFP sample prints the locked item from the cursor (add the code the
MouseMove event):

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

local c, hit
c = 0
hit = 0
with thisform.Grid1
 .Items.DefaultItem = .ItemFromPoint(x, y, @c, @hit)
 with .Items
 if (.DefaultItem <> 0)
 if (.IsItemLocked(0))
 wait window nowait .CellCaption(0, c) + " " + Str(hit)
 endif
 endif
 endwith
endwith

property Items.IsItemVisible (Item as HITEM, [Partially as Variant]) as
Boolean

Checks if the specific item fits the control's client area.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Partially as Variant
A boolean expression that indicates whether the item is
partially visible or not. If the Partially parameter is missing,
the True value is used.

Boolean A boolean expression that indicates whether the item fits
the client area.

To make sure that an item fits the client area call EnsureVisibleItem method. Use the
FirstVisibleItem, NextVisibleItem and IsItemVisible properties to get the items that fit the
client area. Use the NextVisibleItem property to get the next visible item. Use the
IsVisibleItem property to check whether an item fits the control's client area.

The following VB sample enumerates the items that fit the control's client area:

Dim h As HITEM
Dim i As Long, j As Long, nCols As Long
nCols = Grid1.Columns.Count
With Grid1.Items
 h = .FirstVisibleItem
 While Not (h = 0) And .IsItemVisible(h)
 Dim s As String
 s = ""
 For j = 0 To nCols - 1
 s = s + .CellValue(h, j) + Chr(9)
 Next
 Debug.Print s
 h = .NextVisibleItem(h)
 Wend
End With

The following C++ sample enumerates the items that fit the control's client area:

#include "Items.h"

CItems items = m_grid.GetItems();
long hItem = items.GetFirstVisibleItem();
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
while (hItem && items.GetIsItemVisible(hItem, vtMissing))
{
 OutputDebugString(V2S(&items.GetCellValue(COleVariant(hItem), COleVariant(
long(0)))));
 hItem = items.GetNextVisibleItem(hItem);
}

where the V2S function converts a VARIANT value to a string expression and looks like:

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

The following VB.NET sample enumerates the items that fit the control's client area:

With AxGrid1.Items
 Dim hItem As Integer = .FirstVisibleItem
 While Not (hItem = 0)
 If (.IsItemVisible(hItem)) Then
 Debug.Print(.CellCaption(hItem, 0))
 hItem = .NextVisibleItem(hItem)
 Else
 Exit While
 End If
 End While

End With

The following C# sample enumerates the items that fit the control's client area:

EXGRIDLib.Items items = axGrid1.Items;
int hItem = items.FirstVisibleItem;
while ((hItem != 0) && (items.get_IsItemVisible(hItem, null)))
{
 object strCaption = items.get_CellCaption(hItem, 0);
 System.Diagnostics.Debug.WriteLine(strCaption != null ? strCaption.ToString() : "");
 hItem = items.get_NextVisibleItem(hItem);
}

The following VFP sample enumerates the items that fit the control's client area:

with thisform.Grid1.Items
 .DefaultItem = .FirstVisibleItem
 do while ((.DefaultItem <> 0) and (.IsItemVisible(0)))
 wait window .CellCaption(0, 0)
 .DefaultItem = .NextVisibleItem(0)
 enddo
endwith

property Items.ItemAllowSizing(Item as HITEM) as Boolean
Retrieves or sets a value that indicates whether a user can resize the item at run-time.

Type Description

Item as HITEM A HITEM expression that indicates the handle of the item
that can be resized.

Boolean A Boolean expression that specifies whether the user can
resize the item at run-time.

By default, the user can resize the item at run-time using mouse movements. Use the
ItemAllowSizing property to specify whether a user can resize the item at run-time. Use the
ItemsAllowSizing property to specify whether all items are resizable or not. Use the
ItemHeight property to specify the height of the item. An item is resizable if the
ItemAllowSizing property is True, or if the ItemsAllowSizing property is True (that means all
items are resizable), and the ItemAllowSizing property is not False. For instance, if your
application requires all items being resizable but only few of them being not resizable, you
can have the ItemsAllowSizing property on True, and for those items that are not resizable,
you can call the ItemAllowSizing property on False. The user can resize an item by moving
the mouse between two items, so the vertical split cursor shows up, click and drag the
mouse to the new position. Use the CellSingleLine property to specify whether the cell
displays its caption using multiple lines. The ScrollBySingleLine property is automatically set
on True, as soon as the user resizes an item.

property Items.ItemAppearance(Item as HITEM) as AppearanceEnum
Specifies the item's appearance while it's of ActiveX type.

Type Description

Item as HITEM A long expression that indicates the item's handle that was
previously created by InsertControlItem property.

AppearanceEnum An AppearanceEnum value that indicates the item's
appearance.

Use the ItemAppearance property to specify the item's appearance if the item is of ActiveX
type. Use the InsertControlItem property to insert an ActiveX control inside. Use the
ItemObject property to access the object being created by the InsertControlItem property.
Use the ItemHeight property to specify the height of the item when containing an ActiveX
control.

property Items.ItemBackColor(Item as HITEM) as Color

Retrieves or sets a background color for a specific item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Color A color expression that indicates the item's background
color.

Use the CellBackColor property to change the cell's background color. To change the
background color of the entire control you can call BackColor property of the control. Use
the ClearItemBackColor property to clear the item's background color, after setting using
the ItemBackColor property. Use the SelBackColor property to change appearance for the
selected items. The HTML colors are not applied if the item is selected. Use the
SelectedItem property to specify whether an item is selected or unselected. Use the Add
method to add new skins to the control. You can define new skins and to use it to mark
some items, like in the following samples. Use the ConditionalFormats method to apply
formats to a cell or range of cells, and have that formatting change depending on the value
of the cell or the value of a formula.

The following VB sample changes the item's appearance. The sample uses the " ".

With Grid1
 With .VisualAppearance
 .Add &H50, App.Path + "\item.ebn"
 End With
 With .Items
 .ItemBackColor(.FirstVisibleItem) = &H50000000
 End With
End With

The following C++ sample changes the item's appearance:

#include "Appearance.h"
#include "Items.h"
m_grid.GetVisualAppearance().Add(0x50,
COleVariant(_T("D:\\Temp\\ExGrid.Help\\item.ebn")));
m_grid.GetItems().SetItemBackColor(m_grid.GetItems().GetFirstVisibleItem() , 0x50000000

);

The following VB.NET sample changes the item's appearance:

With AxGrid1
 With .VisualAppearance
 .Add(&H50, "D:\Temp\ExGrid.Help\item.ebn")
 End With
 With .Items
 .ItemBackColor(.FirstVisibleItem) = &H50000000
 End With
End With

The following C# sample changes the item's appearance:

axGrid1.VisualAppearance.Add(0x50, "D:\\Temp\\ExGrid.Help\\item.ebn");
axGrid1.Items.set_ItemBackColor(axGrid1.Items.FirstVisibleItem, 0x50000000);

The following VFP sample changes the item's appearance:

With thisform.Grid1
 With .VisualAppearance
 .Add(80, "D:\Temp\ExGrid.Help\item.ebn")
 EndWith
 with .Items
 .DefaultItem = .FirstVisibleItem
 .ItemBackColor(0) = 1342177280
 endwith
EndWith

where the 1342177280 value represents the 0x50000000 hexa value.

In VB.NET or C# you require the following functions until the .NET framework will provide:

You can use the following VB.NET function:

 Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G

 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
 End Function

You can use the following C# function:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following C# sample changes the background color for the focused item:

axGrid1.Items.set_ItemBackColor(axGrid1.Items.FocusItem, ToUInt32(Color.Red));

The following VB.NET sample changes the background color for the focused item:

With AxGrid1.Items
 .ItemBackColor(.FocusItem) = ToUInt32(Color.Red)
End With

The following VB sample changes the background color for the focused item:

With Grid1.Items
 .ItemBackColor(.FocusItem) = vbRed
End With

The following C++ sample changes the background color for the focused item:

#include "Items.h"
CItems items = m_grid.GetItems();
items.SetItemBackColor(items.GetFocusItem(), RGB(255,0,0));

The following VFP sample changes the background color for the focused item:

with thisform.Grid1.Items

 .DefaultItem = .FocusItem
 .ItemBackColor(0) = RGB(255,0,0)
endwith

Use the following VB sample to change the background color for the first column when
adding new items:

Private Sub Grid1_AddItem(ByVal Item As EXGRIDLibCtl.HITEM)
 Grid1.Items.CellBackColor(Item, o) = vbBlue
End Sub

property Items.ItemBold(Item as HITEM) as Boolean

Retrieves or sets a value that indicates whether the item is bolded.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Boolean A boolean expression that indicates whether the item is
bolded.

Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply different font
attributes to the item. Use the CellItalic, CellUnderline, CellBold or CellStrikeOut property to
apply different font attributes to the cell. Use the CellValueFormat property to specify an
HTML caption. Use the ConditionalFormats method to apply formats to a cell or range of
cells, and have that formatting change depending on the value of the cell or the value of a
formula.

The following VB sample bolds the selected item:

Dim hOldBold As HITEM

Private Sub Grid1_SelectionChanged()
 If Not (hOldBold = 0) Then
 Grid1.Items.ItemBold(hOldBold) = False
 End If
 hOldBold = Grid1.Items.SelectedItem()
 Grid1.Items.ItemBold(hOldBold) = True
End Sub

The following VB sample bolds the focused item:

With Grid1.Items
 .ItemBold(.FocusItem) = True
End With

The following C++ sample bolds the focused item:

#include "Items.h"
CItems items = m_grid.GetItems();
items.SetItemBold(items.GetFocusItem() , TRUE);

The following C# sample bolds the focused item:

axGrid1.Items.set_ItemBold(axGrid1.Items.FocusItem, true);

The following VB.NET sample bolds the focused item:

With AxGrid1.Items
 .ItemBold(.FocusItem) = True
End With

The following VFP sample bolds the focused item:

with thisform.Grid1.Items
 .DefaultItem = .FocusItem
 .ItemBold(0) = .t.
endwith

property Items.ItemByIndex (Index as Long) as HITEM

Retrieves the handle of the item given its index in the Items collection..

Type Description
Index as Long A long value that indicates the item's index.
HITEM A long expression that indicates the item's handle

Use the ItemByIndex to get the index of an item. Use the ItemCount property to count the
items in the control. the Use the ItemPosition property to get the item's position. Use the
ItemToIndex property to get the index of giving item. For instance, The ItemByIndex
property is the default property for Items object, so the following statements are
equivalents: Grid1.Items(0), Grid1.Items.ItemByIndex(0).

The following VB sample enumerates all items in the control:

Dim i As Long, n As Long
With Grid1.Items
 n = .ItemCount
 For i = 0 To n - 1
 Debug.Print .ItemByIndex(i)
 Next
End With

The following C++ sample enumerates all items in the control:

#include "Items.h"
CItems items = m_grid.GetItems();
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
for (long i = 0; i < items.GetItemCount(); i++)
{
 COleVariant vtItem(items.GetItemByIndex(i)), vtColumn(long(0));
 CString strCaption = V2S(&items.GetCellCaption(vtItem, vtColumn)), strOutput;
 strOutput.Format("Cell: '%s'\n", strCaption);
 OutputDebugString(strOutput);
}

The following VB.NET sample enumerates all items in the control:

With AxGrid1

 Dim i As Integer
 For i = 0 To .Items.ItemCount - 1
 Debug.Print(.Items.CellValue(.Items(i), 0))
 Next
End With

The following C# sample enumerates all items in the control:

EXGRIDLib.Items items = axGrid1.Items;
for (int i = 0; i < items.ItemCount; i++)
{
 object caption = items.get_CellValue(items[i], 0);
 string strCaption = caption != null ? caption.ToString() : "";
 System.Diagnostics.Debug.WriteLine(strCaption);
}

The following VFP sample enumerates all items in the control:

with thisform.Grid1.Items
 local i
 for i = 0 to .ItemCount - 1
 .DefaultItem = .ItemByIndex(i)
 wait window nowait .CellCaption(0,0)
 next
endwith

property Items.ItemCell (Item as HITEM, ColIndex as Variant) as HCELL

Retrieves the cell's handle given the item and the column.

Type Description
Item as HITEM A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the the column's index, a
string expression that indicates the column's caption or the
column's key.

HCELL A long value that indicates the cell's handle.

The ItemCell property retrieves the handle of the cell that belongs to the item on the
specified column. The InnerCell properties always returns the handle to the master cells (
master cell is a cell where the splitting starts). Use the SplitCell property to split a cell into
multiple cells. Use the MergeCells property to merge multiple cells.

Note: The intersection of an item with a column defines a cell. Each cell is uniquely
represented by its handle. The cell's handle is of HCELL type, that's equivalent with a long
type. All properties of Items object that have two parameters Item and ColIndex, refer a
cell.

The following lines are equivalents and each of them changes the bold font attribute of the
first cell on the first item.

With Grid1
 .Items.CellBold(, .Items.ItemCell(.Items(0), 0)) = True
 .Items.CellBold(.Items(0), 0) = True
 .Items.CellBold(.Items(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0), 0) = True
 .Items.CellBold(.Items(0), Grid1.Columns(0).Caption) = True
End With

property Items.ItemChild (Item as HITEM) as HITEM

Retrieves the first child item of a specified item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

HITEM A long expression that indicates the item's handle that
indicates the first child item of the Item

If the ItemChild property gets 0, the item has no child items. Use the ItemChild property to
get the first child of an item. The NextVisibleItem or NextSiblingItem gets the next visible,
sibling item. Use the ChildCount property to count the number of child items. Use the
ItemHasChildren property to built a virtual grid. A virtual grid loads items when the user
expands an item. Use the ItemParent property to retrieve the handle of the parent item. The
control displays a +/- sign to parent items, if the HasButtons property is not zero, the
ItemChild property is not empty, or the ItemHasChildren property is True.

The following VB function recursively enumerates the item and all its child items:

Sub RecItem(ByVal c As EXGRIDLibCtl.Grid, ByVal h As HITEM)
 If Not (h = 0) Then
 Dim hChild As HITEM
 With c.Items
 Debug.Print .CellCaption(h, 0)
 hChild = .ItemChild(h)
 While Not (hChild = 0)
 RecItem c, hChild
 hChild = .NextSiblingItem(hChild)
 Wend
 End With
 End If
End Sub

The following C++ function recursively enumerates the item and all its child items:

void RecItem(CGrid* pGrid, long hItem)
{
 COleVariant vtColumn((long)0);
 if (hItem)
 {

 CItems items = pGrid->GetItems();

 CString strCaption = V2S(&items.GetCellValue(COleVariant(hItem), vtColumn)),
strOutput;
 strOutput.Format("Cell: '%s'\n", strCaption);
 OutputDebugString(strOutput);

 long hChild = items.GetItemChild(hItem);
 while (hChild)
 {
 RecItem(pGrid, hChild);
 hChild = items.GetNextSiblingItem(hChild);
 }
 }
}

The following VB.NET function recursively enumerates the item and all its child items:

Shared Sub RecItem(ByVal c As AxEXGRIDLib.AxGrid, ByVal h As Integer)
 If Not (h = 0) Then
 Dim hChild As Integer
 With c.Items
 Debug.WriteLine(.CellCaption(h, 0))
 hChild = .ItemChild(h)
 While Not (hChild = 0)
 RecItem(c, hChild)
 hChild = .NextSiblingItem(hChild)
 End While
 End With
 End If
End Sub

The following C# function recursively enumerates the item and all its child items:

internal void RecItem(AxEXGRIDLib.AxGrid grid, int hItem)
{
 if (hItem != 0)
 {

 EXGRIDLib.Items items = grid.Items;
 object caption = items.get_CellValue(hItem, 0);
 System.Diagnostics.Debug.WriteLine(caption != null ? caption.ToString() : "");

 int hChild = items.get_ItemChild(hItem);
 while (hChild != 0)
 {
 RecItem(grid, hChild);
 hChild = items.get_NextSiblingItem(hChild);
 }
 }
}

The following VFP function recursively enumerates the item and all its child items (recitem
method):

LPARAMETERS h

with thisform.Grid1
 If (h != 0) Then
 local hChild
 With .Items
 .DefaultItem = h
 wait window .CellCaption(0, 0)
 hChild = .ItemChild(h)
 do While (hChild != 0)
 thisform.recitem(hChild)
 hChild = .NextSiblingItem(hChild)
 enddo
 EndWith
 EndIf
endwith

property Items.ItemControlID (Item as HITEM) as String

Retrieves the item's control identifier that was used by InsertControlItem property.

Type Description
Item as HITEM A long expression that indicates the item's handle.

String
A string expression that indicates the control identifier
used by InsertControlItem property to create an item that
hosts an ActiveX control.

The ItemControlID property retrieves the control identifier used by the InsertControlItem
property. If the item was created using AddItem or InsertItem properties the ItemControlID
property retrieves an empty string. For instance, the ItemControlID property can be used to
check if an item contains an ActiveX control or not.

property Items.ItemCount as Long

Retrieves the number of items.

Type Description

Long A long value that indicates the number of items into Items
collection

The ItemCount property counts the items in the control. Use the ItemByIndex property to
access an item giving its index. Use the AddItem, InsertItem, InsertControlItem, PutItems or
DataSource property to add new items to the control. Use ChildCount to get the number of
child items.

The following VB sample enumerates all items in the control:

Dim i As Long, n As Long
With Grid1.Items
 n = .ItemCount
 For i = 0 To n - 1
 Debug.Print .ItemByIndex(i)
 Next
End With

The following C++ sample enumerates all items in the control:

#include "Items.h"
CItems items = m_grid.GetItems();
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
for (long i = 0; i < items.GetItemCount(); i++)
{
 COleVariant vtItem(items.GetItemByIndex(i)), vtColumn(long(0));
 CString strCaption = V2S(&items.GetCellCaption(vtItem, vtColumn)), strOutput;
 strOutput.Format("Cell: '%s'\n", strCaption);
 OutputDebugString(strOutput);
}

The following VB.NET sample enumerates all items in the control:

With AxGrid1
 Dim i As Integer

 For i = 0 To .Items.ItemCount - 1
 Debug.Print(.Items.CellValue(.Items(i), 0))
 Next
End With

The following C# sample enumerates all items in the control:

EXGRIDLib.Items items = axGrid1.Items;
for (int i = 0; i < items.ItemCount; i++)
{
 object caption = items.get_CellValue(items[i], 0);
 string strCaption = caption != null ? caption.ToString() : "";
 System.Diagnostics.Debug.WriteLine(strCaption);
}

The following VFP sample enumerates all items in the control:

with thisform.Grid1.Items
 local i
 for i = 0 to .ItemCount - 1
 .DefaultItem = .ItemByIndex(i)
 wait window nowait .CellCaption(0,0)
 next
endwith

property Items.ItemData(Item as HITEM) as Variant

Retrieves or sets the extra data for a specific item.

Type Description
Item as HITEM A long expression that indicates the handle of the item.
Variant A variant value that indicates the item's extra data.

Use the ItemData property to assign an extra value to an item. Use CellData property to
associate an extra data with a cell. The ItemData and CellData are of Variant type, so you
will be able to save here what ever you want: numbers, objects, strings, and so on. The
user data is only for user use. The control doesn't use this value. Use the Data property to
assign an extra data to a column. For instance, you can use the RemoveItem event to
release any extra data that is associated to the item.

property Items.ItemDivider(Item as HITEM) as Long
Specifies whether the item acts like a divider or normal item.

Type Description
Item as HITEM A long expression that indicates the item's handle.
Long A long expression that indicates the column's index.

A divider item uses the item's client area to display a single cell. You can use the
ItemDivider property to separate the items, display groups of items or display total or
subtotals fields. The ItemDivider property specifies the index of the cell being displayed in
the item's client area. In other words, the divider item merges the item cells into a single
cell. The CellHAlignment property specifies the horizontal alignment for the cell's content.
Use the ItemDividerLine property to define the line that underlines the divider item. Use the
LockedItemCount property to lock items on the top or bottom side of the control. Use the
MergeCells method to combine two or multiple cells in a single cell. Use the SelectableItem
property to specify the user can select an item. A divider item has sense for a control with
multiple columns. The SortableItem property specifies whether the item keeps its position
after sorting.

The following screen shot shows the items arranged as groups (Group 5 and Group 6 are
divider items):

The following screen shot shows subtotals items (42 and 73 are divider items):

The following screen shot shows subtotals items in combination with EBN features:

The following VB sample adds a divider item between two child items:

Private Sub Form_Load()
 With Grid1
 .BeginUpdate
 .DefaultItemHeight = 24
 .MarkSearchColumn = False
 .HeaderVisible = False
 .LinesAtRoot = exLinesAtRoot
 .HasButtons = exCircle
 With .Columns
 With .Add("Column 1")

 .SortType = EXGRIDLibCtl.SortTypeEnum.SortCellData
 End With
 With .Add("Column 2")
 .Visible = False
 End With
 End With

 With .Items
 Dim h As HITEM, g As HITEM
 h = .InsertItem(, , "Father")
 .InsertItem h, 1, "Son 1"
 g = .InsertItem(h, 50, "")
 .CellValue(g, 1) = "This is a bit of text that should appear
between Son 1 and Son 2"
 .CellValueFormat(g, 1) = exHTML
 .CellSingleLine(g, 1) = False
 .ItemDivider(g) = 1
 .ItemDividerLine(g) = EmptyLine
 .InsertItem h, 99, "Son 2"
 .ExpandItem(h) = True
 End With
 .EndUpdate
 End With
End Sub

The following VB sample adds a divider item, that's not selectable too:

With Grid1.Items
 Dim i As Long
 i = .AddItem("divider item")
 .ItemDivider(i) = 0
 .SelectableItem(i) = False
End With

The following C++ sample adds a divider item, that's not selectable too:

#include "Items.h"
CItems items = m_grid.GetItems();

long i = items.AddItem(COleVariant("divider item"));
items.SetItemDivider(i, 0);
items.SetSelectableItem(i, FALSE);

The following C# sample adds a divider item, that's not selectable too:

int i = axGrid1.Items.AddItem("divider item");
axGrid1.Items.set_ItemDivider(i, 0);
axGrid1.Items.set_SelectableItem(i, false);

The following VB.NET sample adds a divider item, that's not selectable too:

With AxGrid1.Items
 Dim i As Integer
 i = .AddItem("divider item")
 .ItemDivider(i) = 0
 .SelectableItem(i) = False
End With

The following VFP sample adds a divider item, that's not selectable too:

with thisform.Grid1.Items
 .DefaultItem = .AddItem("divider item")
 .ItemDivider(0) = 0
 .SelectableItem(0) = .f.
endwith

property Items.ItemDividerLine(Item as HITEM) as DividerLineEnum
Defines the type of line in the divider item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

DividerLineEnum A DividerLineEnum expression that indicates the type of
the line in the divider item.

By default, the ItemDividerLine property is SingleLine. The ItemDividerLine property
specifies the type of line that underlines a divider item. Use the ItemDivider property to
define a divider item. Use the ItemDividerLine and ItemDividerAlignment properties to define
the style of the line into the divider item. Use the CellMerge property to merge two or more
cells.

property Items.ItemDividerLineAlignment(Item as HITEM) as
DividerAlignmentEnum
Specifies the alignment of the line in the divider item.

Type Description
Item as HITEM A long expression that indicates the item's handle

DividerAlignmentEnum A DividerAlignmentEnum expression that specifies the
line's alignment.

By default, the ItemDividerLineAlignment property is DividerBottom. The Use the
ItemDividerLine and ItemDividerLineAlignment properties to define the style of the line into a
divider item. Use the ItemDivider property to define a divider item.

property Items.ItemFiltered (Item as HITEM) as Boolean
Checks whether the item is included in the control's filter.

Type Description
Item as HITEM A long expression that indicates the handle of the item

Boolean A boolean expression that indicates whether the item is
filtered.

Use the ItemFiltered property to check whether an item is included in the control's filter. Use
the FilterType property to specify the type of filter that's applied to a column. The
ApplyFilter method should be called to update the control's content after changing the Filter
or FilterType property. The ItemCount property counts the items in the control's list. Use the
ItemByIndex property to access an item giving its index.

The following VB sample enumerates all items that are not included in the list when a filter is
applied:

Dim i As Long
With Grid1.Items
 For i = 0 To .ItemCount - 1
 Dim h As EXGRIDLibCtl.HITEM
 h = .ItemByIndex(i)
 If (Not .ItemFiltered(h)) Then
 Debug.Print .CellValue(h, 0)
 End If
 Next
End With

The following C++ sample enumerates all items that are not included in the list when a filter
is applied:

#include "Items.h"
CItems items = m_grid.GetItems();
for (long i = 0; i < items.GetItemCount(); i++)
{
 long hItem = items.GetItemByIndex(i);
 if (!items.GetItemFiltered(hItem))
 {
 COleVariant vtItem(hItem), vtColumn(long(0));

 CString strFormat;
 strFormat.Format("'%s' is not included\r\n", V2S(&items.GetCellValue(vtItem,
vtColumn)));
 OutputDebugString(strFormat);
 }
}

The following VB.NET sample enumerates all items that are not included in the list when a
filter is applied:

Private Sub AxGrid1_ClickEvent(ByVal sender As Object, ByVal e As System.EventArgs)
Handles AxGrid1.ClickEvent
 Dim i As Long
 With AxGrid1.Items
 For i = 0 To .ItemCount - 1
 Dim h As Integer = .ItemByIndex(i)
 If (Not .ItemFiltered(h)) Then
 Dim cellValue As Object = .CellValue(h, 0)
 Dim strValue As String = ""
 If Not (cellValue Is Nothing) Then
 strValue = cellValue.ToString()
 End If
 Debug.WriteLine(strValue)
 End If
 Next
 End With
End Sub

The following C# sample enumerates all items that are not included in the list when a filter is
applied:

EXGRIDLib.Items items = axGrid1.Items;
for (int i = 0; i < items.ItemCount; i++)
 if (!items.get_ItemFiltered(items[i]))
 {
 object cellValue = axGrid1.Items.get_CellValue(i, 0);
 string strValue = cellValue != null ? cellValue.ToString() : "";
 System.Diagnostics.Debug.WriteLine(strValue);

 }

The following VFP sample enumerates all items that are not included in the list when a filter
is applied:

with thisform.Grid1.Items
 local i
 For i = 0 To .ItemCount - 1
 local h
 h = .ItemByIndex(i)
 If (!.ItemFiltered(h)) Then
 wait window nowait .CellValue(h, 0)
 EndIf
 Next
endwith

property Items.ItemFont (Item as HITEM) as IFontDisp
Retrieves or sets the item's font.

Type Description
Item as HITEM A long expression that indicates the item's handle.
IFontDisp A font object being used.

By default, the ItemFont property is nothing. If the ItemFont property is nothing, the item
uses the control's font. Use the ItemFont property to define a different font for the item. Use
the CellFont and ItemFont properties to specify different fonts for cells or items. Use the
CellBold, CellItalic, CellUnderline, CellStrikeout, ItemBold, ItemUnderline, ItemStrikeout,
ItemItalic or CellValueFormat to specify different font attributes. Use the ItemHeight
property to specify the height of the item. Use the Refresh method to refresh the control's
content on the fly. Use the BeginUpdate and EndUpdate methods if you are doing multiple
changes, so no need for an update each time a change is done. Use the ItemHeight
property to specify the height of the item.

The following VB sample changes the font for the focused item:

With Grid1.Items
 .ItemFont(.FocusItem) = Grid1.Font
 With .ItemFont(.FocusItem)
 .Name = "Comic Sans MS"
 .Bold = True
 End With
End With
Grid1.Refresh

The following C++ sample changes the font for the focused item:

#include "Items.h"
#include "Font.h"
CItems items = m_grid.GetItems();
items.SetItemFont(items.GetFocusItem(), m_grid.GetFont().m_lpDispatch);
COleFont font = items.GetItemFont(items.GetFocusItem());
font.SetName("Comic Sans MS");
font.SetBold(TRUE);
m_grid.Refresh();

The following VB.NET sample changes the font for the focused item:

With AxGrid1.Items
 .ItemFont(.FocusItem) = IFDH.GetIFontDisp(AxGrid1.Font)
 With .ItemFont(.FocusItem)
 .Name = "Comic Sans MS"
 .Bold = True
 End With
End With
AxGrid1.CtlRefresh()

where the IFDH class is defined like follows:

Public Class IFDH
 Inherits System.Windows.Forms.AxHost

 Sub New()
 MyBase.New("")
 End Sub

 Public Shared Function GetIFontDisp(ByVal font As Font) As Object
 GetIFontDisp = AxHost.GetIFontFromFont(font)
 End Function

End Class

The following C# sample changes the font for the focused item:

axGrid1.Items.set_ItemFont(axGrid1.Items.FocusItem, IFDH.GetIFontDisp(axGrid1.Font));
stdole.IFontDisp spFont = axGrid1.Items.get_ItemFont(axGrid1.Items.FocusItem);
spFont.Name = "Comic Sans MS";
spFont.Bold = true;
axGrid1.CtlRefresh();

where the IFDH class is defined like follows:

internal class IFDH : System.Windows.Forms.AxHost
{
 public IFDH() : base("")

 {
 }

 public static stdole.IFontDisp GetIFontDisp(System.Drawing.Font font)
 {
 return System.Windows.Forms.AxHost.GetIFontFromFont(font) as stdole.IFontDisp;
 }
}

The following VFP sample changes the font for the focused item:

with thisform.Grid1.Items
 .DefaultItem = .FocusItem
 .ItemFont(0) = thisform.Grid1.Font
 with .ItemFont(0)
 .Name = "Comic Sans MS"
 .Bold = .t.
 endwith
endwith
thisform.Grid1.Object.Refresh()

property Items.ItemForeColor(Item as HITEM) as Color

Retrieves or sets a foreground color for a specific item.

Type Description
Item as HITEM A long expression that indicates the item's handle.
Color A color expression that defines the item's foreground color

Use the CellForeColor property to change the item's foreground color. Use the ForeColor
property to change the control's foreground color. Use the ClearItemForeColor property to
clear the item's foreground color. Use the ConditionalFormats method to apply formats to a
cell or range of cells, and have that formatting change depending on the value of the cell or
the value of a formula.

The following VB sample changes the foreground color for cells in the first column as user
add new items:

Private Sub Grid1_AddItem(ByVal Item As EXGRIDLibCtl.HITEM)
 Grid1.Items.CellForeColor(Item, o) = vbBlue
End Sub

In VB.NET or C# you require the following functions until the .NET framework will provide:

You can use the following VB.NET function:

 Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
 End Function

You can use the following C# function:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;

 return Convert.ToUInt32(i);
}

The following C# sample changes the foreground color of the focused item:

axGrid1.Items.set_ItemForeColor(axGrid1.Items.FocusItem, ToUInt32(Color.Red));

The following VB.NET sample changes the foreground color of the focused item:

With AxGrid1.Items
 .ItemForeColor(.FocusItem) = ToUInt32(Color.Red)
End With

The following C++ sample changes the foreground color of the focused item:

#include "Items.h"
CItems items = m_grid.GetItems();
items.SetItemForeColor(items.GetFocusItem(), RGB(255,0,0));

The following VFP sample changes the foreground color of the focused item:

with thisform.Grid1.Items
 .DefaultItem = .FocusItem
 .ItemForeColor(0) = RGB(255,0,0)
endwith

property Items.ItemHasChildren (Item as HITEM) as Boolean

Adds an expand button to left side of the item even if the item has no child items.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Boolean
A boolean expression that indicates whether the control
adds an expand button to the left side of the item even if
the item has no child items.

By default, the ItemHasChidren property is False. Use the ItemHasChildren property to
build a virtual grid. Use the BeforeExpandItem event to add new child items to the expanded
item. Use the ItemChild property to get the first child item, if exists. Use the ItemChild or
ChildCount property to determine whether an item contains child items. The control displays
a +/- sign to parent items, if the HasButtons property is not empty, the ItemChild property is
not empty, or the ItemHasChildren property is True. Use the InsertItem method to insert a
new child item. Use the CellData or ItemData property to assign an extra value to a cell or
to an item.

The following VB sample inserts a child item as soon as the user expands an item (the
sample has effect only if your control contains items that have the ItemHasChildren property
on True):

Private Sub Grid1_BeforeExpandItem(ByVal Item As EXGRIDLibCtl.HITEM, Cancel As
Variant)
 With Grid1.Items
 If (.ItemHasChildren(Item)) Then
 If .ChildCount(Item) = 0 Then
 Dim h As Long
 h = .InsertItem(Item, , "new " & Item)
 End If
 End If
 End With
End Sub

The following VB sample binds the master control to a table, and displays related tables
when the user expands an item/record. The sample uses the DataSource property to bind a
record set to the control. The InsertControlItem method inserts an ActiveX inside the item.

Option Explicit

Public Function getRS(ByVal q As String) As Object
 Dim rs As Object, strDatabase
 strDatabase = App.Path + "\ExontrolDemo.mdb"
 Set rs = CreateObject("ADODB.Recordset")
 rs.Open q, "Provider = Microsoft.Jet.OLEDB.4.0; Data Source =" & strDatabase, 3, 3, 0
 Set getRS = rs
End Function

Private Sub Form_Load()
With Grid1
 .BeginUpdate
 .LinesAtRoot = exLinesAtRoot
 .MarkSearchColumn = False
 .ScrollBySingleLine = True
 .HideSelection = True
 Set .DataSource = getRS("Transactions")
 .EndUpdate
End With
End Sub

Private Sub Grid1_AddItem(ByVal Item As EXGRIDLibCtl.HITEM)
 With Grid1.Items
 .ItemHasChildren(Item) = .ItemParent(Item) = 0
 End With
End Sub

Private Sub Grid1_BeforeExpandItem(ByVal Item As EXGRIDLibCtl.HITEM, Cancel As
Variant)
 With Grid1.Items
 If .ItemHasChildren(Item) Then
 With .ItemObject(.InsertControlItem(Item, "Exontrol.Grid"))
 .BeginUpdate
 .MarkSearchColumn = False
 .HideSelection = True
 Set .DataSource = getRS("Select * from TransactionDetails where TrnDet_ID = "
& Grid1.Items.CellValue(Item, "Trn_ID"))
 .Columns(0).Visible = False

 .EndUpdate
 End With
 .ItemHasChildren(Item) = False
 End If
 End With
 Grid1.Refresh
End Sub

The following VB.NET sample inserts a child item when the user expands an item that has
the ItemHasChildren property on True:

Private Sub AxGrid1_BeforeExpandItem(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_BeforeExpandItemEvent) Handles AxGrid1.BeforeExpandItem
 With AxGrid1.Items
 If (.ItemHasChildren(e.item)) Then
 If .ChildCount(e.item) = 0 Then
 Dim h As Long
 h = .InsertItem(e.item, , "new " & e.item.ToString())
 End If
 End If
 End With
End Sub

The following C# sample inserts a child item when the user expands an item that has the
ItemHasChildren property on True:

private void axGrid1_BeforeExpandItem(object sender,
AxEXGRIDLib._IGridEvents_BeforeExpandItemEvent e)
{
 EXGRIDLib.Items items = axGrid1.Items;

 if (items.get_ItemHasChildren(e.item))
 if (items.get_ChildCount(e.item) == 0)
 {
 items.InsertItem(e.item, null, "new " + e.item.ToString());
 }
}

The following C++ sample inserts a child item when the user expands an item that has the
ItemHasChildren property on True:

#include "Items.h"
void OnBeforeExpandItemGrid1(long Item, VARIANT FAR* Cancel)
{
 CItems items = m_grid.GetItems();
 if (items.GetItemHasChildren(Item))
 if (items.GetChildCount(Item) == 0)
 {
 COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
 items.InsertItem(Item, vtMissing, COleVariant("new item"));
 }
}

The following VFP sample inserts a child item when the user expands an item that has the
ItemHasChildren property on True(BeforeExpandItem event):

*** ActiveX Control Event ***
LPARAMETERS item, cancel

with thisform.Grid1.Items
 if (.ItemHasChildren(item))
 if (.ChildCount(item) = 0)
 .InsertItem(item,"","new " + trim(str(item)))
 endif
 endif
endwith

property Items.ItemHeight(Item as HITEM) as Long

Retrieves or sets the item's height.

Type Description
Item as HITEM A long expression that indicates the handle of the item.
Long A long value that indicates the item's height.

To change the default height of the item before inserting it into the items collection you can
call DefaultItemHeight property. The control supports items with different heights. When an
item hosts an ActiveX control (was previously created by the InsertControlItem property),
the ItemHeight property changes the height of contained ActiveX control too. If the
CellSingleLine property is False, the ItemHeight property has no effect. The
Column.Def(exCellPaddingTop) and Column.Def(exCellPaddingBottom) defines the
vertical padding. Use the ItemMaxHeight property to specify the maximum height of the
item when its height is variable. Use the CellVAlignment property to align vertically a cell.
Use the ScrollBySingleLine property when using items with different heights. Use the
SelectableItem property to specify whether the user can select an item. For instance, in
order to hide an item you can set the ItemHeight property on 0, and SelectableItem
property on False. Use the ItemAllowSizing property to specify whether the user can resize
the item at runtime.

property Items.ItemItalic(Item as HITEM) as Boolean

Retrieves or sets a value that indicates whether the item should appear in italic.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Boolean A boolean expression that indicates whether the item's
font attributes include Italic attribute.

Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply different font
attributes to the item. Use the CellItalic, CellUnderline, CellBold or CellStrikeOut property to
apply different font attributes to the cell. Use the CellValueFormat property to specify an
HTML caption. Use the ConditionalFormats method to apply formats to a cell or range of
cells, and have that formatting change depending on the value of the cell or the value of a
formula.

The following VB sample makes italic the selected item:

Private Sub Grid1_SelectionChanged()
 If Not (h = 0) Then Grid1.Items.ItemItalic(h) = False
 h = Grid1.Items.SelectedItem()
 Grid1.Items.ItemItalic(h) = True
End Sub

The following VB sample makes italic the focused item:

With Grid1.Items
 .ItemItalic(.FocusItem) = True
End With

The following C++ sample makes italic the focused item:

#include "Items.h"
CItems items = m_grid.GetItems();
items.SetItemItalic(items.GetFocusItem() , TRUE);

The following C# sample makes italic the focused item:

axGrid1.Items.set_ItemItalic(axGrid1.Items.FocusItem, true);

The following VB.NET sample makes italic the focused item:

With AxGrid1.Items
 .ItemItalic(.FocusItem) = True
End With

The following VFP sample makes italic the focused item:

with thisform.Grid1.Items
 .DefaultItem = .FocusItem
 .ItemItalic(0) = .t.
endwith

property Items.ItemMaxHeight(Item as HITEM) as Long
Retrieves or sets a value that indicates the maximum height when the item's height is
variable.

Type Description

Item as HITEM

A long expression that indicates the handle of the item. If
the Item is 0, setting the ItemMaxHeight property changes
the maximum-height for all items. For instance, the
ItemMaxHeight(0) = 24, changes the maximum height for
all items to be 24 pixels wide.

Long A long value that indicates the maximum height when the
item's height is variable.

By default, the ItemMaxHeight property is -1. The ItemMaxHeight property has effect only if
it is greater than 0, and item contains cells with CellSingleLine property on False. Use the
ItemHeight property to get the item's height. Use the CellVAlignment property to align
vertically a cell. Use the DefaultItemHeight property to specify the default height for all
items before loading items.

property Items.ItemMinHeight(Item as HITEM) as Long
Retrieves or sets a value that indicates the minimum height when the item's height is sizing.

Type Description

Item as HITEM

A long expression that indicates the handle of the item. If
the Item is 0, setting the ItemMinHeight property changes
the minimum-height for all items. For instance, the
ItemMinHeight(0) = 24, changes the minimum height for all
items to be 24 pixels wide.

Long A long value that indicates the minimum height when the
item's height is variable.

By default, the ItemMinHeight property is -1. The ItemMinHeight property has effect only if
the item contains cells with CellSingleLine property on False. The ItemMaxHeight property
specifies the maximum height of the item while resizing. The CellSingleLine property
specifies whether a cell displays its caption using multiple lines. The ItemHeight property
has no effect, if the CellSingleLine property is False. If the CellSingleLine property is False,
you can specify the minimum height for the item using the ItemMinHeight property. Use the
ItemAllowSizing property to specify whether the user can resize the item at runtime.

property Items.ItemObject (Item as HITEM) as Variant

Retrieves the item's ActiveX object, if the item was previously created by InsertControlItem
property, or the original object being used when calling the InsertObjectItem property.

Type Description

Item as HITEM
A long expression that indicates the item's handle that was
previously created by InsertControlItem or
InsertObjectItem property.

Variant An object that represents the ActiveX hosted by the item

The ItemObject retrieves the ActiveX object being created by the InsertControlItem method,
or the object being hosted when using the InsertObjectItem property. Use the ItemControlID
property to retrieve the control's identifier. Use the ItemHeight property to specify the item's
height. If the item hosts an ActiveX control, the ItemHeight property specifies the height of
the ActiveX control also.

The following VB sample adds the Exontrol's ExCalendar Component:

With Grid1
 .BeginUpdate
 .ScrollBySingleLine = True
 With Grid1.Items
 Dim h As HITEM
 h = .InsertControlItem(, "Exontrol.Calendar")
 .ItemHeight(h) = 182
 With .ItemObject(h)
 .Appearance = 0
 .BackColor = vbWhite
 .ForeColor = vbBlack
 .ShowTodayButton = False
 End With
 End With
 .EndUpdate
End With

The following C++ sample adds the Exontrol's ExOrgChart Component:

#include "Items.h"

#pragma warning(disable : 4146)
#import <ExOrgChart.dll>

CItems items = m_grid.GetItems();
m_grid.BeginUpdate();
m_grid.SetScrollBySingleLine(TRUE);
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
long h = items.InsertControlItem(0, "Exontrol.ChartView", vtMissing);
items.SetItemHeight(h, 182);
EXORGCHARTLib::IChartViewPtr spChart(items.GetItemObject(h));
if (spChart != NULL)
{
 spChart->BeginUpdate();
 spChart->BackColor = RGB(255,255,255);
 spChart->ForeColor = RGB(0,0,0);
 EXORGCHARTLib::INodesPtr spNodes = spChart->Nodes;
 spNodes->Add("Child 1", "Root", "1", vtMissing, vtMissing);
 spNodes->Add("SubChild 1", "1", vtMissing, vtMissing, vtMissing);
 spNodes->Add("SubChild 2", "1", vtMissing, vtMissing, vtMissing);
 spNodes->Add("Child 2", "Root", vtMissing, vtMissing, vtMissing);
 spChart->EndUpdate();
}
m_grid.EndUpdate();

The sample uses the #import statement to include the ExOrgChart's Type Library. In this
sample, the ItemObject property retrieves an IChartView object. The path to the library
should be provided in case it is not located in your system folder.

The following C# sample adds the Exontrol's ExGrid Component:

axGrid1.BeginUpdate();
EXGRIDLib.Items items = axGrid1.Items;
axGrid1.ScrollBySingleLine = true;
int h = items.InsertControlItem(0, "Exontrol.Grid", "");
items.set_ItemHeight(h, 182);
object gridInside = items.get_ItemObject(h);
if (gridInside != null)
{

 EXGRIDLib.Grid grid = gridInside as EXGRIDLib.Grid;
 if (grid != null)
 {
 grid.BeginUpdate();
 grid.LinesAtRoot = EXGRIDLib.LinesAtRootEnum.exLinesAtRoot;
 grid.Columns.Add("Column 1");
 grid.Columns.Add("Column 2");
 grid.Columns.Add("Column 3");
 EXGRIDLib.Items itemsInside = grid.Items;
 int hInside = itemsInside.AddItem("Item 1");
 itemsInside.set_CellValue(hInside, 1, "SubItem 1");
 itemsInside.set_CellValue(hInside, 2, "SubItem 2");
 hInside = itemsInside.InsertItem(hInside, null, "Item 2");
 itemsInside.set_CellValue(hInside, 1, "SubItem 1");
 itemsInside.set_CellValue(hInside, 2, "SubItem 2");
 grid.EndUpdate();
 }
}
axGrid1.EndUpdate();

The following VB.NET sample adds the Exontrol's ExOrgChart Component:

With AxGrid1
 .BeginUpdate()
 .ScrollBySingleLine = True
 With .Items
 Dim hItem As Integer
 hItem = .InsertControlItem(, "Exontrol.ChartView")
 .ItemHeight(hItem) = 182
 With .ItemObject(hItem)
 .BackColor = ToUInt32(Color.White)
 .ForeColor = ToUInt32(Color.Black)
 With .Nodes
 .Add("Child 1", , "1")
 .Add("SubChild 1", "1")
 .Add("SubChild 2", "1")
 .Add("Child 2")

 End With
 End With
 End With
 .EndUpdate()
End With

The following VFP sample adds the Exontrol's ExGrid Component:

with thisform.Grid1
 .BeginUpdate()
 .ScrollBySingleLine = .t.
 with .Items
 .DefaultItem = .InsertControlItem(0, "Exontrol.Grid")
 .ItemHeight(0) = 182
 with .ItemObject(0)
 .BeginUpdate()
 with .Columns
 with .Add("Column 1").Editor()
 .EditType = 1 && EditType editor
 endwith
 endwith
 with .Items
 .AddItem("Text 1")
 .AddItem("Text 2")
 .AddItem("Text 3")
 endwith
 .EndUpdate()
 endwith
 endwith
 .EndUpdate()
endwith

property Items.ItemParent (Item as HITEM) as HITEM

Returns the handle of the item's parent item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

HITEM A long expression that indicates the item's handle that
indicates the parent item.

Use the ItemParent property to retrieve the parent item. Use the InsertItem property to
insert child items. Use the InsertControlItem property to insert ActiveX controls. The
SetParent method changes the item's parent at runtime. To verify if an item can be parent
for another item you can call AcceptSetParent property. If the item has no parent the
ItemParent property retrieves 0. If the ItemParent gets 0 for an item, than the item is called
root. The control is able to handle more root items. To get the collection of root items you
can use RootCount and RootItem properties. Use the ItemChild property to retrieve the first
child item.

property Items.ItemPosition(Item as HITEM) as Long
Retrieves or sets a value that indicates the item's position in the children list.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Long A long expression that indicates the item's position in the
children list.

The ItemPosition property gets the item's position in the children items list. When the control
sorts a column the position for each item can be changed. Use the handle of the item to
identify an item. The ItemPosition property is not available if the control is running in the
virtual mode. Use the SortChildren method to sort the child items. Use the SortOrder
property to sort a column. Use the NextVisibleItem property to enumerate items as they are
displayed. The SortableItem property specifies whether the item keeps its position after
sorting.

property Items.ItemStrikeOut(Item as HITEM) as Boolean

Retrieves or sets the StrikeOut property of the Font object used to paint the item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Boolean A boolean expression that indicates whether the item uses
strikeout font attribute to paint it.

If the ItemStrikeOut property is True, the cell's font is displayed with a horizontal line
through it. Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply
different font attributes to the item. Use the CellItalic, CellUnderline, CellBold or
CellStrikeOut property to apply different font attributes to the cell. Use the CellValueFormat
property to specify an HTML caption. Use the ConditionalFormats method to apply formats
to a cell or range of cells, and have that formatting change depending on the value of the
cell or the value of a formula.

The following VB sample draws a horizontal line through the selected item:

Private Sub Grid1_SelectionChanged()
 If Not (h = 0) Then Grid1.Items.ItemStrikeOut(h) = False
 h = Grid1.Items.SelectedItem()
 Grid1.Items.ItemStrikeOut(h) = True
End Sub

The following VB sample draws a horizontal line through the focused item:

With Grid1.Items
 .ItemStrikeOut(.FocusItem) = True
End With

The following C++ sample draws a horizontal line through the focused item:

#include "Items.h"
CItems items = m_grid.GetItems();
items.SetItemStrikeOut(items.GetFocusItem() , TRUE);

The following C# sample draws a horizontal line through the focused item:

axGrid1.Items.set_ItemStrikeOut(axGrid1.Items.FocusItem, true);

The following VB.NET sample draws a horizontal line through the focused item:

With AxGrid1.Items
 .ItemStrikeOut(.FocusItem) = True
End With

The following VFP sample draws a horizontal line through the focused item:

with thisform.Grid1.Items
 .DefaultItem = .FocusItem
 .ItemStrikeOut(0) = .t.
endwith

property Items.ItemToIndex (Item as HITEM) as Long
Retrieves the index of an item in the Items collection, given its handle.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Long A long expression that indicates the index of Item in Items
collection.

Use the ItemToIndex property to get the item's index in the Items collection. Use
ItemPosition property to change the item's position. Use the ItemByIndex property to get an
item giving its index. The ItemCount property counts the items in the control. The ChildCount
property counts the child items.

property Items.ItemToVirtual (Item as HITEM) as Long
Gets the index of the virtual item giving the handle of the item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Long A long expression that indicates the index of the virtual
item.

The ItemToVirtual property converts the handle of the item to the index of the virtual
item/record. The ItemToVirtual property has effect only if the control is running in the virtual
mode. Use the VirtualToItem property to get the handle of the item giving the index of the
virtual item/record.

The following VB sample notifies the n object that the user changes the date in the control:

Private Sub Grid1_Change(ByVal Item As EXGRIDLibCtl.HITEM, ByVal ColIndex As Long,
newValue As Variant)
 With Grid1.Items
 n.Change .ItemToVirtual(Item), ColIndex, newValue
 End With
End Sub

property Items.ItemUnderline(Item as HITEM) as Boolean

Retrieves or sets the Underline property of the Font object used to paint the item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Boolean
A boolean expression that indicates if the item is
underlined or not. True if the item is underlined, False, if
the item is not underlined.

Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply different font
attributes to the item. Use the CellItalic, CellUnderline, CellBold or CellStrikeOut property to
apply different font attributes to the cell. Use the CellValueFormat property to specify an
HTML caption. Use the ConditionalFormats method to apply formats to a cell or range of
cells, and have that formatting change depending on the value of the cell or the value of a
formula.

The following VB sample underlines the selected item:

Private Sub Grid1_SelectionChanged()
 If Not (h = 0) Then Grid1.Items.ItemUnderline(h) = False
 h = Grid1.Items.SelectedItem()
 Grid1.Items.ItemUnderline(h) = True
End Sub

The following VB sample underlines the focused item:

With Grid1.Items
 .ItemUnderline(.FocusItem) = True
End With

The following C++ sample underlines the focused item:

#include "Items.h"
CItems items = m_grid.GetItems();
items.SetItemUnderline(items.GetFocusItem() , TRUE);

The following C# sample underlines the focused item:

axGrid1.Items.set_ItemUnderline(axGrid1.Items.FocusItem, true);

The following VB.NET sample underlines the focused item:

With AxGrid1.Items
 .ItemUnderline(.FocusItem) = True
End With

The following VFP sample underlines the focused item:

with thisform.Grid1.Items
 .DefaultItem = .FocusItem
 .ItemUnderline(0) = .t.
endwith

property Items.ItemWidth(Item as HITEM) as Long
Retrieves or sets a value that indicates the item's width while it contains an ActiveX control.

Type Description

Item as HITEM A long expression that indicates the item's handle that was
previously created using InsertControlItem property.

Long A long expression that indicates the item's width.

By default, the ItemWidth property is -1. If the ItemWidth property is -1, the control resizes
the ActiveX control to fit the control's client area. Use the ItemHeight property to specify the
item's height. The property has effect only if the item contains an ActiveX control. Use the
InsertControlItem property to insert ActiveX controls. Use the ItemObject property to
retrieve the ActiveX object that's hosted by an item. Use the CellWidth property to specify
the width of the cell, when it contains inner cells. Use the SplitCell property to split a cell.

The ItemWidth property is interpreted like follows:

If the ItemWidth property is greater than zero, the ItemWidth property indicates the
width in pixels of the ActiveX control. The TreeColumnIndex property indicates the
column where the ActiveX control is shown. For instance, ItemWidth = 64, indicates
that the width of the inside ActiveX control is 64 pixels.
If the ItemWidth property is zero, the ActiveX control uses the full item area to display
the inside ActiveX control.
If the ItemWidth property is -1, the TreeColumnIndex property indicates the column
where the ActiveX control is shown and the inside ActiveX control is shown to the end
of the control.
If the ItemWidth property is less than -32000, the formula -(ItemWidth+32000)
indicates the index of the column where the inside ActiveX is displayed. For instance,
-32000 indicates that the cell in the first column displays the inside ActiveX control,
-32001 indicates that the cell in the second column displays the inside ActiveX control,
-32002 indicates that the cell in the third column displays the inside ActiveX control, and
so on.
If the ItemWidth property is -InnerCell or ItemCell, the ItemWidth property indicates the
handle of the cell that shows the inside ActiveX. This option should be used when you
need to display the ActiveX control in an inner cell. Use the SplitCell property to create
inner cells, to divide a cell or to split a cell. For instance, .ItemWidth(.FirstVisibleItem)
= -.InnerCell(.FirstVisibleItem, 1, 1) indicates that the inside ActiveX control is shown in
the second inner cell in the second column, in the first visible item. Use the CellWidth
property to specify the width of the inner cell.

property Items.ItemWindowHost (Item as HITEM) as Long

Retrieves the window's handle that hosts an ActiveX control when the item was created
using InsertControlItem property.

Type Description

Item as HITEM A long expression that indicates the item's handle that was
previously created by InsertControlItem property.

Long A long value that indicates the window handle that hosts
the item's ActiveX.

The ItemWindowHost property retrieves the handle of the window that's the container for
the item's ActiveX control. Use the InserControlItem method to insert an ActiveX control.
Use the ItemObject property to access the ActiveX properties and methods. Use the hWnd
property to get the handle of the control's window. The Microsoft Windows operating
environment identifies each form and control in an application by assigning it a handle, or
hWnd. The hWnd property is used with Windows API calls. Many Windows operating
environment functions require the hWnd of the active window as an argument.

property Items.ItemWindowHostCreateStyle(Item as HITEM) as Long

Retrieves or sets a value that indicates a combination of window styles used to create the
ActiveX window host.

Type Description

Item as HITEM A long expression that indicates the item's handle that was
previously created by InsertControlItem property.

Long A long value that indicates the container window's style.

The ItemWindowHostCreateStyle property specifies the window styles of the ActiveX's
container window, when a new ActiveX control is inserted using the InsertControlItem
method. The ItemWindowHostCreateStyle property has no effect for non ActiveX items.
The ItemWindowHostCreateStyle property must be called during the AddItem event, like in
the following samples. Generally, the ItemWindowHostCreateStyle property is useful to
include WS_HSCROLL and WS_VSCROLL styles for a IWebBrowser control (WWW
browser control), to include scrollbars in the browsed web page.

Some ActiveX controls require additional window styles to be added to the conatiner
window. For instance, the Web Brower added by the Grid1.Items.InsertControlItem(,
"https://www.exontrol.com") won't add scroll bars, so you have to do the following:

First thing is to declare the WS_HSCROLL and WS_VSCROLL constants at the top of your
module:

Private Const WS_VSCROLL = &H200000
Private Const WS_HSCROLL = &H100000

Then to insert a Web control use the following lines:

Dim hWeb As HITEM
hWeb = Grid1.Items.InsertControlItem(, "https://www.exontrol.com")
Grid1.Items.ItemHeight(hWeb) = 196

Next step is adding the AddItem event handler:

Private Sub Grid1_AddItem(ByVal Item As EXGRIDLibCtl.HITEM)
 If (Grid1.Items.ItemControlID(Item) = "https://www.exontrol.com") Then
 ' Some of controls like the WEB control, requires some additional window styles (like
WS_HSCROLL and WS_VSCROLL window styles)
 ' for the window that host that WEB control, to allow scrolling the web page

https://www.exontrol.com

 Grid1.Items.ItemWindowHostCreateStyle(Item) =
Grid1.Items.ItemWindowHostCreateStyle(Item) + WS_HSCROLL + WS_VSCROLL
 End If
End Sub

property Items.LastVisibleItem ([Partially as Variant]) as HITEM

Retrieves the handle of the last visible item.

Type Description

Partially as Variant
A boolean expression that indicates whether the item is
partially visible. By default, the Partially parameter is
False.

HITEM A long expression that indicates the item's handle that
indicates the last visible item.

The LastVisibleItem property retrieves the handle for the last visible item. To get the first
visible item use FirstVisibleItem property. Use the FirstVisibleItem, NextVisibleItem and
IsItemVisible properties to get the items that fit the client area. Use the NextVisibleItem
property to get the next visible item. Use the IsVisibleItem property to check whether an
item fits the control's client area. The LastVisibleItem(False) property gets the handle of the
last visible item that's not a partial item. The LastVisibleItem(True) property gets the handle
of the last visible item no matter if it is partially visible or not.

The following VB sample enumerates all visible items:

Private Sub VisItems(ByVal c As EXGRIDLibCtl.Grid)
 Dim h As HITEM
 With c.Items
 h = .FirstVisibleItem
 While Not (h = 0)
 Debug.Print .CellCaption(h, 0)
 h = .NextVisibleItem(h)
 Wend
 End With
End Sub

The following C++ sample enumerates all visible items:

#include "Items.h"
CItems items = m_grid.GetItems();
long hItem = items.GetFirstVisibleItem();
while (hItem)
{
 OutputDebugString(V2S(&items.GetCellValue(COleVariant(hItem), COleVariant(

long(0)))));
 hItem = items.GetNextVisibleItem(hItem);
}

The following C# sample enumerates all visible items:

EXGRIDLib.Items items = axGrid1.Items;
int hItem = items.FirstVisibleItem;
while (hItem != 0)
{
 object strCaption = items.get_CellValue(hItem, 0);
 System.Diagnostics.Debug.WriteLine(strCaption != null ? strCaption.ToString() : "");
 hItem = items.get_NextVisibleItem(hItem);
}

The following VB.NET sample enumerates all visible items:

With AxGrid1.Items
 Dim hItem As Integer
 hItem = .FirstVisibleItem
 While Not (hItem = 0)
 Debug.Print(.CellCaption(hItem, 0))
 hItem = .NextVisibleItem(hItem)
 End While
End With

The following VFP sample enumerates all visible items:

with thisform.Grid1.Items
 .DefaultItem = .FirstVisibleItem
 do while (.DefaultItem <> 0)
 wait window .CellCaption(0, 0)
 .DefaultItem = .NextVisibleItem(0)
 enddo
endwith

property Items.LockedItem (Alignment as VAlignmentEnum, Index as
Long) as HITEM
Retrieves the handle of the locked item.

Type Description

Alignment as
VAlignmentEnum

A VAlignmentEnum expression that indicates whether the
locked item requested is on the top or bottom side of the
control.

Index as Long A long expression that indicates the position of item being
requested.

HITEM A long expression that indicates the handle of the locked
item

A locked or fixed item is always displayed on the top or bottom side of the control no matter
if the control's list is scrolled up or down. Use the LockedItem property to access a locked
item by its position. Use the LockedItemCount property to add or remove items fixed/locked
to the top or bottom side of the control. Use the ShowLockedItems property to show or
hide the locked items. Use the IsItemLocked property to check whether an item is locked or
unlocked. Use the CellValue property to specify the caption for a cell. Use the
InsertControlItem property to assign an ActiveX control to a locked item only

property Items.LockedItemCount(Alignment as VAlignmentEnum) as
Long
Specifies the number of items fixed on the top or bottom side of the control.

Type Description
Alignment as
VAlignmentEnum

A VAlignmentEnum expression that specifies the top or
bottom side of the control.

Long A long expression that indicates the number of items
locked to the top or bottom side of the control.

A locked or fixed item is always displayed on the top or bottom side of the control no matter
if the control's list is scrolled up or down. Use the LockedItemCount property to add or
remove items fixed/locked to the top or bottom side of the control. Use the LockedItem
property to access a locked item by its position. Use the ShowLockedItems property to
show or hide the locked items. Use the CellValue property to specify the caption for a cell.
Use the CountLockedColumns property to lock or unlock columns in the control. Use the
ItemBackColor property to specify the item's background color. Use the ItemDivider
property to merge the cells in the same item. Use the MergeCells method to combine one
or more cells in a single cell.

The following VB sample displays some locked items to the top and bottom side of the
control (before running the sample, please make sure that the control contains some
columns:

With Grid1
 .BeginUpdate
 .DrawGridLines = exHLines
 .ShowLockedItems = True
 If .Columns.Count > 0 Then

 With .Items
 Dim h As EXGRIDLibCtl.HITEM, a As EXGRIDLibCtl.VAlignmentEnum
 a = exTop
 .LockedItemCount(a) = 2
 h = .LockedItem(a, 0)
 .CellValue(h, 0) = "This is an item fixed to the top side of the control."
 .CellValueFormat(h, 0) = exHTML
 .ItemHeight(h) = 24
 .ItemDivider(h) = 0
 .ItemDividerLine(h) = EmptyLine
 h = .LockedItem(a, 1)
 .CellValue(h, 0) = "Total"
 .CellBold(h, 0) = True
 .CellValue(h, 1) = "$1000"
 .CellEditorVisible(h, 1) = False
 .CellHAlignment(h, 1) = RightAlignment

 a = exBottom
 .LockedItemCount(a) = 1
 h = .LockedItem(a, 0)
 .CellValue(h, 0) = "This is an item fixed to the bottom side of the control."
 .CellValueFormat(h, 0) = exHTML
 .CellHAlignment(h, 0) = CenterAlignment
 .ItemHeight(h) = 24
 .ItemDivider(h) = 0
 .ItemDividerLine(h) = EmptyLine
 .ItemBackColor(h) = Grid1.BackColorHeader

 End With
 End If
 .EndUpdate
End With

The following C++ sample adds an item that's locked to the top side of the control:

#include "Items.h"
m_grid.BeginUpdate();

CItems items = m_grid.GetItems();
items.SetLockedItemCount(0 /*exTop*/, 1);
long i = items.GetLockedItem(0 /*exTop*/, 0);
COleVariant vtItem(i), vtColumn(long(0));
items.SetCellValue(vtItem, vtColumn, COleVariant("locked item"));
items.SetCellValueFormat(vtItem, vtColumn, 1/*exHTML*/);
m_grid.EndUpdate();

The following VB.NET sample adds an item that's locked to the top side of the control:

With AxGrid1
 .BeginUpdate()
 With .Items
 .LockedItemCount(EXGRIDLib.VAlignmentEnum.exTop) = 1
 Dim i As Integer
 i = .LockedItem(EXGRIDLib.VAlignmentEnum.exTop, 0)
 .CellValue(i, 0) = "locked item"
 .CellValueFormat(i, 0) = EXGRIDLib.CaptionFormatEnum.exHTML
 End With
 .EndUpdate()
End With

The following C# sample adds an item that's locked to the top side of the control:

axGrid1.BeginUpdate();
EXGRIDLib.Items items = axGrid1.Items;
items.set_LockedItemCount(EXGRIDLib.VAlignmentEnum.exTop, 1);
int i = items.get_LockedItem(EXGRIDLib.VAlignmentEnum.exTop, 0);
items.set_CellValue(i, 0, "locked item");
items.set_CellValueFormat(i, 0, EXGRIDLib.CaptionFormatEnum.exHTML);
axGrid1.EndUpdate();

The following VFP sample adds an item that's locked to the top side of the control:

with thisform.Grid1
 .BeginUpdate()
 With .Items
 .LockedItemCount(0) = 1
 .DefaultItem = .LockedItem(0, 0)

 .CellValue(0, 0) = "locked item"
 .CellValueFormat(0, 0) = 1 && EXGRIDLib.ValueFormatEnum.exHTML
 EndWith
 .EndUpdate()
endwith

property Items.MatchItemCount as Long
Retrieves the number of items that match the filter.

Type Description

Long
A long expression that specifies the number of matching
items in the control. The value could be a positive value if
no filter is applied, or negative while filter is on.

The MatchItemCount property counts the number of items that matches the current filter
criteria. At runtime, the MatchItemCount property is a positive integer if no filter is applied,
and negative if a filter is applied. If positive, it indicates the number of items within the
control (ItemCount property). If negative, a filter is applied, and the absolute value minus
one, indicates the number of matching items after filter is applied. A matching item includes
its parent items, if the control's FilterInclude property allows including child items.

The MatchItemCount property returns a value as explained bellow:

0, the control displays/contains no items, and no filter is applied to any column
-1, the control displays no items, and there is a filter applied (no match found)
positive number, indicates the number of items within the control (ItemCount property)
negative number, the absolute value minus 1, indicates the number of items that
matches the current filter (match found)

method Items.MergeCells ([Cell1 as Variant], [Cell2 as Variant], [Options
as Variant])
Merges a list of cells.

Type Description

Cell1 as Variant

A long expression that indicates the handle of the cell
being merged, or a safe array that holds a collection of
handles for the cells being merged. Use the ItemCell
property to retrieves the handle of the cell. The first cell
(in the list, if exists) specifies the cell being displayed in
the new larger cell.

Cell2 as Variant

A long expression that indicates the handle of the cell
being merged, or a safe array that holds a collection of
handles for the cells being merged. Use the ItemCell
property to retrieves the handle of the cell. The first cell in
the list specifies the cell being displayed in the new larger
cell.

Options as Variant Reserved.

The MergeCells method combines two or more cells into one cell. The data in the first
specified cell is displayed in the new larger cell. All the other cells' data is not lost. Use the
CellMerge property to merge or unmerge a cell with another cell in the same item. Use the
ItemDivider property to display a single cell in the entire item. Use the UnmergeCells
method to unmerge the merged cells. Use the CellValue property to specify the cell's value.
Use the ItemCell property to retrieves the handle of the cell. Use the BeginMethod and
EndUpdate methods to maintain performance, when merging multiple cells in the same time.
The MergeCells methods creates a list of cells from Cell1 and Cell2 parameters that need
to be merged, and the first cell in the list specifies the displayed cell in the merged cell. Use
the SplitCell property to split a cell.

The following samples adds three columns, a root item and two child items:

With Grid1
 .BeginUpdate
 .MarkSearchColumn = False
 .DrawGridLines = exAllLines
 .LinesAtRoot = exLinesAtRoot
 With .Columns.Add("Column 1")
 .Def(exCellValueFormat) = exHTML
 End With
 .Columns.Add "Column 2"
 .Columns.Add "Column 3"
 With .Items
 Dim h As Long
 h = .AddItem("Root. This is the root item")
 .InsertItem h, , Array("Child 1", "SubItem 2", "SubItem 3")
 .InsertItem h, , Array("Child 2", "SubItem 2", "SubItem 3")
 .ExpandItem(h) = True
 .SelectItem(h) = True
 End With
 .EndUpdate
End With

and it looks like follows (notice that the caption of the root item is truncated by the column
that belongs to):

If we are merging the first three cells in the root item we get:

The following VB sample merges the first three cells:

With Grid1.Items
 .MergeCells .ItemCell(.FocusItem, 0), Array(.ItemCell(.FocusItem, 1), .ItemCell(.FocusItem,
2))
End With

The following C++ sample merges the first three cells:

#include "Items.h"
CItems items = m_grid.GetItems();
COleVariant vtFocusCell(items.GetItemCell(items.GetFocusItem(), COleVariant((long)0))),
vtMissing; V_VT(&vtMissing) = VT_ERROR;
items.MergeCells(vtFocusCell, COleVariant(items.GetItemCell(items.GetFocusItem(),
COleVariant((long)1))), vtMissing);
items.MergeCells(vtFocusCell, COleVariant(items.GetItemCell(items.GetFocusItem(),
COleVariant((long)2))), vtMissing);

The following VB.NET sample merges the first three cells:

With AxGrid1.Items
 .MergeCells(.ItemCell(.FocusItem, 0), .ItemCell(.FocusItem, 1))
 .MergeCells(.ItemCell(.FocusItem, 0), .ItemCell(.FocusItem, 2))
End With

The following C# sample merges the first three cells:

EXGRIDLib.Items items = axGrid1.Items;
items.MergeCells(items.get_ItemCell(items.FocusItem, 0), items.get_ItemCell(
items.FocusItem, 1),"");

items.MergeCells(items.get_ItemCell(items.FocusItem, 0),
items.get_ItemCell(items.FocusItem, 2),"");

The following VFP sample merges the first three cells:

with thisform.Grid1.Items
 .MergeCells(.ItemCell(.FocusItem,0), .ItemCell(.FocusItem,1), "")
 .MergeCells(.ItemCell(.FocusItem,0), .ItemCell(.FocusItem,2), "")
endwith

Now, the question is what should I use in my program in order to merge some cells? For
instance, if you are using handle to cells (HCELL type), we would recommend using the
MergeCells method, else you could use as well the CellMerge property

You can merge the first three cells in the root item using any of the following methods:

 With Grid1
 With .Items
 .CellMerge(.RootItem(0), 0) = Array(1, 2)
 End With
End With

With Grid1
 .BeginUpdate
 With .Items
 Dim r As Long
 r = .RootItem(0)
 .CellMerge(r, 0) = 1
 .CellMerge(r, 0) = 2
 End With
 .EndUpdate
End With

With Grid1
 .BeginUpdate
 With .Items
 Dim r As Long
 r = .RootItem(0)
 .MergeCells .ItemCell(r, 0), .ItemCell(r, 1)

 .MergeCells .ItemCell(r, 0), .ItemCell(r, 2)
 End With
 .EndUpdate
End With

With Grid1
 With .Items
 Dim r As Long
 r = .RootItem(0)
 .MergeCells .ItemCell(r, 0), Array(.ItemCell(r, 1), .ItemCell(r, 2))
 End With
End With

With Grid1
 With .Items
 Dim r As Long
 r = .RootItem(0)
 .MergeCells Array(.ItemCell(r, 0), .ItemCell(r, 1), .ItemCell(r, 2))
 End With
End With

property Items.NextSiblingItem (Item as HITEM) as HITEM

Retrieves the next sibling of the item in the parent's child list.

Type Description
Item as HITEM A long expression that indicates the item's handle.

HITEM A long expression that indicates the next sibling item's
handle.

The NextSiblingItem property retrieves the next sibling of the item in the parent's child list.
Use ItemChild and NextSiblingItem properties to enumerate the collection of child
items. Use the FirstVisibleItem property to get the first visible item in the control's client
area. The NextVisibleItem property retrieves the handle of next visible item.

The following VB function recursively enumerates the item and all its child items:

Sub RecItem(ByVal c As EXGRIDLibCtl.Grid, ByVal h As HITEM)
 If Not (h = 0) Then
 Dim hChild As HITEM
 With c.Items
 Debug.Print .CellCaption(h, 0)
 hChild = .ItemChild(h)
 While Not (hChild = 0)
 RecItem c, hChild
 hChild = .NextSiblingItem(hChild)
 Wend
 End With
 End If
End Sub

The following C++ function recursively enumerates the item and all its child items:

void RecItem(CGrid* pGrid, long hItem)
{
 COleVariant vtColumn((long)0);
 if (hItem)
 {
 CItems items = pGrid->GetItems();

 CString strCaption = V2S(&items.GetCellValue(COleVariant(hItem), vtColumn)),
strOutput;
 strOutput.Format("Cell: '%s'\n", strCaption);
 OutputDebugString(strOutput);

 long hChild = items.GetItemChild(hItem);
 while (hChild)
 {
 RecItem(pGrid, hChild);
 hChild = items.GetNextSiblingItem(hChild);
 }
 }
}

The following VB.NET function recursively enumerates the item and all its child items:

Shared Sub RecItem(ByVal c As AxEXGRIDLib.AxGrid, ByVal h As Integer)
 If Not (h = 0) Then
 Dim hChild As Integer
 With c.Items
 Debug.WriteLine(.CellCaption(h, 0))
 hChild = .ItemChild(h)
 While Not (hChild = 0)
 RecItem(c, hChild)
 hChild = .NextSiblingItem(hChild)
 End While
 End With
 End If
End Sub

The following C# function recursively enumerates the item and all its child items:

internal void RecItem(AxEXGRIDLib.AxGrid grid, int hItem)
{
 if (hItem != 0)
 {
 EXGRIDLib.Items items = grid.Items;
 object caption = items.get_CellValue(hItem, 0);

 System.Diagnostics.Debug.WriteLine(caption != null ? caption.ToString() : "");

 int hChild = items.get_ItemChild(hItem);
 while (hChild != 0)
 {
 RecItem(grid, hChild);
 hChild = items.get_NextSiblingItem(hChild);
 }
 }
}

The following VFP function recursively enumerates the item and all its child items (recitem
method):

LPARAMETERS h

with thisform.Grid1
 If (h != 0) Then
 local hChild
 With .Items
 .DefaultItem = h
 wait window .CellCaption(0, 0)
 hChild = .ItemChild(h)
 do While (hChild != 0)
 thisform.recitem(hChild)
 hChild = .NextSiblingItem(hChild)
 enddo
 EndWith
 EndIf
endwith

property Items.NextVisibleItem (Item as HITEM) as HITEM

Retrieves the handle of next visible item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

HITEM A long expression that indicates the handle of the next
visible item.

Use the NextVisibleItem property to access the visible items. The NextVisibleItem property
retrieves 0 if there are no more visible items. Use the FirstVisibleItem property to get the
first visible item in the control's client area. Use the RootItem property to get the first visible
item in the list. The NextSiblingItem property retrieves the next sibling of the item in the
parent's child list. Use the IsItemVisible property to check whether an item fits the control's
client area. Use the ItemPosition property to change the position of the item. Use the
SortOrder property to sort a column.

The following VB sample enumerates all visible items:

Private Sub VisItems(ByVal c As EXGRIDLibCtl.Grid)
 Dim h As HITEM
 With c.Items
 h = .FirstVisibleItem
 While Not (h = 0)
 Debug.Print .CellCaption(h, 0)
 h = .NextVisibleItem(h)
 Wend
 End With
End Sub

The following VB sample enumerates all cells in the control, as they are listed:

With Grid1
 Dim nCols As Long
 nCols = .Columns.Count
 With .Items
 Dim h As HITEM
 h = .RootItem(0)
 While Not h = 0
 Dim i As Long

 For i = 0 To nCols - 1
 Debug.Print .CellValue(h, i)
 Next
 h = .NextVisibleItem(h)
 Wend
 End With
End With

The following C++ sample enumerates all visible items:

#include "Items.h"
CItems items = m_grid.GetItems();
long hItem = items.GetFirstVisibleItem();
while (hItem)
{
 OutputDebugString(V2S(&items.GetCellValue(COleVariant(hItem), COleVariant(
long(0)))));
 hItem = items.GetNextVisibleItem(hItem);
}

The following C# sample enumerates all visible items:

EXGRIDLib.Items items = axGrid1.Items;
int hItem = items.FirstVisibleItem;
while (hItem != 0)
{
 object strCaption = items.get_CellValue(hItem, 0);
 System.Diagnostics.Debug.WriteLine(strCaption != null ? strCaption.ToString() : "");
 hItem = items.get_NextVisibleItem(hItem);
}

The following VB.NET sample enumerates all visible items:

With AxGrid1.Items
 Dim hItem As Integer
 hItem = .FirstVisibleItem
 While Not (hItem = 0)
 Debug.Print(.CellCaption(hItem, 0))
 hItem = .NextVisibleItem(hItem)

 End While
End With

The following VFP sample enumerates all visible items:

with thisform.Grid1.Items
 .DefaultItem = .FirstVisibleItem
 do while (.DefaultItem <> 0)
 wait window .CellCaption(0, 0)
 .DefaultItem = .NextVisibleItem(0)
 enddo
endwith

property Items.PathSeparator as String

Returns or sets the delimiter character used for the path returned by the FullPath and
FindPath properties.

Type Description

String
A string expression that indicates the delimiter character
used for the path returned by the FullPath and FindPath
properties.

By default the PathSeparator is "\". The PathSeparator property is used by properties like
FullPath and FindPath.

property Items.PrevSiblingItem (Item as HITEM) as HITEM

Retrieves the previous sibling of the item in the parent's child list.

Type Description
Item as HITEM A long expression that indicates the item's handle.

HITEM A long expression that indicates the handle of the previous
sibling item.

The PrevSiblingItem retrieves 0 if there are no more previous sibling items. The
NextSiblingItem property retrieves the next sibling of the item in the parent's child list. Use
the FirstVisibleItem property to retrieve the first visible item. Use the ItemParent property to
retrieve the parent of the item. Use the RootItem property to get the first visible item in the
list.

property Items.PrevVisibleItem (Item as HITEM) as HITEM

Retrieves the handle of previous visible item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

HITEM A long expression that indicates the handle of the previous
visible item.

The PrevVisibleItem property retrieves 0 if there are no previous visible items. The
NextVisibleItem property retrieves the next visible item. Use the FirstVisibleItem property to
retrieve the first visible item. Use the ItemParent property to retrieve the parent of the item.
Use the RootItem property to get the first visible item in the list.

method Items.RemoveAllItems ()

Removes all items from the control.

Type Description

The RemoveAllItems method remove all items in the control. The Clear method of Columns
object clears the Items collection too. Use the RemoveItem method to remove an item
from the control. The RemoveAllItems method is not available if the control is running in the
virtual mode.

method Items.RemoveItem (Item as HITEM)

Removes the given item.

Type Description

Item as HITEM A long expression that indicates the item's handle being
removed.

The RemoveItem method removes an item. The RemoveItem method does not remove the
item, if it contains child items. Use the RemoveAllItems method to remove all items in the
control. Use the BeginUpdate and EndUpdate methods to maintain performance while
removing the items. The RemoveItem method can't remove an item that's locked. Instead
you can use the LockedItemCount property to add or remove locked items. Use the
IsItemLocked property to check whether an item is locked. The RemoveItem method is not
available if the control is running in the virtual mode. The RemoveSelection method removes
the selected items (including the descendents).

The following VB sample removes recursively an item:

Private Sub RemoveItemRec(ByVal t As EXGRIDLibCtl.Grid, ByVal h As HITEM)
 t.BeginUpdate
 With t.Items
 If (.ChildCount(h) > 0) Then
 Dim hChild As HITEM
 hChild = .ItemChild(h)
 While (hChild <> 0)
 Dim hNext As HITEM
 hNext = .NextSiblingItem(hChild)
 RemoveItemRec t, hChild
 hChild = hNext
 Wend
 End If
 .RemoveItem h
 t.EndUpdate
 End With
End Sub

The following C++ sample removes recursively an item:

void RemoveItemRec(CGrid* pGrid, long hItem)

{
 if (hItem)
 {
 pGrid->BeginUpdate();
 CItems items = pGrid->GetItems();
 long hChild = items.GetItemChild(hItem);
 while (hChild)
 {
 long nNext = items.GetNextSiblingItem(hChild);
 RemoveItemRec(pGrid, hChild);
 hChild = nNext;
 }
 items.RemoveItem(hItem);
 pGrid->EndUpdate();
 }
}

The following VB.NET sample removes recursively an item:

Shared Sub RemoveItemRec(ByVal t As AxEXGRIDLib.AxGrid, ByVal h As Integer)
 If Not h = 0 Then
 With t.Items
 t.BeginUpdate()
 Dim hChild As Integer = .ItemChild(h)
 While (hChild <> 0)
 Dim hNext As Integer = .NextSiblingItem(hChild)
 RemoveItemRec(t, hChild)
 hChild = hNext
 End While
 .RemoveItem(h)
 t.EndUpdate()
 End With
 End If
End Sub

The following C# sample removes recursively an item:

internal void RemoveItemRec(AxEXGRIDLib.AxGrid grid, int hItem)

{
 if (hItem != 0)
 {
 EXGRIDLib.Items items = grid.Items;
 grid.BeginUpdate();
 int hChild = items.get_ItemChild(hItem);
 while (hChild != 0)
 {
 int hNext = items.get_NextSiblingItem(hChild);
 RemoveItemRec(grid, hChild);
 hChild = hNext;
 }
 items.RemoveItem(hItem);
 grid.EndUpdate();
 }
}

The following VFP sample removes recursively an item (removeitemrec method):

LPARAMETERS h

with thisform.Grid1
 If (h != 0) Then
 .BeginUpdate()
 local hChild
 With .Items
 hChild = .ItemChild(h)
 do While (hChild != 0)
 local hNext
 hNext = .NextSiblingItem(hChild)
 thisform.removeitemrec(hChild)
 hChild = hNext
 enddo
 .RemoveItem(h)
 EndWith
 .EndUpdate()
 EndIf

endwith

method Items.RemoveSelection ()
Removes the selected items (including the descendents).

Type Description

The RemoveSelection method removes the selected items (including the descendents). The
RemoveItem method removes a specific item (if it has not child items). The UnselectAll
method unselects all items in the list.

property Items.RootCount as Long

Retrieves the number of root objects in the Items collection.

Type Description

Long A long value that indicates the count of root items into
Items collection.

A root item is an item that has no parent (ItemParent() = 0). Use the RootItem property of
the Items object to enumerates the root items. Use the AddItem to add root items to the
control. Use the InsertItem method to insert child items.

The following VB sample enumerates all root items:

Dim i As Long, n As Long
With Grid1.Items
 n = .RootCount
 For i = 0 To n - 1
 Debug.Print .CellValue(.RootItem(i), 0)
 Next
End With

The following C++ sample enumerates all root items:

#include "Items.h"
CItems items = m_grid.GetItems();
for (long i = 0 ; i < items.GetRootCount(); i++)
{
 COleVariant vtItem(items.GetRootItem(i)), vtColumn(long(0));
 OutputDebugString(V2S(&items.GetCellValue(vtItem, vtColumn)));
}

where the V2S function converts a VARIANT expression to a string expression and looks
like:

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)

 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

if you are using MFC, or

static string V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 CComVariant vt;
 if (SUCCEEDED(vt.ChangeType(VT_BSTR, pv)))
 {
 USES_CONVERSION;
 return OLE2T(V_BSTR(&vt));
 }
 }
 return szDefault;
}

if you are using STL.

The following VB.NET sample enumerates all root items:

With AxGrid1.Items
 Dim i As Integer
 For i = 0 To .RootCount - 1
 Debug.Print(.CellValue(.RootItem(i), 0))
 Next
End With

The following C# sample enumerates all root items:

for (int i = 0; i < axGrid1.Items.RootCount; i++)
{
 object strValue = axGrid1.Items.get_CellValue(axGrid1.Items.get_RootItem(i), 0);
 System.Diagnostics.Debug.WriteLine(strValue != null ? strValue.ToString() : "");
}

The following VFP sample enumerates all root items:

with thisform.Grid1.Items
 local i
 for i = 0 to .RootCount - 1
 .DefaultItem = .RootItem(i)
 wait window nowait .CellValue(0,0)
 next
endwith

property Items.RootItem ([Position as Long]) as HITEM

Retrieves the handle of the root item given its index in the root items collection.

Type Description
Position as Long A long value that indicates the index of the root item.

HITEM A long expression that indicates the handle of the root
item.

A root item is an item that has no parent (ItemParent() = 0). Use the RootCount property of
to count the root items. Use the AddItem to add root items to the control. Use the
InsertItem method to insert child items. Use the FirstVisibleItem property to get the first
visible item in the control's client area. The NextVisibleItem property retrieves the handle of
next visible item. The NextSiblingItem property retrieves the next sibling of the item in the
parent's child list. Use the RootItem property to get the first visible item in the list. If you
need to enumerate the items as they are added, you may use the ItemByIndex property.

The following VB sample enumerates all root items. This sample can be used to list all your
items as they are displayed (sorted), when the control displays a plain list of items. A plain
list of items is composed by items that do not have child items.

Dim i As Long, n As Long
With Grid1.Items
 n = .RootCount
 For i = 0 To n - 1
 Debug.Print .CellValue(.RootItem(i), 0)
 Next
End With

The following VB sample enumerates all cells in the control, as they are listed:

With Grid1
 Dim nCols As Long
 nCols = .Columns.Count
 With .Items
 Dim h As HITEM
 h = .RootItem(0)
 While Not h = 0
 Dim i As Long
 For i = 0 To nCols - 1

 Debug.Print .CellValue(h, i)
 Next
 h = .NextVisibleItem(h)
 Wend
 End With
End With

The following C++ sample enumerates all root items:

#include "Items.h"
CItems items = m_grid.GetItems();
for (long i = 0 ; i < items.GetRootCount(); i++)
{
 COleVariant vtItem(items.GetRootItem(i)), vtColumn(long(0));
 OutputDebugString(V2S(&items.GetCellValue(vtItem, vtColumn)));
}

where the V2S function converts a VARIANT expression to a string expression and looks
like:

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

if you are using MFC, or

static string V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)

 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 CComVariant vt;
 if (SUCCEEDED(vt.ChangeType(VT_BSTR, pv)))
 {
 USES_CONVERSION;
 return OLE2T(V_BSTR(&vt));
 }
 }
 return szDefault;
}

if you are using STL.

The following VB.NET sample enumerates all root items:

With AxGrid1.Items
 Dim i As Integer
 For i = 0 To .RootCount - 1
 Debug.Print(.CellValue(.RootItem(i), 0))
 Next
End With

The following C# sample enumerates all root items:

for (int i = 0; i < axGrid1.Items.RootCount; i++)
{
 object strValue = axGrid1.Items.get_CellValue(axGrid1.Items.get_RootItem(i), 0);
 System.Diagnostics.Debug.WriteLine(strValue != null ? strValue.ToString() : "");
}

The following VFP sample enumerates all root items:

with thisform.Grid1.Items
 local i
 for i = 0 to .RootCount - 1
 .DefaultItem = .RootItem(i)

 wait window nowait .CellValue(0,0)
 next
endwith

property Items.SelectableItem(Item as HITEM) as Boolean
Specifies whether the user can select the item.

Type Description

Item as HITEM A long expression that indicates the handle of the item
being selectable.

Boolean A boolean expression that specifies whether the item is
selectable.

By default, all items are selectable, excepts the locked items that are not selectable. A
selectable item is an item that user can select using the keys or the mouse. The
SelectableItem property specifies whether the user can select an item. The SelectableItem
property doesn't change the item's appearance. The LockedItemCount property specifies
the number of locked items to the top or bottom side of the control. Use the ItemDivider
property to define a divider item. Use the ItemForeColor property to specify the item's
foreground color. Use the ItemBackColor property to specify the item's background color.
Use the ItemFont, ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to assign a
different font to the item. Use the EnableItem property to disable an item. A disabled item
looks grayed, but it is selectable. For instance, the user can't change the check box state in
a disabled item. Use the SelectItem property to select an item. The ItemFromPoint property
gets the item from point. For instance, if the user clicks a non selectable item the
SelectionChanged event is not fired. A non selectable item is not focusable as well. It
means that if the incremental searching is on, the non selectable items are ignored. Use the
SelectCount property to get the number of selected items. Use the SelForeColor and
SelBackColor properties to customize the colors for selected items. Use the ItemHeight
property and SelectableItem property to hide an item. The SortableItem property specifies
whether the item keeps its position after sorting.

The following VB sample makes not selectable the first visible item:

With Grid1.Items
 .SelectableItem(.FirstVisibleItem) = False

End With

The following C++ sample makes not selectable the first visible item:

CItems items = m_grid.GetItems();
items.SetSelectableItem(items.GetFirstVisibleItem(), FALSE);

The following VB.NET sample makes not selectable the first visible item:

With AxGrid1.Items
 .SelectableItem(.FirstVisibleItem) = False
End With

The following C# sample makes not selectable the first visible item:

axGrid1.Items.set_SelectableItem(axGrid1.Items.FirstVisibleItem, false);

The following VFP sample makes not selectable the first visible item:

with thisform.Grid1.Items
 .DefaultItem = .FirstVisibleItem
 .SelectableItem(0) = .f.
endwith

method Items.SelectAll ()
Selects all items.

Type Description

Use the SelectAll method to select all visible items in the tree. The SelectAll method has
effect only if the SingleSel property is False, if the control supports multiple items selection.
Use the UnselectAll method to unselect all items in the list. Use the SelectItem property to
select or unselect a specified item. Use the SelectedItem property to retrieve a value that
indicates whether the item is selected or unselected. Use the SelectCount property to
retrieve the number of selected items. The SelectPos property selects/unselects items by
position. The Selection property selects/unselects items by index.

property Items.SelectCount as Long

Counts the number of items that are selected in the control.

Type Description

Long A long expression that identifies the number of selected
items.

The SelectCount property counts the selected items in the control. The control supports
single or multiple selection. Use SingleSel property of the control to enable multiple
selection. Use the SelectedItem property to retrieve the handle of the selected item(s). Use
the SelBackColor property to indicate the background color for selected items. Use the
SelForeColor property to specify the foreground color for selected items. The FocusItem
property specifies the handle of the focused item. For instance, if the control supports
single selection the FocusItem property retrieves the handle of the selected item too. Use
the FullRowSelect property to specify how the user can select the cells or items using the
mouse. Use the SelectItem property to programmatically select an item giving its handle.
The control fires the SelectionChanged event when user changes the selection in the
control. Use the SelectableItem property to specify whether the user can select an item.

The following VB sample enumerates all selected items in the control:

Dim i As Long, j As Long, nCols As Long, nSels As Long
nCols = Grid1.Columns.Count
With Grid1.Items
 nSels = .SelectCount
 For i = 0 To nSels - 1
 Dim s As String
 For j = 0 To nCols - 1
 s = s + .CellValue(.SelectedItem(i), j) + Chr(9)
 Next
 Debug.Print s
 Next
End With

The following VB sample unselects all items in the control:

With Grid1
 .BeginUpdate
 With .Items

 While Not .SelectCount = 0
 .SelectItem(.SelectedItem(0)) = False
 Wend
 End With
 .EndUpdate
End With

The following C++ sample enumerates the selected items:

CItems items = m_grid.GetItems();
long n = items.GetSelectCount();
if (n != 0)
{
 for (long i = 0; i < n; i++)
 {
 long h = items.GetSelectedItem(i);
 COleVariant vtString;
 vtString.ChangeType(VT_BSTR, &items.GetCellValue(COleVariant(h), COleVariant(
(long)0)));
 CString str = V_BSTR(&vtString);
 MessageBox(str);
 }
}

The following C++ sample unselects all items in the control:

m_grid.BeginUpdate();
CItems items = m_grid.GetItems();
while (items.GetSelectCount())
 items.SetSelectItem(items.GetSelectedItem(0), FALSE);
m_grid.EndUpdate();

The following VB.NET sample enumerates the selected items:

With AxGrid1.Items
 Dim nCols As Integer = AxGrid1.Columns.Count, i As Integer
 For i = 0 To .SelectCount - 1
 Debug.Print(.CellValue(.SelectedItem(i), 0))
 Next

End With

The following VB.NET sample unselects all items in the control:

With AxGrid1
 .BeginUpdate()
 With .Items
 While Not .SelectCount = 0
 .SelectItem(.SelectedItem(0)) = False
 End While
 End With
 .EndUpdate()
End With

The following C# sample enumerates the selected items:

for (int i = 0; i < axGrid1.Items.SelectCount; i++)
{
 object strCaption = axGrid1.Items.get_CellValue(axGrid1.Items.get_SelectedItem(i), 0);
 System.Diagnostics.Debug.WriteLine(strCaption != null ? strCaption.ToString() : "");
}

The following C# sample unselects all items in the control:

axGrid1.BeginUpdate();
EXGRIDLib.Items items = axGrid1.Items;
while (items.SelectCount != 0)
 items.set_SelectItem(items.get_SelectedItem(0), false);
axGrid1.EndUpdate();

The following VFP sample enumerates the selected items:

with thisform.Grid1.Items
 local i
 for i = 0 to .SelectCount - 1
 .DefaultItem = .SelectedItem(i)
 wait window nowait .CellValue(0,0)
 next
endwith

The following VFP sample unselects all items in the control:

With thisform.Grid1
 .BeginUpdate()
 with .Items
 do while (.SelectCount() # 0)
 .DefaultItem = .SelectedItem(0)
 .SelectItem(0) = .f.
 enddo
 endwith
 .EndUpdate()
EndWith

property Items.SelectedItem ([Index as Long]) as HITEM

Retrieves the selected item's handle given its index in the selected items collection.

Type Description

Index as Long Identifies the index of the selected item into selected items
collection. if it is missing, 0 is used.

HITEM A long expression that indicates the handle of the selected
item.

The SelectedItem property gets the handle of the items being selected. If the control
supports multiple selection, you can use the SelectCount property to find out how many
items are selected in the control. Use the SingleSel property to enable single or multiple
selection. If the control supports single selection only a single item can be selected at
runtime. Use the SingleSel property to specify whether the control supports single or
multiple selection. If the control supports single selection, the FocusItem and SelectedItem
property gets the handle of the selected/focused item, that's the same. Use the SelectItem
property to specify whether an item is selected or not. The control fires the
SelectionChanged event when user changes the selection in the control. Use the
SelForeColor and SelBackColor properties to specify colors for selected items. Use the
SelectableItem property to specify whether the user can select an item.

The following VB sample prints the value of the selected/focused cell: Debug.Print
Grid1.Items.CellValue(Grid1.Items.FocusItem(), 0).

The following VB sample draws italic the selected item, when selection is changed:

Private Sub Grid1_SelectionChanged()
 If Not (h = 0) Then Grid1.Items.ItemItalic(h) = False
 h = Grid1.Items.SelectedItem()
 Grid1.Items.ItemItalic(h) = True
End Sub

The following VB sample enumerates all selected items in the control:

Dim i As Long, j As Long, nCols As Long, nSels As Long
nCols = Grid1.Columns.Count
With Grid1.Items
 nSels = .SelectCount
 For i = 0 To nSels - 1
 Dim s As String

 For j = 0 To nCols - 1
 s = s + .CellValue(.SelectedItem(i), j) + Chr(9)
 Next
 Debug.Print s
 Next
End With

The following VB sample unselects all items in the control:

With Grid1
 .BeginUpdate
 With .Items
 While Not .SelectCount = 0
 .SelectItem(.SelectedItem(0)) = False
 Wend
 End With
 .EndUpdate
End With

The following C++ sample enumerates the selected items:

CItems items = m_grid.GetItems();
long n = items.GetSelectCount();
if (n != 0)
{
 for (long i = 0; i < n; i++)
 {
 long h = items.GetSelectedItem(i);
 COleVariant vtString;
 vtString.ChangeType(VT_BSTR, &items.GetCellValue(COleVariant(h), COleVariant(
(long)0)));
 CString str = V_BSTR(&vtString);
 MessageBox(str);
 }
}

The following C++ sample unselects all items in the control:

m_grid.BeginUpdate();

CItems items = m_grid.GetItems();
while (items.GetSelectCount())
 items.SetSelectItem(items.GetSelectedItem(0), FALSE);
m_grid.EndUpdate();

The following VB.NET sample enumerates the selected items:

With AxGrid1.Items
 Dim nCols As Integer = AxGrid1.Columns.Count, i As Integer
 For i = 0 To .SelectCount - 1
 Debug.Print(.CellValue(.SelectedItem(i), 0))
 Next
End With

The following VB.NET sample unselects all items in the control:

With AxGrid1
 .BeginUpdate()
 With .Items
 While Not .SelectCount = 0
 .SelectItem(.SelectedItem(0)) = False
 End While
 End With
 .EndUpdate()
End With

The following C# sample enumerates the selected items:

for (int i = 0; i < axGrid1.Items.SelectCount; i++)
{
 object strCaption = axGrid1.Items.get_CellValue(axGrid1.Items.get_SelectedItem(i), 0);
 System.Diagnostics.Debug.WriteLine(strCaption != null ? strCaption.ToString() : "");
}

The following C# sample unselects all items in the control:

axGrid1.BeginUpdate();
EXGRIDLib.Items items = axGrid1.Items;
while (items.SelectCount != 0)

 items.set_SelectItem(items.get_SelectedItem(0), false);
axGrid1.EndUpdate();

The following VFP sample enumerates the selected items:

with thisform.Grid1.Items
 local i
 for i = 0 to .SelectCount - 1
 .DefaultItem = .SelectedItem(i)
 wait window nowait .CellValue(0,0)
 next
endwith

The following VFP sample unselects all items in the control:

With thisform.Grid1
 .BeginUpdate()
 with .Items
 do while (.SelectCount() # 0)
 .DefaultItem = .SelectedItem(0)
 .SelectItem(0) = .f.
 enddo
 endwith
 .EndUpdate()
EndWith

property Items.Selection as Variant
Selects items by index.

Type Description

Variant

A long expression that indicates the index of item being
selected, if the SingleSel property is True, or a safe array
that holds a collection of index of items being selected, if
the SingleSel property is False.

The Selection property selects/unselects items by index. Use the SelectItem property to
select an item giving its handle. The ItemPosition property gives the relative position, or the
position of the item in the child items collection. Use the SelectPos property to select items
by position. The SelectPos property selects an item giving its general position.

The SingleSel property specifies whether the control supports single or multiple-selection.
Based on the SingleSel property the Selection value is:

of long type, if the SingleSel property is True (by default). For instance Selection = 0,
indicates that the control selects the item with the index 0.
a safe array of VARIANT, if the SingleSel property is False. For instance Selection =
Array(0,1), indicates that the control selects the item with the index 0 and 1.

The following VB sample selects the item with the index 0 in the control / SingleSel property
is True (by default):

Grid1.Items.Selection = 0

The following VB sample selects the item with the index 0 and 1 in the control / SingleSel
property is False:

Grid1.Items.Selection = Array(0, 1)

The following C++ sample selects the item with the index 0 in the control / SingleSel
property is True (by default):

m_grid.GetItems().SetSelection(COleVariant(long(0)));

The following C++ sample selects the item with the index 0 in the control / SingleSel
property is False:

CArray<long> a;
a.Add(0);

a.Add(1);
m_spExGrid->Items->Selection = CreateSafeArray(a);

where the CreateSafeArray looks as:

CComVariant CreateSafeArray(CArray<long>& a)
{
 CComVariant vtResult;

 long nCount = a.GetCount();
 if (SAFEARRAY* pArray = SafeArrayCreateVector(VT_VARIANT, 0, nCount))
 {
 LPVOID pData = NULL;
 SafeArrayAccessData(pArray, &pData);
 VARIANT* p = (VARIANT*)pData;
 for (long i = 0; i < nCount; p++, i++)
 {
 ZeroMemory(p, sizeof(VARIANT));
 V_VT(p) = VT_I4;
 V_I4(p) = a.GetAt(i);
 }
 SafeArrayUnaccessData(pArray);

 V_VT(&vtResult) = VT_ARRAY | VT_VARIANT;
 V_ARRAY(&vtResult) = pArray;
 }
 return vtResult;
}

The following VB.NET sample selects the item with the index 0 in the control / SingleSel
property is True (by default):

With AxGrid1.Items
 .Selection = 0
End With

The following C# sample selects the item with the index 0 in the control / SingleSel property
is True (by default):

axGrid1.Items.Selection = 0;

The following VFP sample selects the item with the index 0 in the control / SingleSel
property is True (by default):

with thisform.Grid1.Items
 .Selection = 0
endwith

property Items.SelectItem(Item as HITEM) as Boolean

Selects or unselects a specific item.

Type Description

Item as HITEM A long expression that indicates the item's handle being
selected.

Boolean
A boolean expression that indicates the item's state. True
if the item is selected, and False if the item is not
selected.

Use the SelectItem property to programmatically select an item. The SelectItem property
indicates whether an item is selected or not selected, giving its handle. Use the
SelectedItem property to get the selected items, giving their indexes. The control fires
SelectionChanged event when the user changes the selection. The SelectCount property
counts the selected items in the control, when the control supports multiple selection. Use
the SingleSel property to specify whether the control supports single or multiple selection. If
the SingleSel property is True, the user can select a single item only. Use the FullRowSelect
property to specify how the user can select the cells or items using the mouse. Use the
SelectColumnIndex or SelectColumInner property to retrieve the index of selected column,
and the index of the inner cell being selected. The FocusItem property specifies the handle
of the focused item. The control can have only a single focused item. If the control supports
single selection, the FocusItem property gets the selected item too. Use the
EnsureVisibleItem property to ensure that an item is visible. Use the SelBackColor property
to indicate the background color for selected items. Use the SelForeColor property to
specify the foreground color for selected items. The SelectPos property selects/unselects
items by position. The Selection property selects/unselects items by index.

The following VB sample selects the first created item:
Grid1.Items.SelectItem(Grid1.Items(0)) = True

The following VB sample displays the selected item from the cursor (SingleSel property is
True, and the control contains NO inner cells, SplitCell method):

Private Sub Grid1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Dim h As HITEM, c As Long, hit As HitTestInfoEnum
 With Grid1
 h = .ItemFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, c, hit)
 If Not h = 0 Then
 If (.Items.SelectItem(h)) Then

 Debug.Print "The '" & .Items.CellCaption(h, c) & "' item is selected"
 End If
 End If
 End With
End Sub

The following VB sample displays the selected item from the cursor, (SingleSel property is
True, and the control contains inner cells, SplitCell method)

Private Sub Grid1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Dim h As HITEM, c As Long, hit As HitTestInfoEnum
 With Grid1
 h = .ItemFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, c, hit)
 If Not h = 0 Or Not c = 0 Then
 If h = 0 Then
 h = .Items.CellItem(.Items.CellParent(h, c))
 End If
 If (.Items.SelectItem(h)) Then
 Debug.Print "The '" & .Items.CellCaption(h, c) & "' item is selected"
 End If
 End If
 End With
End Sub

The following VB sample selects the item as user moves the cursor (SingleSel property is
True, and the control contains NO inner cells, SplitCell method):

Private Sub Grid1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Dim h As HITEM, c As Long, hit As HitTestInfoEnum
 With Grid1
 h = .ItemFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, c, hit)
 If Not h = 0 Then
 .Items.SelectItem(h) = True
 End If
 End With
End Sub

The following VB sample selects the item as user moves the cursor (SingleSel property is
True, and the control contains inner cells, SplitCell method):

Private Sub Grid1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Dim h As HITEM, c As Long, hit As HitTestInfoEnum
 With Grid1
 h = .ItemFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, c, hit)
 If Not h = 0 Or Not c = 0 Then
 If h = 0 Then
 h = .Items.CellItem(.Items.CellParent(h, c))
 End If
 .Items.SelectItem(h) = True
 End If
 End With
End Sub

The following VB sample selects the first visible item:

With Grid1.Items
 .SelectItem(.FirstVisibleItem) = True
End With

The following VB sample unselects all items in the control:

With Grid1
 .BeginUpdate
 With .Items
 While Not .SelectCount = 0
 .SelectItem(.SelectedItem(0)) = False
 Wend
 End With
 .EndUpdate
End With

The following C++ sample selects the first visible item:

#include "Items.h"
CItems items = m_grid.GetItems();

items.SetSelectItem(items.GetFirstVisibleItem(), TRUE);

The following C++ sample unselects all items in the control:

m_grid.BeginUpdate();
CItems items = m_grid.GetItems();
while (items.GetSelectCount())
 items.SetSelectItem(items.GetSelectedItem(0), FALSE);
m_grid.EndUpdate();

The following VB.NET sample selects the first visible item:

With AxGrid1.Items
 .SelectItem(.FirstVisibleItem) = True
End With

The following VB.NET sample unselects all items in the control:

With AxGrid1
 .BeginUpdate()
 With .Items
 While Not .SelectCount = 0
 .SelectItem(.SelectedItem(0)) = False
 End While
 End With
 .EndUpdate()
End With

The following C# sample selects the first visible item:

axGrid1.Items.set_SelectItem(axGrid1.Items.FirstVisibleItem, true);

The following C# sample unselects all items in the control:

axGrid1.BeginUpdate();
EXGRIDLib.Items items = axGrid1.Items;
while (items.SelectCount != 0)
 items.set_SelectItem(items.get_SelectedItem(0), false);
axGrid1.EndUpdate();

The following VFP sample selects the first visible item:

with thisform.Grid1.Items
 .DefaultItem = .FirstVisibleItem
 .SelectItem(0) = .t.
endwith

The following VFP sample unselects all items in the control:

With thisform.Grid1
 .BeginUpdate()
 with .Items
 do while (.SelectCount() # 0)
 .DefaultItem = .SelectedItem(0)
 .SelectItem(0) = .f.
 enddo
 endwith
 .EndUpdate()
EndWith

property Items.SelectPos as Variant
Selects items by position.

Type Description

Variant

A long expression that indicates the position of item being
selected, if the SingleSel property is True, or a safe array
that holds a collection of position of items being selected,
if the SingleSel property is False.

Use the SelectPos property to select items by position. The SelectPos property selects an
item giving its general position. Use the SelectItem property to select an item giving its
handle. The ItemPosition property gives the relative position, or the position of the item in
the child items collection. The Selection property selects/unselects items by index.

The SingleSel property specifies whether the control supports single or multiple-selection.
Based on the SingleSel property the SelectPos value is:

of long type, if the SingleSel property is True (by default). For instance SelectPos =
0, indicates that the control selects the item with the position 0 (first item).
a safe array of VARIANT, if the SingleSel property is False. For instance SelectPos =
Array(0,1), indicates that the control selects the item with the position 0 and 1.

The following VB sample selects the first item in the control:

Grid1.Items.SelectPos = 0

The following VB sample selects first two items:

Grid1.Items.SelectPos = Array(0, 1)

The following C++ sample selects the first item in the control:

m_tree.GetItems().SetSelectPos(COleVariant(long(0)));

The following VB.NET sample selects the first item in the control:

With AxGrid1.Items
 .SelectPos = 0
End With

The following C# sample selects the first item in the control:

axGrid1.Items.SelectPos = 0;

The following VFP sample selects the first item in the control:

with thisform.Grid1.Items
 .SelectPos = 0
endwith

method Items.SetParent (Item as HITEM, NewParent as HITEM)

Changes the parent of the given item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

NewParent as HITEM A long expression that indicates the handle of the newly
parent item.

Use the SetParent property to change the parent item at runtime. Use the InsertItem
property to insert child items. Use the InsertControlItem property to insert ActiveX controls.
Use AcceptSetParent property to verify if the the parent of an item can be changed. The
following VB sample changes the parent item of the first item: Grid1.Items.SetParent
Grid1.Items(0), Grid1.Items(1). Use the ItemParent property to retrieve the parent of the
item.

property Items.SortableItem(Item as HITEM) as Boolean
Specifies whether the item is sortable.

Type Description

Item as HITEM A long expression that indicates the handle of the item
being sortable.

Boolean A boolean expression that specifies whether the item is
sortable.

By default, all items are sortable. A sortable item can change its position after sorting. An
unsortable item keeps its position after user performs a sort operation. Thought, the
position of an unsortable item can be changed using the ItemPosition property. Use the
SortableItem to specify a group item, a total item or a separator item. An unsortable item is
not counted by a total field. The SortType property specifies the type of repositioning is
being applied on the column when a sort operation is performed. The SortOrder property
specifies whether the column is sorted ascendant or descendent. Use the SortChildren
method to sort the items. Use the AllowSort property to avoid sorting a column when the
user clicks the column. The ItemDivider property indicates whether the item displays a
single cell, instead showing all cells. The SelectableItem property specifies whether an item
can be selected.

The following screen shots shows the control when no column is sorted: (Group 1 and
Group 2 has the SortableItem property on False)

The following screen shots shows the control when the column A is being sorted: (Group 1
and Group 2 keeps their original position after sorting)

method Items.SortChildren (Item as HITEM, ColIndex as Variant,
Ascending as Boolean)

Sorts the child items of the given parent item in the control.

Type Description
Item as HITEM A long expression that indicates the item's handle.

ColIndex as Variant A long expression that indicates the column's index, a
string expression that indicates the column's caption.

Ascending as Boolean A boolean expression that defines the sort order. True
means ascending, False means descending.

The SortChildren method will not recurse through the grid, only the immediate children of
item will be sorted. After sort, the control ensures that the focused item fits the control's
client area. Use the FocusItem property to retrieve the focused item. If your control acts
like a simple list you can use the following line of code to sort ascending the list by first
column: Grid1.Items.SortChildren 0, 0, True. To change the way how a column is sorted use
SortType property of Column object. The SortChildren property doesn't display the sort icon
on column's header. The control automatically sorts the children items when user clicks on
column's header. Use the SortOnClick property to disable sorting columns by clicking in the
columns header. Use the SortOrder property to get the column sorted, and to display the
sorting icon in the column's header. The EnsureOnSort property prevents scrolling the
control's content when the user sorts items. The SortableItem property specifies whether
the item keeps its position after sorting. Use the AllowSort property to avoid sorting a
column when the user clicks the column. The SortChildren method is not available if the
control is running in the virtual mode.

property Items.SplitCell ([Item as Variant], [ColIndex as Variant]) as
Variant
Splits a cell, and returns the inner created cell.

Type Description

Item as Variant

A long expression that indicates the handle of the item
where a cell is being divided, or 0. If the Item parameter is
0, the ColIndex parameter must indicate the handle of the
cell.

ColIndex as Variant

A long expression that indicates the index of the column
where a cell is divided, or a long expression that indicates
the handle of the cell being divided, if the Item parameter
is missing or it is zero.

Variant A long expression that indicates the handle of the cell
being created.

The SplitCell method splits a cell in two cells. The newly created cell is called inner cell. The
SplitCell method always returns the handle of the inner cell. If the cell is already divided
using the SplitCell method, it returns the handle of the inner cell without creating a new inner
cell. You can split an inner cell too, and so you can have a master cell divided in multiple
cells. Use the CellWidth property to specify the width of the inner cell. Use the CellValue
property to assign a value to a cell. Use the InnerCell property to access an inner cell giving
its index. Use the CellParent property to get the parent of the inner cell. Use the CellItem
property to get the owner of the cell. Use the UnsplitCell method to remove the inner cell if
it exists. Use the MergeCells property to combine two or more cells in a single cell. The
SelectColumInner property indicates the index of the inner cell that has the focus (or it is
selected). Use the SelectableItem property to specify the user can select an item. Include
the exIncludeInnerCells flag in the FilterList property and so the drop down filter window
lists the inner cells too.

("Merge" means multiple cells in a single cell, "Split" means multiple cells inside a single
cell)

The following VB sample splits a single cell in two cells (Before running the following
sample, please make sure that your control contains columns, and at least an item):

With Grid1.Items
 Dim h As HITEM, f As HCELL
 h = .FirstVisibleItem
 f = .SplitCell(h, 0)
 .CellValue(, f) = "inner cell"
End With

The following VB sample splits a cell in three cells (Before running the following sample,
please make sure that your control contains columns, and at least an item):

With Grid1.Items
 Dim h As HITEM, f As HCELL
 h = .FirstVisibleItem
 f = .SplitCell(h, 0)
 .CellValue(, f) = "inner cell 1"
 f = .SplitCell(, f)
 .CellValue(, f) = "inner cell 2"
End With

The following C++ sample splits the first visible cell in two cells:

#include "Items.h"
CItems items = m_grid.GetItems();
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
COleVariant vtSplit = items.GetSplitCell(COleVariant(items.GetFirstVisibleItem()),
COleVariant(long(0)));

items.SetCellCaption(vtMissing, vtSplit, COleVariant("inner cell"));

The following VB.NET sample splits the first visible cell in two cells:

With AxGrid1.Items
 Dim i As Object
 i = .SplitCell(.FirstVisibleItem, 0)
 .CellValue(Nothing, i) = "inner cell"
End With

The following C# sample splits the first visible cell in two cells:

EXGRIDLib.Items items = axGrid1.Items;
object i = items.get_SplitCell(items.FirstVisibleItem, 0);
items.set_CellValue(null, i, "inner cell");

The following VFP sample splits the first visible cell in two cells:

with thisform.Grid1.Items
 local i
 i = .SplitCell(.FirstVisibleItem,0)
 local s, crlf
 crlf = chr(13) + chr(10)
 s = "Items" + crlf
 s = s + "{" + crlf
 s = s + "CellValue(," + str(i) + ") = " + chr(34) + "inner cell" + chr(34) + crlf
 s = s + "}"
 thisform.Grid1.Template = s
endwith

method Items.StartBlockUndoRedo ()
Starts recording the UI operations as a block of undo/redo operations.

Type Description

The StartBlockUndoRedo method starts recording the UI operations as a block on
undo/redo operations (equivalent of StartBlockUndoRedo method of the control). The
method has effect only if the AllowUndoRedo property is True. The EndBlockUndoRedo
method collects all undo/redo operations since StartBlockUndoRedo method was called and
add them to the undo/redo queue as a block. This way the next call on a Undo operation,
the entire block is restored, so all UI operations are restored. For instance, if you have a
procedure that moves several bars, and want all of them being grouped, you can use
StartBlockUndoRedo to start recording the operations as a block, and call the
EndBlockUndoRedo when procedure ends, so next call of an undo operation the bars are
restored to their original position. The EndBlockUndoRedo method must be called the same
number of times as the StartBlockUndoRedo method was called. For instance, if you have
called the StartBlockUndoRedo twice the EndBlockUndoRedo method must be called twice
too, and the collected operations are added to the control's queue of undo/redo operations
at the end.

method Items.UnmergeCells ([Cell as Variant])
Unmerges a list of cells.

Type Description

Cell as Variant

A long expression that indicates the handle of the cell
being unmerged, or a safe array that holds a collection of
handles for the cells being unmerged. Use the ItemCell
property to retrieves the handle of the cell.

Use the UnmergeCells method to unmerge merged cells. Use the MergeCells method or
CellMerge property to combine (merge) two or more cells in a single one. The
UnmergeCells method unmerges all the cells that was merged. The CellMerge property
unmerges only a single cell. The rest of merged cells remains combined.

The following sample shows few methods to unmerge cells:

With Grid1
 With .Items
 .UnmergeCells .ItemCell(.RootItem(0), 0)
 End With
End With

With Grid1
 With .Items
 Dim r As Long
 r = .RootItem(0)
 .UnmergeCells Array(.ItemCell(r, 0), .ItemCell(r, 1))
 End With
End With

With Grid1
 .BeginUpdate
 With .Items
 .CellMerge(.RootItem(0), 0) = -1
 .CellMerge(.RootItem(0), 1) = -1
 .CellMerge(.RootItem(0), 2) = -1
 End With
 .EndUpdate
End With

method Items.UnselectAll ()
Unselects all items.

Type Description

Use the UnselectAll method to unselect all items in the list. The UnselectAll method has
effect only if the SingleSel property is False, if the control supports multiple items selection.
Use the SelectAll method to select all items in the list. Use the SelectItem property to select
or unselect a specified item. Use the SelectedItem property to retrieve a value that
indicates whether the item is selected or unselected. Use the SelectCount property to
retrieve the number of selected items. The SelectPos property selects/unselects items by
position. The Selection property selects/unselects items by index.

method Items.UnsplitCell ([Item as Variant], [ColIndex as Variant])
Unsplits a cell.

Type Description

Item as Variant
A long expression that indicates the handle of the item, or
0. If the Item parameter is 0, the ColIndex parameter must
indicate the handle of the cell.

ColIndex as Variant

A long expression that indicates the index of the column
where a cell is divided, or a long expression that indicates
the handle of the cell being divided, if the Item parameter
is missing or it is zero.

Use the UnsplitCells method to remove the inner cells. The SplitCell method splits a cell in
two cells, and retrieves the newly created cell. The UnsplitCell method has no effect if the
cell contains no inner cells. The UnplitCells method remove recursively all inner cells. For
instance, if a cell contains an inner cell, and this inner cell contains another inner cell, when
calling the UnplitCells method for the master cell, all inner cells inside of the cell will be
deleted. Use the CellParent property to get the parent of the inner cell. Use the CellItem
property to get the owner of the cell. Use the InnerCell property to access an inner cell
giving its index. Use the UnmergeCells method to unmerge merged cells. ("Merge" means
multiple cells in a single cell, "Split" means multiple cells inside a single cell).

property Items.VirtualToItem (Index as Long) as HITEM
Gets the handle of the item giving the index of the virtual item.

Type Description

Index as Long A long expression that indicates the index of the virtual
item.

HITEM A long expression that indicates the handle of the item.

The VirtualToItem property converts the the index of the virtual item/record to the handle of
the item. The VirtualToItem property scrolls the control's content to make sure that the
virtual item is in the control's client area. The VirtualToItem property has effect only if the
control is running in the virtual mode. Use the ItemToVirtual property to get the index of the
virtual item based on the handle of the item.

The following sample VB notifies the n object that the user changes the data in the control:

Private Sub Grid1_Change(ByVal Item As EXGRIDLibCtl.HITEM, ByVal ColIndex As Long,
newValue As Variant)
 With Grid1.Items
 n.Change .ItemToVirtual(Item), ColIndex, newValue
 End With
End Sub

property Items.VisibleCount as Long

Retrieves the number of visible items.

Type Description
Long Counts the visible items.

Use FirstVisibleItem and NextVisibleItem properties to determine the items that fit the client
area. Use the IsItemVisible property to check whether an item fits the control's client area.
Use the ItemCount property to count the items in the control. Use the ChildCount property
to count the child items

property Items.VisibleItemCount as Long
Retrieves the number of visible items.

Type Description

Long
A long expression that specifies the number of visible
items in the control. The value could be a positive value if
no filter is applied, or negative while filter is on.

The VisibleItemCount property counts the number of visible items in the list. For instance,
you can use the VisibleItemCount property to get the number the control displays once the
user applies a filter.

The VisibleItemCount property returns a value as explained bellow:

0, the control displays/contains no items, and no filter is applied to any column
-1, the control displays no items, and there is a filter applied (no match found)
positive number, indicates the number of visible items, and the control has no filter
applied to any column
negative number, the absolute value munus 1, indicates the number of visible items,
and there is a filter applied (match found)

The VisibleCount property retrieves the number of items being displayed in the control's
client area. Use FirstVisibleItem and NextVisibleItem properties to determine the items
being displayed in the control's client area. Use the IsItemVisible property to check whether
an item fits the control's client area. Use the ItemCount property to count the items in the
control. Use the ChildCount property to count the child items

OleEvent object

The OleEvent object holds information about an event fired by an ActiveX control hosted by
in item that was created using the InsertControlItem property. Also the UserEditorOleEvent
event uses the same type of the object to hold information about an OLE event.

Name Description
CountParam Retrieves the count of the OLE event's arguments.

ID Retrieves a long expression that specifies the identifier of
the event.

Name Retrieves the original name of the fired event.

Param Retrieves an OleEventParam object given either the index
of the parameter, or its name.

ToString Retrieves information about the event.

property OleEvent.CountParam as Long

Retrieves the count of the OLE event's arguments.

Type Description
Long A long value that indicates the count of the arguments.

Use the CountParam property to count the parameters of an OLE event. Use the Name
property to get the parameter name. Use the Param property to get the event's parameter.
Use the Value property to specify the value of the parameter. The following VB sample
enumerates the arguments of an OLE event when ItemOLEEvent or UserEditorOleEvent
event is fired.

Private Sub Grid1_ItemOleEvent(ByVal Item As EXGRIDLibCtl.HITEM, ByVal Ev As
EXGRIDLibCtl.IOleEvent)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VB sample displays information about the fired event when the
UserEditorOleEvent event occurs:

Private Sub Grid1_UserEditorOleEvent(ByVal Object As Object, ByVal Ev As
EXGRIDLibCtl.IOleEvent, CloseEditor As Boolean, ByVal Item As EXGRIDLibCtl.HITEM, ByVal
ColIndex As Long)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long

 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VC sample displays the events that an ActiveX control is firing while it is
hosted by an item:

 #import <exgrid.dll> rename("GetItems", "exGetItems")

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnItemOleEventGrid1(long Item, LPDISPATCH Ev)
{
 EXGRIDLib::IOleEventPtr spEvent(Ev);
 CString strOutput;
 strOutput.Format("Event's name: %s\n", spEvent->Name.operator const char *());
 OutputDebugString(strOutput);
 if (spEvent->CountParam == 0)
 OutputDebugString("The event has no parameters.");
 else
 {
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 EXGRIDLib::IOleEventParamPtr spParam = spEvent->GetParam(COleVariant(i));

 strOutput.Format("Name: %s, Value: %s\n", spParam->Name.operator const char *
(), V2S(&spParam->Value));
 OutputDebugString(strOutput);
 }
 }
 OutputDebugString("");
}

The #import clause is required to get the wrapper classes for IOleEvent and
IOleEventParam objects, that are not defined by the MFC class wizard. The same #import
statement defines the EXGRIDLib namespace that include all objects and types of the
control's TypeLibrary. In case your exgrid.dll library is located to another place than the
system folder or well known path, the path to the library should be provided, in order to let
the VC finds the type library.

The following C++ sample displays the event and its parameters when an user editor object
fires an event:

void OnUserEditorOleEventGrid1(LPDISPATCH Object, LPDISPATCH Ev, BOOL FAR*
CloseEditor, long Item, long ColIndex)
{
 EXGRIDLib::IOleEventPtr spEvent(Ev);
 CString strOutput;
 strOutput.Format("Event's name: %s\n", spEvent->Name.operator const char *());
 OutputDebugString(strOutput);
 if (spEvent->CountParam == 0)
 OutputDebugString("The event has no parameters.");
 else
 {
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 EXGRIDLib::IOleEventParamPtr spParam = spEvent->GetParam(COleVariant(i));
 strOutput.Format("Name: %s, Value: %s\n", spParam->Name.operator const char *
(), V2S(&spParam->Value));
 OutputDebugString(strOutput);
 }
 }
 OutputDebugString("");
}

The following VB.NET sample displays the events that an ActiveX control is firing while it is
hosted by an item:

Private Sub AxGrid1_ItemOleEvent(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_ItemOleEventEvent) Handles AxGrid1.ItemOleEvent
 Debug.WriteLine("Event's name: " & e.ev.Name)
 Dim i As Long
 For i = 0 To e.ev.CountParam - 1
 Dim eP As EXGRIDLib.OleEventParam
 eP = e.ev(i)
 Debug.WriteLine("Name: " & e.ev.Name & " Value: " & eP.Value)
 Next
End Sub

The following VB.NET sample displays the event and its parameters when an user editor
object fires an event:

Private Sub AxGrid1_UserEditorOleEvent(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_UserEditorOleEventEvent) Handles AxGrid1.UserEditorOleEvent
 Debug.WriteLine("Event's name: " & e.ev.Name)
 Dim i As Long
 For i = 0 To e.ev.CountParam - 1
 Dim eP As EXGRIDLib.OleEventParam
 eP = e.ev(i)
 Debug.WriteLine("Name: " & e.ev.Name & " Value: " & eP.Value)
 Next
End Sub

The following C# sample displays the events that an ActiveX control is firing while it is
hosted by an item:

private void axGrid1_ItemOleEvent(object sender,
AxEXGRIDLib._IGridEvents_ItemOleEventEvent e)
{
 System.Diagnostics.Debug.WriteLine("Event's name: " + e.ev.Name.ToString());
 for (int i= 0; i < e.ev.CountParam ; i++)
 {
 EXGRIDLib.IOleEventParam evP = e.ev[i];
 System.Diagnostics.Debug.WriteLine("Name: " + evP.Name.ToString() + ", Value: " +

evP.Value.ToString());
 }
}

The following C# sample displays the event and its parameters when an user editor object
fires an event:

private void axGrid1_UserEditorOleEvent(object sender,
AxEXGRIDLib._IGridEvents_UserEditorOleEventEvent e)
{
 System.Diagnostics.Debug.WriteLine("Event's name: " + e.ev.Name.ToString());
 for (int i = 0; i < e.ev.CountParam; i++)
 {
 EXGRIDLib.IOleEventParam evP = e.ev[i];
 System.Diagnostics.Debug.WriteLine("Name: " + evP.Name.ToString() + ", Value: " +
evP.Value.ToString());
 }
}

The following VFP sample displays the events that an ActiveX control fires when it is hosted
by an item (ItemOleEvent event):

*** ActiveX Control Event ***
LPARAMETERS item, ev

local s
s = "Event's name: " + ev.Name
for i = 0 to ev.CountParam - 1
 s = s + "Name: " + ev.Param(i).Name + " ,Value: " + Str(ev.Param(i).Value)
endfor
wait window nowait s

The following VFP sample displays the event and its parameters when an user editor object
fires an event (UserEditorOleEvent event):

*** ActiveX Control Event ***
LPARAMETERS object, ev, closeeditor, item, colindex

local s

s = "Event's name: " + ev.Name
for i = 0 to ev.CountParam - 1
 s = s + "Name: " + ev.Param(i).Name + " ,Value: " + Str(ev.Param(i).Value)
endfor
wait window nowait s

property OleEvent.ID as Long
Retrieves a long expression that specifies the identifier of the event.

Type Description

Long A Long expression that defines the identifier of the OLE
event.

The identifier of the event could be used to identify a specified OLE event. Use the Name
property of the OLE Event to get the name of the OLE Event. Use the ToString property to
display information about an OLE event. The ToString property displays the idenfier of the
event after the name of the event in two [] brackets. For instance, the ToString property
gets the "KeyDown[-602](KeyCode/Short* = 9,Shift/Short = 0)" when TAB key is pressed,
so the identifier of the KeyDown event being fired by the inside User editor is -602. For
instance, tThe following VB sample closes the editor and focus a new column when user
presses the TAB key inside an User editor:

Private Sub Grid1_UserEditorOleEvent(ByVal Object As Object, ByVal Ev As
EXGRIDLibCtl.IOleEvent, CloseEditor As Boolean, ByVal Item As EXGRIDLibCtl.HITEM, ByVal
ColIndex As Long)
 If (Ev.ID = -602) Then ' KeyDown
 Dim iKey As Long
 iKey = Ev(0).Value
 If iKey = vbKeyTab Then
 With Grid1
 CloseEditor = True
 .FocusColumnIndex = .FocusColumnIndex + 1
 .SearchColumnIndex = .FocusColumnIndex
 End With
 End If
 End If

property OleEvent.Name as String

Retrieves the original name of the fired event.

Type Description
String A string expression that indicates the event's name.

Use the Name property to get the name of the event. Use the ID property to specify a
specified even by its identifier. Use the ToString property to display information about fired
event such us name, parameters, types and values. Use the CountParam property to count
the parameters of an OLE event. Use the Param property to get the event's parameter.
Use the Value property to specify the value of the parameter. The following VB sample
enumerates the arguments of an OLE event when ItemOLEEvent or UserEditorOleEvent
event is fired.

Private Sub Grid1_ItemOleEvent(ByVal Item As EXGRIDLibCtl.HITEM, ByVal Ev As
EXGRIDLibCtl.IOleEvent)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VB sample displays information about the fired event when the
UserEditorOleEvent event occurs:

Private Sub Grid1_UserEditorOleEvent(ByVal Object As Object, ByVal Ev As
EXGRIDLibCtl.IOleEvent, CloseEditor As Boolean, ByVal Item As EXGRIDLibCtl.HITEM, ByVal
ColIndex As Long)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"

 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VC sample displays the events that an ActiveX control is firing while it is
hosted by an item:

 #import <exgrid.dll> rename("GetItems", "exGetItems")

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnItemOleEventGrid1(long Item, LPDISPATCH Ev)
{
 EXGRIDLib::IOleEventPtr spEvent(Ev);
 CString strOutput;
 strOutput.Format("Event's name: %s\n", spEvent->Name.operator const char *());
 OutputDebugString(strOutput);
 if (spEvent->CountParam == 0)
 OutputDebugString("The event has no parameters.");
 else
 {
 for (long i = 0; i < spEvent->CountParam; i++)
 {

 EXGRIDLib::IOleEventParamPtr spParam = spEvent->GetParam(COleVariant(i));
 strOutput.Format("Name: %s, Value: %s\n", spParam->Name.operator const char *
(), V2S(&spParam->Value));
 OutputDebugString(strOutput);
 }
 }
 OutputDebugString("");
}

The #import clause is required to get the wrapper classes for IOleEvent and
IOleEventParam objects, that are not defined by the MFC class wizard. The same #import
statement defines the EXGRIDLib namespace that include all objects and types of the
control's TypeLibrary. In case your exgrid.dll library is located to another place than the
system folder or well known path, the path to the library should be provided, in order to let
the VC finds the type library.

The following C++ sample displays the event and its parameters when an user editor object
fires an event:

void OnUserEditorOleEventGrid1(LPDISPATCH Object, LPDISPATCH Ev, BOOL FAR*
CloseEditor, long Item, long ColIndex)
{
 EXGRIDLib::IOleEventPtr spEvent(Ev);
 CString strOutput;
 strOutput.Format("Event's name: %s\n", spEvent->Name.operator const char *());
 OutputDebugString(strOutput);
 if (spEvent->CountParam == 0)
 OutputDebugString("The event has no parameters.");
 else
 {
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 EXGRIDLib::IOleEventParamPtr spParam = spEvent->GetParam(COleVariant(i));
 strOutput.Format("Name: %s, Value: %s\n", spParam->Name.operator const char *
(), V2S(&spParam->Value));
 OutputDebugString(strOutput);
 }
 }
 OutputDebugString("");

}

The following VB.NET sample displays the events that an ActiveX control is firing while it is
hosted by an item:

Private Sub AxGrid1_ItemOleEvent(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_ItemOleEventEvent) Handles AxGrid1.ItemOleEvent
 Debug.WriteLine("Event's name: " & e.ev.Name)
 Dim i As Long
 For i = 0 To e.ev.CountParam - 1
 Dim eP As EXGRIDLib.OleEventParam
 eP = e.ev(i)
 Debug.WriteLine("Name: " & e.ev.Name & " Value: " & eP.Value)
 Next
End Sub

The following VB.NET sample displays the event and its parameters when an user editor
object fires an event:

Private Sub AxGrid1_UserEditorOleEvent(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_UserEditorOleEventEvent) Handles AxGrid1.UserEditorOleEvent
 Debug.WriteLine("Event's name: " & e.ev.Name)
 Dim i As Long
 For i = 0 To e.ev.CountParam - 1
 Dim eP As EXGRIDLib.OleEventParam
 eP = e.ev(i)
 Debug.WriteLine("Name: " & e.ev.Name & " Value: " & eP.Value)
 Next
End Sub

The following C# sample displays the events that an ActiveX control is firing while it is
hosted by an item:

private void axGrid1_ItemOleEvent(object sender,
AxEXGRIDLib._IGridEvents_ItemOleEventEvent e)
{
 System.Diagnostics.Debug.WriteLine("Event's name: " + e.ev.Name.ToString());
 for (int i= 0; i < e.ev.CountParam ; i++)
 {

 EXGRIDLib.IOleEventParam evP = e.ev[i];
 System.Diagnostics.Debug.WriteLine("Name: " + evP.Name.ToString() + ", Value: " +
evP.Value.ToString());
 }
}

The following C# sample displays the event and its parameters when an user editor object
fires an event:

private void axGrid1_UserEditorOleEvent(object sender,
AxEXGRIDLib._IGridEvents_UserEditorOleEventEvent e)
{
 System.Diagnostics.Debug.WriteLine("Event's name: " + e.ev.Name.ToString());
 for (int i = 0; i < e.ev.CountParam; i++)
 {
 EXGRIDLib.IOleEventParam evP = e.ev[i];
 System.Diagnostics.Debug.WriteLine("Name: " + evP.Name.ToString() + ", Value: " +
evP.Value.ToString());
 }
}

The following VFP sample displays the events that an ActiveX control fires when it is hosted
by an item (ItemOleEvent event):

*** ActiveX Control Event ***
LPARAMETERS item, ev

local s
s = "Event's name: " + ev.Name
for i = 0 to ev.CountParam - 1
 s = s + "Name: " + ev.Param(i).Name + " ,Value: " + Str(ev.Param(i).Value)
endfor
wait window nowait s

The following VFP sample displays the event and its parameters when an user editor object
fires an event (UserEditorOleEvent event):

*** ActiveX Control Event ***
LPARAMETERS object, ev, closeeditor, item, colindex

local s
s = "Event's name: " + ev.Name
for i = 0 to ev.CountParam - 1
 s = s + "Name: " + ev.Param(i).Name + " ,Value: " + Str(ev.Param(i).Value)
endfor
wait window nowait s

property OleEvent.Param (Item as Variant) as OleEventParam

Retrieves an OleEventParam object given either the index of the parameter, or its name.

Type Description

Item as Variant A long expression that indicates the argument's index or a
a string expression that indicates the argument's name.

OleEventParam An OleEventParam object that contains the name and the
value for the argument.

Use the CountParam property to count the parameters of an OLE event. Use the Name
property to get the parameter name. Use the Param property to get the event's parameter.
Use the Value property to specify the value of the parameter. The following VB sample
enumerates the arguments of an OLE event when ItemOLEEvent or UserEditorOleEvent
event is fired.

Private Sub Grid1_ItemOleEvent(ByVal Item As EXGRIDLibCtl.HITEM, ByVal Ev As
EXGRIDLibCtl.IOleEvent)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VB sample displays information about the fired event when the
UserEditorOleEvent event occurs:

Private Sub Grid1_UserEditorOleEvent(ByVal Object As Object, ByVal Ev As
EXGRIDLibCtl.IOleEvent, CloseEditor As Boolean, ByVal Item As EXGRIDLibCtl.HITEM, ByVal
ColIndex As Long)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then

 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VC sample displays the events that an ActiveX control is firing while it is
hosted by an item:

 #import <exgrid.dll> rename("GetItems", "exGetItems")

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnItemOleEventGrid1(long Item, LPDISPATCH Ev)
{
 EXGRIDLib::IOleEventPtr spEvent(Ev);
 CString strOutput;
 strOutput.Format("Event's name: %s\n", spEvent->Name.operator const char *());
 OutputDebugString(strOutput);
 if (spEvent->CountParam == 0)
 OutputDebugString("The event has no parameters.");
 else

 {
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 EXGRIDLib::IOleEventParamPtr spParam = spEvent->GetParam(COleVariant(i));
 strOutput.Format("Name: %s, Value: %s\n", spParam->Name.operator const char *
(), V2S(&spParam->Value));
 OutputDebugString(strOutput);
 }
 }
 OutputDebugString("");
}

The #import clause is required to get the wrapper classes for IOleEvent and
IOleEventParam objects, that are not defined by the MFC class wizard. The same #import
statement defines the EXGRIDLib namespace that include all objects and types of the
control's TypeLibrary. In case your exgrid.dll library is located to another place than the
system folder or well known path, the path to the library should be provided, in order to let
the VC finds the type library.

The following C++ sample displays the event and its parameters when an user editor object
fires an event:

void OnUserEditorOleEventGrid1(LPDISPATCH Object, LPDISPATCH Ev, BOOL FAR*
CloseEditor, long Item, long ColIndex)
{
 EXGRIDLib::IOleEventPtr spEvent(Ev);
 CString strOutput;
 strOutput.Format("Event's name: %s\n", spEvent->Name.operator const char *());
 OutputDebugString(strOutput);
 if (spEvent->CountParam == 0)
 OutputDebugString("The event has no parameters.");
 else
 {
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 EXGRIDLib::IOleEventParamPtr spParam = spEvent->GetParam(COleVariant(i));
 strOutput.Format("Name: %s, Value: %s\n", spParam->Name.operator const char *
(), V2S(&spParam->Value));
 OutputDebugString(strOutput);

 }
 }
 OutputDebugString("");
}

The following VB.NET sample displays the events that an ActiveX control is firing while it is
hosted by an item:

Private Sub AxGrid1_ItemOleEvent(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_ItemOleEventEvent) Handles AxGrid1.ItemOleEvent
 Debug.WriteLine("Event's name: " & e.ev.Name)
 Dim i As Long
 For i = 0 To e.ev.CountParam - 1
 Dim eP As EXGRIDLib.OleEventParam
 eP = e.ev(i)
 Debug.WriteLine("Name: " & e.ev.Name & " Value: " & eP.Value)
 Next
End Sub

The following VB.NET sample displays the event and its parameters when an user editor
object fires an event:

Private Sub AxGrid1_UserEditorOleEvent(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_UserEditorOleEventEvent) Handles AxGrid1.UserEditorOleEvent
 Debug.WriteLine("Event's name: " & e.ev.Name)
 Dim i As Long
 For i = 0 To e.ev.CountParam - 1
 Dim eP As EXGRIDLib.OleEventParam
 eP = e.ev(i)
 Debug.WriteLine("Name: " & e.ev.Name & " Value: " & eP.Value)
 Next
End Sub

The following C# sample displays the events that an ActiveX control is firing while it is
hosted by an item:

private void axGrid1_ItemOleEvent(object sender,
AxEXGRIDLib._IGridEvents_ItemOleEventEvent e)
{

 System.Diagnostics.Debug.WriteLine("Event's name: " + e.ev.Name.ToString());
 for (int i= 0; i < e.ev.CountParam ; i++)
 {
 EXGRIDLib.IOleEventParam evP = e.ev[i];
 System.Diagnostics.Debug.WriteLine("Name: " + evP.Name.ToString() + ", Value: " +
evP.Value.ToString());
 }
}

The following C# sample displays the event and its parameters when an user editor object
fires an event:

private void axGrid1_UserEditorOleEvent(object sender,
AxEXGRIDLib._IGridEvents_UserEditorOleEventEvent e)
{
 System.Diagnostics.Debug.WriteLine("Event's name: " + e.ev.Name.ToString());
 for (int i = 0; i < e.ev.CountParam; i++)
 {
 EXGRIDLib.IOleEventParam evP = e.ev[i];
 System.Diagnostics.Debug.WriteLine("Name: " + evP.Name.ToString() + ", Value: " +
evP.Value.ToString());
 }
}

The following VFP sample displays the events that an ActiveX control fires when it is hosted
by an item (ItemOleEvent event):

*** ActiveX Control Event ***
LPARAMETERS item, ev

local s
s = "Event's name: " + ev.Name
for i = 0 to ev.CountParam - 1
 s = s + "Name: " + ev.Param(i).Name + " ,Value: " + Str(ev.Param(i).Value)
endfor
wait window nowait s

The following VFP sample displays the event and its parameters when an user editor object
fires an event (UserEditorOleEvent event):

*** ActiveX Control Event ***
LPARAMETERS object, ev, closeeditor, item, colindex

local s
s = "Event's name: " + ev.Name
for i = 0 to ev.CountParam - 1
 s = s + "Name: " + ev.Param(i).Name + " ,Value: " + Str(ev.Param(i).Value)
endfor
wait window nowait s

property OleEvent.ToString as String
Retrieves information about the event.

Type Description

String

A String expression that shows information about an OLE
event. The ToString property gets the information as
follows: Name[ID] (Param/Type = Value, Param/Type =
Value, ...). For instance, "KeyDown[-602]
(KeyCode/Short* = 9,Shift/Short = 0)" indicates that the
KeyDown event is fired, with the identifier -602 with two
parameters KeyCode as a reference to a short type with
the value 8, and Shift parameter as Short type with the
value 0.

Use the ToString property to display information about fired event such us name,
parameters, types and values. Using the ToString property you can quickly identifies the
event that you should handle in your application. Use the ID property to specify a specified
even by its identifier. Use the Name property to get the name of the event. Use the Param
property to access a specified parameter using its index or its name.

Displaying ToString property during the OLE Event event may show data like follows:

MouseMove[-606](Button/Short = 0,Shift/Short = 0,X/Long = 46,Y/Long = 15)
MouseDown[-605](Button/Short = 1,Shift/Short = 0,X/Long = 46,Y/Long = 15)
KeyDown[-602](KeyCode/Short* = 83,Shift/Short = 0)
KeyPress[-603](KeyAscii/Short* = 115)
Change[2]()
KeyUp[-604](KeyCode/Short* = 83,Shift/Short = 0)
MouseUp[-607](Button/Short = 1,Shift/Short = 0,X/Long = 46,Y/Long = 15)
MouseMove[-606](Button/Short = 0,Shift/Short = 0,X/Long = 46,Y/Long = 15)

OleEventParam object

The OleEventParam holds the name and the value for an event's argument.

Name Description
Name Retrieves the name of the event's parameter.
Value Retrieves the value of the event's parameter.

property OleEventParam.Name as String

Retrieves the name of the event's parameter.

Type Description

String A string expression that indicates the name of the event's
parameter.

Use the CountParam property to count the parameters of an OLE event. Use the Name
property to get the parameter name. Use the Param property to get the event's parameter.
Use the Value property to specify the value of the parameter. The following VB sample
enumerates the arguments of an OLE event when ItemOLEEvent or UserEditorOleEvent
event is fired.

Private Sub Grid1_ItemOleEvent(ByVal Item As EXGRIDLibCtl.HITEM, ByVal Ev As
EXGRIDLibCtl.IOleEvent)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VB sample displays information about the fired event when the
UserEditorOleEvent event occurs:

Private Sub Grid1_UserEditorOleEvent(ByVal Object As Object, ByVal Ev As
EXGRIDLibCtl.IOleEvent, CloseEditor As Boolean, ByVal Item As EXGRIDLibCtl.HITEM, ByVal
ColIndex As Long)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long

 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VC sample displays the events that an ActiveX control is firing while it is
hosted by an item:

 #import <exgrid.dll> rename("GetItems", "exGetItems")

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnItemOleEventGrid1(long Item, LPDISPATCH Ev)
{
 EXGRIDLib::IOleEventPtr spEvent(Ev);
 CString strOutput;
 strOutput.Format("Event's name: %s\n", spEvent->Name.operator const char *());
 OutputDebugString(strOutput);
 if (spEvent->CountParam == 0)
 OutputDebugString("The event has no parameters.");
 else
 {
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 EXGRIDLib::IOleEventParamPtr spParam = spEvent->GetParam(COleVariant(i));

 strOutput.Format("Name: %s, Value: %s\n", spParam->Name.operator const char *
(), V2S(&spParam->Value));
 OutputDebugString(strOutput);
 }
 }
 OutputDebugString("");
}

The #import clause is required to get the wrapper classes for IOleEvent and
IOleEventParam objects, that are not defined by the MFC class wizard. The same #import
statement defines the EXGRIDLib namespace that include all objects and types of the
control's TypeLibrary. In case your exgrid.dll library is located to another place than the
system folder or well known path, the path to the library should be provided, in order to let
the VC finds the type library.

The following C++ sample displays the event and its parameters when an user editor object
fires an event:

void OnUserEditorOleEventGrid1(LPDISPATCH Object, LPDISPATCH Ev, BOOL FAR*
CloseEditor, long Item, long ColIndex)
{
 EXGRIDLib::IOleEventPtr spEvent(Ev);
 CString strOutput;
 strOutput.Format("Event's name: %s\n", spEvent->Name.operator const char *());
 OutputDebugString(strOutput);
 if (spEvent->CountParam == 0)
 OutputDebugString("The event has no parameters.");
 else
 {
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 EXGRIDLib::IOleEventParamPtr spParam = spEvent->GetParam(COleVariant(i));
 strOutput.Format("Name: %s, Value: %s\n", spParam->Name.operator const char *
(), V2S(&spParam->Value));
 OutputDebugString(strOutput);
 }
 }
 OutputDebugString("");
}

The following VB.NET sample displays the events that an ActiveX control is firing while it is
hosted by an item:

Private Sub AxGrid1_ItemOleEvent(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_ItemOleEventEvent) Handles AxGrid1.ItemOleEvent
 Debug.WriteLine("Event's name: " & e.ev.Name)
 Dim i As Long
 For i = 0 To e.ev.CountParam - 1
 Dim eP As EXGRIDLib.OleEventParam
 eP = e.ev(i)
 Debug.WriteLine("Name: " & e.ev.Name & " Value: " & eP.Value)
 Next
End Sub

The following VB.NET sample displays the event and its parameters when an user editor
object fires an event:

Private Sub AxGrid1_UserEditorOleEvent(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_UserEditorOleEventEvent) Handles AxGrid1.UserEditorOleEvent
 Debug.WriteLine("Event's name: " & e.ev.Name)
 Dim i As Long
 For i = 0 To e.ev.CountParam - 1
 Dim eP As EXGRIDLib.OleEventParam
 eP = e.ev(i)
 Debug.WriteLine("Name: " & e.ev.Name & " Value: " & eP.Value)
 Next
End Sub

The following C# sample displays the events that an ActiveX control is firing while it is
hosted by an item:

private void axGrid1_ItemOleEvent(object sender,
AxEXGRIDLib._IGridEvents_ItemOleEventEvent e)
{
 System.Diagnostics.Debug.WriteLine("Event's name: " + e.ev.Name.ToString());
 for (int i= 0; i < e.ev.CountParam ; i++)
 {
 EXGRIDLib.IOleEventParam evP = e.ev[i];
 System.Diagnostics.Debug.WriteLine("Name: " + evP.Name.ToString() + ", Value: " +

evP.Value.ToString());
 }
}

The following C# sample displays the event and its parameters when an user editor object
fires an event:

private void axGrid1_UserEditorOleEvent(object sender,
AxEXGRIDLib._IGridEvents_UserEditorOleEventEvent e)
{
 System.Diagnostics.Debug.WriteLine("Event's name: " + e.ev.Name.ToString());
 for (int i = 0; i < e.ev.CountParam; i++)
 {
 EXGRIDLib.IOleEventParam evP = e.ev[i];
 System.Diagnostics.Debug.WriteLine("Name: " + evP.Name.ToString() + ", Value: " +
evP.Value.ToString());
 }
}

The following VFP sample displays the events that an ActiveX control fires when it is hosted
by an item (ItemOleEvent event):

*** ActiveX Control Event ***
LPARAMETERS item, ev

local s
s = "Event's name: " + ev.Name
for i = 0 to ev.CountParam - 1
 s = s + "Name: " + ev.Param(i).Name + " ,Value: " + Str(ev.Param(i).Value)
endfor
wait window nowait s

The following VFP sample displays the event and its parameters when an user editor object
fires an event (UserEditorOleEvent event):

*** ActiveX Control Event ***
LPARAMETERS object, ev, closeeditor, item, colindex

local s

s = "Event's name: " + ev.Name
for i = 0 to ev.CountParam - 1
 s = s + "Name: " + ev.Param(i).Name + " ,Value: " + Str(ev.Param(i).Value)
endfor
wait window nowait s

property OleEventParam.Value as Variant

Specifies the value of the event's parameter.

Type Description

Variant A variant value that indicates the value of the event's
parameter.

Use the CountParam property to count the parameters of an OLE event. Use the Name
property to get the parameter name. Use the Param property to get the event's parameter.
Use the Value property to specify the value of the parameter. The following VB sample
enumerates the arguments of an OLE event when ItemOLEEvent or UserEditorOleEvent
event is fired.

Private Sub Grid1_ItemOleEvent(ByVal Item As EXGRIDLibCtl.HITEM, ByVal Ev As
EXGRIDLibCtl.IOleEvent)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VB sample displays information about the fired event when the
UserEditorOleEvent event occurs:

Private Sub Grid1_UserEditorOleEvent(ByVal Object As Object, ByVal Ev As
EXGRIDLibCtl.IOleEvent, CloseEditor As Boolean, ByVal Item As EXGRIDLibCtl.HITEM, ByVal
ColIndex As Long)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long

 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VC sample displays the events that an ActiveX control is firing while it is
hosted by an item:

 #import <exgrid.dll> rename("GetItems", "exGetItems")

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnItemOleEventGrid1(long Item, LPDISPATCH Ev)
{
 EXGRIDLib::IOleEventPtr spEvent(Ev);
 CString strOutput;
 strOutput.Format("Event's name: %s\n", spEvent->Name.operator const char *());
 OutputDebugString(strOutput);
 if (spEvent->CountParam == 0)
 OutputDebugString("The event has no parameters.");
 else
 {
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 EXGRIDLib::IOleEventParamPtr spParam = spEvent->GetParam(COleVariant(i));

 strOutput.Format("Name: %s, Value: %s\n", spParam->Name.operator const char *
(), V2S(&spParam->Value));
 OutputDebugString(strOutput);
 }
 }
 OutputDebugString("");
}

The #import clause is required to get the wrapper classes for IOleEvent and
IOleEventParam objects, that are not defined by the MFC class wizard. The same #import
statement defines the EXGRIDLib namespace that include all objects and types of the
control's TypeLibrary. In case your exgrid.dll library is located to another place than the
system folder or well known path, the path to the library should be provided, in order to let
the VC finds the type library.

The following C++ sample displays the event and its parameters when an user editor object
fires an event:

void OnUserEditorOleEventGrid1(LPDISPATCH Object, LPDISPATCH Ev, BOOL FAR*
CloseEditor, long Item, long ColIndex)
{
 EXGRIDLib::IOleEventPtr spEvent(Ev);
 CString strOutput;
 strOutput.Format("Event's name: %s\n", spEvent->Name.operator const char *());
 OutputDebugString(strOutput);
 if (spEvent->CountParam == 0)
 OutputDebugString("The event has no parameters.");
 else
 {
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 EXGRIDLib::IOleEventParamPtr spParam = spEvent->GetParam(COleVariant(i));
 strOutput.Format("Name: %s, Value: %s\n", spParam->Name.operator const char *
(), V2S(&spParam->Value));
 OutputDebugString(strOutput);
 }
 }
 OutputDebugString("");
}

The following VB.NET sample displays the events that an ActiveX control is firing while it is
hosted by an item:

Private Sub AxGrid1_ItemOleEvent(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_ItemOleEventEvent) Handles AxGrid1.ItemOleEvent
 Debug.WriteLine("Event's name: " & e.ev.Name)
 Dim i As Long
 For i = 0 To e.ev.CountParam - 1
 Dim eP As EXGRIDLib.OleEventParam
 eP = e.ev(i)
 Debug.WriteLine("Name: " & e.ev.Name & " Value: " & eP.Value)
 Next
End Sub

The following VB.NET sample displays the event and its parameters when an user editor
object fires an event:

Private Sub AxGrid1_UserEditorOleEvent(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_UserEditorOleEventEvent) Handles AxGrid1.UserEditorOleEvent
 Debug.WriteLine("Event's name: " & e.ev.Name)
 Dim i As Long
 For i = 0 To e.ev.CountParam - 1
 Dim eP As EXGRIDLib.OleEventParam
 eP = e.ev(i)
 Debug.WriteLine("Name: " & e.ev.Name & " Value: " & eP.Value)
 Next
End Sub

The following C# sample displays the events that an ActiveX control is firing while it is
hosted by an item:

private void axGrid1_ItemOleEvent(object sender,
AxEXGRIDLib._IGridEvents_ItemOleEventEvent e)
{
 System.Diagnostics.Debug.WriteLine("Event's name: " + e.ev.Name.ToString());
 for (int i= 0; i < e.ev.CountParam ; i++)
 {
 EXGRIDLib.IOleEventParam evP = e.ev[i];
 System.Diagnostics.Debug.WriteLine("Name: " + evP.Name.ToString() + ", Value: " +

evP.Value.ToString());
 }
}

The following C# sample displays the event and its parameters when an user editor object
fires an event:

private void axGrid1_UserEditorOleEvent(object sender,
AxEXGRIDLib._IGridEvents_UserEditorOleEventEvent e)
{
 System.Diagnostics.Debug.WriteLine("Event's name: " + e.ev.Name.ToString());
 for (int i = 0; i < e.ev.CountParam; i++)
 {
 EXGRIDLib.IOleEventParam evP = e.ev[i];
 System.Diagnostics.Debug.WriteLine("Name: " + evP.Name.ToString() + ", Value: " +
evP.Value.ToString());
 }
}

The following VFP sample displays the events that an ActiveX control fires when it is hosted
by an item (ItemOleEvent event):

*** ActiveX Control Event ***
LPARAMETERS item, ev

local s
s = "Event's name: " + ev.Name
for i = 0 to ev.CountParam - 1
 s = s + "Name: " + ev.Param(i).Name + " ,Value: " + Str(ev.Param(i).Value)
endfor
wait window nowait s

The following VFP sample displays the event and its parameters when an user editor object
fires an event (UserEditorOleEvent event):

*** ActiveX Control Event ***
LPARAMETERS object, ev, closeeditor, item, colindex

local s

s = "Event's name: " + ev.Name
for i = 0 to ev.CountParam - 1
 s = s + "Name: " + ev.Param(i).Name + " ,Value: " + Str(ev.Param(i).Value)
endfor
wait window nowait s

UnboundHandler object
The control supports unbound mode. In unbound mode, the user is responsible for retrieving
items. The unbound mode and virtual unbound modes were provided to let user displays
large number of items. In order to let the control works in unbound mode, the user has to
implement the IUnboundHandler notification interface. Use the VirtualMode property to run
the control in virtual mode. The UnboundHandler property specifies the control's unbound
handler. Currently, the UnboundHandler / IUnboundHandler interface is available for /COM
version only.

Here's the IDL definition of the IUnboundHandler interface:

[
 uuid(BA3AA5FA-5B09-40F6-80DF-B051C20150B6),
 pointer_default(unique)
]
interface IUnboundHandler : IUnknown
{
 [propget, id(1), helpcontext(3001), helpstring("Gets the number of items.")] HRESULT
ItemsCount(IDispatch* Source, [out, retval] long* pVal);
 [id(2), helpcontext(3002), helpstring("The source requires an item.")] HRESULT
ReadItem(long Index, IDispatch* Source, long ItemHandle);
}

Here's the IDL definition of the UnboundHandler interface (this interface is available starting
from the version 11.1):

[
 uuid(BA3AA5FA-5B09-40F6-80DF-B051C20150B7),
]
dispinterface UnboundHandler
{
 interface IUnboundHandler;
}

The following VB sampledisplays 1,000,000 items in virtual mode:

Implements EXGRIDLibCtl.IUnboundHandler

Private Sub Form_Load()

 With Grid1
 .BeginUpdate
 .Columns.Add("Index").FormatColumn = "value format `0`"
 .VirtualMode = True
 Set .UnboundHandler = Me
 .EndUpdate
 End With
End Sub

Private Property Get IUnboundHandler_ItemsCount(ByVal Source As Object) As Long
 IUnboundHandler_ItemsCount = 1000000
End Property

Private Sub IUnboundHandler_ReadItem(ByVal Index As Long, ByVal Source As Object,
ByVal ItemHandle As Long)
 With Source.Items
 .CellValue(ItemHandle, 0) = Index + 1
 End With
End Sub

The following VB/NET sampledisplays 1,000,000 items in virtual mode:

Public Class Form1
 Implements EXGRIDLib.IUnboundHandler

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
 With AxGrid1
 .BeginUpdate()
 .Columns.Add("Index").FormatColumn = "value format `0`"
 .VirtualMode = True
 .UnboundHandler = Me
 .EndUpdate()
 End With
 End Sub

 Public ReadOnly Property ItemsCount(ByVal Source As Object) As Integer Implements

EXGRIDLib.IUnboundHandler.ItemsCount
 Get
 ItemsCount = 10000000
 End Get
 End Property

 Public Sub ReadItem(ByVal Index As Integer, ByVal Source As Object, ByVal ItemHandle
As Integer) Implements EXGRIDLib.IUnboundHandler.ReadItem
 With Source.Items
 .CellValue(ItemHandle, 0) = Index + 1
 End With
 End Sub
End Class

The following C# sampledisplays 1,000,000 items in virtual mode:

public partial class Form1 : Form, EXGRIDLib.IUnboundHandler
{
 public Form1()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 axGrid1.BeginUpdate();
 (axGrid1.Columns.Add("Index") as EXGRIDLib.IColumn).FormatColumn = "value
format `0`";
 axGrid1.VirtualMode = true;
 axGrid1.UnboundHandler = this;
 axGrid1.EndUpdate();
 }

 public int get_ItemsCount(object Source)
 {
 return 1000000;
 }

 public void ReadItem(int Index, object Source, int ItemHandle)
 {
 (Source as EXGRIDLib.IGrid).Items.set_CellValue(ItemHandle, 0, Index + 1);
 }
}

The following VFP 9 sample displays 1,000,000 items in virtual mode:

with thisform.Grid1
 .Columns.Add("Index").FormatColumn = "value format `0`"
 .VirtualMode = .T.
 .UnboundHandler = newobject('UnboundHandler', 'class1.prg')
endwith

where the class1.prg is:

define class UnboundHandler as session OLEPUBLIC

implements IUnboundHandler in "ExGrid.dll"
function IUnboundHandler_get_ItemsCount(Source)
 return 1000000
endfunc
function IUnboundHandler_ReadItem(Index, Source, ItemHandle)
 With Source.Items
 .CellValue(ItemHandle, 0) = Index + 1
 EndWith
endfunc

implements UnboundHandler in "ExGrid.dll"
function UnboundHandler_get_ItemsCount(Source)
 return this.IUnboundHandler_get_ItemsCount(Source)
endfunc
function UnboundHandler_ReadItem(Index, Source, ItemHandle)
 return this.IUnboundHandler_ReadItem(Index, Source, ItemHandle)
endfunc

enddefine

The following VFP 7 and VFP 8 sample displays 1,000,000 items in virtual mode:

with thisform.Grid1
 .Columns.Add("Index").FormatColumn = "value format `0`"
 .VirtualMode = .T.
 .UnboundHandler = newobject('UnboundHandler', 'class1.prg')
endwith

where the class1.prg is:

define class UnboundHandler as custom

implements IUnboundHandler in "ExGrid.dll"

function IUnboundHandler_get_ItemsCount(Source)
 return 10000000
endfunc

function IUnboundHandler_ReadItem(Index, Source, ItemHandle)
 With Source.Items
 .DefaultItem = ItemHandle
 .CellValue(0, 0) = Index + 1
 EndWith
endfunc

enddefine

The UnboundHandler / IUnboundHandler interface requires the following properties and
methods:

Name Description
ItemsCount Gets the number of items.
ReadItem The source requires an item.

property UnboundHandler.ItemsCount (Source as Object) as Long
Gets the number of items.

Type Description
Source as Object The control that requires the number of items

Long A Long expression that specifies the number of items in
unbound/virtual mode.

The ItemsCount property specifies the number of items in unbound/virtual mode.

The following VB sample, shows how ItemsCount property should be implemented:

Private Property Get IUnboundHandler_ItemsCount(ByVal Source As Object) As Long
 IUnboundHandler_ItemsCount = 1000000
End Property

The following VB/NET sample, shows how ItemsCount property should be implemented:

Public ReadOnly Property ItemsCount(ByVal Source As Object) As Integer Implements
EXGRIDLib.IUnboundHandler.ItemsCount
 Get
 ItemsCount = 10000000
 End Get
End Property

The following C# sample, shows how ItemsCount property should be implemented:

public int get_ItemsCount(object Source)
{
 return 1000000;
}

The following VFP sample , shows how ItemsCount property should be implemented:

function IUnboundHandler_get_ItemsCount(Source)
 return 1000000
endfunc

method UnboundHandler.ReadItem (Index as Long, Source as Object,
ItemHandle as Long)
The source requires an item.

Type Description

Index as Long A Long expression that specifies the index of the item to
be requested

Source as Object The source object to be filled.

ItemHandle as Long A Long expression that specifies the handle of the item in
the source, that's associated with the requested index.

The ReadItem method is called every time the Source requires an item to be displayed.

The following VB sample, shows how ReadItem method should be implemented:

Private Sub IUnboundHandler_ReadItem(ByVal Index As Long, ByVal Source As Object,
ByVal ItemHandle As Long)
 With Source.Items
 .CellValue(ItemHandle, 0) = Index + 1
 End With
End Sub

The following VB/NET sample, shows how ReadItem method should be implemented:

Public Sub ReadItem(ByVal Index As Integer, ByVal Source As Object, ByVal ItemHandle As
Integer) Implements EXGRIDLib.IUnboundHandler.ReadItem
 With Source.Items
 .CellValue(ItemHandle, 0) = Index + 1
 End With
End Sub

The following C# sample, shows how ReadItem method should be implemented:

public void ReadItem(int Index, object Source, int ItemHandle)
{
 (Source as EXGRIDLib.IGrid).Items.set_CellValue(ItemHandle, 0, Index + 1);
}

The following VFP sample , shows how ReadItem method should be implemented:

function IUnboundHandler_ReadItem(Index, Source, ItemHandle)
 With Source.Items
 .CellValue(ItemHandle, 0) = Index + 1
 EndWith
endfunc

ExGrid events
The exGrid component supports the following events:

Name Description
AddColumn Fired after a new column has been added.

AddGroupItem Occurs after a new Group Item has been inserted to
Items collection.

AddItem Occurs after a new Item has been inserted to Items
collection.

AfterExpandItem Fired after an item is expanded (collapsed).
AnchorClick Occurs when an anchor element is clicked.
BeforeExpandItem Fired before an item is about to be expanded (collapsed).
ButtonClick Occurs when user clicks on the cell's button.
CellImageClick Fired after the user clicks on the image's cell area.
CellStateChanged Fired after cell's state has been changed.
CellStateChanging Fired before cell's state is about to be changed.
Change Occurs when the user changes the cell's content.

Click Occurs when the user presses and then releases the left
mouse button over the grid control.

ColumnClick Fired after the user clicks on column's header.

DblClick Occurs when the user dblclk the left mouse button over an
object.

Edit Occurs just before editing the focused cell.
EditClose Occurs when the edit operation ends.
EditOpen Occurs when the edit operation starts.
Error Fired when an internal error occurs.
Event Notifies the application once the control fires an event.
FilterChange Occurs when filter was changed.
FilterChanging Notifies your application that the filter is about to change.
FocusChanged Occurs when a new cell is focused.
FormatColumn Fired when a cell requires to format its value.
HyperLinkClick Occurs when the user clicks on a hyperlink cell.

Fired when an ActiveX control hosted by an item has fired

ItemOleEvent an event.

KeyDown Occurs when the user presses a key while an object has
the focus.

KeyPress Occurs when the user presses and releases an ANSI key.

KeyUp Occurs when the user releases a key while an object has
the focus.

LayoutChanged Occurs when column's position or column's size is
changed.

MouseDown Occurs when the user presses a mouse button.
MouseMove Occurs when the user moves the mouse.
MouseUp Occurs when the user releases a mouse button.
OffsetChanged Occurs when the scroll position has been changed.

OLECompleteDrag
Occurs when a source component is dropped onto a
target component, informing the source component that a
drag action was either performed or canceled

OLEDragDrop
Occurs when a source component is dropped onto a
target component when the source component determines
that a drop can occur.

OLEDragOver Occurs when one component is dragged over another.

OLEGiveFeedback Allows the drag source to specify the type of OLE drag-
and-drop operation and the visual feedback.

OLESetData
Occurs on a drag source when a drop target calls the
GetData method and there is no data in a specified format
in the OLE drag-and-drop DataObject.

OLEStartDrag Occurs when the OLEDrag method is called.

OversizeChanged Occurs when the right range of the scroll has been
changed.

RClick Fired when right mouse button is clicked
RemoveColumn Fired before deleting a Column.
RemoveItem Occurs before deleting an Item.
ScrollButtonClick Occurs when the user clicks a button in the scrollbar.
SelectionChanged Fired after a new item has been selected.
Sort Fired when the control sorts a column.
ToolTip Fired when the control prepares the object's tooltip.

URChange Occurs once the control's undo/redo queue is changed.
UserEditorClose Fired the user editor is about to be opened.
UserEditorOleEvent Occurs when an user editor fires an event.
UserEditorOpen Occurs when an user editor is about to be opened.
ValidateValue Occurs before user changes the cell's value.

C#

VB

private void AddColumn(object sender,exontrol.EXGRIDLib.Column Column)
{
}

Private Sub AddColumn(ByVal sender As System.Object,ByVal Column As
exontrol.EXGRIDLib.Column) Handles AddColumn
End Sub

C#

C++

C++
Builder

private void AddColumn(object sender,
AxEXGRIDLib._IGridEvents_AddColumnEvent e)
{
}

void OnAddColumn(LPDISPATCH Column)
{
}

void __fastcall AddColumn(TObject *Sender,Exgridlib_tlb::IColumn *Column)
{
}

event AddColumn (Column as Column)
Fired after a new column has been added.

Type Description
Column as Column A Column object being inserted to the Columns collection.

Use the AddColumn event to notify your application that a new column has been added. Use
Add method to add new columns to the control. The AddColumn event is called even if the
user binds the control to an ADO recordset using DataSource property. Use the Def
property to specify default values for certain properties of a Column object. Use the
AddColumn property to associate extra data to columns being added. The
ColumnAutoResize property specifies whether the columns fit the control's client area. Use
the Width property to specify the column's width.

Syntax for AddColumn event, /NET version, on:

Syntax for AddColumn event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure AddColumn(ASender: TObject; Column : IColumn);
begin
end;

procedure AddColumn(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_AddColumnEvent);
begin
end;

begin event AddColumn(oleobject Column)
end event AddColumn

Private Sub AddColumn(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_AddColumnEvent) Handles AddColumn
End Sub

Private Sub AddColumn(ByVal Column As EXGRIDLibCtl.IColumn)
End Sub

Private Sub AddColumn(ByVal Column As Object)
End Sub

LPARAMETERS Column

PROCEDURE OnAddColumn(oGrid,Column)
RETURN

Java…

VBSc…

<SCRIPT EVENT="AddColumn(Column)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AddColumn(Column)
End Function
</SCRIPT>

Syntax for AddColumn event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComAddColumn Variant llColumn
 Forward Send OnComAddColumn llColumn
End_Procedure

METHOD OCX_AddColumn(Column) CLASS MainDialog
RETURN NIL

void onEvent_AddColumn(COM _Column)
{
}

function AddColumn as v (Column as OLE::Exontrol.Grid.1::IColumn)
end function

function nativeObject_AddColumn(Column)
return

The following VB sample changes the column's width, when adding the column:

Private Sub Grid1_AddColumn(ByVal Column As EXGRIDLibCtl.IColumn)
 Column.Width = 128
End Sub

The following C++ sample changes the column's width:

#include "Column.h"
void OnAddColumnGrid1(LPDISPATCH Column)
{
 CColumn column(Column);column.m_bAutoRelease = FALSE;
 column.SetWidth(128);
}

The following VB.NET sample changes the column's width:

Private Sub AxGrid1_AddColumn(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_AddColumnEvent) Handles AxGrid1.AddColumn
 e.column.Width = 128

End Sub

The following C# sample changes the column's width:

private void axGrid1_AddColumn(object sender,
AxEXGRIDLib._IGridEvents_AddColumnEvent e)
{
 e.column.Width = 128;
}

The following VFP sample changes the column's width:

*** ActiveX Control Event ***
LPARAMETERS column

with column
 .Width = 128
endwith

C#

VB

private void AddGroupItem(object sender,int Item)
{
}

Private Sub AddGroupItem(ByVal sender As System.Object,ByVal Item As Integer)
Handles AddGroupItem
End Sub

C#

C++

private void AddGroupItem(object sender,
AxEXGRIDLib._IGridEvents_AddGroupItemEvent e)
{
}

void OnAddGroupItem(long Item)
{

event AddGroupItem (Item as HITEM)
Occurs after a new Group Item has been inserted to Items collection.

Type Description

Item as HITEM A Long expression that indicates the handle of the
grouping items being inserted.

The AddGroupItem event is fired for each new item to be inserted in the Items collection
during the grouping. The GroupItem method determines the index of the column that
indicates the column being grouped. In other words, the CellCaption(Item,GroupItem(Item)
) gets the default caption to be displayed for the grouping item. The Ungroup method
removes all grouping items. For instance, when a column gets grouped by, the control sorts
by that column, collects the unique values being found, and add a new item for each value
found, by adding the items of the same value as children.

The AddGroupItem event can be used in any of the followings:

customize the visual appearance for any grouping item,
customize the aggregate formula to be displayed instead, MAX, MIN, COUNT, and so
on,
adding new headers or footers for grouping items

Syntax for AddGroupItem event, /NET version, on:

Syntax for AddGroupItem event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

void __fastcall AddGroupItem(TObject *Sender,Exgridlib_tlb::HITEM Item)
{
}

procedure AddGroupItem(ASender: TObject; Item : HITEM);
begin
end;

procedure AddGroupItem(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_AddGroupItemEvent);
begin
end;

begin event AddGroupItem(long Item)
end event AddGroupItem

Private Sub AddGroupItem(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_AddGroupItemEvent) Handles AddGroupItem
End Sub

Private Sub AddGroupItem(ByVal Item As EXGRIDLibCtl.HITEM)
End Sub

Private Sub AddGroupItem(ByVal Item As Long)
End Sub

LPARAMETERS Item

PROCEDURE OnAddGroupItem(oGrid,Item)
RETURN

Java… <SCRIPT EVENT="AddGroupItem(Item)" LANGUAGE="JScript">
</SCRIPT>

Syntax for AddGroupItem event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function AddGroupItem(Item)
End Function
</SCRIPT>

Procedure OnComAddGroupItem HITEM llItem
 Forward Send OnComAddGroupItem llItem
End_Procedure

METHOD OCX_AddGroupItem(Item) CLASS MainDialog
RETURN NIL

void onEvent_AddGroupItem(int _Item)
{
}

function AddGroupItem as v (Item as OLE::Exontrol.Grid.1::HITEM)
end function

function nativeObject_AddGroupItem(Item)
return

The following samples shows how to underline the grouping items, and add a footer item to
show the total/sum on the column with the index 6:

VBA

Private Sub Grid1_AddGroupItem(ByVal Item As Long)
 With Grid1
 With .Items
 .CellUnderline(Item,.GroupItem(Item)) = True
 h = .InsertItem(Item,0,"")
 .SelectableItem(h) = False
 .CellValue(h,6) = "sum(parent,rec,dbl(%6))"
 .CellValueFormat(h,6) = 5 ' ValueFormatEnum.exTotalField Or
ValueFormatEnum.exHTML
 .FormatCell(h,6) = "`Sum: ` + value"
 End With

 End With
End Sub

VB

Private Sub Grid1_AddGroupItem(ByVal Item As EXGRIDLibCtl.HITEM)
 With Grid1
 With .Items
 .CellUnderline(Item,.GroupItem(Item)) = True
 h = .InsertItem(Item,0,"")
 .SelectableItem(h) = False
 .CellValue(h,6) = "sum(parent,rec,dbl(%6))"
 .CellValueFormat(h,6) = ValueFormatEnum.exTotalField Or
ValueFormatEnum.exHTML
 .FormatCell(h,6) = "`Sum: ` + value"
 End With
 End With
End Sub

VB.NET

Private Sub Exgrid1_AddGroupItem(ByVal sender As System.Object,ByVal Item As Integer)
Handles Exgrid1.AddGroupItem
 Dim h
 With Exgrid1
 With .Items
 .set_CellUnderline(Item,.get_GroupItem(Item),True)
 h = .InsertItem(Item,0,"")
 .set_SelectableItem(h,False)
 .set_CellValue(h,6,"sum(parent,rec,dbl(%6))")
 .set_CellValueFormat(h,6,exontrol.EXGRIDLib.ValueFormatEnum.exTotalField Or
exontrol.EXGRIDLib.ValueFormatEnum.exHTML)
 .set_FormatCell(h,6,"`Sum: ` + value")
 End With
 End With
End Sub

C++

void OnAddGroupItemGrid1(long Item)
{
 /*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXGRIDLib' for the library: 'ExGrid 1.0 Control Library'
 #import <ExGrid.dll>
 using namespace EXGRIDLib;
 */
 EXGRIDLib::IGridPtr spGrid1 = GetDlgItem(IDC_GRID1)->GetControlUnknown();
 EXGRIDLib::IItemsPtr var_Items = spGrid1->GetItems();
 var_Items->PutCellUnderline(Item,var_Items->GetGroupItem(Item),VARIANT_TRUE);
 long h = var_Items->InsertItem(Item,long(0),"");
 var_Items->PutSelectableItem(h,VARIANT_FALSE);
 var_Items->PutCellValue(h,long(6),"sum(parent,rec,dbl(%6))");
 var_Items-
>PutCellValueFormat(h,long(6),EXGRIDLib::ValueFormatEnum(EXGRIDLib::exTotalField |
EXGRIDLib::exHTML));
 var_Items->PutFormatCell(h,long(6),L"`Sum: ` + value");
}

C++ Builder

void __fastcall TForm1::Grid1AddGroupItem(TObject *Sender,Exgridlib_tlb::HITEM Item)
{
 Exgridlib_tlb::IItemsPtr var_Items = Grid1->Items;
 var_Items->set_CellUnderline(TVariant(Item),TVariant(var_Items-
>get_GroupItem(Item)),true);
 long h = var_Items->InsertItem(Item,TVariant(0),TVariant(""));
 var_Items->set_SelectableItem(h,false);
 var_Items->set_CellValue(TVariant(h),TVariant(6),TVariant("sum(parent,rec,dbl(%6))"));
 var_Items-
>set_CellValueFormat(TVariant(h),TVariant(6),Exgridlib_tlb::ValueFormatEnum::exTotalField
 | Exgridlib_tlb::ValueFormatEnum::exHTML);
 var_Items->set_FormatCell(TVariant(h),TVariant(6),L"`Sum: ` +
value");
}

C#

private void exgrid1_AddGroupItem(object sender,int Item)
{
 exontrol.EXGRIDLib.Items var_Items = exgrid1.Items;
 var_Items.set_CellUnderline(Item,var_Items.get_GroupItem(Item),true);
 int h = var_Items.InsertItem(Item,0,"");
 var_Items.set_SelectableItem(h,false);
 var_Items.set_CellValue(h,6,"sum(parent,rec,dbl(%6))");

var_Items.set_CellValueFormat(h,6,exontrol.EXGRIDLib.ValueFormatEnum.exTotalField |
exontrol.EXGRIDLib.ValueFormatEnum.exHTML);
 var_Items.set_FormatCell(h,6,"`Sum: ` + value");
}

JavaScript

<SCRIPT FOR="Grid1" EVENT="AddGroupItem(Item)" LANGUAGE="JScript">
 var var_Items = Grid1.Items;
 var_Items.CellUnderline(Item,var_Items.GroupItem(Item)) = true;
 var h = var_Items.InsertItem(Item,0,"");
 var_Items.SelectableItem(h) = false;
 var_Items.CellValue(h,6) = "sum(parent,rec,dbl(%6))";
 var_Items.CellValueFormat(h,6) = 5;
 var_Items.FormatCell(h,6) = "`Sum: ` + value";
</SCRIPT>

VFP

*** AddGroupItem event - Occurs after a new Group Item has been inserted to Items
collection. ***
LPARAMETERS Item
 with thisform.Grid1
 with .Items
 .CellUnderline(Item,.GroupItem(Item)) = .T.
 h = .InsertItem(Item,0,"")
 .SelectableItem(h) = .F.
 .CellValue(h,6) = "sum(parent,rec,dbl(%6))"
 .CellValueFormat(h,6) = 5 && ValueFormatEnum.exTotalField Or
ValueFormatEnum.exHTML

 .FormatCell(h,6) = "`Sum: ` + value"
 endwith
 endwith

Delphi

procedure TForm1.Grid1AddGroupItem(ASender: TObject; Item : HITEM);
begin
 with Grid1 do
 begin
 with Items do
 begin
 CellUnderline[OleVariant(Item),OleVariant(GroupItem[Item])] := True;
 h := InsertItem(Item,OleVariant(0),'');
 SelectableItem[h] := False;
 CellValue[OleVariant(h),OleVariant(6)] := 'sum(parent,rec,dbl(%6))';
 CellValueFormat[OleVariant(h),OleVariant(6)] :=
Integer(EXGRIDLib_TLB.exTotalField) Or Integer(EXGRIDLib_TLB.exHTML);
 FormatCell[OleVariant(h),OleVariant(6)] := '`Sum: ` + value';
 end;
 end
end;

Visual Objects

METHOD OCX_Exontrol1AddGroupItem(Item) CLASS MainDialog
 local var_Items as IItems
 local h as USUAL
 var_Items := oDCOCX_Exontrol1:Items
 var_Items:[CellUnderline,Item,var_Items:[GroupItem,Item]] := true
 h := var_Items:InsertItem(Item,0,"")
 var_Items:[SelectableItem,h] := false
 var_Items:[CellValue,h,6] := "sum(parent,rec,dbl(%6))"
 var_Items:[CellValueFormat,h,6] := exTotalField | exHTML
 var_Items:[FormatCell,h,6] := "`Sum: ` + value"
RETURN NIL

C#

VB

private void AddItem(object sender,int Item)
{
}

Private Sub AddItem(ByVal sender As System.Object,ByVal Item As Integer)
Handles AddItem
End Sub

C#

C++

C++
Builder

Delphi

private void AddItem(object sender, AxEXGRIDLib._IGridEvents_AddItemEvent e)
{
}

void OnAddItem(long Item)
{
}

void __fastcall AddItem(TObject *Sender,Exgridlib_tlb::HITEM Item)
{
}

procedure AddItem(ASender: TObject; Item : HITEM);
begin

event AddItem (Item as HITEM)
Occurs after a new Item has been inserted to Items collection.

Type Description

Item as HITEM A long expression that indicates the handle of the newly
inserted item.

Use the AddItem event to notify your application that a new item has been inserted into the
Items collection. The AddItem, InsertItem and InsertControlItem methods fire the AddItem
event. The PutItems method invokes the AddItem event each time a new item is added. If
the user binds the control to an ADO recordset using the DataSource property, AddEvent
is called each time the control inserts a new item.

Syntax for AddItem event, /NET version, on:

Syntax for AddItem event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

procedure AddItem(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_AddItemEvent);
begin
end;

begin event AddItem(long Item)
end event AddItem

Private Sub AddItem(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_AddItemEvent) Handles AddItem
End Sub

Private Sub AddItem(ByVal Item As EXGRIDLibCtl.HITEM)
End Sub

Private Sub AddItem(ByVal Item As Long)
End Sub

LPARAMETERS Item

PROCEDURE OnAddItem(oGrid,Item)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="AddItem(Item)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AddItem(Item)
End Function
</SCRIPT>

Procedure OnComAddItem HITEM llItem
 Forward Send OnComAddItem llItem

Syntax for AddItem event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_AddItem(Item) CLASS MainDialog
RETURN NIL

void onEvent_AddItem(int _Item)
{
}

function AddItem as v (Item as OLE::Exontrol.Grid.1::HITEM)
end function

function nativeObject_AddItem(Item)
return

The following VB sample changes the item's background color:

Private Sub Grid1_AddItem(ByVal Item As EXGRIDLibCtl.HITEM)
 With Grid1.Items
 .ItemBackColor(Item) = IIf(.ItemToIndex(Item) Mod 2 = 0, vbBlue, vbRed)
 End With
End Sub

The following VB sample adds WS_HSCROLL and WS_VSCROLL window styles to the
container window that hosts an ActiveX control

Private Const WS_VSCROLL = &H200000
Private Const WS_HSCROLL = &H100000

...

With Grid1.Items
 .InsertControlItem , "https://www.exontrol.com"
End With

...

Private Sub Grid1_AddItem(ByVal Item As EXGRIDLibCtl.HITEM)

With Grid1.Items
 If (.ItemControlID(Item) Like "http://www.*") Then
 ' Some of controls like the WEB control, require some additional window styles (like
WS_HSCROLL and WS_VSCROLL window styles)
 ' for the window that hosts that WEB control, to allow scrolling the web page
 .ItemWindowHostCreateStyle(Item) = .ItemWindowHostCreateStyle(Item) +
WS_HSCROLL + WS_VSCROLL
 End If
 End With
End Sub

The following C++ sample changes the item's foreground color when a new items is
inserted:

#include "Items.h"
void OnAddItemGrid1(long Item)
{
 if (::IsWindow(m_grid.m_hWnd))
 {
 CItems items = m_grid.GetItems();
 items.SetItemForeColor(Item, RGB(0,0,255));
 }
}

The following VB.NET sample changes the item's foreground color when a new items is
inserted:

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

Private Sub AxGrid1_AddItem(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_AddItemEvent) Handles AxGrid1.AddItem
 AxGrid1.Items.ItemForeColor(e.item) = ToUInt32(Color.Blue)

End Sub

The following C# sample changes the item's foreground color when a new items is inserted:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

private void axGrid1_AddItem(object sender, AxEXGRIDLib._IGridEvents_AddItemEvent e)
{
 axGrid1.Items.set_ItemForeColor(e.item, ToUInt32(Color.Blue));
}

The following VFP sample changes the item's foreground color when a new items is
inserted:

*** ActiveX Control Event ***
LPARAMETERS item

with thisform.Grid1.Items
 .DefaultItem = item
 .ItemForeColor(0) = RGB(0,0,255)
endwith

C#

VB

private void AfterExpandItem(object sender,int Item)
{
}

Private Sub AfterExpandItem(ByVal sender As System.Object,ByVal Item As
Integer) Handles AfterExpandItem
End Sub

C#

C++

C++
Builder

Delphi

private void AfterExpandItem(object sender,
AxEXGRIDLib._IGridEvents_AfterExpandItemEvent e)
{
}

void OnAfterExpandItem(long Item)
{
}

void __fastcall AfterExpandItem(TObject *Sender,Exgridlib_tlb::HITEM Item)
{
}

procedure AfterExpandItem(ASender: TObject; Item : HITEM);

event AfterExpandItem (Item as HITEM)
Fired after an item is expanded (collapsed).

Type Description

Item as HITEM A long expression that specifies the handle of the item that
is expanded or collapsed.

The AfterExapndItem event notifies your application that an item is collapsed or expanded.
Use the ExpandItem method to programmatically expand or collapse an item. The
ExpandItem property also specifies whether an item is expand or collapsed. The ItemChild
property retrieves the first child item. Use the BeforeExpandItem event to cancel expanding
or collapsing items

Syntax for AfterExpandItem event, /NET version, on:

Syntax for AfterExpandItem event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin
end;

procedure AfterExpandItem(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_AfterExpandItemEvent);
begin
end;

begin event AfterExpandItem(long Item)
end event AfterExpandItem

Private Sub AfterExpandItem(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_AfterExpandItemEvent) Handles AfterExpandItem
End Sub

Private Sub AfterExpandItem(ByVal Item As EXGRIDLibCtl.HITEM)
End Sub

Private Sub AfterExpandItem(ByVal Item As Long)
End Sub

LPARAMETERS Item

PROCEDURE OnAfterExpandItem(oGrid,Item)
RETURN

Java…

VBSc…

<SCRIPT EVENT="AfterExpandItem(Item)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AfterExpandItem(Item)
End Function
</SCRIPT>

Syntax for AfterExpandItem event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComAfterExpandItem HITEM llItem
 Forward Send OnComAfterExpandItem llItem
End_Procedure

METHOD OCX_AfterExpandItem(Item) CLASS MainDialog
RETURN NIL

void onEvent_AfterExpandItem(int _Item)
{
}

function AfterExpandItem as v (Item as OLE::Exontrol.Grid.1::HITEM)
end function

function nativeObject_AfterExpandItem(Item)
return

The following VB sample displays whether an item is expanded or collapsed:

Private Sub Grid1_AfterExpandItem(ByVal Item As EXGRIDLibCtl.HITEM)
 With Grid1.Items
 Debug.Print "Item is " & IIf(.ExpandItem(Item), "expanded", "collapsed") & "."
 End With
End Sub

The following C++ sample prints the item's state when it is expanded or collapsed:

#include "Items.h"
void OnAfterExpandItemGrid1(long Item)
{
 if (::IsWindow(m_grid.m_hWnd))
 {
 CItems items = m_grid.GetItems();
 CString strFormat;
 strFormat.Format("%s", items.GetExpandItem(Item) ? "expanded" : "collapsed");
 OutputDebugString(strFormat);

 }
}

The following C# sample prints the item's state when it is expanded or collapsed:

private void axGrid1_AfterExpandItem(object sender,
AxEXGRIDLib._IGridEvents_AfterExpandItemEvent e)
{
 System.Diagnostics.Debug.WriteLine(axGrid1.Items.get_ExpandItem(e.item) ?
"expanded" : "collapsed");
}

The following VB.NET sample prints the item's state when it is expanded or collapsed:

Private Sub AxGrid1_AddItem(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_AddItemEvent) Handles AxGrid1.AddItem
 AxGrid1.Items.ItemForeColor(e.item) = ToUInt32(Color.Blue)
End Sub

The following VFP sample prints the item's state when it is expanded or collapsed:

*** ActiveX Control Event ***
LPARAMETERS item

with thisform.Grid1.Items
 if (.ExpandItem(item))
 wait window "expanded" nowait
 else
 wait window "collapsed" nowait
 endif
endwith

C#

VB

private void AnchorClick(object sender,string AnchorID,string Options)
{
}

Private Sub AnchorClick(ByVal sender As System.Object,ByVal AnchorID As
String,ByVal Options As String) Handles AnchorClick
End Sub

C# private void AnchorClick(object sender,
AxEXGRIDLib._IGridEvents_AnchorClickEvent e)
{
}

event AnchorClick (AnchorID as String, Options as String)
Occurs when an anchor element is clicked.

Type Description

AnchorID as String A string expression that indicates the identifier of the
anchor.

Options as String A string expression that specifies options of the anchor
element.

The control fires the AnchorClick event to notify that the user clicks an anchor element. An
anchor is a piece of text or some other object (for example an image) which marks the
beginning and/or the end of a hypertext link. The <a> element is used to mark that piece of
text (or inline image), and to give its hypertextual relationship to other documents. The
AnchorClick event is fired only if prior clicking the control it shows the hand cursor. For
instance, if the cell is disabled, the hand cursor is not shown when hovers the anchor
element, and so the AnchorClick event is not fired. Use the FormatAnchor property to
specify the visual effect for anchor elements. For instance, if the user clicks the anchor
<a1>anchor, the control fires the AnchorClick event, where the AnchorID parameter is
1, and the Options parameter is empty. Also, if the user clicks the anchor <a
1;yourextradata>anchor, the AnchorID parameter of the AnchorClick event is 1, and
the Options parameter is "yourextradata". Use the AnchorFromPoint property to retrieve the
identifier of the anchor element from the cursor.

Syntax for AnchorClick event, /NET version, on:

Syntax for AnchorClick event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnAnchorClick(LPCTSTR AnchorID,LPCTSTR Options)
{
}

void __fastcall AnchorClick(TObject *Sender,BSTR AnchorID,BSTR Options)
{
}

procedure AnchorClick(ASender: TObject; AnchorID : WideString;Options :
WideString);
begin
end;

procedure AnchorClick(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_AnchorClickEvent);
begin
end;

begin event AnchorClick(string AnchorID,string Options)
end event AnchorClick

Private Sub AnchorClick(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_AnchorClickEvent) Handles AnchorClick
End Sub

Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

LPARAMETERS AnchorID,Options

PROCEDURE OnAnchorClick(oGrid,AnchorID,Options)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="AnchorClick(AnchorID,Options)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AnchorClick(AnchorID,Options)
End Function
</SCRIPT>

Procedure OnComAnchorClick String llAnchorID String llOptions
 Forward Send OnComAnchorClick llAnchorID llOptions
End_Procedure

METHOD OCX_AnchorClick(AnchorID,Options) CLASS MainDialog
RETURN NIL

void onEvent_AnchorClick(str _AnchorID,str _Options)
{
}

function AnchorClick as v (AnchorID as C,Options as C)
end function

function nativeObject_AnchorClick(AnchorID,Options)
return

Syntax for AnchorClick event, /COM version (others), on:

C#

VB

private void BeforeExpandItem(object sender,int Item,ref object Cancel)
{
}

Private Sub BeforeExpandItem(ByVal sender As System.Object,ByVal Item As
Integer,ByRef Cancel As Object) Handles BeforeExpandItem
End Sub

C#

C++

private void BeforeExpandItem(object sender,
AxEXGRIDLib._IGridEvents_BeforeExpandItemEvent e)
{
}

void OnBeforeExpandItem(long Item,VARIANT FAR* Cancel)
{
}

event BeforeExpandItem (Item as HITEM, ByRef Cancel as Variant)
Fired before an item is about to be expanded (collapsed).

Type Description

Item as HITEM A long expression that indicates the item being expanded
or collapsed.

Cancel as Variant (By Reference) A boolean expression that indicates
whether the expanding or collapsing operation is canceled.

Use the AfterExpandItem and BeforeExpandItem events to notify your application that an
item is expanded or collapsed. Use the ExpandItem property to expand or collapse items at
runtime. Use the BeforeExpandItem event to disable expanding or collapsing the items. Use
the ItemHasChildren property to specify whether the control should display a + sign to the
items, even they have no child items, so you can build a virtual tree. A virtual tree can load
items as soon as user expands an item. Use the ExpandOnSearch property to expand
items while user types characters to search for items using incremental search feature. Use
the ChildCount property to get the number of child items. Use the ItemChild property to
retrieve the first child item.

Syntax for BeforeExpandItem event, /NET version, on:

Syntax for BeforeExpandItem event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall BeforeExpandItem(TObject *Sender,Exgridlib_tlb::HITEM
Item,Variant * Cancel)
{
}

procedure BeforeExpandItem(ASender: TObject; Item : HITEM;var Cancel :
OleVariant);
begin
end;

procedure BeforeExpandItem(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_BeforeExpandItemEvent);
begin
end;

begin event BeforeExpandItem(long Item,any Cancel)
end event BeforeExpandItem

Private Sub BeforeExpandItem(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_BeforeExpandItemEvent) Handles BeforeExpandItem
End Sub

Private Sub BeforeExpandItem(ByVal Item As EXGRIDLibCtl.HITEM,Cancel As
Variant)
End Sub

Private Sub BeforeExpandItem(ByVal Item As Long,Cancel As Variant)
End Sub

LPARAMETERS Item,Cancel

PROCEDURE OnBeforeExpandItem(oGrid,Item,Cancel)
RETURN

Java… <SCRIPT EVENT="BeforeExpandItem(Item,Cancel)" LANGUAGE="JScript">
Syntax for BeforeExpandItem event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function BeforeExpandItem(Item,Cancel)
End Function
</SCRIPT>

Procedure OnComBeforeExpandItem HITEM llItem Variant llCancel
 Forward Send OnComBeforeExpandItem llItem llCancel
End_Procedure

METHOD OCX_BeforeExpandItem(Item,Cancel) CLASS MainDialog
RETURN NIL

void onEvent_BeforeExpandItem(int _Item,COMVariant /*variant*/ _Cancel)
{
}

function BeforeExpandItem as v (Item as OLE::Exontrol.Grid.1::HITEM,Cancel as A)
end function

function nativeObject_BeforeExpandItem(Item,Cancel)
return

The following VB sample disables expanding or collapsing items:

Private Sub Grid1_BeforeExpandItem(ByVal Item As EXGRIDLibCtl.HITEM, Cancel As
Variant)
 Cancel = True
End Sub

Use the BeforeExpandItem event to add child items when an item is expanded, and has the
ItemHasChildren property on True, like in the following VB sample:

Private Sub Grid1_BeforeExpandItem(ByVal Item As EXGRIDLibCtl.HITEM, Cancel As
Variant)
 With Grid1.Items
 If (.ItemHasChildren(Item)) Then

 If (.ChildCount(Item) = 0) Then
 .InsertItem Item, , "new item " & Item
 End If
 End If
 End With
End Sub

The following C++ sample cancels expanding or collapsing items:

void OnBeforeExpandItemGrid1(long Item, VARIANT FAR* Cancel)
{
 V_VT(Cancel) = VT_BOOL;
 V_BOOL(Cancel) = VARIANT_TRUE;
}

The following VB.NET sample cancels expanding or collapsing items:

Private Sub AxGrid1_BeforeExpandItem(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_BeforeExpandItemEvent) Handles AxGrid1.BeforeExpandItem
 e.cancel = True
End Sub

The following C# sample cancels expanding or collapsing items:

private void axGrid1_BeforeExpandItem(object sender,
AxEXGRIDLib._IGridEvents_BeforeExpandItemEvent e)
{
 e.cancel = true;
}

The following VFP sample cancels expanding or collapsing items:

*** ActiveX Control Event ***
LPARAMETERS item, cancel

cancel = .t.

C#

VB

private void ButtonClick(object sender,int Item,int ColIndex,object Key)
{
}

Private Sub ButtonClick(ByVal sender As System.Object,ByVal Item As Integer,ByVal
ColIndex As Integer,ByVal Key As Object) Handles ButtonClick
End Sub

event ButtonClick (Item as HITEM, ColIndex as Long, Key as Variant)
Occurs when user clicks on the cell's button.

Type Description

Item as HITEM

A long expression that determines the item's handle. If the
Item parameter is 0, and the ColIndex property is different
than zero, the ColIndex indicates the handle of the cell
where the state is changed.

ColIndex as Long
A long expression that indicates the column's index, if the
Item parameter is not zero, a long expression that
indicates the handle of the cell if the Item parameter is 0.

Key as Variant
Specifies the button's key that's clicked. If the Key
parameter is empty, the user clicked the drop down button
of the editor.

Use the ButtonClick event to notify your application that a button is clicked. Use the
ColumnClick event to notify your application that the user clicks the column's header. Use
the CellImageClick event to notify your application that the user clicks an icon in the cell.
You can assign a button to a cell using any of the following ways:

The CellHasButton property specifies whether the cell displays a button. Use the
CellValue property indicates the button's caption. In this case the Key parameter is
empty.

The AddButton method adds a button to an editor. The Key parameter indicates the
key of the button being clicked. A drop down type editor like ButtonType,
DropDownType, DropDownListType, PickEditType, DateType, ColorType, FontType
and PictureType includes a drop down button. The Key parameter is empty, for a drop
down button.

Syntax for ButtonClick event, /NET version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

private void ButtonClick(object sender,
AxEXGRIDLib._IGridEvents_ButtonClickEvent e)
{
}

void OnButtonClick(long Item,long ColIndex,VARIANT Key)
{
}

void __fastcall ButtonClick(TObject *Sender,Exgridlib_tlb::HITEM Item,long
ColIndex,Variant Key)
{
}

procedure ButtonClick(ASender: TObject; Item : HITEM;ColIndex : Integer;Key :
OleVariant);
begin
end;

procedure ButtonClick(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_ButtonClickEvent);
begin
end;

begin event ButtonClick(long Item,long ColIndex,any Key)
end event ButtonClick

Private Sub ButtonClick(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_ButtonClickEvent) Handles ButtonClick
End Sub

Private Sub ButtonClick(ByVal Item As EXGRIDLibCtl.HITEM,ByVal ColIndex As
Long,ByVal Key As Variant)
End Sub

Private Sub ButtonClick(ByVal Item As Long,ByVal ColIndex As Long,ByVal Key As
Variant)

Syntax for ButtonClick event, /COM version, on:

VFP

Xbas…

End Sub

LPARAMETERS Item,ColIndex,Key

PROCEDURE OnButtonClick(oGrid,Item,ColIndex,Key)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="ButtonClick(Item,ColIndex,Key)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ButtonClick(Item,ColIndex,Key)
End Function
</SCRIPT>

Procedure OnComButtonClick HITEM llItem Integer llColIndex Variant llKey
 Forward Send OnComButtonClick llItem llColIndex llKey
End_Procedure

METHOD OCX_ButtonClick(Item,ColIndex,Key) CLASS MainDialog
RETURN NIL

void onEvent_ButtonClick(int _Item,int _ColIndex,COMVariant _Key)
{
}

function ButtonClick as v (Item as OLE::Exontrol.Grid.1::HITEM,ColIndex as N,Key as
A)
end function

function nativeObject_ButtonClick(Item,ColIndex,Key)
return

Syntax for ButtonClick event, /COM version (others), on:

The following VB sample displays the key of the button being clicked:

With Grid1.Columns.Add("Editor").Editor
 .EditType = EditType
 .AddButton "Key1", 1
 .AddButton "Key2", 2, EXGRIDLibCtl.AlignmentEnum.RightAlignment, "This is a bit of
text that should be displayed when the cursor is over the button", "Some information"
 .AddButton "Key3", 3, EXGRIDLibCtl.AlignmentEnum.RightAlignment
End With

...

Private Sub Grid1_ButtonClick(ByVal Item As EXGRIDLibCtl.HITEM, ByVal ColIndex As Long,
ByVal Key As Variant)
 ' Displays the button's key that was clicked
 Dim mes As String
 mes = "You have pressed the button"
 mes = mes + IIf(Len(Key) = 0, "", " '" & Key & "'")
 mes = mes + " of cell '" & Grid1.Items.CellValue(Item) & "'."
 Debug.Print mes
End Sub

The following VB sample displays the caption of the cell where a button is clicked:

Private Sub Grid1_ButtonClick(ByVal Item As EXGRIDLibCtl.HITEM, ByVal ColIndex As Long,
ByVal Key As Variant)
 With Grid1.Items
 Debug.Print .CellCaption(Item, ColIndex) & ", Key = '" & Key & "'"
 End With
End Sub

The following C++ sample displays the caption of the cell where a button is clicked:

#include "Items.h"
void OnButtonClickGrid1(long Item, long ColIndex, const VARIANT FAR& Key)
{
 CItems items = m_grid.GetItems();
 CString strFormat;
 strFormat.Format("%s, Key = '%s'", items.GetCellCaption(COleVariant(Item),
COleVariant(ColIndex)), V2S((LPVARIANT)&Key));

 OutputDebugString(strFormat);
}

where the V2S string may look like follows:

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

or

static string V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 CComVariant vt;
 if (SUCCEEDED(vt.ChangeType(VT_BSTR, pv)))
 {
 USES_CONVERSION;
 return OLE2T(V_BSTR(&vt));
 }
 }
 return szDefault;
}

if you are using STL.

The following VB.NET sample displays the caption of the cell where a button is clicked:

Private Sub AxGrid1_ButtonClick(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_ButtonClickEvent) Handles AxGrid1.ButtonClick
 With AxGrid1.Items
 Dim strKey As String = ""
 If Not (e.key Is Nothing) Then
 strKey = e.key.ToString()
 End If
 Debug.Print(.CellCaption(e.item, e.colIndex).ToString() + ", Key = " + strKey)
 End With
End Sub

The following C# sample displays the caption of the cell where a button is clicked:

private void axGrid1_ButtonClick(object sender,
AxEXGRIDLib._IGridEvents_ButtonClickEvent e)
{
 string strKey = "";
 if (e.key != null)
 strKey = e.key.ToString();
 System.Diagnostics.Debug.WriteLine(axGrid1.Items.get_CellCaption(e.item, e.colIndex)
+ ", Key = " + strKey);
}

The following VFP sample displays the caption of the cell where a button is clicked:

*** ActiveX Control Event ***
LPARAMETERS item, colindex, key

with thisform.Grid1.Items
 .DefaultItem = item
 wait window nowait .CellCaption(0, colindex)
endwith

C#

VB

private void CellImageClick(object sender,int Item,int ColIndex)
{
}

Private Sub CellImageClick(ByVal sender As System.Object,ByVal Item As
Integer,ByVal ColIndex As Integer) Handles CellImageClick
End Sub

C#

C++

private void CellImageClick(object sender,
AxEXGRIDLib._IGridEvents_CellImageClickEvent e)
{
}

void OnCellImageClick(long Item,long ColIndex)
{

event CellImageClick (Item as HITEM, ColIndex as Long)
Fired after the user clicks on the image's cell area.

Type Description

Item as HITEM

A long expression that determines the item's handle. If the
Item parameter is 0, and the ColIndex property is different
than zero, the ColIndex indicates the handle of the cell
where the state is changed.

ColIndex as Long
A long expression that indicates the column's index, if the
Item parameter is not zero, a long expression that
indicates the handle of the cell if the Item parameter is 0.

The CellImageClick event notifies your application that an icon in the cell is clicked. Use the
CellImage property to assign an icon to a cell. Use the CellImages property to assign
multiple icons to a cell. Use the ItemFromPoint property to get the index of icon being
clicked, if the cell displays multiple icons using the CellImages property. The CellImageClick
event is not fired if you are clicking a custom size picture added with the CellPicture
property. Use the CellHasCheckBox or CellHasRadioButton property to assign a check box
or a radio button to a cell. Use the CellStateChanged event to notify your application that
the the cell's checkbox or radio button is clicked:

Syntax for CellImageClick event, /NET version, on:

Syntax for CellImageClick event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

void __fastcall CellImageClick(TObject *Sender,Exgridlib_tlb::HITEM Item,long
ColIndex)
{
}

procedure CellImageClick(ASender: TObject; Item : HITEM;ColIndex : Integer);
begin
end;

procedure CellImageClick(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_CellImageClickEvent);
begin
end;

begin event CellImageClick(long Item,long ColIndex)
end event CellImageClick

Private Sub CellImageClick(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_CellImageClickEvent) Handles CellImageClick
End Sub

Private Sub CellImageClick(ByVal Item As EXGRIDLibCtl.HITEM,ByVal ColIndex As
Long)
End Sub

Private Sub CellImageClick(ByVal Item As Long,ByVal ColIndex As Long)
End Sub

LPARAMETERS Item,ColIndex

PROCEDURE OnCellImageClick(oGrid,Item,ColIndex)
RETURN

Syntax for CellImageClick event, /COM version (others), on:

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="CellImageClick(Item,ColIndex)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function CellImageClick(Item,ColIndex)
End Function
</SCRIPT>

Procedure OnComCellImageClick HITEM llItem Integer llColIndex
 Forward Send OnComCellImageClick llItem llColIndex
End_Procedure

METHOD OCX_CellImageClick(Item,ColIndex) CLASS MainDialog
RETURN NIL

void onEvent_CellImageClick(int _Item,int _ColIndex)
{
}

function CellImageClick as v (Item as OLE::Exontrol.Grid.1::HITEM,ColIndex as N)
end function

function nativeObject_CellImageClick(Item,ColIndex)
return

The following VB sample changes the cell's icon when the user clicks the icon:

Private Sub Grid1_CellImageClick(ByVal Item As EXGRIDLibCtl.HITEM, ByVal ColIndex As
Long)
 With Grid1.Items
 .CellImage(Item, ColIndex) = (.CellImage(Item, ColIndex) Mod 2) + 1
 End With
End Sub

The following VB sample displays the index of icon being clicked, when the cell displays
multiple icons (CellImages property):

Private Sub Grid1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single)
 Dim i As HITEM, h As HitTestInfoEnum, c As Long
 With Grid1
 i = .ItemFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, c, h)
 End With
 If (i <> 0) Then
 If exHTCellIcon = (h And exHTCellIcon) Then
 Debug.Print "The index of icon being clicked is: " & (h And &HFFFF0000) / 65536
 End If
 End If
End Sub

The following C++ sample changes the cell's icon being clicked:

#include "Items.h"
void OnCellImageClickGrid1(long Item, long ColIndex)
{
 CItems items = m_grid.GetItems();
 COleVariant vtItem(Item), vtColumn(ColIndex);
 items.SetCellImage(vtItem , vtColumn , items.GetCellImage(vtItem, vtColumn) % 2 + 1
);
}

The following VB.NET sample changes the cell's icon being clicked:

Private Sub AxGrid1_CellImageClick(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_CellImageClickEvent) Handles AxGrid1.CellImageClick
 With AxGrid1.Items
 .CellImage(e.item, e.colIndex) = .CellImage(e.item, e.colIndex) Mod 2 + 1
 End With
End Sub

The following C# sample changes the cell's icon being clicked:

private void axGrid1_CellImageClick(object sender,
AxEXGRIDLib._IGridEvents_CellImageClickEvent e)
{
 axGrid1.Items.set_CellImage(e.item, e.colIndex, axGrid1.Items.get_CellImage(e.item,

e.colIndex) % 2 + 1);
}

The following VFP sample changes the cell's icon being clicked:

*** ActiveX Control Event ***
LPARAMETERS item, colindex

with thisform.Grid1.Items
 .DefaultItem = item
 .CellImage(0,colindex) = .CellImage(0,colindex) + 1
endwith

C#

VB

private void CellStateChanged(object sender,int Item,int ColIndex)
{
}

Private Sub CellStateChanged(ByVal sender As System.Object,ByVal Item As
Integer,ByVal ColIndex As Integer) Handles CellStateChanged
End Sub

event CellStateChanged (Item as HITEM, ColIndex as Long)
Fired after cell's state has been changed.

Type Description

Item as HITEM

A long expression that determines the item's handle. If the
Item parameter is 0, and the ColIndex property is different
than zero, the ColIndex indicates the handle of the cell
where the state is changed.

ColIndex as Long
A long expression that indicates the column's index, if the
Item parameter is not zero, a long expression that
indicates the handle of the cell if the Item parameter is 0.

A cell that contains a radio button or a check box button fires the CellStateChanged event
when its state is changed. Use the CellState property to change the cell's state. Use the
CellHasRadioButton or CellHasCheckBox property to enable radio or check box button into
a cell. Use the CellImage property to display an icon in the cell. Use the CellImages
property to display multiple icons in the same cell. Use the PartialCheck property to enable
partial check feature (check boxes with three states: partial, checked and unchecked).
Use the CellChecked property to determine the handle of the cell that's checked in a radio
group. Use the CellRadioGroup property to radio group cells

Once the user clicks a check-box, radio-button, the control fires the following events:

CellStateChanging event, where the NewState parameter indicates the new state of
the cell's checkbox / radio-button.

CellStateChanged event notifies your application that the cell's check-box or radio-
button has been changed. The CellState property determines the check-box/radio-
button state of the cell.

Syntax for CellStateChanged event, /NET version, on:

Syntax for CellStateChanged event, /COM version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

private void CellStateChanged(object sender,
AxEXGRIDLib._IGridEvents_CellStateChangedEvent e)
{
}

void OnCellStateChanged(long Item,long ColIndex)
{
}

void __fastcall CellStateChanged(TObject *Sender,Exgridlib_tlb::HITEM Item,long
ColIndex)
{
}

procedure CellStateChanged(ASender: TObject; Item : HITEM;ColIndex : Integer);
begin
end;

procedure CellStateChanged(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_CellStateChangedEvent);
begin
end;

begin event CellStateChanged(long Item,long ColIndex)
end event CellStateChanged

Private Sub CellStateChanged(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_CellStateChangedEvent) Handles CellStateChanged
End Sub

Private Sub CellStateChanged(ByVal Item As EXGRIDLibCtl.HITEM,ByVal ColIndex
As Long)
End Sub

Private Sub CellStateChanged(ByVal Item As Long,ByVal ColIndex As Long)
End Sub

LPARAMETERS Item,ColIndex

Xbas… PROCEDURE OnCellStateChanged(oGrid,Item,ColIndex)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="CellStateChanged(Item,ColIndex)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function CellStateChanged(Item,ColIndex)
End Function
</SCRIPT>

Procedure OnComCellStateChanged HITEM llItem Integer llColIndex
 Forward Send OnComCellStateChanged llItem llColIndex
End_Procedure

METHOD OCX_CellStateChanged(Item,ColIndex) CLASS MainDialog
RETURN NIL

void onEvent_CellStateChanged(int _Item,int _ColIndex)
{
}

function CellStateChanged as v (Item as OLE::Exontrol.Grid.1::HITEM,ColIndex as N)
end function

function nativeObject_CellStateChanged(Item,ColIndex)
return

Syntax for CellStateChanged event, /COM version (others), on:

The following VB sample displays a message when the user clicks a check box or a radio
button:

Private Sub Grid1_CellStateChanged(ByVal Item As EXGRIDLibCtl.HITEM, ByVal ColIndex As
Long)
 With Grid1.Items

 Debug.Print "'" & .CellValue(Item, ColIndex) & "' = " & .CellState(Item, ColIndex)
 End With
End Sub

The following C++ sample displays a message when the user clicks a check box or a radio
button:

#include "Items.h"
void OnCellStateChangedGrid1(long Item, long ColIndex)
{
 CItems items = m_grid.GetItems();
 COleVariant vtItem(Item), vtColumn(ColIndex);
 CString strFormat;
 strFormat.Format("'%s' = %i", items.GetCellCaption(vtItem, vtColumn),
items.GetCellState(vtItem, vtColumn));
 OutputDebugString(strFormat);
}

The following VB.NET sample displays a message when the user clicks a check box or a
radio button:

Private Sub AxGrid1_CellStateChanged(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_CellStateChangedEvent) Handles AxGrid1.CellStateChanged
 With AxGrid1.Items
 Debug.Print(.CellCaption(e.item, e.colIndex) & " = " & .CellState(e.item,
e.colIndex).ToString())
 End With
End Sub

The following C# sample displays a message when the user clicks a check box or a radio
button:

private void axGrid1_CellStateChanged(object sender,
AxEXGRIDLib._IGridEvents_CellStateChangedEvent e)
{
 string strOutput = axGrid1.Items.get_CellCaption(e.item, e.colIndex).ToString();
 strOutput += " = " + axGrid1.Items.get_CellState(e.item, e.colIndex).ToString();
 System.Diagnostics.Debug.WriteLine(strOutput);
}

The following VFP sample displays a message when the user clicks a check box or a radio
button:

*** ActiveX Control Event ***
LPARAMETERS item, colindex

local sOutput
sOutput = ""
with thisform.Grid1.Items
 .DefaultItem = item
 sOutput = .CellCaption(0, colindex)
 sOutput = sOutput + ", state = " + str(.CellState(0, colindex))
 wait window nowait sOutput
endwith

event CellStateChanging (Item as HITEM, ColIndex as Long, ByRef
NewState as Long)
Fired before cell's state is about to be changed.

Type Description

Item as HITEM A long expression that indicates the handle of the item
where the cell's state is about to be changed.

ColIndex as Long

A long expression that indicates the index of the column
where the cell's state is changed, or a long expression
that indicates the handle of the cell, if the Item parameter
is 0.

NewState as Long
(By Reference) A long expression that specifies the new
state of the cell (0- unchecked, 1 - checked, 2 - partial
checked)

The control fires the CellStateChanging event just before cell's state is about to be
changed. For instance, you can prevent changing the cell's state, by calling the NewState =
Items.CellState(Item,ColIndex). A cell that contains a radio button or a check box button
fires the CellStateChanged event when its state is changed. Use the CellState property to
change the cell's state. Use the CellHasRadioButton or CellHasCheckBox property to
enable radio or check box button into a cell. Use the Def property to assign check-boxes /
radio-buttons for all cells in the column. Use the CellImage property to display an icon in the
cell. Use the CellImages property to display multiple icons in the same cell. Use the
PartialCheck property to enable partial check feature (check boxes with three states:
partial, checked and unchecked). Use the CellChecked property to determine the handle of
the cell that's checked in a radio group. Use the CellRadioGroup property to radio group
cells. We would not recommend changing the CellState property during the
CellStateChanging event, to prevent recursive calls, instead you can change the NewState
parameter which is passed by reference.

Once the user clicks a check-box, radio-button, the control fires the following events:

CellStateChanging event, where the NewState parameter indicates the new state of

C#

VB

private void CellStateChanging(object sender,int Item,int ColIndex,ref int
NewState)
{
}

Private Sub CellStateChanging(ByVal sender As System.Object,ByVal Item As
Integer,ByVal ColIndex As Integer,ByRef NewState As Integer) Handles
CellStateChanging
End Sub

C#

C++

private void CellStateChanging(object sender,
AxEXGRIDLib._IGridEvents_CellStateChangingEvent e)
{
}

void OnCellStateChanging(long Item,long ColIndex,long FAR* NewState)

the cell's checkbox / radio-button.

CellStateChanged event notifies your application that the cell's check-box or radio-
button has been changed. The CellState property determines the check-box/radio-
button state of the cell.

For instance, the following VB sample prevents changing the cell's checkbox/radio-button,
when the control's ReadOnly property is set:

Private Sub Grid1_CellStateChanging(ByVal Item As EXGRIDLibCtl.HITEM, ByVal ColIndex
As Long, NewState As Long)
 With Grid1
 If (.ReadOnly) Then
 With .Items
 NewState = .CellState(Item, ColIndex)
 End With
 End If
 End With
End Sub

Syntax for CellStateChanging event, /NET version, on:

Syntax for CellStateChanging event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

void __fastcall CellStateChanging(TObject *Sender,Exgridlib_tlb::HITEM Item,long
ColIndex,long * NewState)
{
}

procedure CellStateChanging(ASender: TObject; Item : HITEM;ColIndex :
Integer;var NewState : Integer);
begin
end;

procedure CellStateChanging(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_CellStateChangingEvent);
begin
end;

begin event CellStateChanging(long Item,long ColIndex,long NewState)

end event CellStateChanging

Private Sub CellStateChanging(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_CellStateChangingEvent) Handles CellStateChanging
End Sub

Private Sub CellStateChanging(ByVal Item As EXGRIDLibCtl.HITEM,ByVal ColIndex
As Long,NewState As Long)
End Sub

Private Sub CellStateChanging(ByVal Item As Long,ByVal ColIndex As
Long,NewState As Long)
End Sub

LPARAMETERS Item,ColIndex,NewState

PROCEDURE OnCellStateChanging(oGrid,Item,ColIndex,NewState)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="CellStateChanging(Item,ColIndex,NewState)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function CellStateChanging(Item,ColIndex,NewState)
End Function
</SCRIPT>

Procedure OnComCellStateChanging HITEM llItem Integer llColIndex Integer
llNewState
 Forward Send OnComCellStateChanging llItem llColIndex llNewState
End_Procedure

METHOD OCX_CellStateChanging(Item,ColIndex,NewState) CLASS MainDialog
RETURN NIL

void onEvent_CellStateChanging(int _Item,int _ColIndex,COMVariant /*long*/
_NewState)
{
}

function CellStateChanging as v (Item as OLE::Exontrol.Grid.1::HITEM,ColIndex as
N,NewState as N)
end function

function nativeObject_CellStateChanging(Item,ColIndex,NewState)
return

Syntax for CellStateChanging event, /COM version (others), on:

event Change (Item as HITEM, ColIndex as Long, ByRef NewValue as
Variant)
Occurs when the user changes the cell's content.

Type Description

Item as HITEM

A long expression that determines the item's handle. If the
Item parameter is 0, and the ColIndex property is different
than zero, the ColIndex indicates the handle of the cell
where the state is changed.

ColIndex as Long
A long expression that indicates the column's index, if the
Item parameter is not zero, a long expression that
indicates the handle of the cell if the Item parameter is 0.

NewValue as Variant

(By Reference) A Variant value that indicates the newly
cell's value. You can use the EditingText property to
retrieve the caption of the editor while the control is in edit
mode.

The Change event notifies your application that the cell's value is about to be changed. The
NewValue parameter of the Change event indicates the newly value to be assigned to the
cell's value. The EditingText property returns the caption being shown on the editor while the
control runs in edit mode. Changing the CellValue property invokes Change event too.
During the Change event it is possible to have recursive calls, if you are changing the
CellValue property (only when you assign a value to a cell, not when you are retrieving the
cell's value). If you are changing the other cell's value, during the Change event you have
to add a C++ code like follows in order to avoid recursive calls:

static sg_ChangeCounter = 0;
void OnChangeGrid1(long Item, long ColIndex, VARIANT FAR* NewValue)
{
 if (sg_ChangeCounter == 0)
 {
 sg_ChangeCounter++;
 m_Items.SetCellValue(COleVariant(Item), COleVariant((long)othercolumn),
*NewValue);
 sg_ChangeCounter--;
 }
}

or in VB you could have like this:

C#

VB

private void Change(object sender,int Item,int ColIndex,ref object NewValue)
{
}

Private Sub Change(ByVal sender As System.Object,ByVal Item As Integer,ByVal
ColIndex As Integer,ByRef NewValue As Object) Handles Change

Private sg_ChangeCounter As Long
Private Sub Grid1_Change(ByVal Item As EXGRIDLibCtl.HITEM, ByVal ColIndex As Long,
NewValue As Variant)
 If (sg_ChangeCounter = 0) Then
 sg_ChangeCounter = sg_ChangeCounter + 1
 Grid1.Items.CellValue(Item, othercolumn) = NewValue
 sg_ChangeCounter = sg_ChangeCounter - 1
 End If
End Sub

The edit events are fired in the following order:

1. Edit event. Prevents editing cells, before showing the cell's editor.

2. EditOpen event. The edit operation started, the cell's editor is shown. The Editing
property gives the window's handle of the built-in editor being started.

3. Change event. The Change event is fired only if the user types ENTER key, or the user
selects a new value from a predefined data list.

4. EditClose event. The cell's editor is hidden and closed.

Use the CellEditor or Editor property to assign an editor to a cell or to a column. Use the
Edit event to notify your application that the editing operation begins. The Change event
notifies that the editing focused cell ended. If the control is bounded to an ADO recordset
the Change event is automatically called when the user changes the focused cell, and it
updates the recordset too. The control fires the ValidateValue event before calling the
Change event, if the CauseValidateValue property is True. Please note that the Change
event is called also when loading, or adding new items , so you need to use an internal
counter (like explained bellow) to avoid calling the Change event during adding or loading
the items, if it is not case (increases the iChanging variable before loading items, and
decreases the iChanging member when adding items is done). Call the Refresh method,
when changing the value for a cell that has the CellSingleLine property on False.

Syntax for Change event, /NET version, on:

End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

private void Change(object sender, AxEXGRIDLib._IGridEvents_ChangeEvent e)
{
}

void OnChange(long Item,long ColIndex,VARIANT FAR* NewValue)
{
}

void __fastcall Change(TObject *Sender,Exgridlib_tlb::HITEM Item,long
ColIndex,Variant * NewValue)
{
}

procedure Change(ASender: TObject; Item : HITEM;ColIndex : Integer;var
NewValue : OleVariant);
begin
end;

procedure Change(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_ChangeEvent);
begin
end;

begin event Change(long Item,long ColIndex,any NewValue)
end event Change

Private Sub Change(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_ChangeEvent) Handles Change
End Sub

Private Sub Change(ByVal Item As EXGRIDLibCtl.HITEM,ByVal ColIndex As
Long,NewValue As Variant)
End Sub

Syntax for Change event, /COM version, on:

VBA

VFP

Xbas…

Private Sub Change(ByVal Item As Long,ByVal ColIndex As Long,NewValue As Variant)
End Sub

LPARAMETERS Item,ColIndex,NewValue

PROCEDURE OnChange(oGrid,Item,ColIndex,NewValue)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="Change(Item,ColIndex,NewValue)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Change(Item,ColIndex,NewValue)
End Function
</SCRIPT>

Procedure OnComChange HITEM llItem Integer llColIndex Variant llNewValue
 Forward Send OnComChange llItem llColIndex llNewValue
End_Procedure

METHOD OCX_Change(Item,ColIndex,NewValue) CLASS MainDialog
RETURN NIL

void onEvent_Change(int _Item,int _ColIndex,COMVariant /*variant*/ _NewValue)
{
}

function Change as v (Item as OLE::Exontrol.Grid.1::HITEM,ColIndex as N,NewValue
as A)
end function

function nativeObject_Change(Item,ColIndex,NewValue)
return

Syntax for Change event, /COM version (others), on:

The following VB sample displays the newly value of the focused cell:

Private Sub Grid1_Change(ByVal Item As EXGRIDLibCtl.HITEM, ByVal ColIndex As Long,
NewValue As Variant)
 ' Displays the old/new cell's value
 Debug.Print "The current cell's value is '" & Grid1.Items.CellValue(Item, ColIndex) & "'."
 Debug.Print "The newly cell's value is '" & NewValue & "'."
End Sub

You can change the newly cell's value by changing the NewValue parameter of the Change
event. If you are changing the CellValue property during the Change event a recursive calls
occurs, so you need to protect recursive calls using an internal counter that's increased
when Change event starts, and decreased when the Change event ends like in the following
VB sample:

Private iChanging As Long

Private Sub Grid1_Change(ByVal Item As EXGRIDLibCtl.HITEM, ByVal ColIndex As Long,
NewValue As Variant)
 If (iChanging = 0) Then
 iChanging = iChanging + 1
 ' here's safe to change the Items.CellValue property
 iChanging = iChanging - 1
 End If
End Sub

The following sample is the C++ equivalent:

long iChanging = 0;
void OnChangeGrid1(long Item, long ColIndex, VARIANT FAR* NewValue)
{
 if (iChanging == 0)
 {
 iChanging++;
 // here's safe to call Items.CellValue property, to avoid recursive calls.
 iChanging--;
 }
}

The following C++ sample displays the newly value of the focused cell:

#include "Items.h"
void OnChangeGrid1(long Item, long ColIndex, VARIANT FAR* NewValue)
{
 if (::IsWindow(m_grid.m_hWnd))
 {
 CItems items = m_grid.GetItems();
 COleVariant vtItem(Item), vtColumn(ColIndex);
 CString strFormat;
 strFormat.Format("'%s' = %s", V2S(&items.GetCellValue(vtItem, vtColumn)), V2S(
NewValue));
 OutputDebugString(strFormat);
 }
}

where the V2S function converts a VARIANT to a string value, and may look like follows:

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

The following VB.NET sample displays the newly value of the focused cell:

Private Sub AxGrid1_Change(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_ChangeEvent) Handles AxGrid1.Change
 With AxGrid1.Items
 Debug.Print("Old Value: " & .CellValue(e.item, e.colIndex) & " New Value " &

e.newValue.ToString())
 End With
End Sub

The following C# sample displays the newly value of the focused cell:

private void axGrid1_Change(object sender, AxEXGRIDLib._IGridEvents_ChangeEvent e)
{
 System.Diagnostics.Debug.WriteLine("Old Value " + axGrid1.Items.get_CellValue(e.item,
e.colIndex).ToString() + " New Value " + e.newValue.ToString());
}

The following VFP sample displays the newly value of the focused cell:

*** ActiveX Control Event ***
LPARAMETERS item, colindex, newvalue

with thisform.Grid1.Items
 .DefaultItem = item
 local oldvalue
 oldvalue = .CellValue(0,colindex)
 wait window nowait "Old Value " + str(oldvalue)
 wait window nowait "New Value " + str(newvalue)
endwith

C#

VB

private void Click(object sender)
{
}

Private Sub Click(ByVal sender As System.Object) Handles Click
End Sub

C#

C++

C++
Builder

Delphi

private void ClickEvent(object sender, EventArgs e)
{
}

void OnClick()
{
}

void __fastcall Click(TObject *Sender)
{
}

procedure Click(ASender: TObject;);
begin

event Click ()
Occurs when the user presses and then releases the left mouse button over the Grid
control.

Type Description

The Click event is fired when the user releases the left mouse button over the control. Use
a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. If you have a column of hyperlink cells (CellHyperLink property is True
) you should use HyperLinkClick event. The AnchorClick event notifies your application that
the user clicks an <a> anchor element.

Syntax for Click event, /NET version, on:

Syntax for Click event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

procedure ClickEvent(sender: System.Object; e: System.EventArgs);
begin
end;

begin event Click()
end event Click

Private Sub ClickEvent(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ClickEvent
End Sub

Private Sub Click()
End Sub

Private Sub Click()
End Sub

LPARAMETERS nop

PROCEDURE OnClick(oGrid)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="Click()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Click()
End Function
</SCRIPT>

Procedure OnComClick
 Forward Send OnComClick
End_Procedure

Syntax for Click event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

METHOD OCX_Click() CLASS MainDialog
RETURN NIL

void onEvent_Click()
{
}

function Click as v ()
end function

function nativeObject_Click()
return

C#

VB

private void ColumnClick(object sender,exontrol.EXGRIDLib.Column Column)
{
}

Private Sub ColumnClick(ByVal sender As System.Object,ByVal Column As
exontrol.EXGRIDLib.Column) Handles ColumnClick
End Sub

C#

C++

C++
Builder

Delphi

private void ColumnClick(object sender,
AxEXGRIDLib._IGridEvents_ColumnClickEvent e)
{
}

void OnColumnClick(LPDISPATCH Column)
{
}

void __fastcall ColumnClick(TObject *Sender,Exgridlib_tlb::IColumn *Column)
{
}

procedure ColumnClick(ASender: TObject; Column : IColumn);

event ColumnClick (Column as Column)
Fired after the user clicks on column's header.

Type Description
Column as Column A Column object whose header has been clicked.

The ColumnClick event is fired when the user clicks the column's header. By default, the
control sorts by the column when user clicks the column's header. Use the SortOnClick
property to specify the operation that control does when user clicks the column's caption.
Use the ColumnFromPoint property to access the column from point. Use the
ItemFromPoint property to access the item from point. Use the MouseDown or MouseUp
event to notify the control when the user clicks the control, including the columns.

Syntax for ColumnClick event, /NET version, on:

Syntax for ColumnClick event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin
end;

procedure ColumnClick(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_ColumnClickEvent);
begin
end;

begin event ColumnClick(oleobject Column)
end event ColumnClick

Private Sub ColumnClick(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_ColumnClickEvent) Handles ColumnClick
End Sub

Private Sub ColumnClick(ByVal Column As EXGRIDLibCtl.IColumn)
End Sub

Private Sub ColumnClick(ByVal Column As Object)
End Sub

LPARAMETERS Column

PROCEDURE OnColumnClick(oGrid,Column)
RETURN

Java…

VBSc…

<SCRIPT EVENT="ColumnClick(Column)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ColumnClick(Column)
End Function
</SCRIPT>

Syntax for ColumnClick event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComColumnClick Variant llColumn
 Forward Send OnComColumnClick llColumn
End_Procedure

METHOD OCX_ColumnClick(Column) CLASS MainDialog
RETURN NIL

void onEvent_ColumnClick(COM _Column)
{
}

function ColumnClick as v (Column as OLE::Exontrol.Grid.1::IColumn)
end function

function nativeObject_ColumnClick(Column)
return

The following VB sample displays the caption of the column being clicked:

Private Sub Grid1_ColumnClick(ByVal Column As EXGRIDLibCtl.IColumn)
 Debug.Print Column.Caption
End Sub

The following C++ sample displays the caption of the column being clicked:

#include "Column.h"
void OnColumnClickGrid1(LPDISPATCH Column)
{
 CColumn column(Column);
 column.m_bAutoRelease = FALSE;
 MessageBox(column.GetCaption());
}

The following VB.NET sample displays the caption of the column being clicked:

Private Sub AxGrid1_ColumnClick(ByVal sender As Object, ByVal e As

AxEXGRIDLib._IGridEvents_ColumnClickEvent) Handles AxGrid1.ColumnClick
 MessageBox.Show(e.column.Caption)
End Sub

The following C# sample displays the caption of the column being clicked:

private void axGrid1_ColumnClick(object sender,
AxEXGRIDLib._IGridEvents_ColumnClickEvent e)
{
 MessageBox.Show(e.column.Caption);
}

The following VFP sample displays the caption of the column being clicked:

*** ActiveX Control Event ***
LPARAMETERS column

with column
 wait window nowait .Caption
endwith

C#

VB

private void DblClick(object sender,short Shift,int X,int Y)
{
}

Private Sub DblClick(ByVal sender As System.Object,ByVal Shift As Short,ByVal X
As Integer,ByVal Y As Integer) Handles DblClick
End Sub

C#

C++

private void DblClick(object sender, AxEXGRIDLib._IGridEvents_DblClickEvent e)
{
}

void OnDblClick(short Shift,long X,long Y)
{
}

event DblClick (Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS)
Occurs when the user double-clicks the left mouse button over an object.

Type Description

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates

The DblClick event is fired when user double clicks the control. Use the ItemFromPoint
method to determine the cell over the cursor. Use the ExpandOnDblClk property to specify
whether an item is expanded or collapsed when user double clicks it. Use the
ColumnFromPoint property to get the column from point.

Syntax for DblClick event, /NET version, on:

Syntax for DblClick event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall DblClick(TObject *Sender,short Shift,int X,int Y)
{
}

procedure DblClick(ASender: TObject; Shift : Smallint;X : Integer;Y : Integer);
begin
end;

procedure DblClick(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_DblClickEvent);
begin
end;

begin event DblClick(integer Shift,long X,long Y)
end event DblClick

Private Sub DblClick(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_DblClickEvent) Handles DblClick
End Sub

Private Sub DblClick(Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub DblClick(ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long)
End Sub

LPARAMETERS Shift,X,Y

PROCEDURE OnDblClick(oGrid,Shift,X,Y)
RETURN

Java… <SCRIPT EVENT="DblClick(Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

Syntax for DblClick event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function DblClick(Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComDblClick Short llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS
llY
 Forward Send OnComDblClick llShift llX llY
End_Procedure

METHOD OCX_DblClick(Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_DblClick(int _Shift,int _X,int _Y)
{
}

function DblClick as v (Shift as N,X as OLE::Exontrol.Grid.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Grid.1::OLE_YPOS_PIXELS)
end function

function nativeObject_DblClick(Shift,X,Y)
return

The following VB sample displays a message when the user double clicks an item:

Private Sub Grid1_DblClick(Shift As Integer, X As Single, Y As Single)
 With Grid1
 ' Converts the container coordinates to client coordinates
 X = X / Screen.TwipsPerPixelX
 Y = Y / Screen.TwipsPerPixelY
 Dim h As HITEM
 Dim c As Long, hit As Long
 ' Gets the item from (X,Y)
 h = .ItemFromPoint(X, Y, c, hit)
 If Not (h = 0) Or Not (c = 0) Then
 MsgBox "The '" & .Items.CellValue(h, c) & "' item has been double clicked."

 End If
 End With
End Sub

The following VB sample use DblClick event to start editing control, if the AutoEdit property
is False.

Private Sub Grid1_DblClick(Shift As Integer, X As Single, Y As Single)
 ' Starts the editing operation if the user dbl click in the control
 With Grid1
 If (Not .AutoEdit) Then
 ' Did user dbl click on an item?
 Dim c As Long, hit as Long
 If Not (.ItemFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, c, hit) =
0) Then
 .Edit
 End If
 End If
 End With
End Sub

The following C++ sample displays the value of the cell being double clicked (including the
inner cells):

#include "Items.h"
void OnDblClickGrid1(short Shift, long X, long Y)
{
 long c = NULL, hit = NULL;
 long h = m_grid.GetItemFromPoint(X, Y, &c, &hit);
 if ((h != 0) || (c != 0))
 {
 COleVariant vtItem(h), vtColumn(c);
 CString strCaption = V2S(&m_grid.GetItems().GetCellValue(vtItem, vtColumn));
 MessageBox(strCaption);
 }
}

where the V2S function converts a VARIANT value to a string, and may look like follows:

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

The following VB.NET sample displays the value of the cell being double clicked (including
the inner cells):

Private Sub AxGrid1_DblClick(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_DblClickEvent) Handles AxGrid1.DblClick
 Dim h As Integer, c As Integer, hit As EXGRIDLib.HitTestInfoEnum
 With AxGrid1
 h = .get_ItemFromPoint(e.x, e.y, c, hit)
 If Not (h = 0) Or Not (c = 0) Then
 MessageBox.Show(.Items.CellCaption(h, c))
 End If
 End With
End Sub

The following C# sample displays the value of the cell being double clicked (including the
inner cells):

private void axGrid1_DblClick(object sender, AxEXGRIDLib._IGridEvents_DblClickEvent e)
{
 EXGRIDLib.HitTestInfoEnum hit;
 int c = 0, h = axGrid1.get_ItemFromPoint(e.x, e.y, out c, out hit);
 if ((h != 0) || (c != 0))
 MessageBox.Show(axGrid1.Items.get_CellCaption(h, c).ToString());
}

The following VFP sample displays the value of the cell being double clicked:

*** ActiveX Control Event ***
LPARAMETERS shift, x, y

local c, hit
c = 0
hit = 0

with thisform.Grid1
 .Items.DefaultItem = .ItemFromPoint(x, y, @c, @hit)
 if (.Items.DefaultItem != 0)
 wait window nowait .Items.CellCaption(0, c)
 endif
endwith

C#

VB

private void EditEvent(object sender,int Item,int ColIndex,ref bool Cancel)
{
}

Private Sub EditEvent(ByVal sender As System.Object,ByVal Item As Integer,ByVal
ColIndex As Integer,ByRef Cancel As Boolean) Handles EditEvent

event Edit (Item as HITEM, ColIndex as Long, ByRef Cancel as Boolean)
Occurs just before editing the focused cell.

Type Description

Item as HITEM

A long expression that determines the item's handle. If the
Item parameter is 0, and the ColIndex property is different
than zero, the ColIndex indicates the handle of the cell
where the state is changed.

ColIndex as Long
A long expression that indicates the column's index, if the
Item parameter is not zero, a long expression that
indicates the handle of the cell if the Item parameter is 0.

Cancel as Boolean (By Reference) A boolean expression that indicates
whether the editing operation is canceled.

The Edit event is fired when the edit operation is about to begin. Use the Edit event to
disable editing specific cells. The Edit event is not fired if the user changes
programmatically the CellValue property. Use the EditOpen event to notify your application
that editing the cell started. Use the EditClose event to notify your application that editing
the cell ended. Use the Change event to notify your application that user changes the cell's
value. Use the Edit method to edit a cell by code. Use the CellEditor or Editor property to
assign an editor to a cell or to a column.

The edit events are fired in the following order:

1. Edit event. Prevents editing cells, before showing the cell's editor.

2. EditOpen event. The edit operation started, the cell's editor is shown. The Editing
property gives the window's handle of the built-in editor being started.

3. Change event. The Change event is fired only if the user types ENTER key, or the user
selects a new value from a predefined data list.

4. EditClose event. The cell's editor is hidden and closed.

Syntax for Edit event, /NET version, on:

End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

private void EditEvent(object sender, AxEXGRIDLib._IGridEvents_EditEvent e)
{
}

void OnEdit(long Item,long ColIndex,BOOL FAR* Cancel)
{
}

void __fastcall Edit(TObject *Sender,Exgridlib_tlb::HITEM Item,long
ColIndex,VARIANT_BOOL * Cancel)
{
}

procedure Edit(ASender: TObject; Item : HITEM;ColIndex : Integer;var Cancel :
WordBool);
begin
end;

procedure EditEvent(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_EditEvent);
begin
end;

begin event Edit(long Item,long ColIndex,boolean Cancel)
end event Edit

Private Sub EditEvent(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_EditEvent) Handles EditEvent
End Sub

Private Sub Edit(ByVal Item As EXGRIDLibCtl.HITEM,ByVal ColIndex As Long,Cancel
As Boolean)
End Sub

Syntax for Edit event, /COM version, on:

VBA

VFP

Xbas…

Private Sub Edit(ByVal Item As Long,ByVal ColIndex As Long,Cancel As Boolean)
End Sub

LPARAMETERS Item,ColIndex,Cancel

PROCEDURE OnEdit(oGrid,Item,ColIndex,Cancel)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="Edit(Item,ColIndex,Cancel)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Edit(Item,ColIndex,Cancel)
End Function
</SCRIPT>

Procedure OnComEdit HITEM llItem Integer llColIndex Boolean llCancel
 Forward Send OnComEdit llItem llColIndex llCancel
End_Procedure

METHOD OCX_Edit(Item,ColIndex,Cancel) CLASS MainDialog
RETURN NIL

void onEvent_Edit(int _Item,int _ColIndex,COMVariant /*bool*/ _Cancel)
{
}

function Edit as v (Item as OLE::Exontrol.Grid.1::HITEM,ColIndex as N,Cancel as L)
end function

function nativeObject_Edit(Item,ColIndex,Cancel)
return

Syntax for Edit event, /COM version (others), on:

The following VB sample disables editing cells in the first column:

Private Sub Grid1_Edit(ByVal Item As EXGRIDLibCtl.HITEM, ByVal ColIndex As Long, Cancel
As Boolean)
 ' Cancels editing first column
 Cancel = IIf(ColIndex = 0, True, False)
End Sub

The following VB sample changes the cell's value to a default value, if the user enters an
empty value:

Private Sub Grid1_Edit(ByVal Item As EXGRIDLibCtl.HITEM, ByVal ColIndex As Long, Cancel
As Boolean)
 ' Sets the 'default' value for empty cell
 With Grid1.Items
 If (Len(.CellValue(Item, ColIndex)) = 0) Then
 .CellValue(Item, ColIndex) = "default"
 End If
 End With
End Sub

The following C++ sample disables editing cells in the first column:

void OnEditGrid1(long Item, long ColIndex, BOOL FAR* Cancel)
{
 if (ColIndex == 0)
 *Cancel = TRUE;
}

The following VB.NET sample disables editing cells in the first column:

Private Sub AxGrid1_EditEvent(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_EditEvent) Handles AxGrid1.EditEvent
 If (e.colIndex = 0) Then
 e.cancel = True
 End If
End Sub

The following C# sample disables editing cells in the first column:

private void axGrid1_EditEvent(object sender, AxEXGRIDLib._IGridEvents_EditEvent e)
{
 if (e.colIndex == 0)
 e.cancel = true;
}

The following VFP sample disables editing cells in the first column:

*** ActiveX Control Event ***
LPARAMETERS item, colindex, cancel

if (colindex = 0)
 cancel = .t.
endif

C#

VB

private void EditCloseEvent(object sender)
{
}

Private Sub EditCloseEvent(ByVal sender As System.Object) Handles
EditCloseEvent
End Sub

C# private void EditCloseEvent(object sender, EventArgs e)
{
}

event EditClose ()
Occurs when the edit operation ends.

Type Description

Use the EditClose event to notify your application that the editor is closed. The EditClose
event is fired when the focused cell ends editing. Use the FocusItem property to determine
the handle of the item where the edit operation ends. Use the FocusColumnIndex property
to determine the index of the column where the edit operation ends. The Editing specifies
the window's handle of the built-in editor while the control is running in edit mode. The
EditingText property returns the caption being shown on the editor while the control runs in
edit mode. Use the EditClose method to closes the current editor, by code. For instance,
the EditClose event is not fired when user hides the drop down portion of the editor. Use
the Edit event to prevent editing a cell.

The edit events are fired in the following order:

1. Edit event. Prevents editing cells, before showing the cell's editor.

2. EditOpen event. The edit operation started, the cell's editor is shown. The Editing
property gives the window's handle of the built-in editor being started.

3. Change event. The Change event is fired only if the user types ENTER key, or the user
selects a new value from a predefined data list.

4. EditClose event. The cell's editor is hidden and closed.

Syntax for EditClose event, /NET version, on:

Syntax for EditClose event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnEditClose()
{
}

void __fastcall EditClose(TObject *Sender)
{
}

procedure EditClose(ASender: TObject;);
begin
end;

procedure EditCloseEvent(sender: System.Object; e: System.EventArgs);
begin
end;

begin event EditClose()
end event EditClose

Private Sub EditCloseEvent(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles EditCloseEvent
End Sub

Private Sub EditClose()
End Sub

Private Sub EditClose()
End Sub

LPARAMETERS nop

PROCEDURE OnEditClose(oGrid)
RETURN

Java… <SCRIPT EVENT="EditClose()" LANGUAGE="JScript">
Syntax for EditClose event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function EditClose()
End Function
</SCRIPT>

Procedure OnComEditClose
 Forward Send OnComEditClose
End_Procedure

METHOD OCX_EditClose() CLASS MainDialog
RETURN NIL

void onEvent_EditClose()
{
}

function EditClose as v ()
end function

function nativeObject_EditClose()
return

The following VB sample displays the window's handle of the built-in editor being closed:

Private Sub Grid1_EditClose()
 Debug.Print "EditClose " & Grid1.Editing
End Sub

The following VB sample displays the caption of the cell where the edit operation ends:

Private Sub Grid1_EditClose()
 With Grid1.Items
 Debug.Print "EditClose on '"; .CellCaption(.FocusItem, Grid1.FocusColumnIndex) & "'."
 End With
End Sub

The following C++ sample displays the handle of the built-in editor being closed:

#include "Items.h"
void OnEditCloseGrid1()
{
 CItems items = m_grid.GetItems();
 COleVariant vtItem(items.GetFocusItem()), vtColumn(m_grid.GetFocusColumnIndex());
 CString strFormat;
 strFormat.Format("'%s' %i", V2S(&items.GetCellValue(vtItem, vtColumn)),
m_grid.GetEditing());
 OutputDebugString(strFormat);
}

The following VB.NET sample displays the handle of the built-in editor being closed:

Private Sub AxGrid1_EditCloseEvent(ByVal sender As Object, ByVal e As System.EventArgs)
Handles AxGrid1.EditCloseEvent
 With AxGrid1
 Debug.Print(.Items.CellValue(.Items.FocusItem, .FocusColumnIndex) & " " &
.Editing.ToString())
 End With
End Sub

The following C# sample displays the handle of the built-in editor being closed:

private void axGrid1_EditCloseEvent(object sender, EventArgs e)
{
 object cellValue = axGrid1.Items.get_CellValue(axGrid1.Items.FocusItem,
axGrid1.FocusColumnIndex);
 string strOutput = "'" + (cellValue != null ? cellValue.ToString() : "") + "' " +
axGrid1.Editing.ToString();
 System.Diagnostics.Debug.WriteLine(strOutput);
}

The following VFP sample displays the handle of the built-in editor being closed:

*** ActiveX Control Event ***

with thisform.Grid1.Items

 .DefaultItem = .FocusItem()
 wait window nowait str(.CellValue(0, thisform.Grid1.FocusColumnIndex()))
 wait window nowait str(thisform.Grid1.Editing())
endwith

C#

VB

private void EditOpen(object sender)
{
}

Private Sub EditOpen(ByVal sender As System.Object) Handles EditOpen
End Sub

C#

C++

private void EditOpen(object sender, EventArgs e)
{
}

void OnEditOpen()
{
}

event EditOpen ()
Occurs when edit operation starts.

Type Description

Use the EditOpen event to notify your application that the cell's editor is shown and ready to
edit the cell. The Editing specifies the window's handle of the built-in editor while the control
is running in edit mode. The EditingText property returns the caption being shown on the
editor while the control runs in edit mode.

The edit events are fired in the following order:

1. Edit event. Prevents editing cells, before showing the cell's editor.

2. EditOpen event. The edit operation started, the cell's editor is shown. The Editing
property gives the window's handle of the built-in editor being started.

3. Change event. The Change event is fired only if the user types ENTER key, or the user
selects a new value from a predefined data list.

4. EditClose event. The cell's editor is hidden and closed.

Syntax for EditOpen event, /NET version, on:

Syntax for EditOpen event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall EditOpen(TObject *Sender)
{
}

procedure EditOpen(ASender: TObject;);
begin
end;

procedure EditOpen(sender: System.Object; e: System.EventArgs);
begin
end;

begin event EditOpen()
end event EditOpen

Private Sub EditOpen(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles EditOpen
End Sub

Private Sub EditOpen()
End Sub

Private Sub EditOpen()
End Sub

LPARAMETERS nop

PROCEDURE OnEditOpen(oGrid)
RETURN

Java… <SCRIPT EVENT="EditOpen()" LANGUAGE="JScript">
</SCRIPT>

Syntax for EditOpen event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function EditOpen()
End Function
</SCRIPT>

Procedure OnComEditOpen
 Forward Send OnComEditOpen
End_Procedure

METHOD OCX_EditOpen() CLASS MainDialog
RETURN NIL

void onEvent_EditOpen()
{
}

function EditOpen as v ()
end function

function nativeObject_EditOpen()
return

The following VB sample unselects the text when the editor is opened (in case the editor is
an edit control) (by default, the control selects the text when editor is opened). The
following VB sample unselects the text when the editor is opened, by sending an
EM_SETSEL message to the cell's edit control:

Private Declare Function PostMessage Lib "user32" Alias "PostMessageA" (ByVal hwnd As
Long, ByVal wMsg As Long, ByVal wParam As Long, ByVal lParam As Long) As Long
Private Const EM_SETSEL = &HB1

Private Sub Grid1_EditOpen()
 PostMessage Grid1.Editing, EM_SETSEL, 0, 0
End Sub

The following C++ sample unselects the text, when the editor is opened (in case the editor
is an edit control):

void OnEditOpenGrid1()
{
 ::PostMessage((HWND)m_grid.GetEditing(), EM_SETSEL, 0, 0);
}

The following VB sample determines the handle of the edit control, without using the Editing
property.

Private Function getEditWnd(ByVal g As EXGRIDLibCtl.Grid) As Long
 Dim h As Long
 h = GetWindow(g.hwnd, GW_CHILD)
 While Not (h = 0)
 If (getWndClass(h) = "HolderBuiltIn") Then
 getEditWnd = GetWindow(h, GW_CHILD)
 Exit Function
 End If
 h = GetWindow(h, GW_HWNDNEXT)
 Wend
 getEditWnd = 0
End Function

Private Function getWndClass(ByVal h As Long) As String
 Dim s As String
 s = Space(1024)
 GetClassName h, s, 1024
 getWndClass = To0(s)
End Function

Private Function To0(ByVal s As String) As String
 To0 = Left$(s, InStr(s, Chr$(0)) - 1)
End Function

Private Sub Grid1_EditOpen()
 PostMessage getEditWnd(Grid1), EM_SETSEL, 0, 0
End Sub

The VB sample requires the following declarations:

Private Declare Function PostMessage Lib "user32" Alias "PostMessageA" (ByVal hwnd As
Long, ByVal wMsg As Long, ByVal wParam As Long, ByVal lParam As Long) As Long
Private Declare Function GetWindow Lib "user32" (ByVal hwnd As Long, ByVal wCmd As
Long) As Long
Private Declare Function GetWindowText Lib "user32" Alias "GetWindowTextA" (ByVal
hwnd As Long, ByVal lpString As String, ByVal cch As Long) As Long
Private Declare Function GetClassName Lib "user32" Alias "GetClassNameA" (ByVal hwnd
As Long, ByVal lpClassName As String, ByVal nMaxCount As Long) As Long
Private Const GW_CHILD = 5
Private Const GW_HWNDNEXT = 2
Private Const EM_SETSEL = &HB1

C#

VB

private void Error(object sender,int Err,string Description)
{
}

Private Sub Error(ByVal sender As System.Object,ByVal Err As Integer,ByVal
Description As String) Handles Error
End Sub

C#

C++

C++
Builder

Delphi

private void Error(object sender, AxEXGRIDLib._IGridEvents_ErrorEvent e)
{
}

void OnError(long Error,LPCTSTR Description)
{
}

void __fastcall Error(TObject *Sender,long Error,BSTR Description)
{
}

procedure Error(ASender: TObject; Error : Integer;Description : WideString);
begin
end;

event Error (Error as Long, Description as String)
Fired when an internal error occurs.

Type Description
Error as Long A long expression that indicates the error number.
Description as String A string expression that describes the error.

The Error event is fired each time when an internal error occurs. The Error event is usually
fired when the control is bounded to an ADO Recordset. For instance, if the user changes a
field, the control tries to update the current record. If it fails, the Error event is fired. Use
the DataSource property to bind the control to a database.

Syntax for Error event, /NET version, on:

Syntax for Error event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure Error(sender: System.Object; e: AxEXGRIDLib._IGridEvents_ErrorEvent);
begin
end;

begin event Error(long Error,string Description)
end event Error

Private Sub Error(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_ErrorEvent) Handles Error
End Sub

Private Sub Error(ByVal Error As Long,ByVal Description As String)
End Sub

Private Sub Error(ByVal Error As Long,ByVal Description As String)
End Sub

LPARAMETERS Error,Description

PROCEDURE OnError(oGrid,Error,Description)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="Error(Error,Description)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Error(Error,Description)
End Function
</SCRIPT>

Procedure OnComError Integer llError String llDescription
 Forward Send OnComError llError llDescription
End_Procedure

Syntax for Error event, /COM version (others), on:

Visual
Objects

X++

XBasic

dBASE

METHOD OCX_Error(Error,Description) CLASS MainDialog
RETURN NIL

void onEvent_Error(int _Error,str _Description)
{
}

function Error as v (Error as N,Description as C)
end function

function nativeObject_Error(Error,Description)
return

event Event (EventID as Long)
Notifies the application once the control fires an event.

Type Description

EventID as Long

A Long expression that specifies the identifier of the event.
Each internal event of the control has an unique identifier.
Use the EventParam(-2) to display entire information
about fired event (such as name, identifier, and properties
). The EventParam(-1) retrieves the number of parameters
of fired event

The Event notification occurs ANY time the control fires an event. This is useful for X++,
which does not support event with parameters passed by reference. Also, this could be
useful for C++ Builder or Delphi, which does not handle properly the events with
parameters of VARIANT type.

In X++ the "Error executing code: FormActiveXControl (data source), method ... called with
invalid parameters" occurs when handling events that have parameters passed by
reference. Passed by reference, means that in the event handler, you can change the value
for that parameter, and so the control will takes the new value, and use it. The X++ is NOT
able to handle properly events with parameters by reference, so we have the solution.

The solution is using and handling the Event notification and EventParam method., instead
handling the event that gives the "invalid parameters" error executing code.

If you are not familiar with what a type library means just handle the Event of the control as
follows:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 print exgrid1.EventParam(-2).toString();
}

This code allows you to display the information for each event of the control being fired as
in the list bellow:

"MouseMove/-606(1 , 0 , 145 , 36)" VT_BSTR
"BeforeDrawPart/54(2 , -1962866148 , =0 , =0 , =0 , =0 , =false)" VT_BSTR
"AfterDrawPart/55(2 , -1962866148 , 0 , 0 , 0 , 0)" VT_BSTR
"MouseMove/-606(1 , 0 , 145 , 35)" VT_BSTR

C#

VB

private void Event(object sender,int EventID)
{
}

Private Sub Event(ByVal sender As System.Object,ByVal EventID As Integer)
Handles Event
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

private void Event(object sender, AxEXGRIDLib._IGridEvents_EventEvent e)
{
}

void OnEvent(long EventID)
{
}

void __fastcall Event(TObject *Sender,long EventID)
{
}

procedure Event(ASender: TObject; EventID : Integer);
begin
end;

procedure Event(sender: System.Object; e: AxEXGRIDLib._IGridEvents_EventEvent);
begin
end;

Each line indicates an event, and the following information is provided: the name of the
event, its identifier, and the list of parameters being passed to the event. The parameters
that starts with = character, indicates a parameter by reference, in other words one that
can changed during the event handler.

In conclusion, anytime the X++ fires the "invalid parameters." while handling an event, you
can use and handle the Event notification and EventParam methods of the control

Syntax for Event event, /NET version, on:

Syntax for Event event, /COM version, on:

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin event Event(long EventID)
end event Event

Private Sub Event(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_EventEvent) Handles Event
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

LPARAMETERS EventID

PROCEDURE OnEvent(oGrid,EventID)
RETURN

Java…

VBSc…

Visual
Data…

Visual
Objects

<SCRIPT EVENT="Event(EventID)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Event(EventID)
End Function
</SCRIPT>

Procedure OnComEvent Integer llEventID
 Forward Send OnComEvent llEventID
End_Procedure

METHOD OCX_Event(EventID) CLASS MainDialog
RETURN NIL

Syntax for Event event, /COM version (others), on:

X++

XBasic

dBASE

void onEvent_Event(int _EventID)
{
}

function Event as v (EventID as N)
end function

function nativeObject_Event(EventID)
return

C#

VB

private void FilterChange(object sender)
{
}

Private Sub FilterChange(ByVal sender As System.Object) Handles FilterChange
End Sub

C#

C++

C++
Builder

Delphi

private void FilterChange(object sender, EventArgs e)
{
}

void OnFilterChange()
{
}

void __fastcall FilterChange(TObject *Sender)
{
}

procedure FilterChange(ASender: TObject;);
begin
end;

event FilterChange ()
Occurs when filter was changed.

Type Description

Use the FilterChange event to notify your application that the control's filter is changed. The
FilterChanging event occurs just before applying the filter. Use the Filter and FilterType
properties to retrieve the column's filter string, if case, and the column's filter type. The
ApplyFilter and ClearFilter methods fire the FilterChange event. Use the DisplayFilterButton
property to add a filter bar button to the column's caption. Use the FilterBarHeight property
to specify the height of the control's filter bar. Use the FilterBarFont property to specify the
font for the control's filter bar.

Syntax for FilterChange event, /NET version, on:

Syntax for FilterChange event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure FilterChange(sender: System.Object; e: System.EventArgs);
begin
end;

begin event FilterChange()
end event FilterChange

Private Sub FilterChange(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles FilterChange
End Sub

Private Sub FilterChange()
End Sub

Private Sub FilterChange()
End Sub

LPARAMETERS nop

PROCEDURE OnFilterChange(oGrid)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="FilterChange()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function FilterChange()
End Function
</SCRIPT>

Procedure OnComFilterChange
 Forward Send OnComFilterChange

Syntax for FilterChange event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_FilterChange() CLASS MainDialog
RETURN NIL

void onEvent_FilterChange()
{
}

function FilterChange as v ()
end function

function nativeObject_FilterChange()
return

C#

VB

private void FilterChanging(object sender)
{
}

Private Sub FilterChanging(ByVal sender As System.Object) Handles
FilterChanging
End Sub

C#

C++

C++
Builder

Delphi

private void FilterChanging(object sender, EventArgs e)
{
}

void OnFilterChanging()
{
}

void __fastcall FilterChanging(TObject *Sender)
{
}

procedure FilterChanging(ASender: TObject;);
begin

event FilterChanging ()
Notifies your application that the filter is about to change.

Type Description

The FilterChanging event occurs just before applying the filter. The FilterChange event
occurs once the filter is applied, so the list gets filtered. Use the Filter and FilterType
properties to retrieve the column's filter string, if case, and the column's filter type. The
ApplyFilter and ClearFilter methods fire the FilterChange event. Use the DisplayFilterButton
property to add a filter bar button to the column's caption. Use the FilterBarHeight property
to specify the height of the control's filter bar. Use the FilterBarFont property to specify the
font for the control's filter bar. For instance, you can use the FilterChanging event to start a
timer, and count the time to get the filter applied, when the FilterChange event is fired.

Syntax for FilterChanging event, /NET version, on:

Syntax for FilterChanging event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

procedure FilterChanging(sender: System.Object; e: System.EventArgs);
begin
end;

begin event FilterChanging()
end event FilterChanging

Private Sub FilterChanging(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles FilterChanging
End Sub

Private Sub FilterChanging()
End Sub

Private Sub FilterChanging()
End Sub

LPARAMETERS nop

PROCEDURE OnFilterChanging(oGrid)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="FilterChanging()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function FilterChanging()
End Function
</SCRIPT>

Procedure OnComFilterChanging
 Forward Send OnComFilterChanging
End_Procedure

Syntax for FilterChanging event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

METHOD OCX_FilterChanging() CLASS MainDialog
RETURN NIL

void onEvent_FilterChanging()
{
}

function FilterChanging as v ()
end function

function nativeObject_FilterChanging()
return

C#

VB

private void FocusChanged(object sender)
{
}

Private Sub FocusChanged(ByVal sender As System.Object) Handles
FocusChanged
End Sub

C#

C++

C++
Builder

private void FocusChanged(object sender, EventArgs e)
{
}

void OnFocusChanged()
{
}

void __fastcall FocusChanged(TObject *Sender)
{

event FocusChanged ()
Occurs when a new cell is focused.

Type Description

Use the FocusChanged event to notify whether the cell gets the focus. Use the
SelectionChanged event to notify your application user changes the selection. Use the
FocusColumnIndex property to get to index of the column that has the focus. The
FocusItem property indicates the focused item. The SelectColumnInner property indicates
the index of an inner cell that has the focus. Use the FullRowSelect property to specify
whether the control selects the entire item or a single/multiple cells. Use the SelectItem
property to programmatically select an item(it changes the focused items too). Use the
InnerCell property to access an inner cell.

The control fires the FocusChanged event when the user changes:

the focused item
the focused column or an inner cell gets the focus.

Syntax for FocusChanged event, /NET version, on:

Syntax for FocusChanged event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure FocusChanged(ASender: TObject;);
begin
end;

procedure FocusChanged(sender: System.Object; e: System.EventArgs);
begin
end;

begin event FocusChanged()
end event FocusChanged

Private Sub FocusChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles FocusChanged
End Sub

Private Sub FocusChanged()
End Sub

Private Sub FocusChanged()
End Sub

LPARAMETERS nop

PROCEDURE OnFocusChanged(oGrid)
RETURN

Java…

VBSc…

<SCRIPT EVENT="FocusChanged()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function FocusChanged()
End Function
</SCRIPT>

Syntax for FocusChanged event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComFocusChanged
 Forward Send OnComFocusChanged
End_Procedure

METHOD OCX_FocusChanged() CLASS MainDialog
RETURN NIL

void onEvent_FocusChanged()
{
}

function FocusChanged as v ()
end function

function nativeObject_FocusChanged()
return

The following VB sample determines the focused cell:

Private Sub Grid1_FocusChanged()
 With Grid1
 Dim hFocusCell As EXGRIDLibCtl.HCELL
 hFocusCell = .Items.ItemCell(.Items.FocusItem, .FocusColumnIndex)
 Debug.Print "Focus = " & .Items.CellCaption(, hFocusCell) & " (" & hFocusCell & ")"
 End With
End Sub

The following VB sample determines the focused cell, if the control contains inner cells:

Private Sub Grid1_FocusChanged()
 With Grid1
 Dim hFocusCell As EXGRIDLibCtl.HCELL
 hFocusCell = .Items.ItemCell(.Items.FocusItem, .FocusColumnIndex)
 If (.SelectColumnInner > 0) Then
 ' Do we selected an inner cell?
 hFocusCell = .Items.InnerCell(, hFocusCell, .SelectColumnInner)
 End If
 Debug.Print "Focus = " & .Items.CellCaption(, hFocusCell) & " (" & .FocusColumnIndex

& "," & .SelectColumnInner & ")"
 End With
End Sub

The following C++ sample displays the focused cell:

#include "Items.h"
void OnFocusChangedGrid1()
{
 if (IsWindow(m_grid.m_hWnd))
 {
 CItems items = m_grid.GetItems();
 COleVariant vtItem(items.GetFocusItem()), vtColumn(
m_grid.GetFocusColumnIndex());
 CString strFormat;
 strFormat.Format("Focus on '%s'", V2S(&items.GetCellValue(vtItem, vtColumn)));
 OutputDebugString(strFormat);
 }
}

The following C++ sample displays the focused cell, if the control contains inner cells:

#include "Items.h"
void OnFocusChangedGrid1()
{
 if (IsWindow(m_grid.m_hWnd))
 {
 CItems items = m_grid.GetItems();
 COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
 COleVariant vtFocusCell(items.GetItemCell(items.GetFocusItem(),
COleVariant(m_grid.GetFocusColumnIndex())));
 if (m_grid.GetSelectColumnInner() > 0)
 vtFocusCell = items.GetInnerCell(vtMissing, vtFocusCell,
COleVariant(m_grid.GetSelectColumnInner()));
 CString strFormat;
 strFormat.Format("Focus on '%s'", V2S(&items.GetCellValue(vtMissing, vtFocusCell)
));
 OutputDebugString(strFormat);

 }
}

The following VB.NET sample displays the focused cell:

Private Sub AxGrid1_FocusChanged(ByVal sender As Object, ByVal e As System.EventArgs)
Handles AxGrid1.FocusChanged
 With AxGrid1.Items
 Debug.Print("Focus on '" & .CellValue(.FocusItem,
AxGrid1.FocusColumnIndex()).ToString() & "'")
 End With
End Sub

The following VB.NET sample displays the focused cell, if the control contains inner cells:

Private Sub AxGrid1_FocusChanged(ByVal sender As Object, ByVal e As System.EventArgs)
Handles AxGrid1.FocusChanged
 With AxGrid1.Items
 Dim focusCell As Object = .ItemCell(.FocusItem, AxGrid1.FocusColumnIndex)
 If (AxGrid1.SelectColumnInner > 0) Then
 focusCell = .InnerCell(Nothing, focusCell, AxGrid1.SelectColumnInner)
 End If
 Debug.Print("Focus on '" & .CellValue(Nothing, focusCell).ToString() & "'")
 End With
End Sub

The following C# sample displays the focused cell:

private void axGrid1_FocusChanged(object sender, EventArgs e)
{
 object focusValue = axGrid1.Items.get_CellValue(axGrid1.Items.FocusItem,
axGrid1.FocusColumnIndex);
 System.Diagnostics.Debug.WriteLine("Focus on '" + (focusValue != null ?
focusValue.ToString() : "") + "'");
}

The following C# sample displays the focused cell, if the control contains inner cells:

private void axGrid1_FocusChanged(object sender, EventArgs e)

{
 object focusCell = axGrid1.Items.get_ItemCell(axGrid1.Items.FocusItem,
axGrid1.FocusColumnIndex);
 if (axGrid1.SelectColumnInner > 0)
 focusCell = axGrid1.Items.get_InnerCell(null, focusCell, axGrid1.SelectColumnInner);
 object focusValue = axGrid1.Items.get_CellValue(null, focusCell);
 System.Diagnostics.Debug.WriteLine("Focus on '" + (focusValue != null ?
focusValue.ToString() : "") + "'");
}

The following VFP sample displays the focused cell:

*** ActiveX Control Event ***

with thisform.Grid1.Items
 .DefaultItem = .FocusItem
 wait window nowait .CellCaption(0, thisform.Grid1.FocusColumnIndex())
endwith

C#

VB

private void FormatColumn(object sender,int Item,int ColIndex,ref object Value)
{
}

Private Sub FormatColumn(ByVal sender As System.Object,ByVal Item As
Integer,ByVal ColIndex As Integer,ByRef Value As Object) Handles FormatColumn
End Sub

event FormatColumn (Item as HITEM, ColIndex as Long, ByRef Value as
Variant)
Fired when a cell requires to format its value.

Type Description

Item as HITEM A long value that indicates the handle of the item being
formatted

ColIndex as Long A long expression that indicates the column's index being
formatted

Value as Variant (By Reference) A Variant value that should be converted.

Use the FormatColumn event to display a string different than the CellValue property. The
FormatColumn event is fired only if the FireFormatColumn property of the Column is True.
The FormatColumn event lets the user to provide the cell's caption before it is displayed on
the control's list. For instance, the FormatColumn event is useful when the column cells
contains prices(numbers), and you want to display that column formatted as currency, like
$50 instead 50. Also, you can use the FormatColumn event to display item's index in the
column, or to display the result of some operations based on the cells in the item (totals,
currency conversion and so on). The FormatCell property indicates the individually
predefined format to be applied to particular cells. The FormatColumn property applies the
predefined format for all cells in the columns.

The CellValue property of the cell is being shown as:

formatted using the FormatCell property, if it is valid
formatted using the FormatColumn property, if it is valid

In other words, all cells applies the format of the FormatColumn property, excepts the cells
with the FormatCell property being set. If the cell belongs to a column with the
FireFormatColumn property on True, the Value parameter of the FormatColumn event
shows the newly caption for the cell to be shown.

Syntax for FormatColumn event, /NET version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

private void FormatColumn(object sender,
AxEXGRIDLib._IGridEvents_FormatColumnEvent e)
{
}

void OnFormatColumn(long Item,long ColIndex,VARIANT FAR* Value)
{
}

void __fastcall FormatColumn(TObject *Sender,Exgridlib_tlb::HITEM Item,long
ColIndex,Variant * Value)
{
}

procedure FormatColumn(ASender: TObject; Item : HITEM;ColIndex : Integer;var
Value : OleVariant);
begin
end;

procedure FormatColumn(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_FormatColumnEvent);
begin
end;

begin event FormatColumn(long Item,long ColIndex,any Value)
end event FormatColumn

Private Sub FormatColumn(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_FormatColumnEvent) Handles FormatColumn
End Sub

Private Sub FormatColumn(ByVal Item As EXGRIDLibCtl.HITEM,ByVal ColIndex As
Long,Value As Variant)
End Sub

Private Sub FormatColumn(ByVal Item As Long,ByVal ColIndex As Long,Value As

Syntax for FormatColumn event, /COM version, on:

VFP

Xbas…

Variant)
End Sub

LPARAMETERS Item,ColIndex,Value

PROCEDURE OnFormatColumn(oGrid,Item,ColIndex,Value)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="FormatColumn(Item,ColIndex,Value)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function FormatColumn(Item,ColIndex,Value)
End Function
</SCRIPT>

Procedure OnComFormatColumn HITEM llItem Integer llColIndex Variant llValue
 Forward Send OnComFormatColumn llItem llColIndex llValue
End_Procedure

METHOD OCX_FormatColumn(Item,ColIndex,Value) CLASS MainDialog
RETURN NIL

void onEvent_FormatColumn(int _Item,int _ColIndex,COMVariant /*variant*/
_Value)
{
}

function FormatColumn as v (Item as OLE::Exontrol.Grid.1::HITEM,ColIndex as
N,Value as A)
end function

function nativeObject_FormatColumn(Item,ColIndex,Value)
return

Syntax for FormatColumn event, /COM version (others), on:

The following VB sample formats the second column to display the values using the
currency format:

Private Sub Form_Load()
With Grid1
 .BeginUpdate
 .Columns.Add "A"
 .Columns.Add("B").FireFormatColumn = True ' Index of it is 1
 With .Items
 .AddItem Array("One", 1)
 .AddItem Array("Two", 2)
 End With
 .EndUpdate
End With
End Sub

Private Sub Grid1_FormatColumn(ByVal Item As EXGRIDLibCtl.HITEM, ByVal ColIndex As
Long, Value As Variant)
 Value = FormatCurrency(Value, 2, vbUseDefault)
End Sub

The following VB samples use the FormatCurrency function, to display a number as a
currency. The FormatCurrency VB function returns an expression formatted as a currency
value using the currency symbol defined in the system control panel.

Private Sub Grid1_FormatColumn(ByVal Item As EXGRIDLibCtl.HITEM, ByVal ColIndex As
Long, Value As Variant)
 On Error Resume Next
 With Grid1
 Value = FormatCurrency(Value)
 End With
End Sub

The following VB sample formats a column that contains date values. The FormatDateTime
function is a VB function that returns an expression formatted as a date or time:

Private Sub Grid1_FormatColumn(ByVal Item As EXGRIDLibCtl.HITEM, ByVal ColIndex As
Long, Value As Variant)
 On Error Resume Next

 With Grid1
 Value = FormatDateTime(Value, vbLongDate)
 End With
End Sub

The following VB sample computes fields 1 + 2:

Private Sub Grid1_FormatColumn(ByVal Item As EXGRIDLibCtl.HITEM, ByVal ColIndex As
Long, Value As Variant)
 ' Adds the first two columns, or concaternates the strings
 On Error Resume Next
 With Grid1.Items
 Value = .CellValue(Item) + .CellValue(Item, 1)
 End With
End Sub

The following C++ sample displays a date column using a format like "Saturday, March 10,
2004":

void OnFormatColumnGrid1(long Item, long ColIndex, VARIANT FAR* Value)
{
 COleDateTime date(*Value);
 COleVariant vtNewValue(date.Format(_T("%A, %B %d, %Y")));
 VariantCopy(Value, vtNewValue);
}

The following VB.NET sample displays a date column using LongDate format:

Private Sub AxGrid1_FormatColumn(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_FormatColumnEvent) Handles AxGrid1.FormatColumn
 e.value = DateTime.Parse(e.value).ToLongDateString()
End Sub

The following C# sample displays a date column using LongDate format:

private void axGrid1_FormatColumn(object sender,
AxEXGRIDLib._IGridEvents_FormatColumnEvent e)
{
 e.value = DateTime.Parse(e.value.ToString()).ToLongDateString();

}

The following VFP sample displays the item's index using the FormatColumn event:

*** ActiveX Control Event ***
LPARAMETERS item, colindex, value

with thisform.Grid1.Items
 .DefaultItem = item
 value = .ItemToIndex(0)
endwith

before running the sample please make sure that the :

application.AutoYield = .f.

is called during the Form.Init event.

C#

VB

private void HyperLinkClick(object sender,int Item,int ColIndex)
{
}

Private Sub HyperLinkClick(ByVal sender As System.Object,ByVal Item As
Integer,ByVal ColIndex As Integer) Handles HyperLinkClick
End Sub

C#

C++

C++
Builder

private void HyperLinkClick(object sender,
AxEXGRIDLib._IGridEvents_HyperLinkClickEvent e)
{
}

void OnHyperLinkClick(long Item,long ColIndex)
{
}

void __fastcall HyperLinkClick(TObject *Sender,Exgridlib_tlb::HITEM Item,long
ColIndex)

event HyperLinkClick (Item as HITEM, ColIndex as Long)
Occurs when the user clicks on a hyperlink cell.

Type Description

Item as HITEM A HITEM value that indicates the handle of the item being
clicked.

ColIndex as Long A long expression that indicates the column's index.

The HyperLinkClick event is fired when user clicks a hyperlink cell. A hyperlink cell has the
CellHyperLink property on True. The control changes the shape of the cursor when the
mouse hovers a hyper linkcell. Use the HyperLinkClick event to notify your application that
a hyperlink cell is clicked. Use the HyperLinkColor property to specify the hyperlink color.
The HyperLinkClick event is fired only if the user clicks a cell that has the CellHyperLink
property on True. Use the ItemFromPoint property to get an item or a cell from point. Use
the ColumnFromPoint property to get the column from point.

Syntax for HyperLinkClick event, /NET version, on:

Syntax for HyperLinkClick event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

procedure HyperLinkClick(ASender: TObject; Item : HITEM;ColIndex : Integer);
begin
end;

procedure HyperLinkClick(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_HyperLinkClickEvent);
begin
end;

begin event HyperLinkClick(long Item,long ColIndex)
end event HyperLinkClick

Private Sub HyperLinkClick(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_HyperLinkClickEvent) Handles HyperLinkClick
End Sub

Private Sub HyperLinkClick(ByVal Item As EXGRIDLibCtl.HITEM,ByVal ColIndex As
Long)
End Sub

Private Sub HyperLinkClick(ByVal Item As Long,ByVal ColIndex As Long)
End Sub

LPARAMETERS Item,ColIndex

PROCEDURE OnHyperLinkClick(oGrid,Item,ColIndex)
RETURN

Java…

VBSc…

<SCRIPT EVENT="HyperLinkClick(Item,ColIndex)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">

Syntax for HyperLinkClick event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Function HyperLinkClick(Item,ColIndex)
End Function
</SCRIPT>

Procedure OnComHyperLinkClick HITEM llItem Integer llColIndex
 Forward Send OnComHyperLinkClick llItem llColIndex
End_Procedure

METHOD OCX_HyperLinkClick(Item,ColIndex) CLASS MainDialog
RETURN NIL

void onEvent_HyperLinkClick(int _Item,int _ColIndex)
{
}

function HyperLinkClick as v (Item as OLE::Exontrol.Grid.1::HITEM,ColIndex as N)
end function

function nativeObject_HyperLinkClick(Item,ColIndex)
return

The following VB sample displays the cell's value that's been clicked:

Private Sub Grid1_HyperLinkClick(ByVal Item As EXGRIDLibCtl.HITEM, ByVal ColIndex As
Long)
 ' Displays the cell's value that's been clicked
 Debug.Print Grid1.Items.CellValue(Item, ColIndex)
End Sub

The following C++ sample displays the caption of the hyperlink cell that's been clicked:

#include "Items.h"
void CYDlg::OnHyperLinkClickGrid1(long Item, long ColIndex)
{
 CItems items = m_grid.GetItems();
 COleVariant vtItem(Item), vtColumn(ColIndex);
 OutputDebugString(V2S(&items.GetCellValue(vtItem, vtColumn)));
}

The following VB.NET sample displays the caption of the hyperlink cell that's been clicked:

Private Sub AxGrid1_HyperLinkClick(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_HyperLinkClickEvent) Handles AxGrid1.HyperLinkClick
 With AxGrid1.Items
 Debug.WriteLine(.CellCaption(e.item, e.colIndex))
 End With
End Sub

The following C# sample displays the caption of the hyperlink cell that's been clicked:

private void axGrid1_HyperLinkClick(object sender,
AxEXGRIDLib._IGridEvents_HyperLinkClickEvent e)
{
 System.Diagnostics.Debug.WriteLine(axGrid1.Items.get_CellValue(e.item, e.colIndex));
}

The following VFP sample displays the caption of the hyperlink cell that's been clicked:

*** ActiveX Control Event ***
LPARAMETERS item, colindex

with thisform.Grid1.Items
 .DefaultItem = item
 wait window nowait .CellCaption(0, colindex)
endwith

C#

VB

private void ItemOleEvent(object sender,int Item,exontrol.EXGRIDLib.OleEvent Ev)
{
}

Private Sub ItemOleEvent(ByVal sender As System.Object,ByVal Item As
Integer,ByVal Ev As exontrol.EXGRIDLib.OleEvent) Handles ItemOleEvent
End Sub

C#

C++

C++
Builder

private void ItemOleEvent(object sender,
AxEXGRIDLib._IGridEvents_ItemOleEventEvent e)
{
}

void OnItemOleEvent(long Item,LPDISPATCH Ev)
{
}

void __fastcall ItemOleEvent(TObject *Sender,Exgridlib_tlb::HITEM
Item,Exgridlib_tlb::IOleEvent *Ev)
{

event ItemOleEvent (Item as HITEM, Ev as OleEvent)
Fired when an ActiveX control hosted by an item has fired an event.

Type Description

Item as HITEM Specifies the handle of the item that contains the ActiveX
control

Ev as OleEvent A OleEvent object that contains information about the
event.

The Exontrol's ExGrid control supports ActiveX hosting. The InsertItemControl method
inserts an item that hosts an ActiveX control. The ItemOleEvent event notifies your
application that a hosted ActiveX control fires an event. The ItemObject property gets the
ActiveX object hosted by an item that is inserted using the InsertControlItem method. The
ItemObject property gets nothing if the item doesn't host an ActiveX control, or if inserting
an ActiveX control failed).

Syntax for ItemOleEvent event, /NET version, on:

Syntax for ItemOleEvent event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure ItemOleEvent(ASender: TObject; Item : HITEM;Ev : IOleEvent);
begin
end;

procedure ItemOleEvent(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_ItemOleEventEvent);
begin
end;

begin event ItemOleEvent(long Item,oleobject Ev)
end event ItemOleEvent

Private Sub ItemOleEvent(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_ItemOleEventEvent) Handles ItemOleEvent
End Sub

Private Sub ItemOleEvent(ByVal Item As EXGRIDLibCtl.HITEM,ByVal Ev As
EXGRIDLibCtl.IOleEvent)
End Sub

Private Sub ItemOleEvent(ByVal Item As Long,ByVal Ev As Object)
End Sub

LPARAMETERS Item,Ev

PROCEDURE OnItemOleEvent(oGrid,Item,Ev)
RETURN

Java…

VBSc…

<SCRIPT EVENT="ItemOleEvent(Item,Ev)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ItemOleEvent(Item,Ev)

Syntax for ItemOleEvent event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

End Function
</SCRIPT>

Procedure OnComItemOleEvent HITEM llItem Variant llEv
 Forward Send OnComItemOleEvent llItem llEv
End_Procedure

METHOD OCX_ItemOleEvent(Item,Ev) CLASS MainDialog
RETURN NIL

void onEvent_ItemOleEvent(int _Item,COM _Ev)
{
}

function ItemOleEvent as v (Item as OLE::Exontrol.Grid.1::HITEM,Ev as
OLE::Exontrol.Grid.1::IOleEvent)
end function

function nativeObject_ItemOleEvent(Item,Ev)
return

The following VB sample adds an item that hosts the Exontrol Calendar Control and prints
each event fired by that ActiveX control:

Grid1.Items.ItemHeight(Grid1.Items.InsertControlItem(,
 "Exontrol.Calendar")) = 256

Private Sub Grid1_ItemOleEvent(ByVal Item As
EXGRIDLibCtl.HITEM, ByVal Ev As
EXGRIDLibCtl.IOleEvent)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no
arguments."
 Else
 Debug.Print "The event has the following
arguments:"
 Dim i As Long

 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " &
Ev(i).Value
 Next
 End If
End Sub

The following VB6 sample shows you how to handle an event from a outer-inner-inner
control. In other words, you have a master control (outer), which insert another control
(inner), which insert another control (inner).

Private Sub expandItem(ByVal grid As Object, ByVal item As Long, ByVal level As
Long)
 Debug.Print "Expand item in " & level & " control"
End Sub

' BeforeExpandItem event - Fired before an item is about to be expanded (collapsed).
Private Sub Grid1_BeforeExpandItem(ByVal item As EXGRIDLibCtl.HITEM, Cancel As
Variant)
 expandItem Grid1.Object, item, 0
End Sub

' ItemOleEvent event - Fired when an ActiveX control hosted by an item has fired an event.
Private Sub Grid1_ItemOleEvent(ByVal item As EXGRIDLibCtl.HITEM, ByVal Ev As
EXGRIDLibCtl.IOleEvent)
 With Grid1
 'Debug.Print Ev.ToString()
 If (Ev.ID = 12) Then ' BeforeExpandItem
 expandItem Grid1.Items.ItemObject(item), Ev.Param(0).Value, 1
 Else
 If (Ev.ID = 14) Then ' ItemOLEEvent
 'Debug.Print Ev.Param(1).Value.ToString()
 If (Ev.Param(1).Value.ID = 12) Then ' BeforeExpandItem
 'Debug.Print "Expand item in inner-inner control"
 expandItem
Grid1.Items.ItemObject(item).Items.ItemObject(Ev.Param(0).Value),
Ev.Param(1).Value.Param(0).Value, 2
 End If

 End If
 End If
 End With
End Sub

This technique can be applied to ANY other event of the control, so you have a single
function to be used when different events are fired.

The following C++ sample displays the events that an ActiveX control is firing while it is
hosted by an item:

 #import <exgrid.dll> rename("GetItems", "exGetItems")

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnItemOleEventGrid1(long Item, LPDISPATCH Ev)
{
 EXGRIDLib::IOleEventPtr spEvent(Ev);
 CString strOutput;
 strOutput.Format("Event's name: %s\n", spEvent->Name.operator const char *());
 OutputDebugString(strOutput);
 if (spEvent->CountParam == 0)
 OutputDebugString("The event has no parameters.");
 else
 {
 for (long i = 0; i < spEvent->CountParam; i++)

 {
 EXGRIDLib::IOleEventParamPtr spParam = spEvent->GetParam(COleVariant(i));
 strOutput.Format("Name: %s, Value: %s\n", spParam->Name.operator const char *
(), V2S(&spParam->Value));
 OutputDebugString(strOutput);
 }
 }
 OutputDebugString("");
}

The #import clause is required to get the wrapper classes for IOleEvent and
IOleEventParam objects, that are not defined by the MFC class wizard. The same #import
statement defines the EXGRIDLib namespace that include all objects and types of the
control's TypeLibrary. In case your exgrid.dll library is located to another place than the
system folder or well known path, the path to the library should be provided, in order to let
the VC finds the type library.

The following VB.NET sample displays the events that an ActiveX control is firing while it is
hosted by an item:

Private Sub AxGrid1_ItemOleEvent(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_ItemOleEventEvent) Handles AxGrid1.ItemOleEvent
 Debug.WriteLine("Event's name: " & e.ev.Name)
 Dim i As Long
 For i = 0 To e.ev.CountParam - 1
 Dim eP As EXGRIDLib.OleEventParam
 eP = e.ev(i)
 Debug.WriteLine("Name: " & e.ev.Name & " Value: " & eP.Value)
 Next
End Sub

The following C# sample displays the events that an ActiveX control is firing while it is
hosted by an item:

private void axGrid1_ItemOleEvent(object sender,
AxEXGRIDLib._IGridEvents_ItemOleEventEvent e)
{
 System.Diagnostics.Debug.WriteLine("Event's name: " + e.ev.Name.ToString());
 for (int i= 0; i < e.ev.CountParam ; i++)

 {
 EXGRIDLib.IOleEventParam evP = e.ev[i];
 System.Diagnostics.Debug.WriteLine("Name: " + evP.Name.ToString() + ", Value: " +
evP.Value.ToString());
 }
}

The following VFP sample displays the events that an ActiveX control fires when it is hosted
by an item:

*** ActiveX Control Event ***
LPARAMETERS item, ev

local s
s = "Event's name: " + ev.Name
for i = 0 to ev.CountParam - 1
 s = s + "Name: " + ev.Param(i).Name + " ,Value: " + Str(ev.Param(i).Value)
endfor
wait window nowait s

C#

VB

private void KeyDown(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyDown(ByVal sender As System.Object,ByRef KeyCode As
Short,ByVal Shift As Short) Handles KeyDown
End Sub

event KeyDown (ByRef KeyCode as Integer, Shift as Integer)
Occurs when the user presses a key while an object has the focus.

Type Description
KeyCode as Integer (By Reference) An integer that represent the key code

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use KeyDown and KeyUp event procedures if you need to respond to both the pressing
and releasing of a key. You test for a condition by first assigning each result to a temporary
integer variable and then comparing shift to a bit mask. Use the Change event to notify your
application that the user changes the cell's value. Use the Editing property to determine
whether the control is in edit mode. Use the And operator with the shift argument to test
whether the condition is greater than 0, indicating that the modifier was pressed, as in this
example:

ShiftDown = (Shift And 1) > 0
CtrlDown = (Shift And 2) > 0
AltDown = (Shift And 4) > 0
In a procedure, you can test for any combination of conditions, as in this example:
If AltDown And CtrlDown Then

Syntax for KeyDown event, /NET version, on:

Syntax for KeyDown event, /COM version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

private void KeyDownEvent(object sender, AxEXGRIDLib._IGridEvents_KeyDownEvent e)
{
}

void OnKeyDown(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyDown(TObject *Sender,short * KeyCode,short Shift)
{
}

procedure KeyDown(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyDownEvent(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_KeyDownEvent);
begin
end;

begin event KeyDown(integer KeyCode,integer Shift)
end event KeyDown

Private Sub KeyDownEvent(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_KeyDownEvent) Handles KeyDownEvent
End Sub

Private Sub KeyDown(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyDown(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

Xbas…

PROCEDURE OnKeyDown(oGrid,KeyCode,Shift)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="KeyDown(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyDown(KeyCode,Shift)
End Function
</SCRIPT>

Procedure OnComKeyDown Short llKeyCode Short llShift
 Forward Send OnComKeyDown llKeyCode llShift
End_Procedure

METHOD OCX_KeyDown(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyDown(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyDown as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyDown(KeyCode,Shift)
return

Syntax for KeyDown event, /COM version (others), on:

The following VB sample starts editing the cell is the user presses the F4 key, and AutoEdit
property is False.

Private Sub Grid1_KeyDown(KeyCode As Integer, Shift As Integer)
 ' Edits the focused cell once that user presses the F4 key
 If (KeyCode = vbKeyF4) Then

 Grid1.Edit
 End If
End Sub

The following VB sample advances to the next field, when the user presses the ENTER key
(the sample is useful when the current editor is a simple edit control) :

Private Sub Grid1_KeyDown(KeyCode As Integer, Shift As Integer)
 If (KeyCode = vbKeyReturn) Then
 KeyCode = vbKeyDown
 End If
End Sub

The following C++ sample starts editing the focused cell when user presses the ENTER
key, (AutoEdit property is False):

void OnKeyDownGrid1(short FAR* KeyCode, short Shift)
{
 if (*KeyCode == VK_RETURN)
 {
 COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
 if (m_grid.GetEditing() == 0)
 m_grid.Edit(vtMissing);
 }
}

The following VB.NET sample starts editing the focused cell when user presses the ENTER
key, (AutoEdit property is False):

Private Sub AxGrid1_KeyDownEvent(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_KeyDownEvent) Handles AxGrid1.KeyDownEvent
 If (Convert.ToUInt32(e.keyCode) = Convert.ToUInt32(Keys.Enter)) Then
 AxGrid1.Edit(Nothing)
 End If
End Sub

The following C# sample starts editing the focused cell when user presses the ENTER key,
(AutoEdit property is False):

private void axGrid1_KeyDownEvent(object sender,

AxEXGRIDLib._IGridEvents_KeyDownEvent e)
{
 if (Convert.ToUInt32(e.keyCode) == Convert.ToUInt32(Keys.Enter))
 axGrid1.Edit(null);
}

The following VFP sample starts editing the focused cell when user presses the ENTER
key, (AutoEdit property is False):

*** ActiveX Control Event ***
LPARAMETERS keycode, shift

if (keycode = 13)
 thisform.Grid1.Object.Edit("")
endif

C#

VB

private void KeyPress(object sender,ref short KeyAscii)
{
}

Private Sub KeyPress(ByVal sender As System.Object,ByRef KeyAscii As Short)
Handles KeyPress
End Sub

C#

C++

private void KeyPressEvent(object sender,
AxEXGRIDLib._IGridEvents_KeyPressEvent e)
{
}

void OnKeyPress(short FAR* KeyAscii)
{
}

event KeyPress (ByRef KeyAscii as Integer)
Occurs when the user presses and releases an ANSI key.

Type Description

KeyAscii as Integer (By Reference) An integer that returns a standard numeric
ANSI keycode

The KeyPress event lets you immediately test keystrokes for validity or for formatting
characters as they are typed. Changing the value of the keyascii argument changes the
character displayed. Use KeyDown and KeyUp event procedures to handle any keystroke
not recognized by KeyPress, such as function keys, editing keys, navigation keys, and any
combinations of these with keyboard modifiers. Unlike the KeyDown and KeyUp events,
KeyPress does not indicate the physical state of the keyboard; instead, it passes a
character. KeyPress interprets the uppercase and lowercase of each character as
separate key codes and, therefore, as two separate characters. Use the Change event to
notify your application that the user changes the cell's value. Use the Editing property to
determine whether the control is in edit mode.

Syntax for KeyPress event, /NET version, on:

Syntax for KeyPress event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall KeyPress(TObject *Sender,short * KeyAscii)
{
}

procedure KeyPress(ASender: TObject; var KeyAscii : Smallint);
begin
end;

procedure KeyPressEvent(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_KeyPressEvent);
begin
end;

begin event KeyPress(integer KeyAscii)
end event KeyPress

Private Sub KeyPressEvent(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_KeyPressEvent) Handles KeyPressEvent
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

LPARAMETERS KeyAscii

PROCEDURE OnKeyPress(oGrid,KeyAscii)
RETURN

Java… <SCRIPT EVENT="KeyPress(KeyAscii)" LANGUAGE="JScript">
</SCRIPT>

Syntax for KeyPress event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function KeyPress(KeyAscii)
End Function
</SCRIPT>

Procedure OnComKeyPress Short llKeyAscii
 Forward Send OnComKeyPress llKeyAscii
End_Procedure

METHOD OCX_KeyPress(KeyAscii) CLASS MainDialog
RETURN NIL

void onEvent_KeyPress(COMVariant /*short*/ _KeyAscii)
{
}

function KeyPress as v (KeyAscii as N)
end function

function nativeObject_KeyPress(KeyAscii)
return

C#

VB

private void KeyUp(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyUp(ByVal sender As System.Object,ByRef KeyCode As Short,ByVal
Shift As Short) Handles KeyUp
End Sub

C#

C++

private void KeyUpEvent(object sender, AxEXGRIDLib._IGridEvents_KeyUpEvent e)
{
}

void OnKeyUp(short FAR* KeyCode,short Shift)
{
}

event KeyUp (ByRef KeyCode as Integer, Shift as Integer)
Occurs when the user releases a key while an object has the focus.

Type Description
KeyCode as Integer (By Reference) An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use the KeyUp event procedure to respond to the releasing of a key. Use the Change event
to notify your application that the user changes the cell's value. Use the Editing property to
determine whether the control is in edit mode.

Syntax for KeyUp event, /NET version, on:

Syntax for KeyUp event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall KeyUp(TObject *Sender,short * KeyCode,short Shift)
{
}

procedure KeyUp(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyUpEvent(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_KeyUpEvent);
begin
end;

begin event KeyUp(integer KeyCode,integer Shift)
end event KeyUp

Private Sub KeyUpEvent(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_KeyUpEvent) Handles KeyUpEvent
End Sub

Private Sub KeyUp(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyUp(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyUp(oGrid,KeyCode,Shift)
RETURN

Java… <SCRIPT EVENT="KeyUp(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

Syntax for KeyUp event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function KeyUp(KeyCode,Shift)
End Function
</SCRIPT>

Procedure OnComKeyUp Short llKeyCode Short llShift
 Forward Send OnComKeyUp llKeyCode llShift
End_Procedure

METHOD OCX_KeyUp(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyUp(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyUp as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyUp(KeyCode,Shift)
return

C#

VB

private void LayoutChanged(object sender)
{
}

Private Sub LayoutChanged(ByVal sender As System.Object) Handles
LayoutChanged
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

private void LayoutChanged(object sender, EventArgs e)
{
}

void OnLayoutChanged()
{
}

void __fastcall LayoutChanged(TObject *Sender)
{
}

procedure LayoutChanged(ASender: TObject;);
begin
end;

procedure LayoutChanged(sender: System.Object; e: System.EventArgs);
begin

event LayoutChanged ()
Occurs when column's position or column's size is changed.

Type Description

The LayoutChanged event notifies your application once a column is resized or moved by
drag and drop. Also, the LayoutChanged event may be fired if the item's position is
changed by drag and drop using the AutoDrag property.

Syntax for LayoutChanged event, /NET version, on:

Syntax for LayoutChanged event, /COM version, on:

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

begin event LayoutChanged()
end event LayoutChanged

Private Sub LayoutChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles LayoutChanged
End Sub

Private Sub LayoutChanged()
End Sub

Private Sub LayoutChanged()
End Sub

LPARAMETERS nop

PROCEDURE OnLayoutChanged(oGrid)
RETURN

Java…

VBSc…

Visual
Data…

Visual
Objects

<SCRIPT EVENT="LayoutChanged()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function LayoutChanged()
End Function
</SCRIPT>

Procedure OnComLayoutChanged
 Forward Send OnComLayoutChanged
End_Procedure

METHOD OCX_LayoutChanged() CLASS MainDialog
RETURN NIL

Syntax for LayoutChanged event, /COM version (others), on:

X++

XBasic

dBASE

void onEvent_LayoutChanged()
{
}

function LayoutChanged as v ()
end function

function nativeObject_LayoutChanged()
return

Since, the LayotChanged event may be fired on different scenarios, you can distingue the
action that previously occurs by storing the ItemFromPoint and/or ColumnFromPoint during
the MouseDown event like in the following VB sample:

Dim iItemFromPointMouseDown As Long
Dim iColumnFromPointMouseDown As Long

Private Sub Form_Load()
 iItemFromPointMouseDown = 0
 iColumnFromPointMouseDown = -1
End Sub

Private Sub Grid1_LayoutChanged()
 If (iItemFromPointMouseDown <> 0) Then
 Debug.Print "Items section changed"
 Else
 If (iColumnFromPointMouseDown <> -1) Then
 Debug.Print "Columns section changed"
 Else
 Debug.Print "Others"
 End If
 End If
 iItemFromPointMouseDown = 0
 iColumnFromPointMouseDown = -1
End Sub

Private Sub Grid1_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Dim c As Long, hit As HitTestInfoEnum
 With Grid1
 iItemFromPointMouseDown = .ItemFromPoint(-1, -1, c, hit)
 iColumnFromPointMouseDown = .ColumnFromPoint(-1, -1)
 End With
End Sub

The sample displays:

"Columns section changed" if any change occurs in the Columns section, like moving a
column to a new position or resizing the column.

"Items section changed", if the user drags an item to a new position using the
AutoDrag property on exAutoDragPosition, exAutoDragPositionKeepIndent and
exAutoDragPositionAny

You can use the LayoutChanged event to save the columns position and size for future use.
Use the Width property to retrieve the column's width. Use the Position property to retrieve
the column's position. The Visible property specifies whether a column is shown or hidden.
Use the ColumnAutoResize property to specify whether the visible columns fit the control's
client area.

There are two options to avoid losing the columns proportions:

Avoiding resizing the control under a specified width, like in the sample:

Private Sub Form_Resize()
On Error Resume Next
 If ScaleWidth / Screen.TwipsPerPixelX > 64 Then
 With Grid1
 .Left = 0
 .Top = 0
 .Width = ScaleWidth
 .Height = ScaleHeight
 End With
 End If
End Sub

Using the LayoutChanged event to store the columns proportions manually. The

following sample holds the columns proportions when LayoutChanged event is fired.
The sample ensures that the proportions are saved only when the user resizes on of
the control's columns, not when the user resizes the entire control. The proportions are
kept by the Data property of the Column object. The sample can be changed smoothly
by using a simple collection to hold the columns proportions instead using the Data
property of the Column object

Option Explicit
Dim nFit As Long
Private Declare Function PeekMessage Lib "user32" Alias "PeekMessageA"
(lpMsg As MSG, ByVal hwnd As Long, ByVal wMsgFilterMin As Long, ByVal
wMsgFilterMax As Long, ByVal wRemoveMsg As Long) As Long
Private Declare Function TranslateMessage Lib "user32" (lpMsg As MSG) As Long
Private Declare Function DispatchMessage Lib "user32" Alias
"DispatchMessageA" (lpMsg As MSG) As Long
Private Const PM_REMOVE = &H1
Private Type POINTAPI
 x As Long
 y As Long
End Type
Private Type MSG
 hwnd As Long
 message As Long
 wParam As Long
 lParam As Long
 time As Long
 pt As POINTAPI
End Type

Private Sub Form_Load()
 nFit = 0

 onGridResize Grid1
End Sub

Private Sub Form_Resize()
On Error Resume Next
 nFit = nFit + 1

 With Grid1
 .Left = 0
 .Top = 0
 .Width = ScaleWidth
 .Height = ScaleHeight
 End With
 fit Grid1

 nFit = nFit - 1
End Sub

Private Sub Grid1_LayoutChanged()
 If (nFit = 0) Then
 onGridResize Grid1
 End If
End Sub

Private Sub fit(ByVal g As EXGRIDLibCtl.Grid)
 nFit = nFit + 1
 With g
 If (.ColumnAutoResize) Then
 .BeginUpdate
 .ColumnAutoResize = False
 Dim c As EXGRIDLibCtl.Column
 For Each c In .Columns
 c.Width = c.Data
 Next
 .ColumnAutoResize = True
 .EndUpdate
 End If
 End With
 waitToProcessMessages
 nFit = nFit - 1
End Sub

Private Sub onGridResize(ByVal g As EXGRIDLibCtl.Grid)
 Dim c As Object

 With g
 If (.ColumnAutoResize) Then
 For Each c In .Columns
 c.Data = c.Width
 Next
 End If
 End With
End Sub

Private Sub waitToProcessMessages()
 Dim m As MSG
 While PeekMessage(m, 0, 0, 0, PM_REMOVE)
 TranslateMessage m
 DispatchMessage m
 Wend
End Sub

C#

VB

private void MouseDownEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseDownEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseDownEvent
End Sub

C# private void MouseDownEvent(object sender,

event MouseDown (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user presses a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. Use the ItemFromPoint property to get the item from point. Use the
ColumnFromPoint property to get the column from point. Use the AnchorFromPoint property
to retrieve the identifier of the anchor element from the point. The AnchorClick event notifies
your application that the user clicks an <a> anchor element.

Syntax for MouseDown event, /NET version, on:

Syntax for MouseDown event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

AxEXGRIDLib._IGridEvents_MouseDownEvent e)
{
}

void OnMouseDown(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseDown(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseDown(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseDownEvent(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_MouseDownEvent);
begin
end;

begin event MouseDown(integer Button,integer Shift,long X,long Y)
end event MouseDown

Private Sub MouseDownEvent(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_MouseDownEvent) Handles MouseDownEvent
End Sub

Private Sub MouseDown(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseDown(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

Xbas… PROCEDURE OnMouseDown(oGrid,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseDown(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseDown(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseDown Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseDown llButton llShift llX llY
End_Procedure

METHOD OCX_MouseDown(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseDown(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseDown as v (Button as N,Shift as N,X as
OLE::Exontrol.Grid.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Grid.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseDown(Button,Shift,X,Y)
return

Syntax for MouseDown event, /COM version (others), on:

The following VB sample prints the cell's caption that's been clicked:

Private Sub Grid1_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As
Single)

 ' Converts the container coordinates to client coordinates
 X = X / Screen.TwipsPerPixelX
 Y = Y / Screen.TwipsPerPixelY
 Dim h As HITEM
 Dim c As Long
 Dim hit As EXGRIDLibCtl.HitTestInfoEnum
 ' Gets the item from (X,Y)
 h = Grid1.ItemFromPoint(X, Y, c, hit)
 If Not (h = 0) Then
 Debug.Print Grid1.Items.CellValue(h, c) & " HT = " & hit
 End If
End Sub

If you need to add a context menu based on the item you can use the MouseUp event, like
in the following VB sample (the sample uses the Exontrol's ExPopupMenu Component):

Private Sub Grid1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single)
 If (Button = 2) Then
 ' Converts the container coordinates to client coordinates
 X = X / Screen.TwipsPerPixelX
 Y = Y / Screen.TwipsPerPixelY
 Dim h As HITEM
 Dim c As Long, hit as Long
 ' Gets the item from (X,Y)
 h = Grid1.ItemFromPoint(X, Y, c, hit)
 If Not (h = 0) Then
 Dim i As Long
 PopupMenu1.Items.Add Grid1.Items.CellValue(h, c)
 i = PopupMenu1.ShowAtCursor
 End If
 End If
End Sub

The following C++ sample displays the caption of the cell being clicked:

#include "Items.h"

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))

https://exontrol.com/expopupmenu.jsp

{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnMouseDownGrid1(short Button, short Shift, long X, long Y)
{
 long c = 0, hit = 0, hItem = m_grid.GetItemFromPoint(X, Y, &c, &hit);
 if ((hItem != 0) || (c != 0))
 {
 CItems items = m_grid.GetItems();
 COleVariant vtItem(hItem), vtColumn(c);
 CString strCaption = V2S(&items.GetCellValue(vtItem, vtColumn)), strOutput;
 strOutput.Format("Cell: '%s', Hit = %08X\n", strCaption, hit);
 OutputDebugString(strOutput);
 }
}

The following VB.NET sample displays the caption from the cell being clicked:

Private Sub AxGrid1_MouseDownEvent(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_MouseDownEvent) Handles AxGrid1.MouseDownEvent
 With AxGrid1
 Dim i As Integer, c As Integer, hit As EXGRIDLib.HitTestInfoEnum
 i = .get_ItemFromPoint(e.x, e.y, c, hit)
 If (Not (i = 0) Or Not (c = 0)) Then
 Debug.WriteLine("Cell: " & .Items.CellValue(i, c) & " Hit: " & hit.ToString())
 End If
 End With

End Sub

The following C# sample displays the caption from the cell being clicked:

private void axGrid1_MouseDownEvent(object sender,
AxEXGRIDLib._IGridEvents_MouseDownEvent e)
{
 int c = 0;
 EXGRIDLib.HitTestInfoEnum hit;
 int i = axGrid1.get_ItemFromPoint(e.x, e.y, out c,out hit);
 if ((i != 0) || (c != 0))
 {
 string s = axGrid1.Items.get_CellValue(i,c).ToString();
 s = "Cell: " + s + ", Hit: " + hit.ToString();
 System.Diagnostics.Debug.WriteLine(s);
 }
}

The following VFP sample displays the caption from the cell being clicked:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

local c, hit
c = 0
hit = 0
with thisform.Grid1
 .Items.DefaultItem = .ItemFromPoint(x, y, @c, @hit)
 if (.Items.DefaultItem <> 0) or (c <> 0)
 wait window nowait .Items.CellValue(0, c) + " " + Str(hit)
 endif
endwith

C#

VB

private void MouseMoveEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseMoveEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseMoveEvent
End Sub

C# private void MouseMoveEvent(object sender,
AxEXGRIDLib._IGridEvents_MouseMoveEvent e)

event MouseMove (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user moves the mouse.

Type Description

Button as Integer An integer that corresponds to the state of the mouse
buttons in which a bit is set if the button is down.

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates

The MouseMove event is generated continually as the mouse pointer moves across objects.
Unless another object has captured the mouse, an object recognizes a MouseMove event
whenever the mouse position is within its borders. Use the ItemFromPoint property to get
the item from cursor. Use the ColumnFromPoint property to get the column from point. The
Background(exCursorHoverColumn) property specifies the visual appearance of the
column's header when the cursor hovers it. Use the AnchorFromPoint property to retrieve
the identifier of the anchor element from the point. The WordFromPoint property determines
the word from the cursor.

Syntax for MouseMove event, /NET version, on:

Syntax for MouseMove event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

{
}

void OnMouseMove(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseMove(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseMove(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseMoveEvent(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_MouseMoveEvent);
begin
end;

begin event MouseMove(integer Button,integer Shift,long X,long Y)
end event MouseMove

Private Sub MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_MouseMoveEvent) Handles MouseMoveEvent
End Sub

Private Sub MouseMove(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseMove(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

Xbas…

PROCEDURE OnMouseMove(oGrid,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseMove(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseMove(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseMove Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseMove llButton llShift llX llY
End_Procedure

METHOD OCX_MouseMove(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseMove(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseMove as v (Button as N,Shift as N,X as
OLE::Exontrol.Grid.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Grid.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseMove(Button,Shift,X,Y)
return

Syntax for MouseMove event, /COM version (others), on:

The following VB sample prints the cell's caption from the cursor (if the control contains no
inner cells. Use the SplitCell property to insert inner cells) :

Private Sub Grid1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 On Error Resume Next
 ' Converts the container coordinates to client coordinates
 X = X / Screen.TwipsPerPixelX
 Y = Y / Screen.TwipsPerPixelY
 Dim h As HITEM
 Dim c As Long
 Dim hit As EXGRIDLibCtl.HitTestInfoEnum
 ' Gets the item from (X,Y)
 h = Grid1.ItemFromPoint(X, Y, c, hit)
 If Not (h = 0) Then
 Debug.Print Grid1.Items.CellValue(h, c) & " HT = " & hit
 End If
End Sub

The following VB sample displays the cell's caption from the cursor (if the control contains
inner cells):

Private Sub Grid1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 On Error Resume Next
 ' Converts the container coordinates to client coordinates
 X = X / Screen.TwipsPerPixelX
 Y = Y / Screen.TwipsPerPixelY
 Dim h As HITEM
 Dim c As Long
 Dim hit As EXGRIDLibCtl.HitTestInfoEnum
 ' Gets the item from (X,Y)
 h = Grid1.ItemFromPoint(X, Y, c, hit)
 If Not (h = 0) Or Not (c = 0) Then
 Debug.Print Grid1.Items.CellValue(h, c) & " HT = " & hit
 End If
End Sub

The following C++ sample displays the cell's from the point:

#include "Items.h"

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnMouseMoveGrid1(short Button, short Shift, long X, long Y)
{
 long c = 0, hit = 0, hItem = m_grid.GetItemFromPoint(X, Y, &c, &hit);
 if ((hItem != 0) || (c != 0))
 {
 CItems items = m_grid.GetItems();
 COleVariant vtItem(hItem), vtColumn(c);
 CString strCaption = V2S(&items.GetCellValue(vtItem, vtColumn)), strOutput;
 strOutput.Format("Cell: '%s', Hit = %08X\n", strCaption, hit);
 OutputDebugString(strOutput);
 }
}

The following VB.NET sample displays the cell's from the point:

Private Sub AxGrid1_MouseMoveEvent(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_MouseMoveEvent) Handles AxGrid1.MouseMoveEvent
 With AxGrid1
 Dim i As Integer, c As Integer, hit As EXGRIDLib.HitTestInfoEnum
 i = .get_ItemFromPoint(e.x, e.y, c, hit)
 If (Not (i = 0) Or Not (c = 0)) Then
 Debug.WriteLine("Cell: " & .Items.CellValue(i, c) & " Hit: " & hit.ToString())

 End If
 End With
End Sub

The following C# sample displays the cell's from the point:

private void axGrid1_MouseMoveEvent(object sender,
AxEXGRIDLib._IGridEvents_MouseMoveEvent e)
{
 int c = 0;
 EXGRIDLib.HitTestInfoEnum hit;
 int i = axGrid1.get_ItemFromPoint(e.x, e.y, out c,out hit);
 if ((i != 0) || (c != 0))
 {
 object cap = axGrid1.Items.get_CellValue(i, c);
 string s = cap != null ? cap.ToString() : "";
 s = "Cell: " + s + ", Hit: " + hit.ToString();
 System.Diagnostics.Debug.WriteLine(s);
 }
}

The following VFP sample displays the cell's from the point:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

local c, hit
c = 0
hit = 0
with thisform.Grid1
 .Items.DefaultItem = .ItemFromPoint(x, y, @c, @hit)
 if (.Items.DefaultItem <> 0) or (c <> 0)
 wait window nowait .Items.CellValue(0, c) + " " + Str(hit)
 endif
endwith

C#

VB

private void MouseUpEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseUpEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseUpEvent
End Sub

C# private void MouseUpEvent(object sender,

event MouseUp (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user releases a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event.

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. Use the ItemFromPoint property to get the item from point. Use the
ColumnFromPoint property to get the column from point. Use the AnchorFromPoint property
to retrieve the identifier of the anchor element from the point. The AnchorClick event notifies
your application that the user clicks an <a> anchor element.

Syntax for MouseUp event, /NET version, on:

Syntax for MouseUp event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

AxEXGRIDLib._IGridEvents_MouseUpEvent e)
{
}

void OnMouseUp(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseUp(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseUp(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseUpEvent(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_MouseUpEvent);
begin
end;

begin event MouseUp(integer Button,integer Shift,long X,long Y)
end event MouseUp

Private Sub MouseUpEvent(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_MouseUpEvent) Handles MouseUpEvent
End Sub

Private Sub MouseUp(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseUp(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

Xbas… PROCEDURE OnMouseUp(oGrid,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseUp(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseUp(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseUp Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseUp llButton llShift llX llY
End_Procedure

METHOD OCX_MouseUp(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseUp(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseUp as v (Button as N,Shift as N,X as
OLE::Exontrol.Grid.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Grid.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseUp(Button,Shift,X,Y)
return

Syntax for MouseUp event, /COM version (others), on:

The following VB sample prints the cell's caption where the mouse has been released:

Private Sub Grid1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single)
 ' Converts the container coordinates to client coordinates

 X = X / Screen.TwipsPerPixelX
 Y = Y / Screen.TwipsPerPixelY
 Dim h As HITEM
 Dim c As Long, hit as Long
 ' Gets the item from (X,Y)
 h = Grid1.ItemFromPoint(X, Y, c, hit)
 If Not (h = 0) Then
 Debug.Print Grid1.Items.CellValue(h, c)
 End If
End Sub

If you need to add a context menu based on the item you can use the MouseUp event, like
in the following VB sample (the sample uses the Exontrol's ExPopupMenu Component):

Private Sub Grid1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single)
 If (Button = 2) Then
 ' Converts the container coordinates to client coordinates
 X = X / Screen.TwipsPerPixelX
 Y = Y / Screen.TwipsPerPixelY
 Dim h As HITEM
 Dim c As Long, hit as Long
 ' Gets the item from (X,Y)
 h = Grid1.ItemFromPoint(X, Y, c, hit)
 If Not (h = 0) Then
 Dim i As Long
 PopupMenu1.Items.Add Grid1.Items.CellValue(h, c)
 i = PopupMenu1.ShowAtCursor
 End If
 End If
End Sub

The following VC sample displays the caption of the cell where the mouse is released:

#include "Items.h"

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)

https://exontrol.com/expopupmenu.jsp

 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnMouseUpGrid1(short Button, short Shift, long X, long Y)
{
 long c = 0, hit = 0, hItem = m_grid.GetItemFromPoint(X, Y, &c, &hit);
 if ((hItem != 0) || (c != 0))
 {
 CItems items = m_grid.GetItems();
 COleVariant vtItem(hItem), vtColumn(c);
 CString strCaption = V2S(&items.GetCellValue(vtItem, vtColumn)), strOutput;
 strOutput.Format("Cell: '%s', Hit = %08X\n", strCaption, hit);
 OutputDebugString(strOutput);
 }
}

The following VB.NET sample displays the caption of the cell where the mouse is released:

Private Sub AxGrid1_MouseUpEvent(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_MouseUpEvent) Handles AxGrid1.MouseUpEvent
 With AxGrid1
 Dim i As Integer, c As Integer, hit As EXGRIDLib.HitTestInfoEnum
 i = .get_ItemFromPoint(e.x, e.y, c, hit)
 If (Not (i = 0) Or Not (c = 0)) Then
 Debug.WriteLine("Cell: " & .Items.CellValue(i, c) & " Hit: " & hit.ToString())
 End If
 End With
End Sub

The following C# sample displays the caption of the cell where the mouse is released:

private void axGrid1_MouseUpEvent(object sender,
AxEXGRIDLib._IGridEvents_MouseUpEvent e)
{
 int c = 0;
 EXGRIDLib.HitTestInfoEnum hit;
 int i = axGrid1.get_ItemFromPoint(e.x, e.y, out c,out hit);
 if ((i != 0) || (c != 0))
 {
 string s = axGrid1.Items.get_CellValue(i,c).ToString();
 s = "Cell: " + s + ", Hit: " + hit.ToString();
 System.Diagnostics.Debug.WriteLine(s);
 }
}

The following VFP sample displays the caption of the cell where the mouse is released:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

local c, hit
c = 0
hit = 0
with thisform.Grid1
 .Items.DefaultItem = .ItemFromPoint(x, y, @c, @hit)
 if (.Items.DefaultItem <> 0) or (c <> 0)
 wait window nowait .Items.CellValue(0, c) + " " + Str(hit)
 endif
endwith

C#

VB

private void OffsetChanged(object sender,bool Horizontal,int NewVal)
{
}

Private Sub OffsetChanged(ByVal sender As System.Object,ByVal Horizontal As
Boolean,ByVal NewVal As Integer) Handles OffsetChanged
End Sub

C#

C++

C++
Builder

private void OffsetChanged(object sender,
AxEXGRIDLib._IGridEvents_OffsetChangedEvent e)
{
}

void OnOffsetChanged(BOOL Horizontal,long NewVal)
{
}

void __fastcall OffsetChanged(TObject *Sender,VARIANT_BOOL Horizontal,long
NewVal)
{
}

event OffsetChanged (Horizontal as Boolean, NewVal as Long)
Occurs when the scroll position has been changed.

Type Description

Horizontal as Boolean A boolean expression that indicates whether the horizontal
scroll bar has changed

NewVal as Long A long value that indicates the new scroll bar value in
pixels

If the control has no scroll bars the OffsetChanged and OversizeChanged events are not
fired. Use the ScrollBars property of the control to determine which scroll bars are visible
within the control.

Syntax for OffsetChanged event, /NET version, on:

Syntax for OffsetChanged event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure OffsetChanged(ASender: TObject; Horizontal : WordBool;NewVal : Integer);
begin
end;

procedure OffsetChanged(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_OffsetChangedEvent);
begin
end;

begin event OffsetChanged(boolean Horizontal,long NewVal)
end event OffsetChanged

Private Sub OffsetChanged(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_OffsetChangedEvent) Handles OffsetChanged
End Sub

Private Sub OffsetChanged(ByVal Horizontal As Boolean,ByVal NewVal As Long)
End Sub

Private Sub OffsetChanged(ByVal Horizontal As Boolean,ByVal NewVal As Long)
End Sub

LPARAMETERS Horizontal,NewVal

PROCEDURE OnOffsetChanged(oGrid,Horizontal,NewVal)
RETURN

Java…

VBSc…

<SCRIPT EVENT="OffsetChanged(Horizontal,NewVal)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OffsetChanged(Horizontal,NewVal)
End Function
</SCRIPT>

Syntax for OffsetChanged event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComOffsetChanged Boolean llHorizontal Integer llNewVal
 Forward Send OnComOffsetChanged llHorizontal llNewVal
End_Procedure

METHOD OCX_OffsetChanged(Horizontal,NewVal) CLASS MainDialog
RETURN NIL

void onEvent_OffsetChanged(boolean _Horizontal,int _NewVal)
{
}

function OffsetChanged as v (Horizontal as L,NewVal as N)
end function

function nativeObject_OffsetChanged(Horizontal,NewVal)
return

The following VB sample displays the new scroll position when user scrolls horizontally the
control:

Private Sub Grid1_OffsetChanged(ByVal Horizontal As Boolean, ByVal NewVal As Long)
 If (Horizontal) Then
 Debug.Print "The horizontal scroll bar has been moved to " & NewVal
 End If
End Sub

The following VC sample displays the new scroll position when the user scrolls vertically the
control:

void OnOffsetChangedGrid1(BOOL Horizontal, long NewVal)
{
 if (!Horizontal)
 {
 CString strFormat;
 strFormat.Format("NewPos = %i\n", NewVal);
 OutputDebugString(strFormat);
 }

}

The following VB.NET sample displays the new scroll position when the user scrolls
vertically the control:

Private Sub AxGrid1_OffsetChanged(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_OffsetChangedEvent) Handles AxGrid1.OffsetChanged
 If (Not e.horizontal) Then
 Debug.WriteLine(e.newVal)
 End If
End Sub

The following C# sample displays the new scroll position when the user scrolls vertically the
control:

private void axGrid1_OffsetChanged(object sender,
AxEXGRIDLib._IGridEvents_OffsetChangedEvent e)
{
 if (!e.horizontal)
 System.Diagnostics.Debug.WriteLine(e.newVal);
}

The following VFP sample displays the new scroll position when the user scrolls vertically
the control:

*** ActiveX Control Event ***
LPARAMETERS horizontal, newval

if (0 # horizontal)
 wait window nowait str(newval)
endif

C#

VB

// OLECompleteDrag event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

// OLECompleteDrag event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

C# private void OLECompleteDrag(object sender,
AxEXGRIDLib._IGridEvents_OLECompleteDragEvent e)
{

event OLECompleteDrag (Effect as Long)
Occurs when a source component is dropped onto a target component, informing the
source component that a drag action was either performed or canceled

Type Description

Effect as Long

A long set by the source object identifying the action that
has been performed, thus allowing the source to take
appropriate action if the component was moved (such as
the source deleting data if it is moved from one component
to another.

The OLECompleteDrag event is the final event to be called in an OLE drag/drop operation.
This event informs the source component of the action that was performed when the object
was dropped onto the target component. The target sets this value through the effect
parameter of the OLEDragDrop event. Based on this, the source can then determine the
appropriate action it needs to take. For example, if the object was moved into the target
(exDropEffectMove), the source needs to delete the object from itself after the move. The
control supports only manual OLE drag and drop events. In order to enable OLE drag and
drop feature into control you have to set the OLEDropMode and OLEDrag properties.

The settings for Effect are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

Syntax for OLECompleteDrag event, /NET version, on:

Syntax for OLECompleteDrag event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

void OnOLECompleteDrag(long Effect)
{
}

void __fastcall OLECompleteDrag(TObject *Sender,long Effect)
{
}

procedure OLECompleteDrag(ASender: TObject; Effect : Integer);
begin
end;

procedure OLECompleteDrag(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_OLECompleteDragEvent);
begin
end;

begin event OLECompleteDrag(long Effect)
end event OLECompleteDrag

Private Sub OLECompleteDrag(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_OLECompleteDragEvent) Handles OLECompleteDrag
End Sub

Private Sub OLECompleteDrag(ByVal Effect As Long)
End Sub

Private Sub OLECompleteDrag(ByVal Effect As Long)
End Sub

LPARAMETERS Effect

PROCEDURE OnOLECompleteDrag(oGrid,Effect)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="OLECompleteDrag(Effect)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLECompleteDrag(Effect)
End Function
</SCRIPT>

Procedure OnComOLECompleteDrag Integer llEffect
 Forward Send OnComOLECompleteDrag llEffect
End_Procedure

METHOD OCX_OLECompleteDrag(Effect) CLASS MainDialog
RETURN NIL

// OLECompleteDrag event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

function OLECompleteDrag as v (Effect as N)
end function

function nativeObject_OLECompleteDrag(Effect)
return

Syntax for OLECompleteDrag event, /COM version (others), on:

event OLEDragDrop (Data as ExDataObject, Effect as Long, Button as
Integer, Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS)
Occurs when a source component is dropped onto a target component when the source
component determines that a drop can occur.

Type Description

Data as ExDataObject

An ExDataObject object containing formats that the source
will provide and, in addition, possibly the data for those
formats. If no data is contained in the ExDataObject, it is
provided when the control calls the GetData method. The
SetData and Clear methods cannot be used here.

Effect as Long

A Long set by the target component identifying the action
that has been performed (if any), thus allowing the source
to take appropriate action if the component was moved
(such as the source deleting the data). The possible
values are listed in bellow.

Button as Integer

An integer which acts as a bit field corresponding to the
state of a mouse button when it is depressed. The left
button is bit 0, the right button is bit 1, and the middle
button is bit 2. These bits correspond to the values 1, 2,
and 4, respectively. It indicates the state of the mouse
buttons; some, all, or none of these three bits can be set,
indicating that some, all, or none of the buttons are
depressed

Shift as Integer

An integer which acts as a bit field corresponding to the
state of the SHIFT, CTRL, and ALT keys when they are
depressed. The SHIFT key is bit 0, the CTRL key is bit 1,
and the ALT key is bit 2. These bits correspond to the
values 1, 2, and 4, respectively. The shift parameter
indicates the state of these keys; some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are depressed. For example, if both the CTRL and
ALT keys were depressed, the value of shift would be 6.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

C#

VB

// OLEDragDrop event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

// OLEDragDrop event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

C#

C++

private void OLEDragDrop(object sender,
AxEXGRIDLib._IGridEvents_OLEDragDropEvent e)
{
}

void OnOLEDragDrop(LPDISPATCH Data,long FAR* Effect,short Button,short
Shift,long X,long Y)
{
}

In the /NET Assembly, you have to use the DragDrop event as explained here:

https://www.exontrol.com/sg.jsp?content=support/faq/net/#dragdrop

The OLEDragDrop event is fired when the user has dropped files or clipboard information
into the control. Use the OLEDropMode property on exOLEDropManual to enable OLE
drop and drop support. Use the ItemFromPoint property to get the item from point. Use the
ColumnFromPoint property to get the column from point. Use the AddItem method to add a
new item to the control. Use the InsertItem method to insert a new child item. Use the
ItemPosition property to specify the item's position.

The settings for Effect are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

Syntax for OLEDragDrop event, /NET version, on:

Syntax for OLEDragDrop event, /COM version, on:

https://exontrol.com/faq.jsp/net/#dragdrop

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall OLEDragDrop(TObject *Sender,Exgridlib_tlb::IExDataObject *Data,long *
Effect,short Button,short Shift,int X,int Y)
{
}

procedure OLEDragDrop(ASender: TObject; Data : IExDataObject;var Effect :
Integer;Button : Smallint;Shift : Smallint;X : Integer;Y : Integer);
begin
end;

procedure OLEDragDrop(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_OLEDragDropEvent);
begin
end;

begin event OLEDragDrop(oleobject Data,long Effect,integer Button,integer
Shift,long X,long Y)
end event OLEDragDrop

Private Sub OLEDragDrop(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_OLEDragDropEvent) Handles OLEDragDrop
End Sub

Private Sub OLEDragDrop(ByVal Data As EXGRIDLibCtl.IExDataObject,Effect As
Long,ByVal Button As Integer,ByVal Shift As Integer,ByVal X As Single,ByVal Y As
Single)
End Sub

Private Sub OLEDragDrop(ByVal Data As Object,Effect As Long,ByVal Button As
Integer,ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long)
End Sub

LPARAMETERS Data,Effect,Button,Shift,X,Y

PROCEDURE OnOLEDragDrop(oGrid,Data,Effect,Button,Shift,X,Y)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="OLEDragDrop(Data,Effect,Button,Shift,X,Y)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLEDragDrop(Data,Effect,Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComOLEDragDrop Variant llData Integer llEffect Short llButton
Short llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS llY
 Forward Send OnComOLEDragDrop llData llEffect llButton llShift llX llY
End_Procedure

METHOD OCX_OLEDragDrop(Data,Effect,Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

// OLEDragDrop event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

function OLEDragDrop as v (Data as OLE::Exontrol.Grid.1::IExDataObject,Effect as
N,Button as N,Shift as N,X as OLE::Exontrol.Grid.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Grid.1::OLE_YPOS_PIXELS)
end function

function nativeObject_OLEDragDrop(Data,Effect,Button,Shift,X,Y)
return

Syntax for OLEDragDrop event, /COM version (others), on:

The following VB sample adds a new item when the user drags a file (Open the Windows
Explorer, click and drag a file to the control) :

Private Sub Grid1_OLEDragDrop(Index As Integer, ByVal Data As
EXGRIDLibCtl.IExDataObject, Effect As Long, ByVal Button As Integer, ByVal Shift As Integer,

ByVal X As Single, ByVal Y As Single)
 If Data.GetFormat(exCFFiles) Then
 Data.GetData (exCFFiles)
 Dim strFile As String
 strFile = Data.Files(0)
 'Adds a new item to the control
 Grid1(Index).Visible = False
 With Grid1(Index)
 .BeginUpdate
 Dim i As HITEM
 i = .Items.AddItem(strFile)
 .Items.EnsureVisibleItem i
 .EndUpdate
 End With
 Grid1(Index).Visible = True
 End If
End Sub

The following VC sample inserts a child item for each file that user drags:

#import <exgrid.dll> rename("GetItems", "exGetItems")

#include "Items.h"
void OnOLEDragDropGrid1(LPDISPATCH Data, long FAR* Effect, short Button, short Shift,
long X, long Y)
{
 EXGRIDLib::IExDataObjectPtr spData(Data);
 if (spData != NULL)
 if (spData->GetFormat(EXGRIDLib::exCFFiles))
 {
 CItems items = m_grid.GetItems();
 // Gets the handle of the item where the files will be inserted
 long c = 0, h = 0, nParentItem = m_grid.GetItemFromPoint(X, Y, &c, &h);
 if (nParentItem == 0)
 if (c != 0)
 nParentItem = items.GetCellItem(c);
 EXGRIDLib::IExDataObjectFilesPtr spFiles(spData->Files);

 if (spFiles->Count > 0)
 {
 m_grid.BeginUpdate();
 COleVariant vtMissing; vtMissing.vt = VT_ERROR;
 for (long i = 0; i < spFiles->Count; i++)
 items.InsertItem(nParentItem, vtMissing, COleVariant(spFiles->GetItem(i
).operator const char *()));
 if (nParentItem)
 items.SetExpandItem(nParentItem, TRUE);
 m_grid.EndUpdate();
 }

 }
}

The #import statement imports definition for the ExDataObject and ExDataObjectFiles
objects. If the exgrid.dll file is located in another folder than the system folder, the path to
the file must be specified. The sample gets the item where the files were dragged and
insert all files in that position, as child items, if case.

The following VB.NET sample inserts a child item for each file that user drags:

Private Sub AxGrid1_OLEDragDrop(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_OLEDragDropEvent) Handles AxGrid1.OLEDragDrop
 If e.data.GetFormat(EXGRIDLib.exClipboardFormatEnum.exCFFiles) Then
 If (e.data.Files.Count > 0) Then
 AxGrid1.BeginUpdate()
 With AxGrid1.Items
 Dim iParent As Integer, c As Integer, hit As EXGRIDLib.HitTestInfoEnum
 iParent = AxGrid1.get_ItemFromPoint(e.x, e.y, c, hit)
 If iParent = 0 Then
 If Not c = 0 Then
 iParent = .CellItem(c)
 End If
 End If
 Dim i As Long
 For i = 0 To e.data.Files.Count - 1
 .InsertItem(iParent, , e.data.Files(i))

 Next
 If Not (iParent = 0) Then
 .ExpandItem(iParent) = True
 End If
 End With
 AxGrid1.EndUpdate()
 End If
 End If
End Sub

The following C# sample inserts a child item for each file that user drags:

private void axGrid1_OLEDragDrop(object sender,
AxEXGRIDLib._IGridEvents_OLEDragDropEvent e)
{
 if (e.data.GetFormat(Convert.ToInt16(EXGRIDLib.exClipboardFormatEnum.exCFFiles)))
 if (e.data.Files.Count > 0)
 {
 EXGRIDLib.HitTestInfoEnum hit;
 int c = 0, iParent = axGrid1.get_ItemFromPoint(e.x, e.y, out c, out hit);
 if (iParent == 0)
 if (c != 0)
 iParent = axGrid1.Items.get_CellItem(c);

 axGrid1.BeginUpdate();
 for (int i = 0; i < e.data.Files.Count; i++)
 axGrid1.Items.InsertItem(iParent,"", e.data.Files[i].ToString());
 if (iParent != 0)
 axGrid1.Items.set_ExpandItem(iParent, true);
 axGrid1.EndUpdate();
 }
}

The following VFP sample inserts a child item for each file that user drags:

*** ActiveX Control Event ***
LPARAMETERS data, effect, button, shift, x, y

local c, hit, iParent
c = 0
hit = 0
if (data.GetFormat(15)) && exCFFiles
 if (data.Files.Count() > 0)
 with thisform.Grid1.Items
 iParent = thisform.Grid1.ItemFromPoint(x, y, @c, @hit)

 thisform.Grid1.BeginUpdate()
 for i = 0 to data.files.Count() - 1
 .InsertItem(iParent, "", data.files(i))
 next
 if (iParent != 0)
 .DefaultItem = iParent
 .ExpandItem(0) = .t.
 endif
 thisform.Grid1.EndUpdate()
 endwith
 endif
endif

event OLEDragOver (Data as ExDataObject, Effect as Long, Button as
Integer, Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS, State as Integer)
Occurs when one component is dragged over another.

Type Description

Data as ExDataObject

An ExDataObject object containing formats that the source
will provide and, in addition, possibly the data for those
formats. If no data is contained in the ExDataObject, it is
provided when the control calls the GetData method. The
SetData and Clear methods cannot be used here

Effect as Long

A Long set by the target component identifying the action
that has been performed (if any), thus allowing the source
to take appropriate action if the component was moved
(such as the source deleting the data). The possible
values are listed bellow.

Button as Integer

An integer which acts as a bit field corresponding to the
state of a mouse button when it is depressed. The left
button is bit 0, the right button is bit 1, and the middle
button is bit 2. These bits correspond to the values 1, 2,
and 4, respectively. It indicates the state of the mouse
buttons; some, all, or none of these three bits can be set,
indicating that some, all, or none of the buttons are
depressed.

Shift as Integer

These bits correspond to the values 1, 2, and 4,
respectively. The shift parameter indicates the state of
these keys; some, all, or none of the bits can be set,
indicating that some, all, or none of the keys are
depressed. For example, if both the CTRL and ALT keys
were depressed, the value of shift would be 6.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

State as Integer
An integer that corresponds to the transition state of the
control being dragged in relation to a target form or
control. The possible values are listed bellow.

C#

VB

// OLEDragOver event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

// OLEDragOver event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

The settings for effect are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

The settings for state are:

exOLEDragEnter (0), Source component is being dragged within the range of a target.
exOLEDragLeave (1), Source component is being dragged out of the range of a
target.
exOLEOLEDragOver (2), Source component has moved from one position in the target
to another.

Note If the state parameter is 1, indicating that the mouse pointer has left the target, then
the x and y parameters will contain zeros.
The source component should always mask values from the effect parameter to ensure
compatibility with future implementations of ActiveX components. As a precaution against
future problems, drag sources and drop targets should mask these values appropriately
before performing any comparisons.
For example, a source component should not compare an effect against, say,
exOLEDropEffectCopy, such as in this manner:

If Effect = exOLEDropEffectCopy...
Instead, the source component should mask for the value or values being sought, such as
this:
If Effect And exOLEDropEffectCopy = exOLEDropEffectCopy...
-or-
If (Effect And exOLEDropEffectCopy)...
This allows for the definition of new drop effects in future versions while preserving
backwards compatibility with your existing code.
The control supports only manual OLE drag and drop events.

Syntax for OLEDragOver event, /NET version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

private void OLEDragOver(object sender,
AxEXGRIDLib._IGridEvents_OLEDragOverEvent e)
{
}

void OnOLEDragOver(LPDISPATCH Data,long FAR* Effect,short Button,short
Shift,long X,long Y,short State)
{
}

void __fastcall OLEDragOver(TObject *Sender,Exgridlib_tlb::IExDataObject
*Data,long * Effect,short Button,short Shift,int X,int Y,short State)
{
}

procedure OLEDragOver(ASender: TObject; Data : IExDataObject;var Effect :
Integer;Button : Smallint;Shift : Smallint;X : Integer;Y : Integer;State : Smallint);
begin
end;

procedure OLEDragOver(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_OLEDragOverEvent);
begin
end;

begin event OLEDragOver(oleobject Data,long Effect,integer Button,integer
Shift,long X,long Y,integer State)
end event OLEDragOver

Private Sub OLEDragOver(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_OLEDragOverEvent) Handles OLEDragOver
End Sub

Private Sub OLEDragOver(ByVal Data As EXGRIDLibCtl.IExDataObject,Effect As
Long,ByVal Button As Integer,ByVal Shift As Integer,ByVal X As Single,ByVal Y As
Single,ByVal State As Integer)

Syntax for OLEDragOver event, /COM version, on:

VBA

VFP

Xbas…

End Sub

Private Sub OLEDragOver(ByVal Data As Object,Effect As Long,ByVal Button As
Integer,ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long,ByVal State As
Integer)
End Sub

LPARAMETERS Data,Effect,Button,Shift,X,Y,State

PROCEDURE OnOLEDragOver(oGrid,Data,Effect,Button,Shift,X,Y,State)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

Visual
Objects

<SCRIPT EVENT="OLEDragOver(Data,Effect,Button,Shift,X,Y,State)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLEDragOver(Data,Effect,Button,Shift,X,Y,State)
End Function
</SCRIPT>

Procedure OnComOLEDragOver Variant llData Integer llEffect Short llButton Short
llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS llY Short llState
 Forward Send OnComOLEDragOver llData llEffect llButton llShift llX llY llState
End_Procedure

METHOD OCX_OLEDragOver(Data,Effect,Button,Shift,X,Y,State) CLASS MainDialog
RETURN NIL

// OLEDragOver event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

function OLEDragOver as v (Data as OLE::Exontrol.Grid.1::IExDataObject,Effect as
N,Button as N,Shift as N,X as OLE::Exontrol.Grid.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Grid.1::OLE_YPOS_PIXELS,State as N)

Syntax for OLEDragOver event, /COM version (others), on:

dBASE

end function

function nativeObject_OLEDragOver(Data,Effect,Button,Shift,X,Y,State)
return

event OLEGiveFeedback (Effect as Long, DefaultCursors as Boolean)
Allows the drag source to specify the type of OLE drag-and-drop operation and the visual
feedback.

Type Description

Effect as Long

A long integer set by the target component in the
OLEDragOver event specifying the action to be performed
if the user drops the selection on it. This allows the source
to take the appropriate action (such as giving visual
feedback). The possible values are listed bellow.

DefaultCursors as Boolean

Boolean value that determines whether to use the default
mouse cursor, or to use a user-defined mouse cursor.True
(default) = use default mouse cursor.False = do not use
default cursor. Mouse cursor must be set with the
MousePointer property of the Screen object

The settings for Effect are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

If there is no code in the OLEGiveFeedback event, or if the defaultcursors parameter is set
to True, the mouse cursor will be set to the default cursor provided by the control. The
source component should always mask values from the effect parameter to ensure
compatibility with future implementations of ActiveX components. As a precaution against
future problems, drag sources and drop targets should mask these values appropriately
before performing any comparisons.

For example, a source component should not compare an effect against, say,
exOLEDropEffectCopy, such as in this manner:
If Effect = exOLEDropEffectCopy...
Instead, the source component should mask for the value or values being sought, such as
this:
If Effect And exOLEDropEffectCopy = exOLEDropEffectCopy...
-or-
If (Effect And exOLEDropEffectCopy)...
This allows for the definition of new drop effects in future versions while preserving
backwards compatibility with your existing code.

C#

VB

// OLEGiveFeedback event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

// OLEGiveFeedback event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

private void OLEGiveFeedback(object sender,
AxEXGRIDLib._IGridEvents_OLEGiveFeedbackEvent e)
{
}

void OnOLEGiveFeedback(long Effect,BOOL FAR* DefaultCursors)
{
}

void __fastcall OLEGiveFeedback(TObject *Sender,long Effect,VARIANT_BOOL *
DefaultCursors)
{
}

procedure OLEGiveFeedback(ASender: TObject; Effect : Integer;var DefaultCursors
: WordBool);
begin
end;

procedure OLEGiveFeedback(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_OLEGiveFeedbackEvent);
begin
end;

begin event OLEGiveFeedback(long Effect,boolean DefaultCursors)
end event OLEGiveFeedback

The control supports only manual OLE drag and drop events.

Syntax for OLEGiveFeedback event, /NET version, on:

Syntax for OLEGiveFeedback event, /COM version, on:

VB.NET

VB6

VBA

VFP

Xbas…

Private Sub OLEGiveFeedback(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_OLEGiveFeedbackEvent) Handles OLEGiveFeedback
End Sub

Private Sub OLEGiveFeedback(ByVal Effect As Long,DefaultCursors As Boolean)
End Sub

Private Sub OLEGiveFeedback(ByVal Effect As Long,DefaultCursors As Boolean)
End Sub

LPARAMETERS Effect,DefaultCursors

PROCEDURE OnOLEGiveFeedback(oGrid,Effect,DefaultCursors)
RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="OLEGiveFeedback(Effect,DefaultCursors)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLEGiveFeedback(Effect,DefaultCursors)
End Function
</SCRIPT>

Procedure OnComOLEGiveFeedback Integer llEffect Boolean llDefaultCursors
 Forward Send OnComOLEGiveFeedback llEffect llDefaultCursors
End_Procedure

METHOD OCX_OLEGiveFeedback(Effect,DefaultCursors) CLASS MainDialog
RETURN NIL

// OLEGiveFeedback event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

Syntax for OLEGiveFeedback event, /COM version (others), on:

XBasic

dBASE

function OLEGiveFeedback as v (Effect as N,DefaultCursors as L)
end function

function nativeObject_OLEGiveFeedback(Effect,DefaultCursors)
return

C#

VB

// OLESetData event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

// OLESetData event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

C#

C++

C++
Builder

private void OLESetData(object sender,
AxEXGRIDLib._IGridEvents_OLESetDataEvent e)
{
}

void OnOLESetData(LPDISPATCH Data,short Format)
{
}

void __fastcall OLESetData(TObject *Sender,Exgridlib_tlb::IExDataObject
*Data,short Format)
{
}

event OLESetData (Data as ExDataObject, Format as Integer)
Occurs on a drag source when a drop target calls the GetData method and there is no data
in a specified format in the OLE drag-and-drop DataObject.

Type Description

Data as ExDataObject
An ExDataObject object in which to place the requested
data. The component calls the SetData method to load the
requested format.

Format as Integer

An integer specifying the format of the data that the target
component is requesting. The source component uses this
value to determine what to load into the ExDataObject
object.

The OLESetData is not implemented

Syntax for OLESetData event, /NET version, on:

Syntax for OLESetData event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure OLESetData(ASender: TObject; Data : IExDataObject;Format : Smallint);
begin
end;

procedure OLESetData(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_OLESetDataEvent);
begin
end;

begin event OLESetData(oleobject Data,integer Format)
end event OLESetData

Private Sub OLESetData(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_OLESetDataEvent) Handles OLESetData
End Sub

Private Sub OLESetData(ByVal Data As EXGRIDLibCtl.IExDataObject,ByVal Format
As Integer)
End Sub

Private Sub OLESetData(ByVal Data As Object,ByVal Format As Integer)
End Sub

LPARAMETERS Data,Format

PROCEDURE OnOLESetData(oGrid,Data,Format)
RETURN

Java…

VBSc…

<SCRIPT EVENT="OLESetData(Data,Format)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLESetData(Data,Format)
End Function

Syntax for OLESetData event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComOLESetData Variant llData Short llFormat
 Forward Send OnComOLESetData llData llFormat
End_Procedure

METHOD OCX_OLESetData(Data,Format) CLASS MainDialog
RETURN NIL

// OLESetData event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

function OLESetData as v (Data as OLE::Exontrol.Grid.1::IExDataObject,Format as
N)
end function

function nativeObject_OLESetData(Data,Format)
return

event OLEStartDrag (Data as ExDataObject, AllowedEffects as Long)
Occurs when the OLEDrag method is called.

Type Description

Data as ExDataObject

An ExDataObject object containing formats that the source
will provide and, optionally, the data for those formats. If
no data is contained in the ExDataObject, it is provided
when the control calls the GetData method. The
programmer should provide the values for this parameter
in this event. The SetData and Clear methods cannot be
used here.

AllowedEffects as Long

A long containing the effects that the source component
supports. The possible values are listed in Settings. The
programmer should provide the values for this parameter
in this event

In the /NET Assembly, you have to use the DragEnter event as explained here:

https://www.exontrol.com/sg.jsp?content=support/faq/net/#dragdrop

The settings for AllowEffects are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

The source component should logically Or together the supported values and places the
result in the AllowedEffects parameter. The target component can use this value to
determine the appropriate action (and what the appropriate user feedback should be). You
may wish to defer putting data into the ExDataObject object until the target component
requests it. This allows the source component to save time. If the user does not load any
formats into the ExDataObject, then the drag/drop operation is canceled. Use exCFFiles
and Files property to add files to the drag and drop data object.

The idea of drag and drop in exGrid control is the same as in other controls. To start
accepting drag and drop sources the exGrid control should have the OLEDropMode to
exOLEDropManual. Once that is is set, the exGrid starts accepting any drag and drop
sources.

The first step is if you want to be able to drag items from your exGrid control to other

https://exontrol.com/faq.jsp/net/#dragdrop

C#

VB

// OLEStartDrag event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

// OLEStartDrag event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

private void OLEStartDrag(object sender,
AxEXGRIDLib._IGridEvents_OLEStartDragEvent e)
{
}

void OnOLEStartDrag(LPDISPATCH Data,long FAR* AllowedEffects)
{
}

void __fastcall OLEStartDrag(TObject *Sender,Exgridlib_tlb::IExDataObject
*Data,long * AllowedEffects)
{
}

procedure OLEStartDrag(ASender: TObject; Data : IExDataObject;var
AllowedEffects : Integer);
begin
end;

procedure OLEStartDrag(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_OLEStartDragEvent);
begin
end;

controls the idea is to handle the OLE_StartDrag event. The event passes an object
ExDataObject (Data) as argument. The Data and AllowedEffects can be changed only in
the OLEStartDrag event. The OLE_StartDrag event is fired when user is about to drag
items from the control. The AllowedEffect parameter and SetData property must be set
to continue drag and drop operation, as in the following samples:

Syntax for OLEStartDrag event, /NET version, on:

Syntax for OLEStartDrag event, /COM version, on:

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin event OLEStartDrag(oleobject Data,long AllowedEffects)
end event OLEStartDrag

Private Sub OLEStartDrag(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_OLEStartDragEvent) Handles OLEStartDrag
End Sub

Private Sub OLEStartDrag(ByVal Data As
EXGRIDLibCtl.IExDataObject,AllowedEffects As Long)
End Sub

Private Sub OLEStartDrag(ByVal Data As Object,AllowedEffects As Long)
End Sub

LPARAMETERS Data,AllowedEffects

PROCEDURE OnOLEStartDrag(oGrid,Data,AllowedEffects)
RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="OLEStartDrag(Data,AllowedEffects)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLEStartDrag(Data,AllowedEffects)
End Function
</SCRIPT>

Procedure OnComOLEStartDrag Variant llData Integer llAllowedEffects
 Forward Send OnComOLEStartDrag llData llAllowedEffects
End_Procedure

METHOD OCX_OLEStartDrag(Data,AllowedEffects) CLASS MainDialog
RETURN NIL

// OLEStartDrag event is not supported. Use the DragEnter,DragLeave,DragOver,

Syntax for OLEStartDrag event, /COM version (others), on:

XBasic

dBASE

DragDrop ... events.

function OLEStartDrag as v (Data as
OLE::Exontrol.Grid.1::IExDataObject,AllowedEffects as N)
end function

function nativeObject_OLEStartDrag(Data,AllowedEffects)
return

The following VB sample drags data from a control to another, by registering a new
clipboard format:

Private Sub Grid1_OLEStartDrag(Index As Integer, ByVal Data As
EXGRIDLibCtl.IExDataObject, AllowedEffects As Long)

 ' We are going to add two clipboard formats: text and "EXGRID" clipboard format.
 ' We need to use RegisterClipboardFormat API function in order to register our
 ' clipboard format. One cliboard format is enough, but the sample shows
 ' how to filter in OLEDragDrop event the other clipboard formats

 ' Builds a string that contains each cell's caption on a new line
 Dim n As Long
 Dim s As String
 With Grid1(Index)
 s = Index & vbCrLf ' Saves the source
 For n = 0 To .Columns.Count - 1
 s = s & .Items.CellCaption(.Items.SelectedItem(0), n) & vbCrLf
 Next
 End With

 AllowedEffects = 0
 ' Checks whether the selected item has a parent
 If (Grid1(Index).Items.ItemParent(Grid1(Index).Items.SelectedItem(0)) <> 0) Then
 AllowedEffects = 1
 End If
 ' Sets the text clipboard format
 Data.SetData s, exCFText

 ' Builds an array of bytes, and copy there all characters in the s string.
 ' Passes the array to the SetData method.
 ReDim v(Len(s)) As Byte
 For n = 0 To Len(s) - 1
 v(n) = Asc(Mid(s, n + 1, 1))
 Next
 Data.SetData v, RegisterClipboardFormat("EXGRID")

End Sub

The code fills data for two types of clipboard formats: text (CF_TEXT) and "EXGRID"
registered clipboard format. The registered clipboard format must be an array of bytes. As
you can see we have used the RegisterClipboardFormat API function, and it should be
declared like:

Private Declare Function RegisterClipboardFormat Lib "user32" Alias
"RegisterClipboardFormatA" (ByVal lpString As String) As Integer

The second step is accepting OLE drag and drop source objects. That means, if you would
like to let your control accept drag and drop objects, you have to handle the OLEDragDrop
event. It gets as argument an object Data that stores the drag and drop information. The
next sample shows how handle the OLEDragDrop event:

Private Sub Grid1_OLEDragDrop(Index As Integer, ByVal Data As
EXGRIDLibCtl.IExDataObject, Effect As Long, ByVal Button As Integer, ByVal Shift As Integer,
ByVal X As Single, ByVal Y As Single)
 ' Checks whether the clipboard format is our. Since we have registered the clipboard in
the
 ' OLEStartData format we now its format, so we can handle this type of clip formats.
 If (Data.GetFormat(RegisterClipboardFormat("EXGRID"))) Then
 ' Builds the saved string from the array passed
 Dim s As String
 Dim v() As Byte
 Dim n As Integer
 v = Data.GetData(RegisterClipboardFormat("EXGRID"))
 For n = LBound(v) To UBound(v)
 s = s + Chr(v(n))
 Next

 Debug.Print s

 'Adds a new item to the control, and sets the cells captions like we saved, line by line
 Grid1(Index).Visible = False
 With Grid1(Index)
 .BeginUpdate
 Dim i As HITEM
 Dim item As String
 Dim nCur As Long
 i = .Items.AddItem()
 nCur = InStr(1, s, vbCrLf) + Len(vbCrLf) ' Jumps the source
 For n = 0 To .Columns.Count - 1
 Dim nnCur As Long
 nnCur = InStr(nCur, s, vbCrLf)
 .Items.CellCaption(i, n) = Mid(s, nCur, nnCur - nCur)
 nCur = nnCur + Len(vbCrLf)
 Next
 .Items.CellImage(i, "EmployeeID") = Int(.Items.CellCaption(i, "EmployeeID"))
 .Items.SetParent i, h(Index, Int(.Items.CellCaption(i, "EmployeeID")) - 1)
 .Items.EnsureVisibleItem i
 .EndUpdate
 End With
 Grid1(Index).Visible = True
 End If
End Sub

The following VC sample copies the selected items to the clipboard, as soon as the user
starts dragging the items:

#import <exgrid.dll> rename("GetItems", "exGetItems")

#include "Items.h"
#include "Columns.h"

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {

 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnOLEStartDragGrid1(LPDISPATCH Data, long FAR* AllowedEffects)
{
 CItems items = m_grid.GetItems();
 long nCount = items.GetSelectCount(), nColumnCount =
m_grid.GetColumns().GetCount();
 if (nCount > 0)
 {
 *AllowedEffects = /*exOLEDropEffectCopy */ 1;
 EXGRIDLib::IExDataObjectPtr spData(Data);
 if (spData !=NULL)
 {
 CString strData;
 for (long i = 0; i < nCount; i++)
 {
 COleVariant vtItem(items.GetSelectedItem(i));
 for (long j = 0; j < nColumnCount; j++)
 strData += V2S(&items.GetCellCaption(vtItem, COleVariant(j))) + "\t";
 }
 strData += "\r\n";
 spData->SetData(COleVariant(strData), COleVariant((long)EXGRIDLib::exCFText));
 }
 }
}

The sample saves data as CF_TEXT format (EXGRIDLib::exCFText). The data is a text,
where each item is separated by "\r\n" (new line), and each cell is separated by "\t" (TAB
charcater). Of course, data can be saved as you want. The sample only gives an idea of
what and how it could be done. The sample uses the #import statement to import the

control's type library, including definitions for ExDataObject and ExDataObjectFiles that are
required to fill data to be dragged. If your exgrid.dll file is located in another place than your
system folder, the path to the exgrid.dll file needs to be specified, else compiler errors
occur.

The following VB.NET sample copies the selected items to the clipboard, as soon as the
user starts dragging the items:

Private Sub AxGrid1_OLEStartDrag(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_OLEStartDragEvent) Handles AxGrid1.OLEStartDrag
 With AxGrid1.Items
 If (.SelectCount > 0) Then
 e.allowedEffects = 1 'exOLEDropEffectCopy
 Dim i As Integer, j As Integer, strData As String, nColumnCount As Long =
AxGrid1.Columns.Count
 For i = 0 To .SelectCount - 1
 For j = 0 To nColumnCount - 1
 strData = strData + .CellCaption(.SelectedItem(i), j) + Chr(Keys.Tab)
 Next
 Next
 strData = strData + vbCrLf
 e.data.SetData(strData, EXGRIDLib.exClipboardFormatEnum.exCFText)
 End If
 End With
End Sub

The following C# sample copies the selected items to the clipboard, as soon as the user
starts dragging the items:

private void axGrid1_OLEStartDrag(object sender,
AxEXGRIDLib._IGridEvents_OLEStartDragEvent e)
{
 int nCount = axGrid1.Items.SelectCount;
 if (nCount > 0)
 {
 int nColumnCount = axGrid1.Columns.Count;
 e.allowedEffects = /*exOLEDropEffectCopy*/ 1;
 string strData = "";
 for (int i =0 ; i < nCount; i++)

 {
 for (int j = 0; j < nColumnCount; j++)
 {
 object strCell = axGrid1.Items.get_CellCaption(axGrid1.Items.get_SelectedItem(i),
j);
 strData += (strCell != null ? strCell.ToString() : "") + "\t";
 }
 strData += "\r\n";
 }
 e.data.SetData(strData, EXGRIDLib.exClipboardFormatEnum.exCFText);
 }
}

The following VFP sample copies the selected items to the clipboard, as soon as the user
starts dragging the items:

*** ActiveX Control Event ***
LPARAMETERS data, allowedeffects

local sData, nColumnCount, i, j
with thisform.Grid1.Items
 if (.SelectCount() > 0)
 allowedeffects = 1 && exOLEDropEffectCopy
 sData = ""
 nColumnCount = thisform.Grid1.Columns.Count
 for i = 0 to .SelectCount - 1
 for j = 0 to nColumnCount
 sData = sData + .CellCaption(.SelectedItem(i), j) + chr(9)
 next
 sData = sData + chr(10)+ chr(13)
 next
 data.SetData(sData, 1) && exCFText
 endif
endwith

C#

VB

private void OversizeChanged(object sender,bool Horizontal,int NewVal)
{
}

Private Sub OversizeChanged(ByVal sender As System.Object,ByVal Horizontal As
Boolean,ByVal NewVal As Integer) Handles OversizeChanged
End Sub

C#

C++

C++
Builder

private void OversizeChanged(object sender,
AxEXGRIDLib._IGridEvents_OversizeChangedEvent e)
{
}

void OnOversizeChanged(BOOL Horizontal,long NewVal)
{
}

void __fastcall OversizeChanged(TObject *Sender,VARIANT_BOOL Horizontal,long
NewVal)
{
}

event OversizeChanged (Horizontal as Boolean, NewVal as Long)
Occurs when the right range of the scroll has been changed.

Type Description

Horizontal as Boolean A boolean expression that indicates whether the horizontal
scroll bar has changed

NewVal as Long A long value that indicates the new scroll bar value.

If the control has no scroll bars the OffsetChanged and OversizeChanged events are not
fired. When the scroll bar range is changed the OversizeChanged event is fired. Use the
ScrollBars property of the control to determine which scroll bars are visible within the
control. The control fires the LayoutChanged event when the user resizes a column, or
change its position.

Syntax for OversizeChanged event, /NET version, on:

Syntax for OversizeChanged event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure OversizeChanged(ASender: TObject; Horizontal : WordBool;NewVal :
Integer);
begin
end;

procedure OversizeChanged(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_OversizeChangedEvent);
begin
end;

begin event OversizeChanged(boolean Horizontal,long NewVal)
end event OversizeChanged

Private Sub OversizeChanged(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_OversizeChangedEvent) Handles OversizeChanged
End Sub

Private Sub OversizeChanged(ByVal Horizontal As Boolean,ByVal NewVal As Long)
End Sub

Private Sub OversizeChanged(ByVal Horizontal As Boolean,ByVal NewVal As Long)
End Sub

LPARAMETERS Horizontal,NewVal

PROCEDURE OnOversizeChanged(oGrid,Horizontal,NewVal)
RETURN

Java…

VBSc…

<SCRIPT EVENT="OversizeChanged(Horizontal,NewVal)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OversizeChanged(Horizontal,NewVal)
End Function
</SCRIPT>

Syntax for OversizeChanged event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComOversizeChanged Boolean llHorizontal Integer llNewVal
 Forward Send OnComOversizeChanged llHorizontal llNewVal
End_Procedure

METHOD OCX_OversizeChanged(Horizontal,NewVal) CLASS MainDialog
RETURN NIL

void onEvent_OversizeChanged(boolean _Horizontal,int _NewVal)
{
}

function OversizeChanged as v (Horizontal as L,NewVal as N)
end function

function nativeObject_OversizeChanged(Horizontal,NewVal)
return

Here's a trick that counts the number of items being shown while control is running in virtual
mode (VirtualMode property is True):

Private Sub Grid1_OversizeChanged(ByVal Horizontal As Boolean, ByVal NewVal As Long)
 If Not Horizontal Then
 Debug.Print NewVal + Grid1.Items.VisibleCount
 End If
End Sub

The idea is to add the NewVal parameter of the OversizeChanged event, with VisibleCount
property of the Items collection.

C#

VB

private void RClick(object sender)
{
}

Private Sub RClick(ByVal sender As System.Object) Handles RClick
End Sub

C#

C++

C++
Builder

Delphi

private void RClick(object sender, EventArgs e)
{
}

void OnRClick()
{
}

void __fastcall RClick(TObject *Sender)
{
}

procedure RClick(ASender: TObject;);
begin
end;

event RClick ()
Fired when right mouse button is clicked

Type Description

Use the RClick event to add your context menu. The RClick event notifies your application
when the user right clicks the control. Use the Click event to notify your application that the
user clicks the control (using the left mouse button). Use the MouseDown or MouseUp
event if you require the cursor position during the RClick event. Use the RClickSelect
property to specify whether the user can select items by right clicking the mouse. Use the
ItemFromPoint property to get the item from point. Use the ColumnFromPoint property to
get the column from point.

Syntax for RClick event, /NET version, on:

Syntax for RClick event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure RClick(sender: System.Object; e: System.EventArgs);
begin
end;

begin event RClick()
end event RClick

Private Sub RClick(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles RClick
End Sub

Private Sub RClick()
End Sub

Private Sub RClick()
End Sub

LPARAMETERS nop

PROCEDURE OnRClick(oGrid)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="RClick()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function RClick()
End Function
</SCRIPT>

Procedure OnComRClick
 Forward Send OnComRClick

Syntax for RClick event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_RClick() CLASS MainDialog
RETURN NIL

void onEvent_RClick()
{
}

function RClick as v ()
end function

function nativeObject_RClick()
return

The following VB sample use Exontrol's ExPopupMenu Component to display a context
menu when user has clicked the right mouse button in the control's client area:

Private Sub Grid1_RClick()
 Dim i As Long
 i = PopupMenu1.ShowAtCursor
End Sub

If you need to add a context menu based on the item you can use the MouseUp event, like
in the following VB sample:

Private Sub Grid1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single)
 If (Button = 2) Then
 ' Converts the container coordinates to client coordinates
 X = X / Screen.TwipsPerPixelX
 Y = Y / Screen.TwipsPerPixelY
 Dim h As HITEM
 Dim c As Long, hit as Long
 ' Gets the item from (X,Y)
 h = Grid1.ItemFromPoint(X, Y, c, hit)
 If Not (h = 0) Then
 Dim i As Long
 PopupMenu1.Items.Add Grid1.Items.CellCaption(h, c)

https://exontrol.com/expopupmenu.jsp

 i = PopupMenu1.ShowAtCursor
 End If
 End If
End Sub

The following VC sample displays the caption of the cell where the mouse is released:

#include "Items.h"

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnMouseUpGrid1(short Button, short Shift, long X, long Y)
{
 long c = 0, hit = 0, hItem = m_grid.GetItemFromPoint(X, Y, &c, &hit);
 if ((hItem != 0) || (c != 0))
 {
 CItems items = m_grid.GetItems();
 COleVariant vtItem(hItem), vtColumn(c);
 CString strCaption = V2S(&items.GetCellValue(vtItem, vtColumn)), strOutput;
 strOutput.Format("Cell: '%s', Hit = %08X\n", strCaption, hit);
 OutputDebugString(strOutput);
 }
}

The following VB.NET sample displays the caption of the cell where the mouse is released:

Private Sub AxGrid1_MouseUpEvent(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_MouseUpEvent) Handles AxGrid1.MouseUpEvent
 With AxGrid1
 Dim i As Integer, c As Integer, hit As EXGRIDLib.HitTestInfoEnum
 i = .get_ItemFromPoint(e.x, e.y, c, hit)
 If (Not (i = 0) Or Not (c = 0)) Then
 Debug.WriteLine("Cell: " & .Items.CellCaption(i, c) & " Hit: " & hit.ToString())
 End If
 End With
End Sub

The following C# sample displays the caption of the cell where the mouse is released:

private void axGrid1_MouseUpEvent(object sender,
AxEXGRIDLib._IGridEvents_MouseUpEvent e)
{
 int c = 0;
 EXGRIDLib.HitTestInfoEnum hit;
 int i = axGrid1.get_ItemFromPoint(e.x, e.y, out c,out hit);
 if ((i != 0) || (c != 0))
 {
 string s = axGrid1.Items.get_CellCaption(i,c).ToString();
 s = "Cell: " + s + ", Hit: " + hit.ToString();
 System.Diagnostics.Debug.WriteLine(s);
 }
}

The following VFP sample displays the caption of the cell where the mouse is released:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

local c, hit
c = 0
hit = 0
with thisform.Grid1
 .Items.DefaultItem = .ItemFromPoint(x, y, @c, @hit)
 if (.Items.DefaultItem <> 0) or (c <> 0)

 wait window nowait .Items.CellCaption(0, c) + " " + Str(hit)
 endif
endwith

C#

VB

private void RClick(object sender)
{
}

Private Sub RClick(ByVal sender As System.Object) Handles RClick
End Sub

C#

C++

C++
Builder

Delphi

private void RClick(object sender, EventArgs e)
{
}

void OnRClick()
{
}

void __fastcall RClick(TObject *Sender)
{
}

procedure RClick(ASender: TObject;);
begin

event RemoveColumn (Column as Column)
Fired before deleting a Column.

Type Description

Column as Column A Column object that is removing from the Columns
collection.

The RemoveColumn event is invoked when the control is about to remove a column. Use the
RemoveColumn event to release any extra data associated to the column. Use the Remove
method to remove a specific column from Columns collection. Use the Clear method to
clear the columns collection. Use the RemoveItem method to remove an item. Use the
RemoveAllItems method to remove all items. Use the CellData property to assign an extra
data to a cell. Use the ItemData property to assign an extra data to an item. Use the Data
property to assign an extra data to a column

Syntax for RClick event, /NET version, on:

Syntax for RClick event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

procedure RClick(sender: System.Object; e: System.EventArgs);
begin
end;

begin event RClick()
end event RClick

Private Sub RClick(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles RClick
End Sub

Private Sub RClick()
End Sub

Private Sub RClick()
End Sub

LPARAMETERS nop

PROCEDURE OnRClick(oGrid)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="RClick()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function RClick()
End Function
</SCRIPT>

Procedure OnComRClick
 Forward Send OnComRClick
End_Procedure

Syntax for RClick event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

METHOD OCX_RClick() CLASS MainDialog
RETURN NIL

void onEvent_RClick()
{
}

function RClick as v ()
end function

function nativeObject_RClick()
return

C#

VB

private void RemoveItem(object sender,int Item)
{
}

Private Sub RemoveItem(ByVal sender As System.Object,ByVal Item As Integer)
Handles RemoveItem
End Sub

C#

C++

C++
Builder

private void RemoveItem(object sender,
AxEXGRIDLib._IGridEvents_RemoveItemEvent e)
{
}

void OnRemoveItem(long Item)
{
}

void __fastcall RemoveItem(TObject *Sender,Exgridlib_tlb::HITEM Item)
{
}

event RemoveItem (Item as HITEM)
Occurs before deleting an Item.

Type Description

Item as HITEM A long expression that indicates the handle of item being
deleted.

Use the RemoveItem to release any extra data that you might have used. The control fires
the RemoveItem event before removing the item. Use the RemoveItem method to remove
an item from Items collection. Use the RemoveAllItems method to clear the items collection.
Use the Remove method to remove a column. Use the Clear method to clear the columns
collection. Use the CellData property to assign an extra data to a cell. Use the ItemData
property to assign an extra data to an item. Use the Data property to assign an extra data
to a column.

Syntax for RemoveItem event, /NET version, on:

Syntax for RemoveItem event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure RemoveItem(ASender: TObject; Item : HITEM);
begin
end;

procedure RemoveItem(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_RemoveItemEvent);
begin
end;

begin event RemoveItem(long Item)
end event RemoveItem

Private Sub RemoveItem(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_RemoveItemEvent) Handles RemoveItem
End Sub

Private Sub RemoveItem(ByVal Item As EXGRIDLibCtl.HITEM)
End Sub

Private Sub RemoveItem(ByVal Item As Long)
End Sub

LPARAMETERS Item

PROCEDURE OnRemoveItem(oGrid,Item)
RETURN

Java…

VBSc…

<SCRIPT EVENT="RemoveItem(Item)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function RemoveItem(Item)
End Function
</SCRIPT>

Syntax for RemoveItem event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComRemoveItem HITEM llItem
 Forward Send OnComRemoveItem llItem
End_Procedure

METHOD OCX_RemoveItem(Item) CLASS MainDialog
RETURN NIL

void onEvent_RemoveItem(int _Item)
{
}

function RemoveItem as v (Item as OLE::Exontrol.Grid.1::HITEM)
end function

function nativeObject_RemoveItem(Item)
return

C#

VB

private void ScrollButtonClick(object sender,exontrol.EXGRIDLib.ScrollBarEnum
ScrollBar,exontrol.EXGRIDLib.ScrollPartEnum ScrollPart)
{
}

Private Sub ScrollButtonClick(ByVal sender As System.Object,ByVal ScrollBar As
exontrol.EXGRIDLib.ScrollBarEnum,ByVal ScrollPart As
exontrol.EXGRIDLib.ScrollPartEnum) Handles ScrollButtonClick
End Sub

C# private void ScrollButtonClick(object sender,
AxEXGRIDLib._IGridEvents_ScrollButtonClickEvent e)
{
}

event ScrollButtonClick (ScrollBar as ScrollBarEnum, ScrollPart as
ScrollPartEnum)
Occurs when the user clicks a button in the scrollbar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that specifies the scroll bar
being clicked.

ScrollPart as ScrollPartEnum A ScrollPartEnum expression that indicates the part of the
scroll being clicked.

Use the ScrollButtonClick event to notify your application that the user clicks a button in the
control's scrollbar. The ScrollButtonClick event is fired when the user clicks and releases
the mouse over an enabled part of the scroll bar. Use the ScrollBars property to specify the
visible scrollbars in the control. Use the ScrollPartVisible property to add or remove
buttons/parts in the control's scrollbar. Use the ScrollPartEnable property to specify enable
or disable parts in the control's scrollbar. Use the ScrolPartCaption property to specify the
caption of the scroll's part. Use the OffsetChanged event to notify your application that the
scroll position is changed. Use the OversizeChanged event to notify your application
whether the range for a specified scroll bar is changed. Use the ScrollPos property to
specify the position for the control's scroll bar. Use the Background property to change the
visual appearance for any part in the control's scroll bar.

Syntax for ScrollButtonClick event, /NET version, on:

Syntax for ScrollButtonClick event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnScrollButtonClick(long ScrollBar,long ScrollPart)
{
}

void __fastcall ScrollButtonClick(TObject *Sender,Exgridlib_tlb::ScrollBarEnum
ScrollBar,Exgridlib_tlb::ScrollPartEnum ScrollPart)
{
}

procedure ScrollButtonClick(ASender: TObject; ScrollBar :
ScrollBarEnum;ScrollPart : ScrollPartEnum);
begin
end;

procedure ScrollButtonClick(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_ScrollButtonClickEvent);
begin
end;

begin event ScrollButtonClick(long ScrollBar,long ScrollPart)
end event ScrollButtonClick

Private Sub ScrollButtonClick(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_ScrollButtonClickEvent) Handles ScrollButtonClick
End Sub

Private Sub ScrollButtonClick(ByVal ScrollBar As
EXGRIDLibCtl.ScrollBarEnum,ByVal ScrollPart As EXGRIDLibCtl.ScrollPartEnum)
End Sub

Private Sub ScrollButtonClick(ByVal ScrollBar As Long,ByVal ScrollPart As Long)
End Sub

LPARAMETERS ScrollBar,ScrollPart

PROCEDURE OnScrollButtonClick(oGrid,ScrollBar,ScrollPart)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="ScrollButtonClick(ScrollBar,ScrollPart)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ScrollButtonClick(ScrollBar,ScrollPart)
End Function
</SCRIPT>

Procedure OnComScrollButtonClick OLEScrollBarEnum llScrollBar
OLEScrollPartEnum llScrollPart
 Forward Send OnComScrollButtonClick llScrollBar llScrollPart
End_Procedure

METHOD OCX_ScrollButtonClick(ScrollBar,ScrollPart) CLASS MainDialog
RETURN NIL

void onEvent_ScrollButtonClick(int _ScrollBar,int _ScrollPart)
{
}

function ScrollButtonClick as v (ScrollBar as
OLE::Exontrol.Grid.1::ScrollBarEnum,ScrollPart as
OLE::Exontrol.Grid.1::ScrollPartEnum)
end function

function nativeObject_ScrollButtonClick(ScrollBar,ScrollPart)
return

Syntax for ScrollButtonClick event, /COM version (others), on:

The following VB sample displays the identifier of the scroll's button being clicked:

With Grid1
 .BeginUpdate
 .ScrollBars = exDisableBoth
 .ScrollPartVisible(exVScroll, exLeftB1Part Or exRightB1Part) = True
 .ScrollPartCaption(exVScroll, exLeftB1Part) = "1"

 .ScrollPartCaption(exVScroll, exRightB1Part) = "2"
 .EndUpdate
End With

Private Sub Grid1_ScrollButtonClick(ByVal ScrollPart As EXGRIDLibCtl.ScrollPartEnum)
 MsgBox (ScrollPart)
End Sub

The following VB.NET sample displays the identifier of the scroll's button being clicked:

With AxGrid1
 .BeginUpdate()
 .ScrollBars = EXGRIDLib.ScrollBarsEnum.exDisableBoth
 .set_ScrollPartVisible(EXGRIDLib.ScrollBarEnum.exVScroll,
EXGRIDLib.ScrollPartEnum.exLeftB1Part Or EXGRIDLib.ScrollPartEnum.exRightB1Part, True)
 .set_ScrollPartCaption(EXGRIDLib.ScrollBarEnum.exVScroll,
EXGRIDLib.ScrollPartEnum.exLeftB1Part, "1")
 .set_ScrollPartCaption(EXGRIDLib.ScrollBarEnum.exVScroll,
EXGRIDLib.ScrollPartEnum.exRightB1Part, "2")
 .EndUpdate()
End With

Private Sub AxGrid1_ScrollButtonClick(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_ScrollButtonClickEvent) Handles AxGrid1.ScrollButtonClick
 MessageBox.Show(e.scrollPart.ToString())
End Sub

The following C# sample displays the identifier of the scroll's button being clicked:

axGrid1.BeginUpdate();
axGrid1.ScrollBars = EXGRIDLib.ScrollBarsEnum.exDisableBoth;
axGrid1.set_ScrollPartVisible(EXGRIDLib.ScrollBarEnum.exVScroll,
EXGRIDLib.ScrollPartEnum.exLeftB1Part | EXGRIDLib.ScrollPartEnum.exRightB1Part, true);
axGrid1.set_ScrollPartCaption(EXGRIDLib.ScrollBarEnum.exVScroll,
EXGRIDLib.ScrollPartEnum.exLeftB1Part , "1");
axGrid1.set_ScrollPartCaption(EXGRIDLib.ScrollBarEnum.exVScroll,
EXGRIDLib.ScrollPartEnum.exRightB1Part, "2");
axGrid1.EndUpdate();

private void axGrid1_ScrollButtonClick(object sender,
AxEXGRIDLib._IGridEvents_ScrollButtonClickEvent e)
{
 MessageBox.Show(e.scrollPart.ToString());
}

The following C++ sample displays the identifier of the scroll's button being clicked:

m_grid.BeginUpdate();
m_grid.SetScrollBars(15 /*exDisableBoth*/);
m_grid.SetScrollPartVisible(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ | 32
/*exRightB1Part*/, TRUE);
m_grid.SetScrollPartCaption(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ , _T("
1"));
m_grid.SetScrollPartCaption(0 /*exVScroll*/, 32 /*exRightB1Part*/ , _T("2")
);
m_grid.EndUpdate();

void OnScrollButtonClickGrid1(long ScrollPart)
{
 CString strFormat;
 strFormat.Format(_T("%i"), ScrollPart);
 MessageBox(strFormat);
}

The following VFP sample displays the identifier of the scroll's button being clicked:

With thisform.Grid1
 .BeginUpdate
 .ScrollBars = 15
 .ScrollPartVisible(0, bitor(32768,32)) = .t.
 .ScrollPartCaption(0,32768) = "1"
 .ScrollPartCaption(0, 32) = "2"
 .EndUpdate
EndWith

*** ActiveX Control Event ***
LPARAMETERS scrollpart

wait window nowait ltrim(str(scrollpart))

C#

VB

private void SelectionChanged(object sender)
{
}

Private Sub SelectionChanged(ByVal sender As System.Object) Handles
SelectionChanged
End Sub

C#

C++

C++
Builder

private void SelectionChanged(object sender, EventArgs e)
{
}

void OnSelectionChanged()
{
}

void __fastcall SelectionChanged(TObject *Sender)
{

event SelectionChanged ()
Fired after a new item has been selected.

Type Description

Use the SelectionChanged event to notify your application that the user selects an item
(that's selectable). The control supports single or multiple selection as well. When an item is
selected or unselected the control fires the SelectionChanged event. Use the SingleSel
property to specify if your control supports single or multiple selection. Use the SelectCount
property to get the number of selected items. Use the SelectedItem property to get the
selected item. Use the SelectItem to select or unselect a specified item. Use the FocusItem
property to get the focused item. If the control supports only single selection, you can use
the FocusItem property to get the selected/focused item because they are always the
same. Use the SelForeColor and SelBackColor properties to specify colors for selected
items. Use the CellValue property to retrieve the cell's value. Use the Selected property to
specify whether a column is selected when the FullRowSelect property is exRectSel. The
SelectPos property selects/unselects items by position. The Selection property
selects/unselects items by index.

Syntax for SelectionChanged event, /NET version, on:

Syntax for SelectionChanged event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure SelectionChanged(ASender: TObject;);
begin
end;

procedure SelectionChanged(sender: System.Object; e: System.EventArgs);
begin
end;

begin event SelectionChanged()
end event SelectionChanged

Private Sub SelectionChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles SelectionChanged
End Sub

Private Sub SelectionChanged()
End Sub

Private Sub SelectionChanged()
End Sub

LPARAMETERS nop

PROCEDURE OnSelectionChanged(oGrid)
RETURN

Java…

VBSc…

<SCRIPT EVENT="SelectionChanged()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function SelectionChanged()
End Function
</SCRIPT>

Syntax for SelectionChanged event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComSelectionChanged
 Forward Send OnComSelectionChanged
End_Procedure

METHOD OCX_SelectionChanged() CLASS MainDialog
RETURN NIL

void onEvent_SelectionChanged()
{
}

function SelectionChanged as v ()
end function

function nativeObject_SelectionChanged()
return

The following VB sample displays the selected items:

Private Sub Grid1_SelectionChanged()
 On Error Resume Next
 Dim h As HITEM
 Dim i As Long, j As Long, nCols As Long, nSels As Long
 nCols = Grid1.Columns.Count
 With Grid1.Items
 nSels = .SelectCount
 For i = 0 To nSels - 1
 Dim s As String
 For j = 0 To nCols - 1
 s = s + .CellValue(.SelectedItem(i), j) + Chr(9)
 Next
 Debug.Print s
 Next
 End With
End Sub

The following VB sample expands programmatically items when the selection is changed:

Private Sub Grid1_SelectionChanged()
 Grid1.Items.ExpandItem(Grid1.Items.SelectedItem()) = True
End Sub

The following VB sample displays the selected items:

Private Sub Grid1_SelectionChanged()
 Dim i As Long
 With Grid1.Items
 For i = 0 To .SelectCount - 1
 Debug.Print .CellValue(.SelectedItem(i), 0)
 Next
 End With
End Sub

The following VC sample displays the selected items:

#include "Items.h"

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnSelectionChangedGrid1()
{
 CItems items = m_grid.GetItems();
 for (long i = 0; i < items.GetSelectCount(); i++)
 {

 COleVariant vtItem(items.GetSelectedItem(i));
 CString strOutput;
 strOutput.Format("%s\n", V2S(&items.GetCellValue(vtItem, COleVariant((long)0)))
);
 OutputDebugString(strOutput);
 }
}

The following VB.NET sample displays the selected items:

Private Sub AxGrid1_SelectionChanged(ByVal sender As Object, ByVal e As
System.EventArgs) Handles AxGrid1.SelectionChanged
 With AxGrid1.Items
 Dim i As Integer
 For i = 0 To .SelectCount - 1
 Debug.WriteLine(.CellValue(.SelectedItem(i), 0))
 Next
 End With
End Sub

The following C# sample displays the selected items:

private void axGrid1_SelectionChanged(object sender, System.EventArgs e)
{
 for (int i = 0; i < axGrid1.Items.SelectCount; i++)
 {
 object cell = axGrid1.Items.get_CellValue(axGrid1.Items.get_SelectedItem(i), 0);
 System.Diagnostics.Debug.WriteLine(cell != null ? cell.ToString() : "");
 }
}

The following VFP sample displays the selected items:

*** ActiveX Control Event ***

with thisform.Grid1.Items
 for i = 0 to .SelectCount - 1
 .DefaultItem = .SelectedItem(i)
 wait window nowait .CellValue(0, 0)

 next
endwith

C#

VB

private void Sort(object sender)
{
}

Private Sub Sort(ByVal sender As System.Object) Handles Sort
End Sub

C#

C++

C++
Builder

Delphi

private void Sort(object sender, EventArgs e)
{
}

void OnSort()
{
}

void __fastcall Sort(TObject *Sender)
{
}

procedure Sort(ASender: TObject;);
begin

event Sort ()
Fired when the control sorts a column.

Type Description

The control fires the Sort event when the control sorts a column (the user clicks the
column's head) or when the sorting position is changed in the control's sort bar. Use the
SortOnClick property to specify the action that control executes when the user clicks the
column's head. Use the SortBarVisible property to show the control's sort bar. Use the
SortOrder property to sorts a column at runtime. Use the SortPosition property to
determine the position of the column in the sorting columns collection. Use the
ItemBySortPosition property to access a column giving its position in the sorting columns
collection. Use the Sort event to sort the data when the SortOnClk property is exUserSort.
Use the SingleSort property to allow sorting by single or multiple columns. The
EnsureOnSort property prevents scrolling the control's content when the user sorts items.

Syntax for Sort event, /NET version, on:

Syntax for Sort event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

procedure Sort(sender: System.Object; e: System.EventArgs);
begin
end;

begin event Sort()
end event Sort

Private Sub Sort(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Sort
End Sub

Private Sub Sort()
End Sub

Private Sub Sort()
End Sub

LPARAMETERS nop

PROCEDURE OnSort(oGrid)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="Sort()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Sort()
End Function
</SCRIPT>

Procedure OnComSort
 Forward Send OnComSort
End_Procedure

Syntax for Sort event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

METHOD OCX_Sort() CLASS MainDialog
RETURN NIL

void onEvent_Sort()
{
}

function Sort as v ()
end function

function nativeObject_Sort()
return

The following VB sample displays the list of columns being sorted:

Private Sub Grid1_Sort()
 Dim s As String, i As Long, c As Column
 i = 0
 With Grid1.Columns
 Set c = .ItemBySortPosition(i)
 While (Not c Is Nothing)
 s = s + """" & c.Caption & """ " & IIf(c.SortOrder = SortAscending, "A", "D") & " "
 i = i + 1
 Set c = .ItemBySortPosition(i)
 Wend
 End With
 s = "Sort: " & s
 Debug.Print s
End Sub

The following VC sample displays the list of columns being sorted:

void OnSortGrid1()
{
 CString strOutput;
 CColumns columns = m_tree.GetColumns();
 long i = 0;
 CColumn column = columns.GetItemBySortPosition(COleVariant(i));

 while (column.m_lpDispatch)
 {
 strOutput += "\"" + column.GetCaption() + "\" " + (column.GetSortOrder() == 1 ?
"A" : "D") + " ";
 i++;
 column = columns.GetItemBySortPosition(COleVariant(i));
 }
 OutputDebugString(strOutput);
}

The following VB.NET sample displays the list of columns being sorted:

Private Sub AxGrid1_Sort(ByVal sender As Object, ByVal e As System.EventArgs) Handles
AxGrid1.Sort
 With AxGrid1
 Dim s As String, i As Integer, c As EXGRIDLib.Column
 i = 0
 With AxGrid1.Columns
 c = .ItemBySortPosition(i)
 While (Not c Is Nothing)
 s = s + """" & c.Caption & """ " & IIf(c.SortOrder =
EXGRIDLib.SortOrderEnum.SortAscending, "A", "D") & " "
 i = i + 1
 c = .ItemBySortPosition(i)
 End While
 End With
 s = "Sort: " & s
 Debug.WriteLine(s)
 End With
End Sub

The following C# sample displays the list of columns being sorted:

private void axGrid1_Sort(object sender, System.EventArgs e)
{
 string strOutput = "";
 int i = 0;
 EXGRIDLib.Column column = axGrid1.Columns.get_ItemBySortPosition(i);

 while (column != null)
 {
 strOutput += column.Caption + " " + (column.SortOrder ==
EXGRIDLib.SortOrderEnum.SortAscending ? "A" : "D") + " ";
 column = axGrid1.Columns.get_ItemBySortPosition(++i);
 }
 Debug.WriteLine(strOutput);
}

C#

VB

private void ToolTip(object sender,int Item,int ColIndex,ref bool Visible,ref int X,ref
int Y,int CX,int CY)
{
}

Private Sub ToolTip(ByVal sender As System.Object,ByVal Item As Integer,ByVal
ColIndex As Integer,ByRef Visible As Boolean,ByRef X As Integer,ByRef Y As
Integer,ByVal CX As Integer,ByVal CY As Integer) Handles ToolTip
End Sub

event ToolTip (Item as HITEM, ColIndex as Long, ByRef Visible as
Boolean, ByRef X as Long, ByRef Y as Long, CX as Long, CY as Long)
Fired when the control prepares the object's tooltip.

Type Description

Item as HITEM A long expression that indicates the item's handle or 0 if
the cursor is not over the cell.

ColIndex as Long A long expression that indicates the column's index.

Visible as Boolean (By Reference) A boolean expression that indicates
whether the object's tooltip is visible.

X as Long
(By Reference) A long expression that indicates the left
location of the tooltip window. The x values is always
expressed in screen coordinates.

Y as Long
(By Reference) A long expression that indicates the top
location of the tooltip window. The y values is always
expressed in screen coordinates.

CX as Long A long expression that indicates the width of the tooltip
window.

CY as Long A long expression that indicates the height of the tooltip
window.

The ToolTip event notifies your application that the control prepares the tooltip for a cell or
column. Use the ToolTip event to change the default position of the tooltip window. Use the
CellToolTip property to specify the cell's tooltip. Use the Tooltip property to assign a tooltip
to a column. Use the ToolTipWidth property to specify the width of the tooltip window.

Syntax for ToolTip event, /NET version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

private void ToolTip(object sender, AxEXGRIDLib._IGridEvents_ToolTipEvent e)
{
}

void OnToolTip(long Item,long ColIndex,BOOL FAR* Visible,long FAR* X,long FAR*
Y,long CX,long CY)
{
}

void __fastcall ToolTip(TObject *Sender,Exgridlib_tlb::HITEM Item,long
ColIndex,VARIANT_BOOL * Visible,long * X,long * Y,long CX,long CY)
{
}

procedure ToolTip(ASender: TObject; Item : HITEM;ColIndex : Integer;var Visible :
WordBool;var X : Integer;var Y : Integer;CX : Integer;CY : Integer);
begin
end;

procedure ToolTip(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_ToolTipEvent);
begin
end;

begin event ToolTip(long Item,long ColIndex,boolean Visible,long X,long Y,long
CX,long CY)
end event ToolTip

Private Sub ToolTip(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_ToolTipEvent) Handles ToolTip
End Sub

Private Sub ToolTip(ByVal Item As EXGRIDLibCtl.HITEM,ByVal ColIndex As
Long,Visible As Boolean,X As Long,Y As Long,ByVal CX As Long,ByVal CY As Long)
End Sub

Private Sub ToolTip(ByVal Item As Long,ByVal ColIndex As Long,Visible As

Syntax for ToolTip event, /COM version, on:

VFP

Xbas…

Boolean,X As Long,Y As Long,ByVal CX As Long,ByVal CY As Long)
End Sub

LPARAMETERS Item,ColIndex,Visible,X,Y,CX,CY

PROCEDURE OnToolTip(oGrid,Item,ColIndex,Visible,X,Y,CX,CY)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="ToolTip(Item,ColIndex,Visible,X,Y,CX,CY)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ToolTip(Item,ColIndex,Visible,X,Y,CX,CY)
End Function
</SCRIPT>

Procedure OnComToolTip HITEM llItem Integer llColIndex Boolean llVisible Integer
llX Integer llY Integer llCX Integer llCY
 Forward Send OnComToolTip llItem llColIndex llVisible llX llY llCX llCY
End_Procedure

METHOD OCX_ToolTip(Item,ColIndex,Visible,X,Y,CX,CY) CLASS MainDialog
RETURN NIL

void onEvent_ToolTip(int _Item,int _ColIndex,COMVariant /*bool*/
_Visible,COMVariant /*long*/ _X,COMVariant /*long*/ _Y,int _CX,int _CY)
{
}

function ToolTip as v (Item as OLE::Exontrol.Grid.1::HITEM,ColIndex as N,Visible as
L,X as N,Y as N,CX as N,CY as N)
end function

function nativeObject_ToolTip(Item,ColIndex,Visible,X,Y,CX,CY)

Syntax for ToolTip event, /COM version (others), on:

return

event URChange (Operation as Long)
Occurs once the control's undo/redo queue is changed.

Type Description

Operation as Long

A long expression that specifies the type of operation that
occurred as defined:

 exUndoRedo (0x10, 16), specifies that an undo/redo
operation occurred
exUndo(0x11, 17), specifies that an undo operation
occurred
exUndo(0x12, 18), specifies that an redo operation
occurred

The URChange event occurs once an undo/redo operation occurs. The AllowUndoRedo
property enables or disables the control's Undo/Redo feature. The UndoListAction property
lists the Undo actions that can be performed in the control. The RedoListAction property
lists the Redo actions that can be performed in the control. The Undo and Redo features let
you remove or repeat single or multiple actions, but all actions must be undone or redone in
the order you did or undid them you cant skip actions. For example, if you change the value
of three cells in an item and then decide you want to undo the first change you made, you
must undo all three changes. To undo an action you need to press Ctrl+Z, while for to redo
something you've undone, press Ctrl+Y.

C#

VB

private void UserEditorClose(object sender,object Obj,int Item,int ColIndex)
{
}

Private Sub UserEditorClose(ByVal sender As System.Object,ByVal Obj As
Object,ByVal Item As Integer,ByVal ColIndex As Integer) Handles UserEditorClose
End Sub

C#

C++

private void UserEditorClose(object sender,
AxEXGRIDLib._IGridEvents_UserEditorCloseEvent e)
{
}

void OnUserEditorClose(LPDISPATCH Object,long Item,long ColIndex)
{
}

event UserEditorClose (Object as Object, Item as HITEM, ColIndex as
Long)
Fired the user editor is about to be opened.

Type Description
Object as Object An object created by UserEditor property.

Item as HITEM

A long expression that determines the item's handle. If the
Item parameter is 0, and the ColIndex property is different
than zero, the ColIndex indicates the handle of the cell
where the state is changed.

ColIndex as Long
A long expression that indicates the column's index, if the
Item parameter is not zero, a long expression that
indicates the handle of the cell if the Item parameter is 0.

Use the UserEditorClose event to notify your application when the user editor is hidden. Use
the UserEditorClose event to update the cell's value when user editor is hidden. The control
fires UserEditorOleEvent event each time when a an user editor object fires an event.

Syntax for UserEditorClose event, /NET version, on:

Syntax for UserEditorClose event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall UserEditorClose(TObject *Sender,IDispatch *Object,Exgridlib_tlb::HITEM
Item,long ColIndex)
{
}

procedure UserEditorClose(ASender: TObject; Object : IDispatch;Item :
HITEM;ColIndex : Integer);
begin
end;

procedure UserEditorClose(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_UserEditorCloseEvent);
begin
end;

begin event UserEditorClose(oleobject Object,long Item,long ColIndex)
end event UserEditorClose

Private Sub UserEditorClose(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_UserEditorCloseEvent) Handles UserEditorClose
End Sub

Private Sub UserEditorClose(ByVal Object As Object,ByVal Item As
EXGRIDLibCtl.HITEM,ByVal ColIndex As Long)
End Sub

Private Sub UserEditorClose(ByVal Object As Object,ByVal Item As Long,ByVal
ColIndex As Long)
End Sub

LPARAMETERS Object,Item,ColIndex

PROCEDURE OnUserEditorClose(oGrid,Object,Item,ColIndex)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="UserEditorClose(Object,Item,ColIndex)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function UserEditorClose(Object,Item,ColIndex)
End Function
</SCRIPT>

Procedure OnComUserEditorClose Variant llObject HITEM llItem Integer llColIndex
 Forward Send OnComUserEditorClose llObject llItem llColIndex
End_Procedure

METHOD OCX_UserEditorClose(Object,Item,ColIndex) CLASS MainDialog
RETURN NIL

void onEvent_UserEditorClose(COM _Object,int _Item,int _ColIndex)
{
}

function UserEditorClose as v (Object as P,Item as
OLE::Exontrol.Grid.1::HITEM,ColIndex as N)
end function

function nativeObject_UserEditorClose(Object,Item,ColIndex)
return

Syntax for UserEditorClose event, /COM version (others), on:

The following VB sample updates the cell's value when the user editor is hidden (the
sample handles the event for an exMaskEdit inside):

Private Sub Grid1_UserEditorClose(ByVal Object As Object, ByVal Item As
EXGRIDLibCtl.HITEM, ByVal ColIndex As Long)
 With Grid1.Items
 .CellValue(Item, ColIndex) = Object.Text
 End With
End Sub

The following C++ sample updates the cell's value when the user editor is hidden (the
sample handles the event for an exMaskEdit inside):

#import <maskedit.dll>

#include "Items.h"

void OnUserEditorCloseGrid1(LPDISPATCH Object, long Item, long ColIndex)
{
 MaskEditLib::IMaskEditPtr spMaskEdit(Object);
 if (spMaskEdit != NULL)
 {
 COleVariant vtNewValue(spMaskEdit->GetText());
 m_grid.GetItems().SetCellValue(COleVariant(Item), COleVariant(ColIndex),
vtNewValue);
 }
}

where the #import <maskedit.dll> defines the type library of the exMaskEdit component, in
the MaskEditLib namespace. The V2S function converts a VARIANT value to a string value
and may look like follows:

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

The following VB.NET sample updates the cell's value when the user editor is hidden (the
sample handles the event for an exMaskEdit inside):

Private Sub AxGrid1_UserEditorClose(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_UserEditorCloseEvent) Handles AxGrid1.UserEditorClose
 With AxGrid1.Items
 .CellValue(e.item, e.colIndex) = e.object.Text
 End With
End Sub

The following C# sample updates the cell's value when the user editor is hidden (the
sample handles the event for an exMaskEdit inside):

private void axGrid1_UserEditorClose(object sender,
AxEXGRIDLib._IGridEvents_UserEditorCloseEvent e)
{
 MaskEditLib.MaskEdit maskEdit = e.@object as MaskEditLib.MaskEdit;
 if (maskEdit != null)
 axGrid1.Items.set_CellValue(e.item, e.colIndex, maskEdit.Text);
}

where the MaskEditLib class is defined by adding a new reference to the ExMaskEdit
component to your project.

The following VFP sample updates the cell's value when the user editor is hidden (the
sample handles the event for an exMaskEdit inside):

*** ActiveX Control Event ***
LPARAMETERS object, item, colindex

with thisform.Grid1.Items
 .DefaultItem = item
 .CellValue(0, colindex) = object.Text()
endwith

C#

VB

private void UserEditorOleEvent(object sender,object
Obj,exontrol.EXGRIDLib.OleEvent Ev,ref bool CloseEditor,int Item,int ColIndex)
{
}

Private Sub UserEditorOleEvent(ByVal sender As System.Object,ByVal Obj As
Object,ByVal Ev As exontrol.EXGRIDLib.OleEvent,ByRef CloseEditor As
Boolean,ByVal Item As Integer,ByVal ColIndex As Integer) Handles
UserEditorOleEvent
End Sub

C# private void UserEditorOleEvent(object sender,

event UserEditorOleEvent (Object as Object, Ev as OleEvent, ByRef
CloseEditor as Boolean, Item as HITEM, ColIndex as Long)
Occurs when an user editor fires an event.

Type Description
Object as Object An object created by the UserEditor property.
Ev as OleEvent An OleEvent object that holds information about the event

CloseEditor as Boolean (By Reference) A boolean expression that indicates
whether the control should close the user editor.

Item as HITEM

A long expression that determines the item's handle. If the
Item parameter is 0, and the ColIndex property is different
than zero, the ColIndex indicates the handle of the cell
where the state is changed.

ColIndex as Long
A long expression that indicates the column's index, if the
Item parameter is not zero, a long expression that
indicates the handle of the cell if the Item parameter is 0.

The UserEditorOleEvent is fired every time when an user editor object fires an event. The
information about fired event is stored in the Ev parameter. The CloseEditor parameter is
useful to inform the control when the editor should be hidden, on certain events. The control
fires the UserEditorOpen event when a ActiveX editor is about to be shown. The control
fires the UserEditorClose event when the user editor is hidden.

Syntax for UserEditorOleEvent event, /NET version, on:

Syntax for UserEditorOleEvent event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

AxEXGRIDLib._IGridEvents_UserEditorOleEventEvent e)
{
}

void OnUserEditorOleEvent(LPDISPATCH Object,LPDISPATCH Ev,BOOL FAR*
CloseEditor,long Item,long ColIndex)
{
}

void __fastcall UserEditorOleEvent(TObject *Sender,IDispatch
*Object,Exgridlib_tlb::IOleEvent *Ev,VARIANT_BOOL *
CloseEditor,Exgridlib_tlb::HITEM Item,long ColIndex)
{
}

procedure UserEditorOleEvent(ASender: TObject; Object : IDispatch;Ev :
IOleEvent;var CloseEditor : WordBool;Item : HITEM;ColIndex : Integer);
begin
end;

procedure UserEditorOleEvent(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_UserEditorOleEventEvent);
begin
end;

begin event UserEditorOleEvent(oleobject Object,oleobject Ev,boolean
CloseEditor,long Item,long ColIndex)
end event UserEditorOleEvent

Private Sub UserEditorOleEvent(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_UserEditorOleEventEvent) Handles UserEditorOleEvent
End Sub

Private Sub UserEditorOleEvent(ByVal Object As Object,ByVal Ev As
EXGRIDLibCtl.IOleEvent,CloseEditor As Boolean,ByVal Item As
EXGRIDLibCtl.HITEM,ByVal ColIndex As Long)
End Sub

VBA

VFP

Xbas…

Private Sub UserEditorOleEvent(ByVal Object As Object,ByVal Ev As Object,CloseEditor As
Boolean,ByVal Item As Long,ByVal ColIndex As Long)
End Sub

LPARAMETERS Object,Ev,CloseEditor,Item,ColIndex

PROCEDURE OnUserEditorOleEvent(oGrid,Object,Ev,CloseEditor,Item,ColIndex)
RETURN

Java…

VBSc…

Visual
Data…

Visual
Objects

X++

<SCRIPT EVENT="UserEditorOleEvent(Object,Ev,CloseEditor,Item,ColIndex)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function UserEditorOleEvent(Object,Ev,CloseEditor,Item,ColIndex)
End Function
</SCRIPT>

Procedure OnComUserEditorOleEvent Variant llObject Variant llEv Boolean
llCloseEditor HITEM llItem Integer llColIndex
 Forward Send OnComUserEditorOleEvent llObject llEv llCloseEditor llItem
llColIndex
End_Procedure

METHOD OCX_UserEditorOleEvent(Object,Ev,CloseEditor,Item,ColIndex) CLASS
MainDialog
RETURN NIL

void onEvent_UserEditorOleEvent(COM _Object,COM _Ev,COMVariant /*bool*/
_CloseEditor,int _Item,int _ColIndex)
{
}

Syntax for UserEditorOleEvent event, /COM version (others), on:

XBasic

dBASE

function UserEditorOleEvent as v (Object as P,Ev as
OLE::Exontrol.Grid.1::IOleEvent,CloseEditor as L,Item as
OLE::Exontrol.Grid.1::HITEM,ColIndex as N)
end function

function nativeObject_UserEditorOleEvent(Object,Ev,CloseEditor,Item,ColIndex)
return

The following VB sample closes the editor and focus a new column when the user presses
the TAB key:

Private Sub Grid1_UserEditorOleEvent(ByVal Object As Object, ByVal Ev As
EXGRIDLibCtl.IOleEvent, CloseEditor As Boolean, ByVal Item As EXGRIDLibCtl.HITEM, ByVal
ColIndex As Long)
 If (Ev.Name = "KeyDown") Then
 Dim iKey As Long
 iKey = Ev(0).Value
 If iKey = vbKeyTab Then
 With Grid1
 CloseEditor = True
 .FocusColumnIndex = .FocusColumnIndex + 1
 .SearchColumnIndex = .FocusColumnIndex
 End With
 End If
 End If
End Sub

The following VB sample closes the Exontrol.ComboBox user editor when the user selects
a new value, or when it presses the Escape key. Also the sample changes the value of the
cell in the control:

Private Sub Grid1_UserEditorOleEvent(ByVal Object As Object, ByVal Ev As
EXGRIDLibCtl.IOleEvent, CloseEditor As Boolean, ByVal Item As EXGRIDLibCtl.HITEM, ByVal
ColIndex As Long)
 ' Closes the Exontrol.ComboBox when user changes the value in the control
 If nEvents = 0 Then

 If (Ev.Name = "Change") Then
 With Grid1
 .BeginUpdate
 With .Items
 .CellValue(Item, ColIndex) = Object.Select(1)
 .CellValueFormat(Item, ColIndex) = exHTML
 .CellValue(Item, ColIndex) = .CellValue(Item, ColIndex) + " <fgcolor=FF0000>
[changed]</fgcolor>"
 End With
 .EndUpdate
 End With
 CloseEditor = True
 End If

 If (Ev.Name = "KeyPress") Then
 Dim l As Long
 l = Ev(0).Value
 If l = vbKeyEscape Then
 CloseEditor = True
 End If
 End If
 End If
End Sub

The following VB sample displays the event and its parameters when an user editor object
fires an event:

Private Sub Grid1_UserEditorOleEvent(ByVal Object As Object, ByVal Ev As
EXGRIDLibCtl.IOleEvent, CloseEditor As Boolean, ByVal Item As EXGRIDLibCtl.HITEM, ByVal
ColIndex As Long)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value

 Next
 End If
End Sub

The following C++ sample displays the event and its parameters when an user editor object
fires an event:

#import <exgrid.dll> rename("GetItems", "exGetItems")

void OnUserEditorOleEventGrid1(LPDISPATCH Object, LPDISPATCH Ev, BOOL FAR*
CloseEditor, long Item, long ColIndex)
{
 EXGRIDLib::IOleEventPtr spEvent(Ev);
 CString strOutput;
 strOutput.Format("Event's name: %s\n", spEvent->Name.operator const char *());
 OutputDebugString(strOutput);
 if (spEvent->CountParam == 0)
 OutputDebugString("The event has no parameters.");
 else
 {
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 EXGRIDLib::IOleEventParamPtr spParam = spEvent->GetParam(COleVariant(i));
 strOutput.Format("Name: %s, Value: %s\n", spParam->Name.operator const char *
(), V2S(&spParam->Value));
 OutputDebugString(strOutput);
 }
 }
 OutputDebugString("");
}

where the #import<grid.dll> defines the EXGRIDLib namespace that exports definitions for
the OleEvent and OleEventParam objects. The V2S function converts a VARIANT value to a
string value and may look like follows:

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)

 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

The following VB.NET sample displays the event and its parameters when an user editor
object fires an event:

Private Sub AxGrid1_UserEditorOleEvent(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_UserEditorOleEventEvent) Handles AxGrid1.UserEditorOleEvent
 Debug.WriteLine("Event's name: " & e.ev.Name)
 Dim i As Long
 For i = 0 To e.ev.CountParam - 1
 Dim eP As EXGRIDLib.OleEventParam
 eP = e.ev(i)
 Debug.WriteLine("Name: " & e.ev.Name & " Value: " & eP.Value)
 Next
End Sub

The following C# sample displays the event and its parameters when an user editor object
fires an event:

private void axGrid1_UserEditorOleEvent(object sender,
AxEXGRIDLib._IGridEvents_UserEditorOleEventEvent e)
{
 System.Diagnostics.Debug.WriteLine("Event's name: " + e.ev.Name.ToString());
 for (int i = 0; i < e.ev.CountParam; i++)
 {
 EXGRIDLib.IOleEventParam evP = e.ev[i];
 System.Diagnostics.Debug.WriteLine("Name: " + evP.Name.ToString() + ", Value: " +
evP.Value.ToString());
 }

}

The following VFP sample displays the event and its parameters when an user editor object
fires an event:

*** ActiveX Control Event ***
LPARAMETERS object, ev, closeeditor, item, colindex

local s
s = "Event's name: " + ev.Name
for i = 0 to ev.CountParam - 1
 s = s + "Name: " + ev.Param(i).Name + " ,Value: " + Str(ev.Param(i).Value)
endfor
wait window nowait s

C#

VB

private void UserEditorOpen(object sender,object Obj,int Item,int ColIndex)
{
}

Private Sub UserEditorOpen(ByVal sender As System.Object,ByVal Obj As
Object,ByVal Item As Integer,ByVal ColIndex As Integer) Handles UserEditorOpen
End Sub

C# private void UserEditorOpen(object sender,
AxEXGRIDLib._IGridEvents_UserEditorOpenEvent e)
{
}

event UserEditorOpen (Object as Object, Item as HITEM, ColIndex as
Long)
Occurs when an user editor is about to be opened.

Type Description
Object as Object An object created by UserEditor property

Item as HITEM

A long expression that determines the item's handle. If the
Item parameter is 0, and the ColIndex property is different
than zero, the ColIndex indicates the handle of the cell
where the state is changed.

ColIndex as Long
A long expression that indicates the column's index, if the
Item parameter is not zero, a long expression that
indicates the handle of the cell if the Item parameter is 0.

The control supports custom ActiveX editors support. The control fires the UserEditorOpen
event when an user editor is shown. Use the UserEditorOpen event to initialize the user
editor when it is shown. For instance, if you have a custom maskedit control you can
initialize the mask and the value based on the cell's value property. Use the CellValue
property to access the cell's value. The control fires the UserEditorOleEvent event each
time when an user editor fires an event. The control fires the UserEditorClose event when
an user editor is hidden.

Syntax for UserEditorOpen event, /NET version, on:

Syntax for UserEditorOpen event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

void OnUserEditorOpen(LPDISPATCH Object,long Item,long ColIndex)
{
}

void __fastcall UserEditorOpen(TObject *Sender,IDispatch
*Object,Exgridlib_tlb::HITEM Item,long ColIndex)
{
}

procedure UserEditorOpen(ASender: TObject; Object : IDispatch;Item :
HITEM;ColIndex : Integer);
begin
end;

procedure UserEditorOpen(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_UserEditorOpenEvent);
begin
end;

begin event UserEditorOpen(oleobject Object,long Item,long ColIndex)
end event UserEditorOpen

Private Sub UserEditorOpen(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_UserEditorOpenEvent) Handles UserEditorOpen
End Sub

Private Sub UserEditorOpen(ByVal Object As Object,ByVal Item As
EXGRIDLibCtl.HITEM,ByVal ColIndex As Long)
End Sub

Private Sub UserEditorOpen(ByVal Object As Object,ByVal Item As Long,ByVal
ColIndex As Long)
End Sub

LPARAMETERS Object,Item,ColIndex

Xbas… PROCEDURE OnUserEditorOpen(oGrid,Object,Item,ColIndex)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="UserEditorOpen(Object,Item,ColIndex)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function UserEditorOpen(Object,Item,ColIndex)
End Function
</SCRIPT>

Procedure OnComUserEditorOpen Variant llObject HITEM llItem Integer llColIndex
 Forward Send OnComUserEditorOpen llObject llItem llColIndex
End_Procedure

METHOD OCX_UserEditorOpen(Object,Item,ColIndex) CLASS MainDialog
RETURN NIL

void onEvent_UserEditorOpen(COM _Object,int _Item,int _ColIndex)
{
}

function UserEditorOpen as v (Object as P,Item as
OLE::Exontrol.Grid.1::HITEM,ColIndex as N)
end function

function nativeObject_UserEditorOpen(Object,Item,ColIndex)
return

Syntax for UserEditorOpen event, /COM version (others), on:

The following VB sample selects an item into an user editor of
EXCOMBOBOXLibCtl.ComboBox type (the sample uses the Exontrol's ExComboBox
Component):

Private Sub Grid1_UserEditorOpen(ByVal Object As Object, ByVal Item As
EXGRIDLibCtl.HITEM, ByVal ColIndex As Long)
 On Error Resume Next

https://exontrol.com/excombobox.jsp

 nEvents = nEvents + 1
 'Selects the value in the combo box
 With Object ' Points to an EXCOMBOBOXLibCtl.ComboBox object
 Dim sID As String
 sID = Grid1.Items.CellValue(Item, ColIndex)
 If (Grid1.Items.CellValueFormat(Item, ColIndex) = exHTML) Then
 sID = Mid(sID, 1, InStr(1, sID, " ", vbTextCompare) - 1)
 End If
 .Select(1) = sID
 If .Items.SelectCount > 0 Then
 .Items.EnsureVisibleItem .Items.SelectedItem(0)
 End If
 End With
 nEvents = nEvents - 1
End Sub

The following samples use the Exontrol's ExMaskEdit Component to mask floating point
numbers using digit grouping.

The following VB sample initializes the mask's value when user editor is shown (the sample
calls the Text property of the exMaskEdit component):

Private Sub Grid1_UserEditorOpen(ByVal Object As Object, ByVal Item As
EXGRIDLibCtl.HITEM, ByVal ColIndex As Long)
 With Grid1.Items
 Object.Text = .CellValue(Item, ColIndex)
 End With
End Sub

The following C++ sample initializes the mask's value when user editor is shown:

#import <maskedit.dll>

#include "Items.h"

void OnUserEditorOpenGrid1(LPDISPATCH Object, long Item, long ColIndex)
{
 MaskEditLib::IMaskEditPtr spMaskEdit(Object);
 if (spMaskEdit != NULL)

https://exontrol.com/exmaskedit.jsp
https://exontrol.com/content/products/exmaskedit/help/MaskEdit_MaskFloat.htm
https://exontrol.com/content/products/exmaskedit/help/MaskEdit_Text.htm

 {
 CString strValue = V2S(&m_grid.GetItems().GetCellValue(COleVariant(Item),
COleVariant(ColIndex)));
 spMaskEdit->PutText(strValue.AllocSysString());
 }
}

where the #import <maskedit.dll> defines the type library of the exMaskEdit component, in
the MaskEditLib namespace. The V2S function converts a VARIANT value to a string value
and may look like follows:

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

The following VB.NET sample initializes the mask's value when user editor is shown:

Private Sub AxGrid1_UserEditorOpen(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_UserEditorOpenEvent) Handles AxGrid1.UserEditorOpen
 With AxGrid1.Items
 e.object.Text = .CellValue(e.item, e.colIndex)
 End With
End Sub

The following C# sample initializes the mask's value when user editor is shown:

private void axGrid1_UserEditorOpen(object sender,
AxEXGRIDLib._IGridEvents_UserEditorOpenEvent e)
{

 MaskEditLib.MaskEdit maskEdit = e.@object as MaskEditLib.MaskEdit;
 if (maskEdit != null)
 {
 object cellValue = axGrid1.Items.get_CellValue(e.item, e.colIndex);
 maskEdit.Text = (cellValue != null ? cellValue.ToString() : "");
 }
}

where the MaskEditLib class is defined by adding a new reference to the ExMaskEdit
component to your project.

The following VFP sample initializes the mask's value when user editor is shown:

*** ActiveX Control Event ***
LPARAMETERS object, item, colindex

with thisform.Grid1.Items
 .DefaultItem = item
 object.Text = .CellValue(0, colindex)
endwith

event ValidateValue (Item as HITEM, ColIndex as Long, NewValue as
Variant, ByRef Cancel as Boolean)
Occurs before user changes the cell's value.

Type Description

Item as HITEM

A long expression that determines the item's handle. If the
Item parameter is 0, and the ColIndex property is different
than zero, the ColIndex indicates the handle of the cell
where the change occurs.

ColIndex as Long
A long expression that indicates the column's index, if the
Item parameter is not zero, a long expression that
indicates the handle of the cell if the Item parameter is 0.

NewValue as Variant A Variant value that indicates the value being validated.

Cancel as Boolean

(By Reference) A boolean expression that indicates
whether the value is valid or not. By default, the Cancel
parameter is False, and so the NewValue parameter is
valid. If the Cancel parameter is set on True, the control
considers the NewValue being a non valid value, so the
Change event is not fired.

The ValidateValue event notifies your application that the user is about to change the cell's
value using the control's UI. Use the ValidateValue event to prevent users enter wrong
values to the cells. The ValidateValue event is fired only if the CauseValidateValue property
is not zero and the user alters the focused value. The validation can be done per cell or per
item, in other words, the validation can be made if the user leaves the focused cell, or
focused item. If the Cancel parameter is True, the user can't move the focus to a new
cell/item, until the Cancel parameter is False. If the Cancel parameter is False the control
fires the Change event to notify your application that the cell's value is changed. Use the
Edit method to programmatically edit the focused cell. Call the DiscardValidateValue method
to restore back the values being changed during the validation.

During ValidateValue event, the Items.CellValue(Item,ColIndex) and
Items.CellCaption(Item,ColIndex) properties retrieve the original value/caption of the cell.
You can access the modified value for any cell in the validating item using the
Items.CellValue(-1,ColIndex) and Items.CellCaption(-1,ColIndex), or uses the -1 identifier
for the Item parameter of the Items.CellValue and Items.CellCaption properties.

During the validation you may have the following order of the events:

Edit - prevent showing the editor for specified cell.
EditOpen - indicates that the editor for the focused cell is being opened.

C#

VB

private void ValidateValue(object sender,int Item,int ColIndex,object NewValue,ref
bool Cancel)
{
}

Private Sub ValidateValue(ByVal sender As System.Object,ByVal Item As
Integer,ByVal ColIndex As Integer,ByVal NewValue As Object,ByRef Cancel As
Boolean) Handles ValidateValue
End Sub

C#

C++

C++
Builder

Delphi

private void ValidateValue(object sender,
AxEXGRIDLib._IGridEvents_ValidateValueEvent e)
{
}

void OnValidateValue(long Item,long ColIndex,VARIANT NewValue,BOOL FAR*
Cancel)
{
}

void __fastcall ValidateValue(TObject *Sender,Exgridlib_tlb::HITEM Item,long
ColIndex,Variant NewValue,VARIANT_BOOL * Cancel)
{
}

procedure ValidateValue(ASender: TObject; Item : HITEM;ColIndex :

EditClose - indicates that the editor for the focused cell is being closed.
ValidateValue - notifies your application that the value must be validated (Cancel
parameter on False)
Change - notifies the application once the user validates the newly value. In case the
control is bounded to a database, the change is performed to the database too.
Error - notifies the application for any error (for instance, if the change is not
supported by the database, the Error indicates the error being issued).

The ValidateValue event is not fired if the CellValue property is called during the event.

Syntax for ValidateValue event, /NET version, on:

Syntax for ValidateValue event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

Integer;NewValue : OleVariant;var Cancel : WordBool);
begin
end;

procedure ValidateValue(sender: System.Object; e:
AxEXGRIDLib._IGridEvents_ValidateValueEvent);
begin
end;

begin event ValidateValue(long Item,long ColIndex,any NewValue,boolean Cancel)
end event ValidateValue

Private Sub ValidateValue(ByVal sender As System.Object, ByVal e As
AxEXGRIDLib._IGridEvents_ValidateValueEvent) Handles ValidateValue
End Sub

Private Sub ValidateValue(ByVal Item As EXGRIDLibCtl.HITEM,ByVal ColIndex As
Long,ByVal NewValue As Variant,Cancel As Boolean)
End Sub

Private Sub ValidateValue(ByVal Item As Long,ByVal ColIndex As Long,ByVal
NewValue As Variant,Cancel As Boolean)
End Sub

LPARAMETERS Item,ColIndex,NewValue,Cancel

PROCEDURE OnValidateValue(oGrid,Item,ColIndex,NewValue,Cancel)
RETURN

Java…

VBSc…

<SCRIPT EVENT="ValidateValue(Item,ColIndex,NewValue,Cancel)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ValidateValue(Item,ColIndex,NewValue,Cancel)

Syntax for ValidateValue event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

End Function
</SCRIPT>

Procedure OnComValidateValue HITEM llItem Integer llColIndex Variant
llNewValue Boolean llCancel
 Forward Send OnComValidateValue llItem llColIndex llNewValue llCancel
End_Procedure

METHOD OCX_ValidateValue(Item,ColIndex,NewValue,Cancel) CLASS MainDialog
RETURN NIL

void onEvent_ValidateValue(int _Item,int _ColIndex,COMVariant
_NewValue,COMVariant /*bool*/ _Cancel)
{
}

function ValidateValue as v (Item as OLE::Exontrol.Grid.1::HITEM,ColIndex as
N,NewValue as A,Cancel as L)
end function

function nativeObject_ValidateValue(Item,ColIndex,NewValue,Cancel)
return

The following VB sample asks the user to validate the value for each cell that's edited:

Private Sub Grid_ValidateValue(ByVal Item As EXGRIDLibCtl.HITEM, ByVal ColIndex As
Long, ByVal NewValue As Variant, Cancel As Boolean)
 Cancel = True ' Causes all cells in the item to be invalid
 If MsgBox("The ValidateValue event just occurs. Do the change with this value '" &
NewValue & "'?", vbYesNo) = vbYes Then
 Cancel = False ' Only cells where user selects the Yes button, are valid
 End If
 Grid.Edit ' Continue editing a cell.
End Sub

The following C++ sample asks the user to validate the value for each cell that's edited:

CString V2S(const VARIANT* pvtValue)

{
 COleVariant vt;
 vt.ChangeType(VT_BSTR, (LPVARIANT)pvtValue);
 return V_BSTR(&vt);
}

void OnValidateValueGrid1(long Item, long ColIndex, const VARIANT FAR& NewValue,
BOOL FAR* Cancel)
{
 *Cancel = TRUE; // Causes all cells to be invalid
 if (MessageBox("The ValidateValue event just occurs. Do the change with this value '" +
V2S(&NewValue) + "'?", "Information", MB_YESNO) == IDYES)
 *Cancel = FALSE; // Only cells where user selects the Yes button, are valid
 COleVariant vtOptional; V_VT(&vtOptional) = VT_ERROR;
 m_grid.Edit(vtOptional); // Continue editing a cell.
}

The following C++ sample asks the user to enter a value greater than 10 on the first
column, if the value is less than 10:

Private Sub Grid_ValidateValue(ByVal Item As EXGRIDLibCtl.HITEM, ByVal ColIndex As
Long, ByVal NewValue As Variant, Cancel As Boolean)
 If (ColIndex = 0) Then
 If (NewValue < 10) Then
 MsgBox "Enter a value greater than 10."
 Cancel = True ' Cancels only the cells with the value less than 10.
 Grid.Edit ' Continue editing a cell.
 End If
 End If
End Sub

The following VB.NET sample asks the user to validate the values on the first column:

Private Sub AxGrid1_ValidateValue(ByVal sender As Object, ByVal e As
AxEXGRIDLib._IGridEvents_ValidateValueEvent) Handles AxGrid1.ValidateValue
 If (e.colIndex = 0) Then
 e.cancel = True
 Dim strMessage As String = "The ValidateValue event just occurs. Do the change with

this value '" & e.newValue.ToString() & "'?"
 If (MessageBox.Show(strMessage, "Question", MessageBoxButtons.YesNoCancel,
MessageBoxIcon.Question) = Windows.Forms.DialogResult.Yes) Then
 e.cancel = False
 End If
 End If
End Sub

The following C# sample asks the user to validate the values on the first column:

private void axGrid1_ValidateValue(object sender,
AxEXGRIDLib._IGridEvents_ValidateValueEvent e)
{
 if (e.colIndex == 0)
 {
 e.cancel = true;
 string strMessage = "The ValidateValue event just occurs. Do the change with this
value '" + e.newValue.ToString() + "'?";
 if (MessageBox.Show(strMessage, "Question", MessageBoxButtons.YesNoCancel,
MessageBoxIcon.Question) == DialogResult.Yes)
 e.cancel = false;
 }
}

The following VFP sample asks the user to validate the values on the first column:

*** ActiveX Control Event ***
LPARAMETERS item, colindex, newvalue, cancel

with thisform.Grid1.Items
 if (colindex = 0)
 cancel = .t.
 local strMessage
 strMessage = "The ValidateValue event just occurs. Do the change with this value '" +
newvalue + "'?"
 if (MessageBox(strMessage, 3) = 6)
 cancel = .f.
 endif

 endif
endwith

OwnerDrawHandler object

The OwnerDrawHandler interface provides an elegant way to let user paints the cell. The
CellOwnerDraw property requires an object that implements the OwnerDrawHandler
interface. Use the Def(exCellOwneDraw) property to assign an owner draw object for the
entire column. The control calls DrawCell method when an owner draw cell requires
painting. The inteface definition is like follows:

[
 uuid(BA219E1D-D1CD-4682-81AA-7E1D9D37B187),
 pointer_default(unique)
]
interface IOwnerDrawHandler : IUnknown
{
 [id(1), helpstring("The source paints the cell.")] HRESULT DrawCell(long hDC, long left,
long top, long right, long bottom, long Item, long Column, IDispatch* Source);
 [id(2), helpstring("The source erases the cell's background.")] HRESULT DrawCellBk(long
hDC, VARIANT* Options, long left, long top, long right, long bottom, long Item, long
Column, IDispatch* Source);
}

Use the DrawCellBk method to erase the cell's background. The DrawCell method is called
before painting the cell's caption.

The following sample shows how to paint a gradient color into the cells:

Option Explicit
Implements IOwnerDrawHandler

Private Type RECT
 left As Long
 top As Long
 right As Long
 bottom As Long
End Type
Private Const ETO_OPAQUE = 2
Private Declare Sub InflateRect Lib "user32" (lpRect As RECT, ByVal x As Long, ByVal Y As
Long)
Private Declare Function ExtTextOut Lib "gdi32" Alias "ExtTextOutA" (ByVal hdc As Long,

ByVal x As Long, ByVal Y As Long, ByVal wOptions As Long, lpRect As RECT, ByVal lpString
As String, ByVal nCount As Long, lpDx As Long) As Long
Private Declare Function SetBkColor Lib "gdi32" (ByVal hdc As Long, ByVal crColor As
Long) As Long
Private Declare Function DrawText Lib "user32" Alias "DrawTextA" (ByVal hdc As Long,
ByVal lpStr As String, ByVal nCount As Long, lpRect As RECT, ByVal wFormat As Long) As
Long
Private Declare Function SetTextColor Lib "gdi32" (ByVal hdc As Long, ByVal crColor As
Long) As Long
Private Declare Function OleTranslateColor Lib "olepro32" (ByVal c As Long, ByVal p As
Long, c As Long) As Long
Private Const DT_VCENTER = &H4
Private Const DT_CENTER = &H1
Private Const DT_WORDWRAP = &H10

Private Sub DrawGradient(ByVal hdc As Long, ByVal left As Long, ByVal top As Long, ByVal
right As Long, ByVal bottom As Long, ByVal c1 As Long, ByVal c2 As Long)
 On Error Resume Next
 Dim x As Long, rg, gg, bg, r1, r2, g1, g2, b1, b2
 Dim rc As RECT
 With rc
 .left = left
 .right = right
 .top = top
 .bottom = bottom
 End With
 OleTranslateColor c1, 0, c1
 OleTranslateColor c2, 0, c2
 r1 = c1 Mod 256
 r2 = c2 Mod 256
 b1 = Int(c1 / 65536)
 b2 = Int(c2 / 65536)
 g1 = Int(c1 / 256) Mod 256
 g2 = Int(c2 / 256) Mod 256
 For x = left To right Step 2
 rc.left = x
 SetBkColor hdc, RGB(r1 + (x - left) * (r2 - r1) / (right - left), g1 + (x - left) * (g2 - g1) /

(right - left), b1 + (x - left) * (b2 - b1) / (right - left))
 ExtTextOut hdc, rc.left, rc.top, ETO_OPAQUE, rc, " ", 1, x
 Next
 End Sub

Private Sub Form_Load()
 With Grid1
 .BeginUpdate
 .LinesAtRoot = False
 .SortOnClick = False
 .MarkTooltipCells = True
 .ShowFocusRect = False
 .MarkSearchColumn = False
 .ShowFocusRect = True
 .ColumnAutoResize = True
 .BackColor = vbWhite
 .SelBackColor = vbWhite
 .SelForeColor = vbBlue
 Set .Picture = LoadPicture(App.Path + "\exontrol.gif")
 .PictureDisplay = LowerRight
 .SelBackMode = exTransparent
 .SelBackColor = vbWhite

 ' Adds few columns
 With .Columns
 .Add("Name").Width = 242
 With .Add("Description")
 .Width = 356
 .HeaderImage = 2
 .Editor.EditType = MemoType
 .Editor.Appearance = RaisedApp
 End With
 End With

 ' Adds few items
 With .Items
 Dim h As HITEM, h2 As HITEM, h3 As HITEM

 h = .AddItem("My Desktop")
 .CellBold(h, 0) = True
 ' Defines the cell that becomes the title for the divider
 .ItemHeight(h) = .ItemHeight(h) + 4
 .ItemDivider(h) = 0
 .CellBackColor(h) = &HFF6531
 .ItemForeColor(h) = vbWhite
 .ItemDividerLine(h) = EmptyLine
 Set .CellOwnerDraw(h, 0) = Me

 h2 = .InsertItem(h, , "Hard Disk Drives")
 .CellBold(h2, 0) = True
 .ItemDivider(h2) = 0
 .ItemDividerLine(h2) = DotLine
 .CellBackColor(h2) = vbBlue
 .ItemHeight(h2) = .ItemHeight(h2) + 4
 .CellForeColor(h2, 0) = &HFF6531
 .CellForeColor(h2, 0) = vbWhite
 Set .CellOwnerDraw(h2, 0) = Me

 h3 = .InsertItem(h2, , "Scratch (C:)" & vbCrLf & "1.95 GB" & vbCrLf)
 .CellPicture(h3, 0) = LoadPicture(App.Path + "\hard.gif")
 .CellSingleLine(h3, 0) = False
 .CellValue(h3, 1) = "You can add hardware devices to your Windows CEbased target
platform that are not directly supported by Windows CE. However, if you do, you must
supply device drivers for the additional devices."
 .CellSingleLine(h3, 1) = False
 .CellToolTip(h3, 0) = "This is a bit of text that shoud appear when the cursor is over
a cell."

 h3 = .InsertItem(h2, , "Main (E:)" & vbCrLf & "15 GB" & vbCrLf)
 .CellPicture(h3, 0) = LoadPicture(App.Path + "\hard.gif")
 .CellForeColor(h3, 0) = RGB(128, 128, 128)
 .CellSingleLine(h3, 0) = False
 .CellValue(h3, 1) = "Windows CE versions 1.01 and later provide kernel support to
enable stream interface drivers to access additional built-in hardware devices."
 .CellSingleLine(h3, 1) = False

 .CellBackColor(h3, 1) = RGB(196, 196, 196)
 .CellForeColor(h3, 1) = vbBlack
 Set .CellOwnerDraw(h3, 1) = Me

 .ExpandItem(h2) = True

 h2 = .InsertItem(h, , "Devices with Removable Storage")
 .CellBold(h2, 0) = True
 .ItemDivider(h2) = 0
 .ItemDividerLine(h2) = DotLine
 .CellBackColor(h2) = vbBlue
 .ItemHeight(h2) = .ItemHeight(h2) + 4
 .CellForeColor(h2, 0) = vbWhite
 Set .CellOwnerDraw(h2, 0) = Me

 h3 = .InsertItem(h2, , vbCrLf & "3˝ Floppy (A:)" & vbCrLf)
 .CellPicture(h3, 0) = LoadPicture(App.Path + "\floppy.gif")
 .CellSingleLine(h3, 0) = False
 With .CellEditor(h3, 1)
 .EditType = ColorType
 End With
 .CellValue(h3, 1) = .CellBackColor(.ItemParent(h3), 0)
 .CellData(h3, 1) = True

 h3 = .InsertItem(h2, , vbCrLf & "CD Reader" & vbCrLf)
 .CellPicture(h3, 0) = LoadPicture(App.Path + "\floppy.gif")
 .CellSingleLine(h3, 0) = False
 With .CellEditor(h3, 1)
 .EditType = ColorType
 End With
 .CellValue(h3, 1) = .CellBackColor(.ItemParent(h3), 0)
 .CellData(h3, 1) = True

 .ExpandItem(h2) = True

 .ExpandItem(h) = True

 h = .AddItem("Folder Options")
 .CellBold(h, 0) = True
 .ItemDivider(h) = 0
 .CellBackColor(h) = &HFF6531
 .ItemForeColor(h) = vbWhite
 .ItemHeight(h) = .ItemHeight(h) + 4
 Set .CellOwnerDraw(h, 0) = Me

 h2 = .InsertItem(h, , "Web View")
 .CellImage(h2, 0) = 2
 .CellBold(h2, 0) = True
 .ItemDivider(h2) = 0
 .ItemDividerLine(h2) = DotLine
 .ItemHeight(h2) = .ItemHeight(h2) + 4
 .CellForeColor(h2, 0) = vbWhite
 .CellBackColor(h2) = vbBlue
 Set .CellOwnerDraw(h2, 0) = Me

 h3 = .InsertItem(h2, , "Enable Web content in folders")
 .CellHasRadioButton(h3, 0) = True
 .CellImage(h3, 0) = 1
 .CellRadioGroup(h3, 0) = 1234
 .CellState(h3, 0) = 1
 .CellEditorVisible(h3, 1) = False

 h3 = .InsertItem(h2, , "Use Windows Classic folders")
 .CellHasRadioButton(h3, 0) = True
 .CellRadioGroup(h3, 0) = 1234
 .CellImage(h3, 0) = 2
 .CellEditorVisible(h3, 1) = False

 .ExpandItem(h2) = True

 .ExpandItem(h) = True

 End With
 .EndUpdate

 End With
End Sub

Private Sub Grid1_Change(ByVal Item As EXGRIDLibCtl.HITEM, ByVal ColIndex As Long,
NewValue As Variant)
 With Grid1.Items
 If .CellData(Item, ColIndex) Then
 .CellBackColor(.ItemParent(Item), 0) = NewValue
 End If
 End With
End Sub

Private Sub IOwnerDrawHandler_DrawCellBk(ByVal hDC As Long, Options As Variant, ByVal
left As Long, ByVal top As Long, ByVal right As Long, ByVal bottom As Long, ByVal Item As
Long, ByVal Column As Long, ByVal Source As Object)
End Sub

Private Sub IOwnerDrawHandler_DrawCell(ByVal hdc As Long, ByVal left As Long, ByVal
top As Long, ByVal right As Long, ByVal bottom As Long, ByVal Item As Long, ByVal
Column As Long, ByVal Source As Object)
 With Source.Items
 ' Draws the background cell by gradient
 DrawGradient hdc, left, top, right / 2, bottom, vbWhite, .CellBackColor(Item, Column)
 DrawGradient hdc, right / 2, top, right, bottom, .CellBackColor(Item, Column),
vbWhite

 ' Gets the caption cell
 Dim str As String
 str = .CellValue(Item, Column)

 ' Draws the caption cell
 Dim rc As RECT
 With rc
 .left = left
 .right = right
 .top = top
 .bottom = bottom

 End With

 SetTextColor hdc, .CellForeColor(Item, Column)
 rc.top = rc.top + 2
 DrawText hdc, str, Len(str), rc, DT_CENTER Or DT_WORDWRAP
 End With
End Sub

The following sample erase the cell's background, but let the control paints the cell's
content:

Implements IOwnerDrawHandler

Private Declare Function MoveToEx Lib "gdi32" (ByVal hDC As Long, ByVal x As Long, ByVal
Y As Long, lpPoint As POINTAPI) As Long
Private Declare Function LineTo Lib "gdi32" (ByVal hDC As Long, ByVal x As Long, ByVal Y
As Long) As Long
Private Type RECT
 left As Long
 top As Long
 right As Long
 bottom As Long
End Type
Private Const ETO_OPAQUE = 2
Private Declare Sub InflateRect Lib "user32" (lpRect As RECT, ByVal x As Long, ByVal Y As
Long)
Private Declare Function ExtTextOut Lib "gdi32" Alias "ExtTextOutA" (ByVal hDC As Long,
ByVal x As Long, ByVal Y As Long, ByVal wOptions As Long, lpRect As RECT, ByVal lpString
As String, ByVal nCount As Long, lpDx As Long) As Long
Private Declare Function SetBkColor Lib "gdi32" (ByVal hDC As Long, ByVal crColor As
Long) As Long
Private Declare Function DrawText Lib "user32" Alias "DrawTextA" (ByVal hDC As Long,
ByVal lpStr As String, ByVal nCount As Long, lpRect As RECT, ByVal wFormat As Long) As
Long
Private Declare Function SetTextColor Lib "gdi32" (ByVal hDC As Long, ByVal crColor As
Long) As Long
Private Declare Function OleTranslateColor Lib "olepro32" (ByVal c As Long, ByVal p As
Long, c As Long) As Long

Private Const DT_VCENTER = &H4
Private Const DT_CENTER = &H1
Private Const DT_WORDWRAP = &H10
Private Const DT_SINGLELINE = &H20

Private Type POINTAPI
 x As Long
 Y As Long
End Type

Private Sub DrawGradient(ByVal hDC As Long, ByVal left As Long, ByVal top As Long, ByVal
right As Long, ByVal bottom As Long, ByVal c1 As Long, ByVal c2 As Long)
 On Error Resume Next
 Dim x As Long, rg, gg, bg, r1, r2, g1, g2, b1, b2
 Dim rc As RECT
 With rc
 .left = left
 .right = right
 .top = top
 .bottom = bottom
 End With
 OleTranslateColor c1, 0, c1
 OleTranslateColor c2, 0, c2
 r1 = c1 Mod 256
 r2 = c2 Mod 256
 b1 = Int(c1 / 65536)
 b2 = Int(c2 / 65536)
 g1 = Int(c1 / 256) Mod 256
 g2 = Int(c2 / 256) Mod 256
 For x = left To right Step 2
 rc.left = x
 SetBkColor hDC, RGB(r1 + (x - left) * (r2 - r1) / (right - left), g1 + (x - left) * (g2 - g1) /
(right - left), b1 + (x - left) * (b2 - b1) / (right - left))
 ExtTextOut hDC, rc.left, rc.top, ETO_OPAQUE, rc, " ", 1, x
 Next
End Sub

Private Sub Form_Load()
 With Grid1.Items
 Set .CellOwnerDraw(.FindItem("Root 2"), 0) = Me
 End With
End Sub

Private Sub IOwnerDrawHandler_DrawCell(ByVal hDC As Long, ByVal left As Long, ByVal
top As Long, ByVal right As Long, ByVal bottom As Long, ByVal Item As Long, ByVal
Column As Long, ByVal Source As Object)
 End Sub

Private Sub IOwnerDrawHandler_DrawCellBk(ByVal hDC As Long, Options As Variant, ByVal
left As Long, ByVal top As Long, ByVal right As Long, ByVal bottom As Long, ByVal Item As
Long, ByVal Column As Long, ByVal Source As Object)
 Dim c1 As Long, c2 As Long, c As Long
 c1 = Source.BackColor
 c2 = Source.SelBackColor
 DrawGradient hDC, left, top, (right + left) / 2, bottom, c1, c2
 DrawGradient hDC, (right + left) / 2, top, right, bottom, c2, c1
End Sub

Name Description

Expressions

An expression is a string which defines a formula or criteria, that's evaluated at runtime. The
expression may be a combination of variables, constants, strings, dates and
operators/functions. For instance 1000 format `` gets 1,000.00 for US format, while
1.000,00 is displayed for German format.

The Exontrol's eXPression component is a syntax-editor that helps you to define, view, edit
and evaluate expressions. Using the eXPression component you can easily view or check if
the expression you have used is syntactically correct, and you can evaluate what is the
result you get giving different values to be tested. The Exontrol's eXPression component
can be used as an user-editor, to configure your applications.

Usage examples:

100 + 200, adds two numbers and returns 300
"100" + 200, concatenates the strings, and returns "100200"
currency(1000) displays the value in currency format based on the current regional
setting, such as "$1,000.00" for US format.
1000 format `` gets 1,000.00 for English format, while 1.000,00 is displayed for
German format
1000 format `2|.|3|,` always gets 1,000.00 no matter of settings in the control panel.
date(value) format `MMM d, yyyy` , returns the date such as Sep 2, 2023, for English
format
upper("string") converts the giving string in uppercase letters, such as "STRING"
date(dateS('3/1/' + year(9:=#1/1/2018#)) + ((1:=(((255 - 11 * (year(=:9) mod 19)) - 21)
mod 30) + 21) + (=:1 > 48 ? -1 : 0) + 6 - ((year(=:9) + int(year(=:9) / 4)) + =:1 + (=:1
> 48 ? -1 : 0) + 1) mod 7)) returns the date the Easter Sunday will fall, for year 2018.
In this case the expression returns #4/1/2018#. If #1/1/2018# is replaced with
#1/1/2019#, the expression returns #4/21/2019#.

Listed bellow are all predefined constants, operators and functions the general-expression
supports:

The constants can be represented as:

numbers in decimal format (where dot character specifies the decimal separator).
For instance: -1, 100, 20.45, .99 and so on
numbers in hexa-decimal format (preceded by 0x or 0X sequence), uses sixteen
distinct symbols, most often the symbols 0-9 to represent values zero to nine, and A,
B, C, D, E, F (or alternatively a, b, c, d, e, f) to represent values ten to fifteen.
Hexadecimal numerals are widely used by computer system designers and

https://exontrol.com/expression.jsp

programmers. As each hexadecimal digit represents four binary digits (bits), it allows a
more human-friendly representation of binary-coded values. For instance, 0xFF,
0x00FF00, and so so.
date-time in format #mm/dd/yyyy hh:mm:ss#, For instance, #1/31/2001 10:00#
means the January 31th, 2001, 10:00 AM
string, if it starts / ends with any of the ' or ` or " characters. If you require the starting
character inside the string, it should be escaped (preceded by a \ character). For
instance, `Mihai`, "Filimon", 'has', "\"a quote\"", and so on

The predefined constants are:

bias (BIAS constant), defines the difference, in minutes, between Coordinated
Universal Time (UTC) and local time. For example, Middle European Time (MET,
GMT+01:00) has a time zone bias of "-60" because it is one hour ahead of UTC.
Pacific Standard Time (PST, GMT-08:00) has a time zone bias of "+480" because it is
eight hours behind UTC. For instance, date(value - bias/24/60) converts the UTC time
to local time, or date(date('now') + bias/24/60) converts the current local time to UTC
time. For instance, "date(value - bias/24/60)" converts the value date-time from UTC to
local time, while "date(value + bias/24/60)" converts the local-time to UTC time.
dpi (DPI constant), specifies the current DPI setting. and it indicates the minimum
value between dpix and dpiy constants. For instance, if current DPI setting is 100%,
the dpi constant returns 1, if 150% it returns 1.5, and so on. For instance, the
expression value * dpi returns the value if the DPI setting is 100%, or value * 1.5 in
case, the DPI setting is 150%
dpix (DPIX constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpix constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpix returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%
dpiy (DPIY constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpiy constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpiy returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported binary range operators, all these with the same priority 5, are :

a MIN b (min operator), indicates the minimum value, so a MIN b returns the value of
a, if it is less than b, else it returns b. For instance, the expression value MIN 10
returns always a value greater than 10.
a MAX b (max operator), indicates the maximum value, so a MAX b returns the value
of a, if it is greater than b, else it returns b. For instance, the expression value MAX
100 returns always a value less than 100.

The supported binary operators, all these with the same priority 0, are :

:= (Store operator), stores the result of expression to variable. The syntax for :=
operator is

variable := expression

where variable is a integer between 0 and 9. You can use the =: operator to restore
any stored variable (please make the difference between := and =:). For instance,
(0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and prints zero
if it is 0, else the converted number. Please pay attention that the := and =: are two
distinct operators, the first for storing the result into a variable, while the second for
restoring the variable

=: (Restore operator), restores the giving variable (previously saved using the store
operator). The syntax for =: operator is

=: variable

where variable is a integer between 0 and 9. You can use the := operator to store the
value of any expression (please make the difference between := and =:). For
instance, (0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and
prints zero if it is 0, else the converted number. Please pay attention that the := and =:
are two distinct operators, the first for storing the result into a variable, while the
second for restoring the variable

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for ? operator is

expression ? true_part : false_part

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the %0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found') returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

expression array (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D') is equivalent with month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D').

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

expression in (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the value in (11,22,33,44,13) is equivalent with
(expression = 11) or (expression = 22) or (expression = 33) or (expression = 44) or
(expression = 13). The in operator is not a time consuming as the equivalent or version
is, so when you have large number of constant elements it is recommended using the

in operator. Shortly, if the collection of elements has 1000 elements the in operator
could take up to 8 operations in order to find if an element fits the set, else if the or
statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

expression switch (default,c1,c2,c3,...,cn)

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the %0 switch ('not found',1,4,7,9,11) gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

expression case ([default : default_expression ;] c1 : expression1 ; c2 : expression2 ; c3 :
expression3 ;....)

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1) indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8) statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,

04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions. Obviously, the priority of the operations inside the expression is
determined by () parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. The type operator may return
any of the following: 0 - empty (not initialized), 1 - null, 2 - short, 3 - long, 4 - float, 5 -
double, 6 - currency, 7 - date, 8 - string, 9 - object, 10 - error, 11 - boolean, 12 -
variant, 13 - any, 14 - decimal, 16 - char, 17 - byte, 18 - unsigned short, 19 - unsigned
long, 20 - long on 64 bits, 21 - unsigned long on 64 bites. For instance type(%1) = 8
specifies the cells (on the column with the index 1) that contains string values.
str (unary operator) converts the expression to a string. The str operator converts the
expression to a string. For instance, the str(-12.54) returns the string "-12.54".
dbl (unary operator) converts the expression to a number. The dbl operator converts
the expression to a number. For instance, the dbl("12.54") returns 12.54
date (unary operator) converts the expression to a date, based on your regional
settings. For instance, the date(``) gets the current date (no time included), the
date(`now`) gets the current date-time, while the date("01/01/2001") returns
#1/1/2001#
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS. For instance, the dateS("01/01/2001 14:00:00") returns
#1/1/2001 14:00:00#
hex (unary operator) converts the giving string from hexa-representation to a numeric
value, or converts the giving numeric value to hexa-representation as string. For
instance, hex(`FF`) returns 255, while the hex(255) or hex(0xFF) returns the `FF`
string. The hex(hex(`FFFFFFFF`)) always returns `FFFFFFFF` string, as the second
hex call converts the giving string to a number, and the first hex call converts the
returned number to string representation (hexa-representation).

The bitwise operators for numbers are:

a bitand b (binary operator) computes the AND operation on bits of a and b, and
returns the unsigned value. For instance, 0x01001000 bitand 0x10111000 returns
0x00001000.
a bitor b (binary operator) computes the OR operation on bits of a and b, and returns
the unsigned value. For instance, 0x01001000 bitor 0x10111000 returns 0x11111000.
a bitxor b (binary operator) computes the XOR (exclusive-OR) operation on bits of a
and b, and returns the unsigned value. For instance, 0x01110010 bitxor 0x10101010
returns 0x11011000.

a bitshift (b) (binary operator) shifts every bit of a value to the left if b is negative, or
to the right if b is positive, for b times, and returns the unsigned value. For instance,
128 bitshift 1 returns 64 (dividing by 2) or 128 bitshift (-1) returns 256 (multiplying by
2)
bitnot (unary operator) flips every bit of x, and returns the unsigned value. For
instance, bitnot(0x00FF0000) returns 0xFF00FFFF.

The operators for numbers are:

int (unary operator) retrieves the integer part of the number. For instance, the
int(12.54) returns 12
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2. For
instance, the round(12.54) returns 13
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument. For instance, the floor(12.54) returns 12
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2.
For instance, the abs(-12.54) returns 12.54
sin (unary operator) returns the sine of an angle of x radians. For instance, the
sin(3.14) returns 0.001593.
cos (unary operator) returns the cosine of an angle of x radians. For instance, the
cos(3.14) returns -0.999999.
asin (unary operator) returns the principal value of the arc sine of x, expressed in
radians. For instance, the 2*asin(1) returns the value of PI.
acos (unary operator) returns the principal value of the arc cosine of x, expressed in
radians. For instance, the 2*acos(0) returns the value of PI
sqrt (unary operator) returns the square root of x. For instance, the sqrt(81) returns 9.
currency (unary operator) formats the giving number as a currency string, as indicated
by the control panel. For instance, currency(value) displays the value using the current
format for the currency ie, 1000 gets displayed as $1,000.00, for US format.
value format 'flags' (binary operator) formats a numeric value with specified flags. The
format method formats numeric or date expressions (depends on the type of the value,
explained at operators for dates). If flags is empty, the number is displayed as shown
in the field "Number" in the "Regional and Language Options" from the Control Panel.
For instance the "1000 format ''" displays 1,000.00 for English format, while 1.000,00
is displayed for German format. "1000 format '2|.|3|,'" will always displays 1,000.00 no
matter of the settings in your control panel. If formatting the number fails for some
invalid parameter, the value is displayed with no formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with
the following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the

field "No. of digits after decimal" from "Regional and Language Options" is
using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left
of the decimal separator. Values in the range 0 through 9 and 32 are valid.
The most significant grouping digit indicates the number of digits in the least
significant group immediately to the left of the decimal separator. Each
subsequent grouping digit indicates the next significant group of digits to the
left of the previous group. If the last value supplied is not 0, the remaining
groups repeat the last group. Typical examples of settings for this member
are: 0 to group digits as in 123456789.00; 3 to group digits as in
123,456,789.00; and 32 to group digits as in 12,34,56,789.00. If the flag is
missing, the field "Digit grouping" from "Regional and Language Options"
indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the
field "Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing,
the field "Negative number format" from "Regional and Language Options" is
using. The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If
the flag is missing, the field "Display leading zeros" from "Regional and
Language Options" is using. The valid values are 0, 1

 The operators for strings are:

len (unary operator) retrieves the number of characters in the string. For instance, the
len("Mihai") returns 5.
lower (unary operator) returns a string expression in lowercase letters. For instance,
the lower("MIHAI") returns "mihai"
upper (unary operator) returns a string expression in uppercase letters. For instance,
the upper("mihai") returns "MIHAI"
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names. For instance, the proper("mihai") returns "Mihai"
ltrim (unary operator) removes spaces on the left side of a string. For instance, the
ltrim(" mihai") returns "mihai"
rtrim (unary operator) removes spaces on the right side of a string. For instance, the
rtrim("mihai ") returns "mihai"

trim (unary operator) removes spaces on both sides of a string. For instance, the
trim(" mihai ") returns "mihai"
reverse (unary operator) reverses the order of the characters in the string a. For
instance, the reverse("Mihai") returns "iahiM"
a startwith b (binary operator) specifies whether a string starts with specified string (
0 if not found, -1 if found). For instance "Mihai" startwith "Mi" returns -1
a endwith b (binary operator) specifies whether a string ends with specified string (0
if not found, -1 if found). For instance "Mihai" endwith "ai" returns -1
a contains b (binary operator) specifies whether a string contains another specified
string (0 if not found, -1 if found). For instance "Mihai" contains "ha" returns -1
a left b (binary operator) retrieves the left part of the string. For instance "Mihai" left 2
returns "Mi".
a right b (binary operator) retrieves the right part of the string. For instance "Mihai"
right 2 returns "ai"
a lfind b (binary operator) The a lfind b (binary operator) searches the first occurrence
of the string b within string a, and returns -1 if not found, or the position of the result (
zero-index). For instance "ABCABC" lfind "C" returns 2
a rfind b (binary operator) The a rfind b (binary operator) searches the last
occurrence of the string b within string a, and returns -1 if not found, or the position of
the result (zero-index). For instance "ABCABC" rfind "C" returns 5.
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on). For instance "Mihai" mid 2 returns "ihai"
a count b (binary operator) retrieves the number of occurrences of the b in a. For
instance "Mihai" count "i" returns 2.
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result. For instance, the "Mihai" replace "i" with "" returns "Mha" string, as it replaces
all "i" with nothing.
a split b (binary operator) splits the a using the separator b, and returns an array. For
instance, the weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' ' gets the
weekday as string. This operator can be used with the array.
a like b (binary operator) compares the string a against the pattern b. The pattern b
may contain wild-characters such as *, ?, # or [] and can have multiple patterns
separated by space character. In order to have the space, or any other wild-character
inside the pattern, it has to be escaped, or in other words it should be preceded by a \
character. For instance value like `F*e` matches all strings that start with F and ends
on e, or value like `a* b*` indicates any strings that start with a or b character.
a lpad b (binary operator) pads the value of a to the left with b padding pattern. For
instance, 12 lpad "0000" generates the string "0012".
a rpad b (binary operator) pads the value of a to the right with b padding pattern. For
instance, 12 lpad "____" generates the string "12__".
a concat b (binary operator) concatenates the a (as string) for b times. For instance,
"x" concat 5, generates the string "xxxxx".

The operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel. For instance, the time(#1/1/2001 13:00#) returns "1:00:00 PM"
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance, the timeF(#1/1/2001 13:00#) returns "13:00:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel. For instance, the shortdate(#1/1/2001
13:00#) returns "1/1/2001"
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance, the shortdateF(#1/1/2001 13:00#) returns
"01/01/2001"
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format. For instance, the dateF(#01/01/2001 14:00:00#)
returns #01/01/2001 14:00:00#
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel. For instance, the longdate(#1/1/2001 13:00#)
returns "Monday, January 01, 2001"
year (unary operator) retrieves the year of the date (100,...,9999). For instance, the
year(#12/31/1971 13:14:15#) returns 1971
month (unary operator) retrieves the month of the date (1, 2,...,12). For instance, the
month(#12/31/1971 13:14:15#) returns 12.
day (unary operator) retrieves the day of the date (1, 2,...,31). For instance, the
day(#12/31/1971 13:14:15#) returns 31
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365). For instance, the yearday(#12/31/1971 13:14:15#) returns
365
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday). For instance, the weekday(#12/31/1971 13:14:15#) returns
5.
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23). For instance, the
hour(#12/31/1971 13:14:15#) returns 13
min (unary operator) retrieves the minute of the date (0, 1, ..., 59). For instance, the
min(#12/31/1971 13:14:15#) returns 14
sec (unary operator) retrieves the second of the date (0, 1, ..., 59). For instance, the
sec(#12/31/1971 13:14:15#) returns 15
value format 'flags' (binary operator) formats a date expression with specified flags.
The format method formats numeric (depends on the type of the value, explained at
operators for numbers) or date expressions. If not supported, the value is formatted as
a number (the date format is supported by newer version only). The flags specifies the
format picture string that is used to form the date. Possible values for the format
picture string are defined below. For instance, the date(value) format `MMM d, yyyy`

returns "Sep 2, 2023"

The following table defines the format types used to represent days:

d, day of the month as digits without leading zeros for single-digit days (8)
dd, day of the month as digits with leading zeros for single-digit days (08)
ddd, abbreviated day of the week as specified by the current locale ("Mon" in
English)
dddd, day of the week as specified by the current locale ("Monday" in
English)

The following table defines the format types used to represent months:

M, month as digits without leading zeros for single-digit months (4)
MM, month as digits with leading zeros for single-digit months (04)
MMM, abbreviated month as specified by the current locale ("Nov" in English)
MMMM, month as specified by the current locale ("November" for English)

The following table defines the format types used to represent years:

y, year represented only by the last digit (3)
yy, year represented only by the last two digits. A leading zero is added for
single-digit years (03)
yyy, year represented by a full four or five digits, depending on the calendar
used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other
supported calendars. Calendars that have single-digit or two-digit years, such
as for the Japanese Emperor era, are represented differently. A single-digit
year is represented with a leading zero, for example, "03". A two-digit year is
represented with two digits, for example, "13". No additional leading zeros are
displayed.
yyyy, behaves identically to "yyyy"

The following table defines the format types used to represent era:

g, period/era string formatted as specified by the CAL_SERASTRING value
(ignored if there is no associated era or period string)
gg, period/era string formatted as specified by the CAL_SERASTRING value
(ignored if there is no associated era or period string)

The following table defines the format types used to represent hours:

h, hours with no leading zero for single-digit hours; 12-hour clock
hh, hours with leading zero for single-digit hours; 12-hour clock
H, hours with no leading zero for single-digit hours; 24-hour clock

HH, hours with leading zero for single-digit hours; 24-hour clock

The following table defines the format types used to represent minutes:

m, minutes with no leading zero for single-digit minutes
mm, minutes with leading zero for single-digit minutes

The following table defines the format types used to represent seconds:

s, seconds with no leading zero for single-digit seconds
ss, seconds with leading zero for single-digit seconds

The following table defines the format types used to represent time markers:

t, one character time marker string, such as A or P
tt, multi-character time marker string, such as AM or PM

The expression supports also immediate if (similar with iif in visual basic, or ? : in C++) ie
cond ? value_true : value_false, which means that once that cond is true the value_true is
used, else the value_false is used. Also, it supports variables, up to 10 from 0 to 9. For
instance, 0:="Abc" means that in the variable 0 is "Abc", and =:0 means retrieves the value
of the variable 0. For instance, the len(%0) ? (0:=(%1+%2) ? currency(=:0) else ``) : ``
gets the sum between second and third column in currency format if it is not zero, and only
if the first column is not empty. As you can see you can use the variables to avoid
computing several times the same thing (in this case the sum %1 and %2 .

	Information
	How to get support?
	How to start?
	Appearance
	Add method
	Clear method
	Remove method
	RenderType property

	Column
	Alignment property
	AllowDragging property
	AllowGroupBy property
	AllowSizing property
	AllowSort property
	AutoSearch property
	AutoWidth property (readonly)
	Caption property
	ComputedField property
	CustomFilter property
	Data property
	Def property
	DefaultSortOrder property
	DisplayExpandButton property
	DisplayFilterButton property
	DisplayFilterDate property
	DisplayFilterPattern property
	DisplaySortIcon property
	Editor property (readonly)
	Enabled property
	ExpandColumns property
	Expanded property
	Filter property
	FilterBarDropDownWidth property
	FilterList property
	FilterOnType property
	FilterType property
	FireFormatColumn property
	FormatColumn property
	FormatLevel property
	GroupByFormatCell property
	GroupByTotalField property
	HeaderAlignment property
	HeaderBold property
	HeaderImage property
	HeaderImageAlignment property
	HeaderItalic property
	HeaderStrikeOut property
	HeaderUnderline property
	HeaderVertical property
	HTMLCaption property
	Index property (readonly)
	Key property
	LevelKey property
	MaxWidthAutoResize property
	MinWidthAutoResize property
	PartialCheck property
	Position property
	Selected property
	ShowFilter method
	SortOrder property
	SortPosition property
	SortType property
	ToolTip property
	Visible property
	Width property
	WidthAutoResize property

	Columns
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	ItemBySortPosition property (readonly)
	Remove method
	SortBarColumn property (readonly)
	SortBarColumnsCount property (readonly)

	ConditionalFormat
	ApplyTo property
	BackColor property
	Bold property
	ClearBackColor method
	ClearForeColor method
	Enabled property
	Expression property
	Font property
	ForeColor property
	Italic property
	Key property (readonly)
	StrikeOut property
	Underline property
	Valid property (readonly)

	ConditionalFormats
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	Remove method

	Editor
	AddButton method
	AddItem method
	Appearance property
	ButtonWidth property
	ClearButtons method
	ClearItems method
	DropDown method
	DropDownAlignment property
	DropDownAutoWidth property
	DropDownMinWidth property
	DropDownRows property
	DropDownVisible property
	EditType property
	ExpandAll method
	ExpandItem property
	FindItem property (readonly)
	InsertItem method
	ItemToolTip property
	Locked property
	Mask property
	MaskChar property
	Numeric property
	Option property
	PartialCheck property
	PopupAppearance property
	RemoveButton method
	RemoveItem method
	SortItems method
	UserEditor method
	UserEditorObject property (readonly)

	ExDataObject
	Clear method
	Files property (readonly)
	GetData method
	GetFormat method
	SetData method

	ExDataObjectFiles
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	Remove method

	Grid
	AllowCopyTemplate property
	AllowGroupBy property
	AllowSelectNothing property
	AllowUndoRedo property
	AnchorFromPoint property (readonly)
	Appearance property
	ApplyFilter method
	ASCIILower property
	ASCIIUpper property
	AttachTemplate method
	AutoDrag property
	AutoEdit property
	AutoSearch property
	BackColor property
	BackColorAlternate property
	BackColorHeader property
	BackColorLevelHeader property
	BackColorLock property
	BackColorSortBar property
	BackColorSortBarCaption property
	Background property
	BeginUpdate method
	CanRedo property (readonly)
	CanUndo property (readonly)
	CauseValidateValue property
	CheckImage property
	ClearFilter method
	ColumnAutoResize property
	ColumnFromPoint property (readonly)
	Columns property (readonly)
	ColumnsAllowSizing property
	ColumnsFloatBarSortOrder property
	ColumnsFloatBarVisible property
	ConditionalFormats property (readonly)
	ContinueColumnScroll property
	Copy method
	CopyTo property (readonly)
	CountLockedColumns property
	DataSource property
	DefaultEditorOption property
	DefaultItemHeight property
	Description property
	DetectAddNew property
	DetectDelete property
	DiscardValidateValue method
	DrawGridLines property
	Edit method
	EditClose method
	Editing property (readonly)
	EditingText property (readonly)
	Enabled property
	EndBlockUndoRedo method
	EndUpdate method
	EnsureOnSort property
	EnsureVisibleColumn method
	EventParam property
	ExecuteTemplate method
	ExpandOnDblClick property
	ExpandOnKeys property
	ExpandOnSearch property
	Export method
	FilterBarBackColor property
	FilterBarCaption property
	FilterBarDropDownHeight property
	FilterBarFont property
	FilterBarForeColor property
	FilterBarHeight property
	FilterBarPrompt property
	FilterBarPromptColumns property
	FilterBarPromptPattern property
	FilterBarPromptType property
	FilterBarPromptVisible property
	FilterCriteria property
	FilterInclude property
	FocusColumnIndex property
	Font property
	ForeColor property
	ForeColorHeader property
	ForeColorLock property
	ForeColorSortBar property
	FormatABC method
	FormatAnchor property
	FreezeEvents method
	FullRowSelect property
	GetItems method
	GridLineColor property
	GridLineStyle property
	Group method
	GroupUndoRedoActions method
	HasButtons property
	HasButtonsCustom property
	HasLines property
	HeaderAppearance property
	HeaderEnabled property
	HeaderHeight property
	HeaderSingleLine property
	HeaderVisible property
	HideSelection property
	HotBackColor property
	HotForeColor property
	HTMLPicture property
	hWnd property (readonly)
	HyperLinkColor property
	Images method
	ImageSize property
	Indent property
	IsGrouping property (readonly)
	ItemFromPoint property (readonly)
	Items property (readonly)
	ItemsAllowSizing property
	Layout property
	LinesAtRoot property
	LoadXML method
	MarkSearchColumn property
	MarkTooltipCells property
	MarkTooltipCellsImage property
	OLEDrag method
	OLEDropMode property
	Picture property
	PictureDisplay property
	PictureDisplayLevelHeader property
	PictureLevelHeader property
	PutItems method
	RadioImage property
	RClickSelect property
	ReadOnly property
	Redo method
	RedoListAction property (readonly)
	RedoRemoveAction method
	Refresh method
	RemoveSelection method
	ReplaceIcon method
	RightToLeft property
	SaveXML method
	Scroll method
	ScrollBars property
	ScrollButtonHeight property
	ScrollButtonWidth property
	ScrollBySingleLine property
	ScrollFont property
	ScrollHeight property
	ScrollOrderParts property
	ScrollPartCaption property
	ScrollPartCaptionAlignment property
	ScrollPartEnable property
	ScrollPartVisible property
	ScrollPos property
	ScrollThumbSize property
	ScrollToolTip property
	ScrollWidth property
	SearchColumnIndex property
	SelBackColor property
	SelBackMode property
	SelectByDrag property
	SelectColumnIndex property
	SelectColumnInner property
	SelectOnRelease property
	SelForeColor property
	ShowFocusRect property
	ShowImageList property
	ShowLockedItems property
	ShowToolTip method
	SingleSel property
	SingleSort property
	SortBarCaption property
	SortBarColumnWidth property
	SortBarHeight property
	SortBarVisible property
	SortOnClick property
	StartBlockUndoRedo method
	Statistics property (readonly)
	Template property
	TemplateDef property
	TemplatePut method
	TooltipCellsColor property
	ToolTipDelay property
	ToolTipFont property
	ToolTipMargin property
	ToolTipPopDelay property
	ToolTipWidth property
	ToTemplate property (readonly)
	TreeColumnIndex property
	UnboundHandler property
	Undo method
	UndoListAction property (readonly)
	UndoRedoQueueLength property
	UndoRemoveAction method
	Ungroup method
	UseTabKey property
	UseVisualTheme property
	Version property
	ViewMode property
	ViewModeOption property
	VirtualMode property
	VisualAppearance property (readonly)
	VisualDesign property
	WordFromPoint property (readonly)

	Items
	AcceptSetParent property (readonly)
	AddItem method
	CellBackColor property
	CellBold property
	CellButtonAutoWidth property
	CellCaption property (readonly)
	CellChecked property (readonly)
	CellData property
	CellEditor property (readonly)
	CellEditorVisible property
	CellEnabled property
	CellFont property
	CellForeColor property
	CellFormatLevel property
	CellHAlignment property
	CellHasButton property
	CellHasCheckBox property
	CellHasRadioButton property
	CellHyperLink property
	CellImage property
	CellImages property
	CellItalic property
	CellItem property (readonly)
	CellMerge property
	CellOwnerDraw property
	CellParent property (readonly)
	CellPicture property
	CellPictureHeight property
	CellPictureWidth property
	CellRadioGroup property
	CellSingleLine property
	CellSortData property
	CellState property
	CellStrikeOut property
	CellToolTip property
	CellUnderline property
	CellVAlignment property
	CellValue property
	CellValueFormat property
	CellWidth property
	ChildCount property (readonly)
	ClearCellBackColor method
	ClearCellForeColor method
	ClearCellHAlignment method
	ClearItemBackColor method
	ClearItemForeColor method
	CollapseAllCards method
	ComputeValue property (readonly)
	DefaultItem property
	DeleteCellEditor method
	EnableItem property
	EndBlockUndoRedo method
	EnsureVisibleItem method
	ExpandAllCards method
	ExpandCard property
	ExpandItem property
	FindItem property (readonly)
	FindItemData property (readonly)
	FindPath property (readonly)
	FirstVisibleItem property (readonly)
	FocusItem property (readonly)
	FormatCell property
	FullPath property (readonly)
	GroupItem property (readonly)
	HasCellEditor property (readonly)
	InnerCell property (readonly)
	InsertControlItem method
	InsertItem method
	InsertObjectItem method
	IsItemLocked property (readonly)
	IsItemVisible property (readonly)
	ItemAllowSizing property
	ItemAppearance property
	ItemBackColor property
	ItemBold property
	ItemByIndex property (readonly)
	ItemCell property (readonly)
	ItemChild property (readonly)
	ItemControlID property (readonly)
	ItemCount property (readonly)
	ItemData property
	ItemDivider property
	ItemDividerLine property
	ItemDividerLineAlignment property
	ItemFiltered property (readonly)
	ItemFont property
	ItemForeColor property
	ItemHasChildren property
	ItemHeight property
	ItemItalic property
	ItemMaxHeight property
	ItemMinHeight property
	ItemObject property (readonly)
	ItemParent property (readonly)
	ItemPosition property
	ItemStrikeOut property
	ItemToIndex property (readonly)
	ItemToVirtual property (readonly)
	ItemUnderline property
	ItemWidth property
	ItemWindowHost property (readonly)
	ItemWindowHostCreateStyle property
	LastVisibleItem property (readonly)
	LockedItem property (readonly)
	LockedItemCount property
	MatchItemCount property (readonly)
	MergeCells method
	NextSiblingItem property (readonly)
	NextVisibleItem property (readonly)
	PathSeparator property
	PrevSiblingItem property (readonly)
	PrevVisibleItem property (readonly)
	RemoveAllItems method
	RemoveItem method
	RemoveSelection method
	RootCount property (readonly)
	RootItem property (readonly)
	SelectableItem property
	SelectAll method
	SelectCount property (readonly)
	SelectedItem property (readonly)
	Selection property
	SelectItem property
	SelectPos property
	SetParent method
	SortableItem property
	SortChildren method
	SplitCell property (readonly)
	StartBlockUndoRedo method
	UnmergeCells method
	UnselectAll method
	UnsplitCell method
	VirtualToItem property (readonly)
	VisibleCount property (readonly)
	VisibleItemCount property (readonly)

	OleEvent
	CountParam property (readonly)
	ID property (readonly)
	Name property (readonly)
	Param property (readonly)
	ToString property (readonly)

	OleEventParam
	Name property (readonly)
	Value property

	UnboundHandler
	ItemsCount property (readonly)
	ReadItem method

	ExGrid events
	AddColumn event
	AddGroupItem event
	AddItem event
	AfterExpandItem event
	AnchorClick event
	BeforeExpandItem event
	ButtonClick event
	CellImageClick event
	CellStateChanged event
	CellStateChanging event
	Change event
	Click event
	ColumnClick event
	DblClick event
	Edit event
	EditClose event
	EditOpen event
	Error event
	Event event
	FilterChange event
	FilterChanging event
	FocusChanged event
	FormatColumn event
	HyperLinkClick event
	ItemOleEvent event
	KeyDown event
	KeyPress event
	KeyUp event
	LayoutChanged event
	MouseDown event
	MouseMove event
	MouseUp event
	OffsetChanged event
	OLECompleteDrag event
	OLEDragDrop event
	OLEDragOver event
	OLEGiveFeedback event
	OLESetData event
	OLEStartDrag event
	OversizeChanged event
	RClick event
	RemoveColumn event
	RemoveItem event
	ScrollButtonClick event
	SelectionChanged event
	Sort event
	ToolTip event
	URChange event
	UserEditorClose event
	UserEditorOleEvent event
	UserEditorOpen event
	ValidateValue event

