
 ExGauge

The eXGauge / eXLayers library provides graphics capabilities to visually display and edit
the amount, level, or contents of something. The view can show one or more layers, where
each layer can display one or more transparent pictures, HTML captions which can be
clipped, moved, rotated or combination of them, by dragging the mouse, rolling the mouse
wheel, or using the keyboard. Using the eXGauge / eXLayers library you can can easily
simulate any gauges, thermometers, meters, clocks, buttons, sliders, scales, knobs, dials,
switches, progress, status, indicators, LEDs, and so on. As usual, there are no
dependencies to MFC, VB, VCL, or anything else.

Features include:

Multiple Layers Support
Ability to display the control's itself (no form, transparent form, no background) as an
individual or child widget
Any layer can display multiple graphics, images, HTML captions
Ability to specify visible, selectable objects on any layer
Any layer can be clipped, moved, rotated, or combination of any of these
Clipping support include intersection of any of rectangle, round rectangle, ellipse, pie,
picture mask, polygon, and so on
Visibility / Transparency support
Brightness, Contrast, Grayscale support
Drag, Mouse-Wheel, Keyboard Support
Mouse In, Mouse Out, Smooth Change Support
High-Quality Rotation Support
ToolTip support
Debug Mode support, allows you to display debugging information
Expression Support, for any angle, offset or clip's value

Ž ExGauge is a trademark of Exontrol. All Rights Reserved.

How to get support?

To keep your business applications running, you need support you can count on.

Here are few hints what to do when you're stuck on your programming:

Check out the samples - they are here to provide some quick info on how things should
be done
Check out the how-to questions using the eXHelper tool
Check out the help - includes documentation for each method, property or event
Check out if you have the latest version, and if you don't have it send an update
request here.
Submit your problem(question) here.

Don't forget that you can contact our development team if you have ideas or requests for
new components, by sending us an e-mail at support@exontrol.com (please include the
name of the product in the subject, ex: exgrid) . We're sure our team of developers will try
to find a way to make you happy - and us too, since we helped.

Regards,
Exontrol Development Team

https://www.exontrol.com

https://exontrol.com/exhelper.jsp
https://exontrol.com/update.jsp
https://exontrol.com/techsupport.jsp
https://www.exontrol.com

constants AnchorEnum
The AnchorEnum type specifies how the object is anchored. The
Caption(exLayerCaptionAnchor) / ExtraCaption(...,exLayerCaptionAnchor) /
Foreground.Caption(exLayerCaptionAnchor) /
Foreground.ExtraCaption(,exLayerCaptionAnchor) property specifies how the caption is
anchored. The AnchorEnum type supports the following values:

Name Value Description
exAnchorDock 0 The object is anchored to the host's client area.
exAnchorTop 1 The object is anchored to the top side of its host.

exAnchorBottom 2 The object is anchored to the bottom side of its
host.

exAnchorLeft 4 The object is anchored to the left side of its host.
exAnchorRight 8 The object is anchored to the right side of its host.

constants AppearanceEnum
The AppearanceEnum type specifies how the control's border are shown. The Appearance
property specifies the control's border. The Appearance property supports the following
values:

Name Value Description
None2 0 No border
Flat 1 Flat border
Sunken 2 Sunken border
Raised 3 Raised border
Etched 4 Etched border
Bump 5 Bump border

constants BackgroundPartEnum
The BackgroundPartEnum type indicates parts in the control. Use the Background property
to specify a background color or a visual appearance for specific parts in the control. A
Color expression that indicates the background color for a specified part. The last 7 bits in
the high significant byte of the color to indicates the identifier of the skin being used. Use
the Add method to add new skins to the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits in the high significant byte of the
color being applied to the background's part.

Name Value Description

exToolTipAppearance 64

Specifies the visual appearance of the borders of
the tooltips. Use the ToolTipPopDelay property
specifies the period in ms of time the ToolTip
remains visible if the mouse pointer is stationary
within a control. Use the ToolTip / ToolTipTitle
property to specify the layer's tooltip. Use the
ToolTipWidth property to specify the width of the
tooltip window. The ToolTipDelay property specifies
the time in ms that passes before the ToolTip
appears. Use the ShowToolTip method to display a
custom tooltip.

exToolTipBackColor 65 Specifies the tooltip's background color.
exToolTipForeColor 66 Specifies the tooltip's foreground color.

constants ColorAdjustmentChannelEnum
The ColorAdjustmentChannelEnum type specifies the color channel to be updated by the
Brightness / Contrast properties. These properties can be used to change the percent of
specified color to be applied on the layer. The ColorAdjustmentChannelEnum defines the
following values:

Name Value Description

exAllChannels 0 The value is applied to all channels (red, green and
blue).

exRedChannel 1 The value is applied to the red channel only
exGreenChannel 2 The value is applied to the green channel only
exBlueChannel 3 The value is applied to the blue channel only

constants DebugLayerDragEnum
A DebugLayerDragEnum type the holds what information the debugging the drag operation
should display. The Debug property specifies debugging information to be shown while
dragging the layers.

The following information shows all debug information while dragging the layer:

The DebugLayerDragEnum type supports the following flags:

Name Value Description
exDebugLayerDragNothing 0 No debug information is displayed.

exDebugLayerDragHighlight 256
Specifies that layers should be shown with a semi-
transparent color, so the debugging information is
more clear.

exDebugLayerDragClick 1

Shows the point where the drag operation begins.
The X property indicates the x-position of the
cursor, when the drag operation starts and the Y
property indicates the y-position of the cursor, when
the drag operation starts.
Shows the current dragging point. The CurrentX
property indicates the current x-position of the

exDebugLayerDragCurrent 2 cursor, while dragging the layer and the CurrentY
property indicates the current y-position of the
cursor, while dragging the layer.

exDebugLayerDragDeltaX 4

Shows the horizontal offset. The DeltaX property
returns the offset on the x-coordinate of the the
current drag operation, equivalent with the value of
CurrentX - X.

exDebugLayerDragDeltaY 8

Shows the vertical offset. The DeltaY property
returns the offset on the y-coordinate of the the
current drag operation, equivalent with the value of
CurrentY - Y.

exDebugLayerDragDelta 16
Shows the distance between clicking and current
point. The Delta property, returns the distance
between clicking and current points.

exDebugLayerDragMove 287

Shortcut flag for move operation by dragging. It
combines exDebugLayerDragClick +
exDebugLayerDragCurrent +
exDebugLayerDragDeltaX +
exDebugLayerDragDeltaY +
exDebugLayerDragDelta +
exDebugLayerDragHighlight

exDebugLayerDragRotateCenter32

Shows the rotation center of the dragging layer.
The RotateCenterLayer, RotateCenterX and
RotateCenterY properties determines the (x,y)
rotation center, relative to specified layer.

exDebugLayerDragDeltaAngle64
Shows the delta angle. The DeltaAngle property
specifies the angle (in degrees) that has been
rotated the layer/object, during the drag operation.

exDebugLayerDragDeltaAngleMultiply128 Adds lines to split equally the circle.

exDebugLayerDragRotate 483

Shortcut flag for rotate operation by dragging. It
combines exDebugLayerDragClick +
exDebugLayerDragCurrent +
exDebugLayerDragRotateCenter +
exDebugLayerDragDeltaAngle +
exDebugLayerDragDeltaAngleMultiply +
exDebugLayerDragHighlight.

exDebugLayerDragAll -1 Includes all debug information.

constants DebugLayerEnum
The DebugLayerEnum type indicates the values of Debug property. Use the Debug property
to display the layers in debug mode.

The following screen shot shows the control while Debug property is exDebugLayers:

The DebugLayerEnum type supports the following properties and method:

Name Value Description
exNoDebugLayer 0 No debug information is shown.

exDebugLayers 1

The control shows all layers in debug mode. The
ShowLayers property indicates the only layers to
be shown on the control. The exDebugLayers flag
can be combined with the exDebugAutoScroll flag.

exDebugVisibleLayers 2

The control shows only visible layers in debug
mode. The ShowLayers property indicates the only
layers to be shown on the control. The
exDebugVisibleLayers flag can be combined with
the exDebugAutoScroll flag

exDebugAutoScroll 256 The user can scroll the layers into the debug view.

constants DefaultLayerPropertyEnum
The DefaultLayerPropertyEnum type specifies the properties of the layer, whose default
value can be changed by the DefaultLayer property. Any call of the DefaultLayer property
has effect for any new layer added to the control's collection. Changing the DefaultLayer
property does not have any effect on existing layers. It does have effect on any new layer
added to the control. The DefaultLayerPropertyEnum type supports the following values:

Name Value Description

exDefLayerVisible 0
Retrieves or sets a value indicating whether the
layer is visible or hidden. Specifies the default value
of the Visible property.

exDefLayerSelectable 1
Returns or sets a value that indicates whether the
layer is selectable. Specifies the default value of the
Selectable property.

exDefLayerLeft 16

Specifies the expression relative to the view, to
determine the x-position to show the current layer
on the control. Specifies the default value of the
Left property.

exDefLayerTop 17

Specifies the expression relative to the view, to
determine the y-position to show the current layer
on the control. Specifies the default value of the Top
property.

exDefLayerWidth 18

Specifies the expression relative to the view, to
determine the width to show the current layer on
the control. Specifies the default value of the Width
property.

exDefLayerHeight 19

Specifies the expression relative to the view, to
determine the height to show the current layer on
the control. Specifies the default value of the Height
property.

exDefLayerToolTip 20
Gets or sets a value (HTML tooltip) that's displayed
once the cursor hovers the layer. Specifies the
default value of the ToolTip property.

exDefLayerToolTipTitle 21
Gets or sets a value (title) that's displayed once the
cursor hovers the layer. Specifies the default value
of the ToolTipTitle property.

exDefLayerTransparency 22
Gets or sets a value that indicates percent of the
transparency to display the layer. Specifies the
default value of the Transparency property.

exDefLayerGrayscale 23
Returns or sets a value that indicates whether the
layer is show as grayscale. Specifies the default
value of the Grayscale property.

exDefLayerUserData 24
Indicates any extra data associated with the layer.
Specifies the default value of the UserData
property.

exDefLayerBrightness 128
Specifies the percent of brightness to apply to the
layer (on all channels). Specifies the default value
of the Brightness(exAllChannels) property.

exDefLayerBrightnessRed 129
Specifies the percent of brightness to apply to the
layer (on red channel). Specifies the default value
of the Brightness(exRedChannel) property.

exDefLayerBrightnessGreen 130
Specifies the percent of brightness to apply to the
layer (on green channel). Specifies the default
value of the Brightness(exGreenChannel) property.

exDefLayerBrightnessBlue 131
Specifies the percent of brightness to apply to the
layer (on blue channel). Specifies the default value
of the Brightness(exBlueChannel) property.

exDefLayerContrast 144
Specifies the percent of contrast to apply to the
layer (on all channels). Specifies the default value
of the Contrast(exAllChannels) property.

exDefLayerContrastRed 145
Specifies the percent of contrast to apply to the
layer (on red channel). Specifies the default value
of the Contrast(exRedChannel) property.

exDefLayerContrastGreen 146
Specifies the percent of contrast to apply to the
layer (on green channel). Specifies the default
value of the Contrast(exGreenChannel) property.

exDefLayerContrastBlue 147
Specifies the percent of contrast to apply to the
layer (on blue channel). Specifies the default value
of the Contrast(exBlueChannel) property.

exDefLayerOffsetX 160
Gets or sets a value that indicates x-offset of the
layer. Specifies the default value of the OffsetX
property.

exDefLayerOffsetY 161
Gets or sets a value that indicates x-offset of the
layer. Specifies the default value of the OffsetX
property.

exDefLayerDefaultOffsetX 162
Gets or sets a value that indicates the default x-
offset of the layer. Specifies the default value of the

DefaultOffsetX property.

exDefLayerDefaultOffsetY 163
Gets or sets a value that indicates the default y-
offset of the layer. Specifies the default value of the
DefaultOffsetY property.

exDefLayerOffsetXValid 164 Validates the x-offset value of the layer. Specifies
the default value of the OffsetXValid property.

exDefLayerOffsetYValid 165 Validates the y-offset value of the layer. Specifies
the default value of the OffsetYValid property.

exDefLayerValueToOffsetX 166
Specifies the expression to convert the value to x-
offset. Specifies the default value of the
ValueToOffsetX property.

exDefLayerValueToOffsetY 167
Specifies the expression to convert the value to y-
offset. Specifies the default value of the
ValueToOffsetY property.

exDefLayerOffsetToValue 168
Specifies the expression to convert the
offsetx,offsety to value. Specifies the default value
of the OffsetToValue property.

exDefLayerRotateAngle 176 Specifies the angle to rotate the layer. Specifies the
default value of the RotateAngle property.

exDefLayerDefaultRotateAngle177
Specifies the default angle to rotate the layer.
Specifies the default value of the
DefaultRotateAngle property.

exDefLayerRotateAngleValid 178 Validates the rotation angle of the layer. Specifies
the default value of the RotateAngleValid property.

exDefLayerRotateCenterLayer179

Indicates the index of the layer the rotation is
around. If -1, the rotation is relative to the current
layer. Specifies the default value of the
RotateCenterLayer property.

exDefLayerRotateCenterX 180

Indicates the expression that determines the x-
origin of the rotation point relative to the
RotateCenterLayer layer. Specifies the default
value of the RotateCenterX property.

exDefLayerRotateCenterY 181

Indicates the expression that determines the y-
origin of the rotation point relative to the
RotateCenterLayer layer. Specifies the default
value of the RotateCenterY property.

exDefLayerValueToRotateAngle182
Specifies the expression to convert the value to
rotating angle Specifies the default value of the

ValueToRotateAngle property.

exDefLayerRotateAngleToValue183
Specifies the expression to convert the rotating
angle to value. Specifies the default value of the
RotateAngleToValue property.

exDefLayerRotateClip 184
Specifies whether the layer's clipping region is
rotated once the layer is rotated. Specifies the
default value of the RotateClip property.

exDefLayerRotateType 185

Returns or sets a value that indicates whether the
layer's rotation is performed fast, by shearing (high
quality rotation), ... Specifies the default value of
the RotateType property.

exDefLayerShowHandCursor 192

Returns or sets a value that indicates whether the
hand cursor is shown when it hovers a visible /
selectable / dragable layer. Specifies the default
value of the ShowHandCursor property.

constants LayerClipTypeEnum
The LayerClipTypeEnum type specifies the clipping types currently any layer can support.
The Type property specifies the type of the clipping the current layer supports. The Type
property can be any combination of the following flags, which indicates intersection of them.
The LayerClipTypeEnum type supports the following value:

Name Value Description
exLayerClipEmpty 0 No clipping is applied to the layer.

exLayerClipRectangle 1 Indicates that the ClipRectangle is applied on the
layer.

exLayerClipRoundRectangle 2 Indicates that the ClipRoundRectangle is applied on
the layer.

exLayerClipEllipse 4 Indicates that the ClipEllipse is applied on the layer.
exLayerClipPie 8 Indicates that the ClipPie is applied on the layer.

exLayerClipPolygon 16 Indicates that the ClipPolygon is applied on the
layer.

exLayerClipPicture 32 Indicates that the ClipPicture is applied on the layer.

constants LayerUpdateEnum
The LayerUpdateEnum type specifies the way the control clips its content. The control
support transparent form, or in other words, displaying the control's itself without its form
behind.

Currently, the control supports two type of clippings:

by region clipping, using the LayerClipTo property
by layering, using the LayerUpdate property

The LayerUpdateEnum type supports the following values:

Name Value Description
exLayerUpdateControl 0 By default, the control updates its content.

exLayerUpdateParent 1 Updates the parent's device, to clip the control
inside.

exLayerUpdateScreen 2 Updates the screen's device, to clip the control
inside.

constants OnDragLayerEnum
The OnDragLayerEnum type indicates the operation a layer can perform when user clicks
and drags it. The OnDrag property indicates the action to be performed when the user
drags the layer. The OnDragLayerEnum type supports the following value:

Name Value Description
exDoNothing 0 Nothing happens if the user drags the layer.

exDoMove 1
The layer is moved while dragging. The layer's
OffsetX and OffsetY indicates the current (x,y)
position of the layer.

exDoRotate 2
The layer is rotated while dragging. The
RotateAngle property indicates the currently
rotation angle.

exDoRotamove 3

The layer is moved by rotation while dragging. The
RotateAngle property indicates the currently
rotation angle. In this case, the layer's
RotamoveOffsetX / RotamoveOffsetY property
indicates the current (x,y) position of the layer.

constants PictureDisplayEnum
Specifies how a picture object is displayed. The DisplayAs property retrieves or sets a
value that indicates the way how the graphic is displayed on the layer's background. The
PictureDisplayEnum type supports the following values:

Name Value Description
UpperLeft 0 Aligns the picture to the upper left corner.
UpperCenter 1 Centers the picture on the upper edge.
UpperRight 2 Aligns the picture to the upper right corner.

MiddleLeft 16 Aligns horizontally the picture on the left side, and
centers the picture vertically.

MiddleCenter 17 Puts the picture on the center of the source.

MiddleRight 18 Aligns horizontally the picture on the right side, and
centers the picture vertically.

LowerLeft 32 Aligns the picture to the lower left corner.
LowerCenter 33 Centers the picture on the lower edge.
LowerRight 34 Aligns the picture to the lower right corner.
Tile 48 Tiles the picture on the source.
Stretch 49 The picture is resized to fit the source.

constants PropertyLayerCaptionEnum
The PropertyLayerCaptionEnum type holds properties of the HTML caption that can be
displayed on the control, or on the layer's foreground. Any of the following properties can
be used to display a HTML caption:

Caption property specifies the caption to be shown on the control's foreground.
ExtraCaption property specifies any extra caption to be shown on the control's
foreground.
Foreground.Caption specifies the caption to be shown on the layer's foreground.
Foreground.ExtraCaption specifies any extra caption to be shown on the layer's
foreground.

The PropertyLayerCaptionEnum type supports the following value:

Name Value Description

exLayerCaption 0

Indicates the HTML caption to be displayed on the
caption. By default, the exLayerCaption is empty.
You can use the exLayerCaptionWordWrap to
display the caption on multiple lines. The
exLayerCaption supports built-in HTML format as
listed here.

(string expression)

exLayerCaptionBackColor 1

Indicates the layer's background color. By default,
the exLayerCaptionBackColor property is -1, which
indicates that no background color is applied. The
last 7 bits in the high significant byte of the color
indicates the identifier of the skin being used. You
can use the <bgcolor> HTML tag in the
exLayerCaption to specify a different background
color for a portion of the text. Use the Add method
to add new skins to the control. If you need to
remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high
significant byte of the color being applied to the
background's part.

(long expression)

Indicates the layer's foreground color. By default,
the exLayerCaptionForeColor property is -1, which

exLayerCaptionForeColor 2

indicates that no foreground color is applied. You
can use the <fgcolor> HTML tag in the
exLayerCaption to specify a different foreground
color for a portion of the text.

(long expression)

exLayerCaptionAnchor 3

Specifies the side of the host where the caption is
anchored. By default, the exLayerCaptionAnchor
property is 1 (exAnchorTop), that indicates that the
caption is anchored to the top side of its host. You
can use the exLayerCaptionLeft,
exLayerCaptionTop, exLayerCaptionWidth and
exLayerCaptionHeight to display the caption at a
different position relative to its original position.

(AnchorEnum type).

exLayerCaptionLeft 4

Specifies the expression to determine the x-position
to show the caption, relative to its current position.
By default, the exLayerCaptionLeft property is "0",
which indicates that the caption is displayed at it's
original position (horizontal axis), determined by the
exLayerCaptionAnchor. You can use the
exLayerCaptionAnchor property to anchor the
caption to a different side of the host.

The property supports the following keywords:

twidth, indicates the width required to fully
display the caption
theight, indicates the height required to fully
display the caption
width, indicates the width of the layer (if it is
applied to the layer's foreground
Foreground.Caption or
Foreground.ExtraCaption), or of the control (if
it is applied to the control's foreground Caption
or ExtraCaption)
height, indicates the height of the layer (if it is
applied to the layer's foreground
Foreground.Caption or
Foreground.ExtraCaption), or of the control (if

it is applied to the control's foreground Caption
or ExtraCaption)

The property supports predefined constants,
operators and functions as described here .

(string expression)

exLayerCaptionTop 5

Specifies the expression to determine the y-position
to show the caption, relative to its current position.
By default, the exLayerCaptionTop property is "0",
which indicates that the caption is displayed at it's
original position (vertical axis), determined by the
exLayerCaptionAnchor. You can use the
exLayerCaptionAnchor property to anchor the
caption to a different side of the host.

The property supports the following keywords:

twidth, indicates the width required to fully
display the caption
theight, indicates the height required to fully
display the caption
width, indicates the width of the layer (if it is
applied to the layer's foreground
Foreground.Caption or
Foreground.ExtraCaption), or of the control (if
it is applied to the control's foreground Caption
or ExtraCaption)
height, indicates the height of the layer (if it is
applied to the layer's foreground
Foreground.Caption or
Foreground.ExtraCaption), or of the control (if
it is applied to the control's foreground Caption
or ExtraCaption)

The property supports predefined constants,
operators and functions as described here .

(string expression)

Specifies the expression to determine the width to
show the caption, relative to its current width. By

exLayerCaptionWidth 6

default, the exLayerCaptionWidth property is
"twidth", which indicates that the caption is
displayed on its full width. You can use the
exLayerCaptionAnchor property to anchor the
caption to a different side of the host.

The property supports the following keywords:

twidth, indicates the width required to fully
display the caption
theight, indicates the height required to fully
display the caption
width, indicates the width of the layer (if it is
applied to the layer's foreground
Foreground.Caption or
Foreground.ExtraCaption), or of the control (if
it is applied to the control's foreground Caption
or ExtraCaption)
height, indicates the height of the layer (if it is
applied to the layer's foreground
Foreground.Caption or
Foreground.ExtraCaption), or of the control (if
it is applied to the control's foreground Caption
or ExtraCaption)

The property supports predefined constants,
operators and functions as described here .

(string expression)

Specifies the expression to determine the height to
show the caption, relative to its current height. By
default, the exLayerCaptionHeight property is
"theight", which indicates that the caption is
displayed on its full height. You can use the
exLayerCaptionAnchor property to anchor the
caption to a different side of the host.

The property supports the following keywords:

twidth, indicates the width required to fully
display the caption
theight, indicates the height required to fully
display the caption

exLayerCaptionHeight 7

width, indicates the width of the layer (if it is
applied to the layer's foreground
Foreground.Caption or
Foreground.ExtraCaption), or of the control (if
it is applied to the control's foreground Caption
or ExtraCaption)
height, indicates the height of the layer (if it is
applied to the layer's foreground
Foreground.Caption or
Foreground.ExtraCaption), or of the control (if
it is applied to the control's foreground Caption
or ExtraCaption)

The property supports predefined constants,
operators and functions as described here .

(string expression)

exLayerCaptionWordWrap 8

Indicates whether a multiline caption automatically
wraps words to the beginning of the next line when
necessary. By default, the
exLayerCaptionWordWrap property is False.

(boolean expression)

exLayerCaptionBackgroundExt9

Indicates Unlimited options to show any HTML text,
images, colors, EBNs, patterns, frames anywhere
on the layer's background, using EBN String
Format. A short description of the EBN String
Format is described here, or a full description of the
EBN String Format can be found here.

(string expression)

exLayerCaptionVisibleFront 10

Specifies whether the caption is shown in front. By
default, the exLayerCaptionVisibleFront property is
True, which indicates that the caption is shown in
front. Use the exLayerCaptionVisibleFront property
to display the caption on the layer's background, if
the exLayerCaptionVisibleFront property is False.

(boolean expression)

https://exontrol.com/faq.jsp/all/#backgroundext

The exLayerCaption supports built-in HTML tags as follow:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part

about:blank

of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the

color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

The property supports predefined constants, operators and functions as listed bellow:

The constants are (DPI-Aware components):

dpi (DPI constant), specifies the current DPI setting. and it indicates the minimum
value between dpix and dpiy constants. For instance, if current DPI setting is 100%,
the dpi constant returns 1, if 150% it returns 1.5, and so on. For instance, the
expression value * dpi returns the value if the DPI setting is 100%, or value * 1.5 in
case, the DPI setting is 150%
dpix (DPIX constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpix constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpix returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%
dpiy (DPIY constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpiy constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpiy returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported binary range operators, all these with the same priority 5, are :

MIN (min operator), indicates the minimum value, so a MIN b returns the value of a, if
it is less than b, else it returns b. For instance, the expression value MIN 10 returns
always a value greater than 10.
MAX (max operator), indicates the maximum value, so a MAX b returns the value of
a, if it is greater than b, else it returns b. For instance, the expression value MAX 100
returns always a value less than 100.

The supported binary operators, all these with the same priority 0, are :

:= (Store operator), stores the result of expression to variable. The syntax for :=
operator is

variable := expression

where variable is a integer between 0 and 9. You can use the =: operator to restore
any stored variable (please make the difference between := and =:). For instance,
(0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and prints zero
if it is 0, else the converted number. Please pay attention that the := and =: are two
distinct operators, the first for storing the result into a variable, while the second for
restoring the variable

=: (Restore operator), restores the giving variable (previously saved using the store
operator). The syntax for =: operator is

=: variable

where variable is a integer between 0 and 9. You can use the := operator to store the
value of any expression (please make the difference between := and =:). For
instance, (0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and
prints zero if it is 0, else the converted number. Please pay attention that the := and =:

are two distinct operators, the first for storing the result into a variable, while the
second for restoring the variable

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for ? operator is

expression ? true_part : false_part

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the %0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found') returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

expression array (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D') is equivalent with month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D').

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

expression in (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the value in (11,22,33,44,13) is equivalent with
(expression = 11) or (expression = 22) or (expression = 33) or (expression = 44) or
(expression = 13). The in operator is not a time consuming as the equivalent or version
is, so when you have large number of constant elements it is recommended using the
in operator. Shortly, if the collection of elements has 1000 elements the in operator
could take up to 8 operations in order to find if an element fits the set, else if the or
statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

expression switch (default,c1,c2,c3,...,cn)

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the %0 switch ('not found',1,4,7,9,11) gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

expression case ([default : default_expression ;] c1 : expression1 ; c2 : expression2
; c3 : expression3 ;....)

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1) indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8) statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions. Obviously, the priority of the operations inside the expression is

determined by () parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%1) = 8
specifies the cells (on the column 1) that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string. The str operator converts the
expression to a string. For instance, the str(-12.54) returns the string "-12.54".
dbl (unary operator) converts the expression to a number. The dbl operator converts
the expression to a number. For instance, the dbl("12.54") returns 12.54
date (unary operator) converts the expression to a date, based on your regional
settings. For instance, the date(``) gets the current date (no time included), the
date(`now`) gets the current date-time, while the date("01/01/2001") returns
#1/1/2001#
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS. For instance, the dateS("01/01/2001 14:00:00") returns
#1/1/2001 14:00:00#

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number. For instance, the
int(12.54) returns 12
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2. For
instance, the round(12.54) returns 13
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument. For instance, the floor(12.54) returns 12
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2.
For instance, the abs(-12.54) returns 12.54
sin (unary operator) returns the sine of an angle of x radians. For instance, the
sin(3.14) returns 0.001593.
cos (unary operator) returns the cosine of an angle of x radians. For instance, the
cos(3.14) returns -0.999999.
asin (unary operator) returns the principal value of the arc sine of x, expressed in
radians. For instance, the 2*asin(1) returns the value of PI.
acos (unary operator) returns the principal value of the arc cosine of x, expressed in
radians. For instance, the 2*acos(0) returns the value of PI
sqrt (unary operator) returns the square root of x. For instance, the sqrt(81) returns 9.
currency (unary operator) formats the giving number as a currency string, as indicated
by the control panel. For instance, currency(value) displays the value using the current
format for the currency ie, 1000 gets displayed as $1,000.00, for US format.
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical

examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string. For instance, the
len("Mihai") returns 5.
lower (unary operator) returns a string expression in lowercase letters. For instance,
the lower("MIHAI") returns "mihai"
upper (unary operator) returns a string expression in uppercase letters. For instance,
the upper("mihai") returns "MIHAI"
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names. For instance, the proper("mihai") returns "Mihai"
ltrim (unary operator) removes spaces on the left side of a string. For instance, the
ltrim(" mihai") returns "mihai"
rtrim (unary operator) removes spaces on the right side of a string. For instance, the
rtrim("mihai ") returns "mihai"
trim (unary operator) removes spaces on both sides of a string. For instance, the
trim(" mihai ") returns "mihai"
reverse (unary operator) reverses the order of the characters in the string a. For
instance, the reverse("Mihai") returns "iahiM"
startwith (binary operator) specifies whether a string starts with specified string (0 if
not found, -1 if found). For instance "Mihai" startwith "Mi" returns -1
endwith (binary operator) specifies whether a string ends with specified string (0 if
not found, -1 if found). For instance "Mihai" endwith "ai" returns -1
contains (binary operator) specifies whether a string contains another specified string
(0 if not found, -1 if found). For instance "Mihai" contains "ha" returns -1

left (binary operator) retrieves the left part of the string. For instance "Mihai" left 2
returns "Mi".
right (binary operator) retrieves the right part of the string. For instance "Mihai" right 2
returns "ai"
a lfind b (binary operator) The a lfind b (binary operator) searches the first occurrence
of the string b within string a, and returns -1 if not found, or the position of the result (
zero-index). For instance "ABCABC" lfind "C" returns 2
a rfind b (binary operator) The a rfind b (binary operator) searches the last
occurrence of the string b within string a, and returns -1 if not found, or the position of
the result (zero-index). For instance "ABCABC" rfind "C" returns 5.
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on). For instance "Mihai" mid 2 returns "ihai"
a count b (binary operator) retrieves the number of occurrences of the b in a. For
instance "Mihai" count "i" returns 2.
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result. For instance, the "Mihai" replace "i" with "" returns "Mha" string, as it replaces
all "i" with nothing.
a split b, splits the a using the separator b, and returns an array. For instance, the
weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' ' gets the weekday as
string. This operator can be used with the array.

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel. For instance, the time(#1/1/2001 13:00#) returns "1:00:00 PM"
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance, the timeF(#1/1/2001 13:00#) returns "13:00:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel. For instance, the shortdate(#1/1/2001
13:00#) returns "1/1/2001"
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance, the shortdateF(#1/1/2001 13:00#) returns
"01/01/2001"
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format. For instance, the dateF(#01/01/2001 14:00:00#)
returns #01/01/2001 14:00:00#
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel. For instance, the longdate(#1/1/2001 13:00#)
returns "Monday, January 01, 2001"
year (unary operator) retrieves the year of the date (100,...,9999). For instance, the
year(#12/31/1971 13:14:15#) returns 1971
month (unary operator) retrieves the month of the date (1, 2,...,12). For instance, the

month(#12/31/1971 13:14:15#) returns 12.
day (unary operator) retrieves the day of the date (1, 2,...,31). For instance, the
day(#12/31/1971 13:14:15#) returns 31
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365). For instance, the yearday(#12/31/1971 13:14:15#) returns
365
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday). For instance, the weekday(#12/31/1971 13:14:15#) returns
5.
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23). For instance, the
hour(#12/31/1971 13:14:15#) returns 13
min (unary operator) retrieves the minute of the date (0, 1, ..., 59). For instance, the
min(#12/31/1971 13:14:15#) returns 14
sec (unary operator) retrieves the second of the date (0, 1, ..., 59). For instance, the
sec(#12/31/1971 13:14:15#) returns 15

The Exontrol's eXPression component is a syntax-editor that helps you to define, view, edit
and evaluate expressions. Using the eXPression component you can easily view or check if
the expression you have used is syntactically correct, and you can evaluate what is the
result you get giving different values to be tested. The Exontrol's eXPression component
can be used as an user-editor, to configure your applications.

https://exontrol.com/expression.jsp

The EBN String Format syntax in BNF notation is
defined like follows:

<EBN> ::= <elements> | <root> "(" [<elements>] ")"
<elements> ::= <element> ["," <elements>]
<root> ::= "root" [<attributes>] | [<attributes>]
<element> ::= <anchor> [<attributes>] ["(" [<elements>] ")"]
<anchor> ::= "none" | "left" | "right" | "client" | "top" | "bottom"
<attributes> ::= "[" [<client> ","] <attribute> ["," <attributes>] "]"
<client> ::= <expression> | <expression> "," <expression> "," <expression> ","
<expression>
<expression> ::= <number> | <number> "%"
<attribute> ::= <backcolor> | <text> | <wordwrap> | <align> | <pattern> |
<patterncolor> | <frame> | <framethick> | <data> | <others>
<equal> ::= "="
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<decimal> ::= <digit><decimal>
<hexadigit> ::= <digit> | "A" | "B" "C" | "D" | "E" "F"
<hexa> ::= <hexadigit><hexa>
<number> ::= <decimal> | "0x" <hexa>
<color> ::= <rgbcolor> | number
<rgbcolor> ::= "RGB" "(" <number> "," <number> "," <number> ")"
<string> ::= "`" <characters> "`" | "'" <characters> "'" | " <characters> "
<characters> ::= <char>|<characters>
<char> ::= <any_character_excepts_null>
<backcolor> ::= "back" <equal> <color>
<text> ::= "text" <equal> <string>
<align> ::= "align" <equal> <number>
<pattern> ::= "pattern" <equal> <number>
<patterncolor> ::= "patterncolor" <equal> <color>
<frame> ::= "frame" <equal> <color>
<data> ::= "data" <equal> <number> | <string>
<framethick> ::= "framethick"
<wordwrap> ::= "wordwrap"

Others like: pic, stretch, hstretch, vstretch, transparent, from, to are reserved for future
use only.

Easy samples:

"[pattern=6]", shows the BDiagonal pattern on the object's background.

"[frame=RGB(255,0,0),framethick]", draws a red thick-border around the object.

"[frame=RGB(255,0,0),framethick,pattern=6,patterncolor=RGB(255,0,0)]", draws a
red thick-border around the object, with a patter inside.

"[[patterncolor=RGB(255,0,0)]
(none[(4,4,100%-8,100%-8),pattern=0x006,patterncolor=RGB(255,0,0),frame=RGB(255,0,0),framethick])]",
draws a red thick-border around the object, with a patter inside, with a 4-pixels wide
padding:

"top[4,back=RGB(0,0,255)]", draws a blue line on the top side of the object's
background, of 4-pixels wide.

"[text=`caption`,align=0x22]", shows the caption string aligned to the bottom-right side
of the object's background.

"[text=`flag`,align=0x11]" shows the flag picture and the sweden string
aligned to the bottom side of the object.

"left[10,back=RGB(255,0,0)]", draws a red line on the left side of the object's
background, of 10-pixels wide.

"bottom[50%,pattern=6,frame]", shows the BDiagonal pattern with a border arround on
the lower-half part of the object's background.

"root[text=`caption 2`,align=0x22](client[text=`caption 1`,align=0x20])", shows
the caption 1 aligned to the bottom-left side, and the caption 2 to the bottom-right side

Now, lets say we have the following request to layout the colors on the objects:

We define the BackgroundExt property such as
"top[30%,back=RGB(253,218,101)],client[back=RGB(91,157,210)],none[(0%,0%,10%,100%)]
(top[90%,back=RGB(0,0,0)])", and it looks as:

so, if we apply to our object we got:

Now, lets say we have the following request to layout the colors on the objects:

We define BackgroundExt property such as "left[10%]

(top[90%,back=RGB(0,0,0)]),top[30%,back=RGB(254,217,102)],client[back=RGB(91,156,212)]",
and it looks as:

so, if we apply to our object we got:

constants RotateTypeEnum
The RotateTypeEnum type indicates the type of rotation currently, the control supports. The
RotateType property returns or sets a value that indicates whether the layer's rotation is
performed fast, by shearing (high quality rotation), ... The RotateTypeEnum type supports
the following values.

Name Value Description

exRotateFast 0
This is the default value. It is the fastest method
compared with others but the images is not as
smooth as possible.

exRotateByShear 1

The method also called "Rotation Through
Shearing", unlike traditional rotation of images,
where every n'th pixel is sampled and copied to the
result image, this template provides much more
accurate image rotation features (weighing the
pixels).

exRotateBilinearInterpolation 2
This method also called "Rotation by Bilinear
Interpolation", is fast, and produces perfect rotation
images.

constants SmoothPropertyEnum
The SmoothPropertyEnum type specifies the properties of the layer that can be changed
gradually. The AllowSmoothChange property specifies the properties of the layers that
support smooth change. The SmoothPropertyEnum type supports the following values.

Name Value Description

exSmoothChangeless 0 The change of any of the following properties is not
gradually.

exLayerTransparency 1 Transparency, Gets or sets a value that indicates
percent of the transparency to display the layer.

exLayerBrightness 2 Brightness, Specifies the percent of brightness to
apply to the layer.

exLayerContrast 4 Contrast, Specifies the percent of contrast to apply
to the layer.

Appearance object
The component lets the user changes its visual appearance using skins, each one providing
an additional visual experience that enhances viewing pleasure. Skins are relatively easy to
build and put on any part of the control. The Appearance object holds a collection of skins.
The Appearance object supports the following properties and methods:

Name Description
Add Adds or replaces a skin object to the control.
Clear Removes all skins in the control.
Remove Removes a specific skin from the control.

RenderType Specifies the way colored EBN objects are displayed on
the component.

method Appearance.Add (ID as Long, Skin as Variant)
Adds or replaces a skin object to the control.

Type Description

ID as Long

A Long expression that indicates the index of the skin
being added or replaced. The value must be between 1
and 126, so Appearance collection should holds no more
than 126 elements.
The Skin parameter of the Add method can a STRING as
explained bellow, a BYTE[] / safe arrays of VT_I1 or
VT_UI1 expression that indicates the content of the EBN
file. You can use the BYTE[] / safe arrays of VT_I1 or
VT_UI1 option when using the EBN file directly in the
resources of the project. For instance, the VB6 provides
the LoadResData to get the safe array o bytes for
specified resource, while in VB/NET or C# the internal
class Resources provides definitions for all files being
inserted. (ResourceManager.GetObject("ebn",
resourceCulture))

If the Skin parameter points to a string expression, it can
be one of the following:

A path to the skin file (*.EBN). The ExButton
component or ExEBN tool can be used to create,
view or edit EBN files. For instance, "C:\Program
Files\Exontrol\ExButton\Sample\EBN\MSOffice-
Ribbon\msor_frameh.ebn"
A BASE64 encoded string that holds the skin file (
*.EBN). Use the ExImages tool to build BASE 64
encoded strings of the skin file (*.EBN). The
BASE64 encoded string starts with "gBFLBCJw..."
An Windows XP theme part, if the Skin parameter
starts with "XP:". Use this option, to display any UI
element of the Current Windows XP Theme, on any
part of the control. In this case, the syntax of the Skin
parameter is: "XP:ClassName Part State" where the
ClassName defines the window/control class name in
the Windows XP Theme, the Part indicates a long
expression that defines the part, and the State
indicates the state of the part to be shown. All known
values for window/class, part and start are defined at

https://exontrol.com/ebn.jsp
https://exontrol.com/ebn.jsp
https://exontrol.com/exbutton.jsp
https://exontrol.com/exebn.jsp
https://exontrol.com/ebn.jsp
https://exontrol.com/eximages.jsp
https://exontrol.com/ebn.jsp

Skin as Variant

the end of this document. For instance the
"XP:Header 1 2" indicates the part 1 of the Header
class in the state 2, in the current Windows XP
theme.

The following screen shots show a few Windows XP
Theme Elements, running on Windows Vista and
Windows 10:

A copy of another skin with different coordinates (
position, size), if the Skin parameter starts with
"CP:". Use this option, to display the EBN, using
different coordinates (position, size). By default, the
EBN skin object is rendered on the part's client area.
Using this option, you can display the same EBN, on a
different position / size. In this case, the syntax of the
Skin parameter is: "CP:ID Left Top Right Bottom"

where the ID is the identifier of the EBN to be used (
it is a number that specifies the ID parameter of the
Add method), Left, Top, Right and Bottom
parameters/numbers specifies the relative position to
the part's client area, where the EBN should be
rendered. The Left, Top, Right and Bottom
parameters are numbers (negative, zero or positive
values, with no decimal), that can be followed by the
D character which indicates the value according to the
current DPI settings. For instance, "CP:1 -2 -2 2 2",
uses the EBN with the identifier 1, and displays it on a
2-pixels wider rectangle no matter of the DPI settings,
while "CP:1 -2D -2D 2D 2D" displays it on a 2-pixels
wider rectangle if DPI settings is 100%, and on on a
3-pixels wider rectangle if DPI settings is 150%.

The following screen shot shows the same EBN being
displayed, using different CP: options:

Return Description

Boolean A Boolean expression that indicates whether the new skin
was added or replaced.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control. By using a
collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the BeginUpdate and EndUpdate methods to maintain performance while init the control.
Use the Refresh method to refresh the control.

The identifier you choose for the skin is very important to be used in the background
properties like explained bellow. Shortly, the color properties uses 4 bytes (DWORD,
double WORD, and so on) to hold a RGB value. More than that, the first byte (most

significant byte in the color) is used only to specify system color. if the first bit in the byte is
1, the rest of bits indicates the index of the system color being used. So, we use the last 7
bits in the high significant byte of the color to indicates the identifier of the skin being used.
So, since the 7 bits can cover 127 values, excluding 0, we have 126 possibilities to store an
identifier in that byte. This way, a DWORD expression indicates the background color
stored in RRGGBB format and the index of the skin (ID parameter) in the last 7 bits in the
high significant byte of the color. For instance, the BackColor = BackColor Or &H2000000
indicates that we apply the skin with the index 2 using the old color, to the object that
BackColor is applied.

Starting with Windows XP, the following table shows how the common controls are broken
into parts and states:

Control/ClassName Part States

BUTTON BP_CHECKBOX = 3

CBS_UNCHECKEDNORMAL =
1 CBS_UNCHECKEDHOT = 2
CBS_UNCHECKEDPRESSED
= 3
CBS_UNCHECKEDDISABLED
= 4 CBS_CHECKEDNORMAL =
5 CBS_CHECKEDHOT = 6
CBS_CHECKEDPRESSED = 7
CBS_CHECKEDDISABLED = 8
CBS_MIXEDNORMAL = 9
CBS_MIXEDHOT = 10
CBS_MIXEDPRESSED = 11
CBS_MIXEDDISABLED = 12

BP_GROUPBOX = 4 GBS_NORMAL = 1
GBS_DISABLED = 2

BP_PUSHBUTTON = 1

PBS_NORMAL = 1 PBS_HOT
= 2 PBS_PRESSED = 3
PBS_DISABLED = 4
PBS_DEFAULTED = 5

BP_RADIOBUTTON = 2

RBS_UNCHECKEDNORMAL =
1 RBS_UNCHECKEDHOT = 2
RBS_UNCHECKEDPRESSED
= 3
RBS_UNCHECKEDDISABLED
= 4 RBS_CHECKEDNORMAL =
5 RBS_CHECKEDHOT = 6
RBS_CHECKEDPRESSED = 7
RBS_CHECKEDDISABLED = 8

BP_USERBUTTON = 5
CLOCK CLP_TIME = 1 CLS_NORMAL = 1

COMBOBOX CP_DROPDOWNBUTTON = 1

CBXS_NORMAL = 1
CBXS_HOT = 2
CBXS_PRESSED = 3
CBXS_DISABLED = 4

EDIT EP_CARET = 2

EP_EDITTEXT = 1

ETS_NORMAL = 1 ETS_HOT =
2 ETS_SELECTED = 3
ETS_DISABLED = 4
ETS_FOCUSED = 5
ETS_READONLY = 6
ETS_ASSIST = 7

EXPLORERBAR EBP_HEADERBACKGROUND = 1

EBP_HEADERCLOSE = 2
EBHC_NORMAL = 1
EBHC_HOT = 2
EBHC_PRESSED = 3

EBP_HEADERPIN = 3

EBHP_NORMAL = 1
EBHP_HOT = 2
EBHP_PRESSED = 3
EBHP_SELECTEDNORMAL =
4 EBHP_SELECTEDHOT = 5
EBHP_SELECTEDPRESSED =
6

EBP_IEBARMENU = 4 EBM_NORMAL = 1 EBM_HOT
= 2 EBM_PRESSED = 3

EBP_NORMALGROUPBACKGROUND = 5

EBP_NORMALGROUPCOLLAPSE = 6
EBNGC_NORMAL = 1
EBNGC_HOT = 2
EBNGC_PRESSED = 3

EBP_NORMALGROUPEXPAND = 7
EBNGE_NORMAL = 1
EBNGE_HOT = 2
EBNGE_PRESSED = 3

EBP_NORMALGROUPHEAD = 8
EBP_SPECIALGROUPBACKGROUND = 9

EBP_SPECIALGROUPCOLLAPSE = 10
EBSGC_NORMAL = 1
EBSGC_HOT = 2
EBSGC_PRESSED = 3

EBP_SPECIALGROUPEXPAND = 11
EBSGE_NORMAL = 1
EBSGE_HOT = 2

EBSGE_PRESSED = 3
EBP_SPECIALGROUPHEAD = 12

HEADER HP_HEADERITEM = 1 HIS_NORMAL = 1 HIS_HOT =
2 HIS_PRESSED = 3

HP_HEADERITEMLEFT = 2 HILS_NORMAL = 1 HILS_HOT
= 2 HILS_PRESSED = 3

HP_HEADERITEMRIGHT = 3 HIRS_NORMAL = 1 HIRS_HOT
= 2 HIRS_PRESSED = 3

HP_HEADERSORTARROW = 4 HSAS_SORTEDUP = 1
HSAS_SORTEDDOWN = 2

LISTVIEW LVP_EMPTYTEXT = 5
LVP_LISTDETAIL = 3
LVP_LISTGROUP = 2

LVP_LISTITEM = 1

LIS_NORMAL = 1 LIS_HOT =
2 LIS_SELECTED = 3
LIS_DISABLED = 4
LIS_SELECTEDNOTFOCUS =
5

LVP_LISTSORTEDDETAIL = 4

MENU MP_MENUBARDROPDOWN = 4
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUBARITEM = 3
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_CHEVRON = 5
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUDROPDOWN = 2
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUITEM = 1
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_SEPARATOR = 6
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MENUBAND MDP_NEWAPPBUTTON = 1

MDS_NORMAL = 1 MDS_HOT
= 2 MDS_PRESSED = 3
MDS_DISABLED = 4

MDS_CHECKED = 5
MDS_HOTCHECKED = 6

MDP_SEPERATOR = 2

PAGE PGRP_DOWN = 2
DNS_NORMAL = 1 DNS_HOT
= 2 DNS_PRESSED = 3
DNS_DISABLED = 4

PGRP_DOWNHORZ = 4

DNHZS_NORMAL = 1
DNHZS_HOT = 2
DNHZS_PRESSED = 3
DNHZS_DISABLED = 4

PGRP_UP = 1
UPS_NORMAL = 1 UPS_HOT
= 2 UPS_PRESSED = 3
UPS_DISABLED = 4

PGRP_UPHORZ = 3

UPHZS_NORMAL = 1
UPHZS_HOT = 2
UPHZS_PRESSED = 3
UPHZS_DISABLED = 4

PROGRESS PP_BAR = 1
PP_BARVERT = 2
PP_CHUNK = 3
PP_CHUNKVERT = 4

REBAR RP_BAND = 3

RP_CHEVRON = 4
CHEVS_NORMAL = 1
CHEVS_HOT = 2
CHEVS_PRESSED = 3

RP_CHEVRONVERT = 5
RP_GRIPPER = 1
RP_GRIPPERVERT = 2

SCROLLBAR SBP_ARROWBTN = 1

ABS_DOWNDISABLED,
ABS_DOWNHOT,
ABS_DOWNNORMAL,
ABS_DOWNPRESSED,
ABS_UPDISABLED,
ABS_UPHOT,
ABS_UPNORMAL,
ABS_UPPRESSED,
ABS_LEFTDISABLED,
ABS_LEFTHOT,
ABS_LEFTNORMAL,
ABS_LEFTPRESSED,

ABS_RIGHTDISABLED,
ABS_RIGHTHOT,
ABS_RIGHTNORMAL,
ABS_RIGHTPRESSED

SBP_GRIPPERHORZ = 8
SBP_GRIPPERVERT = 9

SBP_LOWERTRACKHORZ = 4

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_LOWERTRACKVERT = 6

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_THUMBBTNHORZ = 2

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_THUMBBTNVERT = 3

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_UPPERTRACKHORZ = 5

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_UPPERTRACKVERT = 7

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_SIZEBOX = 10 SZB_RIGHTALIGN = 1
SZB_LEFTALIGN = 2

SPIN SPNP_DOWN = 2
DNS_NORMAL = 1 DNS_HOT
= 2 DNS_PRESSED = 3
DNS_DISABLED = 4

SPNP_DOWNHORZ = 4

DNHZS_NORMAL = 1
DNHZS_HOT = 2
DNHZS_PRESSED = 3
DNHZS_DISABLED = 4

SPNP_UP = 1
UPS_NORMAL = 1 UPS_HOT
= 2 UPS_PRESSED = 3

UPS_DISABLED = 4

SPNP_UPHORZ = 3

UPHZS_NORMAL = 1
UPHZS_HOT = 2
UPHZS_PRESSED = 3
UPHZS_DISABLED = 4

STARTPANEL SPP_LOGOFF = 8

SPP_LOGOFFBUTTONS = 9
SPLS_NORMAL = 1
SPLS_HOT = 2
SPLS_PRESSED = 3

SPP_MOREPROGRAMS = 2

SPP_MOREPROGRAMSARROW = 3 SPS_NORMAL = 1 SPS_HOT
= 2 SPS_PRESSED = 3

SPP_PLACESLIST = 6
SPP_PLACESLISTSEPARATOR = 7
SPP_PREVIEW = 11
SPP_PROGLIST = 4
SPP_PROGLISTSEPARATOR = 5
SPP_USERPANE = 1
SPP_USERPICTURE = 10

STATUS SP_GRIPPER = 3
SP_PANE = 1
SP_GRIPPERPANE = 2

TAB TABP_BODY = 10
TABP_PANE = 9

TABP_TABITEM = 1

TIS_NORMAL = 1 TIS_HOT =
2 TIS_SELECTED = 3
TIS_DISABLED = 4
TIS_FOCUSED = 5

TABP_TABITEMBOTHEDGE = 4

TIBES_NORMAL = 1
TIBES_HOT = 2
TIBES_SELECTED = 3
TIBES_DISABLED = 4
TIBES_FOCUSED = 5

TABP_TABITEMLEFTEDGE = 2

TILES_NORMAL = 1
TILES_HOT = 2
TILES_SELECTED = 3
TILES_DISABLED = 4
TILES_FOCUSED = 5
TIRES_NORMAL = 1

TABP_TABITEMRIGHTEDGE = 3
TIRES_HOT = 2
TIRES_SELECTED = 3
TIRES_DISABLED = 4
TIRES_FOCUSED = 5

TABP_TOPTABITEM = 5

TTIS_NORMAL = 1 TTIS_HOT
= 2 TTIS_SELECTED = 3
TTIS_DISABLED = 4
TTIS_FOCUSED = 5

TABP_TOPTABITEMBOTHEDGE = 8

TTIBES_NORMAL = 1
TTIBES_HOT = 2
TTIBES_SELECTED = 3
TTIBES_DISABLED
TTIBES_FOCUSED = 5

TABP_TOPTABITEMLEFTEDGE = 6

TTILES_NORMAL = 1
TTILES_HOT = 2
TTILES_SELECTED = 3
TTILES_DISABLED
TTILES_FOCUSED = 5

TABP_TOPTABITEMRIGHTEDGE = 7

TTIRES_NORMAL = 1
TTIRES_HOT = 2
TTIRES_SELECTED = 3
TTIRES_DISABLED
TTIRES_FOCUSED = 5

TASKBAND TDP_GROUPCOUNT = 1
TDP_FLASHBUTTON = 2
TDP_FLASHBUTTONGROUPMENU = 3

TASKBAR TBP_BACKGROUNDBOTTOM = 1
TBP_BACKGROUNDLEFT = 4
TBP_BACKGROUNDRIGHT = 2
TBP_BACKGROUNDTOP = 3
TBP_SIZINGBARBOTTOM = 5
TBP_SIZINGBARBOTTOMLEFT = 8
TBP_SIZINGBARRIGHT = 6
TBP_SIZINGBARTOP = 7

TOOLBAR TP_BUTTON = 1

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6
TS_NORMAL = 1 TS_HOT = 2

TP_DROPDOWNBUTTON = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SPLITBUTTON = 3

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SPLITBUTTONDROPDOWN = 4

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SEPARATOR = 5

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SEPARATORVERT = 6

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TOOLTIP TTP_BALLOON = 3 TTBS_NORMAL = 1
TTBS_LINK = 2

TTP_BALLOONTITLE = 4 TTBS_NORMAL = 1
TTBS_LINK = 2

TTP_CLOSE = 5
TTCS_NORMAL = 1
TTCS_HOT = 2
TTCS_PRESSED = 3

TTP_STANDARD = 1 TTSS_NORMAL = 1
TTSS_LINK = 2

TTP_STANDARDTITLE = 2 TTSS_NORMAL = 1
TTSS_LINK = 2

TRACKBAR TKP_THUMB = 3

TUS_NORMAL = 1 TUS_HOT =
2 TUS_PRESSED = 3
TUS_FOCUSED = 4
TUS_DISABLED = 5
TUBS_NORMAL = 1
TUBS_HOT = 2

TKP_THUMBBOTTOM = 4 TUBS_PRESSED = 3
TUBS_FOCUSED = 4
TUBS_DISABLED = 5

TKP_THUMBLEFT = 7

TUVLS_NORMAL = 1
TUVLS_HOT = 2
TUVLS_PRESSED = 3
TUVLS_FOCUSED = 4
TUVLS_DISABLED = 5

TKP_THUMBRIGHT = 8

TUVRS_NORMAL = 1
TUVRS_HOT = 2
TUVRS_PRESSED = 3
TUVRS_FOCUSED = 4
TUVRS_DISABLED = 5

TKP_THUMBTOP = 5

TUTS_NORMAL = 1
TUTS_HOT = 2
TUTS_PRESSED = 3
TUTS_FOCUSED = 4
TUTS_DISABLED = 5

TKP_THUMBVERT = 6

TUVS_NORMAL = 1
TUVS_HOT = 2
TUVS_PRESSED = 3
TUVS_FOCUSED = 4
TUVS_DISABLED = 5

TKP_TICS = 9 TSS_NORMAL = 1
TKP_TICSVERT = 10 TSVS_NORMAL = 1
TKP_TRACK = 1 TRS_NORMAL = 1
TKP_TRACKVERT = 2 TRVS_NORMAL = 1

TRAYNOTIFY TNP_ANIMBACKGROUND = 2
TNP_BACKGROUND = 1

TREEVIEW TVP_BRANCH = 3

TVP_GLYPH = 2 GLPS_CLOSED = 1
GLPS_OPENED = 2

TVP_TREEITEM = 1

TREIS_NORMAL = 1
TREIS_HOT = 2
TREIS_SELECTED = 3
TREIS_DISABLED = 4
TREIS_SELECTEDNOTFOCUS
= 5

WINDOW WP_CAPTION = 1 CS_ACTIVE = 1 CS_INACTIVE
= 2 CS_DISABLED = 3

WP_CAPTIONSIZINGTEMPLATE = 30

WP_CLOSEBUTTON = 18
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_DIALOG = 29
WP_FRAMEBOTTOM = 9 FS_ACTIVE = 1 FS_INACTIVE

= 2
WP_FRAMEBOTTOMSIZINGTEMPLATE = 36

WP_FRAMELEFT = 7 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMELEFTSIZINGTEMPLATE = 32

WP_FRAMERIGHT = 8 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMERIGHTSIZINGTEMPLATE = 34

WP_HELPBUTTON = 23
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_HORZSCROLL = 25
HSS_NORMAL = 1 HSS_HOT
= 2 HSS_PUSHED = 3
HSS_DISABLED = 4

WP_HORZTHUMB = 26
HTS_NORMAL = 1 HTS_HOT =
2 HTS_PUSHED = 3
HTS_DISABLED = 4

WP_MAX_BUTTON

MAXBS_NORMAL = 1
MAXBS_HOT = 2
MAXBS_PUSHED = 3
MAXBS_DISABLED = 4

WP_MAXCAPTION = 5
MXCS_ACTIVE = 1
MXCS_INACTIVE = 2
MXCS_DISABLED = 3

WP_MDICLOSEBUTTON = 20
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_MDIHELPBUTTON = 24
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_MDIMINBUTTON = 16

MINBS_NORMAL = 1
MINBS_HOT = 2
MINBS_PUSHED = 3
MINBS_DISABLED = 4

WP_MDIRESTOREBUTTON = 22
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_MDISYSBUTTON = 14
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_MINBUTTON = 15

MINBS_NORMAL = 1
MINBS_HOT = 2
MINBS_PUSHED = 3
MINBS_DISABLED = 4

WP_MINCAPTION = 3
MNCS_ACTIVE = 1
MNCS_INACTIVE = 2
MNCS_DISABLED = 3

WP_RESTOREBUTTON = 21
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_SMALLCAPTION = 2 CS_ACTIVE = 1 CS_INACTIVE
= 2 CS_DISABLED = 3

WP_SMALLCAPTIONSIZINGTEMPLATE = 31

WP_SMALLCLOSEBUTTON = 19
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_SMALLFRAMEBOTTOM = 12 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMEBOTTOMSIZINGTEMPLATE
= 37

WP_SMALLFRAMELEFT = 10 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMELEFTSIZINGTEMPLATE =
33

WP_SMALLFRAMERIGHT = 11 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMERIGHTSIZINGTEMPLATE =
35

WP_SMALLHELPBUTTON
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_SMALLMAXBUTTON

MAXBS_NORMAL = 1
MAXBS_HOT = 2
MAXBS_PUSHED = 3

MAXBS_DISABLED = 4

WP_SMALLMAXCAPTION = 6
MXCS_ACTIVE = 1
MXCS_INACTIVE = 2
MXCS_DISABLED = 3

WP_SMALLMINCAPTION = 4
MNCS_ACTIVE = 1
MNCS_INACTIVE = 2
MNCS_DISABLED = 3

WP_SMALLRESTOREBUTTON

RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_SMALLSYSBUTTON
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_SYSBUTTON = 13
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_VERTSCROLL = 27
VSS_NORMAL = 1 VSS_HOT
= 2 VSS_PUSHED = 3
VSS_DISABLED = 4

WP_VERTTHUMB = 28
VTS_NORMAL = 1 VTS_HOT =
2 VTS_PUSHED = 3
VTS_DISABLED = 4

method Appearance.Clear ()
Removes all skins in the control.

Type Description

Use the Clear method to clear all skins from the control. Use the Remove method to
remove a specific skin. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being applied
to the background's part.

method Appearance.Remove (ID as Long)
Removes a specific skin from the control.

Type Description

ID as Long A Long expression that indicates the index of the skin
being removed.

Use the Remove method to remove a specific skin. The identifier of the skin being removed
should be the same as when the skin was added using the Add method. Use the Clear
method to clear all skins from the control. If you need to remove the skin appearance from
a part of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the background's part.

property Appearance.RenderType as Long
Specifies the way colored EBN objects are displayed on the component.

Type Description

Long A long expression that indicates how the EBN objects are
shown in the control, like explained bellow.

By default, the RenderType property is 0, which indicates an A-color scheme. The
RenderType property can be used to change the colors for the entire control, for parts of
the controls that uses EBN objects. The RenderType property is not applied to the currently
XP-theme if using.

The RenderType property is applied to all parts that displays an EBN object. The properties
of color type may support the EBN object if the property's description includes "A color
expression that indicates the cell's background color. The last 7 bits in the high significant
byte of the color to indicates the identifier of the skin being used. Use the Add method to
add new skins to the control. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being
applied to the background's part." In other words, a property that supports EBN objects
should be of format 0xIDRRGGBB, where the ID is the identifier of the EBN to be applied,
while the BBGGRR is the (Red,Green,Blue, RGB-Color) color to be applied on the selected
EBN. For instance, the 0x1000000 indicates displaying the EBN as it is, with no color
applied, while the 0x1FF0000, applies the Blue color (RGB(0x0,0x0,0xFF), RGB(0,0,255)
on the EBN with the identifier 1. You can use the EBNColor tool to visualize applying EBN
colors.

Click here to watch a movie on how you can change the colors to be applied on EBN
objects.

In the following screen shot the following objects displays the current EBN with a different
color:

"A" in Red (RGB(255,0,0), for instance the bar's property exBarColor is 0x10000FF
"B" in Green (RGB(0,255,0), for instance the bar's property exBarColor is 0x100FF00
"C" in Blue (RGB(0,0,255), for instance the bar's property exBarColor is 0x1FF0000
"Default", no color is specified, for instance the bar's property exBarColor is
0x1000000

The RenderType property could be one of the following:

-3, no color is applied. For instance, the BackColorHeader = &H1FF0000 is displayed
as would be .BackColorHeader = &H1000000, so the 0xFF0000 color (Blue color) is
ignored. You can use this option to allow the control displays the EBN colors or not.

https://exontrol.com/skintut.jsp#colors
https://www.youtube.com/watch?v=-PcCepMVclQ

-2, OR-color scheme. The color to be applied on the part of the control is a OR bit
combination between the original EBN color and the specified color. For instance, the
BackColorHeader = &H1FF0000, applies the OR bit for the entire Blue channel, or in
other words, it applies a less Blue to the part of the control. This option should be used
with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

-1, AND-color scheme, The color to be applied on the part of the control is an AND bit
combination between the original EBN color and the specified color. For instance, the
BackColorHeader = &H1FF0000, applies the AND bit for the entire Blue channel, or in
other words, it applies a more Blue to the part of the control. This option should be
used with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

0, default, the specified color is applied to the EBN. For instance, the

BackColorHeader = &H1FF0000, applies a Blue color to the object. This option could
be used to specify any color for the part of the components, that support EBN objects,
not only solid colors.

0xAABBGGRR, where the AA a value between 0 to 255, which indicates the
transparency, and RR, GG, BB the red, green and blue values. This option applies the
same color to all parts that displays EBN objects, whit ignoring any specified color in
the color property. For instance, the RenderType on 0x4000FFFF, indicates a 25%
Yellow on EBN objects. The 0x40, or 64 in decimal, is a 25 % from in a 256 interal, and
the 0x00FFFF, indicates the Yellow (RGB(255,255,0)). The same could be if the
RenderType is 0x40000000 + vbYellow, or &H40000000 + RGB(255, 255, 0), and so,
the RenderType could be the 0xAA000000 + Color, where the Color is the RGB format
of the color.

The following picture shows the control with the RenderType property on 0x4000FFFF
(25% Yellow, 0x40 or 64 in decimal is 25% from 256):

The following picture shows the control with the RenderType property on 0x8000FFFF
(50% Yellow, 0x80 or 128 in decimal is 50% from 256):

The following picture shows the control with the RenderType property on 0xC000FFFF
(75% Yellow, 0xC0 or 192 in decimal is 75% from 256):

The following picture shows the control with the RenderType property on 0xFF00FFFF
(100% Yellow, 0xFF or 255 in decimal is 100% from 255):

Background object
The Background object holds pictures to be shown on the layer's background. The
Foreground object holds the HTML captions to be shown on the layer's foreground. The
Background property of the Layer access the layer's Background object. The layer's
background can be visible or selectable. If not selectable, the user can not select it runtime,
such as LayerFromPoint property ignores it. The Layer's background can display unlimited
graphics of different sizes and positions.

The following screen shot shows a pictures on each layer's background:

The Background object supports the following properties and methods:

Name Description

Color Indicates the layer's Color object, so you can apply a solid
color on the layer's background.

ExtraPicture Indicates the layer's extra Picture object, so you can show
any graphic on the layer's background.

Picture Indicates the layer's Picture object, so you can show any
graphic on the layer's background.

Selectable Returns or sets a value that indicates whether all objects
on the layer's background are selectable.

Visible Specifies if the objects of the layer's background are
shown or hidden.

property Background.Color as LColor
Indicates the layer's Color object, so you can apply a solid color on the layer's background.

Type Description

LColor A LColor object that holds the solid / EBN color to be
applied on the layer's background.

By default, the layer's background is transparent. The Picture / ExtraPicture property should
be used to place a picture on the layer's background. Use the Value property to specify a
solid / EBN color to be applied on the layer's background.

The following properties can be used to move / resize the layer:

Left, specifies the expression relative to the view, to determine the x-position to show
the current layer on the control.
Top, specifies the expression relative to the view, to determine the y-position to show
the current layer on the control.
Width, specifies the expression relative to the view, to determine the width to show the
current layer on the control.
Height, specifies the expression relative to the view, to determine the height to show
the current layer on the control.

You can use the following properties to offset the view (background + foreground) inside
the layer:

OffsetX, gets or sets a value that indicates x-offset of the layer.
OffsetY, gets or sets a value that indicates y-offset of the layer.

The following screen shot shows a layer with solid red color:

And if we decompose the layers we get:

The following samples show how you can apply a solid color to be display on left-half of the

layer after the first visible layer:

VBA (MS Access, Excell...)

With Gauge1
 .BeginUpdate
 .PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
1"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5
 With .Layers.Add("Solid")
 .Position = 1
 .Width = "width/2"
 .Background.Color.Value = RGB(255,0,0)
 End With
 .EndUpdate
End With

VB6

With Gauge1
 .BeginUpdate
 .PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
1"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5
 With .Layers.Add("Solid")
 .Position = 1
 .Width = "width/2"
 .Background.Color.Value = RGB(255,0,0)
 End With
 .EndUpdate
End With

VB.NET

With Exgauge1
 .BeginUpdate()
 .PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob

1"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5
 With .Layers.Add("Solid")
 .Position = 1
 .Width = "width/2"
 .Background.Color.Value = Color.FromArgb(255,0,0)
 End With
 .EndUpdate()
End With

VB.NET for /COM

With AxGauge1
 .BeginUpdate()
 .PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
1"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5
 With .Layers.Add("Solid")
 .Position = 1
 .Width = "width/2"
 .Background.Color.Value = RGB(255,0,0)
 End With
 .EndUpdate()
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXGAUGELib' for the library: 'ExGauge 1.0 Control
Library'

 #import <ExGauge.dll>
 using namespace EXGAUGELib;
*/
EXGAUGELib::IGaugePtr spGauge1 = GetDlgItem(IDC_GAUGE1)-

>GetControlUnknown();
spGauge1->BeginUpdate();
spGauge1->PutPicturesPath(L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 1");
spGauge1->PutPicturesName(L"`Layer` + int(value + 1) + `.png`");
spGauge1->GetLayers()->PutCount(5);
EXGAUGELib::ILayerPtr var_Layer = spGauge1->GetLayers()->Add("Solid");
 var_Layer->PutPosition(1);
 var_Layer->PutWidth(L"width/2");
 var_Layer->GetBackground()->GetColor()->PutValue(RGB(255,0,0));
spGauge1->EndUpdate();

C++ Builder

Gauge1->BeginUpdate();
Gauge1->PicturesPath = L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 1";
Gauge1->PicturesName = L"`Layer` + int(value + 1) + `.png`";
Gauge1->Layers->Count = 5;
Exgaugelib_tlb::ILayerPtr var_Layer = Gauge1->Layers->Add(TVariant("Solid"));
 var_Layer->Position = 1;
 var_Layer->Width = L"width/2";
 var_Layer->Background->Color->Value = RGB(255,0,0);
Gauge1->EndUpdate();

C#

exgauge1.BeginUpdate();
exgauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 1";
exgauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
exgauge1.Layers.Count = 5;
exontrol.EXGAUGELib.Layer var_Layer = exgauge1.Layers.Add("Solid");
 var_Layer.Position = 1;
 var_Layer.Width = "width/2";
 var_Layer.Background.Color.Value = Color.FromArgb(255,0,0);

exgauge1.EndUpdate();

JScript/JavaScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 Gauge1.BeginUpdate();
 Gauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 1";
 Gauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
 Gauge1.Layers.Count = 5;
 var var_Layer = Gauge1.Layers.Add("Solid");
 var_Layer.Position = 1;
 var_Layer.Width = "width/2";
 var_Layer.Background.Color.Value = 255;
 Gauge1.EndUpdate();
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With Gauge1
 .BeginUpdate
 .PicturesPath = "C:\Program

Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 1"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5
 With .Layers.Add("Solid")
 .Position = 1
 .Width = "width/2"
 .Background.Color.Value = RGB(255,0,0)
 End With
 .EndUpdate
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

axGauge1.BeginUpdate();
axGauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 1";
axGauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
axGauge1.Layers.Count = 5;
EXGAUGELib.Layer var_Layer = axGauge1.Layers.Add("Solid");
 var_Layer.Position = 1;
 var_Layer.Width = "width/2";
 var_Layer.Background.Color.Value =
(uint)ColorTranslator.ToWin32(Color.FromArgb(255,0,0));
axGauge1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Background,com_Color,com_Layer;
 anytype var_Background,var_Color,var_Layer;
 ;

 super();

 exgauge1.BeginUpdate();
 exgauge1.PicturesPath("C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 1");
 exgauge1.PicturesName("`Layer` + int(value + 1) + `.png`");
 exgauge1.Layers().Count(5);
 var_Layer = COM::createFromObject(exgauge1.Layers()).Add("Solid"); com_Layer =
var_Layer;
 com_Layer.Position(1);
 com_Layer.Width("width/2");
 var_Background = COM::createFromObject(com_Layer.Background());
com_Background = var_Background;
 var_Color = COM::createFromObject(com_Background).Color(); com_Color =
var_Color;
 com_Color.Value(WinApi::RGB2int(255,0,0));
 exgauge1.EndUpdate();
}

Delphi 8 (.NET only)

with AxGauge1 do
begin
 BeginUpdate();
 PicturesPath := 'C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
1';
 PicturesName := '`Layer` + int(value + 1) + `.png`';
 Layers.Count := 5;
 with Layers.Add('Solid') do
 begin
 Position := 1;
 Width := 'width/2';
 Background.Color.Value := $ff;
 end;
 EndUpdate();
end

Delphi (standard)

with Gauge1 do
begin
 BeginUpdate();
 PicturesPath := 'C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
1';
 PicturesName := '`Layer` + int(value + 1) + `.png`';
 Layers.Count := 5;
 with Layers.Add('Solid') do
 begin
 Position := 1;
 Width := 'width/2';
 Background.Color.Value := $ff;
 end;
 EndUpdate();
end

VFP

with thisform.Gauge1
 .BeginUpdate
 .PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
1"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5
 with .Layers.Add("Solid")
 .Position = 1
 .Width = "width/2"
 .Background.Color.Value = RGB(255,0,0)
 endwith
 .EndUpdate
endwith

dBASE Plus

local oGauge,var_Layer

oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject
oGauge.BeginUpdate()

oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 1"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 5
var_Layer = oGauge.Layers.Add("Solid")
 var_Layer.Position = 1
 var_Layer.Width = "width/2"
 var_Layer.Background.Color.Value = 0xff
oGauge.EndUpdate()

XBasic (Alpha Five)

Dim oGauge as P
Dim var_Layer as P

oGauge = topparent:CONTROL_ACTIVEX1.activex
oGauge.BeginUpdate()
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 1"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 5
var_Layer = oGauge.Layers.Add("Solid")
 var_Layer.Position = 1
 var_Layer.Width = "width/2"
 var_Layer.Background.Color.Value = 255
oGauge.EndUpdate()

Visual Objects

local var_Layer as ILayer

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 1"
oDCOCX_Exontrol1:PicturesName := "`Layer` + int(value + 1) + `.png`"
oDCOCX_Exontrol1:Layers:Count := 5

var_Layer := oDCOCX_Exontrol1:Layers:Add("Solid")
 var_Layer:Position := 1
 var_Layer:Width := "width/2"
 var_Layer:Background:Color:Value := RGB(255,0,0)
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oGauge,var_Layer

oGauge = ole_1.Object
oGauge.BeginUpdate()
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 1"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 5
var_Layer = oGauge.Layers.Add("Solid")
 var_Layer.Position = 1
 var_Layer.Width = "width/2"
 var_Layer.Background.Color.Value = RGB(255,0,0)
oGauge.EndUpdate()

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Send ComBeginUpdate
 Set ComPicturesPath to "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 1"
 Set ComPicturesName to "`Layer` + int(value + 1) + `.png`"
 Variant voLayers
 Get ComLayers to voLayers
 Handle hoLayers
 Get Create (RefClass(cComLayers)) to hoLayers
 Set pvComObject of hoLayers to voLayers
 Set ComCount of hoLayers to 5

 Send Destroy to hoLayers
 Variant voLayers1
 Get ComLayers to voLayers1
 Handle hoLayers1
 Get Create (RefClass(cComLayers)) to hoLayers1
 Set pvComObject of hoLayers1 to voLayers1
 Variant voLayer
 Get ComAdd of hoLayers1 "Solid" to voLayer
 Handle hoLayer
 Get Create (RefClass(cComLayer)) to hoLayer
 Set pvComObject of hoLayer to voLayer
 Set ComPosition of hoLayer to 1
 Set ComWidth of hoLayer to "width/2"
 Variant voBackground
 Get ComBackground of hoLayer to voBackground
 Handle hoBackground
 Get Create (RefClass(cComBackground)) to hoBackground
 Set pvComObject of hoBackground to voBackground
 Variant voColor
 Get ComColor of hoBackground to voColor
 Handle hoColor
 Get Create (RefClass(cComColor)) to hoColor
 Set pvComObject of hoColor to voColor
 Set ComValue of hoColor to (RGB(255,0,0))
 Send Destroy to hoColor
 Send Destroy to hoBackground
 Send Destroy to hoLayer
 Send Destroy to hoLayers1
 Send ComEndUpdate
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main

 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oGauge
 LOCAL oLayer

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oGauge := XbpActiveXControl():new(oForm:drawingArea)
 oGauge:CLSID := "Exontrol.Gauge.1" /*{91628F12-393C-44EF-A558-
83ED1790AAD3}*/
 oGauge:create(,, {10,60},{610,370})

 oGauge:BeginUpdate()
 oGauge:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 1"
 oGauge:PicturesName := "`Layer` + int(value + 1) + `.png`"
 oGauge:Layers():Count := 5
 oLayer := oGauge:Layers():Add("Solid")
 oLayer:Position := 1
 oLayer:Width := "width/2"
 oLayer:Background():Color():SetProperty("Value",AutomationTranslateColor(
GraMakeRGBColor ({ 255,0,0 }) , .F.))
 oGauge:EndUpdate()

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property Background.ExtraPicture (Key as Variant) as LPicture
Indicates the layer's extra Picture object, so you can show any graphic on the layer's
background.

Type Description

Key as Variant Any VARIANT expression that identify the extra-picture to
be shown on the layer's background.

LPicture A LPicture object that specifies the extra-picture to be
shown on the layer's background.

The Layer's background can display unlimited graphics of different sizes and positions. The
Picture / ExtraPicture property adds a picture on the layer's background. Use the Value
property to specify a solid / EBN color to be applied on the layer's background.

The following properties can be used to move / resize the picture on the layer's
background:

DisplayAs, retrieves or sets a value that indicates the way how the graphic is displayed
on the layer's background.
Left, specifies the expression relative to the view/current picture, to determine the x-
position to show the current picture on the background.
Top, specifies the expression relative to the view/current picture, to determine the y-
position to show the current picture on the background.
Width, specifies the expression relative to the view/current picture, to determine the
width to show the current picture on the background.
Height, specifies the expression relative to the view/current picture, to determine the
height to show the current picture on the background.

The following properties can be used to load / import (manually or automatically) pictures
to the layer's background:

PicturesPath property, specifies the path to load pictures from.
PicturesName property, specifies the expression that defines the name of the file from
the PicturesPath folder to be loaded.
Picture.Name / Picture.Value property of the Background.Picture object, defines the
name of the file to be loaded (relative, absolute, encoded or Picture object)

The PicturesPath / PicturesName properties can be used to automatically loads files from
a specified folder to be displayed on the layer's background.

For instance,

PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob",

defines default folder to load pictures from.
PicturesName = "`Layer` + str(value + 1) + `.png`", defines the name of the picture file
to be loaded by the layer with the index / value. It defines the names as: Layer1.png
for the layer with the index 0, Layer2.png for the layer with the index 1, Layer3.png for
the layer with the index 2, and so on.

The Picture.Name / Picture.Value property of the Picture object loads a picture / graphics to
be displayed on the layer's background.

The Name / Value property could be one of the following:

A String expression indicates:
a name of a picture file in the PicturePath folder. For instance, Name =
"Layer1.png", loads the Layer1.png file if found in the PicturePath folder.
a picture file including its absolute path. For instance, Name = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob\Layer1.png", loads the
Layer1.png file from absolute path
a key of the HTML picture, previously loaded by the HTMLPicture method. For
instance, Name = "pic1", loads the HTML picture with the key pic1, so the pic1
should be load previously with a HTMLPicture call like HTMLPicture("pic1") =
"C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob\Layer1.png"
an encode BASE64 string of a picture file. The Exontrol's ExImages Tool
encode/decode BASE64 strings from/to pictures. In this case, the string starts
with "gB..", "gC.." and so on.

A Picture object that indicates the picture to be displayed. For instance, Name =
LoadPicture("picture.jpg")

https://exontrol.com/eximages.jsp

property Background.Picture as LPicture
Indicates the layer's Picture object, so you can show any graphic on the layer's
background.

Type Description

LPicture A LPicture object that specifies the picture to be shown on
the layer's background.

The Layer's background can display unlimited graphics of different sizes and positions. The
Picture / ExtraPicture property adds a picture on the layer's background. Use the Value
property to specify a solid / EBN color to be applied on the layer's background.

The following properties can be used to move / resize the picture on the layer's
background:

DisplayAs, retrieves or sets a value that indicates the way how the graphic is displayed
on the layer's background.
Left, specifies the expression relative to the view/current picture, to determine the x-
position to show the current picture on the background.
Top, specifies the expression relative to the view/current picture, to determine the y-
position to show the current picture on the background.
Width, specifies the expression relative to the view/current picture, to determine the
width to show the current picture on the background.
Height, specifies the expression relative to the view/current picture, to determine the
height to show the current picture on the background.

The following properties can be used to load / import (manually or automatically) pictures
to the layer's background:

PicturesPath property, specifies the path to load pictures from.
PicturesName property, specifies the expression that defines the name of the file from
the PicturesPath folder to be loaded.
Picture.Name / Picture.Value property of the Background.Picture object, defines the
name of the file to be loaded (relative, absolute, encoded or Picture object)

The PicturesPath / PicturesName properties can be used to automatically loads files from
a specified folder to be displayed on the layer's background.

For instance,

PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob",
defines default folder to load pictures from.
PicturesName = "`Layer` + str(value + 1) + `.png`", defines the name of the picture file

to be loaded by the layer with the index / value. It defines the names as: Layer1.png
for the layer with the index 0, Layer2.png for the layer with the index 1, Layer3.png for
the layer with the index 2, and so on.

The Picture.Name / Picture.Value property of the Picture object loads a picture / graphics to
be displayed on the layer's background.

The Name / Value property could be one of the following:

A String expression indicates:
a name of a picture file in the PicturePath folder. For instance, Name =
"Layer1.png", loads the Layer1.png file if found in the PicturePath folder.
a picture file including its absolute path. For instance, Name = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob\Layer1.png", loads the
Layer1.png file from absolute path
a key of the HTML picture, previously loaded by the HTMLPicture method. For
instance, Name = "pic1", loads the HTML picture with the key pic1, so the pic1
should be load previously with a HTMLPicture call like HTMLPicture("pic1") =
"C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob\Layer1.png"
an encode BASE64 string of a picture file. The Exontrol's ExImages Tool
encode/decode BASE64 strings from/to pictures. In this case, the string starts
with "gB..", "gC.." and so on.

A Picture object that indicates the picture to be displayed. For instance, Name =
LoadPicture("picture.jpg")

https://exontrol.com/eximages.jsp

property Background.Selectable as Boolean
Returns or sets a value that indicates whether all objects on the layer's background are
selectable.

Type Description

Boolean A Boolean expression that specifies whether the entire
layer's background is selectable.

By default, the Selectable property is True, so the user can select the layer if the cursor
hovers it. The Selectable property specifies whether the layer's background is selectable.
You can use the Grayscale property to show the entire layer in gray scale (disable state).
The Visible property specifies whether the layer's background is visible or hidden. The
Picture / ExtraPicture property adds a picture on the layer's background. Use the Value
property to specify a solid / EBN color to be applied on the layer's background.

The Selectable property of the Background object, affects all the pictures / colors being
shown on the layer's background. In order to prevent selecting portions of the layer you can
use any of the following properties:

Selectable property of the LPicture object, returns or sets a value that indicates
whether the picture is selectable.
Selectable property of the LColor object, returns or sets a value that indicates whether
the color is selectable.

property Background.Visible as Boolean
Specifies if the objects of the layer's background are shown or hidden.

Type Description

Boolean A Boolean expression that specifies whether the entire
layer's background is visible or hidden.

By default, the Visible property is True, so any picture on the layer's background is visible.
The Visible property specifies whether the layer's background is visible or hidden. The
Picture / ExtraPicture property adds a picture on the layer's background. Use the Value
property to specify a solid / EBN color to be applied on the layer's background. The
Selectable property specifies whether the layer's background is selectable.

The Visible property of the Background object, affects all the pictures / colors being shown
on the layer's background. In order to prevent showing portions of the layer you can use
any of the following properties:

Visible property of the LPicture object, specifies if the picture is shown or hidden on the
layer's background.
Visible property of the LColor object, specifies if the color is visible or hidden.

Clip object
The Clip object defines the clipping you can apply to any layer on the control. The Clipping
support include intersection of any of rectangle, round rectangle, ellipse, pie, picture mask,
polygon, and so on. The Clip property accesses the layer's Clip object.

Having the following layer:

By clipping, we can get something like follows:

and if we display the entire gauge here's what we get:

The Clip object supports the following properties and methods:

Name Description
Ellipse Gets access to the layer's ellipse clip object.
Picture Gets access to the layer's picture clip object.
Pie Gets access to the layer's pie clip object.
Polygon Gets access to the layer's polygon clip object.
Rectangle Gets access to the layer's rectangle clip object.
RoundRectangle Gets access to the layer's round rectangle clip object.

Type Specifies the type of the clipping the current layer
supports.

Value Indicates the object's value.

property Clip.Ellipse as ClipEllipse
Gets access to the layer's ellipse clip object.

Type Description

ClipEllipse A ClipEllipse object that holds information about elliptical
clip region

The Ellipse property gets access to the layer's ellipse clip object.

The following screen shot shows properties of the clipping objects relative to the layer
(InverseClip property is False, by default):

The following screen shot shows properties of the clipping objects relative to the layer
(InverseClip property is True):

To define an elliptical clip region over the layer you can use any of the following properties:

CenterX, Specifies the x-position / expression of the center of the clip, relative to the
layer.
CenterY, Specifies the y-position / expression of the center of the clip, relative to the
layer.
RadiusX, Specifies the x-radius value / expression of the clip, relative to the layer.
RadiusY, Specifies the y-radius value / expression of the clip, relative to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

For instance, having the following gauge:

an elliptical clip region over the background layer shows as:

property Clip.Picture as ClipPicture
Gets access to the layer's picture clip object.

Type Description

ClipPicture A ClipPicture object that holds information about pictore
clip region

The Picture property gets access to the layer's picture clip object.

The following screen shot shows properties of the clipping objects relative to the layer
(InverseClip property is False, by default):

The following screen shot shows properties of the clipping objects relative to the layer
(InverseClip property is True):

To define a picture clip region over the layer you can use any of the following properties:

Name, Indicates the picture to be used as a mask/clip.
DisplayAs, Retrieves or sets a value that indicates the way how the graphic is
arranged on the mask/clip.
AlphaFrom, Gets or sets a value that specifies the alpha-byte to start clipping the
picture from.
AlphaTo, Gets or sets a value that specifies the alpha-byte to end clipping the picture
to.

To specify the position / size of the picture clip object you can use any of the following
properties:

Left, Specifies the left position / expression of the clip, relative to the layer.
Top, Specifies the top position / expression of the clip, relative to the layer.
Width, Specifies the width value / expression of the clip, relative to the layer.
Height, Specifies the height value / expression of the clip, relative to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

For instance, having the following gauge:

a picture clip region over the background layer shows as:

when the source picture is:

property Clip.Pie as ClipPie
Gets access to the layer's pie clip object.

Type Description
ClipPie A ClipPie object that holds information about pie clip region

The Pie property gets access to the layer's pie clip object.

The following screen shot shows properties of the clipping objects relative to the layer
(InverseClip property is False, by default):

The following screen shot shows properties of the clipping objects relative to the layer
(InverseClip property is True):

To define an pie clip region over the layer you can use any of the following properties:

CenterX, Specifies the x-position / expression of the center of the clip, relative to the
layer.
CenterY, Specifies the y-position / expression of the center of the clip, relative to the
layer.
RadiusX, Specifies the x-radius value / expression of the clip, relative to the layer.
RadiusY, Specifies the y-radius value / expression of the clip, relative to the layer.
StartAngle, Specifies the starting angle in degrees relative to the y-axis.
SweepAngle, Specifies the sweep angle in degrees relative to the starting angle.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

For instance, having the following gauge:

an pie clip region over the background layer shows as:

property Clip.Polygon as ClipPolygon
Gets access to the layer's polygon clip object.

Type Description

ClipPolygon A ClipPolygon object that holds information about
polygonal clip region

The Polygon property gets access to the layer's polygon clip object.

The following screen shot shows properties of the clipping objects relative to the layer
(InverseClip property is False, by default):

The following screen shot shows properties of the clipping objects relative to the layer
(InverseClip property is True):

To define an polygonal clip region over the layer you can use any of the following properties:

Points, Indicates the number of points that defines the polygon.
X, Specifies the x-radius value / expression of the clip, relative to the layer.
Y, Specifies the y-radius value / expression of the clip, relative to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

For instance, having the following gauge:

an polygonal clip region over the background layer shows as:

property Clip.Rectangle as ClipRectangle
Gets access to the layer's rectangle clip object.

Type Description

ClipRectangle A ClipRectangle object that holds information about
rectangular clip region

The Rectangle property gets access to the layer's rectangular clip object.

The following screen shot shows properties of the clipping objects relative to the layer
(InverseClip property is False, by default):

The following screen shot shows properties of the clipping objects relative to the layer
(InverseClip property is True):

To define or specify the position / size of the rectangular clip object you can use any of the
following properties:

Left, Specifies the left position / expression of the clip, relative to the layer.
Top, Specifies the top position / expression of the clip, relative to the layer.
Width, Specifies the width value / expression of the clip, relative to the layer.
Height, Specifies the height value / expression of the clip, relative to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

For instance, having the following gauge:

a rectangular clip region over the background layer shows as:

property Clip.RoundRectangle as ClipRoundRectangle
Gets access to the layer's round rectangle clip object.

Type Description

ClipRoundRectangle A ClipRoundRectangle object that holds information about
rectangular clip region

The RoundRectangle property gets access to the layer's round rectangular clip object.

The following screen shot shows properties of the clipping objects relative to the layer
(InverseClip property is False, by default):

The following screen shot shows properties of the clipping objects relative to the layer
(InverseClip property is True):

To define or specify the position / size of the rectangular clip object you can use any of the
following properties:

Left, Specifies the left position / expression of the clip, relative to the layer.
Top, Specifies the top position / expression of the clip, relative to the layer.
Width, Specifies the width value / expression of the clip, relative to the layer.
Height, Specifies the height value / expression of the clip, relative to the layer.
RoundRadiusX, Specifies the x-radius value / expression of the round corner, relative to
the layer.
RoundRadiusY, Specifies the y-radius value / expression of the round corner, relative
to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

For instance, having the following gauge:

a round rectangular clip region over the background layer shows as:

property Clip.Type as LayerClipTypeEnum
Specifies the type of the clipping the current layer supports.

Type Description

LayerClipTypeEnum
A LayerClipTypeEnum expression that specifies the
combination of clipping objects that currently is applied on
the layer.

By default, the Type property is exLayerClipEmpty, which indicates that no clipping is
applied to the layer. The Type property can be a combination of any flag of
LayerClipTypeEnum type, which indicates intersection of the clipping objects will be applied
on the layer. The Type property is automatically updated as soon as any property of any
clipping object is invoked. In other words, if RadiusY property of the ClipPie object is called,
the Type property includes automatically the exLayerClipPie. You can use the Type property
to apply / prevent clipping to be applied on the specified layer. For instance, set the Type
property on exLayerClipEmpty to prevent applying any clipping on the current layer.
Changing the Type property at runtime, does not remove any clipping property of any
clipping object.

property Clip.Value as Variant
Indicates the object's value.

Type Description

Variant A VARIANT expression to be used as a replacement of the
value keyword in any property of Clip... objects.

By default, the Value property is empty. You can associate a value with a clipping object.
For instance, let's say we define the value of a clipping rectangle as being its width. In other
words, if we change the clip's Value property, the Width property of the ClipRectangle
object is changed too, so the clipping rectangle will vary in its width. The same we can
imagine the sweep angle or a pie or radius of a circle. The Change event notifies whether a
layer is moved, rotated, so during this event we can call the clip's Value to update the
clipping region on specified layer.

For instance, let's say that we have the following:

and we want to clip the "Clip" layer, as soon as the "Thumb" is rotated like follows:

so you need to do the following:

specify the "Thumb" to be rotatable, using the OnDrag property, like
Layers.Item("Thumb").OnDrag = exDoRotate. In case we need to specify a different
initial position of the layer, we can call the DefaultRotateAngle property, to specify
another angle by default.
specify the clipping zone for "Clip" layer to be a pie, such as
Layers.Item("Clip").Clip.Pie.SweepAngle = "value", that specifies that the sweep angle
of the clipping pie is controlled by the clip's Value property
handle the Change event and call Layers.Item("Clip").Clip.Value =
Layers.Item("Thumb").RotateAngle, which means that when any change occurs (the
"Thumb" is rotated), change the Value of the Clip object of the "Clip" layer to be the
rotate angle of the "Thumb" layer, so in other words as the clip's Value is associated
with the sweep angle, change the sweep angle of the clipping pie to be the same as
the rotation angle of the "Thumb" layer.

Now, let's say we want to remove the transparency on the "Clip" layer, so we need to add a
new clipping object, this time of Picture object, with the same picture as:

Layers("Clip").Clip.Picture.Name = Layers("Clip").Background.Picture.Name, which
applies the clipping from the same picture, this time with no transparent pixels

so we get:

And if we hide a few intermediate layers we can get:

or if we add a new layer as a clone of others with a clipping pie we can get:

For instance, if you have:

Layers.Item("Clip").Clip.Value = 45, you actually clip as a pie for a 45 degree the "Clip"
layer.
If using Layers("Clip").Clip.Pie.SweepAngle = "2 * value", it indicates that the angle of
the clipping region is twice the rotation angle of the thumb.
If using Layers("Clip").Clip.Pie.SweepAngle = "value / 2", it indicates that the angle of
the clipping region is half of the rotation angle of the thumb.

Any of the following properties (or combination of them) can be used to do the clipping:

Ellipse, clips the layer as a ellipse / circle
Picture, clips the layer using a picture as a mask
Pie, clips the layer as a arc / pie
Polygon, clips the layer giving the points that define a polygon, triangle, rectangle, and
so on
Rectangle, clips the layer giving a rectangle
RoundRectangle, clips the layer giving a round rectangle

ClipEllipse object
The ClipEllipse object holds information about an elliptical clip region.

For instance, having the following gauge:

an elliptical clip region over the background layer shows as:

The ClipEllipse supports the following properties and methods:

Name Description

CenterX Specifies the x-position / expression of the center of the
clip, relative to the layer.

CenterY Specifies the y-position / expression of the center of the
clip, relative to the layer.

InverseClip Indicates whether the current clip object is inverted.

OffsetX Specifies the x-offset expression / value of the clip,
relative to the layer.

OffsetY Specifies the y-offset expression / value of the clip,
relative to the layer.

RadiusX Specifies the x-radius value / expression of the clip,
relative to the layer.

RadiusY Specifies the y-radius value / expression of the clip,
relative to the layer.

property ClipEllipse.CenterX as String
Specifies the x-position / expression of the center of the clip, relative to the layer.

Type Description

String A String expression that defines the x-position / expression
of the center of the clip, relative to the layer.

By default, the CenterX property is empty, which indicates the center of the layer The
CenterX property is "width/2" (center of the layer), if the expression is missing or invalid.

For instance:

"-15", 15 pixels to the left side of the layer
"width / 2" indicates the half of the layer's width or the x-center of the layer
"width", indicates the width of the layer or right side of the layer
"value / 100 * width", indicates the Value percent of width of the layer, so if clip's Value
percent is 25, the "value / 100 * width" expression gets a quarter of the width of the
layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define an elliptical clip region over the layer you can use any of the following properties:

CenterX, Specifies the x-position / expression of the center of the clip, relative to the
layer.
CenterY, Specifies the y-position / expression of the center of the clip, relative to the
layer.
RadiusX, Specifies the x-radius value / expression of the clip, relative to the layer.
RadiusY, Specifies the y-radius value / expression of the clip, relative to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipEllipse.CenterY as String
Specifies the y-position / expression of the center of the clip, relative to the layer.

Type Description

String A String expression that defines the y-position / expression
of the center of the clip, relative to the layer.

By default, the CenterY property is empty, which indicates the center of the layer The
CenterY property is "height/2" (center of the layer), if the expression is missing or invalid.

For instance:

"-15", 15 pixels up to the top side of the layer
"height / 2" indicates the half of the layer's height or the y-center of the layer
"height", indicates the height of the layer or right side of the layer
"value / 100 * height", indicates the Value percent of height of the layer, so if clip's
Value percent is 25, the "value / 100 * height" expression gets a quarter of the height of
the layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define an elliptical clip region over the layer you can use any of the following properties:

CenterX, Specifies the x-position / expression of the center of the clip, relative to the
layer.
CenterY, Specifies the y-position / expression of the center of the clip, relative to the
layer.
RadiusX, Specifies the x-radius value / expression of the clip, relative to the layer.
RadiusY, Specifies the y-radius value / expression of the clip, relative to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipEllipse.InverseClip as Boolean
Indicates whether the current clip object is inverted.

Type Description

Boolean A Boolean expression that indicates whether the current
clip object is inverted.

By default, InverseClip property is False. The InverseClip property inverses the current
clipping region, so anything that was included in the clipping region will be excluded, and
reverse.

To define an elliptical clip region over the layer you can use any of the following properties:

CenterX, Specifies the x-position / expression of the center of the clip, relative to the
layer.
CenterY, Specifies the y-position / expression of the center of the clip, relative to the
layer.
RadiusX, Specifies the x-radius value / expression of the clip, relative to the layer.
RadiusY, Specifies the y-radius value / expression of the clip, relative to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The following screen shot shows properties of the clipping objects relative to the layer:

property ClipEllipse.OffsetX as String
Specifies the x-offset expression / value of the clip, relative to the layer.

Type Description

String A String expression that defines the x-offset expression /
value of the clip, relative to the layer.

By default, the OffsetX property is empty, which indicates the value of 0 (left side of the
layer). The OffsetX property is 0, if the expression is missing or invalid.

For instance:

"-15", 15 pixels to the left side of the layer
"width / 2" indicates the half of the layer's width or the x-center of the layer
"width", indicates the width of the layer or right side of the layer
"value / 100 * width", indicates the Value percent of width of the layer, so if clip's Value
percent is 25, the "value / 100 * width" expression gets a quarter of the width of the
layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define an elliptical clip region over the layer you can use any of the following properties:

CenterX, Specifies the x-position / expression of the center of the clip, relative to the
layer.
CenterY, Specifies the y-position / expression of the center of the clip, relative to the
layer.
RadiusX, Specifies the x-radius value / expression of the clip, relative to the layer.
RadiusY, Specifies the y-radius value / expression of the clip, relative to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipEllipse.OffsetY as String
Specifies the y-offset expression / value of the clip, relative to the layer.

Type Description

String A String expression that defines the y-offset expression /
value of the clip, relative to the layer.

By default, the OffsetY property is empty, which indicates the value of 0 (top side of the
layer). The OffsetY property is 0, if the expression is missing or invalid.

For instance:

"-15", 15 pixels up to the top side of the layer
"height / 2" indicates the half of the layer's height or the y-center of the layer
"height", indicates the height of the layer or bottom side of the layer
"value / 100 * height", indicates the Value percent of height of the layer, so if clip's
Value percent is 25, the "value / 100 * height" expression gets a quarter of the height of
the layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define an elliptical clip region over the layer you can use any of the following properties:

CenterX, Specifies the x-position / expression of the center of the clip, relative to the
layer.
CenterY, Specifies the y-position / expression of the center of the clip, relative to the
layer.
RadiusX, Specifies the x-radius value / expression of the clip, relative to the layer.
RadiusY, Specifies the y-radius value / expression of the clip, relative to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipEllipse.RadiusX as String
Specifies the x-radius value / expression of the clip, relative to the layer.

Type Description

String A String expression that defines the x-radius value /
expression of the clip, relative to the layer.

By default, the RadiusX property is empty, which indicates the half of the layer's width. The
RadiusX property is "width/2" (half of the layer's width), if the expression is missing or
invalid.

For instance:

"15", 15 pixels radius
"width / 2" indicates the half of the layer's width or the x-center of the layer
"width", indicates the width of the layer or right side of the layer
"value / 100 * width", indicates the Value percent of width of the layer, so if clip's Value
percent is 25, the "value / 100 * width" expression gets a quarter of the width of the
layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define an elliptical clip region over the layer you can use any of the following properties:

CenterX, Specifies the x-position / expression of the center of the clip, relative to the
layer.
CenterY, Specifies the y-position / expression of the center of the clip, relative to the
layer.
RadiusX, Specifies the x-radius value / expression of the clip, relative to the layer.
RadiusY, Specifies the y-radius value / expression of the clip, relative to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipEllipse.RadiusY as String
Specifies the y-radius value / expression of the clip, relative to the layer.

Type Description

String A String expression that defines the y-radius value /
expression of the clip, relative to the layer.

By default, the RadiusY property is empty, which indicates the half of the layer's height. The
RadiusY property is "height/2" (half of the layer's height), if the expression is missing or
invalid.

For instance:

"15", 15 pixels radius
"height / 2" indicates the half of the layer's height or the y-center of the layer
"height", indicates the height of the layer or right side of the layer
"value / 100 * height", indicates the Value percent of height of the layer, so if clip's
Value percent is 25, the "value / 100 * height" expression gets a quarter of the height of
the layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define an elliptical clip region over the layer you can use any of the following properties:

CenterX, Specifies the x-position / expression of the center of the clip, relative to the
layer.
CenterY, Specifies the y-position / expression of the center of the clip, relative to the
layer.
RadiusX, Specifies the x-radius value / expression of the clip, relative to the layer.
RadiusY, Specifies the y-radius value / expression of the clip, relative to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

ClipPicture object
The ClipPicture object holds information about an picture clip region.

For instance, having the following gauge:

a picture clip region over the background layer shows as:

when the source picture is:

The ClipPicture property supports the following properties and methods:

Name Description

AlphaFrom Gets or sets a value that specifies the alpha-byte to start
clipping the picture from.

AlphaTo Gets or sets a value that specifies the alpha-byte to end
clipping the picture to.

DisplayAs Retrieves or sets a value that indicates the way how the
graphic is arranged on the mask/clip.

Height Specifies the height value / expression of the clip, relative
to the layer.

InverseClip Indicates whether the current clip object is inverted.

Left Specifies the left position / expression of the clip, relative
to the layer.

Name Indicates the picture to be used as a mask/clip.

OffsetX Specifies the x-offset expression / value of the clip,
relative to the layer.

OffsetY Specifies the y-offset expression / value of the clip,
relative to the layer.

Top Specifies the top position / expression of the clip, relative
to the layer.

Width Specifies the width value / expression of the clip, relative
to the layer.

property ClipPicture.AlphaFrom as String
Gets or sets a value that specifies the alpha-byte to start clipping the picture from.

Type Description

String A String expression that defines the alpha-byte to start
clipping the picture from.

By default, the AlphaFrom and AlphaTo properties are empty. While AlphaFrom property is
empty, missing or invalid, 0 is used instead. While AlphaTo property is empty, missing or
invalid, 254 is used instead. In other words, any pixel in the picture with the transparency-
byte on 255 defines the clipping region (by default, the opaque-pixels in the picture defines
the clipping region.). Use the AlphaFrom / AlphaTo to include semi-transparent pixels in the
clipping region. The picture being used as a clipping region must support transparency /
alpha blending (picture's attribute includes the PICTURE_TRANSPARENT). For instance,
you can use any PNG file with transparency. The DisplayAs property retrieves or sets a
value that indicates the way how the graphic is arranged on the mask/clip.

For instance, having a picture like follows:

if we apply this picture as a clipping, we get something like (includes pixels with alpha-
blend byte on 255 only, opaque-pixels):

while if we change the AlphaTo field to 128 we can get something like (includes pixels with
alpha-blend byte between 129 and 255, opaque plus semi-transparent pixels to 128):

or if we change the AlphaFrom and Alpha fields to 255, we can get something like (
includes pixels with alpha-blend byte between 0 and 254, excludes the opaque pixels):

or if we change the AlphaFrom to 128, and Alpha field to 255, we can get something like (
includes pixels with alpha-blend byte between 0 and 127, excludes the opaque pixels, and
semi-transparent pixels to 128):

To define a picture clip region over the layer you can use any of the following properties:

Name, Indicates the picture to be used as a mask/clip.

DisplayAs, Retrieves or sets a value that indicates the way how the graphic is
arranged on the mask/clip.
AlphaFrom, Gets or sets a value that specifies the alpha-byte to start clipping the
picture from.
AlphaTo, Gets or sets a value that specifies the alpha-byte to end clipping the picture
to.

To specify the position / size of the picture clip object you can use any of the following
properties:

Left, Specifies the left position / expression of the clip, relative to the layer.
Top, Specifies the top position / expression of the clip, relative to the layer.
Width, Specifies the width value / expression of the clip, relative to the layer.
Height, Specifies the height value / expression of the clip, relative to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The following screen shot shows properties of the clipping objects relative to the layer:

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipPicture.AlphaTo as String
Gets or sets a value that specifies the alpha-byte to end clipping the picture to.

Type Description

String A String expression that specifies the alpha-byte to end
clipping the picture to.

By default, the AlphaFrom and AlphaTo properties are empty. While AlphaFrom property is
empty, missing or invalid, 0 is used instead. While AlphaTo property is empty, missing or
invalid, 254 is used instead. In other words, any pixel in the picture with the transparency-
byte on 255 defines the clipping region (by default, the opaque-pixels in the picture defines
the clipping region.). Use the AlphaFrom / AlphaTo to include semi-transparent pixels in the
clipping region. The picture being used as a clipping region must support transparency /
alpha blending (picture's attribute includes the PICTURE_TRANSPARENT). For instance,
you can use any PNG file with transparency. The DisplayAs property retrieves or sets a
value that indicates the way how the graphic is arranged on the mask/clip.

For instance, having a picture like follows:

if we apply this picture as a clipping, we get something like (includes pixels with alpha-
blend byte on 255 only, opaque-pixels):

while if we change the AlphaTo field to 128 we can get something like (includes pixels with
alpha-blend byte between 129 and 255, opaque plus semi-transparent pixels to 128):

or if we change the AlphaFrom and Alpha fields to 255, we can get something like (
includes pixels with alpha-blend byte between 0 and 254, excludes the opaque pixels):

or if we change the AlphaFrom to 128, and Alpha field to 255, we can get something like (
includes pixels with alpha-blend byte between 0 and 127, excludes the opaque pixels, and
semi-transparent pixels to 128):

To define a picture clip region over the layer you can use any of the following properties:

Name, Indicates the picture to be used as a mask/clip.

DisplayAs, Retrieves or sets a value that indicates the way how the graphic is
arranged on the mask/clip.
AlphaFrom, Gets or sets a value that specifies the alpha-byte to start clipping the
picture from.
AlphaTo, Gets or sets a value that specifies the alpha-byte to end clipping the picture
to.

To specify the position / size of the picture clip object you can use any of the following
properties:

Left, Specifies the left position / expression of the clip, relative to the layer.
Top, Specifies the top position / expression of the clip, relative to the layer.
Width, Specifies the width value / expression of the clip, relative to the layer.
Height, Specifies the height value / expression of the clip, relative to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The following screen shot shows properties of the clipping objects relative to the layer:

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipPicture.DisplayAs as PictureDisplayEnum
Retrieves or sets a value that indicates the way how the graphic is arranged on the
mask/clip.

Type Description

PictureDisplayEnum A PictureDisplayEnum expression that indicates the way
how the graphic is arranged on the mask/clip.

By default, the DisplayAs property is Stretch. The DisplayAs property retrieves or sets a
value that indicates the way how the graphic is arranged on the mask/clip. The Name
property loads a picture into the clip. The picture being used as a clipping region must
support transparency / alpha blending (picture's attribute includes the
PICTURE_TRANSPARENT). For instance, you can use any PNG file with transparency. By
default, the opaque-pixels in the picture defines the clipping region. Use the AlphaFrom /
AlphaTo to include semi-transparent pixels in the clipping region.

To define a picture clip region over the layer you can use any of the following properties:

Name, Indicates the picture to be used as a mask/clip.
DisplayAs, Retrieves or sets a value that indicates the way how the graphic is
arranged on the mask/clip.
AlphaFrom, Gets or sets a value that specifies the alpha-byte to start clipping the
picture from.
AlphaTo, Gets or sets a value that specifies the alpha-byte to end clipping the picture
to.

To specify the position / size of the picture clip object you can use any of the following
properties:

Left, Specifies the left position / expression of the clip, relative to the layer.
Top, Specifies the top position / expression of the clip, relative to the layer.
Width, Specifies the width value / expression of the clip, relative to the layer.
Height, Specifies the height value / expression of the clip, relative to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The following screen shot shows properties of the clipping objects relative to the layer:

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipPicture.Height as String
Specifies the height value / expression of the clip, relative to the layer.

Type Description

String A String value that specifies the height value / expression
of the clip, relative to the layer.

By default, the Height property is empty, which indicates the height of the layer. The Height
property is "height", if the expression is missing or invalid.

For instance:

"-15", 15 pixels up to the top side of the layer
"height / 2" indicates the half of the layer's height or the y-center of the layer
"height", indicates the height of the layer or bottom side of the layer
"value / 100 * height", indicates the Value percent of height of the layer, so if clip's
Value percent is 25, the "value / 100 * height" expression gets a quarter of the height of
the layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define a picture clip region over the layer you can use any of the following properties:

Name, Indicates the picture to be used as a mask/clip.
DisplayAs, Retrieves or sets a value that indicates the way how the graphic is
arranged on the mask/clip.
AlphaFrom, Gets or sets a value that specifies the alpha-byte to start clipping the
picture from.
AlphaTo, Gets or sets a value that specifies the alpha-byte to end clipping the picture
to.

To specify the position / size of the picture clip object you can use any of the following
properties:

Left, Specifies the left position / expression of the clip, relative to the layer.
Top, Specifies the top position / expression of the clip, relative to the layer.
Width, Specifies the width value / expression of the clip, relative to the layer.
Height, Specifies the height value / expression of the clip, relative to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipPicture.InverseClip as Boolean
Indicates whether the current clip object is inverted.

Type Description

Boolean A Boolean expression that indicates whether the current
clip object is inverted.

By default, InverseClip property is False. The InverseClip property inverses the current
clipping region, so anything that was included in the clipping region will be excluded, and
reverse.

To define a picture clip region over the layer you can use any of the following properties:

Name, Indicates the picture to be used as a mask/clip.
DisplayAs, Retrieves or sets a value that indicates the way how the graphic is
arranged on the mask/clip.
AlphaFrom, Gets or sets a value that specifies the alpha-byte to start clipping the
picture from.
AlphaTo, Gets or sets a value that specifies the alpha-byte to end clipping the picture
to.

To specify the position / size of the picture clip object you can use any of the following
properties:

Left, Specifies the left position / expression of the clip, relative to the layer.
Top, Specifies the top position / expression of the clip, relative to the layer.
Width, Specifies the width value / expression of the clip, relative to the layer.
Height, Specifies the height value / expression of the clip, relative to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The following screen shot shows properties of the clipping objects relative to the layer:

property ClipPicture.Left as String
Specifies the left position / expression of the clip, relative to the layer.

Type Description

String A String value that specifies the left position / expression
of the clip, relative to the layer.

By default, the Left property is empty, which indicates the value of 0 (left side of the layer
). The Left property is 0, if the expression is missing or invalid.

For instance:

"-15", 15 pixels to the left side of the layer
"width / 2" indicates the half of the layer's width or the x-center of the layer
"width", indicates the width of the layer or right side of the layer
"value / 100 * width", indicates the Value percent of width of the layer, so if clip's Value
percent is 25, the "value / 100 * width" expression gets a quarter of the width of the
layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define a picture clip region over the layer you can use any of the following properties:

Name, Indicates the picture to be used as a mask/clip.
DisplayAs, Retrieves or sets a value that indicates the way how the graphic is
arranged on the mask/clip.
AlphaFrom, Gets or sets a value that specifies the alpha-byte to start clipping the
picture from.
AlphaTo, Gets or sets a value that specifies the alpha-byte to end clipping the picture
to.

To specify the position / size of the picture clip object you can use any of the following
properties:

Left, Specifies the left position / expression of the clip, relative to the layer.
Top, Specifies the top position / expression of the clip, relative to the layer.
Width, Specifies the width value / expression of the clip, relative to the layer.
Height, Specifies the height value / expression of the clip, relative to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipPicture.Name as Variant
Indicates the picture to be used as a mask/clip.

Type Description

Variant

The Name property could be one of the following:

A String expression indicates:
a name of a picture file in the PicturePath folder.
For instance, Name = "Layer1.png", loads the
Layer1.png file if found in the PicturesPath folder.
a picture file including its absolute path. For
instance, Name = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob\Layer1.png",
loads the Layer1.png file from absolute path
a key of the HTML picture, previously loaded by
the HTMLPicture method. For instance, Name =
"pic1", loads the HTML picture with the key pic1,
so the pic1 should be load previously with a
HTMLPicture call like HTMLPicture("pic1") =
"C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob\Layer1.png"
an encode BASE64 string of a picture file. The
Exontrol's ExImages Tool encode/decode
BASE64 strings from/to pictures. In this case, the
string starts with "gB..", "gC.." and so on.

A Picture object that indicates the picture to be
displayed. For instance, Name =
LoadPicture("picture.jpg")

By default, the Name property is empty, so no clipping is applied. The picture being used as
a clipping region must support transparency / alpha blending (picture's attribute includes
the PICTURE_TRANSPARENT). For instance, you can use any PNG file with transparency.
By default, the opaque-pixels in the picture defines the clipping region. Use the AlphaFrom /
AlphaTo to include semi-transparent pixels in the clipping region. The DisplayAs property
retrieves or sets a value that indicates the way how the graphic is arranged on the
mask/clip.

To define a picture clip region over the layer you can use any of the following properties:

Name, Indicates the picture to be used as a mask/clip.
DisplayAs, Retrieves or sets a value that indicates the way how the graphic is

https://exontrol.com/eximages.jsp

arranged on the mask/clip.
AlphaFrom, Gets or sets a value that specifies the alpha-byte to start clipping the
picture from.
AlphaTo, Gets or sets a value that specifies the alpha-byte to end clipping the picture
to.

To specify the position / size of the picture clip object you can use any of the following
properties:

Left, Specifies the left position / expression of the clip, relative to the layer.
Top, Specifies the top position / expression of the clip, relative to the layer.
Width, Specifies the width value / expression of the clip, relative to the layer.
Height, Specifies the height value / expression of the clip, relative to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The following screen shot shows properties of the clipping objects relative to the layer:

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipPicture.OffsetX as String
Specifies the x-offset expression / value of the clip, relative to the layer.

Type Description

String A String expression that defines the x-offset expression /
value of the clip, relative to the layer.

By default, the OffsetX property is empty, which indicates the value of 0 (left side of the
layer). The OffsetX property is 0, if the expression is missing or invalid.

For instance:

"-15", 15 pixels to the left side of the layer
"width / 2" indicates the half of the layer's width or the x-center of the layer
"width", indicates the width of the layer or right side of the layer
"value / 100 * width", indicates the Value percent of width of the layer, so if clip's Value
percent is 25, the "value / 100 * width" expression gets a quarter of the width of the
layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define a picture clip region over the layer you can use any of the following properties:

Name, Indicates the picture to be used as a mask/clip.
DisplayAs, Retrieves or sets a value that indicates the way how the graphic is
arranged on the mask/clip.
AlphaFrom, Gets or sets a value that specifies the alpha-byte to start clipping the
picture from.
AlphaTo, Gets or sets a value that specifies the alpha-byte to end clipping the picture
to.

To specify the position / size of the picture clip object you can use any of the following
properties:

Left, Specifies the left position / expression of the clip, relative to the layer.
Top, Specifies the top position / expression of the clip, relative to the layer.
Width, Specifies the width value / expression of the clip, relative to the layer.
Height, Specifies the height value / expression of the clip, relative to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipPicture.OffsetY as String
Specifies the y-offset expression / value of the clip, relative to the layer.

Type Description

String A String expression that defines the y-offset expression /
value of the clip, relative to the layer.

By default, the OffsetY property is empty, which indicates the value of 0 (top side of the
layer). The OffsetY property is 0, if the expression is missing or invalid.

For instance:

"-15", 15 pixels up to the top side of the layer
"height / 2" indicates the half of the layer's height or the y-center of the layer
"height", indicates the height of the layer or bottom side of the layer
"value / 100 * height", indicates the Value percent of height of the layer, so if clip's
Value percent is 25, the "value / 100 * height" expression gets a quarter of the height of
the layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define a picture clip region over the layer you can use any of the following properties:

Name, Indicates the picture to be used as a mask/clip.
DisplayAs, Retrieves or sets a value that indicates the way how the graphic is
arranged on the mask/clip.
AlphaFrom, Gets or sets a value that specifies the alpha-byte to start clipping the
picture from.
AlphaTo, Gets or sets a value that specifies the alpha-byte to end clipping the picture
to.

To specify the position / size of the picture clip object you can use any of the following
properties:

Left, Specifies the left position / expression of the clip, relative to the layer.
Top, Specifies the top position / expression of the clip, relative to the layer.
Width, Specifies the width value / expression of the clip, relative to the layer.
Height, Specifies the height value / expression of the clip, relative to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipPicture.Top as String
Specifies the top position / expression of the clip, relative to the layer.

Type Description

String A String value that specifies the top position / expression
of the clip, relative to the layer.

By default, the Top property is empty, which indicates the value of 0 (top side of the layer
). The Top property is 0, if the expression is missing or invalid.

For instance:

"-15", 15 pixels up to the top side of the layer
"height / 2" indicates the half of the layer's height or the y-center of the layer
"height", indicates the height of the layer or bottom side of the layer
"value / 100 * height", indicates the Value percent of height of the layer, so if clip's
Value percent is 25, the "value / 100 * height" expression gets a quarter of the height of
the layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define a picture clip region over the layer you can use any of the following properties:

Name, Indicates the picture to be used as a mask/clip.
DisplayAs, Retrieves or sets a value that indicates the way how the graphic is
arranged on the mask/clip.
AlphaFrom, Gets or sets a value that specifies the alpha-byte to start clipping the
picture from.
AlphaTo, Gets or sets a value that specifies the alpha-byte to end clipping the picture
to.

To specify the position / size of the picture clip object you can use any of the following
properties:

Left, Specifies the left position / expression of the clip, relative to the layer.
Top, Specifies the top position / expression of the clip, relative to the layer.
Width, Specifies the width value / expression of the clip, relative to the layer.
Height, Specifies the height value / expression of the clip, relative to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipPicture.Width as String
Specifies the width value / expression of the clip, relative to the layer.

Type Description

String A String expression that specifies the width value /
expression of the clip, relative to the layer.

By default, the Width property is empty, which indicates the width of the layer . The Width
property is "width", if the expression is missing or invalid.

For instance:

"-15", 15 pixels to the left side of the layer
"width / 2" indicates the half of the layer's width or the x-center of the layer
"width", indicates the width of the layer or right side of the layer
"value / 100 * width", indicates the Value percent of width of the layer, so if clip's Value
percent is 25, the "value / 100 * width" expression gets a quarter of the width of the
layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define a picture clip region over the layer you can use any of the following properties:

Name, Indicates the picture to be used as a mask/clip.
DisplayAs, Retrieves or sets a value that indicates the way how the graphic is
arranged on the mask/clip.
AlphaFrom, Gets or sets a value that specifies the alpha-byte to start clipping the
picture from.
AlphaTo, Gets or sets a value that specifies the alpha-byte to end clipping the picture
to.

To specify the position / size of the picture clip object you can use any of the following
properties:

Left, Specifies the left position / expression of the clip, relative to the layer.
Top, Specifies the top position / expression of the clip, relative to the layer.
Width, Specifies the width value / expression of the clip, relative to the layer.
Height, Specifies the height value / expression of the clip, relative to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

ClipPie object
The ClipPie object holds information about a pie clip region.

For instance, having the following gauge:

an pie clip region over the background layer shows as:

Name Description

CenterX Specifies the x-position / expression of the center of the
clip, relative to the layer.

CenterY Specifies the y-position / expression of the center of the
clip, relative to the layer.

InverseClip Indicates whether the current clip object is inverted.
Specifies the x-offset expression / value of the clip,

OffsetX relative to the layer.

OffsetY Specifies the y-offset expression / value of the clip,
relative to the layer.

RadiusX Specifies the x-radius value / expression of the clip,
relative to the layer.

RadiusY Specifies the y-radius value / expression of the clip,
relative to the layer.

StartAngle Specifies the starting angle in degrees relative to the y-
axis.

SweepAngle Specifies the sweep angle in degrees relative to the
starting angle.

property ClipPie.CenterX as String
Specifies the x-position / expression of the center of the clip, relative to the layer.

Type Description

String A String expression that defines the x-position / expression
of the center of the clip, relative to the layer.

By default, the CenterX property is empty, which indicates the center of the layer The
CenterX property is "width/2" (center of the layer), if the expression is missing or invalid.

For instance:

"-15", 15 pixels to the left side of the layer
"width / 2" indicates the half of the layer's width or the x-center of the layer
"width", indicates the width of the layer or right side of the layer
"value / 100 * width", indicates the Value percent of width of the layer, so if clip's Value
percent is 25, the "value / 100 * width" expression gets a quarter of the width of the
layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define an elliptical clip region over the layer you can use any of the following properties:

CenterX, Specifies the x-position / expression of the center of the clip, relative to the
layer.
CenterY, Specifies the y-position / expression of the center of the clip, relative to the
layer.
RadiusX, Specifies the x-radius value / expression of the clip, relative to the layer.
RadiusY, Specifies the y-radius value / expression of the clip, relative to the layer.
StartAngle, Specifies the starting angle in degrees relative to the y-axis.
SweepAngle, Specifies the sweep angle in degrees relative to the starting angle.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipPie.CenterY as String
Specifies the y-position / expression of the center of the clip, relative to the layer.

Type Description

String A String expression that defines the y-position / expression
of the center of the clip, relative to the layer.

By default, the CenterY property is empty, which indicates the center of the layer The
CenterY property is "height/2" (center of the layer), if the expression is missing or invalid.

For instance:

"-15", 15 pixels up to the top side of the layer
"height / 2" indicates the half of the layer's height or the y-center of the layer
"height", indicates the height of the layer or right side of the layer
"value / 100 * height", indicates the Value percent of height of the layer, so if clip's
Value percent is 25, the "value / 100 * height" expression gets a quarter of the height of
the layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define an elliptical clip region over the layer you can use any of the following properties:

CenterX, Specifies the x-position / expression of the center of the clip, relative to the
layer.
CenterY, Specifies the y-position / expression of the center of the clip, relative to the
layer.
RadiusX, Specifies the x-radius value / expression of the clip, relative to the layer.
RadiusY, Specifies the y-radius value / expression of the clip, relative to the layer.
StartAngle, Specifies the starting angle in degrees relative to the y-axis.
SweepAngle, Specifies the sweep angle in degrees relative to the starting angle.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipPie.InverseClip as Boolean
Indicates whether the current clip object is inverted.

Type Description

Boolean A Boolean expression that indicates whether the current
clip object is inverted.

By default, InverseClip property is False. The InverseClip property inverses the current
clipping region, so anything that was included in the clipping region will be excluded, and
reverse.

To define an elliptical clip region over the layer you can use any of the following properties:

CenterX, Specifies the x-position / expression of the center of the clip, relative to the
layer.
CenterY, Specifies the y-position / expression of the center of the clip, relative to the
layer.
RadiusX, Specifies the x-radius value / expression of the clip, relative to the layer.
RadiusY, Specifies the y-radius value / expression of the clip, relative to the layer.
StartAngle, Specifies the starting angle in degrees relative to the y-axis.
SweepAngle, Specifies the sweep angle in degrees relative to the starting angle.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The following screen shot shows properties of the clipping objects relative to the layer:

property ClipPie.OffsetX as String
Specifies the x-offset expression / value of the clip, relative to the layer.

Type Description

String A String expression that defines the x-offset expression /
value of the clip, relative to the layer.

By default, the OffsetX property is empty, which indicates the value of 0 (left side of the
layer). The OffsetX property is 0, if the expression is missing or invalid.

For instance:

"-15", 15 pixels to the left side of the layer
"width / 2" indicates the half of the layer's width or the x-center of the layer
"width", indicates the width of the layer or right side of the layer
"value / 100 * width", indicates the Value percent of width of the layer, so if clip's Value
percent is 25, the "value / 100 * width" expression gets a quarter of the width of the
layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define an elliptical clip region over the layer you can use any of the following properties:

CenterX, Specifies the x-position / expression of the center of the clip, relative to the
layer.
CenterY, Specifies the y-position / expression of the center of the clip, relative to the
layer.
RadiusX, Specifies the x-radius value / expression of the clip, relative to the layer.
RadiusY, Specifies the y-radius value / expression of the clip, relative to the layer.
StartAngle, Specifies the starting angle in degrees relative to the y-axis.
SweepAngle, Specifies the sweep angle in degrees relative to the starting angle.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipPie.OffsetY as String
Specifies the y-offset expression / value of the clip, relative to the layer.

Type Description

String A String expression that defines the y-offset expression /
value of the clip, relative to the layer.

By default, the OffsetY property is empty, which indicates the value of 0 (top side of the
layer). The OffsetY property is 0, if the expression is missing or invalid.

For instance:

"-15", 15 pixels up to the top side of the layer
"height / 2" indicates the half of the layer's height or the y-center of the layer
"height", indicates the height of the layer or bottom side of the layer
"value / 100 * height", indicates the Value percent of height of the layer, so if clip's
Value percent is 25, the "value / 100 * height" expression gets a quarter of the height of
the layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define an elliptical clip region over the layer you can use any of the following properties:

CenterX, Specifies the x-position / expression of the center of the clip, relative to the
layer.
CenterY, Specifies the y-position / expression of the center of the clip, relative to the
layer.
RadiusX, Specifies the x-radius value / expression of the clip, relative to the layer.
RadiusY, Specifies the y-radius value / expression of the clip, relative to the layer.
StartAngle, Specifies the starting angle in degrees relative to the y-axis.
SweepAngle, Specifies the sweep angle in degrees relative to the starting angle.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipPie.RadiusX as String
Specifies the x-radius value / expression of the clip, relative to the layer.

Type Description

String A String expression that defines the x-radius value /
expression of the clip, relative to the layer.

By default, the RadiusX property is empty, which indicates the half of the layer's width. The
RadiusX property is "width/2" (half of the layer's width), if the expression is missing or
invalid.

For instance:

"15", 15 pixels radius
"width / 2" indicates the half of the layer's width or the x-center of the layer
"width", indicates the width of the layer or right side of the layer
"value / 100 * width", indicates the Value percent of width of the layer, so if clip's Value
percent is 25, the "value / 100 * width" expression gets a quarter of the width of the
layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define an elliptical clip region over the layer you can use any of the following properties:

CenterX, Specifies the x-position / expression of the center of the clip, relative to the
layer.
CenterY, Specifies the y-position / expression of the center of the clip, relative to the
layer.
RadiusX, Specifies the x-radius value / expression of the clip, relative to the layer.
RadiusY, Specifies the y-radius value / expression of the clip, relative to the layer.
StartAngle, Specifies the starting angle in degrees relative to the y-axis.
SweepAngle, Specifies the sweep angle in degrees relative to the starting angle.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipPie.RadiusY as String
Specifies the y-radius value / expression of the clip, relative to the layer.

Type Description

String A String expression that defines the y-radius value /
expression of the clip, relative to the layer.

By default, the RadiusY property is empty, which indicates the half of the layer's height. The
RadiusY property is "height/2" (half of the layer's height), if the expression is missing or
invalid.

For instance:

"15", 15 pixels radius
"height / 2" indicates the half of the layer's height or the y-center of the layer
"height", indicates the height of the layer or right side of the layer
"value / 100 * height", indicates the Value percent of height of the layer, so if clip's
Value percent is 25, the "value / 100 * height" expression gets a quarter of the height of
the layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define an elliptical clip region over the layer you can use any of the following properties:

CenterX, Specifies the x-position / expression of the center of the clip, relative to the
layer.
CenterY, Specifies the y-position / expression of the center of the clip, relative to the
layer.
RadiusX, Specifies the x-radius value / expression of the clip, relative to the layer.
RadiusY, Specifies the y-radius value / expression of the clip, relative to the layer.
StartAngle, Specifies the starting angle in degrees relative to the y-axis.
SweepAngle, Specifies the sweep angle in degrees relative to the starting angle.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipPie.StartAngle as String
Specifies the starting angle in degrees relative to the y-axis.

Type Description

String A String expression that defines the starting angle in
degrees relative to the y-axis.

By default, the StartAngle property is empty, which indicates 0 degree. The StartAngle
property is 0 degree, if empty, missing or invalid.

For instance:

"-45", 45 degree anti-clockwise
"90", 90 degree clockwise
"value" specifies that the angle is equal with the clip's Value property
"value / 100 * 360" results the percent Value from 360 degree

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define an elliptical clip region over the layer you can use any of the following properties:

CenterX, Specifies the x-position / expression of the center of the clip, relative to the
layer.
CenterY, Specifies the y-position / expression of the center of the clip, relative to the
layer.
RadiusX, Specifies the x-radius value / expression of the clip, relative to the layer.
RadiusY, Specifies the y-radius value / expression of the clip, relative to the layer.
StartAngle, Specifies the starting angle in degrees relative to the y-axis.
SweepAngle, Specifies the sweep angle in degrees relative to the starting angle.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipPie.SweepAngle as String
Specifies the sweep angle in degrees relative to the starting angle.

Type Description

String A String expression that defines the sweep angle in
degrees relative to the starting angle.

By default, the SweepAngle property is empty, which indicates 0 degree. The SweepAngle
property is 0 degree, if empty, missing or invalid.

For instance:

"-45", 45 degree anti-clockwise
"90", 90 degree clockwise
"value" specifies that the angle is equal with the clip's Value property
"value / 100 * 360" results the percent Value from 360 degree

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define an elliptical clip region over the layer you can use any of the following properties:

CenterX, Specifies the x-position / expression of the center of the clip, relative to the
layer.
CenterY, Specifies the y-position / expression of the center of the clip, relative to the
layer.
RadiusX, Specifies the x-radius value / expression of the clip, relative to the layer.
RadiusY, Specifies the y-radius value / expression of the clip, relative to the layer.
StartAngle, Specifies the starting angle in degrees relative to the y-axis.
SweepAngle, Specifies the sweep angle in degrees relative to the starting angle.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

ClipPolygon object
The ClipPolygon object holds information about polygonal clip region.

For instance, having the following gauge:

an polygonal clip region over the background layer shows as:

The ClipPolygon object supports the following properties and methods:

Name Description
InverseClip Indicates whether the current clip object is inverted.

Specifies the x-offset expression / value of the clip,

OffsetX relative to the layer.

OffsetY Specifies the y-offset expression / value of the clip,
relative to the layer.

Points Indicates the number of points that defines the polygon.

X Specifies the x-position expression / value of the point,
relative to the layer.

Y Specifies the y-position expression / value of the point,
relative to the layer.

property ClipPolygon.InverseClip as Boolean
Indicates whether the current clip object is inverted.

Type Description

Boolean A Boolean expression that indicates whether the current
clip object is inverted.

By default, InverseClip property is False. The InverseClip property inverses the current
clipping region, so anything that was included in the clipping region will be excluded, and
reverse.

To define an polygonal clip region over the layer you can use any of the following properties:

Points, Indicates the number of points that defines the polygon.
X, Specifies the x-radius value / expression of the clip, relative to the layer.
Y, Specifies the y-radius value / expression of the clip, relative to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The following screen shot shows properties of the clipping objects relative to the layer:

property ClipPolygon.OffsetX as String
Specifies the x-offset expression / value of the clip, relative to the layer.

Type Description

String A String expression that defines the x-offset expression /
value of the clip, relative to the layer.

By default, the OffsetX property is empty, which indicates the value of 0 (left side of the
layer). The OffsetX property is 0, if the expression is missing or invalid.

For instance:

"-15", 15 pixels to the left side of the layer
"width / 2" indicates the half of the layer's width or the x-center of the layer
"width", indicates the width of the layer or right side of the layer
"value / 100 * width", indicates the Value percent of width of the layer, so if clip's Value
percent is 25, the "value / 100 * width" expression gets a quarter of the width of the
layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define an polygonal clip region over the layer you can use any of the following properties:

Points, Indicates the number of points that defines the polygon.
X, Specifies the x-radius value / expression of the clip, relative to the layer.
Y, Specifies the y-radius value / expression of the clip, relative to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipPolygon.OffsetY as String
Specifies the y-offset expression / value of the clip, relative to the layer.

Type Description

String A String expression that defines the y-offset expression /
value of the clip, relative to the layer.

By default, the OffsetY property is empty, which indicates the value of 0 (top side of the
layer). The OffsetY property is 0, if the expression is missing or invalid.

For instance:

"-15", 15 pixels up to the top side of the layer
"height / 2" indicates the half of the layer's height or the y-center of the layer
"height", indicates the height of the layer or bottom side of the layer
"value / 100 * height", indicates the Value percent of height of the layer, so if clip's
Value percent is 25, the "value / 100 * height" expression gets a quarter of the height of
the layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define an polygonal clip region over the layer you can use any of the following properties:

Points, Indicates the number of points that defines the polygon.
X, Specifies the x-radius value / expression of the clip, relative to the layer.
Y, Specifies the y-radius value / expression of the clip, relative to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipPolygon.Points as Long
Indicates the number of points that defines the polygon.

Type Description

Long
A Long expression that defines the number of points within
the polygon. The number of points must be greater or
equal with 3.

By default, the Points property is 0. The Points property indicates the number of points that
defines the polygon. The InverseClip property inverses the current clipping region, so
anything that was included in the clipping region will be excluded, and reverse.

The following screen shot shows properties of the clipping objects relative to the layer:

To define an polygonal clip region over the layer you can use any of the following properties:

Points, Indicates the number of points that defines the polygon.
X, Specifies the x-radius value / expression of the clip, relative to the layer.
Y, Specifies the y-radius value / expression of the clip, relative to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

property ClipPolygon.X(Index as Long) as String
Specifies the x-position expression / value of the point, relative to the layer.

Type Description

Index as Long
A Long expression that specifies the index of the point,
whose x-coordinate is accessed. The Index parameter is
zero-based, so it can be 0, 1, 2, ... Points - 1

String A String value that specifies the x-position expression /
value of the point, relative to the layer.

By default, the X property is empty, which indicates the value of 0 (left side of the layer
). The X property is 0, if the expression is empty, missing or invalid. The Points property
indicates the number of points that defines the polygon.

For instance:

"-15", 15 pixels to the left side of the layer
"width / 2" indicates the half of the layer's width or the x-center of the layer
"width", indicates the width of the layer or right side of the layer
"value / 100 * width", indicates the Value percent of width of the layer, so if clip's Value
percent is 25, the "value / 100 * width" expression gets a quarter of the width of the
layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define an polygonal clip region over the layer you can use any of the following properties:

Points, Indicates the number of points that defines the polygon.
X, Specifies the x-radius value / expression of the clip, relative to the layer.
Y, Specifies the y-radius value / expression of the clip, relative to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipPolygon.Y(Index as Long) as String
Specifies the y-position expression / value of the point, relative to the layer.

Type Description

Index as Long
A Long expression that specifies the index of the point,
whose x-coordinate is accessed. The Index parameter is
zero-based, so it can be 0, 1, 2, ... Points - 1

String A String value that specifies the y-position expression /
value of the point, relative to the layer.

By default, the Y property is empty, which indicates the value of 0 (top side of the layer
). The Y property is 0, if the expression is empty, missing or invalid. The Points property
indicates the number of points that defines the polygon.

For instance:

"-15", 15 pixels up to the top side of the layer
"height / 2" indicates the half of the layer's height or the y-center of the layer
"height", indicates the height of the layer or bottom side of the layer
"value / 100 * height", indicates the Value percent of height of the layer, so if clip's
Value percent is 25, the "value / 100 * height" expression gets a quarter of the height of
the layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define an polygonal clip region over the layer you can use any of the following properties:

Points, Indicates the number of points that defines the polygon.
X, Specifies the x-radius value / expression of the clip, relative to the layer.
Y, Specifies the y-radius value / expression of the clip, relative to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

ClipRectangle object
The ClipRectangle object holds information about an rectangular clip region.

For instance, having the following gauge:

a rectangular clip region over the background layer shows as:

The ClipRectangle property supports the following properties and methods:

Name Description

Height Specifies the height value / expression of the clip, relative
to the layer.

InverseClip Indicates whether the current clip object is inverted.

Left Specifies the left position / expression of the clip, relative
to the layer.

OffsetX Specifies the x-offset expression / value of the clip,

relative to the layer.

OffsetY Specifies the y-offset expression / value of the clip,
relative to the layer.

Top Specifies the top position / expression of the clip, relative
to the layer.

Width Specifies the width value / expression of the clip, relative
to the layer.

property ClipRectangle.Height as String
Specifies the height value / expression of the clip, relative to the layer.

Type Description

String A String value that specifies the height value / expression
of the clip, relative to the layer.

By default, the Height property is empty, which indicates the height of the layer. The Height
property is "height", if the expression is missing or invalid.

For instance:

"-15", 15 pixels up to the top side of the layer
"height / 2" indicates the half of the layer's height or the y-center of the layer
"height", indicates the height of the layer or bottom side of the layer
"value / 100 * height", indicates the Value percent of height of the layer, so if clip's
Value percent is 25, the "value / 100 * height" expression gets a quarter of the height of
the layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define or specify the position / size of the rectanglular clip object you can use any of the
following properties:

Left, Specifies the left position / expression of the clip, relative to the layer.
Top, Specifies the top position / expression of the clip, relative to the layer.
Width, Specifies the width value / expression of the clip, relative to the layer.
Height, Specifies the height value / expression of the clip, relative to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipRectangle.InverseClip as Boolean
Indicates whether the current clip object is inverted.

Type Description

Boolean A Boolean expression that indicates whether the current
clip object is inverted.

By default, InverseClip property is False. The InverseClip property inverses the current
clipping region, so anything that was included in the clipping region will be excluded, and
reverse.

To define or specify the position / size of the rectanglular clip object you can use any of the
following properties:

Left, Specifies the left position / expression of the clip, relative to the layer.
Top, Specifies the top position / expression of the clip, relative to the layer.
Width, Specifies the width value / expression of the clip, relative to the layer.
Height, Specifies the height value / expression of the clip, relative to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The following screen shot shows properties of the clipping objects relative to the layer:

property ClipRectangle.Left as String
Specifies the left position / expression of the clip, relative to the layer.

Type Description

String A String value that specifies the left position / expression
of the clip, relative to the layer.

By default, the Left property is empty, which indicates the value of 0 (left side of the layer
). The Left property is 0, if the expression is missing or invalid.

For instance:

"-15", 15 pixels to the left side of the layer
"width / 2" indicates the half of the layer's width or the x-center of the layer
"width", indicates the width of the layer or right side of the layer
"value / 100 * width", indicates the Value percent of width of the layer, so if clip's Value
percent is 25, the "value / 100 * width" expression gets a quarter of the width of the
layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define or specify the position / size of the rectanglular clip object you can use any of the
following properties:

Left, Specifies the left position / expression of the clip, relative to the layer.
Top, Specifies the top position / expression of the clip, relative to the layer.
Width, Specifies the width value / expression of the clip, relative to the layer.
Height, Specifies the height value / expression of the clip, relative to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipRectangle.OffsetX as String
Specifies the x-offset expression / value of the clip, relative to the layer.

Type Description

String A String expression that defines the x-offset expression /
value of the clip, relative to the layer.

By default, the OffsetX property is empty, which indicates the value of 0 (left side of the
layer). The OffsetX property is 0, if the expression is missing or invalid.

For instance:

"-15", 15 pixels to the left side of the layer
"width / 2" indicates the half of the layer's width or the x-center of the layer
"width", indicates the width of the layer or right side of the layer
"value / 100 * width", indicates the Value percent of width of the layer, so if clip's Value
percent is 25, the "value / 100 * width" expression gets a quarter of the width of the
layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define or specify the position / size of the rectanglular clip object you can use any of the
following properties:

Left, Specifies the left position / expression of the clip, relative to the layer.
Top, Specifies the top position / expression of the clip, relative to the layer.
Width, Specifies the width value / expression of the clip, relative to the layer.
Height, Specifies the height value / expression of the clip, relative to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipRectangle.OffsetY as String
Specifies the y-offset expression / value of the clip, relative to the layer.

Type Description

String A String expression that defines the y-offset expression /
value of the clip, relative to the layer.

By default, the OffsetY property is empty, which indicates the value of 0 (top side of the
layer). The OffsetY property is 0, if the expression is missing or invalid.

For instance:

"-15", 15 pixels up to the top side of the layer
"height / 2" indicates the half of the layer's height or the y-center of the layer
"height", indicates the height of the layer or bottom side of the layer
"value / 100 * height", indicates the Value percent of height of the layer, so if clip's
Value percent is 25, the "value / 100 * height" expression gets a quarter of the height of
the layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define or specify the position / size of the rectanglular clip object you can use any of the
following properties:

Left, Specifies the left position / expression of the clip, relative to the layer.
Top, Specifies the top position / expression of the clip, relative to the layer.
Width, Specifies the width value / expression of the clip, relative to the layer.
Height, Specifies the height value / expression of the clip, relative to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipRectangle.Top as String
Specifies the top position / expression of the clip, relative to the layer.

Type Description

String A String value that specifies the top position / expression
of the clip, relative to the layer.

By default, the Top property is empty, which indicates the value of 0 (top side of the layer
). The Top property is 0, if the expression is missing or invalid.

For instance:

"-15", 15 pixels up to the top side of the layer
"height / 2" indicates the half of the layer's height or the y-center of the layer
"height", indicates the height of the layer or bottom side of the layer
"value / 100 * height", indicates the Value percent of height of the layer, so if clip's
Value percent is 25, the "value / 100 * height" expression gets a quarter of the height of
the layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define or specify the position / size of the rectanglular clip object you can use any of the
following properties:

Left, Specifies the left position / expression of the clip, relative to the layer.
Top, Specifies the top position / expression of the clip, relative to the layer.
Width, Specifies the width value / expression of the clip, relative to the layer.
Height, Specifies the height value / expression of the clip, relative to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipRectangle.Width as String
Specifies the width value / expression of the clip, relative to the layer.

Type Description

String A String expression that specifies the width value /
expression of the clip, relative to the layer.

By default, the Width property is empty, which indicates the width of the layer . The Width
property is "width", if the expression is missing or invalid.

For instance:

"-15", 15 pixels to the left side of the layer
"width / 2" indicates the half of the layer's width or the x-center of the layer
"width", indicates the width of the layer or right side of the layer
"value / 100 * width", indicates the Value percent of width of the layer, so if clip's Value
percent is 25, the "value / 100 * width" expression gets a quarter of the width of the
layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define or specify the position / size of the rectanglular clip object you can use any of the
following properties:

Left, Specifies the left position / expression of the clip, relative to the layer.
Top, Specifies the top position / expression of the clip, relative to the layer.
Width, Specifies the width value / expression of the clip, relative to the layer.
Height, Specifies the height value / expression of the clip, relative to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

ClipRoundRectangle object
The ClipRoundRectangle object holds information about an rectangular clip region.

For instance, having the following gauge:

a round rectangular clip region over the background layer shows as:

The ClipRoundRectangle property supports the following properties and methods:

Name Description

Height Specifies the height value / expression of the clip, relative
to the layer.

InverseClip Indicates whether the current clip object is inverted.

Left Specifies the left position / expression of the clip, relative
to the layer.

OffsetX Specifies the x-offset expression / value of the clip,
relative to the layer.

OffsetY Specifies the y-offset expression / value of the clip,
relative to the layer.

RoundRadiusX Specifies the x-radius value / expression of the round
corner, relative to the layer.

RoundRadiusY Specifies the y-radius value / expression of the round
corner, relative to the layer.

Top Specifies the top position / expression of the clip, relative
to the layer.

Width Specifies the width value / expression of the clip, relative
to the layer.

property ClipRoundRectangle.Height as String
Specifies the height value / expression of the clip, relative to the layer.

Type Description

String A String value that specifies the height value / expression
of the clip, relative to the layer.

By default, the Height property is empty, which indicates the height of the layer. The Height
property is "height", if the expression is missing or invalid.

For instance:

"-15", 15 pixels up to the top side of the layer
"height / 2" indicates the half of the layer's height or the y-center of the layer
"height", indicates the height of the layer or bottom side of the layer
"value / 100 * height", indicates the Value percent of height of the layer, so if clip's
Value percent is 25, the "value / 100 * height" expression gets a quarter of the height of
the layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define or specify the position / size of the rectanglular clip object you can use any of the
following properties:

Left, Specifies the left position / expression of the clip, relative to the layer.
Top, Specifies the top position / expression of the clip, relative to the layer.
Width, Specifies the width value / expression of the clip, relative to the layer.
Height, Specifies the height value / expression of the clip, relative to the layer.
RoundRadiusX, Specifies the x-radius value / expression of the round corner, relative to
the layer.
RoundRadiusY, Specifies the y-radius value / expression of the round corner, relative
to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipRoundRectangle.InverseClip as Boolean
Indicates whether the current clip object is inverted.

Type Description

Boolean A Boolean expression that indicates whether the current
clip object is inverted.

By default, InverseClip property is False. The InverseClip property inverses the current
clipping region, so anything that was included in the clipping region will be excluded, and
reverse.

To define or specify the position / size of the rectanglular clip object you can use any of the
following properties:

Left, Specifies the left position / expression of the clip, relative to the layer.
Top, Specifies the top position / expression of the clip, relative to the layer.
Width, Specifies the width value / expression of the clip, relative to the layer.
Height, Specifies the height value / expression of the clip, relative to the layer.
RoundRadiusX, Specifies the x-radius value / expression of the round corner, relative to
the layer.
RoundRadiusY, Specifies the y-radius value / expression of the round corner, relative
to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The following screen shot shows properties of the clipping objects relative to the layer:

property ClipRoundRectangle.Left as String
Specifies the left position / expression of the clip, relative to the layer.

Type Description

String A String value that specifies the left position / expression
of the clip, relative to the layer.

By default, the Left property is empty, which indicates the value of 0 (left side of the layer
). The Left property is 0, if the expression is missing or invalid.

For instance:

"-15", 15 pixels to the left side of the layer
"width / 2" indicates the half of the layer's width or the x-center of the layer
"width", indicates the width of the layer or right side of the layer
"value / 100 * width", indicates the Value percent of width of the layer, so if clip's Value
percent is 25, the "value / 100 * width" expression gets a quarter of the width of the
layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define or specify the position / size of the rectanglular clip object you can use any of the
following properties:

Left, Specifies the left position / expression of the clip, relative to the layer.
Top, Specifies the top position / expression of the clip, relative to the layer.
Width, Specifies the width value / expression of the clip, relative to the layer.
Height, Specifies the height value / expression of the clip, relative to the layer.
RoundRadiusX, Specifies the x-radius value / expression of the round corner, relative to
the layer.
RoundRadiusY, Specifies the y-radius value / expression of the round corner, relative
to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipRoundRectangle.OffsetX as String
Specifies the x-offset expression / value of the clip, relative to the layer.

Type Description

String A String expression that defines the x-offset expression /
value of the clip, relative to the layer.

By default, the OffsetX property is empty, which indicates the value of 0 (left side of the
layer). The OffsetX property is 0, if the expression is missing or invalid.

For instance:

"-15", 15 pixels to the left side of the layer
"width / 2" indicates the half of the layer's width or the x-center of the layer
"width", indicates the width of the layer or right side of the layer
"value / 100 * width", indicates the Value percent of width of the layer, so if clip's Value
percent is 25, the "value / 100 * width" expression gets a quarter of the width of the
layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define or specify the position / size of the rectanglular clip object you can use any of the
following properties:

Left, Specifies the left position / expression of the clip, relative to the layer.
Top, Specifies the top position / expression of the clip, relative to the layer.
Width, Specifies the width value / expression of the clip, relative to the layer.
Height, Specifies the height value / expression of the clip, relative to the layer.
RoundRadiusX, Specifies the x-radius value / expression of the round corner, relative to
the layer.
RoundRadiusY, Specifies the y-radius value / expression of the round corner, relative
to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipRoundRectangle.OffsetY as String
Specifies the y-offset expression / value of the clip, relative to the layer.

Type Description

String A String expression that defines the y-offset expression /
value of the clip, relative to the layer.

By default, the OffsetY property is empty, which indicates the value of 0 (top side of the
layer). The OffsetY property is 0, if the expression is missing or invalid.

For instance:

"-15", 15 pixels up to the top side of the layer
"height / 2" indicates the half of the layer's height or the y-center of the layer
"height", indicates the height of the layer or bottom side of the layer
"value / 100 * height", indicates the Value percent of height of the layer, so if clip's
Value percent is 25, the "value / 100 * height" expression gets a quarter of the height of
the layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define or specify the position / size of the rectanglular clip object you can use any of the
following properties:

Left, Specifies the left position / expression of the clip, relative to the layer.
Top, Specifies the top position / expression of the clip, relative to the layer.
Width, Specifies the width value / expression of the clip, relative to the layer.
Height, Specifies the height value / expression of the clip, relative to the layer.
RoundRadiusX, Specifies the x-radius value / expression of the round corner, relative to
the layer.
RoundRadiusY, Specifies the y-radius value / expression of the round corner, relative
to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipRoundRectangle.RoundRadiusX as String
Specifies the x-radius value / expression of the round corner, relative to the layer.

Type Description

String A String expression that defines the x-radius value /
expression of the round corner, relative to the layer.

By default, the RoundRadiusX property is empty, which indicates 0 (no round corner). The
Round RadiusX property is 0 (no round corner), if the expression is empty, missing or
invalid.

For instance:

"15", 15 pixels radius
"width / 2" indicates the half of the layer's width or the x-center of the layer
"width", indicates the width of the layer or right side of the layer
"value / 100 * width", indicates the Value percent of width of the layer, so if clip's Value
percent is 25, the "value / 100 * width" expression gets a quarter of the width of the
layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define or specify the position / size of the rectanglular clip object you can use any of the
following properties:

Left, Specifies the left position / expression of the clip, relative to the layer.
Top, Specifies the top position / expression of the clip, relative to the layer.
Width, Specifies the width value / expression of the clip, relative to the layer.
Height, Specifies the height value / expression of the clip, relative to the layer.
RoundRadiusX, Specifies the x-radius value / expression of the round corner, relative to
the layer.
RoundRadiusY, Specifies the y-radius value / expression of the round corner, relative
to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipRoundRectangle.RoundRadiusY as String
Specifies the y-radius value / expression of the round corner, relative to the layer.

Type Description

String A String expression that defines the y-radius value /
expression of the round corner, relative to the layer.

By default, the RoundRadiusY property is empty, which indicates 0 (no round corner). The
RoundRadiusY property is 0 (no round corner), if the expression is empty, missing or
invalid.

For instance:

"15", 15 pixels radius
"height / 2" indicates the half of the layer's height or the y-center of the layer
"height", indicates the height of the layer or right side of the layer
"value / 100 * height", indicates the Value percent of height of the layer, so if clip's
Value percent is 25, the "value / 100 * height" expression gets a quarter of the height of
the layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define or specify the position / size of the rectanglular clip object you can use any of the
following properties:

Left, Specifies the left position / expression of the clip, relative to the layer.
Top, Specifies the top position / expression of the clip, relative to the layer.
Width, Specifies the width value / expression of the clip, relative to the layer.
Height, Specifies the height value / expression of the clip, relative to the layer.
RoundRadiusX, Specifies the x-radius value / expression of the round corner, relative to
the layer.
RoundRadiusY, Specifies the y-radius value / expression of the round corner, relative to
the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipRoundRectangle.Top as String
Specifies the top position / expression of the clip, relative to the layer.

Type Description

String A String value that specifies the top position / expression
of the clip, relative to the layer.

By default, the Top property is empty, which indicates the value of 0 (top side of the layer
). The Top property is 0, if the expression is missing or invalid.

For instance:

"-15", 15 pixels up to the top side of the layer
"height / 2" indicates the half of the layer's height or the y-center of the layer
"height", indicates the height of the layer or bottom side of the layer
"value / 100 * height", indicates the Value percent of height of the layer, so if clip's
Value percent is 25, the "value / 100 * height" expression gets a quarter of the height of
the layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define or specify the position / size of the rectanglular clip object you can use any of the
following properties:

Left, Specifies the left position / expression of the clip, relative to the layer.
Top, Specifies the top position / expression of the clip, relative to the layer.
Width, Specifies the width value / expression of the clip, relative to the layer.
Height, Specifies the height value / expression of the clip, relative to the layer.
RoundRadiusX, Specifies the x-radius value / expression of the round corner, relative to
the layer.
RoundRadiusY, Specifies the y-radius value / expression of the round corner, relative
to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

property ClipRoundRectangle.Width as String
Specifies the width value / expression of the clip, relative to the layer.

Type Description

String A String expression that specifies the width value /
expression of the clip, relative to the layer.

By default, the Width property is empty, which indicates the width of the layer . The Width
property is "width", if the expression is missing or invalid.

For instance:

"-15", 15 pixels to the left side of the layer
"width / 2" indicates the half of the layer's width or the x-center of the layer
"width", indicates the width of the layer or right side of the layer
"value / 100 * width", indicates the Value percent of width of the layer, so if clip's Value
percent is 25, the "value / 100 * width" expression gets a quarter of the width of the
layer, or 50 gets half of it, and so on.

This property supports the following keywords:

value keyword specifies the clip's value pointed by the clip's Value property
width or lwidth keywords, indicates the width in pixels of the layer
height or lheight keywords, indicates the height in pixels of the layer

Also, this property supports all constants, operators and functions defined here.

The following screen shot shows properties of the clipping objects relative to the layer:

To define or specify the position / size of the rectanglular clip object you can use any of the
following properties:

Left, Specifies the left position / expression of the clip, relative to the layer.
Top, Specifies the top position / expression of the clip, relative to the layer.
Width, Specifies the width value / expression of the clip, relative to the layer.
Height, Specifies the height value / expression of the clip, relative to the layer.
RoundRadiusX, Specifies the x-radius value / expression of the round corner, relative to
the layer.
RoundRadiusY, Specifies the y-radius value / expression of the round corner, relative
to the layer.

To move the clipping region you can use any of the following properties:

OffsetX, Specifies the x-offset expression / value of the clip, relative to the layer.
OffsetY, Specifies the y-offset expression / value of the clip, relative to the layer.

If none of these properties are calling no clipping is applied to layer.

The InverseClip property inverses the current clipping region, so anything that was included
in the clipping region will be excluded, and reverse.

DragInfo object
The DragInfo object holds information about dragging operation. Currently, the DragInfo
object can be accessed through the drag events. Any layer on the control supports drag
operations like moving, rotation, or combination of them, when the user clicks and drags a
layer. The drag operation automatically starts when the user clicks a visible, selectable and
dragable layer. The OnDrag property indicates the action to be performed when the user
drags the layer (dragable). The Visible property shows or hides a specific layer (visible).
The Selectable property returns or sets a value that indicates whether the layer is
selectable. The Change event occurs when the layer's value is changed.

The control fires the drag events in the following order:

DragStart event, notifies that a layer begins to drag. You can use the DragStart event
to cancel the dragging operation.
Drag event, notifies that the layer is dragging. You can use the Drag event to perform
other actions, on any layer during the dragging operation.
DragEnd event notifies, the dragging the layer ends. You can use the DragEnd event to
perform other actions, on any layer when dragging operation ends.

The following screen shot shows a few information (angle, offset, values, ...) you can get
during dragging operation:

The DragInfo object supports the following properties and methods:

Name Description
Button Specifies the button that initiated the drag operation.
Clockwise Indicates if the rotation is clockwise or anticlockwise.
CumulativeRotateAngle Indicates the cumulative rotation angle.

CurrentX Indicates the current x-position of the cursor, while
dragging the layer.

CurrentY Indicates the current y-position of the cursor, while
dragging the layer.

Debug Specifies debugging information to be shown while
dragging the layers.

Delta Returns the distance between clicking and current points.
DeltaAngle Returns the rotation angle.

DeltaX Returns the offset on the x-coordinate of the the current
drag operation.

DeltaY Returns the offset on the y-coordinate of the the current
drag operation.

Layer Specifies the layer being dragged.
RotateAngleValid Validates the rotation angle of the layer, during dragging.

UserData Indicates any extra data associated with the dragging
data.

X Indicates the x-position of the cursor, when the drag
operation starts.

Y Indicates the y-position of the cursor, when the drag
operation starts.

property DragInfo.Button as Long
Specifies the button that initiated the drag operation.

Type Description

Long
A Long expression that specifies the button that initiated
the drag operation. 1 indicates the left mouse button, while
2 indicates the right mouse button.

The Button property indicates the button that initiated the drag operation. The Button
property is read-only. The drag operation can start if clicking with left or right mouse button
any visible / selectable / dragable layer in the control. For instance, you can disable
dragging with the right mouse button by changing the Change parameter of the DragStart
event, to True, if the Button property is 2. The drag operation ends when the user releases
the mouse button, or the user presses the ESC key. The DragEnd event notifies that the
dragging the layer ends.

property DragInfo.Clockwise as Boolean
Indicates if the rotation is clockwise or anticlockwise.

Type Description

Boolean A Boolean expression that specifies whether the rotation is
clockwise or anticlockwise.

The Clockwise property indicates if the rotation is clockwise or anticlockwise. A clockwise
(typically abbreviated as CW) motion is one that proceeds in the same direction as a
clock's hands: from the top to the right, then down and then to the left, and back up to the
top. The Clockwise property is updated once you start rotating the object. The DeltaAngle
property specifies the angle (in degrees) that has been rotated the layer/object, during the
drag operation. The CumulativeRotateAngle property specifies the cumulative rotation
angle, during the dragging operation. The RotateAngle property specifies the current angle
of the rotation of the specified layer. The RotateAngleValid property specifies an expression
that validates the rotation angle of the layer, during dragging operation.

property DragInfo.CumulativeRotateAngle as Double
Indicates the cumulative rotation angle.

Type Description

Double A Double expression that specifies the cumulative rotation
angle.

The CumulativeRotateAngle property specifies the cumulative rotation angle, during the
dragging operation. The DeltaAngle property specifies the angle (in degrees) that has been
rotated the layer/object, during the drag operation. The RotateAngleValid property specifies
an expression that validates the rotation angle of the layer, during dragging operation. The
RotateAngle property specifies the current angle of the rotation of the specified layer. The
Clockwise property indicates if the rotation is clockwise or anticlockwise. A clockwise
(typically abbreviated as CW) motion is one that proceeds in the same direction as a
clock's hands: from the top to the right, then down and then to the left, and back up to the
top.

property DragInfo.CurrentX as Long
Indicates the current x-position of the cursor, while dragging the layer.

Type Description

Long A Long expression that indicates the current x-position of
the cursor, while dragging the layer.

The CurrentX / CurrentY property indicates the current (x,y)-position of the cursor, relative
to the upper-left corner of the control, while dragging the layer. The OffsetX / OffsetY
property specifies the (x,y)-position of the layer, relative to the upper-left corner of the
control. The OffsetXValid / OffsetYValid property to validate the (x,y)-position of the layer.
For instance, you can use the OffsetYValid property on "0", and so no vertical movement is
allowed.

The following properties can be used during dragging to determine the horizontal / vertical
offset:

X property indicates the x-position of the cursor, when the drag operation starts.
Y property indicates the y-position of the cursor, when the drag operation starts.
CurrentX property indicates the current x-position of the cursor, while dragging the
layer.
CurrentY property indicates the current y-position of the cursor, while dragging the
layer.
Delta property, returns the distance between clicking and current points.
DeltaX property returns the offset on the x-coordinate of the the current drag
operation, equivalent with the value of CurrentX - X.
DeltaY property returns the offset on the y-coordinate of the the current drag
operation, equivalent with the value of CurrentY - Y.

The DeltaAngle property specifies the angle (in degrees) that has been rotated the
layer/object, during the drag operation.

property DragInfo.CurrentY as Long
Indicates the current y-position of the cursor, while dragging the layer.

Type Description

Long A Long expression that indicates the current y-position of
the cursor, while dragging the layer.

The CurrentX / CurrentY property indicates the current (x,y)-position of the cursor, relative
to the upper-left corner of the control, while dragging the layer. The OffsetX / OffsetY
property specifies the (x,y)-position of the layer, relative to the upper-left corner of the
control. The OffsetXValid / OffsetYValid property to validate the (x,y)-position of the layer.
For instance, you can use the OffsetXValid property on "0", and so no horizontal movement
is allowed.

The following properties can be used during dragging to determine the horizontal / vertical
offset:

X property indicates the x-position of the cursor, when the drag operation starts.
Y property indicates the y-position of the cursor, when the drag operation starts.
CurrentX property indicates the current x-position of the cursor, while dragging the
layer.
CurrentY property indicates the current y-position of the cursor, while dragging the
layer.
Delta property, returns the distance between clicking and current points.
DeltaX property returns the offset on the x-coordinate of the the current drag
operation, equivalent with the value of CurrentX - X.
DeltaY property returns the offset on the y-coordinate of the the current drag
operation, equivalent with the value of CurrentY - Y.

The DeltaAngle property specifies the angle (in degrees) that has been rotated the
layer/object, during the drag operation.

property DragInfo.Debug as DebugLayerDragEnum
Specifies debugging information to be shown while dragging the layers.

Type Description

DebugLayerDragEnum
A DebugLayerDragEnum expression that specifies the
information to be included when debugging the drag
operation.

By default, the Debug property is exDebugLayerDragNothing, so no debug information is
displayed during the drag operation. The Debug property specifies debugging information to
be shown while dragging the layers. The Debug property should be called during the
DragStart event, or whenever debugging information should be displayed. The debugging
information includes offsets, angles, values, and so on. Use the Debug property of the
Control to display layers in debug mode. During drag operation you can use the
RotateAngleValid property to limit the rotation angle.

The following information shows all debug information while dragging the layer:

property DragInfo.Delta as Double
Returns the distance between clicking and current points.

Type Description

Double A Double expression that specifies the distance between
(CurrentX,CurrentY) and (X,Y) points.

The Delta property, returns the distance between clicking and current points. The CurrentX /
CurrentY property indicates the current (x,y)-position of the cursor, relative to the upper-left
corner of the control, while dragging the layer. The OffsetX / OffsetY property specifies the
(x,y)-position of the layer, relative to the upper-left corner of the control. The OffsetXValid /
OffsetYValid property to validate the (x,y)-position of the layer. For instance, you can use
the OffsetYValid property on "0", and so no vertical movement is allwed.

The following properties can be used during dragging to determine the horizontal / vertical
offset:

X property indicates the x-position of the cursor, when the drag operation starts.
Y property indicates the y-position of the cursor, when the drag operation starts.
CurrentX property indicates the current x-position of the cursor, while dragging the
layer.
CurrentY property indicates the current y-position of the cursor, while dragging the
layer.
Delta property, returns the distance between clicking and current points.
DeltaX property returns the offset on the x-coordinate of the the current drag
operation, equivalent with the value of CurrentX - X.
DeltaY property returns the offset on the y-coordinate of the the current drag
operation, equivalent with the value of CurrentY - Y.

The DeltaAngle property specifies the angle (in degrees) that has been rotated the
layer/object, during the drag operation.

property DragInfo.DeltaAngle as Double
Returns the rotation angle.

Type Description

Double
A double expression that specifies the angle (in degrees)
that has been rotated the layer/object, during the drag
operation.

The DeltaAngle property specifies the angle (in degrees) that has been rotated the
layer/object, during the drag operation. The Clockwise property indicates if the rotation is
clockwise or anticlockwise. A clockwise (typically abbreviated as CW) motion is one that
proceeds in the same direction as a clock's hands: from the top to the right, then down and
then to the left, and back up to the top. The RotateAngle property specifies the current
angle of the rotation of the specified layer. The CumulativeRotateAngle property specifies
the cumulative rotation angle, during the dragging operation. The RotateAngleValid property
specifies an expression that validates the rotation angle of the layer, during dragging
operation. The OffsetX / OffsetY property specifies the (x,y)-position of the layer, relative
to the upper-left corner of the control. The OffsetXValid / OffsetYValid property to validate
the (x,y)-position of the layer. For instance, you can use the OffsetYValid property on "0",
and so no vertical movement is allowed.

The following properties can be used during dragging to determine the horizontal / vertical
offset:

X property indicates the x-position of the cursor, when the drag operation starts.
Y property indicates the y-position of the cursor, when the drag operation starts.
CurrentX property indicates the current x-position of the cursor, while dragging the
layer.
CurrentY property indicates the current y-position of the cursor, while dragging the
layer.
Delta property, returns the distance between clicking and current points.
DeltaX property returns the offset on the x-coordinate of the the current drag
operation, equivalent with the value of CurrentX - X.
DeltaY property returns the offset on the y-coordinate of the the current drag
operation, equivalent with the value of CurrentY - Y.

property DragInfo.DeltaX as Long
Returns the offset on the x-coordinate of the the current drag operation.

Type Description

Long A Long expression that returns the offset on the x-
coordinate of the the current drag operation.

The DeltaX / DeltaY property indicates the current (horizontal, vertical)-offset of the
movement during dragging operation. The OffsetX / OffsetY property specifies the (x,y)-
position of the layer, relative to the upper-left corner of the control. The OffsetXValid /
OffsetYValid property to validate the (x,y)-position of the layer. For instance, you can use
the OffsetYValid property on "0", and so no vertical movement is allowed.

The following properties can be used during dragging to determine the horizontal / vertical
offset:

X property indicates the x-position of the cursor, when the drag operation starts.
Y property indicates the y-position of the cursor, when the drag operation starts.
CurrentX property indicates the current x-position of the cursor, while dragging the
layer.
CurrentY property indicates the current y-position of the cursor, while dragging the
layer.
Delta property, returns the distance between clicking and current points.
DeltaX property returns the offset on the x-coordinate of the the current drag
operation, equivalent with the value of CurrentX - X.
DeltaY property returns the offset on the y-coordinate of the the current drag
operation, equivalent with the value of CurrentY - Y.

The DeltaAngle property specifies the angle (in degrees) that has been rotated the
layer/object, during the drag operation.

property DragInfo.DeltaY as Long
Returns the offset on the y-coordinate of the the current drag operation.

Type Description

Long A Long expression that returns the offset on the y-
coordinate of the the current drag operation.

The DeltaX / DeltaY property indicates the current (horizontal, vertical)-offset of the
movement during dragging operation. The OffsetX / OffsetY property specifies the (x,y)-
position of the layer, relative to the upper-left corner of the control. The OffsetXValid /
OffsetYValid property to validate the (x,y)-position of the layer. For instance, you can use
the OffsetXValid property on "0", and so no horizontal movement is allowed.

The following properties can be used during dragging to determine the horizontal / vertical
offset:

X property indicates the x-position of the cursor, when the drag operation starts.
Y property indicates the y-position of the cursor, when the drag operation starts.
CurrentX property indicates the current x-position of the cursor, while dragging the
layer.
CurrentY property indicates the current y-position of the cursor, while dragging the
layer.
Delta property, returns the distance between clicking and current points.
DeltaX property returns the offset on the x-coordinate of the the current drag
operation, equivalent with the value of CurrentX - X.
DeltaY property returns the offset on the y-coordinate of the the current drag
operation, equivalent with the value of CurrentY - Y.

The DeltaAngle property specifies the angle (in degrees) that has been rotated the
layer/object, during the drag operation.

property DragInfo.Layer as Long
Specifies the layer being dragged.

Type Description

Long A Long expression that specifies the index of the layer
being dragged.

By default, the Layer property indicates the layer being clicked when the drag operation
begins. You can change the Layer property to perform the drag operation to any other
layer. In order to do that, you need to change the layer's OnDrag property. The OnDrag
property indicates the action to be performed when the user drags the layer. You can use
the LayerFromPoint(-1,-1) property to get the layer from the cursor.

The following samples show how you can rotate the layer with the index 9, by clicking
anywhere on the control:

VBA (MS Access, Excell...)

' DragStart event - Occurs once the user starts dragging a layer.
Private Sub Gauge1_DragStart(ByVal DragInfo As Object,Cancel As Boolean)
 ' DragInfo.Layer = 9
 ' Layers(DragInfo.Layer).OnDrag = 2
End Sub

With Gauge1
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 11
End With

VB6

' DragStart event - Occurs once the user starts dragging a layer.
Private Sub Gauge1_DragStart(ByVal DragInfo As EXGAUGELibCtl.IDragInfo,Cancel As
Boolean)
 ' DragInfo.Layer = 9
 ' Layers(DragInfo.Layer).OnDrag = 2
End Sub

With Gauge1
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 11
End With

VB.NET

' DragStart event - Occurs once the user starts dragging a layer.
Private Sub Exgauge1_DragStart(ByVal sender As System.Object,ByVal DragInfo As
exontrol.EXGAUGELib.DragInfo,ByRef Cancel As Boolean) Handles
Exgauge1.DragStart
 ' DragInfo.Layer = 9
 ' Layers(DragInfo.Layer).OnDrag = 2
End Sub

With Exgauge1
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 11
End With

VB.NET for /COM

' DragStart event - Occurs once the user starts dragging a layer.
Private Sub AxGauge1_DragStart(ByVal sender As System.Object, ByVal e As
AxEXGAUGELib._IGaugeEvents_DragStartEvent) Handles AxGauge1.DragStart
 ' DragInfo.Layer = 9
 ' Layers(DragInfo.Layer).OnDrag = 2
End Sub

With AxGauge1
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 11

End With

C++

// DragStart event - Occurs once the user starts dragging a layer.
void OnDragStartGauge1(LPDISPATCH DragInfo,BOOL FAR* Cancel)
{
 // DragInfo.Layer = 9
 // Layers(DragInfo.Layer).OnDrag = 2
}

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXGAUGELib' for the library: 'ExGauge 1.0 Control
Library'

 #import <ExGauge.dll>
 using namespace EXGAUGELib;
*/
EXGAUGELib::IGaugePtr spGauge1 = GetDlgItem(IDC_GAUGE1)-
>GetControlUnknown();
spGauge1->PutPicturesPath(L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob");
spGauge1->PutPicturesName(L"`Layer` + int(value + 1) + `.png`");
spGauge1->GetLayers()->PutCount(11);

C++ Builder

// DragStart event - Occurs once the user starts dragging a layer.
void __fastcall TForm1::Gauge1DragStart(TObject *Sender,Exgaugelib_tlb::IDragInfo
*DragInfo,VARIANT_BOOL * Cancel)
{
 // DragInfo.Layer = 9
 // Layers(DragInfo.Layer).OnDrag = 2
}

Gauge1->PicturesPath = L"C:\\Program

Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
Gauge1->PicturesName = L"`Layer` + int(value + 1) + `.png`";
Gauge1->Layers->Count = 11;

C#

// DragStart event - Occurs once the user starts dragging a layer.
private void exgauge1_DragStart(object sender,exontrol.EXGAUGELib.DragInfo
DragInfo,ref bool Cancel)
{
 // DragInfo.Layer = 9
 // Layers(DragInfo.Layer).OnDrag = 2
}
//this.exgauge1.DragStart += new
exontrol.EXGAUGELib.exg2antt.DragStartEventHandler(this.exgauge1_DragStart);

exgauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
exgauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
exgauge1.Layers.Count = 11;

JScript/JavaScript

<BODY onload="Init()">
<SCRIPT FOR="Gauge1" EVENT="DragStart(DragInfo,Cancel)"
LANGUAGE="JScript">
 // DragInfo.Layer = 9
 // Layers(DragInfo.Layer).OnDrag = 2
</SCRIPT>

<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{

 Gauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
 Gauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
 Gauge1.Layers.Count = 11;
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<SCRIPT LANGUAGE="VBScript">
Function Gauge1_DragStart(DragInfo,Cancel)
 ' DragInfo.Layer = 9
 ' Layers(DragInfo.Layer).OnDrag = 2
End Function
</SCRIPT>

<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With Gauge1
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 11
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

// DragStart event - Occurs once the user starts dragging a layer.

private void axGauge1_DragStart(object sender,
AxEXGAUGELib._IGaugeEvents_DragStartEvent e)
{
 // DragInfo.Layer = 9
 // Layers(DragInfo.Layer).OnDrag = 2
}
//this.axGauge1.DragStart += new
AxEXGAUGELib._IGaugeEvents_DragStartEventHandler(this.axGauge1_DragStart);

axGauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
axGauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
axGauge1.Layers.Count = 11;

X++ (Dynamics Ax 2009)

// DragStart event - Occurs once the user starts dragging a layer.
void onEvent_DragStart(COM _DragInfo,COMVariant /*bool*/ _Cancel)
{
 // DragInfo.Layer = 9
 // Layers(DragInfo.Layer).OnDrag = 2
 ;
}

public void init()
{
 ;

 super();

 exgauge1.PicturesPath("C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob");
 exgauge1.PicturesName("`Layer` + int(value + 1) + `.png`");
 exgauge1.Layers().Count(11);
}

Delphi 8 (.NET only)

// DragStart event - Occurs once the user starts dragging a layer.
procedure TWinForm1.AxGauge1_DragStart(sender: System.Object; e:
AxEXGAUGELib._IGaugeEvents_DragStartEvent);
begin
 // DragInfo.Layer = 9
 // Layers(DragInfo.Layer).OnDrag = 2
end;

with AxGauge1 do
begin
 PicturesPath := 'C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob';
 PicturesName := '`Layer` + int(value + 1) + `.png`';
 Layers.Count := 11;
end

Delphi (standard)

// DragStart event - Occurs once the user starts dragging a layer.
procedure TForm1.Gauge1DragStart(ASender: TObject; DragInfo : IDragInfo;var
Cancel : WordBool);
begin
 // DragInfo.Layer = 9
 // Layers(DragInfo.Layer).OnDrag = 2
end;

with Gauge1 do
begin
 PicturesPath := 'C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob';
 PicturesName := '`Layer` + int(value + 1) + `.png`';
 Layers.Count := 11;
end

VFP

*** DragStart event - Occurs once the user starts dragging a layer. ***
LPARAMETERS DragInfo,Cancel

 *** DragInfo.Layer = 9
 *** Layers(DragInfo.Layer).OnDrag = 2

with thisform.Gauge1
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 11
endwith

dBASE Plus

/*
with (this.EXGAUGEACTIVEXCONTROL1.nativeObject)
 DragStart = class::nativeObject_DragStart
endwith
*/
// Occurs once the user starts dragging a layer.
function nativeObject_DragStart(DragInfo,Cancel)
 /* DragInfo.Layer = 9 */
 /* Layers(DragInfo.Layer).OnDrag = 2 */
 oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject
return

local oGauge

oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 11

XBasic (Alpha Five)

' Occurs once the user starts dragging a layer.
function DragStart as v (DragInfo as OLE::Exontrol.Gauge.1::IDragInfo,Cancel as L)
 ' DragInfo.Layer = 9

 ' Layers(DragInfo.Layer).OnDrag = 2
 oGauge = topparent:CONTROL_ACTIVEX1.activex
end function

Dim oGauge as P

oGauge = topparent:CONTROL_ACTIVEX1.activex
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 11

Visual Objects

METHOD OCX_Exontrol1DragStart(DragInfo,Cancel) CLASS MainDialog
 // DragStart event - Occurs once the user starts dragging a layer.
 // DragInfo.Layer = 9
 // Layers(DragInfo.Layer).OnDrag = 2

RETURN NIL

oDCOCX_Exontrol1:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oDCOCX_Exontrol1:PicturesName := "`Layer` + int(value + 1) + `.png`"
oDCOCX_Exontrol1:Layers:Count := 11

PowerBuilder

/*begin event DragStart(oleobject DragInfo,boolean Cancel) - Occurs once the user
starts dragging a layer.*/
/*
 DragInfo.Layer = 9
 Layers(DragInfo.Layer).OnDrag = 2
 oGauge = ole_1.Object
*/

/*end event DragStart*/

OleObject oGauge

oGauge = ole_1.Object
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 11

Visual DataFlex

// Occurs once the user starts dragging a layer.
Procedure OnComDragStart Variant llDragInfo Boolean llCancel
 Forward Send OnComDragStart llDragInfo llCancel
 // DragInfo.Layer = 9
 // Layers(DragInfo.Layer).OnDrag = 2
End_Procedure

Procedure OnCreate
 Forward Send OnCreate
 Set ComPicturesPath to "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 Set ComPicturesName to "`Layer` + int(value + 1) + `.png`"
 Variant voLayers
 Get ComLayers to voLayers
 Handle hoLayers
 Get Create (RefClass(cComLayers)) to hoLayers
 Set pvComObject of hoLayers to voLayers
 Set ComCount of hoLayers to 11
 Send Destroy to hoLayers
End_Procedure

XBase++

PROCEDURE OnDragStart(oGauge,DragInfo,Cancel)
 /*DragInfo.Layer = 9*/

 /*Layers(DragInfo.Layer).OnDrag = 2*/

RETURN

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oGauge

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oGauge := XbpActiveXControl():new(oForm:drawingArea)
 oGauge:CLSID := "Exontrol.Gauge.1" /*{91628F12-393C-44EF-A558-
83ED1790AAD3}*/
 oGauge:create(,, {10,60},{610,370})

 oGauge:DragStart := {|DragInfo,Cancel| OnDragStart(oGauge,DragInfo,Cancel)}
/*Occurs once the user starts dragging a layer.*/

 oGauge:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 oGauge:PicturesName := "`Layer` + int(value + 1) + `.png`"
 oGauge:Layers():Count := 11

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property DragInfo.RotateAngleValid as String
Validates the rotation angle of the layer, during dragging.

Type Description

String A String that indicates the expression to validate the
rotation angle of the layer, during dragging.

The RotateAngleValid property specifies an expression that validates the rotation angle of
the layer, during dragging operation. If using, the RotateAngleValid property should be
called during the DragStart event. For instance, it is known that any layer can be rotated
from 0 to 360% degree, but what about limitation of the rotation based on the mouse
movement. In other words, if you rotate the clockwise the layer you want to prevent the
layer to exceed the max value, so the RotateAngleValid property does the trick. The
DeltaAngle property specifies the angle (in degrees) that has been rotated the layer/object,
during the drag operation. The RotateAngle property specifies the current angle of the
rotation of the specified layer. The CumulativeRotateAngle property specifies the
cumulative rotation angle, during the dragging operation. The Clockwise property indicates if
the rotation is clockwise or anticlockwise. A clockwise (typically abbreviated as CW) motion
is one that proceeds in the same direction as a clock's hands: from the top to the right, then
down and then to the left, and back up to the top. The RotateAngleValid property validates /
limits the rotation angle of the layer.

For instance, RotateAngleValid = "value < 0 ? 0 : (value > 360 ? 359.999999 : value)",
validates the rotation-angle so it always will be between 0 and 360, in other words limits the
rotation angle.

The Exontrol's eXPression component is a syntax-editor that helps you to define, view,
edit and evaluate expressions. Using the eXPression component you can easily view or
check if the expression you have used is syntactically correct, and you can evaluate what
is the result you get giving different values to be tested. The Exontrol's eXPression
component can be used as an user-editor, to configure your applications.

The value keyword indicates the cumulative rotation angle (CumulativeRotateAngle
property), during the dragging operation.

The constants are (DPI-Aware components):

dpi (DPI constant), specifies the current DPI setting. and it indicates the minimum
value between dpix and dpiy constants. For instance, if current DPI setting is 100%,
the dpi constant returns 1, if 150% it returns 1.5, and so on. For instance, the
expression value * dpi returns the value if the DPI setting is 100%, or value * 1.5 in
case, the DPI setting is 150%
dpix (DPIX constant), specifies the current DPI setting on x-scale. For instance, if

https://exontrol.com/expression.jsp

current DPI setting is 100%, the dpix constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpix returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%
dpiy (DPIY constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpiy constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpiy returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported binary range operators, all these with the same priority 5, are :

MIN (min operator), indicates the minimum value, so a MIN b returns the value of a, if
it is less than b, else it returns b. For instance, the expression value MIN 10 returns
always a value greater than 10.
MAX (max operator), indicates the maximum value, so a MAX b returns the value of
a, if it is greater than b, else it returns b. For instance, the expression value MAX 100
returns always a value less than 100.

The supported binary operators, all these with the same priority 0, are :

:= (Store operator), stores the result of expression to variable. The syntax for :=
operator is

variable := expression

where variable is a integer between 0 and 9. You can use the =: operator to restore
any stored variable (please make the difference between := and =:). For instance,
(0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and prints zero
if it is 0, else the converted number. Please pay attention that the := and =: are two
distinct operators, the first for storing the result into a variable, while the second for
restoring the variable

=: (Restore operator), restores the giving variable (previously saved using the store
operator). The syntax for =: operator is

=: variable

where variable is a integer between 0 and 9. You can use the := operator to store the
value of any expression (please make the difference between := and =:). For
instance, (0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and
prints zero if it is 0, else the converted number. Please pay attention that the := and =:
are two distinct operators, the first for storing the result into a variable, while the
second for restoring the variable

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for ? operator is

expression ? true_part : false_part

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the %0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found') returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

expression array (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D') is equivalent with month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D').

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

expression in (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the value in (11,22,33,44,13) is equivalent with
(expression = 11) or (expression = 22) or (expression = 33) or (expression = 44) or
(expression = 13). The in operator is not a time consuming as the equivalent or version
is, so when you have large number of constant elements it is recommended using the
in operator. Shortly, if the collection of elements has 1000 elements the in operator
could take up to 8 operations in order to find if an element fits the set, else if the or
statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

expression switch (default,c1,c2,c3,...,cn)

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the %0 switch ('not found',1,4,7,9,11) gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

expression case ([default : default_expression ;] c1 : expression1 ; c2 : expression2
; c3 : expression3 ;....)

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1) indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8) statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions. Obviously, the priority of the operations inside the expression is
determined by () parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%1) = 8
specifies the cells (on the column 1) that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant

13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string. The str operator converts the
expression to a string. For instance, the str(-12.54) returns the string "-12.54".
dbl (unary operator) converts the expression to a number. The dbl operator converts
the expression to a number. For instance, the dbl("12.54") returns 12.54
date (unary operator) converts the expression to a date, based on your regional
settings. For instance, the date(``) gets the current date (no time included), the
date(`now`) gets the current date-time, while the date("01/01/2001") returns
#1/1/2001#
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS. For instance, the dateS("01/01/2001 14:00:00") returns
#1/1/2001 14:00:00#

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number. For instance, the
int(12.54) returns 12
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2. For
instance, the round(12.54) returns 13
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument. For instance, the floor(12.54) returns 12
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2.
For instance, the abs(-12.54) returns 12.54
sin (unary operator) returns the sine of an angle of x radians. For instance, the
sin(3.14) returns 0.001593.
cos (unary operator) returns the cosine of an angle of x radians. For instance, the
cos(3.14) returns -0.999999.
asin (unary operator) returns the principal value of the arc sine of x, expressed in
radians. For instance, the 2*asin(1) returns the value of PI.
acos (unary operator) returns the principal value of the arc cosine of x, expressed in
radians. For instance, the 2*acos(0) returns the value of PI
sqrt (unary operator) returns the square root of x. For instance, the sqrt(81) returns 9.
currency (unary operator) formats the giving number as a currency string, as indicated
by the control panel. For instance, currency(value) displays the value using the current
format for the currency ie, 1000 gets displayed as $1,000.00, for US format.

value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string. For instance, the

len("Mihai") returns 5.
lower (unary operator) returns a string expression in lowercase letters. For instance,
the lower("MIHAI") returns "mihai"
upper (unary operator) returns a string expression in uppercase letters. For instance,
the upper("mihai") returns "MIHAI"
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names. For instance, the proper("mihai") returns "Mihai"
ltrim (unary operator) removes spaces on the left side of a string. For instance, the
ltrim(" mihai") returns "mihai"
rtrim (unary operator) removes spaces on the right side of a string. For instance, the
rtrim("mihai ") returns "mihai"
trim (unary operator) removes spaces on both sides of a string. For instance, the
trim(" mihai ") returns "mihai"
reverse (unary operator) reverses the order of the characters in the string a. For
instance, the reverse("Mihai") returns "iahiM"
startwith (binary operator) specifies whether a string starts with specified string (0 if
not found, -1 if found). For instance "Mihai" startwith "Mi" returns -1
endwith (binary operator) specifies whether a string ends with specified string (0 if
not found, -1 if found). For instance "Mihai" endwith "ai" returns -1
contains (binary operator) specifies whether a string contains another specified string
(0 if not found, -1 if found). For instance "Mihai" contains "ha" returns -1
left (binary operator) retrieves the left part of the string. For instance "Mihai" left 2
returns "Mi".
right (binary operator) retrieves the right part of the string. For instance "Mihai" right 2
returns "ai"
a lfind b (binary operator) The a lfind b (binary operator) searches the first occurrence
of the string b within string a, and returns -1 if not found, or the position of the result (
zero-index). For instance "ABCABC" lfind "C" returns 2
a rfind b (binary operator) The a rfind b (binary operator) searches the last
occurrence of the string b within string a, and returns -1 if not found, or the position of
the result (zero-index). For instance "ABCABC" rfind "C" returns 5.
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on). For instance "Mihai" mid 2 returns "ihai"
a count b (binary operator) retrieves the number of occurrences of the b in a. For
instance "Mihai" count "i" returns 2.
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result. For instance, the "Mihai" replace "i" with "" returns "Mha" string, as it replaces
all "i" with nothing.
a split b, splits the a using the separator b, and returns an array. For instance, the
weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' ' gets the weekday as
string. This operator can be used with the array.

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel. For instance, the time(#1/1/2001 13:00#) returns "1:00:00 PM"
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance, the timeF(#1/1/2001 13:00#) returns "13:00:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel. For instance, the shortdate(#1/1/2001
13:00#) returns "1/1/2001"
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance, the shortdateF(#1/1/2001 13:00#) returns
"01/01/2001"
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format. For instance, the dateF(#01/01/2001 14:00:00#)
returns #01/01/2001 14:00:00#
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel. For instance, the longdate(#1/1/2001 13:00#)
returns "Monday, January 01, 2001"
year (unary operator) retrieves the year of the date (100,...,9999). For instance, the
year(#12/31/1971 13:14:15#) returns 1971
month (unary operator) retrieves the month of the date (1, 2,...,12). For instance, the
month(#12/31/1971 13:14:15#) returns 12.
day (unary operator) retrieves the day of the date (1, 2,...,31). For instance, the
day(#12/31/1971 13:14:15#) returns 31
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365). For instance, the yearday(#12/31/1971 13:14:15#) returns
365
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday). For instance, the weekday(#12/31/1971 13:14:15#) returns
5.
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23). For instance, the
hour(#12/31/1971 13:14:15#) returns 13
min (unary operator) retrieves the minute of the date (0, 1, ..., 59). For instance, the
min(#12/31/1971 13:14:15#) returns 14
sec (unary operator) retrieves the second of the date (0, 1, ..., 59). For instance, the
sec(#12/31/1971 13:14:15#) returns 15

How can I limit the rotation from 0 to 360 degree, while dragging?

VBA (MS Access, Excell...)

' DragStart event - Occurs once the user starts dragging a layer.

Private Sub Gauge1_DragStart(ByVal DragInfo As Object,Cancel As Boolean)
 ' DragInfo.Debug = 483
 ' DragInfo.RotateAngleValid = "value < 0 ? 0 : (value > 360 ? 359.999999 : value)"
End Sub

With Gauge1
 With .Layers.Add("back")
 .RotateType = 2
 .Left = "(width-512)/2"
 .Top = "(height-512)/2"
 .Height = 512
 .Width = 512
 With .Background.Picture
 .Value = "c:\exontrol\images\card.png"
 .Left = "(width-pwidth)/2"
 .Top = "(height-pheight)/2"
 .Width = "pwidth"
 .Height = "pheight"
 End With
 .OnDrag = 2
 .RotateAngle = -45
 End With
End With

VB6

' DragStart event - Occurs once the user starts dragging a layer.
Private Sub Gauge1_DragStart(ByVal DragInfo As EXGAUGELibCtl.IDragInfo,Cancel As
Boolean)
 ' DragInfo.Debug = 483
 ' DragInfo.RotateAngleValid = "value < 0 ? 0 : (value > 360 ? 359.999999 : value)"
End Sub

With Gauge1
 With .Layers.Add("back")
 .RotateType = exRotateBilinearInterpolation
 .Left = "(width-512)/2"

 .Top = "(height-512)/2"
 .Height = 512
 .Width = 512
 With .Background.Picture
 .Value = "c:\exontrol\images\card.png"
 .Left = "(width-pwidth)/2"
 .Top = "(height-pheight)/2"
 .Width = "pwidth"
 .Height = "pheight"
 End With
 .OnDrag = exDoRotate
 .RotateAngle = -45
 End With
End With

VB.NET

' DragStart event - Occurs once the user starts dragging a layer.
Private Sub Exgauge1_DragStart(ByVal sender As System.Object,ByVal DragInfo As
exontrol.EXGAUGELib.DragInfo,ByRef Cancel As Boolean) Handles
Exgauge1.DragStart
 ' DragInfo.Debug = 483
 ' DragInfo.RotateAngleValid = "value < 0 ? 0 : (value > 360 ? 359.999999 : value)"
End Sub

With Exgauge1
 With .Layers.Add("back")
 .RotateType =
exontrol.EXGAUGELib.RotateTypeEnum.exRotateBilinearInterpolation
 .Left = "(width-512)/2"
 .Top = "(height-512)/2"
 .Height = 512
 .Width = 512
 With .Background.Picture
 .Value = "c:\exontrol\images\card.png"
 .Left = "(width-pwidth)/2"
 .Top = "(height-pheight)/2"

 .Width = "pwidth"
 .Height = "pheight"
 End With
 .OnDrag = exontrol.EXGAUGELib.OnDragLayerEnum.exDoRotate
 .RotateAngle = -45
 End With
End With

VB.NET for /COM

' DragStart event - Occurs once the user starts dragging a layer.
Private Sub AxGauge1_DragStart(ByVal sender As System.Object, ByVal e As
AxEXGAUGELib._IGaugeEvents_DragStartEvent) Handles AxGauge1.DragStart
 ' DragInfo.Debug = 483
 ' DragInfo.RotateAngleValid = "value < 0 ? 0 : (value > 360 ? 359.999999 : value)"
End Sub

With AxGauge1
 With .Layers.Add("back")
 .RotateType = EXGAUGELib.RotateTypeEnum.exRotateBilinearInterpolation
 .Left = "(width-512)/2"
 .Top = "(height-512)/2"
 .Height = 512
 .Width = 512
 With .Background.Picture
 .Value = "c:\exontrol\images\card.png"
 .Left = "(width-pwidth)/2"
 .Top = "(height-pheight)/2"
 .Width = "pwidth"
 .Height = "pheight"
 End With
 .OnDrag = EXGAUGELib.OnDragLayerEnum.exDoRotate
 .RotateAngle = -45
 End With
End With

C++

// DragStart event - Occurs once the user starts dragging a layer.
void OnDragStartGauge1(LPDISPATCH DragInfo,BOOL FAR* Cancel)
{
 // DragInfo.Debug = 483
 // DragInfo.RotateAngleValid = "value < 0 ? 0 : (value > 360 ? 359.999999 :
value)"
}

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXGAUGELib' for the library: 'ExGauge 1.0 Control
Library'

 #import <ExGauge.dll>
 using namespace EXGAUGELib;
*/
EXGAUGELib::IGaugePtr spGauge1 = GetDlgItem(IDC_GAUGE1)-
>GetControlUnknown();
EXGAUGELib::ILayerPtr var_Layer = spGauge1->GetLayers()->Add("back");
 var_Layer->PutRotateType(EXGAUGELib::exRotateBilinearInterpolation);
 var_Layer->PutLeft(L"(width-512)/2");
 var_Layer->PutTop(L"(height-512)/2");
 var_Layer->PutHeight(L"512");
 var_Layer->PutWidth(L"512");
 EXGAUGELib::ILPicturePtr var_Picture = var_Layer->GetBackground()->GetPicture();
 var_Picture->PutValue("c:\\exontrol\\images\\card.png");
 var_Picture->PutLeft(L"(width-pwidth)/2");
 var_Picture->PutTop(L"(height-pheight)/2");
 var_Picture->PutWidth(L"pwidth");
 var_Picture->PutHeight(L"pheight");
 var_Layer->PutOnDrag(EXGAUGELib::exDoRotate);
 var_Layer->PutRotateAngle(-45);

C++ Builder

// DragStart event - Occurs once the user starts dragging a layer.

void __fastcall TForm1::Gauge1DragStart(TObject *Sender,Exgaugelib_tlb::IDragInfo
*DragInfo,VARIANT_BOOL * Cancel)
{
 // DragInfo.Debug = 483
 // DragInfo.RotateAngleValid = "value < 0 ? 0 : (value > 360 ? 359.999999 :
value)"
}

Exgaugelib_tlb::ILayerPtr var_Layer = Gauge1->Layers->Add(TVariant("back"));
 var_Layer->RotateType =
Exgaugelib_tlb::RotateTypeEnum::exRotateBilinearInterpolation;
 var_Layer->Left = L"(width-512)/2";
 var_Layer->Top = L"(height-512)/2";
 var_Layer->Height = L"512";
 var_Layer->Width = L"512";
 Exgaugelib_tlb::ILPicturePtr var_Picture = var_Layer->Background->Picture;
 var_Picture->set_Value(TVariant("c:\\exontrol\\images\\card.png"));
 var_Picture->Left = L"(width-pwidth)/2";
 var_Picture->Top = L"(height-pheight)/2";
 var_Picture->Width = L"pwidth";
 var_Picture->Height = L"pheight";
 var_Layer->OnDrag = Exgaugelib_tlb::OnDragLayerEnum::exDoRotate;
 var_Layer->RotateAngle = -45;

C#

// DragStart event - Occurs once the user starts dragging a layer.
private void exgauge1_DragStart(object sender,exontrol.EXGAUGELib.DragInfo
DragInfo,ref bool Cancel)
{
 // DragInfo.Debug = 483
 // DragInfo.RotateAngleValid = "value < 0 ? 0 : (value > 360 ? 359.999999 :
value)"
}
//this.exgauge1.DragStart += new
exontrol.EXGAUGELib.exg2antt.DragStartEventHandler(this.exgauge1_DragStart);

exontrol.EXGAUGELib.Layer var_Layer = exgauge1.Layers.Add("back");
 var_Layer.RotateType =
exontrol.EXGAUGELib.RotateTypeEnum.exRotateBilinearInterpolation;
 var_Layer.Left = "(width-512)/2";
 var_Layer.Top = "(height-512)/2";
 var_Layer.Height = 512.ToString();
 var_Layer.Width = 512.ToString();
 exontrol.EXGAUGELib.Picture var_Picture = var_Layer.Background.Picture;
 var_Picture.Value = "c:\\exontrol\\images\\card.png";
 var_Picture.Left = "(width-pwidth)/2";
 var_Picture.Top = "(height-pheight)/2";
 var_Picture.Width = "pwidth";
 var_Picture.Height = "pheight";
 var_Layer.OnDrag = exontrol.EXGAUGELib.OnDragLayerEnum.exDoRotate;
 var_Layer.RotateAngle = -45;

JScript/JavaScript

<BODY onload="Init()">
<SCRIPT FOR="Gauge1" EVENT="DragStart(DragInfo,Cancel)"
LANGUAGE="JScript">
 // DragInfo.Debug = 483
 // DragInfo.RotateAngleValid = "value < 0 ? 0 : (value > 360 ? 359.999999 :
value)"
</SCRIPT>

<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 var var_Layer = Gauge1.Layers.Add("back");
 var_Layer.RotateType = 2;
 var_Layer.Left = "(width-512)/2";

 var_Layer.Top = "(height-512)/2";
 var_Layer.Height = 512;
 var_Layer.Width = 512;
 var var_Picture = var_Layer.Background.Picture;
 var_Picture.Value = "c:\\exontrol\\images\\card.png";
 var_Picture.Left = "(width-pwidth)/2";
 var_Picture.Top = "(height-pheight)/2";
 var_Picture.Width = "pwidth";
 var_Picture.Height = "pheight";
 var_Layer.OnDrag = 2;
 var_Layer.RotateAngle = -45;
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<SCRIPT LANGUAGE="VBScript">
Function Gauge1_DragStart(DragInfo,Cancel)
 ' DragInfo.Debug = 483
 ' DragInfo.RotateAngleValid = "value < 0 ? 0 : (value > 360 ? 359.999999 : value)"
End Function
</SCRIPT>

<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With Gauge1
 With .Layers.Add("back")
 .RotateType = 2
 .Left = "(width-512)/2"
 .Top = "(height-512)/2"
 .Height = 512

 .Width = 512
 With .Background.Picture
 .Value = "c:\exontrol\images\card.png"
 .Left = "(width-pwidth)/2"
 .Top = "(height-pheight)/2"
 .Width = "pwidth"
 .Height = "pheight"
 End With
 .OnDrag = 2
 .RotateAngle = -45
 End With
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

// DragStart event - Occurs once the user starts dragging a layer.
private void axGauge1_DragStart(object sender,
AxEXGAUGELib._IGaugeEvents_DragStartEvent e)
{
 // DragInfo.Debug = 483
 // DragInfo.RotateAngleValid = "value < 0 ? 0 : (value > 360 ? 359.999999 :
value)"
}
//this.axGauge1.DragStart += new
AxEXGAUGELib._IGaugeEvents_DragStartEventHandler(this.axGauge1_DragStart);

EXGAUGELib.Layer var_Layer = axGauge1.Layers.Add("back");
 var_Layer.RotateType =
EXGAUGELib.RotateTypeEnum.exRotateBilinearInterpolation;
 var_Layer.Left = "(width-512)/2";
 var_Layer.Top = "(height-512)/2";
 var_Layer.Height = 512.ToString();
 var_Layer.Width = 512.ToString();

 EXGAUGELib.Picture var_Picture = var_Layer.Background.Picture;
 var_Picture.Value = "c:\\exontrol\\images\\card.png";
 var_Picture.Left = "(width-pwidth)/2";
 var_Picture.Top = "(height-pheight)/2";
 var_Picture.Width = "pwidth";
 var_Picture.Height = "pheight";
 var_Layer.OnDrag = EXGAUGELib.OnDragLayerEnum.exDoRotate;
 var_Layer.RotateAngle = -45;

X++ (Dynamics Ax 2009)

// DragStart event - Occurs once the user starts dragging a layer.
void onEvent_DragStart(COM _DragInfo,COMVariant /*bool*/ _Cancel)
{
 // DragInfo.Debug = 483
 // DragInfo.RotateAngleValid = "value < 0 ? 0 : (value > 360 ? 359.999999 :
value)"
 ;
}

public void init()
{
 COM com_Background,com_Layer,com_Picture;
 anytype var_Background,var_Layer,var_Picture;
 ;

 super();

 var_Layer = COM::createFromObject(exgauge1.Layers()).Add("back"); com_Layer =
var_Layer;
 com_Layer.RotateType(2/*exRotateBilinearInterpolation*/);
 com_Layer.Left("(width-512)/2");
 com_Layer.Top("(height-512)/2");
 com_Layer.Height(512);
 com_Layer.Width(512);
 var_Background = COM::createFromObject(com_Layer.Background());

com_Background = var_Background;
 var_Picture = com_Background.Picture(); com_Picture = var_Picture;
 com_Picture.Value("c:\\exontrol\\images\\card.png");
 com_Picture.Left("(width-pwidth)/2");
 com_Picture.Top("(height-pheight)/2");
 com_Picture.Width("pwidth");
 com_Picture.Height("pheight");
 com_Layer.OnDrag(2/*exDoRotate*/);
 com_Layer.RotateAngle(-45);
}

Delphi 8 (.NET only)

// DragStart event - Occurs once the user starts dragging a layer.
procedure TWinForm1.AxGauge1_DragStart(sender: System.Object; e:
AxEXGAUGELib._IGaugeEvents_DragStartEvent);
begin
 // DragInfo.Debug = 483
 // DragInfo.RotateAngleValid = "value < 0 ? 0 : (value > 360 ? 359.999999 :
value)"
end;

with AxGauge1 do
begin
 with Layers.Add('back') do
 begin
 RotateType := EXGAUGELib.RotateTypeEnum.exRotateBilinearInterpolation;
 Left := '(width-512)/2';
 Top := '(height-512)/2';
 Height := 512;
 Width := 512;
 with Background.Picture do
 begin
 Value := 'c:\exontrol\images\card.png';
 Left := '(width-pwidth)/2';
 Top := '(height-pheight)/2';
 Width := 'pwidth';

 Height := 'pheight';
 end;
 OnDrag := EXGAUGELib.OnDragLayerEnum.exDoRotate;
 RotateAngle := -45;
 end;
end

Delphi (standard)

// DragStart event - Occurs once the user starts dragging a layer.
procedure TForm1.Gauge1DragStart(ASender: TObject; DragInfo : IDragInfo;var
Cancel : WordBool);
begin
 // DragInfo.Debug = 483
 // DragInfo.RotateAngleValid = "value < 0 ? 0 : (value > 360 ? 359.999999 :
value)"
end;

with Gauge1 do
begin
 with Layers.Add('back') do
 begin
 RotateType := EXGAUGELib_TLB.exRotateBilinearInterpolation;
 Left := '(width-512)/2';
 Top := '(height-512)/2';
 Height := 512;
 Width := 512;
 with Background.Picture do
 begin
 Value := 'c:\exontrol\images\card.png';
 Left := '(width-pwidth)/2';
 Top := '(height-pheight)/2';
 Width := 'pwidth';
 Height := 'pheight';
 end;
 OnDrag := EXGAUGELib_TLB.exDoRotate;
 RotateAngle := -45;

 end;
end

VFP

*** DragStart event - Occurs once the user starts dragging a layer. ***
LPARAMETERS DragInfo,Cancel
 *** DragInfo.Debug = 483
 *** DragInfo.RotateAngleValid = "value < 0 ? 0 : (value > 360 ? 359.999999 :
value)"

with thisform.Gauge1
 with .Layers.Add("back")
 .RotateType = 2
 .Left = "(width-512)/2"
 .Top = "(height-512)/2"
 .Height = 512
 .Width = 512
 with .Background.Picture
 .Value = "c:\exontrol\images\card.png"
 .Left = "(width-pwidth)/2"
 .Top = "(height-pheight)/2"
 .Width = "pwidth"
 .Height = "pheight"
 endwith
 .OnDrag = 2
 .RotateAngle = -45
 endwith
endwith

dBASE Plus

/*
with (this.EXGAUGEACTIVEXCONTROL1.nativeObject)
 DragStart = class::nativeObject_DragStart
endwith
*/
// Occurs once the user starts dragging a layer.

function nativeObject_DragStart(DragInfo,Cancel)
 /* DragInfo.Debug = 483 */
 /* DragInfo.RotateAngleValid = "value < 0 ? 0 : (value > 360 ? 359.999999 :
value)" */
 oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject
return

local oGauge,var_Layer,var_Picture

oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject
var_Layer = oGauge.Layers.Add("back")
 var_Layer.RotateType = 2
 var_Layer.Left = "(width-512)/2"
 var_Layer.Top = "(height-512)/2"
 var_Layer.Height = Str(512)
 var_Layer.Width = Str(512)
 var_Picture = var_Layer.Background.Picture
 var_Picture.Value = "c:\exontrol\images\card.png"
 var_Picture.Left = "(width-pwidth)/2"
 var_Picture.Top = "(height-pheight)/2"
 var_Picture.Width = "pwidth"
 var_Picture.Height = "pheight"
 var_Layer.OnDrag = 2
 var_Layer.RotateAngle = -45

XBasic (Alpha Five)

' Occurs once the user starts dragging a layer.
function DragStart as v (DragInfo as OLE::Exontrol.Gauge.1::IDragInfo,Cancel as L)
 ' DragInfo.Debug = 483
 ' DragInfo.RotateAngleValid = "value < 0 ? 0 : (value > 360 ? 359.999999 : value)"
 oGauge = topparent:CONTROL_ACTIVEX1.activex
end function

Dim oGauge as P
Dim var_Layer as P

Dim var_Picture as P

oGauge = topparent:CONTROL_ACTIVEX1.activex
var_Layer = oGauge.Layers.Add("back")
 var_Layer.RotateType = 2
 var_Layer.Left = "(width-512)/2"
 var_Layer.Top = "(height-512)/2"
 var_Layer.Height = 512
 var_Layer.Width = 512
 var_Picture = var_Layer.Background.Picture
 var_Picture.Value = "c:\exontrol\images\card.png"
 var_Picture.Left = "(width-pwidth)/2"
 var_Picture.Top = "(height-pheight)/2"
 var_Picture.Width = "pwidth"
 var_Picture.Height = "pheight"
 var_Layer.OnDrag = 2
 var_Layer.RotateAngle = -45

Visual Objects

METHOD OCX_Exontrol1DragStart(DragInfo,Cancel) CLASS MainDialog
 // DragStart event - Occurs once the user starts dragging a layer.
 // DragInfo.Debug = 483
 // DragInfo.RotateAngleValid = "value < 0 ? 0 : (value > 360 ? 359.999999 :
value)"

RETURN NIL

local var_Picture as ILPicture
local var_Layer as ILayer

var_Layer := oDCOCX_Exontrol1:Layers:Add("back")
 var_Layer:RotateType := exRotateBilinearInterpolation
 var_Layer:Left := "(width-512)/2"
 var_Layer:Top := "(height-512)/2"
 var_Layer:Height := AsString(512)

 var_Layer:Width := AsString(512)
 var_Picture := var_Layer:Background:Picture
 var_Picture:Value := "c:\exontrol\images\card.png"
 var_Picture:Left := "(width-pwidth)/2"
 var_Picture:Top := "(height-pheight)/2"
 var_Picture:Width := "pwidth"
 var_Picture:Height := "pheight"
 var_Layer:OnDrag := exDoRotate
 var_Layer:RotateAngle := -45

PowerBuilder

/*begin event DragStart(oleobject DragInfo,boolean Cancel) - Occurs once the user
starts dragging a layer.*/
/*
 DragInfo.Debug = 483
 DragInfo.RotateAngleValid = "value < 0 ? 0 : (value > 360 ? 359.999999 : value)"
 oGauge = ole_1.Object
*/
/*end event DragStart*/

OleObject oGauge,var_Layer,var_Picture

oGauge = ole_1.Object
var_Layer = oGauge.Layers.Add("back")
 var_Layer.RotateType = 2
 var_Layer.Left = "(width-512)/2"
 var_Layer.Top = "(height-512)/2"
 var_Layer.Height = String(512)
 var_Layer.Width = String(512)
 var_Picture = var_Layer.Background.Picture
 var_Picture.Value = "c:\exontrol\images\card.png"
 var_Picture.Left = "(width-pwidth)/2"
 var_Picture.Top = "(height-pheight)/2"
 var_Picture.Width = "pwidth"
 var_Picture.Height = "pheight"

 var_Layer.OnDrag = 2
 var_Layer.RotateAngle = -45

Visual DataFlex

// Occurs once the user starts dragging a layer.
Procedure OnComDragStart Variant llDragInfo Boolean llCancel
 Forward Send OnComDragStart llDragInfo llCancel
 // DragInfo.Debug = 483
 // DragInfo.RotateAngleValid = "value < 0 ? 0 : (value > 360 ? 359.999999 :
value)"
End_Procedure

Procedure OnCreate
 Forward Send OnCreate
 Variant voLayers
 Get ComLayers to voLayers
 Handle hoLayers
 Get Create (RefClass(cComLayers)) to hoLayers
 Set pvComObject of hoLayers to voLayers
 Variant voLayer
 Get ComAdd of hoLayers "back" to voLayer
 Handle hoLayer
 Get Create (RefClass(cComLayer)) to hoLayer
 Set pvComObject of hoLayer to voLayer
 Set ComRotateType of hoLayer to OLEexRotateBilinearInterpolation
 Set ComLeft of hoLayer to "(width-512)/2"
 Set ComTop of hoLayer to "(height-512)/2"
 Set ComHeight of hoLayer to 512
 Set ComWidth of hoLayer to 512
 Variant voBackground
 Get ComBackground of hoLayer to voBackground
 Handle hoBackground
 Get Create (RefClass(cComBackground)) to hoBackground
 Set pvComObject of hoBackground to voBackground
 Variant voPicture

 Get ComPicture of hoBackground to voPicture
 Handle hoPicture
 Get Create (RefClass(cComPicture)) to hoPicture
 Set pvComObject of hoPicture to voPicture
 Set ComValue of hoPicture to "c:\exontrol\images\card.png"
 Set ComLeft of hoPicture to "(width-pwidth)/2"
 Set ComTop of hoPicture to "(height-pheight)/2"
 Set ComWidth of hoPicture to "pwidth"
 Set ComHeight of hoPicture to "pheight"
 Send Destroy to hoPicture
 Send Destroy to hoBackground
 Set ComOnDrag of hoLayer to OLEexDoRotate
 Set ComRotateAngle of hoLayer to -45
 Send Destroy to hoLayer
 Send Destroy to hoLayers
End_Procedure

XBase++

PROCEDURE OnDragStart(oGauge,DragInfo,Cancel)
 /*DragInfo.Debug = 483*/
 /*DragInfo.RotateAngleValid = "value < 0 ? 0 : (value > 360 ? 359.999999 :
value)"*/

RETURN

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oGauge
 LOCAL oPicture
 LOCAL oLayer

 oForm := XbpDialog():new(AppDesktop())

 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oGauge := XbpActiveXControl():new(oForm:drawingArea)
 oGauge:CLSID := "Exontrol.Gauge.1" /*{91628F12-393C-44EF-A558-
83ED1790AAD3}*/
 oGauge:create(,, {10,60},{610,370})

 oGauge:DragStart := {|DragInfo,Cancel| OnDragStart(oGauge,DragInfo,Cancel)}
/*Occurs once the user starts dragging a layer.*/

 oLayer := oGauge:Layers():Add("back")
 oLayer:RotateType := 2/*exRotateBilinearInterpolation*/
 oLayer:Left := "(width-512)/2"
 oLayer:Top := "(height-512)/2"
 oLayer:Height := Transform(512,"")
 oLayer:Width := Transform(512,"")
 oPicture := oLayer:Background():Picture()
 oPicture:Value := "c:\exontrol\images\card.png"
 oPicture:Left := "(width-pwidth)/2"
 oPicture:Top := "(height-pheight)/2"
 oPicture:Width := "pwidth"
 oPicture:Height := "pheight"
 oLayer:OnDrag := 2/*exDoRotate*/
 oLayer:RotateAngle := -45

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property DragInfo.UserData as Variant
Indicates any extra data associated with the dragging data.

Type Description

Variant A Variant expression that specifies any extra data
associated with the drag operation.

By default, the UserData property is empty. Use the UserData property to store any extra
data with the drag operation. You can set the UserData property during the DragStart
event, and use it later during the Drag or DragEnd event. The UserData property of the
Layer indicates any extra data associated with the layer.

property DragInfo.X as Long
Indicates the x-position of the cursor, when the drag operation starts.

Type Description

Long A Long expression that indicates the x-position of the
cursor, when the drag operation starts.

The X / Y property indicates the (x,y)-position of the cursor, relative to the upper-left corner
of the control, when dragging operation begins. The OffsetX / OffsetY property specifies
the (x,y)-position of the layer, relative to the upper-left corner of the control. The
OffsetXValid / OffsetYValid property to validate the (x,y)-position of the layer. For instance,
you can use the OffsetYValid property on "0", and so no vertical movement is allowed.

The following properties can be used during dragging to determine the horizontal / vertical
offset:

X property indicates the x-position of the cursor, when the drag operation starts.
Y property indicates the y-position of the cursor, when the drag operation starts.
CurrentX property indicates the current x-position of the cursor, while dragging the
layer.
CurrentY property indicates the current y-position of the cursor, while dragging the
layer.
Delta property, returns the distance between clicking and current points.
DeltaX property returns the offset on the x-coordinate of the the current drag
operation, equivalent with the value of CurrentX - X.
DeltaY property returns the offset on the y-coordinate of the the current drag
operation, equivalent with the value of CurrentY - Y.

The DeltaAngle property specifies the angle (in degrees) that has been rotated the
layer/object, during the drag operation.

property DragInfo.Y as Long
Indicates the y-position of the cursor, when the drag operation starts.

Type Description

Long A Long expression that indicates the y-position of the
cursor, when the drag operation starts.

The X / Y property indicates the (x,y)-position of the cursor, relative to the upper-left corner
of the control, when dragging operation begins. The OffsetX / OffsetY property specifies
the (x,y)-position of the layer, relative to the upper-left corner of the control. The
OffsetXValid / OffsetYValid property to validate the (x,y)-position of the layer. For instance,
you can use the OffsetXValid property on "0", and so no horizontal movement is allowed.

The following properties can be used during dragging to determine the horizontal / vertical
offset:

X property indicates the x-position of the cursor, when the drag operation starts.
Y property indicates the y-position of the cursor, when the drag operation starts.
CurrentX property indicates the current x-position of the cursor, while dragging the
layer.
CurrentY property indicates the current y-position of the cursor, while dragging the
layer.
Delta property, returns the distance between clicking and current points.
DeltaX property returns the offset on the x-coordinate of the the current drag
operation, equivalent with the value of CurrentX - X.
DeltaY property returns the offset on the y-coordinate of the the current drag
operation, equivalent with the value of CurrentY - Y.

The DeltaAngle property specifies the angle (in degrees) that has been rotated the
layer/object, during the drag operation.

Foreground object
The Foreground object holds HTML captions to be shown on the layer's foreground. The
Background object holds pictures to be shown on the layer's background. The Foreground
property of the Layer access the layer's Foreground object. The layer's foreground can be
visible or selectable. If not selectable, the user can not select it runtime, such as
LayerFromPoint property ignores it. The Layer's foreground can display unlimited HTML
captions of different sizes and positions.

The following screen shot shows all layer's background with a semi-transparent color, to
highlight the layer's foreground:

The Foreground object supports the following properties and methods:

Name Description
Caption Specifies the caption on the layer.
Color Specifies the layer's foreground color.
ExtraCaption Specifies any extra caption on the layer.

Selectable Returns or sets a value that indicates whether all objects
on the layer's foreground are selectable.

Visible Specifies if the objects of the layer's foreground are
shown or hidden.

property Foreground.Caption(Property as PropertyLayerCaptionEnum)
as Variant
Specifies the caption on the layer.

Type Description
Property as
PropertyLayerCaptionEnum

A PropertyLayerCaptionEnum expression that specifies
the caption's property to be changed.

Variant A VARIANT expression that specifies the value of the
caption's property.

The control support unlimited HTML captions to be place anywhere on the control or on any
layer of the control. The Caption(exLayerCaption) specifies the HTML caption to be shown
on the control/layer. The Images method specifies the list of icons the control can display.
The HTMLPicture adds or replaces a picture in HTML captions. The Caption(
exLayerCaptionBackgroundExt) property indicates unlimited options to show any HTML
text, images, colors, EBNs, patterns, frames anywhere on the control / layer's background.
The caption on the control stay on its position, no matter what layer is moved or rotated,
while a caption on a layer gets moved or rotated together with the layer itself. The Color
property specifies the caption's foreground color.

Any of the following properties can be used to display a HTML caption:

Caption property specifies the caption to be shown on the control's foreground.
ExtraCaption property specifies any extra caption to be shown on the control's
foreground.
Foreground.Caption specifies the caption to be shown on the layer's foreground.
Foreground.ExtraCaption specifies any extra caption to be shown on the layer's
foreground.

The following screen shot shows an extra-caption associated with the layer:

The following samples show how you can associate an extra-caption with a layer:

VBA (MS Access, Excell...)

With Gauge1
 .BeginUpdate
 .HTMLPicture("logo") = "E:\Exontrol\Exontrol.Logo\exontrol.logo.png"
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 10
 With .Layers.Item(9)
 .RotateType = 2
 .OnDrag = 2
 With .Foreground
 .ExtraCaption("logo",3) = 2
 .ExtraCaption("logo",8) = True
 .ExtraCaption("logo",6) = "164"
 .ExtraCaption("logo",4) = "width - 176"
 .ExtraCaption("logo",5) = "-64"
 .ExtraCaption("logo",0) = "<sha ;;0><c>This is our logo
<c>
logo"
 End With

 End With
 .EndUpdate
End With

VB6

With Gauge1
 .BeginUpdate
 .HTMLPicture("logo") = "E:\Exontrol\Exontrol.Logo\exontrol.logo.png"
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 10
 With .Layers.Item(9)
 .RotateType = exRotateBilinearInterpolation
 .OnDrag = exDoRotate
 With .Foreground
 .ExtraCaption("logo",exLayerCaptionAnchor) = 2
 .ExtraCaption("logo",exLayerCaptionWordWrap) = True
 .ExtraCaption("logo",exLayerCaptionWidth) = "164"
 .ExtraCaption("logo",exLayerCaptionLeft) = "width - 176"
 .ExtraCaption("logo",exLayerCaptionTop) = "-64"
 .ExtraCaption("logo",exLayerCaption) = "<sha ;;0><c>This is our logo

<c>logo"
 End With
 End With
 .EndUpdate
End With

VB.NET

With Exgauge1
 .BeginUpdate()
 .set_HTMLPicture("logo","E:\Exontrol\Exontrol.Logo\exontrol.logo.png")
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 10

 With .Layers.Item(9)
 .RotateType =
exontrol.EXGAUGELib.RotateTypeEnum.exRotateBilinearInterpolation
 .OnDrag = exontrol.EXGAUGELib.OnDragLayerEnum.exDoRotate
 With .Foreground

.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionAnchor,

.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWordWrap,

.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWidth,

.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionLeft,
 - 176")

.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionTop,

.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,
<sha ;;0><c>This is our logo
<c>logo")
 End With
 End With
 .EndUpdate()
End With

VB.NET for /COM

With AxGauge1
 .BeginUpdate()
 .set_HTMLPicture("logo","E:\Exontrol\Exontrol.Logo\exontrol.logo.png")
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 10

 With .Layers.Item(9)
 .RotateType = EXGAUGELib.RotateTypeEnum.exRotateBilinearInterpolation
 .OnDrag = EXGAUGELib.OnDragLayerEnum.exDoRotate
 With .Foreground

.ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionAnchor)
 = 2

.ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWordWrap)
 = True

.ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWidth)
= "164"

.ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionLeft) =
"width - 176"

.ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionTop) =
"-64"
 .ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption)
= "<sha ;;0><c>This is our logo
<c>logo"
 End With
 End With
 .EndUpdate()
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXGAUGELib' for the library: 'ExGauge 1.0 Control
Library'

 #import <ExGauge.dll>
 using namespace EXGAUGELib;
*/
EXGAUGELib::IGaugePtr spGauge1 = GetDlgItem(IDC_GAUGE1)-

>GetControlUnknown();
spGauge1->BeginUpdate();
spGauge1-
>PutHTMLPicture(L"logo","E:\\Exontrol\\Exontrol.Logo\\exontrol.logo.png");
spGauge1->PutPicturesPath(L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob");
spGauge1->PutPicturesName(L"`Layer` + int(value + 1) + `.png`");
spGauge1->GetLayers()->PutCount(10);
EXGAUGELib::ILayerPtr var_Layer = spGauge1->GetLayers()->GetItem(long(9));
 var_Layer->PutRotateType(EXGAUGELib::exRotateBilinearInterpolation);
 var_Layer->PutOnDrag(EXGAUGELib::exDoRotate);
 EXGAUGELib::IForegroundPtr var_Foreground = var_Layer->GetForeground();
 var_Foreground-
>PutExtraCaption("logo",EXGAUGELib::exLayerCaptionAnchor,long(2));
 var_Foreground-
>PutExtraCaption("logo",EXGAUGELib::exLayerCaptionWordWrap,VARIANT_TRUE);
 var_Foreground-
>PutExtraCaption("logo",EXGAUGELib::exLayerCaptionWidth,"164");
 var_Foreground-
>PutExtraCaption("logo",EXGAUGELib::exLayerCaptionLeft,"width - 176");
 var_Foreground-
>PutExtraCaption("logo",EXGAUGELib::exLayerCaptionTop,"-64");
 var_Foreground->PutExtraCaption("logo",EXGAUGELib::exLayerCaption,"<sha
;;0><c>This is our logo
<c>logo");
spGauge1->EndUpdate();

C++ Builder

Gauge1->BeginUpdate();
Gauge1->HTMLPicture[L"logo"] =
TVariant("E:\\Exontrol\\Exontrol.Logo\\exontrol.logo.png");
Gauge1->PicturesPath = L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
Gauge1->PicturesName = L"`Layer` + int(value + 1) + `.png`";
Gauge1->Layers->Count = 10;
Exgaugelib_tlb::ILayerPtr var_Layer = Gauge1->Layers->get_Item(TVariant(9));

 var_Layer->RotateType =
Exgaugelib_tlb::RotateTypeEnum::exRotateBilinearInterpolation;
 var_Layer->OnDrag = Exgaugelib_tlb::OnDragLayerEnum::exDoRotate;
 Exgaugelib_tlb::IForegroundPtr var_Foreground = var_Layer->Foreground;
 var_Foreground-
>set_ExtraCaption(TVariant("logo"),Exgaugelib_tlb::PropertyLayerCaptionEnum::exLayerCaptionAnchor,TVariant(

 var_Foreground-
>set_ExtraCaption(TVariant("logo"),Exgaugelib_tlb::PropertyLayerCaptionEnum::exLayerCaptionWordWrap,TVariant(true));

 var_Foreground-
>set_ExtraCaption(TVariant("logo"),Exgaugelib_tlb::PropertyLayerCaptionEnum::exLayerCaptionWidth,TVariant(

 var_Foreground-
>set_ExtraCaption(TVariant("logo"),Exgaugelib_tlb::PropertyLayerCaptionEnum::exLayerCaptionLeft,TVariant(
 - 176"));
 var_Foreground-
>set_ExtraCaption(TVariant("logo"),Exgaugelib_tlb::PropertyLayerCaptionEnum::exLayerCaptionTop,TVariant(

 var_Foreground-
>set_ExtraCaption(TVariant("logo"),Exgaugelib_tlb::PropertyLayerCaptionEnum::exLayerCaption,TVariant(
<sha ;;0><c>This is our logo
<c>logo"));
Gauge1->EndUpdate();

C#

exgauge1.BeginUpdate();
exgauge1.set_HTMLPicture("logo","E:\\Exontrol\\Exontrol.Logo\\exontrol.logo.png");
exgauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
exgauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
exgauge1.Layers.Count = 10;
exontrol.EXGAUGELib.Layer var_Layer = exgauge1.Layers[9];
 var_Layer.RotateType =
exontrol.EXGAUGELib.RotateTypeEnum.exRotateBilinearInterpolation;
 var_Layer.OnDrag = exontrol.EXGAUGELib.OnDragLayerEnum.exDoRotate;

 exontrol.EXGAUGELib.Foreground var_Foreground = var_Layer.Foreground;

var_Foreground.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionAnchor,

var_Foreground.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWordWrap,true);

var_Foreground.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWidth,

var_Foreground.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionLeft,
 - 176");

var_Foreground.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionTop,

var_Foreground.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,
<sha ;;0><c>This is our logo
<c>logo");
exgauge1.EndUpdate();

JScript/JavaScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 Gauge1.BeginUpdate();
 Gauge1.HTMLPicture("logo") = "E:\\Exontrol\\Exontrol.Logo\\exontrol.logo.png";
 Gauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
 Gauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
 Gauge1.Layers.Count = 10;

 var var_Layer = Gauge1.Layers.Item(9);
 var_Layer.RotateType = 2;
 var_Layer.OnDrag = 2;
 var var_Foreground = var_Layer.Foreground;
 var_Foreground.ExtraCaption("logo",3) = 2;
 var_Foreground.ExtraCaption("logo",8) = true;
 var_Foreground.ExtraCaption("logo",6) = "164";
 var_Foreground.ExtraCaption("logo",4) = "width - 176";
 var_Foreground.ExtraCaption("logo",5) = "-64";
 var_Foreground.ExtraCaption("logo",0) = "<sha ;;0><c>This is our logo

<c>logo";
 Gauge1.EndUpdate();
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With Gauge1
 .BeginUpdate
 .HTMLPicture("logo") = "E:\Exontrol\Exontrol.Logo\exontrol.logo.png"
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 10
 With .Layers.Item(9)
 .RotateType = 2
 .OnDrag = 2
 With .Foreground
 .ExtraCaption("logo",3) = 2

 .ExtraCaption("logo",8) = True
 .ExtraCaption("logo",6) = "164"
 .ExtraCaption("logo",4) = "width - 176"
 .ExtraCaption("logo",5) = "-64"
 .ExtraCaption("logo",0) = "<sha ;;0><c>This is our logo
<c>
logo"
 End With
 End With
 .EndUpdate
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

axGauge1.BeginUpdate();
axGauge1.set_HTMLPicture("logo","E:\\Exontrol\\Exontrol.Logo\\exontrol.logo.png");
axGauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
axGauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
axGauge1.Layers.Count = 10;
EXGAUGELib.Layer var_Layer = axGauge1.Layers[9];
 var_Layer.RotateType =
EXGAUGELib.RotateTypeEnum.exRotateBilinearInterpolation;
 var_Layer.OnDrag = EXGAUGELib.OnDragLayerEnum.exDoRotate;
 EXGAUGELib.Foreground var_Foreground = var_Layer.Foreground;

var_Foreground.set_ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionAnchor,

var_Foreground.set_ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWordWrap,true);

var_Foreground.set_ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWidth,

var_Foreground.set_ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionLeft,
 - 176");

var_Foreground.set_ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionTop,

var_Foreground.set_ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,
<sha ;;0><c>This is our logo
<c>logo");
axGauge1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Foreground,com_Layer;
 anytype var_Foreground,var_Layer;
 ;

 super();

 exgauge1.BeginUpdate();
 exgauge1.HTMLPicture("logo","E:\\Exontrol\\Exontrol.Logo\\exontrol.logo.png");
 exgauge1.PicturesPath("C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob");
 exgauge1.PicturesName("`Layer` + int(value + 1) + `.png`");
 exgauge1.Layers().Count(10);
 var_Layer =
COM::createFromObject(exgauge1.Layers()).Item(COMVariant::createFromInt(9));
com_Layer = var_Layer;
 com_Layer.RotateType(2/*exRotateBilinearInterpolation*/);
 com_Layer.OnDrag(2/*exDoRotate*/);
 var_Foreground = com_Layer.Foreground(); com_Foreground = var_Foreground;

com_Foreground.ExtraCaption("logo",3/*exLayerCaptionAnchor*/,COMVariant::createFromInt(

com_Foreground.ExtraCaption("logo",8/*exLayerCaptionWordWrap*/,COMVariant::createFromBoolean(true));

 com_Foreground.ExtraCaption("logo",6/*exLayerCaptionWidth*/,"164");
 com_Foreground.ExtraCaption("logo",4/*exLayerCaptionLeft*/,"width - 176");
 com_Foreground.ExtraCaption("logo",5/*exLayerCaptionTop*/,"-64");
 com_Foreground.ExtraCaption("logo",0/*exLayerCaption*/,"<sha ;;0><c>This
is our logo
<c>logo");
 exgauge1.EndUpdate();
}

Delphi 8 (.NET only)

with AxGauge1 do
begin
 BeginUpdate();
 set_HTMLPicture('logo','E:\Exontrol\Exontrol.Logo\exontrol.logo.png');
 PicturesPath := 'C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob';
 PicturesName := '`Layer` + int(value + 1) + `.png`';
 Layers.Count := 10;
 with Layers.Item[TObject(9)] do
 begin
 RotateType := EXGAUGELib.RotateTypeEnum.exRotateBilinearInterpolation;
 OnDrag := EXGAUGELib.OnDragLayerEnum.exDoRotate;
 with Foreground do
 begin

ExtraCaption['logo',EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionAnchor]
:= TObject(2);

ExtraCaption['logo',EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWordWrap]
 := TObject(True);

ExtraCaption['logo',EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWidth]
:= '164';

ExtraCaption['logo',EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionLeft] :=
'width - 176';

ExtraCaption['logo',EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionTop] :=
'-64';
 ExtraCaption['logo',EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption]
:= '<sha ;;0><c>This is our logo
<c>logo';
 end;
 end;
 EndUpdate();
end

Delphi (standard)

with Gauge1 do
begin
 BeginUpdate();
 HTMLPicture['logo'] := 'E:\Exontrol\Exontrol.Logo\exontrol.logo.png';
 PicturesPath := 'C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob';
 PicturesName := '`Layer` + int(value + 1) + `.png`';
 Layers.Count := 10;
 with Layers.Item[OleVariant(9)] do
 begin
 RotateType := EXGAUGELib_TLB.exRotateBilinearInterpolation;
 OnDrag := EXGAUGELib_TLB.exDoRotate;
 with Foreground do
 begin
 ExtraCaption['logo',EXGAUGELib_TLB.exLayerCaptionAnchor] := OleVariant(2);
 ExtraCaption['logo',EXGAUGELib_TLB.exLayerCaptionWordWrap] :=
OleVariant(True);
 ExtraCaption['logo',EXGAUGELib_TLB.exLayerCaptionWidth] := '164';
 ExtraCaption['logo',EXGAUGELib_TLB.exLayerCaptionLeft] := 'width - 176';
 ExtraCaption['logo',EXGAUGELib_TLB.exLayerCaptionTop] := '-64';
 ExtraCaption['logo',EXGAUGELib_TLB.exLayerCaption] := '<sha ;;0><c>This is
our logo
<c>logo';
 end;

 end;
 EndUpdate();
end

VFP

with thisform.Gauge1
 .BeginUpdate
 .Object.HTMLPicture("logo") = "E:\Exontrol\Exontrol.Logo\exontrol.logo.png"
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 10
 with .Layers.Item(9)
 .RotateType = 2
 .OnDrag = 2
 with .Foreground
 .ExtraCaption("logo",3) = 2
 .ExtraCaption("logo",8) = .T.
 .ExtraCaption("logo",6) = "164"
 .ExtraCaption("logo",4) = "width - 176"
 .ExtraCaption("logo",5) = "-64"
 .ExtraCaption("logo",0) = "<sha ;;0><c>This is our logo
<c>
logo"
 endwith
 endwith
 .EndUpdate
endwith

dBASE Plus

local oGauge,var_Foreground,var_Layer

oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject
oGauge.BeginUpdate()
oGauge.Template = [HTMLPicture("logo") =
"E:\Exontrol\Exontrol.Logo\exontrol.logo.png"] // oGauge.HTMLPicture("logo") =
"E:\Exontrol\Exontrol.Logo\exontrol.logo.png"

oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 10
var_Layer = oGauge.Layers.Item(9)
 var_Layer.RotateType = 2
 var_Layer.OnDrag = 2
 var_Foreground = var_Layer.Foreground
 // var_Foreground.ExtraCaption("logo",3) = 2
 with (oGauge)
 TemplateDef = [dim var_Foreground]
 TemplateDef = var_Foreground
 Template = [var_Foreground.ExtraCaption("logo",3) = 2]
 endwith
 // var_Foreground.ExtraCaption("logo",8) = true
 with (oGauge)
 TemplateDef = [dim var_Foreground]
 TemplateDef = var_Foreground
 Template = [var_Foreground.ExtraCaption("logo",8) = True]
 endwith
 // var_Foreground.ExtraCaption("logo",6) = "164"
 with (oGauge)
 TemplateDef = [dim var_Foreground]
 TemplateDef = var_Foreground
 Template = [var_Foreground.ExtraCaption("logo",6) = "164"]
 endwith
 // var_Foreground.ExtraCaption("logo",4) = "width - 176"
 with (oGauge)
 TemplateDef = [dim var_Foreground]
 TemplateDef = var_Foreground
 Template = [var_Foreground.ExtraCaption("logo",4) = "width - 176"]
 endwith
 // var_Foreground.ExtraCaption("logo",5) = "-64"
 with (oGauge)
 TemplateDef = [dim var_Foreground]
 TemplateDef = var_Foreground
 Template = [var_Foreground.ExtraCaption("logo",5) = "-64"]

 endwith
 // var_Foreground.ExtraCaption("logo",0) = "<sha ;;0><c>This is our logo

<c>logo"
 with (oGauge)
 TemplateDef = [dim var_Foreground]
 TemplateDef = var_Foreground
 Template = [var_Foreground.ExtraCaption("logo",0) = "<sha ;;0><c>This is our
logo
<c>logo"]
 endwith
oGauge.EndUpdate()

XBasic (Alpha Five)

Dim oGauge as P
Dim var_Foreground as P
Dim var_Layer as P

oGauge = topparent:CONTROL_ACTIVEX1.activex
oGauge.BeginUpdate()
oGauge.Template = "HTMLPicture(`logo`) =
`E:\Exontrol\Exontrol.Logo\exontrol.logo.png`" // oGauge.HTMLPicture("logo") =
"E:\Exontrol\Exontrol.Logo\exontrol.logo.png"
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 10
var_Layer = oGauge.Layers.Item(9)
 var_Layer.RotateType = 2
 var_Layer.OnDrag = 2
 var_Foreground = var_Layer.Foreground
 ' var_Foreground.ExtraCaption("logo",3) = 2
 oGauge.TemplateDef = "dim var_Foreground"
 oGauge.TemplateDef = var_Foreground
 oGauge.Template = "var_Foreground.ExtraCaption(`logo`,3) = 2"

 ' var_Foreground.ExtraCaption("logo",8) = .t.

 oGauge.TemplateDef = "dim var_Foreground"
 oGauge.TemplateDef = var_Foreground
 oGauge.Template = "var_Foreground.ExtraCaption(`logo`,8) = True"

 ' var_Foreground.ExtraCaption("logo",6) = "164"
 oGauge.TemplateDef = "dim var_Foreground"
 oGauge.TemplateDef = var_Foreground
 oGauge.Template = "var_Foreground.ExtraCaption(`logo`,6) = `164`"

 ' var_Foreground.ExtraCaption("logo",4) = "width - 176"
 oGauge.TemplateDef = "dim var_Foreground"
 oGauge.TemplateDef = var_Foreground
 oGauge.Template = "var_Foreground.ExtraCaption(`logo`,4) = `width - 176`"

 ' var_Foreground.ExtraCaption("logo",5) = "-64"
 oGauge.TemplateDef = "dim var_Foreground"
 oGauge.TemplateDef = var_Foreground
 oGauge.Template = "var_Foreground.ExtraCaption(`logo`,5) = `-64`"

 ' var_Foreground.ExtraCaption("logo",0) = "<sha ;;0><c>This is our logo

<c>logo"
 oGauge.TemplateDef = "dim var_Foreground"
 oGauge.TemplateDef = var_Foreground
 oGauge.Template = "var_Foreground.ExtraCaption(`logo`,0) = `<sha ;;0><c>This
is our logo
<c>logo`"

oGauge.EndUpdate()

Visual Objects

local var_Foreground as IForeground
local var_Layer as ILayer

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:[HTMLPicture,"logo"] :=
"E:\Exontrol\Exontrol.Logo\exontrol.logo.png"

oDCOCX_Exontrol1:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oDCOCX_Exontrol1:PicturesName := "`Layer` + int(value + 1) + `.png`"
oDCOCX_Exontrol1:Layers:Count := 10
var_Layer := oDCOCX_Exontrol1:Layers:[Item,9]
 var_Layer:RotateType := exRotateBilinearInterpolation
 var_Layer:OnDrag := exDoRotate
 var_Foreground := var_Layer:Foreground
 var_Foreground:[ExtraCaption,"logo",exLayerCaptionAnchor] := 2
 var_Foreground:[ExtraCaption,"logo",exLayerCaptionWordWrap] := true
 var_Foreground:[ExtraCaption,"logo",exLayerCaptionWidth] := "164"
 var_Foreground:[ExtraCaption,"logo",exLayerCaptionLeft] := "width - 176"
 var_Foreground:[ExtraCaption,"logo",exLayerCaptionTop] := "-64"
 var_Foreground:[ExtraCaption,"logo",exLayerCaption] := "<sha ;;0><c>This is
our logo
<c>logo"
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oGauge,var_Foreground,var_Layer

oGauge = ole_1.Object
oGauge.BeginUpdate()
oGauge.HTMLPicture("logo","E:\Exontrol\Exontrol.Logo\exontrol.logo.png")
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 10
var_Layer = oGauge.Layers.Item(9)
 var_Layer.RotateType = 2
 var_Layer.OnDrag = 2
 var_Foreground = var_Layer.Foreground
 var_Foreground.ExtraCaption("logo",3,2)
 var_Foreground.ExtraCaption("logo",8,true)
 var_Foreground.ExtraCaption("logo",6,"164")
 var_Foreground.ExtraCaption("logo",4,"width - 176")

 var_Foreground.ExtraCaption("logo",5,"-64")
 var_Foreground.ExtraCaption("logo",0,"<sha ;;0><c>This is our logo
<c>
logo")
oGauge.EndUpdate()

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Send ComBeginUpdate
 Set ComHTMLPicture "logo" to "E:\Exontrol\Exontrol.Logo\exontrol.logo.png"
 Set ComPicturesPath to "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 Set ComPicturesName to "`Layer` + int(value + 1) + `.png`"
 Variant voLayers
 Get ComLayers to voLayers
 Handle hoLayers
 Get Create (RefClass(cComLayers)) to hoLayers
 Set pvComObject of hoLayers to voLayers
 Set ComCount of hoLayers to 10
 Send Destroy to hoLayers
 Variant voLayers1
 Get ComLayers to voLayers1
 Handle hoLayers1
 Get Create (RefClass(cComLayers)) to hoLayers1
 Set pvComObject of hoLayers1 to voLayers1
 Variant voLayer
 Get ComItem of hoLayers1 9 to voLayer
 Handle hoLayer
 Get Create (RefClass(cComLayer)) to hoLayer
 Set pvComObject of hoLayer to voLayer
 Set ComRotateType of hoLayer to OLEexRotateBilinearInterpolation
 Set ComOnDrag of hoLayer to OLEexDoRotate
 Variant voForeground
 Get ComForeground of hoLayer to voForeground
 Handle hoForeground

 Get Create (RefClass(cComForeground)) to hoForeground
 Set pvComObject of hoForeground to voForeground
 Set ComExtraCaption of hoForeground "logo" OLEexLayerCaptionAnchor to
2
 Set ComExtraCaption of hoForeground "logo"
OLEexLayerCaptionWordWrap to True
 Set ComExtraCaption of hoForeground "logo" OLEexLayerCaptionWidth to
"164"
 Set ComExtraCaption of hoForeground "logo" OLEexLayerCaptionLeft to
"width - 176"
 Set ComExtraCaption of hoForeground "logo" OLEexLayerCaptionTop to
"-64"
 Set ComExtraCaption of hoForeground "logo" OLEexLayerCaption to "<sha
;;0><c>This is our logo
<c>logo"
 Send Destroy to hoForeground
 Send Destroy to hoLayer
 Send Destroy to hoLayers1
 Send ComEndUpdate
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oGauge
 LOCAL oForeground
 LOCAL oLayer

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oGauge := XbpActiveXControl():new(oForm:drawingArea)
 oGauge:CLSID := "Exontrol.Gauge.1" /*{91628F12-393C-44EF-A558-
83ED1790AAD3}*/
 oGauge:create(,, {10,60},{610,370})

 oGauge:BeginUpdate()

oGauge:SetProperty("HTMLPicture","logo","E:\Exontrol\Exontrol.Logo\exontrol.logo.png"

 oGauge:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 oGauge:PicturesName := "`Layer` + int(value + 1) + `.png`"
 oGauge:Layers():Count := 10
 oLayer := oGauge:Layers:Item(9)
 oLayer:RotateType := 2/*exRotateBilinearInterpolation*/
 oLayer:OnDrag := 2/*exDoRotate*/
 oForeground := oLayer:Foreground()

oForeground:SetProperty("ExtraCaption","logo",3/*exLayerCaptionAnchor*/,2)

oForeground:SetProperty("ExtraCaption","logo",8/*exLayerCaptionWordWrap*/,.T.)

oForeground:SetProperty("ExtraCaption","logo",6/*exLayerCaptionWidth*/,"164")

oForeground:SetProperty("ExtraCaption","logo",4/*exLayerCaptionLeft*/,"width -
176")

oForeground:SetProperty("ExtraCaption","logo",5/*exLayerCaptionTop*/,"-64")
 oForeground:SetProperty("ExtraCaption","logo",0/*exLayerCaption*/,"<sha
;;0><c>This is our logo
<c>logo")
 oGauge:EndUpdate()

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO

RETURN

property Foreground.Color as Color
Specifies the layer's foreground color.

Type Description

Color A Color expression that specifies the caption's foreground
color.

By default, the Color property is -1, which indicates that has no effect. The Color property
specifies the caption's foreground color. The Visible property shows or hides all layer's
caption / extra-captions. The Selectable property makes all layer' captions / extra-captions
selectable or unselectable.

Any of the following properties can be used to display a HTML caption:

Caption property specifies the caption to be shown on the control's foreground.
ExtraCaption property specifies any extra caption to be shown on the control's
foreground.
Foreground.Caption specifies the caption to be shown on the layer's foreground.
Foreground.ExtraCaption specifies any extra caption to be shown on the layer's
foreground.

property Foreground.ExtraCaption(Key as Variant, Property as
PropertyLayerCaptionEnum) as Variant
Specifies any extra caption on the layer.

Type Description

Key as Variant
Any VARIANT expression that indicates the key of the
extra caption. You can use any value to identify your extra
caption.

Property as
PropertyLayerCaptionEnum

A PropertyLayerCaptionEnum expression that specifies
the extra caption's property to be changed.

Variant A VARIANT expression that specifies the value of the extra
caption's property.

The control support unlimited HTML captions to be place anywhere on the control or on any
layer of the control. The Caption(exLayerCaption) specifies the HTML caption to be shown
on the control/layer. The Images method specifies the list of icons the control can display.
The HTMLPicture adds or replaces a picture in HTML captions. The Caption(
exLayerCaptionBackgroundExt) property indicates unlimited options to show any HTML
text, images, colors, EBNs, patterns, frames anywhere on the control / layer's background.
The caption on the control stay on its position, no matter what layer is moved or rotated,
while a caption on a layer gets moved or rotated together with the layer itself.

Any of the following properties can be used to display a HTML caption:

Caption property specifies the caption to be shown on the control's foreground.
ExtraCaption property specifies any extra caption to be shown on the control's
foreground.
Foreground.Caption specifies the caption to be shown on the layer's foreground.
Foreground.ExtraCaption specifies any extra caption to be shown on the layer's
foreground.

The following screen shot shows an extra-caption associated with the layer:

The following samples show how you can associate an extra-caption with a layer:

VBA (MS Access, Excell...)

With Gauge1
 .BeginUpdate
 .HTMLPicture("logo") = "E:\Exontrol\Exontrol.Logo\exontrol.logo.png"
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 10
 With .Layers.Item(9)
 .RotateType = 2
 .OnDrag = 2
 With .Foreground
 .ExtraCaption("logo",3) = 2
 .ExtraCaption("logo",8) = True
 .ExtraCaption("logo",6) = "164"
 .ExtraCaption("logo",4) = "width - 176"
 .ExtraCaption("logo",5) = "-64"
 .ExtraCaption("logo",0) = "<sha ;;0><c>This is our logo
<c>
logo"
 End With

 End With
 .EndUpdate
End With

VB6

With Gauge1
 .BeginUpdate
 .HTMLPicture("logo") = "E:\Exontrol\Exontrol.Logo\exontrol.logo.png"
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 10
 With .Layers.Item(9)
 .RotateType = exRotateBilinearInterpolation
 .OnDrag = exDoRotate
 With .Foreground
 .ExtraCaption("logo",exLayerCaptionAnchor) = 2
 .ExtraCaption("logo",exLayerCaptionWordWrap) = True
 .ExtraCaption("logo",exLayerCaptionWidth) = "164"
 .ExtraCaption("logo",exLayerCaptionLeft) = "width - 176"
 .ExtraCaption("logo",exLayerCaptionTop) = "-64"
 .ExtraCaption("logo",exLayerCaption) = "<sha ;;0><c>This is our logo

<c>logo"
 End With
 End With
 .EndUpdate
End With

VB.NET

With Exgauge1
 .BeginUpdate()
 .set_HTMLPicture("logo","E:\Exontrol\Exontrol.Logo\exontrol.logo.png")
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 10

 With .Layers.Item(9)
 .RotateType =
exontrol.EXGAUGELib.RotateTypeEnum.exRotateBilinearInterpolation
 .OnDrag = exontrol.EXGAUGELib.OnDragLayerEnum.exDoRotate
 With .Foreground

.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionAnchor,

.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWordWrap,

.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWidth,

.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionLeft,
 - 176")

.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionTop,

.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,
<sha ;;0><c>This is our logo
<c>logo")
 End With
 End With
 .EndUpdate()
End With

VB.NET for /COM

With AxGauge1
 .BeginUpdate()
 .set_HTMLPicture("logo","E:\Exontrol\Exontrol.Logo\exontrol.logo.png")
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 10

 With .Layers.Item(9)
 .RotateType = EXGAUGELib.RotateTypeEnum.exRotateBilinearInterpolation
 .OnDrag = EXGAUGELib.OnDragLayerEnum.exDoRotate
 With .Foreground

.ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionAnchor)
 = 2

.ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWordWrap)
 = True

.ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWidth)
= "164"

.ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionLeft) =
"width - 176"

.ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionTop) =
"-64"
 .ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption)
= "<sha ;;0><c>This is our logo
<c>logo"
 End With
 End With
 .EndUpdate()
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXGAUGELib' for the library: 'ExGauge 1.0 Control
Library'

 #import <ExGauge.dll>
 using namespace EXGAUGELib;
*/
EXGAUGELib::IGaugePtr spGauge1 = GetDlgItem(IDC_GAUGE1)-

>GetControlUnknown();
spGauge1->BeginUpdate();
spGauge1-
>PutHTMLPicture(L"logo","E:\\Exontrol\\Exontrol.Logo\\exontrol.logo.png");
spGauge1->PutPicturesPath(L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob");
spGauge1->PutPicturesName(L"`Layer` + int(value + 1) + `.png`");
spGauge1->GetLayers()->PutCount(10);
EXGAUGELib::ILayerPtr var_Layer = spGauge1->GetLayers()->GetItem(long(9));
 var_Layer->PutRotateType(EXGAUGELib::exRotateBilinearInterpolation);
 var_Layer->PutOnDrag(EXGAUGELib::exDoRotate);
 EXGAUGELib::IForegroundPtr var_Foreground = var_Layer->GetForeground();
 var_Foreground-
>PutExtraCaption("logo",EXGAUGELib::exLayerCaptionAnchor,long(2));
 var_Foreground-
>PutExtraCaption("logo",EXGAUGELib::exLayerCaptionWordWrap,VARIANT_TRUE);
 var_Foreground-
>PutExtraCaption("logo",EXGAUGELib::exLayerCaptionWidth,"164");
 var_Foreground-
>PutExtraCaption("logo",EXGAUGELib::exLayerCaptionLeft,"width - 176");
 var_Foreground-
>PutExtraCaption("logo",EXGAUGELib::exLayerCaptionTop,"-64");
 var_Foreground->PutExtraCaption("logo",EXGAUGELib::exLayerCaption,"<sha
;;0><c>This is our logo
<c>logo");
spGauge1->EndUpdate();

C++ Builder

Gauge1->BeginUpdate();
Gauge1->HTMLPicture[L"logo"] =
TVariant("E:\\Exontrol\\Exontrol.Logo\\exontrol.logo.png");
Gauge1->PicturesPath = L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
Gauge1->PicturesName = L"`Layer` + int(value + 1) + `.png`";
Gauge1->Layers->Count = 10;
Exgaugelib_tlb::ILayerPtr var_Layer = Gauge1->Layers->get_Item(TVariant(9));

 var_Layer->RotateType =
Exgaugelib_tlb::RotateTypeEnum::exRotateBilinearInterpolation;
 var_Layer->OnDrag = Exgaugelib_tlb::OnDragLayerEnum::exDoRotate;
 Exgaugelib_tlb::IForegroundPtr var_Foreground = var_Layer->Foreground;
 var_Foreground-
>set_ExtraCaption(TVariant("logo"),Exgaugelib_tlb::PropertyLayerCaptionEnum::exLayerCaptionAnchor,TVariant(

 var_Foreground-
>set_ExtraCaption(TVariant("logo"),Exgaugelib_tlb::PropertyLayerCaptionEnum::exLayerCaptionWordWrap,TVariant(true));

 var_Foreground-
>set_ExtraCaption(TVariant("logo"),Exgaugelib_tlb::PropertyLayerCaptionEnum::exLayerCaptionWidth,TVariant(

 var_Foreground-
>set_ExtraCaption(TVariant("logo"),Exgaugelib_tlb::PropertyLayerCaptionEnum::exLayerCaptionLeft,TVariant(
 - 176"));
 var_Foreground-
>set_ExtraCaption(TVariant("logo"),Exgaugelib_tlb::PropertyLayerCaptionEnum::exLayerCaptionTop,TVariant(

 var_Foreground-
>set_ExtraCaption(TVariant("logo"),Exgaugelib_tlb::PropertyLayerCaptionEnum::exLayerCaption,TVariant(
<sha ;;0><c>This is our logo
<c>logo"));
Gauge1->EndUpdate();

C#

exgauge1.BeginUpdate();
exgauge1.set_HTMLPicture("logo","E:\\Exontrol\\Exontrol.Logo\\exontrol.logo.png");
exgauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
exgauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
exgauge1.Layers.Count = 10;
exontrol.EXGAUGELib.Layer var_Layer = exgauge1.Layers[9];
 var_Layer.RotateType =
exontrol.EXGAUGELib.RotateTypeEnum.exRotateBilinearInterpolation;
 var_Layer.OnDrag = exontrol.EXGAUGELib.OnDragLayerEnum.exDoRotate;

 exontrol.EXGAUGELib.Foreground var_Foreground = var_Layer.Foreground;

var_Foreground.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionAnchor,

var_Foreground.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWordWrap,true);

var_Foreground.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWidth,

var_Foreground.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionLeft,
 - 176");

var_Foreground.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionTop,

var_Foreground.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,
<sha ;;0><c>This is our logo
<c>logo");
exgauge1.EndUpdate();

JScript/JavaScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 Gauge1.BeginUpdate();
 Gauge1.HTMLPicture("logo") = "E:\\Exontrol\\Exontrol.Logo\\exontrol.logo.png";
 Gauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
 Gauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
 Gauge1.Layers.Count = 10;

 var var_Layer = Gauge1.Layers.Item(9);
 var_Layer.RotateType = 2;
 var_Layer.OnDrag = 2;
 var var_Foreground = var_Layer.Foreground;
 var_Foreground.ExtraCaption("logo",3) = 2;
 var_Foreground.ExtraCaption("logo",8) = true;
 var_Foreground.ExtraCaption("logo",6) = "164";
 var_Foreground.ExtraCaption("logo",4) = "width - 176";
 var_Foreground.ExtraCaption("logo",5) = "-64";
 var_Foreground.ExtraCaption("logo",0) = "<sha ;;0><c>This is our logo

<c>logo";
 Gauge1.EndUpdate();
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With Gauge1
 .BeginUpdate
 .HTMLPicture("logo") = "E:\Exontrol\Exontrol.Logo\exontrol.logo.png"
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 10
 With .Layers.Item(9)
 .RotateType = 2
 .OnDrag = 2
 With .Foreground
 .ExtraCaption("logo",3) = 2

 .ExtraCaption("logo",8) = True
 .ExtraCaption("logo",6) = "164"
 .ExtraCaption("logo",4) = "width - 176"
 .ExtraCaption("logo",5) = "-64"
 .ExtraCaption("logo",0) = "<sha ;;0><c>This is our logo
<c>
logo"
 End With
 End With
 .EndUpdate
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

axGauge1.BeginUpdate();
axGauge1.set_HTMLPicture("logo","E:\\Exontrol\\Exontrol.Logo\\exontrol.logo.png");
axGauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
axGauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
axGauge1.Layers.Count = 10;
EXGAUGELib.Layer var_Layer = axGauge1.Layers[9];
 var_Layer.RotateType =
EXGAUGELib.RotateTypeEnum.exRotateBilinearInterpolation;
 var_Layer.OnDrag = EXGAUGELib.OnDragLayerEnum.exDoRotate;
 EXGAUGELib.Foreground var_Foreground = var_Layer.Foreground;

var_Foreground.set_ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionAnchor,

var_Foreground.set_ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWordWrap,true);

var_Foreground.set_ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWidth,

var_Foreground.set_ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionLeft,
 - 176");

var_Foreground.set_ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionTop,

var_Foreground.set_ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,
<sha ;;0><c>This is our logo
<c>logo");
axGauge1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Foreground,com_Layer;
 anytype var_Foreground,var_Layer;
 ;

 super();

 exgauge1.BeginUpdate();
 exgauge1.HTMLPicture("logo","E:\\Exontrol\\Exontrol.Logo\\exontrol.logo.png");
 exgauge1.PicturesPath("C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob");
 exgauge1.PicturesName("`Layer` + int(value + 1) + `.png`");
 exgauge1.Layers().Count(10);
 var_Layer =
COM::createFromObject(exgauge1.Layers()).Item(COMVariant::createFromInt(9));
com_Layer = var_Layer;
 com_Layer.RotateType(2/*exRotateBilinearInterpolation*/);
 com_Layer.OnDrag(2/*exDoRotate*/);
 var_Foreground = com_Layer.Foreground(); com_Foreground = var_Foreground;

com_Foreground.ExtraCaption("logo",3/*exLayerCaptionAnchor*/,COMVariant::createFromInt(

com_Foreground.ExtraCaption("logo",8/*exLayerCaptionWordWrap*/,COMVariant::createFromBoolean(true));

 com_Foreground.ExtraCaption("logo",6/*exLayerCaptionWidth*/,"164");
 com_Foreground.ExtraCaption("logo",4/*exLayerCaptionLeft*/,"width - 176");
 com_Foreground.ExtraCaption("logo",5/*exLayerCaptionTop*/,"-64");
 com_Foreground.ExtraCaption("logo",0/*exLayerCaption*/,"<sha ;;0><c>This
is our logo
<c>logo");
 exgauge1.EndUpdate();
}

Delphi 8 (.NET only)

with AxGauge1 do
begin
 BeginUpdate();
 set_HTMLPicture('logo','E:\Exontrol\Exontrol.Logo\exontrol.logo.png');
 PicturesPath := 'C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob';
 PicturesName := '`Layer` + int(value + 1) + `.png`';
 Layers.Count := 10;
 with Layers.Item[TObject(9)] do
 begin
 RotateType := EXGAUGELib.RotateTypeEnum.exRotateBilinearInterpolation;
 OnDrag := EXGAUGELib.OnDragLayerEnum.exDoRotate;
 with Foreground do
 begin

ExtraCaption['logo',EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionAnchor]
:= TObject(2);

ExtraCaption['logo',EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWordWrap]
 := TObject(True);

ExtraCaption['logo',EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWidth]
:= '164';

ExtraCaption['logo',EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionLeft] :=
'width - 176';

ExtraCaption['logo',EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionTop] :=
'-64';
 ExtraCaption['logo',EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption]
:= '<sha ;;0><c>This is our logo
<c>logo';
 end;
 end;
 EndUpdate();
end

Delphi (standard)

with Gauge1 do
begin
 BeginUpdate();
 HTMLPicture['logo'] := 'E:\Exontrol\Exontrol.Logo\exontrol.logo.png';
 PicturesPath := 'C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob';
 PicturesName := '`Layer` + int(value + 1) + `.png`';
 Layers.Count := 10;
 with Layers.Item[OleVariant(9)] do
 begin
 RotateType := EXGAUGELib_TLB.exRotateBilinearInterpolation;
 OnDrag := EXGAUGELib_TLB.exDoRotate;
 with Foreground do
 begin
 ExtraCaption['logo',EXGAUGELib_TLB.exLayerCaptionAnchor] := OleVariant(2);
 ExtraCaption['logo',EXGAUGELib_TLB.exLayerCaptionWordWrap] :=
OleVariant(True);
 ExtraCaption['logo',EXGAUGELib_TLB.exLayerCaptionWidth] := '164';
 ExtraCaption['logo',EXGAUGELib_TLB.exLayerCaptionLeft] := 'width - 176';
 ExtraCaption['logo',EXGAUGELib_TLB.exLayerCaptionTop] := '-64';
 ExtraCaption['logo',EXGAUGELib_TLB.exLayerCaption] := '<sha ;;0><c>This is
our logo
<c>logo';
 end;

 end;
 EndUpdate();
end

VFP

with thisform.Gauge1
 .BeginUpdate
 .Object.HTMLPicture("logo") = "E:\Exontrol\Exontrol.Logo\exontrol.logo.png"
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 10
 with .Layers.Item(9)
 .RotateType = 2
 .OnDrag = 2
 with .Foreground
 .ExtraCaption("logo",3) = 2
 .ExtraCaption("logo",8) = .T.
 .ExtraCaption("logo",6) = "164"
 .ExtraCaption("logo",4) = "width - 176"
 .ExtraCaption("logo",5) = "-64"
 .ExtraCaption("logo",0) = "<sha ;;0><c>This is our logo
<c>
logo"
 endwith
 endwith
 .EndUpdate
endwith

dBASE Plus

local oGauge,var_Foreground,var_Layer

oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject
oGauge.BeginUpdate()
oGauge.Template = [HTMLPicture("logo") =
"E:\Exontrol\Exontrol.Logo\exontrol.logo.png"] // oGauge.HTMLPicture("logo") =
"E:\Exontrol\Exontrol.Logo\exontrol.logo.png"

oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 10
var_Layer = oGauge.Layers.Item(9)
 var_Layer.RotateType = 2
 var_Layer.OnDrag = 2
 var_Foreground = var_Layer.Foreground
 // var_Foreground.ExtraCaption("logo",3) = 2
 with (oGauge)
 TemplateDef = [dim var_Foreground]
 TemplateDef = var_Foreground
 Template = [var_Foreground.ExtraCaption("logo",3) = 2]
 endwith
 // var_Foreground.ExtraCaption("logo",8) = true
 with (oGauge)
 TemplateDef = [dim var_Foreground]
 TemplateDef = var_Foreground
 Template = [var_Foreground.ExtraCaption("logo",8) = True]
 endwith
 // var_Foreground.ExtraCaption("logo",6) = "164"
 with (oGauge)
 TemplateDef = [dim var_Foreground]
 TemplateDef = var_Foreground
 Template = [var_Foreground.ExtraCaption("logo",6) = "164"]
 endwith
 // var_Foreground.ExtraCaption("logo",4) = "width - 176"
 with (oGauge)
 TemplateDef = [dim var_Foreground]
 TemplateDef = var_Foreground
 Template = [var_Foreground.ExtraCaption("logo",4) = "width - 176"]
 endwith
 // var_Foreground.ExtraCaption("logo",5) = "-64"
 with (oGauge)
 TemplateDef = [dim var_Foreground]
 TemplateDef = var_Foreground
 Template = [var_Foreground.ExtraCaption("logo",5) = "-64"]

 endwith
 // var_Foreground.ExtraCaption("logo",0) = "<sha ;;0><c>This is our logo

<c>logo"
 with (oGauge)
 TemplateDef = [dim var_Foreground]
 TemplateDef = var_Foreground
 Template = [var_Foreground.ExtraCaption("logo",0) = "<sha ;;0><c>This is our
logo
<c>logo"]
 endwith
oGauge.EndUpdate()

XBasic (Alpha Five)

Dim oGauge as P
Dim var_Foreground as P
Dim var_Layer as P

oGauge = topparent:CONTROL_ACTIVEX1.activex
oGauge.BeginUpdate()
oGauge.Template = "HTMLPicture(`logo`) =
`E:\Exontrol\Exontrol.Logo\exontrol.logo.png`" // oGauge.HTMLPicture("logo") =
"E:\Exontrol\Exontrol.Logo\exontrol.logo.png"
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 10
var_Layer = oGauge.Layers.Item(9)
 var_Layer.RotateType = 2
 var_Layer.OnDrag = 2
 var_Foreground = var_Layer.Foreground
 ' var_Foreground.ExtraCaption("logo",3) = 2
 oGauge.TemplateDef = "dim var_Foreground"
 oGauge.TemplateDef = var_Foreground
 oGauge.Template = "var_Foreground.ExtraCaption(`logo`,3) = 2"

 ' var_Foreground.ExtraCaption("logo",8) = .t.

 oGauge.TemplateDef = "dim var_Foreground"
 oGauge.TemplateDef = var_Foreground
 oGauge.Template = "var_Foreground.ExtraCaption(`logo`,8) = True"

 ' var_Foreground.ExtraCaption("logo",6) = "164"
 oGauge.TemplateDef = "dim var_Foreground"
 oGauge.TemplateDef = var_Foreground
 oGauge.Template = "var_Foreground.ExtraCaption(`logo`,6) = `164`"

 ' var_Foreground.ExtraCaption("logo",4) = "width - 176"
 oGauge.TemplateDef = "dim var_Foreground"
 oGauge.TemplateDef = var_Foreground
 oGauge.Template = "var_Foreground.ExtraCaption(`logo`,4) = `width - 176`"

 ' var_Foreground.ExtraCaption("logo",5) = "-64"
 oGauge.TemplateDef = "dim var_Foreground"
 oGauge.TemplateDef = var_Foreground
 oGauge.Template = "var_Foreground.ExtraCaption(`logo`,5) = `-64`"

 ' var_Foreground.ExtraCaption("logo",0) = "<sha ;;0><c>This is our logo

<c>logo"
 oGauge.TemplateDef = "dim var_Foreground"
 oGauge.TemplateDef = var_Foreground
 oGauge.Template = "var_Foreground.ExtraCaption(`logo`,0) = `<sha ;;0><c>This
is our logo
<c>logo`"

oGauge.EndUpdate()

Visual Objects

local var_Foreground as IForeground
local var_Layer as ILayer

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:[HTMLPicture,"logo"] :=
"E:\Exontrol\Exontrol.Logo\exontrol.logo.png"

oDCOCX_Exontrol1:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oDCOCX_Exontrol1:PicturesName := "`Layer` + int(value + 1) + `.png`"
oDCOCX_Exontrol1:Layers:Count := 10
var_Layer := oDCOCX_Exontrol1:Layers:[Item,9]
 var_Layer:RotateType := exRotateBilinearInterpolation
 var_Layer:OnDrag := exDoRotate
 var_Foreground := var_Layer:Foreground
 var_Foreground:[ExtraCaption,"logo",exLayerCaptionAnchor] := 2
 var_Foreground:[ExtraCaption,"logo",exLayerCaptionWordWrap] := true
 var_Foreground:[ExtraCaption,"logo",exLayerCaptionWidth] := "164"
 var_Foreground:[ExtraCaption,"logo",exLayerCaptionLeft] := "width - 176"
 var_Foreground:[ExtraCaption,"logo",exLayerCaptionTop] := "-64"
 var_Foreground:[ExtraCaption,"logo",exLayerCaption] := "<sha ;;0><c>This is
our logo
<c>logo"
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oGauge,var_Foreground,var_Layer

oGauge = ole_1.Object
oGauge.BeginUpdate()
oGauge.HTMLPicture("logo","E:\Exontrol\Exontrol.Logo\exontrol.logo.png")
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 10
var_Layer = oGauge.Layers.Item(9)
 var_Layer.RotateType = 2
 var_Layer.OnDrag = 2
 var_Foreground = var_Layer.Foreground
 var_Foreground.ExtraCaption("logo",3,2)
 var_Foreground.ExtraCaption("logo",8,true)
 var_Foreground.ExtraCaption("logo",6,"164")
 var_Foreground.ExtraCaption("logo",4,"width - 176")

 var_Foreground.ExtraCaption("logo",5,"-64")
 var_Foreground.ExtraCaption("logo",0,"<sha ;;0><c>This is our logo
<c>
logo")
oGauge.EndUpdate()

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Send ComBeginUpdate
 Set ComHTMLPicture "logo" to "E:\Exontrol\Exontrol.Logo\exontrol.logo.png"
 Set ComPicturesPath to "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 Set ComPicturesName to "`Layer` + int(value + 1) + `.png`"
 Variant voLayers
 Get ComLayers to voLayers
 Handle hoLayers
 Get Create (RefClass(cComLayers)) to hoLayers
 Set pvComObject of hoLayers to voLayers
 Set ComCount of hoLayers to 10
 Send Destroy to hoLayers
 Variant voLayers1
 Get ComLayers to voLayers1
 Handle hoLayers1
 Get Create (RefClass(cComLayers)) to hoLayers1
 Set pvComObject of hoLayers1 to voLayers1
 Variant voLayer
 Get ComItem of hoLayers1 9 to voLayer
 Handle hoLayer
 Get Create (RefClass(cComLayer)) to hoLayer
 Set pvComObject of hoLayer to voLayer
 Set ComRotateType of hoLayer to OLEexRotateBilinearInterpolation
 Set ComOnDrag of hoLayer to OLEexDoRotate
 Variant voForeground
 Get ComForeground of hoLayer to voForeground
 Handle hoForeground

 Get Create (RefClass(cComForeground)) to hoForeground
 Set pvComObject of hoForeground to voForeground
 Set ComExtraCaption of hoForeground "logo" OLEexLayerCaptionAnchor to
2
 Set ComExtraCaption of hoForeground "logo"
OLEexLayerCaptionWordWrap to True
 Set ComExtraCaption of hoForeground "logo" OLEexLayerCaptionWidth to
"164"
 Set ComExtraCaption of hoForeground "logo" OLEexLayerCaptionLeft to
"width - 176"
 Set ComExtraCaption of hoForeground "logo" OLEexLayerCaptionTop to
"-64"
 Set ComExtraCaption of hoForeground "logo" OLEexLayerCaption to "<sha
;;0><c>This is our logo
<c>logo"
 Send Destroy to hoForeground
 Send Destroy to hoLayer
 Send Destroy to hoLayers1
 Send ComEndUpdate
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oGauge
 LOCAL oForeground
 LOCAL oLayer

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oGauge := XbpActiveXControl():new(oForm:drawingArea)
 oGauge:CLSID := "Exontrol.Gauge.1" /*{91628F12-393C-44EF-A558-
83ED1790AAD3}*/
 oGauge:create(,, {10,60},{610,370})

 oGauge:BeginUpdate()

oGauge:SetProperty("HTMLPicture","logo","E:\Exontrol\Exontrol.Logo\exontrol.logo.png"

 oGauge:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 oGauge:PicturesName := "`Layer` + int(value + 1) + `.png`"
 oGauge:Layers():Count := 10
 oLayer := oGauge:Layers:Item(9)
 oLayer:RotateType := 2/*exRotateBilinearInterpolation*/
 oLayer:OnDrag := 2/*exDoRotate*/
 oForeground := oLayer:Foreground()

oForeground:SetProperty("ExtraCaption","logo",3/*exLayerCaptionAnchor*/,2)

oForeground:SetProperty("ExtraCaption","logo",8/*exLayerCaptionWordWrap*/,.T.)

oForeground:SetProperty("ExtraCaption","logo",6/*exLayerCaptionWidth*/,"164")

oForeground:SetProperty("ExtraCaption","logo",4/*exLayerCaptionLeft*/,"width -
176")

oForeground:SetProperty("ExtraCaption","logo",5/*exLayerCaptionTop*/,"-64")
 oForeground:SetProperty("ExtraCaption","logo",0/*exLayerCaption*/,"<sha
;;0><c>This is our logo
<c>logo")
 oGauge:EndUpdate()

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO

RETURN

property Foreground.Selectable as Boolean
Returns or sets a value that indicates whether all objects on the layer's foreground are
selectable.

Type Description

Boolean A Boolean expression that specifies whether the layer's
foregfround is selectable or unselectable.

By default, the Selectable property is True. The Selectable property makes all layer'
captions / extra-captions selectable or unselectable. The Grayscale property returns or
sets a value that indicates whether the layer is show as grayscale. For instance, you can
simulate a disabled layer by changing the layer's Grayscale property on True, and setting
the layer's Selectable property on False. The Visible property shows or hides all layer's
caption / extra-captions.

Any of the following properties can be used to display a HTML caption:

Caption property specifies the caption to be shown on the control's foreground.
ExtraCaption property specifies any extra caption to be shown on the control's
foreground.
Foreground.Caption specifies the caption to be shown on the layer's foreground.
Foreground.ExtraCaption specifies any extra caption to be shown on the layer's
foreground.

property Foreground.Visible as Boolean
Specifies if the objects of the layer's foreground are shown or hidden.

Type Description

Boolean A Boolean expression that specifies whether layer's
foreground is visible or hidden.

By default, the Visible property is True. The Visible property shows or hides all layer's
caption / extra-captions. The Selectable property makes all layer' captions / extra-captions
selectable or unselectable.

Any of the following properties can be used to display a HTML caption:

Caption property specifies the caption to be shown on the control's foreground.
ExtraCaption property specifies any extra caption to be shown on the control's
foreground.
Foreground.Caption specifies the caption to be shown on the layer's foreground.
Foreground.ExtraCaption specifies any extra caption to be shown on the layer's
foreground.

Gauge object
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {91628F12-393C-44EF-A558-83ED1790AAD3}. The object's program identifier is: "Exontrol.Gauge". The
/COM object module is: "ExGauge.dll"

The eXGauge / eXLayers library provides graphics capabilities to visually display and edit
the amount, level, or contents of something. The view can show one or more layers, where
each layer can display one or more transparent pictures, HTML captions which can be
clipped, moved, rotated or combination of them, by dragging the mouse, rolling the mouse
wheel, or using the keyboard. Using the eXGauge / eXLayers library you can can easily
simulate any gauges, thermometers, meters, clocks, buttons, sliders, scales, knobs, dials,
switches, progress, status, indicators, LEDs, and so on. As usual, there are no
dependencies to MFC, VB, VCL, or anything else.

The following screen shot shows the idea of having multiple layers that are transparent and
you can adjust the offset of the images, the transparency levels and rotate each image to
create different types of gauges simple by changing the layer graphics:

The following table shows how you can create / access different type of objects (red items
indicates the name of the property/method):

EXGAUGELib.Gauge
 "Layers" -> EXGAUGELib.Layers

 "VisualAppearance" -> EXGAUGELib.Appearance
EXGAUGELib.Layers
 "Add(Variant)" -> EXGAUGELib.Layer
 "Item(Variant)" -> EXGAUGELib.Layer
 "VisibleItem(Long)" -> EXGAUGELib.Layer
EXGAUGELib.Layer
 "Background" -> EXGAUGELib.Background
 "Clip" -> EXGAUGELib.Clip
 "Foreground" -> EXGAUGELib.Foreground
EXGAUGELib.Background
 "Color" -> EXGAUGELib.Color
 "ExtraPicture(Variant)" -> EXGAUGELib.Picture
 "Picture" -> EXGAUGELib.Picture
EXGAUGELib.Clip
 "Ellipse" -> EXGAUGELib.ClipEllipse
 "Picture" -> EXGAUGELib.ClipPicture
 "Pie" -> EXGAUGELib.ClipPie
 "Polygon" -> EXGAUGELib.ClipPolygon
 "Rectangle" -> EXGAUGELib.ClipRectangle
 "RoundRectangle" -> EXGAUGELib.ClipRoundRectangle

The following table shows how you can create / access different type of objects (red items
indicates the name of the property/method):

EXGAUGELib.Appearance <- "VisualAppearance" of EXGAUGELib.Gauge
EXGAUGELib.Background <- "Background" of EXGAUGELib.Layer
EXGAUGELib.Clip <- "Clip" of EXGAUGELib.Layer
EXGAUGELib.ClipEllipse <- "Ellipse" of EXGAUGELib.Clip
EXGAUGELib.ClipPicture <- "Picture" of EXGAUGELib.Clip
EXGAUGELib.ClipPie <- "Pie" of EXGAUGELib.Clip
EXGAUGELib.ClipPolygon <- "Polygon" of EXGAUGELib.Clip
EXGAUGELib.ClipRectangle <- "Rectangle" of EXGAUGELib.Clip
EXGAUGELib.ClipRoundRectangle <- "RoundRectangle" of EXGAUGELib.Clip
EXGAUGELib.Color <- "Color" of EXGAUGELib.Background
EXGAUGELib.Foreground <- "Foreground" of EXGAUGELib.Layer
EXGAUGELib.Layer <- "Add(Variant)" of EXGAUGELib.Layers
EXGAUGELib.Layer <- "Item(Variant)" of EXGAUGELib.Layers
EXGAUGELib.Layer <- "VisibleItem(Long)" of EXGAUGELib.Layers

EXGAUGELib.Layers <- "Layers" of EXGAUGELib.Gauge
EXGAUGELib.Picture <- "ExtraPicture(Variant)" of EXGAUGELib.Background
EXGAUGELib.Picture <- "Picture" of EXGAUGELib.Background

The Gauge object supports the following properties and methods:

Name Description

AllowCopyTemplate
Specifies whether the Shift + Ctrl + Alt + Insert sequence
copies the control's content to the clipboard, in template
form.

AllowMoveOnClick
Allows moving the window that contains the control to a
new position, as you would do by clicking the form's
title/caption.

AllowSmoothChange Specifies the properties of the layers that support smooth
change.

AnchorFromPoint Retrieves the identifier of the anchor from point.
Appearance Retrieves or sets the control's appearance.

AttachTemplate Attaches a script to the current object, including the
events, from a string, file, a safe array of bytes.

BackColor Specifies the control's background color.

Background Returns or sets a value that indicates the background
color for parts in the control.

BeginUpdate
Maintains performance when items are added to the
control one at a time. This method prevents the control
from painting until the EndUpdate method is called.

Caption Specifies the caption on the control.
CopyTo Exports the control's view to an EMF file.
Debug Displays the control in debug mode.

DefaultLayer Defines the default value for properties of the layers to be
created.

Enabled Enables or disables the control.

EndUpdate Resumes painting the control after painting is suspended
by the BeginUpdate method.

EventParam Retrieves or sets a value that indicates the current's event
parameter.

ExecuteTemplate Executes a template and returns the result.

ExtraCaption Specifies any extra caption on the control.
Font Retrieves or sets the control's font.
ForeColor Specifies the control's foreground color.

FormatABC Formats the A,B,C values based on the giving expression
and returns the result.

FormatAnchor Specifies the visual effect for anchor elements in HTML
captions.

FreezeEvents Prevents the control to fire any event.
HTMLPicture Adds or replaces a picture in HTML captions.
hWnd Retrieves the control's window handle.

Images Sets at runtime the control's image list. The Handle should
be a handle to an Images List Control.

ImageSize Retrieves or sets the size of icons the control displays..

LayerAutoSize Specifies the index of the layer that determines the size to
display all layers.

LayerClipTo Specifies the index of the layer that clips the entire control
to.

LayerClipToParent Indicates if the LayerClipTo method clips the control itself,
parent or the owner of the control.

LayerDragAny Specifies the index of the layer to drag (rotate or move)
once the user clicks anywhere on the control.

LayerFromPoint Retrieves the index of the layer from the point (only visible
and selectable objects are included).

LayerOfValue Specifies the index of the layer whose value represents
the control's Value property.

Layers Returns the Layers collection.
LayerUpdate Specifies where the control updates its content.

PicturesName Specifies the expression that indicates the name of the
picture to be loaded on each layer.

PicturesPath Specifies the path to load the pictures from.
Refresh Refreses the control.

ReplaceIcon Adds a new icon, replaces an icon or clears the control's
image list.

ShowImageList Specifies whether the control's image list window is visible
or hidden.

ShowLayers Indicates the only layers to be shown on the control.

ShowToolTip Shows the specified tooltip at given position.
Template Specifies the control's template.

TemplateDef Defines inside variables for the next
Template/ExecuteTemplate call.

TemplatePut Defines inside variables for the next
Template/ExecuteTemplate call.

TimerInterval Returns or sets the number of milliseconds between calls
of control's Timer event.

ToolTipDelay Specifies the time in ms that passes before the ToolTip
appears.

ToolTipFont Retrieves or sets the tooltip's font.

ToolTipPopDelay Specifies the period in ms of time the ToolTip remains
visible if the mouse pointer is stationary within a control.

ToolTipWidth Specifies a value that indicates the width of the tooltip
window, in pixels.

ToTemplate Generates the control's template.

TransparentColorFrom Specifies the transparent color for all pictures in all layers,
to define transparency part (from).

TransparentColorTo Specifies the transparent color for all pictures in all layers,
to define transparency part (to).

Value Specifies the control's value.
Version Retrieves the control's version.
VisualAppearance Retrieves the control's appearance.

property Gauge.AllowCopyTemplate as Boolean
Specifies whether the Shift + Ctrl + Alt + Insert sequence copies the control's content to the
clipboard, in template form.

Type Description

Boolean
A Boolean expression that specifies whether the Shift +
Ctrl + Alt + Insert sequence copies the control's content to
the clipboard, in template form.

By default, AllowCopyTemplate property is True (for evaluation version), and False (for
registered version). The AllowCopyTemplate property specifies whether the Shift + Ctrl +
Alt + Insert sequence copies the control's content to the clipboard, in template form. The
AllowCopyTemplate property is available for /COM version only, and it was provided for a
simple way of copying the control's content to template form, no matter of your
programming language. The property uses the ToTemplate property to generate the
control's template, at runtime. The format of the clipboard being copied is plain text. Use
the Template property to apply the generated template to an empty control.

property Gauge.AllowMoveOnClick as Boolean
Allows moving the window that contains the control to a new position, as you would do by
clicking the form's title/caption.

Type Description

Boolean A Boolean expression that specifies whether the user can
move the control on the screen by clicking it.

By default, the AllowMoveOnClick property is False. The AllowMoveOnClick property
allows moving the window that contains the control to a new position, as you would do by
clicking the form's title/caption. For instance, you can use the AllowMoveOnClick property
on True, when you create a widget to be displayed on the screen, and so the user can
move the widget by clicking it.

You can use any of the following to convert your control to a widget:

The LayerClipTo property specifies the index of the layer that clips the entire control to.
The LayerUpdate property indicates where the control's content is updated.

property Gauge.AllowSmoothChange as SmoothPropertyEnum
Specifies the properties of the layers that support smooth change.

Type Description

SmoothPropertyEnum A SmoothPropertyEnum expression the properties of the
layer that can be changed gradually.

By default, the AllowSmoothChange property is exLayerTransparency | exLayerBrightness |
exLayerContrast. Use the AllowSmoothChange property to disable changing gradually any
brightness / contrast or the transparency, of the layer. For instance, a gradually change
means that you can change the layer's transparency from 0 to 50 in a short time, with
intermediate values (smooth change).

The AllowSmoothChange property changes gradually one / or more properties like follow:

Brightness, Specifies the percent of brightness to apply to the layer.
Contrast, Specifies the percent of contrast to apply to the layer.
Transparency, Gets or sets a value that indicates percent of the transparency to
display the layer.

The MouseIn / MouseOut event notifies your application when the cursor is entering /
leaving the layer. The MouseMove event is generated continually as the mouse pointer
moves across objects. The AllowSmoothChange property specifies the properties of the
layers that support smooth change. For instance, you can use the MouseIn / MouseOut
event to change gradually the brightness / contrast or the transparency, of the layer, while
the AllowSmoothChange property is not exSmoothChangeless.

property Gauge.AnchorFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as String
Retrieves the identifier of the anchor from point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

String
A String expression that specifies the identifier (id) of the
anchor element from the point, or empty string if there is
no anchor element at the cursor.

Use the AnchorFromPoint property to determine the identifier of the anchor from the point.
Use the <a id;options> anchor elements to add hyperlinks to cell's caption. The control fires
the AnchorClick event when the user clicks an anchor element. Use the ShowToolTip
method to show the specified tooltip at given or cursor coordinates. The MouseMove event
is generated continually as the mouse pointer moves across the control.

property Gauge.Appearance as AppearanceEnum
Retrieves or sets the control's appearance.

Type Description

AppearanceEnum

An AppearanceEnum expression that indicates the
control's appearance, or a color expression whose last 7
bits in the high significant byte of the value indicates the
index of the skin in the Appearance collection, being
displayed as control's borders. For instance, if the
Appearance = 0x1000000, indicates that the first skin
object in the Appearance collection defines the control's
border. The Client object in the skin, defines the client
area of the control.

Use the Appearance property to specify the control's border.

method Gauge.AttachTemplate (Template as Variant)
Attaches a script to the current object, including the events, from a string, file, a safe array
of bytes.

Type Description
Template as Variant A string expression that specifies the Template to execute.

The AttachTemplate/x-script code is a simple way of calling control/object's properties,
methods/events using strings. The AttachTemplate features allows you to attach a x-script
code to the component. The AttachTemplate method executes x-script code (including
events), from a string, file or a safe array of bytes. This feature allows you to run any x-
script code for any configuration of the component /COM, /NET or /WPF. Exontrol owns the
x-script implementation in its easiest form and it does not require any VB engine or
whatever to get executed. The x-script code can be converted to several programming
languages using the eXHelper tool.

The following sample opens the Windows Internet Explorer once the user clicks the control
(/COM version):

AttachTemplate("handle Click(){ CreateObject(`internetexplorer.application`){ Visible =
True; Navigate(`https://www.exontrol.com`) } } ")

This script is equivalent with the following VB code:

Private Sub Gauge1_Click()
 With CreateObject("internetexplorer.application")
 .Visible = True
 .Navigate ("https://www.exontrol.com")
 End With
End Sub

The AttachTemplate/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>
<lines> := <line>[<eol> <lines>] | <block>
<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]
<eol> := ";" | "\r\n"
<line> := <dim> | <createobject> | <call> | <set> | <comment> | <handle>[<eol>]{[<eol>]
<lines>[<eol>]}[<eol>]
<dim> := "DIM" <variables>
<variables> := <variable> [, <variables>]

<variable> := "ME" | <identifier>
<createobject> := "CREATEOBJECT(`"<type>"`)"
<call> := <variable> | <property> | <variable>"."<property> | <createobject>"."<property>
<property> := [<property>"."]<identifier>["("<parameters>")"]
<set> := <call> "=" <value>
<property> := <identifier> | <identifier>"("[<parameters>]")"
<parameters> := <value> [","<parameters>]
<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> | <call>
<boolean> := "TRUE" | "FALSE"
<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit16> := <digit10> | A | B | C | D | E | F
<integer> := <digit10>[<integer>]
<hexa> := <digit16>[<hexa>]
<color> := "RGB("<integer>","<integer>","<integer>")"
<date> := "#"<integer>"/"<integer>"/"<integer>" "[<integer>":"<integer>":"<integer>"]"#"
<string> := '"'<text>'"' | "`"<text>"`"
<comment> := "'"<text>
<handle> := "handle " <event>
<event> := <identifier>"("[<eparameters>]")"
<eparameters> := <eparameter> [","<eparameters>]
<parameters> := <identifier>

where:

<identifier> indicates an identifier of the variable, property, method or event, and should
start with a letter.
<type> indicates the type the CreateObject function creates, as a progID for /COM version
or the assembly-qualified name of the type to create for /NET or /WPF version
<text> any string of characters

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character.

The advantage of the AttachTemplate relative to Template / ExecuteTemplate is that the
AttachTemplate can add handlers to the control events.

property Gauge.BackColor as Color
Specifies the control's background color.

Type Description

Color A Color expression that indicates the control's background
color.

The BackColor property specifies the control's background color. The ForeColor property
specifies the control's foreground color.

Any of the following properties can be used to display a HTML caption:

Caption property specifies the caption to be shown on the control's foreground.
ExtraCaption property specifies any extra caption to be shown on the control's
foreground.
Foreground.Caption specifies the caption to be shown on the layer's foreground.
Foreground.ExtraCaption specifies any extra caption to be shown on the layer's
foreground.

The following screen shot shows an extra-caption associated with the layer:

property Gauge.Background(Part as BackgroundPartEnum) as Color
Returns or sets a value that indicates the background color for parts in the control.

Type Description
Part as
BackgroundPartEnum

A BackgroundPartEnum expression that indicates a part in
the control.

Color

A Color expression that indicates the background color for
a specified part. The last 7 bits in the high significant byte
of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

The Background property specifies a background color or a visual appearance for specific
parts in the control. If the Background property is 0, the control draws the part as default.
Use the Add method to add new skins to the control. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the BeginUpdate and EndUpdate methods to maintain performance while init the control.
Use the Refresh method to refresh the control.

For instance:

Use the Background(exToolTipAppearance) property indicates the visual appearance of
the borders of the tooltips
Use the Background(exToolTipBackColor) property indicates the tooltip's background
color
Use the Background(exToolTipForeColor) property indicates the tooltip's foreground
color.

Use the ShowToolTip method to display a custom tooltip. The ToolTip / ToolTipTitle property
indicates the layer's tooltip. The LayerFromPoint property returns the index of the layer
from the cursor. Use the ToolTipWidth property to specify the width of the tooltip window
Use the ToolTipPopDelay property specifies the period in ms of time the ToolTip remains
visible if the mouse pointer is stationary within a control. Use the ToolTipFont property to
change the tooltip's font.

method Gauge.BeginUpdate ()
Maintains performance when items are added to the control one at a time. This method
prevents the control from painting until the EndUpdate method is called.

Type Description

property Gauge.Caption(Property as PropertyLayerCaptionEnum) as
Variant
Specifies the caption on the control.

Type Description
Property as
PropertyLayerCaptionEnum

A PropertyLayerCaptionEnum expression that specifies
the caption's property to be changed.

Variant A VARIANT expression that specifies the value of the
caption's property.

The control support unlimited HTML captions to be place anywhere on the control or on any
layer of the control. The Caption(exLayerCaption) specifies the HTML caption to be shown
on the control/layer. The Images method specifies the list of icons the control can display.
The HTMLPicture adds or replaces a picture in HTML captions. The
Caption(exLayerCaptionBackgroundExt) property indicates unlimited options to show any
HTML text, images, colors, EBNs, patterns, frames anywhere on the control / layer's
background. The caption on the control stay on its position, no matter what layer is moved
or rotated, while a caption on a layer gets moved or rotated or clipped together with the
layer itself. The Visible property shows or hides all layer's caption / extra-captions. The
LayerToClientX / LayerToClientY properties translate a point from the layer (as it is moved
or rotated) to the control's view.

Any of the following properties can be used to display a HTML caption:

Caption property specifies the caption to be shown on the control's foreground.
ExtraCaption property specifies any extra caption to be shown on the control's
foreground.
Foreground.Caption specifies the caption to be shown on the layer's foreground.
Foreground.ExtraCaption specifies any extra caption to be shown on the layer's
foreground.

The following screen shot shows a caption on the Top-Left side of the control, and one
extra caption to to Bottom-Right side of the control:

The following samples show how you can place caption on the Top-Left side of the control,
and one extra caption to to Bottom-Right side of the control:

VBA (MS Access, Excell...)

With Gauge1
 .BeginUpdate
 .HTMLPicture("logo") = "E:\Exontrol\Exontrol.Logo\exontrol.logo.png"
 .PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
1"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5
 .Caption(0) = "This is just a caption"
 .ExtraCaption("logo",3) = 2
 .ExtraCaption("logo",8) = True
 .ExtraCaption("logo",6) = "164"
 .ExtraCaption("logo",4) = "width - 164"
 .ExtraCaption("logo",0) = "<c>This is our logo
<c>logo"
 .EndUpdate
End With

VB6

With Gauge1
 .BeginUpdate
 .HTMLPicture("logo") = "E:\Exontrol\Exontrol.Logo\exontrol.logo.png"
 .PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob

1"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5
 .Caption(exLayerCaption) = "This is just a caption"
 .ExtraCaption("logo",exLayerCaptionAnchor) = 2
 .ExtraCaption("logo",exLayerCaptionWordWrap) = True
 .ExtraCaption("logo",exLayerCaptionWidth) = "164"
 .ExtraCaption("logo",exLayerCaptionLeft) = "width - 164"
 .ExtraCaption("logo",exLayerCaption) = "<c>This is our logo
<c>
logo"
 .EndUpdate
End With

VB.NET

With Exgauge1
 .BeginUpdate()
 .set_HTMLPicture("logo","E:\Exontrol\Exontrol.Logo\exontrol.logo.png")
 .PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
1"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5

.set_Caption(exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,"This
is just a caption")

.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionAnchor,

.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWordWrap,

.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWidth,

.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionLeft,
 - 164")

.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,
<c>This is our logo
<c>logo")
 .EndUpdate()
End With

VB.NET for /COM

With AxGauge1
 .BeginUpdate()
 .set_HTMLPicture("logo","E:\Exontrol\Exontrol.Logo\exontrol.logo.png")
 .PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
1"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5
 .set_Caption(EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,"This is just
a caption")

.set_ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionAnchor,

.set_ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWordWrap,

.set_ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWidth,"164"

.set_ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionLeft,"width
 - 164")
 .set_ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,"
<c>This is our logo
<c>logo")
 .EndUpdate()
End With

C++

/*
 Copy and paste the following directives to your header file as

 it defines the namespace 'EXGAUGELib' for the library: 'ExGauge 1.0 Control
Library'

 #import <ExGauge.dll>
 using namespace EXGAUGELib;
*/
EXGAUGELib::IGaugePtr spGauge1 = GetDlgItem(IDC_GAUGE1)-
>GetControlUnknown();
spGauge1->BeginUpdate();
spGauge1-
>PutHTMLPicture(L"logo","E:\\Exontrol\\Exontrol.Logo\\exontrol.logo.png");
spGauge1->PutPicturesPath(L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 1");
spGauge1->PutPicturesName(L"`Layer` + int(value + 1) + `.png`");
spGauge1->GetLayers()->PutCount(5);
spGauge1->PutCaption(EXGAUGELib::exLayerCaption,"This is just a caption");
spGauge1->PutExtraCaption("logo",EXGAUGELib::exLayerCaptionAnchor,long(2));
spGauge1-
>PutExtraCaption("logo",EXGAUGELib::exLayerCaptionWordWrap,VARIANT_TRUE);
spGauge1->PutExtraCaption("logo",EXGAUGELib::exLayerCaptionWidth,"164");
spGauge1->PutExtraCaption("logo",EXGAUGELib::exLayerCaptionLeft,"width - 164");
spGauge1->PutExtraCaption("logo",EXGAUGELib::exLayerCaption,"<c>This is our
logo
<c>logo");
spGauge1->EndUpdate();

C++ Builder

Gauge1->BeginUpdate();
Gauge1->HTMLPicture[L"logo"] =
TVariant("E:\\Exontrol\\Exontrol.Logo\\exontrol.logo.png");
Gauge1->PicturesPath = L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 1";
Gauge1->PicturesName = L"`Layer` + int(value + 1) + `.png`";
Gauge1->Layers->Count = 5;
Gauge1->Caption[Exgaugelib_tlb::PropertyLayerCaptionEnum::exLayerCaption] =
TVariant("This is just a caption");

Gauge1-
>ExtraCaption[TVariant("logo"),Exgaugelib_tlb::PropertyLayerCaptionEnum::exLayerCaptionAnchor]
 = TVariant(2);
Gauge1-
>ExtraCaption[TVariant("logo"),Exgaugelib_tlb::PropertyLayerCaptionEnum::exLayerCaptionWordWrap]
 = TVariant(true);
Gauge1-
>ExtraCaption[TVariant("logo"),Exgaugelib_tlb::PropertyLayerCaptionEnum::exLayerCaptionWidth]
 = TVariant("164");
Gauge1-
>ExtraCaption[TVariant("logo"),Exgaugelib_tlb::PropertyLayerCaptionEnum::exLayerCaptionLeft]
 = TVariant("width - 164");
Gauge1-
>ExtraCaption[TVariant("logo"),Exgaugelib_tlb::PropertyLayerCaptionEnum::exLayerCaption]
 = TVariant("<c>This is our logo
<c>logo");
Gauge1->EndUpdate();

C#

exgauge1.BeginUpdate();
exgauge1.set_HTMLPicture("logo","E:\\Exontrol\\Exontrol.Logo\\exontrol.logo.png");
exgauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 1";
exgauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
exgauge1.Layers.Count = 5;
exgauge1.set_Caption(exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,
 is just a caption");
exgauge1.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionAnchor,

exgauge1.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWordWrap,true);

exgauge1.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWidth,

exgauge1.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionLeft,
 - 164");
exgauge1.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,

<c>This is our logo
<c>logo");
exgauge1.EndUpdate();

JScript/JavaScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 Gauge1.BeginUpdate();
 Gauge1.HTMLPicture("logo") = "E:\\Exontrol\\Exontrol.Logo\\exontrol.logo.png";
 Gauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 1";
 Gauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
 Gauge1.Layers.Count = 5;
 Gauge1.Caption(0) = "This is just a caption";
 Gauge1.ExtraCaption("logo",3) = 2;
 Gauge1.ExtraCaption("logo",8) = true;
 Gauge1.ExtraCaption("logo",6) = "164";
 Gauge1.ExtraCaption("logo",4) = "width - 164";
 Gauge1.ExtraCaption("logo",0) = "<c>This is our logo
<c>
logo";
 Gauge1.EndUpdate();
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With Gauge1
 .BeginUpdate
 .HTMLPicture("logo") = "E:\Exontrol\Exontrol.Logo\exontrol.logo.png"
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 1"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5
 .Caption(0) = "This is just a caption"
 .ExtraCaption("logo",3) = 2
 .ExtraCaption("logo",8) = True
 .ExtraCaption("logo",6) = "164"
 .ExtraCaption("logo",4) = "width - 164"
 .ExtraCaption("logo",0) = "<c>This is our logo
<c>logo"
 .EndUpdate
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

axGauge1.BeginUpdate();
axGauge1.set_HTMLPicture("logo","E:\\Exontrol\\Exontrol.Logo\\exontrol.logo.png");
axGauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 1";
axGauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
axGauge1.Layers.Count = 5;
axGauge1.set_Caption(EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,"This
 is just a caption");
axGauge1.set_ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionAnchor,

axGauge1.set_ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWordWrap,true);

axGauge1.set_ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWidth,

axGauge1.set_ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionLeft,
 - 164");
axGauge1.set_ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,
<c>This is our logo
<c>logo");
axGauge1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{
 ;

 super();

 exgauge1.BeginUpdate();
 exgauge1.HTMLPicture("logo","E:\\Exontrol\\Exontrol.Logo\\exontrol.logo.png");
 exgauge1.PicturesPath("C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 1");
 exgauge1.PicturesName("`Layer` + int(value + 1) + `.png`");
 exgauge1.Layers().Count(5);
 exgauge1.Caption(0/*exLayerCaption*/,"This is just a caption");

exgauge1.ExtraCaption("logo",3/*exLayerCaptionAnchor*/,COMVariant::createFromInt(2));

exgauge1.ExtraCaption("logo",8/*exLayerCaptionWordWrap*/,COMVariant::createFromBoolean(true));

 exgauge1.ExtraCaption("logo",6/*exLayerCaptionWidth*/,"164");
 exgauge1.ExtraCaption("logo",4/*exLayerCaptionLeft*/,"width - 164");
 exgauge1.ExtraCaption("logo",0/*exLayerCaption*/,"<c>This is our logo
<c>
logo");
 exgauge1.EndUpdate();
}

Delphi 8 (.NET only)

with AxGauge1 do
begin
 BeginUpdate();
 set_HTMLPicture('logo','E:\Exontrol\Exontrol.Logo\exontrol.logo.png');
 PicturesPath := 'C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
1';
 PicturesName := '`Layer` + int(value + 1) + `.png`';
 Layers.Count := 5;
 set_Caption(EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,'This is just a
caption');

set_ExtraCaption('logo',EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionAnchor,TObject(

set_ExtraCaption('logo',EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWordWrap,TObject(

set_ExtraCaption('logo',EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWidth,'164'

set_ExtraCaption('logo',EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionLeft,'width
 - 164');

set_ExtraCaption('logo',EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,'<c>This
 is our logo
<c>logo');
 EndUpdate();
end

Delphi (standard)

with Gauge1 do
begin
 BeginUpdate();
 HTMLPicture['logo'] := 'E:\Exontrol\Exontrol.Logo\exontrol.logo.png';
 PicturesPath := 'C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
1';
 PicturesName := '`Layer` + int(value + 1) + `.png`';

 Layers.Count := 5;
 Caption[EXGAUGELib_TLB.exLayerCaption] := 'This is just a caption';
 ExtraCaption['logo',EXGAUGELib_TLB.exLayerCaptionAnchor] := OleVariant(2);
 ExtraCaption['logo',EXGAUGELib_TLB.exLayerCaptionWordWrap] :=
OleVariant(True);
 ExtraCaption['logo',EXGAUGELib_TLB.exLayerCaptionWidth] := '164';
 ExtraCaption['logo',EXGAUGELib_TLB.exLayerCaptionLeft] := 'width - 164';
 ExtraCaption['logo',EXGAUGELib_TLB.exLayerCaption] := '<c>This is our logo

<c>logo';
 EndUpdate();
end

VFP

with thisform.Gauge1
 .BeginUpdate
 .Object.HTMLPicture("logo") = "E:\Exontrol\Exontrol.Logo\exontrol.logo.png"
 .PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
1"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5
 .Object.Caption(0) = "This is just a caption"
 .Object.ExtraCaption("logo",3) = 2
 .Object.ExtraCaption("logo",8) = .T.
 .Object.ExtraCaption("logo",6) = "164"
 .Object.ExtraCaption("logo",4) = "width - 164"
 .Object.ExtraCaption("logo",0) = "<c>This is our logo
<c>
logo"
 .EndUpdate
endwith

dBASE Plus

local oGauge

oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject
oGauge.BeginUpdate()
oGauge.Template = [HTMLPicture("logo") =

"E:\Exontrol\Exontrol.Logo\exontrol.logo.png"] // oGauge.HTMLPicture("logo") =
"E:\Exontrol\Exontrol.Logo\exontrol.logo.png"
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 1"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 5
oGauge.Template = [Caption(0) = "This is just a caption"] // oGauge.Caption(0) =
"This is just a caption"
oGauge.Template = [ExtraCaption("logo",3) = 2] // oGauge.ExtraCaption("logo",3) = 2
oGauge.Template = [ExtraCaption("logo",8) = True] // oGauge.ExtraCaption("logo",8)
= true
oGauge.Template = [ExtraCaption("logo",6) = "164"] // oGauge.ExtraCaption("logo",6)
= "164"
oGauge.Template = [ExtraCaption("logo",4) = "width - 164"] //
oGauge.ExtraCaption("logo",4) = "width - 164"
oGauge.Template = [ExtraCaption("logo",0) = "<c>This is our logo
<c>
logo"] // oGauge.ExtraCaption("logo",0) = "<c>This is our logo

<c>logo"
oGauge.EndUpdate()

XBasic (Alpha Five)

Dim oGauge as P

oGauge = topparent:CONTROL_ACTIVEX1.activex
oGauge.BeginUpdate()
oGauge.Template = "HTMLPicture(`logo`) =
`E:\Exontrol\Exontrol.Logo\exontrol.logo.png`" // oGauge.HTMLPicture("logo") =
"E:\Exontrol\Exontrol.Logo\exontrol.logo.png"
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 1"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 5
oGauge.Template = "Caption(0) = `This is just a caption`" // oGauge.Caption(0) =
"This is just a caption"
oGauge.Template = "ExtraCaption(`logo`,3) = 2" // oGauge.ExtraCaption("logo",3) = 2

oGauge.Template = "ExtraCaption(`logo`,8) = True" // oGauge.ExtraCaption("logo",8)
= .t.
oGauge.Template = "ExtraCaption(`logo`,6) = `164`" // oGauge.ExtraCaption("logo",6)
= "164"
oGauge.Template = "ExtraCaption(`logo`,4) = `width - 164`" //
oGauge.ExtraCaption("logo",4) = "width - 164"
oGauge.Template = "ExtraCaption(`logo`,0) = `<c>This is our logo
<c>
logo`" // oGauge.ExtraCaption("logo",0) = "<c>This is our logo

<c>logo"
oGauge.EndUpdate()

Visual Objects

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:[HTMLPicture,"logo"] :=
"E:\Exontrol\Exontrol.Logo\exontrol.logo.png"
oDCOCX_Exontrol1:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 1"
oDCOCX_Exontrol1:PicturesName := "`Layer` + int(value + 1) + `.png`"
oDCOCX_Exontrol1:Layers:Count := 5
oDCOCX_Exontrol1:[Caption,exLayerCaption] := "This is just a caption"
oDCOCX_Exontrol1:[ExtraCaption,"logo",exLayerCaptionAnchor] := 2
oDCOCX_Exontrol1:[ExtraCaption,"logo",exLayerCaptionWordWrap] := true
oDCOCX_Exontrol1:[ExtraCaption,"logo",exLayerCaptionWidth] := "164"
oDCOCX_Exontrol1:[ExtraCaption,"logo",exLayerCaptionLeft] := "width - 164"
oDCOCX_Exontrol1:[ExtraCaption,"logo",exLayerCaption] := "<c>This is our
logo
<c>logo"
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oGauge

oGauge = ole_1.Object
oGauge.BeginUpdate()

oGauge.HTMLPicture("logo","E:\Exontrol\Exontrol.Logo\exontrol.logo.png")
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 1"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 5
oGauge.Caption(0,"This is just a caption")
oGauge.ExtraCaption("logo",3,2)
oGauge.ExtraCaption("logo",8,true)
oGauge.ExtraCaption("logo",6,"164")
oGauge.ExtraCaption("logo",4,"width - 164")
oGauge.ExtraCaption("logo",0,"<c>This is our logo
<c>logo")
oGauge.EndUpdate()

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Send ComBeginUpdate
 Set ComHTMLPicture "logo" to "E:\Exontrol\Exontrol.Logo\exontrol.logo.png"
 Set ComPicturesPath to "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 1"
 Set ComPicturesName to "`Layer` + int(value + 1) + `.png`"
 Variant voLayers
 Get ComLayers to voLayers
 Handle hoLayers
 Get Create (RefClass(cComLayers)) to hoLayers
 Set pvComObject of hoLayers to voLayers
 Set ComCount of hoLayers to 5
 Send Destroy to hoLayers
 Set ComCaption OLEexLayerCaption to "This is just a caption"
 Set ComExtraCaption "logo" OLEexLayerCaptionAnchor to 2
 Set ComExtraCaption "logo" OLEexLayerCaptionWordWrap to True
 Set ComExtraCaption "logo" OLEexLayerCaptionWidth to "164"
 Set ComExtraCaption "logo" OLEexLayerCaptionLeft to "width - 164"
 Set ComExtraCaption "logo" OLEexLayerCaption to "<c>This is our logo
<c>
logo"

 Send ComEndUpdate
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oGauge

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oGauge := XbpActiveXControl():new(oForm:drawingArea)
 oGauge:CLSID := "Exontrol.Gauge.1" /*{91628F12-393C-44EF-A558-
83ED1790AAD3}*/
 oGauge:create(,, {10,60},{610,370})

 oGauge:BeginUpdate()

oGauge:SetProperty("HTMLPicture","logo","E:\Exontrol\Exontrol.Logo\exontrol.logo.png"

 oGauge:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 1"
 oGauge:PicturesName := "`Layer` + int(value + 1) + `.png`"
 oGauge:Layers():Count := 5
 oGauge:SetProperty("Caption",0/*exLayerCaption*/,"This is just a caption")
 oGauge:SetProperty("ExtraCaption","logo",3/*exLayerCaptionAnchor*/,2)
 oGauge:SetProperty("ExtraCaption","logo",8/*exLayerCaptionWordWrap*/,.T.)
 oGauge:SetProperty("ExtraCaption","logo",6/*exLayerCaptionWidth*/,"164")
 oGauge:SetProperty("ExtraCaption","logo",4/*exLayerCaptionLeft*/,"width -
164")

 oGauge:SetProperty("ExtraCaption","logo",0/*exLayerCaption*/,"<c>This is our
logo
<c>logo")
 oGauge:EndUpdate()

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property Gauge.CopyTo (File as String) as Variant
Exports the control's view to an EMF file.

Type Description

File as String

A String expression that indicates the name of the file to
be saved. If present, the CopyTo property retrieves True,
if the operation succeeded, else False it is failed. If the
File parameter is missing or empty, the CopyTo property
retrieves an one dimension safe array of bytes that
contains the EMF content.

If the File parameter is not empty, the extension (
characters after last dot) determines the graphical/
format of the file to be saved as follows:

*.bmp *.dib *.rle, saves the control's content in BMP
format.
*.jpg *.jpe *.jpeg *.jfif, saves the control's content in
JPEG format.
*.gif, , saves the control's content in GIF format.
*.tif *.tiff, saves the control's content in TIFF format.
*.png, saves the control's content in PNG format.
*.pdf, saves the control's content to PDF format. The
File argument may carry up to 4 parameters
separated by the | character in the following order:
filename.pdf | paper size | margins | options. In
other words, you can specify the file name of the PDF
document, the paper size, the margins and options to
build the PDF document. By default, the paper size is
210 mm × 297 mm (A4 format) and the margins are
12.7 mm 12.7 mm 12.7 mm 12.7 mm. The units for
the paper size and margins can be pt for PostScript
Points, mm for Millimeters, cm for Centimeters, in
for Inches and px for pixels. If PostScript Points are
used if unit is missing. For instance, 8.27 in x 11.69 in,
indicates the size of the paper in inches. Currently, the
options can be single, which indicates that the
control's content is exported to a single PDF page.
For instance, the CopyTo("shot.pdf|33.11 in x 46.81
in|0 0 0 0|single") exports the control's content to an
A0 single PDF page, with no margins.
*.emf or any other extension determines the control to

save the control's content in EMF format.

For instance, the CopyTo("c:\temp\snapshot.png")
property saves the control's content in PNG format to
snapshot.png file.

Variant

A boolean expression that indicates whether the File was
successful saved, if the File parameter is not empty, or a
one dimension safe array of bytes, if the File parameter is
empty string.

The CopyTo method copies/exports the control's view to BMP, PNG, JPG, GIF, TIFF, PDF
or EMF graphical files.

The BMP file format, also known as bitmap image file or device independent bitmap
(DIB) file format or simply a bitmap, is a raster graphics image file format used to
store bitmap digital images, independently of the display device (such as a graphics
adapter)
The JPEG file format (seen most often with the .jpg extension) is a commonly used
method of lossy compression for digital images, particularly for those images produced
by digital photography.
The GIF (Graphics Interchange Format) is a bitmap image format that was introduced
by CompuServe in 1987 and has since come into widespread usage on the World Wide
Web due to its wide support and portability.
The TIFF (Tagged Image File Format) is a computer file format for storing raster
graphics images, popular among graphic artists, the publishing industry, and both
amateur and professional photographers in general.
The PNG (Portable Network Graphics) is a raster graphics file format that supports
lossless data compression. PNG was created as an improved, non-patented
replacement for Graphics Interchange Format (GIF), and is the most used lossless
image compression format on the Internet
The PDF (Portable Document Format) is a file format used to present documents in a
manner independent of application software, hardware, and operating systems. Each
PDF file encapsulates a complete description of a fixed-layout flat document, including
the text, fonts, graphics, and other information needed to display it.
The EMF (Enhanced Metafile Format) is a 32-bit format that can contain both vector
information and bitmap information. This format is an improvement over the Windows
Metafile Format and contains extended features, such as the following

 Built-in scaling information
 Built-in descriptions that are saved with the file
 Improvements in color palettes and device independence

The EMF format is an extensible format, which means that a programmer can modify
the original specification to add functionality or to meet specific needs. You can paste
this format to Microsoft Word, Excel, Front Page, Microsoft Image Composer and any
application that know to handle EMF formats.

The following VB sample saves the control's content to a EMF file:

If (Control.CopyTo("c:\temp\test.emf")) Then
 MsgBox "test.emf file created, open it using the mspaint editor."
End If

The following VB sample prints the EMF content (as bytes, File parameter is empty string
):

Dim i As Variant
For Each i In Control.CopyTo("")
 Debug.Print i
Next

property Gauge.Debug as DebugLayerEnum
Displays the control in debug mode.

Type Description

DebugLayerEnum A DebugLayerEnum expression that indicates whether the
control displays layers in debug mode.

By default, the Debug property is exNoDebugLayer. Use the Debug property to display the
layers in debug mode. The ShowLayers property indicates the only layers to be shown on
the control. The Debug property specifies debugging information to be shown while
dragging the layers. Also, properties like OnDrag, LayerFromPoint are not valid while the
control is running in debug mode.

The following screen shot shows the control using pictures from the C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob folder (Debug property is
exNoDebugLayer, default):

The following screen shot shows the control while Debug property is exDebugLayers:

property Gauge.DefaultLayer(Property as DefaultLayerPropertyEnum) as
Variant
Defines the default value for properties of the layers to be created.

Type Description
Property as
DefaultLayerPropertyEnum

A DefaultLayerPropertyEnum expression that specifies the
property to change the default value

Variant A VARIANT expression that specifies the property's
default value.

The DefaultLayer property defines the default value for properties of the layers to be
created. Any call of the DefaultLayer property has effect for any new layer added to the
control's collection. Changing the DefaultLayer property does not have any effect on
already existing layers.

The following samples show how you can load all layers with a semi-transparency (50%):

VBA (MS Access, Excell...)

With Gauge1
 .AllowSmoothChange = 0
 .DefaultLayer(22) = 50
 .PicturesPath = "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 11
End With

VB6

With Gauge1
 .AllowSmoothChange = exSmoothChangeless
 .DefaultLayer(exDefLayerTransparency) = 50
 .PicturesPath = "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 11
End With

VB.NET

With Exgauge1
 .AllowSmoothChange =
exontrol.EXGAUGELib.SmoothPropertyEnum.exSmoothChangeless

.set_DefaultLayer(exontrol.EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerTransparency,

 .PicturesPath = "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 11
End With

VB.NET for /COM

With AxGauge1
 .AllowSmoothChange = EXGAUGELib.SmoothPropertyEnum.exSmoothChangeless

.set_DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerTransparency,50)

 .PicturesPath = "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 11
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXGAUGELib' for the library: 'ExGauge 1.0 Control
Library'

 #import <ExGauge.dll>
 using namespace EXGAUGELib;
*/
EXGAUGELib::IGaugePtr spGauge1 = GetDlgItem(IDC_GAUGE1)-
>GetControlUnknown();

spGauge1->PutAllowSmoothChange(EXGAUGELib::exSmoothChangeless);
spGauge1->PutDefaultLayer(EXGAUGELib::exDefLayerTransparency,long(50));
spGauge1->PutPicturesPath(L"C:\\Program Files
(x86)\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob");
spGauge1->PutPicturesName(L"`Layer` + int(value + 1) + `.png`");
spGauge1->GetLayers()->PutCount(11);

C++ Builder

Gauge1->AllowSmoothChange =
Exgaugelib_tlb::SmoothPropertyEnum::exSmoothChangeless;
Gauge1-
>DefaultLayer[Exgaugelib_tlb::DefaultLayerPropertyEnum::exDefLayerTransparency] =
TVariant(50);
Gauge1->PicturesPath = L"C:\\Program Files
(x86)\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
Gauge1->PicturesName = L"`Layer` + int(value + 1) + `.png`";
Gauge1->Layers->Count = 11;

C#

exgauge1.AllowSmoothChange =
exontrol.EXGAUGELib.SmoothPropertyEnum.exSmoothChangeless;
exgauge1.set_DefaultLayer(exontrol.EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerTransparency,

exgauge1.PicturesPath = "C:\\Program Files
(x86)\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
exgauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
exgauge1.Layers.Count = 11;

JScript/JavaScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 Gauge1.AllowSmoothChange = 0;
 Gauge1.DefaultLayer(22) = 50;
 Gauge1.PicturesPath = "C:\\Program Files
(x86)\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
 Gauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
 Gauge1.Layers.Count = 11;
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With Gauge1
 .AllowSmoothChange = 0
 .DefaultLayer(22) = 50
 .PicturesPath = "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 11
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

axGauge1.AllowSmoothChange =
EXGAUGELib.SmoothPropertyEnum.exSmoothChangeless;
axGauge1.set_DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerTransparency,

axGauge1.PicturesPath = "C:\\Program Files
(x86)\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
axGauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
axGauge1.Layers.Count = 11;

X++ (Dynamics Ax 2009)

public void init()
{
 ;

 super();

 exgauge1.AllowSmoothChange(0/*exSmoothChangeless*/);

exgauge1.DefaultLayer(22/*exDefLayerTransparency*/,COMVariant::createFromInt(50));

 exgauge1.PicturesPath("C:\\Program Files
(x86)\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob");
 exgauge1.PicturesName("`Layer` + int(value + 1) + `.png`");
 exgauge1.Layers().Count(11);
}

Delphi 8 (.NET only)

with AxGauge1 do
begin
 AllowSmoothChange := EXGAUGELib.SmoothPropertyEnum.exSmoothChangeless;

set_DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerTransparency,TObject(

 PicturesPath := 'C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob';

 PicturesName := '`Layer` + int(value + 1) + `.png`';
 Layers.Count := 11;
end

Delphi (standard)

with Gauge1 do
begin
 AllowSmoothChange := EXGAUGELib_TLB.exSmoothChangeless;
 DefaultLayer[EXGAUGELib_TLB.exDefLayerTransparency] := OleVariant(50);
 PicturesPath := 'C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob';
 PicturesName := '`Layer` + int(value + 1) + `.png`';
 Layers.Count := 11;
end

VFP

with thisform.Gauge1
 .AllowSmoothChange = 0
 .Object.DefaultLayer(22) = 50
 .PicturesPath = "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 11
endwith

dBASE Plus

local oGauge

oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject
oGauge.AllowSmoothChange = 0
oGauge.Template = [DefaultLayer(22) = 50] // oGauge.DefaultLayer(22) = 50
oGauge.PicturesPath = "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 11

XBasic (Alpha Five)

Dim oGauge as P

oGauge = topparent:CONTROL_ACTIVEX1.activex
oGauge.AllowSmoothChange = 0
oGauge.Template = "DefaultLayer(22) = 50" // oGauge.DefaultLayer(22) = 50
oGauge.PicturesPath = "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 11

Visual Objects

oDCOCX_Exontrol1:AllowSmoothChange := exSmoothChangeless
oDCOCX_Exontrol1:[DefaultLayer,exDefLayerTransparency] := 50
oDCOCX_Exontrol1:PicturesPath := "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oDCOCX_Exontrol1:PicturesName := "`Layer` + int(value + 1) + `.png`"
oDCOCX_Exontrol1:Layers:Count := 11

PowerBuilder

OleObject oGauge

oGauge = ole_1.Object
oGauge.AllowSmoothChange = 0
oGauge.DefaultLayer(22,50)
oGauge.PicturesPath = "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 11

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Set ComAllowSmoothChange to OLEexSmoothChangeless
 Set ComDefaultLayer OLEexDefLayerTransparency to 50
 Set ComPicturesPath to "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 Set ComPicturesName to "`Layer` + int(value + 1) + `.png`"
 Variant voLayers
 Get ComLayers to voLayers
 Handle hoLayers
 Get Create (RefClass(cComLayers)) to hoLayers
 Set pvComObject of hoLayers to voLayers
 Set ComCount of hoLayers to 11
 Send Destroy to hoLayers
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oGauge

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oGauge := XbpActiveXControl():new(oForm:drawingArea)
 oGauge:CLSID := "Exontrol.Gauge.1" /*{91628F12-393C-44EF-A558-
83ED1790AAD3}*/
 oGauge:create(,, {10,60},{610,370})

 oGauge:AllowSmoothChange := 0/*exSmoothChangeless*/
 oGauge:SetProperty("DefaultLayer",22/*exDefLayerTransparency*/,50)
 oGauge:PicturesPath := "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 oGauge:PicturesName := "`Layer` + int(value + 1) + `.png`"
 oGauge:Layers():Count := 11

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property Gauge.Enabled as Boolean
Enables or disables the control.

Type Description

Boolean A boolean expression that determines whether an control
can respond to user-generated events.

By default, the Enabled property is True. The Enabled property specifies whether the entire
control is enabled or disabled. The Selectable property returns or sets a value that
indicates whether the layer is selectable. You can use the Grayscale property to show the
entire layer in gray scale (disable state). For instance, you can simulate a disabled layer by
changing the layer's Grayscale property on True, and setting the layer's Selectable property
on False.

method Gauge.EndUpdate ()
Resumes painting the control after painting is suspended by the BeginUpdate method.

Type Description

property Gauge.EventParam(Parameter as Long) as Variant
Retrieves or sets a value that indicates the current's event parameter.

Type Description

Parameter as Long

A long expression that indicates the index of the parameter
being requested ie 0 means the first parameter, 1 means
the second, and so on. If -1 is used the EventParam
property retrieves the number of parameters. Accessing
an not-existing parameter produces an OLE error, such as
invalid pointer (E_POINTER)

Variant A VARIANT expression that specifies the parameter's
value.

The EventParam method is provided to allow changing the event's parameters passed by
reference, even if your environment does not support changing it (uniPaas 1.5 (formerly
known as eDeveloper), DBase, and so on). For instance, Unipaas event-handling logic
cannot update ActiveX control variables by updating the received arguments. The
EventParam(0) retrieves the value of the first parameter of the event, while the
EventParam(1) = 0, changes the value of the second parameter to 0 (the operation is
successfully, only if the parameter is passed by reference). The EventParam(-1) retrieves
the number of the parameters of the current event.

Let's take the event "event KeyDown (KeyCode as Integer, ByVal Shift as Integer)", where
the KeyCode parameter is passed by reference. For instance, put the KeyCode parameter
on 0, and the arrow keys are disabled while the control has the focus.

In most languages you will type something like:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 KeyCode = 0
End Sub

In case your environment does not support events with parameters by reference, you can
use a code like follows:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 Control1.EventParam(0) = 0
End Sub

In other words, the EventParam property provides the parameters of the current event for
reading or writing access, even if your environment does not allow changing parameters by

reference.

Calling the EventParam property outside of an event produces an OLE error, such as
pointer invalid, as its scope was designed to be used only during events.

method Gauge.ExecuteTemplate (Template as String)
Executes a template and returns the result.

Type Description
Template as String A Template string being executed
Return Description

Variant A Variant expression that indicates the result after
executing the Template.

Use the ExecuteTemplate property to returns the result of executing a template file. Use the
Template property to execute a template without returning any result. Use the
ExecuteTemplate property to execute code by passing instructions as a string (template
string).

For instance, the following sample retrieves the control's background color:

Debug.Print Gauge1.ExecuteTemplate("BackColor")

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for

newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of

the class associated with a specified program identifier.

property Gauge.ExtraCaption(Key as Variant, Property as
PropertyLayerCaptionEnum) as Variant
Specifies any extra caption on the control.

Type Description

Key as Variant
A VARIANT expression that specifies the key of the extra
caption. You can use any value to identify one extra
caption.

Property as
PropertyLayerCaptionEnum

A PropertyLayerCaptionEnum expression that specifies
the extra caption's property to be changed.

Variant A VARIANT expression that specifies the value of the extra
caption's property.

The control support unlimited HTML captions to be place anywhere on the control or on any
layer of the control. The Caption(exLayerCaption) specifies the HTML caption to be shown
on the control/layer. The Images method specifies the list of icons the control can display.
The HTMLPicture adds or replaces a picture in HTML captions. The Caption(
exLayerCaptionBackgroundExt) property indicates unlimited options to show any HTML
text, images, colors, EBNs, patterns, frames anywhere on the control / layer's background.
The caption on the control stay on its position, no matter what layer is moved or rotated,
while a caption on a layer gets moved or rotated together with the layer itself.

Any of the following properties can be used to display a HTML caption:

Caption property specifies the caption to be shown on the control's foreground.
ExtraCaption property specifies any extra caption to be shown on the control's
foreground.
Foreground.Caption specifies the caption to be shown on the layer's foreground.
Foreground.ExtraCaption specifies any extra caption to be shown on the layer's
foreground.

The following screen shot shows a caption on the Top-Left side of the control, and one
extra caption to to Bottom-Right side of the control:

The following samples show how you can place caption on the Top-Left side of the control,
and one extra caption to to Bottom-Right side of the control:

VBA (MS Access, Excell...)

With Gauge1
 .BeginUpdate
 .HTMLPicture("logo") = "E:\Exontrol\Exontrol.Logo\exontrol.logo.png"
 .PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
1"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5
 .Caption(0) = "This is just a caption"
 .ExtraCaption("logo",3) = 2
 .ExtraCaption("logo",8) = True
 .ExtraCaption("logo",6) = "164"
 .ExtraCaption("logo",4) = "width - 164"
 .ExtraCaption("logo",0) = "<c>This is our logo
<c>logo"
 .EndUpdate
End With

VB6

With Gauge1
 .BeginUpdate
 .HTMLPicture("logo") = "E:\Exontrol\Exontrol.Logo\exontrol.logo.png"
 .PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob

1"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5
 .Caption(exLayerCaption) = "This is just a caption"
 .ExtraCaption("logo",exLayerCaptionAnchor) = 2
 .ExtraCaption("logo",exLayerCaptionWordWrap) = True
 .ExtraCaption("logo",exLayerCaptionWidth) = "164"
 .ExtraCaption("logo",exLayerCaptionLeft) = "width - 164"
 .ExtraCaption("logo",exLayerCaption) = "<c>This is our logo
<c>
logo"
 .EndUpdate
End With

VB.NET

With Exgauge1
 .BeginUpdate()
 .set_HTMLPicture("logo","E:\Exontrol\Exontrol.Logo\exontrol.logo.png")
 .PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
1"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5

.set_Caption(exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,"This
is just a caption")

.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionAnchor,

.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWordWrap,

.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWidth,

.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionLeft,
 - 164")

.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,
<c>This is our logo
<c>logo")
 .EndUpdate()
End With

VB.NET for /COM

With AxGauge1
 .BeginUpdate()
 .set_HTMLPicture("logo","E:\Exontrol\Exontrol.Logo\exontrol.logo.png")
 .PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
1"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5
 .set_Caption(EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,"This is just
a caption")

.set_ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionAnchor,

.set_ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWordWrap,

.set_ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWidth,"164"

.set_ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionLeft,"width
 - 164")
 .set_ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,"
<c>This is our logo
<c>logo")
 .EndUpdate()
End With

C++

/*
 Copy and paste the following directives to your header file as

 it defines the namespace 'EXGAUGELib' for the library: 'ExGauge 1.0 Control
Library'

 #import <ExGauge.dll>
 using namespace EXGAUGELib;
*/
EXGAUGELib::IGaugePtr spGauge1 = GetDlgItem(IDC_GAUGE1)-
>GetControlUnknown();
spGauge1->BeginUpdate();
spGauge1-
>PutHTMLPicture(L"logo","E:\\Exontrol\\Exontrol.Logo\\exontrol.logo.png");
spGauge1->PutPicturesPath(L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 1");
spGauge1->PutPicturesName(L"`Layer` + int(value + 1) + `.png`");
spGauge1->GetLayers()->PutCount(5);
spGauge1->PutCaption(EXGAUGELib::exLayerCaption,"This is just a caption");
spGauge1->PutExtraCaption("logo",EXGAUGELib::exLayerCaptionAnchor,long(2));
spGauge1-
>PutExtraCaption("logo",EXGAUGELib::exLayerCaptionWordWrap,VARIANT_TRUE);
spGauge1->PutExtraCaption("logo",EXGAUGELib::exLayerCaptionWidth,"164");
spGauge1->PutExtraCaption("logo",EXGAUGELib::exLayerCaptionLeft,"width - 164");
spGauge1->PutExtraCaption("logo",EXGAUGELib::exLayerCaption,"<c>This is our
logo
<c>logo");
spGauge1->EndUpdate();

C++ Builder

Gauge1->BeginUpdate();
Gauge1->HTMLPicture[L"logo"] =
TVariant("E:\\Exontrol\\Exontrol.Logo\\exontrol.logo.png");
Gauge1->PicturesPath = L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 1";
Gauge1->PicturesName = L"`Layer` + int(value + 1) + `.png`";
Gauge1->Layers->Count = 5;
Gauge1->Caption[Exgaugelib_tlb::PropertyLayerCaptionEnum::exLayerCaption] =
TVariant("This is just a caption");

Gauge1-
>ExtraCaption[TVariant("logo"),Exgaugelib_tlb::PropertyLayerCaptionEnum::exLayerCaptionAnchor]
 = TVariant(2);
Gauge1-
>ExtraCaption[TVariant("logo"),Exgaugelib_tlb::PropertyLayerCaptionEnum::exLayerCaptionWordWrap]
 = TVariant(true);
Gauge1-
>ExtraCaption[TVariant("logo"),Exgaugelib_tlb::PropertyLayerCaptionEnum::exLayerCaptionWidth]
 = TVariant("164");
Gauge1-
>ExtraCaption[TVariant("logo"),Exgaugelib_tlb::PropertyLayerCaptionEnum::exLayerCaptionLeft]
 = TVariant("width - 164");
Gauge1-
>ExtraCaption[TVariant("logo"),Exgaugelib_tlb::PropertyLayerCaptionEnum::exLayerCaption]
 = TVariant("<c>This is our logo
<c>logo");
Gauge1->EndUpdate();

C#

exgauge1.BeginUpdate();
exgauge1.set_HTMLPicture("logo","E:\\Exontrol\\Exontrol.Logo\\exontrol.logo.png");
exgauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 1";
exgauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
exgauge1.Layers.Count = 5;
exgauge1.set_Caption(exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,
 is just a caption");
exgauge1.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionAnchor,

exgauge1.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWordWrap,true);

exgauge1.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWidth,

exgauge1.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionLeft,
 - 164");
exgauge1.set_ExtraCaption("logo",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,

<c>This is our logo
<c>logo");
exgauge1.EndUpdate();

JScript/JavaScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 Gauge1.BeginUpdate();
 Gauge1.HTMLPicture("logo") = "E:\\Exontrol\\Exontrol.Logo\\exontrol.logo.png";
 Gauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 1";
 Gauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
 Gauge1.Layers.Count = 5;
 Gauge1.Caption(0) = "This is just a caption";
 Gauge1.ExtraCaption("logo",3) = 2;
 Gauge1.ExtraCaption("logo",8) = true;
 Gauge1.ExtraCaption("logo",6) = "164";
 Gauge1.ExtraCaption("logo",4) = "width - 164";
 Gauge1.ExtraCaption("logo",0) = "<c>This is our logo
<c>
logo";
 Gauge1.EndUpdate();
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With Gauge1
 .BeginUpdate
 .HTMLPicture("logo") = "E:\Exontrol\Exontrol.Logo\exontrol.logo.png"
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 1"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5
 .Caption(0) = "This is just a caption"
 .ExtraCaption("logo",3) = 2
 .ExtraCaption("logo",8) = True
 .ExtraCaption("logo",6) = "164"
 .ExtraCaption("logo",4) = "width - 164"
 .ExtraCaption("logo",0) = "<c>This is our logo
<c>logo"
 .EndUpdate
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

axGauge1.BeginUpdate();
axGauge1.set_HTMLPicture("logo","E:\\Exontrol\\Exontrol.Logo\\exontrol.logo.png");
axGauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 1";
axGauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
axGauge1.Layers.Count = 5;
axGauge1.set_Caption(EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,"This
 is just a caption");
axGauge1.set_ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionAnchor,

axGauge1.set_ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWordWrap,true);

axGauge1.set_ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWidth,

axGauge1.set_ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionLeft,
 - 164");
axGauge1.set_ExtraCaption("logo",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,
<c>This is our logo
<c>logo");
axGauge1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{
 ;

 super();

 exgauge1.BeginUpdate();
 exgauge1.HTMLPicture("logo","E:\\Exontrol\\Exontrol.Logo\\exontrol.logo.png");
 exgauge1.PicturesPath("C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 1");
 exgauge1.PicturesName("`Layer` + int(value + 1) + `.png`");
 exgauge1.Layers().Count(5);
 exgauge1.Caption(0/*exLayerCaption*/,"This is just a caption");

exgauge1.ExtraCaption("logo",3/*exLayerCaptionAnchor*/,COMVariant::createFromInt(2));

exgauge1.ExtraCaption("logo",8/*exLayerCaptionWordWrap*/,COMVariant::createFromBoolean(true));

 exgauge1.ExtraCaption("logo",6/*exLayerCaptionWidth*/,"164");
 exgauge1.ExtraCaption("logo",4/*exLayerCaptionLeft*/,"width - 164");
 exgauge1.ExtraCaption("logo",0/*exLayerCaption*/,"<c>This is our logo
<c>
logo");
 exgauge1.EndUpdate();
}

Delphi 8 (.NET only)

with AxGauge1 do
begin
 BeginUpdate();
 set_HTMLPicture('logo','E:\Exontrol\Exontrol.Logo\exontrol.logo.png');
 PicturesPath := 'C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
1';
 PicturesName := '`Layer` + int(value + 1) + `.png`';
 Layers.Count := 5;
 set_Caption(EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,'This is just a
caption');

set_ExtraCaption('logo',EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionAnchor,TObject(

set_ExtraCaption('logo',EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWordWrap,TObject(

set_ExtraCaption('logo',EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionWidth,'164'

set_ExtraCaption('logo',EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionLeft,'width
 - 164');

set_ExtraCaption('logo',EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,'<c>This
 is our logo
<c>logo');
 EndUpdate();
end

Delphi (standard)

with Gauge1 do
begin
 BeginUpdate();
 HTMLPicture['logo'] := 'E:\Exontrol\Exontrol.Logo\exontrol.logo.png';
 PicturesPath := 'C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
1';
 PicturesName := '`Layer` + int(value + 1) + `.png`';

 Layers.Count := 5;
 Caption[EXGAUGELib_TLB.exLayerCaption] := 'This is just a caption';
 ExtraCaption['logo',EXGAUGELib_TLB.exLayerCaptionAnchor] := OleVariant(2);
 ExtraCaption['logo',EXGAUGELib_TLB.exLayerCaptionWordWrap] :=
OleVariant(True);
 ExtraCaption['logo',EXGAUGELib_TLB.exLayerCaptionWidth] := '164';
 ExtraCaption['logo',EXGAUGELib_TLB.exLayerCaptionLeft] := 'width - 164';
 ExtraCaption['logo',EXGAUGELib_TLB.exLayerCaption] := '<c>This is our logo

<c>logo';
 EndUpdate();
end

VFP

with thisform.Gauge1
 .BeginUpdate
 .Object.HTMLPicture("logo") = "E:\Exontrol\Exontrol.Logo\exontrol.logo.png"
 .PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
1"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5
 .Object.Caption(0) = "This is just a caption"
 .Object.ExtraCaption("logo",3) = 2
 .Object.ExtraCaption("logo",8) = .T.
 .Object.ExtraCaption("logo",6) = "164"
 .Object.ExtraCaption("logo",4) = "width - 164"
 .Object.ExtraCaption("logo",0) = "<c>This is our logo
<c>
logo"
 .EndUpdate
endwith

dBASE Plus

local oGauge

oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject
oGauge.BeginUpdate()
oGauge.Template = [HTMLPicture("logo") =

"E:\Exontrol\Exontrol.Logo\exontrol.logo.png"] // oGauge.HTMLPicture("logo") =
"E:\Exontrol\Exontrol.Logo\exontrol.logo.png"
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 1"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 5
oGauge.Template = [Caption(0) = "This is just a caption"] // oGauge.Caption(0) =
"This is just a caption"
oGauge.Template = [ExtraCaption("logo",3) = 2] // oGauge.ExtraCaption("logo",3) = 2
oGauge.Template = [ExtraCaption("logo",8) = True] // oGauge.ExtraCaption("logo",8)
= true
oGauge.Template = [ExtraCaption("logo",6) = "164"] // oGauge.ExtraCaption("logo",6)
= "164"
oGauge.Template = [ExtraCaption("logo",4) = "width - 164"] //
oGauge.ExtraCaption("logo",4) = "width - 164"
oGauge.Template = [ExtraCaption("logo",0) = "<c>This is our logo
<c>
logo"] // oGauge.ExtraCaption("logo",0) = "<c>This is our logo

<c>logo"
oGauge.EndUpdate()

XBasic (Alpha Five)

Dim oGauge as P

oGauge = topparent:CONTROL_ACTIVEX1.activex
oGauge.BeginUpdate()
oGauge.Template = "HTMLPicture(`logo`) =
`E:\Exontrol\Exontrol.Logo\exontrol.logo.png`" // oGauge.HTMLPicture("logo") =
"E:\Exontrol\Exontrol.Logo\exontrol.logo.png"
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 1"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 5
oGauge.Template = "Caption(0) = `This is just a caption`" // oGauge.Caption(0) =
"This is just a caption"
oGauge.Template = "ExtraCaption(`logo`,3) = 2" // oGauge.ExtraCaption("logo",3) = 2

oGauge.Template = "ExtraCaption(`logo`,8) = True" // oGauge.ExtraCaption("logo",8)
= .t.
oGauge.Template = "ExtraCaption(`logo`,6) = `164`" // oGauge.ExtraCaption("logo",6)
= "164"
oGauge.Template = "ExtraCaption(`logo`,4) = `width - 164`" //
oGauge.ExtraCaption("logo",4) = "width - 164"
oGauge.Template = "ExtraCaption(`logo`,0) = `<c>This is our logo
<c>
logo`" // oGauge.ExtraCaption("logo",0) = "<c>This is our logo

<c>logo"
oGauge.EndUpdate()

Visual Objects

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:[HTMLPicture,"logo"] :=
"E:\Exontrol\Exontrol.Logo\exontrol.logo.png"
oDCOCX_Exontrol1:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 1"
oDCOCX_Exontrol1:PicturesName := "`Layer` + int(value + 1) + `.png`"
oDCOCX_Exontrol1:Layers:Count := 5
oDCOCX_Exontrol1:[Caption,exLayerCaption] := "This is just a caption"
oDCOCX_Exontrol1:[ExtraCaption,"logo",exLayerCaptionAnchor] := 2
oDCOCX_Exontrol1:[ExtraCaption,"logo",exLayerCaptionWordWrap] := true
oDCOCX_Exontrol1:[ExtraCaption,"logo",exLayerCaptionWidth] := "164"
oDCOCX_Exontrol1:[ExtraCaption,"logo",exLayerCaptionLeft] := "width - 164"
oDCOCX_Exontrol1:[ExtraCaption,"logo",exLayerCaption] := "<c>This is our
logo
<c>logo"
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oGauge

oGauge = ole_1.Object
oGauge.BeginUpdate()

oGauge.HTMLPicture("logo","E:\Exontrol\Exontrol.Logo\exontrol.logo.png")
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 1"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 5
oGauge.Caption(0,"This is just a caption")
oGauge.ExtraCaption("logo",3,2)
oGauge.ExtraCaption("logo",8,true)
oGauge.ExtraCaption("logo",6,"164")
oGauge.ExtraCaption("logo",4,"width - 164")
oGauge.ExtraCaption("logo",0,"<c>This is our logo
<c>logo")
oGauge.EndUpdate()

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Send ComBeginUpdate
 Set ComHTMLPicture "logo" to "E:\Exontrol\Exontrol.Logo\exontrol.logo.png"
 Set ComPicturesPath to "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 1"
 Set ComPicturesName to "`Layer` + int(value + 1) + `.png`"
 Variant voLayers
 Get ComLayers to voLayers
 Handle hoLayers
 Get Create (RefClass(cComLayers)) to hoLayers
 Set pvComObject of hoLayers to voLayers
 Set ComCount of hoLayers to 5
 Send Destroy to hoLayers
 Set ComCaption OLEexLayerCaption to "This is just a caption"
 Set ComExtraCaption "logo" OLEexLayerCaptionAnchor to 2
 Set ComExtraCaption "logo" OLEexLayerCaptionWordWrap to True
 Set ComExtraCaption "logo" OLEexLayerCaptionWidth to "164"
 Set ComExtraCaption "logo" OLEexLayerCaptionLeft to "width - 164"
 Set ComExtraCaption "logo" OLEexLayerCaption to "<c>This is our logo
<c>
logo"

 Send ComEndUpdate
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oGauge

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oGauge := XbpActiveXControl():new(oForm:drawingArea)
 oGauge:CLSID := "Exontrol.Gauge.1" /*{91628F12-393C-44EF-A558-
83ED1790AAD3}*/
 oGauge:create(,, {10,60},{610,370})

 oGauge:BeginUpdate()

oGauge:SetProperty("HTMLPicture","logo","E:\Exontrol\Exontrol.Logo\exontrol.logo.png"

 oGauge:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 1"
 oGauge:PicturesName := "`Layer` + int(value + 1) + `.png`"
 oGauge:Layers():Count := 5
 oGauge:SetProperty("Caption",0/*exLayerCaption*/,"This is just a caption")
 oGauge:SetProperty("ExtraCaption","logo",3/*exLayerCaptionAnchor*/,2)
 oGauge:SetProperty("ExtraCaption","logo",8/*exLayerCaptionWordWrap*/,.T.)
 oGauge:SetProperty("ExtraCaption","logo",6/*exLayerCaptionWidth*/,"164")
 oGauge:SetProperty("ExtraCaption","logo",4/*exLayerCaptionLeft*/,"width -
164")

 oGauge:SetProperty("ExtraCaption","logo",0/*exLayerCaption*/,"<c>This is our
logo
<c>logo")
 oGauge:EndUpdate()

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property Gauge.Font as IFontDisp

Retrieves or sets the control's font.

Type Description
IFontDisp A Font object used to paint the items.

Use the Font property to change the control's font . Use the Refresh method to refresh the
control. Use the BeginUpdate and EndUpdate method to maintain performance while adding
new layers to the control.

Any of the following properties can be used to display a HTML caption:

Caption property specifies the caption to be shown on the control's foreground.
ExtraCaption property specifies any extra caption to be shown on the control's
foreground.
Foreground.Caption specifies the caption to be shown on the layer's foreground.
Foreground.ExtraCaption specifies any extra caption to be shown on the layer's
foreground.

The following screen shot shows an extra-caption associated with the layer:

property Gauge.ForeColor as Color
Specifies the control's foreground color.

Type Description

Color A Color expression that indicates the control's foreground
color.

The ForeColor property specifies the control's foreground color. The BackColor property
specifies the control's background color.

Any of the following properties can be used to display a HTML caption:

Caption property specifies the caption to be shown on the control's foreground.
ExtraCaption property specifies any extra caption to be shown on the control's
foreground.
Foreground.Caption specifies the caption to be shown on the layer's foreground.
Foreground.ExtraCaption specifies any extra caption to be shown on the layer's
foreground.

The following screen shot shows an extra-caption associated with the layer:

method Gauge.FormatABC (Expression as String, [A as Variant], [B as
Variant], [C as Variant])
Formats the A,B,C values based on the giving expression and returns the result.

Type Description
Expression as String A String that defines the expression to be evaluated.

A as Variant A VARIANT expression that indicates the value of the A
keyword.

B as Variant A VARIANT expression that indicates the value of the B
keyword.

C as Variant A VARIANT expression that indicates the value of the C
keyword.

Return Description

Variant A VARIANT expression that indicates the result of the
evaluation the Expression.

The FormatABC method formats the A,B,C values based on the giving expression and
returns the result. The Exontrol's eXPression component is a syntax-editor that helps you
to define, view, edit and evaluate expressions. Using the eXPression component you can
easily view or check if the expression you have used is syntactically correct, and you can
evaluate what is the result you get giving different values to be tested. The Exontrol's
eXPression component can be used as an user-editor, to configure your applications.

For instance:

"A + B + C", adds / concatenates the values of the A, B and C
"value MIN 0 MAX 99", limits the value between 0 and 99
"value format ``", formats the value with two decimals, according to the control's panel
setting
"date(`now`)" returns the current time as double

The Expression of the FormatABC method supports the following keywords, constants,
operators and functions:

A or value keyword, indicates a variable A whose value is giving by the A parameter
B keyword, indicates a variable B whose value is giving by the B parameter
C keyword, indicates a variable C whose value is giving by the C parameter

The constants are (DPI-Aware components):

dpi (DPI constant), specifies the current DPI setting. and it indicates the minimum

https://exontrol.com/expression.jsp

value between dpix and dpiy constants. For instance, if current DPI setting is 100%,
the dpi constant returns 1, if 150% it returns 1.5, and so on. For instance, the
expression value * dpi returns the value if the DPI setting is 100%, or value * 1.5 in
case, the DPI setting is 150%
dpix (DPIX constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpix constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpix returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%
dpiy (DPIY constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpiy constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpiy returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported binary range operators, all these with the same priority 5, are :

MIN (min operator), indicates the minimum value, so a MIN b returns the value of a, if
it is less than b, else it returns b. For instance, the expression value MIN 10 returns

always a value greater than 10.
MAX (max operator), indicates the maximum value, so a MAX b returns the value of
a, if it is greater than b, else it returns b. For instance, the expression value MAX 100
returns always a value less than 100.

The supported binary operators, all these with the same priority 0, are :

:= (Store operator), stores the result of expression to variable. The syntax for :=
operator is

variable := expression

where variable is a integer between 0 and 9. You can use the =: operator to restore
any stored variable (please make the difference between := and =:). For instance,
(0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and prints zero
if it is 0, else the converted number. Please pay attention that the := and =: are two
distinct operators, the first for storing the result into a variable, while the second for
restoring the variable

=: (Restore operator), restores the giving variable (previously saved using the store
operator). The syntax for =: operator is

=: variable

where variable is a integer between 0 and 9. You can use the := operator to store the
value of any expression (please make the difference between := and =:). For
instance, (0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and
prints zero if it is 0, else the converted number. Please pay attention that the := and =:
are two distinct operators, the first for storing the result into a variable, while the
second for restoring the variable

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for ? operator is

expression ? true_part : false_part

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the %0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found') returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

expression array (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D') is equivalent with month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D').

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

expression in (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the value in (11,22,33,44,13) is equivalent with
(expression = 11) or (expression = 22) or (expression = 33) or (expression = 44) or
(expression = 13). The in operator is not a time consuming as the equivalent or version
is, so when you have large number of constant elements it is recommended using the
in operator. Shortly, if the collection of elements has 1000 elements the in operator
could take up to 8 operations in order to find if an element fits the set, else if the or
statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

expression switch (default,c1,c2,c3,...,cn)

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the %0 switch ('not found',1,4,7,9,11) gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

expression case ([default : default_expression ;] c1 : expression1 ; c2 : expression2
; c3 : expression3 ;....)

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1) indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8) statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions. Obviously, the priority of the operations inside the expression is
determined by () parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%1) = 8
specifies the cells (on the column 1) that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency

7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string. The str operator converts the
expression to a string. For instance, the str(-12.54) returns the string "-12.54".
dbl (unary operator) converts the expression to a number. The dbl operator converts
the expression to a number. For instance, the dbl("12.54") returns 12.54
date (unary operator) converts the expression to a date, based on your regional
settings. For instance, the date(``) gets the current date (no time included), the
date(`now`) gets the current date-time, while the date("01/01/2001") returns
#1/1/2001#
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS. For instance, the dateS("01/01/2001 14:00:00") returns
#1/1/2001 14:00:00#

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number. For instance, the
int(12.54) returns 12
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2. For
instance, the round(12.54) returns 13
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument. For instance, the floor(12.54) returns 12
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2.
For instance, the abs(-12.54) returns 12.54
sin (unary operator) returns the sine of an angle of x radians. For instance, the
sin(3.14) returns 0.001593.
cos (unary operator) returns the cosine of an angle of x radians. For instance, the
cos(3.14) returns -0.999999.
asin (unary operator) returns the principal value of the arc sine of x, expressed in
radians. For instance, the 2*asin(1) returns the value of PI.

acos (unary operator) returns the principal value of the arc cosine of x, expressed in
radians. For instance, the 2*acos(0) returns the value of PI
sqrt (unary operator) returns the square root of x. For instance, the sqrt(81) returns 9.
currency (unary operator) formats the giving number as a currency string, as indicated
by the control panel. For instance, currency(value) displays the value using the current
format for the currency ie, 1000 gets displayed as $1,000.00, for US format.
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the

flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string. For instance, the
len("Mihai") returns 5.
lower (unary operator) returns a string expression in lowercase letters. For instance,
the lower("MIHAI") returns "mihai"
upper (unary operator) returns a string expression in uppercase letters. For instance,
the upper("mihai") returns "MIHAI"
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names. For instance, the proper("mihai") returns "Mihai"
ltrim (unary operator) removes spaces on the left side of a string. For instance, the
ltrim(" mihai") returns "mihai"
rtrim (unary operator) removes spaces on the right side of a string. For instance, the
rtrim("mihai ") returns "mihai"
trim (unary operator) removes spaces on both sides of a string. For instance, the
trim(" mihai ") returns "mihai"
reverse (unary operator) reverses the order of the characters in the string a. For
instance, the reverse("Mihai") returns "iahiM"
startwith (binary operator) specifies whether a string starts with specified string (0 if
not found, -1 if found). For instance "Mihai" startwith "Mi" returns -1
endwith (binary operator) specifies whether a string ends with specified string (0 if
not found, -1 if found). For instance "Mihai" endwith "ai" returns -1
contains (binary operator) specifies whether a string contains another specified string
(0 if not found, -1 if found). For instance "Mihai" contains "ha" returns -1
left (binary operator) retrieves the left part of the string. For instance "Mihai" left 2
returns "Mi".
right (binary operator) retrieves the right part of the string. For instance "Mihai" right 2
returns "ai"
a lfind b (binary operator) The a lfind b (binary operator) searches the first occurrence
of the string b within string a, and returns -1 if not found, or the position of the result (
zero-index). For instance "ABCABC" lfind "C" returns 2
a rfind b (binary operator) The a rfind b (binary operator) searches the last
occurrence of the string b within string a, and returns -1 if not found, or the position of
the result (zero-index). For instance "ABCABC" rfind "C" returns 5.
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on). For instance "Mihai" mid 2 returns "ihai"
a count b (binary operator) retrieves the number of occurrences of the b in a. For
instance "Mihai" count "i" returns 2.
a replace b with c (double binary operator) replaces in a the b with c, and gets the

result. For instance, the "Mihai" replace "i" with "" returns "Mha" string, as it replaces
all "i" with nothing.
a split b, splits the a using the separator b, and returns an array. For instance, the
weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' ' gets the weekday as
string. This operator can be used with the array.

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel. For instance, the time(#1/1/2001 13:00#) returns "1:00:00 PM"
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance, the timeF(#1/1/2001 13:00#) returns "13:00:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel. For instance, the shortdate(#1/1/2001
13:00#) returns "1/1/2001"
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance, the shortdateF(#1/1/2001 13:00#) returns
"01/01/2001"
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format. For instance, the dateF(#01/01/2001 14:00:00#)
returns #01/01/2001 14:00:00#
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel. For instance, the longdate(#1/1/2001 13:00#)
returns "Monday, January 01, 2001"
year (unary operator) retrieves the year of the date (100,...,9999). For instance, the
year(#12/31/1971 13:14:15#) returns 1971
month (unary operator) retrieves the month of the date (1, 2,...,12). For instance, the
month(#12/31/1971 13:14:15#) returns 12.
day (unary operator) retrieves the day of the date (1, 2,...,31). For instance, the
day(#12/31/1971 13:14:15#) returns 31
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365). For instance, the yearday(#12/31/1971 13:14:15#) returns
365
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday). For instance, the weekday(#12/31/1971 13:14:15#) returns
5.
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23). For instance, the
hour(#12/31/1971 13:14:15#) returns 13
min (unary operator) retrieves the minute of the date (0, 1, ..., 59). For instance, the
min(#12/31/1971 13:14:15#) returns 14
sec (unary operator) retrieves the second of the date (0, 1, ..., 59). For instance, the
sec(#12/31/1971 13:14:15#) returns 15

property Gauge.FormatAnchor(New as Boolean) as String
Specifies the visual effect for anchor elements in HTML captions.

Type Description

New as Boolean A Boolean expression that indicates whether to specify the
anchors never clicked or anchors being clicked.

String A String expression that indicates the HTMLformat to
apply to anchor elements.

By default, the FormatAnchor(True) property is "<u><fgcolor=0000FF>#" that indicates
that the anchor elements (that were never clicked) are underlined and shown in light blue.
Also, the FormatAnchor(False) property is "<u><fgcolor=000080>#" that indicates that the
anchor elements are underlined and shown in dark blue. The visual effect is applied to the
anchor elements, if the FormatAnchor property is not empty. For instance, if you want to do
not show with a new effect the clicked anchor elements, you can use the
FormatAnchor(False) = "", that means that the clicked or not-clicked anchors are shown
with the same effect that's specified by FormatAnchor(True). An anchor is a piece of text
or some other object (for example an image) which marks the beginning and/or the end of a
hypertext link. The <a> element is used to mark that piece of text (or inline image), and to
give its hypertextual relationship to other documents. The control fires the AnchorClick event
to notify that the user clicks an anchor element. This event is fired only if prior clicking the
control it shows the hand cursor. The AnchorClick event carries the identifier of the anchor,
as well as application options that you can specify in the anchor element. The hand cursor
is shown when the user hovers the mouse on the anchor elements.

method Gauge.FreezeEvents (Freeze as Boolean)
Prevents the control to fire any event.

Type Description

Freeze as Boolean A Boolean expression that specifies whether the control'
events are froze or unfroze

The FreezeEvents(True) method freezes the control's events until the FreezeEvents(False)
method is called. You can use the FreezeEvents method to enable / disable the control's
events.

property Gauge.HTMLPicture(Key as String) as Variant
Adds or replaces a picture in HTML captions.

Type Description

Key as String
A String expression that indicates the key of the picture
being added or replaced. If the Key property is Empty
string, the entire collection of pictures is cleared.

Variant

The HTMLPicture specifies the picture being associated to
a key. It can be one of the followings:

a string expression that indicates the path to the
picture file, being loaded.
a string expression that indicates the base64 encoded
string that holds a picture object, Use the Exontrol's
ExImages Tool to save your picture as base64
encoded format.
A Picture object that indicates the picture being added
or replaced. (A Picture object implements IPicture
interface),

If empty, the picture being associated to a key is removed.
If the key already exists the new picture is replaced. If the
key is not empty, and it doesn't not exist a new picture is
added.

The HTMLPicture property handles a collection of custom size picture being displayed in the
HTML captions, using the tags. By default, the HTMLPicture collection is empty. Use
the HTMLPicture property to add new pictures to be used in HTML captions. For instance,
the HTMLPicture("pic1") = "c:\winnt\zapotec.bmp", loads the zapotec picture and
associates the pic1 key to it. Any "pic1" sequence in HTML captions, displays
the pic1 picture. On return, the HTMLPicture property retrieves a Picture object (this
implements the IPictureDisp interface).

The following sample shows how to put a custom size picture in the column's header:

<CONTROL>.HTMLPicture("pic1") = "c:/temp/editors.gif"
<CONTROL>.HTMLPicture("pic2") = "c:/temp/editpaste.gif"

<COLUMN1>.HTMLCaption = "A pic1"
<COLUMN2>.HTMLCaption = "B pic2"
<COLUMN3>.HTMLCaption = "A pic1 + B pic2"

https://exontrol.com/eximages.jsp

property Gauge.hWnd as Long

Retrieves the control's window handle.

Type Description

Long A long expression that indicates the control's window
handle.

Use the hWnd property to get the control's main window handle. The Microsoft Windows
operating environment identifies each form and control in an application by assigning it a
handle, or hWnd. The hWnd property is used with Windows API calls. Many Windows
operating environment functions require the hWnd of the active window as an argument.

method Gauge.Images (Handle as Variant)

Sets a runtime the control's image tree.

Type Description

Handle as Variant

The Handle parameter can be:

A string expression that specifies the ICO file to add.
The ICO file format is an image file format for
computer icons in Microsoft Windows. ICO files
contain one or more small images at multiple sizes
and color depths, such that they may be scaled
appropriately. For instance,
Images("c:\temp\copy.ico") method adds the sync.ico
file to the control's Images collection (string, loads the
icon using its path)
A string expression that indicates the BASE64
encoded string that holds the icons list. Use the
Exontrol's ExImages tool to save/load your icons as
BASE64 encoded format. In this case the string may
begin with "gBJJ..." (string, loads icons using base64
encoded string)
A reference to a Microsoft ImageList control
(mscomctl.ocx, MSComctlLib.ImageList type) that
holds the icons to add (object, loads icons from a
Microsoft ImageList control)
A reference to a Picture (IPictureDisp implementation)
that holds the icon to add. For instance, the VB's
LoadPicture (Function LoadPicture([FileName], [Size],
[ColorDepth], [X], [Y]) As IPictureDisp) or
LoadResPicture (Function LoadResPicture(id, restype
As Integer) As IPictureDisp) returns a picture object
(object, loads icon from a Picture object)
A long expression that identifies a handle to an Image
List Control (the Handle should be of HIMAGELIST
type). On 64-bit platforms, the Handle parameter
must be a Variant of LongLong / LONG_PTR data
type (signed 64-bit (8-byte) integers), saved under
llVal field, as VT_I8 type. The LONGLONG /
LONG_PTR is __int64, a 64-bit integer. For instance,
in C++ you can use as Images(COleVariant(
(LONG_PTR)hImageList)) or Images(COleVariant(
(LONGLONG)hImageList)), where hImageList is of

https://exontrol.com/eximages.jsp

HIMAGELIST type. The GetSafeHandle() method of
the CImageList gets the HIMAGELIST handle (long,
loads icon from HIMAGELIST type)

The user can add images at design time, by drag and drop files to combo's image holder.
The ImageSize property defines the size (width/height) of the icons within the control's
Images collection. Use the ReplaceIcon method to add, remove or clear icons in the
control's images collection.

property Gauge.ImageSize as Long
Retrieves or sets the size of icons the control displays..

Type Description

Long A long expression that defines the size of icons the control
displays.

By default, the ImageSize property is 16 (pixels). The ImageSize property specifies the size
of icons being loaded using the Images method. The control's Images collection is cleared if
the ImageSize property is changed, so it is recommended to set the ImageSize property
before calling the Images method. The ImageSize property defines the size (width/height)
of the icons within the control's Images collection. For instance, if the ICO file to load
includes different types the one closest with the size specified by ImageSize property is
loaded by Images method. The ImageSize property does NOT change the height for the
control's font.

property Gauge.LayerAutoSize as Long
Specifies the index of the layer that determines the size to display all layers.

Type Description

Long A Long expression that indicates the index of the layer that
determines the size to display all layers

By default, the LayerAutoSize property is 0, which indicates that the size of the entire view
is defined by the size of the first layer. The size of the layer is determined by it's picture (
Picture property). Shortly, the LayerAutoSize resizes all layers based on the picture of the
first layer.

For instance, you can use the LayerAutoSize property to:

stretches all the layers to the control's view, if the LayerAutoSize property is -1 (or any
other value that's not an index in the Layers collection)
resizes all layers relative to a specified layer and it's background picture
resizes all layers to a specified layer, whose Width and Height properties specify the
size of the view.

The following properties determines the position / size / offset of the layer:

Left, specifies the expression relative to the view, to determine the x-position to show
the current layer on the control.
Top, specifies the expression relative to the view, to determine the y-position to show
the current layer on the control.
Width, specifies the expression relative to the view, to determine the width to show the
current layer on the control.
Height, specifies the expression relative to the view, to determine the height to show
the current layer on the control.

You can use the following properties to offset the view (background + foreground) inside
the layer:

DefaultOffsetX, gets or sets a value that indicates the default x-offset of the layer.
OffsetX, gets or sets a value that indicates x-offset of the layer.
OffsetXValid, validates the x-offset value of the layer.
Value and ValueToOffsetX specifies the expression to convert the value to x-offset.
DefaultOffsetY, gets or sets a value that indicates the default y-offset of the layer.
OffsetY, gets or sets a value that indicates y-offset of the layer.
OffsetYValid, validates the y-offset value of the layer.
Value and ValueToOffsetY specifies the expression to convert the value to y-offset.

The following properties can be used to move / resize the picture on the layer's
background:

DisplayAs, retrieves or sets a value that indicates the way how the graphic is displayed
on the layer's background.
Left, specifies the expression relative to the view/current picture, to determine the x-
position to show the current picture on the background.
Top, specifies the expression relative to the view/current picture, to determine the y-
position to show the current picture on the background.
Width, specifies the expression relative to the view/current picture, to determine the
width to show the current picture on the background.
Height, specifies the expression relative to the view/current picture, to determine the
height to show the current picture on the background.

The following samples show how you can resize the control's view to 164 x 164 pixels, by
adding a new hidden layer called "autosize":

VBA (MS Access, Excell...)

With Gauge1
 .BeginUpdate
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 10
 With .Layers.Add("autosize")
 .Visible = False
 .Width = 164
 .Height = 164
 End With
 .LayerAutoSize = .Layers.Item("autosize").Index
 .EndUpdate
End With

VB6

With Gauge1
 .BeginUpdate
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"

 .Layers.Count = 10
 With .Layers.Add("autosize")
 .Visible = False
 .Width = 164
 .Height = 164
 End With
 .LayerAutoSize = .Layers.Item("autosize").Index
 .EndUpdate
End With

VB.NET

With Exgauge1
 .BeginUpdate()
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 10
 With .Layers.Add("autosize")
 .Visible = False
 .Width = 164
 .Height = 164
 End With
 .LayerAutoSize = .Layers.Item("autosize").Index
 .EndUpdate()
End With

VB.NET for /COM

With AxGauge1
 .BeginUpdate()
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 10
 With .Layers.Add("autosize")
 .Visible = False
 .Width = 164

 .Height = 164
 End With
 .LayerAutoSize = .Layers.Item("autosize").Index
 .EndUpdate()
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXGAUGELib' for the library: 'ExGauge 1.0 Control
Library'

 #import <ExGauge.dll>
 using namespace EXGAUGELib;
*/
EXGAUGELib::IGaugePtr spGauge1 = GetDlgItem(IDC_GAUGE1)-
>GetControlUnknown();
spGauge1->BeginUpdate();
spGauge1->PutPicturesPath(L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob");
spGauge1->PutPicturesName(L"`Layer` + int(value + 1) + `.png`");
spGauge1->GetLayers()->PutCount(10);
EXGAUGELib::ILayerPtr var_Layer = spGauge1->GetLayers()->Add("autosize");
 var_Layer->PutVisible(VARIANT_FALSE);
 var_Layer->PutWidth(L"164");
 var_Layer->PutHeight(L"164");
spGauge1->PutLayerAutoSize(spGauge1->GetLayers()->GetItem("autosize")-
>GetIndex());
spGauge1->EndUpdate();

C++ Builder

Gauge1->BeginUpdate();
Gauge1->PicturesPath = L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
Gauge1->PicturesName = L"`Layer` + int(value + 1) + `.png`";

Gauge1->Layers->Count = 10;
Exgaugelib_tlb::ILayerPtr var_Layer = Gauge1->Layers->Add(TVariant("autosize"));
 var_Layer->Visible = false;
 var_Layer->Width = L"164";
 var_Layer->Height = L"164";
Gauge1->LayerAutoSize = Gauge1->Layers->get_Item(TVariant("autosize"))-
>Index;
Gauge1->EndUpdate();

C#

exgauge1.BeginUpdate();
exgauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
exgauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
exgauge1.Layers.Count = 10;
exontrol.EXGAUGELib.Layer var_Layer = exgauge1.Layers.Add("autosize");
 var_Layer.Visible = false;
 var_Layer.Width = 164.ToString();
 var_Layer.Height = 164.ToString();
exgauge1.LayerAutoSize = exgauge1.Layers["autosize"].Index;
exgauge1.EndUpdate();

JScript/JavaScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 Gauge1.BeginUpdate();
 Gauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
 Gauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";

 Gauge1.Layers.Count = 10;
 var var_Layer = Gauge1.Layers.Add("autosize");
 var_Layer.Visible = false;
 var_Layer.Width = 164;
 var_Layer.Height = 164;
 Gauge1.LayerAutoSize = Gauge1.Layers.Item("autosize").Index;
 Gauge1.EndUpdate();
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With Gauge1
 .BeginUpdate
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 10
 With .Layers.Add("autosize")
 .Visible = False
 .Width = 164
 .Height = 164
 End With
 .LayerAutoSize = .Layers.Item("autosize").Index
 .EndUpdate
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

axGauge1.BeginUpdate();
axGauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
axGauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
axGauge1.Layers.Count = 10;
EXGAUGELib.Layer var_Layer = axGauge1.Layers.Add("autosize");
 var_Layer.Visible = false;
 var_Layer.Width = 164.ToString();
 var_Layer.Height = 164.ToString();
axGauge1.LayerAutoSize = axGauge1.Layers["autosize"].Index;
axGauge1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Layer;
 anytype var_Layer;
 ;

 super();

 exgauge1.BeginUpdate();
 exgauge1.PicturesPath("C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob");
 exgauge1.PicturesName("`Layer` + int(value + 1) + `.png`");
 exgauge1.Layers().Count(10);
 var_Layer = COM::createFromObject(exgauge1.Layers()).Add("autosize"); com_Layer
= var_Layer;
 com_Layer.Visible(false);
 com_Layer.Width(164);
 com_Layer.Height(164);
 exgauge1.LayerAutoSize(exgauge1.Layers().Item("autosize").Index());

 exgauge1.EndUpdate();
}

Delphi 8 (.NET only)

with AxGauge1 do
begin
 BeginUpdate();
 PicturesPath := 'C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob';
 PicturesName := '`Layer` + int(value + 1) + `.png`';
 Layers.Count := 10;
 with Layers.Add('autosize') do
 begin
 Visible := False;
 Width := 164;
 Height := 164;
 end;
 LayerAutoSize := Layers.Item['autosize'].Index;
 EndUpdate();
end

Delphi (standard)

with Gauge1 do
begin
 BeginUpdate();
 PicturesPath := 'C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob';
 PicturesName := '`Layer` + int(value + 1) + `.png`';
 Layers.Count := 10;
 with Layers.Add('autosize') do
 begin
 Visible := False;
 Width := 164;
 Height := 164;
 end;
 LayerAutoSize := Layers.Item['autosize'].Index;

 EndUpdate();
end

VFP

with thisform.Gauge1
 .BeginUpdate
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 10
 with .Layers.Add("autosize")
 .Visible = .F.
 .Width = 164
 .Height = 164
 endwith
 .LayerAutoSize = .Layers.Item("autosize").Index
 .EndUpdate
endwith

dBASE Plus

local oGauge,var_Layer

oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject
oGauge.BeginUpdate()
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 10
var_Layer = oGauge.Layers.Add("autosize")
 var_Layer.Visible = false
 var_Layer.Width = Str(164)
 var_Layer.Height = Str(164)
oGauge.LayerAutoSize = oGauge.Layers.Item("autosize").Index
oGauge.EndUpdate()

XBasic (Alpha Five)

Dim oGauge as P
Dim var_Layer as P

oGauge = topparent:CONTROL_ACTIVEX1.activex
oGauge.BeginUpdate()
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 10
var_Layer = oGauge.Layers.Add("autosize")
 var_Layer.Visible = .f.
 var_Layer.Width = 164
 var_Layer.Height = 164
oGauge.LayerAutoSize = oGauge.Layers.Item("autosize").Index
oGauge.EndUpdate()

Visual Objects

local var_Layer as ILayer

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oDCOCX_Exontrol1:PicturesName := "`Layer` + int(value + 1) + `.png`"
oDCOCX_Exontrol1:Layers:Count := 10
var_Layer := oDCOCX_Exontrol1:Layers:Add("autosize")
 var_Layer:Visible := false
 var_Layer:Width := AsString(164)
 var_Layer:Height := AsString(164)
oDCOCX_Exontrol1:LayerAutoSize := oDCOCX_Exontrol1:Layers:
[Item,"autosize"]:Index
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oGauge,var_Layer

oGauge = ole_1.Object
oGauge.BeginUpdate()
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 10
var_Layer = oGauge.Layers.Add("autosize")
 var_Layer.Visible = false
 var_Layer.Width = String(164)
 var_Layer.Height = String(164)
oGauge.LayerAutoSize = oGauge.Layers.Item("autosize").Index
oGauge.EndUpdate()

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Send ComBeginUpdate
 Set ComPicturesPath to "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 Set ComPicturesName to "`Layer` + int(value + 1) + `.png`"
 Variant voLayers
 Get ComLayers to voLayers
 Handle hoLayers
 Get Create (RefClass(cComLayers)) to hoLayers
 Set pvComObject of hoLayers to voLayers
 Set ComCount of hoLayers to 10
 Send Destroy to hoLayers
 Variant voLayers1
 Get ComLayers to voLayers1
 Handle hoLayers1
 Get Create (RefClass(cComLayers)) to hoLayers1
 Set pvComObject of hoLayers1 to voLayers1
 Variant voLayer

 Get ComAdd of hoLayers1 "autosize" to voLayer
 Handle hoLayer
 Get Create (RefClass(cComLayer)) to hoLayer
 Set pvComObject of hoLayer to voLayer
 Set ComVisible of hoLayer to False
 Set ComWidth of hoLayer to 164
 Set ComHeight of hoLayer to 164
 Send Destroy to hoLayer
 Send Destroy to hoLayers1
 Variant v
 Variant voLayers2
 Get ComLayers to voLayers2
 Handle hoLayers2
 Get Create (RefClass(cComLayers)) to hoLayers2
 Set pvComObject of hoLayers2 to voLayers2
 Variant voLayer1
 Get ComItem of hoLayers2 "autosize" to voLayer1
 Handle hoLayer1
 Get Create (RefClass(cComLayer)) to hoLayer1
 Set pvComObject of hoLayer1 to voLayer1
 Get ComIndex of hoLayer1 to v
 Send Destroy to hoLayer1
 Send Destroy to hoLayers2
 Set ComLayerAutoSize to v
 Send ComEndUpdate
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oGauge
 LOCAL oLayer

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oGauge := XbpActiveXControl():new(oForm:drawingArea)
 oGauge:CLSID := "Exontrol.Gauge.1" /*{91628F12-393C-44EF-A558-
83ED1790AAD3}*/
 oGauge:create(,, {10,60},{610,370})

 oGauge:BeginUpdate()
 oGauge:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 oGauge:PicturesName := "`Layer` + int(value + 1) + `.png`"
 oGauge:Layers():Count := 10
 oLayer := oGauge:Layers():Add("autosize")
 oLayer:Visible := .F.
 oLayer:Width := Transform(164,"")
 oLayer:Height := Transform(164,"")
 oGauge:LayerAutoSize := oGauge:Layers:Item("autosize"):Index()
 oGauge:EndUpdate()

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property Gauge.LayerClipTo as Long
Specifies the index of the layer that clips the entire control to.

Type Description

Long A Long expression that specifies the index of the layer that
clips the entire control to.

By default, the LayerClipTo property is -1, which indicates that it has no effect. The
LayerClipTo property specifies the index of the layer that clips the entire control to. The
LayerClipToAlpha property returns or sets a value that indicates the value of the alpha
channel to be included in the LayerClipTo region. The LayerClipToParent property indicates
if the LayerClipTo method clips the control itself, parent or the owner of the control. The
AllowMoveOnClick property allows moving the window that contains the control to a new
position, as you would do by clicking the form's title/caption. The LayerUpdate property
helps you to create a smooth widget on the screen or form.

"I would like to put the control on a form, then make the form transparent so the control
appears on the desktop with just the images contained in the layers visible. For example,
take a clock example and make the control background and the form transparent, and you
have a working clock widget."

The control support transparent form, or in other words, displaying the control's itself
without its form behind. In order to make your eXGauge control to display a widget, (no
form behind or form transparent), you need to use the following properties:

LayerClipTo property of the control, specifies the index of the layer that clips the entire
control to. By default, the LayerClipTo property is -1, which indicates that no clipping is
supported. So, one of the layers that composes your widget must be specified as the
widget's background, and so, the entire view of the control is clipped to region defined
by the clipping layer (LayerClipTo). The LayerClipTo property may refer to any layer,
visible or hidden, which includes a picture or a clipping object (Clip property).

Layer.LayerClipToAlpha property of the Layer object, returns or sets a value that
indicates the value of the alpha channel to be included in the LayerClipTo region. By
default, the LayerClipToAlpha property is 0, which indicates that only pixels of the layer
that has 0 on the alpha channel (transparent pixels) defines the transparent region, and
so the clipping region. In other words, the value from 0 to LayerClipToAlpha defines
transparent pixels, and the rest defines the opaque pixels to be included in the clipping
region. So based on the layer's picture, you can change the LayerClipToAlpha property
for a better look of your widget.

LayerClipToParent property of the control, indicates if the LayerClipTo method clips
the control itself, parent or the owner of the control. By default, the LayerClipToParent

property is exLayerUpdateControl, which indicates that the control's itself is clipped
relative to its form that hosts it. Change the LayerClipToParent property to
exLayerUpdateScreen, or exLayerUpdateParent, and so the clipping region is applied
to its form/dialog/parent window.

The following VB sample defines the control as a widget:

With Gauge1
 .LayerClipTo = 0
 .LayerClipToParent = exLayerUpdateScreen
End With

The sample defines the layer with the Index 0, as being the clipping layer. The setup installs
the C:\Program Files\Exontrol\ExGauge\Sample\VB\Clock-Widget-Region that shows all
these working.

The following screen shot shows the control on a transparent form:

 The following screen shot shows the control on an opaque form:

property Gauge.LayerClipToParent as LayerUpdateEnum
Indicates if the LayerClipTo method clips the control itself, parent or the owner of the
control.

Type Description
LayerUpdateEnum A LayerUpdateEnum expression that specifies the

By default, the LayerClipToParent property is exLayerUpdateControl, which indicates that
the control's itself is clipped relative to its form that hosts it. Change the LayerClipToParent
property to exLayerUpdateScreen, or exLayerUpdateParent, and so the clipping region is
applied to its form/dialog/parent window. The LayerClipTo property specifies the index of
the layer that clips the entire control to. The LayerClipToAlpha property returns or sets a
value that indicates the value of the alpha channel to be included in the LayerClipTo region.

"I would like to put the control on a form, then make the form transparent so the control
appears on the desktop with just the images contained in the layers visible. For example,
take a clock example and make the control background and the form transparent, and you
have a working clock widget."

The control support transparent form, or in other words, displaying the control's itself
without its form behind. In order to make your eXGauge control to display a widget, (no
form behind or form transparent), you need to use the following properties:

LayerClipTo property of the control, specifies the index of the layer that clips the entire
control to. By default, the LayerClipTo property is -1, which indicates that no clipping is
supported. So, one of the layers that composes your widget must be specified as the
widget's background, and so, the entire view of the control is clipped to region defined
by the clipping layer (LayerClipTo). The LayerClipTo property may refer to any layer,
visible or hidden, which includes a picture or a clipping object (Clip property).

Layer.LayerClipToAlpha property of the Layer object, returns or sets a value that
indicates the value of the alpha channel to be included in the LayerClipTo region. By
default, the LayerClipToAlpha property is 0, which indicates that only pixels of the layer
that has 0 on the alpha channel (transparent pixels) defines the transparent region, and
so the clipping region. In other words, the value from 0 to LayerClipToAlpha defines
transparent pixels, and the rest defines the opaque pixels to be included in the clipping
region. So based on the layer's picture, you can change the LayerClipToAlpha property
for a better look of your widget.

LayerClipToParent property of the control, indicates if the LayerClipTo method clips
the control itself, parent or the owner of the control. By default, the LayerClipToParent
property is exLayerUpdateControl, which indicates that the control's itself is clipped
relative to its form that hosts it. Change the LayerClipToParent property to

exLayerUpdateScreen, or exLayerUpdateParent, and so the clipping region is applied
to its form/dialog/parent window.

For instance, the following VB sample defines the control as a widget:

With Gauge1
 .LayerClipTo = 0
 .LayerClipToParent = exLayerUpdateScreen
End With

The sample defines the layer with the Index 0, as being the clipping layer. The setup installs
the C:\Program Files\Exontrol\ExGauge\Sample\VB\Clock-Widget-Region that shows all
these working.

The following screen shot shows the control on a transparent form:

 The following screen shot shows the control on an opaque form:

property Gauge.LayerDragAny as Long
Specifies the index of the layer to drag (rotate or move) once the user clicks anywhere on
the control.

Type Description

Long
A long expression that specifies the index of the layer to
drag (rotate or move) once the user clicks anywhere on
the control.

By default, the LayerDragAny property is -1, which indicates that has no effect. The
LayerDragAny property specifies the index of the layer to drag (rotate or move) once the
user clicks anywhere on the control. For instance, if the LayerDragAny property is 0, it
means that the layer with the index-0 is always dragging no matter where the cursor is.

property Gauge.LayerFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Long
Retrieves the index of the layer from the point (only visible and selectable objects are
included).

Type Description

X as OLE_XPOS_PIXELS A long expression that specifies the x-position in client
coordinate to get the layer from.

Y as OLE_YPOS_PIXELS A long expression that specifies the y-position in client
coordinate to get the layer from.

Long A Long expression that specifies the index of the layer
from the cursor, or -1 if not found.

The LayerFromPoint property retrieves the layer from point that's visible and selectable.
The Visible property shows or hides a specific layer (visible). The Selectable property
returns or sets a value that indicates whether the layer is selectable. The Item property
accesses the Layer object giving its index. The OnDrag property indicates the action to be
performed when the user drags the layer (dragable). Use the ShowToolTip method to
display a custom tooltip. The ToolTip / ToolTipTitle property indicates the layer's tooltip. The
MouseMove event is generated continually as the mouse pointer moves across objects.

property Gauge.LayerOfValue as Long
Specifies the index of the layer whose value represents the control's Value property.

Type Description

Long

A Long expression that specifies the index of the layer
whose Value represents the control's Value property, or -1
to which indicates that last visible layer with OnDrag
property set.

By default, the LayerOfValue property is -1, which indicates that the last visible layer whose
OnDrag property is not exDoNothing, is the layer that specifies the control's value. The
LayerOfValue property specifies the index of the layer whose value represents the control's
Value property. The layer's Value could indicate its offset or its rotation angle, based on the
OnDrag property. The OnDrag property indicates the action to be performed when the user
drags the layer (dragable). Use the Value property of the Clip object to associate a value
with the layer's clipping region. Each layer can associate a value with it, while the control's
Value property can be associated through the LayerOfValue property with the value of one
of the layers within the control.

For instance:

the control displays a clock, the value could be the current-time
the control shows a switch, so the value could indicate the state of the switch
the control shows a thermometer, so the value could be the current temperature
the control displays a gauge, so the value could be the value on the gauge pointed by
the needle

The Change event occurs when the layer's Value property is changed. During the Change
event, you can change values of other layers as well. For instance, if the second-hand of
the clock is rotated, you can rotate the hour and the minute-hands of the clock as well. The
DragStart / Drag / DragEnd events notify your application when a layer is dragged. You can
call DragInfo.Debug = -1 during the DragStart event to display debugging information like
current movement, rotation angle when drag operation is performed.

The Value property indicates the value keyword in the following properties:

ValueToOffsetX, Specifies the expression to convert the value to x-offset. The layer's
OffsetX property is the result of evaluating the ValueToOffsetX expression, while the
OnDrag property is exDoMove. The OffsetToValue converts the current offset to a
value.
ValueToOffsetY, Specifies the expression to convert the value to y-offset. The layer's
OffsetY property is the result of evaluating the ValueToOffsetY expression, while the
OnDrag property is exDoMove. The OffsetToValue converts the current offset to a

value.
ValueToRotateAngle, Specifies the expression to convert the value to rotating angle.
The layer's RotateAngle property is the result of evaluating the ValueToRotateAngle
expression, while the OnDrag property is exDoRotate or exDoRotamove. The
RotateAngleToValue converts the current rotation angle to a value.

The Value property works in association with the layer's OnDrag property like follows:

If the OnDrag property is exDoMove, evaluating the ValueToOffsetX property indicates
the layer's OffsetX property.
If the OnDrag property is exDoMove, evaluating the ValueToOffsetY property indicates
the layer's OffsetY property.
If the OnDrag property is exDoRotate or exDoRotamove, evaluating the
ValueToRotateAngle property indicates the layer's RotateAngle property.

property Gauge.Layers as Layers
Returns the Layers collection.

Type Description
Layers A Layers collection of Layer objects.

The Layers property gives access to the control's Layers collection. Any layer can display
unlimited opaque / transparent graphics, HTML text, can be visible, selectable, dragable
and so on. Any layer can change its position in the layers collection as well. The Layer can
change its brightness, contrast, grayscale or transparency as well.

The following screen shot shows a control composed by two pictures:
"Guage_Background.png" and "Guage_Needle.png" from the "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage" folder

The following picture shows how layers "background" and "needle" composes the control's
view

The following properties can be used to add / remove layers within the control:

Count property, adds / removes layers to / from the control
Add method, adds a new layer to the control.

The following properties can be used to access Layer objects in the control:

Item property, gives the Layer object based on its index / key. The Count property
specifies the number of layers within the control
VisibleItem property, gives the visible layer based on its position. The VisibleCount
property indicates the number of visible layers within the control. The Visible property
shows or hides the layer. The ShowLayers property indicates the only layers to be
shown on the control.

property Gauge.LayerUpdate as LayerUpdateEnum
Specifies where the control updates its content.

Type Description

LayerUpdateEnum A LayerUpdateEnum expression that specifies where the
control updates its content.

By default, the LayerUpdate property property is exLayerUpdateControl, which indicates
that the control's content is shown on the control itself (no effect). The LayerUpdate
property indicates where the control's content is updated. The control support transparent
form, or in other words, displaying the control's itself without its form behind. The
AllowMoveOnClick property allows moving the window that contains the control to a new
position, as you would do by clicking the form's title/caption. The LayerClipTo property
specifies the index of the layer that clips the entire control to.

In order to make your eXGauge control to display a widget, (no form behind or form
transparent), you need to use the following properties:

Change the LayerUpdate property to exLayerUpdateScreeen, so the entire control is
shown individually on the screen, with no form behind.

In order to make your eXGauge library to display a transparent-control inside your
form/dialog/window/child, you need to use the following properties:

Change the LayerUpdate property to exLayerUpdateParent, so the control itself (
with no nackground) is shown on the form/dialog/parent.

You need to add <supportedOS Id="{4a2f28e3-53b9-4441-ba9c-d69d4a4a6e38}"/>,
to your manifest file as follows. The transparent-eXGauge as a child of your form, it is
supported on Windows 8, and later.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<assembly manifestVersion="1.0" xmlns="urn:schemas-microsoft-com:asm.v1"
xmlns:asmv3="urn:schemas-microsoft-com:asm.v3">
 <compatibility xmlns="urn:schemas-microsoft-com:compatibility.v1">
 <application>
 <supportedOS Id="{4a2f28e3-53b9-4441-ba9c-d69d4a4a6e38}"/>
 </application>
 </compatibility>
</assembly>

The control installs the

C:\Program Files\Exontrol\ExGauge\Sample\VB\Widget or C:\Program
Files\Exontrol\ExGauge\Sample\VC\Widget sample that shows how
exLayerUpdateScreeenworks with LayerUpdate property.
C:\Program Files\Exontrol\ExGauge\Sample\VC\Widget-Child sample that shows how
exLayerUpdateParent works with LayerUpdate property

The following screen shot shows the control on a transparent form
(exLayerUpdateScreeen):

The following screen shot shows the transparent-control on form (exLayerUpdateParent):

property Gauge.PicturesName as String
Specifies the expression that indicates the name of the picture to be loaded on each layer.

Type Description

String A String value that defines the expression to specify the
name of the picture to be loaded on each layer.

By default, the PicturesName property is empty. The Picture.Name / Picture.Value property
is initialized by evaluating the control's PicturesName property, whose value keyword is
replaced by the Picture.Index of the current layer.

The following properties can be used to load / import (manually or automatically) pictures
to the layer's background:

PicturesPath property, specifies the path to load pictures from.
PicturesName property, specifies the expression that defines the name of the file from
the PicturesPath folder to be loaded.
Picture.Name / Picture.Value property of the Background.Picture object, defines the
name of the file to be loaded (relative, absolute, encoded or Picture object)

The PicturesPath / PicturesName properties can be used to automatically loads files from
a specified folder to be displayed on the layer's background. The Picture.Name /
Picture.Value property of the Picture object loads a picture / graphics to be displayed on the
layer's background.

For instance,

PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob",
defines default folder to load pictures from.
PicturesName = "`Layer` + str(value + 1) + `.png`", defines the name of the picture file
to be loaded by the layer with the index / value. It defines the names as: Layer1.png
for the layer with the index 0, Layer2.png for the layer with the index 1, Layer3.png for
the layer with the index 2, and so on.

The PicturesName property supports the following keywords:

value keyword, specifies the Index of the layer.

Also, this property supports all constants, operators and functions defined here.

For instance, having the files Layer1.png, Layer2.png, Layer3.png, Layer4.png and
Layer5.png in the C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 2
folder:

We can load them using the PicturesPath / PicturesName property and we get something
like:

or if we decompose them, layer by layer we get:

The following samples shows how you can load automatically the Layer1.png, Layer2.png,
Layer3.png, Layer4.png and Layer5.png from the C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 2 folder:

VBA (MS Access, Excell...)

With Gauge1
 .BeginUpdate
 .PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
2"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5
 .EndUpdate
End With

VB6

With Gauge1
 .BeginUpdate
 .PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
2"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5
 .EndUpdate
End With

VB.NET

With Exgauge1
 .BeginUpdate()
 .PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
2"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5
 .EndUpdate()
End With

VB.NET for /COM

With AxGauge1
 .BeginUpdate()
 .PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
2"

 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5
 .EndUpdate()
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXGAUGELib' for the library: 'ExGauge 1.0 Control
Library'

 #import <ExGauge.dll>
 using namespace EXGAUGELib;
*/
EXGAUGELib::IGaugePtr spGauge1 = GetDlgItem(IDC_GAUGE1)-
>GetControlUnknown();
spGauge1->BeginUpdate();
spGauge1->PutPicturesPath(L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 2");
spGauge1->PutPicturesName(L"`Layer` + int(value + 1) + `.png`");
spGauge1->GetLayers()->PutCount(5);
spGauge1->EndUpdate();

C++ Builder

Gauge1->BeginUpdate();
Gauge1->PicturesPath = L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 2";
Gauge1->PicturesName = L"`Layer` + int(value + 1) + `.png`";
Gauge1->Layers->Count = 5;
Gauge1->EndUpdate();

C#

exgauge1.BeginUpdate();

exgauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 2";
exgauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
exgauge1.Layers.Count = 5;
exgauge1.EndUpdate();

JScript/JavaScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 Gauge1.BeginUpdate();
 Gauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 2";
 Gauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
 Gauge1.Layers.Count = 5;
 Gauge1.EndUpdate();
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With Gauge1
 .BeginUpdate
 .PicturesPath = "C:\Program

Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 2"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5
 .EndUpdate
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

axGauge1.BeginUpdate();
axGauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 2";
axGauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
axGauge1.Layers.Count = 5;
axGauge1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{
 ;

 super();

 exgauge1.BeginUpdate();
 exgauge1.PicturesPath("C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 2");
 exgauge1.PicturesName("`Layer` + int(value + 1) + `.png`");
 exgauge1.Layers().Count(5);
 exgauge1.EndUpdate();
}

Delphi 8 (.NET only)

with AxGauge1 do
begin
 BeginUpdate();
 PicturesPath := 'C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
2';
 PicturesName := '`Layer` + int(value + 1) + `.png`';
 Layers.Count := 5;
 EndUpdate();
end

Delphi (standard)

with Gauge1 do
begin
 BeginUpdate();
 PicturesPath := 'C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
2';
 PicturesName := '`Layer` + int(value + 1) + `.png`';
 Layers.Count := 5;
 EndUpdate();
end

VFP

with thisform.Gauge1
 .BeginUpdate
 .PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
2"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5
 .EndUpdate
endwith

dBASE Plus

local oGauge

oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject

oGauge.BeginUpdate()
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 2"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 5
oGauge.EndUpdate()

XBasic (Alpha Five)

Dim oGauge as P

oGauge = topparent:CONTROL_ACTIVEX1.activex
oGauge.BeginUpdate()
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 2"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 5
oGauge.EndUpdate()

Visual Objects

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 2"
oDCOCX_Exontrol1:PicturesName := "`Layer` + int(value + 1) + `.png`"
oDCOCX_Exontrol1:Layers:Count := 5
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oGauge

oGauge = ole_1.Object
oGauge.BeginUpdate()

oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 2"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 5
oGauge.EndUpdate()

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Send ComBeginUpdate
 Set ComPicturesPath to "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 2"
 Set ComPicturesName to "`Layer` + int(value + 1) + `.png`"
 Variant voLayers
 Get ComLayers to voLayers
 Handle hoLayers
 Get Create (RefClass(cComLayers)) to hoLayers
 Set pvComObject of hoLayers to voLayers
 Set ComCount of hoLayers to 5
 Send Destroy to hoLayers
 Send ComEndUpdate
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oGauge

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)

 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oGauge := XbpActiveXControl():new(oForm:drawingArea)
 oGauge:CLSID := "Exontrol.Gauge.1" /*{91628F12-393C-44EF-A558-
83ED1790AAD3}*/
 oGauge:create(,, {10,60},{610,370})

 oGauge:BeginUpdate()
 oGauge:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 2"
 oGauge:PicturesName := "`Layer` + int(value + 1) + `.png`"
 oGauge:Layers():Count := 5
 oGauge:EndUpdate()

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property Gauge.PicturesPath as String
Specifies the path to load the pictures from.

Type Description

String A String expression that defines the folder to load pictures
from

By default, the PicturesPath property is empty. The PicturesPath property specifies the
path to load the pictures from. The PicturesName property specifies the expression that
indicates the name of the picture to be loaded on each layer. The Count property specifies
the number of layers in the control.

The following properties can be used to load / import (manually or automatically) pictures
to the layer's background:

PicturesPath property, specifies the path to load pictures from.
PicturesName property, specifies the expression that defines the name of the file from
the PicturesPath folder to be loaded. By default, the Picture.Name / Picture.Value
property is initialized by evaluating the control's PicturesName property, whose value
keyword is replaced by the Picture.Index of the current layer.
Picture.Name / Picture.Value property of the Background.Picture object, defines the
name of the file to be loaded (relative, absolute, encoded or Picture object)

The PicturesPath / PicturesName properties can be used to automatically loads files from
a specified folder to be displayed on the layer's background.

For instance,

PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob",
defines default folder to load pictures from.
PicturesName = "`Layer` + str(value + 1) + `.png`", defines the name of the picture file
to be loaded by the layer with the index / value. It defines the names as: Layer1.png
for the layer with the index 0, Layer2.png for the layer with the index 1, Layer3.png for
the layer with the index 2, and so on.

The Picture.Name / Picture.Value property of the Picture object loads a picture / graphics to
be displayed on the layer's background.

For instance, having the files Layer1.png, Layer2.png, Layer3.png, Layer4.png and
Layer5.png in the C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 2
folder:

We can load them using the PicturesPath / PicturesName property and we get something
like:

or if we decompose them, layer by layer we get:

The following samples shows how you can load automatically the Layer1.png, Layer2.png,
Layer3.png, Layer4.png and Layer5.png from the C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 2 folder:

VBA (MS Access, Excell...)

With Gauge1
 .BeginUpdate
 .PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
2"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5
 .EndUpdate
End With

VB6

With Gauge1
 .BeginUpdate
 .PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
2"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5
 .EndUpdate
End With

VB.NET

With Exgauge1
 .BeginUpdate()
 .PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
2"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5
 .EndUpdate()
End With

VB.NET for /COM

With AxGauge1
 .BeginUpdate()
 .PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
2"

 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5
 .EndUpdate()
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXGAUGELib' for the library: 'ExGauge 1.0 Control
Library'

 #import <ExGauge.dll>
 using namespace EXGAUGELib;
*/
EXGAUGELib::IGaugePtr spGauge1 = GetDlgItem(IDC_GAUGE1)-
>GetControlUnknown();
spGauge1->BeginUpdate();
spGauge1->PutPicturesPath(L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 2");
spGauge1->PutPicturesName(L"`Layer` + int(value + 1) + `.png`");
spGauge1->GetLayers()->PutCount(5);
spGauge1->EndUpdate();

C++ Builder

Gauge1->BeginUpdate();
Gauge1->PicturesPath = L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 2";
Gauge1->PicturesName = L"`Layer` + int(value + 1) + `.png`";
Gauge1->Layers->Count = 5;
Gauge1->EndUpdate();

C#

exgauge1.BeginUpdate();

exgauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 2";
exgauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
exgauge1.Layers.Count = 5;
exgauge1.EndUpdate();

JScript/JavaScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 Gauge1.BeginUpdate();
 Gauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 2";
 Gauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
 Gauge1.Layers.Count = 5;
 Gauge1.EndUpdate();
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With Gauge1
 .BeginUpdate
 .PicturesPath = "C:\Program

Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 2"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5
 .EndUpdate
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

axGauge1.BeginUpdate();
axGauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 2";
axGauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
axGauge1.Layers.Count = 5;
axGauge1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{
 ;

 super();

 exgauge1.BeginUpdate();
 exgauge1.PicturesPath("C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 2");
 exgauge1.PicturesName("`Layer` + int(value + 1) + `.png`");
 exgauge1.Layers().Count(5);
 exgauge1.EndUpdate();
}

Delphi 8 (.NET only)

with AxGauge1 do
begin
 BeginUpdate();
 PicturesPath := 'C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
2';
 PicturesName := '`Layer` + int(value + 1) + `.png`';
 Layers.Count := 5;
 EndUpdate();
end

Delphi (standard)

with Gauge1 do
begin
 BeginUpdate();
 PicturesPath := 'C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
2';
 PicturesName := '`Layer` + int(value + 1) + `.png`';
 Layers.Count := 5;
 EndUpdate();
end

VFP

with thisform.Gauge1
 .BeginUpdate
 .PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
2"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5
 .EndUpdate
endwith

dBASE Plus

local oGauge

oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject

oGauge.BeginUpdate()
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 2"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 5
oGauge.EndUpdate()

XBasic (Alpha Five)

Dim oGauge as P

oGauge = topparent:CONTROL_ACTIVEX1.activex
oGauge.BeginUpdate()
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 2"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 5
oGauge.EndUpdate()

Visual Objects

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 2"
oDCOCX_Exontrol1:PicturesName := "`Layer` + int(value + 1) + `.png`"
oDCOCX_Exontrol1:Layers:Count := 5
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oGauge

oGauge = ole_1.Object
oGauge.BeginUpdate()

oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 2"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 5
oGauge.EndUpdate()

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Send ComBeginUpdate
 Set ComPicturesPath to "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 2"
 Set ComPicturesName to "`Layer` + int(value + 1) + `.png`"
 Variant voLayers
 Get ComLayers to voLayers
 Handle hoLayers
 Get Create (RefClass(cComLayers)) to hoLayers
 Set pvComObject of hoLayers to voLayers
 Set ComCount of hoLayers to 5
 Send Destroy to hoLayers
 Send ComEndUpdate
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oGauge

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)

 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oGauge := XbpActiveXControl():new(oForm:drawingArea)
 oGauge:CLSID := "Exontrol.Gauge.1" /*{91628F12-393C-44EF-A558-
83ED1790AAD3}*/
 oGauge:create(,, {10,60},{610,370})

 oGauge:BeginUpdate()
 oGauge:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 2"
 oGauge:PicturesName := "`Layer` + int(value + 1) + `.png`"
 oGauge:Layers():Count := 5
 oGauge:EndUpdate()

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

method Gauge.Refresh ()
Refreses the control.

Type Description

method Gauge.ReplaceIcon ([Icon as Variant], [Index as Variant])

Adds a new icon, replaces an icon or clears the control's image list.

Type Description
Icon as Variant A long expression that indicates the icon's handle.

Index as Variant A long expression that indicates the index where icon is
inserted.

Return Description

Long A long expression that indicates the index of the icon in the
images collection

Use the ReplaceIcon property to add, remove or replace an icon in the control's images
collection. Also, the ReplaceIcon property can clear the images collection. Use the Images
method to attach a image list to the control. The ImageSize property defines the size
(width/height) of the icons within the control's Images collection.

The following VB sample adds a new icon to control's images list:

 i = ExGauge1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle), i specifies the index
where the icon is added

The following VB sample replaces an icon into control's images list::

 i = ExGauge1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle, 0), i is zero, so the
first icon is replaced.

The following VB sample removes an icon from control's images list:

 ExGauge1.ReplaceIcon 0, i, i specifies the index of icon removed.

The following VB clears the control's icons collection:

 ExGauge1.ReplaceIcon 0, -1

property Gauge.ShowImageList as Boolean

Specifies whether the control's image list window is visible or hidden.

Type Description

Boolean A boolean expression that specifies whether the control's
image list window is visible or hidden.

By default, the ShowImageList property is True. Use the ShowImageList property to hide
the control's images list window. The control's images list window is visible only at design
time. Use the Images method to associate an images list control to the tree control. Use the
ReplaceIcon method to add, remove or clear icons in the control's images collection.

property Gauge.ShowLayers as String
Indicates the only layers to be shown on the control.

Type Description

String

A String expression that could be:

"all", specifies that all visible layers are shown. The
Visible property indicates the visible layers.
"", no layer is shown in the control, no matter of the
layer's Visible property.
"n1,n2,n3,..." specifies the list of layers to be shown,
no matter of the layer's Visible property, where n1,
n2, ... are numbers (indicating the index of the layer
to be shown). For instance "0" specifies that just the
layer with the index 0 is show, "0,1,4", indicates that
just layers with the specified index are displayed.

By default the ShowLayers property is "all", which indicates that all visible layers in the
control are shown. The ShowLayers property indicates the only layers to be shown on the
control. For instance, you can use the ShowLayers property to show only a few layers
within the control. The purpose can be debugging a specified layer only for instance. The
Visible property shows or hides the layer.

The following properties can be used to access Layer objects in the control:

Item property, gives the Layer object based on its index / key. The Count property
specifies the number of layers within the control
VisibleItem property, gives the visible layer based on its position. The VisibleCount
property indicates the number of visible layers within the control. The Visible property
shows or hides the layer. The ShowLayers property indicates the only layers to be
shown on the control.

The following properties can be used to add layers within the control:

Count property, adds layers to the control
Add method, adds a new layer to the control.

The following properties can be used to remove layers within the control:

Count property, removes layers from the control. For instance, Count property on 0,
removes all layers from the control.
Clear removes all layers from the control.

Remove method, removes a layer from the control based on its index or key.

method Gauge.ShowToolTip (ToolTip as String, [Title as Variant],
[Alignment as Variant], [X as Variant], [Y as Variant])
Shows the specified tooltip at given position.

Type Description

ToolTip as String

The ToolTip parameter can be any of the following:

NULL(BSTR) or "<null>"(string) to indicate that the
tooltip for the object being hovered is not changed
A String expression that indicates the description of
the tooltip, that supports built-in HTML format (adds,
replaces or changes the object's tooltip)

Title as Variant

The Title parameter can be any of the following:

missing (VT_EMPTY, VT_ERROR type) or "<null>"
(string) the title for the object being hovered is not
changed.
A String expression that indicates the title of the
tooltip (no built-in HTML format) (adds, replaces or
changes the object's title)

Alignment as Variant

A long expression that indicates the alignment of the tooltip
relative to the position of the cursor. If missing
(VT_EMPTY, VT_ERROR) the alignment of the tooltip for
the object being hovered is not changed.

The Alignment parameter can be one of the following:

0 - exTopLeft
1 - exTopRight
2 - exBottomLeft
3 - exBottomRight
0x10 - exCenter
0x11 - exCenterLeft
0x12 - exCenterRight
0x13 - exCenterTop
0x14 - exCenterBottom

By default, the tooltip is aligned relative to the top-left
corner (0 - exTopLeft).

X as Variant

Specifies the horizontal position to display the tooltip as
one of the following:

missing (VT_EMPTY, VT_ERROR type), indicates
that the tooltip is shown on its default position /
current cursor position (ignored)
-1, indicates the current horizontal position of the
cursor (current x-position)
a numeric expression that indicates the horizontal
screen position to show the tooltip (fixed screen x-
position)
a string expression that indicates the horizontal
displacement relative to default position to show the
tooltip (moved)

Y as Variant

Specifies the vertical position to display the tooltip as one
of the following:

missing (VT_EMPTY, VT_ERROR type), indicates
that the tooltip is shown on its default position /
current cursor position (ignored)
-1, indicates the current vertical position of the cursor
(current y-position)
a numeric expression that indicates the vertical screen
position to show the tooltip (fixed screen y-position)
a string expression that indicates the vertical
displacement relative to default position to show the
tooltip (displacement)

Use the ShowToolTip method to display a custom tooltip at specified position or to update
the object's tooltip, title or position. You can call the ShowToolTip method during the
MouseMove event. Use the ToolTipPopDelay property specifies the period in ms of time the
ToolTip remains visible if the mouse pointer is stationary within a control. The ToolTipDelay
property specifies the time in ms that passes before the ToolTip appears. Use the
ToolTipWidth property to specify the width of the tooltip window. Use the ToolTipFont
property to change the tooltip's font. Use the Background(exToolTipAppearance) property
indicates the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color.

For instance:

ShowToolTip(`<null>`,`<null>`,,`+8`,`+8`), shows the tooltip of the object moved relative

to its default position
ShowToolTip(`<null>`,`new title`), adds, changes or replaces the title of the object's
tooltip
ShowToolTip(`new content`), adds, changes or replaces the object's tooltip
ShowToolTip(`new content`,`new title`), shows the tooltip and title at current position
ShowToolTip(`new content`,`new title`,,`+8`,`+8`), shows the tooltip and title moved
relative to the current position
ShowToolTip(`new content`,``,,128,128), displays the tooltip at a fixed position
ShowToolTip(``,``), hides the tooltip

The ToolTip parameter supports the built-in HTML format like follows:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).

about:blank

<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the

height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Gauge.Template as String
Specifies the control's template.

Type Description
String A string expression that defines the control's template

The control's template uses the X-Script language to initialize the control's content. Use the
Template property page of the control to update the control's Template property. Use the
Template property to execute code by passing instructions as a string (template string).
Use the ToTemplate property to generate the control's content to template format. Use the
ExecuteTemplate property to get the result of executing a template script.

The Exontrol's eXHelper tool helps you to find easy and quickly the answers and the source
code for your questions regarding the usage of our UI components.

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

https://exontrol.com/exhelper.jsp

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

 For instance, the following script:

PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
PicturesName = "`Layer` + str(value + 1) + `.png`"
Layers.Count = 10

generates:

property Gauge.TemplateDef as Variant
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplateDef property has been added to allow programming languages such as
dBASE Plus to set control's properties with multiple parameters. It is known that
programming languages such as dBASE Plus or XBasic from AlphaFive, does not
support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef method. The first call of the TemplateDef
should be a declaration such as "Dim a,b" which means the next 2 calls of the TemplateDef
defines the variables a and b. The next call should be Template or ExecuteTemplate
property which can use the variable a and b being defined previously.

So, calling the TemplateDef property should be as follows:

with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith

This sample allocates a variable var_Column, assigns the value to the variable (the second
call of the TemplateDef), and the Template call uses the var_Column variable (as an object
), to call its Def property with the parameter 4.

Let's say we need to define the background color for a specified column, so we need to call
the Def(exCellBackColor) property of the column, to define the color for all cells in the
column.

The following VB6 sample shows setting the Def property such as:

With Control
 .Columns.Add("Column 1").Def(exCellBackColor) = 255
 .Columns.Add "Column 2"
 .Items.AddItem 0
 .Items.AddItem 1

 .Items.AddItem 2
End With

In dBASE Plus, calling the Def(4) has no effect, instead using the TemplateDef helps you to
use properly the Def property as follows:

local Control,var_Column

Control = form.Activex1.nativeObject
// Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith
Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The equivalent sample for XBasic in A5, is as follows:

Dim Control as P
Dim var_Column as P

Control = topparent:CONTROL_ACTIVEX1.activex
' Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
Control.TemplateDef = "Dim var_Column"
Control.TemplateDef = var_Column
Control.Template = "var_Column.Def(4) = 255"

Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The samples just call the Column.Def(4) = Value, using the TemplateDef. The first call of
TemplateDef property is "Dim var_Column", which indicates that the next call of the
TemplateDef will defines the value of the variable var_Column, in other words, it defines the
object var_Column. The last call of the Template property uses the var_Column member to
use the x-script and so to set the Def property so a new color is being assigned to the
column.

The TemplateDef, Template and ExecuteTemplate support x-script language (Template
script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please

make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

method gauge.TemplatePut (NewVal as Variant)
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

NewVal as Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplatePut method / TemplateDef property has been added to allow programming
languages such as dBASE Plus to set control's properties with multiple parameters. It is
known that programming languages such as dBASE Plus or XBasic from AlphaFive, does
not support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef / TemplatePut method. The first call of the
TemplateDef should be a declaration such as "Dim a,b" which means the next 2 calls of the
TemplateDef defines the variables a and b. The next call should be Template or
ExecuteTemplate property which can use the variable a and b being defined previously.

The TemplateDef, TemplatePut, Template and ExecuteTemplate support x-script language (
Template script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the

Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property Gauge.TimerInterval as Long
Returns or sets the number of milliseconds between calls of control's Timer event.

Type Description

Long A Long expression that specifies the number of
milliseconds between calls of control's Timer event.

By default, the TimerInterval property is 0, which indicates that no Timer event occurs. The
TimerInterval property returns or sets the number of milliseconds between calls of control's
Timer event. You can use the Timer event to perform different actions on any layer when a
specified time elapsed. For instance, you can rotate the layer every second, or any dial of a
clock, and so on. The FormatABC method formats the A,B,C values based on the giving
expression and returns the result. For instance, the FormatABC("date(`now`)") gets the
current time.

You can use any of the following properties to update the layer:

Value, specifies the layer's value.
OffsetX, specifies a value that indicates x-offset of the layer.
OffsetY, indicates a value that indicates y-offset of the layer.
RotateAngle, specifies the angle to rotate the layer.
Clip, to clip any layer

 The Change event occurs when the layer's value is changed.

The following sample shows how you can display a clock:

VBA (MS Access, Excell...)

' Change event - Occurs when the layer's value is changed.
Private Sub Gauge1_Change(ByVal Layer As Long)
 With Gauge1

 .Layers.Item("sec").Value = Gauge1.Value
 .Layers.Item("min").Value = Gauge1.Value
 .Layers.Item("hour").Value = Gauge1.Value
 End With
End Sub

' Timer event - Occurs when the interval elapses.
Private Sub Gauge1_Timer(ByVal TickCount As Long)
 With Gauge1
 .Value = .FormatABC("value + 1/24/60/60",.Value)
 End With
End Sub

With Gauge1
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Clock"
 .DefaultLayer(185) = 2
 .Layers.Count = 4
 With .Layers.Item(0)
 .Background.Picture.Name = "vista_clock.png"
 End With
 With .Layers.Item(1)
 .Position = 3
 .Key = "sec"
 .OnDrag = 2
 .Selectable = False
 .Background.Picture.Name = "second-hand.png"
 .ValueToRotateAngle = "((2:=(((1:=(((0:=(value < 0 ? floor(value) + 1 - value :
value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - " & _
"floor(=:1)) * 60)) - floor(=:2)) * 360"
 .RotateAngleToValue = "value / 360 / 24 / 60"
 End With
 With .Layers.Item(2)
 .Position = 2
 .Key = "min"
 .OnDrag = 2
 .Selectable = False

 .Background.Picture.Name = "Minute.png"
 .ValueToRotateAngle = "((1:=(((0:=(value < 0 ? floor(value) + 1 - value : value -
floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - floor(" & _
"=:1)) * 360"
 .RotateAngleToValue = "value / 360 / 24 / 60"
 End With
 With .Layers.Item(3)
 .Position = 1
 .Key = "hour"
 .OnDrag = 2
 .Selectable = False
 .Background.Picture.Name = "Hour.png"
 .ValueToRotateAngle = "2 * 360 * ((0:=(value < 0 ? floor(value) + 1 - value : value
- floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5)))"
 .RotateAngleToValue = "value / 360 * 0.5"
 End With
 .LayerOfValue = 3
 .Value = .FormatABC("date(`now`)")
 .TimerInterval = 1000
End With

VB6

' Change event - Occurs when the layer's value is changed.
Private Sub Gauge1_Change(ByVal Layer As Long)
 With Gauge1
 .Layers.Item("sec").Value = Gauge1.Value
 .Layers.Item("min").Value = Gauge1.Value
 .Layers.Item("hour").Value = Gauge1.Value
 End With
End Sub

' Timer event - Occurs when the interval elapses.
Private Sub Gauge1_Timer(ByVal TickCount As Long)
 With Gauge1
 .Value = .FormatABC("value + 1/24/60/60",.Value)
 End With

End Sub

With Gauge1
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Clock"
 .DefaultLayer(exDefLayerRotateType) = 2
 .Layers.Count = 4
 With .Layers.Item(0)
 .Background.Picture.Name = "vista_clock.png"
 End With
 With .Layers.Item(1)
 .Position = 3
 .Key = "sec"
 .OnDrag = exDoRotate
 .Selectable = False
 .Background.Picture.Name = "second-hand.png"
 .ValueToRotateAngle = "((2:=(((1:=(((0:=(value < 0 ? floor(value) + 1 - value :
value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - " & _
"floor(=:1)) * 60)) - floor(=:2)) * 360"
 .RotateAngleToValue = "value / 360 / 24 / 60"
 End With
 With .Layers.Item(2)
 .Position = 2
 .Key = "min"
 .OnDrag = exDoRotate
 .Selectable = False
 .Background.Picture.Name = "Minute.png"
 .ValueToRotateAngle = "((1:=(((0:=(value < 0 ? floor(value) + 1 - value : value -
floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - floor(" & _
"=:1)) * 360"
 .RotateAngleToValue = "value / 360 / 24 / 60"
 End With
 With .Layers.Item(3)
 .Position = 1
 .Key = "hour"
 .OnDrag = exDoRotate
 .Selectable = False

 .Background.Picture.Name = "Hour.png"
 .ValueToRotateAngle = "2 * 360 * ((0:=(value < 0 ? floor(value) + 1 - value : value
- floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5)))"
 .RotateAngleToValue = "value / 360 * 0.5"
 End With
 .LayerOfValue = 3
 .Value = .FormatABC("date(`now`)")
 .TimerInterval = 1000
End With

VB.NET

' Change event - Occurs when the layer's value is changed.
Private Sub Exgauge1_Change(ByVal sender As System.Object,ByVal Layer As Integer)
Handles Exgauge1.Change
 With Exgauge1
 .Layers.Item("sec").Value = Exgauge1.Value
 .Layers.Item("min").Value = Exgauge1.Value
 .Layers.Item("hour").Value = Exgauge1.Value
 End With
End Sub

' Timer event - Occurs when the interval elapses.
Private Sub Exgauge1_Timer(ByVal sender As System.Object,ByVal TickCount As
Integer) Handles Exgauge1.Timer
 With Exgauge1
 .Value = .FormatABC("value + 1/24/60/60",.Value)
 End With
End Sub

With Exgauge1
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Clock"

.set_DefaultLayer(exontrol.EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerRotateType,

 .Layers.Count = 4

 With .Layers.Item(0)
 .Background.Picture.Name = "vista_clock.png"
 End With
 With .Layers.Item(1)
 .Position = 3
 .Key = "sec"
 .OnDrag = exontrol.EXGAUGELib.OnDragLayerEnum.exDoRotate
 .Selectable = False
 .Background.Picture.Name = "second-hand.png"
 .ValueToRotateAngle = "((2:=(((1:=(((0:=(value < 0 ? floor(value) + 1 - value :
value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - " & _
"floor(=:1)) * 60)) - floor(=:2)) * 360"
 .RotateAngleToValue = "value / 360 / 24 / 60"
 End With
 With .Layers.Item(2)
 .Position = 2
 .Key = "min"
 .OnDrag = exontrol.EXGAUGELib.OnDragLayerEnum.exDoRotate
 .Selectable = False
 .Background.Picture.Name = "Minute.png"
 .ValueToRotateAngle = "((1:=(((0:=(value < 0 ? floor(value) + 1 - value : value -
floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - floor(" & _
"=:1)) * 360"
 .RotateAngleToValue = "value / 360 / 24 / 60"
 End With
 With .Layers.Item(3)
 .Position = 1
 .Key = "hour"
 .OnDrag = exontrol.EXGAUGELib.OnDragLayerEnum.exDoRotate
 .Selectable = False
 .Background.Picture.Name = "Hour.png"
 .ValueToRotateAngle = "2 * 360 * ((0:=(value < 0 ? floor(value) + 1 - value : value
- floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5)))"
 .RotateAngleToValue = "value / 360 * 0.5"
 End With
 .LayerOfValue = 3
 .Value = .FormatABC("date(`now`)")

 .TimerInterval = 1000
End With

VB.NET for /COM

' Change event - Occurs when the layer's value is changed.
Private Sub AxGauge1_Change(ByVal sender As System.Object, ByVal e As
AxEXGAUGELib._IGaugeEvents_ChangeEvent) Handles AxGauge1.Change
 With AxGauge1
 .Layers.Item("sec").Value = AxGauge1.Value
 .Layers.Item("min").Value = AxGauge1.Value
 .Layers.Item("hour").Value = AxGauge1.Value
 End With
End Sub

' Timer event - Occurs when the interval elapses.
Private Sub AxGauge1_Timer(ByVal sender As System.Object, ByVal e As
AxEXGAUGELib._IGaugeEvents_TimerEvent) Handles AxGauge1.Timer
 With AxGauge1
 .Value = .FormatABC("value + 1/24/60/60",.Value)
 End With
End Sub

With AxGauge1
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Clock"
 .set_DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerRotateType,2)
 .Layers.Count = 4
 With .Layers.Item(0)
 .Background.Picture.Name = "vista_clock.png"
 End With
 With .Layers.Item(1)
 .Position = 3
 .Key = "sec"
 .OnDrag = EXGAUGELib.OnDragLayerEnum.exDoRotate
 .Selectable = False
 .Background.Picture.Name = "second-hand.png"

 .ValueToRotateAngle = "((2:=(((1:=(((0:=(value < 0 ? floor(value) + 1 - value :
value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - " & _
"floor(=:1)) * 60)) - floor(=:2)) * 360"
 .RotateAngleToValue = "value / 360 / 24 / 60"
 End With
 With .Layers.Item(2)
 .Position = 2
 .Key = "min"
 .OnDrag = EXGAUGELib.OnDragLayerEnum.exDoRotate
 .Selectable = False
 .Background.Picture.Name = "Minute.png"
 .ValueToRotateAngle = "((1:=(((0:=(value < 0 ? floor(value) + 1 - value : value -
floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - floor(" & _
"=:1)) * 360"
 .RotateAngleToValue = "value / 360 / 24 / 60"
 End With
 With .Layers.Item(3)
 .Position = 1
 .Key = "hour"
 .OnDrag = EXGAUGELib.OnDragLayerEnum.exDoRotate
 .Selectable = False
 .Background.Picture.Name = "Hour.png"
 .ValueToRotateAngle = "2 * 360 * ((0:=(value < 0 ? floor(value) + 1 - value : value
- floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5)))"
 .RotateAngleToValue = "value / 360 * 0.5"
 End With
 .LayerOfValue = 3
 .Value = .FormatABC("date(`now`)")
 .TimerInterval = 1000
End With

C++

// Change event - Occurs when the layer's value is changed.
void OnChangeGauge1(long Layer)
{
 /*

 Copy and paste the following directives to your header file as
 it defines the namespace 'EXGAUGELib' for the library: 'ExGauge 1.0 Control
Library'
 #import <ExGauge.dll>
 using namespace EXGAUGELib;
 */
 EXGAUGELib::IGaugePtr spGauge1 = GetDlgItem(IDC_GAUGE1)-
>GetControlUnknown();
 spGauge1->GetLayers()->GetItem("sec")->PutValue(spGauge1->GetValue());
 spGauge1->GetLayers()->GetItem("min")->PutValue(spGauge1->GetValue());
 spGauge1->GetLayers()->GetItem("hour")->PutValue(spGauge1->GetValue());
}

// Timer event - Occurs when the interval elapses.
void OnTimerGauge1(long TickCount)
{
 EXGAUGELib::IGaugePtr spGauge1 = GetDlgItem(IDC_GAUGE1)-
>GetControlUnknown();
 spGauge1->PutValue(spGauge1->FormatABC(L"value + 1/24/60/60",spGauge1-
>GetValue(),vtMissing,vtMissing));
}

EXGAUGELib::IGaugePtr spGauge1 = GetDlgItem(IDC_GAUGE1)-
>GetControlUnknown();
spGauge1->PutPicturesPath(L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Clock");
spGauge1->PutDefaultLayer(EXGAUGELib::exDefLayerRotateType,long(2));
spGauge1->GetLayers()->PutCount(4);
EXGAUGELib::ILayerPtr var_Layer = spGauge1->GetLayers()->GetItem(long(0));
 var_Layer->GetBackground()->GetPicture()->PutName("vista_clock.png");
EXGAUGELib::ILayerPtr var_Layer1 = spGauge1->GetLayers()->GetItem(long(1));
 var_Layer1->PutPosition(3);
 var_Layer1->PutKey("sec");
 var_Layer1->PutOnDrag(EXGAUGELib::exDoRotate);
 var_Layer1->PutSelectable(VARIANT_FALSE);
 var_Layer1->GetBackground()->GetPicture()->PutName("second-hand.png");
 var_Layer1->PutValueToRotateAngle(_bstr_t("((2:=(((1:=(((0:=(value < 0 ?

floor(value) + 1 - value : value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - ")
+
"floor(=:1)) * 60)) - floor(=:2)) * 360");
 var_Layer1->PutRotateAngleToValue(L"value / 360 / 24 / 60");
EXGAUGELib::ILayerPtr var_Layer2 = spGauge1->GetLayers()->GetItem(long(2));
 var_Layer2->PutPosition(2);
 var_Layer2->PutKey("min");
 var_Layer2->PutOnDrag(EXGAUGELib::exDoRotate);
 var_Layer2->PutSelectable(VARIANT_FALSE);
 var_Layer2->GetBackground()->GetPicture()->PutName("Minute.png");
 var_Layer2->PutValueToRotateAngle(_bstr_t("((1:=(((0:=(value < 0 ? floor(value) +
1 - value : value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - floor(") +
"=:1)) * 360");
 var_Layer2->PutRotateAngleToValue(L"value / 360 / 24 / 60");
EXGAUGELib::ILayerPtr var_Layer3 = spGauge1->GetLayers()->GetItem(long(3));
 var_Layer3->PutPosition(1);
 var_Layer3->PutKey("hour");
 var_Layer3->PutOnDrag(EXGAUGELib::exDoRotate);
 var_Layer3->PutSelectable(VARIANT_FALSE);
 var_Layer3->GetBackground()->GetPicture()->PutName("Hour.png");
 var_Layer3->PutValueToRotateAngle(L"2 * 360 * ((0:=(value < 0 ? floor(value) + 1 -
value : value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5)))");
 var_Layer3->PutRotateAngleToValue(L"value / 360 * 0.5");
spGauge1->PutLayerOfValue(3);
spGauge1->PutValue(spGauge1-
>FormatABC(L"date(`now`)",vtMissing,vtMissing,vtMissing));
spGauge1->PutTimerInterval(1000);

C++ Builder

// Change event - Occurs when the layer's value is changed.
void __fastcall TForm1::Gauge1Change(TObject *Sender,long Layer)
{
 Gauge1->Layers->get_Item(TVariant("sec"))->set_Value(TVariant(Gauge1-
>get_Value()));
 Gauge1->Layers->get_Item(TVariant("min"))->set_Value(TVariant(Gauge1-

>get_Value()));
 Gauge1->Layers->get_Item(TVariant("hour"))->set_Value(TVariant(Gauge1-
>get_Value()));
}

// Timer event - Occurs when the interval elapses.
void __fastcall TForm1::Gauge1Timer(TObject *Sender,long TickCount)
{
 Gauge1->set_Value(TVariant(Gauge1->FormatABC(L"value +
1/24/60/60",TVariant(Gauge1->get_Value()),TNoParam(),TNoParam())));
}

Gauge1->PicturesPath = L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Clock";
Gauge1-
>DefaultLayer[Exgaugelib_tlb::DefaultLayerPropertyEnum::exDefLayerRotateType] =
TVariant(2);
Gauge1->Layers->Count = 4;
Exgaugelib_tlb::ILayerPtr var_Layer = Gauge1->Layers->get_Item(TVariant(0));
 var_Layer->Background->Picture->set_Name(TVariant("vista_clock.png"));
Exgaugelib_tlb::ILayerPtr var_Layer1 = Gauge1->Layers->get_Item(TVariant(1));
 var_Layer1->Position = 3;
 var_Layer1->set_Key(TVariant("sec"));
 var_Layer1->OnDrag = Exgaugelib_tlb::OnDragLayerEnum::exDoRotate;
 var_Layer1->Selectable = false;
 var_Layer1->Background->Picture->set_Name(TVariant("second-hand.png"));
 var_Layer1->ValueToRotateAngle = TVariant(String("((2:=(((1:=(((0:=(value < 0 ?
floor(value) + 1 - value : value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - ")
+
"floor(=:1)) * 60)) - floor(=:2)) * 360");
 var_Layer1->RotateAngleToValue = L"value / 360 / 24 / 60";
Exgaugelib_tlb::ILayerPtr var_Layer2 = Gauge1->Layers->get_Item(TVariant(2));
 var_Layer2->Position = 2;
 var_Layer2->set_Key(TVariant("min"));
 var_Layer2->OnDrag = Exgaugelib_tlb::OnDragLayerEnum::exDoRotate;
 var_Layer2->Selectable = false;
 var_Layer2->Background->Picture->set_Name(TVariant("Minute.png"));

 var_Layer2->ValueToRotateAngle = TVariant(String("((1:=(((0:=(value < 0 ?
floor(value) + 1 - value : value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) -
floor(") +
"=:1)) * 360");
 var_Layer2->RotateAngleToValue = L"value / 360 / 24 / 60";
Exgaugelib_tlb::ILayerPtr var_Layer3 = Gauge1->Layers->get_Item(TVariant(3));
 var_Layer3->Position = 1;
 var_Layer3->set_Key(TVariant("hour"));
 var_Layer3->OnDrag = Exgaugelib_tlb::OnDragLayerEnum::exDoRotate;
 var_Layer3->Selectable = false;
 var_Layer3->Background->Picture->set_Name(TVariant("Hour.png"));
 var_Layer3->ValueToRotateAngle = L"2 * 360 * ((0:=(value < 0 ? floor(value) + 1 -
value : value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5)))";
 var_Layer3->RotateAngleToValue = L"value / 360 * 0.5";
Gauge1->LayerOfValue = 3;
Gauge1->set_Value(TVariant(Gauge1-
>FormatABC(L"date(`now`)",TNoParam(),TNoParam(),TNoParam())));
Gauge1->TimerInterval = 1000;

C#

// Change event - Occurs when the layer's value is changed.
private void exgauge1_Change(object sender,int Layer)
{
 exgauge1.Layers["sec"].Value = exgauge1.Value;
 exgauge1.Layers["min"].Value = exgauge1.Value;
 exgauge1.Layers["hour"].Value = exgauge1.Value;
}
//this.exgauge1.Change += new
exontrol.EXGAUGELib.exg2antt.ChangeEventHandler(this.exgauge1_Change);

// Timer event - Occurs when the interval elapses.
private void exgauge1_Timer(object sender,int TickCount)
{
 exgauge1.Value = exgauge1.FormatABC("value +
1/24/60/60",exgauge1.Value,null,null);

}
//this.exgauge1.Timer += new
exontrol.EXGAUGELib.exg2antt.TimerEventHandler(this.exgauge1_Timer);

exgauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Clock";
exgauge1.set_DefaultLayer(exontrol.EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerRotateType,

exgauge1.Layers.Count = 4;
exontrol.EXGAUGELib.Layer var_Layer = exgauge1.Layers[0];
 var_Layer.Background.Picture.Name = "vista_clock.png";
exontrol.EXGAUGELib.Layer var_Layer1 = exgauge1.Layers[1];
 var_Layer1.Position = 3;
 var_Layer1.Key = "sec";
 var_Layer1.OnDrag = exontrol.EXGAUGELib.OnDragLayerEnum.exDoRotate;
 var_Layer1.Selectable = false;
 var_Layer1.Background.Picture.Name = "second-hand.png";
 var_Layer1.ValueToRotateAngle = "((2:=(((1:=(((0:=(value < 0 ? floor(value) + 1 -
value : value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - " +
"floor(=:1)) * 60)) - floor(=:2)) * 360";
 var_Layer1.RotateAngleToValue = "value / 360 / 24 / 60";
exontrol.EXGAUGELib.Layer var_Layer2 = exgauge1.Layers[2];
 var_Layer2.Position = 2;
 var_Layer2.Key = "min";
 var_Layer2.OnDrag = exontrol.EXGAUGELib.OnDragLayerEnum.exDoRotate;
 var_Layer2.Selectable = false;
 var_Layer2.Background.Picture.Name = "Minute.png";
 var_Layer2.ValueToRotateAngle = "((1:=(((0:=(value < 0 ? floor(value) + 1 - value :
value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - floor(" +
"=:1)) * 360";
 var_Layer2.RotateAngleToValue = "value / 360 / 24 / 60";
exontrol.EXGAUGELib.Layer var_Layer3 = exgauge1.Layers[3];
 var_Layer3.Position = 1;
 var_Layer3.Key = "hour";
 var_Layer3.OnDrag = exontrol.EXGAUGELib.OnDragLayerEnum.exDoRotate;
 var_Layer3.Selectable = false;
 var_Layer3.Background.Picture.Name = "Hour.png";

 var_Layer3.ValueToRotateAngle = "2 * 360 * ((0:=(value < 0 ? floor(value) + 1 -
value : value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5)))";
 var_Layer3.RotateAngleToValue = "value / 360 * 0.5";
exgauge1.LayerOfValue = 3;
exgauge1.Value = exgauge1.FormatABC("date(`now`)",null,null,null);
exgauge1.TimerInterval = 1000;

JScript/JavaScript

<BODY onload="Init()">
<SCRIPT FOR="Gauge1" EVENT="Change(Layer)" LANGUAGE="JScript">
 Gauge1.Layers.Item("sec").Value = Gauge1.Value;
 Gauge1.Layers.Item("min").Value = Gauge1.Value;
 Gauge1.Layers.Item("hour").Value = Gauge1.Value;
</SCRIPT>

<SCRIPT FOR="Gauge1" EVENT="Timer(TickCount)" LANGUAGE="JScript">
 Gauge1.Value = Gauge1.FormatABC("value + 1/24/60/60",Gauge1.Value,null,null);
</SCRIPT>

<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 Gauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Clock";
 Gauge1.DefaultLayer(185) = 2;
 Gauge1.Layers.Count = 4;
 var var_Layer = Gauge1.Layers.Item(0);
 var_Layer.Background.Picture.Name = "vista_clock.png";
 var var_Layer1 = Gauge1.Layers.Item(1);
 var_Layer1.Position = 3;
 var_Layer1.Key = "sec";
 var_Layer1.OnDrag = 2;

 var_Layer1.Selectable = false;
 var_Layer1.Background.Picture.Name = "second-hand.png";
 var_Layer1.ValueToRotateAngle = "((2:=(((1:=(((0:=(value < 0 ? floor(value) + 1 -
value : value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - " +
 "floor(=:1)) * 60)) - floor(=:2)) * 360";
 var_Layer1.RotateAngleToValue = "value / 360 / 24 / 60";
 var var_Layer2 = Gauge1.Layers.Item(2);
 var_Layer2.Position = 2;
 var_Layer2.Key = "min";
 var_Layer2.OnDrag = 2;
 var_Layer2.Selectable = false;
 var_Layer2.Background.Picture.Name = "Minute.png";
 var_Layer2.ValueToRotateAngle = "((1:=(((0:=(value < 0 ? floor(value) + 1 -
value : value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - floor(" +
 "=:1)) * 360";
 var_Layer2.RotateAngleToValue = "value / 360 / 24 / 60";
 var var_Layer3 = Gauge1.Layers.Item(3);
 var_Layer3.Position = 1;
 var_Layer3.Key = "hour";
 var_Layer3.OnDrag = 2;
 var_Layer3.Selectable = false;
 var_Layer3.Background.Picture.Name = "Hour.png";
 var_Layer3.ValueToRotateAngle = "2 * 360 * ((0:=(value < 0 ? floor(value) + 1 -
value : value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5)))";
 var_Layer3.RotateAngleToValue = "value / 360 * 0.5";
 Gauge1.LayerOfValue = 3;
 Gauge1.Value = Gauge1.FormatABC("date(`now`)",null,null,null);
 Gauge1.TimerInterval = 1000;
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<SCRIPT LANGUAGE="VBScript">

Function Gauge1_Change(Layer)
 With Gauge1
 .Layers.Item("sec").Value = Gauge1.Value
 .Layers.Item("min").Value = Gauge1.Value
 .Layers.Item("hour").Value = Gauge1.Value
 End With
End Function
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Gauge1_Timer(TickCount)
 With Gauge1
 .Value = .FormatABC("value + 1/24/60/60",.Value)
 End With
End Function
</SCRIPT>

<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With Gauge1
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Clock"
 .DefaultLayer(185) = 2
 .Layers.Count = 4
 With .Layers.Item(0)
 .Background.Picture.Name = "vista_clock.png"
 End With
 With .Layers.Item(1)
 .Position = 3
 .Key = "sec"
 .OnDrag = 2
 .Selectable = False
 .Background.Picture.Name = "second-hand.png"
 .ValueToRotateAngle = "((2:=(((1:=(((0:=(value < 0 ? floor(value) + 1 - value :

value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - " & _
 "floor(=:1)) * 60)) - floor(=:2)) * 360"
 .RotateAngleToValue = "value / 360 / 24 / 60"
 End With
 With .Layers.Item(2)
 .Position = 2
 .Key = "min"
 .OnDrag = 2
 .Selectable = False
 .Background.Picture.Name = "Minute.png"
 .ValueToRotateAngle = "((1:=(((0:=(value < 0 ? floor(value) + 1 - value : value
- floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - floor(" & _
 "=:1)) * 360"
 .RotateAngleToValue = "value / 360 / 24 / 60"
 End With
 With .Layers.Item(3)
 .Position = 1
 .Key = "hour"
 .OnDrag = 2
 .Selectable = False
 .Background.Picture.Name = "Hour.png"
 .ValueToRotateAngle = "2 * 360 * ((0:=(value < 0 ? floor(value) + 1 - value :
value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5)))"
 .RotateAngleToValue = "value / 360 * 0.5"
 End With
 .LayerOfValue = 3
 .Value = .FormatABC("date(`now`)")
 .TimerInterval = 1000
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

// Change event - Occurs when the layer's value is changed.

private void axGauge1_Change(object sender,
AxEXGAUGELib._IGaugeEvents_ChangeEvent e)
{
 axGauge1.Layers["sec"].Value = axGauge1.Value;
 axGauge1.Layers["min"].Value = axGauge1.Value;
 axGauge1.Layers["hour"].Value = axGauge1.Value;
}
//this.axGauge1.Change += new
AxEXGAUGELib._IGaugeEvents_ChangeEventHandler(this.axGauge1_Change);

// Timer event - Occurs when the interval elapses.
private void axGauge1_Timer(object sender,
AxEXGAUGELib._IGaugeEvents_TimerEvent e)
{
 axGauge1.Value = axGauge1.FormatABC("value +
1/24/60/60",axGauge1.Value,null,null);
}
//this.axGauge1.Timer += new
AxEXGAUGELib._IGaugeEvents_TimerEventHandler(this.axGauge1_Timer);

axGauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Clock";
axGauge1.set_DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerRotateType,

axGauge1.Layers.Count = 4;
EXGAUGELib.Layer var_Layer = axGauge1.Layers[0];
 var_Layer.Background.Picture.Name = "vista_clock.png";
EXGAUGELib.Layer var_Layer1 = axGauge1.Layers[1];
 var_Layer1.Position = 3;
 var_Layer1.Key = "sec";
 var_Layer1.OnDrag = EXGAUGELib.OnDragLayerEnum.exDoRotate;
 var_Layer1.Selectable = false;
 var_Layer1.Background.Picture.Name = "second-hand.png";
 var_Layer1.ValueToRotateAngle = "((2:=(((1:=(((0:=(value < 0 ? floor(value) + 1 -
value : value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - " +
"floor(=:1)) * 60)) - floor(=:2)) * 360";
 var_Layer1.RotateAngleToValue = "value / 360 / 24 / 60";

EXGAUGELib.Layer var_Layer2 = axGauge1.Layers[2];
 var_Layer2.Position = 2;
 var_Layer2.Key = "min";
 var_Layer2.OnDrag = EXGAUGELib.OnDragLayerEnum.exDoRotate;
 var_Layer2.Selectable = false;
 var_Layer2.Background.Picture.Name = "Minute.png";
 var_Layer2.ValueToRotateAngle = "((1:=(((0:=(value < 0 ? floor(value) + 1 - value :
value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - floor(" +
"=:1)) * 360";
 var_Layer2.RotateAngleToValue = "value / 360 / 24 / 60";
EXGAUGELib.Layer var_Layer3 = axGauge1.Layers[3];
 var_Layer3.Position = 1;
 var_Layer3.Key = "hour";
 var_Layer3.OnDrag = EXGAUGELib.OnDragLayerEnum.exDoRotate;
 var_Layer3.Selectable = false;
 var_Layer3.Background.Picture.Name = "Hour.png";
 var_Layer3.ValueToRotateAngle = "2 * 360 * ((0:=(value < 0 ? floor(value) + 1 -
value : value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5)))";
 var_Layer3.RotateAngleToValue = "value / 360 * 0.5";
axGauge1.LayerOfValue = 3;
axGauge1.Value = axGauge1.FormatABC("date(`now`)",null,null,null);
axGauge1.TimerInterval = 1000;

X++ (Dynamics Ax 2009)

// Change event - Occurs when the layer's value is changed.
void onEvent_Change(int _Layer)
{
 COM com_Layer;
 anytype var_Layer;
 ;
 var_Layer = COM::createFromObject(exgauge1.Layers()).Item("sec"); com_Layer =
var_Layer;
 com_Layer.Value(exgauge1.Value());
 var_Layer = COM::createFromObject(exgauge1.Layers()).Item("min"); com_Layer =
var_Layer;

 com_Layer.Value(exgauge1.Value());
 var_Layer = COM::createFromObject(exgauge1.Layers()).Item("hour"); com_Layer =
var_Layer;
 com_Layer.Value(exgauge1.Value());
}

// Timer event - Occurs when the interval elapses.
void onEvent_Timer(int _TickCount)
{
 ;
 exgauge1.Value(exgauge1.FormatABC("value + 1/24/60/60",exgauge1.Value()));
}

public void init()
{
 COM
com_Background,com_Layer,com_Layer1,com_Layer2,com_Layer3,com_Picture;
 anytype var_Background,var_Layer,var_Layer1,var_Layer2,var_Layer3,var_Picture;
 str var_s,var_s1;
 ;

 super();

 exgauge1.PicturesPath("C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Clock");

exgauge1.DefaultLayer(185/*exDefLayerRotateType*/,COMVariant::createFromInt(2));
 exgauge1.Layers().Count(4);
 var_Layer =
COM::createFromObject(exgauge1.Layers()).Item(COMVariant::createFromInt(0));
com_Layer = var_Layer;
 var_Background = COM::createFromObject(com_Layer.Background());
com_Background = var_Background;
 var_Picture = COM::createFromObject(com_Background).Picture(); com_Picture =
var_Picture;
 com_Picture.Name("vista_clock.png");
 var_Layer1 =

COM::createFromObject(exgauge1.Layers()).Item(COMVariant::createFromInt(1));
com_Layer1 = var_Layer1;
 com_Layer1.Position(3);
 com_Layer1.Key("sec");
 com_Layer1.OnDrag(2/*exDoRotate*/);
 com_Layer1.Selectable(false);
 var_Background = COM::createFromObject(com_Layer1.Background());
com_Background = var_Background;
 var_Picture = COM::createFromObject(com_Background).Picture(); com_Picture =
var_Picture;
 com_Picture.Name("second-hand.png");
 var_s = "((2:=(((1:=(((0:=(value < 0 ? floor(value) + 1 - value : value -
floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - f";
 var_s = var_s + "loor(=:1)) * 60)) - floor(=:2)) * 360";
 com_Layer1.ValueToRotateAngle(var_s);
 com_Layer1.RotateAngleToValue("value / 360 / 24 / 60");
 var_Layer2 =
COM::createFromObject(exgauge1.Layers()).Item(COMVariant::createFromInt(2));
com_Layer2 = var_Layer2;
 com_Layer2.Position(2);
 com_Layer2.Key("min");
 com_Layer2.OnDrag(2/*exDoRotate*/);
 com_Layer2.Selectable(false);
 var_Background = COM::createFromObject(com_Layer2.Background());
com_Background = var_Background;
 var_Picture = COM::createFromObject(com_Background).Picture(); com_Picture =
var_Picture;
 com_Picture.Name("Minute.png");
 var_s1 = "((1:=(((0:=(value < 0 ? floor(value) + 1 - value : value - floor(value))) <
0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - floor(=";
 var_s1 = var_s1 + ":1)) * 360";
 com_Layer2.ValueToRotateAngle(var_s1);
 com_Layer2.RotateAngleToValue("value / 360 / 24 / 60");
 var_Layer3 =
COM::createFromObject(exgauge1.Layers()).Item(COMVariant::createFromInt(3));
com_Layer3 = var_Layer3;
 com_Layer3.Position(1);

 com_Layer3.Key("hour");
 com_Layer3.OnDrag(2/*exDoRotate*/);
 com_Layer3.Selectable(false);
 var_Background = COM::createFromObject(com_Layer3.Background());
com_Background = var_Background;
 var_Picture = COM::createFromObject(com_Background).Picture(); com_Picture =
var_Picture;
 com_Picture.Name("Hour.png");
 com_Layer3.ValueToRotateAngle("2 * 360 * ((0:=(value < 0 ? floor(value) + 1 -
value : value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5)))");
 com_Layer3.RotateAngleToValue("value / 360 * 0.5");
 exgauge1.LayerOfValue(3);
 exgauge1.Value(exgauge1.FormatABC("date(`now`)"));
 exgauge1.TimerInterval(1000);
}

Delphi 8 (.NET only)

// Change event - Occurs when the layer's value is changed.
procedure TWinForm1.AxGauge1_Change(sender: System.Object; e:
AxEXGAUGELib._IGaugeEvents_ChangeEvent);
begin
 with AxGauge1 do
 begin
 Layers.Item['sec'].Value := AxGauge1.Value;
 Layers.Item['min'].Value := AxGauge1.Value;
 Layers.Item['hour'].Value := AxGauge1.Value;
 end
end;

// Timer event - Occurs when the interval elapses.
procedure TWinForm1.AxGauge1_Timer(sender: System.Object; e:
AxEXGAUGELib._IGaugeEvents_TimerEvent);
begin
 with AxGauge1 do
 begin
 Value := FormatABC('value + 1/24/60/60',Value,Nil,Nil);

 end
end;

with AxGauge1 do
begin
 PicturesPath := 'C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Clock';

set_DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerRotateType,TObject(

 Layers.Count := 4;
 with Layers.Item[TObject(0)] do
 begin
 Background.Picture.Name := 'vista_clock.png';
 end;
 with Layers.Item[TObject(1)] do
 begin
 Position := 3;
 Key := 'sec';
 OnDrag := EXGAUGELib.OnDragLayerEnum.exDoRotate;
 Selectable := False;
 Background.Picture.Name := 'second-hand.png';
 ValueToRotateAngle := '((2:=(((1:=(((0:=(value < 0 ? floor(value) + 1 - value :
value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - f' +
 'loor(=:1)) * 60)) - floor(=:2)) * 360';
 RotateAngleToValue := 'value / 360 / 24 / 60';
 end;
 with Layers.Item[TObject(2)] do
 begin
 Position := 2;
 Key := 'min';
 OnDrag := EXGAUGELib.OnDragLayerEnum.exDoRotate;
 Selectable := False;
 Background.Picture.Name := 'Minute.png';
 ValueToRotateAngle := '((1:=(((0:=(value < 0 ? floor(value) + 1 - value : value -
floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - floor(=' +
 ':1)) * 360';

 RotateAngleToValue := 'value / 360 / 24 / 60';
 end;
 with Layers.Item[TObject(3)] do
 begin
 Position := 1;
 Key := 'hour';
 OnDrag := EXGAUGELib.OnDragLayerEnum.exDoRotate;
 Selectable := False;
 Background.Picture.Name := 'Hour.png';
 ValueToRotateAngle := '2 * 360 * ((0:=(value < 0 ? floor(value) + 1 - value : value
- floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5)))';
 RotateAngleToValue := 'value / 360 * 0.5';
 end;
 LayerOfValue := 3;
 Value := FormatABC('date(`now`)',Nil,Nil,Nil);
 TimerInterval := 1000;
end

Delphi (standard)

// Change event - Occurs when the layer's value is changed.
procedure TForm1.Gauge1Change(ASender: TObject; Layer : Integer);
begin
 with Gauge1 do
 begin
 Layers.Item['sec'].Value := Gauge1.Value;
 Layers.Item['min'].Value := Gauge1.Value;
 Layers.Item['hour'].Value := Gauge1.Value;
 end
end;

// Timer event - Occurs when the interval elapses.
procedure TForm1.Gauge1Timer(ASender: TObject; TickCount : Integer);
begin
 with Gauge1 do
 begin
 Value := FormatABC('value + 1/24/60/60',Value,Null,Null);

 end
end;

with Gauge1 do
begin
 PicturesPath := 'C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Clock';
 DefaultLayer[EXGAUGELib_TLB.exDefLayerRotateType] := OleVariant(2);
 Layers.Count := 4;
 with Layers.Item[OleVariant(0)] do
 begin
 Background.Picture.Name := 'vista_clock.png';
 end;
 with Layers.Item[OleVariant(1)] do
 begin
 Position := 3;
 Key := 'sec';
 OnDrag := EXGAUGELib_TLB.exDoRotate;
 Selectable := False;
 Background.Picture.Name := 'second-hand.png';
 ValueToRotateAngle := '((2:=(((1:=(((0:=(value < 0 ? floor(value) + 1 - value :
value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - f' +
 'loor(=:1)) * 60)) - floor(=:2)) * 360';
 RotateAngleToValue := 'value / 360 / 24 / 60';
 end;
 with Layers.Item[OleVariant(2)] do
 begin
 Position := 2;
 Key := 'min';
 OnDrag := EXGAUGELib_TLB.exDoRotate;
 Selectable := False;
 Background.Picture.Name := 'Minute.png';
 ValueToRotateAngle := '((1:=(((0:=(value < 0 ? floor(value) + 1 - value : value -
floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - floor(=' +
 ':1)) * 360';
 RotateAngleToValue := 'value / 360 / 24 / 60';
 end;

 with Layers.Item[OleVariant(3)] do
 begin
 Position := 1;
 Key := 'hour';
 OnDrag := EXGAUGELib_TLB.exDoRotate;
 Selectable := False;
 Background.Picture.Name := 'Hour.png';
 ValueToRotateAngle := '2 * 360 * ((0:=(value < 0 ? floor(value) + 1 - value : value
- floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5)))';
 RotateAngleToValue := 'value / 360 * 0.5';
 end;
 LayerOfValue := 3;
 Value := FormatABC('date(`now`)',Null,Null,Null);
 TimerInterval := 1000;
end

VFP

*** Change event - Occurs when the layer's value is changed. ***
LPARAMETERS Layer
 with thisform.Gauge1
 .Layers.Item("sec").Value = thisform.Gauge1.Value
 .Layers.Item("min").Value = thisform.Gauge1.Value
 .Layers.Item("hour").Value = thisform.Gauge1.Value
 endwith

*** Timer event - Occurs when the interval elapses. ***
LPARAMETERS TickCount
 with thisform.Gauge1
 .Value = .FormatABC("value + 1/24/60/60",.Value)
 endwith

with thisform.Gauge1
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Clock"
 .Object.DefaultLayer(185) = 2
 .Layers.Count = 4

 with .Layers.Item(0)
 .Background.Picture.Name = "vista_clock.png"
 endwith
 with .Layers.Item(1)
 .Position = 3
 .Key = "sec"
 .OnDrag = 2
 .Selectable = .F.
 .Background.Picture.Name = "second-hand.png"
 var_s = "((2:=(((1:=(((0:=(value < 0 ? floor(value) + 1 - value : value -
floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - f"
 var_s = var_s + "loor(=:1)) * 60)) - floor(=:2)) * 360"
 .ValueToRotateAngle = var_s
 .RotateAngleToValue = "value / 360 / 24 / 60"
 endwith
 with .Layers.Item(2)
 .Position = 2
 .Key = "min"
 .OnDrag = 2
 .Selectable = .F.
 .Background.Picture.Name = "Minute.png"
 var_s1 = "((1:=(((0:=(value < 0 ? floor(value) + 1 - value : value - floor(value))) <
0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - floor(="
 var_s1 = var_s1 + ":1)) * 360"
 .ValueToRotateAngle = var_s1
 .RotateAngleToValue = "value / 360 / 24 / 60"
 endwith
 with .Layers.Item(3)
 .Position = 1
 .Key = "hour"
 .OnDrag = 2
 .Selectable = .F.
 .Background.Picture.Name = "Hour.png"
 .ValueToRotateAngle = "2 * 360 * ((0:=(value < 0 ? floor(value) + 1 - value : value
- floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5)))"
 .RotateAngleToValue = "value / 360 * 0.5"
 endwith

 .LayerOfValue = 3
 .Value = .FormatABC("date(`now`)")
 .TimerInterval = 1000
endwith

dBASE Plus

/*
with (this.EXGAUGEACTIVEXCONTROL1.nativeObject)
 Change = class::nativeObject_Change
endwith
*/
// Occurs when the layer's value is changed.
function nativeObject_Change(Layer)
 oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject
 oGauge.Layers.Item("sec").Value = oGauge.Value
 oGauge.Layers.Item("min").Value = oGauge.Value
 oGauge.Layers.Item("hour").Value = oGauge.Value
return

/*
with (this.EXGAUGEACTIVEXCONTROL1.nativeObject)
 Timer = class::nativeObject_Timer
endwith
*/
// Occurs when the interval elapses.
function nativeObject_Timer(TickCount)
 oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject
 oGauge.Value = oGauge.FormatABC("value + 1/24/60/60",oGauge.Value)
return

local oGauge,var_Layer,var_Layer1,var_Layer2,var_Layer3

oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Clock"
oGauge.Template = [DefaultLayer(185) = 2] // oGauge.DefaultLayer(185) = 2

oGauge.Layers.Count = 4
var_Layer = oGauge.Layers.Item(0)
 var_Layer.Background.Picture.Name = "vista_clock.png"
var_Layer1 = oGauge.Layers.Item(1)
 var_Layer1.Position = 3
 var_Layer1.Key = "sec"
 var_Layer1.OnDrag = 2
 var_Layer1.Selectable = false
 var_Layer1.Background.Picture.Name = "second-hand.png"
 var_Layer1.ValueToRotateAngle = "((2:=(((1:=(((0:=(value < 0 ? floor(value) + 1 -
value : value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - floor(=:1)) * 60)) -
floor(=:2)) * 360"
 var_Layer1.RotateAngleToValue = "value / 360 / 24 / 60"
var_Layer2 = oGauge.Layers.Item(2)
 var_Layer2.Position = 2
 var_Layer2.Key = "min"
 var_Layer2.OnDrag = 2
 var_Layer2.Selectable = false
 var_Layer2.Background.Picture.Name = "Minute.png"
 var_Layer2.ValueToRotateAngle = "((1:=(((0:=(value < 0 ? floor(value) + 1 - value :
value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - floor(=:1)) * 360"
 var_Layer2.RotateAngleToValue = "value / 360 / 24 / 60"
var_Layer3 = oGauge.Layers.Item(3)
 var_Layer3.Position = 1
 var_Layer3.Key = "hour"
 var_Layer3.OnDrag = 2
 var_Layer3.Selectable = false
 var_Layer3.Background.Picture.Name = "Hour.png"
 var_Layer3.ValueToRotateAngle = "2 * 360 * ((0:=(value < 0 ? floor(value) + 1 -
value : value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5)))"
 var_Layer3.RotateAngleToValue = "value / 360 * 0.5"
oGauge.LayerOfValue = 3
oGauge.Value = oGauge.FormatABC("date(`now`)")
oGauge.TimerInterval = 1000

XBasic (Alpha Five)

' Occurs when the layer's value is changed.
function Change as v (Layer as N)
 oGauge = topparent:CONTROL_ACTIVEX1.activex
 oGauge.Layers.Item("sec").Value = oGauge.Value
 oGauge.Layers.Item("min").Value = oGauge.Value
 oGauge.Layers.Item("hour").Value = oGauge.Value
end function

' Occurs when the interval elapses.
function Timer as v (TickCount as N)
 oGauge = topparent:CONTROL_ACTIVEX1.activex
 oGauge.Value = oGauge.FormatABC("value + 1/24/60/60",oGauge.Value)
end function

Dim oGauge as P
Dim var_Layer as P
Dim var_Layer1 as P
Dim var_Layer2 as P
Dim var_Layer3 as P

oGauge = topparent:CONTROL_ACTIVEX1.activex
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Clock"
oGauge.Template = "DefaultLayer(185) = 2" // oGauge.DefaultLayer(185) = 2
oGauge.Layers.Count = 4
var_Layer = oGauge.Layers.Item(0)
 var_Layer.Background.Picture.Name = "vista_clock.png"
var_Layer1 = oGauge.Layers.Item(1)
 var_Layer1.Position = 3
 var_Layer1.Key = "sec"
 var_Layer1.OnDrag = 2
 var_Layer1.Selectable = .f.
 var_Layer1.Background.Picture.Name = "second-hand.png"
 var_Layer1.ValueToRotateAngle = "((2:=(((1:=(((0:=(value < 0 ? floor(value) + 1 -
value : value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - floor(=:1)) * 60)) -
floor(=:2)) * 360"
 var_Layer1.RotateAngleToValue = "value / 360 / 24 / 60"

var_Layer2 = oGauge.Layers.Item(2)
 var_Layer2.Position = 2
 var_Layer2.Key = "min"
 var_Layer2.OnDrag = 2
 var_Layer2.Selectable = .f.
 var_Layer2.Background.Picture.Name = "Minute.png"
 var_Layer2.ValueToRotateAngle = "((1:=(((0:=(value < 0 ? floor(value) + 1 - value :
value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - floor(=:1)) * 360"
 var_Layer2.RotateAngleToValue = "value / 360 / 24 / 60"
var_Layer3 = oGauge.Layers.Item(3)
 var_Layer3.Position = 1
 var_Layer3.Key = "hour"
 var_Layer3.OnDrag = 2
 var_Layer3.Selectable = .f.
 var_Layer3.Background.Picture.Name = "Hour.png"
 var_Layer3.ValueToRotateAngle = "2 * 360 * ((0:=(value < 0 ? floor(value) + 1 -
value : value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5)))"
 var_Layer3.RotateAngleToValue = "value / 360 * 0.5"
oGauge.LayerOfValue = 3
oGauge.Value = oGauge.FormatABC("date(`now`)")
oGauge.TimerInterval = 1000

Visual Objects

METHOD OCX_Exontrol1Change(Layer) CLASS MainDialog
 // Change event - Occurs when the layer's value is changed.
 oDCOCX_Exontrol1:Layers:[Item,"sec"]:Value := oDCOCX_Exontrol1:Value
 oDCOCX_Exontrol1:Layers:[Item,"min"]:Value := oDCOCX_Exontrol1:Value
 oDCOCX_Exontrol1:Layers:[Item,"hour"]:Value := oDCOCX_Exontrol1:Value
RETURN NIL

METHOD OCX_Exontrol1Timer(TickCount) CLASS MainDialog
 // Timer event - Occurs when the interval elapses.
 oDCOCX_Exontrol1:Value := oDCOCX_Exontrol1:FormatABC("value +
1/24/60/60",oDCOCX_Exontrol1:Value,nil,nil)
RETURN NIL

local var_Layer,var_Layer1,var_Layer2,var_Layer3 as ILayer

oDCOCX_Exontrol1:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Clock"
oDCOCX_Exontrol1:[DefaultLayer,exDefLayerRotateType] := 2
oDCOCX_Exontrol1:Layers:Count := 4
var_Layer := oDCOCX_Exontrol1:Layers:[Item,0]
 var_Layer:Background:Picture:Name := "vista_clock.png"
var_Layer1 := oDCOCX_Exontrol1:Layers:[Item,1]
 var_Layer1:Position := 3
 var_Layer1:Key := "sec"
 var_Layer1:OnDrag := exDoRotate
 var_Layer1:Selectable := false
 var_Layer1:Background:Picture:Name := "second-hand.png"
 var_Layer1:ValueToRotateAngle := "((2:=(((1:=(((0:=(value < 0 ? floor(value) + 1 -
value : value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - floor(=:1)) * 60)) -
floor(=:2)) * 360"
 var_Layer1:RotateAngleToValue := "value / 360 / 24 / 60"
var_Layer2 := oDCOCX_Exontrol1:Layers:[Item,2]
 var_Layer2:Position := 2
 var_Layer2:Key := "min"
 var_Layer2:OnDrag := exDoRotate
 var_Layer2:Selectable := false
 var_Layer2:Background:Picture:Name := "Minute.png"
 var_Layer2:ValueToRotateAngle := "((1:=(((0:=(value < 0 ? floor(value) + 1 - value :
value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - floor(=:1)) * 360"
 var_Layer2:RotateAngleToValue := "value / 360 / 24 / 60"
var_Layer3 := oDCOCX_Exontrol1:Layers:[Item,3]
 var_Layer3:Position := 1
 var_Layer3:Key := "hour"
 var_Layer3:OnDrag := exDoRotate
 var_Layer3:Selectable := false
 var_Layer3:Background:Picture:Name := "Hour.png"
 var_Layer3:ValueToRotateAngle := "2 * 360 * ((0:=(value < 0 ? floor(value) + 1 -
value : value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5)))"
 var_Layer3:RotateAngleToValue := "value / 360 * 0.5"

oDCOCX_Exontrol1:LayerOfValue := 3
oDCOCX_Exontrol1:Value := oDCOCX_Exontrol1:FormatABC("date(`now`)",nil,nil,nil)
oDCOCX_Exontrol1:TimerInterval := 1000

PowerBuilder

/*begin event Change(long Layer) - Occurs when the layer's value is changed.*/
/*
 oGauge = ole_1.Object
 oGauge.Layers.Item("sec").Value = oGauge.Value
 oGauge.Layers.Item("min").Value = oGauge.Value
 oGauge.Layers.Item("hour").Value = oGauge.Value
*/
/*end event Change*/

/*begin event Timer(long TickCount) - Occurs when the interval elapses.*/
/*
 oGauge = ole_1.Object
 oGauge.Value = oGauge.FormatABC("value + 1/24/60/60",oGauge.Value)
*/
/*end event Timer*/

OleObject oGauge,var_Layer,var_Layer1,var_Layer2,var_Layer3

oGauge = ole_1.Object
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Clock"
oGauge.DefaultLayer(185,2)
oGauge.Layers.Count = 4
var_Layer = oGauge.Layers.Item(0)
 var_Layer.Background.Picture.Name = "vista_clock.png"
var_Layer1 = oGauge.Layers.Item(1)
 var_Layer1.Position = 3
 var_Layer1.Key = "sec"
 var_Layer1.OnDrag = 2
 var_Layer1.Selectable = false

 var_Layer1.Background.Picture.Name = "second-hand.png"
 var_Layer1.ValueToRotateAngle = "((2:=(((1:=(((0:=(value < 0 ? floor(value) + 1 -
value : value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - floor(=:1)) * 60)) -
floor(=:2)) * 360"
 var_Layer1.RotateAngleToValue = "value / 360 / 24 / 60"
var_Layer2 = oGauge.Layers.Item(2)
 var_Layer2.Position = 2
 var_Layer2.Key = "min"
 var_Layer2.OnDrag = 2
 var_Layer2.Selectable = false
 var_Layer2.Background.Picture.Name = "Minute.png"
 var_Layer2.ValueToRotateAngle = "((1:=(((0:=(value < 0 ? floor(value) + 1 - value :
value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - floor(=:1)) * 360"
 var_Layer2.RotateAngleToValue = "value / 360 / 24 / 60"
var_Layer3 = oGauge.Layers.Item(3)
 var_Layer3.Position = 1
 var_Layer3.Key = "hour"
 var_Layer3.OnDrag = 2
 var_Layer3.Selectable = false
 var_Layer3.Background.Picture.Name = "Hour.png"
 var_Layer3.ValueToRotateAngle = "2 * 360 * ((0:=(value < 0 ? floor(value) + 1 -
value : value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5)))"
 var_Layer3.RotateAngleToValue = "value / 360 * 0.5"
oGauge.LayerOfValue = 3
oGauge.Value = oGauge.FormatABC("date(`now`)")
oGauge.TimerInterval = 1000

Visual DataFlex

// Occurs when the layer's value is changed.
Procedure OnComChange Integer llLayer
 Forward Send OnComChange llLayer
 Variant voLayers
 Get ComLayers to voLayers
 Handle hoLayers
 Get Create (RefClass(cComLayers)) to hoLayers

 Set pvComObject of hoLayers to voLayers
 Variant voLayer
 Get ComItem of hoLayers "sec" to voLayer
 Handle hoLayer
 Get Create (RefClass(cComLayer)) to hoLayer
 Set pvComObject of hoLayer to voLayer
 Variant v
 Get ComValue to v
 Set ComValue of hoLayer to v
 Send Destroy to hoLayer
 Send Destroy to hoLayers
 Variant voLayers1
 Get ComLayers to voLayers1
 Handle hoLayers1
 Get Create (RefClass(cComLayers)) to hoLayers1
 Set pvComObject of hoLayers1 to voLayers1
 Variant voLayer1
 Get ComItem of hoLayers1 "min" to voLayer1
 Handle hoLayer1
 Get Create (RefClass(cComLayer)) to hoLayer1
 Set pvComObject of hoLayer1 to voLayer1
 Variant v1
 Get ComValue to v1
 Set ComValue of hoLayer1 to v1
 Send Destroy to hoLayer1
 Send Destroy to hoLayers1
 Variant voLayers2
 Get ComLayers to voLayers2
 Handle hoLayers2
 Get Create (RefClass(cComLayers)) to hoLayers2
 Set pvComObject of hoLayers2 to voLayers2
 Variant voLayer2
 Get ComItem of hoLayers2 "hour" to voLayer2
 Handle hoLayer2
 Get Create (RefClass(cComLayer)) to hoLayer2
 Set pvComObject of hoLayer2 to voLayer2
 Variant v2

 Get ComValue to v2
 Set ComValue of hoLayer2 to v2
 Send Destroy to hoLayer2
 Send Destroy to hoLayers2
End_Procedure

// Occurs when the interval elapses.
Procedure OnComTimer Integer llTickCount
 Forward Send OnComTimer llTickCount
 Set ComValue to (ComFormatABC(Self,"value + 1/24/60/60",
(ComValue(Self)),Nothing,Nothing))
End_Procedure

Procedure OnCreate
 Forward Send OnCreate
 Set ComPicturesPath to "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Clock"
 Set ComDefaultLayer OLEexDefLayerRotateType to 2
 Variant voLayers3
 Get ComLayers to voLayers3
 Handle hoLayers3
 Get Create (RefClass(cComLayers)) to hoLayers3
 Set pvComObject of hoLayers3 to voLayers3
 Set ComCount of hoLayers3 to 4
 Send Destroy to hoLayers3
 Variant voLayers4
 Get ComLayers to voLayers4
 Handle hoLayers4
 Get Create (RefClass(cComLayers)) to hoLayers4
 Set pvComObject of hoLayers4 to voLayers4
 Variant voLayer3
 Get ComItem of hoLayers4 0 to voLayer3
 Handle hoLayer3
 Get Create (RefClass(cComLayer)) to hoLayer3
 Set pvComObject of hoLayer3 to voLayer3
 Variant voBackground
 Get ComBackground of hoLayer3 to voBackground

 Handle hoBackground
 Get Create (RefClass(cComBackground)) to hoBackground
 Set pvComObject of hoBackground to voBackground
 Variant voPicture
 Get ComPicture of hoBackground to voPicture
 Handle hoPicture
 Get Create (RefClass(cComPicture)) to hoPicture
 Set pvComObject of hoPicture to voPicture
 Set ComName of hoPicture to "vista_clock.png"
 Send Destroy to hoPicture
 Send Destroy to hoBackground
 Send Destroy to hoLayer3
 Send Destroy to hoLayers4
 Variant voLayers5
 Get ComLayers to voLayers5
 Handle hoLayers5
 Get Create (RefClass(cComLayers)) to hoLayers5
 Set pvComObject of hoLayers5 to voLayers5
 Variant voLayer4
 Get ComItem of hoLayers5 1 to voLayer4
 Handle hoLayer4
 Get Create (RefClass(cComLayer)) to hoLayer4
 Set pvComObject of hoLayer4 to voLayer4
 Set ComPosition of hoLayer4 to 3
 Set ComKey of hoLayer4 to "sec"
 Set ComOnDrag of hoLayer4 to OLEexDoRotate
 Set ComSelectable of hoLayer4 to False
 Variant voBackground1
 Get ComBackground of hoLayer4 to voBackground1
 Handle hoBackground1
 Get Create (RefClass(cComBackground)) to hoBackground1
 Set pvComObject of hoBackground1 to voBackground1
 Variant voPicture1
 Get ComPicture of hoBackground1 to voPicture1
 Handle hoPicture1
 Get Create (RefClass(cComPicture)) to hoPicture1
 Set pvComObject of hoPicture1 to voPicture1

 Set ComName of hoPicture1 to "second-hand.png"
 Send Destroy to hoPicture1
 Send Destroy to hoBackground1
 Set ComValueToRotateAngle of hoLayer4 to "((2:=(((1:=(((0:=(value < 0 ?
floor(value) + 1 - value : value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) -
floor(=:1)) * 60)) - floor(=:2)) * 360"
 Set ComRotateAngleToValue of hoLayer4 to "value / 360 / 24 / 60"
 Send Destroy to hoLayer4
 Send Destroy to hoLayers5
 Variant voLayers6
 Get ComLayers to voLayers6
 Handle hoLayers6
 Get Create (RefClass(cComLayers)) to hoLayers6
 Set pvComObject of hoLayers6 to voLayers6
 Variant voLayer5
 Get ComItem of hoLayers6 2 to voLayer5
 Handle hoLayer5
 Get Create (RefClass(cComLayer)) to hoLayer5
 Set pvComObject of hoLayer5 to voLayer5
 Set ComPosition of hoLayer5 to 2
 Set ComKey of hoLayer5 to "min"
 Set ComOnDrag of hoLayer5 to OLEexDoRotate
 Set ComSelectable of hoLayer5 to False
 Variant voBackground2
 Get ComBackground of hoLayer5 to voBackground2
 Handle hoBackground2
 Get Create (RefClass(cComBackground)) to hoBackground2
 Set pvComObject of hoBackground2 to voBackground2
 Variant voPicture2
 Get ComPicture of hoBackground2 to voPicture2
 Handle hoPicture2
 Get Create (RefClass(cComPicture)) to hoPicture2
 Set pvComObject of hoPicture2 to voPicture2
 Set ComName of hoPicture2 to "Minute.png"
 Send Destroy to hoPicture2
 Send Destroy to hoBackground2
 Set ComValueToRotateAngle of hoLayer5 to "((1:=(((0:=(value < 0 ?

floor(value) + 1 - value : value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) -
floor(=:1)) * 360"
 Set ComRotateAngleToValue of hoLayer5 to "value / 360 / 24 / 60"
 Send Destroy to hoLayer5
 Send Destroy to hoLayers6
 Variant voLayers7
 Get ComLayers to voLayers7
 Handle hoLayers7
 Get Create (RefClass(cComLayers)) to hoLayers7
 Set pvComObject of hoLayers7 to voLayers7
 Variant voLayer6
 Get ComItem of hoLayers7 3 to voLayer6
 Handle hoLayer6
 Get Create (RefClass(cComLayer)) to hoLayer6
 Set pvComObject of hoLayer6 to voLayer6
 Set ComPosition of hoLayer6 to 1
 Set ComKey of hoLayer6 to "hour"
 Set ComOnDrag of hoLayer6 to OLEexDoRotate
 Set ComSelectable of hoLayer6 to False
 Variant voBackground3
 Get ComBackground of hoLayer6 to voBackground3
 Handle hoBackground3
 Get Create (RefClass(cComBackground)) to hoBackground3
 Set pvComObject of hoBackground3 to voBackground3
 Variant voPicture3
 Get ComPicture of hoBackground3 to voPicture3
 Handle hoPicture3
 Get Create (RefClass(cComPicture)) to hoPicture3
 Set pvComObject of hoPicture3 to voPicture3
 Set ComName of hoPicture3 to "Hour.png"
 Send Destroy to hoPicture3
 Send Destroy to hoBackground3
 Set ComValueToRotateAngle of hoLayer6 to "2 * 360 * ((0:=(value < 0 ?
floor(value) + 1 - value : value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5)))"
 Set ComRotateAngleToValue of hoLayer6 to "value / 360 * 0.5"
 Send Destroy to hoLayer6
 Send Destroy to hoLayers7

 Set ComLayerOfValue to 3
 Set ComValue to (ComFormatABC(Self,"date(`now`)",Nothing,Nothing,Nothing))
 Set ComTimerInterval to 1000
End_Procedure

XBase++

PROCEDURE OnChange(oGauge,Layer)
 oGauge:Layers:Item("sec"):Value := oGauge:Value()
 oGauge:Layers:Item("min"):Value := oGauge:Value()
 oGauge:Layers:Item("hour"):Value := oGauge:Value()
RETURN

PROCEDURE OnTimer(oGauge,TickCount)
 oGauge:Value := oGauge:FormatABC("value + 1/24/60/60",oGauge:Value())
RETURN

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oGauge
 LOCAL oLayer,oLayer1,oLayer2,oLayer3

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oGauge := XbpActiveXControl():new(oForm:drawingArea)
 oGauge:CLSID := "Exontrol.Gauge.1" /*{91628F12-393C-44EF-A558-
83ED1790AAD3}*/
 oGauge:create(,, {10,60},{610,370})

 oGauge:Change := {|Layer| OnChange(oGauge,Layer)} /*Occurs when the layer's

value is changed.*/
 oGauge:Timer := {|TickCount| OnTimer(oGauge,TickCount)} /*Occurs when the
interval elapses.*/

 oGauge:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Clock"
 oGauge:SetProperty("DefaultLayer",185/*exDefLayerRotateType*/,2)
 oGauge:Layers():Count := 4
 oLayer := oGauge:Layers:Item(0)
 oLayer:Background():Picture():Name := "vista_clock.png"
 oLayer1 := oGauge:Layers:Item(1)
 oLayer1:Position := 3
 oLayer1:Key := "sec"
 oLayer1:OnDrag := 2/*exDoRotate*/
 oLayer1:Selectable := .F.
 oLayer1:Background():Picture():Name := "second-hand.png"
 oLayer1:ValueToRotateAngle := "((2:=(((1:=(((0:=(value < 0 ? floor(value) + 1 -
value : value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - floor(=:1)) * 60)) -
floor(=:2)) * 360"
 oLayer1:RotateAngleToValue := "value / 360 / 24 / 60"
 oLayer2 := oGauge:Layers:Item(2)
 oLayer2:Position := 2
 oLayer2:Key := "min"
 oLayer2:OnDrag := 2/*exDoRotate*/
 oLayer2:Selectable := .F.
 oLayer2:Background():Picture():Name := "Minute.png"
 oLayer2:ValueToRotateAngle := "((1:=(((0:=(value < 0 ? floor(value) + 1 -
value : value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5))) * 24)) - floor(=:1)) * 360"
 oLayer2:RotateAngleToValue := "value / 360 / 24 / 60"
 oLayer3 := oGauge:Layers:Item(3)
 oLayer3:Position := 1
 oLayer3:Key := "hour"
 oLayer3:OnDrag := 2/*exDoRotate*/
 oLayer3:Selectable := .F.
 oLayer3:Background():Picture():Name := "Hour.png"
 oLayer3:ValueToRotateAngle := "2 * 360 * ((0:=(value < 0 ? floor(value) + 1 -
value : value - floor(value))) < 0.5 ? =:0 : (0:= (=:0 - 0.5)))"

 oLayer3:RotateAngleToValue := "value / 360 * 0.5"
 oGauge:LayerOfValue := 3
 oGauge:Value := oGauge:FormatABC("date(`now`)")
 oGauge:TimerInterval := 1000

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property Gauge.ToolTipDelay as Long
Specifies the time in ms that passes before the ToolTip appears.

Type Description

Long A Long expression that specifies the time in ms that
passes before the ToolTip appears.

By default, the ToolTipDelay property is 500, which indicates that the tooltip is shown after
0.5 seconds. Use the ToolTipPopDelay property specifies the period in ms of time the
ToolTip remains visible if the mouse pointer is stationary within a control. Use the
ToolTipFont property to change the tooltip's font. Use the ShowToolTip method to display a
custom tooltip. The ToolTip / ToolTipTitle property indicates the layer's tooltip. The
LayerFromPoint property returns the index of the layer from the cursor. Use the
ToolTipWidth property to specify the width of the tooltip window Use the
Background(exToolTipAppearance) property indicates the visual appearance of the borders
of the tooltips. Use the Background(exToolTipBackColor) property indicates the tooltip's
background color. Use the Background(exToolTipForeColor) property indicates the tooltip's
foreground color.

property Gauge.ToolTipFont as IFontDisp
Retrieves or sets the tooltip's font.

Type Description
IFontDisp A Font object to be used by the control's tooltip.

Use the ToolTipFont property to change the tooltip's font. Use the ShowToolTip method to
display a custom tooltip. The ToolTip / ToolTipTitle property indicates the layer's tooltip. The
LayerFromPoint property returns the index of the layer from the cursor. Use the
ToolTipWidth property to specify the width of the tooltip window Use the ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. Use the Background(exToolTipAppearance) property indicates
the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color.

property Gauge.ToolTipPopDelay as Long
Specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control.

Type Description

Long
A Long expression that specifies the period in ms of time
the ToolTip remains visible if the mouse pointer is
stationary within a control.

By default, the ToolTipPopDelay property is 5000, which indicates that the tooltip remains
visible for 5 seconds, while the cursor is not moved. Use the ToolTipPopDelay property
specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. Use the ToolTipFont property to change the tooltip's font. Use
the ShowToolTip method to display a custom tooltip. The ToolTip / ToolTipTitle property
indicates the layer's tooltip. The LayerFromPoint property returns the index of the layer
from the cursor. Use the ToolTipWidth property to specify the width of the tooltip window
Use the Background(exToolTipAppearance) property indicates the visual appearance of the
borders of the tooltips. Use the Background(exToolTipBackColor) property indicates the
tooltip's background color. Use the Background(exToolTipForeColor) property indicates the
tooltip's foreground color.

property Gauge.ToolTipWidth as Long
Specifies a value that indicates the width of the tooltip window, in pixels.

Type Description

Long A Long expression that that indicates the width of the
tooltip window, in pixels.

By default, the ToolTipWidth property is 196 pixels. Use the ToolTipWidth property to
specify the width of the tooltip window. Use the ShowToolTip method to display a custom
tooltip. The ToolTip / ToolTipTitle property indicates the layer's tooltip. The ToolTipDelay
property specifies the time in ms that passes before the ToolTip appears. The
LayerFromPoint property returns the index of the layer from the cursor. Use the
ToolTipPopDelay property specifies the period in ms of time the ToolTip remains visible if
the mouse pointer is stationary within a control. Use the ToolTipFont property to change the
tooltip's font. Use the Background(exToolTipAppearance) property indicates the visual
appearance of the borders of the tooltips. Use the Background(exToolTipBackColor)
property indicates the tooltip's background color. Use the Background(exToolTipForeColor)
property indicates the tooltip's foreground color.

property Gauge.ToTemplate ([DefaultTemplate as Variant]) as String
Generates the control's template.

Type Description

DefaultTemplate as Variant

A String expression that indicates the default format used
to define the control's template at runtime, or a string
expression that indicates the path to the file being used to
define the default template (like c:\temp\teml.bin). If it is
missing (by default), the control's uses the default
implementation (listed bellow) to define the control's
template, at runtime. Each line in the DefaultTemplate
parameter, defines a property or an instruction to
generate the template.

String A String expression that indicates the control's template.

Use the ToTemplate property to save the control's content to a template string. The
ToTemplate property saves the control's properties based on the default template. Use the
ToTemplate property to copy the control's content to another instance. The ToTemplate
property can save pictures, icons, binary arrays, objects, collections, and so on based on
the DefaultTemplate parameter.

The DefaultTemplate parameter indicates the format of the template being used to generate
the control's template at runtime. If the DefaultTemplate parameter is missing, the control's
uses its default template listed bellow. The DefaultTemplate parameter defines the list of
properties and instructions that generates the control's template. Remove the properties
and objects, in the default template, that you don't need in the generated template script.
Use the Template property to apply the template to the control. Use the Template property
to execute code by passing instructions as a string (template string). The Template script
is composed by lines of instructions. Instructions are separated by "\n\r" (newline)
characters. The Template format contains a list of instructions that loads data and change
properties for the objects in the control. Use the AllowCopyTemplate property to copy the
control's content to the clipboard, in template format, using the the Shift + Ctrl + Alt + Insert
sequence.

property Gauge.TransparentColorFrom as Color
Specifies the transparent color for all pictures in all layers, to define transparency part
(from).

Type Description

Color A Color expression that defines the transparent color to be
applied on all pictures on any layer.

By default, the TransparentColorFrom property is RGB(255, 255, 255) and
TransparentColorTo property is -1, which indicates that pixels of white colors are
transparent. The TransparentColorFrom property defines the transparent color for all
pictures on any layer, that has the TransparentColorFrom property on -1 (by default). The
TransparentColorTo defines the second transparent color, to define transparent pixels
between a range of colors. The Opaque property indicates if the picture is shown as
opaque or transparent.

The TransparentColorFrom / TransparentColorTo properties have effect it:

Opaque property is False (by default)
picture's attribute does not include the PICTURE_TRANSPARENT flag (for instance a
PNG picture with transparency, includes the PICTURE_TRANSPARENT flag)
TransparentColorFrom / TransparentColorTo properties points to valid colors (different
than -1 value). For instance, if one property is defined and the other is -1, the first one
defines the transparent pixels, while if both are specified and points to value different
than -1, any pixel between them is considered as transparent.

If The TransparentColorFrom / TransparentColorTo properties have effect, any picture
where these apply defines the pixels as:

any pixel with a color between TransparentColorFrom and TransparentColorTo is
defined as transparent
any other pixel that's not transparent is opaque.

If using the PNG format, the control handles automatically its transparency / alpha blending
(if saved with transparency), unless the Opaque property is True, so in this case, any
TransparentColorFrom or TransparentColorTo property has no effect.

For any other picture type, you can use any of the following to define the transparent region
of the picture:

TransparentColorFrom, specifies the transparent color to define transparency part of
the current picture (to).
TransparentColorTo, specifies the transparent color to define transparency part of the

current picture (to).

The control supports almost all type of pictures like

PNG (Portable Network Graphics) is a raster graphics file format that supports
lossless data compression. PNG was created as an improved, non-patented
replacement for Graphics Interchange Format (GIF), and is the most used lossless
image compression format on the Internet
BMP file format, also known as bitmap image file or device independent bitmap (DIB)
file format or simply a bitmap, is a raster graphics image file format used to store
bitmap digital images, independently of the display device (such as a graphics adapter)
JPEG file format (seen most often with the .jpg extension) is a commonly used method
of lossy compression for digital images, particularly for those images produced by
digital photography.
GIF (Graphics Interchange Format) is a bitmap image format that was introduced by
CompuServe in 1987 and has since come into widespread usage on the World Wide
Web due to its wide support and portability.
TIFF (Tagged Image File Format) is a computer file format for storing raster graphics
images, popular among graphic artists, the publishing industry, and both amateur and
professional photographers in general.

property Gauge.TransparentColorTo as Color
Specifies the transparent color for all pictures in all layers, to define transparency part (to).

Type Description

Color A Color expression that defines the second transparent
color to be applied on all pictures on any layer.

By default, the TransparentColorFrom property is RGB(255, 255, 255) and
TransparentColorTo property is -1, which indicates that pixels of white colors are
transparent. The TransparentColorFrom property defines the transparent color for all
pictures on any layer, that has the TransparentColorFrom property on -1 (by default). The
TransparentColorTo defines the second transparent color, to define transparent pixels
between a range of colors. The Opaque property indicates if the picture is shown as
opaque or transparent.

The TransparentColorFrom / TransparentColorTo properties have effect it:

Opaque property is False (by default)
picture's attribute does not include the PICTURE_TRANSPARENT flag (for instance a
PNG picture with transparency, includes the PICTURE_TRANSPARENT flag)
TransparentColorFrom / TransparentColorTo properties points to valid colors (different
than -1 value). For instance, if one property is defined and the other is -1, the first one
defines the transparent pixels, while if both are specified and points to value different
than -1, any pixel between them is considered as transparent.

If The TransparentColorFrom / TransparentColorTo properties have effect, any picture
where these apply defines the pixels as:

any pixel with a color between TransparentColorFrom and TransparentColorTo is
defined as transparent
any other pixel that's not transparent is opaque.

If using the PNG format, the control handles automatically its transparency / alpha blending
(if saved with transparency), unless the Opaque property is True, so in this case, any
TransparentColorFrom or TransparentColorTo property has no effect.

For any other picture type, you can use any of the following to define the transparent region
of the picture:

TransparentColorFrom, specifies the transparent color to define transparency part of
the current picture (to).
TransparentColorTo, specifies the transparent color to define transparency part of the
current picture (to).

The control supports almost all type of pictures like

PNG (Portable Network Graphics) is a raster graphics file format that supports
lossless data compression. PNG was created as an improved, non-patented
replacement for Graphics Interchange Format (GIF), and is the most used lossless
image compression format on the Internet
BMP file format, also known as bitmap image file or device independent bitmap (DIB)
file format or simply a bitmap, is a raster graphics image file format used to store
bitmap digital images, independently of the display device (such as a graphics adapter)
JPEG file format (seen most often with the .jpg extension) is a commonly used method
of lossy compression for digital images, particularly for those images produced by
digital photography.
GIF (Graphics Interchange Format) is a bitmap image format that was introduced by
CompuServe in 1987 and has since come into widespread usage on the World Wide
Web due to its wide support and portability.
TIFF (Tagged Image File Format) is a computer file format for storing raster graphics
images, popular among graphic artists, the publishing industry, and both amateur and
professional photographers in general.

property Gauge.Value as Variant
Specifies the control's value.

Type Description

Variant A VARIANT expression that specifies the value associated
with the control.

By default, the Value property is empty. The layer's Value could indicate its offset or its
rotation angle, based on the OnDrag property. The OnDrag property indicates the action to
be performed when the user drags the layer (dragable). Use the Value property of the
Clip object to associate a value with the layer's clipping region. Each layer can associate a
value with it, while the control's Value property can be associated through the LayerOfValue
property with the value of one of the layers within the control.

For instance:

the control displays a clock, the value could be the current-time
the control shows a switch, so the value could indicate the state of the switch
the control shows a thermometer, so the value could be the current temperature
the control displays a gauge, so the value could be the value on the gauge pointed by
the needle

The Change event occurs when the layer's Value property is changed. During the Change
event, you can change values of other layers as well. For instance, if the second-hand of
the clock is rotated, you can rotate the hour and the minute-hands of the clock as well. The
DragStart / Drag / DragEnd events notify your application when a layer is dragged. You can
call DragInfo.Debug = -1 during the DragStart event to display debugging information like
current movement, rotation angle when drag operation is performed.

The Value property indicates the value keyword in the following properties:

ValueToOffsetX, Specifies the expression to convert the value to x-offset. The layer's
OffsetX property is the result of evaluating the ValueToOffsetX expression, while the
OnDrag property is exDoMove. The OffsetToValue converts the current offset to a
value.
ValueToOffsetY, Specifies the expression to convert the value to y-offset. The layer's
OffsetY property is the result of evaluating the ValueToOffsetY expression, while the
OnDrag property is exDoMove. The OffsetToValue converts the current offset to a
value.
ValueToRotateAngle, Specifies the expression to convert the value to rotating angle.
The layer's RotateAngle property is the result of evaluating the ValueToRotateAngle
expression, while the OnDrag property is exDoRotate or exDoRotamove. The
RotateAngleToValue converts the current rotation angle to a value.

The Value property works in association with the layer's OnDrag property like follows:

If the OnDrag property is exDoMove, evaluating the ValueToOffsetX property indicates
the layer's OffsetX property.
If the OnDrag property is exDoMove, evaluating the ValueToOffsetY property indicates
the layer's OffsetY property.
If the OnDrag property is exDoRotate or exDoRotamove, evaluating the
ValueToRotateAngle property indicates the layer's RotateAngle property.

For instance, having the gauge from the C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage folder, which includes the
background and the needle pictures:

we need to define the value of the needle to be between 0 and 100, so if we call Value
property on 85 we should get something like:

In conclusion, what we need to do is:

defines the "needle" layer as rotate able, using the OnDrag property

converts the value of 0-100, to a rotation angle, using the ValueToRotateAngle property

converts the rotation angle from 0-360 to the value, using the RotateAngleToValue
property

limits the rotation angle, using the RotateAngleValid property

The following samples shows how you can do that:

VBA (MS Access, Excell...)

With Gauge1
 .BeginUpdate
 .DefaultLayer(185) = 2
 .BackColor = RGB(217,217,217)
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"
 With .Layers.Add("background")
 .Background.Picture.Name = "Guage_Background.png"
 .RotateCenterY = "lheight/2 + 78"
 End With
 With .Layers.Add("needle")
 .Background.Picture.Name = "Guage_Needle.png"

 .OnDrag = 2
 .RotateAngleValid = "value < 90 ? value : (value < 180 ? 90 : (value < 270 ? 270 :
value))"
 .RotateAngleToValue = "value >= 270 ? (value - 270)/90*50 : (value/90)*50 + 50"
 .ValueToRotateAngle = "value < 50 ? (270 + value/50*90) : (value - 50)/50 * 90"
 End With
 .Value = 85
 .EndUpdate
End With

VB6

With Gauge1
 .BeginUpdate
 .DefaultLayer(exDefLayerRotateType) = 2
 .BackColor = RGB(217,217,217)
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"
 With .Layers.Add("background")
 .Background.Picture.Name = "Guage_Background.png"
 .RotateCenterY = "lheight/2 + 78"
 End With
 With .Layers.Add("needle")
 .Background.Picture.Name = "Guage_Needle.png"
 .OnDrag = exDoRotate
 .RotateAngleValid = "value < 90 ? value : (value < 180 ? 90 : (value < 270 ? 270 :
value))"
 .RotateAngleToValue = "value >= 270 ? (value - 270)/90*50 : (value/90)*50 + 50"
 .ValueToRotateAngle = "value < 50 ? (270 + value/50*90) : (value - 50)/50 * 90"
 End With
 .Value = 85
 .EndUpdate
End With

VB.NET

With Exgauge1
 .BeginUpdate()

.set_DefaultLayer(exontrol.EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerRotateType,

 .BackColor = Color.FromArgb(217,217,217)
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"
 With .Layers.Add("background")
 .Background.Picture.Name = "Guage_Background.png"
 .RotateCenterY = "lheight/2 + 78"
 End With
 With .Layers.Add("needle")
 .Background.Picture.Name = "Guage_Needle.png"
 .OnDrag = exontrol.EXGAUGELib.OnDragLayerEnum.exDoRotate
 .RotateAngleValid = "value < 90 ? value : (value < 180 ? 90 : (value < 270 ? 270 :
value))"
 .RotateAngleToValue = "value >= 270 ? (value - 270)/90*50 : (value/90)*50 + 50"
 .ValueToRotateAngle = "value < 50 ? (270 + value/50*90) : (value - 50)/50 * 90"
 End With
 .Value = 85
 .EndUpdate()
End With

VB.NET for /COM

With AxGauge1
 .BeginUpdate()
 .set_DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerRotateType,2)
 .BackColor = RGB(217,217,217)
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"
 With .Layers.Add("background")
 .Background.Picture.Name = "Guage_Background.png"
 .RotateCenterY = "lheight/2 + 78"
 End With
 With .Layers.Add("needle")
 .Background.Picture.Name = "Guage_Needle.png"
 .OnDrag = EXGAUGELib.OnDragLayerEnum.exDoRotate

 .RotateAngleValid = "value < 90 ? value : (value < 180 ? 90 : (value < 270 ? 270 :
value))"
 .RotateAngleToValue = "value >= 270 ? (value - 270)/90*50 : (value/90)*50 + 50"
 .ValueToRotateAngle = "value < 50 ? (270 + value/50*90) : (value - 50)/50 * 90"
 End With
 .Value = 85
 .EndUpdate()
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXGAUGELib' for the library: 'ExGauge 1.0 Control
Library'

 #import <ExGauge.dll>
 using namespace EXGAUGELib;
*/
EXGAUGELib::IGaugePtr spGauge1 = GetDlgItem(IDC_GAUGE1)-
>GetControlUnknown();
spGauge1->BeginUpdate();
spGauge1->PutDefaultLayer(EXGAUGELib::exDefLayerRotateType,long(2));
spGauge1->PutBackColor(RGB(217,217,217));
spGauge1->PutPicturesPath(L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Guage");
EXGAUGELib::ILayerPtr var_Layer = spGauge1->GetLayers()->Add("background");
 var_Layer->GetBackground()->GetPicture()->PutName("Guage_Background.png");
 var_Layer->PutRotateCenterY(L"lheight/2 + 78");
EXGAUGELib::ILayerPtr var_Layer1 = spGauge1->GetLayers()->Add("needle");
 var_Layer1->GetBackground()->GetPicture()->PutName("Guage_Needle.png");
 var_Layer1->PutOnDrag(EXGAUGELib::exDoRotate);
 var_Layer1->PutRotateAngleValid(L"value < 90 ? value : (value < 180 ? 90 : (value
< 270 ? 270 : value))");
 var_Layer1->PutRotateAngleToValue(L"value >= 270 ? (value - 270)/90*50 :
(value/90)*50 + 50");
 var_Layer1->PutValueToRotateAngle(L"value < 50 ? (270 + value/50*90) : (value -

50)/50 * 90");
spGauge1->PutValue(long(85));
spGauge1->EndUpdate();

C++ Builder

Gauge1->BeginUpdate();
Gauge1-
>DefaultLayer[Exgaugelib_tlb::DefaultLayerPropertyEnum::exDefLayerRotateType] =
TVariant(2);
Gauge1->BackColor = RGB(217,217,217);
Gauge1->PicturesPath = L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Guage";
Exgaugelib_tlb::ILayerPtr var_Layer = Gauge1->Layers-
>Add(TVariant("background"));
 var_Layer->Background->Picture->set_Name(TVariant("Guage_Background.png"));
 var_Layer->RotateCenterY = L"lheight/2 + 78";
Exgaugelib_tlb::ILayerPtr var_Layer1 = Gauge1->Layers->Add(TVariant("needle"));
 var_Layer1->Background->Picture->set_Name(TVariant("Guage_Needle.png"));
 var_Layer1->OnDrag = Exgaugelib_tlb::OnDragLayerEnum::exDoRotate;
 var_Layer1->RotateAngleValid = L"value < 90 ? value : (value < 180 ? 90 : (value <
270 ? 270 : value))";
 var_Layer1->RotateAngleToValue = L"value >= 270 ? (value - 270)/90*50 :
(value/90)*50 + 50";
 var_Layer1->ValueToRotateAngle = L"value < 50 ? (270 + value/50*90) : (value -
50)/50 * 90";
Gauge1->set_Value(TVariant(85));
Gauge1->EndUpdate();

C#

exgauge1.BeginUpdate();
exgauge1.set_DefaultLayer(exontrol.EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerRotateType,

exgauge1.BackColor = Color.FromArgb(217,217,217);
exgauge1.PicturesPath = "C:\\Program

Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Guage";
exontrol.EXGAUGELib.Layer var_Layer = exgauge1.Layers.Add("background");
 var_Layer.Background.Picture.Name = "Guage_Background.png";
 var_Layer.RotateCenterY = "lheight/2 + 78";
exontrol.EXGAUGELib.Layer var_Layer1 = exgauge1.Layers.Add("needle");
 var_Layer1.Background.Picture.Name = "Guage_Needle.png";
 var_Layer1.OnDrag = exontrol.EXGAUGELib.OnDragLayerEnum.exDoRotate;
 var_Layer1.RotateAngleValid = "value < 90 ? value : (value < 180 ? 90 : (value <
270 ? 270 : value))";
 var_Layer1.RotateAngleToValue = "value >= 270 ? (value - 270)/90*50 :
(value/90)*50 + 50";
 var_Layer1.ValueToRotateAngle = "value < 50 ? (270 + value/50*90) : (value -
50)/50 * 90";
exgauge1.Value = 85;
exgauge1.EndUpdate();

JScript/JavaScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 Gauge1.BeginUpdate();
 Gauge1.DefaultLayer(185) = 2;
 Gauge1.BackColor = 14277081;
 Gauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Guage";
 var var_Layer = Gauge1.Layers.Add("background");
 var_Layer.Background.Picture.Name = "Guage_Background.png";
 var_Layer.RotateCenterY = "lheight/2 + 78";
 var var_Layer1 = Gauge1.Layers.Add("needle");
 var_Layer1.Background.Picture.Name = "Guage_Needle.png";
 var_Layer1.OnDrag = 2;

 var_Layer1.RotateAngleValid = "value < 90 ? value : (value < 180 ? 90 : (value <
270 ? 270 : value))";
 var_Layer1.RotateAngleToValue = "value >= 270 ? (value - 270)/90*50 :
(value/90)*50 + 50";
 var_Layer1.ValueToRotateAngle = "value < 50 ? (270 + value/50*90) : (value -
50)/50 * 90";
 Gauge1.Value = 85;
 Gauge1.EndUpdate();
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With Gauge1
 .BeginUpdate
 .DefaultLayer(185) = 2
 .BackColor = RGB(217,217,217)
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"
 With .Layers.Add("background")
 .Background.Picture.Name = "Guage_Background.png"
 .RotateCenterY = "lheight/2 + 78"
 End With
 With .Layers.Add("needle")
 .Background.Picture.Name = "Guage_Needle.png"
 .OnDrag = 2
 .RotateAngleValid = "value < 90 ? value : (value < 180 ? 90 : (value < 270 ?
270 : value))"
 .RotateAngleToValue = "value >= 270 ? (value - 270)/90*50 : (value/90)*50 +

50"
 .ValueToRotateAngle = "value < 50 ? (270 + value/50*90) : (value - 50)/50 *
90"
 End With
 .Value = 85
 .EndUpdate
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

axGauge1.BeginUpdate();
axGauge1.set_DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerRotateType,

axGauge1.BackColor = Color.FromArgb(217,217,217);
axGauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Guage";
EXGAUGELib.Layer var_Layer = axGauge1.Layers.Add("background");
 var_Layer.Background.Picture.Name = "Guage_Background.png";
 var_Layer.RotateCenterY = "lheight/2 + 78";
EXGAUGELib.Layer var_Layer1 = axGauge1.Layers.Add("needle");
 var_Layer1.Background.Picture.Name = "Guage_Needle.png";
 var_Layer1.OnDrag = EXGAUGELib.OnDragLayerEnum.exDoRotate;
 var_Layer1.RotateAngleValid = "value < 90 ? value : (value < 180 ? 90 : (value <
270 ? 270 : value))";
 var_Layer1.RotateAngleToValue = "value >= 270 ? (value - 270)/90*50 :
(value/90)*50 + 50";
 var_Layer1.ValueToRotateAngle = "value < 50 ? (270 + value/50*90) : (value -
50)/50 * 90";
axGauge1.Value = 85;
axGauge1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Background,com_Layer,com_Layer1,com_Picture;
 anytype var_Background,var_Layer,var_Layer1,var_Picture;
 ;

 super();

 exgauge1.BeginUpdate();

exgauge1.DefaultLayer(185/*exDefLayerRotateType*/,COMVariant::createFromInt(2));
 exgauge1.BackColor(WinApi::RGB2int(217,217,217));
 exgauge1.PicturesPath("C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Guage");
 var_Layer = COM::createFromObject(exgauge1.Layers()).Add("background");
com_Layer = var_Layer;
 var_Background = COM::createFromObject(com_Layer.Background());
com_Background = var_Background;
 var_Picture = COM::createFromObject(com_Background).Picture(); com_Picture =
var_Picture;
 com_Picture.Name("Guage_Background.png");
 com_Layer.RotateCenterY("lheight/2 + 78");
 var_Layer1 = COM::createFromObject(exgauge1.Layers()).Add("needle");
com_Layer1 = var_Layer1;
 var_Background = COM::createFromObject(com_Layer1.Background());
com_Background = var_Background;
 var_Picture = COM::createFromObject(com_Background).Picture(); com_Picture =
var_Picture;
 com_Picture.Name("Guage_Needle.png");
 com_Layer1.OnDrag(2/*exDoRotate*/);
 com_Layer1.RotateAngleValid("value < 90 ? value : (value < 180 ? 90 : (value <
270 ? 270 : value))");
 com_Layer1.RotateAngleToValue("value >= 270 ? (value - 270)/90*50 :
(value/90)*50 + 50");
 com_Layer1.ValueToRotateAngle("value < 50 ? (270 + value/50*90) : (value -
50)/50 * 90");
 exgauge1.Value(COMVariant::createFromInt(85));

 exgauge1.EndUpdate();
}

Delphi 8 (.NET only)

with AxGauge1 do
begin
 BeginUpdate();

set_DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerRotateType,TObject(

 BackColor := Color.FromArgb(217,217,217);
 PicturesPath := 'C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage';
 with Layers.Add('background') do
 begin
 Background.Picture.Name := 'Guage_Background.png';
 RotateCenterY := 'lheight/2 + 78';
 end;
 with Layers.Add('needle') do
 begin
 Background.Picture.Name := 'Guage_Needle.png';
 OnDrag := EXGAUGELib.OnDragLayerEnum.exDoRotate;
 RotateAngleValid := 'value < 90 ? value : (value < 180 ? 90 : (value < 270 ? 270 :
value))';
 RotateAngleToValue := 'value >= 270 ? (value - 270)/90*50 : (value/90)*50 + 50';
 ValueToRotateAngle := 'value < 50 ? (270 + value/50*90) : (value - 50)/50 * 90';
 end;
 Value := TObject(85);
 EndUpdate();
end

Delphi (standard)

with Gauge1 do
begin
 BeginUpdate();
 DefaultLayer[EXGAUGELib_TLB.exDefLayerRotateType] := OleVariant(2);

 BackColor := RGB(217,217,217);
 PicturesPath := 'C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage';
 with Layers.Add('background') do
 begin
 Background.Picture.Name := 'Guage_Background.png';
 RotateCenterY := 'lheight/2 + 78';
 end;
 with Layers.Add('needle') do
 begin
 Background.Picture.Name := 'Guage_Needle.png';
 OnDrag := EXGAUGELib_TLB.exDoRotate;
 RotateAngleValid := 'value < 90 ? value : (value < 180 ? 90 : (value < 270 ? 270 :
value))';
 RotateAngleToValue := 'value >= 270 ? (value - 270)/90*50 : (value/90)*50 + 50';
 ValueToRotateAngle := 'value < 50 ? (270 + value/50*90) : (value - 50)/50 * 90';
 end;
 Value := OleVariant(85);
 EndUpdate();
end

VFP

with thisform.Gauge1
 .BeginUpdate
 .Object.DefaultLayer(185) = 2
 .BackColor = RGB(217,217,217)
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"
 with .Layers.Add("background")
 .Background.Picture.Name = "Guage_Background.png"
 .RotateCenterY = "lheight/2 + 78"
 endwith
 with .Layers.Add("needle")
 .Background.Picture.Name = "Guage_Needle.png"
 .OnDrag = 2
 .RotateAngleValid = "value < 90 ? value : (value < 180 ? 90 : (value < 270 ? 270 :

value))"
 .RotateAngleToValue = "value >= 270 ? (value - 270)/90*50 : (value/90)*50 + 50"
 .ValueToRotateAngle = "value < 50 ? (270 + value/50*90) : (value - 50)/50 * 90"
 endwith
 .Value = 85
 .EndUpdate
endwith

dBASE Plus

local oGauge,var_Layer,var_Layer1

oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject
oGauge.BeginUpdate()
oGauge.Template = [DefaultLayer(185) = 2] // oGauge.DefaultLayer(185) = 2
oGauge.BackColor = 0xd9d9d9
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"
var_Layer = oGauge.Layers.Add("background")
 var_Layer.Background.Picture.Name = "Guage_Background.png"
 var_Layer.RotateCenterY = "lheight/2 + 78"
var_Layer1 = oGauge.Layers.Add("needle")
 var_Layer1.Background.Picture.Name = "Guage_Needle.png"
 var_Layer1.OnDrag = 2
 var_Layer1.RotateAngleValid = "value < 90 ? value : (value < 180 ? 90 : (value <
270 ? 270 : value))"
 var_Layer1.RotateAngleToValue = "value >= 270 ? (value - 270)/90*50 :
(value/90)*50 + 50"
 var_Layer1.ValueToRotateAngle = "value < 50 ? (270 + value/50*90) : (value -
50)/50 * 90"
oGauge.Value = 85
oGauge.EndUpdate()

XBasic (Alpha Five)

Dim oGauge as P
Dim var_Layer as P

Dim var_Layer1 as P

oGauge = topparent:CONTROL_ACTIVEX1.activex
oGauge.BeginUpdate()
oGauge.Template = "DefaultLayer(185) = 2" // oGauge.DefaultLayer(185) = 2
oGauge.BackColor = 14277081
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"
var_Layer = oGauge.Layers.Add("background")
 var_Layer.Background.Picture.Name = "Guage_Background.png"
 var_Layer.RotateCenterY = "lheight/2 + 78"
var_Layer1 = oGauge.Layers.Add("needle")
 var_Layer1.Background.Picture.Name = "Guage_Needle.png"
 var_Layer1.OnDrag = 2
 var_Layer1.RotateAngleValid = "value < 90 ? value : (value < 180 ? 90 : (value <
270 ? 270 : value))"
 var_Layer1.RotateAngleToValue = "value >= 270 ? (value - 270)/90*50 :
(value/90)*50 + 50"
 var_Layer1.ValueToRotateAngle = "value < 50 ? (270 + value/50*90) : (value -
50)/50 * 90"
oGauge.Value = 85
oGauge.EndUpdate()

Visual Objects

local var_Layer,var_Layer1 as ILayer

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:[DefaultLayer,exDefLayerRotateType] := 2
oDCOCX_Exontrol1:BackColor := RGB(217,217,217)
oDCOCX_Exontrol1:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"
var_Layer := oDCOCX_Exontrol1:Layers:Add("background")
 var_Layer:Background:Picture:Name := "Guage_Background.png"
 var_Layer:RotateCenterY := "lheight/2 + 78"
var_Layer1 := oDCOCX_Exontrol1:Layers:Add("needle")

 var_Layer1:Background:Picture:Name := "Guage_Needle.png"
 var_Layer1:OnDrag := exDoRotate
 var_Layer1:RotateAngleValid := "value < 90 ? value : (value < 180 ? 90 : (value <
270 ? 270 : value))"
 var_Layer1:RotateAngleToValue := "value >= 270 ? (value - 270)/90*50 :
(value/90)*50 + 50"
 var_Layer1:ValueToRotateAngle := "value < 50 ? (270 + value/50*90) : (value -
50)/50 * 90"
oDCOCX_Exontrol1:Value := 85
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oGauge,var_Layer,var_Layer1

oGauge = ole_1.Object
oGauge.BeginUpdate()
oGauge.DefaultLayer(185,2)
oGauge.BackColor = RGB(217,217,217)
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"
var_Layer = oGauge.Layers.Add("background")
 var_Layer.Background.Picture.Name = "Guage_Background.png"
 var_Layer.RotateCenterY = "lheight/2 + 78"
var_Layer1 = oGauge.Layers.Add("needle")
 var_Layer1.Background.Picture.Name = "Guage_Needle.png"
 var_Layer1.OnDrag = 2
 var_Layer1.RotateAngleValid = "value < 90 ? value : (value < 180 ? 90 : (value <
270 ? 270 : value))"
 var_Layer1.RotateAngleToValue = "value >= 270 ? (value - 270)/90*50 :
(value/90)*50 + 50"
 var_Layer1.ValueToRotateAngle = "value < 50 ? (270 + value/50*90) : (value -
50)/50 * 90"
oGauge.Value = 85
oGauge.EndUpdate()

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Send ComBeginUpdate
 Set ComDefaultLayer OLEexDefLayerRotateType to 2
 Set ComBackColor to (RGB(217,217,217))
 Set ComPicturesPath to "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"
 Variant voLayers
 Get ComLayers to voLayers
 Handle hoLayers
 Get Create (RefClass(cComLayers)) to hoLayers
 Set pvComObject of hoLayers to voLayers
 Variant voLayer
 Get ComAdd of hoLayers "background" to voLayer
 Handle hoLayer
 Get Create (RefClass(cComLayer)) to hoLayer
 Set pvComObject of hoLayer to voLayer
 Variant voBackground
 Get ComBackground of hoLayer to voBackground
 Handle hoBackground
 Get Create (RefClass(cComBackground)) to hoBackground
 Set pvComObject of hoBackground to voBackground
 Variant voPicture
 Get ComPicture of hoBackground to voPicture
 Handle hoPicture
 Get Create (RefClass(cComPicture)) to hoPicture
 Set pvComObject of hoPicture to voPicture
 Set ComName of hoPicture to "Guage_Background.png"
 Send Destroy to hoPicture
 Send Destroy to hoBackground
 Set ComRotateCenterY of hoLayer to "lheight/2 + 78"
 Send Destroy to hoLayer
 Send Destroy to hoLayers
 Variant voLayers1
 Get ComLayers to voLayers1

 Handle hoLayers1
 Get Create (RefClass(cComLayers)) to hoLayers1
 Set pvComObject of hoLayers1 to voLayers1
 Variant voLayer1
 Get ComAdd of hoLayers1 "needle" to voLayer1
 Handle hoLayer1
 Get Create (RefClass(cComLayer)) to hoLayer1
 Set pvComObject of hoLayer1 to voLayer1
 Variant voBackground1
 Get ComBackground of hoLayer1 to voBackground1
 Handle hoBackground1
 Get Create (RefClass(cComBackground)) to hoBackground1
 Set pvComObject of hoBackground1 to voBackground1
 Variant voPicture1
 Get ComPicture of hoBackground1 to voPicture1
 Handle hoPicture1
 Get Create (RefClass(cComPicture)) to hoPicture1
 Set pvComObject of hoPicture1 to voPicture1
 Set ComName of hoPicture1 to "Guage_Needle.png"
 Send Destroy to hoPicture1
 Send Destroy to hoBackground1
 Set ComOnDrag of hoLayer1 to OLEexDoRotate
 Set ComRotateAngleValid of hoLayer1 to "value < 90 ? value : (value < 180 ?
90 : (value < 270 ? 270 : value))"
 Set ComRotateAngleToValue of hoLayer1 to "value >= 270 ? (value -
270)/90*50 : (value/90)*50 + 50"
 Set ComValueToRotateAngle of hoLayer1 to "value < 50 ? (270 + value/50*90)
: (value - 50)/50 * 90"
 Send Destroy to hoLayer1
 Send Destroy to hoLayers1
 Set ComValue to 85
 Send ComEndUpdate
End_Procedure

XBase++

#include "AppEvent.ch"

#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oGauge
 LOCAL oLayer,oLayer1

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oGauge := XbpActiveXControl():new(oForm:drawingArea)
 oGauge:CLSID := "Exontrol.Gauge.1" /*{91628F12-393C-44EF-A558-
83ED1790AAD3}*/
 oGauge:create(,, {10,60},{610,370})

 oGauge:BeginUpdate()
 oGauge:SetProperty("DefaultLayer",185/*exDefLayerRotateType*/,2)
 oGauge:SetProperty("BackColor",AutomationTranslateColor(GraMakeRGBColor
({ 217,217,217 }) , .F.))
 oGauge:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"
 oLayer := oGauge:Layers():Add("background")
 oLayer:Background():Picture():Name := "Guage_Background.png"
 oLayer:RotateCenterY := "lheight/2 + 78"
 oLayer1 := oGauge:Layers():Add("needle")
 oLayer1:Background():Picture():Name := "Guage_Needle.png"
 oLayer1:OnDrag := 2/*exDoRotate*/
 oLayer1:RotateAngleValid := "value < 90 ? value : (value < 180 ? 90 : (value <
270 ? 270 : value))"
 oLayer1:RotateAngleToValue := "value >= 270 ? (value - 270)/90*50 :
(value/90)*50 + 50"
 oLayer1:ValueToRotateAngle := "value < 50 ? (270 + value/50*90) : (value -
50)/50 * 90"
 oGauge:Value := 85

 oGauge:EndUpdate()

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property Gauge.Version as String
Retrieves the control's version.

Type Description
String A string expression that indicates the control's version.

The version property specifies the control's version.

property Gauge.VisualAppearance as Appearance
Retrieves the control's appearance.

Type Description
Appearance An Appearance object that holds a collection of skins.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control. By using a
collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part.

Layer object
The Layer object holds a collection of pictures and HTML captions to be displayed on a
viewable layer. Any layer can be visible, selectable or dragable. Any layer can be moved,
rotated or clipped. The Item property of the Layers collection access a Layer object of the
control. The Background / Foreground defines the layer's background and foreground.

The following screen shot shows combination of pictures and HTML captions, on different
controls:

The Layer object supports the following properties and methods:

Name Description
Background Gets access to the layer's background object.
Brightness Specifies the percent of brightness to apply to the layer.
Clip Gets access to the layer's clip object.
Contrast Specifies the percent of contrast to apply to the layer.

DefaultOffsetX Gets or sets a value that indicates the default x-offset of
the layer.

DefaultOffsetY Gets or sets a value that indicates the default y-offset of
the layer.

DefaultRotateAngle Specifies the default angle to rotate the layer.
Foreground Gets access to the layer's foreground object.

Grayscale Returns or sets a value that indicates that indicates
percent to convert the layer to grayscale.

Height Specifies the expression relative to the view, to determine
the height to show the current layer on the control.

Idem Ensures that the layer's offset and rotation-angle is equal
for all idem layers (separated by comma character).

Index Indicates the index of the layer.
Key Retrieves or sets the layer's key.

LayerClipToAlpha Returns or sets a value that indicates the value of the
alpha channel to be included in the LayerClipTo region.

LayerToClientX Converts the x-position of the layer to control's client x-
position.

LayerToClientY Converts the x-position of the layer to control's client x-
position.

Left Specifies the expression relative to the view, to determine
the x-position to show the current layer on the control.

OffsetToValue Specifies the expression to convert the offsetx,offsety to
value.

OffsetX Gets or sets a value that indicates x-offset of the layer.
OffsetXValid Validates the x-offset value of the layer
OffsetY Gets or sets a value that indicates y-offset of the layer.
OffsetYValid Validates the y-offset value of the layer

OnDrag Indicates the action to be performed when the user drags
the layer.

Position Retrieves or sets a value that indicates the position/z-
order of the layer in the control.

RotamoveCenterX Specifies the x-position of the layer's center, while the
layer's drag operation is exDoRotamove.

RotamoveCenterY Specifies the y-position of the layer's center, while the
layer's drag operation is exDoRotamove.

RotamoveOffsetX Specifies the x-offset of the layer, while the layer's drag
operation is exDoRotamove.

RotamoveOffsetY Specifies the y-offset of the layer, while the layer's drag
operation is exDoRotamove.

RotateAngle Specifies the angle to rotate the layer.

RotateAngleToValue Specifies the expression to convert the rotating angle to
value.

RotateAngleValid Validates the rotation angle of the layer.
Indicates the index of the layer the rotation is around. If -1,

RotateCenterLayer the rotation is relative to the current layer.

RotateCenterX Indicates the expression that determines the x-origin of the
rotation point relative to the RotateCenterLayer layer.

RotateCenterY Indicates the expression that determines the y-origin of the
rotation point relative to the RotateCenterLayer layer.

RotateClip Specifies whether the layer's clipping region is rotated
once the layer is rotated.

RotateType
Returns or sets a value that indicates whether the layer's
rotation is performed fast, by shearing (high quality
rotation), ...

Selectable Returns or sets a value that indicates whether the layer is
selectable.

ShowHandCursor
Returns or sets a value that indicates whether the hand
cursor is shown when it hovers a visible / selectable /
dragable layer.

ToolTip Gets or sets a value (tooltip) that's displayed once the
cursor hovers the layer.

ToolTipTitle Gets or sets a value (title) that's displayed once the cursor
hovers the layer.

Top Specifies the expression relative to the view, to determine
the y-position to show the current layer on the control.

Transparency Gets or sets a value that indicates percent of the
transparency to display the layer.

UserData Indicates any extra data associated with the layer.
Value Indicates the object's value.
ValueToOffsetX Specifies the expression to convert the value to x-offset.
ValueToOffsetY Specifies the expression to convert the value to y-offset.

ValueToRotateAngle Specifies the expression to convert the value to rotating
angle

Visible Retrieves or sets a value indicating whether the layer is
visible or hidden.

Width Specifies the expression relative to the view, to determine
the width to show the current layer on the control.

property Layer.Background as Background
Gets access to the layer's background object.

Type Description
Background A Background object that indicates the layer's background.

The Background property gets access to the layer's background object. The Background
object holds pictures to be shown on the layer's background. The Layer's background can
display unlimited graphics of different sizes and positions. For instance, the Picture property
of the Background specifies the picture to be shown on the layer's background. Use the
ExtraPicture property to assign a new picture on the same location. The Color property
indicates the layer's color object, so you can apply a solid color on the layer's background.

The following screen shot shows pictures on each layer's background:

property Layer.Brightness(Channel as ColorAdjustmentChannelEnum)
as Long
Specifies the percent of brightness to apply to the layer.

Type Description
Channel as
ColorAdjustmentChannelEnum

A ColorAdjustmentChannelEnum expression that specifies
the channel to be changed.

Long A Long expression that specifies the percent of brightness
/ color to apply to the layer.

By default, the Brightness on all channels is 50%, which indicates that no effect is applied to
the layer. The Brightness specifies the percent of brightness to apply to the layer. Use the
DefaultLayer(exDefLayerBrightness...) property to specify the default value for the
Brightness(exAllChannels...), before adding any layer. The Brightness / Contrast properties
can be used to change the percent of specified color to be applied on the layer. You can
use the Grayscale property to show the entire layer in gray scale (disable state).

The following screen shot shows the layer, with all Brightness properties on 50% (default):

The following screen shot shows the layer, with more red, Brightness(exAllChannels) =
0,Brightness(exRedChannel) = 75:

By default, the AllowSmoothChange property is exLayerTransparency | exLayerBrightness |
exLayerContrast. Use the AllowSmoothChange property to disable changing gradually any
brightness / contrast or the transparency, of the layer. For instance, a gradually change
means that you can change the layer's transparency from 0 to 50 in a short time, with
intermediate values (smooth change).

The AllowSmoothChange property changes gradually one / or more properties like follow:

Brightness, Specifies the percent of brightness to apply to the layer.
Contrast, Specifies the percent of contrast to apply to the layer.
Transparency, Gets or sets a value that indicates percent of the transparency to
display the layer.

The MouseIn / MouseOut event notifies your application when the cursor is entering /
leaving the layer. The MouseMove event is generated continually as the mouse pointer
moves across objects. The AllowSmoothChange property specifies the properties of the
layers that support smooth change. For instance, you can use the MouseIn / MouseOut
event to change gradually the brightness / contrast or the transparency, of the layer, while
the AllowSmoothChange property is not exSmoothChangeless.

property Layer.Clip as Clip
Gets access to the layer's clip object.

Type Description
Clip A Clip object that helps you to clip the current layer.

The Clip property accesses the layer's Clip object. The Clip object defines the clipping you
can apply to any layer on the control. The Clipping support include intersection of any of
rectangle, round rectangle, ellipse, pie, picture mask, polygon, and so on. The RotateClip
property specifies whether the layer's clipping region is rotated once the layer is rotated.

Any of the following properties (or combination of them) can be used to do the clipping:

Ellipse, clips the layer as a ellipse / circle
Picture, clips the layer using a picture as a mask
Pie, clips the layer as a arc / pie
Polygon, clips the layer giving the points that define a polygon, triangle, rectangle, and
so on
Rectangle, clips the layer giving a rectangle
RoundRectangle, clips the layer giving a round rectangle

The Type property specifies the type of the clipping the current layer supports. For instance
LayerClipTypeEnum.exLayerClipPie | LayerClipTypeEnum.exLayerClipRectangle specifies
that a pie and rectangle clippings are combined together. The Value property of the Clip
indicates the value to be applied to the current clipping object to define a new shape based
on the value. For instance, you may want to define a value from 0 to 100, for a circle, and
for 50 to show a half of circle, for 25, a quarter of circle (pie), and so on.

Having the following layer:

By clipping, we can get something like follows:

and if we display the entire gauge here's what we get:

property Layer.Contrast(Channel as ColorAdjustmentChannelEnum) as
Long
Specifies the percent of contrast to apply to the layer.

Type Description
Channel as
ColorAdjustmentChannelEnum

A ColorAdjustmentChannelEnum expression that specifies
the channel to be changed.

Long A Long expression that specifies the percent of contrast /
color to apply to the layer.

By default, the Contrast on all channels is 50%, which indicates that no effect is applied to
the layer. The Contrast property specifies the percent of contrast to apply to the layer. Use
the DefaultLayer(exDefLayerContrast...) property to specify the default value for the
Contrast(exAllChannels...), before adding any layer. The Brightness / Contrast properties
can be used to change the percent of specified color to be applied on the layer. You can
use the Grayscale property to show the entire layer in gray scale (disable state).

The following screen shot shows the layer, with all Contrast properties on 50% (default):

The following screen shot shows the layer, with more red, Contrast(exAllChannels) = 0,
Contrast(exRedChannel) = 75:

By default, the AllowSmoothChange property is exLayerTransparency | exLayerBrightness |
exLayerContrast. Use the AllowSmoothChange property to disable changing gradually any
brightness / contrast or the transparency, of the layer. For instance, a gradually change
means that you can change the layer's transparency from 0 to 50 in a short time, with
intermediate values (smooth change).

The AllowSmoothChange property changes gradually one / or more properties like follow:

Brightness, Specifies the percent of brightness to apply to the layer.
Contrast, Specifies the percent of contrast to apply to the layer.
Transparency, Gets or sets a value that indicates percent of the transparency to
display the layer.

The MouseIn / MouseOut event notifies your application when the cursor is entering /
leaving the layer. The MouseMove event is generated continually as the mouse pointer
moves across objects. The AllowSmoothChange property specifies the properties of the
layers that support smooth change. For instance, you can use the MouseIn / MouseOut
event to change gradually the brightness / contrast or the transparency, of the layer, while
the AllowSmoothChange property is not exSmoothChangeless.

property Layer.DefaultOffsetX as Long
Gets or sets a value that indicates the default x-offset of the layer.

Type Description

Long A Long expression that defines the default x-offset of the
layer.

By default, the DefaultOffsetX property is 0. The DefaultOffsetX property gets or sets a
value that indicates the default x-offset of the layer. You can use the DefaultOffsetX /
DefaultOffsetX properties to move the layer to a different position, which could be the initial
position. Use the DefaultLayer(exDefLayerDefaultOffsetX) property to specify the default
value for the DefaultOffsetX, before adding any layer.

The following picture shows the position/size properties of the Layer, relative to the view /
control:

The following properties determines the position / size / offset of the layer:

Left, specifies the expression relative to the view, to determine the x-position to show
the current layer on the control.
Top, specifies the expression relative to the view, to determine the y-position to show
the current layer on the control.
Width, specifies the expression relative to the view, to determine the width to show the
current layer on the control.
Height, specifies the expression relative to the view, to determine the height to show
the current layer on the control.

You can use the following properties to offset the view (background + foreground) inside
the layer:

DefaultOffsetX, gets or sets a value that indicates the default x-offset of the layer.
OffsetX, gets or sets a value that indicates x-offset of the layer.
OffsetXValid, validates the x-offset value of the layer.
Value and ValueToOffsetX specifies the expression to convert the value to x-offset.
DefaultOffsetY, gets or sets a value that indicates the default y-offset of the layer.
OffsetY, gets or sets a value that indicates y-offset of the layer.
OffsetYValid, validates the y-offset value of the layer.
Value and ValueToOffsetY specifies the expression to convert the value to y-offset.

The following properties can be used to move / resize the picture on the layer's
background:

DisplayAs, retrieves or sets a value that indicates the way how the graphic is displayed
on the layer's background.
Left, specifies the expression relative to the view/current picture, to determine the x-
position to show the current picture on the background.
Top, specifies the expression relative to the view/current picture, to determine the y-
position to show the current picture on the background.
Width, specifies the expression relative to the view/current picture, to determine the
width to show the current picture on the background.
Height, specifies the expression relative to the view/current picture, to determine the
height to show the current picture on the background.

property Layer.DefaultOffsetY as Long
Gets or sets a value that indicates the default y-offset of the layer.

Type Description

Long A Long expression that defines the default y-offset of the
layer.

By default, the DefaultOffsetY property is 0. The DefaultOffsetY property gets or sets a
value that indicates the default y-offset of the layer. You can use the DefaultOffsetX /
DefaultOffsetX properties to move the layer to a different position, which could be the initial
position. Use the DefaultLayer(exDefLayerDefaultOffsetY) property to specify the default
value for the DefaultOffsetY, before adding any layer.

The following picture shows the position/size properties of the Layer, relative to the view /
control:

The following properties determines the position / size / offset of the layer:

Left, specifies the expression relative to the view, to determine the x-position to show
the current layer on the control.
Top, specifies the expression relative to the view, to determine the y-position to show
the current layer on the control.
Width, specifies the expression relative to the view, to determine the width to show the
current layer on the control.
Height, specifies the expression relative to the view, to determine the height to show
the current layer on the control.

You can use the following properties to offset the view (background + foreground) inside
the layer:

DefaultOffsetX, gets or sets a value that indicates the default x-offset of the layer.
OffsetX, gets or sets a value that indicates x-offset of the layer.
OffsetXValid, validates the x-offset value of the layer.
Value and ValueToOffsetX specifies the expression to convert the value to x-offset.
DefaultOffsetY, gets or sets a value that indicates the default y-offset of the layer.
OffsetY, gets or sets a value that indicates y-offset of the layer.
OffsetYValid, validates the y-offset value of the layer.
Value and ValueToOffsetY specifies the expression to convert the value to y-offset.

The following properties can be used to move / resize the picture on the layer's
background:

DisplayAs, retrieves or sets a value that indicates the way how the graphic is displayed
on the layer's background.
Left, specifies the expression relative to the view/current picture, to determine the x-
position to show the current picture on the background.
Top, specifies the expression relative to the view/current picture, to determine the y-
position to show the current picture on the background.
Width, specifies the expression relative to the view/current picture, to determine the
width to show the current picture on the background.
Height, specifies the expression relative to the view/current picture, to determine the
height to show the current picture on the background.

property Layer.DefaultRotateAngle as Double
Specifies the default angle to rotate the layer.

Type Description

Double A Double expression that specifies the default angle to
rotate the layer, in degree.

By default, the DefaultRotateAngle property is 0 degree (which indicates that the layer is
shown as it is). The DefaultRotateAngle property specifies the default angle to rotate the
layer. For instance, you can use the DefaultRotateAngle property to show the current layer
in a different position, as an initial view. Use the
DefaultLayer(exDefLayerDefaultRotateAngle) property to specify the default value for the
DefaultRotateAngle property, before adding any layer. The RotateType property specifies
whether the layer's rotation is performed fast, by shearing (high quality rotation), ...
Change the Debug property of the DragInfo during the DragStart event to debug the
rotation angles.

The following picture shows the rotation properties of the Layer, relative to the
RotateCenterLayer layer:

Any of the following properties can be used to rotate the layer:

DefaultRotateAngle, specifies the default angle to rotate the layer.
RotateAngle, specifies the angle to rotate the layer.
RotateAngleValid, validates / limits the rotation angle of the layer.
Value and ValueToRotateAngle, specifies the expression to convert the value to rotating
angle. The RotateAngleToValue converts the current rotation angle to a value.

The following properties can be used to specify a different rotation center:

RotateCenterLayer, indicates the index of the layer the rotation is around.
RotateCenterX, indicates the expression that determines the x-origin of the rotation
point relative to the RotateCenterLayer layer.
RotateCenterY, indicates the expression that determines the y-origin of the rotation
point relative to the RotateCenterLayer layer.

The following properties can be used to change the rotation center, while the layer's
OnDrag property is exDoRotamove:

RotamoveCenterX, specifies the x-position of the layer's center.
RotamoveCenterY, specifies the y-position of the layer's center.
RotamoveOffsetX, specifies the x-offset of the layer.
RotamoveOffsetY, specifies the y-offset of the layer.

property Layer.Foreground as Foreground
Gets access to the layer's foreground object.

Type Description

Foreground A Foreground object that holds the HTML captions to be
shown on the layer's foreground.

The Foreground object holds HTML captions to be shown on the layer's foreground. The
Background object holds pictures to be shown on the layer's background. The Layer's
foreground can display unlimited HTML captions of different sizes and positions. The
Caption property specifies the caption on the layer. The ExtraCaption property assigns a
new HTML caption on the layer's foreground. The Color property specifies the layer's
foreground color.

The following screen shot shows all layer's background with a semi-transparent color, to
highlight the layer's foreground:

property Layer.Grayscale as Long
Returns or sets a value that indicates whether the layer is show as grayscale.

Type Description

Long A long expression that indicates the percent to convert the
layer into grayscale (value between 0 and 100)

By default, the Grayscale property is 0, so the layer is shown normal (enabled). You can
use the Grayscale property to show the entire layer in gray scale (disable state). Use the
DefaultLayer(exDefLayerGrayscale) property to specify the default value for the Grayscale
property, before adding any layer. The Brightness / Contrast properties can be used to
change the percent of specified color to be applied on the layer. The Selectable property
specifies whether the user can select the layer at runtime. For instance, you can simulate a
disabled layer by changing the layer's Grayscale property on True, and setting the layer's
Selectable property on False.

The following screen shot shows the layer, with Grayscale property on False (by default):

The following screen shot shows the layer, with Grayscale property on True:

property Layer.Height as String
Specifies the expression relative to the view, to determine the height to show the current
layer on the control.

Type Description

String
A String value that specifies the expression relative to the
view, to determine the height to show the current layer on
the control.

By default, the Height property is "height". If the Height property is empty, missing or invalid,
it is considered "height". If valid, the value of evaluating the Height property indicates the
height of the layer as shown in the picture bellow. Use the DefaultLayer(exDefLayerHeight)
property to specify the default value for the Height property, before adding any layer. The
LayerAutoSize property resizes all layers based on the picture of the first layer.

For instance:

"0" indicates that the layer's height is 0
"height / 2", half of the view or center of the control's view
"height - 64", 64 pixels to the bottom side of the control's view

The Height property supports the following keywords:

width keyword specifies the width in pixels of the control's view
height keyword specifies the height in pixels of the control's view

Also, this property supports all constants, operators and functions defined here.

The following properties determines the position / size / offset of the layer:

Left, specifies the expression relative to the view, to determine the x-position to show
the current layer on the control.
Top, specifies the expression relative to the view, to determine the y-position to show
the current layer on the control.
Width, specifies the expression relative to the view, to determine the width to show the
current layer on the control.
Height, specifies the expression relative to the view, to determine the height to show
the current layer on the control.

The following picture shows the position/size properties of the Layer, relative to the view /
control:

You can use the following properties to offset the view (background + foreground) inside
the layer:

DefaultOffsetX, gets or sets a value that indicates the default x-offset of the layer.
OffsetX, gets or sets a value that indicates x-offset of the layer.
OffsetXValid, validates the x-offset value of the layer.
Value and ValueToOffsetX specifies the expression to convert the value to x-offset.
DefaultOffsetY, gets or sets a value that indicates the default y-offset of the layer.
OffsetY, gets or sets a value that indicates y-offset of the layer.
OffsetYValid, validates the y-offset value of the layer.
Value and ValueToOffsetY specifies the expression to convert the value to y-offset.

The following properties can be used to move / resize the picture on the layer's
background:

DisplayAs, retrieves or sets a value that indicates the way how the graphic is displayed
on the layer's background.
Left, specifies the expression relative to the view/current picture, to determine the x-
position to show the current picture on the background.
Top, specifies the expression relative to the view/current picture, to determine the y-
position to show the current picture on the background.
Width, specifies the expression relative to the view/current picture, to determine the
width to show the current picture on the background.
Height, specifies the expression relative to the view/current picture, to determine the
height to show the current picture on the background.

property Layer.Idem as Variant
Ensures that the layer's offset and rotation-angle is equal for all idem layers (separated by
comma character).

Type Description

Variant

A long expression that specifies the index of the layer idem
with current layer, a string expression that specifies the
key of the layer idem with the current layer, or a list of
keys separated by comma character. For instance, Idem
= "0,1" indicates that the current layer's rotation-angle and
offset are always the same as layers with the index 0 and
1

By default, the Idem property is empty, which indicates hat has no effect. You can use the
Idem property to rotate or move multiple layers once user drags a layer. The Item property
of the Layers collection accesses a Layer giving its index or key. The Key property retrieves
or sets the layer's key. The Index property is read-only and zero-based, which indicates
that the layer with the Index property 0, it is the first layer, while the layer with the index
Count - 1, is the last layer in the control (in z-order).

property Layer.Index as Long
Indicates the index of the layer.

Type Description
Long A Long expression that specifies the index of the layer.

By default, the Index property is automatically updated by the control, as soon as the user
adds / removes layers to the control. The Index property is read-only and zero-based,
which indicates that the layer with the Index property 0, it is the first layer, while the layer
with the index Count - 1, is the last layer in the control (in z-order). The Key property
retrieves or sets the layer's key. The Item property of the Layers collection accesses a
Layer giving its index or key. The LayerFromPoint retrieves the index of the layer from the
point (only visible and selectable objects are included).

property Layer.Key as Variant
Retrieves or sets the layer's key.

Type Description

Variant A VARIANT expression that specifies the key to identify
the layer.

By default, the Key property is empty. The Key property retrieves or sets the layer's key.
The Index property is read-only and zero-based, which indicates that the layer with the
Index property 0, it is the first layer, while the layer with the index Count - 1, is the last layer
in the control (in z-order). The Item property of the Layers collection accesses a Layer
giving its index or key. The LayerFromPoint retrieves the index of the layer from the point (
only visible and selectable objects are included).

property Layer.LayerClipToAlpha as Long
Returns or sets a value that indicates the value of the alpha channel to be included in the
LayerClipTo region.

Type Description

Long
A Long expression that returns or sets a value that
indicates the value of the alpha channel to be included in
the LayerClipTo region.

By default, the LayerClipToAlpha property is 0, which indicates that only pixels of the layer
that has 0 on the alpha channel (transparent pixels) defines the transparent region, and so
the clipping region. The LayerClipToAlpha property property of the Layer object, returns or
sets a value that indicates the value of the alpha channel to be included in the LayerClipTo
region. In other words, the value from 0 to LayerClipToAlpha defines transparent pixels, and
the rest defines the opaque pixels to be included in the clipping region. So based on the
layer's picture, you can change the LayerClipToAlpha property for a better look of your
widget. The LayerClipTo property specifies the index of the layer that clips the entire control
to. The LayerClipToParent property indicates if the LayerClipTo method clips the control
itself, parent or the owner of the control.

"I would like to put the control on a form, then make the form transparent so the control
appears on the desktop with just the images contained in the layers visible. For example,
take a clock example and make the control background and the form transparent, and you
have a working clock widget."

The control support transparent form, or in other words, displaying the control's itself
without its form behind. In order to make your eXGauge control to display a widget, (no
form behind or form transparent), you need to use the following properties:

LayerClipTo property of the control, specifies the index of the layer that clips the entire
control to. By default, the LayerClipTo property is -1, which indicates that no clipping is
supported. So, one of the layers that composes your widget must be specified as the
widget's background, and so, the entire view of the control is clipped to region defined
by the clipping layer (LayerClipTo). The LayerClipTo property may refer to any layer,
visible or hidden, which includes a picture or a clipping object (Clip property).

Layer.LayerClipToAlpha property of the Layer object, returns or sets a value that
indicates the value of the alpha channel to be included in the LayerClipTo region. By
default, the LayerClipToAlpha property is 0, which indicates that only pixels of the layer
that has 0 on the alpha channel (transparent pixels) defines the transparent region, and
so the clipping region. In other words, the value from 0 to LayerClipToAlpha defines
transparent pixels, and the rest defines the opaque pixels to be included in the clipping
region. So based on the layer's picture, you can change the LayerClipToAlpha property

for a better look of your widget.

LayerClipToParent property of the control, indicates if the LayerClipTo method clips
the control itself, parent or the owner of the control. By default, the LayerClipToParent
property is exLayerUpdateControl, which indicates that the control's itself is clipped
relative to its form that hosts it. Change the LayerClipToParent property to
exLayerUpdateScreen, or exLayerUpdateParent, and so the clipping region is applied
to its form/dialog/parent window.

The following VB sample defines the control as a widget:

With Gauge1
 .LayerClipTo = 0
 .LayerClipToParent = exLayerUpdateScreen
End With

The sample defines the layer with the Index 0, as being the clipping layer. The setup installs
the C:\Program Files\Exontrol\ExGauge\Sample\VB\Clock-Widget-Region that shows all
these working.

 The following screen shot shows the control on a transparent form:

 The following screen shot shows the control on an opaque form:

property Layer.LayerToClientX (X as Variant, Y as Variant) as Long
Converts the x-position of the layer to control's client x-position.

Type Description

X as Variant A Lone expression that specifies the x-position of the point
within the layer

Y as Variant A Lone expression that specifies the y-position of the point
within the layer

Long
A Long expression that specifies the x-position of the point
on the control's view that's equivalent of the point on the
layer.

The LayerToClientX / LayerToClientY converts the (x,y)-point on the layer to control's view
point. The LayerToClientX / LayerToClientY properties translate a point from the layer (as it
is moved or rotated) to the control's view. For instance, you can display the current value
of the control on the knob you are rotating. The RotamoveCenterX / RotamoveCenterY
specifies the (x,y)-position of the layer's center, while the layer's drag operation is
exDoRotamove. The OnDrag property indicates the action to be performed when the user
drags the layer.

Any of the following properties can be used to display a HTML caption:

Caption property specifies the caption to be shown on the control's foreground.
ExtraCaption property specifies any extra caption to be shown on the control's
foreground.
Foreground.Caption specifies the caption to be shown on the layer's foreground.
Foreground.ExtraCaption specifies any extra caption to be shown on the layer's
foreground.

The following sample shows how you can use the LayerToClientX / LayerToClientY
properties to display the layer's value on the knob:

VBA (MS Access, Excell...)

' Change event - Occurs when the layer's value is changed.
Private Sub Gauge1_Change(ByVal Layer As Long)
 With Gauge1
 .ExtraCaption("Client",0) = .FormatABC("`<sha ;;0>` + (100 - value
format `0`)",Gauge1.Value)
 .ExtraCaption("Client",4) = .FormatABC("value -
8",Gauge1.Layers.Item(9).LayerToClientX(Gauge1.Layers.Item(9).RotamoveCenterX,Gauge1.

 .ExtraCaption("Client",5) = .FormatABC("value -
26",Gauge1.Layers.Item(9).LayerToClientY(Gauge1.Layers.Item(9).RotamoveCenterX,Gauge1.

 End With
End Sub

With Gauge1
 .BeginUpdate
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"

 .PicturesName = "`Layer` + str(value + 1) + `.png`"
 .Layers.Count = 11
 .AllowSmoothChange = 0
 With .Layers.Item(9)
 .DefaultRotateAngle = -126
 .OnDrag = 3
 .RotateAngleToValue = "100 - (value / 360 * 100)"
 .ValueToRotateAngle = "(value)/100 * 360"
 .ValueToOffsetX = "value"
 .OffsetToValue = "value"
 .RotateAngleValid = "int(value / 360 * 100)/100 * 360"
 End With
 With .Layers.Item(7)
 .OnDrag = 2
 .RotateType = 2
 End With
 .Value = 25
 .EndUpdate
End With

VB6

' Change event - Occurs when the layer's value is changed.
Private Sub Gauge1_Change(ByVal Layer As Long)
 With Gauge1
 .ExtraCaption("Client",exLayerCaption) = .FormatABC("`<sha ;;0>`
+ (100 - value format `0`)",Gauge1.Value)
 .ExtraCaption("Client",exLayerCaptionLeft) = .FormatABC("value -
8",Gauge1.Layers.Item(9).LayerToClientX(Gauge1.Layers.Item(9).RotamoveCenterX,Gauge1.

 .ExtraCaption("Client",exLayerCaptionTop) = .FormatABC("value -
26",Gauge1.Layers.Item(9).LayerToClientY(Gauge1.Layers.Item(9).RotamoveCenterX,Gauge1.

 End With
End Sub

With Gauge1

 .BeginUpdate
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + str(value + 1) + `.png`"
 .Layers.Count = 11
 .AllowSmoothChange = exSmoothChangeless
 With .Layers.Item(9)
 .DefaultRotateAngle = -126
 .OnDrag = exDoRotamove
 .RotateAngleToValue = "100 - (value / 360 * 100)"
 .ValueToRotateAngle = "(value)/100 * 360"
 .ValueToOffsetX = "value"
 .OffsetToValue = "value"
 .RotateAngleValid = "int(value / 360 * 100)/100 * 360"
 End With
 With .Layers.Item(7)
 .OnDrag = exDoRotate
 .RotateType = exRotateBilinearInterpolation
 End With
 .Value = 25
 .EndUpdate
End With

VB.NET

' Change event - Occurs when the layer's value is changed.
Private Sub Exgauge1_Change(ByVal sender As System.Object,ByVal Layer As Integer)
Handles Exgauge1.Change
 With Exgauge1

.set_ExtraCaption("Client",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,.
 ;;0>` + (100 - value format `0`)",Exgauge1.Value))

.set_ExtraCaption("Client",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionLeft,.
 -
8",Exgauge1.Layers.Item(9).get_LayerToClientX(Exgauge1.Layers.Item(9).RotamoveCenterX

.set_ExtraCaption("Client",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionTop,.
 -
26",Exgauge1.Layers.Item(9).get_LayerToClientY(Exgauge1.Layers.Item(9).RotamoveCenterX

 End With
End Sub

With Exgauge1
 .BeginUpdate()
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + str(value + 1) + `.png`"
 .Layers.Count = 11
 .AllowSmoothChange =
exontrol.EXGAUGELib.SmoothPropertyEnum.exSmoothChangeless
 With .Layers.Item(9)
 .DefaultRotateAngle = -126
 .OnDrag = exontrol.EXGAUGELib.OnDragLayerEnum.exDoRotamove
 .RotateAngleToValue = "100 - (value / 360 * 100)"
 .ValueToRotateAngle = "(value)/100 * 360"
 .ValueToOffsetX = "value"
 .OffsetToValue = "value"
 .RotateAngleValid = "int(value / 360 * 100)/100 * 360"
 End With
 With .Layers.Item(7)
 .OnDrag = exontrol.EXGAUGELib.OnDragLayerEnum.exDoRotate
 .RotateType =
exontrol.EXGAUGELib.RotateTypeEnum.exRotateBilinearInterpolation
 End With
 .Value = 25
 .EndUpdate()
End With

VB.NET for /COM

' Change event - Occurs when the layer's value is changed.

Private Sub AxGauge1_Change(ByVal sender As System.Object, ByVal e As
AxEXGAUGELib._IGaugeEvents_ChangeEvent) Handles AxGauge1.Change
 With AxGauge1

.set_ExtraCaption("Client",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,.FormatABC
 ;;0>` + (100 - value format `0`)",AxGauge1.Value))

.set_ExtraCaption("Client",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionLeft,.FormatABC
 -
8",AxGauge1.Layers.Item(9).LayerToClientX(AxGauge1.Layers.Item(9).RotamoveCenterX,AxGauge1.

.set_ExtraCaption("Client",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionTop,.FormatABC
 -
26",AxGauge1.Layers.Item(9).LayerToClientY(AxGauge1.Layers.Item(9).RotamoveCenterX,AxGauge1.

 End With
End Sub

With AxGauge1
 .BeginUpdate()
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + str(value + 1) + `.png`"
 .Layers.Count = 11
 .AllowSmoothChange = EXGAUGELib.SmoothPropertyEnum.exSmoothChangeless
 With .Layers.Item(9)
 .DefaultRotateAngle = -126
 .OnDrag = EXGAUGELib.OnDragLayerEnum.exDoRotamove
 .RotateAngleToValue = "100 - (value / 360 * 100)"
 .ValueToRotateAngle = "(value)/100 * 360"
 .ValueToOffsetX = "value"
 .OffsetToValue = "value"
 .RotateAngleValid = "int(value / 360 * 100)/100 * 360"
 End With
 With .Layers.Item(7)
 .OnDrag = EXGAUGELib.OnDragLayerEnum.exDoRotate

 .RotateType = EXGAUGELib.RotateTypeEnum.exRotateBilinearInterpolation
 End With
 .Value = 25
 .EndUpdate()
End With

C++

// Change event - Occurs when the layer's value is changed.
void OnChangeGauge1(long Layer)
{
 /*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXGAUGELib' for the library: 'ExGauge 1.0 Control
Library'
 #import <ExGauge.dll>
 using namespace EXGAUGELib;
 */
 EXGAUGELib::IGaugePtr spGauge1 = GetDlgItem(IDC_GAUGE1)-
>GetControlUnknown();
 spGauge1->PutExtraCaption("Client",EXGAUGELib::exLayerCaption,spGauge1-
>FormatABC(L"`<sha ;;0>` + (100 - value format `0`)",spGauge1-
>GetValue(),vtMissing,vtMissing));
 spGauge1->PutExtraCaption("Client",EXGAUGELib::exLayerCaptionLeft,spGauge1-
>FormatABC(L"value - 8",spGauge1->GetLayers()->GetItem(long(9))-
>GetLayerToClientX(spGauge1->GetLayers()->GetItem(long(9))-
>GetRotamoveCenterX(),spGauge1->GetLayers()->GetItem(long(9))-
>GetRotamoveCenterY()),vtMissing,vtMissing));
 spGauge1->PutExtraCaption("Client",EXGAUGELib::exLayerCaptionTop,spGauge1-
>FormatABC(L"value - 26",spGauge1->GetLayers()->GetItem(long(9))-
>GetLayerToClientY(spGauge1->GetLayers()->GetItem(long(9))-
>GetRotamoveCenterX(),spGauge1->GetLayers()->GetItem(long(9))-
>GetRotamoveCenterY()),vtMissing,vtMissing));
}

EXGAUGELib::IGaugePtr spGauge1 = GetDlgItem(IDC_GAUGE1)-
>GetControlUnknown();

spGauge1->BeginUpdate();
spGauge1->PutPicturesPath(L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob");
spGauge1->PutPicturesName(L"`Layer` + str(value + 1) + `.png`");
spGauge1->GetLayers()->PutCount(11);
spGauge1->PutAllowSmoothChange(EXGAUGELib::exSmoothChangeless);
EXGAUGELib::ILayerPtr var_Layer = spGauge1->GetLayers()->GetItem(long(9));
 var_Layer->PutDefaultRotateAngle(-126);
 var_Layer->PutOnDrag(EXGAUGELib::exDoRotamove);
 var_Layer->PutRotateAngleToValue(L"100 - (value / 360 * 100)");
 var_Layer->PutValueToRotateAngle(L"(value)/100 * 360");
 var_Layer->PutValueToOffsetX(L"value");
 var_Layer->PutOffsetToValue(L"value");
 var_Layer->PutRotateAngleValid(L"int(value / 360 * 100)/100 * 360");
EXGAUGELib::ILayerPtr var_Layer1 = spGauge1->GetLayers()->GetItem(long(7));
 var_Layer1->PutOnDrag(EXGAUGELib::exDoRotate);
 var_Layer1->PutRotateType(EXGAUGELib::exRotateBilinearInterpolation);
spGauge1->PutValue(long(25));
spGauge1->EndUpdate();

C++ Builder

// Change event - Occurs when the layer's value is changed.
void __fastcall TForm1::Gauge1Change(TObject *Sender,long Layer)
{
 Gauge1-
>ExtraCaption[TVariant("Client"),Exgaugelib_tlb::PropertyLayerCaptionEnum::exLayerCaption]
 = TVariant(Gauge1->FormatABC(L"`<sha ;;0>` + (100 - value format
`0`)",TVariant(Gauge1->get_Value()),TNoParam(),TNoParam()));
 Gauge1-
>ExtraCaption[TVariant("Client"),Exgaugelib_tlb::PropertyLayerCaptionEnum::exLayerCaptionLeft]
 = TVariant(Gauge1->FormatABC(L"value - 8",TVariant(Gauge1->Layers-
>get_Item(TVariant(9))->get_LayerToClientX(TVariant(Gauge1->Layers-
>get_Item(TVariant(9))->RotamoveCenterX),TVariant(Gauge1->Layers-
>get_Item(TVariant(9))->RotamoveCenterY))),TNoParam(),TNoParam()));
 Gauge1-

>ExtraCaption[TVariant("Client"),Exgaugelib_tlb::PropertyLayerCaptionEnum::exLayerCaptionTop]
 = TVariant(Gauge1->FormatABC(L"value - 26",TVariant(Gauge1->Layers-
>get_Item(TVariant(9))->get_LayerToClientY(TVariant(Gauge1->Layers-
>get_Item(TVariant(9))->RotamoveCenterX),TVariant(Gauge1->Layers-
>get_Item(TVariant(9))->RotamoveCenterY))),TNoParam(),TNoParam()));
}

Gauge1->BeginUpdate();
Gauge1->PicturesPath = L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
Gauge1->PicturesName = L"`Layer` + str(value + 1) + `.png`";
Gauge1->Layers->Count = 11;
Gauge1->AllowSmoothChange =
Exgaugelib_tlb::SmoothPropertyEnum::exSmoothChangeless;
Exgaugelib_tlb::ILayerPtr var_Layer = Gauge1->Layers->get_Item(TVariant(9));
 var_Layer->DefaultRotateAngle = -126;
 var_Layer->OnDrag = Exgaugelib_tlb::OnDragLayerEnum::exDoRotamove;
 var_Layer->RotateAngleToValue = L"100 - (value / 360 * 100)";
 var_Layer->ValueToRotateAngle = L"(value)/100 * 360";
 var_Layer->ValueToOffsetX = L"value";
 var_Layer->OffsetToValue = L"value";
 var_Layer->RotateAngleValid = L"int(value / 360 * 100)/100 * 360";
Exgaugelib_tlb::ILayerPtr var_Layer1 = Gauge1->Layers->get_Item(TVariant(7));
 var_Layer1->OnDrag = Exgaugelib_tlb::OnDragLayerEnum::exDoRotate;
 var_Layer1->RotateType =
Exgaugelib_tlb::RotateTypeEnum::exRotateBilinearInterpolation;
Gauge1->set_Value(TVariant(25));
Gauge1->EndUpdate();

C#

// Change event - Occurs when the layer's value is changed.
private void exgauge1_Change(object sender,int Layer)
{

exgauge1.set_ExtraCaption("Client",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,exgauge1.

 ;;0>` + (100 - value format `0`)",exgauge1.Value,null,null));

exgauge1.set_ExtraCaption("Client",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionLeft,exgauge1.
 -
8",exgauge1.Layers[9].get_LayerToClientX(exgauge1.Layers[9].RotamoveCenterX,exgauge1.

exgauge1.set_ExtraCaption("Client",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionTop,exgauge1.
 -
26",exgauge1.Layers[9].get_LayerToClientY(exgauge1.Layers[9].RotamoveCenterX,exgauge1.

}
//this.exgauge1.Change += new
exontrol.EXGAUGELib.exg2antt.ChangeEventHandler(this.exgauge1_Change);

exgauge1.BeginUpdate();
exgauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
exgauge1.PicturesName = "`Layer` + str(value + 1) + `.png`";
exgauge1.Layers.Count = 11;
exgauge1.AllowSmoothChange =
exontrol.EXGAUGELib.SmoothPropertyEnum.exSmoothChangeless;
exontrol.EXGAUGELib.Layer var_Layer = exgauge1.Layers[9];
 var_Layer.DefaultRotateAngle = -126;
 var_Layer.OnDrag = exontrol.EXGAUGELib.OnDragLayerEnum.exDoRotamove;
 var_Layer.RotateAngleToValue = "100 - (value / 360 * 100)";
 var_Layer.ValueToRotateAngle = "(value)/100 * 360";
 var_Layer.ValueToOffsetX = "value";
 var_Layer.OffsetToValue = "value";
 var_Layer.RotateAngleValid = "int(value / 360 * 100)/100 * 360";
exontrol.EXGAUGELib.Layer var_Layer1 = exgauge1.Layers[7];
 var_Layer1.OnDrag = exontrol.EXGAUGELib.OnDragLayerEnum.exDoRotate;
 var_Layer1.RotateType =
exontrol.EXGAUGELib.RotateTypeEnum.exRotateBilinearInterpolation;
exgauge1.Value = 25;
exgauge1.EndUpdate();

JScript/JavaScript

<BODY onload="Init()">
<SCRIPT FOR="Gauge1" EVENT="Change(Layer)" LANGUAGE="JScript">
 Gauge1.ExtraCaption("Client",0) = Gauge1.FormatABC("`<sha ;;0>`
+ (100 - value format `0`)",Gauge1.Value,null,null);
 Gauge1.ExtraCaption("Client",4) = Gauge1.FormatABC("value -
8",Gauge1.Layers.Item(9).LayerToClientX(Gauge1.Layers.Item(9).RotamoveCenterX,Gauge1.

 Gauge1.ExtraCaption("Client",5) = Gauge1.FormatABC("value -
26",Gauge1.Layers.Item(9).LayerToClientY(Gauge1.Layers.Item(9).RotamoveCenterX,Gauge1.

</SCRIPT>

<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 Gauge1.BeginUpdate();
 Gauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
 Gauge1.PicturesName = "`Layer` + str(value + 1) + `.png`";
 Gauge1.Layers.Count = 11;
 Gauge1.AllowSmoothChange = 0;
 var var_Layer = Gauge1.Layers.Item(9);
 var_Layer.DefaultRotateAngle = -126;
 var_Layer.OnDrag = 3;
 var_Layer.RotateAngleToValue = "100 - (value / 360 * 100)";
 var_Layer.ValueToRotateAngle = "(value)/100 * 360";
 var_Layer.ValueToOffsetX = "value";
 var_Layer.OffsetToValue = "value";
 var_Layer.RotateAngleValid = "int(value / 360 * 100)/100 * 360";
 var var_Layer1 = Gauge1.Layers.Item(7);
 var_Layer1.OnDrag = 2;
 var_Layer1.RotateType = 2;

 Gauge1.Value = 25;
 Gauge1.EndUpdate();
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<SCRIPT LANGUAGE="VBScript">
Function Gauge1_Change(Layer)
 With Gauge1
 .ExtraCaption("Client",0) = .FormatABC("`<sha ;;0>` + (100 - value
format `0`)",Gauge1.Value)
 .ExtraCaption("Client",4) = .FormatABC("value -
8",Gauge1.Layers.Item(9).LayerToClientX(Gauge1.Layers.Item(9).RotamoveCenterX,Gauge1.

 .ExtraCaption("Client",5) = .FormatABC("value -
26",Gauge1.Layers.Item(9).LayerToClientY(Gauge1.Layers.Item(9).RotamoveCenterX,Gauge1.

 End With
End Function
</SCRIPT>

<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With Gauge1
 .BeginUpdate
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + str(value + 1) + `.png`"
 .Layers.Count = 11
 .AllowSmoothChange = 0

 With .Layers.Item(9)
 .DefaultRotateAngle = -126
 .OnDrag = 3
 .RotateAngleToValue = "100 - (value / 360 * 100)"
 .ValueToRotateAngle = "(value)/100 * 360"
 .ValueToOffsetX = "value"
 .OffsetToValue = "value"
 .RotateAngleValid = "int(value / 360 * 100)/100 * 360"
 End With
 With .Layers.Item(7)
 .OnDrag = 2
 .RotateType = 2
 End With
 .Value = 25
 .EndUpdate
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

// Change event - Occurs when the layer's value is changed.
private void axGauge1_Change(object sender,
AxEXGAUGELib._IGaugeEvents_ChangeEvent e)
{

axGauge1.set_ExtraCaption("Client",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,axGauge1.
 ;;0>` + (100 - value format `0`)",axGauge1.Value,null,null));

axGauge1.set_ExtraCaption("Client",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionLeft,axGauge1.
 -
8",axGauge1.Layers[9].get_LayerToClientX(axGauge1.Layers[9].RotamoveCenterX,axGauge1.

axGauge1.set_ExtraCaption("Client",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionTop,axGauge1.

 -
26",axGauge1.Layers[9].get_LayerToClientY(axGauge1.Layers[9].RotamoveCenterX,axGauge1.

}
//this.axGauge1.Change += new
AxEXGAUGELib._IGaugeEvents_ChangeEventHandler(this.axGauge1_Change);

axGauge1.BeginUpdate();
axGauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
axGauge1.PicturesName = "`Layer` + str(value + 1) + `.png`";
axGauge1.Layers.Count = 11;
axGauge1.AllowSmoothChange =
EXGAUGELib.SmoothPropertyEnum.exSmoothChangeless;
EXGAUGELib.Layer var_Layer = axGauge1.Layers[9];
 var_Layer.DefaultRotateAngle = -126;
 var_Layer.OnDrag = EXGAUGELib.OnDragLayerEnum.exDoRotamove;
 var_Layer.RotateAngleToValue = "100 - (value / 360 * 100)";
 var_Layer.ValueToRotateAngle = "(value)/100 * 360";
 var_Layer.ValueToOffsetX = "value";
 var_Layer.OffsetToValue = "value";
 var_Layer.RotateAngleValid = "int(value / 360 * 100)/100 * 360";
EXGAUGELib.Layer var_Layer1 = axGauge1.Layers[7];
 var_Layer1.OnDrag = EXGAUGELib.OnDragLayerEnum.exDoRotate;
 var_Layer1.RotateType =
EXGAUGELib.RotateTypeEnum.exRotateBilinearInterpolation;
axGauge1.Value = 25;
axGauge1.EndUpdate();

X++ (Dynamics Ax 2009)

// Change event - Occurs when the layer's value is changed.
void onEvent_Change(int _Layer)
{
 ;
 exgauge1.ExtraCaption("Client",0/*exLayerCaption*/,exgauge1.FormatABC("`<sha

;;0>` + (100 - value format `0`)",exgauge1.Value()));

exgauge1.ExtraCaption("Client",4/*exLayerCaptionLeft*/,exgauge1.FormatABC("value
-
8",exgauge1.Layers().Item(COMVariant::createFromInt(9)).LayerToClientX(exgauge1.Layers().

exgauge1.ExtraCaption("Client",5/*exLayerCaptionTop*/,exgauge1.FormatABC("value
-
26",exgauge1.Layers().Item(COMVariant::createFromInt(9)).LayerToClientY(exgauge1.Layers

}

public void init()
{
 COM com_Layer,com_Layer1;
 anytype var_Layer,var_Layer1;
 ;

 super();

 exgauge1.BeginUpdate();
 exgauge1.PicturesPath("C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob");
 exgauge1.PicturesName("`Layer` + str(value + 1) + `.png`");
 exgauge1.Layers().Count(11);
 exgauge1.AllowSmoothChange(0/*exSmoothChangeless*/);
 var_Layer =
COM::createFromObject(exgauge1.Layers()).Item(COMVariant::createFromInt(9));
com_Layer = var_Layer;
 com_Layer.DefaultRotateAngle(-126);
 com_Layer.OnDrag(3/*exDoRotamove*/);
 com_Layer.RotateAngleToValue("100 - (value / 360 * 100)");
 com_Layer.ValueToRotateAngle("(value)/100 * 360");
 com_Layer.ValueToOffsetX("value");
 com_Layer.OffsetToValue("value");
 com_Layer.RotateAngleValid("int(value / 360 * 100)/100 * 360");

 var_Layer1 =
COM::createFromObject(exgauge1.Layers()).Item(COMVariant::createFromInt(7));
com_Layer1 = var_Layer1;
 com_Layer1.OnDrag(2/*exDoRotate*/);
 com_Layer1.RotateType(2/*exRotateBilinearInterpolation*/);
 exgauge1.Value(COMVariant::createFromInt(25));
 exgauge1.EndUpdate();
}

Delphi 8 (.NET only)

// Change event - Occurs when the layer's value is changed.
procedure TWinForm1.AxGauge1_Change(sender: System.Object; e:
AxEXGAUGELib._IGaugeEvents_ChangeEvent);
begin
 with AxGauge1 do
 begin

set_ExtraCaption('Client',EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,FormatABC
 ;;0>` + (100 - value format `0`)',AxGauge1.Value,Nil,Nil));

set_ExtraCaption('Client',EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionLeft,FormatABC
 -
8',TObject(AxGauge1.Layers.Item[TObject(9)].LayerToClientX[TObject(AxGauge1.Layers.Item

set_ExtraCaption('Client',EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionTop,FormatABC
 -
26',TObject(AxGauge1.Layers.Item[TObject(9)].LayerToClientY[TObject(AxGauge1.Layers.Item

 end
end;

with AxGauge1 do
begin
 BeginUpdate();
 PicturesPath := 'C:\Program

Files\Exontrol\ExGauge\Sample\Design\Circular\Knob';
 PicturesName := '`Layer` + str(value + 1) + `.png`';
 Layers.Count := 11;
 AllowSmoothChange := EXGAUGELib.SmoothPropertyEnum.exSmoothChangeless;
 with Layers.Item[TObject(9)] do
 begin
 DefaultRotateAngle := -126;
 OnDrag := EXGAUGELib.OnDragLayerEnum.exDoRotamove;
 RotateAngleToValue := '100 - (value / 360 * 100)';
 ValueToRotateAngle := '(value)/100 * 360';
 ValueToOffsetX := 'value';
 OffsetToValue := 'value';
 RotateAngleValid := 'int(value / 360 * 100)/100 * 360';
 end;
 with Layers.Item[TObject(7)] do
 begin
 OnDrag := EXGAUGELib.OnDragLayerEnum.exDoRotate;
 RotateType := EXGAUGELib.RotateTypeEnum.exRotateBilinearInterpolation;
 end;
 Value := TObject(25);
 EndUpdate();
end

Delphi (standard)

// Change event - Occurs when the layer's value is changed.
procedure TForm1.Gauge1Change(ASender: TObject; Layer : Integer);
begin
 with Gauge1 do
 begin
 ExtraCaption['Client',EXGAUGELib_TLB.exLayerCaption] := FormatABC('`<sha ;;0>
` + (100 - value format `0`)',Gauge1.Value,Null,Null);
 ExtraCaption['Client',EXGAUGELib_TLB.exLayerCaptionLeft] := FormatABC('value
-
8',OleVariant(Gauge1.Layers.Item[OleVariant(9)].LayerToClientX[OleVariant(Gauge1.Layers.

 ExtraCaption['Client',EXGAUGELib_TLB.exLayerCaptionTop] := FormatABC('value

-
26',OleVariant(Gauge1.Layers.Item[OleVariant(9)].LayerToClientY[OleVariant(Gauge1.Layers

 end
end;

with Gauge1 do
begin
 BeginUpdate();
 PicturesPath := 'C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob';
 PicturesName := '`Layer` + str(value + 1) + `.png`';
 Layers.Count := 11;
 AllowSmoothChange := EXGAUGELib_TLB.exSmoothChangeless;
 with Layers.Item[OleVariant(9)] do
 begin
 DefaultRotateAngle := -126;
 OnDrag := EXGAUGELib_TLB.exDoRotamove;
 RotateAngleToValue := '100 - (value / 360 * 100)';
 ValueToRotateAngle := '(value)/100 * 360';
 ValueToOffsetX := 'value';
 OffsetToValue := 'value';
 RotateAngleValid := 'int(value / 360 * 100)/100 * 360';
 end;
 with Layers.Item[OleVariant(7)] do
 begin
 OnDrag := EXGAUGELib_TLB.exDoRotate;
 RotateType := EXGAUGELib_TLB.exRotateBilinearInterpolation;
 end;
 Value := OleVariant(25);
 EndUpdate();
end

VFP

*** Change event - Occurs when the layer's value is changed. ***
LPARAMETERS Layer

 with thisform.Gauge1
 .Object.ExtraCaption("Client",0) = .FormatABC("`<sha ;;0>` + (100
- value format `0`)",thisform.Gauge1.Value)
 .Object.ExtraCaption("Client",4) = .FormatABC("value -
8",thisform.Gauge1.Layers.Item(9).LayerToClientX(thisform.Gauge1.Layers.Item(9).RotamoveCenterX

 .Object.ExtraCaption("Client",5) = .FormatABC("value -
26",thisform.Gauge1.Layers.Item(9).LayerToClientY(thisform.Gauge1.Layers.Item(9).RotamoveCenterX

 endwith

with thisform.Gauge1
 .BeginUpdate
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + str(value + 1) + `.png`"
 .Layers.Count = 11
 .AllowSmoothChange = 0
 with .Layers.Item(9)
 .DefaultRotateAngle = -126
 .OnDrag = 3
 .RotateAngleToValue = "100 - (value / 360 * 100)"
 .ValueToRotateAngle = "(value)/100 * 360"
 .ValueToOffsetX = "value"
 .OffsetToValue = "value"
 .RotateAngleValid = "int(value / 360 * 100)/100 * 360"
 endwith
 with .Layers.Item(7)
 .OnDrag = 2
 .RotateType = 2
 endwith
 .Value = 25
 .EndUpdate
endwith

dBASE Plus

/*
with (this.EXGAUGEACTIVEXCONTROL1.nativeObject)
 Change = class::nativeObject_Change
endwith
*/
// Occurs when the layer's value is changed.
function nativeObject_Change(Layer)
 oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject
 oGauge.Template = [ExtraCaption("Client",0) = FormatABC("`<sha ;;0>
` + (100 - value format `0`)",Me.Value)] // oGauge.ExtraCaption("Client",0) =
oGauge.FormatABC("`<sha ;;0>` + (100 - value format
`0`)",oGauge.Value)
 oGauge.Template = [ExtraCaption("Client",4) = FormatABC("value -
8",Me.Layers.Item(9).LayerToClientX(Me.Layers.Item(9).RotamoveCenterX,Me.Layers.Item(9).RotamoveCenterY))]
 // oGauge.ExtraCaption("Client",4) = oGauge.FormatABC("value -
8",oGauge.Layers.Item(9).LayerToClientX(oGauge.Layers.Item(9).RotamoveCenterX,oGauge.Layers.Item(9).RotamoveCenterY))

 oGauge.Template = [ExtraCaption("Client",5) = FormatABC("value -
26",Me.Layers.Item(9).LayerToClientY(Me.Layers.Item(9).RotamoveCenterX,Me.Layers.Item(9).RotamoveCenterY))]
 // oGauge.ExtraCaption("Client",5) = oGauge.FormatABC("value -
26",oGauge.Layers.Item(9).LayerToClientY(oGauge.Layers.Item(9).RotamoveCenterX,oGauge.Layers.Item(9).RotamoveCenterY))

return

local oGauge,var_Layer,var_Layer1

oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject
oGauge.BeginUpdate()
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + str(value + 1) + `.png`"
oGauge.Layers.Count = 11
oGauge.AllowSmoothChange = 0
var_Layer = oGauge.Layers.Item(9)
 var_Layer.DefaultRotateAngle = -126
 var_Layer.OnDrag = 3
 var_Layer.RotateAngleToValue = "100 - (value / 360 * 100)"

 var_Layer.ValueToRotateAngle = "(value)/100 * 360"
 var_Layer.ValueToOffsetX = "value"
 var_Layer.OffsetToValue = "value"
 var_Layer.RotateAngleValid = "int(value / 360 * 100)/100 * 360"
var_Layer1 = oGauge.Layers.Item(7)
 var_Layer1.OnDrag = 2
 var_Layer1.RotateType = 2
oGauge.Value = 25
oGauge.EndUpdate()

XBasic (Alpha Five)

' Occurs when the layer's value is changed.
function Change as v (Layer as N)
 oGauge = topparent:CONTROL_ACTIVEX1.activex
 oGauge.Template = "ExtraCaption(`Client`,0) = FormatABC(```<sha ;;0>
`` + (100 - value format ``0``)`,Me.Value)" // oGauge.ExtraCaption("Client",0) =
oGauge.FormatABC("`<sha ;;0>` + (100 - value format
`0`)",oGauge.Value)
 oGauge.Template = "ExtraCaption(`Client`,4) = FormatABC(`value -
8`,Me.Layers.Item(9).LayerToClientX(Me.Layers.Item(9).RotamoveCenterX,Me.Layers.Item(9).RotamoveCenterY))"
 // oGauge.ExtraCaption("Client",4) = oGauge.FormatABC("value -
8",oGauge.Layers.Item(9).LayerToClientX(oGauge.Layers.Item(9).RotamoveCenterX,oGauge.Layers.Item(9).RotamoveCenterY))

 oGauge.Template = "ExtraCaption(`Client`,5) = FormatABC(`value -
26`,Me.Layers.Item(9).LayerToClientY(Me.Layers.Item(9).RotamoveCenterX,Me.Layers.Item(9).RotamoveCenterY))"
 // oGauge.ExtraCaption("Client",5) = oGauge.FormatABC("value -
26",oGauge.Layers.Item(9).LayerToClientY(oGauge.Layers.Item(9).RotamoveCenterX,oGauge.Layers.Item(9).RotamoveCenterY))

end function

Dim oGauge as P
Dim var_Layer as P
Dim var_Layer1 as P

oGauge = topparent:CONTROL_ACTIVEX1.activex

oGauge.BeginUpdate()
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + str(value + 1) + `.png`"
oGauge.Layers.Count = 11
oGauge.AllowSmoothChange = 0
var_Layer = oGauge.Layers.Item(9)
 var_Layer.DefaultRotateAngle = -126
 var_Layer.OnDrag = 3
 var_Layer.RotateAngleToValue = "100 - (value / 360 * 100)"
 var_Layer.ValueToRotateAngle = "(value)/100 * 360"
 var_Layer.ValueToOffsetX = "value"
 var_Layer.OffsetToValue = "value"
 var_Layer.RotateAngleValid = "int(value / 360 * 100)/100 * 360"
var_Layer1 = oGauge.Layers.Item(7)
 var_Layer1.OnDrag = 2
 var_Layer1.RotateType = 2
oGauge.Value = 25
oGauge.EndUpdate()

Visual Objects

METHOD OCX_Exontrol1Change(Layer) CLASS MainDialog
 // Change event - Occurs when the layer's value is changed.
 oDCOCX_Exontrol1:[ExtraCaption,"Client",exLayerCaption] :=
oDCOCX_Exontrol1:FormatABC("`<sha ;;0>` + (100 - value format
`0`)",oDCOCX_Exontrol1:Value,nil,nil)
 oDCOCX_Exontrol1:[ExtraCaption,"Client",exLayerCaptionLeft] :=
oDCOCX_Exontrol1:FormatABC("value - 8",oDCOCX_Exontrol1:Layers:[Item,9]:
[LayerToClientX,oDCOCX_Exontrol1:Layers:
[Item,9]:RotamoveCenterX,oDCOCX_Exontrol1:Layers:
[Item,9]:RotamoveCenterY],nil,nil)
 oDCOCX_Exontrol1:[ExtraCaption,"Client",exLayerCaptionTop] :=
oDCOCX_Exontrol1:FormatABC("value - 26",oDCOCX_Exontrol1:Layers:[Item,9]:
[LayerToClientY,oDCOCX_Exontrol1:Layers:
[Item,9]:RotamoveCenterX,oDCOCX_Exontrol1:Layers:

[Item,9]:RotamoveCenterY],nil,nil)
RETURN NIL

local var_Layer,var_Layer1 as ILayer

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oDCOCX_Exontrol1:PicturesName := "`Layer` + str(value + 1) + `.png`"
oDCOCX_Exontrol1:Layers:Count := 11
oDCOCX_Exontrol1:AllowSmoothChange := exSmoothChangeless
var_Layer := oDCOCX_Exontrol1:Layers:[Item,9]
 var_Layer:DefaultRotateAngle := -126
 var_Layer:OnDrag := exDoRotamove
 var_Layer:RotateAngleToValue := "100 - (value / 360 * 100)"
 var_Layer:ValueToRotateAngle := "(value)/100 * 360"
 var_Layer:ValueToOffsetX := "value"
 var_Layer:OffsetToValue := "value"
 var_Layer:RotateAngleValid := "int(value / 360 * 100)/100 * 360"
var_Layer1 := oDCOCX_Exontrol1:Layers:[Item,7]
 var_Layer1:OnDrag := exDoRotate
 var_Layer1:RotateType := exRotateBilinearInterpolation
oDCOCX_Exontrol1:Value := 25
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

/*begin event Change(long Layer) - Occurs when the layer's value is changed.*/
/*
 oGauge = ole_1.Object
 oGauge.ExtraCaption("Client",0,oGauge.FormatABC("`<sha ;;0>` +
(100 - value format `0`)",oGauge.Value))
 oGauge.ExtraCaption("Client",4,oGauge.FormatABC("value -
8",oGauge.Layers.Item(9).LayerToClientX(oGauge.Layers.Item(9).RotamoveCenterX,oGauge.Layers.Item(9).RotamoveCenterY)))

 oGauge.ExtraCaption("Client",5,oGauge.FormatABC("value -

26",oGauge.Layers.Item(9).LayerToClientY(oGauge.Layers.Item(9).RotamoveCenterX,oGauge.Layers.Item(9).RotamoveCenterY)))

*/
/*end event Change*/

OleObject oGauge,var_Layer,var_Layer1

oGauge = ole_1.Object
oGauge.BeginUpdate()
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + str(value + 1) + `.png`"
oGauge.Layers.Count = 11
oGauge.AllowSmoothChange = 0
var_Layer = oGauge.Layers.Item(9)
 var_Layer.DefaultRotateAngle = -126
 var_Layer.OnDrag = 3
 var_Layer.RotateAngleToValue = "100 - (value / 360 * 100)"
 var_Layer.ValueToRotateAngle = "(value)/100 * 360"
 var_Layer.ValueToOffsetX = "value"
 var_Layer.OffsetToValue = "value"
 var_Layer.RotateAngleValid = "int(value / 360 * 100)/100 * 360"
var_Layer1 = oGauge.Layers.Item(7)
 var_Layer1.OnDrag = 2
 var_Layer1.RotateType = 2
oGauge.Value = 25
oGauge.EndUpdate()

Visual DataFlex

// Occurs when the layer's value is changed.
Procedure OnComChange Integer llLayer
 Forward Send OnComChange llLayer
 Variant vA
 Get ComValue to vA
 Set ComExtraCaption "Client" OLEexLayerCaption to (ComFormatABC(Self,"`<sha

;;0>` + (100 - value format `0`)",vA,Nothing,Nothing))
 Variant vA1
 Variant voLayers
 Get ComLayers to voLayers
 Handle hoLayers
 Get Create (RefClass(cComLayers)) to hoLayers
 Set pvComObject of hoLayers to voLayers
 Variant voLayer
 Get ComItem of hoLayers 9 to voLayer
 Handle hoLayer
 Get Create (RefClass(cComLayer)) to hoLayer
 Set pvComObject of hoLayer to voLayer
 Variant voLayer1
 Get ComItem of hoLayer 9 to voLayer1
 Handle hoLayer1
 Get Create (RefClass(cComLayer)) to hoLayer1
 Set pvComObject of hoLayer1 to voLayer1
 Variant vX
 Variant voLayers1
 Get ComLayers to voLayers1
 Handle hoLayers1
 Get Create (RefClass(cComLayers)) to hoLayers1
 Set pvComObject of hoLayers1 to voLayers1
 Variant voLayer2
 Get ComItem of hoLayers1 9 to voLayer2
 Handle hoLayer2
 Get Create (RefClass(cComLayer)) to hoLayer2
 Set pvComObject of hoLayer2 to voLayer2
 Variant voLayer3
 Get ComItem of hoLayer2 9 to voLayer3
 Handle hoLayer3
 Get Create (RefClass(cComLayer)) to hoLayer3
 Set pvComObject of hoLayer3 to voLayer3
 Get ComRotamoveCenterX of hoLayer3 to vX
 Send Destroy to hoLayer3
 Send Destroy to hoLayer2
 Send Destroy to hoLayers1

 Variant vY
 Variant voLayers2
 Get ComLayers to voLayers2
 Handle hoLayers2
 Get Create (RefClass(cComLayers)) to hoLayers2
 Set pvComObject of hoLayers2 to voLayers2
 Variant voLayer4
 Get ComItem of hoLayers2 9 to voLayer4
 Handle hoLayer4
 Get Create (RefClass(cComLayer)) to hoLayer4
 Set pvComObject of hoLayer4 to voLayer4
 Variant voLayer5
 Get ComItem of hoLayer4 9 to voLayer5
 Handle hoLayer5
 Get Create (RefClass(cComLayer)) to hoLayer5
 Set pvComObject of hoLayer5 to voLayer5
 Get ComRotamoveCenterY of hoLayer5 to vY
 Send Destroy to hoLayer5
 Send Destroy to hoLayer4
 Send Destroy to hoLayers2
 Get ComLayerToClientX of hoLayer1 vX vY to vA1
 Send Destroy to hoLayer1
 Send Destroy to hoLayer
 Send Destroy to hoLayers
 Set ComExtraCaption "Client" OLEexLayerCaptionLeft to
(ComFormatABC(Self,"value - 8",vA1,Nothing,Nothing))
 Variant vA2
 Variant voLayers3
 Get ComLayers to voLayers3
 Handle hoLayers3
 Get Create (RefClass(cComLayers)) to hoLayers3
 Set pvComObject of hoLayers3 to voLayers3
 Variant voLayer6
 Get ComItem of hoLayers3 9 to voLayer6
 Handle hoLayer6
 Get Create (RefClass(cComLayer)) to hoLayer6
 Set pvComObject of hoLayer6 to voLayer6

 Variant voLayer7
 Get ComItem of hoLayer6 9 to voLayer7
 Handle hoLayer7
 Get Create (RefClass(cComLayer)) to hoLayer7
 Set pvComObject of hoLayer7 to voLayer7
 Variant vX1
 Variant voLayers4
 Get ComLayers to voLayers4
 Handle hoLayers4
 Get Create (RefClass(cComLayers)) to hoLayers4
 Set pvComObject of hoLayers4 to voLayers4
 Variant voLayer8
 Get ComItem of hoLayers4 9 to voLayer8
 Handle hoLayer8
 Get Create (RefClass(cComLayer)) to hoLayer8
 Set pvComObject of hoLayer8 to voLayer8
 Variant voLayer9
 Get ComItem of hoLayer8 9 to voLayer9
 Handle hoLayer9
 Get Create (RefClass(cComLayer)) to hoLayer9
 Set pvComObject of hoLayer9 to voLayer9
 Get ComRotamoveCenterX of hoLayer9 to vX1
 Send Destroy to hoLayer9
 Send Destroy to hoLayer8
 Send Destroy to hoLayers4
 Variant vY1
 Variant voLayers5
 Get ComLayers to voLayers5
 Handle hoLayers5
 Get Create (RefClass(cComLayers)) to hoLayers5
 Set pvComObject of hoLayers5 to voLayers5
 Variant voLayer10
 Get ComItem of hoLayers5 9 to voLayer10
 Handle hoLayer10
 Get Create (RefClass(cComLayer)) to hoLayer10
 Set pvComObject of hoLayer10 to voLayer10
 Variant voLayer11

 Get ComItem of hoLayer10 9 to voLayer11
 Handle hoLayer11
 Get Create (RefClass(cComLayer)) to hoLayer11
 Set pvComObject of hoLayer11 to voLayer11
 Get ComRotamoveCenterY of hoLayer11 to vY1
 Send Destroy to hoLayer11
 Send Destroy to hoLayer10
 Send Destroy to hoLayers5
 Get ComLayerToClientY of hoLayer7 vX1 vY1 to vA2
 Send Destroy to hoLayer7
 Send Destroy to hoLayer6
 Send Destroy to hoLayers3
 Set ComExtraCaption "Client" OLEexLayerCaptionTop to
(ComFormatABC(Self,"value - 26",vA2,Nothing,Nothing))
End_Procedure

Procedure OnCreate
 Forward Send OnCreate
 Send ComBeginUpdate
 Set ComPicturesPath to "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 Set ComPicturesName to "`Layer` + str(value + 1) + `.png`"
 Variant voLayers6
 Get ComLayers to voLayers6
 Handle hoLayers6
 Get Create (RefClass(cComLayers)) to hoLayers6
 Set pvComObject of hoLayers6 to voLayers6
 Set ComCount of hoLayers6 to 11
 Send Destroy to hoLayers6
 Set ComAllowSmoothChange to OLEexSmoothChangeless
 Variant voLayers7
 Get ComLayers to voLayers7
 Handle hoLayers7
 Get Create (RefClass(cComLayers)) to hoLayers7
 Set pvComObject of hoLayers7 to voLayers7
 Variant voLayer12
 Get ComItem of hoLayers7 9 to voLayer12

 Handle hoLayer12
 Get Create (RefClass(cComLayer)) to hoLayer12
 Set pvComObject of hoLayer12 to voLayer12
 Set ComDefaultRotateAngle of hoLayer12 to -126
 Set ComOnDrag of hoLayer12 to OLEexDoRotamove
 Set ComRotateAngleToValue of hoLayer12 to "100 - (value / 360 * 100)"
 Set ComValueToRotateAngle of hoLayer12 to "(value)/100 * 360"
 Set ComValueToOffsetX of hoLayer12 to "value"
 Set ComOffsetToValue of hoLayer12 to "value"
 Set ComRotateAngleValid of hoLayer12 to "int(value / 360 * 100)/100 * 360"
 Send Destroy to hoLayer12
 Send Destroy to hoLayers7
 Variant voLayers8
 Get ComLayers to voLayers8
 Handle hoLayers8
 Get Create (RefClass(cComLayers)) to hoLayers8
 Set pvComObject of hoLayers8 to voLayers8
 Variant voLayer13
 Get ComItem of hoLayers8 7 to voLayer13
 Handle hoLayer13
 Get Create (RefClass(cComLayer)) to hoLayer13
 Set pvComObject of hoLayer13 to voLayer13
 Set ComOnDrag of hoLayer13 to OLEexDoRotate
 Set ComRotateType of hoLayer13 to OLEexRotateBilinearInterpolation
 Send Destroy to hoLayer13
 Send Destroy to hoLayers8
 Set ComValue to 25
 Send ComEndUpdate
End_Procedure

XBase++

PROCEDURE OnChange(oGauge,Layer)

oGauge:SetProperty("ExtraCaption","Client",0/*exLayerCaption*/,oGauge:FormatABC("`<sha
 ;;0>` + (100 - value format `0`)",oGauge:Value()))

oGauge:SetProperty("ExtraCaption","Client",4/*exLayerCaptionLeft*/,oGauge:FormatABC(
 -
8",oGauge:Layers:Item(9):LayerToClientX(oGauge:Layers:Item(9):RotamoveCenterX(),oGauge:

oGauge:SetProperty("ExtraCaption","Client",5/*exLayerCaptionTop*/,oGauge:FormatABC(
 -
26",oGauge:Layers:Item(9):LayerToClientY(oGauge:Layers:Item(9):RotamoveCenterX(),oGauge:

RETURN

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oGauge
 LOCAL oLayer,oLayer1

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oGauge := XbpActiveXControl():new(oForm:drawingArea)
 oGauge:CLSID := "Exontrol.Gauge.1" /*{91628F12-393C-44EF-A558-
83ED1790AAD3}*/
 oGauge:create(,, {10,60},{610,370})

 oGauge:Change := {|Layer| OnChange(oGauge,Layer)} /*Occurs when the layer's
value is changed.*/

 oGauge:BeginUpdate()
 oGauge:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 oGauge:PicturesName := "`Layer` + str(value + 1) + `.png`"

 oGauge:Layers():Count := 11
 oGauge:AllowSmoothChange := 0/*exSmoothChangeless*/
 oLayer := oGauge:Layers:Item(9)
 oLayer:DefaultRotateAngle := -126
 oLayer:OnDrag := 3/*exDoRotamove*/
 oLayer:RotateAngleToValue := "100 - (value / 360 * 100)"
 oLayer:ValueToRotateAngle := "(value)/100 * 360"
 oLayer:ValueToOffsetX := "value"
 oLayer:OffsetToValue := "value"
 oLayer:RotateAngleValid := "int(value / 360 * 100)/100 * 360"
 oLayer1 := oGauge:Layers:Item(7)
 oLayer1:OnDrag := 2/*exDoRotate*/
 oLayer1:RotateType := 2/*exRotateBilinearInterpolation*/
 oGauge:Value := 25
 oGauge:EndUpdate()

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property Layer.LayerToClientY (X as Variant, Y as Variant) as Long
Converts the x-position of the layer to control's client x-position.

Type Description

X as Variant A Lone expression that specifies the x-position of the point
within the layer

Y as Variant A Lone expression that specifies the y-position of the point
within the layer

Long
A Long expression that specifies the y-position of the point
on the control's view that's equivalent of the point on the
layer.

The LayerToClientX / LayerToClientY converts the (x,y)-point on the layer to control's view
point. The LayerToClientX / LayerToClientY properties translate a point from the layer (as it
is moved or rotated) to the control's view. For instance, you can display the current value
of the control on the knob you are rotating. The RotamoveCenterX / RotamoveCenterY
specifies the (x,y)-position of the layer's center, while the layer's drag operation is
exDoRotamove. The OnDrag property indicates the action to be performed when the user
drags the layer.

Any of the following properties can be used to display a HTML caption:

Caption property specifies the caption to be shown on the control's foreground.
ExtraCaption property specifies any extra caption to be shown on the control's
foreground.
Foreground.Caption specifies the caption to be shown on the layer's foreground.
Foreground.ExtraCaption specifies any extra caption to be shown on the layer's
foreground.

The following sample shows how you can use the LayerToClientX / LayerToClientY
properties to display the layer's value on the knob:

VBA (MS Access, Excell...)

' Change event - Occurs when the layer's value is changed.
Private Sub Gauge1_Change(ByVal Layer As Long)
 With Gauge1
 .ExtraCaption("Client",0) = .FormatABC("`<sha ;;0>` + (100 - value
format `0`)",Gauge1.Value)
 .ExtraCaption("Client",4) = .FormatABC("value -
8",Gauge1.Layers.Item(9).LayerToClientX(Gauge1.Layers.Item(9).RotamoveCenterX,Gauge1.

 .ExtraCaption("Client",5) = .FormatABC("value -
26",Gauge1.Layers.Item(9).LayerToClientY(Gauge1.Layers.Item(9).RotamoveCenterX,Gauge1.

 End With
End Sub

With Gauge1
 .BeginUpdate
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"

 .PicturesName = "`Layer` + str(value + 1) + `.png`"
 .Layers.Count = 11
 .AllowSmoothChange = 0
 With .Layers.Item(9)
 .DefaultRotateAngle = -126
 .OnDrag = 3
 .RotateAngleToValue = "100 - (value / 360 * 100)"
 .ValueToRotateAngle = "(value)/100 * 360"
 .ValueToOffsetX = "value"
 .OffsetToValue = "value"
 .RotateAngleValid = "int(value / 360 * 100)/100 * 360"
 End With
 With .Layers.Item(7)
 .OnDrag = 2
 .RotateType = 2
 End With
 .Value = 25
 .EndUpdate
End With

VB6

' Change event - Occurs when the layer's value is changed.
Private Sub Gauge1_Change(ByVal Layer As Long)
 With Gauge1
 .ExtraCaption("Client",exLayerCaption) = .FormatABC("`<sha ;;0>`
+ (100 - value format `0`)",Gauge1.Value)
 .ExtraCaption("Client",exLayerCaptionLeft) = .FormatABC("value -
8",Gauge1.Layers.Item(9).LayerToClientX(Gauge1.Layers.Item(9).RotamoveCenterX,Gauge1.

 .ExtraCaption("Client",exLayerCaptionTop) = .FormatABC("value -
26",Gauge1.Layers.Item(9).LayerToClientY(Gauge1.Layers.Item(9).RotamoveCenterX,Gauge1.

 End With
End Sub

With Gauge1

 .BeginUpdate
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + str(value + 1) + `.png`"
 .Layers.Count = 11
 .AllowSmoothChange = exSmoothChangeless
 With .Layers.Item(9)
 .DefaultRotateAngle = -126
 .OnDrag = exDoRotamove
 .RotateAngleToValue = "100 - (value / 360 * 100)"
 .ValueToRotateAngle = "(value)/100 * 360"
 .ValueToOffsetX = "value"
 .OffsetToValue = "value"
 .RotateAngleValid = "int(value / 360 * 100)/100 * 360"
 End With
 With .Layers.Item(7)
 .OnDrag = exDoRotate
 .RotateType = exRotateBilinearInterpolation
 End With
 .Value = 25
 .EndUpdate
End With

VB.NET

' Change event - Occurs when the layer's value is changed.
Private Sub Exgauge1_Change(ByVal sender As System.Object,ByVal Layer As Integer)
Handles Exgauge1.Change
 With Exgauge1

.set_ExtraCaption("Client",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,.
 ;;0>` + (100 - value format `0`)",Exgauge1.Value))

.set_ExtraCaption("Client",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionLeft,.
 -
8",Exgauge1.Layers.Item(9).get_LayerToClientX(Exgauge1.Layers.Item(9).RotamoveCenterX

.set_ExtraCaption("Client",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionTop,.
 -
26",Exgauge1.Layers.Item(9).get_LayerToClientY(Exgauge1.Layers.Item(9).RotamoveCenterX

 End With
End Sub

With Exgauge1
 .BeginUpdate()
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + str(value + 1) + `.png`"
 .Layers.Count = 11
 .AllowSmoothChange =
exontrol.EXGAUGELib.SmoothPropertyEnum.exSmoothChangeless
 With .Layers.Item(9)
 .DefaultRotateAngle = -126
 .OnDrag = exontrol.EXGAUGELib.OnDragLayerEnum.exDoRotamove
 .RotateAngleToValue = "100 - (value / 360 * 100)"
 .ValueToRotateAngle = "(value)/100 * 360"
 .ValueToOffsetX = "value"
 .OffsetToValue = "value"
 .RotateAngleValid = "int(value / 360 * 100)/100 * 360"
 End With
 With .Layers.Item(7)
 .OnDrag = exontrol.EXGAUGELib.OnDragLayerEnum.exDoRotate
 .RotateType =
exontrol.EXGAUGELib.RotateTypeEnum.exRotateBilinearInterpolation
 End With
 .Value = 25
 .EndUpdate()
End With

VB.NET for /COM

' Change event - Occurs when the layer's value is changed.

Private Sub AxGauge1_Change(ByVal sender As System.Object, ByVal e As
AxEXGAUGELib._IGaugeEvents_ChangeEvent) Handles AxGauge1.Change
 With AxGauge1

.set_ExtraCaption("Client",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,.FormatABC
 ;;0>` + (100 - value format `0`)",AxGauge1.Value))

.set_ExtraCaption("Client",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionLeft,.FormatABC
 -
8",AxGauge1.Layers.Item(9).LayerToClientX(AxGauge1.Layers.Item(9).RotamoveCenterX,AxGauge1.

.set_ExtraCaption("Client",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionTop,.FormatABC
 -
26",AxGauge1.Layers.Item(9).LayerToClientY(AxGauge1.Layers.Item(9).RotamoveCenterX,AxGauge1.

 End With
End Sub

With AxGauge1
 .BeginUpdate()
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + str(value + 1) + `.png`"
 .Layers.Count = 11
 .AllowSmoothChange = EXGAUGELib.SmoothPropertyEnum.exSmoothChangeless
 With .Layers.Item(9)
 .DefaultRotateAngle = -126
 .OnDrag = EXGAUGELib.OnDragLayerEnum.exDoRotamove
 .RotateAngleToValue = "100 - (value / 360 * 100)"
 .ValueToRotateAngle = "(value)/100 * 360"
 .ValueToOffsetX = "value"
 .OffsetToValue = "value"
 .RotateAngleValid = "int(value / 360 * 100)/100 * 360"
 End With
 With .Layers.Item(7)
 .OnDrag = EXGAUGELib.OnDragLayerEnum.exDoRotate

 .RotateType = EXGAUGELib.RotateTypeEnum.exRotateBilinearInterpolation
 End With
 .Value = 25
 .EndUpdate()
End With

C++

// Change event - Occurs when the layer's value is changed.
void OnChangeGauge1(long Layer)
{
 /*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXGAUGELib' for the library: 'ExGauge 1.0 Control
Library'
 #import <ExGauge.dll>
 using namespace EXGAUGELib;
 */
 EXGAUGELib::IGaugePtr spGauge1 = GetDlgItem(IDC_GAUGE1)-
>GetControlUnknown();
 spGauge1->PutExtraCaption("Client",EXGAUGELib::exLayerCaption,spGauge1-
>FormatABC(L"`<sha ;;0>` + (100 - value format `0`)",spGauge1-
>GetValue(),vtMissing,vtMissing));
 spGauge1->PutExtraCaption("Client",EXGAUGELib::exLayerCaptionLeft,spGauge1-
>FormatABC(L"value - 8",spGauge1->GetLayers()->GetItem(long(9))-
>GetLayerToClientX(spGauge1->GetLayers()->GetItem(long(9))-
>GetRotamoveCenterX(),spGauge1->GetLayers()->GetItem(long(9))-
>GetRotamoveCenterY()),vtMissing,vtMissing));
 spGauge1->PutExtraCaption("Client",EXGAUGELib::exLayerCaptionTop,spGauge1-
>FormatABC(L"value - 26",spGauge1->GetLayers()->GetItem(long(9))-
>GetLayerToClientY(spGauge1->GetLayers()->GetItem(long(9))-
>GetRotamoveCenterX(),spGauge1->GetLayers()->GetItem(long(9))-
>GetRotamoveCenterY()),vtMissing,vtMissing));
}

EXGAUGELib::IGaugePtr spGauge1 = GetDlgItem(IDC_GAUGE1)-
>GetControlUnknown();

spGauge1->BeginUpdate();
spGauge1->PutPicturesPath(L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob");
spGauge1->PutPicturesName(L"`Layer` + str(value + 1) + `.png`");
spGauge1->GetLayers()->PutCount(11);
spGauge1->PutAllowSmoothChange(EXGAUGELib::exSmoothChangeless);
EXGAUGELib::ILayerPtr var_Layer = spGauge1->GetLayers()->GetItem(long(9));
 var_Layer->PutDefaultRotateAngle(-126);
 var_Layer->PutOnDrag(EXGAUGELib::exDoRotamove);
 var_Layer->PutRotateAngleToValue(L"100 - (value / 360 * 100)");
 var_Layer->PutValueToRotateAngle(L"(value)/100 * 360");
 var_Layer->PutValueToOffsetX(L"value");
 var_Layer->PutOffsetToValue(L"value");
 var_Layer->PutRotateAngleValid(L"int(value / 360 * 100)/100 * 360");
EXGAUGELib::ILayerPtr var_Layer1 = spGauge1->GetLayers()->GetItem(long(7));
 var_Layer1->PutOnDrag(EXGAUGELib::exDoRotate);
 var_Layer1->PutRotateType(EXGAUGELib::exRotateBilinearInterpolation);
spGauge1->PutValue(long(25));
spGauge1->EndUpdate();

C++ Builder

// Change event - Occurs when the layer's value is changed.
void __fastcall TForm1::Gauge1Change(TObject *Sender,long Layer)
{
 Gauge1-
>ExtraCaption[TVariant("Client"),Exgaugelib_tlb::PropertyLayerCaptionEnum::exLayerCaption]
 = TVariant(Gauge1->FormatABC(L"`<sha ;;0>` + (100 - value format
`0`)",TVariant(Gauge1->get_Value()),TNoParam(),TNoParam()));
 Gauge1-
>ExtraCaption[TVariant("Client"),Exgaugelib_tlb::PropertyLayerCaptionEnum::exLayerCaptionLeft]
 = TVariant(Gauge1->FormatABC(L"value - 8",TVariant(Gauge1->Layers-
>get_Item(TVariant(9))->get_LayerToClientX(TVariant(Gauge1->Layers-
>get_Item(TVariant(9))->RotamoveCenterX),TVariant(Gauge1->Layers-
>get_Item(TVariant(9))->RotamoveCenterY))),TNoParam(),TNoParam()));
 Gauge1-

>ExtraCaption[TVariant("Client"),Exgaugelib_tlb::PropertyLayerCaptionEnum::exLayerCaptionTop]
 = TVariant(Gauge1->FormatABC(L"value - 26",TVariant(Gauge1->Layers-
>get_Item(TVariant(9))->get_LayerToClientY(TVariant(Gauge1->Layers-
>get_Item(TVariant(9))->RotamoveCenterX),TVariant(Gauge1->Layers-
>get_Item(TVariant(9))->RotamoveCenterY))),TNoParam(),TNoParam()));
}

Gauge1->BeginUpdate();
Gauge1->PicturesPath = L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
Gauge1->PicturesName = L"`Layer` + str(value + 1) + `.png`";
Gauge1->Layers->Count = 11;
Gauge1->AllowSmoothChange =
Exgaugelib_tlb::SmoothPropertyEnum::exSmoothChangeless;
Exgaugelib_tlb::ILayerPtr var_Layer = Gauge1->Layers->get_Item(TVariant(9));
 var_Layer->DefaultRotateAngle = -126;
 var_Layer->OnDrag = Exgaugelib_tlb::OnDragLayerEnum::exDoRotamove;
 var_Layer->RotateAngleToValue = L"100 - (value / 360 * 100)";
 var_Layer->ValueToRotateAngle = L"(value)/100 * 360";
 var_Layer->ValueToOffsetX = L"value";
 var_Layer->OffsetToValue = L"value";
 var_Layer->RotateAngleValid = L"int(value / 360 * 100)/100 * 360";
Exgaugelib_tlb::ILayerPtr var_Layer1 = Gauge1->Layers->get_Item(TVariant(7));
 var_Layer1->OnDrag = Exgaugelib_tlb::OnDragLayerEnum::exDoRotate;
 var_Layer1->RotateType =
Exgaugelib_tlb::RotateTypeEnum::exRotateBilinearInterpolation;
Gauge1->set_Value(TVariant(25));
Gauge1->EndUpdate();

C#

// Change event - Occurs when the layer's value is changed.
private void exgauge1_Change(object sender,int Layer)
{

exgauge1.set_ExtraCaption("Client",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,exgauge1.

 ;;0>` + (100 - value format `0`)",exgauge1.Value,null,null));

exgauge1.set_ExtraCaption("Client",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionLeft,exgauge1.
 -
8",exgauge1.Layers[9].get_LayerToClientX(exgauge1.Layers[9].RotamoveCenterX,exgauge1.

exgauge1.set_ExtraCaption("Client",exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionTop,exgauge1.
 -
26",exgauge1.Layers[9].get_LayerToClientY(exgauge1.Layers[9].RotamoveCenterX,exgauge1.

}
//this.exgauge1.Change += new
exontrol.EXGAUGELib.exg2antt.ChangeEventHandler(this.exgauge1_Change);

exgauge1.BeginUpdate();
exgauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
exgauge1.PicturesName = "`Layer` + str(value + 1) + `.png`";
exgauge1.Layers.Count = 11;
exgauge1.AllowSmoothChange =
exontrol.EXGAUGELib.SmoothPropertyEnum.exSmoothChangeless;
exontrol.EXGAUGELib.Layer var_Layer = exgauge1.Layers[9];
 var_Layer.DefaultRotateAngle = -126;
 var_Layer.OnDrag = exontrol.EXGAUGELib.OnDragLayerEnum.exDoRotamove;
 var_Layer.RotateAngleToValue = "100 - (value / 360 * 100)";
 var_Layer.ValueToRotateAngle = "(value)/100 * 360";
 var_Layer.ValueToOffsetX = "value";
 var_Layer.OffsetToValue = "value";
 var_Layer.RotateAngleValid = "int(value / 360 * 100)/100 * 360";
exontrol.EXGAUGELib.Layer var_Layer1 = exgauge1.Layers[7];
 var_Layer1.OnDrag = exontrol.EXGAUGELib.OnDragLayerEnum.exDoRotate;
 var_Layer1.RotateType =
exontrol.EXGAUGELib.RotateTypeEnum.exRotateBilinearInterpolation;
exgauge1.Value = 25;
exgauge1.EndUpdate();

JScript/JavaScript

<BODY onload="Init()">
<SCRIPT FOR="Gauge1" EVENT="Change(Layer)" LANGUAGE="JScript">
 Gauge1.ExtraCaption("Client",0) = Gauge1.FormatABC("`<sha ;;0>`
+ (100 - value format `0`)",Gauge1.Value,null,null);
 Gauge1.ExtraCaption("Client",4) = Gauge1.FormatABC("value -
8",Gauge1.Layers.Item(9).LayerToClientX(Gauge1.Layers.Item(9).RotamoveCenterX,Gauge1.

 Gauge1.ExtraCaption("Client",5) = Gauge1.FormatABC("value -
26",Gauge1.Layers.Item(9).LayerToClientY(Gauge1.Layers.Item(9).RotamoveCenterX,Gauge1.

</SCRIPT>

<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 Gauge1.BeginUpdate();
 Gauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
 Gauge1.PicturesName = "`Layer` + str(value + 1) + `.png`";
 Gauge1.Layers.Count = 11;
 Gauge1.AllowSmoothChange = 0;
 var var_Layer = Gauge1.Layers.Item(9);
 var_Layer.DefaultRotateAngle = -126;
 var_Layer.OnDrag = 3;
 var_Layer.RotateAngleToValue = "100 - (value / 360 * 100)";
 var_Layer.ValueToRotateAngle = "(value)/100 * 360";
 var_Layer.ValueToOffsetX = "value";
 var_Layer.OffsetToValue = "value";
 var_Layer.RotateAngleValid = "int(value / 360 * 100)/100 * 360";
 var var_Layer1 = Gauge1.Layers.Item(7);
 var_Layer1.OnDrag = 2;
 var_Layer1.RotateType = 2;

 Gauge1.Value = 25;
 Gauge1.EndUpdate();
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<SCRIPT LANGUAGE="VBScript">
Function Gauge1_Change(Layer)
 With Gauge1
 .ExtraCaption("Client",0) = .FormatABC("`<sha ;;0>` + (100 - value
format `0`)",Gauge1.Value)
 .ExtraCaption("Client",4) = .FormatABC("value -
8",Gauge1.Layers.Item(9).LayerToClientX(Gauge1.Layers.Item(9).RotamoveCenterX,Gauge1.

 .ExtraCaption("Client",5) = .FormatABC("value -
26",Gauge1.Layers.Item(9).LayerToClientY(Gauge1.Layers.Item(9).RotamoveCenterX,Gauge1.

 End With
End Function
</SCRIPT>

<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With Gauge1
 .BeginUpdate
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + str(value + 1) + `.png`"
 .Layers.Count = 11
 .AllowSmoothChange = 0

 With .Layers.Item(9)
 .DefaultRotateAngle = -126
 .OnDrag = 3
 .RotateAngleToValue = "100 - (value / 360 * 100)"
 .ValueToRotateAngle = "(value)/100 * 360"
 .ValueToOffsetX = "value"
 .OffsetToValue = "value"
 .RotateAngleValid = "int(value / 360 * 100)/100 * 360"
 End With
 With .Layers.Item(7)
 .OnDrag = 2
 .RotateType = 2
 End With
 .Value = 25
 .EndUpdate
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

// Change event - Occurs when the layer's value is changed.
private void axGauge1_Change(object sender,
AxEXGAUGELib._IGaugeEvents_ChangeEvent e)
{

axGauge1.set_ExtraCaption("Client",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,axGauge1.
 ;;0>` + (100 - value format `0`)",axGauge1.Value,null,null));

axGauge1.set_ExtraCaption("Client",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionLeft,axGauge1.
 -
8",axGauge1.Layers[9].get_LayerToClientX(axGauge1.Layers[9].RotamoveCenterX,axGauge1.

axGauge1.set_ExtraCaption("Client",EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionTop,axGauge1.

 -
26",axGauge1.Layers[9].get_LayerToClientY(axGauge1.Layers[9].RotamoveCenterX,axGauge1.

}
//this.axGauge1.Change += new
AxEXGAUGELib._IGaugeEvents_ChangeEventHandler(this.axGauge1_Change);

axGauge1.BeginUpdate();
axGauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
axGauge1.PicturesName = "`Layer` + str(value + 1) + `.png`";
axGauge1.Layers.Count = 11;
axGauge1.AllowSmoothChange =
EXGAUGELib.SmoothPropertyEnum.exSmoothChangeless;
EXGAUGELib.Layer var_Layer = axGauge1.Layers[9];
 var_Layer.DefaultRotateAngle = -126;
 var_Layer.OnDrag = EXGAUGELib.OnDragLayerEnum.exDoRotamove;
 var_Layer.RotateAngleToValue = "100 - (value / 360 * 100)";
 var_Layer.ValueToRotateAngle = "(value)/100 * 360";
 var_Layer.ValueToOffsetX = "value";
 var_Layer.OffsetToValue = "value";
 var_Layer.RotateAngleValid = "int(value / 360 * 100)/100 * 360";
EXGAUGELib.Layer var_Layer1 = axGauge1.Layers[7];
 var_Layer1.OnDrag = EXGAUGELib.OnDragLayerEnum.exDoRotate;
 var_Layer1.RotateType =
EXGAUGELib.RotateTypeEnum.exRotateBilinearInterpolation;
axGauge1.Value = 25;
axGauge1.EndUpdate();

X++ (Dynamics Ax 2009)

// Change event - Occurs when the layer's value is changed.
void onEvent_Change(int _Layer)
{
 ;
 exgauge1.ExtraCaption("Client",0/*exLayerCaption*/,exgauge1.FormatABC("`<sha

;;0>` + (100 - value format `0`)",exgauge1.Value()));

exgauge1.ExtraCaption("Client",4/*exLayerCaptionLeft*/,exgauge1.FormatABC("value
-
8",exgauge1.Layers().Item(COMVariant::createFromInt(9)).LayerToClientX(exgauge1.Layers().

exgauge1.ExtraCaption("Client",5/*exLayerCaptionTop*/,exgauge1.FormatABC("value
-
26",exgauge1.Layers().Item(COMVariant::createFromInt(9)).LayerToClientY(exgauge1.Layers

}

public void init()
{
 COM com_Layer,com_Layer1;
 anytype var_Layer,var_Layer1;
 ;

 super();

 exgauge1.BeginUpdate();
 exgauge1.PicturesPath("C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob");
 exgauge1.PicturesName("`Layer` + str(value + 1) + `.png`");
 exgauge1.Layers().Count(11);
 exgauge1.AllowSmoothChange(0/*exSmoothChangeless*/);
 var_Layer =
COM::createFromObject(exgauge1.Layers()).Item(COMVariant::createFromInt(9));
com_Layer = var_Layer;
 com_Layer.DefaultRotateAngle(-126);
 com_Layer.OnDrag(3/*exDoRotamove*/);
 com_Layer.RotateAngleToValue("100 - (value / 360 * 100)");
 com_Layer.ValueToRotateAngle("(value)/100 * 360");
 com_Layer.ValueToOffsetX("value");
 com_Layer.OffsetToValue("value");
 com_Layer.RotateAngleValid("int(value / 360 * 100)/100 * 360");

 var_Layer1 =
COM::createFromObject(exgauge1.Layers()).Item(COMVariant::createFromInt(7));
com_Layer1 = var_Layer1;
 com_Layer1.OnDrag(2/*exDoRotate*/);
 com_Layer1.RotateType(2/*exRotateBilinearInterpolation*/);
 exgauge1.Value(COMVariant::createFromInt(25));
 exgauge1.EndUpdate();
}

Delphi 8 (.NET only)

// Change event - Occurs when the layer's value is changed.
procedure TWinForm1.AxGauge1_Change(sender: System.Object; e:
AxEXGAUGELib._IGaugeEvents_ChangeEvent);
begin
 with AxGauge1 do
 begin

set_ExtraCaption('Client',EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,FormatABC
 ;;0>` + (100 - value format `0`)',AxGauge1.Value,Nil,Nil));

set_ExtraCaption('Client',EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionLeft,FormatABC
 -
8',TObject(AxGauge1.Layers.Item[TObject(9)].LayerToClientX[TObject(AxGauge1.Layers.Item

set_ExtraCaption('Client',EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaptionTop,FormatABC
 -
26',TObject(AxGauge1.Layers.Item[TObject(9)].LayerToClientY[TObject(AxGauge1.Layers.Item

 end
end;

with AxGauge1 do
begin
 BeginUpdate();
 PicturesPath := 'C:\Program

Files\Exontrol\ExGauge\Sample\Design\Circular\Knob';
 PicturesName := '`Layer` + str(value + 1) + `.png`';
 Layers.Count := 11;
 AllowSmoothChange := EXGAUGELib.SmoothPropertyEnum.exSmoothChangeless;
 with Layers.Item[TObject(9)] do
 begin
 DefaultRotateAngle := -126;
 OnDrag := EXGAUGELib.OnDragLayerEnum.exDoRotamove;
 RotateAngleToValue := '100 - (value / 360 * 100)';
 ValueToRotateAngle := '(value)/100 * 360';
 ValueToOffsetX := 'value';
 OffsetToValue := 'value';
 RotateAngleValid := 'int(value / 360 * 100)/100 * 360';
 end;
 with Layers.Item[TObject(7)] do
 begin
 OnDrag := EXGAUGELib.OnDragLayerEnum.exDoRotate;
 RotateType := EXGAUGELib.RotateTypeEnum.exRotateBilinearInterpolation;
 end;
 Value := TObject(25);
 EndUpdate();
end

Delphi (standard)

// Change event - Occurs when the layer's value is changed.
procedure TForm1.Gauge1Change(ASender: TObject; Layer : Integer);
begin
 with Gauge1 do
 begin
 ExtraCaption['Client',EXGAUGELib_TLB.exLayerCaption] := FormatABC('`<sha ;;0>
` + (100 - value format `0`)',Gauge1.Value,Null,Null);
 ExtraCaption['Client',EXGAUGELib_TLB.exLayerCaptionLeft] := FormatABC('value
-
8',OleVariant(Gauge1.Layers.Item[OleVariant(9)].LayerToClientX[OleVariant(Gauge1.Layers.

 ExtraCaption['Client',EXGAUGELib_TLB.exLayerCaptionTop] := FormatABC('value

-
26',OleVariant(Gauge1.Layers.Item[OleVariant(9)].LayerToClientY[OleVariant(Gauge1.Layers

 end
end;

with Gauge1 do
begin
 BeginUpdate();
 PicturesPath := 'C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob';
 PicturesName := '`Layer` + str(value + 1) + `.png`';
 Layers.Count := 11;
 AllowSmoothChange := EXGAUGELib_TLB.exSmoothChangeless;
 with Layers.Item[OleVariant(9)] do
 begin
 DefaultRotateAngle := -126;
 OnDrag := EXGAUGELib_TLB.exDoRotamove;
 RotateAngleToValue := '100 - (value / 360 * 100)';
 ValueToRotateAngle := '(value)/100 * 360';
 ValueToOffsetX := 'value';
 OffsetToValue := 'value';
 RotateAngleValid := 'int(value / 360 * 100)/100 * 360';
 end;
 with Layers.Item[OleVariant(7)] do
 begin
 OnDrag := EXGAUGELib_TLB.exDoRotate;
 RotateType := EXGAUGELib_TLB.exRotateBilinearInterpolation;
 end;
 Value := OleVariant(25);
 EndUpdate();
end

VFP

*** Change event - Occurs when the layer's value is changed. ***
LPARAMETERS Layer

 with thisform.Gauge1
 .Object.ExtraCaption("Client",0) = .FormatABC("`<sha ;;0>` + (100
- value format `0`)",thisform.Gauge1.Value)
 .Object.ExtraCaption("Client",4) = .FormatABC("value -
8",thisform.Gauge1.Layers.Item(9).LayerToClientX(thisform.Gauge1.Layers.Item(9).RotamoveCenterX

 .Object.ExtraCaption("Client",5) = .FormatABC("value -
26",thisform.Gauge1.Layers.Item(9).LayerToClientY(thisform.Gauge1.Layers.Item(9).RotamoveCenterX

 endwith

with thisform.Gauge1
 .BeginUpdate
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + str(value + 1) + `.png`"
 .Layers.Count = 11
 .AllowSmoothChange = 0
 with .Layers.Item(9)
 .DefaultRotateAngle = -126
 .OnDrag = 3
 .RotateAngleToValue = "100 - (value / 360 * 100)"
 .ValueToRotateAngle = "(value)/100 * 360"
 .ValueToOffsetX = "value"
 .OffsetToValue = "value"
 .RotateAngleValid = "int(value / 360 * 100)/100 * 360"
 endwith
 with .Layers.Item(7)
 .OnDrag = 2
 .RotateType = 2
 endwith
 .Value = 25
 .EndUpdate
endwith

dBASE Plus

/*
with (this.EXGAUGEACTIVEXCONTROL1.nativeObject)
 Change = class::nativeObject_Change
endwith
*/
// Occurs when the layer's value is changed.
function nativeObject_Change(Layer)
 oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject
 oGauge.Template = [ExtraCaption("Client",0) = FormatABC("`<sha ;;0>
` + (100 - value format `0`)",Me.Value)] // oGauge.ExtraCaption("Client",0) =
oGauge.FormatABC("`<sha ;;0>` + (100 - value format
`0`)",oGauge.Value)
 oGauge.Template = [ExtraCaption("Client",4) = FormatABC("value -
8",Me.Layers.Item(9).LayerToClientX(Me.Layers.Item(9).RotamoveCenterX,Me.Layers.Item(9).RotamoveCenterY))]
 // oGauge.ExtraCaption("Client",4) = oGauge.FormatABC("value -
8",oGauge.Layers.Item(9).LayerToClientX(oGauge.Layers.Item(9).RotamoveCenterX,oGauge.Layers.Item(9).RotamoveCenterY))

 oGauge.Template = [ExtraCaption("Client",5) = FormatABC("value -
26",Me.Layers.Item(9).LayerToClientY(Me.Layers.Item(9).RotamoveCenterX,Me.Layers.Item(9).RotamoveCenterY))]
 // oGauge.ExtraCaption("Client",5) = oGauge.FormatABC("value -
26",oGauge.Layers.Item(9).LayerToClientY(oGauge.Layers.Item(9).RotamoveCenterX,oGauge.Layers.Item(9).RotamoveCenterY))

return

local oGauge,var_Layer,var_Layer1

oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject
oGauge.BeginUpdate()
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + str(value + 1) + `.png`"
oGauge.Layers.Count = 11
oGauge.AllowSmoothChange = 0
var_Layer = oGauge.Layers.Item(9)
 var_Layer.DefaultRotateAngle = -126
 var_Layer.OnDrag = 3
 var_Layer.RotateAngleToValue = "100 - (value / 360 * 100)"

 var_Layer.ValueToRotateAngle = "(value)/100 * 360"
 var_Layer.ValueToOffsetX = "value"
 var_Layer.OffsetToValue = "value"
 var_Layer.RotateAngleValid = "int(value / 360 * 100)/100 * 360"
var_Layer1 = oGauge.Layers.Item(7)
 var_Layer1.OnDrag = 2
 var_Layer1.RotateType = 2
oGauge.Value = 25
oGauge.EndUpdate()

XBasic (Alpha Five)

' Occurs when the layer's value is changed.
function Change as v (Layer as N)
 oGauge = topparent:CONTROL_ACTIVEX1.activex
 oGauge.Template = "ExtraCaption(`Client`,0) = FormatABC(```<sha ;;0>
`` + (100 - value format ``0``)`,Me.Value)" // oGauge.ExtraCaption("Client",0) =
oGauge.FormatABC("`<sha ;;0>` + (100 - value format
`0`)",oGauge.Value)
 oGauge.Template = "ExtraCaption(`Client`,4) = FormatABC(`value -
8`,Me.Layers.Item(9).LayerToClientX(Me.Layers.Item(9).RotamoveCenterX,Me.Layers.Item(9).RotamoveCenterY))"
 // oGauge.ExtraCaption("Client",4) = oGauge.FormatABC("value -
8",oGauge.Layers.Item(9).LayerToClientX(oGauge.Layers.Item(9).RotamoveCenterX,oGauge.Layers.Item(9).RotamoveCenterY))

 oGauge.Template = "ExtraCaption(`Client`,5) = FormatABC(`value -
26`,Me.Layers.Item(9).LayerToClientY(Me.Layers.Item(9).RotamoveCenterX,Me.Layers.Item(9).RotamoveCenterY))"
 // oGauge.ExtraCaption("Client",5) = oGauge.FormatABC("value -
26",oGauge.Layers.Item(9).LayerToClientY(oGauge.Layers.Item(9).RotamoveCenterX,oGauge.Layers.Item(9).RotamoveCenterY))

end function

Dim oGauge as P
Dim var_Layer as P
Dim var_Layer1 as P

oGauge = topparent:CONTROL_ACTIVEX1.activex

oGauge.BeginUpdate()
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + str(value + 1) + `.png`"
oGauge.Layers.Count = 11
oGauge.AllowSmoothChange = 0
var_Layer = oGauge.Layers.Item(9)
 var_Layer.DefaultRotateAngle = -126
 var_Layer.OnDrag = 3
 var_Layer.RotateAngleToValue = "100 - (value / 360 * 100)"
 var_Layer.ValueToRotateAngle = "(value)/100 * 360"
 var_Layer.ValueToOffsetX = "value"
 var_Layer.OffsetToValue = "value"
 var_Layer.RotateAngleValid = "int(value / 360 * 100)/100 * 360"
var_Layer1 = oGauge.Layers.Item(7)
 var_Layer1.OnDrag = 2
 var_Layer1.RotateType = 2
oGauge.Value = 25
oGauge.EndUpdate()

Visual Objects

METHOD OCX_Exontrol1Change(Layer) CLASS MainDialog
 // Change event - Occurs when the layer's value is changed.
 oDCOCX_Exontrol1:[ExtraCaption,"Client",exLayerCaption] :=
oDCOCX_Exontrol1:FormatABC("`<sha ;;0>` + (100 - value format
`0`)",oDCOCX_Exontrol1:Value,nil,nil)
 oDCOCX_Exontrol1:[ExtraCaption,"Client",exLayerCaptionLeft] :=
oDCOCX_Exontrol1:FormatABC("value - 8",oDCOCX_Exontrol1:Layers:[Item,9]:
[LayerToClientX,oDCOCX_Exontrol1:Layers:
[Item,9]:RotamoveCenterX,oDCOCX_Exontrol1:Layers:
[Item,9]:RotamoveCenterY],nil,nil)
 oDCOCX_Exontrol1:[ExtraCaption,"Client",exLayerCaptionTop] :=
oDCOCX_Exontrol1:FormatABC("value - 26",oDCOCX_Exontrol1:Layers:[Item,9]:
[LayerToClientY,oDCOCX_Exontrol1:Layers:
[Item,9]:RotamoveCenterX,oDCOCX_Exontrol1:Layers:

[Item,9]:RotamoveCenterY],nil,nil)
RETURN NIL

local var_Layer,var_Layer1 as ILayer

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oDCOCX_Exontrol1:PicturesName := "`Layer` + str(value + 1) + `.png`"
oDCOCX_Exontrol1:Layers:Count := 11
oDCOCX_Exontrol1:AllowSmoothChange := exSmoothChangeless
var_Layer := oDCOCX_Exontrol1:Layers:[Item,9]
 var_Layer:DefaultRotateAngle := -126
 var_Layer:OnDrag := exDoRotamove
 var_Layer:RotateAngleToValue := "100 - (value / 360 * 100)"
 var_Layer:ValueToRotateAngle := "(value)/100 * 360"
 var_Layer:ValueToOffsetX := "value"
 var_Layer:OffsetToValue := "value"
 var_Layer:RotateAngleValid := "int(value / 360 * 100)/100 * 360"
var_Layer1 := oDCOCX_Exontrol1:Layers:[Item,7]
 var_Layer1:OnDrag := exDoRotate
 var_Layer1:RotateType := exRotateBilinearInterpolation
oDCOCX_Exontrol1:Value := 25
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

/*begin event Change(long Layer) - Occurs when the layer's value is changed.*/
/*
 oGauge = ole_1.Object
 oGauge.ExtraCaption("Client",0,oGauge.FormatABC("`<sha ;;0>` +
(100 - value format `0`)",oGauge.Value))
 oGauge.ExtraCaption("Client",4,oGauge.FormatABC("value -
8",oGauge.Layers.Item(9).LayerToClientX(oGauge.Layers.Item(9).RotamoveCenterX,oGauge.Layers.Item(9).RotamoveCenterY)))

 oGauge.ExtraCaption("Client",5,oGauge.FormatABC("value -

26",oGauge.Layers.Item(9).LayerToClientY(oGauge.Layers.Item(9).RotamoveCenterX,oGauge.Layers.Item(9).RotamoveCenterY)))

*/
/*end event Change*/

OleObject oGauge,var_Layer,var_Layer1

oGauge = ole_1.Object
oGauge.BeginUpdate()
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + str(value + 1) + `.png`"
oGauge.Layers.Count = 11
oGauge.AllowSmoothChange = 0
var_Layer = oGauge.Layers.Item(9)
 var_Layer.DefaultRotateAngle = -126
 var_Layer.OnDrag = 3
 var_Layer.RotateAngleToValue = "100 - (value / 360 * 100)"
 var_Layer.ValueToRotateAngle = "(value)/100 * 360"
 var_Layer.ValueToOffsetX = "value"
 var_Layer.OffsetToValue = "value"
 var_Layer.RotateAngleValid = "int(value / 360 * 100)/100 * 360"
var_Layer1 = oGauge.Layers.Item(7)
 var_Layer1.OnDrag = 2
 var_Layer1.RotateType = 2
oGauge.Value = 25
oGauge.EndUpdate()

Visual DataFlex

// Occurs when the layer's value is changed.
Procedure OnComChange Integer llLayer
 Forward Send OnComChange llLayer
 Variant vA
 Get ComValue to vA
 Set ComExtraCaption "Client" OLEexLayerCaption to (ComFormatABC(Self,"`<sha

;;0>` + (100 - value format `0`)",vA,Nothing,Nothing))
 Variant vA1
 Variant voLayers
 Get ComLayers to voLayers
 Handle hoLayers
 Get Create (RefClass(cComLayers)) to hoLayers
 Set pvComObject of hoLayers to voLayers
 Variant voLayer
 Get ComItem of hoLayers 9 to voLayer
 Handle hoLayer
 Get Create (RefClass(cComLayer)) to hoLayer
 Set pvComObject of hoLayer to voLayer
 Variant voLayer1
 Get ComItem of hoLayer 9 to voLayer1
 Handle hoLayer1
 Get Create (RefClass(cComLayer)) to hoLayer1
 Set pvComObject of hoLayer1 to voLayer1
 Variant vX
 Variant voLayers1
 Get ComLayers to voLayers1
 Handle hoLayers1
 Get Create (RefClass(cComLayers)) to hoLayers1
 Set pvComObject of hoLayers1 to voLayers1
 Variant voLayer2
 Get ComItem of hoLayers1 9 to voLayer2
 Handle hoLayer2
 Get Create (RefClass(cComLayer)) to hoLayer2
 Set pvComObject of hoLayer2 to voLayer2
 Variant voLayer3
 Get ComItem of hoLayer2 9 to voLayer3
 Handle hoLayer3
 Get Create (RefClass(cComLayer)) to hoLayer3
 Set pvComObject of hoLayer3 to voLayer3
 Get ComRotamoveCenterX of hoLayer3 to vX
 Send Destroy to hoLayer3
 Send Destroy to hoLayer2
 Send Destroy to hoLayers1

 Variant vY
 Variant voLayers2
 Get ComLayers to voLayers2
 Handle hoLayers2
 Get Create (RefClass(cComLayers)) to hoLayers2
 Set pvComObject of hoLayers2 to voLayers2
 Variant voLayer4
 Get ComItem of hoLayers2 9 to voLayer4
 Handle hoLayer4
 Get Create (RefClass(cComLayer)) to hoLayer4
 Set pvComObject of hoLayer4 to voLayer4
 Variant voLayer5
 Get ComItem of hoLayer4 9 to voLayer5
 Handle hoLayer5
 Get Create (RefClass(cComLayer)) to hoLayer5
 Set pvComObject of hoLayer5 to voLayer5
 Get ComRotamoveCenterY of hoLayer5 to vY
 Send Destroy to hoLayer5
 Send Destroy to hoLayer4
 Send Destroy to hoLayers2
 Get ComLayerToClientX of hoLayer1 vX vY to vA1
 Send Destroy to hoLayer1
 Send Destroy to hoLayer
 Send Destroy to hoLayers
 Set ComExtraCaption "Client" OLEexLayerCaptionLeft to
(ComFormatABC(Self,"value - 8",vA1,Nothing,Nothing))
 Variant vA2
 Variant voLayers3
 Get ComLayers to voLayers3
 Handle hoLayers3
 Get Create (RefClass(cComLayers)) to hoLayers3
 Set pvComObject of hoLayers3 to voLayers3
 Variant voLayer6
 Get ComItem of hoLayers3 9 to voLayer6
 Handle hoLayer6
 Get Create (RefClass(cComLayer)) to hoLayer6
 Set pvComObject of hoLayer6 to voLayer6

 Variant voLayer7
 Get ComItem of hoLayer6 9 to voLayer7
 Handle hoLayer7
 Get Create (RefClass(cComLayer)) to hoLayer7
 Set pvComObject of hoLayer7 to voLayer7
 Variant vX1
 Variant voLayers4
 Get ComLayers to voLayers4
 Handle hoLayers4
 Get Create (RefClass(cComLayers)) to hoLayers4
 Set pvComObject of hoLayers4 to voLayers4
 Variant voLayer8
 Get ComItem of hoLayers4 9 to voLayer8
 Handle hoLayer8
 Get Create (RefClass(cComLayer)) to hoLayer8
 Set pvComObject of hoLayer8 to voLayer8
 Variant voLayer9
 Get ComItem of hoLayer8 9 to voLayer9
 Handle hoLayer9
 Get Create (RefClass(cComLayer)) to hoLayer9
 Set pvComObject of hoLayer9 to voLayer9
 Get ComRotamoveCenterX of hoLayer9 to vX1
 Send Destroy to hoLayer9
 Send Destroy to hoLayer8
 Send Destroy to hoLayers4
 Variant vY1
 Variant voLayers5
 Get ComLayers to voLayers5
 Handle hoLayers5
 Get Create (RefClass(cComLayers)) to hoLayers5
 Set pvComObject of hoLayers5 to voLayers5
 Variant voLayer10
 Get ComItem of hoLayers5 9 to voLayer10
 Handle hoLayer10
 Get Create (RefClass(cComLayer)) to hoLayer10
 Set pvComObject of hoLayer10 to voLayer10
 Variant voLayer11

 Get ComItem of hoLayer10 9 to voLayer11
 Handle hoLayer11
 Get Create (RefClass(cComLayer)) to hoLayer11
 Set pvComObject of hoLayer11 to voLayer11
 Get ComRotamoveCenterY of hoLayer11 to vY1
 Send Destroy to hoLayer11
 Send Destroy to hoLayer10
 Send Destroy to hoLayers5
 Get ComLayerToClientY of hoLayer7 vX1 vY1 to vA2
 Send Destroy to hoLayer7
 Send Destroy to hoLayer6
 Send Destroy to hoLayers3
 Set ComExtraCaption "Client" OLEexLayerCaptionTop to
(ComFormatABC(Self,"value - 26",vA2,Nothing,Nothing))
End_Procedure

Procedure OnCreate
 Forward Send OnCreate
 Send ComBeginUpdate
 Set ComPicturesPath to "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 Set ComPicturesName to "`Layer` + str(value + 1) + `.png`"
 Variant voLayers6
 Get ComLayers to voLayers6
 Handle hoLayers6
 Get Create (RefClass(cComLayers)) to hoLayers6
 Set pvComObject of hoLayers6 to voLayers6
 Set ComCount of hoLayers6 to 11
 Send Destroy to hoLayers6
 Set ComAllowSmoothChange to OLEexSmoothChangeless
 Variant voLayers7
 Get ComLayers to voLayers7
 Handle hoLayers7
 Get Create (RefClass(cComLayers)) to hoLayers7
 Set pvComObject of hoLayers7 to voLayers7
 Variant voLayer12
 Get ComItem of hoLayers7 9 to voLayer12

 Handle hoLayer12
 Get Create (RefClass(cComLayer)) to hoLayer12
 Set pvComObject of hoLayer12 to voLayer12
 Set ComDefaultRotateAngle of hoLayer12 to -126
 Set ComOnDrag of hoLayer12 to OLEexDoRotamove
 Set ComRotateAngleToValue of hoLayer12 to "100 - (value / 360 * 100)"
 Set ComValueToRotateAngle of hoLayer12 to "(value)/100 * 360"
 Set ComValueToOffsetX of hoLayer12 to "value"
 Set ComOffsetToValue of hoLayer12 to "value"
 Set ComRotateAngleValid of hoLayer12 to "int(value / 360 * 100)/100 * 360"
 Send Destroy to hoLayer12
 Send Destroy to hoLayers7
 Variant voLayers8
 Get ComLayers to voLayers8
 Handle hoLayers8
 Get Create (RefClass(cComLayers)) to hoLayers8
 Set pvComObject of hoLayers8 to voLayers8
 Variant voLayer13
 Get ComItem of hoLayers8 7 to voLayer13
 Handle hoLayer13
 Get Create (RefClass(cComLayer)) to hoLayer13
 Set pvComObject of hoLayer13 to voLayer13
 Set ComOnDrag of hoLayer13 to OLEexDoRotate
 Set ComRotateType of hoLayer13 to OLEexRotateBilinearInterpolation
 Send Destroy to hoLayer13
 Send Destroy to hoLayers8
 Set ComValue to 25
 Send ComEndUpdate
End_Procedure

XBase++

PROCEDURE OnChange(oGauge,Layer)

oGauge:SetProperty("ExtraCaption","Client",0/*exLayerCaption*/,oGauge:FormatABC("`<sha
 ;;0>` + (100 - value format `0`)",oGauge:Value()))

oGauge:SetProperty("ExtraCaption","Client",4/*exLayerCaptionLeft*/,oGauge:FormatABC(
 -
8",oGauge:Layers:Item(9):LayerToClientX(oGauge:Layers:Item(9):RotamoveCenterX(),oGauge:

oGauge:SetProperty("ExtraCaption","Client",5/*exLayerCaptionTop*/,oGauge:FormatABC(
 -
26",oGauge:Layers:Item(9):LayerToClientY(oGauge:Layers:Item(9):RotamoveCenterX(),oGauge:

RETURN

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oGauge
 LOCAL oLayer,oLayer1

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oGauge := XbpActiveXControl():new(oForm:drawingArea)
 oGauge:CLSID := "Exontrol.Gauge.1" /*{91628F12-393C-44EF-A558-
83ED1790AAD3}*/
 oGauge:create(,, {10,60},{610,370})

 oGauge:Change := {|Layer| OnChange(oGauge,Layer)} /*Occurs when the layer's
value is changed.*/

 oGauge:BeginUpdate()
 oGauge:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 oGauge:PicturesName := "`Layer` + str(value + 1) + `.png`"

 oGauge:Layers():Count := 11
 oGauge:AllowSmoothChange := 0/*exSmoothChangeless*/
 oLayer := oGauge:Layers:Item(9)
 oLayer:DefaultRotateAngle := -126
 oLayer:OnDrag := 3/*exDoRotamove*/
 oLayer:RotateAngleToValue := "100 - (value / 360 * 100)"
 oLayer:ValueToRotateAngle := "(value)/100 * 360"
 oLayer:ValueToOffsetX := "value"
 oLayer:OffsetToValue := "value"
 oLayer:RotateAngleValid := "int(value / 360 * 100)/100 * 360"
 oLayer1 := oGauge:Layers:Item(7)
 oLayer1:OnDrag := 2/*exDoRotate*/
 oLayer1:RotateType := 2/*exRotateBilinearInterpolation*/
 oGauge:Value := 25
 oGauge:EndUpdate()

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property Layer.Left as String
Specifies the expression relative to the view, to determine the x-position to show the current
layer on the control.

Type Description

String
A String expression expression relative to the view, to
determine the x-position to show the current layer on the
control.

By default, the Left property is "0". If the Left property is empty, missing or invalid, it is
considered "0". If valid, the value of evaluating the Left property indicates the left position of
the layer as shown in the picture bellow. Use the DefaultLayer(exDefLayerLeft) property to
specify the default value for the Left property, before adding any layer.

For instance:

"0" indicates the left side of the control's view
"width / 2", half of the view or center of the control's view
"width - 64", 64 pixels to the right side of the control's view

The Left property supports the following keywords:

width keyword specifies the width in pixels of the control's view
height keyword specifies the height in pixels of the control's view

Also, this property supports all constants, operators and functions defined here.

The following properties determines the position / size / offset of the layer:

Left, specifies the expression relative to the view, to determine the x-position to show
the current layer on the control.
Top, specifies the expression relative to the view, to determine the y-position to show
the current layer on the control.
Width, specifies the expression relative to the view, to determine the width to show the
current layer on the control.
Height, specifies the expression relative to the view, to determine the height to show
the current layer on the control.

The following picture shows the position/size properties of the Layer, relative to the view /
control:

You can use the following properties to offset the view (background + foreground) inside
the layer:

DefaultOffsetX, gets or sets a value that indicates the default x-offset of the layer.
OffsetX, gets or sets a value that indicates x-offset of the layer.
OffsetXValid, validates the x-offset value of the layer.
Value and ValueToOffsetX specifies the expression to convert the value to x-offset.
DefaultOffsetY, gets or sets a value that indicates the default y-offset of the layer.
OffsetY, gets or sets a value that indicates y-offset of the layer.
OffsetYValid, validates the y-offset value of the layer.
Value and ValueToOffsetY specifies the expression to convert the value to y-offset.

The following properties can be used to move / resize the picture on the layer's
background:

DisplayAs, retrieves or sets a value that indicates the way how the graphic is displayed
on the layer's background.
Left, specifies the expression relative to the view/current picture, to determine the x-
position to show the current picture on the background.
Top, specifies the expression relative to the view/current picture, to determine the y-
position to show the current picture on the background.
Width, specifies the expression relative to the view/current picture, to determine the
width to show the current picture on the background.
Height, specifies the expression relative to the view/current picture, to determine the
height to show the current picture on the background.

property Layer.OffsetToValue as String
Specifies the expression to convert the offsetx,offsety to value.

Type Description

String A String value that specifies the expression to convert the
offsetx,offsety to value.

By default, the OffsetToValue property is empty. If the OffsetToValue property is empty,
missing or invalid, it has no effect. If the OffsetToValue property is valid, the result of
evaluation of the OffsetToValue property indicates the layer's Value property. The
ValueToOffsetX / ValueToOffsetY property converts the value back to an offset. Use the
DefaultLayer(exDefLayerOffsetToValue) property to specify the default value for the
OffsetToValue property, before adding the layer.

For instance:

"0", specifies that the layer's value is always 0 no matter of the offset of the layer
"value = 0 ? 0 : 1", equivalent with "offsetx = 0 ? 0 : 1" indicates that if the layer's
OffsetX is 0, the value is 0 else it is one
"offsety = 0 ? 0 : 1", indicates that if the layer's OffsetY is 0, the value is 0 else it is
one

The OffsetToValue property supports the following keywords:

value or offsetx keyword indicates the layer's OffsetX property
offsety keyword indicates the layer's OffsetY property

Also, this property supports all constants, operators and functions defined here.

The Value property indicates the value keyword in the following properties:

ValueToOffsetX, Specifies the expression to convert the value to x-offset. The layer's
OffsetX property is the result of evaluating the ValueToOffsetX expression, while the
OnDrag property is exDoMove. The OffsetToValue converts the current offset to a
value.
ValueToOffsetY, Specifies the expression to convert the value to y-offset. The layer's
OffsetY property is the result of evaluating the ValueToOffsetY expression, while the
OnDrag property is exDoMove. The OffsetToValue converts the current offset to a
value.
ValueToRotateAngle, Specifies the expression to convert the value to rotating angle.
The layer's RotateAngle property is the result of evaluating the ValueToRotateAngle
expression, while the OnDrag property is exDoRotate or exDoRotamove. The
RotateAngleToValue converts the current rotation angle to a value.

The Value property works in association with the layer's OnDrag property like follows:

If the OnDrag property is exDoMove, evaluating the ValueToOffsetX property indicates
the layer's OffsetX property.
If the OnDrag property is exDoMove, evaluating the ValueToOffsetY property indicates
the layer's OffsetY property.
If the OnDrag property is exDoRotate or exDoRotamove, evaluating the
ValueToRotateAngle property indicates the layer's RotateAngle property.

property Layer.OffsetX as Long
Gets or sets a value that indicates x-offset of the layer.

Type Description
Long A Long expression that indicates x-offset of the layer.

By default, the OffsetX / OffsetY property is 0. The OffsetX / OffsetY property specifies
the (x,y)-position of the layer, relative to the upper-left corner of the control. The
OffsetXValid / OffsetYValid property to validate the (x,y)-position of the layer. The Value
property associates a value to a layer. The ValueToOffsetX property specifies the
expression to convert the value to x-offset. The ValueToOffsetY property specifies the
expression to convert the value to y-offset. For instance, you can use the OffsetYValid
property on "0", and so no vertical movement is allowed for the current layer. Use the
DefaultLayer(exDefLayerOffsetX) property to specify the default value for the OffsetX,
before adding any layer. The Change event occurs when the layer's OffsetX property is
changed. The DragStart / Drag / DragEnd events notify your application when a layer is
dragged. The layer's RotamoveOffsetX / RotamoveOffsetY property indicates the current
(x,y) position of the layer, while the OnDrag property is exDoRotamove.

The following picture shows the position/size properties of the Layer, relative to the view /
control:

The following properties determines the position / size / offset of the layer:

Left, specifies the expression relative to the view, to determine the x-position to show
the current layer on the control.
Top, specifies the expression relative to the view, to determine the y-position to show

the current layer on the control.
Width, specifies the expression relative to the view, to determine the width to show the
current layer on the control.
Height, specifies the expression relative to the view, to determine the height to show
the current layer on the control.

You can use the following properties to offset the view (background + foreground) inside
the layer:

DefaultOffsetX, gets or sets a value that indicates the default x-offset of the layer.
OffsetX, gets or sets a value that indicates x-offset of the layer.
OffsetXValid, validates the x-offset value of the layer.
Value and ValueToOffsetX specifies the expression to convert the value to x-offset
DefaultOffsetY, gets or sets a value that indicates the default y-offset of the layer.
OffsetY, gets or sets a value that indicates y-offset of the layer.
OffsetYValid, validates the y-offset value of the layer.
Value and ValueToOffsetY specifies the expression to convert the value to y-offset.

The following properties can be used to move / resize the picture on the layer's
background:

DisplayAs, retrieves or sets a value that indicates the way how the graphic is displayed
on the layer's background.
Left, specifies the expression relative to the view/current picture, to determine the x-
position to show the current picture on the background.
Top, specifies the expression relative to the view/current picture, to determine the y-
position to show the current picture on the background.
Width, specifies the expression relative to the view/current picture, to determine the
width to show the current picture on the background.
Height, specifies the expression relative to the view/current picture, to determine the
height to show the current picture on the background.

property Layer.OffsetXValid as String
Validates the x-offset value of the layer

Type Description

String
A String expression that validates the x-offset value of the
layer. The result of evaluating the expression indicates the
newly OffsetX value.

By default, the OffsetXValid / OffsetYValid property is empty. The OffsetXValid /
OffsetYValid property has no effect if it is empty, missing or invalid. If the OffsetXValid /
OffsetYValid property is valid expression, the value of OffsetX property always
matches OffsetXValid expression. In other words, the OffsetXValid validates the x-position
of the layer. For instance, you can use the OffsetXValid / OffsetYValid expression to specify
a range of values to allow the OffsetX / OffsetY properties. Use the
DefaultLayer(exDefLayerOffsetXValid) property to specify the default value for the
OffsetXValid property, before adding any layer.

The OffsetX / OffsetY property specifies the (x,y)-position of the layer, relative to the
upper-left corner of the control. The Value property associates a value to a layer. The
ValueToOffsetX property specifies the expression to convert the value to x-offset. The
ValueToOffsetY property specifies the expression to convert the value to y-offset. For
instance, you can use the OffsetYValid property on "0", and so no vertical movement is
allowed for the current layer. Use the DefaultLayer(exDefLayerOffsetX) property to specify
the default value for the OffsetX, before adding any layer. The Change event occurs when
the layer's OffsetX property is changed. The DragStart / Drag / DragEnd events notify your
application when a layer is dragged.

For instance:

"0", indicates that no horizontal movement is allowed, or in other words, OffsetX is
always 0.
"16 * int(value / 16)", specifies that only multiply of 16 is allowed for OffsetX property (
grid movement)
"value = 0 ? 0 : (value < 0 ? -100 : +100)", indicates that valid values for OffsetX
property is -100, 0 and +100 (discrete movement)
"value MIN -64 MAX 64", indicates that values of OffsetX property are between -64
and +64 (range movement)
"y" indicates that OffsetX property is always the same as OffsetY property (diagonal
movement)

The OffsetXValid property supports the following keywords:

value keyword indicates the current value of OffsetX property (the value to validate)

y keyword specifies the current value of the OffsetY property

Also, this property supports all constants, operators and functions defined here.

The following picture shows the position/size properties of the Layer, relative to the view /
control:

The following properties determines the position / size / offset of the layer:

Left, specifies the expression relative to the view, to determine the x-position to show
the current layer on the control.
Top, specifies the expression relative to the view, to determine the y-position to show
the current layer on the control.
Width, specifies the expression relative to the view, to determine the width to show the
current layer on the control.
Height, specifies the expression relative to the view, to determine the height to show
the current layer on the control.

You can use the following properties to offset the view (background + foreground) inside
the layer:

DefaultOffsetX, gets or sets a value that indicates the default x-offset of the layer.
OffsetX, gets or sets a value that indicates x-offset of the layer.
OffsetXValid, validates the x-offset value of the layer.
Value and ValueToOffsetX specifies the expression to convert the value to x-offset.
DefaultOffsetY, gets or sets a value that indicates the default y-offset of the layer.
OffsetY, gets or sets a value that indicates y-offset of the layer.
OffsetYValid, validates the y-offset value of the layer.

Value and ValueToOffsetY specifies the expression to convert the value to y-offset.

The following properties can be used to move / resize the picture on the layer's
background:

DisplayAs, retrieves or sets a value that indicates the way how the graphic is displayed
on the layer's background.
Left, specifies the expression relative to the view/current picture, to determine the x-
position to show the current picture on the background.
Top, specifies the expression relative to the view/current picture, to determine the y-
position to show the current picture on the background.
Width, specifies the expression relative to the view/current picture, to determine the
width to show the current picture on the background.
Height, specifies the expression relative to the view/current picture, to determine the
height to show the current picture on the background.

property Layer.OffsetY as Long
Gets or sets a value that indicates y-offset of the layer.

Type Description
Long A Long expression that indicates y-offset of the layer.

By default, the OffsetX / OffsetY property is 0. The OffsetX / OffsetY property specifies
the (x,y)-position of the layer, relative to the upper-left corner of the control. The
OffsetXValid / OffsetYValid property to validate the (x,y)-position of the layer. The Value
property associates a value to a layer. The ValueToOffsetX property specifies the
expression to convert the value to x-offset. The ValueToOffsetY property specifies the
expression to convert the value to y-offset. For instance, you can use the OffsetXValid
property on "0", and so no horizontal movement is allowed for the current layer. Use the
DefaultLayer(exDefLayerOffsetY) property to specify the default value for the OffsetY,
before adding any layer. The Change event occurs when the layer's OffsetY property is
changed. The DragStart / Drag / DragEnd events notify your application when a layer is
dragged. The layer's RotamoveOffsetX / RotamoveOffsetY property indicates the current
(x,y) position of the layer, while the OnDrag property is exDoRotamove.

The following picture shows the position/size properties of the Layer, relative to the view /
control:

The following properties determines the position / size / offset of the layer:

Left, specifies the expression relative to the view, to determine the x-position to show
the current layer on the control.
Top, specifies the expression relative to the view, to determine the y-position to show

the current layer on the control.
Width, specifies the expression relative to the view, to determine the width to show the
current layer on the control.
Height, specifies the expression relative to the view, to determine the height to show
the current layer on the control.

You can use the following properties to offset the view (background + foreground) inside
the layer:

DefaultOffsetX, gets or sets a value that indicates the default x-offset of the layer.
OffsetX, gets or sets a value that indicates x-offset of the layer.
OffsetXValid, validates the x-offset value of the layer.
Value and ValueToOffsetX specifies the expression to convert the value to x-offset.
DefaultOffsetY, gets or sets a value that indicates the default y-offset of the layer.
OffsetY, gets or sets a value that indicates y-offset of the layer.
OffsetYValid, validates the y-offset value of the layer.
Value and ValueToOffsetY specifies the expression to convert the value to y-offset.

The following properties can be used to move / resize the picture on the layer's
background:

DisplayAs, retrieves or sets a value that indicates the way how the graphic is displayed
on the layer's background.
Left, specifies the expression relative to the view/current picture, to determine the x-
position to show the current picture on the background.
Top, specifies the expression relative to the view/current picture, to determine the y-
position to show the current picture on the background.
Width, specifies the expression relative to the view/current picture, to determine the
width to show the current picture on the background.
Height, specifies the expression relative to the view/current picture, to determine the
height to show the current picture on the background.

property Layer.OffsetYValid as String
Validates the y-offset value of the layer

Type Description

String
A String expression that validates the y-offset value of the
layer. The result of evaluating the expression indicates the
newly OffsetY value.

By default, the OffsetXValid / OffsetYValid property is empty. The OffsetXValid /
OffsetYValid property has no effect if it is empty, missing or invalid. If the OffsetXValid /
OffsetYValid property is valid expression, the value of OffsetY property always
matches OffsetYValid expression. In other words, the OffsetYValid validates the y-position
of the layer. For instance, you can use the OffsetXValid / OffsetYValid expression to specify
a range of values to allow the OffsetX / OffsetY properties. Use the
DefaultLayer(exDefLayerOffsetYValid) property to specify the default value for the
OffsetYValid property, before adding any layer.

The OffsetX / OffsetY property specifies the (x,y)-position of the layer, relative to the
upper-left corner of the control. The Value property associates a value to a layer. The
ValueToOffsetX property specifies the expression to convert the value to x-offset. The
ValueToOffsetY property specifies the expression to convert the value to y-offset. For
instance, you can use the OffsetYValid property on "0", and so no vertical movement is
allowed for the current layer. Use the DefaultLayer(exDefLayerOffsetX) property to specify
the default value for the OffsetX, before adding any layer. The Change event occurs when
the layer's OffsetX property is changed. The DragStart / Drag / DragEnd events notify your
application when a layer is dragged.

For instance:

"0", indicates that no vertical movement is allowed, or in other words, OffsetY is
always 0.
"16 * int(value / 16)", specifies that only multiply of 16 is allowed for OffsetY property (
grid movement)
"value = 0 ? 0 : (value < 0 ? -100 : +100)", indicates that valid values for OffsetY
property is -100, 0 and +100 (discrete movement)
"value MIN -64 MAX 64", indicates that values of OffsetY property are between -64
and +64 (range movement)
"x" indicates that OffsetY property is always the same as OffsetX property (diagonal
movement)

The OffsetYValid property supports the following keywords:

value keyword indicates the current value of OffsetY property (the value to validate)

x keyword specifies the current value of the OffsetX property

Also, this property supports all constants, operators and functions defined here.

The following picture shows the position/size properties of the Layer, relative to the view /
control:

The following properties determines the position / size / offset of the layer:

Left, specifies the expression relative to the view, to determine the x-position to show
the current layer on the control.
Top, specifies the expression relative to the view, to determine the y-position to show
the current layer on the control.
Width, specifies the expression relative to the view, to determine the width to show the
current layer on the control.
Height, specifies the expression relative to the view, to determine the height to show
the current layer on the control.

You can use the following properties to offset the view (background + foreground) inside
the layer:

DefaultOffsetX, gets or sets a value that indicates the default x-offset of the layer.
OffsetX, gets or sets a value that indicates x-offset of the layer.
OffsetXValid, validates the x-offset value of the layer.
Value and ValueToOffsetX specifies the expression to convert the value to x-offset.
DefaultOffsetY, gets or sets a value that indicates the default y-offset of the layer.
OffsetY, gets or sets a value that indicates y-offset of the layer.
OffsetYValid, validates the y-offset value of the layer.

Value and ValueToOffsetY specifies the expression to convert the value to y-offset.

The following properties can be used to move / resize the picture on the layer's
background:

DisplayAs, retrieves or sets a value that indicates the way how the graphic is displayed
on the layer's background.
Left, specifies the expression relative to the view/current picture, to determine the x-
position to show the current picture on the background.
Top, specifies the expression relative to the view/current picture, to determine the y-
position to show the current picture on the background.
Width, specifies the expression relative to the view/current picture, to determine the
width to show the current picture on the background.
Height, specifies the expression relative to the view/current picture, to determine the
height to show the current picture on the background.

property Layer.OnDrag as OnDragLayerEnum
Indicates the action to be performed when the user drags the layer.

Type Description

OnDragLayerEnum
An OnDragLayerEnum expression that specifies the
operation to perform when the user clicks and drags the
layer.

By default, the OnDrag property is exDoNothing, so nothing is happen if the user clicks the
layer. The Change event occurs when the layer's value property is changed. The DragStart
/ Drag / DragEnd events notify your application when a layer is dragged. The
ShowHandCursor property returns or sets a value that indicates whether the hand cursor is
shown when it hovers a visible / selectable / dragable layer. The Clip property gets access
to the layer's clipping object. The Value property of the Layer has effect only if the OnDrag
property is not exDoNothing. The Selectable property returns or sets a value that indicates
whether the layer is selectable.

Currently, any layer supports any of the following operations:

exDoMove, moves a layer, the layer's OffsetX and OffsetY indicates the current (x,y)
position of the layer.
exDoRotate, rotates a layer, the RotateAngle property indicates the currently rotation
angle.
exDoRotamove, rotates the layer by moving, the RotateAngle property indicates the
currently rotation angle. In this case, the layer's RotamoveOffsetX / RotamoveOffsetY
property indicates the current (x,y) position of the layer. The exDoRotamove operation
does not actually rotate the layer's view instead it moves / rotates it relative to its
center.

The control fires the drag events in the following order:

DragStart event notifies that a layer begins to drag. You can use the DragStart event
to cancel the dragging operation.
Drag event notifies that the layer is dragging. You can use the Drag event to perform
other actions, on any layer during the dragging operation.
DragEnd event notifies that the dragging the layer ends. You can use the DragEnd
event to perform other actions, on any layer when dragging operation ends.

You can use the Debug property of the DragInfo object to display debugging information
during dragging.

property Layer.Position as Long
Retrieves or sets a value that indicates the position/z-order of the layer in the control.

Type Description

Long A Long expression that specifies the position of the layer
within the layers collection.

The Position property specifies the position of the layer, in the layers collection. The Visible
property shows or hides a specific layer (visible). The Selectable property returns or sets a
value that indicates whether the layer is selectable. The LayerFromPoint property retrieves
the layer from point that's visible and selectable. The OnDrag property indicates the action
to be performed when the user drags the layer (dragable).

property Layer.RotamoveCenterX as Long
Specifies the x-position of the layer's center, while the layer's drag operation is
exDoRotamove.

Type Description

Long A Long expression that specifies the x-position of the
layer's center

By default the RotamoveCenterX / RotamoveCenterY indicates the (x,y)-center of the
layer's view. The control supports moving the layer by rotation, also called rotamove. The
rotamove operation moves layer and the rotamove center pointed by RotamoveCenterX /
RotamoveCenterY properties around the rotation center pointed by the RotateCenterX /
RotateCenterY properties of the RotateCenterLayer layer. The LayerToClientX /
LayerToClientY properties translate a point from the layer (as it is moved or rotated) to
the control's view.

The center of the layer may be different than layer's view, as for instance, if you have a
layer that's shows a knob in the bottom-side of the layer the RotamoveCenterX /
RotamoveCenterY point is the center on the knob in the bottom-right side not in the center
of the layer as you can see in the following screen shot (red cross) :

The following properties can be used to change the rotation center, while the layer's
OnDrag property is exDoRotamove:

RotamoveCenterX, specifies the x-position of the layer's center (view).
RotamoveCenterY, specifies the y-position of the layer's center (view).
RotamoveOffsetX, specifies the x-offset of the layer.
RotamoveOffsetY, specifies the y-offset of the layer.

The following picture shows the rotamove properties of the Layer, relative to the
RotateCenterLayer layer:

Any of the following properties can be used to rotate the layer:

DefaultRotateAngle, specifies the default angle to rotate the layer.
RotateAngle, specifies the angle to rotate the layer.
RotateAngleValid, validates / limits the rotation angle of the layer.
Value and ValueToRotateAngle, specifies the expression to convert the value to rotating
angle. The RotateAngleToValue converts the current rotation angle to a value.

The following properties can be used to specify a different rotation center:

RotateCenterLayer, indicates the index of the layer the rotation is around.
RotateCenterX, indicates the expression that determines the x-origin of the rotation
point relative to the RotateCenterLayer layer.
RotateCenterY, indicates the expression that determines the y-origin of the rotation
point relative to the RotateCenterLayer layer.

property Layer.RotamoveCenterY as Long
Specifies the y-position of the layer's center, while the layer's drag operation is
exDoRotamove.

Type Description

Long A Long expression that specifies the x-position of the
layer's center

By default the RotamoveCenterX / RotamoveCenterY indicates the (x,y)-center of the
layer's view. The control supports moving the layer by rotation, also called rotamove. The
rotamove operation moves layer and the rotamove center pointed by RotamoveCenterX /
RotamoveCenterY properties around the rotation center pointed by the RotateCenterX /
RotateCenterY properties of the RotateCenterLayer layer. The LayerToClientX /
LayerToClientY properties translate a point from the layer (as it is moved or rotated) to
the control's view.

The center of the layer may be different than layer's view, as for instance, if you have a
layer that's shows a knob in the bottom-side of the layer the RotamoveCenterX /
RotamoveCenterY point is the center on the knob in the bottom-right side not in the center
of the layer as you can see in the following screen shot (red cross) :

The following properties can be used to change the rotation center, while the layer's
OnDrag property is exDoRotamove:

RotamoveCenterX, specifies the x-position of the layer's center (view).
RotamoveCenterY, specifies the y-position of the layer's center (view).
RotamoveOffsetX, specifies the x-offset of the layer.
RotamoveOffsetY, specifies the y-offset of the layer.

The following picture shows the rotamove properties of the Layer, relative to the
RotateCenterLayer layer:

Any of the following properties can be used to rotate the layer:

DefaultRotateAngle, specifies the default angle to rotate the layer.
RotateAngle, specifies the angle to rotate the layer.
RotateAngleValid, validates / limits the rotation angle of the layer.
Value and ValueToRotateAngle, specifies the expression to convert the value to rotating
angle. The RotateAngleToValue converts the current rotation angle to a value.

The following properties can be used to specify a different rotation center:

RotateCenterLayer, indicates the index of the layer the rotation is around.
RotateCenterX, indicates the expression that determines the x-origin of the rotation
point relative to the RotateCenterLayer layer.
RotateCenterY, indicates the expression that determines the y-origin of the rotation
point relative to the RotateCenterLayer layer.

property Layer.RotamoveOffsetX as Long
Specifies the x-offset of the layer, while the layer's drag operation is exDoRotamove.

Type Description

Long A Long expression that specifies the x-offset of the layer,
while the layer's drag operation is exDoRotamove.

The control supports moving the layer by rotation, also called rotamove. The rotamove
operation moves layer and the rotamove center pointed by RotamoveCenterX /
RotamoveCenterY properties around the rotation center pointed by the RotateCenterX /
RotateCenterY properties of the RotateCenterLayer layer. The following picture shows the
rotamove properties of the Layer, relative to the RotateCenterLayer layer:

The following properties can be used to change the rotation center, while the layer's
OnDrag property is exDoRotamove:

RotamoveCenterX, specifies the x-position of the layer's center (view).
RotamoveCenterY, specifies the y-position of the layer's center (view).
RotamoveOffsetX, specifies the x-offset of the layer.

RotamoveOffsetY, specifies the y-offset of the layer.

Any of the following properties can be used to rotate the layer:

DefaultRotateAngle, specifies the default angle to rotate the layer.
RotateAngle, specifies the angle to rotate the layer.
RotateAngleValid, validates / limits the rotation angle of the layer.
Value and ValueToRotateAngle, specifies the expression to convert the value to rotating
angle. The RotateAngleToValue converts the current rotation angle to a value.

The following properties can be used to specify a different rotation center:

RotateCenterLayer, indicates the index of the layer the rotation is around.
RotateCenterX, indicates the expression that determines the x-origin of the rotation
point relative to the RotateCenterLayer layer.
RotateCenterY, indicates the expression that determines the y-origin of the rotation
point relative to the RotateCenterLayer layer.

property Layer.RotamoveOffsetY as Long
Specifies the y-offset of the layer, while the layer's drag operation is exDoRotamove.

Type Description

Long A Long expression that specifies the y-offset of the layer,
while the layer's drag operation is exDoRotamove.

The control supports moving the layer by rotation, also called rotamove. The rotamove
operation moves layer and the rotamove center pointed by RotamoveCenterX /
RotamoveCenterY properties around the rotation center pointed by the RotateCenterX /
RotateCenterY properties of the RotateCenterLayer layer. The following picture shows the
rotamove properties of the Layer, relative to the RotateCenterLayer layer:

The following properties can be used to change the rotation center, while the layer's
OnDrag property is exDoRotamove:

RotamoveCenterX, specifies the x-position of the layer's center (view).
RotamoveCenterY, specifies the y-position of the layer's center (view).
RotamoveOffsetX, specifies the x-offset of the layer.

RotamoveOffsetY, specifies the y-offset of the layer.

Any of the following properties can be used to rotate the layer:

DefaultRotateAngle, specifies the default angle to rotate the layer.
RotateAngle, specifies the angle to rotate the layer.
RotateAngleValid, validates / limits the rotation angle of the layer.
Value and ValueToRotateAngle, specifies the expression to convert the value to rotating
angle. The RotateAngleToValue converts the current rotation angle to a value.

The following properties can be used to specify a different rotation center:

RotateCenterLayer, indicates the index of the layer the rotation is around.
RotateCenterX, indicates the expression that determines the x-origin of the rotation
point relative to the RotateCenterLayer layer.
RotateCenterY, indicates the expression that determines the y-origin of the rotation
point relative to the RotateCenterLayer layer.

property Layer.RotateAngle as Double
Specifies the angle to rotate the layer.

Type Description

Double A Double expression that specifies the angle to rotate the
layer, in degree.

By default, the RotateAngle property is 0 degree (which indicates that the layer is shown
as it is). The RotateAngle property specifies the current angle of the rotation of the
specified layer. The DeltaAngle property specifies the angle (in degrees) that has been
rotated the layer/object, during the drag operation. The CumulativeRotateAngle property
specifies the cumulative rotation angle, during the dragging operation. The Change event
occurs when the layer's RotateAngle property is changed. The DragStart / Drag / DragEnd
events notify your application when a layer is dragged. Change the Debug property of the
DragInfo during the DragStart event to debug the rotation angles. Use the
DefaultLayer(exDefLayerRotateAngle) property to specify the default value for the
RotateAngle property, before adding any layer. The RotateType property specifies whether
the layer's rotation is performed fast, by shearing (high quality rotation), ...

The following picture shows the rotation properties of the Layer, relative to the
RotateCenterLayer layer:

Any of the following properties can be used to rotate the layer:

DefaultRotateAngle, specifies the default angle to rotate the layer.
RotateAngle, specifies the angle to rotate the layer.
RotateAngleValid, validates / limits the rotation angle of the layer.

Value and ValueToRotateAngle, specifies the expression to convert the value to rotating
angle. The RotateAngleToValue converts the current rotation angle to a value.

The following properties can be used to specify a different rotation center:

RotateCenterLayer, indicates the index of the layer the rotation is around.
RotateCenterX, indicates the expression that determines the x-origin of the rotation
point relative to the RotateCenterLayer layer.
RotateCenterY, indicates the expression that determines the y-origin of the rotation
point relative to the RotateCenterLayer layer.

The following properties can be used to change the rotation center, while the layer's
OnDrag property is exDoRotamove:

RotamoveCenterX, specifies the x-position of the layer's center.
RotamoveCenterY, specifies the y-position of the layer's center.
RotamoveOffsetX, specifies the x-offset of the layer.
RotamoveOffsetY, specifies the y-offset of the layer.

property Layer.RotateAngleToValue as String
Specifies the expression to convert the rotating angle to value.

Type Description

String A String value that specifies the expression to convert the
rotating angle to value.

By default, the RotateAngleToValue property is empty. If the RotateAngleToValue property
is empty, missing or invalid, it has no effect. If the RotateAngleToValue property is valid, the
result of evaluation of the RotateAngleToValue property indicates the layer's Value property.
The ValueToRotateAngle property converts the value back to a rotation angle. Use the
DefaultLayer(exDefLayerRotateAngleToValue) property to specify the default value for the
RotateAngleToValue property, before adding the layer.

For instance:

"0", specifies that the layer's value is always 0 no matter of the rotation angle of the
layer.
"value / 360 * 100", converts the angle to a percent
"value / 360 / 24 / 60", converts the angle to a time value.

The RotateAngleToValue property supports the following keywords:

value keyword indicates the layer's RotateAngle property

Also, this property supports all constants, operators and functions defined here.

The Value property indicates the value keyword in the following properties:

ValueToRotateAngle, Specifies the expression to convert the value to rotating angle.
The layer's RotateAngle property is the result of evaluating the ValueToRotateAngle
expression, while the OnDrag property is exDoRotate or exDoRotamove. The
RotateAngleToValue converts the current rotation angle to a value.
ValueToOffsetX, Specifies the expression to convert the value to x-offset. The layer's
OffsetX property is the result of evaluating the ValueToOffsetX expression, while the
OnDrag property is exDoMove. The OffsetToValue converts the current offset to a
value.
ValueToOffsetY, Specifies the expression to convert the value to y-offset. The layer's
OffsetY property is the result of evaluating the ValueToOffsetY expression, while the
OnDrag property is exDoMove. The OffsetToValue converts the current offset to a
value.

The following picture shows the rotation properties of the Layer, relative to the

RotateCenterLayer layer:

Any of the following properties can be used to rotate the layer:

DefaultRotateAngle, specifies the default angle to rotate the layer.
RotateAngle, specifies the angle to rotate the layer.
RotateAngleValid, validates / limits the rotation angle of the layer.
Value and ValueToRotateAngle, specifies the expression to convert the value to rotating
angle. The RotateAngleToValue converts the current rotation angle to a value.

The following properties can be used to specify a different rotation center:

RotateCenterLayer, indicates the index of the layer the rotation is around.
RotateCenterX, indicates the expression that determines the x-origin of the rotation
point relative to the RotateCenterLayer layer.
RotateCenterY, indicates the expression that determines the y-origin of the rotation
point relative to the RotateCenterLayer layer.

The following properties can be used to change the rotation center, while the layer's
OnDrag property is exDoRotamove:

RotamoveCenterX, specifies the x-position of the layer's center.
RotamoveCenterY, specifies the y-position of the layer's center.
RotamoveOffsetX, specifies the x-offset of the layer.
RotamoveOffsetY, specifies the y-offset of the layer.

property Layer.RotateAngleValid as String
Validates the rotation angle of the layer.

Type Description

String
A String expression that validates the rotation angle value
of the layer. The result of evaluating the expression
indicates the newly RotateAngle value.

By default, the RotateAngleValid property is empty. The RotateAngleValid property has no
effect if it is empty, missing or invalid. If the RotateAngleValid property is valid expression,
the value of RotateAngle property always matches RotateAngleValid expression. In other
words, the RotateAngleValid validates the rotation angle of the layer. Use the
DefaultLayer(exDefLayerRotateAngleValid) property to specify the default value for the
RotateAngleValid property, before adding any layer. The Change event occurs when the
layer's OffsetX property is changed. The DragStart / Drag / DragEnd events notify your
application when a layer is dragged. You can debug the rotation angle, using the Debug
property of the DragInfo object. During drag operation you can use the RotateAngleValid
property to limit the rotation angle.

For instance:

"0", indicates that no rotation is allowed, or in other words, RotateAngle is always 0.
"15 * int(value / 15)", specifies that only multiply of 15 degree is allowed for
RotateAngle property (sectorial rotation)
"value = 0 ? 0 : (value < 0 ? -180 : +180)", indicates that valid values for RotateAngle
property is -180, 0 and +180 (discrete rotation)
"value MIN -90 MAX 90", indicates that values of RotateAngle property are between
-90 and +90 degrees (range movement)
"value < 90 ? value : (value < 180 ? 90 : (value < 270 ? 270 : value))", converts the
value to an angle between 270 and 90 degree.
"int(value / 360 * 100)/100 * 360" converts the value to an integer rotation angle
"(value)/100 * 360" converts a percent value to an angle

The RotateAngleValid property supports the following keywords:

value keyword indicates the current value of RotateAngle property (the value to
validate)

Also, this property supports all constants, operators and functions defined here.

The following picture shows the rotation properties of the Layer, relative to the
RotateCenterLayer layer:

Any of the following properties can be used to rotate the layer:

DefaultRotateAngle, specifies the default angle to rotate the layer.
RotateAngle, specifies the angle to rotate the layer.
RotateAngleValid, validates / limits the rotation angle of the layer.
Value and ValueToRotateAngle, specifies the expression to convert the value to rotating
angle. The RotateAngleToValue converts the current rotation angle to a value.

The following properties can be used to specify a different rotation center:

RotateCenterLayer, indicates the index of the layer the rotation is around.
RotateCenterX, indicates the expression that determines the x-origin of the rotation
point relative to the RotateCenterLayer layer.
RotateCenterY, indicates the expression that determines the y-origin of the rotation
point relative to the RotateCenterLayer layer.

The following properties can be used to change the rotation center, while the layer's
OnDrag property is exDoRotamove:

RotamoveCenterX, specifies the x-position of the layer's center.
RotamoveCenterY, specifies the y-position of the layer's center.
RotamoveOffsetX, specifies the x-offset of the layer.
RotamoveOffsetY, specifies the y-offset of the layer.

property Layer.RotateCenterLayer as Long
Indicates the index of the layer the rotation is around. If -1, the rotation is relative to the
current layer.

Type Description

Long A Long expression that indicates the index of the layer that
holds the rotation center.

By default, the RotateCenterLayer property is 0, which indicates that all layers are rotated
relative to the first layer. If the RotateCenterLayer property is -1, the rotation is performed
around the layer itself. Use the DefaultLayer(exDefLayerRotateCenterLayer) property to
specify the default value for the RotateCenterLayer property, before adding the layer.

The following properties can be used to specify a different rotation center:

RotateCenterLayer, indicates the index of the layer the rotation is around.
RotateCenterX, indicates the expression that determines the x-origin of the rotation
point relative to the RotateCenterLayer layer.
RotateCenterY, indicates the expression that determines the y-origin of the rotation
point relative to the RotateCenterLayer layer.

The following picture shows the rotation properties of the Layer, relative to the
RotateCenterLayer layer:

Any of the following properties can be used to rotate the layer:

DefaultRotateAngle, specifies the default angle to rotate the layer.

RotateAngle, specifies the angle to rotate the layer.
RotateAngleValid, validates / limits the rotation angle of the layer.
Value and ValueToRotateAngle, specifies the expression to convert the value to rotating
angle. The RotateAngleToValue converts the current rotation angle to a value.

The following properties can be used to change the rotation center, while the layer's
OnDrag property is exDoRotamove:

RotamoveCenterX, specifies the x-position of the layer's center.
RotamoveCenterY, specifies the y-position of the layer's center.
RotamoveOffsetX, specifies the x-offset of the layer.
RotamoveOffsetY, specifies the y-offset of the layer.

property Layer.RotateCenterX as String
Indicates the expression that determines the x-origin of the rotation point relative to the
RotateCenterLayer layer.

Type Description

String A String expression that determines the x-origin of the
rotation point relative to the RotateCenterLayer layer.

By default, the RotateCenterX / RotateCenterY property is empty. If the RotateCenterX /
RotateCenterY property is empty, missing or invalid, the center of the layer
(RotateCenterLayer layer) is considered the rotation center. Use the
DefaultLayer(exDefLayerRotateCenterX) property to specify the default value for the
RotateCenterX property, before adding the layer.

You can change the Debug property (to exDebugLayerDragRotate, for instance) of the
DragInfo object during the DragStart event to show the current rotation point as shown in
the following screen shot:

For instance:

"lwidth/2 + 78", defines the center 78 pixels to the right relative to the center of the
layer.

The RotateCenterX property supports the following keywords:

lwidth keyword, indicates the width in pixels of the layer
width keyword, specifies the width in pixels of the view / control
lheight keyword, indicates the height in pixels of the layer

height keyword, specifies the height in pixels of the view / control

Also, this property supports all constants, operators and functions defined here.

The following properties can be used to specify a different rotation center:

RotateCenterLayer, indicates the index of the layer the rotation is around.
RotateCenterX, indicates the expression that determines the x-origin of the rotation
point relative to the RotateCenterLayer layer.
RotateCenterY, indicates the expression that determines the y-origin of the rotation
point relative to the RotateCenterLayer layer.

The following picture shows the rotation properties of the Layer, relative to the
RotateCenterLayer layer:

Any of the following properties can be used to rotate the layer:

DefaultRotateAngle, specifies the default angle to rotate the layer.
RotateAngle, specifies the angle to rotate the layer.
RotateAngleValid, validates / limits the rotation angle of the layer.
Value and ValueToRotateAngle, specifies the expression to convert the value to rotating
angle. The RotateAngleToValue converts the current rotation angle to a value.

The following properties can be used to change the rotation center, while the layer's
OnDrag property is exDoRotamove:

RotamoveCenterX, specifies the x-position of the layer's center.
RotamoveCenterY, specifies the y-position of the layer's center.
RotamoveOffsetX, specifies the x-offset of the layer.

RotamoveOffsetY, specifies the y-offset of the layer.

property Layer.RotateCenterY as String
Indicates the expression that determines the y-origin of the rotation point relative to the
RotateCenterLayer layer.

Type Description

String A String expression that determines the y-origin of the
rotation point relative to the RotateCenterLayer layer.

By default, the RotateCenterX / RotateCenterY property is empty. If the RotateCenterX /
RotateCenterY property is empty, missing or invalid, the center of the layer (
RotateCenterLayer layer) is considered the rotation center. Use the
DefaultLayer(exDefLayerRotateCenterX) property to specify the default value for the
RotateCenterX property, before adding the layer.

You can change the Debug property (to exDebugLayerDragRotate, for instance) of the
DragInfo object during the DragStart event to show the current rotation point as shown in
the following screen shot:

For instance:

"lwidth/2 + 78", defines the center 78 pixels to the right relative to the center of the
layer.

The RotateCenterX property supports the following keywords:

lwidth keyword, indicates the width in pixels of the layer
width keyword, specifies the width in pixels of the view / control
lheight keyword, indicates the height in pixels of the layer

height keyword, specifies the height in pixels of the view / control

Also, this property supports all constants, operators and functions defined here.

The following properties can be used to specify a different rotation center:

RotateCenterLayer, indicates the index of the layer the rotation is around.
RotateCenterX, indicates the expression that determines the x-origin of the rotation
point relative to the RotateCenterLayer layer.
RotateCenterY, indicates the expression that determines the y-origin of the rotation
point relative to the RotateCenterLayer layer.

The following picture shows the rotation properties of the Layer, relative to the
RotateCenterLayer layer:

Any of the following properties can be used to rotate the layer:

DefaultRotateAngle, specifies the default angle to rotate the layer.
RotateAngle, specifies the angle to rotate the layer.
RotateAngleValid, validates / limits the rotation angle of the layer.
Value and ValueToRotateAngle, specifies the expression to convert the value to rotating
angle. The RotateAngleToValue converts the current rotation angle to a value.

The following properties can be used to change the rotation center, while the layer's
OnDrag property is exDoRotamove:

RotamoveCenterX, specifies the x-position of the layer's center.
RotamoveCenterY, specifies the y-position of the layer's center.
RotamoveOffsetX, specifies the x-offset of the layer.

RotamoveOffsetY, specifies the y-offset of the layer.

property Layer.RotateClip as Boolean
Specifies whether the layer's clipping region is rotated once the layer is rotated.

Type Description

Boolean A Boolean expression that specifies whether the layer's
clipping region is rotated once the current later is rotated.

By default, the RotateClip property is False, which indicates that has no effect. The
RotateClip property specifies whether the layer's clipping region is rotated once the layer is
rotated. The Clip property gets access to the layer's clipping object. Use the
DefaultLayer(exDefLayerRotateClip) property to specify the default value for the RotateClip
property, before adding the layer. The OnDrag property indicates the action to be
performed when the user drags the layer. The Selectable property returns or sets a value
that indicates whether the layer is selectable.

The RotateClip property has effect if:

The RotateClip property is True.
The current layer is rotated
The layer's Clip property clips the current layer.

Any of the following properties can be used to rotate the layer:

DefaultRotateAngle, specifies the default angle to rotate the layer.
RotateAngle, specifies the angle to rotate the layer.
RotateAngleValid, validates / limits the rotation angle of the layer.
Value and ValueToRotateAngle, specifies the expression to convert the value to rotating
angle. The RotateAngleToValue converts the current rotation angle to a value.

The following properties can be used to specify a different rotation center:

RotateCenterLayer, indicates the index of the layer the rotation is around.
RotateCenterX, indicates the expression that determines the x-origin of the rotation
point relative to the RotateCenterLayer layer.
RotateCenterY, indicates the expression that determines the y-origin of the rotation
point relative to the RotateCenterLayer layer.

The following properties can be used to change the rotation center, while the layer's
OnDrag property is exDoRotamove:

RotamoveCenterX, specifies the x-position of the layer's center.
RotamoveCenterY, specifies the y-position of the layer's center.
RotamoveOffsetX, specifies the x-offset of the layer.

RotamoveOffsetY, specifies the y-offset of the layer.

property Layer.RotateType as RotateTypeEnum
Returns or sets a value that indicates whether the layer's rotation is performed fast, by
shearing (high quality rotation), ...

Type Description

RotateTypeEnum A RotateTypeEnum expression that specifies the method
the rotation of the layer is performed.

By default, the RotateType property is exRotateFast. The RotateType property specifies
whether the layer's rotation is performed fast, by shearing (high quality rotation), ... Use
the DefaultLayer(exDefLayerDefaultRotateType) property to specify the default value for
the RotateType property, before adding any layer.

The following screen shot shows the hands of the clock, while the RotateType property is
exRotateBilinearInterpolation:

The following screen shot shows the hands of the clock, while the RotateType property is
exRotateFast (by default):

Any of the following properties can be used to rotate the layer:

DefaultRotateAngle, specifies the default angle to rotate the layer.
RotateAngle, specifies the angle to rotate the layer.
RotateAngleValid, validates / limits the rotation angle of the layer.
Value and ValueToRotateAngle, specifies the expression to convert the value to rotating
angle. The RotateAngleToValue converts the current rotation angle to a value.

The following properties can be used to specify a different rotation center:

RotateCenterLayer, indicates the index of the layer the rotation is around.
RotateCenterX, indicates the expression that determines the x-origin of the rotation
point relative to the RotateCenterLayer layer.
RotateCenterY, indicates the expression that determines the y-origin of the rotation
point relative to the RotateCenterLayer layer.

The following properties can be used to change the rotation center, while the layer's
OnDrag property is exDoRotamove:

RotamoveCenterX, specifies the x-position of the layer's center.
RotamoveCenterY, specifies the y-position of the layer's center.
RotamoveOffsetX, specifies the x-offset of the layer.
RotamoveOffsetY, specifies the y-offset of the layer.

property Layer.Selectable as Boolean
Returns or sets a value that indicates whether the layer is selectable.

Type Description

Boolean A Boolean expression that specifies whether the layer is
selectable or unselectable.

By default, the Selectable property is True, which indicates that the layer is selectable. The
Selectable property returns or sets a value that indicates whether the layer is selectable.
Use the DefaultLayer(exDefLayerSelectable) property to specify the default value for the
Selectable property, before adding any layer. The Visible property shows or hides a
specific layer (visible). The LayerFromPoint property retrieves the layer from point that's
visible and selectable. The OnDrag property indicates the action to be performed when the
user drags the layer (dragable). You can use the Grayscale property to show the entire
layer in gray scale (disable state). For instance, you can simulate a disabled layer by
changing the layer's Grayscale property on True, and setting the layer's Selectable property
on False.

property Layer.ShowHandCursor as Boolean
Returns or sets a value that indicates whether the hand cursor is shown when it hovers a
visible / selectable / dragable layer.

Type Description

Boolean
A Boolean expression that indicates whether the hand
cursor is shown when it hovers a visible / selectable /
dragable layer.

By default, the ShowHandCursor property is True, which indicates that the hand cursor is
shown over any layer that has:

Visible property on True,
Selectable property on True,
OnDrag property is not exDoNothing

The Visible property shows or hides a specific layer (visible). The Position property
specifies the position of the layer, in the layers collection. The Selectable property returns
or sets a value that indicates whether the layer is selectable. The LayerFromPoint property
retrieves the layer from point that's visible and selectable. The OnDrag property indicates
the action to be performed when the user drags the layer (dragable).

property Layer.ToolTip as String
Gets or sets a value (tooltip) that's displayed once the cursor hovers the layer.

Type Description

String A String expression that defines the layer's HTML tooltip
that's displayed when the cursor hovers the layer.

By default, the ToolTip / ToolTipTitle property is empty, which indicates no tooltip. The
ToolTip gets or sets a value (tooltip) that's displayed once the cursor hovers the layer. The
ToolTipTitle property indicates the title of the layer's tooltip. The layer's tooltip is shown if
any of the ToolTip / ToolTipTitle property is not empty. The ToolTipDelay property specifies
the time in ms that passes before the ToolTip appears. Use the ToolTipWidth property to
specify the width of the tooltip window Use the ToolTipPopDelay property specifies the
period in ms of time the ToolTip remains visible if the mouse pointer is stationary within a
control. Use the ToolTipFont property to change the tooltip's font. Use the
Background(exToolTipAppearance) property indicates the visual appearance of the borders
of the tooltips. Use the Background(exToolTipBackColor) property indicates the tooltip's
background color. Use the Background(exToolTipForeColor) property indicates the tooltip's
foreground color. Use the ShowToolTip method to display a custom tooltip. The
DefaultLayer(exDefLayerToolTip) property specifies the default value of the ToolTip
property.

The following screen shot shows the current value as a tooltip :

The ToolTip supports the following built-in HTML format:

 ... displays the text in bold

<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.

about:blank

key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Layer.ToolTipTitle as String
Gets or sets a value (title) that's displayed once the cursor hovers the layer.

Type Description

String A String expression that defines the title of the layer's
tooltip. The title does not support HTML format.

By default, the ToolTip / ToolTipTitle property is empty, which indicates no tooltip. The
ToolTipTitle property indicates the title of the layer's tooltip. The layer's tooltip is shown if
any of the ToolTip / ToolTipTitle property is not empty. Use the ToolTipWidth property to
specify the width of the tooltip window Use the ToolTipPopDelay property specifies the
period in ms of time the ToolTip remains visible if the mouse pointer is stationary within a
control. Use the ToolTipFont property to change the tooltip's font. Use the
Background(exToolTipAppearance) property indicates the visual appearance of the borders
of the tooltips. Use the Background(exToolTipBackColor) property indicates the tooltip's
background color. Use the Background(exToolTipForeColor) property indicates the tooltip's
foreground color. Use the ShowToolTip method to display a custom tooltip. The
DefaultLayer(exDefLayerToolTipTitl) property specifies the default value of the ToolTipTitle
property.

The following screen shot shows the current value as a tooltip :

property Layer.Top as String
Specifies the expression relative to the view, to determine the y-position to show the current
layer on the control.

Type Description

String
A String value that indicates the expression relative to the
view, to determine the y-position to show the current layer
on the control.

By default, the Top property is "0". If the Top property is empty, missing or invalid, it is
considered "0". If valid, the value of evaluating the Top property indicates the top position of
the layer as shown in the picture bellow. Use the DefaultLayer(exDefLayerTop) property to
specify the default value for the Top property, before adding any layer.

For instance:

"0" indicates the top side of the control's view
"height / 2", half of the view or center of the control's view
"height - 64", 64 pixels to the bottom side of the control's view

The Top property supports the following keywords:

width keyword specifies the width in pixels of the control's view
height keyword specifies the height in pixels of the control's view

Also, this property supports all constants, operators and functions defined here.

The following properties determines the position / size / offset of the layer:

Left, specifies the expression relative to the view, to determine the x-position to show
the current layer on the control.
Top, specifies the expression relative to the view, to determine the y-position to show
the current layer on the control.
Width, specifies the expression relative to the view, to determine the width to show the
current layer on the control.
Height, specifies the expression relative to the view, to determine the height to show
the current layer on the control.

The following picture shows the position/size properties of the Layer, relative to the view /
control:

You can use the following properties to offset the view (background + foreground) inside
the layer:

DefaultOffsetX, gets or sets a value that indicates the default x-offset of the layer.
OffsetX, gets or sets a value that indicates x-offset of the layer.
OffsetXValid, validates the x-offset value of the layer.
Value and ValueToOffsetX specifies the expression to convert the value to x-offset.
DefaultOffsetY, gets or sets a value that indicates the default y-offset of the layer.
OffsetY, gets or sets a value that indicates y-offset of the layer.
OffsetYValid, validates the y-offset value of the layer.
Value and ValueToOffsetY specifies the expression to convert the value to y-offset.

The following properties can be used to move / resize the picture on the layer's
background:

DisplayAs, retrieves or sets a value that indicates the way how the graphic is displayed
on the layer's background.
Left, specifies the expression relative to the view/current picture, to determine the x-
position to show the current picture on the background.
Top, specifies the expression relative to the view/current picture, to determine the y-
position to show the current picture on the background.
Width, specifies the expression relative to the view/current picture, to determine the
width to show the current picture on the background.
Height, specifies the expression relative to the view/current picture, to determine the
height to show the current picture on the background.

property Layer.Transparency as Long
Gets or sets a value that indicates percent of the transparency to display the layer.

Type Description

Long A Long expression that specifies the percent of layer's
transparency.

By default, the Transparency 0%, which indicates that no effect is applied to the layer. The
Transparency property gets or sets a value that indicates percent of the transparency to
display the layer. Use the DefaultLayer(exDefLayerTransparency) property to specify the
default value for the Transparency property, before adding any layer.

The following screen shot shows the layer, with Transparency property on 0% (default):

The following screen shot shows the layer, with Transparency = 75:

By default, the AllowSmoothChange property is exLayerTransparency | exLayerBrightness |
exLayerContrast. Use the AllowSmoothChange property to disable changing gradually any
brightness / contrast or the transparency, of the layer. For instance, a gradually change
means that you can change the layer's transparency from 0 to 50 in a short time, with
intermediate values (smooth change).

The AllowSmoothChange property changes gradually one / or more properties like follow:

Brightness, Specifies the percent of brightness to apply to the layer.
Contrast, Specifies the percent of contrast to apply to the layer.
Transparency, Gets or sets a value that indicates percent of the transparency to
display the layer.

The MouseIn / MouseOut event notifies your application when the cursor is entering /
leaving the layer. The MouseMove event is generated continually as the mouse pointer
moves across objects. The AllowSmoothChange property specifies the properties of the
layers that support smooth change. For instance, you can use the MouseIn / MouseOut
event to change gradually the brightness / contrast or the transparency, of the layer, while
the AllowSmoothChange property is not exSmoothChangeless.

property Layer.UserData as Variant
Indicates any extra data associated with the layer.

Type Description

Variant A Variant expression that indicates any extra data
associated with the layer.

By default, UserData property is empty. Use the UserData property to associate any extra
data to the layer. Use the DefaultLayer(exDefLayerUserData) property to specify the
default value for the UserData property, before adding any layer. Use the UserData of the
DragInfo object to associate any extra data to the dragging operation. The Visible property
shows or hides a specific layer (visible). The Position property specifies the position of the
layer, in the layers collection. The Selectable property returns or sets a value that indicates
whether the layer is selectable. The LayerFromPoint property retrieves the layer from point
that's visible and selectable. The OnDrag property indicates the action to be performed
when the user drags the layer (dragable).

property Layer.Value as Variant
Indicates the object's value.

Type Description

Variant A VARIANT expression that specifies the value associated
with the layer.

By default, the Value property is empty. The layer's Value could indicate its offset or its
rotation angle, based on the OnDrag property. The OnDrag property indicates the action to
be performed when the user drags the layer (dragable). Use the Value property of the
Clip object to associate a value with the layer's clipping region. Each layer can associate a
value with it, while the control's Value property can be associated through the LayerOfValue
property with the value of one of the layers within the control.

For instance:

the control displays a clock, the value could be the current-time
the control shows a switch, so the value could indicate the state of the switch
the control shows a thermometer, so the value could be the current temperature
the control displays a gauge, so the value could be the value on the gauge pointed by
the needle

The Change event occurs when the layer's Value property is changed. During the Change
event, you can change values of other layers as well. For instance, if the second-hand of
the clock is rotated, you can rotate the hour and the minute-hands of the clock as well. The
DragStart / Drag / DragEnd events notify your application when a layer is dragged. You can
call DragInfo.Debug = -1 during the DragStart event to display debugging information like
current movement, rotation angle when drag operation is performed.

The Value property indicates the value keyword in the following properties:

ValueToOffsetX, Specifies the expression to convert the value to x-offset. The layer's
OffsetX property is the result of evaluating the ValueToOffsetX expression, while the
OnDrag property is exDoMove. The OffsetToValue converts the current offset to a
value.
ValueToOffsetY, Specifies the expression to convert the value to y-offset. The layer's
OffsetY property is the result of evaluating the ValueToOffsetY expression, while the
OnDrag property is exDoMove. The OffsetToValue converts the current offset to a
value.
ValueToRotateAngle, Specifies the expression to convert the value to rotating angle.
The layer's RotateAngle property is the result of evaluating the ValueToRotateAngle
expression, while the OnDrag property is exDoRotate or exDoRotamove. The
RotateAngleToValue converts the current rotation angle to a value.

The Value property works in association with the layer's OnDrag property like follows:

If the OnDrag property is exDoMove, evaluating the ValueToOffsetX property indicates
the layer's OffsetX property.
If the OnDrag property is exDoMove, evaluating the ValueToOffsetY property indicates
the layer's OffsetY property.
If the OnDrag property is exDoRotate or exDoRotamove, evaluating the
ValueToRotateAngle property indicates the layer's RotateAngle property.

For instance, having the gauge from the C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage folder, which includes the
background and the needle pictures:

we need to define the value of the needle to be between 0 and 100, so if we call Value
property on 85 we should get something like:

In conclusion, what we need to do is:

defines the "needle" layer as rotate able, using the OnDrag property

converts the value of 0-100, to a rotation angle, using the ValueToRotateAngle property

converts the rotation angle from 0-360 to the value, using the RotateAngleToValue
property

limits the rotation angle, using the RotateAngleValid property

The following samples shows how you can do that:

VBA (MS Access, Excell...)

With Gauge1
 .BeginUpdate
 .DefaultLayer(185) = 2
 .BackColor = RGB(217,217,217)
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"
 With .Layers.Add("background")
 .Background.Picture.Name = "Guage_Background.png"
 .RotateCenterY = "lheight/2 + 78"
 End With
 With .Layers.Add("needle")
 .Background.Picture.Name = "Guage_Needle.png"

 .OnDrag = 2
 .RotateAngleValid = "value < 90 ? value : (value < 180 ? 90 : (value < 270 ? 270 :
value))"
 .RotateAngleToValue = "value >= 270 ? (value - 270)/90*50 : (value/90)*50 + 50"
 .ValueToRotateAngle = "value < 50 ? (270 + value/50*90) : (value - 50)/50 * 90"
 End With
 .Value = 85
 .EndUpdate
End With

VB6

With Gauge1
 .BeginUpdate
 .DefaultLayer(exDefLayerRotateType) = 2
 .BackColor = RGB(217,217,217)
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"
 With .Layers.Add("background")
 .Background.Picture.Name = "Guage_Background.png"
 .RotateCenterY = "lheight/2 + 78"
 End With
 With .Layers.Add("needle")
 .Background.Picture.Name = "Guage_Needle.png"
 .OnDrag = exDoRotate
 .RotateAngleValid = "value < 90 ? value : (value < 180 ? 90 : (value < 270 ? 270 :
value))"
 .RotateAngleToValue = "value >= 270 ? (value - 270)/90*50 : (value/90)*50 + 50"
 .ValueToRotateAngle = "value < 50 ? (270 + value/50*90) : (value - 50)/50 * 90"
 End With
 .Value = 85
 .EndUpdate
End With

VB.NET

With Exgauge1
 .BeginUpdate()

.set_DefaultLayer(exontrol.EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerRotateType,

 .BackColor = Color.FromArgb(217,217,217)
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"
 With .Layers.Add("background")
 .Background.Picture.Name = "Guage_Background.png"
 .RotateCenterY = "lheight/2 + 78"
 End With
 With .Layers.Add("needle")
 .Background.Picture.Name = "Guage_Needle.png"
 .OnDrag = exontrol.EXGAUGELib.OnDragLayerEnum.exDoRotate
 .RotateAngleValid = "value < 90 ? value : (value < 180 ? 90 : (value < 270 ? 270 :
value))"
 .RotateAngleToValue = "value >= 270 ? (value - 270)/90*50 : (value/90)*50 + 50"
 .ValueToRotateAngle = "value < 50 ? (270 + value/50*90) : (value - 50)/50 * 90"
 End With
 .Value = 85
 .EndUpdate()
End With

VB.NET for /COM

With AxGauge1
 .BeginUpdate()
 .set_DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerRotateType,2)
 .BackColor = RGB(217,217,217)
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"
 With .Layers.Add("background")
 .Background.Picture.Name = "Guage_Background.png"
 .RotateCenterY = "lheight/2 + 78"
 End With
 With .Layers.Add("needle")
 .Background.Picture.Name = "Guage_Needle.png"
 .OnDrag = EXGAUGELib.OnDragLayerEnum.exDoRotate

 .RotateAngleValid = "value < 90 ? value : (value < 180 ? 90 : (value < 270 ? 270 :
value))"
 .RotateAngleToValue = "value >= 270 ? (value - 270)/90*50 : (value/90)*50 + 50"
 .ValueToRotateAngle = "value < 50 ? (270 + value/50*90) : (value - 50)/50 * 90"
 End With
 .Value = 85
 .EndUpdate()
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXGAUGELib' for the library: 'ExGauge 1.0 Control
Library'

 #import <ExGauge.dll>
 using namespace EXGAUGELib;
*/
EXGAUGELib::IGaugePtr spGauge1 = GetDlgItem(IDC_GAUGE1)-
>GetControlUnknown();
spGauge1->BeginUpdate();
spGauge1->PutDefaultLayer(EXGAUGELib::exDefLayerRotateType,long(2));
spGauge1->PutBackColor(RGB(217,217,217));
spGauge1->PutPicturesPath(L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Guage");
EXGAUGELib::ILayerPtr var_Layer = spGauge1->GetLayers()->Add("background");
 var_Layer->GetBackground()->GetPicture()->PutName("Guage_Background.png");
 var_Layer->PutRotateCenterY(L"lheight/2 + 78");
EXGAUGELib::ILayerPtr var_Layer1 = spGauge1->GetLayers()->Add("needle");
 var_Layer1->GetBackground()->GetPicture()->PutName("Guage_Needle.png");
 var_Layer1->PutOnDrag(EXGAUGELib::exDoRotate);
 var_Layer1->PutRotateAngleValid(L"value < 90 ? value : (value < 180 ? 90 : (value
< 270 ? 270 : value))");
 var_Layer1->PutRotateAngleToValue(L"value >= 270 ? (value - 270)/90*50 :
(value/90)*50 + 50");
 var_Layer1->PutValueToRotateAngle(L"value < 50 ? (270 + value/50*90) : (value -

50)/50 * 90");
spGauge1->PutValue(long(85));
spGauge1->EndUpdate();

C++ Builder

Gauge1->BeginUpdate();
Gauge1-
>DefaultLayer[Exgaugelib_tlb::DefaultLayerPropertyEnum::exDefLayerRotateType] =
TVariant(2);
Gauge1->BackColor = RGB(217,217,217);
Gauge1->PicturesPath = L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Guage";
Exgaugelib_tlb::ILayerPtr var_Layer = Gauge1->Layers-
>Add(TVariant("background"));
 var_Layer->Background->Picture->set_Name(TVariant("Guage_Background.png"));
 var_Layer->RotateCenterY = L"lheight/2 + 78";
Exgaugelib_tlb::ILayerPtr var_Layer1 = Gauge1->Layers->Add(TVariant("needle"));
 var_Layer1->Background->Picture->set_Name(TVariant("Guage_Needle.png"));
 var_Layer1->OnDrag = Exgaugelib_tlb::OnDragLayerEnum::exDoRotate;
 var_Layer1->RotateAngleValid = L"value < 90 ? value : (value < 180 ? 90 : (value <
270 ? 270 : value))";
 var_Layer1->RotateAngleToValue = L"value >= 270 ? (value - 270)/90*50 :
(value/90)*50 + 50";
 var_Layer1->ValueToRotateAngle = L"value < 50 ? (270 + value/50*90) : (value -
50)/50 * 90";
Gauge1->set_Value(TVariant(85));
Gauge1->EndUpdate();

C#

exgauge1.BeginUpdate();
exgauge1.set_DefaultLayer(exontrol.EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerRotateType,

exgauge1.BackColor = Color.FromArgb(217,217,217);
exgauge1.PicturesPath = "C:\\Program

Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Guage";
exontrol.EXGAUGELib.Layer var_Layer = exgauge1.Layers.Add("background");
 var_Layer.Background.Picture.Name = "Guage_Background.png";
 var_Layer.RotateCenterY = "lheight/2 + 78";
exontrol.EXGAUGELib.Layer var_Layer1 = exgauge1.Layers.Add("needle");
 var_Layer1.Background.Picture.Name = "Guage_Needle.png";
 var_Layer1.OnDrag = exontrol.EXGAUGELib.OnDragLayerEnum.exDoRotate;
 var_Layer1.RotateAngleValid = "value < 90 ? value : (value < 180 ? 90 : (value <
270 ? 270 : value))";
 var_Layer1.RotateAngleToValue = "value >= 270 ? (value - 270)/90*50 :
(value/90)*50 + 50";
 var_Layer1.ValueToRotateAngle = "value < 50 ? (270 + value/50*90) : (value -
50)/50 * 90";
exgauge1.Value = 85;
exgauge1.EndUpdate();

JScript/JavaScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 Gauge1.BeginUpdate();
 Gauge1.DefaultLayer(185) = 2;
 Gauge1.BackColor = 14277081;
 Gauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Guage";
 var var_Layer = Gauge1.Layers.Add("background");
 var_Layer.Background.Picture.Name = "Guage_Background.png";
 var_Layer.RotateCenterY = "lheight/2 + 78";
 var var_Layer1 = Gauge1.Layers.Add("needle");
 var_Layer1.Background.Picture.Name = "Guage_Needle.png";
 var_Layer1.OnDrag = 2;

 var_Layer1.RotateAngleValid = "value < 90 ? value : (value < 180 ? 90 : (value <
270 ? 270 : value))";
 var_Layer1.RotateAngleToValue = "value >= 270 ? (value - 270)/90*50 :
(value/90)*50 + 50";
 var_Layer1.ValueToRotateAngle = "value < 50 ? (270 + value/50*90) : (value -
50)/50 * 90";
 Gauge1.Value = 85;
 Gauge1.EndUpdate();
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With Gauge1
 .BeginUpdate
 .DefaultLayer(185) = 2
 .BackColor = RGB(217,217,217)
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"
 With .Layers.Add("background")
 .Background.Picture.Name = "Guage_Background.png"
 .RotateCenterY = "lheight/2 + 78"
 End With
 With .Layers.Add("needle")
 .Background.Picture.Name = "Guage_Needle.png"
 .OnDrag = 2
 .RotateAngleValid = "value < 90 ? value : (value < 180 ? 90 : (value < 270 ?
270 : value))"
 .RotateAngleToValue = "value >= 270 ? (value - 270)/90*50 : (value/90)*50 +

50"
 .ValueToRotateAngle = "value < 50 ? (270 + value/50*90) : (value - 50)/50 *
90"
 End With
 .Value = 85
 .EndUpdate
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

axGauge1.BeginUpdate();
axGauge1.set_DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerRotateType,

axGauge1.BackColor = Color.FromArgb(217,217,217);
axGauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Guage";
EXGAUGELib.Layer var_Layer = axGauge1.Layers.Add("background");
 var_Layer.Background.Picture.Name = "Guage_Background.png";
 var_Layer.RotateCenterY = "lheight/2 + 78";
EXGAUGELib.Layer var_Layer1 = axGauge1.Layers.Add("needle");
 var_Layer1.Background.Picture.Name = "Guage_Needle.png";
 var_Layer1.OnDrag = EXGAUGELib.OnDragLayerEnum.exDoRotate;
 var_Layer1.RotateAngleValid = "value < 90 ? value : (value < 180 ? 90 : (value <
270 ? 270 : value))";
 var_Layer1.RotateAngleToValue = "value >= 270 ? (value - 270)/90*50 :
(value/90)*50 + 50";
 var_Layer1.ValueToRotateAngle = "value < 50 ? (270 + value/50*90) : (value -
50)/50 * 90";
axGauge1.Value = 85;
axGauge1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Background,com_Layer,com_Layer1,com_Picture;
 anytype var_Background,var_Layer,var_Layer1,var_Picture;
 ;

 super();

 exgauge1.BeginUpdate();

exgauge1.DefaultLayer(185/*exDefLayerRotateType*/,COMVariant::createFromInt(2));
 exgauge1.BackColor(WinApi::RGB2int(217,217,217));
 exgauge1.PicturesPath("C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Guage");
 var_Layer = COM::createFromObject(exgauge1.Layers()).Add("background");
com_Layer = var_Layer;
 var_Background = COM::createFromObject(com_Layer.Background());
com_Background = var_Background;
 var_Picture = COM::createFromObject(com_Background).Picture(); com_Picture =
var_Picture;
 com_Picture.Name("Guage_Background.png");
 com_Layer.RotateCenterY("lheight/2 + 78");
 var_Layer1 = COM::createFromObject(exgauge1.Layers()).Add("needle");
com_Layer1 = var_Layer1;
 var_Background = COM::createFromObject(com_Layer1.Background());
com_Background = var_Background;
 var_Picture = COM::createFromObject(com_Background).Picture(); com_Picture =
var_Picture;
 com_Picture.Name("Guage_Needle.png");
 com_Layer1.OnDrag(2/*exDoRotate*/);
 com_Layer1.RotateAngleValid("value < 90 ? value : (value < 180 ? 90 : (value <
270 ? 270 : value))");
 com_Layer1.RotateAngleToValue("value >= 270 ? (value - 270)/90*50 :
(value/90)*50 + 50");
 com_Layer1.ValueToRotateAngle("value < 50 ? (270 + value/50*90) : (value -
50)/50 * 90");
 exgauge1.Value(COMVariant::createFromInt(85));

 exgauge1.EndUpdate();
}

Delphi 8 (.NET only)

with AxGauge1 do
begin
 BeginUpdate();

set_DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerRotateType,TObject(

 BackColor := Color.FromArgb(217,217,217);
 PicturesPath := 'C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage';
 with Layers.Add('background') do
 begin
 Background.Picture.Name := 'Guage_Background.png';
 RotateCenterY := 'lheight/2 + 78';
 end;
 with Layers.Add('needle') do
 begin
 Background.Picture.Name := 'Guage_Needle.png';
 OnDrag := EXGAUGELib.OnDragLayerEnum.exDoRotate;
 RotateAngleValid := 'value < 90 ? value : (value < 180 ? 90 : (value < 270 ? 270 :
value))';
 RotateAngleToValue := 'value >= 270 ? (value - 270)/90*50 : (value/90)*50 + 50';
 ValueToRotateAngle := 'value < 50 ? (270 + value/50*90) : (value - 50)/50 * 90';
 end;
 Value := TObject(85);
 EndUpdate();
end

Delphi (standard)

with Gauge1 do
begin
 BeginUpdate();
 DefaultLayer[EXGAUGELib_TLB.exDefLayerRotateType] := OleVariant(2);

 BackColor := RGB(217,217,217);
 PicturesPath := 'C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage';
 with Layers.Add('background') do
 begin
 Background.Picture.Name := 'Guage_Background.png';
 RotateCenterY := 'lheight/2 + 78';
 end;
 with Layers.Add('needle') do
 begin
 Background.Picture.Name := 'Guage_Needle.png';
 OnDrag := EXGAUGELib_TLB.exDoRotate;
 RotateAngleValid := 'value < 90 ? value : (value < 180 ? 90 : (value < 270 ? 270 :
value))';
 RotateAngleToValue := 'value >= 270 ? (value - 270)/90*50 : (value/90)*50 + 50';
 ValueToRotateAngle := 'value < 50 ? (270 + value/50*90) : (value - 50)/50 * 90';
 end;
 Value := OleVariant(85);
 EndUpdate();
end

VFP

with thisform.Gauge1
 .BeginUpdate
 .Object.DefaultLayer(185) = 2
 .BackColor = RGB(217,217,217)
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"
 with .Layers.Add("background")
 .Background.Picture.Name = "Guage_Background.png"
 .RotateCenterY = "lheight/2 + 78"
 endwith
 with .Layers.Add("needle")
 .Background.Picture.Name = "Guage_Needle.png"
 .OnDrag = 2
 .RotateAngleValid = "value < 90 ? value : (value < 180 ? 90 : (value < 270 ? 270 :

value))"
 .RotateAngleToValue = "value >= 270 ? (value - 270)/90*50 : (value/90)*50 + 50"
 .ValueToRotateAngle = "value < 50 ? (270 + value/50*90) : (value - 50)/50 * 90"
 endwith
 .Value = 85
 .EndUpdate
endwith

dBASE Plus

local oGauge,var_Layer,var_Layer1

oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject
oGauge.BeginUpdate()
oGauge.Template = [DefaultLayer(185) = 2] // oGauge.DefaultLayer(185) = 2
oGauge.BackColor = 0xd9d9d9
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"
var_Layer = oGauge.Layers.Add("background")
 var_Layer.Background.Picture.Name = "Guage_Background.png"
 var_Layer.RotateCenterY = "lheight/2 + 78"
var_Layer1 = oGauge.Layers.Add("needle")
 var_Layer1.Background.Picture.Name = "Guage_Needle.png"
 var_Layer1.OnDrag = 2
 var_Layer1.RotateAngleValid = "value < 90 ? value : (value < 180 ? 90 : (value <
270 ? 270 : value))"
 var_Layer1.RotateAngleToValue = "value >= 270 ? (value - 270)/90*50 :
(value/90)*50 + 50"
 var_Layer1.ValueToRotateAngle = "value < 50 ? (270 + value/50*90) : (value -
50)/50 * 90"
oGauge.Value = 85
oGauge.EndUpdate()

XBasic (Alpha Five)

Dim oGauge as P
Dim var_Layer as P

Dim var_Layer1 as P

oGauge = topparent:CONTROL_ACTIVEX1.activex
oGauge.BeginUpdate()
oGauge.Template = "DefaultLayer(185) = 2" // oGauge.DefaultLayer(185) = 2
oGauge.BackColor = 14277081
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"
var_Layer = oGauge.Layers.Add("background")
 var_Layer.Background.Picture.Name = "Guage_Background.png"
 var_Layer.RotateCenterY = "lheight/2 + 78"
var_Layer1 = oGauge.Layers.Add("needle")
 var_Layer1.Background.Picture.Name = "Guage_Needle.png"
 var_Layer1.OnDrag = 2
 var_Layer1.RotateAngleValid = "value < 90 ? value : (value < 180 ? 90 : (value <
270 ? 270 : value))"
 var_Layer1.RotateAngleToValue = "value >= 270 ? (value - 270)/90*50 :
(value/90)*50 + 50"
 var_Layer1.ValueToRotateAngle = "value < 50 ? (270 + value/50*90) : (value -
50)/50 * 90"
oGauge.Value = 85
oGauge.EndUpdate()

Visual Objects

local var_Layer,var_Layer1 as ILayer

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:[DefaultLayer,exDefLayerRotateType] := 2
oDCOCX_Exontrol1:BackColor := RGB(217,217,217)
oDCOCX_Exontrol1:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"
var_Layer := oDCOCX_Exontrol1:Layers:Add("background")
 var_Layer:Background:Picture:Name := "Guage_Background.png"
 var_Layer:RotateCenterY := "lheight/2 + 78"
var_Layer1 := oDCOCX_Exontrol1:Layers:Add("needle")

 var_Layer1:Background:Picture:Name := "Guage_Needle.png"
 var_Layer1:OnDrag := exDoRotate
 var_Layer1:RotateAngleValid := "value < 90 ? value : (value < 180 ? 90 : (value <
270 ? 270 : value))"
 var_Layer1:RotateAngleToValue := "value >= 270 ? (value - 270)/90*50 :
(value/90)*50 + 50"
 var_Layer1:ValueToRotateAngle := "value < 50 ? (270 + value/50*90) : (value -
50)/50 * 90"
oDCOCX_Exontrol1:Value := 85
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oGauge,var_Layer,var_Layer1

oGauge = ole_1.Object
oGauge.BeginUpdate()
oGauge.DefaultLayer(185,2)
oGauge.BackColor = RGB(217,217,217)
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"
var_Layer = oGauge.Layers.Add("background")
 var_Layer.Background.Picture.Name = "Guage_Background.png"
 var_Layer.RotateCenterY = "lheight/2 + 78"
var_Layer1 = oGauge.Layers.Add("needle")
 var_Layer1.Background.Picture.Name = "Guage_Needle.png"
 var_Layer1.OnDrag = 2
 var_Layer1.RotateAngleValid = "value < 90 ? value : (value < 180 ? 90 : (value <
270 ? 270 : value))"
 var_Layer1.RotateAngleToValue = "value >= 270 ? (value - 270)/90*50 :
(value/90)*50 + 50"
 var_Layer1.ValueToRotateAngle = "value < 50 ? (270 + value/50*90) : (value -
50)/50 * 90"
oGauge.Value = 85
oGauge.EndUpdate()

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Send ComBeginUpdate
 Set ComDefaultLayer OLEexDefLayerRotateType to 2
 Set ComBackColor to (RGB(217,217,217))
 Set ComPicturesPath to "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"
 Variant voLayers
 Get ComLayers to voLayers
 Handle hoLayers
 Get Create (RefClass(cComLayers)) to hoLayers
 Set pvComObject of hoLayers to voLayers
 Variant voLayer
 Get ComAdd of hoLayers "background" to voLayer
 Handle hoLayer
 Get Create (RefClass(cComLayer)) to hoLayer
 Set pvComObject of hoLayer to voLayer
 Variant voBackground
 Get ComBackground of hoLayer to voBackground
 Handle hoBackground
 Get Create (RefClass(cComBackground)) to hoBackground
 Set pvComObject of hoBackground to voBackground
 Variant voPicture
 Get ComPicture of hoBackground to voPicture
 Handle hoPicture
 Get Create (RefClass(cComPicture)) to hoPicture
 Set pvComObject of hoPicture to voPicture
 Set ComName of hoPicture to "Guage_Background.png"
 Send Destroy to hoPicture
 Send Destroy to hoBackground
 Set ComRotateCenterY of hoLayer to "lheight/2 + 78"
 Send Destroy to hoLayer
 Send Destroy to hoLayers
 Variant voLayers1
 Get ComLayers to voLayers1

 Handle hoLayers1
 Get Create (RefClass(cComLayers)) to hoLayers1
 Set pvComObject of hoLayers1 to voLayers1
 Variant voLayer1
 Get ComAdd of hoLayers1 "needle" to voLayer1
 Handle hoLayer1
 Get Create (RefClass(cComLayer)) to hoLayer1
 Set pvComObject of hoLayer1 to voLayer1
 Variant voBackground1
 Get ComBackground of hoLayer1 to voBackground1
 Handle hoBackground1
 Get Create (RefClass(cComBackground)) to hoBackground1
 Set pvComObject of hoBackground1 to voBackground1
 Variant voPicture1
 Get ComPicture of hoBackground1 to voPicture1
 Handle hoPicture1
 Get Create (RefClass(cComPicture)) to hoPicture1
 Set pvComObject of hoPicture1 to voPicture1
 Set ComName of hoPicture1 to "Guage_Needle.png"
 Send Destroy to hoPicture1
 Send Destroy to hoBackground1
 Set ComOnDrag of hoLayer1 to OLEexDoRotate
 Set ComRotateAngleValid of hoLayer1 to "value < 90 ? value : (value < 180 ?
90 : (value < 270 ? 270 : value))"
 Set ComRotateAngleToValue of hoLayer1 to "value >= 270 ? (value -
270)/90*50 : (value/90)*50 + 50"
 Set ComValueToRotateAngle of hoLayer1 to "value < 50 ? (270 + value/50*90)
: (value - 50)/50 * 90"
 Send Destroy to hoLayer1
 Send Destroy to hoLayers1
 Set ComValue to 85
 Send ComEndUpdate
End_Procedure

XBase++

#include "AppEvent.ch"

#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oGauge
 LOCAL oLayer,oLayer1

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oGauge := XbpActiveXControl():new(oForm:drawingArea)
 oGauge:CLSID := "Exontrol.Gauge.1" /*{91628F12-393C-44EF-A558-
83ED1790AAD3}*/
 oGauge:create(,, {10,60},{610,370})

 oGauge:BeginUpdate()
 oGauge:SetProperty("DefaultLayer",185/*exDefLayerRotateType*/,2)
 oGauge:SetProperty("BackColor",AutomationTranslateColor(GraMakeRGBColor
({ 217,217,217 }) , .F.))
 oGauge:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"
 oLayer := oGauge:Layers():Add("background")
 oLayer:Background():Picture():Name := "Guage_Background.png"
 oLayer:RotateCenterY := "lheight/2 + 78"
 oLayer1 := oGauge:Layers():Add("needle")
 oLayer1:Background():Picture():Name := "Guage_Needle.png"
 oLayer1:OnDrag := 2/*exDoRotate*/
 oLayer1:RotateAngleValid := "value < 90 ? value : (value < 180 ? 90 : (value <
270 ? 270 : value))"
 oLayer1:RotateAngleToValue := "value >= 270 ? (value - 270)/90*50 :
(value/90)*50 + 50"
 oLayer1:ValueToRotateAngle := "value < 50 ? (270 + value/50*90) : (value -
50)/50 * 90"
 oGauge:Value := 85

 oGauge:EndUpdate()

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property Layer.ValueToOffsetX as String
Specifies the expression to convert the value to x-offset.

Type Description

String A String value that defines the expression to convert the
value to x-offset.

By default, the ValueToOffsetX property is empty. If the ValueToOffsetX property is empty,
missing or invalid it has no effect. If the ValueToOffsetX property is valid, the result of
evaluation of it, indicates the value of the OffsetX property, while the OnDrag property is
exDoMove. The OffsetXValid property limits / validates the x-offset value of the layer. The
OffsetX / OffsetY property specifies the (x,y)-position of the layer, relative to the upper-left
corner of the control. The Change event occurs when the layer's Value property is changed.
During the Change event, you can change values of other layers as well. For instance, if the
second-hand of the clock is rotated, you can rotate the hour and the minute-hands of the
clock as well. The ValueToOffsetY property specifies the expression to convert the value to
y-offset. Use the DefaultLayer(exDefLayerValueToOffsetX) property to specify the default
value for the ValueToOffsetX property, before adding the layer.

For instance:

the control shows a switch, so the value could indicate the state of the switch
the control shows a thermometer, so the value could be the current temperature

For instance:

"0", no horizontal move, or assigns always 0 to OffsetX property
"value / 2", specifies half of the layer's Value
"value = 0 ? 0 : 48", indicates that the OffsetX property is 0 if the layer's Value is 0 or
48 if different than 0

The ValueToOffsetX property supports the following keywords:

value keyword indicates the layer's Value property.

Also, this property supports all constants, operators and functions defined here.

The Value property indicates the value keyword in the following properties:

ValueToOffsetX, Specifies the expression to convert the value to x-offset. The layer's
OffsetX property is the result of evaluating the ValueToOffsetX expression, while the
OnDrag property is exDoMove. The OffsetToValue converts the current offset to a
value.

ValueToOffsetY, Specifies the expression to convert the value to y-offset. The layer's
OffsetY property is the result of evaluating the ValueToOffsetY expression, while the
OnDrag property is exDoMove. The OffsetToValue converts the current offset to a
value.
ValueToRotateAngle, Specifies the expression to convert the value to rotating angle.
The layer's RotateAngle property is the result of evaluating the ValueToRotateAngle
expression, while the OnDrag property is exDoRotate or exDoRotamove. The
RotateAngleToValue converts the current rotation angle to a value.

The Value property works in association with the layer's OnDrag property like follows:

If the OnDrag property is exDoMove, evaluating the ValueToOffsetX property indicates
the layer's OffsetX property.
If the OnDrag property is exDoMove, evaluating the ValueToOffsetY property indicates
the layer's OffsetY property.
If the OnDrag property is exDoRotate or exDoRotamove, evaluating the
ValueToRotateAngle property indicates the layer's RotateAngle property.

property Layer.ValueToOffsetY as String
Specifies the expression to convert the value to y-offset.

Type Description

String A String value that defines the expression to convert the
value to y-offset.

By default, the ValueToOffsetY property is empty. If the ValueToOffsetY property is empty,
missing or invalid it has no effect. If the ValueToOffsetY property is valid, the result of
evaluation of it, indicates the value of the OffsetY property, while the OnDrag property is
exDoMove. The OffsetYValid property limits / validates the y-offset value of the layer. The
OffsetX / OffsetY property specifies the (x,y)-position of the layer, relative to the upper-left
corner of the control. The Change event occurs when the layer's Value property is changed.
During the Change event, you can change values of other layers as well. For instance, if the
second-hand of the clock is rotated, you can rotate the hour and the minute-hands of the
clock as well. The ValueToOffsetX property specifies the expression to convert the value to
x-offset. Use the DefaultLayer(exDefLayerValueToOffsetY) property to specify the default
value for the ValueToOffsetY property, before adding the layer.

For instance:

the control shows a switch, so the value could indicate the state of the switch
the control shows a thermometer, so the value could be the current temperature

For instance:

"0", no vertical move, or assigns always 0 to OffsetY property
"value / 2", specifies half of the layer's Value
"value = 0 ? 0 : 48", indicates that the OffsetY property is 0 if the layer's Value is 0 or
48 if different than 0

The ValueToOffsetY property supports the following keywords:

value keyword indicates the layer's Value property.

Also, this property supports all constants, operators and functions defined here.

The Value property indicates the value keyword in the following properties:

ValueToOffsetX, Specifies the expression to convert the value to x-offset. The layer's
OffsetX property is the result of evaluating the ValueToOffsetX expression, while the
OnDrag property is exDoMove. The OffsetToValue converts the current offset to a
value.
ValueToOffsetY, Specifies the expression to convert the value to y-offset. The layer's

OffsetY property is the result of evaluating the ValueToOffsetY expression, while the
OnDrag property is exDoMove. The OffsetToValue converts the current offset to a
value.
ValueToRotateAngle, Specifies the expression to convert the value to rotating angle.
The layer's RotateAngle property is the result of evaluating the ValueToRotateAngle
expression, while the OnDrag property is exDoRotate or exDoRotamove. The
RotateAngleToValue converts the current rotation angle to a value.

The Value property works in association with the layer's OnDrag property like follows:

If the OnDrag property is exDoMove, evaluating the ValueToOffsetX property indicates
the layer's OffsetX property.
If the OnDrag property is exDoMove, evaluating the ValueToOffsetY property indicates
the layer's OffsetY property.
If the OnDrag property is exDoRotate or exDoRotamove, evaluating the
ValueToRotateAngle property indicates the layer's RotateAngle property.

property Layer.ValueToRotateAngle as String
Specifies the expression to convert the value to rotating angle

Type Description

String A String value that defines the expression to convert the
value to rotating angle

By default, the ValueToRotateAngle property is empty. If the ValueToRotateAngle property
is empty, missing or invalid it has no effect. If the ValueToRotateAngle property is valid, the
result of evaluation of it, indicates the value of the RotateAngle property, while the OnDrag
property is exDoRotate or exDoRotamove. The RotateAngleValid property limits /
validates the rotation angle of the layer. The RotateAngle property specifies the angle to
rotate the layer. The Change event occurs when the layer's Value property is changed.
During the Change event, you can change values of other layers as well. For instance, if the
second-hand of the clock is rotated, you can rotate the hour and the minute-hands of the
clock as well. Use the DefaultLayer(exDefLayerValueToRotateAngle) property to specify the
default value for the ValueToRotateAngle property, before adding the layer. The
RotateAngleToValue converts the current rotation angle to a value.

For instance:

the control displays a clock, the value could be the current-time
the control displays a gauge, so the value could be the value on the gauge pointed by
the needle

For instance:

"0", no rotation, or assigns always 0 to RotateAngle property
"value / 2", specifies half of the layer's Value
"value / 100 * 360", Value percent from 360 degree. For instance, if the value is 50, the
expression returns 180, and if 100, the expression returns 360
"value < 50 ? (270 + value/50*90) : (value - 50)/50 * 90", for a value less than 50
returns the angle between 270 and 360, and for a value grater than 50, from 0 to 90
"2 * 360 * ((0:=(value < 0 ? floor(value) + 1 - value : value - floor(value))) < 0.5 ? =:0 :
(0:= (=:0 - 0.5)))", indicates the position (rotation angle) of the clock's hours-hand
giving the time value.
"((1:=(((0:=(value < 0 ? floor(value) + 1 - value : value - floor(value))) < 0.5 ? =:0 :
(0:= (=:0 - 0.5))) * 24)) - floor(=:1)) * 360", indicates the position (rotation angle) of
the clock's minutes-hand giving the time value.
"((2:=(((1:=(((0:=(value < 0 ? floor(value) + 1 - value : value - floor(value))) < 0.5 ?
=:0 : (0:= (=:0 - 0.5))) * 24)) - floor(=:1)) * 60)) - floor(=:2)) * 360", indicates the
position (rotation angle) of the clock's seconds-hand giving the time value.

The ValueToRotateAngle property supports the following keywords:

value keyword indicates the layer's Value property.

Also, this property supports all constants, operators and functions defined here.

The Value property indicates the value keyword in the following properties:

ValueToRotateAngle, Specifies the expression to convert the value to rotating angle.
The layer's RotateAngle property is the result of evaluating the ValueToRotateAngle
expression, while the OnDrag property is exDoRotate or exDoRotamove. The
RotateAngleToValue converts the current rotation angle to a value.
ValueToOffsetX, Specifies the expression to convert the value to x-offset. The layer's
OffsetX property is the result of evaluating the ValueToOffsetX expression, while the
OnDrag property is exDoMove. The OffsetToValue converts the current offset to a
value.
ValueToOffsetY, Specifies the expression to convert the value to y-offset. The layer's
OffsetY property is the result of evaluating the ValueToOffsetY expression, while the
OnDrag property is exDoMove. The OffsetToValue converts the current offset to a
value.

The following picture shows the rotation properties of the Layer, relative to the
RotateCenterLayer layer:

Any of the following properties can be used to rotate the layer:

DefaultRotateAngle, specifies the default angle to rotate the layer.
RotateAngle, specifies the angle to rotate the layer.

RotateAngleValid, validates / limits the rotation angle of the layer.
Value and ValueToRotateAngle, specifies the expression to convert the value to rotating
angle. The RotateAngleToValue converts the current rotation angle to a value.

The following properties can be used to specify a different rotation center:

RotateCenterLayer, indicates the index of the layer the rotation is around.
RotateCenterX, indicates the expression that determines the x-origin of the rotation
point relative to the RotateCenterLayer layer.
RotateCenterY, indicates the expression that determines the y-origin of the rotation
point relative to the RotateCenterLayer layer.

The following properties can be used to change the rotation center, while the layer's
OnDrag property is exDoRotamove:

RotamoveCenterX, specifies the x-position of the layer's center.
RotamoveCenterY, specifies the y-position of the layer's center.
RotamoveOffsetX, specifies the x-offset of the layer.
RotamoveOffsetY, specifies the y-offset of the layer.

property Layer.Visible as Boolean
Retrieves or sets a value indicating whether the layer is visible or hidden.

Type Description

Boolean A Boolean expression that specifies whether the layer is
visible or hidden.

By default, the Visible property is True, so the layer is visible. The Visible property shows or
hides a specific layer (visible). Use the DefaultLayer(exDefLayerVisible) property to specify
the default value for the Visible property, before adding any layer. The Position property
specifies the position of the layer, in the layers collection. The Selectable property returns
or sets a value that indicates whether the layer is selectable. The LayerFromPoint property
retrieves the layer from point that's visible and selectable. The OnDrag property indicates
the action to be performed when the user drags the layer (dragable). The ShowLayers
property indicates the only layers to be shown on the control.

The following properties can be used to access Layer objects in the control:

Item property, gives the Layer object based on its index / key. The Count property
specifies the number of layers within the control
VisibleItem property, gives the visible layer based on its position. The VisibleCount
property indicates the number of visible layers within the control. The ShowLayers
property indicates the only layers to be shown on the control.

property Layer.Width as String
Specifies the expression relative to the view, to determine the width to show the current
layer on the control.

Type Description

String
A String value that specifies the expression relative to the
view, to determine the width to show the current layer on
the control.

By default, the Width property is "width". If the Width property is empty, missing or invalid, it
is considered "width". If valid, the value of evaluating the Width property indicates the width
of the layer as shown in the picture bellow. Use the DefaultLayer(exDefLayerWidth)
property to specify the default value for the Width property, before adding any layer. The
LayerAutoSize property resizes all layers based on the picture of the first layer.

For instance:

"0" indicates that the layer's width is 0
"width / 2", half of the view or center of the control's view
"width - 64", 64 pixels to the right side of the control's view

The Width property supports the following keywords:

width keyword specifies the width in pixels of the control's view
height keyword specifies the height in pixels of the control's view

Also, this property supports all constants, operators and functions defined here.

The following properties determines the position / size / offset of the layer:

Left, specifies the expression relative to the view, to determine the x-position to show
the current layer on the control.
Top, specifies the expression relative to the view, to determine the y-position to show
the current layer on the control.
Width, specifies the expression relative to the view, to determine the width to show the
current layer on the control.
Height, specifies the expression relative to the view, to determine the height to show
the current layer on the control.

The following picture shows the position/size properties of the Layer, relative to the view /
control:

You can use the following properties to offset the view (background + foreground) inside
the layer:

DefaultOffsetX, gets or sets a value that indicates the default x-offset of the layer.
OffsetX, gets or sets a value that indicates x-offset of the layer.
OffsetXValid, validates the x-offset value of the layer.
Value and ValueToOffsetX specifies the expression to convert the value to x-offset.
DefaultOffsetY, gets or sets a value that indicates the default y-offset of the layer.
OffsetY, gets or sets a value that indicates y-offset of the layer.
OffsetYValid, validates the y-offset value of the layer.
Value and ValueToOffsetY specifies the expression to convert the value to y-offset.

The following properties can be used to move / resize the picture on the layer's
background:

DisplayAs, retrieves or sets a value that indicates the way how the graphic is displayed
on the layer's background.
Left, specifies the expression relative to the view/current picture, to determine the x-
position to show the current picture on the background.
Top, specifies the expression relative to the view/current picture, to determine the y-
position to show the current picture on the background.
Width, specifies the expression relative to the view/current picture, to determine the
width to show the current picture on the background.
Height, specifies the expression relative to the view/current picture, to determine the
height to show the current picture on the background.

Layers object
The Layers object holds a collection of Layer objects. The Layers property gives access to
the control's Layers collection. Any layer can display unlimited opaque / transparent
graphics, HTML text, can be visible, selectable, dragable and so on. Any layer can change
its position in the layers collection as well. The Layer can change its brightness, contrast,
grayscale or transparency as well.

The following screen show shows a control with 10 layers:

while the following screen shot shows how the layers are arranged:

The Layers collection supports the following properties and methods.

Name Description

Add Adds a Layer object to the collection and returns a
reference to the newly created object.

Clear Removes all objects in a collection.
Count Specifies the number of layers.
Item Returns a specific Layer of the Layers collection.
Remove Removes a specific member from the Layers collection.
VisibleCount Specifies the number of visible layers.

VisibleItem Returns the visible Layer of the Layers collection, based
on its position.

method Layers.Add ([Key as Variant])
Adds a Layer object to the collection and returns a reference to the newly created object.

Type Description

Key as Variant [Optional] A VARIANT expression that indicates the key to
identify the newly create layer.

Return Description
Layer A Layer object that indicates the newly created layer.

The Add method adds a new layer to the control. The Count property specifies the number
of layers in the control. The PicturesPath Specifies the path to load the pictures from. The
PicturesName property specifies the expression that indicates the name of the picture to be
loaded on each layer. The Item property of the Layers collection accesses a Layer giving
its index or key. The Index property is read-only and zero-based, which indicates that the
layer with the Index property 0, it is the first layer, while the layer with the index Count - 1,
is the last layer in the control (in z-order). The Background object holds pictures to be
shown on the layer's background. The Foreground property of the Layer access the layer's
Foreground object. The for each statement can be used to enumerate Layer objects in the
Layers collection. The ShowLayers property indicates the only layers to be shown on the
control.

The following properties can be used to add / remove layers within the control:

Count property, adds / removes layers to / from the control
Add method, adds a new layer to the control.

The following properties can be used to access Layer objects in the control:

Item property, gives the Layer object based on its index / key. The Count property
specifies the number of layers within the control
VisibleItem property, gives the visible layer based on its position. The VisibleCount
property indicates the number of visible layers within the control. The Visible property
shows or hides the layer. The ShowLayers property indicates the only layers to be
shown on the control.

The following sample creates a view from two pictures: "Guage_Background.png" and
"Guage_Needle.png" from the C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage.

The sample shows how to add two new layers with the keys: "background" and "needle"

VBA (MS Access, Excell...)

With Gauge1
 .BeginUpdate
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"
 .Layers.Add("background").Background.Picture.Name = "Guage_Background.png"
 .Layers.Add("needle").Background.Picture.Name = "Guage_Needle.png"
 .EndUpdate
End With

VB6

With Gauge1
 .BeginUpdate
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"
 .Layers.Add("background").Background.Picture.Name = "Guage_Background.png"
 .Layers.Add("needle").Background.Picture.Name = "Guage_Needle.png"
 .EndUpdate
End With

VB.NET

With Exgauge1
 .BeginUpdate()
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"
 .Layers.Add("background").Background.Picture.Name = "Guage_Background.png"
 .Layers.Add("needle").Background.Picture.Name = "Guage_Needle.png"
 .EndUpdate()
End With

VB.NET for /COM

With AxGauge1
 .BeginUpdate()
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"
 .Layers.Add("background").Background.Picture.Name = "Guage_Background.png"
 .Layers.Add("needle").Background.Picture.Name = "Guage_Needle.png"
 .EndUpdate()
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXGAUGELib' for the library: 'ExGauge 1.0 Control
Library'

 #import <ExGauge.dll>
 using namespace EXGAUGELib;
*/
EXGAUGELib::IGaugePtr spGauge1 = GetDlgItem(IDC_GAUGE1)-
>GetControlUnknown();
spGauge1->BeginUpdate();
spGauge1->PutPicturesPath(L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Guage");
spGauge1->GetLayers()->Add("background")->GetBackground()->GetPicture()-
>PutName("Guage_Background.png");
spGauge1->GetLayers()->Add("needle")->GetBackground()->GetPicture()-
>PutName("Guage_Needle.png");
spGauge1->EndUpdate();

C++ Builder

Gauge1->BeginUpdate();
Gauge1->PicturesPath = L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Guage";
Gauge1->Layers->Add(TVariant("background"))->Background->Picture-
>set_Name(TVariant("Guage_Background.png"));
Gauge1->Layers->Add(TVariant("needle"))->Background->Picture-
>set_Name(TVariant("Guage_Needle.png"));
Gauge1->EndUpdate();

C#

exgauge1.BeginUpdate();
exgauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Guage";
exgauge1.Layers.Add("background").Background.Picture.Name =
"Guage_Background.png";
exgauge1.Layers.Add("needle").Background.Picture.Name = "Guage_Needle.png";
exgauge1.EndUpdate();

JScript/JavaScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 Gauge1.BeginUpdate();
 Gauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Guage";
 Gauge1.Layers.Add("background").Background.Picture.Name =
"Guage_Background.png";
 Gauge1.Layers.Add("needle").Background.Picture.Name = "Guage_Needle.png";
 Gauge1.EndUpdate();
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With Gauge1
 .BeginUpdate
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"
 .Layers.Add("background").Background.Picture.Name =
"Guage_Background.png"
 .Layers.Add("needle").Background.Picture.Name = "Guage_Needle.png"
 .EndUpdate
 End With

End Function
</SCRIPT>
</BODY>

C# for /COM

axGauge1.BeginUpdate();
axGauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Guage";
axGauge1.Layers.Add("background").Background.Picture.Name =
"Guage_Background.png";
axGauge1.Layers.Add("needle").Background.Picture.Name = "Guage_Needle.png";
axGauge1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Background,com_Layer,com_Picture;
 anytype var_Background,var_Layer,var_Picture;
 ;

 super();

 exgauge1.BeginUpdate();
 exgauge1.PicturesPath("C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Guage");
 var_Layer = COM::createFromObject(exgauge1.Layers()).Add("background");
com_Layer = var_Layer;
 var_Background = COM::createFromObject(com_Layer).Background();
com_Background = var_Background;
 var_Picture = COM::createFromObject(com_Background).Picture(); com_Picture =
var_Picture;
 com_Picture.Name("Guage_Background.png");
 var_Layer = COM::createFromObject(exgauge1.Layers()).Add("needle"); com_Layer
= var_Layer;

 var_Background = COM::createFromObject(com_Layer).Background();
com_Background = var_Background;
 var_Picture = COM::createFromObject(com_Background).Picture(); com_Picture =
var_Picture;
 com_Picture.Name("Guage_Needle.png");
 exgauge1.EndUpdate();
}

Delphi 8 (.NET only)

with AxGauge1 do
begin
 BeginUpdate();
 PicturesPath := 'C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage';
 Layers.Add('background').Background.Picture.Name := 'Guage_Background.png';
 Layers.Add('needle').Background.Picture.Name := 'Guage_Needle.png';
 EndUpdate();
end

Delphi (standard)

with Gauge1 do
begin
 BeginUpdate();
 PicturesPath := 'C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage';
 Layers.Add('background').Background.Picture.Name := 'Guage_Background.png';
 Layers.Add('needle').Background.Picture.Name := 'Guage_Needle.png';
 EndUpdate();
end

VFP

with thisform.Gauge1
 .BeginUpdate
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"

 .Layers.Add("background").Background.Picture.Name = "Guage_Background.png"
 .Layers.Add("needle").Background.Picture.Name = "Guage_Needle.png"
 .EndUpdate
endwith

dBASE Plus

local oGauge,var_Picture,var_Picture1

oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject
oGauge.BeginUpdate()
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"
// oGauge.Layers.Add("background").Background.Picture.Name =
"Guage_Background.png"
var_Picture = oGauge.Layers.Add("background").Background.Picture
with (oGauge)
 TemplateDef = [dim var_Picture]
 TemplateDef = var_Picture
 Template = [var_Picture.Name = "Guage_Background.png"]
endwith
// oGauge.Layers.Add("needle").Background.Picture.Name = "Guage_Needle.png"
var_Picture1 = oGauge.Layers.Add("needle").Background.Picture
with (oGauge)
 TemplateDef = [dim var_Picture1]
 TemplateDef = var_Picture1
 Template = [var_Picture1.Name = "Guage_Needle.png"]
endwith
oGauge.EndUpdate()

XBasic (Alpha Five)

Dim oGauge as P
Dim var_Picture as local
Dim var_Picture1 as local

oGauge = topparent:CONTROL_ACTIVEX1.activex

oGauge.BeginUpdate()
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"
' oGauge.Layers.Add("background").Background.Picture.Name =
"Guage_Background.png"
var_Picture = oGauge.Layers.Add("background").Background.Picture
oGauge.TemplateDef = "dim var_Picture"
oGauge.TemplateDef = var_Picture
oGauge.Template = "var_Picture.Name = `Guage_Background.png`"

' oGauge.Layers.Add("needle").Background.Picture.Name = "Guage_Needle.png"
var_Picture1 = oGauge.Layers.Add("needle").Background.Picture
oGauge.TemplateDef = "dim var_Picture1"
oGauge.TemplateDef = var_Picture1
oGauge.Template = "var_Picture1.Name = `Guage_Needle.png`"

oGauge.EndUpdate()

Visual Objects

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"
oDCOCX_Exontrol1:Layers:Add("background"):Background:Picture:Name :=
"Guage_Background.png"
oDCOCX_Exontrol1:Layers:Add("needle"):Background:Picture:Name :=
"Guage_Needle.png"
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oGauge

oGauge = ole_1.Object
oGauge.BeginUpdate()

oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"
oGauge.Layers.Add("background").Background.Picture.Name =
"Guage_Background.png"
oGauge.Layers.Add("needle").Background.Picture.Name = "Guage_Needle.png"
oGauge.EndUpdate()

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Send ComBeginUpdate
 Set ComPicturesPath to "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"
 Variant voLayers
 Get ComLayers to voLayers
 Handle hoLayers
 Get Create (RefClass(cComLayers)) to hoLayers
 Set pvComObject of hoLayers to voLayers
 Variant voLayer
 Get ComAdd of hoLayers "background" to voLayer
 Handle hoLayer
 Get Create (RefClass(cComLayer)) to hoLayer
 Set pvComObject of hoLayer to voLayer
 Variant voBackground
 Get ComBackground of hoLayer to voBackground
 Handle hoBackground
 Get Create (RefClass(cComBackground)) to hoBackground
 Set pvComObject of hoBackground to voBackground
 Variant voPicture
 Get ComPicture of hoBackground to voPicture
 Handle hoPicture
 Get Create (RefClass(cComPicture)) to hoPicture
 Set pvComObject of hoPicture to voPicture
 Set ComName of hoPicture to "Guage_Background.png"
 Send Destroy to hoPicture

 Send Destroy to hoBackground
 Send Destroy to hoLayer
 Send Destroy to hoLayers
 Variant voLayers1
 Get ComLayers to voLayers1
 Handle hoLayers1
 Get Create (RefClass(cComLayers)) to hoLayers1
 Set pvComObject of hoLayers1 to voLayers1
 Variant voLayer1
 Get ComAdd of hoLayers1 "needle" to voLayer1
 Handle hoLayer1
 Get Create (RefClass(cComLayer)) to hoLayer1
 Set pvComObject of hoLayer1 to voLayer1
 Variant voBackground1
 Get ComBackground of hoLayer1 to voBackground1
 Handle hoBackground1
 Get Create (RefClass(cComBackground)) to hoBackground1
 Set pvComObject of hoBackground1 to voBackground1
 Variant voPicture1
 Get ComPicture of hoBackground1 to voPicture1
 Handle hoPicture1
 Get Create (RefClass(cComPicture)) to hoPicture1
 Set pvComObject of hoPicture1 to voPicture1
 Set ComName of hoPicture1 to "Guage_Needle.png"
 Send Destroy to hoPicture1
 Send Destroy to hoBackground1
 Send Destroy to hoLayer1
 Send Destroy to hoLayers1
 Send ComEndUpdate
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main

 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oGauge

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oGauge := XbpActiveXControl():new(oForm:drawingArea)
 oGauge:CLSID := "Exontrol.Gauge.1" /*{91628F12-393C-44EF-A558-
83ED1790AAD3}*/
 oGauge:create(,, {10,60},{610,370})

 oGauge:BeginUpdate()
 oGauge:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Guage"
 oGauge:Layers():Add("background"):Background():Picture():Name :=
"Guage_Background.png"
 oGauge:Layers():Add("needle"):Background():Picture():Name :=
"Guage_Needle.png"
 oGauge:EndUpdate()

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

method Layers.Clear ()
Removes all objects in a collection.

Type Description

The Clear removes all layers from the control. The Count property specifies the number of
layers in the control. The PicturesPath Specifies the path to load the pictures from. The
PicturesName property specifies the expression that indicates the name of the picture to be
loaded on each layer. The Item property of the Layers collection accesses a Layer giving
its index or key. The Index property is read-only and zero-based, which indicates that the
layer with the Index property 0, it is the first layer, while the layer with the index Count - 1,
is the last layer in the control (in z-order). The Background object holds pictures to be
shown on the layer's background. The Foreground property of the Layer access the layer's
Foreground object. The for each statement can be used to enumerate Layer objects in the
Layers collection.

The following properties can be used to remove layers within the control:

Count property, adds / removes layers to / from the control. For instance, Count
property on 0, removes all layers from the control.
Clear removes all layers from the control.
Remove method, removes a layer from the control based on its index or key.

The following properties can be used to access Layer objects in the control:

Item property, gives the Layer object based on its index / key. The Count property
specifies the number of layers within the control
VisibleItem property, gives the visible layer based on its position. The VisibleCount
property indicates the number of visible layers within the control. The Visible property
shows or hides the layer. The ShowLayers property indicates the only layers to be
shown on the control.

property Layers.Count as Long
Specifies the number of layers.

Type Description

Long A Long expression that specifies the count of layers within
the control.

The Count property specifies the number of layers in the control. The PicturesPath
Specifies the path to load the pictures from. The PicturesName property specifies the
expression that indicates the name of the picture to be loaded on each layer. The Item
property of the Layers collection accesses a Layer giving its index or key. The Index
property is read-only and zero-based, which indicates that the layer with the Index property
0, it is the first layer, while the layer with the index Count - 1, is the last layer in the control (
in z-order). The Background object holds pictures to be shown on the layer's background.
The Foreground property of the Layer access the layer's Foreground object. The for each
statement can be used to enumerate Layer objects in the Layers collection.

The following properties can be used to add / remove layers within the control:

Count property, adds / removes layers to / from the control
Add method, adds a new layer to the control.

The following properties can be used to access Layer objects in the control:

Item property, gives the Layer object based on its index / key. The Count property
specifies the number of layers within the control
VisibleItem property, gives the visible layer based on its position. The VisibleCount
property indicates the number of visible layers within the control. The Visible property
shows or hides the layer. The ShowLayers property indicates the only layers to be
shown on the control.

The following samples use the Layers.Count property to add new layers:

VBA (MS Access, Excell...)

With Gauge1
 .BeginUpdate
 .PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
2"
 .PicturesName = "`Layer` + str(value + 1) + `.png`"
 .Layers.Count = 5
 .EndUpdate

End With

VB6

With Gauge1
 .BeginUpdate
 .PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
2"
 .PicturesName = "`Layer` + str(value + 1) + `.png`"
 .Layers.Count = 5
 .EndUpdate
End With

VB.NET

With Exgauge1
 .BeginUpdate()
 .PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
2"
 .PicturesName = "`Layer` + str(value + 1) + `.png`"
 .Layers.Count = 5
 .EndUpdate()
End With

VB.NET for /COM

With AxGauge1
 .BeginUpdate()
 .PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
2"
 .PicturesName = "`Layer` + str(value + 1) + `.png`"
 .Layers.Count = 5
 .EndUpdate()
End With

C++

/*
 Copy and paste the following directives to your header file as

 it defines the namespace 'EXGAUGELib' for the library: 'ExGauge 1.0 Control
Library'

 #import <ExGauge.dll>
 using namespace EXGAUGELib;
*/
EXGAUGELib::IGaugePtr spGauge1 = GetDlgItem(IDC_GAUGE1)-
>GetControlUnknown();
spGauge1->BeginUpdate();
spGauge1->PutPicturesPath(L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 2");
spGauge1->PutPicturesName(L"`Layer` + str(value + 1) + `.png`");
spGauge1->GetLayers()->PutCount(5);
spGauge1->EndUpdate();

C++ Builder

Gauge1->BeginUpdate();
Gauge1->PicturesPath = L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 2";
Gauge1->PicturesName = L"`Layer` + str(value + 1) + `.png`";
Gauge1->Layers->Count = 5;
Gauge1->EndUpdate();

C#

exgauge1.BeginUpdate();
exgauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 2";
exgauge1.PicturesName = "`Layer` + str(value + 1) + `.png`";
exgauge1.Layers.Count = 5;
exgauge1.EndUpdate();

JScript/JavaScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 Gauge1.BeginUpdate();
 Gauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 2";
 Gauge1.PicturesName = "`Layer` + str(value + 1) + `.png`";
 Gauge1.Layers.Count = 5;
 Gauge1.EndUpdate();
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With Gauge1
 .BeginUpdate
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 2"
 .PicturesName = "`Layer` + str(value + 1) + `.png`"
 .Layers.Count = 5
 .EndUpdate
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

axGauge1.BeginUpdate();
axGauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 2";
axGauge1.PicturesName = "`Layer` + str(value + 1) + `.png`";
axGauge1.Layers.Count = 5;
axGauge1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{
 ;

 super();

 exgauge1.BeginUpdate();
 exgauge1.PicturesPath("C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 2");
 exgauge1.PicturesName("`Layer` + str(value + 1) + `.png`");
 exgauge1.Layers().Count(5);
 exgauge1.EndUpdate();
}

Delphi 8 (.NET only)

with AxGauge1 do
begin
 BeginUpdate();
 PicturesPath := 'C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
2';
 PicturesName := '`Layer` + str(value + 1) + `.png`';
 Layers.Count := 5;
 EndUpdate();

end

Delphi (standard)

with Gauge1 do
begin
 BeginUpdate();
 PicturesPath := 'C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
2';
 PicturesName := '`Layer` + str(value + 1) + `.png`';
 Layers.Count := 5;
 EndUpdate();
end

VFP

with thisform.Gauge1
 .BeginUpdate
 .PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
2"
 .PicturesName = "`Layer` + str(value + 1) + `.png`"
 .Layers.Count = 5
 .EndUpdate
endwith

dBASE Plus

local oGauge

oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject
oGauge.BeginUpdate()
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 2"
oGauge.PicturesName = "`Layer` + str(value + 1) + `.png`"
oGauge.Layers.Count = 5
oGauge.EndUpdate()

XBasic (Alpha Five)

Dim oGauge as P

oGauge = topparent:CONTROL_ACTIVEX1.activex
oGauge.BeginUpdate()
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 2"
oGauge.PicturesName = "`Layer` + str(value + 1) + `.png`"
oGauge.Layers.Count = 5
oGauge.EndUpdate()

Visual Objects

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 2"
oDCOCX_Exontrol1:PicturesName := "`Layer` + str(value + 1) + `.png`"
oDCOCX_Exontrol1:Layers:Count := 5
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oGauge

oGauge = ole_1.Object
oGauge.BeginUpdate()
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 2"
oGauge.PicturesName = "`Layer` + str(value + 1) + `.png`"
oGauge.Layers.Count = 5
oGauge.EndUpdate()

Visual DataFlex

Procedure OnCreate

 Forward Send OnCreate
 Send ComBeginUpdate
 Set ComPicturesPath to "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 2"
 Set ComPicturesName to "`Layer` + str(value + 1) + `.png`"
 Variant voLayers
 Get ComLayers to voLayers
 Handle hoLayers
 Get Create (RefClass(cComLayers)) to hoLayers
 Set pvComObject of hoLayers to voLayers
 Set ComCount of hoLayers to 5
 Send Destroy to hoLayers
 Send ComEndUpdate
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oGauge

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oGauge := XbpActiveXControl():new(oForm:drawingArea)
 oGauge:CLSID := "Exontrol.Gauge.1" /*{91628F12-393C-44EF-A558-
83ED1790AAD3}*/
 oGauge:create(,, {10,60},{610,370})

 oGauge:BeginUpdate()
 oGauge:PicturesPath := "C:\Program

Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 2"
 oGauge:PicturesName := "`Layer` + str(value + 1) + `.png`"
 oGauge:Layers():Count := 5
 oGauge:EndUpdate()

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property Layers.Item (Key as Variant) as Layer
Returns a specific Layer of the Layers collection.

Type Description

Key as Variant
A long expression that indicates the index of the layer to
be requested, or any other value that indicates the key of
the layer.

Layer A Layer object being requested.

The Item property of the Layers collection accesses a Layer giving its index or key. The
Index property is read-only and zero-based, which indicates that the layer with the Index
property 0, it is the first layer, while the layer with the index Count - 1, is the last layer in the
control (in z-order). The Background object holds pictures to be shown on the layer's
background. The Foreground property of the Layer access the layer's Foreground object.
The for each statement can be used to enumerate Layer objects in the Layers cllection.

The following properties can be used to access Layer objects in the control:

Item property, gives the Layer object based on its index / key. The Count property
specifies the number of layers within the control
VisibleItem property, gives the visible layer based on its position. The VisibleCount
property indicates the number of visible layers within the control. The Visible property
shows or hides the layer. The ShowLayers property indicates the only layers to be
shown on the control.

The following properties can be used to add layers within the control:

Count property, adds layers to the control
Add method, adds a new layer to the control.

The following properties can be used to remove layers within the control:

Count property, removes layers from the control. For instance, Count property on 0,
removes all layers from the control.
Clear removes all layers from the control.
Remove method, removes a layer from the control based on its index or key.

method Layers.Remove (Key as Variant)
Removes a specific member from the Layers collection.

Type Description

Key as Variant
A Long expression that specifies the index of the layer to
be removed, or any other value to specify the key of the
layer to be removed.

The Remove method removes a layer from the control based on its index or key. The Clear
removes all layers from the control. The Count property specifies the number of layers in
the control. The PicturesPath Specifies the path to load the pictures from. The
PicturesName property specifies the expression that indicates the name of the picture to be
loaded on each layer. The Item property of the Layers collection accesses a Layer giving
its index or key. The Index property is read-only and zero-based, which indicates that the
layer with the Index property 0, it is the first layer, while the layer with the index Count - 1,
is the last layer in the control (in z-order). The Background object holds pictures to be
shown on the layer's background. The Foreground property of the Layer access the layer's
Foreground object. The for each statement can be used to enumerate Layer objects in the
Layers collection.

The following properties can be used to remove layers within the control:

Count property, adds / removes layers to / from the control. For instance, Count
property on 0, removes all layers from the control.
Clear removes all layers from the control.
Remove method, removes a layer from the control based on its index or key.

The following properties can be used to access Layer objects in the control:

Item property, gives the Layer object based on its index / key. The Count property
specifies the number of layers within the control
VisibleItem property, gives the visible layer based on its position. The VisibleCount
property indicates the number of visible layers within the control. The Visible property
shows or hides the layer. The ShowLayers property indicates the only layers to be
shown on the control.

property Layers.VisibleCount as Long
Specifies the number of visible layers.

Type Description

Long A Long expression that specifies the number of visible
layers.

The VisibleCount property indicates the number of visible layers within the control. The
VisibleItem property gives the visible layer based on its position. The Visible property
shows or hides the layer. The ShowLayers property indicates the only layers to be shown
on the control. The Item property of the Layers collection accesses a Layer giving its index
or key. The Index property is read-only and zero-based, which indicates that the layer with
the Index property 0, it is the first layer, while the layer with the index Count - 1, is the last
layer in the control (in z-order). The Background object holds pictures to be shown on the
layer's background. The Foreground property of the Layer access the layer's Foreground
object. The for each statement can be used to enumerate Layer objects in the Layers
cllection.

The following properties can be used to access Layer objects in the control:

Item property, gives the Layer object based on its index / key. The Count property
specifies the number of layers within the control
VisibleItem property, gives the visible layer based on its position. The VisibleCount
property indicates the number of visible layers within the control. The Visible property
shows or hides the layer. The ShowLayers property indicates the only layers to be
shown on the control.

The following properties can be used to add layers within the control:

Count property, adds layers to the control
Add method, adds a new layer to the control.

The following properties can be used to remove layers within the control:

Count property, removes layers from the control. For instance, Count property on 0,
removes all layers from the control.
Clear removes all layers from the control.
Remove method, removes a layer from the control based on its index or key.

property Layers.VisibleItem (Position as Long) as Layer
Returns the visible Layer of the Layers collection, based on its position.

Type Description

Position as Long A long expression that specifies the position of the visible
layer. The value should be between 0 and VisibleCount - 1

Layer A Layer object that specifies the visible layer object

The VisibleItem property gives the visible layer based on its position. The VisibleCount
property indicates the number of visible layers within the control. The Visible property
shows or hides the layer. The ShowLayers property indicates the only layers to be shown
on the control. The Item property of the Layers collection accesses a Layer giving its index
or key. The Index property is read-only and zero-based, which indicates that the layer with
the Index property 0, it is the first layer, while the layer with the index Count - 1, is the last
layer in the control (in z-order). The Background object holds pictures to be shown on the
layer's background. The Foreground property of the Layer access the layer's Foreground
object. The for each statement can be used to enumerate Layer objects in the Layers
cllection.

The following properties can be used to access Layer objects in the control:

Item property, gives the Layer object based on its index / key. The Count property
specifies the number of layers within the control
VisibleItem property, gives the visible layer based on its position. The VisibleCount
property indicates the number of visible layers within the control. The Visible property
shows or hides the layer. The ShowLayers property indicates the only layers to be
shown on the control.

The following properties can be used to add layers within the control:

Count property, adds layers to the control
Add method, adds a new layer to the control.

The following properties can be used to remove layers within the control:

Count property, removes layers from the control. For instance, Count property on 0,
removes all layers from the control.
Clear removes all layers from the control.
Remove method, removes a layer from the control based on its index or key.

LColor object
The LColor object holds information about a solid / EBN color to be shown on the layer's
background. The Picture / ExtraPicture property should be used to place a picture on the
layer's background.

The following screen shot shows a layer with solid red color:

The LColor object supports the following properties and methods:

Name Description

Selectable Returns or sets a value that indicates whether the color is
selectable.

Value Indicates the solid color/visual appearance to be shown on
the layer's background.

Visible Specifies if the color is visible or hidden.

property LColor.Selectable as Boolean
Returns or sets a value that indicates whether the color is selectable.

Type Description

Boolean A Boolean expression that specifies whether the color on
the layer's background is selectable.

By default, the Selectable property is True, so the user can select the layer if the cursor
hovers the solid color. The Selectable property specifies whether the color on the layer's
background is selectable. You can use the Grayscale property to show the entire layer in
gray scale (disable state). Use the Value property to specify a solid / EBN color to be
applied on the layer's background. For instance, you can use Selectable property on False,
to prevent selecting the layer when the user selects the portion of the layer that displays the
solid color. The Selectable property of the Background object, affects all the pictures /
colors being shown on the layer's background.

The solid / EBN color is applied on the layer's background if both of the following:

Visible property is True
Value property is different than -1 value

are accomplished.

property LColor.Value as Color
Indicates the solid color/visual appearance to be shown on the layer's background.

Type Description

Color

A Color expression that specifies the solid / EBN color to
be shown on the layer's background. The last 7 bits in the
high significant byte of the color indicates the identifier of
the skin being used. Use the Add method to add new skins
to the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits
in the high significant byte of the color being applied to the
background's part.

By default, Value property is -1, which indicates that the layer's background is transparent (
no effect). Use the Value property to specify a solid / EBN color to be applied on the
layer's background. The Visible property specifies whether the color is applied on the
layer's background. The Picture / ExtraPicture property should be used to place a picture
on the layer's background.

The solid / EBN color is applied on the layer's background if both of the following:

Visible property is True
Value property is different than -1 value

are accomplished.

The following properties can be used to move / resize the layer:

Left, specifies the expression relative to the view, to determine the x-position to show
the current layer on the control.
Top, specifies the expression relative to the view, to determine the y-position to show
the current layer on the control.
Width, specifies the expression relative to the view, to determine the width to show the
current layer on the control.
Height, specifies the expression relative to the view, to determine the height to show
the current layer on the control.

You can use the following properties to offset the view (background + foreground) inside
the layer:

OffsetX, gets or sets a value that indicates x-offset of the layer.
OffsetY, gets or sets a value that indicates y-offset of the layer.

The following screen shot shows a layer with solid red color:

And if we decompose the layers we get:

The following samples show how you can apply a solid color to be display on left-half of the
layer after the first visible layer:

VBA (MS Access, Excell...)

With Gauge1
 .BeginUpdate
 .PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
1"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5
 With .Layers.Add("Solid")
 .Position = 1
 .Width = "width/2"
 .Background.Color.Value = RGB(255,0,0)
 End With
 .EndUpdate
End With

VB6

With Gauge1
 .BeginUpdate
 .PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
1"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5
 With .Layers.Add("Solid")
 .Position = 1
 .Width = "width/2"
 .Background.Color.Value = RGB(255,0,0)
 End With
 .EndUpdate
End With

VB.NET

With Exgauge1
 .BeginUpdate()

 .PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
1"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5
 With .Layers.Add("Solid")
 .Position = 1
 .Width = "width/2"
 .Background.Color.Value = Color.FromArgb(255,0,0)
 End With
 .EndUpdate()
End With

VB.NET for /COM

With AxGauge1
 .BeginUpdate()
 .PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
1"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5
 With .Layers.Add("Solid")
 .Position = 1
 .Width = "width/2"
 .Background.Color.Value = RGB(255,0,0)
 End With
 .EndUpdate()
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXGAUGELib' for the library: 'ExGauge 1.0 Control
Library'

 #import <ExGauge.dll>
 using namespace EXGAUGELib;
*/

EXGAUGELib::IGaugePtr spGauge1 = GetDlgItem(IDC_GAUGE1)-
>GetControlUnknown();
spGauge1->BeginUpdate();
spGauge1->PutPicturesPath(L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 1");
spGauge1->PutPicturesName(L"`Layer` + int(value + 1) + `.png`");
spGauge1->GetLayers()->PutCount(5);
EXGAUGELib::ILayerPtr var_Layer = spGauge1->GetLayers()->Add("Solid");
 var_Layer->PutPosition(1);
 var_Layer->PutWidth(L"width/2");
 var_Layer->GetBackground()->GetColor()->PutValue(RGB(255,0,0));
spGauge1->EndUpdate();

C++ Builder

Gauge1->BeginUpdate();
Gauge1->PicturesPath = L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 1";
Gauge1->PicturesName = L"`Layer` + int(value + 1) + `.png`";
Gauge1->Layers->Count = 5;
Exgaugelib_tlb::ILayerPtr var_Layer = Gauge1->Layers->Add(TVariant("Solid"));
 var_Layer->Position = 1;
 var_Layer->Width = L"width/2";
 var_Layer->Background->Color->Value = RGB(255,0,0);
Gauge1->EndUpdate();

C#

exgauge1.BeginUpdate();
exgauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 1";
exgauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
exgauge1.Layers.Count = 5;
exontrol.EXGAUGELib.Layer var_Layer = exgauge1.Layers.Add("Solid");
 var_Layer.Position = 1;
 var_Layer.Width = "width/2";

 var_Layer.Background.Color.Value = Color.FromArgb(255,0,0);
exgauge1.EndUpdate();

JScript/JavaScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 Gauge1.BeginUpdate();
 Gauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 1";
 Gauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
 Gauge1.Layers.Count = 5;
 var var_Layer = Gauge1.Layers.Add("Solid");
 var_Layer.Position = 1;
 var_Layer.Width = "width/2";
 var_Layer.Background.Color.Value = 255;
 Gauge1.EndUpdate();
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With Gauge1
 .BeginUpdate

 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 1"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5
 With .Layers.Add("Solid")
 .Position = 1
 .Width = "width/2"
 .Background.Color.Value = RGB(255,0,0)
 End With
 .EndUpdate
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

axGauge1.BeginUpdate();
axGauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 1";
axGauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
axGauge1.Layers.Count = 5;
EXGAUGELib.Layer var_Layer = axGauge1.Layers.Add("Solid");
 var_Layer.Position = 1;
 var_Layer.Width = "width/2";
 var_Layer.Background.Color.Value =
(uint)ColorTranslator.ToWin32(Color.FromArgb(255,0,0));
axGauge1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Background,com_Color,com_Layer;
 anytype var_Background,var_Color,var_Layer;
 ;

 super();

 exgauge1.BeginUpdate();
 exgauge1.PicturesPath("C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob 1");
 exgauge1.PicturesName("`Layer` + int(value + 1) + `.png`");
 exgauge1.Layers().Count(5);
 var_Layer = COM::createFromObject(exgauge1.Layers()).Add("Solid"); com_Layer =
var_Layer;
 com_Layer.Position(1);
 com_Layer.Width("width/2");
 var_Background = COM::createFromObject(com_Layer.Background());
com_Background = var_Background;
 var_Color = COM::createFromObject(com_Background).Color(); com_Color =
var_Color;
 com_Color.Value(WinApi::RGB2int(255,0,0));
 exgauge1.EndUpdate();
}

Delphi 8 (.NET only)

with AxGauge1 do
begin
 BeginUpdate();
 PicturesPath := 'C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
1';
 PicturesName := '`Layer` + int(value + 1) + `.png`';
 Layers.Count := 5;
 with Layers.Add('Solid') do
 begin
 Position := 1;
 Width := 'width/2';
 Background.Color.Value := $ff;
 end;
 EndUpdate();
end

Delphi (standard)

with Gauge1 do
begin
 BeginUpdate();
 PicturesPath := 'C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
1';
 PicturesName := '`Layer` + int(value + 1) + `.png`';
 Layers.Count := 5;
 with Layers.Add('Solid') do
 begin
 Position := 1;
 Width := 'width/2';
 Background.Color.Value := $ff;
 end;
 EndUpdate();
end

VFP

with thisform.Gauge1
 .BeginUpdate
 .PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob
1"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 5
 with .Layers.Add("Solid")
 .Position = 1
 .Width = "width/2"
 .Background.Color.Value = RGB(255,0,0)
 endwith
 .EndUpdate
endwith

dBASE Plus

local oGauge,var_Layer

oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject
oGauge.BeginUpdate()
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 1"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 5
var_Layer = oGauge.Layers.Add("Solid")
 var_Layer.Position = 1
 var_Layer.Width = "width/2"
 var_Layer.Background.Color.Value = 0xff
oGauge.EndUpdate()

XBasic (Alpha Five)

Dim oGauge as P
Dim var_Layer as P

oGauge = topparent:CONTROL_ACTIVEX1.activex
oGauge.BeginUpdate()
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 1"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 5
var_Layer = oGauge.Layers.Add("Solid")
 var_Layer.Position = 1
 var_Layer.Width = "width/2"
 var_Layer.Background.Color.Value = 255
oGauge.EndUpdate()

Visual Objects

local var_Layer as ILayer

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 1"

oDCOCX_Exontrol1:PicturesName := "`Layer` + int(value + 1) + `.png`"
oDCOCX_Exontrol1:Layers:Count := 5
var_Layer := oDCOCX_Exontrol1:Layers:Add("Solid")
 var_Layer:Position := 1
 var_Layer:Width := "width/2"
 var_Layer:Background:Color:Value := RGB(255,0,0)
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oGauge,var_Layer

oGauge = ole_1.Object
oGauge.BeginUpdate()
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 1"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 5
var_Layer = oGauge.Layers.Add("Solid")
 var_Layer.Position = 1
 var_Layer.Width = "width/2"
 var_Layer.Background.Color.Value = RGB(255,0,0)
oGauge.EndUpdate()

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Send ComBeginUpdate
 Set ComPicturesPath to "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 1"
 Set ComPicturesName to "`Layer` + int(value + 1) + `.png`"
 Variant voLayers
 Get ComLayers to voLayers
 Handle hoLayers
 Get Create (RefClass(cComLayers)) to hoLayers

 Set pvComObject of hoLayers to voLayers
 Set ComCount of hoLayers to 5
 Send Destroy to hoLayers
 Variant voLayers1
 Get ComLayers to voLayers1
 Handle hoLayers1
 Get Create (RefClass(cComLayers)) to hoLayers1
 Set pvComObject of hoLayers1 to voLayers1
 Variant voLayer
 Get ComAdd of hoLayers1 "Solid" to voLayer
 Handle hoLayer
 Get Create (RefClass(cComLayer)) to hoLayer
 Set pvComObject of hoLayer to voLayer
 Set ComPosition of hoLayer to 1
 Set ComWidth of hoLayer to "width/2"
 Variant voBackground
 Get ComBackground of hoLayer to voBackground
 Handle hoBackground
 Get Create (RefClass(cComBackground)) to hoBackground
 Set pvComObject of hoBackground to voBackground
 Variant voColor
 Get ComColor of hoBackground to voColor
 Handle hoColor
 Get Create (RefClass(cComColor)) to hoColor
 Set pvComObject of hoColor to voColor
 Set ComValue of hoColor to (RGB(255,0,0))
 Send Destroy to hoColor
 Send Destroy to hoBackground
 Send Destroy to hoLayer
 Send Destroy to hoLayers1
 Send ComEndUpdate
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oGauge
 LOCAL oLayer

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oGauge := XbpActiveXControl():new(oForm:drawingArea)
 oGauge:CLSID := "Exontrol.Gauge.1" /*{91628F12-393C-44EF-A558-
83ED1790AAD3}*/
 oGauge:create(,, {10,60},{610,370})

 oGauge:BeginUpdate()
 oGauge:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob 1"
 oGauge:PicturesName := "`Layer` + int(value + 1) + `.png`"
 oGauge:Layers():Count := 5
 oLayer := oGauge:Layers():Add("Solid")
 oLayer:Position := 1
 oLayer:Width := "width/2"
 oLayer:Background():Color():SetProperty("Value",AutomationTranslateColor(
GraMakeRGBColor ({ 255,0,0 }) , .F.))
 oGauge:EndUpdate()

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property LColor.Visible as Boolean
Specifies if the color is visible or hidden.

Type Description

Boolean A Boolean expression that specifies whether the color is
applied on the layer's background.

By default, the Visible property is True, so the color is applied on the layer's background.
Use the Value property to specify a solid / EBN color to be applied on the layer's
background. For instance, you can use Visible property on False, to prevent showing the
solid color on the layer's background. The Selectable property specifies whether the color
on the layer's background is selectable. The Visible property of the Background object,
affects all the pictures / colors being shown on the layer's background.

The solid / EBN color is applied on the layer's background if both of the following:

Visible property is True
Value property is different than -1 value

are accomplished.

LPicture object
The LPicture object holds a picture to be displayed on the layer's background. The Layer's
background can display unlimited graphics of different sizes and positions. The Picture /
ExtraPicture property adds a picture on the layer's background.

For instance, having the following files in the folder C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Clock,

By loading each picture on a layer, we get something like:

The LPicture object supports the following properties and methods:

Name Description

DisplayAs Retrieves or sets a value that indicates the way how the
graphic is displayed on the layer's background.

Height
Specifies the expression relative to the view/current
picture, to determine the height to show the current picture
on the background.

Left
Specifies the expression relative to the view/current
picture, to determine the x-position to show the current
picture on the background.

Name Indicates the picture to be shown on the layer's
background.

Opaque Indicates if the picture is opaque or transparent.

Selectable Returns or sets a value that indicates whether the picture
is selectable.

Top
Specifies the expression relative to the view/current
picture, to determine the y-position to show the current
picture on the background.

TransparentColorFrom Specifies the transparent color to define transparency part
of the current picture (to).

TransparentColorTo Specifies the transparent color to define transparency part
of the current picture (to).

Value Indicates the picture to be shown on the layer's
background.

Visible Specifies if the picture is shown or hidden on the layer's
background.

Width
Specifies the expression relative to the view/current
picture, to determine the width to show the current picture
on the background.

property LPicture.DisplayAs as PictureDisplayEnum
Retrieves or sets a value that indicates the way how the graphic is displayed on the layer's
background.

Type Description

PictureDisplayEnum A PictureDisplayEnum expression that indicates the way
how the graphic is displayed on the layer's background.

By default, the DisplayAs property is Stretch, that specifies that the picture is stretched on
the layer's background. Use the DisplayAs property to specify a different the way how the
graphic is displayed on the layer's background.

The following properties determines the position / size of the layer:

Left, specifies the expression relative to the view, to determine the x-position to show
the current layer on the control.
Top, specifies the expression relative to the view, to determine the y-position to show
the current layer on the control.
Width, specifies the expression relative to the view, to determine the width to show the
current layer on the control.
Height, specifies the expression relative to the view, to determine the height to show
the current layer on the control.

You can use the following properties to offset the view (background + foreground) inside
the layer:

OffsetX, gets or sets a value that indicates x-offset of the layer.
OffsetY, gets or sets a value that indicates y-offset of the layer.

The following properties can be used to move / resize the picture on the layer's
background:

DisplayAs, retrieves or sets a value that indicates the way how the graphic is displayed
on the layer's background.
Left, specifies the expression relative to the view/current picture, to determine the x-
position to show the current picture on the background.
Top, specifies the expression relative to the view/current picture, to determine the y-
position to show the current picture on the background.
Width, specifies the expression relative to the view/current picture, to determine the
width to show the current picture on the background.
Height, specifies the expression relative to the view/current picture, to determine the
height to show the current picture on the background.

property LPicture.Height as String
Specifies the expression relative to the view/current picture, to determine the height to show
the current picture on the background.

Type Description

String
A String value that defines the expression relative to the
view/current picture, to determine the height to show the
current picture on the background.

By default, the Height property is "height", which specifies the height in pixels of the layer
where the picture is displayed. You can use the Height property of the LPicture object to
show the picture with a different height. The LayerAutoSize property resizes all layers
based on the picture of the first layer.

The following properties can be used to move / resize the picture on the layer's
background:

DisplayAs, retrieves or sets a value that indicates the way how the graphic is displayed
on the layer's background.
Left, specifies the expression relative to the view/current picture, to determine the x-
position to show the current picture on the background.
Top, specifies the expression relative to the view/current picture, to determine the y-
position to show the current picture on the background.
Width, specifies the expression relative to the view/current picture, to determine the
width to show the current picture on the background.
Height, specifies the expression relative to the view/current picture, to determine the
height to show the current picture on the background.

The following properties determines the position / size / offset of the layer:

Left, specifies the expression relative to the view, to determine the x-position to show
the current layer on the control.
Top, specifies the expression relative to the view, to determine the y-position to show
the current layer on the control.
Width, specifies the expression relative to the view, to determine the width to show the
current layer on the control.
Height, specifies the expression relative to the view, to determine the height to show
the current layer on the control.

You can use the following properties to offset the view (background + foreground) inside
the layer:

OffsetX, gets or sets a value that indicates x-offset of the layer.

OffsetY, gets or sets a value that indicates y-offset of the layer.

For instance, the following sample shows the picture on a size of 64,64 in the center of the
layer:

With .Background.Picture
 .Width = "64"
 .Height = "64"
 .Left = "(width - 64)/2"
 .Top = "(height - 64)/2"
End With

The Height property supports the following keywords:

pwidth, specifies the width in pixels of the picture object
pheight, specifies the height in pixels of the picture object
width, specifies the width in pixels of the layer where the picture is displayed.
height, specifies the height in pixels of the layer where the picture is displayed.

The Height property supports the following constants, operators and functions:

The constants are (DPI-Aware components):

dpi (DPI constant), specifies the current DPI setting. and it indicates the minimum
value between dpix and dpiy constants. For instance, if current DPI setting is 100%,
the dpi constant returns 1, if 150% it returns 1.5, and so on. For instance, the
expression value * dpi returns the value if the DPI setting is 100%, or value * 1.5 in
case, the DPI setting is 150%
dpix (DPIX constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpix constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpix returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%
dpiy (DPIY constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpiy constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpiy returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is

of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported binary range operators, all these with the same priority 5, are :

MIN (min operator), indicates the minimum value, so a MIN b returns the value of a, if
it is less than b, else it returns b. For instance, the expression value MIN 10 returns
always a value greater than 10.
MAX (max operator), indicates the maximum value, so a MAX b returns the value of
a, if it is greater than b, else it returns b. For instance, the expression value MAX 100
returns always a value less than 100.

The supported binary operators, all these with the same priority 0, are :

:= (Store operator), stores the result of expression to variable. The syntax for :=
operator is

variable := expression

where variable is a integer between 0 and 9. You can use the =: operator to restore
any stored variable (please make the difference between := and =:). For instance,
(0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and prints zero
if it is 0, else the converted number. Please pay attention that the := and =: are two
distinct operators, the first for storing the result into a variable, while the second for
restoring the variable

=: (Restore operator), restores the giving variable (previously saved using the store
operator). The syntax for =: operator is

=: variable

where variable is a integer between 0 and 9. You can use the := operator to store the
value of any expression (please make the difference between := and =:). For
instance, (0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and
prints zero if it is 0, else the converted number. Please pay attention that the := and =:
are two distinct operators, the first for storing the result into a variable, while the
second for restoring the variable

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for ? operator is

expression ? true_part : false_part

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the %0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found') returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

expression array (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D') is equivalent with month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D').

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

expression in (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the value in (11,22,33,44,13) is equivalent with
(expression = 11) or (expression = 22) or (expression = 33) or (expression = 44) or
(expression = 13). The in operator is not a time consuming as the equivalent or version
is, so when you have large number of constant elements it is recommended using the
in operator. Shortly, if the collection of elements has 1000 elements the in operator
could take up to 8 operations in order to find if an element fits the set, else if the or
statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

expression switch (default,c1,c2,c3,...,cn)

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the %0 switch ('not found',1,4,7,9,11) gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

expression case ([default : default_expression ;] c1 : expression1 ; c2 : expression2
; c3 : expression3 ;....)

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1) indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or

hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8) statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions. Obviously, the priority of the operations inside the expression is
determined by () parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%1) = 8
specifies the cells (on the column 1) that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string. The str operator converts the
expression to a string. For instance, the str(-12.54) returns the string "-12.54".
dbl (unary operator) converts the expression to a number. The dbl operator converts
the expression to a number. For instance, the dbl("12.54") returns 12.54

date (unary operator) converts the expression to a date, based on your regional
settings. For instance, the date(``) gets the current date (no time included), the
date(`now`) gets the current date-time, while the date("01/01/2001") returns
#1/1/2001#
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS. For instance, the dateS("01/01/2001 14:00:00") returns
#1/1/2001 14:00:00#

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number. For instance, the
int(12.54) returns 12
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2. For
instance, the round(12.54) returns 13
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument. For instance, the floor(12.54) returns 12
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2.
For instance, the abs(-12.54) returns 12.54
sin (unary operator) returns the sine of an angle of x radians. For instance, the
sin(3.14) returns 0.001593.
cos (unary operator) returns the cosine of an angle of x radians. For instance, the
cos(3.14) returns -0.999999.
asin (unary operator) returns the principal value of the arc sine of x, expressed in
radians. For instance, the 2*asin(1) returns the value of PI.
acos (unary operator) returns the principal value of the arc cosine of x, expressed in
radians. For instance, the 2*acos(0) returns the value of PI
sqrt (unary operator) returns the square root of x. For instance, the sqrt(81) returns 9.
currency (unary operator) formats the giving number as a currency string, as indicated
by the control panel. For instance, currency(value) displays the value using the current
format for the currency ie, 1000 gets displayed as $1,000.00, for US format.
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string. For instance, the
len("Mihai") returns 5.
lower (unary operator) returns a string expression in lowercase letters. For instance,
the lower("MIHAI") returns "mihai"
upper (unary operator) returns a string expression in uppercase letters. For instance,
the upper("mihai") returns "MIHAI"
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names. For instance, the proper("mihai") returns "Mihai"
ltrim (unary operator) removes spaces on the left side of a string. For instance, the
ltrim(" mihai") returns "mihai"
rtrim (unary operator) removes spaces on the right side of a string. For instance, the
rtrim("mihai ") returns "mihai"
trim (unary operator) removes spaces on both sides of a string. For instance, the

trim(" mihai ") returns "mihai"
reverse (unary operator) reverses the order of the characters in the string a. For
instance, the reverse("Mihai") returns "iahiM"
startwith (binary operator) specifies whether a string starts with specified string (0 if
not found, -1 if found). For instance "Mihai" startwith "Mi" returns -1
endwith (binary operator) specifies whether a string ends with specified string (0 if
not found, -1 if found). For instance "Mihai" endwith "ai" returns -1
contains (binary operator) specifies whether a string contains another specified string
(0 if not found, -1 if found). For instance "Mihai" contains "ha" returns -1
left (binary operator) retrieves the left part of the string. For instance "Mihai" left 2
returns "Mi".
right (binary operator) retrieves the right part of the string. For instance "Mihai" right 2
returns "ai"
a lfind b (binary operator) The a lfind b (binary operator) searches the first occurrence
of the string b within string a, and returns -1 if not found, or the position of the result (
zero-index). For instance "ABCABC" lfind "C" returns 2
a rfind b (binary operator) The a rfind b (binary operator) searches the last
occurrence of the string b within string a, and returns -1 if not found, or the position of
the result (zero-index). For instance "ABCABC" rfind "C" returns 5.
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on). For instance "Mihai" mid 2 returns "ihai"
a count b (binary operator) retrieves the number of occurrences of the b in a. For
instance "Mihai" count "i" returns 2.
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result. For instance, the "Mihai" replace "i" with "" returns "Mha" string, as it replaces
all "i" with nothing.
a split b, splits the a using the separator b, and returns an array. For instance, the
weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' ' gets the weekday as
string. This operator can be used with the array.

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel. For instance, the time(#1/1/2001 13:00#) returns "1:00:00 PM"
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance, the timeF(#1/1/2001 13:00#) returns "13:00:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel. For instance, the shortdate(#1/1/2001
13:00#) returns "1/1/2001"
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance, the shortdateF(#1/1/2001 13:00#) returns
"01/01/2001"

dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format. For instance, the dateF(#01/01/2001 14:00:00#)
returns #01/01/2001 14:00:00#
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel. For instance, the longdate(#1/1/2001 13:00#)
returns "Monday, January 01, 2001"
year (unary operator) retrieves the year of the date (100,...,9999). For instance, the
year(#12/31/1971 13:14:15#) returns 1971
month (unary operator) retrieves the month of the date (1, 2,...,12). For instance, the
month(#12/31/1971 13:14:15#) returns 12.
day (unary operator) retrieves the day of the date (1, 2,...,31). For instance, the
day(#12/31/1971 13:14:15#) returns 31
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365). For instance, the yearday(#12/31/1971 13:14:15#) returns
365
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday). For instance, the weekday(#12/31/1971 13:14:15#) returns
5.
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23). For instance, the
hour(#12/31/1971 13:14:15#) returns 13
min (unary operator) retrieves the minute of the date (0, 1, ..., 59). For instance, the
min(#12/31/1971 13:14:15#) returns 14
sec (unary operator) retrieves the second of the date (0, 1, ..., 59). For instance, the
sec(#12/31/1971 13:14:15#) returns 15

The Exontrol's eXPression component is a syntax-editor that helps you to define, view, edit
and evaluate expressions. Using the eXPression component you can easily view or check if
the expression you have used is syntactically correct, and you can evaluate what is the
result you get giving different values to be tested. The Exontrol's eXPression component
can be used as an user-editor, to configure your applications.

https://exontrol.com/expression.jsp

property LPicture.Left as String
Specifies the expression relative to the view/current picture, to determine the x-position to
show the current picture on the background.

Type Description

String
A String value that defines the expression relative to the
view/current picture, to determine the x-position to show
the current picture on the background.

By default, the Left property is "0". You can use the Left property of the LPicture object to
show the picture moved to the left or to the right.

The following properties can be used to move / resize the picture on the layer's
background:

DisplayAs, retrieves or sets a value that indicates the way how the graphic is displayed
on the layer's background.
Left, specifies the expression relative to the view/current picture, to determine the x-
position to show the current picture on the background.
Top, specifies the expression relative to the view/current picture, to determine the y-
position to show the current picture on the background.
Width, specifies the expression relative to the view/current picture, to determine the
width to show the current picture on the background.
Height, specifies the expression relative to the view/current picture, to determine the
height to show the current picture on the background.

The following properties determines the position / size / offset of the layer:

Left, specifies the expression relative to the view, to determine the x-position to show
the current layer on the control.
Top, specifies the expression relative to the view, to determine the y-position to show
the current layer on the control.
Width, specifies the expression relative to the view, to determine the width to show the
current layer on the control.
Height, specifies the expression relative to the view, to determine the height to show
the current layer on the control.

You can use the following properties to offset the view (background + foreground) inside
the layer:

OffsetX, gets or sets a value that indicates x-offset of the layer.
OffsetY, gets or sets a value that indicates y-offset of the layer.

For instance, the following sample shows the picture on a size of 64,64 in the center of the
layer:

With .Background.Picture
 .Width = "64"
 .Height = "64"
 .Left = "(width - 64)/2"
 .Top = "(height - 64)/2"
End With

The Left property supports the following keywords:

pwidth, specifies the width in pixels of the picture object
pheight, specifies the height in pixels of the picture object
width, specifies the width in pixels of the layer where the picture is displayed.
height, specifies the height in pixels of the layer where the picture is displayed.

The Left property supports the following constants, operators and functions:

The constants are (DPI-Aware components):

dpi (DPI constant), specifies the current DPI setting. and it indicates the minimum
value between dpix and dpiy constants. For instance, if current DPI setting is 100%,
the dpi constant returns 1, if 150% it returns 1.5, and so on. For instance, the
expression value * dpi returns the value if the DPI setting is 100%, or value * 1.5 in
case, the DPI setting is 150%
dpix (DPIX constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpix constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpix returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%
dpiy (DPIY constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpiy constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpiy returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported binary range operators, all these with the same priority 5, are :

MIN (min operator), indicates the minimum value, so a MIN b returns the value of a, if
it is less than b, else it returns b. For instance, the expression value MIN 10 returns
always a value greater than 10.
MAX (max operator), indicates the maximum value, so a MAX b returns the value of
a, if it is greater than b, else it returns b. For instance, the expression value MAX 100
returns always a value less than 100.

The supported binary operators, all these with the same priority 0, are :

:= (Store operator), stores the result of expression to variable. The syntax for :=
operator is

variable := expression

where variable is a integer between 0 and 9. You can use the =: operator to restore
any stored variable (please make the difference between := and =:). For instance,
(0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and prints zero
if it is 0, else the converted number. Please pay attention that the := and =: are two
distinct operators, the first for storing the result into a variable, while the second for
restoring the variable

=: (Restore operator), restores the giving variable (previously saved using the store
operator). The syntax for =: operator is

=: variable

where variable is a integer between 0 and 9. You can use the := operator to store the
value of any expression (please make the difference between := and =:). For
instance, (0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and
prints zero if it is 0, else the converted number. Please pay attention that the := and =:
are two distinct operators, the first for storing the result into a variable, while the
second for restoring the variable

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for ? operator is

expression ? true_part : false_part

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the %0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found') returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

expression array (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D') is equivalent with month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D').

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

expression in (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the value in (11,22,33,44,13) is equivalent with
(expression = 11) or (expression = 22) or (expression = 33) or (expression = 44) or

(expression = 13). The in operator is not a time consuming as the equivalent or version
is, so when you have large number of constant elements it is recommended using the
in operator. Shortly, if the collection of elements has 1000 elements the in operator
could take up to 8 operations in order to find if an element fits the set, else if the or
statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

expression switch (default,c1,c2,c3,...,cn)

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the %0 switch ('not found',1,4,7,9,11) gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

expression case ([default : default_expression ;] c1 : expression1 ; c2 : expression2
; c3 : expression3 ;....)

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1) indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8) statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions. Obviously, the priority of the operations inside the expression is
determined by () parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%1) = 8
specifies the cells (on the column 1) that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string. The str operator converts the
expression to a string. For instance, the str(-12.54) returns the string "-12.54".
dbl (unary operator) converts the expression to a number. The dbl operator converts
the expression to a number. For instance, the dbl("12.54") returns 12.54
date (unary operator) converts the expression to a date, based on your regional
settings. For instance, the date(``) gets the current date (no time included), the

date(`now`) gets the current date-time, while the date("01/01/2001") returns
#1/1/2001#
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS. For instance, the dateS("01/01/2001 14:00:00") returns
#1/1/2001 14:00:00#

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number. For instance, the
int(12.54) returns 12
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2. For
instance, the round(12.54) returns 13
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument. For instance, the floor(12.54) returns 12
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2.
For instance, the abs(-12.54) returns 12.54
sin (unary operator) returns the sine of an angle of x radians. For instance, the
sin(3.14) returns 0.001593.
cos (unary operator) returns the cosine of an angle of x radians. For instance, the
cos(3.14) returns -0.999999.
asin (unary operator) returns the principal value of the arc sine of x, expressed in
radians. For instance, the 2*asin(1) returns the value of PI.
acos (unary operator) returns the principal value of the arc cosine of x, expressed in
radians. For instance, the 2*acos(0) returns the value of PI
sqrt (unary operator) returns the square root of x. For instance, the sqrt(81) returns 9.
currency (unary operator) formats the giving number as a currency string, as indicated
by the control panel. For instance, currency(value) displays the value using the current
format for the currency ie, 1000 gets displayed as $1,000.00, for US format.
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field

"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string. For instance, the
len("Mihai") returns 5.
lower (unary operator) returns a string expression in lowercase letters. For instance,
the lower("MIHAI") returns "mihai"
upper (unary operator) returns a string expression in uppercase letters. For instance,
the upper("mihai") returns "MIHAI"
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names. For instance, the proper("mihai") returns "Mihai"
ltrim (unary operator) removes spaces on the left side of a string. For instance, the
ltrim(" mihai") returns "mihai"
rtrim (unary operator) removes spaces on the right side of a string. For instance, the
rtrim("mihai ") returns "mihai"
trim (unary operator) removes spaces on both sides of a string. For instance, the
trim(" mihai ") returns "mihai"
reverse (unary operator) reverses the order of the characters in the string a. For
instance, the reverse("Mihai") returns "iahiM"

startwith (binary operator) specifies whether a string starts with specified string (0 if
not found, -1 if found). For instance "Mihai" startwith "Mi" returns -1
endwith (binary operator) specifies whether a string ends with specified string (0 if
not found, -1 if found). For instance "Mihai" endwith "ai" returns -1
contains (binary operator) specifies whether a string contains another specified string
(0 if not found, -1 if found). For instance "Mihai" contains "ha" returns -1
left (binary operator) retrieves the left part of the string. For instance "Mihai" left 2
returns "Mi".
right (binary operator) retrieves the right part of the string. For instance "Mihai" right 2
returns "ai"
a lfind b (binary operator) The a lfind b (binary operator) searches the first occurrence
of the string b within string a, and returns -1 if not found, or the position of the result (
zero-index). For instance "ABCABC" lfind "C" returns 2
a rfind b (binary operator) The a rfind b (binary operator) searches the last
occurrence of the string b within string a, and returns -1 if not found, or the position of
the result (zero-index). For instance "ABCABC" rfind "C" returns 5.
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on). For instance "Mihai" mid 2 returns "ihai"
a count b (binary operator) retrieves the number of occurrences of the b in a. For
instance "Mihai" count "i" returns 2.
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result. For instance, the "Mihai" replace "i" with "" returns "Mha" string, as it replaces
all "i" with nothing.
a split b, splits the a using the separator b, and returns an array. For instance, the
weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' ' gets the weekday as
string. This operator can be used with the array.

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel. For instance, the time(#1/1/2001 13:00#) returns "1:00:00 PM"
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance, the timeF(#1/1/2001 13:00#) returns "13:00:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel. For instance, the shortdate(#1/1/2001
13:00#) returns "1/1/2001"
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance, the shortdateF(#1/1/2001 13:00#) returns
"01/01/2001"
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format. For instance, the dateF(#01/01/2001 14:00:00#)
returns #01/01/2001 14:00:00#

longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel. For instance, the longdate(#1/1/2001 13:00#)
returns "Monday, January 01, 2001"
year (unary operator) retrieves the year of the date (100,...,9999). For instance, the
year(#12/31/1971 13:14:15#) returns 1971
month (unary operator) retrieves the month of the date (1, 2,...,12). For instance, the
month(#12/31/1971 13:14:15#) returns 12.
day (unary operator) retrieves the day of the date (1, 2,...,31). For instance, the
day(#12/31/1971 13:14:15#) returns 31
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365). For instance, the yearday(#12/31/1971 13:14:15#) returns
365
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday). For instance, the weekday(#12/31/1971 13:14:15#) returns
5.
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23). For instance, the
hour(#12/31/1971 13:14:15#) returns 13
min (unary operator) retrieves the minute of the date (0, 1, ..., 59). For instance, the
min(#12/31/1971 13:14:15#) returns 14
sec (unary operator) retrieves the second of the date (0, 1, ..., 59). For instance, the
sec(#12/31/1971 13:14:15#) returns 15

The Exontrol's eXPression component is a syntax-editor that helps you to define, view, edit
and evaluate expressions. Using the eXPression component you can easily view or check if
the expression you have used is syntactically correct, and you can evaluate what is the
result you get giving different values to be tested. The Exontrol's eXPression component
can be used as an user-editor, to configure your applications.

https://exontrol.com/expression.jsp

property LPicture.Name as Variant
Indicates the picture to be shown on the layer's background.

Type Description

Variant

The Name property could be one of the following:

A String expression indicates:
a name of a picture file in the PicturePath folder.
For instance, Name = "Layer1.png", loads the
Layer1.png file if found in the PicturePath folder.
a picture file including its absolute path. For
instance, Name = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob\Layer1.png",
loads the Layer1.png file from absolute path
a key of the HTML picture, previously loaded by
the HTMLPicture method. For instance, Name =
"pic1", loads the HTML picture with the key pic1,
so the pic1 should be load previously with a
HTMLPicture call like HTMLPicture("pic1") =
"C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob\Layer1.png"
an encode BASE64 string of a picture file. The
Exontrol's ExImages Tool encode/decode
BASE64 strings from/to pictures. In this case, the
string starts with "gB..", "gC.." and so on.

A Picture object that indicates the picture to be
displayed. For instance, Name =
LoadPicture("picture.jpg")

By default, the Name / Value property is initialized by evaluating the control's PicturesName
property, whose value keyword is replaced by the Index of the current layer. The Name /
Value property are equivalents, so use any of them do the same.

The control supports almost all type of pictures like

PNG (Portable Network Graphics) is a raster graphics file format that supports
lossless data compression. PNG was created as an improved, non-patented
replacement for Graphics Interchange Format (GIF), and is the most used lossless
image compression format on the Internet
BMP file format, also known as bitmap image file or device independent bitmap (DIB)
file format or simply a bitmap, is a raster graphics image file format used to store

https://exontrol.com/eximages.jsp

bitmap digital images, independently of the display device (such as a graphics adapter)
JPEG file format (seen most often with the .jpg extension) is a commonly used method
of lossy compression for digital images, particularly for those images produced by
digital photography.
GIF (Graphics Interchange Format) is a bitmap image format that was introduced by
CompuServe in 1987 and has since come into widespread usage on the World Wide
Web due to its wide support and portability.
TIFF (Tagged Image File Format) is a computer file format for storing raster graphics
images, popular among graphic artists, the publishing industry, and both amateur and
professional photographers in general.

If using the PNG format, the control handles automatically its transparency / alpha blending,
unless the Opaque property is True. For any other picture type, you can use any of the
following to define the transparent region of the picture:

TransparentColorFrom, specifies the transparent color to define transparency part of
the current picture (to).
TransparentColorTo, specifies the transparent color to define transparency part of the
current picture (to).

The picture is displayed on the layer's background if both of the following:

Visible property is True
Name / Value property points to a valid picture

are accomplished.

The following properties can be used to load / import (manually or automatically) pictures
to the layer's background:

PicturesPath property, specifies the path to load pictures from.
PicturesName property, specifies the expression that defines the name of the file from
the PicturesPath folder to be loaded.
Picture.Name / Picture.Value property of the Background.Picture object, defines the
name of the file to be loaded (relative, absolute, encoded or Picture object)

The PicturesPath / PicturesName properties can be used to automatically loads files from
a specified folder to be displayed on the layer's background.

For instance,

PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob",
defines default folder to load pictures from.
PicturesName = "`Layer` + str(value + 1) + `.png`", defines the name of the picture file

to be loaded by the layer with the index / value. It defines the names as: Layer1.png
for the layer with the index 0, Layer2.png for the layer with the index 1, Layer3.png for
the layer with the index 2, and so on.

The Picture.Name / Picture.Value property of the Picture object loads a picture / graphics to
be displayed on the layer's background.

The following properties can be used to move / resize the picture on the layer's
background:

DisplayAs, retrieves or sets a value that indicates the way how the graphic is displayed
on the layer's background.
Left, specifies the expression relative to the view/current picture, to determine the x-
position to show the current picture on the background.
Top, specifies the expression relative to the view/current picture, to determine the y-
position to show the current picture on the background.
Width, specifies the expression relative to the view/current picture, to determine the
width to show the current picture on the background.
Height, specifies the expression relative to the view/current picture, to determine the
height to show the current picture on the background.

property LPicture.Opaque as Boolean
Indicates if the picture is opaque or transparent.

Type Description

Boolean A Boolean expression that specifies whether the current
picture is shown as transparent or opaque.

By default, the Opaque property is False. The Opaque property indicates if the picture is
shown as opaque or transparent.

If using the PNG format, the control handles automatically its transparency / alpha blending,
unless the Opaque property is True, so in this case, any TransparentColorFrom or
TransparentColorTo property has no effect.

For any other picture type, you can use any of the following to define the transparent region
of the picture:

TransparentColorFrom, specifies the transparent color to define transparency part of
the current picture (to).
TransparentColorTo, specifies the transparent color to define transparency part of the
current picture (to).

The control supports almost all type of pictures like

PNG (Portable Network Graphics) is a raster graphics file format that supports
lossless data compression. PNG was created as an improved, non-patented
replacement for Graphics Interchange Format (GIF), and is the most used lossless
image compression format on the Internet
BMP file format, also known as bitmap image file or device independent bitmap (DIB)
file format or simply a bitmap, is a raster graphics image file format used to store
bitmap digital images, independently of the display device (such as a graphics adapter)
JPEG file format (seen most often with the .jpg extension) is a commonly used method
of lossy compression for digital images, particularly for those images produced by
digital photography.
GIF (Graphics Interchange Format) is a bitmap image format that was introduced by
CompuServe in 1987 and has since come into widespread usage on the World Wide
Web due to its wide support and portability.
TIFF (Tagged Image File Format) is a computer file format for storing raster graphics
images, popular among graphic artists, the publishing industry, and both amateur and
professional photographers in general.

property LPicture.Selectable as Boolean
Returns or sets a value that indicates whether the picture is selectable.

Type Description

Boolean A Boolean expression that specifies whether the picture on
the layer's background is selectable.

By default, the Selectable property is True, so the picture is selectable on the layer's
background. The Selectable property specifies whether the picture on the layer's
background is selectable. Use the Name / Value property to specify a picture to be
displayed on the layer's background. For instance, you can use Selectable property on
False, to prevent selecting the picture on the layer's background. The Selectable property
of the Background object, affects all the pictures / colors being shown on the layer's
background. You can use the Grayscale property to show the entire layer in gray scale (
disable state).

property LPicture.Top as String
Specifies the expression relative to the view/current picture, to determine the y-position to
show the current picture on the background.

Type Description

String
A String value that defines the expression relative to the
view/current picture, to determine the y-position to show
the current picture on the background.

By default, the Top property is "0". You can use the Top property of the LPicture object to
show the picture moved up or down.

The following properties can be used to move / resize the picture on the layer's
background:

DisplayAs, retrieves or sets a value that indicates the way how the graphic is displayed
on the layer's background.
Left, specifies the expression relative to the view/current picture, to determine the x-
position to show the current picture on the background.
Top, specifies the expression relative to the view/current picture, to determine the y-
position to show the current picture on the background.
Width, specifies the expression relative to the view/current picture, to determine the
width to show the current picture on the background.
Height, specifies the expression relative to the view/current picture, to determine the
height to show the current picture on the background.

The following properties determines the position / size / offset of the layer:

Left, specifies the expression relative to the view, to determine the x-position to show
the current layer on the control.
Top, specifies the expression relative to the view, to determine the y-position to show
the current layer on the control.
Width, specifies the expression relative to the view, to determine the width to show the
current layer on the control.
Height, specifies the expression relative to the view, to determine the height to show
the current layer on the control.

You can use the following properties to offset the view (background + foreground) inside
the layer:

OffsetX, gets or sets a value that indicates x-offset of the layer.
OffsetY, gets or sets a value that indicates y-offset of the layer.

For instance, the following sample shows the picture on a size of 64,64 in the center of the
layer:

With .Background.Picture
 .Width = "64"
 .Height = "64"
 .Left = "(width - 64)/2"
 .Top = "(height - 64)/2"
End With

The Top property supports the following keywords:

pwidth, specifies the width in pixels of the picture object
pheight, specifies the height in pixels of the picture object
width, specifies the width in pixels of the layer where the picture is displayed.
height, specifies the height in pixels of the layer where the picture is displayed.

The Top property supports the following constants, operators and functions:

The constants are (DPI-Aware components):

dpi (DPI constant), specifies the current DPI setting. and it indicates the minimum
value between dpix and dpiy constants. For instance, if current DPI setting is 100%,
the dpi constant returns 1, if 150% it returns 1.5, and so on. For instance, the
expression value * dpi returns the value if the DPI setting is 100%, or value * 1.5 in
case, the DPI setting is 150%
dpix (DPIX constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpix constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpix returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%
dpiy (DPIY constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpiy constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpiy returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported binary range operators, all these with the same priority 5, are :

MIN (min operator), indicates the minimum value, so a MIN b returns the value of a, if
it is less than b, else it returns b. For instance, the expression value MIN 10 returns
always a value greater than 10.
MAX (max operator), indicates the maximum value, so a MAX b returns the value of
a, if it is greater than b, else it returns b. For instance, the expression value MAX 100
returns always a value less than 100.

The supported binary operators, all these with the same priority 0, are :

:= (Store operator), stores the result of expression to variable. The syntax for :=
operator is

variable := expression

where variable is a integer between 0 and 9. You can use the =: operator to restore
any stored variable (please make the difference between := and =:). For instance,
(0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and prints zero
if it is 0, else the converted number. Please pay attention that the := and =: are two
distinct operators, the first for storing the result into a variable, while the second for
restoring the variable

=: (Restore operator), restores the giving variable (previously saved using the store
operator). The syntax for =: operator is

=: variable

where variable is a integer between 0 and 9. You can use the := operator to store the
value of any expression (please make the difference between := and =:). For
instance, (0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and
prints zero if it is 0, else the converted number. Please pay attention that the := and =:
are two distinct operators, the first for storing the result into a variable, while the
second for restoring the variable

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for ? operator is

expression ? true_part : false_part

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the %0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found') returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

expression array (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D') is equivalent with month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D').

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

expression in (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the value in (11,22,33,44,13) is equivalent with
(expression = 11) or (expression = 22) or (expression = 33) or (expression = 44) or

(expression = 13). The in operator is not a time consuming as the equivalent or version
is, so when you have large number of constant elements it is recommended using the
in operator. Shortly, if the collection of elements has 1000 elements the in operator
could take up to 8 operations in order to find if an element fits the set, else if the or
statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

expression switch (default,c1,c2,c3,...,cn)

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the %0 switch ('not found',1,4,7,9,11) gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

expression case ([default : default_expression ;] c1 : expression1 ; c2 : expression2
; c3 : expression3 ;....)

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1) indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8) statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions. Obviously, the priority of the operations inside the expression is
determined by () parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%1) = 8
specifies the cells (on the column 1) that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string. The str operator converts the
expression to a string. For instance, the str(-12.54) returns the string "-12.54".
dbl (unary operator) converts the expression to a number. The dbl operator converts
the expression to a number. For instance, the dbl("12.54") returns 12.54
date (unary operator) converts the expression to a date, based on your regional
settings. For instance, the date(``) gets the current date (no time included), the

date(`now`) gets the current date-time, while the date("01/01/2001") returns
#1/1/2001#
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS. For instance, the dateS("01/01/2001 14:00:00") returns
#1/1/2001 14:00:00#

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number. For instance, the
int(12.54) returns 12
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2. For
instance, the round(12.54) returns 13
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument. For instance, the floor(12.54) returns 12
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2.
For instance, the abs(-12.54) returns 12.54
sin (unary operator) returns the sine of an angle of x radians. For instance, the
sin(3.14) returns 0.001593.
cos (unary operator) returns the cosine of an angle of x radians. For instance, the
cos(3.14) returns -0.999999.
asin (unary operator) returns the principal value of the arc sine of x, expressed in
radians. For instance, the 2*asin(1) returns the value of PI.
acos (unary operator) returns the principal value of the arc cosine of x, expressed in
radians. For instance, the 2*acos(0) returns the value of PI
sqrt (unary operator) returns the square root of x. For instance, the sqrt(81) returns 9.
currency (unary operator) formats the giving number as a currency string, as indicated
by the control panel. For instance, currency(value) displays the value using the current
format for the currency ie, 1000 gets displayed as $1,000.00, for US format.
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field

"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string. For instance, the
len("Mihai") returns 5.
lower (unary operator) returns a string expression in lowercase letters. For instance,
the lower("MIHAI") returns "mihai"
upper (unary operator) returns a string expression in uppercase letters. For instance,
the upper("mihai") returns "MIHAI"
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names. For instance, the proper("mihai") returns "Mihai"
ltrim (unary operator) removes spaces on the left side of a string. For instance, the
ltrim(" mihai") returns "mihai"
rtrim (unary operator) removes spaces on the right side of a string. For instance, the
rtrim("mihai ") returns "mihai"
trim (unary operator) removes spaces on both sides of a string. For instance, the
trim(" mihai ") returns "mihai"
reverse (unary operator) reverses the order of the characters in the string a. For
instance, the reverse("Mihai") returns "iahiM"

startwith (binary operator) specifies whether a string starts with specified string (0 if
not found, -1 if found). For instance "Mihai" startwith "Mi" returns -1
endwith (binary operator) specifies whether a string ends with specified string (0 if
not found, -1 if found). For instance "Mihai" endwith "ai" returns -1
contains (binary operator) specifies whether a string contains another specified string
(0 if not found, -1 if found). For instance "Mihai" contains "ha" returns -1
left (binary operator) retrieves the left part of the string. For instance "Mihai" left 2
returns "Mi".
right (binary operator) retrieves the right part of the string. For instance "Mihai" right 2
returns "ai"
a lfind b (binary operator) The a lfind b (binary operator) searches the first occurrence
of the string b within string a, and returns -1 if not found, or the position of the result (
zero-index). For instance "ABCABC" lfind "C" returns 2
a rfind b (binary operator) The a rfind b (binary operator) searches the last
occurrence of the string b within string a, and returns -1 if not found, or the position of
the result (zero-index). For instance "ABCABC" rfind "C" returns 5.
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on). For instance "Mihai" mid 2 returns "ihai"
a count b (binary operator) retrieves the number of occurrences of the b in a. For
instance "Mihai" count "i" returns 2.
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result. For instance, the "Mihai" replace "i" with "" returns "Mha" string, as it replaces
all "i" with nothing.
a split b, splits the a using the separator b, and returns an array. For instance, the
weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' ' gets the weekday as
string. This operator can be used with the array.

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel. For instance, the time(#1/1/2001 13:00#) returns "1:00:00 PM"
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance, the timeF(#1/1/2001 13:00#) returns "13:00:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel. For instance, the shortdate(#1/1/2001
13:00#) returns "1/1/2001"
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance, the shortdateF(#1/1/2001 13:00#) returns
"01/01/2001"
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format. For instance, the dateF(#01/01/2001 14:00:00#)
returns #01/01/2001 14:00:00#

longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel. For instance, the longdate(#1/1/2001 13:00#)
returns "Monday, January 01, 2001"
year (unary operator) retrieves the year of the date (100,...,9999). For instance, the
year(#12/31/1971 13:14:15#) returns 1971
month (unary operator) retrieves the month of the date (1, 2,...,12). For instance, the
month(#12/31/1971 13:14:15#) returns 12.
day (unary operator) retrieves the day of the date (1, 2,...,31). For instance, the
day(#12/31/1971 13:14:15#) returns 31
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365). For instance, the yearday(#12/31/1971 13:14:15#) returns
365
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday). For instance, the weekday(#12/31/1971 13:14:15#) returns
5.
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23). For instance, the
hour(#12/31/1971 13:14:15#) returns 13
min (unary operator) retrieves the minute of the date (0, 1, ..., 59). For instance, the
min(#12/31/1971 13:14:15#) returns 14
sec (unary operator) retrieves the second of the date (0, 1, ..., 59). For instance, the
sec(#12/31/1971 13:14:15#) returns 15

The Exontrol's eXPression component is a syntax-editor that helps you to define, view, edit
and evaluate expressions. Using the eXPression component you can easily view or check if
the expression you have used is syntactically correct, and you can evaluate what is the
result you get giving different values to be tested. The Exontrol's eXPression component
can be used as an user-editor, to configure your applications.

https://exontrol.com/expression.jsp

property LPicture.TransparentColorFrom as Color
Specifies the transparent color to define transparency part of the current picture (to).

Type Description
Color A Color expression that defines the transparent color.

By default, the TransparentColorFrom property is -1, which indicates that the control's
TransparentColorFrom property defines the color to be shown as transparent on the current
picture. The Opaque property indicates if the picture is shown as opaque or transparent.

The TransparentColorFrom / TransparentColorTo properties have effect it:

Opaque property is False (by default)
picture's attribute does not include the PICTURE_TRANSPARENT flag (for instance a
PNG picture with transparency, includes the PICTURE_TRANSPARENT flag)
TransparentColorFrom / TransparentColorTo properties points to valid colors (different
than -1 value). For instance, if one property is defined and the other is -1, the first one
defines the transparent pixels, while if both are specified and points to value different
than -1, any pixel between them is considered as transparent.

If The TransparentColorFrom / TransparentColorTo properties have effect, any picture
where these apply defines the pixels as:

any pixel with a color between TransparentColorFrom and TransparentColorTo is
defined as transparent
any other pixel that's not transparent is opaque.

The control supports almost all type of pictures like

PNG (Portable Network Graphics) is a raster graphics file format that supports
lossless data compression. PNG was created as an improved, non-patented
replacement for Graphics Interchange Format (GIF), and is the most used lossless
image compression format on the Internet
BMP file format, also known as bitmap image file or device independent bitmap (DIB)
file format or simply a bitmap, is a raster graphics image file format used to store
bitmap digital images, independently of the display device (such as a graphics adapter)
JPEG file format (seen most often with the .jpg extension) is a commonly used method
of lossy compression for digital images, particularly for those images produced by
digital photography.
GIF (Graphics Interchange Format) is a bitmap image format that was introduced by
CompuServe in 1987 and has since come into widespread usage on the World Wide
Web due to its wide support and portability.
TIFF (Tagged Image File Format) is a computer file format for storing raster graphics

images, popular among graphic artists, the publishing industry, and both amateur and
professional photographers in general.

If using the PNG format, the control handles automatically its transparency / alpha blending
(if exists), unless the Opaque property is True, so in this case, any TransparentColorFrom
or TransparentColorTo property has no effect.

For any other picture type, you can use any of the following to define the transparent region
of the picture:

TransparentColorFrom, specifies the transparent color to define transparency part of
the current picture (to).
TransparentColorTo, specifies the transparent color to define transparency part of the
current picture (to).

property LPicture.TransparentColorTo as Color
Specifies the transparent color to define transparency part of the current picture (to).

Type Description
Color A Color expression that defines the transparent color.

By default, the TransparentColorTo property is -1, which indicates that the control's
TransparentColorTo property defines the color to be shown as transparent on the current
picture. The Opaque property indicates if the picture is shown as opaque or transparent.

The TransparentColorFrom / TransparentColorTo properties have effect it:

Opaque property is False (by default)
picture's attribute does not include the PICTURE_TRANSPARENT flag (for instance a
PNG picture with transparency, includes the PICTURE_TRANSPARENT flag)
TransparentColorFrom / TransparentColorTo properties points to valid colors (different
than -1 value). For instance, if one property is defined and the other is -1, the first one
defines the transparent pixels, while if both are specified and points to value different
than -1, any pixel between them is considered as transparent.

If The TransparentColorFrom / TransparentColorTo properties have effect, any picture
where these apply defines the pixels as:

any pixel with a color between TransparentColorFrom and TransparentColorTo is
defined as transparent
any other pixel that's not transparent is opaque.

The control supports almost all type of pictures like

PNG (Portable Network Graphics) is a raster graphics file format that supports
lossless data compression. PNG was created as an improved, non-patented
replacement for Graphics Interchange Format (GIF), and is the most used lossless
image compression format on the Internet
BMP file format, also known as bitmap image file or device independent bitmap (DIB)
file format or simply a bitmap, is a raster graphics image file format used to store
bitmap digital images, independently of the display device (such as a graphics adapter)
JPEG file format (seen most often with the .jpg extension) is a commonly used method
of lossy compression for digital images, particularly for those images produced by
digital photography.
GIF (Graphics Interchange Format) is a bitmap image format that was introduced by
CompuServe in 1987 and has since come into widespread usage on the World Wide
Web due to its wide support and portability.
TIFF (Tagged Image File Format) is a computer file format for storing raster graphics

images, popular among graphic artists, the publishing industry, and both amateur and
professional photographers in general.

If using the PNG format, the control handles automatically its transparency / alpha blending
(if saved with transparency), unless the Opaque property is True, so in this case, any
TransparentColorFrom or TransparentColorTo property has no effect.

For any other picture type, you can use any of the following to define the transparent region
of the picture:

TransparentColorFrom, specifies the transparent color to define transparency part of
the current picture (to).
TransparentColorTo, specifies the transparent color to define transparency part of the
current picture (to).

property LPicture.Value as Variant
Indicates the picture to be shown on the layer's background.

Type Description

Variant

The Value property could be one of the following:

A String expression indicates:
a name of a picture file in the PicturePath folder.
For instance, Name = "Layer1.png", loads the
Layer1.png file if found in the PicturePath folder.
a picture file including its absolute path. For
instance, Name = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob\Layer1.png",
loads the Layer1.png file from absolute path
a key of the HTML picture, previously loaded by
the HTMLPicture method. For instance, Name =
"pic1", loads the HTML picture with the key pic1,
so the pic1 should be load previously with a
HTMLPicture call like HTMLPicture("pic1") =
"C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob\Layer1.png"
an encode BASE64 string of a picture file. The
Exontrol's ExImages Tool encode/decode
BASE64 strings from/to pictures. In this case, the
string starts with "gB..", "gC.." and so on.

A Picture object that indicates the picture to be
displayed. For instance, Name =
LoadPicture("picture.jpg")

By default, the Name / Value property is initialized by evaluating the control's PicturesName
property, whose value keyword is replaced by the Index of the current layer. The Name /
Value property are equivalents, so use any of them do the same.

The control supports almost all type of pictures like

PNG (Portable Network Graphics) is a raster graphics file format that supports
lossless data compression. PNG was created as an improved, non-patented
replacement for Graphics Interchange Format (GIF), and is the most used lossless
image compression format on the Internet
BMP file format, also known as bitmap image file or device independent bitmap (DIB)
file format or simply a bitmap, is a raster graphics image file format used to store

https://exontrol.com/eximages.jsp

bitmap digital images, independently of the display device (such as a graphics adapter)
JPEG file format (seen most often with the .jpg extension) is a commonly used method
of lossy compression for digital images, particularly for those images produced by
digital photography.
GIF (Graphics Interchange Format) is a bitmap image format that was introduced by
CompuServe in 1987 and has since come into widespread usage on the World Wide
Web due to its wide support and portability.
TIFF (Tagged Image File Format) is a computer file format for storing raster graphics
images, popular among graphic artists, the publishing industry, and both amateur and
professional photographers in general.

If using the PNG format, the control handles automatically its transparency / alpha blending,
unless the Opaque property is True. For any other picture type, you can use any of the
following to define the transparent region of the picture:

TransparentColorFrom, specifies the transparent color to define transparency part of
the current picture (to).
TransparentColorTo, specifies the transparent color to define transparency part of the
current picture (to).

The picture is displayed on the layer's background if both of the following:

Visible property is True
Name / Value property points to a valid picture

are accomplished.

The following properties can be used to load / import (manually or automatically) pictures
to the layer's background:

PicturesPath property, specifies the path to load pictures from.
PicturesName property, specifies the expression that defines the name of the file from
the PicturesPath folder to be loaded.
Picture.Name / Picture.Value property of the Background.Picture object, defines the
name of the file to be loaded (relative, absolute, encoded or Picture object)

The PicturesPath / PicturesName properties can be used to automatically loads files from
a specified folder to be displayed on the layer's background.

For instance,

PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob",
defines default folder to load pictures from.
PicturesName = "`Layer` + str(value + 1) + `.png`", defines the name of the picture file

to be loaded by the layer with the index / value. It defines the names as: Layer1.png
for the layer with the index 0, Layer2.png for the layer with the index 1, Layer3.png for
the layer with the index 2, and so on.

The Picture.Name / Picture.Value property of the Picture object loads a picture / graphics to
be displayed on the layer's background.

The following properties can be used to move / resize the picture on the layer's
background:

DisplayAs, retrieves or sets a value that indicates the way how the graphic is displayed
on the layer's background.
Left, specifies the expression relative to the view/current picture, to determine the x-
position to show the current picture on the background.
Top, specifies the expression relative to the view/current picture, to determine the y-
position to show the current picture on the background.
Width, specifies the expression relative to the view/current picture, to determine the
width to show the current picture on the background.
Height, specifies the expression relative to the view/current picture, to determine the
height to show the current picture on the background.

property LPicture.Visible as Boolean
Specifies if the picture is shown or hidden on the layer's background.

Type Description

Boolean A Boolean expression that specifies whether the picture is
visible or hidden.

By default, the Visible property is True, so the picture is visible on the layer's background.
Use the Name / Value property to specify a picture to be displayed on the layer's
background. For instance, you can use Visible property on False, to prevent showing the
picture on the layer's background. The Selectable property specifies whether the picture on
the layer's background is selectable. The Visible property of the Background object, affects
all the pictures / colors being shown on the layer's background.

The picture is displayed on the layer's background if both of the following:

Visible property is True
Name / Value property points to a valid picture

are accomplished.

property LPicture.Width as String
Specifies the expression relative to the view/current picture, to determine the width to show
the current picture on the background.

Type Description

String
A String value that indicates the expression relative to the
view/current picture, to determine the width to show the
current picture on the background.

By default, the Width property is "width", that specifies the width in pixels of the layer
where the picture is displayed.. You can use the Width property of the LPicture object to
show the picture with a different width. The LayerAutoSize property resizes all layers based
on the picture of the first layer.

The following properties can be used to move / resize the picture on the layer's
background:

DisplayAs, retrieves or sets a value that indicates the way how the graphic is displayed
on the layer's background.
Left, specifies the expression relative to the view/current picture, to determine the x-
position to show the current picture on the background.
Top, specifies the expression relative to the view/current picture, to determine the y-
position to show the current picture on the background.
Width, specifies the expression relative to the view/current picture, to determine the
width to show the current picture on the background.
Height, specifies the expression relative to the view/current picture, to determine the
height to show the current picture on the background.

The following properties determines the position / size / offset of the layer:

Left, specifies the expression relative to the view, to determine the x-position to show
the current layer on the control.
Top, specifies the expression relative to the view, to determine the y-position to show
the current layer on the control.
Width, specifies the expression relative to the view, to determine the width to show the
current layer on the control.
Height, specifies the expression relative to the view, to determine the height to show
the current layer on the control.

You can use the following properties to offset the view (background + foreground) inside
the layer:

OffsetX, gets or sets a value that indicates x-offset of the layer.

OffsetY, gets or sets a value that indicates y-offset of the layer.

For instance, the following sample shows the picture on a size of 64,64 in the center of the
layer:

With .Background.Picture
 .Width = "64"
 .Height = "64"
 .Left = "(width - 64)/2"
 .Top = "(height - 64)/2"
End With

The Width property supports the following keywords:

pwidth, specifies the width in pixels of the picture object
pheight, specifies the height in pixels of the picture object
width, specifies the width in pixels of the layer where the picture is displayed.
height, specifies the height in pixels of the layer where the picture is displayed.

The Width property supports the following constants, operators and functions:

The constants are (DPI-Aware components):

dpi (DPI constant), specifies the current DPI setting. and it indicates the minimum
value between dpix and dpiy constants. For instance, if current DPI setting is 100%,
the dpi constant returns 1, if 150% it returns 1.5, and so on. For instance, the
expression value * dpi returns the value if the DPI setting is 100%, or value * 1.5 in
case, the DPI setting is 150%
dpix (DPIX constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpix constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpix returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%
dpiy (DPIY constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpiy constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpiy returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is

of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported binary range operators, all these with the same priority 5, are :

MIN (min operator), indicates the minimum value, so a MIN b returns the value of a, if
it is less than b, else it returns b. For instance, the expression value MIN 10 returns
always a value greater than 10.
MAX (max operator), indicates the maximum value, so a MAX b returns the value of
a, if it is greater than b, else it returns b. For instance, the expression value MAX 100
returns always a value less than 100.

The supported binary operators, all these with the same priority 0, are :

:= (Store operator), stores the result of expression to variable. The syntax for :=
operator is

variable := expression

where variable is a integer between 0 and 9. You can use the =: operator to restore
any stored variable (please make the difference between := and =:). For instance,
(0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and prints zero
if it is 0, else the converted number. Please pay attention that the := and =: are two
distinct operators, the first for storing the result into a variable, while the second for
restoring the variable

=: (Restore operator), restores the giving variable (previously saved using the store
operator). The syntax for =: operator is

=: variable

where variable is a integer between 0 and 9. You can use the := operator to store the
value of any expression (please make the difference between := and =:). For
instance, (0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and
prints zero if it is 0, else the converted number. Please pay attention that the := and =:
are two distinct operators, the first for storing the result into a variable, while the
second for restoring the variable

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for ? operator is

expression ? true_part : false_part

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the %0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found') returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

expression array (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D') is equivalent with month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D').

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

expression in (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the value in (11,22,33,44,13) is equivalent with
(expression = 11) or (expression = 22) or (expression = 33) or (expression = 44) or
(expression = 13). The in operator is not a time consuming as the equivalent or version
is, so when you have large number of constant elements it is recommended using the
in operator. Shortly, if the collection of elements has 1000 elements the in operator
could take up to 8 operations in order to find if an element fits the set, else if the or
statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

expression switch (default,c1,c2,c3,...,cn)

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the %0 switch ('not found',1,4,7,9,11) gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

expression case ([default : default_expression ;] c1 : expression1 ; c2 : expression2
; c3 : expression3 ;....)

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1) indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or

hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8) statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions. Obviously, the priority of the operations inside the expression is
determined by () parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%1) = 8
specifies the cells (on the column 1) that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string. The str operator converts the
expression to a string. For instance, the str(-12.54) returns the string "-12.54".
dbl (unary operator) converts the expression to a number. The dbl operator converts
the expression to a number. For instance, the dbl("12.54") returns 12.54

date (unary operator) converts the expression to a date, based on your regional
settings. For instance, the date(``) gets the current date (no time included), the
date(`now`) gets the current date-time, while the date("01/01/2001") returns
#1/1/2001#
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS. For instance, the dateS("01/01/2001 14:00:00") returns
#1/1/2001 14:00:00#

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number. For instance, the
int(12.54) returns 12
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2. For
instance, the round(12.54) returns 13
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument. For instance, the floor(12.54) returns 12
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2.
For instance, the abs(-12.54) returns 12.54
sin (unary operator) returns the sine of an angle of x radians. For instance, the
sin(3.14) returns 0.001593.
cos (unary operator) returns the cosine of an angle of x radians. For instance, the
cos(3.14) returns -0.999999.
asin (unary operator) returns the principal value of the arc sine of x, expressed in
radians. For instance, the 2*asin(1) returns the value of PI.
acos (unary operator) returns the principal value of the arc cosine of x, expressed in
radians. For instance, the 2*acos(0) returns the value of PI
sqrt (unary operator) returns the square root of x. For instance, the sqrt(81) returns 9.
currency (unary operator) formats the giving number as a currency string, as indicated
by the control panel. For instance, currency(value) displays the value using the current
format for the currency ie, 1000 gets displayed as $1,000.00, for US format.
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string. For instance, the
len("Mihai") returns 5.
lower (unary operator) returns a string expression in lowercase letters. For instance,
the lower("MIHAI") returns "mihai"
upper (unary operator) returns a string expression in uppercase letters. For instance,
the upper("mihai") returns "MIHAI"
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names. For instance, the proper("mihai") returns "Mihai"
ltrim (unary operator) removes spaces on the left side of a string. For instance, the
ltrim(" mihai") returns "mihai"
rtrim (unary operator) removes spaces on the right side of a string. For instance, the
rtrim("mihai ") returns "mihai"
trim (unary operator) removes spaces on both sides of a string. For instance, the

trim(" mihai ") returns "mihai"
reverse (unary operator) reverses the order of the characters in the string a. For
instance, the reverse("Mihai") returns "iahiM"
startwith (binary operator) specifies whether a string starts with specified string (0 if
not found, -1 if found). For instance "Mihai" startwith "Mi" returns -1
endwith (binary operator) specifies whether a string ends with specified string (0 if
not found, -1 if found). For instance "Mihai" endwith "ai" returns -1
contains (binary operator) specifies whether a string contains another specified string
(0 if not found, -1 if found). For instance "Mihai" contains "ha" returns -1
left (binary operator) retrieves the left part of the string. For instance "Mihai" left 2
returns "Mi".
right (binary operator) retrieves the right part of the string. For instance "Mihai" right 2
returns "ai"
a lfind b (binary operator) The a lfind b (binary operator) searches the first occurrence
of the string b within string a, and returns -1 if not found, or the position of the result (
zero-index). For instance "ABCABC" lfind "C" returns 2
a rfind b (binary operator) The a rfind b (binary operator) searches the last
occurrence of the string b within string a, and returns -1 if not found, or the position of
the result (zero-index). For instance "ABCABC" rfind "C" returns 5.
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on). For instance "Mihai" mid 2 returns "ihai"
a count b (binary operator) retrieves the number of occurrences of the b in a. For
instance "Mihai" count "i" returns 2.
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result. For instance, the "Mihai" replace "i" with "" returns "Mha" string, as it replaces
all "i" with nothing.
a split b, splits the a using the separator b, and returns an array. For instance, the
weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' ' gets the weekday as
string. This operator can be used with the array.

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel. For instance, the time(#1/1/2001 13:00#) returns "1:00:00 PM"
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance, the timeF(#1/1/2001 13:00#) returns "13:00:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel. For instance, the shortdate(#1/1/2001
13:00#) returns "1/1/2001"
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance, the shortdateF(#1/1/2001 13:00#) returns
"01/01/2001"

dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format. For instance, the dateF(#01/01/2001 14:00:00#)
returns #01/01/2001 14:00:00#
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel. For instance, the longdate(#1/1/2001 13:00#)
returns "Monday, January 01, 2001"
year (unary operator) retrieves the year of the date (100,...,9999). For instance, the
year(#12/31/1971 13:14:15#) returns 1971
month (unary operator) retrieves the month of the date (1, 2,...,12). For instance, the
month(#12/31/1971 13:14:15#) returns 12.
day (unary operator) retrieves the day of the date (1, 2,...,31). For instance, the
day(#12/31/1971 13:14:15#) returns 31
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365). For instance, the yearday(#12/31/1971 13:14:15#) returns
365
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday). For instance, the weekday(#12/31/1971 13:14:15#) returns
5.
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23). For instance, the
hour(#12/31/1971 13:14:15#) returns 13
min (unary operator) retrieves the minute of the date (0, 1, ..., 59). For instance, the
min(#12/31/1971 13:14:15#) returns 14
sec (unary operator) retrieves the second of the date (0, 1, ..., 59). For instance, the
sec(#12/31/1971 13:14:15#) returns 15

The Exontrol's eXPression component is a syntax-editor that helps you to define, view, edit
and evaluate expressions. Using the eXPression component you can easily view or check if
the expression you have used is syntactically correct, and you can evaluate what is the
result you get giving different values to be tested. The Exontrol's eXPression component
can be used as an user-editor, to configure your applications.

https://exontrol.com/expression.jsp

ExGauge events
The eXGauge / eXLayers library provides graphics capabilities to visually display and edit
the amount, level, or contents of something. The view can show one or more layers, where
each layer can display one or more transparent pictures, HTML captions which can be
clipped, moved, rotated or combination of them, by dragging the mouse, rolling the mouse
wheel, or using the keyboard. Using the eXGauge / eXLayers library you can can easily
simulate any gauges, thermometers, meters, clocks, buttons, sliders, scales, knobs, dials,
switches, progress, status, indicators, LEDs, and so on.

The eXGauge supports the following events:

Name Description
AnchorClick Occurs when an anchor element is clicked.
Change Occurs when the layer's value is changed.

Click Occurs when the user presses and then releases the left
mouse button over the control.

DblClick Occurs when the user dblclk the left mouse button over an
object.

Drag Notifies that the user drags the layer.
DragEnd Occurs once the user ends dragging a layer.
DragStart Occurs once the user starts dragging a layer.
Event Notifies the application once the control fires an event.

KeyDown Occurs when the user presses a key while an object has
the focus.

KeyPress Occurs when the user presses and releases an ANSI key.

KeyUp Occurs when the user releases a key while an object has
the focus.

MouseDown Occurs when the user presses a mouse button.
MouseIn Notifies that the cursor enters the layer.
MouseMove Occurs when the user moves the mouse.
MouseOut Notifies that the cursor exits the layer.
MouseUp Occurs when the user releases a mouse button.

MouseWheel Occurs when the mouse wheel moves while the control
has focus

RClick Occurs once the user right clicks the control.

Timer Occurs when the interval elapses.

C#

VB

private void AnchorClick(object sender,string AnchorID,string Options)
{
}

Private Sub AnchorClick(ByVal sender As System.Object,ByVal AnchorID As
String,ByVal Options As String) Handles AnchorClick
End Sub

C# private void AnchorClick(object sender,
AxEXGAUGELib._IGaugeEvents_AnchorClickEvent e)
{
}

event AnchorClick (AnchorID as String, Options as String)
Occurs when an anchor element is clicked.

Type Description

AnchorID as String A string expression that indicates the identifier of the
anchor

Options as String A string expression that specifies options of the anchor
element.

The control fires the AnchorClick event to notify that the user clicks an anchor element. An
anchor is a piece of text or some other object (for example an image) which marks the
beginning and/or the end of a hypertext link. The <a> element is used to mark that piece of
text (or inline image), and to give its hypertextual relationship to other documents. The
AnchorClick event is fired only if prior clicking the control it shows the hand cursor. For
instance, if the cell is disabled, the hand cursor is not shown when hovers the anchor
element, and so the AnchorClick event is not fired. Use the FormatAnchor property to
specify the visual effect for anchor elements. For instance, if the user clicks the anchor
<a1>anchor, the control fires the AnchorClick event, where the AnchorID parameter is
1, and the Options parameter is empty. Also, if the user clicks the anchor <a
1;yourextradata>anchor, the AnchorID parameter of the AnchorClick event is 1, and
the Options parameter is "yourextradata". Use the AnchorFromPoint property to retrieve the
identifier of the anchor element from the cursor.

Syntax for AnchorClick event, /NET version, on:

Syntax for AnchorClick event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnAnchorClick(LPCTSTR AnchorID,LPCTSTR Options)
{
}

void __fastcall AnchorClick(TObject *Sender,BSTR AnchorID,BSTR Options)
{
}

procedure AnchorClick(ASender: TObject; AnchorID : WideString;Options :
WideString);
begin
end;

procedure AnchorClick(sender: System.Object; e:
AxEXGAUGELib._IGaugeEvents_AnchorClickEvent);
begin
end;

begin event AnchorClick(string AnchorID,string Options)

end event AnchorClick

Private Sub AnchorClick(ByVal sender As System.Object, ByVal e As
AxEXGAUGELib._IGaugeEvents_AnchorClickEvent) Handles AnchorClick
End Sub

Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

LPARAMETERS AnchorID,Options

PROCEDURE OnAnchorClick(oGauge,AnchorID,Options)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="AnchorClick(AnchorID,Options)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AnchorClick(AnchorID,Options)
End Function
</SCRIPT>

Procedure OnComAnchorClick String llAnchorID String llOptions
 Forward Send OnComAnchorClick llAnchorID llOptions
End_Procedure

METHOD OCX_AnchorClick(AnchorID,Options) CLASS MainDialog
RETURN NIL

void onEvent_AnchorClick(str _AnchorID,str _Options)
{
}

function AnchorClick as v (AnchorID as C,Options as C)
end function

function nativeObject_AnchorClick(AnchorID,Options)
return

Syntax for AnchorClick event, /COM version (others), on:

C#

VB

private void Change(object sender,int Layer)
{
}

Private Sub Change(ByVal sender As System.Object,ByVal Layer As Integer)
Handles Change
End Sub

C#

C++

private void Change(object sender, AxEXGAUGELib._IGaugeEvents_ChangeEvent
e)
{
}

void OnChange(long Layer)
{
}

event Change (Layer as Long)
Occurs when the layer's value is changed.

Type Description

Layer as Long
A long expression that specifies the index of the layer
whose value is being changed. The Item property of
Layers collection gets the layer based on its index.

The Change event occurs when any of the following properties:

Value, specifies the layer's value.
OffsetX, specifies a value that indicates x-offset of the layer.
OffsetY, indicates a value that indicates y-offset of the layer.
RotateAngle, specifies the angle to rotate the layer.

are changed. For instance, you can use the Change event to update other layers when one
of the layer is changed. The OnDrag property indicates the action to be performed when
the user drags the layer. The DragStart / Drag / DragEnd events notify your application
when a layer is dragged. The MouseWheel occurs when the mouse wheel is rolled.

Syntax for Change event, /NET version, on:

Syntax for Change event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall Change(TObject *Sender,long Layer)
{
}

procedure Change(ASender: TObject; Layer : Integer);
begin
end;

procedure Change(sender: System.Object; e:
AxEXGAUGELib._IGaugeEvents_ChangeEvent);
begin
end;

begin event Change(long Layer)

end event Change

Private Sub Change(ByVal sender As System.Object, ByVal e As
AxEXGAUGELib._IGaugeEvents_ChangeEvent) Handles Change
End Sub

Private Sub Change(ByVal Layer As Long)
End Sub

Private Sub Change(ByVal Layer As Long)
End Sub

LPARAMETERS Layer

PROCEDURE OnChange(oGauge,Layer)

RETURN

Syntax for Change event, /COM version (others), on:

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="Change(Layer)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Change(Layer)
End Function
</SCRIPT>

Procedure OnComChange Integer llLayer
 Forward Send OnComChange llLayer
End_Procedure

METHOD OCX_Change(Layer) CLASS MainDialog
RETURN NIL

void onEvent_Change(int _Layer)
{
}

function Change as v (Layer as N)
end function

function nativeObject_Change(Layer)
return

The following samples show how you can display the current offset, when user drags the
layer:

VBA (MS Access, Excell...)

' Change event - Occurs when the layer's value is changed.
Private Sub Gauge1_Change(ByVal Layer As Long)
 With Gauge1
 .Caption(0) = .Layers.Item(Layer).OffsetX
 End With
End Sub

With Gauge1
 .PicturesPath = "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 1
 With .Layers.Item(0)
 .OnDrag = 1
 .OffsetYValid = "0"
 End With
End With

VB6

' Change event - Occurs when the layer's value is changed.
Private Sub Gauge1_Change(ByVal Layer As Long)
 With Gauge1
 .Caption(exLayerCaption) = .Layers.Item(Layer).OffsetX
 End With
End Sub

With Gauge1
 .PicturesPath = "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 1
 With .Layers.Item(0)
 .OnDrag = exDoMove
 .OffsetYValid = "0"
 End With
End With

VB.NET

' Change event - Occurs when the layer's value is changed.
Private Sub Exgauge1_Change(ByVal sender As System.Object,ByVal Layer As Integer)
Handles Exgauge1.Change
 With Exgauge1

.set_Caption(exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,.Layers.Item

 End With
End Sub

With Exgauge1
 .PicturesPath = "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 1
 With .Layers.Item(0)
 .OnDrag = exontrol.EXGAUGELib.OnDragLayerEnum.exDoMove
 .OffsetYValid = "0"
 End With
End With

VB.NET for /COM

' Change event - Occurs when the layer's value is changed.
Private Sub AxGauge1_Change(ByVal sender As System.Object, ByVal e As
AxEXGAUGELib._IGaugeEvents_ChangeEvent) Handles AxGauge1.Change
 With AxGauge1

.set_Caption(EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,.Layers.Item(e.layer).

 End With
End Sub

With AxGauge1
 .PicturesPath = "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 1
 With .Layers.Item(0)
 .OnDrag = EXGAUGELib.OnDragLayerEnum.exDoMove
 .OffsetYValid = "0"
 End With

End With

C++

// Change event - Occurs when the layer's value is changed.
void OnChangeGauge1(long Layer)
{
 /*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXGAUGELib' for the library: 'ExGauge 1.0 Control
Library'
 #import <ExGauge.dll>
 using namespace EXGAUGELib;
 */
 EXGAUGELib::IGaugePtr spGauge1 = GetDlgItem(IDC_GAUGE1)-
>GetControlUnknown();
 spGauge1->PutCaption(EXGAUGELib::exLayerCaption,spGauge1->GetLayers()-
>GetItem(Layer)->GetOffsetX());
}

EXGAUGELib::IGaugePtr spGauge1 = GetDlgItem(IDC_GAUGE1)-
>GetControlUnknown();
spGauge1->PutPicturesPath(L"C:\\Program Files
(x86)\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob");
spGauge1->PutPicturesName(L"`Layer` + int(value + 1) + `.png`");
spGauge1->GetLayers()->PutCount(1);
EXGAUGELib::ILayerPtr var_Layer = spGauge1->GetLayers()->GetItem(long(0));
 var_Layer->PutOnDrag(EXGAUGELib::exDoMove);
 var_Layer->PutOffsetYValid(L"0");

C++ Builder

// Change event - Occurs when the layer's value is changed.
void __fastcall TForm1::Gauge1Change(TObject *Sender,long Layer)
{
 Gauge1->Caption[Exgaugelib_tlb::PropertyLayerCaptionEnum::exLayerCaption] =
TVariant(Gauge1->Layers->get_Item(TVariant(Layer))->OffsetX);

}

Gauge1->PicturesPath = L"C:\\Program Files
(x86)\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
Gauge1->PicturesName = L"`Layer` + int(value + 1) + `.png`";
Gauge1->Layers->Count = 1;
Exgaugelib_tlb::ILayerPtr var_Layer = Gauge1->Layers->get_Item(TVariant(0));
 var_Layer->OnDrag = Exgaugelib_tlb::OnDragLayerEnum::exDoMove;
 var_Layer->OffsetYValid = L"0";

C#

// Change event - Occurs when the layer's value is changed.
private void exgauge1_Change(object sender,int Layer)
{

exgauge1.set_Caption(exontrol.EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,exgauge1.

}
//this.exgauge1.Change += new
exontrol.EXGAUGELib.exg2antt.ChangeEventHandler(this.exgauge1_Change);

exgauge1.PicturesPath = "C:\\Program Files
(x86)\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
exgauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
exgauge1.Layers.Count = 1;
exontrol.EXGAUGELib.Layer var_Layer = exgauge1.Layers[0];
 var_Layer.OnDrag = exontrol.EXGAUGELib.OnDragLayerEnum.exDoMove;
 var_Layer.OffsetYValid = "0";

JScript/JavaScript

<BODY onload="Init()">
<SCRIPT FOR="Gauge1" EVENT="Change(Layer)" LANGUAGE="JScript">
 Gauge1.Caption(0) = Gauge1.Layers.Item(Layer).OffsetX;
</SCRIPT>

<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 Gauge1.PicturesPath = "C:\\Program Files
(x86)\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
 Gauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
 Gauge1.Layers.Count = 1;
 var var_Layer = Gauge1.Layers.Item(0);
 var_Layer.OnDrag = 1;
 var_Layer.OffsetYValid = "0";
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<SCRIPT LANGUAGE="VBScript">
Function Gauge1_Change(Layer)
 With Gauge1
 .Caption(0) = .Layers.Item(Layer).OffsetX
 End With
End Function
</SCRIPT>

<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With Gauge1
 .PicturesPath = "C:\Program Files

(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 1
 With .Layers.Item(0)
 .OnDrag = 1
 .OffsetYValid = "0"
 End With
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

// Change event - Occurs when the layer's value is changed.
private void axGauge1_Change(object sender,
AxEXGAUGELib._IGaugeEvents_ChangeEvent e)
{

axGauge1.set_Caption(EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,axGauge1.

}
//this.axGauge1.Change += new
AxEXGAUGELib._IGaugeEvents_ChangeEventHandler(this.axGauge1_Change);

axGauge1.PicturesPath = "C:\\Program Files
(x86)\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
axGauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
axGauge1.Layers.Count = 1;
EXGAUGELib.Layer var_Layer = axGauge1.Layers[0];
 var_Layer.OnDrag = EXGAUGELib.OnDragLayerEnum.exDoMove;
 var_Layer.OffsetYValid = "0";

X++ (Dynamics Ax 2009)

// Change event - Occurs when the layer's value is changed.

void onEvent_Change(int _Layer)
{
 ;
 exgauge1.Caption(0/*exLayerCaption*/,exgauge1.Layers().Item(_Layer).OffsetX());
}

public void init()
{
 COM com_Layer;
 anytype var_Layer;
 ;

 super();

 exgauge1.PicturesPath("C:\\Program Files
(x86)\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob");
 exgauge1.PicturesName("`Layer` + int(value + 1) + `.png`");
 exgauge1.Layers().Count(1);
 var_Layer =
COM::createFromObject(exgauge1.Layers()).Item(COMVariant::createFromInt(0));
com_Layer = var_Layer;
 com_Layer.OnDrag(1/*exDoMove*/);
 com_Layer.OffsetYValid("0");
}

Delphi 8 (.NET only)

// Change event - Occurs when the layer's value is changed.
procedure TWinForm1.AxGauge1_Change(sender: System.Object; e:
AxEXGAUGELib._IGaugeEvents_ChangeEvent);
begin
 with AxGauge1 do
 begin

set_Caption(EXGAUGELib.PropertyLayerCaptionEnum.exLayerCaption,TObject(Layers.Item

 end

end;

with AxGauge1 do
begin
 PicturesPath := 'C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob';
 PicturesName := '`Layer` + int(value + 1) + `.png`';
 Layers.Count := 1;
 with Layers.Item[TObject(0)] do
 begin
 OnDrag := EXGAUGELib.OnDragLayerEnum.exDoMove;
 OffsetYValid := '0';
 end;
end

Delphi (standard)

// Change event - Occurs when the layer's value is changed.
procedure TForm1.Gauge1Change(ASender: TObject; Layer : Integer);
begin
 with Gauge1 do
 begin
 Caption[EXGAUGELib_TLB.exLayerCaption] :=
OleVariant(Layers.Item[OleVariant(Layer)].OffsetX);
 end
end;

with Gauge1 do
begin
 PicturesPath := 'C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob';
 PicturesName := '`Layer` + int(value + 1) + `.png`';
 Layers.Count := 1;
 with Layers.Item[OleVariant(0)] do
 begin
 OnDrag := EXGAUGELib_TLB.exDoMove;
 OffsetYValid := '0';

 end;
end

VFP

*** Change event - Occurs when the layer's value is changed. ***
LPARAMETERS Layer
 with thisform.Gauge1
 .Object.Caption(0) = .Layers.Item(Layer).OffsetX
 endwith

with thisform.Gauge1
 .PicturesPath = "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 1
 with .Layers.Item(0)
 .OnDrag = 1
 .OffsetYValid = "0"
 endwith
endwith

dBASE Plus

/*
with (this.EXGAUGEACTIVEXCONTROL1.nativeObject)
 Change = class::nativeObject_Change
endwith
*/
// Occurs when the layer's value is changed.
function nativeObject_Change(Layer)
 oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject
 oGauge.Template = [Caption(0) = Layers.Item(Layer).OffsetX] // oGauge.Caption(0)
= oGauge.Layers.Item(Layer).OffsetX
return

local oGauge,var_Layer

oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject
oGauge.PicturesPath = "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 1
var_Layer = oGauge.Layers.Item(0)
 var_Layer.OnDrag = 1
 var_Layer.OffsetYValid = "0"

XBasic (Alpha Five)

' Occurs when the layer's value is changed.
function Change as v (Layer as N)
 oGauge = topparent:CONTROL_ACTIVEX1.activex
 oGauge.Template = "Caption(0) = Layers.Item(Layer).OffsetX" // oGauge.Caption(0)
= oGauge.Layers.Item(Layer).OffsetX
end function

Dim oGauge as P
Dim var_Layer as P

oGauge = topparent:CONTROL_ACTIVEX1.activex
oGauge.PicturesPath = "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 1
var_Layer = oGauge.Layers.Item(0)
 var_Layer.OnDrag = 1
 var_Layer.OffsetYValid = "0"

Visual Objects

METHOD OCX_Exontrol1Change(Layer) CLASS MainDialog
 // Change event - Occurs when the layer's value is changed.
 oDCOCX_Exontrol1:[Caption,exLayerCaption] := oDCOCX_Exontrol1:Layers:
[Item,Layer]:OffsetX

RETURN NIL

local var_Layer as ILayer

oDCOCX_Exontrol1:PicturesPath := "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oDCOCX_Exontrol1:PicturesName := "`Layer` + int(value + 1) + `.png`"
oDCOCX_Exontrol1:Layers:Count := 1
var_Layer := oDCOCX_Exontrol1:Layers:[Item,0]
 var_Layer:OnDrag := exDoMove
 var_Layer:OffsetYValid := "0"

PowerBuilder

/*begin event Change(long Layer) - Occurs when the layer's value is changed.*/
/*
 oGauge = ole_1.Object
 oGauge.Caption(0,oGauge.Layers.Item(Layer).OffsetX)
*/
/*end event Change*/

OleObject oGauge,var_Layer

oGauge = ole_1.Object
oGauge.PicturesPath = "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 1
var_Layer = oGauge.Layers.Item(0)
 var_Layer.OnDrag = 1
 var_Layer.OffsetYValid = "0"

Visual DataFlex

// Occurs when the layer's value is changed.
Procedure OnComChange Integer llLayer

 Forward Send OnComChange llLayer
 Variant v
 Variant voLayers
 Get ComLayers to voLayers
 Handle hoLayers
 Get Create (RefClass(cComLayers)) to hoLayers
 Set pvComObject of hoLayers to voLayers
 Variant voLayer
 Get ComItem of hoLayers llLayer to voLayer
 Handle hoLayer
 Get Create (RefClass(cComLayer)) to hoLayer
 Set pvComObject of hoLayer to voLayer
 Get ComOffsetX of hoLayer to v
 Send Destroy to hoLayer
 Send Destroy to hoLayers
 Set ComCaption OLEexLayerCaption to v
End_Procedure

Procedure OnCreate
 Forward Send OnCreate
 Set ComPicturesPath to "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 Set ComPicturesName to "`Layer` + int(value + 1) + `.png`"
 Variant voLayers1
 Get ComLayers to voLayers1
 Handle hoLayers1
 Get Create (RefClass(cComLayers)) to hoLayers1
 Set pvComObject of hoLayers1 to voLayers1
 Set ComCount of hoLayers1 to 1
 Send Destroy to hoLayers1
 Variant voLayers2
 Get ComLayers to voLayers2
 Handle hoLayers2
 Get Create (RefClass(cComLayers)) to hoLayers2
 Set pvComObject of hoLayers2 to voLayers2
 Variant voLayer1
 Get ComItem of hoLayers2 0 to voLayer1

 Handle hoLayer1
 Get Create (RefClass(cComLayer)) to hoLayer1
 Set pvComObject of hoLayer1 to voLayer1
 Set ComOnDrag of hoLayer1 to OLEexDoMove
 Set ComOffsetYValid of hoLayer1 to "0"
 Send Destroy to hoLayer1
 Send Destroy to hoLayers2
End_Procedure

XBase++

PROCEDURE OnChange(oGauge,Layer)

oGauge:SetProperty("Caption",0/*exLayerCaption*/,oGauge:Layers:Item(Layer):OffsetX())

RETURN

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oGauge
 LOCAL oLayer

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oGauge := XbpActiveXControl():new(oForm:drawingArea)
 oGauge:CLSID := "Exontrol.Gauge.1" /*{91628F12-393C-44EF-A558-
83ED1790AAD3}*/
 oGauge:create(,, {10,60},{610,370})

 oGauge:Change := {|Layer| OnChange(oGauge,Layer)} /*Occurs when the layer's

value is changed.*/

 oGauge:PicturesPath := "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 oGauge:PicturesName := "`Layer` + int(value + 1) + `.png`"
 oGauge:Layers():Count := 1
 oLayer := oGauge:Layers:Item(0)
 oLayer:OnDrag := 1/*exDoMove*/
 oLayer:OffsetYValid := "0"

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

C#

VB

private void Click(object sender)
{
}

Private Sub Click(ByVal sender As System.Object) Handles Click
End Sub

C#

C++

C++
Builder

Delphi

private void ClickEvent(object sender, EventArgs e)
{
}

void OnClick()
{
}

void __fastcall Click(TObject *Sender)
{
}

procedure Click(ASender: TObject;);
begin

event Click ()
Occurs when the user presses and then releases the left mouse button over the control.

Type Description

The Click event is fired when the user releases the left mouse button over the control. Use
a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. You can use the LayerFromPoint(-1,-1) property to get the layer from
the cursor. The Click event is not fired if you click, drag and release the mouse over the
control. The OnDrag property indicates the action to be performed when the user clicks and
drags the layer.

Syntax for Click event, /NET version, on:

Syntax for Click event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

procedure ClickEvent(sender: System.Object; e: System.EventArgs);
begin
end;

begin event Click()

end event Click

Private Sub ClickEvent(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ClickEvent
End Sub

Private Sub Click()
End Sub

Private Sub Click()
End Sub

LPARAMETERS nop

PROCEDURE OnClick(oGauge)

RETURN

Java…

VBSc…

<SCRIPT EVENT="Click()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Click()
End Function
</SCRIPT>

Syntax for Click event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComClick
 Forward Send OnComClick
End_Procedure

METHOD OCX_Click() CLASS MainDialog
RETURN NIL

void onEvent_Click()
{
}

function Click as v ()
end function

function nativeObject_Click()
return

C#

VB

private void DblClick(object sender,short Shift,int X,int Y)
{
}

Private Sub DblClick(ByVal sender As System.Object,ByVal Shift As Short,ByVal X
As Integer,ByVal Y As Integer) Handles DblClick
End Sub

C#

C++

private void DblClick(object sender, AxEXGAUGELib._IGaugeEvents_DblClickEvent
e)
{
}

void OnDblClick(short Shift,long X,long Y)
{
}

event DblClick (Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS)
Occurs when the user dblclk the left mouse button over an object.

Type Description

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates

The DblClick event is fired when user double clicks the control. You can use the
LayerFromPoint(-1,-1) property to get the layer from the cursor. The Click event is not fired
if you click, drag and release the mouse over the control. The OnDrag property indicates
the action to be performed when the user clicks and drags the layer.

Syntax for DblClick event, /NET version, on:

Syntax for DblClick event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall DblClick(TObject *Sender,short Shift,int X,int Y)
{
}

procedure DblClick(ASender: TObject; Shift : Smallint;X : Integer;Y : Integer);
begin
end;

procedure DblClick(sender: System.Object; e:
AxEXGAUGELib._IGaugeEvents_DblClickEvent);
begin
end;

begin event DblClick(integer Shift,long X,long Y)

end event DblClick

Private Sub DblClick(ByVal sender As System.Object, ByVal e As
AxEXGAUGELib._IGaugeEvents_DblClickEvent) Handles DblClick
End Sub

Private Sub DblClick(Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub DblClick(ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long)
End Sub

LPARAMETERS Shift,X,Y

PROCEDURE OnDblClick(oGauge,Shift,X,Y)

RETURN

Java… <SCRIPT EVENT="DblClick(Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

Syntax for DblClick event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function DblClick(Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComDblClick Short llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS
llY
 Forward Send OnComDblClick llShift llX llY
End_Procedure

METHOD OCX_DblClick(Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_DblClick(int _Shift,int _X,int _Y)
{
}

function DblClick as v (Shift as N,X as
OLE::Exontrol.Gauge.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Gauge.1::OLE_YPOS_PIXELS)
end function

function nativeObject_DblClick(Shift,X,Y)
return

C#

VB

private void Drag(object sender,exontrol.EXGAUGELib.DragInfo DragInfo)
{
}

Private Sub Drag(ByVal sender As System.Object,ByVal DragInfo As
exontrol.EXGAUGELib.DragInfo) Handles Drag
End Sub

C#

C++

private void Drag(object sender, AxEXGAUGELib._IGaugeEvents_DragEvent e)
{
}

void OnDrag(LPDISPATCH DragInfo)

event Drag (DragInfo as DragInfo)
Notifies that the user drags the layer.

Type Description

DragInfo as DragInfo A DragInfo object that carries information about the
dragging operation.

Any layer on the control supports drag operations like moving, rotation, or combination of
them, when the user clicks and drags a layer. The drag operation automatically starts when
the user clicks a visible, selectable and dragable layer. The OnDrag property indicates the
action to be performed when the user drags the layer (dragable). The Visible property
shows or hides a specific layer (visible). The Selectable property returns or sets a value
that indicates whether the layer is selectable. The Change event occurs when the layer's
value is changed.

The control fires the drag events in the following order:

DragStart event notifies that a layer begins to drag. You can use the DragStart event
to cancel the dragging operation.
Drag event notifies that the layer is dragging. You can use the Drag event to perform
other actions, on any layer during the dragging operation.
DragEnd event notifies that the dragging the layer ends. You can use the DragEnd
event to perform other actions, on any layer when dragging operation ends.

Syntax for Drag event, /NET version, on:

Syntax for Drag event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

void __fastcall Drag(TObject *Sender,Exgaugelib_tlb::IDragInfo *DragInfo)
{
}

procedure Drag(ASender: TObject; DragInfo : IDragInfo);
begin
end;

procedure Drag(sender: System.Object; e:
AxEXGAUGELib._IGaugeEvents_DragEvent);
begin
end;

begin event Drag(oleobject DragInfo)

end event Drag

Private Sub Drag(ByVal sender As System.Object, ByVal e As
AxEXGAUGELib._IGaugeEvents_DragEvent) Handles Drag
End Sub

Private Sub Drag(ByVal DragInfo As EXGAUGELibCtl.IDragInfo)
End Sub

Private Sub Drag(ByVal DragInfo As Object)
End Sub

LPARAMETERS DragInfo

PROCEDURE OnDrag(oGauge,DragInfo)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="Drag(DragInfo)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Drag(DragInfo)
End Function
</SCRIPT>

Procedure OnComDrag Variant llDragInfo
 Forward Send OnComDrag llDragInfo
End_Procedure

METHOD OCX_Drag(DragInfo) CLASS MainDialog
RETURN NIL

void onEvent_Drag(COM _DragInfo)
{
}

function Drag as v (DragInfo as OLE::Exontrol.Gauge.1::IDragInfo)
end function

function nativeObject_Drag(DragInfo)
return

Syntax for Drag event, /COM version (others), on:

C#

VB

private void DragEnd(object sender,exontrol.EXGAUGELib.DragInfo
DragInfo,bool Cancel)
{
}

Private Sub DragEnd(ByVal sender As System.Object,ByVal DragInfo As
exontrol.EXGAUGELib.DragInfo,ByVal Cancel As Boolean) Handles DragEnd
End Sub

C# private void DragEnd(object sender,

event DragEnd (DragInfo as DragInfo, Cancel as Boolean)
Occurs once the user ends dragging a layer.

Type Description

DragInfo as DragInfo A DragInfo object that carries information about the
dragging operation.

Cancel as Boolean
A Boolean expression that specifies whether the dragging
operation was canceled, for instance, the user presses
the ESC during dragging operation.

Any layer on the control supports drag operations like moving, rotation, or combination of
them, when the user clicks and drags a layer. The drag operation automatically starts when
the user clicks a visible, selectable and dragable layer. The OnDrag property indicates the
action to be performed when the user drags the layer (dragable). The Visible property
shows or hides a specific layer (visible). The Selectable property returns or sets a value
that indicates whether the layer is selectable. The Change event occurs when the layer's
value is changed.

The control fires the drag events in the following order:

DragStart event notifies that a layer begins to drag. You can use the DragStart event
to cancel the dragging operation.
Drag event notifies that the layer is dragging. You can use the Drag event to perform
other actions, on any layer during the dragging operation.
DragEnd event notifies that the dragging the layer ends. You can use the DragEnd
event to perform other actions, on any layer when dragging operation ends.

Syntax for DragEnd event, /NET version, on:

Syntax for DragEnd event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

AxEXGAUGELib._IGaugeEvents_DragEndEvent e)
{
}

void OnDragEnd(LPDISPATCH DragInfo,BOOL Cancel)
{
}

void __fastcall DragEnd(TObject *Sender,Exgaugelib_tlb::IDragInfo
*DragInfo,VARIANT_BOOL Cancel)
{
}

procedure DragEnd(ASender: TObject; DragInfo : IDragInfo;Cancel : WordBool);
begin
end;

procedure DragEnd(sender: System.Object; e:
AxEXGAUGELib._IGaugeEvents_DragEndEvent);
begin
end;

begin event DragEnd(oleobject DragInfo,boolean Cancel)

end event DragEnd

Private Sub DragEnd(ByVal sender As System.Object, ByVal e As
AxEXGAUGELib._IGaugeEvents_DragEndEvent) Handles DragEnd
End Sub

Private Sub DragEnd(ByVal DragInfo As EXGAUGELibCtl.IDragInfo,ByVal Cancel As
Boolean)
End Sub

Private Sub DragEnd(ByVal DragInfo As Object,ByVal Cancel As Boolean)
End Sub

LPARAMETERS DragInfo,Cancel

Xbas… PROCEDURE OnDragEnd(oGauge,DragInfo,Cancel)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="DragEnd(DragInfo,Cancel)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function DragEnd(DragInfo,Cancel)
End Function
</SCRIPT>

Procedure OnComDragEnd Variant llDragInfo Boolean llCancel
 Forward Send OnComDragEnd llDragInfo llCancel
End_Procedure

METHOD OCX_DragEnd(DragInfo,Cancel) CLASS MainDialog
RETURN NIL

void onEvent_DragEnd(COM _DragInfo,boolean _Cancel)
{
}

function DragEnd as v (DragInfo as OLE::Exontrol.Gauge.1::IDragInfo,Cancel as L)
end function

function nativeObject_DragEnd(DragInfo,Cancel)
return

Syntax for DragEnd event, /COM version (others), on:

event DragStart (DragInfo as DragInfo, Cancel as Boolean)
Occurs once the user starts dragging a layer.

Type Description

DragInfo as DragInfo

A DragInfo object that carries information about the
dragging operation. You can use UserData property of the
DragInfo object to associate any-extra data to the current
dragging operation.

Cancel as Boolean

A Boolean expression that specifies whether the dragging
operation should be canceled, or can continue. By default,
the Cancel parameter is False, so you can change the
Cancel parameter during the DragStart event to prevent
sragging any layer on the control.

Any layer on the control supports drag operations like moving, rotation, or combination of
them, when the user clicks and drags a layer. The drag operation automatically starts when
the user clicks a visible, selectable and dragable layer. The OnDrag property indicates the
action to be performed when the user drags the layer (dragable). The Visible property
shows or hides a specific layer (visible). The Selectable property returns or sets a value
that indicates whether the layer is selectable. The Change event occurs when the layer's
value is changed.

The control fires the drag events in the following order:

DragStart event notifies that a layer begins to drag. You can use the DragStart event
to cancel the dragging operation.
Drag event notifies that the layer is dragging. You can use the Drag event to perform
other actions, on any layer during the dragging operation.
DragEnd event notifies that the dragging the layer ends. You can use the DragEnd
event to perform other actions, on any layer when dragging operation ends.

You can use the Debug property of the DragInfo object to display debugging information
during dragging.

The following screen show shows debugging information during dragging:

C#

VB

private void DragStart(object sender,exontrol.EXGAUGELib.DragInfo DragInfo,ref
bool Cancel)
{
}

Private Sub DragStart(ByVal sender As System.Object,ByVal DragInfo As
exontrol.EXGAUGELib.DragInfo,ByRef Cancel As Boolean) Handles DragStart
End Sub

C#

C++

private void DragStart(object sender,
AxEXGAUGELib._IGaugeEvents_DragStartEvent e)
{
}

void OnDragStart(LPDISPATCH DragInfo,BOOL FAR* Cancel)
{
}

Syntax for DragStart event, /NET version, on:

Syntax for DragStart event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall DragStart(TObject *Sender,Exgaugelib_tlb::IDragInfo
*DragInfo,VARIANT_BOOL * Cancel)
{
}

procedure DragStart(ASender: TObject; DragInfo : IDragInfo;var Cancel :
WordBool);
begin
end;

procedure DragStart(sender: System.Object; e:
AxEXGAUGELib._IGaugeEvents_DragStartEvent);
begin
end;

begin event DragStart(oleobject DragInfo,boolean Cancel)

end event DragStart

Private Sub DragStart(ByVal sender As System.Object, ByVal e As
AxEXGAUGELib._IGaugeEvents_DragStartEvent) Handles DragStart
End Sub

Private Sub DragStart(ByVal DragInfo As EXGAUGELibCtl.IDragInfo,Cancel As
Boolean)
End Sub

Private Sub DragStart(ByVal DragInfo As Object,Cancel As Boolean)
End Sub

LPARAMETERS DragInfo,Cancel

PROCEDURE OnDragStart(oGauge,DragInfo,Cancel)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="DragStart(DragInfo,Cancel)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function DragStart(DragInfo,Cancel)
End Function
</SCRIPT>

Procedure OnComDragStart Variant llDragInfo Boolean llCancel
 Forward Send OnComDragStart llDragInfo llCancel
End_Procedure

METHOD OCX_DragStart(DragInfo,Cancel) CLASS MainDialog
RETURN NIL

void onEvent_DragStart(COM _DragInfo,COMVariant /*bool*/ _Cancel)
{
}

function DragStart as v (DragInfo as OLE::Exontrol.Gauge.1::IDragInfo,Cancel as
L)
end function

function nativeObject_DragStart(DragInfo,Cancel)
return

Syntax for DragStart event, /COM version (others), on:

event Event (EventID as Long)
Notifies the application once the control fires an event.

Type Description

EventID as Long

A Long expression that specifies the identifier of the event.
Use the EventParam(-2) to display entire information
about fired event (such as name, identifier, and properties
).

The Event notification occurs ANY time the control fires an event.

This is useful for X++ language, which does not support event with parameters passed by
reference.

In X++ the "Error executing code: FormActiveXControl (data source), method ... called with
invalid parameters" occurs when handling events that have parameters passed by
reference. Passed by reference, means that in the event handler, you can change the value
for that parameter, and so the control will takes the new value, and use it. The X++ is NOT
able to handle properly events with parameters by reference, so we have the solution.

The solution is using and handling the Event notification and EventParam method., instead
handling the event that gives the "invalid parameters" error executing code.

Here's how the output is shown, when printing the EventParam(-2) during the Event event:

MouseIn/2(0)
MouseMove/-606(0 , 0 , 184 , 420)
MouseDown/-605(1 , 0 , 184 , 420)
DragStart/4([Object] , =false)
MouseMove/-606(1 , 0 , 185 , 420)
Change/7(0)
Drag/5([Object])
DragEnd/6([Object] , false)
MouseUp/-607(1 , 0 , 337 , 382)
MouseMove/-606(0 , 0 , 338 , 383)
MouseOut/3(0)
MouseMove/-606(0 , 0 , 369 , 623)
MouseMove/-606(0 , 0 , 369 , 636)

Syntax for Event event, /NET version, on:

C#

VB

private void Event(object sender,int EventID)
{
}

Private Sub Event(ByVal sender As System.Object,ByVal EventID As Integer)
Handles Event
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

private void Event(object sender, AxEXGAUGELib._IGaugeEvents_EventEvent e)
{
}

void OnEvent(long EventID)
{
}

void __fastcall Event(TObject *Sender,long EventID)
{
}

procedure Event(ASender: TObject; EventID : Integer);
begin
end;

procedure Event(sender: System.Object; e:
AxEXGAUGELib._IGaugeEvents_EventEvent);
begin
end;

begin event Event(long EventID)

end event Event

Private Sub Event(ByVal sender As System.Object, ByVal e As
AxEXGAUGELib._IGaugeEvents_EventEvent) Handles Event

Syntax for Event event, /COM version, on:

VB6

VBA

VFP

Xbas…

End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

LPARAMETERS EventID

PROCEDURE OnEvent(oGauge,EventID)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

Visual
Objects

<SCRIPT EVENT="Event(EventID)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Event(EventID)
End Function
</SCRIPT>

Procedure OnComEvent Integer llEventID
 Forward Send OnComEvent llEventID
End_Procedure

METHOD OCX_Event(EventID) CLASS MainDialog
RETURN NIL

void onEvent_Event(int _EventID)
{
}

function Event as v (EventID as N)
end function

Syntax for Event event, /COM version (others), on:

dBASE function nativeObject_Event(EventID)
return

C#

VB

private void KeyDown(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyDown(ByVal sender As System.Object,ByRef KeyCode As
Short,ByVal Shift As Short) Handles KeyDown
End Sub

C# private void KeyDownEvent(object sender,
AxEXGAUGELib._IGaugeEvents_KeyDownEvent e)

event KeyDown (KeyCode as Integer, Shift as Integer)
Occurs when the user presses a key while an object has the focus.

Type Description
KeyCode as Integer An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use KeyDown and KeyUp event procedures if you need to respond to both the pressing
and releasing of a key. You test for a condition by first assigning each result to a temporary
integer variable and then comparing shift to a bit mask. Use the And operator with the shift
argument to test whether the condition is greater than 0, indicating that the modifier was
pressed, as in this example:

ShiftDown = (Shift And 1) > 0
CtrlDown = (Shift And 2) > 0
AltDown = (Shift And 4) > 0
In a procedure, you can test for any combination of conditions, as in this example:
If AltDown And CtrlDown Then

Syntax for KeyDown event, /NET version, on:

Syntax for KeyDown event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

void OnKeyDown(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyDown(TObject *Sender,short * KeyCode,short Shift)
{
}

procedure KeyDown(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyDownEvent(sender: System.Object; e:
AxEXGAUGELib._IGaugeEvents_KeyDownEvent);
begin
end;

begin event KeyDown(integer KeyCode,integer Shift)

end event KeyDown

Private Sub KeyDownEvent(ByVal sender As System.Object, ByVal e As
AxEXGAUGELib._IGaugeEvents_KeyDownEvent) Handles KeyDownEvent
End Sub

Private Sub KeyDown(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyDown(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyDown(oGauge,KeyCode,Shift)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="KeyDown(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyDown(KeyCode,Shift)
End Function
</SCRIPT>

Procedure OnComKeyDown Short llKeyCode Short llShift
 Forward Send OnComKeyDown llKeyCode llShift
End_Procedure

METHOD OCX_KeyDown(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyDown(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyDown as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyDown(KeyCode,Shift)
return

Syntax for KeyDown event, /COM version (others), on:

C#

VB

private void KeyPress(object sender,ref short KeyAscii)
{
}

Private Sub KeyPress(ByVal sender As System.Object,ByRef KeyAscii As Short)
Handles KeyPress
End Sub

C#

C++

C++
Builder

private void KeyPressEvent(object sender,
AxEXGAUGELib._IGaugeEvents_KeyPressEvent e)
{
}

void OnKeyPress(short FAR* KeyAscii)
{
}

void __fastcall KeyPress(TObject *Sender,short * KeyAscii)
{
}

event KeyPress (KeyAscii as Integer)
Occurs when the user presses and releases an ANSI key.

Type Description
KeyAscii as Integer An integer that returns a standard numeric ANSI keycode.

The KeyPress event lets you immediately test keystrokes for validity or for formatting
characters as they are typed. Changing the value of the keyascii argument changes the
character displayed. Use KeyDown and KeyUp event procedures to handle any keystroke
not recognized by KeyPress, such as function keys, editing keys, navigation keys, and any
combinations of these with keyboard modifiers. Unlike the KeyDown and KeyUp events,
KeyPress does not indicate the physical state of the keyboard; instead, it passes a
character. KeyPress interprets the uppercase and lowercase of each character as
separate key codes and, therefore, as two separate characters.

Syntax for KeyPress event, /NET version, on:

Syntax for KeyPress event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure KeyPress(ASender: TObject; var KeyAscii : Smallint);
begin
end;

procedure KeyPressEvent(sender: System.Object; e:
AxEXGAUGELib._IGaugeEvents_KeyPressEvent);
begin
end;

begin event KeyPress(integer KeyAscii)

end event KeyPress

Private Sub KeyPressEvent(ByVal sender As System.Object, ByVal e As
AxEXGAUGELib._IGaugeEvents_KeyPressEvent) Handles KeyPressEvent
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

LPARAMETERS KeyAscii

PROCEDURE OnKeyPress(oGauge,KeyAscii)

RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyPress(KeyAscii)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyPress(KeyAscii)

Syntax for KeyPress event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

End Function
</SCRIPT>

Procedure OnComKeyPress Short llKeyAscii
 Forward Send OnComKeyPress llKeyAscii
End_Procedure

METHOD OCX_KeyPress(KeyAscii) CLASS MainDialog
RETURN NIL

void onEvent_KeyPress(COMVariant /*short*/ _KeyAscii)
{
}

function KeyPress as v (KeyAscii as N)
end function

function nativeObject_KeyPress(KeyAscii)
return

C#

VB

private void KeyUp(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyUp(ByVal sender As System.Object,ByRef KeyCode As Short,ByVal
Shift As Short) Handles KeyUp
End Sub

C#

C++

C++
Builder

private void KeyUpEvent(object sender,
AxEXGAUGELib._IGaugeEvents_KeyUpEvent e)
{
}

void OnKeyUp(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyUp(TObject *Sender,short * KeyCode,short Shift)
{

event KeyUp (KeyCode as Integer, Shift as Integer)
Occurs when the user releases a key while an object has the focus.

Type Description
KeyCode as Integer An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use the KeyUp event procedure to respond to the releasing of a key.

Syntax for KeyUp event, /NET version, on:

Syntax for KeyUp event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure KeyUp(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyUpEvent(sender: System.Object; e:
AxEXGAUGELib._IGaugeEvents_KeyUpEvent);
begin
end;

begin event KeyUp(integer KeyCode,integer Shift)

end event KeyUp

Private Sub KeyUpEvent(ByVal sender As System.Object, ByVal e As
AxEXGAUGELib._IGaugeEvents_KeyUpEvent) Handles KeyUpEvent
End Sub

Private Sub KeyUp(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyUp(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyUp(oGauge,KeyCode,Shift)

RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyUp(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">

Syntax for KeyUp event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Function KeyUp(KeyCode,Shift)
End Function
</SCRIPT>

Procedure OnComKeyUp Short llKeyCode Short llShift
 Forward Send OnComKeyUp llKeyCode llShift
End_Procedure

METHOD OCX_KeyUp(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyUp(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyUp as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyUp(KeyCode,Shift)
return

C#

VB

private void MouseDownEvent(object sender,short Button,short Shift,int X,int
Y)
{
}

Private Sub MouseDownEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseDownEvent
End Sub

event MouseDown (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user presses a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. You can use the LayerFromPoint(-1,-1) property to get the layer from
the cursor. The Click event is not fired if you click, drag and release the mouse over the
control. The OnDrag property indicates the action to be performed when the user clicks and
drags the layer.

Syntax for MouseDown event, /NET version, on:

Syntax for MouseDown event, /COM version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

private void MouseDownEvent(object sender,
AxEXGAUGELib._IGaugeEvents_MouseDownEvent e)
{
}

void OnMouseDown(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseDown(TObject *Sender,short Button,short Shift,int X,int
Y)
{
}

procedure MouseDown(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseDownEvent(sender: System.Object; e:
AxEXGAUGELib._IGaugeEvents_MouseDownEvent);
begin
end;

begin event MouseDown(integer Button,integer Shift,long X,long Y)

end event MouseDown

Private Sub MouseDownEvent(ByVal sender As System.Object, ByVal e As
AxEXGAUGELib._IGaugeEvents_MouseDownEvent) Handles MouseDownEvent
End Sub

Private Sub MouseDown(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseDown(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)

VFP

Xbas…

End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseDown(oGauge,Button,Shift,X,Y)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseDown(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseDown(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseDown Short llButton Short llShift OLE_XPOS_PIXELS
llX OLE_YPOS_PIXELS llY
 Forward Send OnComMouseDown llButton llShift llX llY
End_Procedure

METHOD OCX_MouseDown(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseDown(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseDown as v (Button as N,Shift as N,X as
OLE::Exontrol.Gauge.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Gauge.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseDown(Button,Shift,X,Y)
return

Syntax for MouseDown event, /COM version (others), on:

C#

VB

private void MouseIn(object sender,int Layer)
{
}

Private Sub MouseIn(ByVal sender As System.Object,ByVal Layer As Integer)
Handles MouseIn
End Sub

C#

C++

C++
Builder

private void MouseIn(object sender, AxEXGAUGELib._IGaugeEvents_MouseInEvent
e)
{
}

void OnMouseIn(long Layer)
{
}

void __fastcall MouseIn(TObject *Sender,long Layer)
{
}

event MouseIn (Layer as Long)
Notifies that the cursor enters the layer.

Type Description

Layer as Long
A long expression that specifies the index of the layer
where the cursor is entering. The Item property of Layers
collection gets the layer based on its index.

 The MouseIn / MouseOut event notifies your application when the cursor is entering /
leaving the layer. The MouseMove event is generated continually as the mouse pointer
moves across objects. The AllowSmoothChange property specifies the properties of the
layers that support smooth change. For instance, you can use the MouseIn / MouseOut
event to change gradually the brightness / contrast or the transparency, of the layer, while
the AllowSmoothChange property is not exSmoothChangeless.

Syntax for MouseIn event, /NET version, on:

Syntax for MouseIn event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure MouseIn(ASender: TObject; Layer : Integer);
begin
end;

procedure MouseIn(sender: System.Object; e:
AxEXGAUGELib._IGaugeEvents_MouseInEvent);
begin
end;

begin event MouseIn(long Layer)

end event MouseIn

Private Sub MouseIn(ByVal sender As System.Object, ByVal e As
AxEXGAUGELib._IGaugeEvents_MouseInEvent) Handles MouseIn
End Sub

Private Sub MouseIn(ByVal Layer As Long)
End Sub

Private Sub MouseIn(ByVal Layer As Long)
End Sub

LPARAMETERS Layer

PROCEDURE OnMouseIn(oGauge,Layer)

RETURN

Java…

VBSc…

<SCRIPT EVENT="MouseIn(Layer)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseIn(Layer)

Syntax for MouseIn event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

End Function
</SCRIPT>

Procedure OnComMouseIn Integer llLayer
 Forward Send OnComMouseIn llLayer
End_Procedure

METHOD OCX_MouseIn(Layer) CLASS MainDialog
RETURN NIL

void onEvent_MouseIn(int _Layer)
{
}

function MouseIn as v (Layer as N)
end function

function nativeObject_MouseIn(Layer)
return

The following samples shows how you can change the layer's brightness when the cursor
enters / leaves the layer:

VBA (MS Access, Excell...)

' MouseIn event - Notifies that the cursor enters the layer.
Private Sub Gauge1_MouseIn(ByVal Layer As Long)
 With Gauge1
 With .Layers.Item(Layer)
 .Brightness(1) = 100
 .Brightness(2) = 0
 .Brightness(3) = 0
 End With
 End With
End Sub

' MouseOut event - Notifies that the cursor exits the layer.
Private Sub Gauge1_MouseOut(ByVal Layer As Long)

 With Gauge1
 With .Layers.Item(Layer)
 .Brightness(1) = Gauge1.DefaultLayer(128)
 .Brightness(2) = Gauge1.DefaultLayer(128)
 .Brightness(3) = Gauge1.DefaultLayer(128)
 End With
 End With
End Sub

With Gauge1
 .DefaultLayer(128) = 51
 .PicturesPath = "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 1
End With

VB6

' MouseIn event - Notifies that the cursor enters the layer.
Private Sub Gauge1_MouseIn(ByVal Layer As Long)
 With Gauge1
 With .Layers.Item(Layer)
 .Brightness(exRedChannel) = 100
 .Brightness(exGreenChannel) = 0
 .Brightness(exBlueChannel) = 0
 End With
 End With
End Sub

' MouseOut event - Notifies that the cursor exits the layer.
Private Sub Gauge1_MouseOut(ByVal Layer As Long)
 With Gauge1
 With .Layers.Item(Layer)
 .Brightness(exRedChannel) = Gauge1.DefaultLayer(exDefLayerBrightness)
 .Brightness(exGreenChannel) = Gauge1.DefaultLayer(exDefLayerBrightness)
 .Brightness(exBlueChannel) = Gauge1.DefaultLayer(exDefLayerBrightness)

 End With
 End With
End Sub

With Gauge1
 .DefaultLayer(exDefLayerBrightness) = 51
 .PicturesPath = "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 1
End With

VB.NET

' MouseIn event - Notifies that the cursor enters the layer.
Private Sub Exgauge1_MouseIn(ByVal sender As System.Object,ByVal Layer As Integer)
Handles Exgauge1.MouseIn
 With Exgauge1
 With .Layers.Item(Layer)

.set_Brightness(exontrol.EXGAUGELib.ColorAdjustmentChannelEnum.exRedChannel,100)

.set_Brightness(exontrol.EXGAUGELib.ColorAdjustmentChannelEnum.exGreenChannel,0)

.set_Brightness(exontrol.EXGAUGELib.ColorAdjustmentChannelEnum.exBlueChannel,0)

 End With
 End With
End Sub

' MouseOut event - Notifies that the cursor exits the layer.
Private Sub Exgauge1_MouseOut(ByVal sender As System.Object,ByVal Layer As
Integer) Handles Exgauge1.MouseOut
 With Exgauge1
 With .Layers.Item(Layer)

.set_Brightness(exontrol.EXGAUGELib.ColorAdjustmentChannelEnum.exRedChannel,Exgauge1.get_DefaultLayer(exontrol.EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness))

.set_Brightness(exontrol.EXGAUGELib.ColorAdjustmentChannelEnum.exGreenChannel,Exgauge1.get_DefaultLayer(exontrol.EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness))

.set_Brightness(exontrol.EXGAUGELib.ColorAdjustmentChannelEnum.exBlueChannel,Exgauge1.get_DefaultLayer(exontrol.EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness))

 End With
 End With
End Sub

With Exgauge1

.set_DefaultLayer(exontrol.EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness,

 .PicturesPath = "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 1
End With

VB.NET for /COM

' MouseIn event - Notifies that the cursor enters the layer.
Private Sub AxGauge1_MouseIn(ByVal sender As System.Object, ByVal e As
AxEXGAUGELib._IGaugeEvents_MouseInEvent) Handles AxGauge1.MouseIn
 With AxGauge1
 With .Layers.Item(e.layer)
 .Brightness(EXGAUGELib.ColorAdjustmentChannelEnum.exRedChannel) =
100
 .Brightness(EXGAUGELib.ColorAdjustmentChannelEnum.exGreenChannel) = 0
 .Brightness(EXGAUGELib.ColorAdjustmentChannelEnum.exBlueChannel) = 0
 End With
 End With
End Sub

' MouseOut event - Notifies that the cursor exits the layer.
Private Sub AxGauge1_MouseOut(ByVal sender As System.Object, ByVal e As
AxEXGAUGELib._IGaugeEvents_MouseOutEvent) Handles AxGauge1.MouseOut
 With AxGauge1
 With .Layers.Item(e.layer)
 .Brightness(EXGAUGELib.ColorAdjustmentChannelEnum.exRedChannel) =
AxGauge1.DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness)

 .Brightness(EXGAUGELib.ColorAdjustmentChannelEnum.exGreenChannel) =
AxGauge1.DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness)

 .Brightness(EXGAUGELib.ColorAdjustmentChannelEnum.exBlueChannel) =
AxGauge1.DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness)

 End With
 End With
End Sub

With AxGauge1

.set_DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness,51)
 .PicturesPath = "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 1
End With

C++

// MouseIn event - Notifies that the cursor enters the layer.
void OnMouseInGauge1(long Layer)
{
 /*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXGAUGELib' for the library: 'ExGauge 1.0 Control
Library'

 #import <ExGauge.dll>
 using namespace EXGAUGELib;
 */
 EXGAUGELib::IGaugePtr spGauge1 = GetDlgItem(IDC_GAUGE1)-
>GetControlUnknown();
 EXGAUGELib::ILayerPtr var_Layer = spGauge1->GetLayers()->GetItem(Layer);
 var_Layer->PutBrightness(EXGAUGELib::exRedChannel,100);
 var_Layer->PutBrightness(EXGAUGELib::exGreenChannel,0);
 var_Layer->PutBrightness(EXGAUGELib::exBlueChannel,0);
}

// MouseOut event - Notifies that the cursor exits the layer.
void OnMouseOutGauge1(long Layer)
{
 EXGAUGELib::IGaugePtr spGauge1 = GetDlgItem(IDC_GAUGE1)-
>GetControlUnknown();
 EXGAUGELib::ILayerPtr var_Layer = spGauge1->GetLayers()->GetItem(Layer);
 var_Layer->PutBrightness(EXGAUGELib::exRedChannel,spGauge1-
>GetDefaultLayer(EXGAUGELib::exDefLayerBrightness));
 var_Layer->PutBrightness(EXGAUGELib::exGreenChannel,spGauge1-
>GetDefaultLayer(EXGAUGELib::exDefLayerBrightness));
 var_Layer->PutBrightness(EXGAUGELib::exBlueChannel,spGauge1-
>GetDefaultLayer(EXGAUGELib::exDefLayerBrightness));
}

EXGAUGELib::IGaugePtr spGauge1 = GetDlgItem(IDC_GAUGE1)-
>GetControlUnknown();
spGauge1->PutDefaultLayer(EXGAUGELib::exDefLayerBrightness,long(51));
spGauge1->PutPicturesPath(L"C:\\Program Files
(x86)\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob");
spGauge1->PutPicturesName(L"`Layer` + int(value + 1) + `.png`");
spGauge1->GetLayers()->PutCount(1);

C++ Builder

// MouseIn event - Notifies that the cursor enters the layer.

void __fastcall TForm1::Gauge1MouseIn(TObject *Sender,long Layer)
{
 Exgaugelib_tlb::ILayerPtr var_Layer = Gauge1->Layers->get_Item(TVariant(Layer));
 var_Layer-
>set_Brightness(Exgaugelib_tlb::ColorAdjustmentChannelEnum::exRedChannel,100);
 var_Layer-
>set_Brightness(Exgaugelib_tlb::ColorAdjustmentChannelEnum::exGreenChannel,0);
 var_Layer-
>set_Brightness(Exgaugelib_tlb::ColorAdjustmentChannelEnum::exBlueChannel,0);
}

// MouseOut event - Notifies that the cursor exits the layer.
void __fastcall TForm1::Gauge1MouseOut(TObject *Sender,long Layer)
{
 Exgaugelib_tlb::ILayerPtr var_Layer = Gauge1->Layers->get_Item(TVariant(Layer));
 var_Layer-
>set_Brightness(Exgaugelib_tlb::ColorAdjustmentChannelEnum::exRedChannel,Gauge1-
>get_DefaultLayer(Exgaugelib_tlb::DefaultLayerPropertyEnum::exDefLayerBrightness));

 var_Layer-
>set_Brightness(Exgaugelib_tlb::ColorAdjustmentChannelEnum::exGreenChannel,Gauge1-
>get_DefaultLayer(Exgaugelib_tlb::DefaultLayerPropertyEnum::exDefLayerBrightness));

 var_Layer-
>set_Brightness(Exgaugelib_tlb::ColorAdjustmentChannelEnum::exBlueChannel,Gauge1-
>get_DefaultLayer(Exgaugelib_tlb::DefaultLayerPropertyEnum::exDefLayerBrightness));

}

Gauge1-
>DefaultLayer[Exgaugelib_tlb::DefaultLayerPropertyEnum::exDefLayerBrightness] =
TVariant(51);
Gauge1->PicturesPath = L"C:\\Program Files
(x86)\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
Gauge1->PicturesName = L"`Layer` + int(value + 1) + `.png`";
Gauge1->Layers->Count = 1;

C#

// MouseIn event - Notifies that the cursor enters the layer.
private void exgauge1_MouseIn(object sender,int Layer)
{
 exontrol.EXGAUGELib.Layer var_Layer = exgauge1.Layers[Layer];

var_Layer.set_Brightness(exontrol.EXGAUGELib.ColorAdjustmentChannelEnum.exRedChannel,

var_Layer.set_Brightness(exontrol.EXGAUGELib.ColorAdjustmentChannelEnum.exGreenChannel,

var_Layer.set_Brightness(exontrol.EXGAUGELib.ColorAdjustmentChannelEnum.exBlueChannel,

}
//this.exgauge1.MouseIn += new
exontrol.EXGAUGELib.exg2antt.MouseInEventHandler(this.exgauge1_MouseIn);

// MouseOut event - Notifies that the cursor exits the layer.
private void exgauge1_MouseOut(object sender,int Layer)
{
 exontrol.EXGAUGELib.Layer var_Layer = exgauge1.Layers[Layer];

var_Layer.set_Brightness(exontrol.EXGAUGELib.ColorAdjustmentChannelEnum.exRedChannel,exgauge1.get_DefaultLayer(exontrol.EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness));

var_Layer.set_Brightness(exontrol.EXGAUGELib.ColorAdjustmentChannelEnum.exGreenChannel,exgauge1.get_DefaultLayer(exontrol.EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness));

var_Layer.set_Brightness(exontrol.EXGAUGELib.ColorAdjustmentChannelEnum.exBlueChannel,exgauge1.get_DefaultLayer(exontrol.EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness));

}
//this.exgauge1.MouseOut += new
exontrol.EXGAUGELib.exg2antt.MouseOutEventHandler(this.exgauge1_MouseOut);

exgauge1.set_DefaultLayer(exontrol.EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness,

exgauge1.PicturesPath = "C:\\Program Files
(x86)\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
exgauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
exgauge1.Layers.Count = 1;

JScript/JavaScript

<BODY onload="Init()">
<SCRIPT FOR="Gauge1" EVENT="MouseIn(Layer)" LANGUAGE="JScript">
 var var_Layer = Gauge1.Layers.Item(Layer);
 var_Layer.Brightness(1) = 100;
 var_Layer.Brightness(2) = 0;
 var_Layer.Brightness(3) = 0;
</SCRIPT>

<SCRIPT FOR="Gauge1" EVENT="MouseOut(Layer)" LANGUAGE="JScript">
 var var_Layer = Gauge1.Layers.Item(Layer);
 var_Layer.Brightness(1) = Gauge1.DefaultLayer(128);
 var_Layer.Brightness(2) = Gauge1.DefaultLayer(128);
 var_Layer.Brightness(3) = Gauge1.DefaultLayer(128);
</SCRIPT>

<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 Gauge1.DefaultLayer(128) = 51;
 Gauge1.PicturesPath = "C:\\Program Files
(x86)\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
 Gauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
 Gauge1.Layers.Count = 1;
}
</SCRIPT>

</BODY>

VBScript

<BODY onload="Init()">
<SCRIPT LANGUAGE="VBScript">
Function Gauge1_MouseIn(Layer)
 With Gauge1
 With .Layers.Item(Layer)
 .Brightness(1) = 100
 .Brightness(2) = 0
 .Brightness(3) = 0
 End With
 End With
End Function
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Gauge1_MouseOut(Layer)
 With Gauge1
 With .Layers.Item(Layer)
 .Brightness(1) = Gauge1.DefaultLayer(128)
 .Brightness(2) = Gauge1.DefaultLayer(128)
 .Brightness(3) = Gauge1.DefaultLayer(128)
 End With
 End With
End Function
</SCRIPT>

<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With Gauge1
 .DefaultLayer(128) = 51

 .PicturesPath = "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 1
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

// MouseIn event - Notifies that the cursor enters the layer.
private void axGauge1_MouseIn(object sender,
AxEXGAUGELib._IGaugeEvents_MouseInEvent e)
{
 EXGAUGELib.Layer var_Layer = axGauge1.Layers[e.layer];

var_Layer.set_Brightness(EXGAUGELib.ColorAdjustmentChannelEnum.exRedChannel,100

var_Layer.set_Brightness(EXGAUGELib.ColorAdjustmentChannelEnum.exGreenChannel,0);

var_Layer.set_Brightness(EXGAUGELib.ColorAdjustmentChannelEnum.exBlueChannel,0);

}
//this.axGauge1.MouseIn += new
AxEXGAUGELib._IGaugeEvents_MouseInEventHandler(this.axGauge1_MouseIn);

// MouseOut event - Notifies that the cursor exits the layer.
private void axGauge1_MouseOut(object sender,
AxEXGAUGELib._IGaugeEvents_MouseOutEvent e)
{
 EXGAUGELib.Layer var_Layer = axGauge1.Layers[e.layer];

var_Layer.set_Brightness(EXGAUGELib.ColorAdjustmentChannelEnum.exRedChannel,axGauge1.get_DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness));

var_Layer.set_Brightness(EXGAUGELib.ColorAdjustmentChannelEnum.exGreenChannel,axGauge1.get_DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness));

var_Layer.set_Brightness(EXGAUGELib.ColorAdjustmentChannelEnum.exBlueChannel,axGauge1.get_DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness));

}
//this.axGauge1.MouseOut += new
AxEXGAUGELib._IGaugeEvents_MouseOutEventHandler(this.axGauge1_MouseOut);

axGauge1.set_DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness,

axGauge1.PicturesPath = "C:\\Program Files
(x86)\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
axGauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
axGauge1.Layers.Count = 1;

X++ (Dynamics Ax 2009)

// MouseIn event - Notifies that the cursor enters the layer.
void onEvent_MouseIn(int _Layer)
{
 COM com_Layer;
 anytype var_Layer;
 ;
 var_Layer = COM::createFromObject(exgauge1.Layers()).Item(_Layer); com_Layer =
var_Layer;
 com_Layer.Brightness(1/*exRedChannel*/,100);
 com_Layer.Brightness(2/*exGreenChannel*/,0);
 com_Layer.Brightness(3/*exBlueChannel*/,0);
}

// MouseOut event - Notifies that the cursor exits the layer.
void onEvent_MouseOut(int _Layer)
{

 COM com_Layer;
 anytype var_Layer;
 ;
 var_Layer = COM::createFromObject(exgauge1.Layers()).Item(_Layer); com_Layer =
var_Layer;

com_Layer.Brightness(1/*exRedChannel*/,exgauge1.DefaultLayer(128/*exDefLayerBrightness*/

com_Layer.Brightness(2/*exGreenChannel*/,exgauge1.DefaultLayer(128/*exDefLayerBrightness*/

com_Layer.Brightness(3/*exBlueChannel*/,exgauge1.DefaultLayer(128/*exDefLayerBrightness*/

}

public void init()
{
 COM com_Layer;
 anytype var_Layer;
 ;

 super();

exgauge1.DefaultLayer(128/*exDefLayerBrightness*/,COMVariant::createFromInt(51));
 exgauge1.PicturesPath("C:\\Program Files
(x86)\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob");
 exgauge1.PicturesName("`Layer` + int(value + 1) + `.png`");
 exgauge1.Layers().Count(1);
}

Delphi 8 (.NET only)

// MouseIn event - Notifies that the cursor enters the layer.
procedure TWinForm1.AxGauge1_MouseIn(sender: System.Object; e:
AxEXGAUGELib._IGaugeEvents_MouseInEvent);

begin
 with AxGauge1 do
 begin
 with Layers.Item[TObject(e.layer)] do
 begin
 Brightness[EXGAUGELib.ColorAdjustmentChannelEnum.exRedChannel] :=
100;
 Brightness[EXGAUGELib.ColorAdjustmentChannelEnum.exGreenChannel] :=
0;
 Brightness[EXGAUGELib.ColorAdjustmentChannelEnum.exBlueChannel] := 0;
 end;
 end
end;

// MouseOut event - Notifies that the cursor exits the layer.
procedure TWinForm1.AxGauge1_MouseOut(sender: System.Object; e:
AxEXGAUGELib._IGaugeEvents_MouseOutEvent);
begin
 with AxGauge1 do
 begin
 with Layers.Item[TObject(e.layer)] do
 begin
 Brightness[EXGAUGELib.ColorAdjustmentChannelEnum.exRedChannel] :=
AxGauge1.DefaultLayer[EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness];

 Brightness[EXGAUGELib.ColorAdjustmentChannelEnum.exGreenChannel] :=
AxGauge1.DefaultLayer[EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness];

 Brightness[EXGAUGELib.ColorAdjustmentChannelEnum.exBlueChannel] :=
AxGauge1.DefaultLayer[EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness];

 end;
 end
end;

with AxGauge1 do
begin

set_DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness,TObject(51

 PicturesPath := 'C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob';
 PicturesName := '`Layer` + int(value + 1) + `.png`';
 Layers.Count := 1;
end

Delphi (standard)

// MouseIn event - Notifies that the cursor enters the layer.
procedure TForm1.Gauge1MouseIn(ASender: TObject; Layer : Integer);
begin
 with Gauge1 do
 begin
 with Layers.Item[OleVariant(Layer)] do
 begin
 Brightness[EXGAUGELib_TLB.exRedChannel] := 100;
 Brightness[EXGAUGELib_TLB.exGreenChannel] := 0;
 Brightness[EXGAUGELib_TLB.exBlueChannel] := 0;
 end;
 end
end;

// MouseOut event - Notifies that the cursor exits the layer.
procedure TForm1.Gauge1MouseOut(ASender: TObject; Layer : Integer);
begin
 with Gauge1 do
 begin
 with Layers.Item[OleVariant(Layer)] do
 begin
 Brightness[EXGAUGELib_TLB.exRedChannel] :=
Gauge1.DefaultLayer[EXGAUGELib_TLB.exDefLayerBrightness];
 Brightness[EXGAUGELib_TLB.exGreenChannel] :=
Gauge1.DefaultLayer[EXGAUGELib_TLB.exDefLayerBrightness];
 Brightness[EXGAUGELib_TLB.exBlueChannel] :=

Gauge1.DefaultLayer[EXGAUGELib_TLB.exDefLayerBrightness];
 end;
 end
end;

with Gauge1 do
begin
 DefaultLayer[EXGAUGELib_TLB.exDefLayerBrightness] := OleVariant(51);
 PicturesPath := 'C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob';
 PicturesName := '`Layer` + int(value + 1) + `.png`';
 Layers.Count := 1;
end

VFP

*** MouseIn event - Notifies that the cursor enters the layer. ***
LPARAMETERS Layer
 with thisform.Gauge1
 with .Layers.Item(Layer)
 .Brightness(1) = 100
 .Brightness(2) = 0
 .Brightness(3) = 0
 endwith
 endwith

*** MouseOut event - Notifies that the cursor exits the layer. ***
LPARAMETERS Layer
 with thisform.Gauge1
 with .Layers.Item(Layer)
 .Brightness(1) = thisform.Gauge1.DefaultLayer(128)
 .Brightness(2) = thisform.Gauge1.DefaultLayer(128)
 .Brightness(3) = thisform.Gauge1.DefaultLayer(128)
 endwith
 endwith

with thisform.Gauge1

 .Object.DefaultLayer(128) = 51
 .PicturesPath = "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 1
endwith

dBASE Plus

/*
with (this.EXGAUGEACTIVEXCONTROL1.nativeObject)
 MouseIn = class::nativeObject_MouseIn
endwith
*/
// Notifies that the cursor enters the layer.
function nativeObject_MouseIn(Layer)
 local var_Layer
 oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject
 var_Layer = oGauge.Layers.Item(Layer)
 // var_Layer.Brightness(1) = 100
 with (oGauge)
 TemplateDef = [dim var_Layer]
 TemplateDef = var_Layer
 Template = [var_Layer.Brightness(1) = 100]
 endwith
 // var_Layer.Brightness(2) = 0
 with (oGauge)
 TemplateDef = [dim var_Layer]
 TemplateDef = var_Layer
 Template = [var_Layer.Brightness(2) = 0]
 endwith
 // var_Layer.Brightness(3) = 0
 with (oGauge)
 TemplateDef = [dim var_Layer]
 TemplateDef = var_Layer
 Template = [var_Layer.Brightness(3) = 0]
 endwith

return

/*
with (this.EXGAUGEACTIVEXCONTROL1.nativeObject)
 MouseOut = class::nativeObject_MouseOut
endwith
*/
// Notifies that the cursor exits the layer.
function nativeObject_MouseOut(Layer)
 local var_Layer
 oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject
 var_Layer = oGauge.Layers.Item(Layer)
 // var_Layer.Brightness(1) = oGauge.DefaultLayer(128)
 with (oGauge)
 TemplateDef = [dim var_Layer]
 TemplateDef = var_Layer
 Template = [var_Layer.Brightness(1) = Me.DefaultLayer(128)]
 endwith
 // var_Layer.Brightness(2) = oGauge.DefaultLayer(128)
 with (oGauge)
 TemplateDef = [dim var_Layer]
 TemplateDef = var_Layer
 Template = [var_Layer.Brightness(2) = Me.DefaultLayer(128)]
 endwith
 // var_Layer.Brightness(3) = oGauge.DefaultLayer(128)
 with (oGauge)
 TemplateDef = [dim var_Layer]
 TemplateDef = var_Layer
 Template = [var_Layer.Brightness(3) = Me.DefaultLayer(128)]
 endwith
return

local oGauge

oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject
oGauge.Template = [DefaultLayer(128) = 51] // oGauge.DefaultLayer(128) = 51
oGauge.PicturesPath = "C:\Program Files

(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 1

XBasic (Alpha Five)

' Notifies that the cursor enters the layer.
function MouseIn as v (Layer as N)
 Dim var_Layer as P
 oGauge = topparent:CONTROL_ACTIVEX1.activex
 var_Layer = oGauge.Layers.Item(Layer)
 ' var_Layer.Brightness(1) = 100
 oGauge.TemplateDef = "dim var_Layer"
 oGauge.TemplateDef = var_Layer
 oGauge.Template = "var_Layer.Brightness(1) = 100"
 ' var_Layer.Brightness(2) = 0
 oGauge.TemplateDef = "dim var_Layer"
 oGauge.TemplateDef = var_Layer
 oGauge.Template = "var_Layer.Brightness(2) = 0"
 ' var_Layer.Brightness(3) = 0
 oGauge.TemplateDef = "dim var_Layer"
 oGauge.TemplateDef = var_Layer
 oGauge.Template = "var_Layer.Brightness(3) = 0"

end function

' Notifies that the cursor exits the layer.
function MouseOut as v (Layer as N)
 Dim var_Layer as P
 oGauge = topparent:CONTROL_ACTIVEX1.activex
 var_Layer = oGauge.Layers.Item(Layer)
 ' var_Layer.Brightness(1) = oGauge.DefaultLayer(128)
 oGauge.TemplateDef = "dim var_Layer"
 oGauge.TemplateDef = var_Layer
 oGauge.Template = "var_Layer.Brightness(1) = Me.DefaultLayer(128)"
 ' var_Layer.Brightness(2) = oGauge.DefaultLayer(128)

 oGauge.TemplateDef = "dim var_Layer"
 oGauge.TemplateDef = var_Layer
 oGauge.Template = "var_Layer.Brightness(2) = Me.DefaultLayer(128)"
 ' var_Layer.Brightness(3) = oGauge.DefaultLayer(128)
 oGauge.TemplateDef = "dim var_Layer"
 oGauge.TemplateDef = var_Layer
 oGauge.Template = "var_Layer.Brightness(3) = Me.DefaultLayer(128)"

end function

Dim oGauge as P

oGauge = topparent:CONTROL_ACTIVEX1.activex
oGauge.Template = "DefaultLayer(128) = 51" // oGauge.DefaultLayer(128) = 51
oGauge.PicturesPath = "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 1

Visual Objects

METHOD OCX_Exontrol1MouseIn(Layer) CLASS MainDialog
 // MouseIn event - Notifies that the cursor enters the layer.
 local var_Layer as ILayer
 var_Layer := oDCOCX_Exontrol1:Layers:[Item,Layer]
 var_Layer:[Brightness,exRedChannel] := 100
 var_Layer:[Brightness,exGreenChannel] := 0
 var_Layer:[Brightness,exBlueChannel] := 0
RETURN NIL

METHOD OCX_Exontrol1MouseOut(Layer) CLASS MainDialog
 // MouseOut event - Notifies that the cursor exits the layer.
 local var_Layer as ILayer
 var_Layer := oDCOCX_Exontrol1:Layers:[Item,Layer]
 var_Layer:[Brightness,exRedChannel] := oDCOCX_Exontrol1:
[DefaultLayer,exDefLayerBrightness]

 var_Layer:[Brightness,exGreenChannel] := oDCOCX_Exontrol1:
[DefaultLayer,exDefLayerBrightness]
 var_Layer:[Brightness,exBlueChannel] := oDCOCX_Exontrol1:
[DefaultLayer,exDefLayerBrightness]
RETURN NIL

oDCOCX_Exontrol1:[DefaultLayer,exDefLayerBrightness] := 51
oDCOCX_Exontrol1:PicturesPath := "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oDCOCX_Exontrol1:PicturesName := "`Layer` + int(value + 1) + `.png`"
oDCOCX_Exontrol1:Layers:Count := 1

PowerBuilder

/*begin event MouseIn(long Layer) - Notifies that the cursor enters the layer.*/
/*
 OleObject var_Layer
 oGauge = ole_1.Object
 var_Layer = oGauge.Layers.Item(Layer)
 var_Layer.Brightness(1,100)
 var_Layer.Brightness(2,0)
 var_Layer.Brightness(3,0)
*/
/*end event MouseIn*/

/*begin event MouseOut(long Layer) - Notifies that the cursor exits the layer.*/
/*
 OleObject var_Layer
 oGauge = ole_1.Object
 var_Layer = oGauge.Layers.Item(Layer)
 var_Layer.Brightness(1,oGauge.DefaultLayer(128))
 var_Layer.Brightness(2,oGauge.DefaultLayer(128))
 var_Layer.Brightness(3,oGauge.DefaultLayer(128))
*/
/*end event MouseOut*/

OleObject oGauge

oGauge = ole_1.Object
oGauge.DefaultLayer(128,51)
oGauge.PicturesPath = "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 1

Visual DataFlex

// Notifies that the cursor enters the layer.
Procedure OnComMouseIn Integer llLayer
 Forward Send OnComMouseIn llLayer
 Variant voLayers
 Get ComLayers to voLayers
 Handle hoLayers
 Get Create (RefClass(cComLayers)) to hoLayers
 Set pvComObject of hoLayers to voLayers
 Variant voLayer
 Get ComItem of hoLayers llLayer to voLayer
 Handle hoLayer
 Get Create (RefClass(cComLayer)) to hoLayer
 Set pvComObject of hoLayer to voLayer
 Set ComBrightness of hoLayer OLEexRedChannel to 100
 Set ComBrightness of hoLayer OLEexGreenChannel to 0
 Set ComBrightness of hoLayer OLEexBlueChannel to 0
 Send Destroy to hoLayer
 Send Destroy to hoLayers
End_Procedure

// Notifies that the cursor exits the layer.
Procedure OnComMouseOut Integer llLayer
 Forward Send OnComMouseOut llLayer
 Variant voLayers1

 Get ComLayers to voLayers1
 Handle hoLayers1
 Get Create (RefClass(cComLayers)) to hoLayers1
 Set pvComObject of hoLayers1 to voLayers1
 Variant voLayer1
 Get ComItem of hoLayers1 llLayer to voLayer1
 Handle hoLayer1
 Get Create (RefClass(cComLayer)) to hoLayer1
 Set pvComObject of hoLayer1 to voLayer1
 Variant v
 Get ComDefaultLayer OLEexDefLayerBrightness to v
 Set ComBrightness of hoLayer1 OLEexRedChannel to v
 Variant v1
 Get ComDefaultLayer OLEexDefLayerBrightness to v1
 Set ComBrightness of hoLayer1 OLEexGreenChannel to v1
 Variant v2
 Get ComDefaultLayer OLEexDefLayerBrightness to v2
 Set ComBrightness of hoLayer1 OLEexBlueChannel to v2
 Send Destroy to hoLayer1
 Send Destroy to hoLayers1
End_Procedure

Procedure OnCreate
 Forward Send OnCreate
 Set ComDefaultLayer OLEexDefLayerBrightness to 51
 Set ComPicturesPath to "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 Set ComPicturesName to "`Layer` + int(value + 1) + `.png`"
 Variant voLayers2
 Get ComLayers to voLayers2
 Handle hoLayers2
 Get Create (RefClass(cComLayers)) to hoLayers2
 Set pvComObject of hoLayers2 to voLayers2
 Set ComCount of hoLayers2 to 1
 Send Destroy to hoLayers2
End_Procedure

XBase++

PROCEDURE OnMouseIn(oGauge,Layer)
 LOCAL oLayer
 oLayer := oGauge:Layers:Item(Layer)
 oLayer:SetProperty("Brightness",1/*exRedChannel*/,100)
 oLayer:SetProperty("Brightness",2/*exGreenChannel*/,0)
 oLayer:SetProperty("Brightness",3/*exBlueChannel*/,0)
RETURN

PROCEDURE OnMouseOut(oGauge,Layer)
 LOCAL oLayer
 oLayer := oGauge:Layers:Item(Layer)

oLayer:SetProperty("Brightness",1/*exRedChannel*/,oGauge:DefaultLayer(128/*exDefLayerBrightness*/

oLayer:SetProperty("Brightness",2/*exGreenChannel*/,oGauge:DefaultLayer(128/*exDefLayerBrightness*/

oLayer:SetProperty("Brightness",3/*exBlueChannel*/,oGauge:DefaultLayer(128/*exDefLayerBrightness*/

RETURN

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oGauge

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oGauge := XbpActiveXControl():new(oForm:drawingArea)
 oGauge:CLSID := "Exontrol.Gauge.1" /*{91628F12-393C-44EF-A558-
83ED1790AAD3}*/
 oGauge:create(,, {10,60},{610,370})

 oGauge:MouseIn := {|Layer| OnMouseIn(oGauge,Layer)} /*Notifies that the
cursor enters the layer.*/
 oGauge:MouseOut := {|Layer| OnMouseOut(oGauge,Layer)} /*Notifies that the
cursor exits the layer.*/

 oGauge:SetProperty("DefaultLayer",128/*exDefLayerBrightness*/,51)
 oGauge:PicturesPath := "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 oGauge:PicturesName := "`Layer` + int(value + 1) + `.png`"
 oGauge:Layers():Count := 1

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

C#

VB

private void MouseMoveEvent(object sender,short Button,short Shift,int X,int
Y)
{
}

Private Sub MouseMoveEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseMoveEvent
End Sub

event MouseMove (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user moves the mouse.

Type Description

Button as Integer

An integer that corresponds to the state of the mouse
buttons in which a bit is set if the button is down. Gets
which mouse button was pressed as 1 for Left Mouse
Button, 2 for Right Mouse Button and 4 for Middle Mouse
Button.

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

The MouseMove event is generated continually as the mouse pointer moves across objects.
Unless another object has captured the mouse, an object recognizes a MouseMove event
whenever the mouse position is within its borders. You can use the LayerFromPoint(-1,-1)
property to get the layer from the cursor. The Click event is not fired if you click, drag and
release the mouse over the control. The OnDrag property indicates the action to be
performed when the user clicks and drags the layer. The MouseIn / MouseOut event
notifies your application when the cursor is entering / leaving the layer.

Syntax for MouseMove event, /NET version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

private void MouseMoveEvent(object sender,
AxEXGAUGELib._IGaugeEvents_MouseMoveEvent e)
{
}

void OnMouseMove(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseMove(TObject *Sender,short Button,short Shift,int X,int
Y)
{
}

procedure MouseMove(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseMoveEvent(sender: System.Object; e:
AxEXGAUGELib._IGaugeEvents_MouseMoveEvent);
begin
end;

begin event MouseMove(integer Button,integer Shift,long X,long Y)

end event MouseMove

Private Sub MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXGAUGELib._IGaugeEvents_MouseMoveEvent) Handles MouseMoveEvent
End Sub

Private Sub MouseMove(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseMove(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)

Syntax for MouseMove event, /COM version, on:

VFP

Xbas…

End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseMove(oGauge,Button,Shift,X,Y)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseMove(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseMove(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseMove Short llButton Short llShift OLE_XPOS_PIXELS
llX OLE_YPOS_PIXELS llY
 Forward Send OnComMouseMove llButton llShift llX llY
End_Procedure

METHOD OCX_MouseMove(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseMove(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseMove as v (Button as N,Shift as N,X as
OLE::Exontrol.Gauge.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Gauge.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseMove(Button,Shift,X,Y)
return

Syntax for MouseMove event, /COM version (others), on:

C#

VB

private void MouseOut(object sender,int Layer)
{
}

Private Sub MouseOut(ByVal sender As System.Object,ByVal Layer As Integer)
Handles MouseOut
End Sub

C#

C++

C++
Builder

private void MouseOut(object sender,
AxEXGAUGELib._IGaugeEvents_MouseOutEvent e)
{
}

void OnMouseOut(long Layer)
{
}

void __fastcall MouseOut(TObject *Sender,long Layer)
{
}

event MouseOut (Layer as Long)
Notifies that the cursor exits the layer.

Type Description

Layer as Long
A long expression that specifies the index of the layer
where the cursor is leaving. The Item property of Layers
collection gets the layer based on its index.

The MouseIn / MouseOut event notifies your application when the cursor is entering /
leaving the layer. The MouseMove event is generated continually as the mouse pointer
moves across objects. The AllowSmoothChange property specifies the properties of the
layers that support smooth change. For instance, you can use the MouseIn / MouseOut
event to change gradually the brightness / contrast or the transparency, of the layer, while
the AllowSmoothChange property is not exSmoothChangeless.

Syntax for MouseOut event, /NET version, on:

Syntax for MouseOut event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure MouseOut(ASender: TObject; Layer : Integer);
begin
end;

procedure MouseOut(sender: System.Object; e:
AxEXGAUGELib._IGaugeEvents_MouseOutEvent);
begin
end;

begin event MouseOut(long Layer)

end event MouseOut

Private Sub MouseOut(ByVal sender As System.Object, ByVal e As
AxEXGAUGELib._IGaugeEvents_MouseOutEvent) Handles MouseOut
End Sub

Private Sub MouseOut(ByVal Layer As Long)
End Sub

Private Sub MouseOut(ByVal Layer As Long)
End Sub

LPARAMETERS Layer

PROCEDURE OnMouseOut(oGauge,Layer)

RETURN

Java…

VBSc…

<SCRIPT EVENT="MouseOut(Layer)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseOut(Layer)

Syntax for MouseOut event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

End Function
</SCRIPT>

Procedure OnComMouseOut Integer llLayer
 Forward Send OnComMouseOut llLayer
End_Procedure

METHOD OCX_MouseOut(Layer) CLASS MainDialog
RETURN NIL

void onEvent_MouseOut(int _Layer)
{
}

function MouseOut as v (Layer as N)
end function

function nativeObject_MouseOut(Layer)
return

The following samples shows how you can change the layer's brightness when the cursor
enters / leaves the layer:

VBA (MS Access, Excell...)

' MouseIn event - Notifies that the cursor enters the layer.
Private Sub Gauge1_MouseIn(ByVal Layer As Long)
 With Gauge1
 With .Layers.Item(Layer)
 .Brightness(1) = 100
 .Brightness(2) = 0
 .Brightness(3) = 0
 End With
 End With
End Sub

' MouseOut event - Notifies that the cursor exits the layer.
Private Sub Gauge1_MouseOut(ByVal Layer As Long)

 With Gauge1
 With .Layers.Item(Layer)
 .Brightness(1) = Gauge1.DefaultLayer(128)
 .Brightness(2) = Gauge1.DefaultLayer(128)
 .Brightness(3) = Gauge1.DefaultLayer(128)
 End With
 End With
End Sub

With Gauge1
 .DefaultLayer(128) = 51
 .PicturesPath = "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 1
End With

VB6

' MouseIn event - Notifies that the cursor enters the layer.
Private Sub Gauge1_MouseIn(ByVal Layer As Long)
 With Gauge1
 With .Layers.Item(Layer)
 .Brightness(exRedChannel) = 100
 .Brightness(exGreenChannel) = 0
 .Brightness(exBlueChannel) = 0
 End With
 End With
End Sub

' MouseOut event - Notifies that the cursor exits the layer.
Private Sub Gauge1_MouseOut(ByVal Layer As Long)
 With Gauge1
 With .Layers.Item(Layer)
 .Brightness(exRedChannel) = Gauge1.DefaultLayer(exDefLayerBrightness)
 .Brightness(exGreenChannel) = Gauge1.DefaultLayer(exDefLayerBrightness)
 .Brightness(exBlueChannel) = Gauge1.DefaultLayer(exDefLayerBrightness)

 End With
 End With
End Sub

With Gauge1
 .DefaultLayer(exDefLayerBrightness) = 51
 .PicturesPath = "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 1
End With

VB.NET

' MouseIn event - Notifies that the cursor enters the layer.
Private Sub Exgauge1_MouseIn(ByVal sender As System.Object,ByVal Layer As Integer)
Handles Exgauge1.MouseIn
 With Exgauge1
 With .Layers.Item(Layer)

.set_Brightness(exontrol.EXGAUGELib.ColorAdjustmentChannelEnum.exRedChannel,100)

.set_Brightness(exontrol.EXGAUGELib.ColorAdjustmentChannelEnum.exGreenChannel,0)

.set_Brightness(exontrol.EXGAUGELib.ColorAdjustmentChannelEnum.exBlueChannel,0)

 End With
 End With
End Sub

' MouseOut event - Notifies that the cursor exits the layer.
Private Sub Exgauge1_MouseOut(ByVal sender As System.Object,ByVal Layer As
Integer) Handles Exgauge1.MouseOut
 With Exgauge1
 With .Layers.Item(Layer)

.set_Brightness(exontrol.EXGAUGELib.ColorAdjustmentChannelEnum.exRedChannel,Exgauge1.get_DefaultLayer(exontrol.EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness))

.set_Brightness(exontrol.EXGAUGELib.ColorAdjustmentChannelEnum.exGreenChannel,Exgauge1.get_DefaultLayer(exontrol.EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness))

.set_Brightness(exontrol.EXGAUGELib.ColorAdjustmentChannelEnum.exBlueChannel,Exgauge1.get_DefaultLayer(exontrol.EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness))

 End With
 End With
End Sub

With Exgauge1

.set_DefaultLayer(exontrol.EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness,

 .PicturesPath = "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 1
End With

VB.NET for /COM

' MouseIn event - Notifies that the cursor enters the layer.
Private Sub AxGauge1_MouseIn(ByVal sender As System.Object, ByVal e As
AxEXGAUGELib._IGaugeEvents_MouseInEvent) Handles AxGauge1.MouseIn
 With AxGauge1
 With .Layers.Item(e.layer)
 .Brightness(EXGAUGELib.ColorAdjustmentChannelEnum.exRedChannel) =
100
 .Brightness(EXGAUGELib.ColorAdjustmentChannelEnum.exGreenChannel) = 0
 .Brightness(EXGAUGELib.ColorAdjustmentChannelEnum.exBlueChannel) = 0
 End With
 End With
End Sub

' MouseOut event - Notifies that the cursor exits the layer.
Private Sub AxGauge1_MouseOut(ByVal sender As System.Object, ByVal e As
AxEXGAUGELib._IGaugeEvents_MouseOutEvent) Handles AxGauge1.MouseOut
 With AxGauge1
 With .Layers.Item(e.layer)
 .Brightness(EXGAUGELib.ColorAdjustmentChannelEnum.exRedChannel) =
AxGauge1.DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness)

 .Brightness(EXGAUGELib.ColorAdjustmentChannelEnum.exGreenChannel) =
AxGauge1.DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness)

 .Brightness(EXGAUGELib.ColorAdjustmentChannelEnum.exBlueChannel) =
AxGauge1.DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness)

 End With
 End With
End Sub

With AxGauge1

.set_DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness,51)
 .PicturesPath = "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 1
End With

C++

// MouseIn event - Notifies that the cursor enters the layer.
void OnMouseInGauge1(long Layer)
{
 /*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXGAUGELib' for the library: 'ExGauge 1.0 Control
Library'

 #import <ExGauge.dll>
 using namespace EXGAUGELib;
 */
 EXGAUGELib::IGaugePtr spGauge1 = GetDlgItem(IDC_GAUGE1)-
>GetControlUnknown();
 EXGAUGELib::ILayerPtr var_Layer = spGauge1->GetLayers()->GetItem(Layer);
 var_Layer->PutBrightness(EXGAUGELib::exRedChannel,100);
 var_Layer->PutBrightness(EXGAUGELib::exGreenChannel,0);
 var_Layer->PutBrightness(EXGAUGELib::exBlueChannel,0);
}

// MouseOut event - Notifies that the cursor exits the layer.
void OnMouseOutGauge1(long Layer)
{
 EXGAUGELib::IGaugePtr spGauge1 = GetDlgItem(IDC_GAUGE1)-
>GetControlUnknown();
 EXGAUGELib::ILayerPtr var_Layer = spGauge1->GetLayers()->GetItem(Layer);
 var_Layer->PutBrightness(EXGAUGELib::exRedChannel,spGauge1-
>GetDefaultLayer(EXGAUGELib::exDefLayerBrightness));
 var_Layer->PutBrightness(EXGAUGELib::exGreenChannel,spGauge1-
>GetDefaultLayer(EXGAUGELib::exDefLayerBrightness));
 var_Layer->PutBrightness(EXGAUGELib::exBlueChannel,spGauge1-
>GetDefaultLayer(EXGAUGELib::exDefLayerBrightness));
}

EXGAUGELib::IGaugePtr spGauge1 = GetDlgItem(IDC_GAUGE1)-
>GetControlUnknown();
spGauge1->PutDefaultLayer(EXGAUGELib::exDefLayerBrightness,long(51));
spGauge1->PutPicturesPath(L"C:\\Program Files
(x86)\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob");
spGauge1->PutPicturesName(L"`Layer` + int(value + 1) + `.png`");
spGauge1->GetLayers()->PutCount(1);

C++ Builder

// MouseIn event - Notifies that the cursor enters the layer.

void __fastcall TForm1::Gauge1MouseIn(TObject *Sender,long Layer)
{
 Exgaugelib_tlb::ILayerPtr var_Layer = Gauge1->Layers->get_Item(TVariant(Layer));
 var_Layer-
>set_Brightness(Exgaugelib_tlb::ColorAdjustmentChannelEnum::exRedChannel,100);
 var_Layer-
>set_Brightness(Exgaugelib_tlb::ColorAdjustmentChannelEnum::exGreenChannel,0);
 var_Layer-
>set_Brightness(Exgaugelib_tlb::ColorAdjustmentChannelEnum::exBlueChannel,0);
}

// MouseOut event - Notifies that the cursor exits the layer.
void __fastcall TForm1::Gauge1MouseOut(TObject *Sender,long Layer)
{
 Exgaugelib_tlb::ILayerPtr var_Layer = Gauge1->Layers->get_Item(TVariant(Layer));
 var_Layer-
>set_Brightness(Exgaugelib_tlb::ColorAdjustmentChannelEnum::exRedChannel,Gauge1-
>get_DefaultLayer(Exgaugelib_tlb::DefaultLayerPropertyEnum::exDefLayerBrightness));

 var_Layer-
>set_Brightness(Exgaugelib_tlb::ColorAdjustmentChannelEnum::exGreenChannel,Gauge1-
>get_DefaultLayer(Exgaugelib_tlb::DefaultLayerPropertyEnum::exDefLayerBrightness));

 var_Layer-
>set_Brightness(Exgaugelib_tlb::ColorAdjustmentChannelEnum::exBlueChannel,Gauge1-
>get_DefaultLayer(Exgaugelib_tlb::DefaultLayerPropertyEnum::exDefLayerBrightness));

}

Gauge1-
>DefaultLayer[Exgaugelib_tlb::DefaultLayerPropertyEnum::exDefLayerBrightness] =
TVariant(51);
Gauge1->PicturesPath = L"C:\\Program Files
(x86)\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
Gauge1->PicturesName = L"`Layer` + int(value + 1) + `.png`";
Gauge1->Layers->Count = 1;

C#

// MouseIn event - Notifies that the cursor enters the layer.
private void exgauge1_MouseIn(object sender,int Layer)
{
 exontrol.EXGAUGELib.Layer var_Layer = exgauge1.Layers[Layer];

var_Layer.set_Brightness(exontrol.EXGAUGELib.ColorAdjustmentChannelEnum.exRedChannel,

var_Layer.set_Brightness(exontrol.EXGAUGELib.ColorAdjustmentChannelEnum.exGreenChannel,

var_Layer.set_Brightness(exontrol.EXGAUGELib.ColorAdjustmentChannelEnum.exBlueChannel,

}
//this.exgauge1.MouseIn += new
exontrol.EXGAUGELib.exg2antt.MouseInEventHandler(this.exgauge1_MouseIn);

// MouseOut event - Notifies that the cursor exits the layer.
private void exgauge1_MouseOut(object sender,int Layer)
{
 exontrol.EXGAUGELib.Layer var_Layer = exgauge1.Layers[Layer];

var_Layer.set_Brightness(exontrol.EXGAUGELib.ColorAdjustmentChannelEnum.exRedChannel,exgauge1.get_DefaultLayer(exontrol.EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness));

var_Layer.set_Brightness(exontrol.EXGAUGELib.ColorAdjustmentChannelEnum.exGreenChannel,exgauge1.get_DefaultLayer(exontrol.EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness));

var_Layer.set_Brightness(exontrol.EXGAUGELib.ColorAdjustmentChannelEnum.exBlueChannel,exgauge1.get_DefaultLayer(exontrol.EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness));

}
//this.exgauge1.MouseOut += new
exontrol.EXGAUGELib.exg2antt.MouseOutEventHandler(this.exgauge1_MouseOut);

exgauge1.set_DefaultLayer(exontrol.EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness,

exgauge1.PicturesPath = "C:\\Program Files
(x86)\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
exgauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
exgauge1.Layers.Count = 1;

JScript/JavaScript

<BODY onload="Init()">
<SCRIPT FOR="Gauge1" EVENT="MouseIn(Layer)" LANGUAGE="JScript">
 var var_Layer = Gauge1.Layers.Item(Layer);
 var_Layer.Brightness(1) = 100;
 var_Layer.Brightness(2) = 0;
 var_Layer.Brightness(3) = 0;
</SCRIPT>

<SCRIPT FOR="Gauge1" EVENT="MouseOut(Layer)" LANGUAGE="JScript">
 var var_Layer = Gauge1.Layers.Item(Layer);
 var_Layer.Brightness(1) = Gauge1.DefaultLayer(128);
 var_Layer.Brightness(2) = Gauge1.DefaultLayer(128);
 var_Layer.Brightness(3) = Gauge1.DefaultLayer(128);
</SCRIPT>

<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 Gauge1.DefaultLayer(128) = 51;
 Gauge1.PicturesPath = "C:\\Program Files
(x86)\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
 Gauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
 Gauge1.Layers.Count = 1;
}
</SCRIPT>

</BODY>

VBScript

<BODY onload="Init()">
<SCRIPT LANGUAGE="VBScript">
Function Gauge1_MouseIn(Layer)
 With Gauge1
 With .Layers.Item(Layer)
 .Brightness(1) = 100
 .Brightness(2) = 0
 .Brightness(3) = 0
 End With
 End With
End Function
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Gauge1_MouseOut(Layer)
 With Gauge1
 With .Layers.Item(Layer)
 .Brightness(1) = Gauge1.DefaultLayer(128)
 .Brightness(2) = Gauge1.DefaultLayer(128)
 .Brightness(3) = Gauge1.DefaultLayer(128)
 End With
 End With
End Function
</SCRIPT>

<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With Gauge1
 .DefaultLayer(128) = 51

 .PicturesPath = "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 1
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

// MouseIn event - Notifies that the cursor enters the layer.
private void axGauge1_MouseIn(object sender,
AxEXGAUGELib._IGaugeEvents_MouseInEvent e)
{
 EXGAUGELib.Layer var_Layer = axGauge1.Layers[e.layer];

var_Layer.set_Brightness(EXGAUGELib.ColorAdjustmentChannelEnum.exRedChannel,100

var_Layer.set_Brightness(EXGAUGELib.ColorAdjustmentChannelEnum.exGreenChannel,0);

var_Layer.set_Brightness(EXGAUGELib.ColorAdjustmentChannelEnum.exBlueChannel,0);

}
//this.axGauge1.MouseIn += new
AxEXGAUGELib._IGaugeEvents_MouseInEventHandler(this.axGauge1_MouseIn);

// MouseOut event - Notifies that the cursor exits the layer.
private void axGauge1_MouseOut(object sender,
AxEXGAUGELib._IGaugeEvents_MouseOutEvent e)
{
 EXGAUGELib.Layer var_Layer = axGauge1.Layers[e.layer];

var_Layer.set_Brightness(EXGAUGELib.ColorAdjustmentChannelEnum.exRedChannel,axGauge1.get_DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness));

var_Layer.set_Brightness(EXGAUGELib.ColorAdjustmentChannelEnum.exGreenChannel,axGauge1.get_DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness));

var_Layer.set_Brightness(EXGAUGELib.ColorAdjustmentChannelEnum.exBlueChannel,axGauge1.get_DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness));

}
//this.axGauge1.MouseOut += new
AxEXGAUGELib._IGaugeEvents_MouseOutEventHandler(this.axGauge1_MouseOut);

axGauge1.set_DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness,

axGauge1.PicturesPath = "C:\\Program Files
(x86)\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
axGauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
axGauge1.Layers.Count = 1;

X++ (Dynamics Ax 2009)

// MouseIn event - Notifies that the cursor enters the layer.
void onEvent_MouseIn(int _Layer)
{
 COM com_Layer;
 anytype var_Layer;
 ;
 var_Layer = COM::createFromObject(exgauge1.Layers()).Item(_Layer); com_Layer =
var_Layer;
 com_Layer.Brightness(1/*exRedChannel*/,100);
 com_Layer.Brightness(2/*exGreenChannel*/,0);
 com_Layer.Brightness(3/*exBlueChannel*/,0);
}

// MouseOut event - Notifies that the cursor exits the layer.
void onEvent_MouseOut(int _Layer)
{

 COM com_Layer;
 anytype var_Layer;
 ;
 var_Layer = COM::createFromObject(exgauge1.Layers()).Item(_Layer); com_Layer =
var_Layer;

com_Layer.Brightness(1/*exRedChannel*/,exgauge1.DefaultLayer(128/*exDefLayerBrightness*/

com_Layer.Brightness(2/*exGreenChannel*/,exgauge1.DefaultLayer(128/*exDefLayerBrightness*/

com_Layer.Brightness(3/*exBlueChannel*/,exgauge1.DefaultLayer(128/*exDefLayerBrightness*/

}

public void init()
{
 COM com_Layer;
 anytype var_Layer;
 ;

 super();

exgauge1.DefaultLayer(128/*exDefLayerBrightness*/,COMVariant::createFromInt(51));
 exgauge1.PicturesPath("C:\\Program Files
(x86)\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob");
 exgauge1.PicturesName("`Layer` + int(value + 1) + `.png`");
 exgauge1.Layers().Count(1);
}

Delphi 8 (.NET only)

// MouseIn event - Notifies that the cursor enters the layer.
procedure TWinForm1.AxGauge1_MouseIn(sender: System.Object; e:
AxEXGAUGELib._IGaugeEvents_MouseInEvent);

begin
 with AxGauge1 do
 begin
 with Layers.Item[TObject(e.layer)] do
 begin
 Brightness[EXGAUGELib.ColorAdjustmentChannelEnum.exRedChannel] :=
100;
 Brightness[EXGAUGELib.ColorAdjustmentChannelEnum.exGreenChannel] :=
0;
 Brightness[EXGAUGELib.ColorAdjustmentChannelEnum.exBlueChannel] := 0;
 end;
 end
end;

// MouseOut event - Notifies that the cursor exits the layer.
procedure TWinForm1.AxGauge1_MouseOut(sender: System.Object; e:
AxEXGAUGELib._IGaugeEvents_MouseOutEvent);
begin
 with AxGauge1 do
 begin
 with Layers.Item[TObject(e.layer)] do
 begin
 Brightness[EXGAUGELib.ColorAdjustmentChannelEnum.exRedChannel] :=
AxGauge1.DefaultLayer[EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness];

 Brightness[EXGAUGELib.ColorAdjustmentChannelEnum.exGreenChannel] :=
AxGauge1.DefaultLayer[EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness];

 Brightness[EXGAUGELib.ColorAdjustmentChannelEnum.exBlueChannel] :=
AxGauge1.DefaultLayer[EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness];

 end;
 end
end;

with AxGauge1 do
begin

set_DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerBrightness,TObject(51

 PicturesPath := 'C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob';
 PicturesName := '`Layer` + int(value + 1) + `.png`';
 Layers.Count := 1;
end

Delphi (standard)

// MouseIn event - Notifies that the cursor enters the layer.
procedure TForm1.Gauge1MouseIn(ASender: TObject; Layer : Integer);
begin
 with Gauge1 do
 begin
 with Layers.Item[OleVariant(Layer)] do
 begin
 Brightness[EXGAUGELib_TLB.exRedChannel] := 100;
 Brightness[EXGAUGELib_TLB.exGreenChannel] := 0;
 Brightness[EXGAUGELib_TLB.exBlueChannel] := 0;
 end;
 end
end;

// MouseOut event - Notifies that the cursor exits the layer.
procedure TForm1.Gauge1MouseOut(ASender: TObject; Layer : Integer);
begin
 with Gauge1 do
 begin
 with Layers.Item[OleVariant(Layer)] do
 begin
 Brightness[EXGAUGELib_TLB.exRedChannel] :=
Gauge1.DefaultLayer[EXGAUGELib_TLB.exDefLayerBrightness];
 Brightness[EXGAUGELib_TLB.exGreenChannel] :=
Gauge1.DefaultLayer[EXGAUGELib_TLB.exDefLayerBrightness];
 Brightness[EXGAUGELib_TLB.exBlueChannel] :=

Gauge1.DefaultLayer[EXGAUGELib_TLB.exDefLayerBrightness];
 end;
 end
end;

with Gauge1 do
begin
 DefaultLayer[EXGAUGELib_TLB.exDefLayerBrightness] := OleVariant(51);
 PicturesPath := 'C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob';
 PicturesName := '`Layer` + int(value + 1) + `.png`';
 Layers.Count := 1;
end

VFP

*** MouseIn event - Notifies that the cursor enters the layer. ***
LPARAMETERS Layer
 with thisform.Gauge1
 with .Layers.Item(Layer)
 .Brightness(1) = 100
 .Brightness(2) = 0
 .Brightness(3) = 0
 endwith
 endwith

*** MouseOut event - Notifies that the cursor exits the layer. ***
LPARAMETERS Layer
 with thisform.Gauge1
 with .Layers.Item(Layer)
 .Brightness(1) = thisform.Gauge1.DefaultLayer(128)
 .Brightness(2) = thisform.Gauge1.DefaultLayer(128)
 .Brightness(3) = thisform.Gauge1.DefaultLayer(128)
 endwith
 endwith

with thisform.Gauge1

 .Object.DefaultLayer(128) = 51
 .PicturesPath = "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 1
endwith

dBASE Plus

/*
with (this.EXGAUGEACTIVEXCONTROL1.nativeObject)
 MouseIn = class::nativeObject_MouseIn
endwith
*/
// Notifies that the cursor enters the layer.
function nativeObject_MouseIn(Layer)
 local var_Layer
 oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject
 var_Layer = oGauge.Layers.Item(Layer)
 // var_Layer.Brightness(1) = 100
 with (oGauge)
 TemplateDef = [dim var_Layer]
 TemplateDef = var_Layer
 Template = [var_Layer.Brightness(1) = 100]
 endwith
 // var_Layer.Brightness(2) = 0
 with (oGauge)
 TemplateDef = [dim var_Layer]
 TemplateDef = var_Layer
 Template = [var_Layer.Brightness(2) = 0]
 endwith
 // var_Layer.Brightness(3) = 0
 with (oGauge)
 TemplateDef = [dim var_Layer]
 TemplateDef = var_Layer
 Template = [var_Layer.Brightness(3) = 0]
 endwith

return

/*
with (this.EXGAUGEACTIVEXCONTROL1.nativeObject)
 MouseOut = class::nativeObject_MouseOut
endwith
*/
// Notifies that the cursor exits the layer.
function nativeObject_MouseOut(Layer)
 local var_Layer
 oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject
 var_Layer = oGauge.Layers.Item(Layer)
 // var_Layer.Brightness(1) = oGauge.DefaultLayer(128)
 with (oGauge)
 TemplateDef = [dim var_Layer]
 TemplateDef = var_Layer
 Template = [var_Layer.Brightness(1) = Me.DefaultLayer(128)]
 endwith
 // var_Layer.Brightness(2) = oGauge.DefaultLayer(128)
 with (oGauge)
 TemplateDef = [dim var_Layer]
 TemplateDef = var_Layer
 Template = [var_Layer.Brightness(2) = Me.DefaultLayer(128)]
 endwith
 // var_Layer.Brightness(3) = oGauge.DefaultLayer(128)
 with (oGauge)
 TemplateDef = [dim var_Layer]
 TemplateDef = var_Layer
 Template = [var_Layer.Brightness(3) = Me.DefaultLayer(128)]
 endwith
return

local oGauge

oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject
oGauge.Template = [DefaultLayer(128) = 51] // oGauge.DefaultLayer(128) = 51
oGauge.PicturesPath = "C:\Program Files

(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 1

XBasic (Alpha Five)

' Notifies that the cursor enters the layer.
function MouseIn as v (Layer as N)
 Dim var_Layer as P
 oGauge = topparent:CONTROL_ACTIVEX1.activex
 var_Layer = oGauge.Layers.Item(Layer)
 ' var_Layer.Brightness(1) = 100
 oGauge.TemplateDef = "dim var_Layer"
 oGauge.TemplateDef = var_Layer
 oGauge.Template = "var_Layer.Brightness(1) = 100"
 ' var_Layer.Brightness(2) = 0
 oGauge.TemplateDef = "dim var_Layer"
 oGauge.TemplateDef = var_Layer
 oGauge.Template = "var_Layer.Brightness(2) = 0"
 ' var_Layer.Brightness(3) = 0
 oGauge.TemplateDef = "dim var_Layer"
 oGauge.TemplateDef = var_Layer
 oGauge.Template = "var_Layer.Brightness(3) = 0"

end function

' Notifies that the cursor exits the layer.
function MouseOut as v (Layer as N)
 Dim var_Layer as P
 oGauge = topparent:CONTROL_ACTIVEX1.activex
 var_Layer = oGauge.Layers.Item(Layer)
 ' var_Layer.Brightness(1) = oGauge.DefaultLayer(128)
 oGauge.TemplateDef = "dim var_Layer"
 oGauge.TemplateDef = var_Layer
 oGauge.Template = "var_Layer.Brightness(1) = Me.DefaultLayer(128)"
 ' var_Layer.Brightness(2) = oGauge.DefaultLayer(128)

 oGauge.TemplateDef = "dim var_Layer"
 oGauge.TemplateDef = var_Layer
 oGauge.Template = "var_Layer.Brightness(2) = Me.DefaultLayer(128)"
 ' var_Layer.Brightness(3) = oGauge.DefaultLayer(128)
 oGauge.TemplateDef = "dim var_Layer"
 oGauge.TemplateDef = var_Layer
 oGauge.Template = "var_Layer.Brightness(3) = Me.DefaultLayer(128)"

end function

Dim oGauge as P

oGauge = topparent:CONTROL_ACTIVEX1.activex
oGauge.Template = "DefaultLayer(128) = 51" // oGauge.DefaultLayer(128) = 51
oGauge.PicturesPath = "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 1

Visual Objects

METHOD OCX_Exontrol1MouseIn(Layer) CLASS MainDialog
 // MouseIn event - Notifies that the cursor enters the layer.
 local var_Layer as ILayer
 var_Layer := oDCOCX_Exontrol1:Layers:[Item,Layer]
 var_Layer:[Brightness,exRedChannel] := 100
 var_Layer:[Brightness,exGreenChannel] := 0
 var_Layer:[Brightness,exBlueChannel] := 0
RETURN NIL

METHOD OCX_Exontrol1MouseOut(Layer) CLASS MainDialog
 // MouseOut event - Notifies that the cursor exits the layer.
 local var_Layer as ILayer
 var_Layer := oDCOCX_Exontrol1:Layers:[Item,Layer]
 var_Layer:[Brightness,exRedChannel] := oDCOCX_Exontrol1:
[DefaultLayer,exDefLayerBrightness]

 var_Layer:[Brightness,exGreenChannel] := oDCOCX_Exontrol1:
[DefaultLayer,exDefLayerBrightness]
 var_Layer:[Brightness,exBlueChannel] := oDCOCX_Exontrol1:
[DefaultLayer,exDefLayerBrightness]
RETURN NIL

oDCOCX_Exontrol1:[DefaultLayer,exDefLayerBrightness] := 51
oDCOCX_Exontrol1:PicturesPath := "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oDCOCX_Exontrol1:PicturesName := "`Layer` + int(value + 1) + `.png`"
oDCOCX_Exontrol1:Layers:Count := 1

PowerBuilder

/*begin event MouseIn(long Layer) - Notifies that the cursor enters the layer.*/
/*
 OleObject var_Layer
 oGauge = ole_1.Object
 var_Layer = oGauge.Layers.Item(Layer)
 var_Layer.Brightness(1,100)
 var_Layer.Brightness(2,0)
 var_Layer.Brightness(3,0)
*/
/*end event MouseIn*/

/*begin event MouseOut(long Layer) - Notifies that the cursor exits the layer.*/
/*
 OleObject var_Layer
 oGauge = ole_1.Object
 var_Layer = oGauge.Layers.Item(Layer)
 var_Layer.Brightness(1,oGauge.DefaultLayer(128))
 var_Layer.Brightness(2,oGauge.DefaultLayer(128))
 var_Layer.Brightness(3,oGauge.DefaultLayer(128))
*/
/*end event MouseOut*/

OleObject oGauge

oGauge = ole_1.Object
oGauge.DefaultLayer(128,51)
oGauge.PicturesPath = "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 1

Visual DataFlex

// Notifies that the cursor enters the layer.
Procedure OnComMouseIn Integer llLayer
 Forward Send OnComMouseIn llLayer
 Variant voLayers
 Get ComLayers to voLayers
 Handle hoLayers
 Get Create (RefClass(cComLayers)) to hoLayers
 Set pvComObject of hoLayers to voLayers
 Variant voLayer
 Get ComItem of hoLayers llLayer to voLayer
 Handle hoLayer
 Get Create (RefClass(cComLayer)) to hoLayer
 Set pvComObject of hoLayer to voLayer
 Set ComBrightness of hoLayer OLEexRedChannel to 100
 Set ComBrightness of hoLayer OLEexGreenChannel to 0
 Set ComBrightness of hoLayer OLEexBlueChannel to 0
 Send Destroy to hoLayer
 Send Destroy to hoLayers
End_Procedure

// Notifies that the cursor exits the layer.
Procedure OnComMouseOut Integer llLayer
 Forward Send OnComMouseOut llLayer
 Variant voLayers1

 Get ComLayers to voLayers1
 Handle hoLayers1
 Get Create (RefClass(cComLayers)) to hoLayers1
 Set pvComObject of hoLayers1 to voLayers1
 Variant voLayer1
 Get ComItem of hoLayers1 llLayer to voLayer1
 Handle hoLayer1
 Get Create (RefClass(cComLayer)) to hoLayer1
 Set pvComObject of hoLayer1 to voLayer1
 Variant v
 Get ComDefaultLayer OLEexDefLayerBrightness to v
 Set ComBrightness of hoLayer1 OLEexRedChannel to v
 Variant v1
 Get ComDefaultLayer OLEexDefLayerBrightness to v1
 Set ComBrightness of hoLayer1 OLEexGreenChannel to v1
 Variant v2
 Get ComDefaultLayer OLEexDefLayerBrightness to v2
 Set ComBrightness of hoLayer1 OLEexBlueChannel to v2
 Send Destroy to hoLayer1
 Send Destroy to hoLayers1
End_Procedure

Procedure OnCreate
 Forward Send OnCreate
 Set ComDefaultLayer OLEexDefLayerBrightness to 51
 Set ComPicturesPath to "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 Set ComPicturesName to "`Layer` + int(value + 1) + `.png`"
 Variant voLayers2
 Get ComLayers to voLayers2
 Handle hoLayers2
 Get Create (RefClass(cComLayers)) to hoLayers2
 Set pvComObject of hoLayers2 to voLayers2
 Set ComCount of hoLayers2 to 1
 Send Destroy to hoLayers2
End_Procedure

XBase++

PROCEDURE OnMouseIn(oGauge,Layer)
 LOCAL oLayer
 oLayer := oGauge:Layers:Item(Layer)
 oLayer:SetProperty("Brightness",1/*exRedChannel*/,100)
 oLayer:SetProperty("Brightness",2/*exGreenChannel*/,0)
 oLayer:SetProperty("Brightness",3/*exBlueChannel*/,0)
RETURN

PROCEDURE OnMouseOut(oGauge,Layer)
 LOCAL oLayer
 oLayer := oGauge:Layers:Item(Layer)

oLayer:SetProperty("Brightness",1/*exRedChannel*/,oGauge:DefaultLayer(128/*exDefLayerBrightness*/

oLayer:SetProperty("Brightness",2/*exGreenChannel*/,oGauge:DefaultLayer(128/*exDefLayerBrightness*/

oLayer:SetProperty("Brightness",3/*exBlueChannel*/,oGauge:DefaultLayer(128/*exDefLayerBrightness*/

RETURN

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oGauge

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oGauge := XbpActiveXControl():new(oForm:drawingArea)
 oGauge:CLSID := "Exontrol.Gauge.1" /*{91628F12-393C-44EF-A558-
83ED1790AAD3}*/
 oGauge:create(,, {10,60},{610,370})

 oGauge:MouseIn := {|Layer| OnMouseIn(oGauge,Layer)} /*Notifies that the
cursor enters the layer.*/
 oGauge:MouseOut := {|Layer| OnMouseOut(oGauge,Layer)} /*Notifies that the
cursor exits the layer.*/

 oGauge:SetProperty("DefaultLayer",128/*exDefLayerBrightness*/,51)
 oGauge:PicturesPath := "C:\Program Files
(x86)\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 oGauge:PicturesName := "`Layer` + int(value + 1) + `.png`"
 oGauge:Layers():Count := 1

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

C#

VB

private void MouseUpEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseUpEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseUpEvent
End Sub

C# private void MouseUpEvent(object sender,

event MouseUp (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user releases a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event.

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. You can use the LayerFromPoint(-1,-1) property to get the layer from
the cursor. The Click event is not fired if you click, drag and release the mouse over the
control. The OnDrag property indicates the action to be performed when the user clicks and
drags the layer.

Syntax for MouseUp event, /NET version, on:

Syntax for MouseUp event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

AxEXGAUGELib._IGaugeEvents_MouseUpEvent e)
{
}

void OnMouseUp(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseUp(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseUp(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseUpEvent(sender: System.Object; e:
AxEXGAUGELib._IGaugeEvents_MouseUpEvent);
begin
end;

begin event MouseUp(integer Button,integer Shift,long X,long Y)

end event MouseUp

Private Sub MouseUpEvent(ByVal sender As System.Object, ByVal e As
AxEXGAUGELib._IGaugeEvents_MouseUpEvent) Handles MouseUpEvent
End Sub

Private Sub MouseUp(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseUp(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

Xbas… PROCEDURE OnMouseUp(oGauge,Button,Shift,X,Y)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseUp(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseUp(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseUp Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseUp llButton llShift llX llY
End_Procedure

METHOD OCX_MouseUp(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseUp(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseUp as v (Button as N,Shift as N,X as
OLE::Exontrol.Gauge.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Gauge.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseUp(Button,Shift,X,Y)
return

Syntax for MouseUp event, /COM version (others), on:

C#

VB

private void MouseWheel(object sender,int Delta)
{
}

Private Sub MouseWheel(ByVal sender As System.Object,ByVal Delta As Integer)
Handles MouseWheel
End Sub

C# private void MouseWheel(object sender,
AxEXGAUGELib._IGaugeEvents_MouseWheelEvent e)
{

event MouseWheel (Delta as Long)
Occurs when the mouse wheel moves while the control has focus

Type Description

Delta as Long

A long expression that specifies the direction and the
quantity that the mouse wheel has been rolled. For
instance, 1 indicates that the user rolls the mouse wheel
up, -1 indicates that the user rolls the mouse wheel down.
Any other value may indicate that the mouse wheel has
been rolled quicker.

The MouseWheel occurs when the mouse wheel is rolled. You can use the MouseWheel
event to perform different actions on any layer when the user rolls the mouse wheel. For
instance, you can update the layer's value when the user rolls the muse wheel. You can use
the LayerFromPoint(-1,-1) property to get the layer from the cursor. The FormatABC
method formats the A,B,C values based on the giving expression and returns the result.

You can use any of the following properties to update the layer:

Value, specifies the layer's value.
OffsetX, specifies a value that indicates x-offset of the layer.
OffsetY, indicates a value that indicates y-offset of the layer.
RotateAngle, specifies the angle to rotate the layer.
Clip, to clip any layer

 The Change event occurs when the layer's value is changed.

Syntax for MouseWheel event, /NET version, on:

Syntax for MouseWheel event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

void OnMouseWheel(long Delta)
{
}

void __fastcall MouseWheel(TObject *Sender,long Delta)
{
}

procedure MouseWheel(ASender: TObject; Delta : Integer);
begin
end;

procedure MouseWheel(sender: System.Object; e:
AxEXGAUGELib._IGaugeEvents_MouseWheelEvent);
begin
end;

begin event MouseWheel(long Delta)

end event MouseWheel

Private Sub MouseWheel(ByVal sender As System.Object, ByVal e As
AxEXGAUGELib._IGaugeEvents_MouseWheelEvent) Handles MouseWheel
End Sub

Private Sub MouseWheel(ByVal Delta As Long)
End Sub

Private Sub MouseWheel(ByVal Delta As Long)
End Sub

LPARAMETERS Delta

PROCEDURE OnMouseWheel(oGauge,Delta)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseWheel(Delta)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseWheel(Delta)
End Function
</SCRIPT>

Procedure OnComMouseWheel Integer llDelta
 Forward Send OnComMouseWheel llDelta
End_Procedure

METHOD OCX_MouseWheel(Delta) CLASS MainDialog
RETURN NIL

void onEvent_MouseWheel(int _Delta)
{
}

function MouseWheel as v (Delta as N)
end function

function nativeObject_MouseWheel(Delta)
return

Syntax for MouseWheel event, /COM version (others), on:

The following sample rotates the first visible layer by 15% degrees (up / down), when the
user rolls the mouse wheel:

VBA (MS Access, Excell...)

' MouseWheel event - Occurs when the mouse wheel moves while the control has
focus
Private Sub Gauge1_MouseWheel(ByVal Delta As Long)
 With Gauge1

 With .Layers.Item("rotateOnWheel")
 .RotateAngle = Gauge1.FormatABC("A + (15 *
B)",.Layers.Item("rotateOnWheel").RotateAngle,Delta)
 Debug.Print(.RotateAngle)
 End With
 End With
End Sub

With Gauge1
 .DefaultLayer(185) = 1
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 11
 .Layers.Item(0).Key = "rotateOnWheel"
End With

VB6

' MouseWheel event - Occurs when the mouse wheel moves while the control has
focus
Private Sub Gauge1_MouseWheel(ByVal Delta As Long)
 With Gauge1
 With .Layers.Item("rotateOnWheel")
 .RotateAngle = Gauge1.FormatABC("A + (15 *
B)",.Layers.Item("rotateOnWheel").RotateAngle,Delta)
 Debug.Print(.RotateAngle)
 End With
 End With
End Sub

With Gauge1
 .DefaultLayer(exDefLayerRotateType) = 1
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 11

 .Layers.Item(0).Key = "rotateOnWheel"
End With

VB.NET

' MouseWheel event - Occurs when the mouse wheel moves while the control has
focus
Private Sub Exgauge1_MouseWheel(ByVal sender As System.Object,ByVal Delta As
Integer) Handles Exgauge1.MouseWheel
 With Exgauge1
 With .Layers.Item("rotateOnWheel")
 .RotateAngle = Exgauge1.FormatABC("A + (15 *
B)",.Layers.Item("rotateOnWheel").RotateAngle,Delta)
 Debug.Print(.RotateAngle)
 End With
 End With
End Sub

With Exgauge1

.set_DefaultLayer(exontrol.EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerRotateType,

 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 11
 .Layers.Item(0).Key = "rotateOnWheel"
End With

VB.NET for /COM

' MouseWheel event - Occurs when the mouse wheel moves while the control has
focus
Private Sub AxGauge1_MouseWheel(ByVal sender As System.Object, ByVal e As
AxEXGAUGELib._IGaugeEvents_MouseWheelEvent) Handles AxGauge1.MouseWheel
 With AxGauge1
 With .Layers.Item("rotateOnWheel")
 .RotateAngle = AxGauge1.FormatABC("A + (15 *

B)",.Layers.Item("rotateOnWheel").RotateAngle,e.delta)
 Debug.Print(.RotateAngle)
 End With
 End With
End Sub

With AxGauge1
 .set_DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerRotateType,1)
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 11
 .Layers.Item(0).Key = "rotateOnWheel"
End With

C++

// MouseWheel event - Occurs when the mouse wheel moves while the control has
focus
void OnMouseWheelGauge1(long Delta)
{
 /*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXGAUGELib' for the library: 'ExGauge 1.0 Control
Library'
 #import <ExGauge.dll>
 using namespace EXGAUGELib;
 */
 EXGAUGELib::IGaugePtr spGauge1 = GetDlgItem(IDC_GAUGE1)-
>GetControlUnknown();
 EXGAUGELib::ILayerPtr var_Layer = spGauge1->GetLayers()-
>GetItem("rotateOnWheel");
 var_Layer->PutRotateAngle(spGauge1->FormatABC(L"A + (15 * B)",-
>GetLayers()->GetItem("rotateOnWheel")->GetRotateAngle(),Delta,vtMissing));
 OutputDebugStringW(_bstr_t(var_Layer->GetRotateAngle()));
}

EXGAUGELib::IGaugePtr spGauge1 = GetDlgItem(IDC_GAUGE1)-
>GetControlUnknown();
spGauge1->PutDefaultLayer(EXGAUGELib::exDefLayerRotateType,long(1));
spGauge1->PutPicturesPath(L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob");
spGauge1->PutPicturesName(L"`Layer` + int(value + 1) + `.png`");
spGauge1->GetLayers()->PutCount(11);
spGauge1->GetLayers()->GetItem(long(0))->PutKey("rotateOnWheel");

C++ Builder

// MouseWheel event - Occurs when the mouse wheel moves while the control has
focus
void __fastcall TForm1::Gauge1MouseWheel(TObject *Sender,long Delta)
{
 Exgaugelib_tlb::ILayerPtr var_Layer = Gauge1->Layers-
>get_Item(TVariant("rotateOnWheel"));
 var_Layer->RotateAngle = ->FormatABC(L"A + (15 * B)",TVariant(Gauge1-
>Layers->get_Item(TVariant("rotateOnWheel"))-
>RotateAngle),TVariant(Delta),TNoParam());
 OutputDebugString(PChar(var_Layer->RotateAngle));
}

Gauge1-
>DefaultLayer[Exgaugelib_tlb::DefaultLayerPropertyEnum::exDefLayerRotateType] =
TVariant(1);
Gauge1->PicturesPath = L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
Gauge1->PicturesName = L"`Layer` + int(value + 1) + `.png`";
Gauge1->Layers->Count = 11;
Gauge1->Layers->get_Item(TVariant(0))->set_Key(TVariant("rotateOnWheel"));

C#

// MouseWheel event - Occurs when the mouse wheel moves while the control has
focus

private void exgauge1_MouseWheel(object sender,int Delta)
{
 exontrol.EXGAUGELib.Layer var_Layer = exgauge1.Layers["rotateOnWheel"];
 var_Layer.RotateAngle = exgauge1.FormatABC("A + (15 *
B)",.Layers["rotateOnWheel"].RotateAngle,Delta,null);
 System.Diagnostics.Debug.Print(var_Layer.RotateAngle.ToString());
}
//this.exgauge1.MouseWheel += new
exontrol.EXGAUGELib.exg2antt.MouseWheelEventHandler(this.exgauge1_MouseWheel);

exgauge1.set_DefaultLayer(exontrol.EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerRotateType,

exgauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
exgauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
exgauge1.Layers.Count = 11;
exgauge1.Layers[0].Key = "rotateOnWheel";

JScript/JavaScript

<BODY onload="Init()">
<SCRIPT FOR="Gauge1" EVENT="MouseWheel(Delta)" LANGUAGE="JScript">
 var var_Layer = Gauge1.Layers.Item("rotateOnWheel");
 var_Layer.RotateAngle = Gauge1.FormatABC("A + (15 *
B)",.Layers.Item("rotateOnWheel").RotateAngle,Delta,null);
 alert(var_Layer.RotateAngle);
</SCRIPT>

<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 Gauge1.DefaultLayer(185) = 1;

 Gauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
 Gauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
 Gauge1.Layers.Count = 11;
 Gauge1.Layers.Item(0).Key = "rotateOnWheel";
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<SCRIPT LANGUAGE="VBScript">
Function Gauge1_MouseWheel(Delta)
 With Gauge1
 With .Layers.Item("rotateOnWheel")
 .RotateAngle = Gauge1.FormatABC("A + (15 *
B)",.Layers.Item("rotateOnWheel").RotateAngle,Delta)
 alert(.RotateAngle)
 End With
 End With
End Function
</SCRIPT>

<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With Gauge1
 .DefaultLayer(185) = 1
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 11
 .Layers.Item(0).Key = "rotateOnWheel"

 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

// MouseWheel event - Occurs when the mouse wheel moves while the control has
focus
private void axGauge1_MouseWheel(object sender,
AxEXGAUGELib._IGaugeEvents_MouseWheelEvent e)
{
 EXGAUGELib.Layer var_Layer = axGauge1.Layers["rotateOnWheel"];
 var_Layer.RotateAngle = axGauge1.FormatABC("A + (15 *
B)",.Layers["rotateOnWheel"].RotateAngle,e.delta,null);
 System.Diagnostics.Debug.Print(var_Layer.RotateAngle.ToString());
}
//this.axGauge1.MouseWheel += new
AxEXGAUGELib._IGaugeEvents_MouseWheelEventHandler(this.axGauge1_MouseWheel);

axGauge1.set_DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerRotateType,

axGauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
axGauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
axGauge1.Layers.Count = 11;
axGauge1.Layers[0].Key = "rotateOnWheel";

X++ (Dynamics Ax 2009)

// MouseWheel event - Occurs when the mouse wheel moves while the control has
focus
void onEvent_MouseWheel(int _Delta)
{
 COM com_Layer;

 anytype var_Layer;
 ;
 var_Layer = COM::createFromObject(exgauge1.Layers()).Item("rotateOnWheel");
com_Layer = var_Layer;
 com_Layer.RotateAngle(exgauge1.FormatABC("A + (15 *
B)",.Layers().Item("rotateOnWheel").RotateAngle(),_Delta));
 print(com_Layer.RotateAngle());
}

public void init()
{
 COM com_Layer;
 anytype var_Layer;
 ;

 super();

exgauge1.DefaultLayer(185/*exDefLayerRotateType*/,COMVariant::createFromInt(1));
 exgauge1.PicturesPath("C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob");
 exgauge1.PicturesName("`Layer` + int(value + 1) + `.png`");
 exgauge1.Layers().Count(11);
 var_Layer =
COM::createFromObject(exgauge1.Layers()).Item(COMVariant::createFromInt(0));
com_Layer = var_Layer;
 com_Layer.Key("rotateOnWheel");
}

Delphi 8 (.NET only)

// MouseWheel event - Occurs when the mouse wheel moves while the control has
focus
procedure TWinForm1.AxGauge1_MouseWheel(sender: System.Object; e:
AxEXGAUGELib._IGaugeEvents_MouseWheelEvent);
begin
 with AxGauge1 do

 begin
 with Layers.Item['rotateOnWheel'] do
 begin
 RotateAngle := .FormatABC('A + (15 *
B)',TObject(AxGauge1.Layers.Item['rotateOnWheel'].RotateAngle),TObject(e.delta),Nil);
 OutputDebugString(RotateAngle);
 end;
 end
end;

with AxGauge1 do
begin

set_DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerRotateType,TObject(

 PicturesPath := 'C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob';
 PicturesName := '`Layer` + int(value + 1) + `.png`';
 Layers.Count := 11;
 Layers.Item[TObject(0)].Key := 'rotateOnWheel';
end

Delphi (standard)

// MouseWheel event - Occurs when the mouse wheel moves while the control has
focus
procedure TForm1.Gauge1MouseWheel(ASender: TObject; Delta : Integer);
begin
 with Gauge1 do
 begin
 with Layers.Item['rotateOnWheel'] do
 begin
 RotateAngle := .FormatABC('A + (15 *
B)',OleVariant(Gauge1.Layers.Item['rotateOnWheel'].RotateAngle),OleVariant(Delta),Null);

 OutputDebugString(RotateAngle);
 end;

 end
end;

with Gauge1 do
begin
 DefaultLayer[EXGAUGELib_TLB.exDefLayerRotateType] := OleVariant(1);
 PicturesPath := 'C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob';
 PicturesName := '`Layer` + int(value + 1) + `.png`';
 Layers.Count := 11;
 Layers.Item[OleVariant(0)].Key := 'rotateOnWheel';
end

VFP

*** MouseWheel event - Occurs when the mouse wheel moves while the control has
focus ***
LPARAMETERS Delta
 with thisform.Gauge1
 with .Layers.Item("rotateOnWheel")
 .RotateAngle = thisform.Gauge1.FormatABC("A + (15 *
B)",.Layers.Item("rotateOnWheel").RotateAngle,Delta)
 DEBUGOUT(.RotateAngle)
 endwith
 endwith

with thisform.Gauge1
 .Object.DefaultLayer(185) = 1
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 11
 .Layers.Item(0).Key = "rotateOnWheel"
endwith

dBASE Plus

/*

with (this.EXGAUGEACTIVEXCONTROL1.nativeObject)
 MouseWheel = class::nativeObject_MouseWheel
endwith
*/
// Occurs when the mouse wheel moves while the control has focus
function nativeObject_MouseWheel(Delta)
 local var_Layer
 oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject
 var_Layer = oGauge.Layers.Item("rotateOnWheel")
 var_Layer.RotateAngle = oGauge.FormatABC("A + (15 *
B)",.Layers.Item("rotateOnWheel").RotateAngle,Delta)
 ? Str(var_Layer.RotateAngle)
return

local oGauge

oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject
oGauge.Template = [DefaultLayer(185) = 1] // oGauge.DefaultLayer(185) = 1
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 11
oGauge.Layers.Item(0).Key = "rotateOnWheel"

XBasic (Alpha Five)

' Occurs when the mouse wheel moves while the control has focus
function MouseWheel as v (Delta as N)
 Dim var_Layer as P
 oGauge = topparent:CONTROL_ACTIVEX1.activex
 var_Layer = oGauge.Layers.Item("rotateOnWheel")
 var_Layer.RotateAngle = oGauge.FormatABC("A + (15 *
B)",.Layers.Item("rotateOnWheel").RotateAngle,Delta)
 ? var_Layer.RotateAngle
end function

Dim oGauge as P

oGauge = topparent:CONTROL_ACTIVEX1.activex
oGauge.Template = "DefaultLayer(185) = 1" // oGauge.DefaultLayer(185) = 1
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 11
oGauge.Layers.Item(0).Key = "rotateOnWheel"

Visual Objects

METHOD OCX_Exontrol1MouseWheel(Delta) CLASS MainDialog
 // MouseWheel event - Occurs when the mouse wheel moves while the control has
focus
 local var_Layer as ILayer
 var_Layer := oDCOCX_Exontrol1:Layers:[Item,"rotateOnWheel"]
 var_Layer:RotateAngle := oDCOCX_Exontrol1:FormatABC("A + (15 * B)",:Layers:
[Item,"rotateOnWheel"]:RotateAngle,Delta,nil)
 OutputDebugString(String2Psz(AsString(var_Layer:RotateAngle)))
RETURN NIL

oDCOCX_Exontrol1:[DefaultLayer,exDefLayerRotateType] := 1
oDCOCX_Exontrol1:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oDCOCX_Exontrol1:PicturesName := "`Layer` + int(value + 1) + `.png`"
oDCOCX_Exontrol1:Layers:Count := 11
oDCOCX_Exontrol1:Layers:[Item,0]:Key := "rotateOnWheel"

PowerBuilder

/*begin event MouseWheel(long Delta) - Occurs when the mouse wheel moves while
the control has focus*/
/*
 OleObject var_Layer

 oGauge = ole_1.Object
 var_Layer = oGauge.Layers.Item("rotateOnWheel")
 var_Layer.RotateAngle = oGauge.FormatABC("A + (15 *
B)",.Layers.Item("rotateOnWheel").RotateAngle,Delta)
 MessageBox("Information",string(String(var_Layer.RotateAngle)))
*/
/*end event MouseWheel*/

OleObject oGauge

oGauge = ole_1.Object
oGauge.DefaultLayer(185,1)
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 11
oGauge.Layers.Item(0).Key = "rotateOnWheel"

Visual DataFlex

// Occurs when the mouse wheel moves while the control has focus
Procedure OnComMouseWheel Integer llDelta
 Forward Send OnComMouseWheel llDelta
 Variant voLayers
 Get ComLayers to voLayers
 Handle hoLayers
 Get Create (RefClass(cComLayers)) to hoLayers
 Set pvComObject of hoLayers to voLayers
 Variant voLayer
 Get ComItem of hoLayers "rotateOnWheel" to voLayer
 Handle hoLayer
 Get Create (RefClass(cComLayer)) to hoLayer
 Set pvComObject of hoLayer to voLayer
 Variant v
 Variant vA
 Variant voLayers1

 Get ComLayers to voLayers1
 Handle hoLayers1
 Get Create (RefClass(cComLayers)) to hoLayers1
 Set pvComObject of hoLayers1 to voLayers1
 Variant voLayer1
 Get ComItem of hoLayers1 "rotateOnWheel" to voLayer1
 Handle hoLayer1
 Get Create (RefClass(cComLayer)) to hoLayer1
 Set pvComObject of hoLayer1 to voLayer1
 Get ComRotateAngle of hoLayer1 to vA
 Send Destroy to hoLayer1
 Send Destroy to hoLayers1
 Get ComFormatABC "A + (15 * B)" vA llDelta Nothing to v
 Set ComRotateAngle of hoLayer to v
 Showln (ComRotateAngle(hoLayer))
 Send Destroy to hoLayer
 Send Destroy to hoLayers
End_Procedure

Procedure OnCreate
 Forward Send OnCreate
 Set ComDefaultLayer OLEexDefLayerRotateType to 1
 Set ComPicturesPath to "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 Set ComPicturesName to "`Layer` + int(value + 1) + `.png`"
 Variant voLayers2
 Get ComLayers to voLayers2
 Handle hoLayers2
 Get Create (RefClass(cComLayers)) to hoLayers2
 Set pvComObject of hoLayers2 to voLayers2
 Set ComCount of hoLayers2 to 11
 Send Destroy to hoLayers2
 Variant voLayers3
 Get ComLayers to voLayers3
 Handle hoLayers3
 Get Create (RefClass(cComLayers)) to hoLayers3
 Set pvComObject of hoLayers3 to voLayers3

 Variant voLayer2
 Get ComItem of hoLayers3 0 to voLayer2
 Handle hoLayer2
 Get Create (RefClass(cComLayer)) to hoLayer2
 Set pvComObject of hoLayer2 to voLayer2
 Set ComKey of hoLayer2 to "rotateOnWheel"
 Send Destroy to hoLayer2
 Send Destroy to hoLayers3
End_Procedure

XBase++

PROCEDURE OnMouseWheel(oGauge,Delta)
 LOCAL oLayer
 oLayer := oGauge:Layers:Item("rotateOnWheel")
 oLayer:RotateAngle := oGauge:FormatABC("A + (15 *
B)",:Layers:Item("rotateOnWheel"):RotateAngle(),Delta)
 DevOut(Transform(oLayer:RotateAngle(),""))
RETURN

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oGauge

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oGauge := XbpActiveXControl():new(oForm:drawingArea)
 oGauge:CLSID := "Exontrol.Gauge.1" /*{91628F12-393C-44EF-A558-
83ED1790AAD3}*/
 oGauge:create(,, {10,60},{610,370})

 oGauge:MouseWheel := {|Delta| OnMouseWheel(oGauge,Delta)} /*Occurs when
the mouse wheel moves while the control has focus*/

 oGauge:SetProperty("DefaultLayer",185/*exDefLayerRotateType*/,1)
 oGauge:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 oGauge:PicturesName := "`Layer` + int(value + 1) + `.png`"
 oGauge:Layers():Count := 11
 oGauge:Layers:Item(0):Key := "rotateOnWheel"

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

C#

VB

private void RClick(object sender)
{
}

Private Sub RClick(ByVal sender As System.Object) Handles RClick
End Sub

C#

C++

C++
Builder

Delphi

private void RClick(object sender, EventArgs e)
{
}

void OnRClick()
{
}

void __fastcall RClick(TObject *Sender)
{
}

procedure RClick(ASender: TObject;);
begin
end;

event RClick ()
Occurs once the user right clicks the control.

Type Description

Use the RClick event to add your context menu. The RClick event notifies your application
when the user right clicks the control. Use the Click event to notify your application that the
user clicks the control (using the left mouse button). Use the MouseDown or MouseUp
event if you require the cursor position during the RClick event. The MouseIn / MouseOut
event notifies your application when the cursor is entering / leaving the layer.You can use
the LayerFromPoint(-1,-1) property to get the layer from the cursor. The Click event is not
fired if you click, drag and release the mouse over the control. The OnDrag property
indicates the action to be performed when the user clicks and drags the layer.

Syntax for RClick event, /NET version, on:

Syntax for RClick event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure RClick(sender: System.Object; e: System.EventArgs);
begin
end;

begin event RClick()

end event RClick

Private Sub RClick(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles RClick
End Sub

Private Sub RClick()
End Sub

Private Sub RClick()
End Sub

LPARAMETERS nop

PROCEDURE OnRClick(oGauge)

RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="RClick()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function RClick()
End Function
</SCRIPT>

Procedure OnComRClick
 Forward Send OnComRClick
End_Procedure

Syntax for RClick event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

METHOD OCX_RClick() CLASS MainDialog
RETURN NIL

void onEvent_RClick()
{
}

function RClick as v ()
end function

function nativeObject_RClick()
return

C#

VB

private void Timer(object sender,int TickCount)
{
}

Private Sub Timer(ByVal sender As System.Object,ByVal TickCount As Integer)
Handles Timer
End Sub

C# private void Timer(object sender, AxEXGAUGELib._IGaugeEvents_TimerEvent e)
{
}

event Timer (TickCount as Long)
Occurs when the interval elapses.

Type Description

TickCount as Long
A Long expression that specifies the number of
milliseconds that have elapsed since the system was
started, up to 49.7 days.

The Timer event occurs when the timer interval elapses. The TimerInterval property returns
or sets the number of milliseconds between calls of control's Timer event. You can use the
Timer event to perform different actions on any layer when a specified time elapsed. For
instance, you can rotate the layer every second, or any dial of a clock, and so on.

The FormatABC method formats the A,B,C values based on the giving expression and
returns the result.

You can use any of the following properties to update the layer:

Value, specifies the layer's value.
OffsetX, specifies a value that indicates x-offset of the layer.
OffsetY, indicates a value that indicates y-offset of the layer.
RotateAngle, specifies the angle to rotate the layer.
Clip, to clip any layer

 The Change event occurs when the layer's value is changed.

Syntax for Timer event, /NET version, on:

Syntax for Timer event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnTimer(long TickCount)
{
}

void __fastcall Timer(TObject *Sender,long TickCount)
{
}

procedure Timer(ASender: TObject; TickCount : Integer);
begin
end;

procedure Timer(sender: System.Object; e:
AxEXGAUGELib._IGaugeEvents_TimerEvent);
begin
end;

begin event Timer(long TickCount)

end event Timer

Private Sub Timer(ByVal sender As System.Object, ByVal e As
AxEXGAUGELib._IGaugeEvents_TimerEvent) Handles Timer
End Sub

Private Sub Timer(ByVal TickCount As Long)
End Sub

Private Sub Timer(ByVal TickCount As Long)
End Sub

LPARAMETERS TickCount

PROCEDURE OnTimer(oGauge,TickCount)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="Timer(TickCount)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Timer(TickCount)
End Function
</SCRIPT>

Procedure OnComTimer Integer llTickCount
 Forward Send OnComTimer llTickCount
End_Procedure

METHOD OCX_Timer(TickCount) CLASS MainDialog
RETURN NIL

void onEvent_Timer(int _TickCount)
{
}

function Timer as v (TickCount as N)
end function

function nativeObject_Timer(TickCount)
return

Syntax for Timer event, /COM version (others), on:

The following samples show how you can rotate the first visible layer every second:

VBA (MS Access, Excell...)

' Timer event - Occurs when the interval elapses.
Private Sub Gauge1_Timer(ByVal TickCount As Long)
 With Gauge1
 With .Layers.Item("rotateOnTimer")
 .RotateAngle = Gauge1.FormatABC("A +
5",.Layers.Item("rotateOnTimer").RotateAngle)

 Debug.Print(TickCount)
 End With
 End With
End Sub

With Gauge1
 .DefaultLayer(185) = 1
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 11
 .Layers.Item(0).Key = "rotateOnTimer"
 .TimerInterval = 1000
End With

VB6

' Timer event - Occurs when the interval elapses.
Private Sub Gauge1_Timer(ByVal TickCount As Long)
 With Gauge1
 With .Layers.Item("rotateOnTimer")
 .RotateAngle = Gauge1.FormatABC("A +
5",.Layers.Item("rotateOnTimer").RotateAngle)
 Debug.Print(TickCount)
 End With
 End With
End Sub

With Gauge1
 .DefaultLayer(exDefLayerRotateType) = 1
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 11
 .Layers.Item(0).Key = "rotateOnTimer"
 .TimerInterval = 1000
End With

VB.NET

' Timer event - Occurs when the interval elapses.
Private Sub Exgauge1_Timer(ByVal sender As System.Object,ByVal TickCount As
Integer) Handles Exgauge1.Timer
 With Exgauge1
 With .Layers.Item("rotateOnTimer")
 .RotateAngle = Exgauge1.FormatABC("A +
5",.Layers.Item("rotateOnTimer").RotateAngle)
 Debug.Print(TickCount)
 End With
 End With
End Sub

With Exgauge1

.set_DefaultLayer(exontrol.EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerRotateType,

 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 11
 .Layers.Item(0).Key = "rotateOnTimer"
 .TimerInterval = 1000
End With

VB.NET for /COM

' Timer event - Occurs when the interval elapses.
Private Sub AxGauge1_Timer(ByVal sender As System.Object, ByVal e As
AxEXGAUGELib._IGaugeEvents_TimerEvent) Handles AxGauge1.Timer
 With AxGauge1
 With .Layers.Item("rotateOnTimer")
 .RotateAngle = AxGauge1.FormatABC("A +
5",.Layers.Item("rotateOnTimer").RotateAngle)
 Debug.Print(e.tickCount)
 End With
 End With

End Sub

With AxGauge1
 .set_DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerRotateType,1)
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 11
 .Layers.Item(0).Key = "rotateOnTimer"
 .TimerInterval = 1000
End With

C++

// Timer event - Occurs when the interval elapses.
void OnTimerGauge1(long TickCount)
{
 /*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXGAUGELib' for the library: 'ExGauge 1.0 Control
Library'
 #import <ExGauge.dll>
 using namespace EXGAUGELib;
 */
 EXGAUGELib::IGaugePtr spGauge1 = GetDlgItem(IDC_GAUGE1)-
>GetControlUnknown();
 EXGAUGELib::ILayerPtr var_Layer = spGauge1->GetLayers()-
>GetItem("rotateOnTimer");
 var_Layer->PutRotateAngle(spGauge1->FormatABC(L"A + 5",->GetLayers()-
>GetItem("rotateOnTimer")->GetRotateAngle(),vtMissing,vtMissing));
 OutputDebugStringW(L"TickCount");
}

EXGAUGELib::IGaugePtr spGauge1 = GetDlgItem(IDC_GAUGE1)-
>GetControlUnknown();
spGauge1->PutDefaultLayer(EXGAUGELib::exDefLayerRotateType,long(1));
spGauge1->PutPicturesPath(L"C:\\Program

Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob");
spGauge1->PutPicturesName(L"`Layer` + int(value + 1) + `.png`");
spGauge1->GetLayers()->PutCount(11);
spGauge1->GetLayers()->GetItem(long(0))->PutKey("rotateOnTimer");
spGauge1->PutTimerInterval(1000);

C++ Builder

// Timer event - Occurs when the interval elapses.
void __fastcall TForm1::Gauge1Timer(TObject *Sender,long TickCount)
{
 Exgaugelib_tlb::ILayerPtr var_Layer = Gauge1->Layers-
>get_Item(TVariant("rotateOnTimer"));
 var_Layer->RotateAngle = ->FormatABC(L"A + 5",TVariant(Gauge1->Layers-
>get_Item(TVariant("rotateOnTimer"))->RotateAngle),TNoParam(),TNoParam());
 OutputDebugString(L"TickCount");
}

Gauge1-
>DefaultLayer[Exgaugelib_tlb::DefaultLayerPropertyEnum::exDefLayerRotateType] =
TVariant(1);
Gauge1->PicturesPath = L"C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
Gauge1->PicturesName = L"`Layer` + int(value + 1) + `.png`";
Gauge1->Layers->Count = 11;
Gauge1->Layers->get_Item(TVariant(0))->set_Key(TVariant("rotateOnTimer"));
Gauge1->TimerInterval = 1000;

C#

// Timer event - Occurs when the interval elapses.
private void exgauge1_Timer(object sender,int TickCount)
{
 exontrol.EXGAUGELib.Layer var_Layer = exgauge1.Layers["rotateOnTimer"];
 var_Layer.RotateAngle = exgauge1.FormatABC("A +
5",.Layers["rotateOnTimer"].RotateAngle,null,null);

 System.Diagnostics.Debug.Print(TickCount.ToString());
}
//this.exgauge1.Timer += new
exontrol.EXGAUGELib.exg2antt.TimerEventHandler(this.exgauge1_Timer);

exgauge1.set_DefaultLayer(exontrol.EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerRotateType,

exgauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
exgauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
exgauge1.Layers.Count = 11;
exgauge1.Layers[0].Key = "rotateOnTimer";
exgauge1.TimerInterval = 1000;

JScript/JavaScript

<BODY onload="Init()">
<SCRIPT FOR="Gauge1" EVENT="Timer(TickCount)" LANGUAGE="JScript">
 var var_Layer = Gauge1.Layers.Item("rotateOnTimer");
 var_Layer.RotateAngle = Gauge1.FormatABC("A +
5",.Layers.Item("rotateOnTimer").RotateAngle,null,null);
 alert(TickCount);
</SCRIPT>

<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 Gauge1.DefaultLayer(185) = 1;
 Gauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
 Gauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
 Gauge1.Layers.Count = 11;
 Gauge1.Layers.Item(0).Key = "rotateOnTimer";

 Gauge1.TimerInterval = 1000;
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<SCRIPT LANGUAGE="VBScript">
Function Gauge1_Timer(TickCount)
 With Gauge1
 With .Layers.Item("rotateOnTimer")
 .RotateAngle = Gauge1.FormatABC("A +
5",.Layers.Item("rotateOnTimer").RotateAngle)
 alert(TickCount)
 End With
 End With
End Function
</SCRIPT>

<OBJECT CLASSID="clsid:91628F12-393C-44EF-A558-83ED1790AAD3"
id="Gauge1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With Gauge1
 .DefaultLayer(185) = 1
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 11
 .Layers.Item(0).Key = "rotateOnTimer"
 .TimerInterval = 1000
 End With
End Function
</SCRIPT>

</BODY>

C# for /COM

// Timer event - Occurs when the interval elapses.
private void axGauge1_Timer(object sender,
AxEXGAUGELib._IGaugeEvents_TimerEvent e)
{
 EXGAUGELib.Layer var_Layer = axGauge1.Layers["rotateOnTimer"];
 var_Layer.RotateAngle = axGauge1.FormatABC("A +
5",.Layers["rotateOnTimer"].RotateAngle,null,null);
 System.Diagnostics.Debug.Print(e.tickCount.ToString());
}
//this.axGauge1.Timer += new
AxEXGAUGELib._IGaugeEvents_TimerEventHandler(this.axGauge1_Timer);

axGauge1.set_DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerRotateType,

axGauge1.PicturesPath = "C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob";
axGauge1.PicturesName = "`Layer` + int(value + 1) + `.png`";
axGauge1.Layers.Count = 11;
axGauge1.Layers[0].Key = "rotateOnTimer";
axGauge1.TimerInterval = 1000;

X++ (Dynamics Ax 2009)

// Timer event - Occurs when the interval elapses.
void onEvent_Timer(int _TickCount)
{
 COM com_Layer;
 anytype var_Layer;
 ;
 var_Layer = COM::createFromObject(exgauge1.Layers()).Item("rotateOnTimer");
com_Layer = var_Layer;
 com_Layer.RotateAngle(exgauge1.FormatABC("A +

5",.Layers().Item("rotateOnTimer").RotateAngle()));
 print(_TickCount);
}

public void init()
{
 COM com_Layer;
 anytype var_Layer;
 ;

 super();

exgauge1.DefaultLayer(185/*exDefLayerRotateType*/,COMVariant::createFromInt(1));
 exgauge1.PicturesPath("C:\\Program
Files\\Exontrol\\ExGauge\\Sample\\Design\\Circular\\Knob");
 exgauge1.PicturesName("`Layer` + int(value + 1) + `.png`");
 exgauge1.Layers().Count(11);
 var_Layer =
COM::createFromObject(exgauge1.Layers()).Item(COMVariant::createFromInt(0));
com_Layer = var_Layer;
 com_Layer.Key("rotateOnTimer");
 exgauge1.TimerInterval(1000);
}

Delphi 8 (.NET only)

// Timer event - Occurs when the interval elapses.
procedure TWinForm1.AxGauge1_Timer(sender: System.Object; e:
AxEXGAUGELib._IGaugeEvents_TimerEvent);
begin
 with AxGauge1 do
 begin
 with Layers.Item['rotateOnTimer'] do
 begin
 RotateAngle := .FormatABC('A +
5',TObject(AxGauge1.Layers.Item['rotateOnTimer'].RotateAngle),Nil,Nil);

 OutputDebugString(e.tickCount);
 end;
 end
end;

with AxGauge1 do
begin

set_DefaultLayer(EXGAUGELib.DefaultLayerPropertyEnum.exDefLayerRotateType,TObject(

 PicturesPath := 'C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob';
 PicturesName := '`Layer` + int(value + 1) + `.png`';
 Layers.Count := 11;
 Layers.Item[TObject(0)].Key := 'rotateOnTimer';
 TimerInterval := 1000;
end

Delphi (standard)

// Timer event - Occurs when the interval elapses.
procedure TForm1.Gauge1Timer(ASender: TObject; TickCount : Integer);
begin
 with Gauge1 do
 begin
 with Layers.Item['rotateOnTimer'] do
 begin
 RotateAngle := .FormatABC('A +
5',OleVariant(Gauge1.Layers.Item['rotateOnTimer'].RotateAngle),Null,Null);
 OutputDebugString(TickCount);
 end;
 end
end;

with Gauge1 do
begin
 DefaultLayer[EXGAUGELib_TLB.exDefLayerRotateType] := OleVariant(1);

 PicturesPath := 'C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob';
 PicturesName := '`Layer` + int(value + 1) + `.png`';
 Layers.Count := 11;
 Layers.Item[OleVariant(0)].Key := 'rotateOnTimer';
 TimerInterval := 1000;
end

VFP

*** Timer event - Occurs when the interval elapses. ***
LPARAMETERS TickCount
 with thisform.Gauge1
 with .Layers.Item("rotateOnTimer")
 .RotateAngle = thisform.Gauge1.FormatABC("A +
5",.Layers.Item("rotateOnTimer").RotateAngle)
 DEBUGOUT(TickCount)
 endwith
 endwith

with thisform.Gauge1
 .Object.DefaultLayer(185) = 1
 .PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 .PicturesName = "`Layer` + int(value + 1) + `.png`"
 .Layers.Count = 11
 .Layers.Item(0).Key = "rotateOnTimer"
 .TimerInterval = 1000
endwith

dBASE Plus

/*
with (this.EXGAUGEACTIVEXCONTROL1.nativeObject)
 Timer = class::nativeObject_Timer
endwith
*/
// Occurs when the interval elapses.

function nativeObject_Timer(TickCount)
 local var_Layer
 oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject
 var_Layer = oGauge.Layers.Item("rotateOnTimer")
 var_Layer.RotateAngle = oGauge.FormatABC("A +
5",.Layers.Item("rotateOnTimer").RotateAngle)
 ? Str(TickCount)
return

local oGauge

oGauge = form.EXGAUGEACTIVEXCONTROL1.nativeObject
oGauge.Template = [DefaultLayer(185) = 1] // oGauge.DefaultLayer(185) = 1
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 11
oGauge.Layers.Item(0).Key = "rotateOnTimer"
oGauge.TimerInterval = 1000

XBasic (Alpha Five)

' Occurs when the interval elapses.
function Timer as v (TickCount as N)
 Dim var_Layer as P
 oGauge = topparent:CONTROL_ACTIVEX1.activex
 var_Layer = oGauge.Layers.Item("rotateOnTimer")
 var_Layer.RotateAngle = oGauge.FormatABC("A +
5",.Layers.Item("rotateOnTimer").RotateAngle)
 ? TickCount
end function

Dim oGauge as P

oGauge = topparent:CONTROL_ACTIVEX1.activex
oGauge.Template = "DefaultLayer(185) = 1" // oGauge.DefaultLayer(185) = 1

oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 11
oGauge.Layers.Item(0).Key = "rotateOnTimer"
oGauge.TimerInterval = 1000

Visual Objects

METHOD OCX_Exontrol1Timer(TickCount) CLASS MainDialog
 // Timer event - Occurs when the interval elapses.
 local var_Layer as ILayer
 var_Layer := oDCOCX_Exontrol1:Layers:[Item,"rotateOnTimer"]
 var_Layer:RotateAngle := oDCOCX_Exontrol1:FormatABC("A + 5",:Layers:
[Item,"rotateOnTimer"]:RotateAngle,nil,nil)
 OutputDebugString(String2Psz(AsString(TickCount)))
RETURN NIL

oDCOCX_Exontrol1:[DefaultLayer,exDefLayerRotateType] := 1
oDCOCX_Exontrol1:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oDCOCX_Exontrol1:PicturesName := "`Layer` + int(value + 1) + `.png`"
oDCOCX_Exontrol1:Layers:Count := 11
oDCOCX_Exontrol1:Layers:[Item,0]:Key := "rotateOnTimer"
oDCOCX_Exontrol1:TimerInterval := 1000

PowerBuilder

/*begin event Timer(long TickCount) - Occurs when the interval elapses.*/
/*
 OleObject var_Layer
 oGauge = ole_1.Object
 var_Layer = oGauge.Layers.Item("rotateOnTimer")
 var_Layer.RotateAngle = oGauge.FormatABC("A +
5",.Layers.Item("rotateOnTimer").RotateAngle)

 MessageBox("Information",string(String(TickCount)))
*/
/*end event Timer*/

OleObject oGauge

oGauge = ole_1.Object
oGauge.DefaultLayer(185,1)
oGauge.PicturesPath = "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
oGauge.PicturesName = "`Layer` + int(value + 1) + `.png`"
oGauge.Layers.Count = 11
oGauge.Layers.Item(0).Key = "rotateOnTimer"
oGauge.TimerInterval = 1000

Visual DataFlex

// Occurs when the interval elapses.
Procedure OnComTimer Integer llTickCount
 Forward Send OnComTimer llTickCount
 Variant voLayers
 Get ComLayers to voLayers
 Handle hoLayers
 Get Create (RefClass(cComLayers)) to hoLayers
 Set pvComObject of hoLayers to voLayers
 Variant voLayer
 Get ComItem of hoLayers "rotateOnTimer" to voLayer
 Handle hoLayer
 Get Create (RefClass(cComLayer)) to hoLayer
 Set pvComObject of hoLayer to voLayer
 Variant v
 Variant vA
 Variant voLayers1
 Get ComLayers to voLayers1
 Handle hoLayers1
 Get Create (RefClass(cComLayers)) to hoLayers1

 Set pvComObject of hoLayers1 to voLayers1
 Variant voLayer1
 Get ComItem of hoLayers1 "rotateOnTimer" to voLayer1
 Handle hoLayer1
 Get Create (RefClass(cComLayer)) to hoLayer1
 Set pvComObject of hoLayer1 to voLayer1
 Get ComRotateAngle of hoLayer1 to vA
 Send Destroy to hoLayer1
 Send Destroy to hoLayers1
 Get ComFormatABC "A + 5" vA Nothing Nothing to v
 Set ComRotateAngle of hoLayer to v
 Showln llTickCount
 Send Destroy to hoLayer
 Send Destroy to hoLayers
End_Procedure

Procedure OnCreate
 Forward Send OnCreate
 Set ComDefaultLayer OLEexDefLayerRotateType to 1
 Set ComPicturesPath to "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 Set ComPicturesName to "`Layer` + int(value + 1) + `.png`"
 Variant voLayers2
 Get ComLayers to voLayers2
 Handle hoLayers2
 Get Create (RefClass(cComLayers)) to hoLayers2
 Set pvComObject of hoLayers2 to voLayers2
 Set ComCount of hoLayers2 to 11
 Send Destroy to hoLayers2
 Variant voLayers3
 Get ComLayers to voLayers3
 Handle hoLayers3
 Get Create (RefClass(cComLayers)) to hoLayers3
 Set pvComObject of hoLayers3 to voLayers3
 Variant voLayer2
 Get ComItem of hoLayers3 0 to voLayer2
 Handle hoLayer2

 Get Create (RefClass(cComLayer)) to hoLayer2
 Set pvComObject of hoLayer2 to voLayer2
 Set ComKey of hoLayer2 to "rotateOnTimer"
 Send Destroy to hoLayer2
 Send Destroy to hoLayers3
 Set ComTimerInterval to 1000
End_Procedure

XBase++

PROCEDURE OnTimer(oGauge,TickCount)
 LOCAL oLayer
 oLayer := oGauge:Layers:Item("rotateOnTimer")
 oLayer:RotateAngle := oGauge:FormatABC("A +
5",:Layers:Item("rotateOnTimer"):RotateAngle())
 DevOut(Transform(TickCount,""))
RETURN

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oGauge

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oGauge := XbpActiveXControl():new(oForm:drawingArea)
 oGauge:CLSID := "Exontrol.Gauge.1" /*{91628F12-393C-44EF-A558-
83ED1790AAD3}*/
 oGauge:create(,, {10,60},{610,370})

 oGauge:Timer := {|TickCount| OnTimer(oGauge,TickCount)} /*Occurs when the

interval elapses.*/

 oGauge:SetProperty("DefaultLayer",185/*exDefLayerRotateType*/,1)
 oGauge:PicturesPath := "C:\Program
Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
 oGauge:PicturesName := "`Layer` + int(value + 1) + `.png`"
 oGauge:Layers():Count := 11
 oGauge:Layers:Item(0):Key := "rotateOnTimer"
 oGauge:TimerInterval := 1000

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property Gauge.TemplateDef as Variant
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplateDef property has been added to allow programming languages such as
dBASE Plus to set control's properties with multiple parameters. It is known that
programming languages such as dBASE Plus or XBasic from AlphaFive, does not
support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef method. The first call of the TemplateDef
should be a declaration such as "Dim a,b" which means the next 2 calls of the TemplateDef
defines the variables a and b. The next call should be Template or ExecuteTemplate
property which can use the variable a and b being defined previously.

So, calling the TemplateDef property should be as follows:

with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith

This sample allocates a variable var_Column, assigns the value to the variable (the second
call of the TemplateDef), and the Template call uses the var_Column variable (as an object
), to call its Def property with the parameter 4.

Let's say we need to define the background color for a specified column, so we need to call
the Def(exCellBackColor) property of the column, to define the color for all cells in the
column.

The following VB6 sample shows setting the Def property such as:

With Control
 .Columns.Add("Column 1").Def(exCellBackColor) = 255
 .Columns.Add "Column 2"
 .Items.AddItem 0
 .Items.AddItem 1

 .Items.AddItem 2
End With

In dBASE Plus, calling the Def(4) has no effect, instead using the TemplateDef helps you to
use properly the Def property as follows:

local Control,var_Column

Control = form.Activex1.nativeObject
// Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith
Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The equivalent sample for XBasic in A5, is as follows:

Dim Control as P
Dim var_Column as P

Control = topparent:CONTROL_ACTIVEX1.activex
' Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
Control.TemplateDef = "Dim var_Column"
Control.TemplateDef = var_Column
Control.Template = "var_Column.Def(4) = 255"

Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The samples just call the Column.Def(4) = Value, using the TemplateDef. The first call of
TemplateDef property is "Dim var_Column", which indicates that the next call of the
TemplateDef will defines the value of the variable var_Column, in other words, it defines the
object var_Column. The last call of the Template property uses the var_Column member to
use the x-script and so to set the Def property so a new color is being assigned to the
column.

The TemplateDef, Template and ExecuteTemplate support x-script language (Template
script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please

make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property Gauge.Template as String
Specifies the control's template.

Type Description
String A string expression that defines the control's template

The control's template uses the X-Script language to initialize the control's content. Use the
Template property page of the control to update the control's Template property. Use the
Template property to execute code by passing instructions as a string (template string).
Use the ToTemplate property to generate the control's content to template format. Use the
ExecuteTemplate property to get the result of executing a template script.

The Exontrol's eXHelper tool helps you to find easy and quickly the answers and the source
code for your questions regarding the usage of our UI components.

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

https://exontrol.com/exhelper.jsp

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

 For instance, the following script:

PicturesPath = "C:\Program Files\Exontrol\ExGauge\Sample\Design\Circular\Knob"
PicturesName = "`Layer` + str(value + 1) + `.png`"
Layers.Count = 10

generates:

method Gauge.ExecuteTemplate (Template as String)
Executes a template and returns the result.

Type Description
Template as String A Template string being executed
Return Description

Variant A Variant expression that indicates the result after
executing the Template.

Use the ExecuteTemplate property to returns the result of executing a template file. Use the
Template property to execute a template without returning any result. Use the
ExecuteTemplate property to execute code by passing instructions as a string (template
string).

For instance, the following sample retrieves the control's background color:

Debug.Print Gauge1.ExecuteTemplate("BackColor")

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for

newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of

the class associated with a specified program identifier.

	Information
	How to get support?
	Appearance
	Add method
	Clear method
	Remove method
	RenderType property

	Background
	Color property (readonly)
	ExtraPicture property (readonly)
	Picture property (readonly)
	Selectable property
	Visible property

	Clip
	Ellipse property (readonly)
	Picture property (readonly)
	Pie property (readonly)
	Polygon property (readonly)
	Rectangle property (readonly)
	RoundRectangle property (readonly)
	Type property
	Value property

	ClipEllipse
	CenterX property
	CenterY property
	InverseClip property
	OffsetX property
	OffsetY property
	RadiusX property
	RadiusY property

	ClipPicture
	AlphaFrom property
	AlphaTo property
	DisplayAs property
	Height property
	InverseClip property
	Left property
	Name property
	OffsetX property
	OffsetY property
	Top property
	Width property

	ClipPie
	CenterX property
	CenterY property
	InverseClip property
	OffsetX property
	OffsetY property
	RadiusX property
	RadiusY property
	StartAngle property
	SweepAngle property

	ClipPolygon
	InverseClip property
	OffsetX property
	OffsetY property
	Points property
	X property
	Y property

	ClipRectangle
	Height property
	InverseClip property
	Left property
	OffsetX property
	OffsetY property
	Top property
	Width property

	ClipRoundRectangle
	Height property
	InverseClip property
	Left property
	OffsetX property
	OffsetY property
	RoundRadiusX property
	RoundRadiusY property
	Top property
	Width property

	DragInfo
	Button property (readonly)
	Clockwise property (readonly)
	CumulativeRotateAngle property (readonly)
	CurrentX property (readonly)
	CurrentY property (readonly)
	Debug property
	Delta property (readonly)
	DeltaAngle property (readonly)
	DeltaX property (readonly)
	DeltaY property (readonly)
	Layer property
	RotateAngleValid property
	UserData property
	X property (readonly)
	Y property (readonly)

	Foreground
	Caption property
	Color property
	ExtraCaption property
	Selectable property
	Visible property

	Gauge
	AllowCopyTemplate property
	AllowMoveOnClick property
	AllowSmoothChange property
	AnchorFromPoint property (readonly)
	Appearance property
	AttachTemplate method
	BackColor property
	Background property
	BeginUpdate method
	Caption property
	CopyTo property (readonly)
	Debug property
	DefaultLayer property
	Enabled property
	EndUpdate method
	EventParam property
	ExecuteTemplate method
	ExtraCaption property
	Font property
	ForeColor property
	FormatABC method
	FormatAnchor property
	FreezeEvents method
	HTMLPicture property
	hWnd property (readonly)
	Images method
	ImageSize property
	LayerAutoSize property
	LayerClipTo property
	LayerClipToParent property
	LayerDragAny property
	LayerFromPoint property (readonly)
	LayerOfValue property
	Layers property (readonly)
	LayerUpdate property
	PicturesName property
	PicturesPath property
	Refresh method
	ReplaceIcon method
	ShowImageList property
	ShowLayers property
	ShowToolTip method
	Template property
	TemplateDef property
	TemplatePut method
	TimerInterval property
	ToolTipDelay property
	ToolTipFont property
	ToolTipPopDelay property
	ToolTipWidth property
	ToTemplate property (readonly)
	TransparentColorFrom property
	TransparentColorTo property
	Value property
	Version property
	VisualAppearance property (readonly)

	Layer
	Background property (readonly)
	Brightness property
	Clip property (readonly)
	Contrast property
	DefaultOffsetX property
	DefaultOffsetY property
	DefaultRotateAngle property
	Foreground property (readonly)
	Grayscale property
	Height property
	Idem property
	Index property (readonly)
	Key property
	LayerClipToAlpha property
	LayerToClientX property (readonly)
	LayerToClientY property (readonly)
	Left property
	OffsetToValue property
	OffsetX property
	OffsetXValid property
	OffsetY property
	OffsetYValid property
	OnDrag property
	Position property
	RotamoveCenterX property
	RotamoveCenterY property
	RotamoveOffsetX property (readonly)
	RotamoveOffsetY property (readonly)
	RotateAngle property
	RotateAngleToValue property
	RotateAngleValid property
	RotateCenterLayer property
	RotateCenterX property
	RotateCenterY property
	RotateClip property
	RotateType property
	Selectable property
	ShowHandCursor property
	ToolTip property
	ToolTipTitle property
	Top property
	Transparency property
	UserData property
	Value property
	ValueToOffsetX property
	ValueToOffsetY property
	ValueToRotateAngle property
	Visible property
	Width property

	Layers
	Add method
	Clear method
	Count property
	Item property (readonly)
	Remove method
	VisibleCount property (readonly)
	VisibleItem property (readonly)

	LColor
	Selectable property
	Value property
	Visible property

	LPicture
	DisplayAs property
	Height property
	Left property
	Name property
	Opaque property
	Selectable property
	Top property
	TransparentColorFrom property
	TransparentColorTo property
	Value property
	Visible property
	Width property

	ExGauge events
	AnchorClick event
	Change event
	Click event
	DblClick event
	Drag event
	DragEnd event
	DragStart event
	Event event
	KeyDown event
	KeyPress event
	KeyUp event
	MouseDown event
	MouseIn event
	MouseMove event
	MouseOut event
	MouseUp event
	MouseWheel event
	RClick event
	Timer event

