
 ExGantt

The Exontrol's ExGantt component is our approach to create timeline charts (also known as
Gantt charts). Gantt chart is a time-phased graphic display of activity durations. Activities
are listed with other tabular information on the left side with time intervals over the bars.
Activity durations are shown in the form of horizontal bars. The ExGantt component lets the
user changes its visual appearance using skins, each one providing an additional visual
experience that enhances viewing pleasure. Skins are relatively easy to build and put on any
part of the control.

Features include:

Print and Print Preview support
ADO and DAO support for /COM version
Ability to specify the control's DataSource/DataMember using DataSets for /NET
version.
Skinnable Interface support (ability to apply a skin to any background part)
Easy way to define the control's visual appearance in design mode, using XP-Theme
elements or EBN objects
WYSWYG Template/Layout Editor support
Ability to save/load the control's data to/from XML documents
Customizable Drag and Drop support:

Ability to change the column or row position without having to manually add the
OLE drag and drop events
Ability to drag and drop the data as text, to your favorite Office applications, like
Word, Excel, or any other OLE-Automation compliant
Ability to drag and drop the data as it looks, to your favorite Office applications,
like Word, Excel, or any other OLE-Automation compliant
Ability to smoothly scroll the control's content moving the mouse cursor up or
down, and more...

Drag and Drop support
EMF Format support (Ability to save the control's content to Enhanced Metafile (EMF)
file, and so to any BMP, JPG, GIF or PNG formats)
Hierarchical view
Ability to smooth scrolling the control's content while it displays items with different
heights
Ability to specify multiple levels, using custom built-in HTML format for each level
Alternative HTML labels support for best fit in the level's time unit.
Regional and Language Options support to display dates, times.
Ability to insert hyperlinks anywhere in the cells, bars or links
Semi-Transparent Bars support

Zoom and Scale support (including at run-time too)
Nonworking Days, Nonworking Hours support
Ability to assign multiple bars to a single item
Predefined bars like task, milestone and so on
Ability to define your own type of bars using custom shapes and patterns
Ability to show the current date-time using EBN files.
Ability to define the starting and ending corners from icons.
Overview Layout/Map support.
Conditional Format support.
Computed Fields supports numbers, strings and dates expressions.
Ability to format the cells based on several predefined functions and expressions such
as currency, shortdate, longdate ...
Multiple Locked/Fixed Columns support
FilterBar, SortBar Support
Locked/Fixed/Dividers items support
ActiveX hosting (you can place any ActiveX component in any item of the chart)
Multi-lines items support
'starts with' and 'contains' incremental searching support
Merge or Split cells support
Built-In HTML Tooltip support
and much more

Ž ExGantt is a trademark of Exontrol. All Rights Reserved.

How to get support?

To keep your business applications running, you need support you can count on.

Here are few hints what to do when you're stuck on your programming:

Check out the samples - they are here to provide some quick info on how things should
be done
Check out the how-to questions using the eXHelper tool
Check out the help - includes documentation for each method, property or event
Check out if you have the latest version, and if you don't have it send an update
request here.
Submit your problem(question) here.

Don't forget that you can contact our development team if you have ideas or requests for
new components, by sending us an e-mail at support@exontrol.com (please include the
name of the product in the subject, ex: exgrid) . We're sure our team of developers will try
to find a way to make you happy - and us too, since we helped.

Regards,
Exontrol Development Team

https://www.exontrol.com

https://exontrol.com/exhelper.jsp
https://exontrol.com/update.jsp
https://exontrol.com/techsupport.jsp
https://www.exontrol.com

How to start?

The following screen shot, shows a general idea how parts and objects of the control are
arranged:

click to enlarge

The following steps shows you progressively how to start programming the Exontrol's
ExGantt component:

Load / Save Data. The control provides several ways to serialize your data, as listed:

LoadXML / SaveXML methods, to load / save data using XML format.
DataSource property, to load / update / save data from a table, query,
dataset and so on.
GetItems / PutItems methods, to load / save data from a/to safe array of
data.

For instance,

With Gantt1
 .LoadXML "https://www.exontrol.net/testing.xml"

End With

loads control's data from specified URL.

Chart. The control's chart displays tasks based on the time-unit scale, using a multiple-
levels header.

UnitScale property, determines the base time-unit scale to be displayed on the
chart.
Label property, indicates the predefined format of the level's label for a
specified unit, to be shown on the chart.
LevelCount property, specifies the number of levels to be shown on the chart's
header.

For instance,

With Gantt1
 With .Chart
 .LevelCount = 2
 .UnitScale = exDay
 End With
End With

specifies that the chart's header should display two levels, and the base time-unit
scale to be day.

Bars. The chart's bars collection holds the types of the bars the chart can display. By
default, it includes Task, Milestone, Summary, Project Summary, ...

Add method, adds a new type of bar, including a combination of any of
already predefined bars to display split or/and progress bars.
Copy property, clones an already predefined bar.

For instance,

With Gantt1
 .Chart.Bars.Add("Task%Progress").Shortcut = "TProgress"
End With

defines a new task bar to display a progress bar inside. See Item-Bars, to see
how you can add tasks/bars to the control's chart panel.

Links. See Item-Links, to see how you can add links between tasks/bars to the

control's chart panel.
Columns. The control supports multiple columns, so always you can add / remove /
move / hide any column

Add method, adds a new column.
ExpandColumns property specifies the columns to be shown/hidden when the
column is expanded or collapsed.

For instance,

With Gantt1
 With .Columns.Add("Check")
 .Position = 0
 .Def(exCellHasCheckBox) = True
 End With
End With

adds a new column that displays check-boxes, and that's the first visible column.

Items. Any item can hold a collection of child items. Any item is divided in cells, once
cell for each column in the control.

AddItem method, adds a new item.
InsertItem method, inserts a child item
InsertControlItem method, inserts a child item that hosts another control
inside.

For instance,

With Gantt1
 With .Items
 .AddItem "new item"
 End With
End With

adds a new item.

Cells. An item contains a collection of cells, one cell for each column in the control. Any
cell can be split or merge with one or more neighbor cells.

CellCaption property, specifies the cell's caption.

For instance,

With Gantt1
 With .Items
 h = .InsertItem(.FocusItem,"","item 1.1")
 .CellCaption(h,1) = "item 1.2"
 .CellCaption(h,2) = "item 1.3"
 .ExpandItem(.FocusItem) = True
 End With
End With

adds a new child item of the focused item, and fills the cell's caption for the
second and third column.

Item-Bars. Any item can display one or more tasks/bars.

AddBar method, adds a new bar of specified type, giving its time interval.
ItemBar property, updates properties of specified bar, like caption, effort, and
so on

For instance,

With Gantt1
 With .Items
 .AddBar .FocusItem,"Task",#4/1/2006#,#4/14/2006#,"new"
 End With
End With

adds a new task to the focus item, with the key "new".

Item-Links. Any two-bars of the chart, can be linked.

AddLink method, links two bars.
Link property, gets access to the link's properties

For instance,

With Gantt1
 With .Items
 .AddBar .FocusItem,"Task",#4/1/2006#,#4/14/2006#,"A"
 .AddBar .FocusItem,"Task",#4/18/2006#,#4/30/2006#,"B"
 .AddLink "AB",.FocusItem,"A",.FocusItem,"B"
 End With

End With

adds two linked bars A and B in the same item.

Send comments on this topic.
Š 1999-2016 Exontrol. All rights reserved.

https://exontrol.com/sg.jsp?content=techsupport&order=start.html&product=ExGantt
https://www.exontrol.com

constants AlignmentEnum
The Column object uses the AlignmentEnum enumeration to align a column. See the
Alignment property of the Column or any property related to alignments for more details.

Name Value Description
LeftAlignment 0 The source is left aligned.
CenterAlignment 1 The source is centered.
RightAlignment 2 The source is right aligned.
exHOutside 16 The caption is displayed outside of the source.

constants AppearanceEnum
The AppearanceEnum enumeration is used to specify the appearance of the control's
header bar. See also the HeaderAppearance property.

Name Value Description
None2 0 No border
Flat 1 Flat border
Sunken 2 Sunken border
Raised 3 Raised border
Etched 4 Etched border
Bump 5 Bump border

constants AutoDragEnum
The AutoDragEnum type indicates what the control does when the user clicks and start
dragging a row or an item. The AutoDrag property indicates the way the component
supports the AutoDrag feature. The AutoDrag feature indicates what the control does when
the user clicks an item and start dragging. For instance, using the AutoDrag feature you can
automatically lets the user to drag and drop the data to OLE compliant applications like
Microsoft Word, Excel and so on. The SingleSel property specifies whether the control
supports single or multiple selection. The drag and drop operation starts once the user
clicks and moves the cursor up or down, if the SingleSel property is True, and if SingleSel
property is False, the drag and drop starts once the user clicks, and waits for a short
period of time. If SingleSel property is False, moving up or down the cursor selects the
items by drag and drop.

The flag that ends on ...OnShortTouch indicates the action the control does when the
user short touches the screen
The flag that ends on ...OnRight indicates the action the control does when the user
right clicks the control.
The flag that ends on ...OnLongTouch indicates the action the control does when the
user long touches the screen

The AutoDragEnum type supports the following values:

Name Value Description

exAutoDragNone 0
AutoDrag is disabled. You can use the
OLEDropMode property to handle the OLE Drag
and Drop event for your custom action.

exAutoDragPosition 1

The item can be dragged from a position to
another, but not outside of its group. If your items
are arranged as a flat list, no hierarchy, this option
can be used to allow the user change the item's
position at runtime by drag and drop. This option
does not change the parent of any dragged item.
The dragging items could be the focused item or a
contiguously selection. Click the selection and
moves the cursor up or down, so the position of the
dragging items is changed. The draggable collection
is a collection of sortable items between 2 non-
sortable items (SortableItem property). The drag
and drop operation can not start on a non-sortable
or non-selectable item (SelectableItem property).
In other words, you can specify a range where an
item can be dragged using the SortableItem

property. Just set the SortableItem property on
False, for margins, and so the items can be
dragged between these items only.

exAutoDragPositionKeepIndent2

The item can be dragged to any position or to any
parent, while the dragging object keeps its
indentation. This option can be used to allow the
user change the item's position at runtime by drag
and drop. In the same time, the parent's item could
be changed but keeping the item's indentation. The
dragging items could be the focused item or a
contiguously selection. Click the selection and
moves the cursor up or down, so the position or
parent of the dragging items is changed. The drag
and drop operation can not start on a non-sortable
or non-selectable item (SelectableItem property).
In other words, you can specify a range where an
item can be dragged using the SortableItem
property. Just set the SortableItem property on
False, for margins, and so the items can be
dragged between these items only.

exAutoDragPositionAny 3

The item can be dragged to any position or to any
parent, with no restriction. The dragging items could
be the focused item or a contiguously selection. The
parent of the dragging items could change with no
restrictions, based on the position of the dragging
item. Click the selection and moves the cursor up or
down, so the position or parent of the dragging
items is changed. Click the selection and moves the
cursor left or right, so the item's indentation is
decreased or increased. The drag and drop
operation can not start on a non-sortable or non-
selectable item (SelectableItem property). In other
words, you can specify a range where an item can
be dragged using the SortableItem property. Just
set the SortableItem property on False, for
margins, and so the items can be dragged between
these items only.

Click here to watch a movie on how
exAutoDragCopyText works.

Drag and drop the selected items to a target

https://www.youtube.com/watch?v=crG33cuKwC4

exAutoDragCopy 8
application, and paste them as image or text.
Pasting the data to the target application depends
on the application. You can use the
exAutoDragCopyText to specify that you want to
paste as Text, or exAutoDragCopyImage as an
image.

exAutoDragCopyText 9

Drag and drop the selected items to a target
application, and paste them as text only. Ability to
drag and drop the data as text, to your favorite
Office applications, like Word, Excel, or any other
OLE-Automation compliant. The drag and drop
operation can start anywhere

Click here to watch a movie on how
exAutoDragCopyText works.

exAutoDragCopyImage 10

Drag and drop the selected items to a target
application, and paste them as image only. Ability to
drag and drop the data as it looks, to your favorite
Office applications, like Word, Excel, or any other
OLE-Automation compliant. The drag and drop
operation can start anywhere

Click here to watch a movie on how
exAutoDragCopyImage works.

exAutoDragCopySnapShot 11

Drag and drop a snap shot of the current
component. This option could be used to drag and
drop the current snap shot of the control to your
favorite Office applications, like Word, Excel, or any
other OLE-Automation compliant.

exAutoDragScroll 16

The component is scrolled by clicking the item and
dragging to a new position. This option can be used
to allow user scroll the control's content with NO
usage of the scroll bar, like on your IPhone. Ability
to smoothly scroll the control's content. The feature
is useful for touch screens or tables pc, so no need
to click the scroll bar in order to scroll the control's
content. Use the ScrollBySingleLine property on
False, to allow scrolling pixel by pixel when user
clicks the up or down buttons on the vertical scroll
bar.

https://www.youtube.com/watch?v=4uA7ZI0W3Sk
https://www.youtube.com/watch?v=vunKapyV34g

Click here to watch a movie on how
exAutoDragScroll works.

exAutoDragPositionOnShortTouch256 The object can be dragged from a position to
another, but not outside of its group.

exAutoDragPositionKeepIndentOnShortTouch512
The object can be dragged to any position or to any
parent, while the dragging object keeps its
indentation.

exAutoDragPositionAnyOnShortTouch768 The object can be dragged to any position or to any
parent, with no restriction.

exAutoDragCopyOnShortTouch2048 Drag and drop the selected objects to a target
application, and paste them as image or text.

exAutoDragCopyTextOnShortTouch2304 Drag and drop the selected objects to a target
application, and paste them as text only.

exAutoDragCopyImageOnShortTouch2560 Drag and drop the selected objects to a target
application, and paste them as image only.

exAutoDragCopySnapShotOnShortTouch2816 Drag and drop a snap shot of the current
component.

exAutoDragScrollOnShortTouch4096 The component is scrolled by clicking the object and
dragging to a new position.

exAutoDragPositionOnRight 65536 The object can be dragged from a position to
another, but not outside of its group.

exAutoDragPositionKeepIndentOnRight131072
The object can be dragged to any position or to any
parent, while the dragging object keeps its
indentation.

exAutoDragPositionAnyOnRight196608The object can be dragged to any position or to any
parent, with no restriction.

exAutoDragCopyOnRight 524288Drag and drop the selected objects to a target
application, and paste them as image or text.

exAutoDragCopyTextOnRight 589824Drag and drop the selected objects to a target
application, and paste them as text only.

exAutoDragCopyImageOnRight655360Drag and drop the selected objects to a target
application, and paste them as image only.

exAutoDragCopySnapShotOnRight720896Drag and drop a snap shot of the current
component.

exAutoDragScrollOnRight 1048576The component is scrolled by clicking the object and
dragging to a new position.

https://www.youtube.com/watch?v=LIu7eo86GP8

exAutoDragPositionOnLongTouch16777216The object can be dragged from a position to
another, but not outside of its group.

exAutoDragPositionKeepIndentOnLongTouch33554432
The object can be dragged to any position or to any
parent, while the dragging object keeps its
indentation.

exAutoDragPositionAnyOnLongTouch50331648The object can be dragged to any position or to any
parent, with no restriction.

exAutoDragCopyOnLongTouch134217728Drag and drop the selected objects to a target
application, and paste them as image or text.

exAutoDragCopyTextOnLongTouch150994944Drag and drop the selected objects to a target
application, and paste them as text only.

exAutoDragCopyImageOnLongTouch167772160Drag and drop the selected objects to a target
application, and paste them as image only.

exAutoDragCopySnapShotOnLongTouch184549376Drag and drop a snap shot of the current
component.

exAutoDragScrollOnLongTouch268435456The component is scrolled by clicking the object and
dragging to a new position.

constants AutoSearchEnum
Specifies the kind of searching while user types characters within a column. Use the
AutoSearch property to allow 'start with' incremental search or 'contains' incremental search
feature in the control.

Name Value Description

exStartWith 0

Defines the 'starts with' incremental search within
the column. If the user type characters within the
column the control looks for items that start with the
typed characters.

exContains 1

Defines the 'contains' incremental search within the
column. If the user type characters within the
column the control looks for items that contain the
typed characters.

constants BackgroundPartEnum
The BackgroundPartEnum type indicates parts in the control. Use the Background property
to specify a background color or a visual appearance for specific parts in the control. A
Color expression that indicates the background color for a specified part. The last 7 bits in
the high significant byte of the color to indicates the identifier of the skin being used. Use
the Add method to add new skins to the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits in the high significant byte of the
color being applied to the background's part.

If you refer a part of the scroll bar please notice the following:

All BackgroundPartEnum expressions that starts with exVS changes a part in a vertical
scroll bar
All BackgroundPartEnum expressions that starts with exHS changes a part in the
horizontal scroll bar
Any BackgroundPartEnum expression that ends with P (and starts with exVS or exHS
) specifies a part of the scrollbar when it is pressed.
Any BackgroundPartEnum expression that ends with D (and starts with exVS or exHS
) specifies a part of the scrollbar when it is disabled.
Any BackgroundPartEnum expression that ends with H (and starts with exVS or exHS
) specifies a part of the scrollbar when the cursor hovers it.
Any BackgroundPartEnum expression that ends with no H, P or D (and starts with
exVS or exHS) specifies a part of the scrollbar on normal state.

Name Value Description

exHeaderFilterBarButton 0

Specifies the background color for the drop down
filter bar button. Use the DisplayFilterButton
property to specify whether the drop down filter bar
button is visible or hidden.

exFooterFilterBarButton 1
Specifies the background color for the closing
button in the filter bar. Use the ClearFilter method to
remove the filter from the control.

exCellButtonUp 2
Specifies the background color for the cell's button,
when it is up. Use the CellHasButton property to
assign a button to a cell.

exCellButtonDown 3
Specifies the background color for the cell's button,
when it is down. Use the CellHasButton property to
assign a button to a cell.

exDateHeader 8 Specifies the visual appearance for the header in a
calendar control.

exDateTodayUp 9 Specifies the visual appearance for the today button
in a calendar control, when it is up.

exDateTodayDown 10 Specifies the visual appearance for the today button
in a calendar control, when it is down.

exDateScrollThumb 11 Specifies the visual appearance for the scrolling
thumb in a calendar control.

exDateScrollRange 12 Specifies the visual appearance for the scrolling
range in a calendar control.

exDateSeparatorBar 13 Specifies the visual appearance for the separator
bar in a calendar control.

exDateSelect 14 Specifies the visual appearance for the selected
date in a calendar control.

exSplitBar 15 Specifies the visual appearance for control's split
bar. The split bar splits the control and chart area.

exSelBackColorFilter 20

Specifies the visual appearance for the selection in
the drop down filter window. The drop down filter
window shows up when the user clicks the filter
button in the column's header. Use the
DisplayFilterButton property to specify whether the
drop down filter bar button is visible or hidden.

exSelForeColorFilter 21 Specifies the foreground color for the selection in
the drop down filter window.

exBackColorFilter 26

Specifies the background color for the drop down
filter window. If not specified, the BackColorHeader
property specifies the drop down filter's background
color. Use the exSelBackColorFilter option to
specify the selection background visual appearance
in the drop down filter window.

exForeColorFilter 27

Specifies the foreground color for the drop down
filter window. If not specified, the ForeColorHeader
property specifies the drop down filter's foreground
color. Use the exSelForeColorFilter option to
specify the selection foreground color in the drop
down filter window.

exSortBarLinkColor 28 Indicates the color or the visual appearance of the
links between columns in the control's sort bar.
Specifies the visual appearance for the column
when the cursor hovers the column. By default, the
exCursorHoverColumn property is zero, and it has

exCursorHoverColumn 32 no effect, so the visual appearance for the column
is not changed when the cursor hovers the header.

exDragDropBefore 33

Specifies the visual appearance for the drag and
drop cursor before showing the items. This option
can be used to apply a background to the dragging
items, before painting the items.

exDragDropAfter 34

Specifies the visual appearance for the drag and
drop cursor after showing the items. This option can
be used to apply a semi-transparent/opaque
background to the dragging items, after painting the
items. If the exDragDropAfter option is set on white
(0x00FFFFFF), the image is not showing on OLE
Drag and drop.

exDragDropListTop 35

Specifies the graphic feedback of the item from the
drag and drop cursor if the cursor is in the top half
of the row. Please note, that if a visual effect is
specified for exDragDropListOver AND
exDragDropListBetween states, and a visual effect
is specified for exDragDropListTop OR/AND
exDragDropListBottom state(s), the
exDragDropListTop visual effect is displayed ONLY
if the cursor is over the first visible item, and the
exDragDropListBottom visual effect is shown ONLY
for the last visible item. Use the ItemFromPoint
property to retrieve the hit test code for the part
from the cursor. This option can be changed during
the OLEDragOver event to change the visual effect
for the item from the cursor at runtime.

exDragDropListBottom 36

Specifies the graphic feedback of the item from the
drag and drop cursor if the cursor is in the bottom
half of the row. Please note, that if a visual effect is
specified for exDragDropListOver AND
exDragDropListBetween states, and a visual effect
is specified for exDragDropListTop OR/AND
exDragDropListBottom state(s), the
exDragDropListTop visual effect is displayed ONLY
if the cursor is over the first visible item, and the
exDragDropListBottom visual effect is shown ONLY
for the last visible item. Use the ItemFromPoint

property to retrieve the hit test code for the part
from the cursor. This option can be changed during
the OLEDragOver event to change the visual effect
for the item from the cursor at runtime.

exDragDropForeColor 37 Specifies the foreground color for the items being
dragged. By default, the foreground color is black.

exDragDropListOver 38

Specifies the graphic feedback of the item from the
cursor if it is over the item. Please note, that if a
visual effect is specified for exDragDropListOver
AND exDragDropListBetween states, and a visual
effect is specified for exDragDropListTop OR/AND
exDragDropListBottom state(s), the
exDragDropListTop visual effect is displayed ONLY
if the cursor is over the first visible item, and the
exDragDropListBottom visual effect is shown ONLY
for the last visible item. Use the ItemFromPoint
property to retrieve the hit test code for the part
from the cursor.

exDragDropListBetween 39

Specifies the graphic feedback of the item when the
drag and drop cursor is between items. Please
note, that if a visual effect is specified for
exDragDropListOver AND exDragDropListBetween
states, and a visual effect is specified for
exDragDropListTop OR/AND
exDragDropListBottom state(s), the
exDragDropListTop visual effect is displayed ONLY
if the cursor is over the first visible item, and the
exDragDropListBottom visual effect is shown ONLY
for the last visible item. Use the ItemFromPoint
property to retrieve the hit test code for the part
from the cursor. This option can be changed during
the OLEDragOver event to change the visual effect
for the item from the cursor at runtime.

Specifies the alignment of the drag and drop image
relative to the cursor. By default, the
exDragDropAlign option is 0, which initially the drag
and drop image is shown centered relative to the
position of the cursor.

The valid values are listed as follows (hexa

exDragDropAlign 40

representation):

0x00000000, (default), the drag and drop
image is shown centered relative to the cursor,
and shows up.
0x01000000, (left), the drag and drop image is
shown to the left of the cursor.
0x02000000, (right), the drag and drop image
is shown to the right of the cursor.
0x04000000, (center-down), the drag and drop
image is shown centered relative to the cursor,
and shows down.
0xFF000000, (as- is), the drag and drop image
is shown as it is clicked.

exHeaderFilterBarActive 41
exHeaderFilterBarActive. Specifies the visual
appearance of the drop down filter bar button, while
filter is applied to the column.

exToolTipAppearance 64

Indicates the visual appearance of the borders of
the tooltips. Use the ToolTipPopDelay property
specifies the period in ms of time the ToolTip
remains visible if the mouse pointer is stationary
within a control. The ToolTipDelay property
specifies the time in ms that passes before the
ToolTip appears. Use the CellToolTip property to
specify the cell's tooltip. Use the ToolTipWidth
property to specify the width of the tooltip window.
Use the ItemBar(,,exBarToolTip) property to specify
a tooltip for a bar. Use the Link(,exLinkToolTip)
property to specify the tooltip to be shown when the
cursor hovers the link. Use the ShowToolTip method
to display a custom tooltip

exToolTipBackColor 65 Specifies the tooltip's background color.
exToolTipForeColor 66 Specifies the tooltip's foreground color.

exColumnsFloatBackColor 87 Specifies the background color for the Columns
float bar.

exColumnsFloatScrollBackColor88 Specifies the background color for the scroll bars in
the Columns float bar.

exColumnsFloatScrollPressBackColor89
Specifies the background color for the scroll bars in
the Columns float bar, while the scroll part is
pressed.

exColumnsFloatScrollUp 90 Specifies the visual appearance of the up scroll bar.

exColumnsFloatScrollDown 91 Specifies the visual appearance of the down scroll
bar.

exColumnsFloatAppearance 92 Specifies the visual appearance for the
frame/borders of the Column's float bar

exColumnsFloatCaptionBackColor93
Specifies the visual appearance for caption, if the
Background(exColumnsFloatAppearance) property
is specified.

exColumnsFloatCaptionForeColor94
Specifies the foreground color for the caption, if the
Background(exColumnsFloatAppearance) property
is specified.

exColumnsFloatCloseButton 95

Specifies the visual appearance for the closing
button, if the
Background(exColumnsFloatAppearance) property
is specified.

exListOLEDropPosition 96

By default, the exListOLEDropPosition is 0, which
means no effect. Specifies the visual appearance
of the dropping position over the list part of the
control, when it is implied in a OLE Drag and Drop
operation. The exListOLEDropPosition has effect
only if different than 0, and the OLEDropMode
property is not exOLEDropNone. For instance, set
the Background(exListOLEDropPosition) property
on RGB(0,0,255), and a blue line is shown at the
item where the cursor is hover the list part of the
control, during an OLE Drag and Drop position. The
OLEDragDrop event notifies your application once
an object is drop in the control.

exChartOLEDropPosition 97

By default, the exChartOLEDropPosition is 0, which
means no effect. Specifies the visual appearance
of the dropping position over the chart part of the
control, when it is implied in a OLE Drag and Drop
operation. The exChartOLEDropPosition has effect
only if different than 0, and the OLEDropMode
property is not exOLEDropNone. For instance, set
the Background(exChartOLEDropPosition) property
on RGB(0,0,255), and a blue line is shown at the
date-time position where the cursor is hover the
chart part of the control, during an OLE Drag and
Drop position. The OLEDragDrop event notifies

your application once an object is drop in the
control.

exCursorHoverCellButton 157 Specifies the visual appearance for the cell's button
when the cursor hovers it.

exSelBackColorHide 166 Specifies the selection's background color, when
the control has no focus.

exSelForeColorHide 167 Specifies the selection's foreground color, when the
control has no focus.

exTreeGlyphOpen 180 Specifies the visual appearance for the +/- buttons
when it is collapsed.

exTreeGlyphClose 181 Specifies the visual appearance for the +/- buttons
when it is expanded.

exColumnsPositionSign 182
Specifies the visual appearance for the position sign
between columns, when the user changes the
position of the column by drag an drop.

exTreeLinesColor 186
exTreeLinesColor. Specifies the color to show the
tree-lines (connecting lines from the parent to the
children)

exVSUp 256 The up button in normal state.
exVSUpP 257 The up button when it is pressed.
exVSUpD 258 The up button when it is disabled.
exVSUpH 259 The up button when the cursor hovers it.
exVSThumb 260 The thumb part (exThumbPart) in normal state.
exVSThumbP 261 The thumb part (exThumbPart) when it is pressed.
exVSThumbD 262 The thumb part (exThumbPart) when it is disabled.

exVSThumbH 263 The thumb part (exThumbPart) when cursor hovers
it.

exVSDown 264 The down button in normal state.
exVSDownP 265 The down button when it is pressed.
exVSDownD 266 The down button when it is disabled.

exVSDownH 267 The down button when the cursor hovers it.

exVSLower 268 The lower part (exLowerBackPart) in normal
state.

exVSLowerP 269 The lower part (exLowerBackPart) when it is

pressed.

exVSLowerD 270 The lower part (exLowerBackPart) when it is
disabled.

exVSLowerH 271 The lower part (exLowerBackPart) when the
cursor hovers it.

exVSUpper 272 The upper part (exUpperBackPart) in normal
state.

exVSUpperP 273 The upper part (exUpperBackPart) when it is
pressed.

exVSUpperD 274 The upper part (exUpperBackPart) when it is
disabled.

exVSUpperH 275 The upper part (exUpperBackPart) when the
cursor hovers it.

exVSBack 276 The background part (exLowerBackPart and
exUpperBackPart) in normal state.

exVSBackP 277 The background part (exLowerBackPart and
exUpperBackPart) when it is pressed.

exVSBackD 278 The background part (exLowerBackPart and
exUpperBackPart) when it is disabled.

exVSBackH 279 The background part (exLowerBackPart and
exUpperBackPart) when the cursor hovers it.

exHSLeft 384 The left button in normal state.
exHSLeftP 385 The left button when it is pressed.
exHSLeftD 386 The left button when it is disabled.
exHSLeftH 387 The left button when the cursor hovers it.
exHSThumb 388 The thumb part (exThumbPart) in normal state.
exHSThumbP 389 The thumb part (exThumbPart) when it is pressed.
exHSThumbD 390 The thumb part (exThumbPart) when it is disabled.

exHSThumbH 391 The thumb part (exThumbPart) when the cursor
hovers it.

exHSRight 392 The right button in normal state.

exHSRightP 393 The right button when it is pressed.
exHSRightD 394 The right button when it is disabled.
exHSRightH 395 The right button when the cursor hovers it.

exHSLower 396 The lower part (exLowerBackPart) in normal state.

exHSLowerP 397 The lower part (exLowerBackPart) when it is
pressed.

exHSLowerD 398 The lower part (exLowerBackPart) when it is
disabled.

exHSLowerH 399 The lower part (exLowerBackPart) when the cursor
hovers it.

exHSUpper 400 The upper part (exUpperBackPart) in normal state.

exHSUpperP 401 The upper part (exUpperBackPart) when it is
pressed.

exHSUpperD 402 The upper part (exUpperBackPart) when it is
disabled.

exHSUpperH 403 The upper part (exUpperBackPart) when the cursor
hovers it.

exHSBack 404 The background part (exLowerBackPart and
exUpperBackPart) in normal state.

exHSBackP 405 The background part (exLowerBackPart and
exUpperBackPart) when it is pressed.

exHSBackD 406 The background part (exLowerBackPart and
exUpperBackPart) when it is disabled.

exHSBackH 407 The background part (exLowerBackPart and
exUpperBackPart) when the cursor hovers it.

exSBtn 324 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), in normal state.

exSBtnP 325 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when it is pressed.

exSBtnD 326 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when it is disabled.

exSBtnH 327 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when the cursor hovers it .

exScrollHoverAll 500

Enables or disables the hover-all feature. By default
(Background(exScrollHoverAll) = 0), the left/top,
right/bottom and thumb parts of the control'
scrollbars are displayed in hover state while the
cursor hovers any part of the scroll bar (hover-all
feature). The hover-all feature is available on
Windows 11 or greater, if only left/top, right/bottom,

thumb, lower and upper-background parts of the
scrollbar are visible, no custom visual-appearance
is applied to any visible part. The hover-all feature
is always on If Background(exScrollHoverAll) = -1.
The Background(exScrollHoverAll) = 1 disables the
hover-all feature.

exVSThumbExt 503 exVSThumbExt. The thumb-extension part in normal
state.

exVSThumbExtP 504 exVSThumbExtP. The thumb-extension part when it
is pressed.

exVSThumbExtD 505 exVSThumbExtD. The thumb-extension part when it
is disabled.

exVSThumbExtH 506 exVSThumbExtH. The thumb-extension when the
cursor hovers it.

exHSThumbExt 507 exHSThumbExt. The thumb-extension in normal
state.

exHSThumbExtP 508 exHSThumbExtP. The thumb-extension when it is
pressed.

exHSThumbExtD 509 exHSThumbExtD. The thumb-extension when it is
disabled.

exHSThumbExtH 510 exHSThumbExtH. The thumb-extension when the
cursor hovers it.

exScrollSizeGrip 511 Specifies the visual appearance of the control's size
grip when both scrollbars are shown.

constants BackModeEnum
Specifies how the control displays the selection.

Name Value Description
exOpaque 0 The selection is opaque.
exTransparent 1 The selection is transparent.
exGrid 2 The control paints a grid selection.

constants CaptionFormatEnum
The CaptionFormatEnum type defines how the cell's caption is painted.

Name Value Description
exText 0 No HTML tags are painted.

The control uses built-in HTML tags to display the
caption using HTML format. The control supports
the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor
element that can be clicked. An anchor is a
piece of text or some other object (for example
an image) which marks the beginning and/or
the end of a hypertext link.The <a> element is
used to mark that piece of text (or inline
image), and to give its hypertextual relationship
to other documents. The control fires the
AnchorClick(AnchorID, Options) event when
the user clicks the anchor element. The
FormatAnchor property customizes the visual
effect for anchor elements.

The control supports expandable HTML
captions feature which allows you to
expand(show)/collapse(hide) different
information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor
stores the HTML line/lines to show once the
user clicks/collapses/expands the caption.

exp, stores the plain text to be shown
once the user clicks the anchor, such as "
<a ;exp=show lines>"
e64, encodes in BASE64 the HTML text to
be shown once the user clicks the anchor,
such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray

about:blank

when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor
808080>show lines<a>-</fgcolor>"
The Decode64Text/Encode64Text methods
of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an
expandable-caption, by inserting the anchor ex-
HTML tag. For instance, "<solidline>
Header</solidline>
Line1<r><a
;exp=show lines>+
Line2
Line3"
shows the Header in underlined and bold on the
first line and Line1, Line2, Line3 on the rest.
The "show lines" is shown instead of Line1,
Line2, Line3 once the user clicks the + sign.

 ... displays portions
of text with a different font and/or different
size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of
the font is missing, and instead size is present,
the current font is used with a different size.
For instance, "bit" displays
the bit text using the current font, but with a
different size.
<fgcolor rrggbb> ... </fgcolor> or
<fgcolor=rrggbb> ... </fgcolor> displays text
with a specified foreground color. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or
<bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<solidline rrggbb> ... </solidline> or
<solidline=rrggbb> ... </solidline> draws a
solid-line on the bottom side of the current text-
line, of specified RGB color. The <solidline> ...
</solidline> draws a black solid-line on the

exHTML 1

bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values
of the color in hexa values.
<dotline rrggbb> ... </dotline> or
<dotline=rrggbb> ... </dotline> draws a dot-line
on the bottom side of the current text-line, of
specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom
side of the current text-line. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<upline> ... </upline> draws the line on the
top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon
inside the text. The number indicates the index
of the icon being inserted. Use the Images
method to assign a list of icons to your chart.
The last 7 bits in the high significant byte of the
number expression indicates the identifier of
the skin being used to paint the object. Use the
Add method to add new skins to the control. If
you need to remove the skin appearance from
a part of the control you need to reset the last
7 bits in the high significant byte of the color
being applied to the part. The width is optional
and indicates the width of the icon being
inserted. Using the width option you can
overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the
width is 18 pixels.
key[:width] inserts a custom
size picture into the text being previously
loaded using the HTMLPicture property. The
Key parameter indicates the key of the picture
being displayed. The Width parameter
indicates a custom size, if you require to
stretch the picture, else the original size of the
picture is used.
& glyph characters as & (&), < (<),

> (>), &qout; (") and &#number; (the
character with specified code), For instance,
the € displays the EUR character. The
& ampersand is only recognized as markup
when it is followed by a known letter or a
#character and a digit. For instance if you want
to display bold in HTML caption you
can use bold
<off offset> ... </off> defines the vertical
offset to display the text/element. The offset
parameter defines the offset to display the
element. This tag is inheritable, so the offset is
keep while the associated </off> tag is found.
You can use the <off offset> HTML tag in
combination with the to define
a smaller or a larger font to be displayed. For
instance: "Text with <off 6>subscript"
displays the text such as: Text with subscript
The "Text with <off -6>superscript"
displays the text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines
a gradient text. The text color or <fgcolor>
defines the starting gradient color, while the
rr/gg/bb represents the red/green/blue values
of the ending color, 808080 if missing as gray.
The mode is a value between 0 and 4, 1 if
missing, and blend could be 0 or 1, 0 if
missing. The HTML tag can be used to
define the height of the font. Any of the rrggbb,
mode or blend field may not be specified. The
<gra> with no fields, shows a vertical gradient
color from the current text color to gray
(808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>"
generates the following picture:

<out rrggbb;width> ... </out> shows the text
with outlined characters, where rr/gg/bb
represents the red/green/blue values of the
outline color, 808080 if missing as gray, width
indicates the size of the outline, 1 if missing.

The text color or <fgcolor> defines the color to
show the inside text. The HTML tag can
be used to define the height of the font. For
instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>
" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define
a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the
shadow color, 808080 if missing as gray, width
indicates the size of shadow, 4 if missing, and
offset indicates the offset from the origin to
display the text's shadow, 2 if missing. The text
color or <fgcolor> defines the color to show
the inside text. The HTML tag can be
used to define the height of the font. For
instance the "<sha>shadow</sha>
" generates the following picture:

or "<sha 404040;5;0>
<fgcolor=FFFFFF>outline anti-
aliasing</fgcolor></sha>" gets:

exComputedField 2
Indicates a computed field. The CellCaption or the
ComputedField property indicates the formula to
compute the field.

constants CellSingleLineEnum
The CellSingleLineEnum type defines whether the cell's caption is displayed on a single or
multiple lines. The CellSingleLine property retrieves or sets a value indicating whether the
cell is displayed using one line, or more than one line. The Def(exCellSingleLine) property
specifies that all cells in the column display their content using multiple lines. The
CellSingleLineEnum type supports the following values:

Name Value Description

exCaptionSingleLine -1

Indicates that the cell's caption is displayed on a
single line. In this case any \r\n or
 HTML tags
is ignored. For instance the "This is the first
line.\r\nThis is the second line.\r\nThis is the third
line." shows as:

exCaptionWordWrap 0

Specifies that the cell's caption is displayed on
multiple lines, by wrapping the words. Any \r\n or

 HTML tag breaks the line. For instance the
"This is the first line.\r\nThis is the second
line.\r\nThis is the third line." shows as:

exCaptionBreakWrap 1

Specifies that the cell's caption is displayed on
multiple lines, by wrapping the breaks only. Only
The \r\n or
 HTML tag breaks the line. For
instance the "This is the first line.\r\nThis is the
second line.\r\nThis is the third line." shows as:

constants CheckStateEnum
Specifies the states for a checkbox in the control.

Name Value Description
Unchecked 0 Specifies whether the cell is unchecked.
Checked 1 Specifies whether the cell is checked.
PartialChecked 2 Specifies whether the cell is partial-checked..

constants ColumnsFloatBarVisibleEnum
The ColumnsFloatBarVisibleEnum type specifies whether the control's Columns float-bar is
visible or hidden. The ColumnsFloatBarVisibleEnum type supports the following values:

Name Value Description

exColumnsFloatBarHidden 0 Indicates that the control's Columns float-panel is
not visible (hidden)

exColumnsFloatBarVisibleIncludeHiddenColumns-1

Specifies that the control's Columns float-panel
shows only hidden-columns (dragable-columns
only). The Visible property specifies whether the
column is visible or hidden.

exColumnsFloatBarVisibleIncludeCheckColumns2

Indicates that the control's Columns float-panel
shows visible and hidden columns with a check-box
associated (dragable-columns only), The Visible
property specifies whether the column is visible or
hidden.

constants DefColumnEnum
The Def property retrieves or sets a value that indicates the default value of given
properties for all cells in the same column.

Name Value Description

exCellHasCheckBox 0

Assigns check boxes to all cells in the column, if it is
True. Similar with the CellHasCheckBox property.
By default, the exCellHasCheckBox property is
False (0).

(Boolean expression)

exCellHasRadioButton 1

Assigns radio buttons to all cells in the column, if it
is True. Similar with the CellHasRadioButton
property. By default, the exCellHasRadioButton
property is False (0).

(Boolean expression)

exCellHasButton 2

Specifies that all cells in the column are buttons, if it
is True. Similar with the CellHasButton property. By
default, the exCellHasButton property is False (0).

(Boolean expression)

exCellButtonAutoWidth 3

Similar with the CellButtonAutoWidth property. By
default, the exCellButtonAutoWidth property is
False (0). The exCellButtonAutoWidth has effect
only if the exCellHasButton option is True.

(Boolean expression)

exCellBackColor 4

Specifies the background color for all cells in the
column. Use the CellBackColor property to assign a
background color for a specific cell. The property
has effect only if the property is different than zero
(default value).

(Color expression)

Specifies the foreground color for all cells in the

exCellForeColor 5

column. Use the CellForeColor property to assign a
foreground color for a specific cell. The property
has effect only if the property is different than zero
(default value).

(Color expression)

exCellVAlignment 6

Specifies the column's vertical alignment. By
default, the Def(exCellVAlignment) property is
exMiddle. Use the CellVAlignment property to
specify the vertical alignment for a particular cell.
By default, the exCellVAlignment property is
MiddleAlignment (1).

(VAlignmentEnum expression)

exHeaderBackColor 7

Specifies the column's header background color.
Use this option to change the background color for
a column in the header area. The
exHeaderBackColor option supports skinning, so
the last 7 bits in the high significant byte of the color
to indicates the identifier of the skin being used.
Use the Add method to add new skins to the
control. The property has effect only if the property
is different than zero (default value).

(Color expression)

exHeaderForeColor 8

Specifies the column's header background color.
The property has effect only if the property is
different than zero (default value).

(Color expression)

exCellSingleLine 16

Specifies that all cells in the column displays its
content into single or multiple lines. Similar with the
CellSingleLine property. If using the CellSingleLine /
Def(exCellSingleLine) property, we recommend to
set the ScrollBySingleLine property on True so all
items can be scrolled.

(CellSingleLineEnum type, previously Boolean
expression)

exCellCaptionFormat 17

The exCellCaptionFormat indicates that format to
display all cells in the column such as text or HTML
text. The CellCaptionFormat property specifies
whether a particular cells displays text or HTML
text. By default, the exCellCaptionFormat property
is exText (0).

(CaptionFormatEnum expression)

exCellDrawPartsOrder 34

Specifies the order of the drawing parts for the
entire column. By default, this option is
"check,icon,icons,picture,caption", which means that
the cell displays its parts in the following order:
check box/ radio buttons (
CellHasCheckBox/CellRadioButton), single icon (
CellImage), multiple icons (CellImages), custom
size picture (CellPicture), and the cell's caption.
Use the exCellDrawPartsOrder option to specify a
new order for the drawing parts in the cells of the
column. The RightToLeft property automatically flips
the order of the columns. By default, the
exCellDrawPartsOrder property is
"check,icon,icons,picture,caption".

(String expression)

exCellPaddingLeft 48

The padding defines the space between the
element border and the element content. Gets or
sets the left padding (space) of the cells within the
column. This option applies a padding to all cells in
the column. Use the exHeaderPaddingLeft option to
apply the padding to the column's caption in the
control's header. The padding does not affect the
element's background color. By default, the
exCellPaddingLeft property is 0.

(Long expression)

Gets or sets the right padding (space) of the cells
within the column. This option applies a padding to
all cells in the column. Use the
exHeaderPaddingRight option to apply the padding

exCellPaddingRight 49
to the column's caption in the control's header. The
padding does not affect the element's background
color. By default, the exCellPaddingRight property
is 0.

(Long expression)

exCellPaddingTop 50

Gets or sets the top padding (space) of the cells
within the column. This option applies a padding to
all cells in the column. Use the exHeaderPaddingTop
option to apply the padding to the column's caption
in the control's header. The padding does not affect
the element's background color. By default, the
exCellPaddingTop property is 0.

(Long expression)

exCellPaddingBottom 51

Gets or sets the bottom padding (space) of the
cells within the column. This option applies a
padding to all cells in the column. Use the
exHeaderPaddingBottom option to apply the
padding to the column's caption in the control's
header. The padding does not affect the element's
background color. By default, the
exCellPaddingBottom property is 0.

(Long expression)

exHeaderPaddingLeft 52

Gets or sets the left padding (space) of the
column's header. This option applies the padding to
the column's caption in the control's header. Use the
exCellPaddingLeft option to apply the padding to all
cells in the column. The padding does not affect the
element's background color. By default, the
exHeaderPaddingLeft property is 0.

(Long expression)

Gets or sets the right padding (space) of the
column's header. This option applies the padding to
the column's caption in the control's header. Use the
exCellPaddingRight option to apply the padding to
all cells in the column. The padding does not affect

exHeaderPaddingRight 53 the element's background color. By default, the
exHeaderPaddingRight property is 0.

(Long expression)

exHeaderPaddingTop 54

Gets or sets the top padding (space) of the
column's header. This option applies the padding to
the column's caption in the control's header. Use the
exCellPaddingTop option to apply the padding to all
cells in the column. The padding does not affect the
element's background color. By default, the
exHeaderPaddingTop property is 0.

(Long expression)

exHeaderPaddingBottom 55

Gets or sets the bottom padding (space) of the
column's header. This option applies the padding to
the column's caption in the control's header. Use the
exCellPaddingBottom option to apply the padding to
all cells in the column. The padding does not affect
the element's background color. By default, the
exHeaderPaddingBottom property is 0.

(Long expression)

exColumnResizeContiguously 64
exColumnResizeContiguously. Gets or sets a value
that indicates whether the control's content is
updated while the user is resizing the column.

constants DescriptionTypeEnum
The control's Description property defines descriptions for few control parts.

Name Value Description

exFilterBarAll 0

Defines the caption of (All) in the filter bar window.
If the Description(exFilterBarAll) property is empty,
the (All) predefined item is not shown in the drop
down filter window.

exFilterBarBlanks 1

Defines the caption of (Blanks) in the filter bar
window. If the Description(exFilterBarBlanks)
property is empty, the (Blanks) predefined item is
not shown in the drop down filter window.

exFilterBarNonBlanks 2

Defines the caption of (NonBlanks) in the filter bar
window. If the Description(exFilterBarNonBlanks)
property is empty, the (NonBlanks) predefined item
is not shown in the drop down filter window.

exFilterBarFilterForCaption 3 Defines the caption of "Filter For:" in the filter bar
window.

exFilterBarFilterTitle 4 Defines the title for the filter tooltip.
exFilterBarPatternFilterTitle 5 Defines the title for the filter pattern tooltip.
exFilterBarTooltip 6 Defines the tooltip for filter window.
exFilterBarPatternTooltip 7 Defines the tooltip for filter pattern window
exFilterBarFilterForTooltip 8 Defines the tooltip for "Filter For:" window

exFilterBarIsBlank 9 Defines the caption of the function 'IsBlank' in the
control's filter bar.

exFilterBarIsNonBlank 10 Defines the caption of the function 'not IsBlank' in
the control's filter bar.

exFilterBarAnd 11
Customizes the ' and ' text in the control's filter bar
when multiple columns are used to filter the items in
the control.

exFilterBarDate 12

Specifies the "Date:" caption being displayed in the
drop down filter window when DisplayFilterPattern
property is True, and DisplayFilterDate property is
True.
Specifies the "to" sequence being used to split the
from date and to date in the Date field of the drop
down filter window. For instance, the "to

exFilterBarDateTo 13 12/13/2004" specifies the items before 12/13/2004,
"12/23/2004 to 12/24/2004" filters the items
between 12/23/2004 and 12/24/2004, or "Feb 12
2004 to" specifies all items after a date.

exFilterBarDateTooltip 14

Describes the tooltip that shows up when cursor is
over the Date field. "You can filter the items into a
given interval of dates. For instance, you can filter
all items dated before a specified date (to
2/13/2004), or all items dated after a date (Feb
13 2004 to) or all items that are in a given interval (
2/13/2004 to 2/13/2005)."

exFilterBarDateTitle 15
Describes the title of the tooltip that shows up when
the cursor is over the Date field. By default, the
exFilterBarDateTitle is "Date".

exFilterBarDateTodayCaption 16
Specifies the caption for the 'Today' button in a date
filter window. By default, the
exFilterBarDateTodayCaption property is "Today".

exFilterBarDateMonths 17

Specifies the name for months to be displayed in a
date filter window. The list of months should be
delimitated by space characters. By default, the
exFilterBarDateMonths is "January February March
April May June July August September October
November December".

exFilterBarDateWeekDays 18

Specifies the shortcut for the weekdays to be
displayed in a date filter window. The list of shortcut
for the weekdays should be separated by space
characters. By default, the
exFilterBarDateWeekDays is "S M T W T F S".
The first shortcut in the list indicates the shortcut for
the Sunday, the second shortcut indicates the
shortcut for Monday, and so on.

exFilterBarChecked 19

Defines the caption of (Checked) in the filter bar
window. The exFilterBarChecked option is
displayed only if the FilterType property is exCheck.
If the Description(exFilterBarChecked) property is
empty, the (Checked) predefined item is not shown
in the drop down filter window. If the user selects
the (Checked) item the control filter checked items.
The CellState property indicates the state of the
cell's checkbox.

exFilterBarUnchecked 20

Defines the caption of (Unchecked) in the filter bar
window. The exFilterBarUnchecked option is
displayed only if the FilterType property is exCheck.
If the Description(exFilterBarUnchecked) property is
empty, the (Unchecked) predefined item is not
shown in the drop down filter window. If the user
selects the (Unchecked) item the control filter
unchecked items. The CellState property indicates
the state of the cell's checkbox.

exFilterBarIsChecked 21

Defines the caption of the 'IsChecked' function in
the control's filter bar. The 'IsChecked' function may
appear only if the user selects (Checked) item in
the drop down filter window, when the FilterType
property is exCheck.

exFilterBarIsUnchecked 22

Defines the caption of the 'not IsChecked' function
in the control's filter bar. The 'not IsChecked'
function may appear only if the user selects
(Unchecked) item in the drop down filter window,
when the FilterType property is exCheck.

exFilterBarOr 23
Customizes the 'or' operator in the control's filter
bar when multiple columns are used to filter the
items in the control.

exFilterBarNot 24 Customizes the 'not' operator in the control's filter
bar.

exFilterBarExclude 25

Specifies the 'Exclude' caption being displayed in
the drop down filter. The Exclude option is
displayed in the drop down filter window only if the
FilterList property includes the exShowExlcude
flag.

exColumnsFloatBar 26 Specifies the caption to be shown on control's
Columns float bar.

constants DividerAlignmentEnum
Defines the alignment for a divider line into a divider item. Use the ItemDividerLineAlignment
property to align the line in a divider item. Use the ItemDivider property to add a divider item

Name Value Description

DividerBottom 0 The divider line is displayed on bottom side of the
item.

DividerCenter 1 The divider line is displayed on center of the item.
DividerTop 2 The divider line is displayed at the top of the item.

DividerBoth 3 The divider line is displayed at the top and bottom
of the item.

constants DividerLineEnum
Defines the type of divider line. The ItemDividerLine property uses the DividerLineEnum
type.

Name Value Description
EmptyLine 0 No line.
SingleLine 1 Single line
DoubleLine 2 Double line
DotLine 3 Dotted line
DoubleDotLine 4 DoubleDottted line
ThinLine 5 Thin line
DoubleThinLine 6 Double thin line

constants exClipboardFormatEnum
Defines the clipboard format constants. Use GetFormat property to check whether the
clipboard data is of given type

Name Value Description

exCFText 1 Null-terminated, plain ANSI text in a global memory
bloc.

exCFBitmap 2 A bitmap compatible with Windows 2.x.

exCFMetafile 3
A Windows metafile with some additional
information about how the metafile should be
displayed.

exCFDIB 8 A global memory block containing a Windows
device-independent bitmap (DIB).

exCFPalette 9 A color-palette handle.
exCFEMetafile 14 A Windows enhanced metafile.

exCFFiles 15 A collection of files. Use Files property to get or set
the collection of files.

exCFRTF -16639A RTF document.

constants exOLEDragOverEnum

State transition constants for the OLEDragOver event

Name Value Description

exOLEDragEnter 0 Source component is being dragged within the
range of a target.

exOLEDragLeave 1 Source component is being dragged out of the
range of a target.

exOLEDragOver 2 Source component has moved from one position in
the target to another.

constants exOLEDropEffectEnum

Drop effect constants for OLE drag and drop events.

Name Value Description

exOLEDropEffectNone 0 Drop target cannot accept the data, or the drop
operation was cancelled.

exOLEDropEffectCopy 1
Drop results in a copy of data from the source to
the target. The original data is unaltered by the
drag operation.

exOLEDropEffectMove 2
Drop results in data being moved from drag source
to drop source. The drag source should remove the
data from itself after the move.

exOLEDropEffectScroll -2147483648This one is not implemented.

constants exOLEDropModeEnum

Constants for the OLEDropMode property, that defines how the control accepts OLE drag
and drop operations. Use the OLEDropMode property to set how the component handles
drop operations.

Name Value Description

exOLEDropNone 0 The control is not used OLE drag and drop
functionality.

exOLEDropManual 1
The control triggers the OLE drop events, allowing
the programmer to handle the OLE drop operation
in code.

Here's the list of events related to OLE drag and drop: OLECompleteDrag, OLEDragDrop,
OLEDragOver, OLEGiveFeedback, OLESetData, OLEStartDrag.

constants ExpandButtonEnum
Defines how the control displays the expanding/collapsing buttons.

Name Value Description
exNoButtons 0 The control displays no expand buttons.

exPlus -1 A plus sign is displayed for collapsed items, and a
minus sign for expanded items.()

exArrow 1 The control uses icons to display the expand
buttons.()

exCircle 2 The control uses icons to display the expand
buttons. ()

exWPlus 3 The control uses icons to display the expand
buttons. ()

exCustom 4 The HasButtonsCustom property specifies the index
of icons being used for +/- signs on parent items.

constants FilterBarVisibleEnum
The FilterBarVisibleEnum type defines the flags you can use on FilterBarPromptVisible
property. The FilterBarCaption property defines the caption to be displayed on the control's
filter bar. The FilterBarPromptVisible property , specifies how the control's filter bar is
displayed and behave. The FilterBarVisibleEnum type includes several flags that can be
combined together, as described bellow:

Name Value Description

exFilterBarHidden 0
No filter bar is shown while there is no filter applied.
The control's filter bar is automatically displayed as
soon a a filter is applied.

exFilterBarPromptVisible 1

The exFilterBarPromptVisible flag specifies that the
control's filter bar displays the filter prompt. The
exFilterBarPromptVisible, exFilterBarVisible,
exFilterBarCaptionVisible flag , forces the control's
filter-prompt, filter bar or filter bar description (
even empty) to be shown. If missing, no filter
prompt is displayed. The FilterBarPrompt property
to specify the HTML caption being displayed in the
filter bar when the filter pattern is missing.

exFilterBarVisible 2

The exFilterBarVisible flag forces the control's filter
bar to be shown, no matter if any filter is applied. If
missing, no filter bar is displayed while the control
has no filter applied.

or combined with exFilterBarPromptVisible

exFilterBarCaptionVisible 4

The exFilterBarVisible flag forces the control's filter
bar to display the FilterBarCaption property.

exFilterBarSingleLine 16

The exFilterBarVisible flag specifies that the caption
on the control's filter bar id displayed on a single
line. The exFilterBarSingleLine flag , specifies that
the filter bar's caption is shown on a single line, so

 HTML tag or \r\n are not handled. By default,
the control's filter description applies word
wrapping. Can be combined to exFilterBarCompact
to display a single-line filter bar. If missing, the
caption on the control's filter bar is displayed on
multiple lines. You can change the height of the
control's filter bar using the FilterBarHeight
property.

exFilterBarToggle 256

The exFilterBarToggle flag specifies that the user
can close the control's filter bar (removes the
control's filter) by clicking the close button of the
filter bar or by pressing the CTRL + F, while the
control's filter bar is visible. If no filter bar is
displayed, the user can display the control's filter
bar by pressing the CTRL + F key. While the
control's filter bar is visible the user can navigate
though the list or control's filter bar using the ALT +
Up/Down keys. If missing, the control's filter bar is
always shown if any of the following flags is present
exFilterBarPromptVisible, exFilterBarVisible,
exFilterBarCaptionVisible.

exFilterBarShowCloseIfRequired512

The exFilterBarShowCloseIfRequired flag indicates
that the close button of the control's filter bar is
displayed only if the control has any currently filter
applied. The Background(exFooterFilterBarButton)
property on -1 hides permanently the close button
of the control's filter bar.

exFilterBarShowCloseOnRight1024

The exFilterBarShowCloseOnRight flag specifies
that the close button of the control's filter bar should
be displayed on the right side. If the control's
RightToLeft property is True, the close button of the
control's filter bar would be automatically displayed
on the left side.

exFilterBarCompact 2048

The exFilterBarCompact flag compacts the control's
filter bar, so the filter-prompt will be displayed to
the left, while the control's filter bar caption will be
displayed to the right. This flag has effect only if
combined with the exFilterBarPromptVisible. This
flag can be combined with the exFilterBarSingleLine
flag, so all filter bar will be displayed compact and
on a single line.

exFilterBarShort 4096

The exFilterBarShort flag specifies that the control's
filter bar should be displayed on the items panel
only. If missing, the control's filter bar covers the
items and the chart section as well.

exFilterBarTop 8192

The exFilterBarTop flag displays the filter-bar on top
(between control's header and items section as
shown:

By default, the filter-bar is shown aligned to the
bottom (between items and horizontal-scroll bar) as
shown:

constants FilterIncludeEnum
The FilterIncludeEnum type defines the items to include when control's filter is applied. The
FilterInclude property specifies the items being included, when the list is filtered. The
FilterIncludeEnum type supports the following values:

Name Value Description

exItemsWithoutChilds 0 Items (and parent-items) that match the filter are
shown (no child-items are included)

exItemsWithChilds 1 Items (parent and child-items) that match the filter
are shown

exRootsWithoutChilds 2 Only root-items (excludes child-items) that match
the filter are displayed

exRootsWithChilds 3 Root-items (and child-items) that match the filter
are displayed

exMatchingItemsOnly 4 Shows only the items that matches the filter (no
parent or child-items are included)

exMatchIncludeParent 240

Specifies that the item matches the filter if any of its
parent-item matches the filter. The
exMatchIncludeParent flag can be combined with
any other value.

constants FilterListEnum
The FilterListEnum type specifies the type of items being included in the column's drop
down list filter. The FilterList property specifies the items being included to the column's
drop down filter-list, including other options for filtering. Use the DisplayFilterPattern and/or
DisplayFilterDate property to display the pattern field, a date pattern or a calendar control
inside the drop down filter window.

The FilterList can be a bit-combination of exAllItems, exVisibleItems or exNoItems with any
other flags being described bellow:

Name Value Description
exAllItems 0 The filter's list includes all items in the column.

exVisibleItems 1
The filter's list includes only visible (filtered) items
from the column. The visible items include child
items of collapsed items.

exNoItems 2
The filter's list does not include any item from the
column. Use this option if the drop down filter
displays a calendar control for instance.

exLeafItems 3 The filter's list includes the leaf items only. A leaf
item is an item with no child items.

exRootItems 4 The filter's list includes the root items only.

exSortItemsDesc 16

If the exSortItemsDesc flag is set the values in the
drop down filter's list gets listed descending. If none
of the exSortItemsAsc or exSortItemsDesc is
present, the list is built as the items are displayed in
the control.

exSortItemsAsc 32

If the exSortItemsAsc flag is set the values in the
drop down filter's list gets listed ascending. If none
of the exSortItemsAsc or exSortItemsDesc is
present, the list is built as the items are displayed in
the control.

exIncludeInnerCells 64

The exIncludeInnerCells flag specifies whether the
inner cells values are included in the drop down
filter's list. The SplitCell method adds an inner cell,
on in other words splits a cell.

exSingleSel 128

If this flag is present, the filter's list supports single
selection. By default, (If missing), the user can
select multiple items using the CTRL key. Use the
exSingleSel property to prevent multiple items

selection in the drop down filter list.

exShowCheckBox 256

The filter's list displays a check box for each
included item. Clicking the checkbox, makes the
item to be include din the filter. If this flag is
present, the filter is closed once the user presses
ENTER or clicks outside of the drop down filter
window. By default, (this flag is missing), clicking
an item closes the drop down filter, if the CTRL key
is not pressed. This flag can be combined with
exHideCheckSelect.

The following screen shot shows the drop down
filter with or with no exShowCheckBox flag:

 or

exHideCheckSelect 512

The selection background is not shown for checked
items in the filter's list. This flag can be combined
with exShowCheckBox.

The following screen shot shows no selection
background for the checked items:

This flag allows highlighting the focus cell value in
the filter's list. The focus cell value is the cell's
content at the moment the drop down filter window
is shown. For instance, click an item so a new item
is selected, and click the drop down filter button. A

exShowFocusItem 1024

item being focused in the drop down filter list is the
one you have in the control's selection. This flag has
effect also, if displaying a calendar control in the
drop down filter list.

The following screen shot shows the focused item
in the filter's list (The Integration ... item in the
background is the focused item, and the same is in
the filter's list) :

exShowPrevSelectOpaque 2048

By default, the previously selection in the drop down
filter's list is shown using a semi-transparent color.
Use this flag to show the previously selection using
an opaque color. The exSelFilterForeColor and
exSelFilterBackColor options defines the filter's list
selection foreground and background colors.

exEnableToolTip 4096

This flag indicates whether the filter's tooltip is
shown. The
Description(exFilterBarTooltip,exFilterBarPatternTooltip,
...) properties defines the filter's tooltips.

exShowExclude 8192

This flag indicates whether the Exclude option is
shown in the drop down filter window. This option
has effect also if the drop down filter window shows
a calendar control.

The following screen shot shows the Exclude field in
the drop down filter window:

exShowBlanks 16384 This flag indicates whether the (Blanks) and
(NonBlanks) items are shown in the filter's list

constants FilterPromptEnum
The FilterPromptEnum type specifies the type of prompt filtering. Use the
FilterBarPromptType property to specify the type of filtering when using the prompt. The
FilterBarPromptColumns specifies the list of columns to be used when filtering. The
FilterBarPromptPattern property specifies the pattern for filtering. The pattern may contain
one or more words being delimited by space characters.

The filter prompt feature supports the following values:

Name Value Description

exFilterPromptContainsAll 1

The list includes the items that contains all specified
sequences in the filter. Can be combined with
exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptContainsAny 2

The list includes the items that contains any of
specified sequences in the filter. Can be combined
with exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptStartWith 3

The list includes the items that starts with any
specified sequences in the filter. Can be combined
with exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptEndWith 4

The list includes the items that ends with any
specified sequences in the filter. Can be combined
with exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptPattern 16

The filter indicates a pattern that may include wild
characters to be used to filter the items in the list.
Can be combined with
exFilterPromptCaseSensitive. The
FilterBarPromptPattern property may include wild
characters as follows:

'?' for any single character
'*' for zero or more occurrences of any
character
'#' for any digit character

' ' space delimits the patterns inside the filter

exFilterPromptCaseSensitive 256

Filtering the list is case sensitive. Can be combined
with exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith, exFilterPromptEndWith or
exFilterPromptPattern.

exFilterPromptStartWords 4608

The list includes the items that starts with specified
words, in any position. Can be combined with
exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith or exFilterPromptEndWith.

exFilterPromptEndWords 8704

The list includes the items that ends with specified
words, in any position. Can be combined with
exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith or exFilterPromptEndWith.

exFilterPromptWords 12800

The filter indicates a list of words. Can be combined
with exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith or exFilterPromptEndWith.

constants FilterTypeEnum
Defines the type of filter applies to a column. Use the FilterType property of the Column
object to specify the type of filter being used. Use the Filter property of Column object to
specify the filter being used. The value for Filter property depends on the FilterType
property.

Name Value Description
exAll 0 No filter applied
exBlanks 1 Only blank items are included
exNonBlanks 2 Only non blanks items are included

exPattern 3

Only items that match the pattern are included. The
Filter property defines the pattern. A pattern may
contain the wild card characters '?' for any single
character, '*' for zero or more occurrences of any
character, '#' for any digit character. If any of the *,
?, # or | characters are preceded by a \ (escape
character) it masks the character itself.

exDate 4

Use the exDate type to filter items into a given
interval. The Filter property of the Column object
defines the interval of dates being used to filter
items. The interval of dates should be as
[dateFrom] to [dateTo]. Use the Description
property to changes the "to" conjunction used to
split the dates in the interval. If the dateFrom value
is missing, the control includes only the items before
the dateTo date, if the dateTo value is missing, the
control includes the items after the dateFrom date.
If both dates (dateFrom and dateTo) are present,
the control includes the items between this interval
of dates. For instance, the "2/13/2004 to" includes
all items after 2/13/2004 inclusive, or "2/13/2004 to
Feb 14 2005" includes all items between 2/13/2004
and 2/14/2004.

exNumeric 5

If the FilterType property is exNumeric, the Filter
property may include operators like <, <=, =, <>,
>= or > and numbers to define rules to include
numbers in the control's list. For instance, the "> 10
< 100" filter indicates all numbers greater than 10
and less than 100. If the FilterType property is
exNumeric, the drop down filter window doesn't

display the filter list that includes items "(All)", "
(Blanks)", ... and so on.

exCheck 6

Only checked or unchecked items are included. The
CellState property indicates the state of the cell's
checkbox. The control filters for checked items, if
the Filter property is "1". The control filters for
unchecked items, if the Filter property is "0". A
checked item has the the CellState property
different than zero. An unchecked item has the
CellState property on zero.

exImage 10 Filters items by icons. The CellImage property
indicates the cell's icon

exFilter 240 Only the items that are in the Filter property are
included.

exFilterDoCaseSensitive 256

If this flag is present, the filtering on the column is
case-sensitive. If this flag is missing, the filtering is
case-insensitive (by default). You can use the
exFilterDoCaseSensitive flag to perform case-
sensitive filtering within the column. This flag is not
applied to filter prompt feature.

constants FormatApplyToEnum
The FormatApplyToEnum expression indicates whether a format is applied to an item or to
a column. Any value that's greater than 0 indicates that the conditional format is applied to
the column with the value as index. A value less than zero indicates that the conditional
format object is applied to items. Use the ApplyTo property to specify whether the
conditional format is applied to items or to columns.

Name Value Description
exFormatToItems -1 Specifies whether the condition is applied to items.

exFormatToColumns 0

Specifies whether the condition is applied to
columns. The 0 value indicates that the conditional
format is applied to the first column. The 1 value
indicates the conditional format is applied to the
second column. The 2 value indicates the
conditional format is applied to the third column, and
so on.

constants GridLinesEnum
Defines how the control paints the grid lines.

Name Value Description
exNoLines 0 The control displays no grid lines.

exAllLines -1 The control displays vertical and horizontal grid
lines.

exRowLines -2 The control paints grid lines only for current rows.
exHLines 1 Only horizontal grid lines are shown.
exVLines 2 Only vertical grid lines are shown.

constants GridLinesStyleEnum
The GridLinesStyle type specifies the style to show the control's grid lines. The
GridLineStyle property indicates the style of the gridlines being displayed in the view if the
DrawGridLines property is not zero. The GridLinesStyle enumeration specifies the style for
horizontal or/and vertical gridlines in the control. The DrawGridLines property of the Chart
object specifies whether the grid lines are shown in the chart part of the control.

Name Value Description
exGridLinesDot 0 The control's gridlines are shown as dotted.

exGridLinesHDot4 1 The horizontal control's gridlines are shown as
dotted.

exGridLinesVDot4 2 The vertical control's gridlines are shown as dotted.
exGridLinesDot4 3 The control's gridlines are shown as solid.

exGridLinesHDash 4 The horizontal control's gridlines are shown as
dashed.

exGridLinesVDash 8 The vertical control's gridlines are shown as
dashed.

exGridLinesDash 12 The control's gridlines are shown as
dashed.

exGridLinesHSolid 16 The horizontal control's gridlines are shown as solid.
exGridLinesVSolid 32 The vertical control's gridlines are shown as solid.
exGridLinesSolid 48 The control's gridlines are shown as solid.

exGridLinesBehind 256

The control's vertical gridlines are shown behind
bars. This option has effect for the chart area only,
so it has to be used by Chart.GridLineStyle
property. For instance, Chart.GridLineStyle =
GridLinesStyleEnum.exGridLinesHSolid Or
GridLinesStyleEnum.exGridLinesBehind shows
horizontal gridlines as solid, and the vertical
gridlines shows behind the bars.

exGridLinesGeometric 512

The control's gridlines are drawn using a geometric
pen. The exGridLinesGeometric flag can be
combined with any other flag. A geometric pen can
have any width and can have any of the attributes
of a brush, such as dithers and patterns. A
cosmetic pen can only be a single pixel wide and
must be a solid color, but cosmetic pens are
generally faster than geometric pens. The width of

a geometric pen is always specified in world units.
The width of a cosmetic pen is always 1.

constants HierarchyLineEnum
Defines how the control paints the hierarchy lines. Use the TreeColumnIndex property to
define the index of the column that displays the hierarchy. Use the LinesAtRoot property to
connect root items. Use the HasLines property to connect a child items to their
correspondent parent item.

Name Value Description

exNoLine 0 The control displays no lines when painting the
hierarchy.

exDotLine -1 The control uses a dotted line to paint the hierarchy.
exSolidLine 1 The control uses a solid line to paint the hierarchy.
exThinLine 2 The control uses a thin line to paint the hierarchy.

constants HitTestInfoEnum
The HitTestInfoEnum expression defines the hit area within a cell. Use the ItemFromPoint
property to determine the hit test code within the cell.

Name Value Description
exHTCell 0 In the cell's client area.

exHTExpandButton 1
In the +/- button associated with a cell. The
HasButtons property specifies whether the cell
displays a +/- sign to let user expands the item.

exHTCellIndent 2

In the indentation associated with a cell. The Indent
property retrieves or sets the amount, in pixels, that
child items are indented relative to their parent
items.

exHTCellInside 4 On the icon, picture, check or caption associated
with a cell.

exHTCellCaption 20 (HEXA 14) In the caption associated with a cell.
The CellCaption property specifies the cell's value.

exHTCellCheck 36

(HEXA 24) In the check/radio button associated
with a cell. The CellHasCheckBox or
CellHasRadioButton property specifies whether the
cell displays a checkbox or a radio button.

exHTCellIcon 68
(HEXA 44) In first icon associated with a cell. The
CellImage or CellImages property specifies the
cell's icon displayed next to the cell's caption.

exHTCellPicture 132 (HEXA 84). In a picture associated to a cell.

exHTCellCaptionIcon 1044

(HEXA 414) In the icon's area inside the cell's
caption. The tag inserts an icon inside the
cell's caption. The tag is valid only if the
CellCaptionFormat property exHTML.

exHTBottomHalf 2048

(HEXA 800) The cursor is in the bottom half of the
row. If this flag is not set, the cursor is in the top
half of the row. This is an OR combination with the
rest of predefined values. For instance, you can
check if the cursor is in the bottom half of the row
using HitTestCode AND 0x800

exHTBetween 4096

(HEXA 1000) The cursor is between two rows. This
is an OR combination with the rest of predefined
values. For instance, you can check if the cursor is

between two items using HitTestCode AND 0x1000
exHTItemChart 256 (HEXA 100) In the chart's area over an item.

constants LinesAtRootEnum
Defines how the control displays the lines at root. The LinesAtRoot property defines the
way the tree lines are shown. The HasLines property defines the type of the line to be
shown. The HasButtons property defines the expand/collapse buttons for parent items.

The LinesAtRootEnum type support the following values:

Name Value Description

exNoLinesAtRoot 0

No lines at root items.

exLinesAtRoot -1

The control links the root items.

The control shows no links between roots, and
divides them as being in the same group.

exGroupLinesAtRoot 1

exGroupLines 2

The lines between root items are no shown, and the
links show the items being included in the group.

exGroupLinesInside 3

The lines between root items are no shown, and the
links are shown between child only.

The lines between root items are no shown, and the
links are shown for first and last visible child item.

exGroupLinesInsideLeaf 4

exGroupLinesOutside 5

The lines between root items are no shown, and the
links are shown for first and last visible child item. A
parent item that contains flat child items only, does
not indent the child part. By a flat child we mean an
item that does not contain any child item.

constants LinkPropertyEnum
Use the Link property to access a specified link. The Link property supports the following
options:

Name Value Description

exLinkStartItem 0

Retrieves or sets a value that indicates the handle
of the item where the link start. A HITEM
expression (long), that indicates the handle of the
item where the link starts.

exLinkStartBar 1

Retrieves or sets a value that indicates the key of
the bar where the link starts. A String expression
that indicates the key of the bar where the link
starts.

exLinkEndItem 2

Retrieves or sets a value that indicates the handle
of the item where the link ends. A HITEM
expression (long), that indicates the handle of the
item where the link ends.

exLinkEndBar 3

Retrieves or sets a value that indicates the key of
the bar where the link ends. A String expression
that indicates the key of the bar where the link
ends.

exLinkVisible 4

Specifies whether the link is visible or hidden. A
Boolean expression that indicates whether the link
is visible or hidden. Use the ShowLinks property to
hide all links in the control. By default, the
exLinkVisible property is True.

exLinkUserData 5
Specifies an extra data associated with the link.
Use the exLinkUserData option to associate an
extra data to your link.

exLinkStartPos 6

Specifies the position where the link starts in the
source item. An AlignmentEnum expression that
indicates the position where the link starts. By
default, the exLinkStartPos property is
RightAlignment.

exLinkEndPos 7

Specifies the position where the link ends in the
target item. An AlignmentEnum expression that
indicates the position where the link ends. By
default, the exLinkEndPos property is
LeftAlignment.

exLinkColor 8

Specifies the color to paint the link. By default, the
exLinkColor property is -1. If the exLinkColor
property is -1, the control uses the LinksColor
property to draw the link. If the exLinkColor
property is not -1, it indicates the color to draw the
link.

exLinkStyle 9

Specifies the style to paint the link. A
LinkStyleEnum expression that indicates the style of
the link between two bars. By default, the
exLinkStyle property is -1. If the exLinkStyle
property is -1, the LinksStyle property specifies the
style of the link.

exLinkWidth 10

Specifies the width in pixels of the link. A long
expression that indicates the width of the pen, in
pixels, to draw the link between two bars. By
default, the exLinkWidth property is -1. If the
exLinkWidth property is -1, the LinksWidth property
indicates the width of the link.

exLinkShowDir 11

Specifies whether the link shows the direction. A
Boolean expression that indicates whether the
arrow in the link that specifies the direction, is
visible or hidden. By default, the exLinkShowDir
property is True.

exLinkText 12

Specifies the HTML text being displayed on the link.
Use the tag to display an icon or a custom
size picture on the link. By default, the exLinkText
property is empty, and so the link displays no text
or picture. Use the HTMLPicture property to include
custom size picture to HTML captions

exLinkToolTip 13

Specifies the HTML text being shown when the
cursor hovers the link. Use the element to
specify a different font or size for the tooltip, or use
the ToolTipFont property to specify a different font
or size for all tooltips in the control.

exLinksCount 512 Counts the number of the links within the chart.

constants LinkStyleEnum
Use the LinksStyle property to specify the style of the pen to draw all links in the chart. Use
the Link(exLinkStyle) property to change the style for a specific link.

Name Value Description
exLinkSolid 0 The link is solid.

exLinkDash 1 The link is dashed. This style is valid only when the
exLinkWidth is 1.

exLinkDot 2 The link is dotted. This style is valid only when the
exLinkWidth is 1.

exLinkDashDot 3 The link has alternating dashes and dots. This style
is valid only when the exLinkWidth is 1.

exLinkDashDotDot 4 The link has alternating dashes and double dots.
This style is valid only when the exLinkWidth is 1.

exLinkTDot 255 Default. The link is dotted. This style is valid only
when the exLinkWidth is 1.

constants OnResizeControlEnum
The OnResizeControlEnum type specifies the parts of the controls being resized when the
control itself gets resized. Use the OnControlResize property to specify which part list or
chart of the control is getting resized once the control itself is resized.

Name Value Description
exResizeList 0 Resizes the list part of the control.
exResizeChart 1 Resizes the chart part of the control.
exDisableSplitter 128 Disables the splitter.

constants OverviewVisibleEnum
The OverviewVisibleEnum type specifies the way items are represented in the overview
area. Use the OverviewVisible property to specify whether the control's overview visible is
hidden or shown. The OverviewVisibleEnum expression includes the following values:

Name Value Description
exOverviewHidden 0 The control's overview is not visible.

exOverviewShowAll -1 The control's overview shows the bars from the
visible items using the range for all bars in the chart.

exOverviewShowOnlyVisible 1
The control's overview shows the bars from the
visible items using the range of bars in the visible
items only.

exOverviewShowAllVisible 2 The control's overview shows the bars from the
visible items using the range for all bars in the chart.

exOverviewAllowVerticalScroll256
Indicates whether the user can vertically scroll the
chart while navigating up or down the overview part
of the control.

constants OverviewZoomEnum
The OverviewZoomEnum type specifies when the zooming scale is displayed. Use the
AllowOverviewZoom property to specify whether the zooming zoom is shown or hidden.

Name Value Description
exDisableZoom 0 Zooming the chart at runtime is disabled.

exAlwaysZoom 1 The zooming scale is displayed on the overview
area.

exZoomOnRClick -1 The zooming scale is displayed only if the user right
clicks the overview area.

constants PatternEnum
The PatternEnum expression indicates the type of brush. Use the NonworkingDaysPattern
property to specify the pattern to fill non-working days. Use the Pattern property to specify
the brush to fill the bar. The Color property specifies the pattern's color or an EBN object to
define the skin to be applied on the bar. The Color property is applied to all bars of the
same type, while the ItemBar(exBarColor) property specifies a different color/skin for a
particular bar. You can use the ItemBar(exBarPattern) property to specify a different
pattern for a particular bar.

Name Value Description
exPatternEmpty 0 The pattern/bar is not visible.
exPatternSolid 1
exPatternDot 2
exPatternShadow 3
exPatternNDot 4
exPatternFDiagonal 5
exPatternBDiagonal 6
exPatternDiagCross 7
exPatternVertical 8
exPatternHorizontal 9
exPatternCross 10
exPatternBrick 11
exPatternYard 12

 The Color
property specifies the color for the border, while the
StartColor and EndColor properties defines the
start and ending color to show a linear-horizontal
gradient bar. The liner gradient is shown if the
StartColor or EndColor is not zero, and have
different values. If the StartColor and EndColor are
different that zero and have the same the same
value the exPatternBox bar shows solid fill with a
solid border being defined by the Color property.
This option can be combined with any predefined
pattern, exPatternGradientVBox,
exPatternGradient3Colors, exPatternThickBox or
exPatternFrameShadow. This option can not be

exPatternBox 32

applied to EBN bars.

The following pictures where generated if the bar's
Pattern is exPatternBox

 StartColor and EndColor properties are
not used (0).

 StartColor is RGB(0,255,0) [green] and
EndColor is RGB(255,255,0) [yellow].

 StartColor is RGB(0,255,0) [green],
EndColor is RGB(255,255,0) [yellow] and
Color is RGB(255,0,0) [red].

The following pictures where generated if the bar's
Pattern is exPatternBox + exPatternDot

 StartColor and EndColor properties are
not used (0).

 StartColor is RGB(0,255,0) [green] and
EndColor is RGB(255,255,0) [yellow].

 StartColor is RGB(0,255,0) [green],
EndColor is RGB(255,255,0) [yellow] and
Color is RGB(255,0,0) [red].

The Color property specifies the color for the
border, while the StartColor and EndColor
properties defines the start and ending color to
show a linear-vertical gradient bar. The liner
gradient is shown if the StartColor or EndColor is
not zero, and have different values. If the StartColor
and EndColor are different that zero and have the
same the same value the exPatternBox bar shows
solid fill with a solid border being defined by the
Color property. This option must be combined with
exPatternBox, and can be combined with any
predefined pattern, exPatternGradient3Colors,
exPatternThickBox or exPatternFrameShadow. This
option can not be applied to EBN bars.

The following pictures where generated if the bar's
Pattern is exPatternBox + exPatternGradientVBox

exPatternGradientVBox 64 StartColor and EndColor properties are
not used (0).

 StartColor is RGB(0,255,0) [green] and
EndColor is RGB(255,255,0) [yellow].

 StartColor is RGB(0,255,0) [green],
EndColor is RGB(255,255,0) [yellow] and
Color is RGB(255,0,0) [red].

The following pictures where generated if the bar's
Pattern is exPatternBox + exPatternGradientVBox +
exPatternDot

 StartColor and EndColor properties are
not used (0).

 StartColor is RGB(0,255,0) [green] and
EndColor is RGB(255,255,0) [yellow].

 StartColor is RGB(0,255,0) [green],
EndColor is RGB(255,255,0) [yellow] and
Color is RGB(255,0,0) [red].

exPatternGradient3Colors 128

This option defines the gradient from 3 colors
defined by StartColor, Color and EndColor. The
gradient starts with StartColor, continue to Color
and ends on EndColor color. This option must be
combined with exPatternBox and can be combined
with any predefined pattern,
exPatternGradientVBox, exPatternThickBox or
exPatternFrameShadow. This option can not be
applied to EBN bars.

The following pictures where generated if the bar's
Pattern is exPatternBox +
exPatternGradient3Colors

 StartColor and EndColor properties are
not used (0).

 StartColor is RGB(0,255,0) [green] and
EndColor is RGB(255,255,0) [yellow].

 StartColor is RGB(0,255,0) [green],
EndColor is RGB(255,255,0) [yellow] and
Color is RGB(255,0,0) [red].

The following pictures where generated if the bar's
Pattern is exPatternBox + exPatternGradientVBox +
exPatternGradient3Colors

 StartColor and EndColor properties are
not used (0).

 StartColor is RGB(0,255,0) [green] and
EndColor is RGB(255,255,0) [yellow].

 StartColor is RGB(0,255,0) [green],
EndColor is RGB(255,255,0) [yellow] and
Color is RGB(255,0,0) [red].

exPatternThickBox 4096

Use this option to specify a thicker border for bars.
This option can be combined with any predefined
pattern, exPatternBox, exPatternGradientVBox,
exPatternGradient3Colors or
exPatternFrameShadow. This option can not be
applied to EBN bars too.

The following pictures where generated based on
the exPatternThickBox flag:

 exPatternThickBox flag is not set (
Pattern = exPatternBDiagonal).

 exPatternThickBox flag is set (Pattern
= exPatternBDiagonal + exPatternThickBox)

exPatternFrameShadow 8192

This option can be used to display a shadow for the
bars. This option can be combined with any
predefined pattern, exPatternBox,
exPatternGradientVBox, exPatternGradient3Colors
or exPatternThickBox. This option can be applied to
EBN bars too.

The following pictures where generated based on
the exPatternThickBox flag:

 exPatternFrameShadow flag is not set (
Pattern = exPatternShadow).

 exPatternFrameShadow flag is set (
Pattern = exPatternShadow +
exPatternFrameShadow)

 exPatternFrameShadow flag is set (
Pattern = exPatternShadow +
exPatternFrameShadow + exPatternBox +
exPatternGradientVBox)

constants PictureDisplayEnum
Specifies how the picture is displayed on the control's background. Use the PictureDisplay
property to specify how the control displays its picture.

Name Value Description
UpperLeft 0 Aligns the picture to the upper left corner.
UpperCenter 1 Centers the picture on the upper edge.
UpperRight 2 Aligns the picture to the upper right corner.

MiddleLeft 16 Aligns horizontally the picture on the left side, and
centers the picture vertically.

MiddleCenter 17 Puts the picture on the center of the source.

MiddleRight 18 Aligns horizontally the picture on the right side, and
centers the picture vertically.

LowerLeft 32 Aligns the picture to the lower left corner.
LowerCenter 33 Centers the picture on the lower edge.
LowerRight 34 Aligns the picture to the lower right corner.
Tile 48 Tiles the picture on the source.
Stretch 49 The picture is resized to fit the source.

constants ScrollBarEnum
The ScrollBarEnum type specifies the vertical or horizontal scroll bar in the control. Use the
ScrollBars property to specify whether the vertical or horizontal scroll bar is visible or
hidden. Use the ScrollPartVisible property to specify the visible parts in the control's scroll
bars.

Name Value Description
exVScroll 0 Indicates the vertical scroll bar.
exHScroll 1 Indicates the horizontal scroll bar.
exHChartScroll 2 Indicates the horizontal scroll bar in the chart area.

constants ScrollBarsEnum
Specifies which scroll bars will be visible on a control. Use the ScrollBars property to
specify which scrollbars are visible or hidden.

Name Value Description
exNoScroll 0 No scroll bars are shown
exHorizontal 1 Only horizontal scroll bars are shown.
exVertical 2 Only vertical scroll bars are shown.
exBoth 3 Both horizontal and vertical scroll bars are shown.

exDisableNoHorizontal 5 The horizontal scroll bar is always shown, it is
disabled if it is unnecessary.

exDisableNoVertical 10 The vertical scroll bar is always shown, it is
disabled if it is unnecessary.

exDisableBoth 15 Both horizontal and vertical scroll bars are always
shown, disabled if they are unnecessary.

constants ScrollEnum
The ScrollEnum expression indicates the type of scroll that control supports. Use the Scroll
method to scroll the control's content by code.

Name Value Description
exScrollUp 0 Scrolls up the control by a single line.
exScrollDown 1 Scrolls down the control by a single line.
exScrollVTo 2 Scrolls vertically the control to a specified position.

exScrollLeft 3
Scrolls the control to the left by a single pixel, or by
a single column if the ContinueColumnScroll
property is True.

exScrollRight 4
Scrolls the control to the right by a single pixel, or
by a single column if the ContinueColumnScroll
property is True.

exScrollHTo 5 Scrolls horizontaly the control to a specified
position.

constants ScrollPartEnum
The ScrollPartEnum type defines the parts in the control's scrollbar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollPartCaption property to specify the caption being displayed in any part of the control's
scrollbar. The control fires the ScrollButtonClick event when the user clicks any button in the
control's scrollbar.

Name Value Description
exExtentThumbPart 65536 The thumb-extension part.

exLeftB1Part 32768 (L1) The first additional button, in the left or top
area. By default, this button is hidden.

exLeftB2Part 16384 (L2) The second additional button, in the left or top
area. By default, this button is hidden.

exLeftB3Part 8192 (L3) The third additional button, in the left or top
area. By default, this button is hidden.

exLeftB4Part 4096 (L4) The forth additional button, in the left or top
area. By default, this button is hidden.

exLeftB5Part 2048 (L5) The fifth additional button, in the left or top
area. By default, this button is hidden.

exLeftBPart 1024 (<) The left or top button. By default, this button is
visible.

exLowerBackPart 512 The area between the left/top button and the
thumb. By default, this part is visible.

exThumbPart 256 The thumb part or the scroll box region. By default,
the thumb is visible.

exUpperBackPart 128 The area between the thumb and the right/bottom
button. By default, this part is visible.

exBackgroundPart 640
The union between the exLowerBackPart and the
exUpperBackPart parts. By default, this part is
visible.

exRightBPart 64 (>) The right or down button. By default, this button
is visible.

exRightB1Part 32 (R1) The first additional button in the right or down
side. By default, this button is hidden.

exRightB2Part 16 (R2) The second additional button in the right or
down side. By default, this button is hidden.

exRightB3Part 8 (R3) The third additional button in the right or down
side. By default, this button is hidden.

exRightB4Part 4 (R4) The forth additional button in the right or down
side. By default, this button is hidden

exRightB5Part 2 (R5) The fifth additional button in the right or down
side. By default, this button is hidden.

exRightB6Part 1 (R6) The sixth additional button in the right or down
side. By default, this button is hidden.

exPartNone 0 No part.

constants ScrollRangeEnum
The ScrollRangeEnum type specifies the positions being accessed by the ScrollRange
property. The ScrollRange method specifies that the chart to be scrolled within a range of
dates. The ScrollRangeEnum type supports the following values.

Name Value Description

exStartDate 0 Indicates that the starting date or time of the
scrolling range is accessed or requested.

exEndDate 1 Indicates that the ending date or time of the
scrolling range is accessed or requested.

constants ShapeBarEnum
The ShapeBarEnum type indicates the height and the alignment of the bar. Use the Shape
property to specify the height and the vertical alignment of the bar.

Name Value Description
exShapeEmpty 0 The shape is empty.
exShapeSolid 1
exShapeSolidUp 2
exShapeSolidCenter 3
exShapeSolidDown 4
exShapeSolidFrameless 17
exShapeThinUp 18
exShapeThinCenter 19
exShapeThinDown 20

constants ShapeCornerEnum
The ShapeCornerEnum expression defines the shape of the start and end part of the bar.
Use the StartShape and EndShape properties to define the start and end parts of the bar
using custom shapes. Use the AddShapeCorner method to define a corner from an icon.
Use the Images or ReplaceIcon method to update the list of control's icons.

Name Value Description
exShapeIconEmpty 0 No corner.
exShapeIconUp1 1
exShapeIconDown1 2
exShapeIconRhombus 3
exShapeIconCircleDot 4
exShapeIconUp2 5
exShapeIconDown2 6
exShapeIconLeft 7
exShapeIconRight 8
exShapeIconCircleUp1 9
exShapeIconCircleDown1 10
exShapeIconUp3 11
exShapeIconDown3 12
exShapeIconCircleUp2 13
exShapeIconCircleDown2 14
exShapeIconUp4 15
exShapeIconDown4 16
exShapeIconVBar 17
exShapeIconSquare 18
exShapeIconCircle 19
exShapeIconStar 20
exShapeIconFrameUp1 61441
exShapeIconFrameDown1 61442
exShapeIconFrameRhombus 61443
exShapeIconFrameCircleDot 61444

exShapeIconFrameUp2 61445

exShapeIconFrameDown2 61446
exShapeIconFrameLeft 61447
exShapeIconFrameRight 61448
exShapeIconFrameCircleUp1 61449
exShapeIconFrameCircleDown161450
exShapeIconFrameUp3 61451
exShapeIconFrameDown3 61452
exShapeIconFrameCircleUp2 61453
exShapeIconFrameCircleDown261454
exShapeIconFrameUp4 61455
exShapeIconFrameDown4 61456
exShapeIconFrameVBar 61457
exShapeIconFrameSquare 61458
exShapeIconFrameCircle 61459
exShapeIconFrameStar 61460

constants SortOnClickEnum
Specifies the action that control takes when user clicks the column's header. The
SortOnClick Property specifies whether the control sorts a column when its caption is
clicked.

Name Value Description

exNoSort 0 The column is not sorted when the user clicks the
column's header.

exDefaultSort -1 The control sorts the column when user clicks the
column's header.

exUserSort 1

The control displays the sort icons, but it doesn't
sort the column. The user is responsible with listing
the items as being sorted. Use the ItemByPosition
property to access the sorted column in their order.

constants SortOrderEnum
Specifies the column's sort order. Use the SortOrder property to specify the column's sort
order.

Name Value Description

SortNone 0
The column is not sorted. (if the control supports
sorting by multiple columns, the column is removed
from the sorting columns collection)

SortAscending 1
The column is sorted ascending. (if the control
supports sorting by multiple columns, the column is
added to the sorting columns collection)

SortDescending 2
The column is sorted descending. (if the control
supports sorting by multiple columns, the column is
added to the sorting columns collection)

constants SortTypeEnum
The SortTypeEnum enumeration defines the ways how the control can sort the columns.
Use the SortType property to specify how the column gets sorted. The CellCaption property
indicates the values being sorted.

Name Value Description
SortString 0 (Default) Values are sorted as strings.

SortNumeric 1 Values are sorted as numbers. Any non-numeric
value is evaluated as 0.

SortDate 2 Values are sorted as dates. Group ranges are one
day.

SortDateTime 3 Values are sorted as dates and times. Group
ranges are one second.

SortTime 4 Values are sorted using the time part of a date and
discarding the date. Group ranges are one second.

SortUserData 5 The CellData property indicates the values being
sorted. Values are sorted as numbers.

SortUserDataString 6 The CellData property indicates the values being
sorted. Values are sorted as strings.

exSortByValue 16 The column gets sorted by cell's value rather than
cell's caption.

exSortByState 32 The column gets sorted by cell's state rather than
cell's caption.

exSortByImage 48 The column gets sorted by cell's image rather than
cell's caption.

constants ItemBarPropertyEnum
The ItemBarPropertyEnum type specifies a property related to a bar inside an item. Use
the ItemBar property to retrieve or sets a value for bars in the item. The
ItemBarPropertyEnum type supports the following values:

Name Value Description

exBarName 0
Retrieves or sets a value that indicates the name of
the bar. Use the Add method to add new type of
bars to your chart. String expression.

exBarStart 1

Retrieves or sets a value that indicates the start of
the bar. Use the exBarStart property to changes the
starting point of the bar. DATE expression. Use the
ShowEmptyBars property to show the bars, even if
the start and end dates are identical. Use the
exBarMove or exBarDuration to move or resize
programmatically the bar.

exBarEnd 2

Retrieves or sets a value that indicates the end of
the bar. Use the exBarStart property to changes the
ending point of the bar. DATE expression. Use the
ShowEmptyBars property to show the bars, even if
the start and end dates are identical. Use the
exBarMove or exBarDuration to move or resize
programmatically the bar.

exBarCaption 3 Retrieves or sets a value that indicates the caption
being assigned to the bar. String expression.

exBarHAlignCaption 4

Retrieves or sets a value that indicates the
horizontal alignment of the caption inside the bar.
Use the exBarHAlignCaption property to align
horizontally the caption being displayed between
exBarStart and exBarEnd.

If the exBarHAlignCaption property is 0,1 or 2
the caption is not clipped and it is aligned to
the left, center or right side of the bar.
If the exBarHAlignCaption property is 3, 4 or 5
the caption of the bar gets clipped to the bar
area, else the caption is aligned to the left,
center or right side of the bar.
If the exBarHAlignCaption property includes the
AlignmentEnum.exHOutside the caption is

displayed outside of the bar to the left or to the
right. For instance, if the exBarHAlignCaption
property is AlignmentEnum.LeftAlignment OR
AlignmentEnum. exHOutside, the caption is
displayed outside of the bar in the left side of
the bar. If the exBarHAlignCaption property is
AlignmentEnum.RightAlignment OR
AlignmentEnum. exHOutside, the caption is
displayed outside of the bar in the right side of
the bar.

By default, the exBarHAlignCaption is
CenterAlignment. AlignmentEnum expression

exBarVAlignCaption 5

Retrieves or sets a value that indicates the vertical
alignment of the caption inside the bar. Use the
exBarHAlignCaption property to align vertically the
caption being displayed between exBarStart and
exBarEnd. If the exBarVAlignCaption property
includes the VAlignmentEnum.exVOutside the
caption is displayed outside of the bar at the top or
bottom side of the bar. For instance, if the
exBarVAlignCaption property is
VAlignmentEnum.exTop OR
VAlignmentEnum.exVOutside, the caption is
displayed outside of the bar in the top side of the
bar. If the exBarVAlignCaption property is
VAlignmentEnum.exBottom OR
VAlignmentEnum.exVOutside, the caption is
displayed outside of the bar in the bottom side of
the bar. exBarVAlignCaption is MiddleAlignment.
VAlignmentEnum expression.

exBarToolTip 6

Retrieves or sets a value that indicates the tooltip
being shown when the cursor hovers the bar. Use
the exBarToolTip property to assign a tooltip to a
bar or to a text in the chart's area. String
expression.
Retrieves or sets a value that indicates the
background color for the area being occupied by
the bar. Color expression. This option has effect
only if the exBarBackColor property is not zero. The
last 7 bits in the high significant byte of the color

exBarBackColor 7 indicates the identifier of the skin being used. Use
the Add method to add new skins to the control. If
you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits
in the high significant byte of the color being applied
to the background's part.

exBarForeColor 8

Retrieves or sets a value that indicates the
foreground color for the caption of the bar. Color
expression. This option has effect only if the
exBarBackColor property is not zero.

exBarKey 9 Specifies key of the bar.

exBarPercent 10

 Specifies the percent from the
original bar where the progress bar is displayed.
This float value should be between 0 and 1 (1
means 100%). Use the Add("A%B") to add a
combination of two bars, so the exBarPercent value
specifies the percent from the bar A to be displayed
as bar B. For instance, the Add("Task%Progress")
adds a combination of Task and Progress bars, so
the Task shape is displayed on the full bar, and the
Progress shape is displayed only on the portion
determined by the exBarPercent value. When you
resize the original bar (A), the inside bar (B) is
shown proportionally. Use the
exBarShowPercentCaption option to show the
percent value as caption on the bar. Use the
exBarPercentCaptionFormat property to define the
format of the percent value being displayed as text.
Use the exBarAlignmentPercentCaption property to
specify the alignment of the percent on the bar.

exBarPercentCaptionFormat 11

Specifies the HTML format to be displayed as
percent. The percent is displayed on the bar only if
the exBarShowPercentCaption option is True. By
default, the exBarPercentCaptionFormat property is
"%p%" where the %p is the value of the
percent (exBarPercent property), and it displays
the percent as 15%, where exBarPercent is 0.15.
The indicates that the text is bolded. (String
expression)
Specifies whether the percent is displayed as
caption on the bar. By default, the

exBarShowPercentCaption 12

exBarShowPercentCaption property is False, which
means that the percent value is not shown. Use the
exBarPercent property to specify the value of the
percent. Use the exBarPercentCaptionFormat
property to define the format of the percent being
displayed on the bar. Use the
exBarAlignPercentCaption property to indicates the
alignment of the percent in the bar. Boolean
expression.

exBarAlignPercentCaption 13

Specifies the alignment of the percent caption on
the bar. By default, the
exBarAlignmentPercentCaption property is
RightAlignment, that indicates that the percent value
is displayed to the right. AlignmentEnum expression.

exBarData 14 Associates an extra data to a bar. Use this property
to assign your extra data to any bar in the item.

exBarOffset 15

 Specifies the vertical offset
where the bar is shown. By default, this property is
0 and the bar is shown in the center. Use this
property to show up or down the bar. (long
expression)

exBarTransparent 16

 Specifies the percent of the
transparency to display the bar. By default, this
property is 0, which means that the bar is opaque.
If the property is 50, the bar is shown semi-
transparent. Use the ShowTransparentBars
property to draw all bars using a semi- transparent
color. (long expression between 0 and 100).

exBarPattern 17

By default the exBarPattern option is empty. If the
exBarPattern property is empty, the option is
ignored. Use the exBarPattern to specify a different
pattern to be displayed on the bar in the chart area.
The Pattern property of the Bar specifies the
pattern to be applied for all bars of the same type.
For instance, includes the exPatternFrameShadow
in the bar's pattern to show a shadow around the
bar. (PatternEnum expression)

exBarsCount 256

Retrieves a value that indicates the number of bars
in the item. The exBarsCount property counts the
bars being displayed in the item. Use the AddBar
property to add new bars to the item.

exBarWorkingCount 257

Use the AddNonworkingDate property to add
custom non-working days. Use the
NonworkingHours property to specify the non-
working hours. Use the exBarWorkingCount
property to specify the number of working days for
a specified bar. For instance, if your chart displays
days, and the NonworkingDays is set, the
exBarWorkingCount property sets or gets the count
of working days in the bar. If the chart displays
hours, and the NonworkingHours property is set,
the exBarWorkingCount property sets or gets the
count of working hours in the bar.

exBarNonWorkingCount 258

Specifies the count of non-working units in the bar.
The NonworkingDays property specifies the non-
working days. Use the AddNonworkingDate
property to add custom non-working days. Use the
NonworkingHours property to specify the non-
working hours. For instance, if your chart displays
days, and the NonworkingDays is set, the
exBarNonworkingCount property gets the count of
non-working days in the bar. If the chart displays
hours, and the NonworkingHours property is set,
the exBarNonWorkingCount property gets the count
of non-working hours in the bar.

exBarColor 513

Specifies the color for the bar. If used, it replaces
the bar's type color. By default, the exBarColor is 0,
which means that the default bar's color is used.
The Color property defines the default's bar color.
The Color property defines the color for all bars of
the same type. Use the exBarColor to change the
color for particular bars. As usual, this option may
indicates a skin object to display the bar. (Color
expression).

exBarDuration 514

Specifies the duration of the bar in days. Gets the
difference between exBarEnd and exBarStart as a
double expression. If calling the set property, it
changes the bar's duration. If negative the start
date is baed on the end - duration, since if it is
positive, the end date is start + duration. The round
part indicates the number of days. Use the
exBarMove property to move programmatically a
bar by specified time (double expression)

exBarMove 515

Moves the bar inside the same item by specified
amount of time. The exBarParent changes the bar's
parent. Use the exBarCanMoveToAnother option to
specify whether the user can move a bar from one
item to another by drag and drop. (double
expression)

constants ItemsAllowSizingEnum
The ItemsAllowSizingEnum type specifies whether the user can resize items individuals or
all items at once, at runtime. Use the ItemsAllowSizing property to specify whether the user
can resize items individuals or all items at once, at runtime. Currently, the
ItemsAllowSizingEnum type supports the following values:

Name Value Description
exNoSizing 0 The user can't resize the items at runtime.

exResizeItem -1 Specifies whether the user resizes the item from
the cursor.

exResizeAllItems 1 Specifies whether the user resizes all items at
runtime.

constants UIVisualThemeEnum
The UIVisualThemeEnum expression specifies the UI parts that the control can shown using
the current visual theme. The UseVisualTheme property specifies whether the UI parts of
the control are displayed using the current visual theme.

Name Value Description
exNoVisualTheme 0 exNoVisualTheme
exDefaultVisualTheme 16777215exDefaultVisualTheme
exHeaderVisualTheme 1 exHeaderVisualTheme
exFilterBarVisualTheme 2 exFilterBarVisualTheme
exButtonsVisualTheme 4 exButtonsVisualTheme
exCalendarVisualTheme 8 exCalendarVisualTheme
exCheckBoxVisualTheme 64 exCheckBoxVisualTheme

constants UnitEnum
The UnitEnum type specifies the time units supported. Use the UnitScale property to specify
the time scale. Use the Unit property to specify the time unit in the level. The UnitEnum type
includes the following time units:

Name Value Description

exYear 0 Indicates the year. Values: ..., 2001, 2002, 2003,
...

exHalfYear 1

A date between January 1st and June 31 indicates
the first half of the year, and from July 1 to
December 31, indicates the second half of the year.
Values: 1 and 2

exQuarterYear 2

A date between January 1st and March 31
indicates the first quarter of the year, a date
between April 1st and June 30 indicates the second
quarter of the year, a date between July 1st and
September 30 indicates the third quarter of the
year, and if a date between October 1st and
December 31 indicates the forth quarter of the
year. Values: 1, 2, 3 and 4

exMonth 16

Indicates the month. Values: 1 (January), 2 (
February), ..., and 12 (December). Use the
MonthNames property to specify the name of the
months.

exThirdMonth 17

The first ten days in a month indicates the first third
of the month, the next 10 days indicates the second
third of the month, and the last 10 days in the month
indicates the last third of the month. Values: 1, 2
and 3.

exWeek 256
Indicates the week in the year. Values: 1,2,...,53.
Use the WeekDays property to specify the name of
the days in the week.

exDay 4096 Indicates the day of the date. Values: 1,2,..,31
exHour 65536 Indicates the hour.
exMinute 1048576Indicates the minute.
exSecond 16777216Indicates the second.

constants VAlignmentEnum
Specifies how the cell's caption is vertically aligned. Use the CellVAlignment property to
align vertically the cell's caption.

Name Value Description
TopAlignment 0 The caption is aligned to top of the cell
MiddleAlignment 1 The cell's caption is vertically centered
BottomAlignment 2 The caption is aligned to bottom of the cell
exVOutside 16 The object is displayed outside of the source

constants WeekDayEnum
The WeekDayEnum type indicates the days in the week. The WeekDays property indicates
the name of the days in the week. The WeekDayEnum type includes the following values.

Name Value Description
exSunday 0 Sunday
exMonday 1 Monday
exTuesday 2 Tuesday
exWednesday 3 Wednesday
exThursday 4 Thursday
exFriday 5 Friday
exSaturday 6 Saturday

constants WeekNumberAsEnum
The WeekNumberAsEnum type specifies the ways the control displays the week number
for dates. The WeekNumberAs property specifies the way the control displays the week
number. The FirstWeekDay property specifies the first day of the week where the week
begins. The WeekNumberAsEnum type supports the following values:

Name Value Description

exISO8601WeekNumber 0

Indicates that the week number is displayed
according to the ISO8601 standard, which specifies
that the first week of the year is the one that
includes the January the 4th

exSimpleWeekNumber 1
The first week starts on January 1st of a given
year, week n+1 starts 7 days after week n (default
)

Appearance object
The component lets the user changes its visual appearance using skins, each one providing
an additional visual experience that enhances viewing pleasure. Skins are relatively easy to
build and put on any part of the control. The Appearance object holds a collection of skins.
The Appearance object supports the following properties and methods:

Name Description
Add Adds or replaces a skin object to the control.
Clear Removes all skins in the control.
Remove Removes a specific skin from the control.

RenderType Specifies the way colored EBN objects are displayed on
the component.

method Appearance.Add (ID as Long, Skin as Variant)
Adds or replaces a skin object to the control.

Type Description

ID as Long

A Long expression that indicates the index of the skin
being added or replaced. The value must be between 1
and 126, so Appearance collection should holds no more
than 126 elements.
The Skin parameter of the Add method can a STRING as
explained bellow, a BYTE[] / safe arrays of VT_I1 or
VT_UI1 expression that indicates the content of the EBN
file. You can use the BYTE[] / safe arrays of VT_I1 or
VT_UI1 option when using the EBN file directly in the
resources of the project. For instance, the VB6 provides
the LoadResData to get the safe array o bytes for
specified resource, while in VB/NET or C# the internal
class Resources provides definitions for all files being
inserted. (ResourceManager.GetObject("ebn",
resourceCulture))

If the Skin parameter points to a string expression, it can
be one of the following:

A path to the skin file (*.EBN). The ExButton
component or ExEBN tool can be used to create,
view or edit EBN files. For instance, "C:\Program
Files\Exontrol\ExButton\Sample\EBN\MSOffice-
Ribbon\msor_frameh.ebn"
A BASE64 encoded string that holds the skin file (
*.EBN). Use the ExImages tool to build BASE 64
encoded strings of the skin file (*.EBN). The
BASE64 encoded string starts with "gBFLBCJw..."
An Windows XP theme part, if the Skin parameter
starts with "XP:". Use this option, to display any UI
element of the Current Windows XP Theme, on any
part of the control. In this case, the syntax of the Skin
parameter is: "XP:ClassName Part State" where the
ClassName defines the window/control class name in
the Windows XP Theme, the Part indicates a long
expression that defines the part, and the State
indicates the state of the part to be shown. All known
values for window/class, part and start are defined at

https://exontrol.com/ebn.jsp
https://exontrol.com/ebn.jsp
https://exontrol.com/exbutton.jsp
https://exontrol.com/exebn.jsp
https://exontrol.com/ebn.jsp
https://exontrol.com/eximages.jsp
https://exontrol.com/ebn.jsp

Skin as Variant

the end of this document. For instance the
"XP:Header 1 2" indicates the part 1 of the Header
class in the state 2, in the current Windows XP
theme.

The following screen shots show a few Windows XP
Theme Elements, running on Windows Vista and
Windows 10:

A copy of another skin with different coordinates (
position, size), if the Skin parameter starts with
"CP:". Use this option, to display the EBN, using
different coordinates (position, size). By default, the
EBN skin object is rendered on the part's client area.
Using this option, you can display the same EBN, on a
different position / size. In this case, the syntax of the
Skin parameter is: "CP:ID Left Top Right Bottom"

where the ID is the identifier of the EBN to be used (
it is a number that specifies the ID parameter of the
Add method), Left, Top, Right and Bottom
parameters/numbers specifies the relative position to
the part's client area, where the EBN should be
rendered. The Left, Top, Right and Bottom
parameters are numbers (negative, zero or positive
values, with no decimal), that can be followed by the
D character which indicates the value according to the
current DPI settings. For instance, "CP:1 -2 -2 2 2",
uses the EBN with the identifier 1, and displays it on a
2-pixels wider rectangle no matter of the DPI settings,
while "CP:1 -2D -2D 2D 2D" displays it on a 2-pixels
wider rectangle if DPI settings is 100%, and on on a
3-pixels wider rectangle if DPI settings is 150%.

The following screen shot shows the same EBN being
displayed, using different CP: options:

Return Description

Boolean A Boolean expression that indicates whether the new skin
was added or replaced.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control. By using a
collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the BeginUpdate and EndUpdate methods to maintain performance while init the control.
Use the Refresh method to refresh the control.

The identifier you choose for the skin is very important to be used in the background
properties like explained bellow. Shortly, the color properties uses 4 bytes (DWORD,
double WORD, and so on) to hold a RGB value. More than that, the first byte (most
significant byte in the color) is used only to specify system color. if the first bit in the byte is
1, the rest of bits indicates the index of the system color being used. So, we use the last 7
bits in the high significant byte of the color to indicates the identifier of the skin being used.
So, since the 7 bits can cover 127 values, excluding 0, we have 126 possibilities to store an
identifier in that byte. This way, a DWORD expression indicates the background color
stored in RRGGBB format and the index of the skin (ID parameter) in the last 7 bits in the
high significant byte of the color. For instance, the BackColor = BackColor Or &H2000000
indicates that we apply the skin with the index 2 using the old color, to the object that
BackColor is applied.

The skin method may change the visual appearance for the following parts in the control:

control's border, Appearance property
levels on the chart area, BackColor property, BackColorLevelHeader property
bar's background, ItemBar(exBarBackColor) property
control's header bar, BackColorHeader property
control's filter bar, FilterBarBackColor property
control's sort bar, BackColorSort property
the caption of the control's sort bar, BackColorSortCaption property
selected item or cell, SelBackColor property
item, ItemBackColor property
cell, CellBackColor property
cell's button, "drop down" filter bar button, "close" filter bar button, tooltip, and so on,
Background property
CellImage, CellImages, HeaderImage, CheckImage or RadioImage,
HasButtonsCustom property

For instance, the following VB sample changes the visual appearance for the selected item.
The SelBackColor property indicates the selection background color. Shortly, we need to
add a skin to the Appearance object using the Add method, and we need to set the last 7
bits in the SelBackColor property to indicates the index of the skin that we want to use. The

sample applies the " " to the selected item(s):

With Gantt1
 With .VisualAppearance
 .Add &H23, App.Path + "\selected.ebn"
 End With
 .SelForeColor = RGB(0, 0, 0)
 .SelBackColor = &H23000000
End With

The sample adds the skin with the index 35 (Hexa 23), and applies to the selected item
using the SelBackColor property.

The following C++ sample applies a new appearance to the selected item(s):

#include "Appearance.h"
m_gantt.GetVisualAppearance().Add(0x23,
COleVariant(_T("D:\\Temp\\ExGantt_Help\\selected.ebn")));
m_gantt.SetSelBackColor(0x23000000);
m_gantt.SetSelForeColor(0);

The following VB.NET sample applies a new appearance to the selected item(s):

With AxGantt1
 With .VisualAppearance
 .Add(&H23, "D:\Temp\ExGantt_Help\selected.ebn")
 End With
 .SelForeColor = Color.Black
 .Template = "SelBackColor = 587202560"
End With

The VB.NET sample uses the Template property to assign a new value to the SelBackColor
property. The 587202560 value represents &23000000 in hexadecimal.

The following C# sample applies a new appearance to the selected item(s):

axGantt1.VisualAppearance.Add(0x23, "D:\\Temp\\ExGantt_Help\\selected.ebn");
axGantt1.Template = "SelBackColor = 587202560";

The following VFP sample applies a new appearance to the selected item(s):

With thisform.Gantt1
 With .VisualAppearance
 .Add(35, "D:\Temp\ExGantt_Help\selected.ebn")
 EndWith
 .SelForeColor = RGB(0, 0, 0)
 .SelBackColor = .587202560
EndWith

The 587202560 value represents &23000000 in hexadecimal. The 32 value represents &23
in hexadecimal

Starting with Windows XP, the following table shows how the common controls are broken
into parts and states:

Control/ClassName Part States

BUTTON BP_CHECKBOX = 3

CBS_UNCHECKEDNORMAL =
1 CBS_UNCHECKEDHOT = 2
CBS_UNCHECKEDPRESSED
= 3
CBS_UNCHECKEDDISABLED
= 4 CBS_CHECKEDNORMAL =
5 CBS_CHECKEDHOT = 6
CBS_CHECKEDPRESSED = 7
CBS_CHECKEDDISABLED = 8
CBS_MIXEDNORMAL = 9
CBS_MIXEDHOT = 10
CBS_MIXEDPRESSED = 11
CBS_MIXEDDISABLED = 12

BP_GROUPBOX = 4 GBS_NORMAL = 1
GBS_DISABLED = 2

BP_PUSHBUTTON = 1

PBS_NORMAL = 1 PBS_HOT
= 2 PBS_PRESSED = 3
PBS_DISABLED = 4
PBS_DEFAULTED = 5

BP_RADIOBUTTON = 2

RBS_UNCHECKEDNORMAL =
1 RBS_UNCHECKEDHOT = 2
RBS_UNCHECKEDPRESSED
= 3
RBS_UNCHECKEDDISABLED
= 4 RBS_CHECKEDNORMAL =
5 RBS_CHECKEDHOT = 6

RBS_CHECKEDPRESSED = 7
RBS_CHECKEDDISABLED = 8

BP_USERBUTTON = 5
CLOCK CLP_TIME = 1 CLS_NORMAL = 1

COMBOBOX CP_DROPDOWNBUTTON = 1

CBXS_NORMAL = 1
CBXS_HOT = 2
CBXS_PRESSED = 3
CBXS_DISABLED = 4

EDIT EP_CARET = 2

EP_EDITTEXT = 1

ETS_NORMAL = 1 ETS_HOT =
2 ETS_SELECTED = 3
ETS_DISABLED = 4
ETS_FOCUSED = 5
ETS_READONLY = 6
ETS_ASSIST = 7

EXPLORERBAR EBP_HEADERBACKGROUND = 1

EBP_HEADERCLOSE = 2
EBHC_NORMAL = 1
EBHC_HOT = 2
EBHC_PRESSED = 3

EBP_HEADERPIN = 3

EBHP_NORMAL = 1
EBHP_HOT = 2
EBHP_PRESSED = 3
EBHP_SELECTEDNORMAL =
4 EBHP_SELECTEDHOT = 5
EBHP_SELECTEDPRESSED =
6

EBP_IEBARMENU = 4 EBM_NORMAL = 1 EBM_HOT
= 2 EBM_PRESSED = 3

EBP_NORMALGROUPBACKGROUND = 5

EBP_NORMALGROUPCOLLAPSE = 6
EBNGC_NORMAL = 1
EBNGC_HOT = 2
EBNGC_PRESSED = 3

EBP_NORMALGROUPEXPAND = 7
EBNGE_NORMAL = 1
EBNGE_HOT = 2
EBNGE_PRESSED = 3

EBP_NORMALGROUPHEAD = 8
EBP_SPECIALGROUPBACKGROUND = 9

EBP_SPECIALGROUPCOLLAPSE = 10
EBSGC_NORMAL = 1
EBSGC_HOT = 2
EBSGC_PRESSED = 3

EBP_SPECIALGROUPEXPAND = 11 EBSGE_NORMAL = 1
EBSGE_HOT = 2
EBSGE_PRESSED = 3

EBP_SPECIALGROUPHEAD = 12

HEADER HP_HEADERITEM = 1 HIS_NORMAL = 1 HIS_HOT =
2 HIS_PRESSED = 3

HP_HEADERITEMLEFT = 2 HILS_NORMAL = 1 HILS_HOT
= 2 HILS_PRESSED = 3

HP_HEADERITEMRIGHT = 3 HIRS_NORMAL = 1 HIRS_HOT
= 2 HIRS_PRESSED = 3

HP_HEADERSORTARROW = 4 HSAS_SORTEDUP = 1
HSAS_SORTEDDOWN = 2

LISTVIEW LVP_EMPTYTEXT = 5
LVP_LISTDETAIL = 3
LVP_LISTGROUP = 2

LVP_LISTITEM = 1

LIS_NORMAL = 1 LIS_HOT =
2 LIS_SELECTED = 3
LIS_DISABLED = 4
LIS_SELECTEDNOTFOCUS =
5

LVP_LISTSORTEDDETAIL = 4

MENU MP_MENUBARDROPDOWN = 4
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUBARITEM = 3
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_CHEVRON = 5
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUDROPDOWN = 2
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUITEM = 1
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_SEPARATOR = 6
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3
MDS_NORMAL = 1 MDS_HOT

MENUBAND MDP_NEWAPPBUTTON = 1 = 2 MDS_PRESSED = 3
MDS_DISABLED = 4
MDS_CHECKED = 5
MDS_HOTCHECKED = 6

MDP_SEPERATOR = 2

PAGE PGRP_DOWN = 2
DNS_NORMAL = 1 DNS_HOT
= 2 DNS_PRESSED = 3
DNS_DISABLED = 4

PGRP_DOWNHORZ = 4

DNHZS_NORMAL = 1
DNHZS_HOT = 2
DNHZS_PRESSED = 3
DNHZS_DISABLED = 4

PGRP_UP = 1
UPS_NORMAL = 1 UPS_HOT
= 2 UPS_PRESSED = 3
UPS_DISABLED = 4

PGRP_UPHORZ = 3

UPHZS_NORMAL = 1
UPHZS_HOT = 2
UPHZS_PRESSED = 3
UPHZS_DISABLED = 4

PROGRESS PP_BAR = 1
PP_BARVERT = 2
PP_CHUNK = 3
PP_CHUNKVERT = 4

REBAR RP_BAND = 3

RP_CHEVRON = 4
CHEVS_NORMAL = 1
CHEVS_HOT = 2
CHEVS_PRESSED = 3

RP_CHEVRONVERT = 5
RP_GRIPPER = 1
RP_GRIPPERVERT = 2

SCROLLBAR SBP_ARROWBTN = 1

ABS_DOWNDISABLED,
ABS_DOWNHOT,
ABS_DOWNNORMAL,
ABS_DOWNPRESSED,
ABS_UPDISABLED,
ABS_UPHOT,
ABS_UPNORMAL,
ABS_UPPRESSED,
ABS_LEFTDISABLED,
ABS_LEFTHOT,

ABS_LEFTNORMAL,
ABS_LEFTPRESSED,
ABS_RIGHTDISABLED,
ABS_RIGHTHOT,
ABS_RIGHTNORMAL,
ABS_RIGHTPRESSED

SBP_GRIPPERHORZ = 8
SBP_GRIPPERVERT = 9

SBP_LOWERTRACKHORZ = 4

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_LOWERTRACKVERT = 6

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_THUMBBTNHORZ = 2

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_THUMBBTNVERT = 3

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_UPPERTRACKHORZ = 5

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_UPPERTRACKVERT = 7

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_SIZEBOX = 10 SZB_RIGHTALIGN = 1
SZB_LEFTALIGN = 2

SPIN SPNP_DOWN = 2
DNS_NORMAL = 1 DNS_HOT
= 2 DNS_PRESSED = 3
DNS_DISABLED = 4

SPNP_DOWNHORZ = 4

DNHZS_NORMAL = 1
DNHZS_HOT = 2
DNHZS_PRESSED = 3
DNHZS_DISABLED = 4

SPNP_UP = 1 UPS_NORMAL = 1 UPS_HOT
= 2 UPS_PRESSED = 3
UPS_DISABLED = 4

SPNP_UPHORZ = 3

UPHZS_NORMAL = 1
UPHZS_HOT = 2
UPHZS_PRESSED = 3
UPHZS_DISABLED = 4

STARTPANEL SPP_LOGOFF = 8

SPP_LOGOFFBUTTONS = 9
SPLS_NORMAL = 1
SPLS_HOT = 2
SPLS_PRESSED = 3

SPP_MOREPROGRAMS = 2

SPP_MOREPROGRAMSARROW = 3 SPS_NORMAL = 1 SPS_HOT
= 2 SPS_PRESSED = 3

SPP_PLACESLIST = 6
SPP_PLACESLISTSEPARATOR = 7
SPP_PREVIEW = 11
SPP_PROGLIST = 4
SPP_PROGLISTSEPARATOR = 5
SPP_USERPANE = 1
SPP_USERPICTURE = 10

STATUS SP_GRIPPER = 3
SP_PANE = 1
SP_GRIPPERPANE = 2

TAB TABP_BODY = 10
TABP_PANE = 9

TABP_TABITEM = 1

TIS_NORMAL = 1 TIS_HOT =
2 TIS_SELECTED = 3
TIS_DISABLED = 4
TIS_FOCUSED = 5

TABP_TABITEMBOTHEDGE = 4

TIBES_NORMAL = 1
TIBES_HOT = 2
TIBES_SELECTED = 3
TIBES_DISABLED = 4
TIBES_FOCUSED = 5

TABP_TABITEMLEFTEDGE = 2

TILES_NORMAL = 1
TILES_HOT = 2
TILES_SELECTED = 3
TILES_DISABLED = 4

TILES_FOCUSED = 5

TABP_TABITEMRIGHTEDGE = 3

TIRES_NORMAL = 1
TIRES_HOT = 2
TIRES_SELECTED = 3
TIRES_DISABLED = 4
TIRES_FOCUSED = 5

TABP_TOPTABITEM = 5

TTIS_NORMAL = 1 TTIS_HOT
= 2 TTIS_SELECTED = 3
TTIS_DISABLED = 4
TTIS_FOCUSED = 5

TABP_TOPTABITEMBOTHEDGE = 8

TTIBES_NORMAL = 1
TTIBES_HOT = 2
TTIBES_SELECTED = 3
TTIBES_DISABLED
TTIBES_FOCUSED = 5

TABP_TOPTABITEMLEFTEDGE = 6

TTILES_NORMAL = 1
TTILES_HOT = 2
TTILES_SELECTED = 3
TTILES_DISABLED
TTILES_FOCUSED = 5

TABP_TOPTABITEMRIGHTEDGE = 7

TTIRES_NORMAL = 1
TTIRES_HOT = 2
TTIRES_SELECTED = 3
TTIRES_DISABLED
TTIRES_FOCUSED = 5

TASKBAND TDP_GROUPCOUNT = 1
TDP_FLASHBUTTON = 2
TDP_FLASHBUTTONGROUPMENU = 3

TASKBAR TBP_BACKGROUNDBOTTOM = 1
TBP_BACKGROUNDLEFT = 4
TBP_BACKGROUNDRIGHT = 2
TBP_BACKGROUNDTOP = 3
TBP_SIZINGBARBOTTOM = 5
TBP_SIZINGBARBOTTOMLEFT = 8
TBP_SIZINGBARRIGHT = 6
TBP_SIZINGBARTOP = 7

TOOLBAR TP_BUTTON = 1

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5

TS_HOTCHECKED = 6

TP_DROPDOWNBUTTON = 2

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SPLITBUTTON = 3

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SPLITBUTTONDROPDOWN = 4

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SEPARATOR = 5

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SEPARATORVERT = 6

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TOOLTIP TTP_BALLOON = 3 TTBS_NORMAL = 1
TTBS_LINK = 2

TTP_BALLOONTITLE = 4 TTBS_NORMAL = 1
TTBS_LINK = 2

TTP_CLOSE = 5
TTCS_NORMAL = 1
TTCS_HOT = 2
TTCS_PRESSED = 3

TTP_STANDARD = 1 TTSS_NORMAL = 1
TTSS_LINK = 2

TTP_STANDARDTITLE = 2 TTSS_NORMAL = 1
TTSS_LINK = 2

TRACKBAR TKP_THUMB = 3

TUS_NORMAL = 1 TUS_HOT =
2 TUS_PRESSED = 3
TUS_FOCUSED = 4
TUS_DISABLED = 5

TKP_THUMBBOTTOM = 4

TUBS_NORMAL = 1
TUBS_HOT = 2
TUBS_PRESSED = 3
TUBS_FOCUSED = 4
TUBS_DISABLED = 5

TKP_THUMBLEFT = 7

TUVLS_NORMAL = 1
TUVLS_HOT = 2
TUVLS_PRESSED = 3
TUVLS_FOCUSED = 4
TUVLS_DISABLED = 5

TKP_THUMBRIGHT = 8

TUVRS_NORMAL = 1
TUVRS_HOT = 2
TUVRS_PRESSED = 3
TUVRS_FOCUSED = 4
TUVRS_DISABLED = 5

TKP_THUMBTOP = 5

TUTS_NORMAL = 1
TUTS_HOT = 2
TUTS_PRESSED = 3
TUTS_FOCUSED = 4
TUTS_DISABLED = 5

TKP_THUMBVERT = 6

TUVS_NORMAL = 1
TUVS_HOT = 2
TUVS_PRESSED = 3
TUVS_FOCUSED = 4
TUVS_DISABLED = 5

TKP_TICS = 9 TSS_NORMAL = 1
TKP_TICSVERT = 10 TSVS_NORMAL = 1
TKP_TRACK = 1 TRS_NORMAL = 1
TKP_TRACKVERT = 2 TRVS_NORMAL = 1

TRAYNOTIFY TNP_ANIMBACKGROUND = 2
TNP_BACKGROUND = 1

TREEVIEW TVP_BRANCH = 3

TVP_GLYPH = 2 GLPS_CLOSED = 1
GLPS_OPENED = 2

TVP_TREEITEM = 1

TREIS_NORMAL = 1
TREIS_HOT = 2
TREIS_SELECTED = 3
TREIS_DISABLED = 4
TREIS_SELECTEDNOTFOCUS
= 5

WINDOW WP_CAPTION = 1 CS_ACTIVE = 1 CS_INACTIVE
= 2 CS_DISABLED = 3

WP_CAPTIONSIZINGTEMPLATE = 30

WP_CLOSEBUTTON = 18
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_DIALOG = 29

WP_FRAMEBOTTOM = 9 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMEBOTTOMSIZINGTEMPLATE = 36

WP_FRAMELEFT = 7 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMELEFTSIZINGTEMPLATE = 32

WP_FRAMERIGHT = 8 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMERIGHTSIZINGTEMPLATE = 34

WP_HELPBUTTON = 23
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_HORZSCROLL = 25
HSS_NORMAL = 1 HSS_HOT
= 2 HSS_PUSHED = 3
HSS_DISABLED = 4

WP_HORZTHUMB = 26
HTS_NORMAL = 1 HTS_HOT =
2 HTS_PUSHED = 3
HTS_DISABLED = 4

WP_MAX_BUTTON

MAXBS_NORMAL = 1
MAXBS_HOT = 2
MAXBS_PUSHED = 3
MAXBS_DISABLED = 4

WP_MAXCAPTION = 5
MXCS_ACTIVE = 1
MXCS_INACTIVE = 2
MXCS_DISABLED = 3

WP_MDICLOSEBUTTON = 20
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_MDIHELPBUTTON = 24
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4
MINBS_NORMAL = 1
MINBS_HOT = 2

WP_MDIMINBUTTON = 16 MINBS_PUSHED = 3
MINBS_DISABLED = 4

WP_MDIRESTOREBUTTON = 22
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_MDISYSBUTTON = 14
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_MINBUTTON = 15

MINBS_NORMAL = 1
MINBS_HOT = 2
MINBS_PUSHED = 3
MINBS_DISABLED = 4

WP_MINCAPTION = 3
MNCS_ACTIVE = 1
MNCS_INACTIVE = 2
MNCS_DISABLED = 3

WP_RESTOREBUTTON = 21
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_SMALLCAPTION = 2 CS_ACTIVE = 1 CS_INACTIVE
= 2 CS_DISABLED = 3

WP_SMALLCAPTIONSIZINGTEMPLATE = 31

WP_SMALLCLOSEBUTTON = 19
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_SMALLFRAMEBOTTOM = 12 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMEBOTTOMSIZINGTEMPLATE
= 37

WP_SMALLFRAMELEFT = 10 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMELEFTSIZINGTEMPLATE =
33

WP_SMALLFRAMERIGHT = 11 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMERIGHTSIZINGTEMPLATE =
35

WP_SMALLHELPBUTTON
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4
MAXBS_NORMAL = 1

WP_SMALLMAXBUTTON MAXBS_HOT = 2
MAXBS_PUSHED = 3
MAXBS_DISABLED = 4

WP_SMALLMAXCAPTION = 6
MXCS_ACTIVE = 1
MXCS_INACTIVE = 2
MXCS_DISABLED = 3

WP_SMALLMINCAPTION = 4
MNCS_ACTIVE = 1
MNCS_INACTIVE = 2
MNCS_DISABLED = 3

WP_SMALLRESTOREBUTTON
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_SMALLSYSBUTTON
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_SYSBUTTON = 13
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_VERTSCROLL = 27
VSS_NORMAL = 1 VSS_HOT
= 2 VSS_PUSHED = 3
VSS_DISABLED = 4

WP_VERTTHUMB = 28
VTS_NORMAL = 1 VTS_HOT =
2 VTS_PUSHED = 3
VTS_DISABLED = 4

method Appearance.Clear ()
Removes all skins in the control.

Type Description

Use the Clear method to clear all skins from the control. Use the Remove method to
remove a specific skin. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being applied
to the background's part.

The skin method may change the visual appearance for the following parts in the control:

control's border, Appearance property
levels on the chart area, BackColor property, BackColorLevelHeader property
bar's background, ItemBar(exBarBackColor) property
control's header bar, BackColorHeader property
control's filter bar, FilterBarBackColor property
control's sort bar, BackColorSort property
the caption of the control's sort bar, BackColorSortCaption property
selected item or cell, SelBackColor property
item, ItemBackColor property
cell, CellBackColor property
cell's button, "drop down" filter bar button, "close" filter bar button, tooltip, and so on,
Background property
CellImage, CellImages, HeaderImage, CheckImage or RadioImage,
HasButtonsCustom property

method Appearance.Remove (ID as Long)
Removes a specific skin from the control.

Type Description

ID as Long A Long expression that indicates the index of the skin
being removed.

Use the Remove method to remove a specific skin. The identifier of the skin being removed
should be the same as when the skin was added using the Add method. Use the Clear
method to clear all skins from the control. If you need to remove the skin appearance from
a part of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the background's part.

The skin method may change the visual appearance for the following parts in the control:

control's border, Appearance property
levels on the chart area, BackColor property, BackColorLevelHeader property
bar's background, ItemBar(exBarBackColor) property
control's header bar, BackColorHeader property
control's filter bar, FilterBarBackColor property
control's sort bar, BackColorSort property
the caption of the control's sort bar, BackColorSortCaption property
selected item or cell, SelBackColor property
item, ItemBackColor property
cell, CellBackColor property
cell's button, "drop down" filter bar button, "close" filter bar button, tooltip, and so on,
Background property
CellImage, CellImages, HeaderImage, CheckImage or RadioImage,
HasButtonsCustom property

property Appearance.RenderType as Long
Specifies the way colored EBN objects are displayed on the component.

Type Description

Long A long expression that indicates how the EBN objects are
shown in the control, like explained bellow.

By default, the RenderType property is 0, which indicates an A-color scheme. The
RenderType property can be used to change the colors for the entire control, for parts of
the controls that uses EBN objects. The RenderType property is not applied to the currently
XP-theme if using.

The RenderType property is applied to all parts that displays an EBN object. The properties
of color type may support the EBN object if the property's description includes "A color
expression that indicates the cell's background color. The last 7 bits in the high significant
byte of the color to indicates the identifier of the skin being used. Use the Add method to
add new skins to the control. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being
applied to the background's part." In other words, a property that supports EBN objects
should be of format 0xIDRRGGBB, where the ID is the identifier of the EBN to be applied,
while the BBGGRR is the (Red,Green,Blue, RGB-Color) color to be applied on the selected
EBN. For instance, the 0x1000000 indicates displaying the EBN as it is, with no color
applied, while the 0x1FF0000, applies the Blue color (RGB(0x0,0x0,0xFF), RGB(0,0,255)
on the EBN with the identifier 1. You can use the EBNColor tool to visualize applying EBN
colors.

Click here to watch a movie on how you can change the colors to be applied on EBN
objects.

For instance, the following sample changes the control's header appearance, by using an
EBN object:

With Control
 .VisualAppearance.Add 1,"c:\exontrol\images\normal.ebn"
 .BackColorHeader = &H1000000
End With

In the following screen shot the following objects displays the current EBN with a different
color:

"A" in Red (RGB(255,0,0), for instance the bar's property exBarColor is 0x10000FF
"B" in Green (RGB(0,255,0), for instance the bar's property exBarColor is 0x100FF00

https://exontrol.com/skintut.jsp#colors
https://www.youtube.com/watch?v=-PcCepMVclQ

"C" in Blue (RGB(0,0,255), for instance the bar's property exBarColor is 0x1FF0000
"Default", no color is specified, for instance the bar's property exBarColor is
0x1000000

The RenderType property could be one of the following:

-3, no color is applied. For instance, the BackColorHeader = &H1FF0000 is displayed
as would be .BackColorHeader = &H1000000, so the 0xFF0000 color (Blue color) is
ignored. You can use this option to allow the control displays the EBN colors or not.

-2, OR-color scheme. The color to be applied on the part of the control is a OR bit
combination between the original EBN color and the specified color. For instance, the
BackColorHeader = &H1FF0000, applies the OR bit for the entire Blue channel, or in
other words, it applies a less Blue to the part of the control. This option should be used
with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

-1, AND-color scheme, The color to be applied on the part of the control is an AND bit
combination between the original EBN color and the specified color. For instance, the
BackColorHeader = &H1FF0000, applies the AND bit for the entire Blue channel, or in
other words, it applies a more Blue to the part of the control. This option should be
used with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

0, default, the specified color is applied to the EBN. For instance, the
BackColorHeader = &H1FF0000, applies a Blue color to the object. This option could
be used to specify any color for the part of the components, that support EBN objects,
not only solid colors.

0xAABBGGRR, where the AA a value between 0 to 255, which indicates the
transparency, and RR, GG, BB the red, green and blue values. This option applies the
same color to all parts that displays EBN objects, whit ignoring any specified color in
the color property. For instance, the RenderType on 0x4000FFFF, indicates a 25%
Yellow on EBN objects. The 0x40, or 64 in decimal, is a 25 % from in a 256 interal, and
the 0x00FFFF, indicates the Yellow (RGB(255,255,0)). The same could be if the
RenderType is 0x40000000 + vbYellow, or &H40000000 + RGB(255, 255, 0), and so,
the RenderType could be the 0xAA000000 + Color, where the Color is the RGB format
of the color.

The following picture shows the control with the RenderType property on 0x4000FFFF
(25% Yellow, 0x40 or 64 in decimal is 25% from 256):

The following picture shows the control with the RenderType property on 0x8000FFFF
(50% Yellow, 0x80 or 128 in decimal is 50% from 256):

The following picture shows the control with the RenderType property on 0xC000FFFF
(75% Yellow, 0xC0 or 192 in decimal is 75% from 256):

The following picture shows the control with the RenderType property on 0xFF00FFFF
(100% Yellow, 0xFF or 255 in decimal is 100% from 255):

Bar object
The Bar object identifies a bar in the chart. A Bar object contains three parts: the start part
and end part identifies the corners of the bar, and the middle part of the bar. The look and
feel of the middle part of the bar are defined by the properties: Color, Pattern and Shape.
The StartShape and StartColor properties defines the start part of the bar. The EndShape
and EndColor properties defines the end part of the bar. Use the Bars property to access
the Bars collection. Use the Chart object property to access the control's chart. Use the
AddBar method to add a bar to an item. Use the Add and Copy methods to add new Bar
objects. The Bar object supports the following properties and methods:

Name Description
Color Specifies the color of the bar.

EndColor Returns or sets a value that indicates the color for the
right side corner.

EndShape Retrieves or sets a value that indicates the shape of the
right side corner.

Height Retrieves or sets a value that indicates the height in pixels
of the bar.

Name Retrieves the name of the bar.

Pattern Retrieves or sets a value that indicates the pattern being
used to fill the bar.

Shape Retrieves or sets a value that indicates the shape of the
bar.

Shortcut Specifies a value that indicates a shortcut for the current
bar.

StartColor Returns or sets a value that indicates the color for the left
side corner.

StartShape Retrieves or sets a value that indicates the shape of the
left side corner.

property Bar.Color as Color
Specifies the color of the bar.

Type Description

Color

A Color expression that indicates the color of the bar. The
last 7 bits in the high significant byte of the color indicates
the identifier of the skin being used to paint the bar. Use
the Add method to add new skins to the control. The skin
object is used to draw the bar in the chart area.

Use the Color property to specify the color to fill the bar. The Color property specifies the
color to paint all bars of the same type. Use the ItemBar(exBarColor) property to specify a
different color/skin for a particular bar. Use the Pattern property to specify the brush being
used to fill the bar. Use the Shape property to specify the height and the vertical alignment
of the middle part of the bar. Use the StartColor property to specify the color for the
beginning part of the bar, if the StartShape property is not exShapeIconEmpty. Use the
EndColor property to specify the color for the ending part of the bar, if the EndShape
property is not exShapeIconEmpty.

In VB.NET or C# you require the following functions until the .NET framework will provide:

You can use the following VB.NET function:

 Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
 End Function

You can use the following C# function:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VB sample creates a new bar called "Task2", that's similar with the "Task" bar
excepts that we change the color to fill the bar:

With Gantt1.Chart.Bars
 With .Copy("Task", "Task2")
 .Color = RGB(255, 0, 0)
 End With
End With

The following C++ sample creates a new bar called "Task2", that's similar with the "Task"
bar excepts that we change the color to fill the bar:

CBars bars = m_gantt.GetChart().GetBars();
CBar bar = bars.Copy("Task", "Task2");
bar.SetColor(RGB(255,0,0));

The following VB.NET sample creates a new bar called "Task2", that's similar with the
"Task" bar excepts that we change the color to fill the bar:

With AxGantt1.Chart.Bars
 With .Copy("Task", "Task2")
 .Color = ToUInt32(Color.Red)
 End With
End With

The following C# sample creates a new bar called "Task2", that's similar with the "Task" bar
excepts that we change the color to fill the bar:

EXGANTTLib.Bar bar = axGantt1.Chart.Bars.Copy("Task", "Task2");
bar.Color = ToUInt32(Color.Red);

The following VFP sample creates a new bar called "Task2", that's similar with the "Task"
bar excepts that we change the color to fill the bar:

with thisform.Gantt1.Chart.Bars
 with .Copy("Task", "Task2")
 .Color = RGB(255,0,0)
 endwith
endwith

property Bar.EndColor as Color
Returns or sets a value that indicates the color for the right side corner.

Type Description

Color A Color expression that indicates the color for the ending
part of the bar.

Use the EndColor property to specify the color to fill the end part of the bar, if the
EndShape property is not exShapeIconEmpty. Use the Color property to specify the color
to fill the middle part of the bar. Use the StartColor and StartShape properties to define the
look and feel for the starting part of the bar. Use the AddShapeCorner property to add
custom icons to the bars. In this case, the icon is processed before displaying based on the
StartColor/ EndColor property. For instance, if you add an black and white icon, and the
StartColor/EndColor is red, the icon will be painted in red. Instead, if the
StartColor/EndColor property is -1 (0xFFFFFFFF, not white which is 0x00FFFFFF), the
icon is painted as it was added using the AddShapeCorner without any image processing. If
the StartColor/EndColor property is not -1, it indicates the color being applied to the icon.

In VB.NET or C# you require the following functions until the .NET framework will provide:

You can use the following VB.NET function:

 Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
 End Function

You can use the following C# function:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VB sample defines a new bar that looks like this :

With Gantt1.Chart.Bars.Add("Task2")
 .Pattern = exPatternShadow
 .Color = RGB(0, 0, 255)
 .EndShape = exShapeIconCircleDot
 .EndColor = RGB(255, 0, 0)
End With

The following C++ sample defines a bar that looks like this above:

CBar bar = m_gantt.GetChart().GetBars().Add("Task2");
bar.SetPattern(3 /*exPatternShadow*/);
bar.SetColor(RGB(0, 0, 255));
bar.SetEndShape(4 /* exShapeIconCircleDot*/);
bar.SetEndColor(RGB(255, 0, 0));

The following VB.NET sample defines a bar that looks like this above:

With AxGantt1.Chart.Bars.Add("Task2")
 .Pattern = EXGANTTLib.PatternEnum.exPatternShadow
 .Color = RGB(0, 0, 255)
 .EndShape = EXGANTTLib.ShapeCornerEnum.exShapeIconCircleDot
 .EndColor = RGB(255, 0, 0)
End With

The following C# sample defines a bar that looks like this above:

EXGANTTLib.Bar bar = axGantt1.Chart.Bars.Add("Task2");
bar.Pattern = EXGANTTLib.PatternEnum.exPatternShadow;
bar.Color = ToUInt32(Color.FromArgb(0, 0, 255));
bar.EndShape = EXGANTTLib.ShapeCornerEnum.exShapeIconCircleDot;
bar.EndColor = ToUInt32(Color.FromArgb(255, 0, 0));

The following VFP sample defines a bar that looks like this above:

with thisform.Gantt1.Chart.Bars.Add("Task2")
 .Pattern = 3 && exPatternShadow
 .Color = RGB(0, 0, 255)

 .EndShape = 4 && exShapeIconCircleDot
 .EndColor = RGB(255, 0, 0)
EndWith

property Bar.EndShape as ShapeCornerEnum
Retrieves or sets a value that indicates the shape of the right side corner.

Type Description

ShapeCornerEnum A ShapeCornerEnum expression that defines the shape of
the icon being used to draw the corner.

By default, the EndShape property is exShapeIconEmpty. If the EndShape property is
exShapeIconEmpty the bas has no ending part. Use the Color property to specify the color
to fill the middle part of the bar. Use the Pattern property to specify the brush being used to
fill the bar. Use the Shape property to specify the height and the vertical alignment of the
middle part of the bar. Use the AddShapeCorner method to add a custom icon to be used
as a starting or ending part of the bar. Use the Images or ReplaceIcon method to update
the list of control's icons.

The following VB sample adds a custom shape and defines a bar like this :

With Gantt1.Chart.Bars
 .AddShapeCorner 12345, 1
 With .Add("Task2")
 .Pattern = exPatternDot
 .Shape = exShapeThinDown
 .EndShape = 12345
 .EndColor = RGB(255, 0, 0)
 .Color = .EndColor
 End With
End With

The following C++ sample adds a custom shape and defines a bar like above:

CBars bars = m_gantt.GetChart().GetBars();
bars.AddShapeCorner(COleVariant((long)12345), COleVariant((long)1));
CBar bar = bars.Add("Task2");
bar.SetPattern(2 /*exPatternDot*/);
bar.SetShape(20 /*exShapeThinDown*/);
bar.SetEndShape(12345);
bar.SetEndColor(RGB(255, 0, 0));
bar.SetColor(bar.GetEndColor());

The following VB.NET sample adds a custom shape and defines a bar like above:

With AxGantt1.Chart.Bars
 .AddShapeCorner(12345, 1)
 With .Add("Task2")
 .Pattern = EXGANTTLib.PatternEnum.exPatternDot
 .Shape = EXGANTTLib.ShapeBarEnum.exShapeThinDown
 .EndShape = 12345
 .EndColor = RGB(255, 0, 0)
 .Color = .EndColor
 End With
End With

The following C# sample adds a custom shape and defines a bar like above:

axGantt1.Chart.Bars.AddShapeCorner(12345, 1);
EXGANTTLib.Bar bar = axGantt1.Chart.Bars.Add("Task2");
bar.Pattern = EXGANTTLib.PatternEnum.exPatternDot;
bar.Shape = EXGANTTLib.ShapeBarEnum.exShapeThinDown;
bar.EndShape = (EXGANTTLib.ShapeCornerEnum)12345;
bar.EndColor = ToUInt32(Color.FromArgb(255, 0, 0));
bar.Color = bar.EndColor;

The following VFP sample adds a custom shape and defines a bar like above:

With thisform.Gantt1.Chart.Bars
 .AddShapeCorner(12345, 1)
 With .Add("Task2")
 .Pattern = 2 && exPatternDot
 .Shape = 20 && exShapeThinDown
 .EndShape = 12345
 .EndColor = RGB(255, 0, 0)
 .Color = .EndColor
 EndWith
EndWith

The following VB sample defines a new bar that looks like this :

With .Chart.Bars.Add("Task2")
 .Pattern = exPatternShadow

 .Color = RGB(0, 0, 255)
 .EndShape = exShapeIconCircleDot
 .EndColor = RGB(255, 0, 0)
End With

The following C++ sample defines a bar that looks like this above:

CBar bar = m_gantt.GetChart().GetBars().Add("Task2");
bar.SetPattern(3 /*exPatternShadow*/);
bar.SetColor(RGB(0, 0, 255));
bar.SetEndShape(4 /* exShapeIconCircleDot*/);
bar.SetEndColor(RGB(255, 0, 0));

The following VB.NET sample defines a bar that looks like this above:

With AxGantt1.Chart.Bars.Add("Task2")
 .Pattern = EXGANTTLib.PatternEnum.exPatternShadow
 .Color = RGB(0, 0, 255)
 .EndShape = EXGANTTLib.ShapeCornerEnum.exShapeIconCircleDot
 .EndColor = RGB(255, 0, 0)
End With

The following C# sample defines a bar that looks like this above:

EXGANTTLib.Bar bar = axGantt1.Chart.Bars.Add("Task2");
bar.Pattern = EXGANTTLib.PatternEnum.exPatternShadow;
bar.Color = ToUInt32(Color.FromArgb(0, 0, 255));
bar.EndShape = EXGANTTLib.ShapeCornerEnum.exShapeIconCircleDot;
bar.EndColor = ToUInt32(Color.FromArgb(255, 0, 0));

The following VFP sample defines a bar that looks like this above:

with thisform.Gantt1.Chart.Bars.Add("Task2")
 .Pattern = 3 && exPatternShadow
 .Color = RGB(0, 0, 255)
 .EndShape = 4 && exShapeIconCircleDot
 .EndColor = RGB(255, 0, 0)
EndWith

property Bar.Height as Long
Retrieves or sets a value that indicates the height in pixels of the bar.

Type Description

Long A Long expression that indicates the height of the bar, in
pixels.

Use the Height property to change the heights for your bars. If the Height property is 0, the
bar is not displayed. If the Height property is negative, the height of the bar is specified by
the height of the item that displays the bar. If the Height property is positive it indicates the
height of the bar to be displayed, in pixels. Use the DefaultItemHeight property to specify
the default height for all items in the control. Use the ItemHeight property to specify the
height for a specified item. The CellSingleLine property specifies whether a cell displays its
caption using multiple lines. If you require a single bar with a different height, you can use
the Copy method to copy a new bar, and use the Height property to specify a different
height.

The control provides several predefined bars as follows:

"Deadline":
"Project Summary":
"Summary":
"Milestone":
"Progress":
"Split":
"Task":

For instance, the following VB sample changes the height of the "Task" bar:

Gantt1.Chart.Bars("Task").Height = 18

The following VC++ sample changes the height of the "Task" bar:

m_gantt.GetChart().GetBars().GetItem(COleVariant("Task")).SetHeight(18);

The following VFP sample changes the height of the "Task" bar:

With thisform.Gantt1.Chart.Bars
 .Item("Task").Height = 18
endwith

The following C# sample changes the height of the "Task" bar:

axGantt1.Chart.Bars["Task"].Height = 18;

The following VB.NET sample changes the height of the "Task" bar:

AxGantt1.Chart.Bars("Task").Height = 18

property Bar.Name as String
Retrieves the name of the bar.

Type Description
String A String expression that indicates the name of the Bar.

The Name property indicates the name of the bar. The Name property is read-only. Use the
Add or Copy method to add a new bar to the Bars collection, using a different name. Use
the AddBar method to add new bars to an item. Use the Shape, Pattern and Color
properties to define the appearance for the middle part of the bar. Use the StartShape and
StartColor properties to define the appearance for the starting part of the bar. Use the
EndShape and EndColor properties to define the appearance for the ending part of the bar.

property Bar.Pattern as PatternEnum
Retrieves or sets a value that indicates the pattern being used to fill the bar.

Type Description

PatternEnum A PatternEnum expression that indicates the brush being
used to fill the bar.

Use the Pattern property to specify the brush to fill the bar. By default, the Pattern property
is exPatternSolid. Use the Color property to specify the color to fill the bar. Use the Shape
property to specify the height and the vertical alignment of the middle part of the bar. Use
the StartColor property to specify the color for the beginning part of the bar, if the
StartShape property is not exShapeIconEmpty. Use the EndColor property to specify the
color for the ending part of the bar, if the EndShape property is not exShapeIconEmpty.

The following VB sample creates a new bar called "Task2", that's similar with the "Task" bar
excepts that we change the pattern to fill the bar:

With Gantt1.Chart.Bars
 With .Copy("Task", "Task2")
 .Pattern = exPatternDot
 End With
End With

The following C++ sample creates a new bar called "Task2", that's similar with the "Task"
bar excepts that we change the pattern to fill the bar:

CBars bars = m_gantt.GetChart().GetBars();
CBar bar = bars.Copy("Task", "Task2");
bar.SetPattern(2 /*exPatternDot*/);

The following VB.NET sample creates a new bar called "Task2", that's similar with the
"Task" bar excepts that we change the pattern to fill the bar:

With AxGantt1.Chart.Bars
 With .Copy("Task", "Task2")
 .Pattern = EXGANTTLib.PatternEnum.exPatternDot
 End With
End With

The following C# sample creates a new bar called "Task2", that's similar with the "Task" bar
excepts that we change the pattern to fill the bar:

EXGANTTLib.Bar bar = axGantt1.Chart.Bars.Copy("Task", "Task2");
bar.Pattern = EXGANTTLib.PatternEnum.exPatternDot;

The following VFP sample creates a new bar called "Task2", that's similar with the "Task"
bar excepts that we change the pattern to fill the bar:

with thisform.Gantt1.Chart.Bars
 with .Copy("Task", "Task2")
 .Pattern = 2
 endwith
endwith

property Bar.Shape as ShapeBarEnum
Retrieves or sets a value that indicates the shape of the bar.

Type Description

ShapeBarEnum A ShapeBarEnum expression that indicates the height and
the vertical alignment of the bar

Use the Shape property to specify the height and the vertical alignment of the middle part of
the bar. By default, the Shape property is exShapeSolid. Use the Pattern property to
specify the brush to fill the bar. Use the Color property to specify the color to fill the bar.
Use the StartColor property to specify the color for the beginning part of the bar, if the
StartShape property is not exShapeIconEmpty. Use the EndColor property to specify the
color for the ending part of the bar, if the EndShape property is not exShapeIconEmpty.

The following VB sample creates a new bar called "Task2", that's similar with the "Task" bar
excepts that we change the shape of the new bar bar:

With Gantt1.Chart.Bars
 With .Copy("Task", "Task2")
 .Shape = exShapeSolidCenter
 End With
End With

The following C++ sample creates a new bar called "Task2", that's similar with the "Task"
bar excepts that we change the shape of the new bar bar:

CBars bars = m_gantt.GetChart().GetBars();
CBar bar = bars.Copy("Task", "Task2");
bar.SetShape(3 /*exShapeSolidCenter*/);

The following VB.NET sample creates a new bar called "Task2", that's similar with the
"Task" bar excepts that we change the shape of the new bar bar:

With AxGantt1.Chart.Bars
 With .Copy("Task", "Task2")
 .Shape = EXGANTTLib.ShapeBarEnum.exShapeSolidCenter
 End With
End With

The following C# sample creates a new bar called "Task2", that's similar with the "Task" bar
excepts that we change the shape of the new bar bar:

EXGANTTLib.Bar bar = axGantt1.Chart.Bars.Copy("Task", "Task2");
bar.Shape = EXGANTTLib.ShapeBarEnum.exShapeSolidCenter;

The following VFP sample creates a new bar called "Task2", that's similar with the "Task"
bar excepts that we change the shape of the new bar bar:

with thisform.Gantt1.Chart.Bars
 with .Copy("Task", "Task2")
 .Shape = 3
 endwith
endwith

property Bar.Shortcut as String
Specifies a value that indicates a shortcut for the current bar.

Type Description
String A String expression that indicates the shortcut of the bar

The Shortcut property adds a shortcut to this bar. Use the Add method to add new type of
bars to the chart. Use the Shortcut property to redefine a known bar. For instance, you can
define the bar "Task%Progress:Split", and rename it to "Task", and so all Task bars will be
divided by the nonworking area, and may display percent values, in other words, you
redefined the Task bars

property Bar.StartColor as Color
Returns or sets a value that indicates the color for the left side corner.

Type Description

Color A Color expression that indicates the color for the starting
part of the bar.

Use the StartColor property to specify the color to fill the start part of the bar, if the
StartShape property is not exShapeIconEmpty. Use the Color property to specify the color
to fill the middle part of the bar. Use the EndColor and EndShape properties to define the
appearance of the starting part of the bar. Use the AddShapeCorner property to add
custom icons to the bars. In this case, the icon is processed before displaying based on the
StartColor/ EndColor property. For instance, if you add an black and white icon, and the
StartColor/EndColor is red, the icon will be painted in red. Instead, if the
StartColor/EndColor property is -1 (0xFFFFFFFF, not white which is 0x00FFFFFF), the
icon is painted as it was added using the AddShapeCorner without any image processing.

In VB.NET or C# you require the following functions until the .NET framework will provide:

You can use the following VB.NET function:

 Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
 End Function

You can use the following C# function:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VB sample defines a new bar that looks like this :

With Gantt1.Chart.Bars.Add("Task2")
 .Pattern = exPatternShadow
 .Color = RGB(0, 0, 255)
 .StartShape = exShapeIconCircleDot
 .StartColor = RGB(255, 0, 0)
End With

The following C++ sample defines a bar that looks like this above:

CBar bar = m_gantt.GetChart().GetBars().Add("Task2");
bar.SetPattern(3 /*exPatternShadow*/);
bar.SetColor(RGB(0, 0, 255));
bar.SetStartShape(4 /* exShapeIconCircleDot*/);
bar.SetStartColor(RGB(255, 0, 0));

The following VB.NET sample defines a bar that looks like this above:

With AxGantt1.Chart.Bars.Add("Task2")
 .Pattern = EXGANTTLib.PatternEnum.exPatternShadow
 .Color = RGB(0, 0, 255)
 .StartShape = EXGANTTLib.ShapeCornerEnum.exShapeIconCircleDot
 .StartColor = RGB(255, 0, 0)
End With

The following C# sample defines a bar that looks like this above:

With AxGantt1.Chart.Bars.Add("Task2")
 .Pattern = EXGANTTLib.PatternEnum.exPatternShadow
 .Color = RGB(0, 0, 255)
 .StartShape = EXGANTTLib.ShapeCornerEnum.exShapeIconCircleDot
 .StartColor = RGB(255, 0, 0)
End With

The following VFP sample defines a bar that looks like this above:

with thisform.Gantt1.Chart.Bars.Add("Task2")
 .Pattern = 3 && exPatternShadow

 .Color = RGB(0, 0, 255)
 .StartShape = 4 && exShapeIconCircleDot
 .StartColor = RGB(255, 0, 0)
EndWith

property Bar.StartShape as ShapeCornerEnum
Retrieves or sets a value that indicates the shape of the left side corner.

Type Description

ShapeCornerEnum A ShapeCornerEnum expression that defines the shape of
the icon being used to draw the corner.

By default, the StartShape property is exShapeIconEmpty. If the StartShape property is
exShapeIconEmpty the bas has no starting part. Use the Color property to specify the color
to fill the middle part of the bar. Use the Pattern property to specify the brush being used to
fill the bar. Use the Shape property to specify the height and the vertical alignment of the
middle part of the bar. Use the AddShapeCorner method to add a custom icon to be used
as a starting or ending part of the bar. Use the Images or ReplaceIcon method to update
the list of control's icons.

The following VB sample adds a custom shape and defines a bar like this :

With Gantt1.Chart.Bars
 .AddShapeCorner 12345, 1
 With .Add("Task2")
 .Pattern = exPatternDot
 .Shape = exShapeThinDown
 .StartShape = 12345
 .StartColor = RGB(255, 0, 0)
 .Color = .StartColor
 End With
End With

The following C++ sample adds a custom shape and defines a bar like above:

CBars bars = m_gantt.GetChart().GetBars();
bars.AddShapeCorner(COleVariant((long)12345), COleVariant((long)1));
CBar bar = bars.Add("Task2");
bar.SetPattern(2 /*exPatternDot*/);
bar.SetShape(20 /*exShapeThinDown*/);
bar.SetStartShape(12345);
bar.SetStartColor(RGB(255, 0, 0));
bar.SetColor(bar.GetStartColor());

The following VB.NET sample adds a custom shape and defines a bar like above:

With AxGantt1.Chart.Bars
 .AddShapeCorner(12345, 1)
 With .Add("Task2")
 .Pattern = EXGANTTLib.PatternEnum.exPatternDot
 .Shape = EXGANTTLib.ShapeBarEnum.exShapeThinDown
 .StartShape = 12345
 .StartColor = RGB(255, 0, 0)
 .Color = .StartColor
 End With
End With

The following C# sample adds a custom shape and defines a bar like above:

axGantt1.Chart.Bars.AddShapeCorner(12345, 1);
EXGANTTLib.Bar bar = axGantt1.Chart.Bars.Add("Task2");
bar.Pattern = EXGANTTLib.PatternEnum.exPatternDot;
bar.Shape = EXGANTTLib.ShapeBarEnum.exShapeThinDown;
bar.StartShape = (EXGANTTLib.ShapeCornerEnum)12345;
bar.StartColor = ToUInt32(Color.FromArgb(255, 0, 0));
bar.Color = bar.StartColor;

The following VFP sample adds a custom shape and defines a bar like above:

With thisform.Gantt1.Chart.Bars
 .AddShapeCorner(12345, 1)
 With .Add("Task2")
 .Pattern = 2 && exPatternDot
 .Shape = 20 && exShapeThinDown
 .StartShape = 12345
 .StartColor = RGB(255, 0, 0)
 .Color = .StartColor
 EndWith
EndWith

The following VB sample defines a new bar that looks like this :

With Gantt1.Chart.Bars.Add("Task2")
 .Pattern = exPatternShadow

 .Color = RGB(0, 0, 255)
 .StartShape = exShapeIconCircleDot
 .StartColor = RGB(255, 0, 0)
End With

The following C++ sample defines a bar that looks like this above:

CBar bar = m_gantt.GetChart().GetBars().Add("Task2");
bar.SetPattern(3 /*exPatternShadow*/);
bar.SetColor(RGB(0, 0, 255));
bar.SetStartShape(4 /* exShapeIconCircleDot*/);
bar.SetStartColor(RGB(255, 0, 0));

The following VB.NET sample defines a bar that looks like this above:

With AxGantt1.Chart.Bars.Add("Task2")
 .Pattern = EXGANTTLib.PatternEnum.exPatternShadow
 .Color = RGB(0, 0, 255)
 .StartShape = EXGANTTLib.ShapeCornerEnum.exShapeIconCircleDot
 .StartColor = RGB(255, 0, 0)
End With

The following C# sample defines a bar that looks like this above:

With AxGantt1.Chart.Bars.Add("Task2")
 .Pattern = EXGANTTLib.PatternEnum.exPatternShadow
 .Color = RGB(0, 0, 255)
 .StartShape = EXGANTTLib.ShapeCornerEnum.exShapeIconCircleDot
 .StartColor = RGB(255, 0, 0)
End With

The following VFP sample defines a bar that looks like this above:

with thisform.Gantt1.Chart.Bars.Add("Task2")
 .Pattern = 3 && exPatternShadow
 .Color = RGB(0, 0, 255)
 .StartShape = 4 && exShapeIconCircleDot
 .StartColor = RGB(255, 0, 0)
EndWith

Bars object
The Bars collection holds Bar objects. A Bar object defines the look and feel for bars in the
chart's area. Use the Bars property to access the Bars collection. Use the Chart object
property to access the control's chart. Use the AddBar method to add a bar to an item. The
Bars object supports the following methods and properties:

Name Description

Add Adds a Bar object to the collection and returns a reference
to the newly created object.

AddShapeCorner Adds a custom shape corner.
Clear Removes all objects in a collection.

Copy Copies a Bar object and returns a reference to the newly
created object.

Count Returns the number of objects in a collection.
Item Returns a specific Bar of the Bars collection.
Remove Removes a specific member from the Bars collection.
RemoveShapeCorner Removes a custom shape corner.

method Bars.Add (Name as String)
Adds a Bar object to the collection and returns a reference to the newly created object.

Type Description

Name as String
A String expression that indicates the name of the bar
being created. If the Name parameter includes the ":" or
"%"character, it has a special meaning described bellow.

Return Description
Bar A Bar object being inserted.

The Add method adds a new bar to the Bars collection. The look and feel for the newly
created bar could depend on the Name parameter like follows:

1. If the Name parameter doesn't include a : or % character the Add
method adds a regular bar.

2. If the Name parameter includes a % character, so the Name
parameter is like A%B, the Add method adds a new bar that's a combination of two
existing bars A and B so the first bar A is displayed on the full area of the bar, since
the second bar B uses the ItemBar(,,exBarPercent) value to determine the percent of
the area from the full bar to be painted. Use the
ItemBar(,,exBarShowPercentCaption)/ItemBar(,,exBarPercentCaptionFormat) to show
and format the percent value as text. For instance, the Add("Task%Progress") adds a
combination of Task and Progress bars, so the Task shape is
displayed on the full bar, and the Progress shape is displayed only on the portion
determined by the Items.ItemBar(,,exBarPercent) value. The A and B could be any
known bar at the adding time. For instance, if you have added bars like "MyTask" and
"MySplit" you can define the bar "MyTask%MySplit", and so on. This option helps you
to display proportionally the second shape when the user resizes or moves the bar.

3. If the Name parameter includes a : character, so the Name parameter is
like A:B, the newly created bar indicates a combination of A and B bars, where A is
displayed in the working areas, since the B bar is displayed in non-working areas.
Use the NonworkingDays or NonworkingHours property to define non-working days or
hours. Use the AddNonworkingDate method to add custom dates as being
nonworking date. For instance, the Add("Task:Split") property adds a combination of
Task and Split bars, so the Task bar is displayed in working
area, and the Split bar is displayed in the non-working area. In other words you have
a Task bar that 's interrupted for each non-working unit. For instance,
"Task:Progress" adds a new bar that displays the Task shape in working areas, and
the Progress shape in non-working area. The A and B could be any known bar at the
adding time. For instance, if you have added bars like "MyTask" and "MySplit" you

can define the bar "MyTask:MySplit", and so on.
4. If the Name parameter includes % and : characters, so it's like

A%B:C it combines the cases 2 and 3.

The Shortcut property adds a shortcut for the bar, so you can use short names when using
the AddBar method. Use the AddBar property to add a new bar to an item. Use the Shape,
Pattern and Color properties to define the appearance for the middle part of the bar. Use
the StartShape and StartColor properties to define the appearance for the starting part of
the bar. Use the EndShape and EndColor properties to define the appearance for the
ending part of the bar. The Name property indicates the name of the bar. Use the Copy
property to create a clone bar. Use the Height property to specify the height of the bars.

By default, the Bars collection includes the following predefined bars:

"Deadline":
"Project Summary":
"Summary":
"Milestone":
"Progress":
"Split":
"Task":

The following VB sample adds a custom shape and defines a bar like this :

With Gantt1.Chart.Bars
 .AddShapeCorner 12345, 1
 With .Add("Task2")
 .Pattern = exPatternDot
 .Shape = exShapeThinDown
 .StartShape = 12345

 .StartColor = RGB(255, 0, 0)
 .Color = .StartColor
 End With
End With

The following C++ sample adds a custom shape and defines a bar like above:

CBars bars = m_gantt.GetChart().GetBars();
bars.AddShapeCorner(COleVariant((long)12345), COleVariant((long)1));
CBar bar = bars.Add("Task2");
bar.SetPattern(2 /*exPatternDot*/);
bar.SetShape(20 /*exShapeThinDown*/);
bar.SetStartShape(12345);
bar.SetStartColor(RGB(255, 0, 0));
bar.SetColor(bar.GetStartColor());

The following VB.NET sample adds a custom shape and defines a bar like above:

With AxGantt1.Chart.Bars
 .AddShapeCorner(12345, 1)
 With .Add("Task2")
 .Pattern = EXGANTTLib.PatternEnum.exPatternDot
 .Shape = EXGANTTLib.ShapeBarEnum.exShapeThinDown
 .StartShape = 12345
 .StartColor = RGB(255, 0, 0)
 .Color = .StartColor
 End With
End With

The following C# sample adds a custom shape and defines a bar like above:

axGantt1.Chart.Bars.AddShapeCorner(12345, 1);
EXGANTTLib.Bar bar = axGantt1.Chart.Bars.Add("Task2");
bar.Pattern = EXGANTTLib.PatternEnum.exPatternDot;
bar.Shape = EXGANTTLib.ShapeBarEnum.exShapeThinDown;
bar.StartShape = (EXGANTTLib.ShapeCornerEnum)12345;
bar.StartColor = ToUInt32(Color.FromArgb(255, 0, 0));
bar.Color = bar.StartColor;

The following VFP sample adds a custom shape and defines a bar like above:

With thisform.Gantt1.Chart.Bars
 .AddShapeCorner(12345, 1)
 With .Add("Task2")
 .Pattern = 2 && exPatternDot
 .Shape = 20 && exShapeThinDown
 .StartShape = 12345
 .StartColor = RGB(255, 0, 0)
 .Color = .StartColor
 EndWith
EndWith

method Bars.AddShapeCorner (Key as Variant, Icon as Variant)
Adds a custom shape corner.

Type Description

Key as Variant A Long expression that indicates the key of the new icon
being added

Icon as Variant A long expression that indicates the handle of the icon
being inserted, or the index of the icon being added.

Use the AddShapeCorner method to define a corner from an icon. Use the StartShape and
EndShape properties to define the start and end parts of the bar using custom shapes. Use
the Images or ReplaceIcon method to update the list of control's icons. Use the
RemoveShapeCorner method to remove a custom shape. The control includes a list of
predefined shapes like shown in the ShapeCornerEnum type. The icon is processed
before displaying based on the StartColor/ EndColor property. For instance, if you
add an black and white icon, and the StartColor/EndColor is red, the icon will be
painted in red. Instead, if the StartColor/EndColor property is -1 (0xFFFFFFFF, not
white which is 0x00FFFFFF), the icon is painted as it was added using the
AddShapeCorner without any image processing. If the StartColor/EndColor property is
not -1, it indicates the color being applied to the icon.

The following VB sample adds a custom shape and defines a bar like this :

With .Chart.Bars
 .AddShapeCorner 12345, 1
 With .Add("Task2")
 .Pattern = exPatternDot
 .Shape = exShapeThinDown
 .EndShape = 12345
 .EndColor = RGB(255, 0, 0)
 .Color = .EndColor
 End With
 End With

The following C++ sample adds a custom shape and defines a bar like above:

CBars bars = m_gantt.GetChart().GetBars();
bars.AddShapeCorner(COleVariant((long)12345), COleVariant((long)1));
CBar bar = bars.Add("Task2");
bar.SetPattern(2 /*exPatternDot*/);

bar.SetShape(20 /*exShapeThinDown*/);
bar.SetEndShape(12345);
bar.SetEndColor(RGB(255, 0, 0));
bar.SetColor(bar.GetEndColor());

The following VB.NET sample adds a custom shape and defines a bar like above:

With AxGantt1.Chart.Bars
 .AddShapeCorner(12345, 1)
 With .Add("Task2")
 .Pattern = EXGANTTLib.PatternEnum.exPatternDot
 .Shape = EXGANTTLib.ShapeBarEnum.exShapeThinDown
 .EndShape = 12345
 .EndColor = RGB(255, 0, 0)
 .Color = .EndColor
 End With
End With

The following VB.NET sample adds a custom icon to the start of all Task bars:

With AxGantt1.Chart.Bars
 .AddShapeCorner(12345, 1)
 .Item("Task").StartShape = 12345
 .Item("Task").StartColor = UInteger.MaxValue
End With

The following C# sample adds a custom shape and defines a bar like above:

axGantt1.Chart.Bars.AddShapeCorner(12345, 1);
EXGANTTLib.Bar bar = axGantt1.Chart.Bars.Add("Task2");
bar.Pattern = EXGANTTLib.PatternEnum.exPatternDot;
bar.Shape = EXGANTTLib.ShapeBarEnum.exShapeThinDown;
bar.EndShape = (EXGANTTLib.ShapeCornerEnum)12345;
bar.EndColor = ToUInt32(Color.FromArgb(255, 0, 0));
bar.Color = bar.EndColor;

The following C# sample adds a custom icon to the start of all Task bars:

EXGANTTLib.Bars bars = axGantt1.Chart.Bars;

bars.AddShapeCorner(12345, 1);
bars["Task"].StartShape = EXGANTTLib.ShapeCornerEnum.exShapeIconEmpty + 12345;
bars["Task"].StartColor = 0xFFFFFFFF;

The following VFP sample adds a custom shape and defines a bar like above:

With thisform.Gantt1.Chart.Bars
 .AddShapeCorner(12345, 1)
 With .Add("Task2")
 .Pattern = 2 && exPatternDot
 .Shape = 20 && exShapeThinDown
 .EndShape = 12345
 .EndColor = RGB(255, 0, 0)
 .Color = .EndColor
 EndWith
EndWith

method Bars.Clear ()
Removes all objects in a collection.

Type Description

Use the Clear method to clear the Bars collection. Use the Remove method to remove a
bar from the Bars collection. Use the Add method to add new bars to the collection. Use
the ClearBars method to clear the bars from an item. Use the RemoveBar method to
remove a bar from an item. Use the Refresh method to refresh the control.

method Bars.Copy (Name as String, NewName as String)
Copies a Bar object and returns a reference to the newly created object.

Type Description

Name as String A String expression that indicates the name of the bar
being copied.

NewName as String A String expression that indicates the name of the new
bar.

Return Description
Bar A Bar object being created.

Use the Copy property create a clone for a specified bar. Use the Shape, Pattern and Color
properties to define the appearance for the middle part of the bar. Use the StartShape and
StartColor properties to define the appearance for the starting part of the bar. Use the
EndShape and EndColor properties to define the appearance for the ending part of the bar.

The following VB sample creates a new bar called "Task2", that's similar with the "Task" bar
excepts that we change the color to fill the bar:

With Gantt1.Chart.Bars
 With .Copy("Task", "Task2")
 .Color = RGB(255, 0, 0)
 End With
End With

The following C++ sample creates a new bar called "Task2", that's similar with the "Task"
bar excepts that we change the color to fill the bar:

CBars bars = m_gantt.GetChart().GetBars();
CBar bar = bars.Copy("Task", "Task2");
bar.SetColor(RGB(255,0,0));

The following VB.NET sample creates a new bar called "Task2", that's similar with the
"Task" bar excepts that we change the color to fill the bar:

With AxGantt1.Chart.Bars
 With .Copy("Task", "Task2")
 .Color = ToUInt32(Color.Red)
 End With

End With

The following C# sample creates a new bar called "Task2", that's similar with the "Task" bar
excepts that we change the color to fill the bar:

EXGANTTLib.Bar bar = axGantt1.Chart.Bars.Copy("Task", "Task2");
bar.Color = ToUInt32(Color.Red);

The following VFP sample creates a new bar called "Task2", that's similar with the "Task"
bar excepts that we change the color to fill the bar:

with thisform.Gantt1.Chart.Bars
 with .Copy("Task", "Task2")
 .Color = RGB(255,0,0)
 endwith
endwith

In VB.NET or C# you require the following functions until the .NET framework will provide:

You can use the following VB.NET function:

 Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
 End Function

You can use the following C# function:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

property Bars.Count as Long
Returns the number of objects in a collection.

Type Description

Long A long expression that indicates the number of Bar objects
in the Bars collection.

The Count property counts the bars in the collection. Use the Item property to access a Bar
object in the Bars collection. Use the Remove method to remove a bar from the Bars
collection. Use the Clear method to clear the Bars collection. Use the Name property to
retrieve the name of the bar. Use the ItemBar(exBarsCount) property to retrieve the number
of bars in a specified item.

The following VB sample enumerates the Bar objects in the Bars collection (the order of
the elements is arbitrary):

With Gantt1.Chart
 Dim b As EXGANTTLibCtl.Bar
 For Each b In .Bars
 Debug.Print b.Name
 Next
End With

The following VB sample enumerates the Bar objects in the Bars collection (the list is
alphabetically sorted):

With Gantt1.Chart.Bars
 Dim i As Long
 For i = 0 To .Count - 1
 Debug.Print .Item(i).Name
 Next
End With

The following C++ sample enumerates the Bar objects in the Bars collection:

CBars bars = m_gantt.GetChart().GetBars();
for (long i = 0; i < bars.GetCount(); i++)
 OutputDebugString(bars.GetItem(COleVariant(i)).GetName());

The following VB.NET sample enumerates the Bar objects in the Bars collection:

With AxGantt1.Chart
 Dim b As EXGANTTLib.Bar
 For Each b In .Bars
 Debug.Write(b.Name)
 Next
End With

The following VB.NET sample enumerates the Bar objects in the Bars collection:

With AxGantt1.Chart.Bars
 Dim i As Integer
 For i = 0 To .Count - 1
 Debug.Write(.Item(i).Name)
 Next
End With

The following C# sample enumerates the Bar objects in the Bars collection:

EXGANTTLib.Bars bars = axGantt1.Chart.Bars;
for (int i = 0; i < bars.Count; i++)
 System.Diagnostics.Debug.Write(bars[i].Name);

The following VFP sample enumerates the Bar objects in the Bars collection:

local i
With thisform.Gantt1.Chart.Bars
 for i = 0 to .Count - 1
 wait window nowait .Item(i).Name
 next
EndWith

property Bars.Item (Name as Variant) as Bar
Returns a specific Column of the Columns collection.

Type Description

Name as Variant
A string expression that indicates the name of the bar
being removes, a long expression that indicates the index
of the Bar being removed

Bar A Bar object being accessed.

Use the Item property to access a Bar object in the Bars collection. The Count property
counts the bars in the collection. Use the Remove method to remove a bar from the Bars
collection. Use the Clear method to clear the Bars collection. Use the Name property to
retrieve the name of the bar.

The following VB sample enumerates the Bar objects in the Bars collection (the order of
the elements is arbitrary):

With Gantt1.Chart
 Dim b As EXGANTTLibCtl.Bar
 For Each b In .Bars
 Debug.Print b.Name
 Next
End With

The following VB sample enumerates the Bar objects in the Bars collection (the list is
alphabetically sorted):

With Gantt1.Chart.Bars
 Dim i As Long
 For i = 0 To .Count - 1
 Debug.Print .Item(i).Name
 Next
End With

The following C++ sample enumerates the Bar objects in the Bars collection:

CBars bars = m_gantt.GetChart().GetBars();
for (long i = 0; i < bars.GetCount(); i++)
 OutputDebugString(bars.GetItem(COleVariant(i)).GetName());

The following VB.NET sample enumerates the Bar objects in the Bars collection:

With AxGantt1.Chart
 Dim b As EXGANTTLib.Bar
 For Each b In .Bars
 Debug.Write(b.Name)
 Next
End With

The following VB.NET sample enumerates the Bar objects in the Bars collection:

With AxGantt1.Chart.Bars
 Dim i As Integer
 For i = 0 To .Count - 1
 Debug.Write(.Item(i).Name)
 Next
End With

The following C# sample enumerates the Bar objects in the Bars collection:

EXGANTTLib.Bars bars = axGantt1.Chart.Bars;
for (int i = 0; i < bars.Count; i++)
 System.Diagnostics.Debug.Write(bars[i].Name);

The following VFP sample enumerates the Bar objects in the Bars collection:

local i
With thisform.Gantt1.Chart.Bars
 for i = 0 to .Count - 1
 wait window nowait .Item(i).Name
 next
EndWith

method Bars.Remove (Name as Variant)
Removes a specific member from the Bars collection.

Type Description

Name as Variant
A string expression that indicates the name of the bar
being removes, a long expression that indicates the index
of the Bar being removed

Use the Remove method to remove a bar from the Bars collection. Use the Add method to
add new bars to the collection. Use the Clear method to clear the bars collection. Use the
ClearBars method to clear the bars from an item. Use the RemoveBar method to remove a
bar from an item. Use the Refresh method to refresh the control.

method Bars.RemoveShapeCorner (Key as Variant)
Removes a custom shape corner.

Type Description

Key as Variant A long expression that indicates the key of the shape
being removed.

Use the RemoveShapeCorner property to remove a shape corner being added using the
AddShapeCorner method. Use the StartShape and EndShape properties to define the start
and end parts of the bar using custom shapes. Use the Images or ReplaceIcon method to
update the list of control's icons. The control includes a list of predefined shapes like shown
in the ShapeCornerEnum type.

Chart object
The Chart object contains all properties and methods related to the Gantt chart area. Use
the Bars property to access the control's Bars collection. Use the PaneWidth property to
specify the width of the chart area. Use the AddBar property to add new bars to an item.
Use the LevelCount property to specify the number of levels in the control's header. The
Chart object supports the following properties and methods:

Name Description
AddNonworkingDate Adds a nonworking date.

AllowOverviewZoom Gets or sets a value that indicates whether the user can
zoom the chart at runtime.

AMPM Specifies the AM and PM indicators.

BackColor Retrieves or sets a value that indicates the chart's
background color.

BackColorLevelHeader Specifies the background color for the chart's levels.
BarFromPoint Retrieves the bar from point.
Bars Retrieves the Bars collection.
ClearItemBackColor Clears the item's background color in the chart area.
ClearNonworkingDates Clears nonworking dates.
CountVisibleUnits Counts the number of units within the specified range.
DateFromPoint Retrieves the date from the cursor.

DrawDateTicker
Retrieves or sets a value that indicates whether the
control draws a ticker around the current date while cursor
hovers the chart's client area.

DrawGridLines Retrieves or sets a value that indicates whether the grid
lines are visible or hidden.

DrawLevelSeparator Retrieves or sets a value that indicates whether lines
between levels are shown or hidden.

EndPrintDate Retrieves or sets a value that indicates the printing end
date.

FirstVisibleDate Retrieves or sets a value that indicates the first visible
date.

FirstWeekDay Specifies the first day of the week.

ForeColor Retrieves or sets a value that indicates the chart's
foreground color.

ForeColorLevelHeader Specifies the foreground color for the chart's levels.
FormatDate Formats the date.

GridLineStyle Retrieves or sets a value that indicates style for the
gridlines being shown in the chart area.

IsDateVisible Specifies whether the date fits the control's chart area.
IsNonworkingDate Specifies whether the date is a nonworking day.

ItemBackColor Retrieves or sets a background color for a specific item, in
the chart area.

Label Retrieves or sets a value that indicates the predefined
format of the level's label for a specified unit.

LabelToolTip Retrieves or sets a value that indicates the predefined
format of the level's tooltip for a specified unit.

Level Retrieves the level based on its index.
LevelCount Specifies the number of levels in the control's header.
LevelFromPoint Retrieves the index of the level from the point.
LinkFromPoint Retrieves the link from the point.
LinksColor Specifies the color to draw the links between the bars.
LinksStyle Specifies the style to draw the links between the bars.

LinksWidth Specifies the width in pixels of the pen to draw the links
between the bars.

LocAMPM Retrieves the time marker such as AM or PM using the
current user regional and language settings.

LocFirstWeekDay Indicates the first day of the week, as specified in the
regional settings.

LocMonthNames Retrieves the list of month names, as indicated in the
regional settings, separated by space.

LocWeekDays Retrieves the list of names for each week day, as
indicated in the regional settings, separated by space.

MarkNowColor Specifies the background color or the visual appearance
of the object that indicates the current time in the chart.

MarkNowCount Specifies the number of time units to count while
highlighting the current time.

MarkNowTransparent Specifies the percent of the transparency to display the
object that marks the current time.
Retrieves or sets a value that indicates the base time unit

MarkNowUnit while highlighting the current time.

MarkNowWidth Specifies the width in pixels of the object that shows the
current time.

MarkSelectDateColor Retrieves or sets a value that indicates the color to mark
the selected date in the chart.

MarkTodayColor Retrieves or sets a value that indicates the color to mark
today in the chart.

MonthNames Retrieves or sets a value that indicates the list of month
names, separated by space.

NextDate Gets the next date based on the unit.

NonworkingDays Retrieves or sets a value that indicates the non-working
days, for each week day a bit.

NonworkingDaysColor Retrieves or sets a value that indicates the color to fill the
non-working days.

NonworkingDaysPattern Retrieves or sets a value that indicates the pattern being
used to fill non-working days.

NonworkingHours Retrieves or sets a value that indicates the non-working
hours, for each hour in a day a bit.

NonworkingHoursColor Retrieves or sets a value that indicates the color to fill the
non-working hours.

NonworkingHoursPattern Retrieves or sets a value that indicates the pattern being
used to fill non-working hours.

OverviewBackColor Specifies the background color of the chart's overview.
OverviewHeight Indicates the height of the chart's overview.

OverviewLevelLines Indicates the index of the level that displays the grid line in
the chart's overview.

OverviewSelBackColor Specifies the selection color of the chart's overview.

OverviewToolTip
Retrieves or sets a value that indicates the format of the
tooltip being shown while the cursor hovers the chart's
overview area.

OverviewVisible Specifies whether the chart's overview layout is visible or
hidden.

OverviewZoomCaption Specifies the captions for each zooming unit.

OverviewZoomUnit Indicates the width in pixels of the zooming unit in the
overview.

PaneWidth Specifies the width for the left or side pane.
Picture Retrieves or sets a graphic to be displayed in the chart.

PictureDisplay Retrieves or sets a value that indicates the way how the
graphic is displayed on the chart's background

RemoveNonworkingDate Removes a nonworking date.
ScrollBar Shows or hides the chart's horizontal scroll bar.
ScrollRange Specifies the range of dates to scroll within.
ScrollTo Scrolls the chart so the specified date is visible.

SelBackColor Retrieves or sets a value that indicates the selection
background color.

SelectDate Selects or unselects a specific date in the chart.

SelectLevel Indicates the index of the level that highlights the selected
dates.

SelForeColor Retrieves or sets a value that indicates the selection
foreground color.

ShowEmptyBars Specifies whether empty bars are shown or hidden. An
empty bar has the start and end dates identical.

ShowEmptyBarsUnit Specifies the unit to be added to the end date, so empty
bars are shown.

ShowLinks Retrieves or sets a value that indicates whether the links
between bars are visible or hidden.

ShowNonworkingDates Shows or hides nonworking dates.

ShowNonworkingUnits Retrieves or sets a value that indicates whether the non-
working units are visible or hidden.

ShowTransparentBars Gets or sets a value that indicates percent of the
transparency to display the bars.

StartPrintDate Retrieves or sets a value that indicates the printing start
date.

ToolTip Retrieves or sets a value that indicates the format of the
tooltip being shown while the user scrolls the chart.

UnitScale Retrieves or sets a value that indicates the base unit being
displayed.

UnitWidth Specifies the width in pixels for the minimal unit.
UnselectDates Unselects all dates in the chart.

WeekDays Retrieves or sets a value that indicates the list of names
for each week day, separated by space.

WeekNumberAs Specifies the way the control displays the week number.

Zoom Sets or retrieves the magnification scale of the chart.

method Chart.AddNonworkingDate (Date as Variant)
Adds a nonworking date.

Type Description

Date as Variant A Date expression that indicates the date being marked as
nonworking day.

Use the AddNonworkingDate method to add custom dates as nonworking days. Use the
NonworkingDays property to mark days in a week as being as nonworking. Use the
ShowNonworkingDates property to show or hide the nonworking dates in the control's chart
area. Use the RemoveNonworkingDate method to remove a specified date from the
nonworking dates collection. The RemoveNonworkingDate method removes only a date
previously added using the AddNonworkingDate method. Use the ClearNonworkingDates
method to remove all nonworking dates. Use the NonworkingDaysPattern property to
specify the pattern being used to fill non-working days. The NonworkingDaysColor property
specifies the color being used to fill the non-working days. Use the DateChange event to
notify whether the user browses a new date in the chart area. Use the IsNonworkingDate
property to retrieve a value that indicates whether a date is marked as nonworking day. Use
the Add("A:B") to add a bar that displays the bar A in the working area, and B in non-
working areas.

The following VB sample marks the 11th of each month as nonworking day (the code
enumerates the visible dates, and marks one by one, if case):

Private Sub Gantt1_DateChange()
 With Gantt1
 .BeginUpdate
 With .Chart
 Dim d As Date
 d = .FirstVisibleDate

 Do While .IsDateVisible(d)
 If Day(d) = 11 Then
 If Not (.IsNonworkingDate(d)) Then
 .AddNonworkingDate d
 End If
 End If
 d = .NextDate(d, exDay, 1)
 Loop
 End With
 .EndUpdate
 End With
End Sub

The following VB.NET sample marks the 11th of each month as nonworking day:

Private Sub AxGantt1_DateChange(ByVal sender As Object, ByVal e As System.EventArgs)
Handles AxGantt1.DateChange
 With AxGantt1
 .BeginUpdate()
 With .Chart
 Dim d As Date = .FirstVisibleDate
 Do While .IsDateVisible(d)
 If d.Day = 11 Then
 If Not (.IsNonworkingDate(d)) Then
 .AddNonworkingDate(d)
 End If
 End If
 d = .NextDate(d, EXGANTTLib.UnitEnum.exDay, 1)
 Loop
 End With
 .EndUpdate()
 End With
End Sub

The following C# sample marks the 11th of each month as nonworking day:

private void axGantt1_DateChange(object sender, EventArgs e)
{

 axGantt1.BeginUpdate();
 EXGANTTLib.Chart chart = axGantt1.Chart;
 DateTime d = Convert.ToDateTime(chart.FirstVisibleDate);
 while (chart.get_IsDateVisible(d))
 {
 if (d.Day == 11)
 if (!chart.get_IsNonworkingDate(d))
 chart.AddNonworkingDate(d);
 d = chart.get_NextDate(d, EXGANTTLib.UnitEnum.exDay, 1);
 }
 axGantt1.EndUpdate();
}
}

The following VFP sample marks the 11th of each month as nonworking day (DateChange
event):

*** ActiveX Control Event ***

With thisform.Gantt1
 .BeginUpdate
 With .Chart
 local d
 d = .FirstVisibleDate
 Do While .IsDateVisible(d)
 If Day(d) = 11 Then
 If Not (.IsNonworkingDate(d)) Then
 .AddNonworkingDate(d)
 EndIf
 EndIf
 d = .NextDate(d, 4096, 1)
 enddo
 EndWith
 .EndUpdate
EndWith

property Chart.AllowOverviewZoom as OverviewZoomEnum
Gets or sets a value that indicates whether the user can zoom and scale the chart at
runtime.

Type Description

OverviewZoomEnum An OverviewZoomEnum expression that specifies when
the control displays the zooming scale.

By default, the AllowOverviewZoom property is exZoomOnRClick. The zooming scale
displays the list of visible units. A visible unit is an unit whose Label property is not
empty. So, the Label property indicates the zooming units in the zoom scale. If you
plan to use zooming in your chart please review each Label and LabelToolTip
properties. Once the user selects a new time scale unit in the overview zoom area, the
control fires the OverviewZoom event.

If the AllowOverviewZoom property is exZoomOnRClick the zooming scale is shown
only if the user right clicks the overview area. The zooming scale stays visible while the
user keeps the right button down. Once the user releases the mouse over a new unit,
the chart gets scaled by that unit. During this, ESC key cancels the zooming operation
and restores the chart.
If the AllowOverviewZoom property is exAlwaysZoom the zooming scale is displayed in
the right side of the overview area. This way, the available (visible) units are always
displays on the right side of the overview area. Clicking any of these units makes the
control to scale the chart to specified unit. The OverviewZoomUnit property indicates
the width in pixels of the zooming unit.
If the AllowOverviewZoom property is exDisableZoom the user can't zoom or scale the
chart at runtime using the overview area.

The zooming scale may be displayed on the overview area only if:

AllowOverviewZoom property is not exDisableZoom
OverviewVisible property is True
OverviewHeight property is greater than 0
there are at least two visible units, that has the Label property not empty.

Use the OverviewVisible property to show or hide the control's overview area. The
OverviewZoomCaption property indicates the caption being displayed in each zooming unit.
The OverviewZoomUnit property indicates the width in pixels of the zooming unit. The
LabelToolTip retrieves or sets a value that indicates the predefined format of the level's
tooltip for a specified unit. Use the Zoom method to programmatically zoom and scale the
chart. Use the UnitScale property to change the unit of the lowest level.

The following picture shows the zooming scale on the overview area [exAlwaysZoom] (

you can click the 1, 7 or 31, and the chart is scaled to days, weeks or moths):

The following picture shows the control when the user right clicks the overview area (as
the chart displays weeks) [exZoomOnRClick]:

The following picture shows the control while the user drags the cursor to the Month while
keeping the right button (as the chart displays months):

property Chart.AMPM as String
Specifies the AM and PM indicators.

Type Description

String A String expression that indicates the AM PM indicators,
separated by space.

By default, the AMPM property is "AM PM". The AMPM property specifies the indicators
being displayed when the Label or ToolTip property includes the <%AM/PM%> tag. Use the
UnitScale property to change the chart's time unit. Use the MonthNames property to specify
the name of the months being displayed in the chart's header. Use the WeekDays property
to specify the name for each day in a week. Use the UnitWidth property to specify the width
of the time unit

property Chart.BackColor as Color
Retrieves or sets a value that indicates the chart's background color.

Type Description

Color A Color expression that indicates the chart's background
color.

Use the BackColor property to specify the chart's background color. Use the ForeColor
property to specify the chart's foreground color. Use the BackColorLevelHeader property to
specify the background color of the chart's header. Use the ForeColorLevelHeader property
to specify the foreground color of the chart's header. Use the BackColor property to specify
the background color for a specified level. Use the ForeColor property to specify the
foreground color for a specified level. Use the ItemBackColor property to change the item's
background color. Use the NonworkingDaysColor property the color of the brush to fill the
nonworking days area. Use the Picture property to specify the picture being displayed on
the chart's area. Use the SelBackColor property to specify the background color for
selected items in the chart area.

The following VB sample changes the chart's background color:

With Gantt1.Chart
 .BackColor = RGB(&H80, &H80, &H80)
End With

The following C++ sample changes the chart's background color:

m_gantt.GetChart().SetBackColor(RGB(0x80,0x80,0x80));

The following VB.NET sample changes the chart's background color:

With AxGantt1.Chart
 .BackColor = ToUInt32(Color.FromArgb(&H80, &H80, &H80))
End With

where the ToUInt32 function converts a Color expression to an OLE_COLOR type:

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample changes the chart's background color:

axGantt1.Chart.BackColor = ToUInt32(Color.FromArgb(0x80, 0x80, 0x80));

where the ToUInt32 function converts a Color expression to an OLE_COLOR type:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample changes the chart's background color:

With thisform.Gantt1.Chart
 .BackColor = RGB(128, 128, 128)
EndWith

property Chart.BackColorLevelHeader as Color
Specifies the background color for the chart's levels.

Type Description

Color

A Color expression that indicates the background color for
the chart's header. The last 7 bits in the high significant
byte of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

Use the BackColorLevelHeader property to specify the background color of the chart's
header. Use the ForeColorLevelHeader property to specify the foreground color of the
chart's header. Use the LevelCount property to specify the number of levels in the chart's
header. Use the Level property to access a level. Use the BackColor property to specify
the background color for a specified level. Use the ForeColor property to specify the
foreground color for a specified level. Use the BackColor property to specify the chart's
background color. Use the ForeColor property to specify the chart's foreground color. Use
the ItemBackColor property to change the item's background color. Use the
NonworkingDaysColor property the color of the brush to fill the nonworking days area. Use
the Picture property to specify the picture being displayed on the chart's area.

The following VB sample changes the chart's header background color:

With Gantt1.Chart
 .BackColorLevelHeader = RGB(&H80, &H80, &H80)
End With

The following C++ sample changes the chart's header background color:

m_gantt.GetChart().SetBackColorLevelHeader(RGB(0x80,0x80,0x80));

The following VB.NET sample changes the chart's header background color:

With AxGantt1.Chart
 .BackColorLevelHeader = ToUInt32(Color.FromArgb(&H80, &H80, &H80))
End With

where the ToUInt32 function converts a Color expression to an OLE_COLOR type:

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample changes the chart's header background color:

axGantt1.Chart.BackColorLevelHeader = ToUInt32(Color.FromArgb(0x80, 0x80, 0x80));

where the ToUInt32 function converts a Color expression to an OLE_COLOR type:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample changes the chart's header background color:

With thisform.Gantt1.Chart
 .BackColorLevelHeader = RGB(128, 128, 128)
EndWith

property Chart.BarFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Variant
Retrieves the bar from point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

Variant A VARIANT expression that indicates the key of the bar
from the cursor.

The BarFromPoint property gets the bar from point. If the X parameter is -1 and Y
parameter is -1 the BarFromPoint property determines the key of the bar from the
cursor. Use the ItemBar property to access properties of the bar from the point. The
DateFromPoint property retrieves the date from the cursor, only if the cursor hovers the
chart's area. Use the ItemFromPoint property to get the cell/item from the cursor. Use the
ColumnFromPoint property to retrieve the column from cursor. Use the FormateDate
property to format a date. Use the DrawDateTicker property to draw a ticker as cursor
hovers the chart's area. Use the LinkFromPoint property to get the link from the point.

The following VB sample displays the key of the bar from the cursor:

Private Sub Gantt1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With Gantt1.Chart
 Debug.Print .BarFromPoint(-1, -1)
 End With
End Sub

The following VB sample displays the start data of the bar from the point:

Private Sub Gantt1_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With Gantt1
 Dim h As HITEM, c As Long, hit As HitTestInfoEnum
 h = .ItemFromPoint(-1, -1, c, hit)
 If Not (h = 0) Then

 Dim k As Variant
 k = .Chart.BarFromPoint(-1, -1)
 If Not IsEmpty(k) Then
 Debug.Print .Items.ItemBar(h, k, exBarStart)
 End If
 End If
 End With
End Sub

The following C++ sample displays the start data of the bar from the point:

#include "Items.h"
#include "Chart.h"

CString V2Date(VARIANT* pvtValue)
{
 COleVariant vtDate;
 vtDate.ChangeType(VT_BSTR, pvtValue);
 return V_BSTR(&vtDate);
}

void OnMouseDownGantt1(short Button, short Shift, long X, long Y)
{
 long c = 0, hit = 0, h = m_gantt.GetItemFromPoint(-1, -1, &c, &hit);
 if (h != 0)
 {
 COleVariant vtKey = m_gantt.GetChart().GetBarFromPoint(-1, -1);
 if (V_VT(&vtKey) != VT_EMPTY)
 {
 COleVariant vtStart = m_gantt.GetItems().GetItemBar(h, vtKey, 1 /*exBarStart*/);
 OutputDebugString(V2Date(&vtStart));
 }
 }
}

The following VB.NET sample displays the start data of the bar from the point:

Private Sub AxGantt1_MouseDownEvent(ByVal sender As Object, ByVal e As

AxEXGANTTLib._IGanttEvents_MouseDownEvent) Handles AxGantt1.MouseDownEvent
 With AxGantt1
 Dim c As Long, hit As EXGANTTLib.HitTestInfoEnum, h As Integer =
.get_ItemFromPoint(-1, -1, c, hit)
 If Not (h = 0) Then
 Dim k As Object
 k = .Chart.BarFromPoint(-1, -1)
 If Not k Is Nothing Then
 System.Diagnostics.Debug.WriteLine(.Items.ItemBar(h, k,
EXGANTTLib.ItemBarPropertyEnum.exBarStart))
 End If
 End If
 End With
End Sub

The following C# sample displays the start data of the bar from the point:

private void axGantt1_MouseDownEvent(object sender,
AxEXGANTTLib._IGanttEvents_MouseDownEvent e)
{
 int c = 0;
 EXGANTTLib.HitTestInfoEnum hit = EXGANTTLib.HitTestInfoEnum.exHTCell;
 int h = axGantt1.get_ItemFromPoint(-1, -1, out c, out hit);
 if (h != 0)
 {
 object k = axGantt1.Chart.get_BarFromPoint(-1, -1);
 if (k != null)
 System.Diagnostics.Debug.WriteLine(axGantt1.Items.get_ItemBar(h, k,
EXGANTTLib.ItemBarPropertyEnum.exBarStart));
 }
}

The following VFP sample displays the start data of the bar from the point:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

With thisform.Gantt1

 local h, c, hit
 h = .ItemFromPoint(-1, -1, c, hit)
 If (h # 0) Then
 local k
 k = .Chart.BarFromPoint(-1, -1)
 If !Empty(k) Then
 ? .Items.ItemBar(h, k, 1)
 EndIf
 EndIf
EndWith

property Chart.Bars as Bars
Retrieves the Bars collection.

Type Description
Bars A Bars collection that holds Bar objects.

Use the Bars property to access the control's Bars collection. Use the Add or Copy
property to add new type of bars to the control. Use the AddBar method to add new bars
to an item. Use the Chart property to access the Chart object.

By default, the Bars collection includes the following predefined bars:

"Deadline":
"Project Summary":
"Summary":
"Milestone":
"Progress":
"Split":
"Task":

method Chart.ClearItemBackColor (Item as HITEM)
Clears the item's background color in the chart area.

Type Description
Item as HITEM A long expression that indicates the item's handle.

The ClearItemBackColor method clears the item's background color when ItemBackColor
property is used (chart part only). The ClearItemBackColor method clears the item's
background color when ItemBackColor property is used (items/columns part only).

method Chart.ClearNonworkingDates ()
Clears nonworking dates.

Type Description

Use the ClearNonworkingDates method to remove all nonworking dates. Use the
ShowNonworkingDates property to show or hide the nonworking dates. Use the
RemoveNonworkingDate method to unmark a specified nonworking date, being previously
added using the AddNonworkingDate method. Use the IsDateVisible property to specify
whether a date fits the chart's area. Use the IsNonworkingDate property to check whether
the date is already highlighted as nonworking day. The NonworkingDays property specifies
the days being marked as nonworking in a week. Use the NonworkingDaysPattern property
to specify the pattern being used to fill non-working days. The NonworkingDaysColor
property specifies the color being used to fill the non-working days.

property Chart.CountVisibleUnits ([Start as Variant], [End as Variant]) as
Long
Counts the number of units within the specified range.

Type Description

Start as Variant A DATE expression that specifies the starting date, if
missing, the StartPrintDate value is used.

End as Variant A DATE expression that specifies the ending date, if
missing, the EndPrintDate value is used.

Long A long expression that specifies the number of units within
the specified range.

Use the CountVisibleUnits property to count the number of units within the specified range.
The UnitScale property indicates the time-unit scale being displayed by the chart's header.
Use the CountVisibleUnits property to count the number of units so the entire chart is
displayed on a specified size. Use the UnitWidth property specifies the width in pixels for
the minimal time-unit. Use the CountVisibleUnits property and the ClientWidth property of
the eXPrint component (Retrieves the width in pixels, of the drawing area of the printer
page) to specify that you need to display the chart on a single page. The StartPrintDate
and EndPrintDate property specifies range of dates within the chart is printed.

When computing the UnitWidth property for printing to a page (as shown in the following
sample), you can still use the Count property of the Level object to display more units
instead one.

The following VB sample changes the UnitWidth property so, the entire chart is printed to
the page:

With Print1
 Dim l As Long
 With Gantt1.Chart
 l = .UnitWidth
 .UnitWidth = (Print1.ClientWidth - .PaneWidth(False)) / .CountVisibleUnits()
 End With
 Set .PrintExt = Gantt1.Object
 .Preview
 Gantt1.Chart.UnitWidth = l
End With

The ClientWidth property of the eXPrint specifies the number of pixels in the page, the

PaneWidth property specifies the width of the columns area. The sample restores the
UnitWidth property once, the Preview method is called.

property Chart.DateFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Date
Retrieves the date from the cursor.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

Date A Date expression that indicates the date from the cursor.

The DateFromPoint property gets the date from point. The DateFromPoint property
retrieves the date from the cursor, only if the cursor hovers the chart's area. Use the
ItemFromPoint property to get the cell/item from the cursor. Use the ColumnFromPoint
property to retrieve the column from cursor. Use the FormateDate property to format a
date. Use the DrawDateTicker property to draw a ticker as cursor hovers the chart's area.
Use the LevelFromPoint property to retrieve the index of the level from the cursor.

The following VB sample displays the date from the cursor:

Private Sub Gantt1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With Gantt1.Chart
 Dim d As Date
 d = .DateFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 Debug.Print .FormatDate(d, "<%m%>/<%d%>/<%yyyy%>")
 End With
End Sub

The following C++ sample displays the date from the point:

void OnMouseMoveGantt1(short Button, short Shift, long X, long Y)
{
 CChart chart = m_gantt.GetChart();
 DATE d = chart.GetDateFromPoint(X, Y);
 CString strFormat = chart.GetFormatDate(d, "<%m%>/<%d%>/<%yyyy%>");
 OutputDebugString(strFormat);

}

The following VB.NET sample displays the date from the point:

Private Sub AxGantt1_MouseMoveEvent(ByVal sender As Object, ByVal e As
AxEXGANTTLib._IGanttEvents_MouseMoveEvent) Handles AxGantt1.MouseMoveEvent
 With AxGantt1.Chart
 Dim d As Date
 d = .DateFromPoint(e.x, e.y)
 Debug.Write(.FormatDate(d, "<%m%>/<%d%>/<%yyyy%>"))
 End With
End Sub

The following C# sample displays the date from the point:

private void axGantt1_MouseMoveEvent(object sender,
AxEXGANTTLib._IGanttEvents_MouseMoveEvent e)
{
 DateTime d = axGantt1.Chart.get_DateFromPoint(e.x, e.y);
 System.Diagnostics.Debug.Write(axGantt1.Chart.get_FormatDate(d, "
<%m%>/<%d%>/<%yyyy%>"));
}

The following VFP sample displays the date from the point:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.Gantt1.Chart
 d = .DateFromPoint(x,y)
 wait window nowait .FormatDate(d, "<%m%>/<%d%>/<%yyyy%>")
endwith

property Chart.DrawDateTicker as Boolean
Retrieves or sets a value that indicates whether the control draws a ticker around the
current date while cursor hovers the chart's client area.

Type Description

Boolean A Boolean expression that indicates whether the date
ticker is visible or hidden.

Use the DrawDateTicker property to hide the ticker that shows up when the cursor hovers
the chart's area. By default, the DrawDateTicker property is True. Use the DateFromPoint
property to retrieve the date from the cursor. Use the NonworkingDays property to specify
the nonworking days. Use the MarkTodayColor property to specify whether the today date
is marked. Use the DrawTickLines property to specify whether the grid lines between time
units in the level are visible or hidden.

property Chart.DrawGridLines as GridLinesEnum
Retrieves or sets a value that indicates whether the grid lines are visible or hidden.

Type Description

GridLinesEnum A GridLinesEnum expression that indicates whether the
control draws the grid lines in the chart's area.

By default, the DrawGridLines property is exNoLines. Use the DrawGridLines property to
specify whether the control draws the grid lines in the chart's area. The GridLineStyle
property to specify the style for horizontal or/and vertical gridlines in the chart view. Use the
DrawGridLines property of the Level object to show the vertical grid lines for the specified
level. Use the GridLineColor property of the Level object to specify the color for vertical grid
lines in the chart area. Use the GridLineStyle property of the Level object to specify the
style for vertical grid lines in the chart area. Use the GridLineColor property to specify the
color for grid lines. Use the DrawGridLines property to specify whether the control draws
the grid lines in the items area. Use the DrawLevelSeperator property to draw lines
between levels inside the chart's header. Use the DrawTickLines property to specify
whether the grid lines between time units in the level are visible or hidden. Use the
MarkTodayColor property to specify the color to mark the today date. Use the
NonworkingDays property to specify the nonworking days. Use the NonworkingDaysPattern
property to specify the brush to fill the nonworking days area.

In conclusion, the following properties are related to the control's gridlines:

DrawGridLines specifies whether the gridlines are shown in the column/list part of the
control. The gridlines in the chart part of the control are handled by the
Chart.DrawGridLines property.
GridLineColor specifies the color to show the horizontal grid line, and vertical grid lines
for the columns/list part of the control. The color for vertical grid lines in the chart view
part is handled by the Level.GridLineColor property.
GridLineStyle specifies the style for horizontal grid lines and vertical grid lines in the
columns/list part of the control. The Level.GridLineStyle property specifies the style for
vertical grid lines in the chart area.
Chart.DrawGridLines (belongs to Chart object) indicates whether gridlines are shown in
the chart view.
Level.DrawGridLines (belongs to Level object) specifies whether the level shows
vertical gridlines in the chart part of the control.
Level.GridLineColor (belongs to Level object) indicates the color for vertical gridlines in
the chart view.
Level.GridLineStyle (belongs to Level object) specifies the style to show the vertical
gridlines in the chart part area of the control.

property Chart.DrawLevelSeparator as Boolean
Retrieves or sets a value that indicates whether lines between levels are shown or hidden.

Type Description

Boolean A boolean expression that indicates whether grid lines
between levels are visible or hidden.

By default, the DrawLevelSeparator property is True. Use the DrawLevelSeperator
property to draw lines between levels inside the chart's header. Use the DrawTickLines
property to specify whether the grid lines between time units in the level are visible or
hidden. Use the DrawGridLines property to specify whether the control draws the grid lines
in the chart's area. Use the GridLineColor property to specify the color for grid lines. Use
the DrawGridLines property to specify whether the control draws the grid lines in the items
area. Use the DrawGridLines property to draw grid lines for a specified level. Use the
NonworkingDays property to specify the nonworking days. Use the NonworkingDaysPattern
property to specify the brush to fill the nonworking days area. Use the MarkTodayColor
property to specify the color to mark the today date.

property Chart.EndPrintDate as Variant
Retrieves or sets a value that indicates the printing end date.

Type Description

Variant

A DATE expression that specifies the ending date to print
the chart. The get method always retrieves a DATE
expression. When calling the set method of the
EndPrintDate property, it can be a string, a DATE or any
other expression that can be converted to a date.

The EndPrintDate property indicates the ending date to print the chart. By default, the
EndPrintDate property computes the required end date so the entire chart is displayed, if
the EndPrintDate was not specified before. For instance, if you set the EndPrintDate
property on "Dec 31 2001", the EndPrintDate property retrieves the "Dec 31 2001" date
and does not compute the required end date. If you have specified a value for the
EndPrintDate but you still need to get the required end date being computed, set the
EndPrintDate property on 0, and calling the next method get of EndPrintDate property
computes the required end date to print the chart. The StartPrintDate property indicates the
starting date to print the chart. Use the CountVisibleUnits property to count the number of
units within the specified range.

property Chart.FirstVisibleDate as Variant
Retrieves or sets a value that indicates the first visible date.

Type Description

Variant A Date expression that indicates the first visible date in the
chart.

The FirstVisibleDate property indicates the first visible date in the chart. The control fires
the DateChange event when the first visible date is changed. Use the FormatDate property
to format a date to a specified format. Use the NextDate property to retrieve the next or
previous date giving a specified time unit. Use the ScrollTo method to ensure that a
specified date fits the chart's client area. Use the AddBar property to add new bars to an
item. The DateFromPoint property gets the date from the cursor. Use the FirstWeekDay
property to specify the first day in the week. Use the Zoom method to scale the chart to a
specified interval of dates.

The following VB sample displays the first visible date when the user changes the first
visible date:

Private Sub Gantt1_DateChange()
 With Gantt1.Chart
 Debug.Print FormatDateTime(.FirstVisibleDate)
 End With
End Sub

or you can use the FormatDate method like follows:

Private Sub Gantt1_DateChange()
 With Gantt1.Chart
 Debug.Print .FormatDate(.FirstVisibleDate, "<%yyyy%>-<%m%>-<%d%>")
 End With
End Sub

The following C++ sample displays the first visible date when the user changes the first
visible date:

#include "Gantt.h"
#include "Chart.h"

static DATE V2D(VARIANT* pvtDate)

{
 COleVariant vtDate;
 vtDate.ChangeType(VT_DATE, pvtDate);
 return V_DATE(&vtDate);
}

void OnDateChangeGantt1()
{
 if (m_gantt.GetControlUnknown())
 {
 CChart chart = m_gantt.GetChart();
 TCHAR szDate[1024] = _T("");
 SYSTEMTIME stDate = {0};
 VariantTimeToSystemTime(V2D(&chart.GetFirstVisibleDate()), &stDate);
 GetDateFormat(LOCALE_SYSTEM_DEFAULT, LOCALE_USE_CP_ACP, &stDate, NULL,
szDate, 1024);
 OutputDebugString(szDate);
 }
}

The following VB.NET sample displays the first visible date when the user changes the first
visible date:

Private Sub AxGantt1_DateChange(ByVal sender As Object, ByVal e As System.EventArgs)
Handles AxGantt1.DateChange
 Debug.Write(AxGantt1.Chart.FirstVisibleDate.ToString())
End Sub

The following C# sample displays the first visible date when the user changes the first
visible date:

private void axGantt1_DateChange(object sender, EventArgs e)
{
 System.Diagnostics.Debug.Write(axGantt1.Chart.FirstVisibleDate.ToString());
}

The following VFP sample displays the first visible date when the user changes the first
visible date:

*** ActiveX Control Event ***

with thisform.Gantt1.Chart
 wait window nowait .FormatDate(.FirstVisibleDate, "<%yyyy%>-<%m%>-<%d%>")
endwith

property Chart.FirstWeekDay as WeekDayEnum
Specifies the first day of the week.

Type Description

WeekDayEnum A WeekDayEnum expression that indicates the first day in
the week.

By default, the FirstWeekDay property is exSunday. Use the FirstWeekDay property to
specify the first day in the week. Use WeekDays property to specify the name of the days
in the week. Use the MonthNames property to specify the name of the months in the year.
Use the AMPM property to specify the name of the AM and PM indicators. The FormatDate
property formats a date. The NextDate property computes the next date based on the time
unit. Use the FirstVisibleDate property to specify the first visible date in the chart. Use the
MarkTodayColor property to specify the color to mark the today date area.

property Chart.ForeColor as Color
Retrieves or sets a value that indicates the chart's foreground color.

Type Description

Color A Color expression that indicates the chart's foreground
color.

Use the ForeColor property to specify the chart's foreground color. Use the BackColor
property to specify the chart's background color. Use the BackColorLevelHeader property
to specify the background color of the chart's header. Use the ForeColorLevelHeader
property to specify the foreground color of the chart's header. Use the BackColor property
to specify the background color for a specified level. Use the ForeColor property to specify
the foreground color for a specified level. Use the ItemBackColor property to change the
item's background color. Use the NonworkingDaysColor property the color of the brush to
fill the nonworking days area. Use the Picture property to specify the picture being
displayed on the chart's area.

The following VB sample changes the chart's foreground color:

With Gantt1.Chart
 .ForeColor = RGB(&H80, &H80, &H80)
End With

The following C++ sample changes the chart's foreground color:

m_gantt.GetChart().SetForeColor(RGB(0x80,0x80,0x80));

The following VB.NET sample changes the chart's foreground color:

With AxGantt1.Chart
 .ForeColor = ToUInt32(Color.FromArgb(&H80, &H80, &H80))
End With

where the ToUInt32 function converts a Color expression to an OLE_COLOR type:

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)

End Function

The following C# sample changes the chart's foreground color:

axGantt1.Chart.ForeColor = ToUInt32(Color.FromArgb(0x80, 0x80, 0x80));

where the ToUInt32 function converts a Color expression to an OLE_COLOR type:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample changes the chart's foreground color:

With thisform.Gantt1.Chart
 .ForeColor = RGB(128, 128, 128)
EndWith

property Chart.ForeColorLevelHeader as Color
Specifies the foreground color for the chart's levels.

Type Description

Color A Color expression that indicates the background color for
the chart's header.

Use the ForeColorLevelHeader property to specify the foreground color of the chart's
header. Use the BackColorLevelHeader property to specify the background color of the
chart's header. Use the LevelCount property to specify the number of levels in the chart's
header. Use the Level property to access a level. Use the BackColor property to specify
the background color for a specified level. Use the ForeColor property to specify the
foreground color for a specified level. Use the BackColor property to specify the chart's
background color. Use the ForeColor property to specify the chart's foreground color. Use
the ItemBackColor property to change the item's background color. Use the
NonworkingDaysColor property the color of the brush to fill the nonworking days area. Use
the Picture property to specify the picture being displayed on the chart's area.

The following VB sample changes the chart's header foreground color:

With Gantt1.Chart
 .ForeColorLevelHeader = RGB(&H80, &H80, &H80)
End With

The following C++ sample changes the chart's header foreground color:

m_gantt.GetChart().SetForeColorLevelHeader(RGB(0x80,0x80,0x80));

The following VB.NET sample changes the chart's header foreground color:

With AxGantt1.Chart
 .ForeColorLevelHeader = ToUInt32(Color.FromArgb(&H80, &H80, &H80))
End With

where the ToUInt32 function converts a Color expression to an OLE_COLOR type:

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B

 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample changes the chart's header foreground color:

axGantt1.Chart.ForeColorLevelHeader = ToUInt32(Color.FromArgb(0x80, 0x80, 0x80));

where the ToUInt32 function converts a Color expression to an OLE_COLOR type:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample changes the chart's header foreground color:

With thisform.Gantt1.Chart
 .ForeColorLevelHeader = RGB(128, 128, 128)
EndWith

property Chart.FormatDate (Date as Date, Format as String) as String
Formats the date.

Type Description
Date as Date A Date expression being formatted
Format as String A String expression that indicates the format of date.
String A String expression that indicates the formatted date.

Use the FormatDate property to format a date. Use the NextDate property to increase or
decrease a date based on a time unit. Use the FirstVisibleDate property to retrieve the first
visible date. The DateFromPoint property gets the date from the cursor. Use the WeekDays
property to specify the name of the days in the week. Use the MonthNames property to
specify the name of the months in the year. Use the AMPM property to specify the name of
the AM and PM indicators.

The Format parameter may include the following built-in tags:

<%d%> - Day of the month in one or two numeric digits, as needed (1 to 31).
<%dd%> - Day of the month in two numeric digits (01 to 31).
<%d1%> - First letter of the weekday (S to S). (Use the WeekDays property to
specify the name of the days in the week)
<%d2%> - First two letters of the weekday (Su to Sa). (Use the WeekDays property
to specify the name of the days in the week)
<%d3%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week)
<%ddd%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_ddd%> that indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%loc_ddd%> - Indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%dddd%> - Full name of the weekday (Sunday to Saturday). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_dddd%> that indicates day of week as its full name using the current user
regional and language settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
regional and language settings.
<%i%> - Displays the number instead the date. For instance, you can display numbers
as 1000, 1001, 1002, 1003, instead dates. (the valid range is from -647,434 to
2,958,465)
<%w%> - Day of the week (1 to 7).

<%ww%> - Week of the year (1 to 53).
<%m%> - Month of the year in one or two numeric digits, as needed (1 to 12).
<%mr%> - Month of the year in Roman numerals, as needed (I to XII).
<%mm%> - Month of the year in two numeric digits (01 to 12).
<%m1%> - First letter of the month (J to D). (Use the MonthNames property to
specify the name of the months in the year)
<%m2%> - First two letters of the month (Ja to De). (Use the MonthNames property
to specify the name of the months in the year)
<%m3%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year)
<%mmm%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year). You can use the
<%loc_mmm%> that indicates month as a three-letter abbreviation using the current
user regional and language settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
regional and language settings.
<%mmmm%> - Full name of the month (January to December). (Use the
MonthNames property to specify the name of the months in the year). You can use the
<%loc_mmmm%> that indicates month as its full name using the current user regional
and language settings.
<%loc_mmmm%> - Indicates month as its full name using the current user regional
and language settings.
<%q%> - Date displayed as the quarter of the year (1 to 4).
<%y%> - Number of the day of the year (1 to 366).
<%yy%> - Last two digits of the year (01 to 99).
<%yyyy%> - Full year (0100 to 9999).
<%hy%> - Date displayed as the half of the year (1 to 2).
<%loc_gg%> - Indicates period/era using the current user regional and language
settings.
<%loc_sdate%> - Indicates the date in the short format using the current user regional
and language settings.
<%loc_ldate%> - Indicates the date in the long format using the current user regional
and language settings.
<%loc_dsep%> - Indicates the date separator using the current user regional and
language settings (/).
<%h%> - Hour in one or two digits, as needed (0 to 23).
<%hh%> - Hour in two digits (00 to 23).
<%n%> - Minute in one or two digits, as needed (0 to 59).
<%nn%> - Minute in two digits (00 to 59).
<%s%> - Second in one or two digits, as needed (0 to 59).
<%ss%> - Second in two digits (00 to 59).
<%AM/PM%> - Twelve-hour clock with the uppercase letters "AM" or "PM", as

appropriate. (Use the AMPM property to specify the name of the AM and PM
indicators). You can use the <%loc_AM/PM%> that indicates the time marker such as
AM or PM using the current user regional and language settings. You can use
<%loc_A/P%> that indicates the one character time marker such as A or P using the
current user regional and language settings
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user regional and language settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user regional and language settings.
<%loc_time%> - Indicates the time using the current user regional and language
settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user regional and language settings.
<%loc_tsep%> - indicates the time separator using the current user regional and
language settings (:).

The following tags are displayed based on the user's Regional and Language Options:

<%loc_sdate%> - Indicates the date in the short format using the current user
settings.
<%loc_ldate%> - Indicates the date in the long format using the current user settings.
<%loc_ddd%> - Indicates day of week as a three-letter abbreviation using the current
user settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
settings.
<%loc_mmmm%> - Indicates month as its full name using the current user settings.
<%loc_gg%> - Indicates period/era using the current user settings.
<%loc_dsep%> - Indicates the date separator using the current user settings.
<%loc_time%> - Indicates the time using the current user settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user settings.
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user settings.
<%loc_tsep%> - Indicates the time separator using the current user settings.
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.

<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed.

The following VB sample displays the next day as "Tue, May 31, 2005":

With Gantt1.Chart
 Debug.Print .FormatDate(.NextDate(.FirstVisibleDate, exDay, 2), "<%ddd%>,
<%mmmm%> <%d%>, <%yyyy%>")
End With

The following C++ sample displays the next day as "Tue, May 31, 2005":

CChart chart = m_gantt.GetChart();
DATE d = chart.GetNextDate(V2D(&chart.GetFirstVisibleDate()), 4096, COleVariant(
(long)1));
CString strFormat = chart.GetFormatDate(d, "<%ddd%>, <%mmmm%> <%d%>,
<%yyyy%>");
OutputDebugString(strFormat);

where the V2D function converts a Variant expression to a DATE expression:

static DATE V2D(VARIANT* pvtDate)
{
 COleVariant vtDate;
 vtDate.ChangeType(VT_DATE, pvtDate);
 return V_DATE(&vtDate);
}

The following VB.NET sample displays the next day as "Tue, May 31, 2005":

With AxGantt1.Chart
 Debug.Write(.FormatDate(.NextDate(.FirstVisibleDate, EXGANTTLib.UnitEnum.exDay, 2),
"<%ddd%>, <%mmmm%> <%d%>, <%yyyy%>"))
End With

The following C# sample displays the next day as "Tue, May 31, 2005":

DateTime d = Convert.ToDateTime(
axGantt1.Chart.get_NextDate(Convert.ToDateTime(axGantt1.Chart.FirstVisibleDate),
EXGANTTLib.UnitEnum.exDay, 1));
String strFormat = axGantt1.Chart.get_FormatDate(d, "<%ddd%>, <%mmmm%>
<%d%>, <%yyyy%>");
System.Diagnostics.Debug.Write(strFormat);

The following VFP sample displays the next day as "Tue, May 31, 2005":

With thisform.Gantt1.Chart
 wait window nowait .FormatDate(.NextDate(.FirstVisibleDate, 4096, 2), "<%ddd%>,
<%mmmm%> <%d%>, <%yyyy%>")
EndWith

property Chart.GridLineStyle as GridLinesStyleEnum
Retrieves or sets a value that indicates style for the gridlines being shown in the chart area.

Type Description

GridLinesStyleEnum A GridLinesStyleEnum expression that indicates the style
to show the grid lines in the chart view part of the control.

By default, the GridLineStyle property is exGridLinesDot. The GridLineStyle property has
effect only if the chart's DrawGridLines property is not zero. Use the DrawGridLines
property of the Level object to show the vertical grid lines for the specified level. Use the
GridLineColor property of the Level object to specify the color for vertical grid lines in the
chart area. Use the GridLineStyle property of the Level object to specify the style for
vertical grid lines in the chart area. Use the GridLineColor property to specify the color for
grid lines. Use the DrawGridLines property to specify whether the control draws the grid
lines in the items area. Use the DrawLevelSeperator property to draw lines between levels
inside the chart's header. Use the DrawTickLines property to specify whether the grid lines
between time units in the level are visible or hidden. Use the MarkTodayColor property to
specify the color to mark the today date.

property Chart.IsDateVisible (Date as Variant) as Boolean
Specifies whether the date fits the control's chart area.

Type Description
Date as Variant A Date expression being queried

Boolean A Boolean expression that indicates whether the date fits
the chart's area.

The IsDateVisible property specifies whether a date is visible or hidden. Use the
FirstVisibleDate property to specify the first visible date in the chart's area. The
DateChange event notifies your application whether the chart changes it's first visible date,
or whether the user browses a new area in the chart.

The following VB sample enumerates all visible dates:

With Gantt1
 .BeginUpdate
 With .Chart
 Dim d As Date
 d = .FirstVisibleDate
 Do While .IsDateVisible(d)
 If Day(d) = 11 Then
 If Not (.IsNonworkingDate(d)) Then
 .AddNonworkingDate d
 End If
 End If
 d = .NextDate(d, exDay, 1)
 Loop
 End With
 .EndUpdate
End With

The following VB.NET sample enumerates all visible dates:

With AxGantt1
 .BeginUpdate()
 With .Chart
 Dim d As Date
 d = .FirstVisibleDate

 Do While .IsDateVisible(d)
 If d.Day = 11 Then
 If Not (.IsNonworkingDate(d)) Then
 .AddNonworkingDate(d)
 End If
 End If
 d = .NextDate(d, EXGANTTLib.UnitEnum.exDay, 1)
 Loop
 End With
 .EndUpdate()
End With

The following C# sample enumerates all visible dates:

axGantt1.BeginUpdate();
EXGANTTLib.Chart chart = axGantt1.Chart;
DateTime d = Convert.ToDateTime(chart.FirstVisibleDate);
while (chart.get_IsDateVisible(d))
{
 if (d.Day == 11)
 if (!chart.get_IsNonworkingDate(d))
 chart.AddNonworkingDate(d);
 d = chart.get_NextDate(d, EXGANTTLib.UnitEnum.exDay, 1);
}
axGantt1.EndUpdate();

The following VFP sample enumerates all visible dates:

With thisform.Gantt1
 .BeginUpdate
 With .Chart
 local d
 d = .FirstVisibleDate
 Do While .IsDateVisible(d)
 If Day(d) = 11 Then
 If Not (.IsNonworkingDate(d)) Then
 .AddNonworkingDate(d)
 EndIf

 EndIf
 d = .NextDate(d, 4096, 1)
 enddo
 EndWith
 .EndUpdate
EndWith

property Chart.IsNonworkingDate (Date as Variant) as Boolean
Specifies whether the date is a nonworking day.

Type Description
Date as Variant A Date expression that indicates the date being queried.

Boolean A boolean expression that specifies whether the date is
nonworking day.

Use the IsNonworkingDate property to check whether the date is already highlighted as
nonworking day. The NonworkingDays property specifies the days being marked as
nonworking in a week. Use the AddNonworkingDate method to add custom dates as being
nonworking days. Use the NonworkingDaysPattern property to specify the pattern being
used to fill non-working days. The NonworkingDaysColor property specifies the color being
used to fill the non-working days. Use the ClearNonworkingDates method to remove all
nonworking dates. Use the IsDateVisible property to specify whether a date fits the chart's
area.

property Chart.ItemBackColor(Item as HITEM) as Color
Retrieves or sets a background color for a specific item, in the chart area.

Type Description
Item as HITEM A long expression that indicates the handle of the item.

Color

A color expression that indicates the item's background
color. The last 7 bits in the high significant byte of the color
to indicates the identifier of the skin being used. Use the
Add method to add new skins to the control. If you need
to remove the skin appearance from a part of the control
you need to reset the last 7 bits in the high significant byte
of the color being applied to the

By default, the ItemBackColor property is the same as Chart's BackColor property. The
ItemBackColor property specifies the background or the visual appearance for the item's
background on the chart area. The ItemBackColor property specifies the item's background
color for the list area (columns part of the control). The ClearItemBackColor method
clears the item's background on the chart part of the control.

The following screen shot shows the chart part when using the ItemBackColor property of
the Chart object:

The following samples changes the background color for the item in the chart part only.

VBA (MS Access, Excell...)

With Gantt1
 .Columns.Add "Default"
 With .Items
 h = .AddItem("Root")
 hC = .InsertItem(h,0,"Child 1")

 Gantt1.Chart.ItemBackColor(hC) = RGB(255,0,0)
 .InsertItem h,0,"Child 2"
 .ExpandItem(h) = True
 End With
End With

VB6

With Gantt1
 .Columns.Add "Default"
 With .Items
 h = .AddItem("Root")
 hC = .InsertItem(h,0,"Child 1")
 Gantt1.Chart.ItemBackColor(hC) = RGB(255,0,0)
 .InsertItem h,0,"Child 2"
 .ExpandItem(h) = True
 End With
End With

VB.NET

Dim h,hC
With Exgantt1
 .Columns.Add("Default")
 With .Items
 h = .AddItem("Root")
 hC = .InsertItem(h,0,"Child 1")
 Exgantt1.Chart.set_ItemBackColor(hC,Color.FromArgb(255,0,0))
 .InsertItem(h,0,"Child 2")
 .set_ExpandItem(h,True)
 End With
End With

VB.NET for /COM

Dim h,hC
With AxGantt1
 .Columns.Add("Default")
 With .Items

 h = .AddItem("Root")
 hC = .InsertItem(h,0,"Child 1")
 AxGantt1.Chart.ItemBackColor(hC) = RGB(255,0,0)
 .InsertItem(h,0,"Child 2")
 .ExpandItem(h) = True
 End With
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXGANTTLib' for the library: 'ExGantt 1.0 Control Library'

 #import <ExGantt.dll>
 using namespace EXGANTTLib;
*/
EXGANTTLib::IGanttPtr spGantt1 = GetDlgItem(IDC_GANTT1)->GetControlUnknown();
spGantt1->GetColumns()->Add(L"Default");
EXGANTTLib::IItemsPtr var_Items = spGantt1->GetItems();
 long h = var_Items->AddItem("Root");
 long hC = var_Items->InsertItem(h,long(0),"Child 1");
 spGantt1->GetChart()->PutItemBackColor(hC,RGB(255,0,0));
 var_Items->InsertItem(h,long(0),"Child 2");
 var_Items->PutExpandItem(h,VARIANT_TRUE);

C#

exgantt1.Columns.Add("Default");
exontrol.EXGANTTLib.Items var_Items = exgantt1.Items;
 int h = var_Items.AddItem("Root");
 int hC = var_Items.InsertItem(h,0,"Child 1");
 exgantt1.Chart.set_ItemBackColor(hC,Color.FromArgb(255,0,0));
 var_Items.InsertItem(h,0,"Child 2");
 var_Items.set_ExpandItem(h,true);

C# for /COM

axGantt1.Columns.Add("Default");

EXGANTTLib.Items var_Items = axGantt1.Items;
 int h = var_Items.AddItem("Root");
 int hC = var_Items.InsertItem(h,0,"Child 1");
 axGantt1.Chart.set_ItemBackColor(hC,
(uint)ColorTranslator.ToWin32(Color.FromArgb(255,0,0)));
 var_Items.InsertItem(h,0,"Child 2");
 var_Items.set_ExpandItem(h,true);

Delphi 8 (.NET only)

with AxGantt1 do
begin
 Columns.Add('Default');
 with Items do
 begin
 h := AddItem('Root');
 hC := InsertItem(h,TObject(0),'Child 1');
 AxGantt1.Chart.ItemBackColor[hC] := $ff;
 InsertItem(h,TObject(0),'Child 2');
 ExpandItem[h] := True;
 end;
end

Delphi (standard)

with Gantt1 do
begin
 Columns.Add('Default');
 with Items do
 begin
 h := AddItem('Root');
 hC := InsertItem(h,OleVariant(0),'Child 1');
 Gantt1.Chart.ItemBackColor[hC] := $ff;
 InsertItem(h,OleVariant(0),'Child 2');
 ExpandItem[h] := True;
 end;
end

VFP

with thisform.Gantt1
 .Columns.Add("Default")
 with .Items
 h = .AddItem("Root")
 hC = .InsertItem(h,0,"Child 1")
 thisform.Gantt1.Chart.ItemBackColor(hC) = RGB(255,0,0)
 .InsertItem(h,0,"Child 2")
 .ExpandItem(h) = .T.
 endwith
endwith

property Chart.Label(Unit as UnitEnum) as String
Retrieves or sets a value that indicates the predefined format of the level's label for a
specified unit.

Type Description
Unit as UnitEnum An UnitEnum expression that indicates the time unit
String A String expression that includes the format of the label.

The Label property specifies a predefined label for a specified unit. Use the UnitScale
property to change the scale unit. The UnitScale property changes the Label, Unit and the
ToolTip for a level with predefined values defined by the Label and LabelToolTip properties.
Use the UnitWidth property to specify the width of the time unit. Use the Zoom method to
zoom the chart to a specified interval of dates. Use the Label property to assign a different
label for a specified level. Use the LabelToolTip property to specify the predefined type of
tooltip being displayed when the chart is zoomed. Use the ToolTip property to specify the
tooltip that shows up when the cursor hovers the level. Use the FormatDate property to
format a date. Use the MonthNames property to specify the name of the months in the
year. The WeekDays property retrieves or sets a value that indicates the list of names for
each week day, separated by space. If the Label property is empty, the unit is not
displayed in the zooming scale, if the AllowOverviewZoom property is not exDisableZoom.

The Label property supports alternative HTML labels being separated by "<|>" and values
for Count and Unit being separated by "<||>". By alternate HTML label we mean that you
can define a list of HTML labels that may be displayed in the chart's header based on the
space allocated for the time-unit. In other words, the control chooses automatically the
alternate HTML label to be displayed for best fitting in the portion of the chart where the
time-unit should be shown.

The Label property format is "ALT1[<|>ALT2<|>...[<||>COUNT[<||>UNIT]]]" where

ALT defines a HTML label
COUNT specifies the value for the Count property
UNIT field indicates the value for the Unit property
and the parts delimited by [] brackets may miss.

The Label property may change the Unit and the Count property. You can always use
a different Unit or Count by setting the property after setting the Label property.

The Label property supports the following built-in tags:

<%d%> - Day of the month in one or two numeric digits, as needed (1 to 31).
<%dd%> - Day of the month in two numeric digits (01 to 31).
<%d1%> - First letter of the weekday (S to S). (Use the WeekDays property to

specify the name of the days in the week)
<%d2%> - First two letters of the weekday (Su to Sa). (Use the WeekDays property
to specify the name of the days in the week)
<%d3%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week)
<%ddd%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_ddd%> that indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%loc_ddd%> - Indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%dddd%> - Full name of the weekday (Sunday to Saturday). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_dddd%> that indicates day of week as its full name using the current user
regional and language settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
regional and language settings.
<%i%> - Displays the number instead the date. For instance, you can display numbers
as 1000, 1001, 1002, 1003, instead dates. (the valid range is from -647,434 to
2,958,465)
<%w%> - Day of the week (1 to 7).
<%ww%> - Week of the year (1 to 53).
<%m%> - Month of the year in one or two numeric digits, as needed (1 to 12).
<%mr%> - Month of the year in Roman numerals, as needed (I to XII).
<%mm%> - Month of the year in two numeric digits (01 to 12).
<%m1%> - First letter of the month (J to D). (Use the MonthNames property to
specify the name of the months in the year)
<%m2%> - First two letters of the month (Ja to De). (Use the MonthNames property
to specify the name of the months in the year)
<%m3%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year)
<%mmm%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year). You can use the
<%loc_mmm%> that indicates month as a three-letter abbreviation using the current
user regional and language settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
regional and language settings.
<%mmmm%> - Full name of the month (January to December). (Use the
MonthNames property to specify the name of the months in the year). You can use the
<%loc_mmmm%> that indicates month as its full name using the current user regional
and language settings.
<%loc_mmmm%> - Indicates month as its full name using the current user regional

and language settings.
<%q%> - Date displayed as the quarter of the year (1 to 4).
<%y%> - Number of the day of the year (1 to 366).
<%yy%> - Last two digits of the year (01 to 99).
<%yyyy%> - Full year (0100 to 9999).
<%hy%> - Date displayed as the half of the year (1 to 2).
<%loc_gg%> - Indicates period/era using the current user regional and language
settings.
<%loc_sdate%> - Indicates the date in the short format using the current user regional
and language settings.
<%loc_ldate%> - Indicates the date in the long format using the current user regional
and language settings.
<%loc_dsep%> - Indicates the date separator using the current user regional and
language settings (/).
<%h%> - Hour in one or two digits, as needed (0 to 23).
<%hh%> - Hour in two digits (00 to 23).
<%n%> - Minute in one or two digits, as needed (0 to 59).
<%nn%> - Minute in two digits (00 to 59).
<%s%> - Second in one or two digits, as needed (0 to 59).
<%ss%> - Second in two digits (00 to 59).
<%AM/PM%> - Twelve-hour clock with the uppercase letters "AM" or "PM", as
appropriate. (Use the AMPM property to specify the name of the AM and PM
indicators). You can use the <%loc_AM/PM%> that indicates the time marker such as
AM or PM using the current user regional and language settings. You can use
<%loc_A/P%> that indicates the one character time marker such as A or P using the
current user regional and language settings
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user regional and language settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user regional and language settings.
<%loc_time%> - Indicates the time using the current user regional and language
settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user regional and language settings.
<%loc_tsep%> - indicates the time separator using the current user regional and
language settings (:).

The following tags are displayed based on the user's Regional and Language Options:

<%loc_sdate%> - Indicates the date in the short format using the current user
settings.
<%loc_ldate%> - Indicates the date in the long format using the current user settings.

<%loc_ddd%> - Indicates day of week as a three-letter abbreviation using the current
user settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
settings.
<%loc_mmmm%> - Indicates month as its full name using the current user settings.
<%loc_gg%> - Indicates period/era using the current user settings.
<%loc_dsep%> - Indicates the date separator using the current user settings.
<%loc_time%> - Indicates the time using the current user settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user settings.
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user settings.
<%loc_tsep%> - Indicates the time separator using the current user settings.
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed.

The Label property supports the following built-in HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to

about:blank

expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text

<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>

<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

The Label property may be a combination of any of these tags. For instance, the "
<%mmm%> <%d%>, '<%yy%>" displays a date like: "May 29,'05".

By default, the Label property is:

exYear: "<%yy%><|>'<%yy%><|><%yyyy%>"
exHalfYear: ""
exQuarterYear: ""
exMonth: "<|><%m1%><|><%m2%><|><%m3%><|><%mmmm%><|><%m3%>
'<%yy%><|><%mmmm%> <%yyyy%>"
exThirdMonth: ""
exWeek: "<|><%ww%><|><%m3%> <%d%>, '<%yy%><r><%ww%><|>
<%mmmm%> <%d%>, <%yyyy%><r><%ww%><||><||>256"
exDay: "<|><%d1%><|><%d2%><|><%d3%><|><%dddd%><|><%d3%>, <%m3%>
<%d%>, '<%yy%><|><%dddd%>, <%mmmm%> <%d%>, <%yyyy%><||><||>4096"
exHour: "<|><%hh%><|><%h%> <%AM/PM%><|><%d3%>, <%m3%> <%d%>,
'<%yy%> <%h%> <%AM/PM%><|><%dddd%>, <%mmmm%> <%d%>, <%yyyy%>
<%h%> <%AM/PM%><||><||>65536"
exMinute: "<|><%nn%><|><%h%>:<%nn%> <%AM/PM%><|><%d3%>, <%m3%>
<%d%>, '<%yy%> <%h%>:<%nn%> <%AM/PM%><|><%dddd%>, <%mmmm%>
<%d%>, <%yyyy%> <%h%>:<%nn%> <%AM/PM%>"
exSecond: "<|><%ss%><|><%nn%>:<%ss%><|><%h%>:<%nn%>:<%ss%>
<%AM/PM%><|><%d3%>, <%m3%> <%d%>, '<%yy%> <%h%>:<%nn%>:<%ss%>
<%AM/PM%><|><%dddd%>, <%mmmm%> <%d%>, <%yyyy%> <%h%>:<%nn%>:

<%ss%> <%AM/PM%>"

For instance the Label(exWeek) is "<|><%ww%><|><%m3%> <%d%>, '<%yy%><r>
<%ww%><|><%mmmm%> <%d%>, <%yyyy%><r><%ww%><||><||>256" which means
that if a level's unit is set on exWeek it may display one of the following alternate labels:

nothing, if the space is less than 6 pixels
 <%ww%> - week number
<%m3%> <%d%>, '<%yy%><r><%ww%> - month, day, year in short format where
the week begins, including the week number on the right
 <%mmmm%> <%d%>, <%yyyy%><r><%ww%> - month, day, year in long format
where the week begins, including the week number on the right

So actually, the control will choose any of these formats based on the UnitWidth, Font and
the layout of the levels.

property Chart.LabelToolTip(Unit as UnitEnum) as String
Retrieves or sets a value that indicates the predefined format of the level's tooltip for a
specified unit.

Type Description
Unit as UnitEnum An UnitEnum expression that indicates the time unit
String A String expression that includes the format of the tooltip.

The LabelToolTip property specifies a predefined tooltip for a specified unit. Use the ToolTip
property to specify the tooltip that shows up when the cursor hovers the level. The ToolTip
property retrieves or sets a value that indicates the format of the tooltip being shown while
the user scrolls the chart. Use the FormatDate property to format a date. Use the
MonthNames property to specify the name of the months in the year. The WeekDays
property retrieves or sets a value that indicates the list of names for each week day,
separated by space. Use the Zoom method to zoom the chart to a specified interval of
dates. Use the AMPM property to specify the name of the AM and PM indicators. The
Label property specifies a predefined label for a specified unit.

The LabelToolTip property supports the following built-in tags:

<%d%> - Day of the month in one or two numeric digits, as needed (1 to 31).
<%dd%> - Day of the month in two numeric digits (01 to 31).
<%d1%> - First letter of the weekday (S to S). (Use the WeekDays property to
specify the name of the days in the week)
<%d2%> - First two letters of the weekday (Su to Sa). (Use the WeekDays property
to specify the name of the days in the week)
<%d3%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week)
<%ddd%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_ddd%> that indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%loc_ddd%> - Indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%dddd%> - Full name of the weekday (Sunday to Saturday). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_dddd%> that indicates day of week as its full name using the current user
regional and language settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
regional and language settings.
<%i%> - Displays the number instead the date. For instance, you can display numbers
as 1000, 1001, 1002, 1003, instead dates. (the valid range is from -647,434 to

2,958,465)
<%w%> - Day of the week (1 to 7).
<%ww%> - Week of the year (1 to 53).
<%m%> - Month of the year in one or two numeric digits, as needed (1 to 12).
<%mr%> - Month of the year in Roman numerals, as needed (I to XII).
<%mm%> - Month of the year in two numeric digits (01 to 12).
<%m1%> - First letter of the month (J to D). (Use the MonthNames property to
specify the name of the months in the year)
<%m2%> - First two letters of the month (Ja to De). (Use the MonthNames property
to specify the name of the months in the year)
<%m3%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year)
<%mmm%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year). You can use the
<%loc_mmm%> that indicates month as a three-letter abbreviation using the current
user regional and language settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
regional and language settings.
<%mmmm%> - Full name of the month (January to December). (Use the
MonthNames property to specify the name of the months in the year). You can use the
<%loc_mmmm%> that indicates month as its full name using the current user regional
and language settings.
<%loc_mmmm%> - Indicates month as its full name using the current user regional
and language settings.
<%q%> - Date displayed as the quarter of the year (1 to 4).
<%y%> - Number of the day of the year (1 to 366).
<%yy%> - Last two digits of the year (01 to 99).
<%yyyy%> - Full year (0100 to 9999).
<%hy%> - Date displayed as the half of the year (1 to 2).
<%loc_gg%> - Indicates period/era using the current user regional and language
settings.
<%loc_sdate%> - Indicates the date in the short format using the current user regional
and language settings.
<%loc_ldate%> - Indicates the date in the long format using the current user regional
and language settings.
<%loc_dsep%> - Indicates the date separator using the current user regional and
language settings (/).
<%h%> - Hour in one or two digits, as needed (0 to 23).
<%hh%> - Hour in two digits (00 to 23).
<%n%> - Minute in one or two digits, as needed (0 to 59).
<%nn%> - Minute in two digits (00 to 59).
<%s%> - Second in one or two digits, as needed (0 to 59).

<%ss%> - Second in two digits (00 to 59).
<%AM/PM%> - Twelve-hour clock with the uppercase letters "AM" or "PM", as
appropriate. (Use the AMPM property to specify the name of the AM and PM
indicators). You can use the <%loc_AM/PM%> that indicates the time marker such as
AM or PM using the current user regional and language settings. You can use
<%loc_A/P%> that indicates the one character time marker such as A or P using the
current user regional and language settings
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user regional and language settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user regional and language settings.
<%loc_time%> - Indicates the time using the current user regional and language
settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user regional and language settings.
<%loc_tsep%> - indicates the time separator using the current user regional and
language settings (:).

The following tags are displayed based on the user's Regional and Language Options:

<%loc_sdate%> - Indicates the date in the short format using the current user
settings.
<%loc_ldate%> - Indicates the date in the long format using the current user settings.
<%loc_ddd%> - Indicates day of week as a three-letter abbreviation using the current
user settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
settings.
<%loc_mmmm%> - Indicates month as its full name using the current user settings.
<%loc_gg%> - Indicates period/era using the current user settings.
<%loc_dsep%> - Indicates the date separator using the current user settings.
<%loc_time%> - Indicates the time using the current user settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user settings.
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user settings.
<%loc_tsep%> - Indicates the time separator using the current user settings.
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.

<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed.

The LabelToolTip property supports the following built-in HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show

about:blank

lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a

known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

By default, the LabelToolTip property is:

exYear: "<%yyyy%>"
exHalfYear: ""
exQuarterYear: ""
exMonth: "<%mmmm%>/ <%yyyy%>"
exThirdMonth: ""
exWeek: "<%mmmm%> <%d%>, <%yyyy%> <%ww%>"
exDay: "<%dddd%>, <%mmmm%> <%d%>, <%yyyy%>"
exHour: "<%dddd%>, <%mmmm%> <%d%>, <%yyyy%> <%h%> <%AM/PM%>"
exMinute: "<%dddd%>, <%mmmm%> <%d%>, <%yyyy%> <%h%>:<%nn%>
<%AM/PM%>"
exSecond: "<%dddd%>, <%mmmm%> <%d%>, <%yyyy%> <%h%>:<%nn%>:
<%ss%> <%AM/PM%>"

property Chart.Level (Index as Long) as Level
Retrieves the level based on its index.

Type Description

Index as Long A long expression that indicates the index of the level
being accessed.

Level A Level object being accessed.

The Level property retrieves the Level based on its index. Use the LevelCount property to
specify the number of levels being displayed in the chart's header. Use the HeaderVisible
property to hide the control's header bar. The control's header bar displays the levels in the
chart area too. If the control displays the header bar using multiple levels the HeaderHeight
property gets the height in pixels of a single level in the header bar.

The following VB sample enumerates the levels in the chart:

With Gantt1.Chart
 Dim i As Long
 For i = 0 To .LevelCount - 1
 With .Level(i)
 Debug.Print .Label
 End With
 Next
End With

The following C++ sample enumerates the levels in the chart:

CChart chart = m_gantt.GetChart();
for (long i = 0; i < chart.GetLevelCount(); i++)
{
 CLevel level = chart.GetLevel(i);
 OutputDebugString(V2S(&level.GetLabel()));
}

where the V2S function converts a Variant expression to a string expression:

static CString V2S(VARIANT* pvtDate)
{
 COleVariant vtDate;

 vtDate.ChangeType(VT_BSTR, pvtDate);
 return V_BSTR(&vtDate);
}

The following VB.NET sample enumerates the levels in the chart:

With AxGantt1.Chart
 Dim i As Long
 For i = 0 To .LevelCount - 1
 With .Level(i)
 Debug.Write(.Label())
 End With
 Next
End With

The following C# sample enumerates the levels in the chart:

for (int i = 0; i < axGantt1.Chart.LevelCount; i++)
{
 EXGANTTLib.Level level = axGantt1.Chart.get_Level(i);
 System.Diagnostics.Debug.Write(level.Label);
}

The following VFP sample enumerates the levels in the chart:

With thisform.Gantt1.Chart
 For i = 0 To .LevelCount - 1
 With .Level(i)
 wait window nowait .Label
 EndWith
 Next
EndWith

property Chart.LevelCount as Long
Specifies the number of levels in the control's header.

Type Description

Long A Long expression that indicates the number of levels
being displayed in the control's header.

By default, the control displays a single level. Use the LevelCount property to specify the
number of levels being displayed in the chart's header. Use the Level property to access the
level in the chart area. Use the Label property to specify the level's HTML label. Use the
Unit property to specify the time-scale unit for the chart's level. Use the HeaderVisible
property to hide the control's header bar. The control's header bar displays the levels in the
chart area too. Use the Caption property to specify the column's caption being displayed in
the control's header bar. Use the BackColorLevelHeader property to specify the
background color of the chart's header. Use the ForeColorLevelHeader property to specify
the foreground color of the chart's header. If the control displays the header bar using
multiple levels the HeaderHeight property gets the height in pixels of a single level in the
header bar. Use the LevelKey property to specify the key of the column.

Newer versions support Regional and Language Options for tags such as:

<%loc_sdate%> - Indicates the date in the short format using the current user
settings.
<%loc_ldate%> - Indicates the date in the long format using the current user settings.
<%loc_ddd%> - Indicates day of week as a three-letter abbreviation using the current
user settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
settings.
<%loc_mmmm%> - Indicates month as its full name using the current user settings.
<%loc_gg%> - Indicates period/era using the current user settings.
<%loc_dsep%> - Indicates the date separator using the current user settings.
<%loc_time%> - Indicates the time using the current user settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user settings.
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user settings.
<%loc_tsep%> - Indicates the time separator using the current user settings.

You can use these in methods as: Level.Label, Level.ToolTip, Chart.Label,
Chart.LabelToolTip, Chart.FormatDate, Chart.OverviewToolTip, Chart.ToolTip,
InsideZoomFormat.InsideLabel, InsideZoomFormat.OwnerLabel, Note.PartText and
Note.Text (where supported).

The following screen shot shows the chart's header for English (United States) format:

The following screen shot shows the chart's header for Nepali (Nepal) format:

The following screen shot shows the chart's header for German (Germany) format:

The following VBA sample shows how to specify the levels using the user's Regional and
Language Options?

With Gantt1
 .BeginUpdate
 .Font.Name = "Arial Unicode MS"
 .HeaderHeight = 36
 With .Chart
 .FirstVisibleDate = #5/30/2010#
 .PaneWidth(False) = 0
 .FirstWeekDay = 1
 .UnitWidth = 36
 .LevelCount = 2
 With .Level(0)
 .Label = "<%loc_mmmm%> <%yyyy%>
<%loc_sdate%><r>
<%ww%> "
 .ToolTip = .Label
 .Unit = 256
 End With

 With .Level(1)
 .Label = "<%loc_ddd%>
<%d%>"
 .ToolTip = .Label
 End With
 .ToolTip = "<%loc_ldate%>"
 End With
 .EndUpdate
End With

The following VB6 sample shows how to specify the levels using the user's Regional and
Language Options?

With Gantt1
 .BeginUpdate
 .Font.Name = "Arial Unicode MS"
 .HeaderHeight = 36
 With .Chart
 .FirstVisibleDate = #5/30/2010#
 .PaneWidth(False) = 0
 .FirstWeekDay = exMonday
 .UnitWidth = 36
 .LevelCount = 2
 With .Level(0)
 .Label = "<%loc_mmmm%> <%yyyy%>
<%loc_sdate%><r>
<%ww%> "
 .ToolTip = .Label
 .Unit = exWeek
 End With
 With .Level(1)
 .Label = "<%loc_ddd%>
<%d%>"
 .ToolTip = .Label
 End With
 .ToolTip = "<%loc_ldate%>"
 End With
 .EndUpdate
End With

The following VB.NET sample shows how to specify the levels using the user's Regional

and Language Options?

With Exgantt1
 .BeginUpdate()
 .Font.Name = "Arial Unicode MS"
 .HeaderHeight = 36
 With .Chart
 .FirstVisibleDate = #5/30/2010#
 .set_PaneWidth(False,0)
 .FirstWeekDay = exontrol.EXGANTTLib.WeekDayEnum.exMonday
 .UnitWidth = 36
 .LevelCount = 2
 With .get_Level(0)
 .Label = "<%loc_mmmm%> <%yyyy%>
<%loc_sdate%><r>
<%ww%> "
 .ToolTip = .Label
 .Unit = exontrol.EXGANTTLib.UnitEnum.exWeek
 End With
 With .get_Level(1)
 .Label = "<%loc_ddd%>
<%d%>"
 .ToolTip = .Label
 End With
 .ToolTip = "<%loc_ldate%>"
 End With
 .EndUpdate()
End With

The following VB.NET for /COM sample shows how to specify the levels using the user's
Regional and Language Options?

With AxGantt1
 .BeginUpdate()
 .Font.Name = "Arial Unicode MS"
 .HeaderHeight = 36
 With .Chart
 .FirstVisibleDate = #5/30/2010#
 .PaneWidth(False) = 0
 .FirstWeekDay = EXGANTTLib.WeekDayEnum.exMonday

 .UnitWidth = 36
 .LevelCount = 2
 With .Level(0)
 .Label = "<%loc_mmmm%> <%yyyy%>
<%loc_sdate%><r>
<%ww%> "
 .ToolTip = .Label
 .Unit = EXGANTTLib.UnitEnum.exWeek
 End With
 With .Level(1)
 .Label = "<%loc_ddd%>
<%d%>"
 .ToolTip = .Label
 End With
 .ToolTip = "<%loc_ldate%>"
 End With
 .EndUpdate()
End With

The following C++ sample shows how to specify the levels using the user's Regional and
Language Options?

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXGANTTLib' for the library: 'ExGantt 1.0 Control Library'

 #import <ExGantt.dll>
 using namespace EXGANTTLib;
*/
EXGANTTLib::IGanttPtr spGantt1 = GetDlgItem(IDC_GANTT1)->GetControlUnknown();
spGantt1->BeginUpdate();
spGantt1->GetFont()->PutName(L"Arial Unicode MS");
spGantt1->PutHeaderHeight(36);
EXGANTTLib::IChartPtr var_Chart = spGantt1->GetChart();
 var_Chart->PutFirstVisibleDate("5/30/2010");
 var_Chart->PutPaneWidth(VARIANT_FALSE,0);
 var_Chart->PutFirstWeekDay(EXGANTTLib::exMonday);
 var_Chart->PutUnitWidth(36);
 var_Chart->PutLevelCount(2);

 EXGANTTLib::ILevelPtr var_Level = var_Chart->GetLevel(0);
 var_Level->PutLabel("<%loc_mmmm%> <%yyyy%>
<%loc_sdate%>
<r> <%ww%> ");
 var_Level->PutToolTip(var_Level->GetLabel());
 var_Level->PutUnit(EXGANTTLib::exWeek);
 EXGANTTLib::ILevelPtr var_Level1 = var_Chart->GetLevel(1);
 var_Level1->PutLabel("<%loc_ddd%>
<%d%>");
 var_Level1->PutToolTip(var_Level1->GetLabel());
 var_Chart->PutToolTip(L"<%loc_ldate%>");
spGantt1->EndUpdate();

The following C# sample shows how to specify the levels using the user's Regional and
Language Options?

exgantt1.BeginUpdate();
exgantt1.Font.Name = "Arial Unicode MS";
exgantt1.HeaderHeight = 36;
exontrol.EXGANTTLib.Chart var_Chart = exgantt1.Chart;
 var_Chart.FirstVisibleDate = Convert.ToDateTime("5/30/2010");
 var_Chart.set_PaneWidth(false,0);
 var_Chart.FirstWeekDay = exontrol.EXGANTTLib.WeekDayEnum.exMonday;
 var_Chart.UnitWidth = 36;
 var_Chart.LevelCount = 2;
 exontrol.EXGANTTLib.Level var_Level = var_Chart.get_Level(0);
 var_Level.Label = "<%loc_mmmm%> <%yyyy%>
<%loc_sdate%><r>
<%ww%> ";
 var_Level.ToolTip = var_Level.Label;
 var_Level.Unit = exontrol.EXGANTTLib.UnitEnum.exWeek;
 exontrol.EXGANTTLib.Level var_Level1 = var_Chart.get_Level(1);
 var_Level1.Label = "<%loc_ddd%>
<%d%>";
 var_Level1.ToolTip = var_Level1.Label;
 var_Chart.ToolTip = "<%loc_ldate%>";
exgantt1.EndUpdate();

The following C# for /COM sample shows how to specify the levels using the user's
Regional and Language Options?

axGantt1.BeginUpdate();

axGantt1.Font.Name = "Arial Unicode MS";
axGantt1.HeaderHeight = 36;
EXGANTTLib.Chart var_Chart = axGantt1.Chart;
 var_Chart.FirstVisibleDate = Convert.ToDateTime("5/30/2010");
 var_Chart.set_PaneWidth(false,0);
 var_Chart.FirstWeekDay = EXGANTTLib.WeekDayEnum.exMonday;
 var_Chart.UnitWidth = 36;
 var_Chart.LevelCount = 2;
 EXGANTTLib.Level var_Level = var_Chart.get_Level(0);
 var_Level.Label = "<%loc_mmmm%> <%yyyy%>
<%loc_sdate%><r>
<%ww%> ";
 var_Level.ToolTip = var_Level.Label;
 var_Level.Unit = EXGANTTLib.UnitEnum.exWeek;
 EXGANTTLib.Level var_Level1 = var_Chart.get_Level(1);
 var_Level1.Label = "<%loc_ddd%>
<%d%>";
 var_Level1.ToolTip = var_Level1.Label;
 var_Chart.ToolTip = "<%loc_ldate%>";
axGantt1.EndUpdate();

The following VFP sample shows how to specify the levels using the user's Regional and
Language Options?

with thisform.Gantt1
 .BeginUpdate
 .Font.Name = "Arial Unicode MS"
 .HeaderHeight = 36
 with .Chart
 .FirstVisibleDate = {^2010-5-30}
 .PaneWidth(.F.) = 0
 .FirstWeekDay = 1
 .UnitWidth = 36
 .LevelCount = 2
 with .Level(0)
 .Label = "<%loc_mmmm%> <%yyyy%>
<%loc_sdate%><r>
<%ww%> "
 .ToolTip = .Label
 .Unit = 256

 endwith
 with .Level(1)
 .Label = "<%loc_ddd%>
<%d%>"
 .ToolTip = .Label
 endwith
 .ToolTip = "<%loc_ldate%>"
 endwith
 .EndUpdate
endwith

The following Delphi sample shows how to specify the levels using the user's Regional and
Language Options?

with AxGantt1 do
begin
 BeginUpdate();
 Font.Name := 'Arial Unicode MS';
 HeaderHeight := 36;
 with Chart do
 begin
 FirstVisibleDate := '5/30/2010';
 PaneWidth[False] := 0;
 FirstWeekDay := EXGANTTLib.WeekDayEnum.exMonday;
 UnitWidth := 36;
 LevelCount := 2;
 with Level[0] do
 begin
 Label := '<%loc_mmmm%> <%yyyy%>
<%loc_sdate%><r>
<%ww%> ';
 ToolTip := Label;
 Unit := EXGANTTLib.UnitEnum.exWeek;
 end;
 with Level[1] do
 begin
 Label := '<%loc_ddd%>
<%d%>';
 ToolTip := Label;
 end;

 ToolTip := '<%loc_ldate%>';
 end;
 EndUpdate();
end

The following VB sample enumerates the levels in the chart:

With Gantt1.Chart
 Dim i As Long
 For i = 0 To .LevelCount - 1
 With .Level(i)
 Debug.Print .Label
 End With
 Next
End With

The following C++ sample enumerates the levels in the chart:

CChart chart = m_gantt.GetChart();
for (long i = 0; i < chart.GetLevelCount(); i++)
{
 CLevel level = chart.GetLevel(i);
 OutputDebugString(V2S(&level.GetLabel()));
}

where the V2S function converts a Variant expression to a string expression:

static CString V2S(VARIANT* pvtDate)
{
 COleVariant vtDate;
 vtDate.ChangeType(VT_BSTR, pvtDate);
 return V_BSTR(&vtDate);
}

The following VB.NET sample enumerates the levels in the chart:

With AxGantt1.Chart
 Dim i As Long
 For i = 0 To .LevelCount - 1

 With .Level(i)
 Debug.Write(.Label())
 End With
 Next
End With

The following C# sample enumerates the levels in the chart:

for (int i = 0; i < axGantt1.Chart.LevelCount; i++)
{
 EXGANTTLib.Level level = axGantt1.Chart.get_Level(i);
 System.Diagnostics.Debug.Write(level.Label);
}

The following VFP sample enumerates the levels in the chart:

With thisform.Gantt1.Chart
 For i = 0 To .LevelCount - 1
 With .Level(i)
 wait window nowait .Label
 EndWith
 Next
EndWith

The first level displays the month, the year and the number of the week in the year , the
second level displays the name of the week day, and the third level displays the day of the
month. The LevelCount property specifies the number of levels being displayed, in our case
3.

The following Template shows how to display your header using three levels as arranged in
the picture above (just copy and paste the following script to Template page):

BeginUpdate()
Chart
{
 LevelCount = 3
 Level(0)

 {
 Label = "<%mmm%>, <%yyyy%> <r>Week: <%ww%>"
 Unit = 256 'exWeek
 }
 Level(1).Label = "<%d1%>"
 Level(2).Label = "<%d%>"
}
EndUpdate()

The following VB sample displays your header using 3 levels as shown above:

With Gantt1
 .BeginUpdate
 With .Chart
 .LevelCount = 3
 With .Level(0)
 .Label = "<%mmm%>, <%yyyy%> <r>Week: <%ww%>"
 .Unit = EXGANTTLibCtl.UnitEnum.exWeek
 End With
 .Level(1).Label = "<%d1%>"
 .Level(2).Label = "<%d%>"
 End With
 .EndUpdate
End With

 The following VFP sample displays your header using 3 levels:

with thisform.gantt1
.BeginUpdate()
with .Chart
 .LevelCount = 3
 with .Level(0)
 .Label = "<%mmm%>, <%yyyy%> <r>Week: <%ww%>"
 .Unit = 256
 endwith
 .Level(1).Label = "<%d1%>"
 .Level(2).Label = "<%d%>"
endwith

.EndUpdate()
endwith

 The following VB.NET sample displays your header using 3 levels:

With AxGantt1
 .BeginUpdate()
 With .Chart
 .LevelCount = 3
 With .Level(0)
 .Label = "<%mmm%>, <%yyyy%> <r>Week: <%ww%>"
 .Unit = EXGANTTLib.UnitEnum.exWeek
 End With
 .Level(1).Label = "<%d1%>"
 .Level(2).Label = "<%d%>"
 End With
 .EndUpdate()
End With

 The following C# sample displays your header using 3 levels:

axGantt1.BeginUpdate();
EXGANTTLib.Chart chart = axGantt1.Chart;
chart.LevelCount = 3;
chart.get_Level(0).Label = "<%mmm%>, <%yyyy%> <r>Week: <%ww%>";
chart.get_Level(0).Unit = EXGANTTLib.UnitEnum.exWeek;
chart.get_Level(1).Label = "<%d1%>";
chart.get_Level(2).Label = "<%d%>";
axGantt1.EndUpdate();

 The following C++ sample displays your header using 3 levels:

m_gantt.BeginUpdate();
CChart chart = m_gantt.GetChart();
chart.SetLevelCount(3);
chart.GetLevel(0).SetLabel(COleVariant("<%mmm%>, <%yyyy%> <r>Week:
<%ww%>"));
chart.GetLevel(0).SetUnit(256);
chart.GetLevel(1).SetLabel(COleVariant("<%d1%>"));

chart.GetLevel(2).SetLabel(COleVariant("<%d%>"));
m_gantt.EndUpdate();

property Chart.LevelFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Long
Retrieves the index of the level from the point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

Long A long expression that indicates the index of the level from
the point, or -1 if the cursor is not in the chart's header.

The LevelFromPoint property gets the level from the point. Use the Level property to
access a Level object. The LevelCount property counts the number of the levels in the
chart's header. Use the ItemFromPoint property to get the cell/item from the cursor. Use
the ColumnFromPoint property to retrieve the column from cursor. Use the BarFromPoint
property to get the bar from the point. Use the LinkFromPoint property to get the link from
the point. If the X parameter is -1 and Y parameter is -1 the ItemFromPoint property
determines the handle of the item from the cursor.

The following VB sample displays the label of the level from the cursor:

Private Sub Gantt1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With Gantt1.Chart
 Dim d As Long
 d = .LevelFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If d >= 0 Then
 Debug.Print .Level(d).Label
 End If
 End With
End Sub

The following C++ sample displays the label of the level from the point:

void OnMouseMoveGantt1(short Button, short Shift, long X, long Y)
{

 CChart chart = m_gantt.GetChart();
 long d = chart.GetLevelFromPoint(X, Y);
 if (d >= 0)
 OutputDebugString(V2S(&chart.GetLevel(d).GetLabel()));
}

The following VB.NET sample displays the label of the level from the point:

Private Sub AxGantt1_MouseMoveEvent(ByVal sender As Object, ByVal e As
AxEXGANTTLib._IGanttEvents_MouseMoveEvent) Handles AxGantt1.MouseMoveEvent
 With AxGantt1.Chart
 Dim d As Integer = .LevelFromPoint(e.x, e.y)
 If (d >= 0) Then
 Debug.Write(.Level(d).Label)
 End If
 End With
End Sub

The following C# sample displays the label of the level from the point:

private void axGantt1_MouseMoveEvent(object sender,
AxEXGANTTLib._IGanttEvents_MouseMoveEvent e)
{
 int d = axGantt1.Chart.get_LevelFromPoint(e.x, e.y);
 if (d >=0)
 System.Diagnostics.Debug.Write(axGantt1.Chart.get_Level(d).Label);
}

The following VFP sample displays the label of the level from the point:

*** ActiveX Control Event ***
*** ActiveX Control Event ***

LPARAMETERS button, shift, x, y

with thisform.Gantt1.Chart
 d = .LevelFromPoint(x,y)
 if (d>=0)
 wait window nowait .Level(d).Label

 endif
endwith

property Chart.LinkFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Variant
Retrieves the link from the point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

Variant A VARIANT expression that indicates the key of the link
from the cursor, or empty if no link at cursor.

The LinkFromPoint property gets the link from point. If the X parameter is -1 and Y
parameter is -1 the LinkFromPoint property determines the key of the link from the
cursor. Use the Link property to access properties of the link. Use the ItemFromPoint
property to get the cell/item from the cursor. Use the ColumnFromPoint property to retrieve
the column from cursor. Use the FormateDate property to format a date. Use the
DrawDateTicker property to draw a ticker as cursor hovers the chart's area. Use the
BarFromPoint property to get the bar from the point.

The following VB sample displays the key of the link from the cursor:

Private Sub Gantt1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With Gantt1.Chart
 Debug.Print .LinkFromPoint(-1, -1)
 End With
End Sub

property Chart.LinksColor as Color
Specifies the color to draw the links between the bars.

Type Description

Color A color expression that indicates the color to draw the
links between bars.

Use the LinksColor property to change the color of the links between bars. Use the AddLink
method to link two bars. Use the AddBar method to add a new bar to an item. Use the
AddItem method to add a new item. Use the Link(exLinkColor) property to change the color
for a specific link. Use the ShowLinks property to hide all links in the chart area. Use the
LinkStyle property to specify the style of the link between bars. Use the LinkWidth property
to specify the width in pixels, of the pen that draws the link.

property Chart.LinksStyle as LinkStyleEnum
Specifies the style to draw the links between the bars.

Type Description

LinkStyleEnum A LinkStyleEnum expression that indicates the style of the
pen to draw the links between bars.

By default, the LinksStyle property is exLinkTDot. Use the ShowLinks property to hide all
links in the chart area. Use the LinksColor property to change the color of the links between
bars. Use the AddLink method to link two bars. Use the AddBar method to add a new bar
to an item. Use the AddItem method to add a new item. Use the Link(exLinkStyle) property
to change the style for a specific link. Use the LinkWidth property to specify the width in
pixels, of the pen that draws the link.

property Chart.LinksWidth as Long
Specifies the width in pixels of the pen to draw the links between the bars.

Type Description

Long A long expression that indicates the width of the pen to
draw the links between bars.

By default, the LinksWidth property is 1 pixel. Use the ShowLinks property to hide all links in
the chart area. Use the LinksColor property to change the color of the links between bars.
Use the AddLink method to link two bars. Use the AddBar method to add a new bar to an
item. Use the AddItem method to add a new item. Use the Link(exLinkWidth) property to
change the width of the pen that draws a specific link. Use the LinkStyle property to specify
the style of the pen that draws the link.

property Chart.LocAMPM as String
Retrieves the time marker such as AM or PM using the current user regional and language
settings.

Type Description

String
A String expression that indicates the time marker such as
AM or PM using the current user regional and language
settings.

The LocAMPM property gets the locale AM/PM indicators as indicated by current regional
settings. The <%AM/PM%> HTML tag indicates the twelve-hour clock with the uppercase
letters "AM" or "PM", as appropriate set by the AMPM property. The <%loc_AM/PM%>
HTML tag indicates the time marker such as AM or PM using the current user regional and
language settings (LocAMPM property). The LocFirstWeekDay property indicates the first
day of the week, using the current user regional and language settings. The
LocMonthNames property specifies the list of name of the months, using the current user
regional and language settings. The LocWeekDays property specifies the name of the days
in the week, using the current user regional and language settings.

property Chart.LocFirstWeekDay as WeekDayEnum
Indicates the first day of the week, as specified in the regional settings.

Type Description

WeekDayEnum A WeekDayEnum expression that specifies the first day of
the week, as specified in the regional settings.

The LocFirstWeekDay property indicates the first day of the week, using the current user
regional and language settings. The LocMonthNames property specifies the list of name of
the months, using the current user regional and language settings. The LocWeekDays
property specifies the name of the days in the week, using the current user regional and
language settings. The LocAMPM property gets the locale AM/PM indicators as indicated
by current regional settings.

property Chart.LocMonthNames as String
Retrieves the list of month names, as indicated in the regional settings, separated by
space.

Type Description

String
A String expression that indicates the name of the months
within the year, as indicated in the regional settings,
separated by space.

Use the LocMonthNames property to get the name of the months as indicated by current
regional settings. The <%m1%>, <%m2%>, <%m3%>, <%mmmm%> HTML tags
indicate the name of the month, as appropriate set by the MonthNames property. The
<%loc_m1%>, <%loc_m2%>, <%loc_m3%>, <%loc_mmmm%> HTML tags indicate the
month using the current user regional and language settings (LocMonthNames property).
The LocFirstWeekDay property indicates the first day of the week, as indicated in the
regional settings. The LocAMPM property specifies specifies the AM and PM indicators, as
indicated in the regional settings. The LocWeekDays property specifies the name of the
days in the week, as indicated in the regional settings.

property Chart.LocWeekDays as String
Retrieves the list of names for each week day, as indicated in the regional settings,
separated by space.

Type Description

String
A String expression that indicates the list of names for
each week day, as indicated in the regional settings,
separated by space.

The LocWeekDays property gets the locale list of names for each week day as indicated
by current regional settings. The <%d1%>, <%d2%>, <%d3%>, <%ddd%> or
<%dddd%> HTML tags indicates the week day, as appropriate set by the WeekDays
property. The <%loc_d1%>, <%loc_d2%>, <%loc_d3%>, <%loc_ddd%> or
<%loc_dddd%> HTML tags indicates the week day, as appropriate set by the WeekDays
property, using the current user regional and language settings (LocAMPM property). The
LocFirstWeekDay property indicates the first day of the week, using the current user
regional and language settings. The LocMonthNames property specifies the list of name of
the months, using the current user regional and language settings. The LocAMPM property
specifies the AM/PM time indicators, using the current user regional and language settings.

property Chart.MarkNowColor as Color
Specifies the background color or the visual appearance of the object that indicates the
current time in the chart.

Type Description

Color

A color expression that specifies the background color to
show the position of the current date-time. The last 7 bits
in the high significant byte of the color indicates the
identifier of the skin being used. Use the Add method to
add new skins to the control. If you need to remove the
skin appearance from a part of the control you need to
reset the last 7 bits in the high significant byte of the color
being applied to the background's part.

By default, the MarkNowColor property is 0. The control's chart shows the position of the
current date-time, only if the MarkNowColor property is not zero (0). Use the
MarkNowColor properties to show the current date-time in the control's chart. The
MarkNowUnit property specifies the unit of time to count for. For instance, you can show
the current date-time from current second, to next second, from minute to next minute, and
so on. Use the MarkNowCount property to specify the number of units of date-time to count
from. For instance, you can show the current date-time from 5 seconds to 5 seconds, and
so on. The MarkNowWidth property specifies the width in pixels of the vertical bar that
shows the current date-time. The MarkNowTransparent property specifies the percent of
transparency to show the vertical bar that indicates the current date-time. The
MarkTodayColor property highlights the current day only. The control fires the
DateTimeChanged event when the current date-time is changed.

This screen shot shows the vertical bar that indicates the current date-time. The bar is
automatically updated each second, unless the MarkNowUnit property is not changed to

exMinute, when the vertical bar is updated each minute.

property Chart.MarkNowCount as Long
Specifies the number of time units to count while highlighting the current time.

Type Description

Long
A long expression that specifies the width in pixels of the
vertical bar that shows the current date-time in the
control's chart.

By default, the MarkNowCount property is 1. The control's chart shows the position of the
current date-time, only if the MarkNowColor property is not zero (0). Use the
MarkNowCount property to specify the number of units of date-time to count from. For
instance, you can show the current date-time from 5 seconds to 5 seconds, and so on. The
MarkNowWidth property specifies the width in pixels of the vertical bar that shows the
current date-time. The MarkNowUnit property specifies the unit of time to count for. For
instance, you can show the current date-time from current second, to next second, from
minute to next minute, and so on. The MarkNowTransparent property specifies the percent
of transparency to show the vertical bar that indicates the current date-time. The
MarkTodayColor property highlights the current day only. The control fires the
DateTimeChanged event when the current date-time is changed.

property Chart.MarkNowTransparent as Long
Specifies the percent of the transparency to display the object that marks the current time.

Type Description

Long

A long expression that specifies the percent of
transparency to show the vertical bar that indicates the
current date-time in the control's chart. 0 means opaque,
50 means semi-transparent, and 100 means transparent.

By default, the MarkNowTransparent property is 0. The control's chart shows the position
of the current date-time, only if the MarkNowColor property is not zero (0). The
MarkNowTransparent property specifies the percent of transparency to show the vertical
bar that indicates the current date-time. The MarkNowUnit property specifies the unit of
time to count for. For instance, you can show the current date-time from current second, to
next second, from minute to next minute, and so on. Use the MarkNowCount property to
specify the number of units of date-time to count from. For instance, you can show the
current date-time from 5 seconds to 5 seconds, and so on. The MarkNowWidth property
specifies the width in pixels of the vertical bar that shows the current date-time. The
MarkTodayColor property highlights the current day only. The control fires the
DateTimeChanged event when the current date-time is changed.

property Chart.MarkNowUnit as UnitEnum
Retrieves or sets a value that indicates the base time unit while highlighting the current time.

Type Description

UnitEnum A UnitEnum expression that specifies the date-time unit to
show the current date-time in the control's chart.

By default, the MarkNowUnit property is exSecond. The control's chart shows the position
of the current date-time, only if the MarkNowColor property is not zero (0). Use the
MarkNowColor properties to show the current date-time in the control's chart. Use the
MarkNowUnit property to specify the unit of time to count for. For instance, you can show
the current date-time from current second, to next second, from minute to next minute, and
so on. Use the MarkNowCount property to specify the number of units of date-time to count
from. For instance, you can show the current date-time from 5 seconds to 5 seconds, and
so on. The MarkNowWidth property specifies the width in pixels of the vertical bar that
shows the current date-time. The MarkNowTransparent property specifies the percent of
transparency to show the vertical bar that indicates the current date-time. The
MarkTodayColor property highlights the current day only. The control fires the
DateTimeChanged event when the current date-time is changed.

property Chart.MarkNowWidth as Long
Specifies the width in pixels of the object that shows the current time.

Type Description

Long

A long expression that specifies the width in pixels of the
vertical bar that shows the current date-time in the
control's chart. If the MarkNowWidth property is 0 or
negative, the control computes the required width so
current date-time is shown based on the MarkNowUnit and
MarkNowCount properties. For instance, in this case, if
your chart displays seconds, and the MarkNowCount
property is 2, the width of the vertical bar that shows the
current date-time is UnitWidth multiplied by 2 (the space
required in the control's chart to display 2 seconds) .

By default, the MarkNowWidth property is 1. The control's chart shows the position of the
current date-time, only if the MarkNowColor property is not zero (0). The MarkNowWidth
property specifies the width in pixels of the vertical bar that shows the current date-
time. The MarkNowUnit property specifies the unit of time to count for. For instance, you
can show the current date-time from current second, to next second, from minute to next
minute, and so on. Use the MarkNowCount property to specify the number of units of date-
time to count from. For instance, you can show the current date-time from 5 seconds to 5
seconds, and so on. The MarkNowTransparent property specifies the percent of
transparency to show the vertical bar that indicates the current date-time. The
MarkTodayColor property highlights the current day only. The control fires the
DateTimeChanged event when the current date-time is changed.

property Chart.MarkSelectDateColor as Color
Retrieves or sets a value that indicates the color to mark the selected date in the chart.

Type Description

Color A Color expression that indicates the color being used to
highlight the selected dates.

The MarkSelectDateColor property specifies the color being used to highlight the selected
dates. The user can select dates by clicking the chart's header. You can select multiple
dates keeping the CTRL key and clicking a new date. Use the SelectLevel property to
specify the area being highlighted when a date is selected. Use the SelectDate property to
select dates programmatically. By default, the MarkSelectDateColor is blue (as your
control panel indicates the color for the selected items). The selected dates are not
marked if the MarkSelectDateColor property has the same value as BackColor property if
the Chart object. The MarkTodayColor property specifies the color to mark the today date.
Use the LevelFromPoint property to get the index of the level from the cursor. Use the
DateFromPoint property to retrieve the date from the cursor.

In the following screen shot the red lines marks the selected dates (June 20 and June 28):

The following screen show how a new date gets selected once the user clicks a date in the
chart's header:

property Chart.MarkTodayColor as Color
Retrieves or sets a value that indicates the color to mark today in the chart.

Type Description

Color A Color expression that indicates the color being used to
mark the today date.

The MarkTodayColor property specifies the color to mark the today date. If the
MarkTodayColor property is the same as the BackColor property, the today date is not
marked. Use the NonworkingDays property to specify the nonworking days in a week. Use
the DrawTickLines property to specify whether the grid lines between time units in the level
are visible or hidden. Use the DrawGridLines property to specify whether the control draws
the grid lines in the chart's area. Use the GridLineColor property to specify the color for grid
lines. Use the DrawGridLines property to specify whether the control draws the grid lines in
the items area. Use the DrawGridLines property to draw grid lines for a specified level. Use
the MarkSelectDateColor property to highlight the selected dates. Use the SelectDate
property to select a date by clicking the chart's header.

property Chart.MonthNames as String
Retrieves or sets a value that indicates the list of month names, separated by space.

Type Description

String A String expression that indicates the name of the months
in the year, separated by spaces.

By default, the MonthNames property is "January February March April May June July
August September October November December". The order of months is January,
February, and so on. Use the MonthNames property to specify the name of the months in
the year. The FormatDate property formats a date. Use the AMPM property to specify the
name of the AM and PM indicators. Use the Label property to specify the label being
displayed in the level. Use the Label property to specify the predefined format for a level
based on the unit time. Use the ToolTip property to specify the tool tip being displayed when
the cursor hovers the level. Use the FirstWeekDay property to specify the first day in the
week.

The MonthNames property specifies the name of the months in the year for the following
built-in tags:

<%m1%> - First letter of the month (J to D).
<%m2%> - First two letters of the month (Ja to De).
<%m3%> - First three letters of the month (Jan to Dec).
<%mmm%> - First three letters of the month (Jan to Dec).
<%mmmm%> - Full name of the month (January to December).

The following VB sample assigns Romanian name for months in the year:

With Gantt1.Chart
 .MonthNames = "Ianuarie Februarie Martie Aprilie Mai Iunie Iulie August Septembrie
Octombrie Noiembrie Decembrie"
End With

The following C++ sample assigns Romanian name for months in the year:

m_gantt.GetChart().SetMonthNames("Ianuarie Februarie Martie Aprilie Mai Iunie Iulie
August Septembrie Octombrie Noiembrie Decembrie");

The following VB.NET sample assigns Romanian name for months in the year:

With AxGantt1.Chart
 .MonthNames = "Ianuarie Februarie Martie Aprilie Mai Iunie Iulie August Septembrie

Octombrie Noiembrie Decembrie"
End With

The following C# sample assigns Romanian name for months in the year:

axGantt1.Chart.MonthNames = "Ianuarie Februarie Martie Aprilie Mai Iunie Iulie August
Septembrie Octombrie Noiembrie Decembrie";

The following VFP sample assigns Romanian name for months in the year:

With thisform.Gantt1.Chart
 .MonthNames = "Ianuarie Februarie Martie Aprilie Mai Iunie Iulie August Septembrie
Octombrie Noiembrie Decembrie"
EndWith

property Chart.NextDate (Date as Date, Unit as UnitEnum, [Count as
Variant]) as Date
Gets the next date based on the unit.

Type Description
Date as Date A Date expression that indicates the start date.

Unit as UnitEnum An UnitEnum expression that indicates the time unit to
change the date.

Count as Variant A long expression that indicates the number of time units
Date A Date expression that indicates the result.

Use the NextDate property to retrieve the next or previous date giving a specified time unit.
The FirstVisibleDate property indicates the first visible date in the chart. Use the ScrollTo
method to ensure that a specified date fits the chart's client area. Use the FormatDate
property to format a date to a specified format.

The following VB sample displays the next day as "Tue, May 31, 2005":

With Gantt1.Chart
 Debug.Print .FormatDate(.NextDate(.FirstVisibleDate, exDay, 2), "<%ddd%>,
<%mmmm%> <%d%>, <%yyyy%>")
End With

The following C++ sample displays the next day as "Tue, May 31, 2005":

CChart chart = m_gantt.GetChart();
DATE d = chart.GetNextDate(V2D(&chart.GetFirstVisibleDate()), 4096, COleVariant(
(long)1));
CString strFormat = chart.GetFormatDate(d, "<%ddd%>, <%mmmm%> <%d%>,
<%yyyy%>");
OutputDebugString(strFormat);

where the V2D function converts a Variant expression to a DATE expression:

static DATE V2D(VARIANT* pvtDate)
{
 COleVariant vtDate;
 vtDate.ChangeType(VT_DATE, pvtDate);
 return V_DATE(&vtDate);

}

The following VB.NET sample displays the next day as "Tue, May 31, 2005":

With AxGantt1.Chart
 Debug.Write(.FormatDate(.NextDate(.FirstVisibleDate, EXGANTTLib.UnitEnum.exDay, 2),
"<%ddd%>, <%mmmm%> <%d%>, <%yyyy%>"))
End With

The following C# sample displays the next day as "Tue, May 31, 2005":

DateTime d = Convert.ToDateTime(
axGantt1.Chart.get_NextDate(Convert.ToDateTime(axGantt1.Chart.FirstVisibleDate),
EXGANTTLib.UnitEnum.exDay, 1));
String strFormat = axGantt1.Chart.get_FormatDate(d, "<%ddd%>, <%mmmm%>
<%d%>, <%yyyy%>");
System.Diagnostics.Debug.Write(strFormat);

The following VFP sample displays the next day as "Tue, May 31, 2005":

With thisform.Gantt1.Chart
 wait window nowait .FormatDate(.NextDate(.FirstVisibleDate, 4096, 2), "<%ddd%>,
<%mmmm%> <%d%>, <%yyyy%>")
EndWith

property Chart.NonworkingDays as Long
Retrieves or sets a value that indicates the non-working days, for each week day a bit.

Type Description

Long A long expression that indicates the non-working days in a
week.

By default, the NonworkingDays property is 65 (Saturday(s) and Sunday(s)). The non-
working days are shown using the NonworkingDaysPattern and the NonworkingDaysColor
which defines the pattern and the color, when the base level of the chart displays days, if
the ShowNonworkingUnits property is True (by default). Use the ShowNonworkingUnits
property to display or hide the non-working units as hours or days in your chart. Use the
NonworkingHours property to indicate non-working hours in a day.

You can select the non-working week days in the following table (In Internet Explorer, you
have to allow running the script on this page).

Saturday Friday Thursday Wednesday Tuesday Monday Sunday
Value 64 32 16 8 4 2 1

Bit

Click the Bit row for non-working days and the value for property is: , (hexa), (octal),
(binary)

The last significant byte in the NonworkingDays expression has the following meaning:

where X could be 1 (nonworking day) or 0 (working day), Sa means Saturday, Fr means
Friday, and so on. For instance, the 65 value means Saturday and Sunday are non-working
days. Use the AddNonworkingDate method to add custom dates as being nonworking
dates.

Use the ShowNonworkingDates property to show or hide the nonworking dates in the
control's chart area. Use the NonworkingDaysPattern property to specify the pattern being
used to fill non-working days. The NonworkingDaysColor property specifies the color being
used to fill the non-working days. For instance, if the NonworkingDaysPattern is
exPatternEmpty the non-working days are not highlighted. Use the MarkTodayColor
property to specify the color to mark the today date. Use the DrawGridLines property to
specify whether the control draws the grid lines in the chart's area. Use the GridLineColor

property to specify the color for grid lines. Use the DrawGridLines property to specify
whether the control draws the grid lines in the items area. Use the DrawGridLines property
to draw grid lines for a specified level. Use the Add("A:B") to add a bar that displays the
bar A in the working area, and B in non-working areas.

The following VB sample retrieves the value to indicate Sunday and Monday as being non-
working days:

With Gantt1.Chart
 .NonworkingDays = 2 ^ (EXGANTTLibCtl.exSunday) Or 2 ^ (EXGANTTLibCtl.exMonday)
End With

The following C++ sample retrieves the value to indicate Sunday and Monday as being non-
working days:

m_gantt.GetChart().SetNonworkingDays(1 << (EXGANTTLib::exSunday) | 1 << (
EXGANTTLib::exMonday));

where the #import <exgantt.dll> must be called to insert definitions for types in the control's
type library.

The following VB.NET sample retrieves the value to indicate Sunday and Monday as being
non-working days:

With AxGantt1.Chart
 .NonworkingDays = 2 ^ (EXGANTTLib.WeekDayEnum.exSunday) Or 2 ^
(EXGANTTLib.WeekDayEnum.exMonday)
End With

The following C# sample retrieves the value to indicate Sunday and Monday as being non-
working days:

axGantt1.Chart.NonworkingDays = 1 <<
(Convert.ToInt32(EXGANTTLib.WeekDayEnum.exSunday)) | 1 <<
(Convert.ToInt32(EXGANTTLib.WeekDayEnum.exMonday));

The following VFP sample retrieves the value to indicate Sunday and Monday as being non-
working days:

with thisform.Gantt1.Chart
 .NonworkingDays = 2 ^ 0 + 2 ^ 1
endwith

property Chart.NonworkingDaysColor as Color
Retrieves or sets a value that indicates the color to fill the non-working days.

Type Description

Color A Color expression that indicates the color to fill the non-
working days.

Use the NonworkingDaysColor property to specify the color being used by the
NonworkingDaysPattern property. Use the NonworkingDays property to specify the
nonworking days in a week. Use the AddNonworkingDate method to add custom dates as
nonworking days. Use the NonworkingDaysPattern property to specify the pattern to fill the
non-working days. Use the ShowNonworkingDates property to show or hide the nonworking
dates in the control's chart area. For instance, if the NonworkingDaysPattern is
exPatternEmpty the non-working days are not highlighted.

The following VB sample marks Sunday and Monday days on red:

With Gantt1.Chart
 .NonworkingDays = 2 ^ (EXGANTTLibCtl.exSunday) Or 2 ^ (EXGANTTLibCtl.exMonday)
 .NonworkingDaysColor = RGB(255, 0, 0)
End With

The following C++ sample sample marks Sunday and Monday days on red:

m_gantt.GetChart().SetNonworkingDays(1 << (EXGANTTLib::exSunday) | 1 << (
EXGANTTLib::exMonday));
m_gantt.GetChart().SetNonworkingDaysColor(RGB(255,0,0,));

where the #import <exgantt.dll> must be called to insert definitions for types in the control's
type library.

The following VB.NET sample marks Sunday and Monday days on red:

With AxGantt1.Chart
 .NonworkingDays = 2 ^ (EXGANTTLib.WeekDayEnum.exSunday) Or 2 ^
(EXGANTTLib.WeekDayEnum.exMonday)
 .NonworkingDaysColor = ToUInt32(Color.Red)
End With

where the ToUInt32 function converts a Color expression to a OLE_DATE expression:

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample marks Sunday and Monday days on red:

axGantt1.Chart.NonworkingDays = 1 <<
(Convert.ToInt32(EXGANTTLib.WeekDayEnum.exSunday)) | 1 <<
(Convert.ToInt32(EXGANTTLib.WeekDayEnum.exMonday));
axGantt1.Chart.NonworkingDaysColor = ToUInt32(Color.Red);

where the ToUInt32 function converts a Color expression to a OLE_DATE expression:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample sample marks Sunday and Monday days on red:

with thisform.Gantt1.Chart
 .NonworkingDays = 2 ^ 0 + 2 ^ 1
 .NonworkingDaysColor = RGB(255,0,0)
endwith

property Chart.NonworkingDaysPattern as PatternEnum
Retrieves or sets a value that indicates the pattern being used to fill non-working days.

Type Description

PatternEnum A PatternEnum expression that indicates the pattern to fill
non working days.

Use the NonworkingDaysPattern property to specify the brush to fill the nonworking days
area. Use the NonworkingDays property to specify the nonworking days. Use the
NonworkingDaysPattern property to specify the pattern to fill non-working days. By default,
the NonworkingDaysPattern property is exPatternDot. If the NonworkingDaysPattern
property is exPatternEmpty, the non-working days are not highlighted. The
NonworkingDaysColor property specifies the color being used to fill the non-working days.
Use the MarkTodayColor property to specify the color to mark the today date. Use the
DrawTickLines property to specify whether the grid lines between time units in the level are
visible or hidden. Use the DrawGridLines property to specify whether the control draws the
grid lines in the chart's area. Use the GridLineColor property to specify the color for grid
lines. Use the DrawGridLines property to specify whether the control draws the grid lines in
the items area. Use the DrawGridLines property to draw grid lines for a specified level.

property Chart.NonworkingHours as Long
Retrieves or sets a value that indicates the non-working hours, for each hour in a day a bit.

Type Description

Long A Long expression that indicates the non-working hours in
a day.

By default, the NonworkingHours property is 0, that indicates all hours in a day are working
hours. The non-working hours are shown using the NonworkingHoursPattern and the
NonworkingHoursColor which defines the pattern and the color, when the base level of the
chart displays hours, if the ShowNonworkingUnits property is True (by default). Use the
ShowNonworkingUnits property to show or hide the non-working units as hours or days in
your chart.

You can select the non-working hours in the following table (In Internet Explorer, you have
to allow running the script on this page).

24
Hour 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4

AM/PM 11PM 10PM 9PM 8PM 7PM 6PM 5PM 4PM 3PM 2PM 1PM 12AM 11AM 10AM 9AM 8AM 7AM 6AM 5AM 4AM
Value 8388608 4194304 2097152 1048576 524288 262144 131072 65536 32768 16384 8192 4096 2048 1024 512 256 128 64 32 16

Bit

Click the Bit row for non-working hours and the value for property is: , (hexa), (octal),
(binary)

Every bit from the less significant bit, in the NonworkingHours property specifies whether
the hour is a not-working or working hour. For instance, if you want to highlight that only
9AM is a not-working hour, you should set the 10th bit in the property on 1 (the hours
starts from 0 to 23), and so the value for the NonworkingHours property is 512 (which
binary representation is 1000000000). The hours in the property starts from 0AM for the
first less significant bit, 1AM for the second bit, like in the following table.

For instance, if you need the representation of non-working hours from 6PM to 8AM, you
need to set on 1 each representative bit in the NonworkingHours property, or to add
corresponding values in the last row in the table for each non-working hours, so in this case
the NonworkingHours property is 16253183 or in binary 111110000000000011111111. For
instance, if the NonworkingHours property is 0 or NonworkingHoursPattern is
exPatternEmpty the not-working hours are not highlighted. Use the NonworkingDays
property to specify non-working days. Use the Add("A:B") to add a bar that displays the bar
A in the working area, and B in non-working areas.

property Chart.NonworkingHoursColor as Color
Retrieves or sets a value that indicates the color to fill the non-working hours.

Type Description

Color A Color expression that indicates the color to fill the non-
working hours.

Use the NonworkingHoursColor property to specify the color being used by the
NonworkingHoursPattern property. Use the NonworkingHours property to specify the
nonworking hours in a day. Use the NonworkingHoursPattern property to specify the pattern
to fill the non-working hours. For instance, if the NonworkingHours property is 0 or
NonworkingHoursPattern is exPatternEmpty the not-working hours are not highlighted.

property Chart.NonworkingHoursPattern as PatternEnum
Retrieves or sets a value that indicates the pattern being used to fill non-working hours.

Type Description

PatternEnum A PatternEnum expression that indicates the pattern to fill
non working hours in a day.

Use the NonworkingHoursPattern property to specify the brush to fill the nonworking hours
area. Use the NonworkingHoursColor property to specify the color being used by the
NonworkingHoursPattern property. Use the NonworkingHours property to specify the
nonworking hours in a day. For instance, if the NonworkingHours property is 0 or
NonworkingHoursPattern is exPatternEmpty the not-working hours are not highlighted.

property Chart.OverviewBackColor as Color
Specifies the background color of the chart's overview.

Type Description

Color A Color expression that indicates the background color of
the chart's overview.

Use the OverviewBackColor property to change the background color of the overview's
overview. The OverviewVisible property specifies whether the overview's overview layout is
visible or hidden. Use the BackColor property to change the background color for the chart
area. Use the OverviewSelBackColor property to change the visual appearance of the
selection in the overview area.

The following VB sample changes the overview's background color:

With Gantt1.Chart
 .OverviewBackColor = RGB(&H80, &H80, &H80)
End With

The following C++ sample changes the overview's background color:

m_gantt.GetChart().SetOverviewBackColor(RGB(0x80,0x80,0x80));

The following VB.NET sample changes the overview's background color:

With AxGantt1.Chart
 .OverviewBackColor = ToUInt32(Color.FromArgb(&H80, &H80, &H80))
End With

where the ToUInt32 function converts a Color expression to an OLE_COLOR type:

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample changes the overview's background color:

axGantt1.Chart.OverviewBackColor = ToUInt32(Color.FromArgb(0x80, 0x80, 0x80));

where the ToUInt32 function converts a Color expression to an OLE_COLOR type:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample changes the overview's background color:

With thisform.Gantt1.Chart
 .OverviewBackColor = RGB(128, 128, 128)
EndWith

property Chart.OverviewHeight as Long
Indicates the height of the chart's overview.

Type Description

Long A long expression that indicates the height of the chart's
overview area.

By default, the OverviewHeight property is 24 pixels. If the OverviewHeight property is 0, or
the OverviewVisible property is False, the chart's overview area is hidden. The
OverviewBackColor property specifies the background color for the overview area. Use the
OverviewSelBackColor property to change the visual appearance of the selection in the
overview area. The OverviewToolTip property specifies the format of the tooltip being
displayed when the cursor hovers the overview area. The OverviewLevelLines property
indicates the index of the level that displays the grid lines in the overview area.

property Chart.OverviewLevelLines as Long
Indicates the index of the level that displays the grid line in the chart's overview.

Type Description

Long A long expression that indicates the index of the level that
displays the grid lines in the chart's overview area.

By default, the OverviewLevelLines property is -1. If the OverviewLevelLines property is -1,
or indicates a non-existent level, no grid lines are shown in the chart's overview area. Use
the OverviewLevelLines property to show grid lines in the chart's overview area. The
OverviewVisible property shows or hides the chart's overview area. Use the Level property
to access a level using its index. The LevelCount property indicates the number of levels
being displayed in the control's header. Use the DrawGridLines property to specify the color
of the grid lines in the overview area.

property Chart.OverviewSelBackColor as Color
Specifies the selection color of the chart's overview.

Type Description

Color

A color expression that defines the selected items
background color. The last 7 bits in the high significant
byte of the color indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

Use the OverviewSelBackColor property specifies background color or the visual
appearance for the selection in the chart's overview. The OverviewBackColor property
specifies the background color for the overview area. The OverviewVisible property
specifies whether the chart's overview layout is visible or hidden. Use the OverviewHeight
property to specify the height in pixels, of the overview area. The OverviewToolTip property
specifies the format of the tooltip being displayed when the cursor hovers the overview
area. The OverviewLevelLines property indicates the index of the level that displays the grid
lines in the overview area.

property Chart.OverviewToolTip as String
Retrieves or sets a value that indicates the format of the tooltip being shown while the
cursor hovers the chart's overview area.

Type Description

String
A String expression that specifies the format of the tooltip
being displayed when the cursor hovers the chart's
overview area.

By default, the OverviewToolTip property is "<%ddd%> <%m%>/<%d%>/<%yyyy%> ".
The OverviewVisible property specifies whether the chart's overview layout is visible or
hidden. Use the OverviewHeight property to specify the height in pixels, of the overview
area. Use the ToolTip property to specify the format of the toolip being displayed when the
user scrolls the chart's content.

The OverviewToolTip property supports the following built-in tags:

<%d%> - Day of the month in one or two numeric digits, as needed (1 to 31).
<%dd%> - Day of the month in two numeric digits (01 to 31).
<%d1%> - First letter of the weekday (S to S). (Use the WeekDays property to
specify the name of the days in the week)
<%d2%> - First two letters of the weekday (Su to Sa). (Use the WeekDays property
to specify the name of the days in the week)
<%d3%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week)
<%ddd%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_ddd%> that indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%loc_ddd%> - Indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%dddd%> - Full name of the weekday (Sunday to Saturday). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_dddd%> that indicates day of week as its full name using the current user
regional and language settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
regional and language settings.
<%i%> - Displays the number instead the date. For instance, you can display numbers
as 1000, 1001, 1002, 1003, instead dates. (the valid range is from -647,434 to
2,958,465)
<%w%> - Day of the week (1 to 7).
<%ww%> - Week of the year (1 to 53).

<%m%> - Month of the year in one or two numeric digits, as needed (1 to 12).
<%mr%> - Month of the year in Roman numerals, as needed (I to XII).
<%mm%> - Month of the year in two numeric digits (01 to 12).
<%m1%> - First letter of the month (J to D). (Use the MonthNames property to
specify the name of the months in the year)
<%m2%> - First two letters of the month (Ja to De). (Use the MonthNames property
to specify the name of the months in the year)
<%m3%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year)
<%mmm%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year). You can use the
<%loc_mmm%> that indicates month as a three-letter abbreviation using the current
user regional and language settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
regional and language settings.
<%mmmm%> - Full name of the month (January to December). (Use the
MonthNames property to specify the name of the months in the year). You can use the
<%loc_mmmm%> that indicates month as its full name using the current user regional
and language settings.
<%loc_mmmm%> - Indicates month as its full name using the current user regional
and language settings.
<%q%> - Date displayed as the quarter of the year (1 to 4).
<%y%> - Number of the day of the year (1 to 366).
<%yy%> - Last two digits of the year (01 to 99).
<%yyyy%> - Full year (0100 to 9999).
<%hy%> - Date displayed as the half of the year (1 to 2).
<%loc_gg%> - Indicates period/era using the current user regional and language
settings.
<%loc_sdate%> - Indicates the date in the short format using the current user regional
and language settings.
<%loc_ldate%> - Indicates the date in the long format using the current user regional
and language settings.
<%loc_dsep%> - Indicates the date separator using the current user regional and
language settings (/).
<%h%> - Hour in one or two digits, as needed (0 to 23).
<%hh%> - Hour in two digits (00 to 23).
<%n%> - Minute in one or two digits, as needed (0 to 59).
<%nn%> - Minute in two digits (00 to 59).
<%s%> - Second in one or two digits, as needed (0 to 59).
<%ss%> - Second in two digits (00 to 59).
<%AM/PM%> - Twelve-hour clock with the uppercase letters "AM" or "PM", as
appropriate. (Use the AMPM property to specify the name of the AM and PM

indicators). You can use the <%loc_AM/PM%> that indicates the time marker such as
AM or PM using the current user regional and language settings. You can use
<%loc_A/P%> that indicates the one character time marker such as A or P using the
current user regional and language settings
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user regional and language settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user regional and language settings.
<%loc_time%> - Indicates the time using the current user regional and language
settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user regional and language settings.
<%loc_tsep%> - indicates the time separator using the current user regional and
language settings (:).

The following tags are displayed based on the user's Regional and Language Options:

<%loc_sdate%> - Indicates the date in the short format using the current user
settings.
<%loc_ldate%> - Indicates the date in the long format using the current user settings.
<%loc_ddd%> - Indicates day of week as a three-letter abbreviation using the current
user settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
settings.
<%loc_mmmm%> - Indicates month as its full name using the current user settings.
<%loc_gg%> - Indicates period/era using the current user settings.
<%loc_dsep%> - Indicates the date separator using the current user settings.
<%loc_time%> - Indicates the time using the current user settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user settings.
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user settings.
<%loc_tsep%> - Indicates the time separator using the current user settings.
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the

calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed.

property Chart.OverviewVisible as OverviewVisibleEnum
Specifies whether the chart's overview layout is visible or hidden.

Type Description

OverviewVisibleEnum An OverviewVisibleEnum expression that indicates
whether the chart's overview area is visible or hidden.

By default, the OverviewVisible property is exOverviewHidden. The overview layout/map It
is a view that is displayed at the top of the control and shows the whole timeline, with all
objects within its view (a high-level view). It displays a 'select' box (the light blue box) that
the user can drag to any location within the overview and then that area of the chart is
shown at normal scale within the chart view. Use the OverviewHeight property to specify
the height in pixels, of the overview area. The OverviewBackColor property specifies the
background color for the overview area. Use the OverviewSelBackColor property to change
the visual appearance of the selection in the overview area. The OverviewToolTip property
specifies the format of the tooltip being displayed when the cursor hovers the overview
area. The OverviewLevelLines property indicates the index of the level that displays the grid
lines in the overview area. Use the AllowOverviewZoom property to specify whether the
control displays the zooming scale on the overview area.

property Chart.OverviewZoomCaption as String
Specifies the captions for each zooming unit.

Type Description

String

A string expression that defines a list of captions (one for
each unit) being displayed in the zoom scale, separated
by | character. The list should contain a caption for each
unit, from the exYear to exSecond. For instance, if you
want to show nothing for exHalfYear zooming unit, the
OverviewZoomCaption should be: "Year||źYear...", and so
on

By default, the OverviewZoomCaption property is "Year|˝Year|
źYear|Month|Third|Week|Day|Hour|Min|Sec". The OverviewZoomCaption property
supports HTML tags, and so the zooming units may display icons or/and pictures using the
 tag. The OverviewZoomUnit property indicates the width in pixels of the zooming
unit. The zooming scale displays the list of visible units. A visible unit is an unit whose Label
property is not empty. So, the Label property indicates the zooming units in the zoom scale.
Use the OverviewVisible property to show or hide the control's overview area.

The following picture shows the zooming scale on the overview area [exAlwaysZoom] (
you can click the 1, 7 or 31, and the chart is scaled to days, weeks or moths):

The following picture shows the control when the user right clicks the overview area (as
the chart displays weeks) [exZoomOnRClick]:

For instance, in the OverviewZoomCaption property is "Year|˝Year|źYear|
3Month|Third|2Week|1Day|Hour|Min|Sec". The

Day, Month and Week units displays an icon too. Use the Images method to load a list of
icons to your control. Use the HTMLPicture property to use custom sized pictures to your
HTML captions.

property Chart.OverviewZoomUnit as Long
Indicates the width in pixels of the zooming unit in the overview.

Type Description

Long A long expression that indicates the width in pixels of the
zooming unit.

By default, the OverviewZoomUnit property is 42 pixels. The OverviewZoomUnit property
indicates the width in pixels of the zooming unit. Use the OverviewVisible property to show
or hide the control's overview area. Use the AllowOverviewZoom property to show or hide
the zooming scale on the overview area. The zooming scale displays the list of visible units.
A visible unit is an unit whose Label property is not empty. So, the Label property indicates
the zooming units in the zoom scale. The OverviewZoomCaption property indicates the
caption being displayed in each zooming unit. The LabelToolTip retrieves or sets a value that
indicates the predefined format of the level's tooltip for a specified unit.

The zooming scale may be displayed on the overview area only if:

AllowOverviewZoom property is not exDisableZoom
OverviewVisible property is True
OverviewHeight property is greater than 0
there are at least two visible units, that has the Label property not empty.

property Chart.PaneWidth(Right as Boolean) as Long
Specifies the width for the left or side pane.

Type Description

Right as Boolean A Boolean expression that indicates whether the left (
items area) or right (chart area) area is changed.

Long A Long expression that indicates the width of the pane.

Use the PaneWidth property to specify the width of the control (items area) or chart area.
Use the AddBar method to add bars to the item. The bars are always shown in the chart
area. Use the HeaderVisible property to show or hide the control's header. Use the
SortBarVisible property to specify whether the control's sort bar is visible or it is hidden.
Use the LevelCount property to specify the number of levels being displayed in the chart's
header. Use the Level property to access the level in the chart area. Use the BackColor
property to specify the items's background color. Use the ForeColor property to specify the
items's foreground color. Use the BackColor property to specify the chart's background
color. Use the ForeColor property to specify the chart's foreground color.

The following VFP sample changes the width of the control's area:

with thisform.Gantt1.Chart
 .PaneWidth(0) = 256
endwith

The following VFP sample changes the width of the chart's area:

with thisform.Gantt1.Chart
 .PaneWidth(1) = 256
endwith

property Chart.Picture as IPictureDisp
Retrieves or sets a graphic to be displayed in the chart.

Type Description

IPictureDisp A Picture object that's displayed on the control's
background.

By default, the chart has no picture associated. The control uses the PictureDisplay
property to determine how the picture is displayed on the chart's background. Use the
PictureLevelHeader property to specify the picture on the control's levels header bar. Use
the CellPicture property to assign a picture to a cell. Use the BackColor property to specify
the control's background color. Use the Picture property to assign a picture on the control's
background.

property Chart.PictureDisplay as PictureDisplayEnum
Retrieves or sets a value that indicates the way how the graphic is displayed on the chart's
background

Type Description

PictureDisplayEnum A PictureDisplayEnum expression that indicates the way
how the picture is displayed in the chart's area.

By default, the PictureDisplay property is exTile. The PictureDisplay property specifies how
the Picture is displayed on the chart's background. If the chart has no picture associated
the PictureDisplay property has no effect. Use the CellPicture property to assign a picture
to a cell. Use the BackColor property to specify the control's background color. Use the
BackColor property to specify the chart's background color.

method Chart.RemoveNonworkingDate (Date as Variant)
Removes a nonworking date.

Type Description

Date as Variant A Date expression that indicates the date being unmarked
as nonworking day.

Use the RemoveNonworkingDate method to unmark a specified nonworking date, being
previously added using the AddNonworkingDate method. Use the ClearNonworkingDates
method to remove all nonworking dates. Use the IsDateVisible property to specify whether
a date fits the chart's area. Use the IsNonworkingDate property to check whether the date
is already highlighted as nonworking day. The NonworkingDays property specifies the days
being marked as nonworking in a week. Use the NonworkingDaysPattern property to
specify the pattern being used to fill non-working days. The NonworkingDaysColor property
specifies the color being used to fill the non-working days.

property Chart.ScrollBar as Boolean
Shows or hides the chart's horizontal scroll bar.

Type Description

Boolean A Boolean expression that indicates whether the horizontal
scroll bar is visible in the chart.

Use the ScrollBar property to show or hide the chart's scroll bar. The FirstVisibleDate
property indicates the first visible date. The ToolTip property indicates the tooltip being
shown when the user clicks the thumb of the chart's scrollbar. Use the FirstVisibleDate
property to indicate the first visible date when the chart contains no scroll bar. Use the
ScrollTo method to ensure that a date fits the chart's client area. Use the Zoom method to
zoom the chart to an interval of dates. Use the ScrollBars property

property Chart.ScrollRange(Pos as ScrollRangeEnum) as Variant
Specifies the range of dates to scroll within.

Type Description

Pos as ScrollRangeEnum
A ScrollrangeEnum expression that indicates whether the
starting or ending position of the range is beging
requested or changed.

Variant A Variant expression that indicates the date or the time
when the range beings or ends.

By default, the ScrollRange(exStartDate) and ScrollRange(exEndDate) are empty. The
control scrolls the chart within specified range, only if the ScrollRange(exStartDate) and
ScrollRange(exEndDate) are not empty and indicates a valid date-time value. If the
ScrollRange(exStartDate) and ScrollRange(exEndDate) properties indicates the same valid
value, the ScrollRange limits the view to specified unit. For instance, if both are set on
#1/1/2001# the view is limited to full day, in case it is zoomed to hours, minutes or seconds.
The ScrollRange property rearranges the FirstVisibleDate property, so it fits the range. The
FirstVisibleDate indicates the first visible date or time in the chart. Use the ScrollTo method
to scroll to a specified date. For instance, let's say that ScrollRange(exStartDate) is
#5/1/2007#, ScrollRange(exEndDate) is #10/1/2007#, and the FirstVisibleDate is
#7/1/2007#. This would move the first visible day to July 1st, but also move the horizontal
scroll bar halfway across the chart. This way, it would be clear to users where they are in
relation to the full schedule. The DateChange event notifies whether the first visible date is
changed. Use the ScrollPartEnum property to disable specified parts in the chart's scroll
bar.

The following VB sample disables the left and right scroll bar buttons, and specifies a range
of date to scroll within:

With Gantt1
 .Columns.Add "Task"
 With .Chart
 .LevelCount = 2
 .PaneWidth(0) = 56
 .ScrollRange(exStartDate) = "1/1/2001"
 .ScrollRange(exEndDate) = "1/31/2001"
 .FirstVisibleDate = "1/12/2001"
 End With
 With .Items
 h = .AddItem("Task 1")

 .AddBar h,"Task","1/15/2001","1/18/2001","K1"
 h = .AddItem("Task 1")
 .AddBar h,"Task","1/5/2001","1/11/2001","K1"
 End With
End With

The following VB.NET sample disables the left and right scroll bar buttons, and specifies a
range of date to scroll within:

Dim h
With AxGantt1
 .Columns.Add "Task"
 With .Chart
 .LevelCount = 2
 .PaneWidth(0) = 56
 .ScrollRange(EXGANTTLib.ScrollRangeEnum.exStartDate) = "1/1/2001"
 .ScrollRange(EXGANTTLib.ScrollRangeEnum.exEndDate) = "1/31/2001"
 .FirstVisibleDate = "1/12/2001"
 End With
 With .Items
 h = .AddItem("Task 1")
 .AddBar h,"Task","1/15/2001","1/18/2001","K1"
 h = .AddItem("Task 1")
 .AddBar h,"Task","1/5/2001","1/11/2001","K1"
 End With
End With

The following C# sample disables the left and right scroll bar buttons, and specifies a range
of date to scroll within:

axGantt1.Columns.Add("Task");
EXGANTTLib.Chart var_Chart = axGantt1.Chart;
 var_Chart.LevelCount = 2;
 var_Chart.set_PaneWidth(0 != 0,56);
 var_Chart.set_ScrollRange(EXGANTTLib.ScrollRangeEnum.exStartDate,"1/1/2001");
 var_Chart.set_ScrollRange(EXGANTTLib.ScrollRangeEnum.exEndDate,"1/31/2001");
 var_Chart.FirstVisibleDate = "1/12/2001";
EXGANTTLib.Items var_Items = axGantt1.Items;

 int h = var_Items.AddItem("Task 1");
 var_Items.AddBar(h,"Task","1/15/2001","1/18/2001","K1",null);
 h = var_Items.AddItem("Task 1");
 var_Items.AddBar(h,"Task","1/5/2001","1/11/2001","K1",null);

The following C++ sample disables the left and right scroll bar buttons, and specifies a
range of date to scroll within:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXGANTTLib' for the library: 'ExGantt 1.0 Control Library'

 #import "D:\\Exontrol\\ExGantt\\project\\DemoU\\ExGantt.dll"
 using namespace EXGANTTLib;
*/
EXGANTTLib::IGanttPtr spGantt1 = GetDlgItem(IDC_GANTT1)->GetControlUnknown();
spGantt1->GetColumns()->Add(L"Task");
EXGANTTLib::IChartPtr var_Chart = spGantt1->GetChart();
 var_Chart->PutLevelCount(2);
 var_Chart->PutPaneWidth(0,56);
 var_Chart->PutScrollRange(EXGANTTLib::exStartDate,"1/1/2001");
 var_Chart->PutScrollRange(EXGANTTLib::exEndDate,"1/31/2001");
 var_Chart->PutFirstVisibleDate("1/12/2001");
EXGANTTLib::IItemsPtr var_Items = spGantt1->GetItems();
 long h = var_Items->AddItem("Task 1");
 var_Items->AddBar(h,"Task","1/15/2001","1/18/2001","K1",vtMissing);
 h = var_Items->AddItem("Task 1");
 var_Items->AddBar(h,"Task","1/5/2001","1/11/2001","K1",vtMissing);

The following VFP sample disables the left and right scroll bar buttons, and specifies a
range of date to scroll within:

with thisform.Gantt1
 .Columns.Add("Task")
 with .Chart
 .LevelCount = 2
 .PaneWidth(0) = 56
 .ScrollRange(0) = "1/1/2001"

 .ScrollRange(1) = "1/31/2001"
 .FirstVisibleDate = "1/12/2001"
 endwith
 with .Items
 h = .AddItem("Task 1")
 .AddBar(h,"Task","1/15/2001","1/18/2001","K1")
 h = .AddItem("Task 1")
 .AddBar(h,"Task","1/5/2001","1/11/2001","K1")
 endwith
endwith

method Chart.ScrollTo (Date as Date, [Align as Variant])
Scrolls the chart so the specified date is visible.

Type Description

Date as Date A Date expression that indicates the date being ensured
that's visible.

Align as Variant An AlignmentEnum expression that indicates where the
date will be placed.

Use the ScrollTo method to ensure that specified date fits the chart's area. The
FirstVisibleDate property specifies the first visible date. The ScrollTo method fires the
DateChange event if the first visible date is changed. Use the Zoom method to zoom the
chart to a specified interval of dates. Use the PaneWidth property to specify the width of
the chart.

The following VB sample ensures that the "6/1/2005" is listed in the center of the chart:

With Gantt1.Chart
 .ScrollTo #6/1/2005#, AlignmentEnum.CenterAlignment
End With

The following C++ sample ensures that the "6/1/2005" is listed in the center of the chart:

COleDateTime date(2005, 6, 1, 0, 0, 0);
CChart chart = m_gantt.GetChart();
chart.ScrollTo(date.m_dt, COleVariant((long)1));

The following VB.NET sample ensures that the "6/1/2005" is listed in the center of the chart:

With AxGantt1.Chart
 .ScrollTo(DateTime.Parse("6/1/2005"), EXGANTTLib.AlignmentEnum.CenterAlignment)
End With

The following C# sample ensures that the "6/1/2005" is listed in the center of the chart:

axGantt1.Chart.ScrollTo(DateTime.Parse("6/1/2005"),
EXGANTTLib.AlignmentEnum.CenterAlignment);

The following VFP sample ensures that the "6/1/2005" is listed in the center of the chart:

With thisform.Gantt1.Chart

 .ScrollTo("6/2/2005", 1)
EndWith

property Chart.SelBackColor as Color
Retrieves or sets a value that indicates the selection background color.

Type Description

Color

A color expression that indicates the background color to
display the selected items in the chart area. Use the Add
method to add new skins to the control. If you need to
remove the skin appearance from a part of the control you
need to reset the last 7 bits in the high significant byte of
the color being applied to the background's part.

By default, the SelBackColor property is the same as chart's background color that's
specified by BackColor property of the Chart object. In other words, by default, the chart
does not display a different background color for selected items in the chart area. The
SelBackColor property of the Chart object changes the background for the selected items
in the chart area. Use the SelBackColor property to change the selection background color
in the list area. Use the SelForeColor property to change the foreground color of the
selected items in the chart area. The SelBackColor property is applied ONLY if the
SelBackColor property is different that the BackColor property.

property Chart.SelectDate(Date as Date) as Boolean
Selects or unselects a specific date in the chart.

Type Description
Date as Date A DATE expression that indicates the

Boolean A Boolean expression that specifies whether the Date is
selected or not.

Use the SelectDate property to select dates programmatically. Use the UnselectDates
method to unselect all dates in the chart. Use the SelectDate property to select or unselect
a new date, or to find if a specified date is selected or it is not selected. The user can
select dates by clicking the chart's header. Use the SelectLevel property to specify the area
being highlighted when a date is selected. You can select multiple dates keeping the CTRL
key and clicking a new date. The MarkSelectDateColor property specifies the color being
used to highlight the selected dates. If the MarkSelectDateColor property is identical with
the BackColor property of the Chart object, the selected dates are not shown.

In the following screen shot the red lines marks the selected dates (June 20 and June 28):

property Chart.SelectLevel as Long
Indicates the index of the level that highlights the selected dates.

Type Description

Long A long expression that indicates the index of the level
being selected.

Use the SelectLevel property to specify the area being highlighted when a date is selected.
For instance, if you click a date in the first level (in the chart's header), the chart displays
the selected date accordingly to the selected level. Use the SelectDate property to select
or unselect a new date, or to find if a specified date is selected or not. Use the
LevelFromPoint property to retrieve the index of the level from the cursor. You can select
multiple dates keeping the CTRL key and clicking a new date. The MarkSelectDateColor
property specifies the color being used to highlight the selected dates. If the
MarkSelectDateColor property is identical with the BackColor property of the Chart object,
the selected dates are not shown.

In the following screen shot the red lines marks the selected dates (June 20 and June 28,
as the user clicks the June 20, 28 dates in the second level (index 1) where the days are
displayed):

In the following screen shot the red lines marks the selected week (June 19 to June 26, as
the user clicks the June 19, `05 week in the first level (index 0) where weeks are
displayed):

property Chart.SelForeColor as Color
Retrieves or sets a value that indicates the selection foreground color.

Type Description

Color A color expression that specifies the foreground color for
selected items that's displayed on the chart area.

By default, the SelForeColor property is the same as chart's foreground color that's
specified by ForeColor property of the Chart object. In other words, by default, the chart
does not display a different foreground color for selected items in the chart area. The
SelForeColor property of the Chart object changes the foreground for the selected items in
the chart area. Use the SelForeColor property to change the selection foreground color in
the list area. Use the SelBackColor property to change the foreground color of the selected
items in the chart area. The SelForeColor property is applied ONLY if the SelForeColor
property is different that the ForeColor property.

property Chart.ShowEmptyBars as Long
Specifies whether empty bars are shown or hidden.

Type Description

Long
A long expression that specifies the number of time units
being added to the end of each bar. An empty bar has the
start and end dates identical.

By default, the ShowEmptyBars property is 0. Use the ShowEmptyBars to show the bars,
even if the Start and End date are identical. In other words, if this property is 1, the bars
will be shown from the start date to end date plus 1 unit, where the time unit is indicated by
the ShowEmptyBarsUnit property. For instance, if the ShowEmptyBars property is 1, a task
bar from 1/1/2001 to 1/2/2001 shows two days, else if the ShowEmptyBars property is 0,
the same task bar highlights only a single day. Use the AddBar method to assign a bar to
an item. Use the ItemBar(exBarStart) and ItemBar(exBarEnd) properties to specify the
start and end dates for a bar.

property Chart.ShowEmptyBarsUnit as UnitEnum
Specifies the unit to be added to the end date, so empty bars are shown.

Type Description

UnitEnum
An UnitEnum expression that indicates the time unit being
added to each bar, when the ShowEmptyBars property is
not zero.

By default, the ShowEmptyBarsUnit property is exDay. This property has effect only, if the
ShowEmptyBars property is not zero. For instance, if your chart displays seconds, the
ShowEmptyBarsUnit property must be set on exSeconds, else else if the ShowEmptyBars
property is 1, the ending date for each bar is not show correctly, as 1 day is added to a
second. For instance, if the ShowEmptyBars property is 1 and ShowEmptyBarsUnit is
exDay, a task bar from 1/1/2001 to 1/2/2001 shows two days, else if the ShowEmptyBars
property is 0, the same task bar highlights only a single day. Use the AddBar method to
assign a bar to an item. Use the ItemBar(exBarStart) and ItemBar(exBarEnd) properties to
specify the start and end dates for a bar.

property Chart.ShowLinks as Boolean
Retrieves or sets a value that indicates whether the links between bars are visible or
hidden.

Type Description

Boolean A Boolean expression that indicates whether the chart
shows the lines between bars.

By default, the ShowLinks property is True. Use the ShowLinks property to hide all links
between bars. Use the Link(exLinkVisible) property to hide a specific link between two
bars. Use the LinkColor property to specify the color for all links in the chart area. Use the
LinkStyle property to specify the style for all links in the chart area. Use the LinkWidth
property to specify the width of the pen, in pixels, to draw the links between bars. Use the
AddLink method to link a bar with another. Use the Link(exLinkShowDir) property to hide the
arrow that indicates the direction of the link. Use the FirstLink and NextLink properties to
enumerate the links in the control.

property Chart.ShowNonworkingDates as Boolean
Shows or hides nonworking dates.

Type Description

Boolean A boolean expression that indicates whether the chart
marks the nonworking days.

Use the ShowNonworkingDates property to stop highlighting the nonworking dates. The
NonworkingDays property specifies the days being marked as nonworking in a week. Use
the AddNonworkingDate method to add custom dates as being nonworking days. Use the
IsNonworkingDate property to specify whether the date is a nonworking day. Use the
NonworkingDaysPattern property to specify the pattern being used to fill non-working days.
The NonworkingDaysColor property specifies the color being used to fill the non-working
days. Use the ClearNonworkingDates method to remove all nonworking dates.

property Chart.ShowNonworkingUnits as Boolean
Retrieves or sets a value that indicates whether the non-working units are visible or hidden.

Type Description

Boolean A Boolean expression that specifies whether the non-
working units (hours or days) are visible or hidden.

By default, the ShowNonworkingUnits property is True. In other words, by default the
control displays the non-working units. Use the NonworkingHours property to specify the
non-working hours in your chart. Use the NonworkingDays property to specify the non-
working days. Use the ShowNonworkingUnits property to display ONLY working units. For
instance, you can display for each day the hours from 08:00 AM to 04:00PM, as the other
hours (non working hours) are not displayed in the chart.

The following screen shot shows ONLY working hours from 08:00 AM to 12:00 PM (
ShowNonworkingUnits property is False) :

The following screen shot shows with a different pattern the non-working hours (
ShowNonworkingUnits property is True) :

The ShowNonworkingUnits property has no effect if the NonworkingHours and
NonWorkingsDays properties are 0.

property Chart.ShowTransparentBars as Long
Gets or sets a value that indicates percent of the transparency to display the bars.

Type Description

Long

A Long expression, from 0 to 100, that indicates the
percent of transparency that's used to paint the bars. 0
means opaque, 100 means hidden, or 100% transparent.
50 means semi-transparent.

By default, the ShowTransparentBars property is 0, which means that the bars are opaque.
Use the ShowTransparentBars property to draw all bars using a semi-transparent color.
Use the ShowTransparentBars property to draw the intersection of bars using a semi-
transparent color.

The following screen shot shows only few items that are shown using a semi-transparent
color (the bars in red). Use the ItemBar(exBarTransparent) property to specify the percent
of the transparency to display a specified bar. Use the ItemBar(exBarOffset) property to
specify the the vertical offset to show the bar.

The following screen shot shows two bars when the ShowTransparentBars property is 0:

The following screen shot shows two bars when the ShowTransparentBars property is 60,
which means 60% transparent:

property Chart.StartPrintDate as Variant
Retrieves or sets a value that indicates the printing start date.

Type Description

Variant

A DATE expression that specifies the ending date to print
the chart. The get method always retrieves a DATE
expression. When calling the set method of the
StartPrintDate property, it can be a string, a DATE or any
other expression that can be converted to a date.

The StartPrintDate property indicates the starting date to print the chart. By default, the
StartPrintDate property computes the required start date so the entire chart is displayed, if
the StartPrintDate was not specified before. For instance, if you set the StartPrintDate
property on "Jan 1 2001", the StartPrintDate property retrieves the "Jan 1 2001" date and
does not compute the required start date. If you have specified a value for the
StartPrintDate but you still need to get the required start date being computed, set the
StartPrintDate property on 0, and calling the next method get of StartPrintDate property
computes the required start date to print the chart. Use the EndPrintDate property to
specify the end date to print the chart. Use the CountVisibleUnits property to count the
number of units within the specified range. Use the FirstVisibleDate property to specify the
first visible date of the chart when displaying on the screen.

property Chart.ToolTip as String
Retrieves or sets a value that indicates the format of the tooltip being shown while the user
scrolls the chart.

Type Description
String A String expression that includes the format of the tooltip.

The ToolTip property specifies the tooltip that shows up when the user scrolls the chart. If
the ToolTip property is empty, the control doesn't show up the tooltip when the user scrolls
the chart by dragging the scroll's thumb to a new position. The ToolTipDelay property
specifies the time in ms that passes before the ToolTip appears. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. Use the ToolTipWidth property to specify the width of the tooltip
window. Use the FormatDate property to format a date. Use the MonthNames property to
specify the name of the months in the year. The WeekDays property retrieves or sets a
value that indicates the list of names for each week day, separated by space. Use the
Zoom method to zoom the chart to a specified interval of dates. Use the AMPM property to
specify the name of the AM and PM indicators. The Label property specifies a predefined
label for a specified unit. Use the ScrollBar property to show or hide the chart's scroll bar.
Use the ItemBar(exBarToolTip) property to assign a tooltip to a bar.

The ToolTip property supports the following built-in tags:

<%d%> - Day of the month in one or two numeric digits, as needed (1 to 31).
<%dd%> - Day of the month in two numeric digits (01 to 31).
<%d1%> - First letter of the weekday (S to S). (Use the WeekDays property to
specify the name of the days in the week)
<%d2%> - First two letters of the weekday (Su to Sa). (Use the WeekDays property
to specify the name of the days in the week)
<%d3%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week)
<%ddd%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_ddd%> that indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%loc_ddd%> - Indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%dddd%> - Full name of the weekday (Sunday to Saturday). (Use the WeekDays

property to specify the name of the days in the week). You can use the
<%loc_dddd%> that indicates day of week as its full name using the current user
regional and language settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
regional and language settings.
<%i%> - Displays the number instead the date. For instance, you can display numbers
as 1000, 1001, 1002, 1003, instead dates. (the valid range is from -647,434 to
2,958,465)
<%w%> - Day of the week (1 to 7).
<%ww%> - Week of the year (1 to 53).
<%m%> - Month of the year in one or two numeric digits, as needed (1 to 12).
<%mr%> - Month of the year in Roman numerals, as needed (I to XII).
<%mm%> - Month of the year in two numeric digits (01 to 12).
<%m1%> - First letter of the month (J to D). (Use the MonthNames property to
specify the name of the months in the year)
<%m2%> - First two letters of the month (Ja to De). (Use the MonthNames property
to specify the name of the months in the year)
<%m3%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year)
<%mmm%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year). You can use the
<%loc_mmm%> that indicates month as a three-letter abbreviation using the current
user regional and language settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
regional and language settings.
<%mmmm%> - Full name of the month (January to December). (Use the
MonthNames property to specify the name of the months in the year). You can use the
<%loc_mmmm%> that indicates month as its full name using the current user regional
and language settings.
<%loc_mmmm%> - Indicates month as its full name using the current user regional
and language settings.
<%q%> - Date displayed as the quarter of the year (1 to 4).
<%y%> - Number of the day of the year (1 to 366).
<%yy%> - Last two digits of the year (01 to 99).
<%yyyy%> - Full year (0100 to 9999).
<%hy%> - Date displayed as the half of the year (1 to 2).
<%loc_gg%> - Indicates period/era using the current user regional and language
settings.
<%loc_sdate%> - Indicates the date in the short format using the current user regional
and language settings.
<%loc_ldate%> - Indicates the date in the long format using the current user regional
and language settings.

<%loc_dsep%> - Indicates the date separator using the current user regional and
language settings (/).
<%h%> - Hour in one or two digits, as needed (0 to 23).
<%hh%> - Hour in two digits (00 to 23).
<%n%> - Minute in one or two digits, as needed (0 to 59).
<%nn%> - Minute in two digits (00 to 59).
<%s%> - Second in one or two digits, as needed (0 to 59).
<%ss%> - Second in two digits (00 to 59).
<%AM/PM%> - Twelve-hour clock with the uppercase letters "AM" or "PM", as
appropriate. (Use the AMPM property to specify the name of the AM and PM
indicators). You can use the <%loc_AM/PM%> that indicates the time marker such as
AM or PM using the current user regional and language settings. You can use
<%loc_A/P%> that indicates the one character time marker such as A or P using the
current user regional and language settings
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user regional and language settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user regional and language settings.
<%loc_time%> - Indicates the time using the current user regional and language
settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user regional and language settings.
<%loc_tsep%> - indicates the time separator using the current user regional and
language settings (:).
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed.

The following tags are displayed based on the user's Regional and Language Options:

<%loc_sdate%> - Indicates the date in the short format using the current user
settings.
<%loc_ldate%> - Indicates the date in the long format using the current user settings.
<%loc_ddd%> - Indicates day of week as a three-letter abbreviation using the current

user settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
settings.
<%loc_mmmm%> - Indicates month as its full name using the current user settings.
<%loc_gg%> - Indicates period/era using the current user settings.
<%loc_dsep%> - Indicates the date separator using the current user settings.
<%loc_time%> - Indicates the time using the current user settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user settings.
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user settings.
<%loc_tsep%> - Indicates the time separator using the current user settings.

property Chart.UnitScale as UnitEnum
Retrieves or sets a value that indicates the base unit being displayed.

Type Description

UnitEnum A UnitEnum expression that indicates the minimum time
unit being displayed in the level.

Use the UnitScale property to change the scale unit. Use the UnitWidth property to specify
the width of the time unit. The UnitScale property changes the Label, Unit and the ToolTip
for a level with predefined values defined by the Label and LabelToolTip properties. Use the
Label property to specify predefined formats for time units. Use the Label property to
assign a different label for a specified level. Use the Unit property to specify the time unit
being displayed by the level. If the user changes the Label or Unit property for a level, it is
possible that UnitScale property to be changed. Use the Count property to increase the
number of units being displayed in the level. Use the Alignment property to align the label in
the level. Use the Zoom method to zoom the chart to a specified interval of dates. Use the
LevelCount property to specify the number of levels being displayed in the control's header.
Use the NextDate property to get the next date. Use the AllowOverviewZoom property to
specify whether the control displays the zooming scale on the overview area. Once the user
selects a new time scale unit in the overview zoom area, the control fires the
OverviewZoom event.

property Chart.UnitWidth as Long
Specifies the width in pixels for the minimal unit.

Type Description

Long A Long expression that indicates the width of the time unit,
in pixels.

Use the UnitWidth property to specify the width of the time unit. Use the UnitScale property
to change the scale unit. Use the PaneWidth property to specify the width of the chart area.
Use the Label property to specify the label being displayed in the level. Use the Zoom
method to zoom the chart to a specified interval of dates. Use the FirstVisibleDate property
to specify the first visible date in the chart. Use the ScrollTo property to ensure that a
specified date fits the chart's client area. Use the Alignment property to align the label in the
level. Use the Count property to increase the number of units being displayed in the level.

method Chart.UnselectDates ()
Unselects all dates in the chart.

Type Description

Use the UnselectDates method to unselect all dates in the chart. Use the SelectDate
property to select or unselect a new date, or to find if a specified date is selected or it is
not selected. Use the SelectLevel property to specify the area being highlighted when a
date is selected. The user can select dates by clicking the chart's header. You can select
multiple dates keeping the CTRL key and clicking a new date. The MarkSelectDateColor
property specifies the color being used to highlight the selected dates. If the
MarkSelectDateColor property is identical with the BackColor property of the Chart object,
the selected dates are not shown.

property Chart.WeekDays as String
Retrieves or sets a value that indicates the list of names for each week day, separated by
space.

Type Description

String A String expression that indicates the name of the days in
the week, separated by spaces.

By default, the WeekDays property is "Sunday Monday Tuesday Wednesday Thursday
Friday Saturday". The order of week days is Sunday, Monday, and so on. The FormatDate
property formats a date. Use the MonthNames property to specify the name of the months
in the year. Use the AMPM property to specify the name of the AM and PM indicators. Use
the Label property to specify the label being displayed in the level. Use the Label property
to specify the predefined format for a level based on the unit time. Use the ToolTip property
to specify the tool tip being displayed when the cursor hovers the level. Use the
FirstWeekDay property to specify the first day in the week.

The WeekDays property specifies the name of the days in the week for the following built-in
tags:

<%d1%> - First letter of the weekday (S to S).
<%d2%> - First two letters of the weekday (Su to Sa).
<%d3%> - First three letters of the weekday (Sun to Sat).
<%ddd%> - First three letters of the weekday (Sun to Sat).
<%dddd%> - Full name of the weekday (Sunday to Saturday).

The following VB sample assigns Romanian name for days in the week:

With Gantt1.Chart
 .WeekDays = "Duminica Luni Marti Miercuri Joi Vineri Simbata"
End With

The following C++ sample assigns Romanian name for days in the week:

m_gantt.GetChart().SetWeekDays("Duminica Luni Marti Miercuri Joi Vineri Simbata");

The following VB.NET sample assigns Romanian name for days in the week:

With AxGantt1.Chart
 .WeekDays = "Duminica Luni Marti Miercuri Joi Vineri Simbata"
End With

The following C# sample assigns Romanian name for days in the week:

axGantt1.Chart.WeekDays = "Duminica Luni Marti Miercuri Joi Vineri Simbata";

The following VFP sample assigns Romanian name for days in the week:

With thisform.Gantt1.Chart
 .WeekDays = "Duminica Luni Marti Miercuri Joi Vineri Simbata"
EndWith

property Chart.WeekNumberAs as WeekNumberAsEnum
Specifies the way the control displays the week number.

Type Description

WeekNumberAsEnum A WeekNumberAsEnum expression that specifies the way
the control displays the week number.

By default, the WeekNumberAs property is exSimpleWeekNumber, which indicates the first
week starts on January 1st of a given year, week n+1 starts 7 days after week n. The
FirstWeekDay property specifies the first day of the week where the week begins. Use
WeekDays property to specify the name of the days in the week. Use the MonthNames
property to specify the name of the months in the year. Use the AMPM property to specify
the name of the AM and PM indicators. The FormatDate property formats a date. The
NextDate property computes the next date based on the time unit. Use the FirstVisibleDate
property to specify the first visible date in the chart.

The following screen shot shows the weeks as exISO8601WeekNumber (exDay scale):

The following screen shot shows the weeks as exISO8601WeekNumber (exWeek scale):

The following screen shot shows the weeks as exSimpleWeekNumber (exDay scale):

The following screen shot shows the weeks as exSimpleWeekNumber (exWeek scale):

method Chart.Zoom (StartDate as Date, EndDate as Date,
[ChangeUnitWidth as Variant])
Sets or retrieves the magnification scale of the chart.

Type Description
StartDate as Date A Date expression that indicates the start date.
EndDate as Date A Date expression that indicates the end date.

ChangeUnitWidth as Variant
A Boolean expression that indicates whether the Zoom
method may change the UnitWidth property., If missing,
the ChangeUnitWidth parameter is True.

The Zoom method zooms the chart to ensure that interval StartDate and EndDate fits the
chart's area. The Zoom method may change the Label, Unit, Count and the ToolTip
properties for all levels in the chart. If the ChangeUnitWidth parameter is True, the Zoom
method changes the UnitWidth property as necessary. Use the LevelCount property to
specify the number of levels in the chart. Use the Level property to access the level in the
chart area. Use the NextDate property to compute the next date based on a given unit. Use
the NonworkingDaysPattern property on hide the nonworking days.

When zooming

the Label property takes a predefined value that's specified by the Label property of
the Chart object. This way you can use the Label property of the Chart object to define
the predefined formats for specified units. If the Label property for a specified unit is
empty, the unit is ignored when zooming.
the Unit property is changed accordingly with the Label property. For instance, if the
Label property is set to "<%d%>", the Unit property is automatically put on exDay.
the Count property is changed based on the available units (the Label property is not
empty) and how large the interval is.
the ToolTip property is set on a predefined value that's specified by the LabelToolTip
property, accordingly with the Unit property
If the ChangeUnitWidth parameter is True, the UnitWidth property is changed if
required. For instance, if we need to display a single week, that means that the
PaneWidth property is divided in 7 pieces, and so the UnitWidth property is the
PaneWidth / 7.

The following VB sample zooms the chart to display one week:

 With Gantt1.Chart
 .Label(exThirdMonth) = ""
 .Label(exDay) = "<%d%>/<%m%>"
 .Zoom .FirstVisibleDate, .NextDate(.FirstVisibleDate, exWeek), True
End With

The following C++ sample zooms the chart to display one week:

CChart chart = m_gantt.GetChart();
chart.SetLabel(17 /*exThirdMonth*/, "");
chart.SetLabel(4096 /*exDay*/, "<%d%>/<%m%>");
chart.Zoom(V2D(&chart.GetFirstVisibleDate()), chart.GetNextDate(V2D(
&chart.GetFirstVisibleDate()), 256, COleVariant((long)1)), COleVariant((long)TRUE));

The following VB.NET sample zooms the chart to display one week:

With AxGantt1.Chart
 .Label(EXGANTTLib.UnitEnum.exThirdMonth) = ""
 .Label(EXGANTTLib.UnitEnum.exDay) = "<%d%>/<%m%>"
 .Zoom(.FirstVisibleDate, .NextDate(.FirstVisibleDate, EXGANTTLib.UnitEnum.exWeek),
True)
End With

The following C# sample zooms the chart to display one week:

EXGANTTLib.Chart chart = axGantt1.Chart;
chart.set_Label(EXGANTTLib.UnitEnum.exThirdMonth, "");
chart.set_Label(EXGANTTLib.UnitEnum.exDay, "<%d%>/<%m%>");
chart.Zoom(Convert.ToDateTime(chart.FirstVisibleDate),
chart.get_NextDate(Convert.ToDateTime(chart.FirstVisibleDate),
EXGANTTLib.UnitEnum.exWeek, 1), true);

The following VFP sample zooms the chart to display one week:

With thisform.Gantt1.Chart
 .Label(17) = "" && exThirdMonth
 .Label(4096) = "<%d%>/<%m%>" && exDay
 .Zoom(.FirstVisibleDate, .NextDate(.FirstVisibleDate, 256), .t.) && exWeek
EndWith

Column object
The ExGantt component supports multiple columns. The Columns object contains a
collection of Column objects. By default, the control doesn't add any default column, so the
user has to add at least one column, before inserting any new items. The Column object
holds information about a control's column like: Alignment, Caption, Position and so on. The
Column object supports the following properties and methods:

Name Description

Alignment Retrieves or sets the alignment of the caption into the
column's header.

AllowDragging Retrieves or sets a value indicating whether the user will
be able to drag the column.

AllowSizing
Retrieves or sets a value indicating whether the user will
be able to change the width of the visible columns by
dragging.

AllowSort Returns or sets a value that indicates whether the user
can sort the column by clicking the column's header.

AutoSearch Specifies the kind of searching while user types
characters within the columns.

AutoWidth Computes the column's width required to fit the entire
column's content.

Caption Retrieves or sets the text displayed to the column's
header.

ComputedField Retrieves or sets a value that indicates the formula of the
computed column.

CustomFilter Retrieves or sets a value that indicates the list of custom
filters.

Data Associates an extra data to the column.

Def Retrieves or sets a value that indicates the default value of
given properties for all cells in the same column.

DefaultSortOrder Specifies whether the default sort order is ascending or
descending.

DisplayExpandButton Shows or hides the expanding/collapsing button in the
column's header.

DisplayFilterButton Specifies whether the column's header displays the filter
button.
Specifies whether the drop down filter window displays a

DisplayFilterDate date selector to specify the interval dates to filter for.

DisplayFilterPattern Specifies whether the dropdown filter bar contains a
textbox for editing the filter as pattern.

DisplaySortIcon Retrieves or sets a value indicating whether the sort icon
is visible on column's header, while the column is sorted.

Enabled Returns or sets a value that determines whether a
column's header can respond to user-generated events.

ExpandColumns Specifies the list of columns to be shown when the current
column is expanded.

Expanded Expands or collapses the column.

Filter Specifies the column's filter when filter type is exFilter,
exPattern or exDate.

FilterBarDropDownWidth Specifies the width of the drop down filter window
proportionally with the width of the column.

FilterList Specifies whether the drop down filter list includes visible
or all items.

FilterOnType Filters the column as user types characters in the drop
down filter window.

FilterType Specifies the column's filter type.

FireFormatColumn
Retrieves or sets a value that indicates whether the
control fires FormatColumn to format the caption of a cell
hosted by column.

FormatColumn Specifies the format to display the cells in the column.
HeaderAlignment Specifies the alignment of the column's caption.

HeaderBold Retrieves or sets a value that indicates whether the
column's caption should appear in bold.

HeaderImage
Retrieves or sets a value indicating the index of an Image
in the Images collection, which is displayed to the column's
header.

HeaderImageAlignment Retrieves or sets the alignment of the image into the
column's header.

HeaderItalic Retrieves or sets a value that indicates whether the
column's caption should appear in italic.

HeaderStrikeOut Retrieves or sets a value that indicates whether the
column's caption should appear in strikeout.
Retrieves or sets a value that indicates whether the

HeaderUnderline column's caption should appear in underline..

HTMLCaption Retrieves or sets the text in HTML format displayed in the
column's header.

Index Returns a value that represents the index of an object in a
collection.

Key Retrieves or sets the column's key.

LevelKey Retrieves or sets a value that indicates the key of the
column's level.

MaxWidthAutoResize Retrieves or sets a value that indicates the maximum
column's width when the WidthAutoResize is True.

MinWidthAutoResize Retrieves or sets a value that indicates the minimum
column's width when the WidthAutoResize is True.

PartialCheck Specifies whether the column supports partial check
feature.

Position Retrieves or sets a value that indicates the position of the
column in the header bar area.

ShowFilter Shows the column's filter window.
SortOrder Specifies the column's sort order.

SortPosition Returns or sets a value that indicates the position of the
column in the sorting columns collection.

SortType Returns or sets a value that indicates the way a control
sorts the values for a column.

ToolTip Specifies the column's tooltip description.

Visible Retrieves or sets a value indicating whether the column is
visible or hidden.

Width Retrieves or sets the column's width.

WidthAutoResize
Retrieves or sets a value that indicates whether the
column is automatically resized according to the width of
the contents within the column.

property Column.Alignment as AlignmentEnum

Retrieves or sets the alignment of the caption into the column's header.

Type Description

AlignmentEnum An AlignmentEnum expression that indicates the alignment
of the cells inside the column.

Use the Alignment property to change the column's alignment. Use the HeaderAlignment
property to align the column's caption inside the column's header. By default, all columns
are aligned to left. If the column displays the hierarchy lines, and if the Alignment property is
RightAlignment the hierarchy lines are painted from right to left side. Use the HasLines
property to display the control's hierarchy lines. Use the CellHAlignment property to align a
particular cell.

property Column.AllowDragging as Boolean

Retrieves or sets a value indicating whether the user will be able to drag the column.

Type Description

Boolean A boolean expression indicating whether the user will be
able to drag the column.

Use the AllowDragging property to forbid user to change the column's position by dragging.
If the AllowDragging is false, the column's position cannot be changed by dragging it to
another position. Use the AllowSort property to avoid sorting a column when the user clicks
the column's header. Use the AllowSizing property to allow user resizes a column at
runtime.

property Column.AllowSizing as Boolean

Retrieves or sets a value indicating whether the user will be able to change the width of the
visible columns by dragging.

Type Description

Boolean
A boolean expression indicating whether the user will be
able to change the width of the visible columns by
dragging.

Use the AllowSizing property to fix the column's width. Use the ColumnAutoResize property
of the control to fit the columns to the control's client area. Use the AllowSort property to
avoid sorting a column when the user clicks the column's header. Use the AllowDragging
property to forbid user to change the column's position by dragging. Use the Width property
to specify the column's width.

property Column.AllowSort as Boolean
Returns or sets a value that indicates whether the user can sort the column by clicking the
column's header.

Type Description

Boolean A boolean expression that indicates whether the column
gets sorted when the user clicks the column's header.

Sorting by a single column in the control is a simple matter of clicking on the column head.
Sorting by multiple columns, however, is not so obvious. But it's actually quite easy. First,
sort by the first criterion, by clicking on the column head. Then hold the Shift key down as
you click on a second heading. Another option is dragging the column's header to the
control's sort bar. The SortBarVisible property shows the control's sort bar. Use the
AllowSort property to avoid sorting a column when the user clicks the column's header. Use
the SortOnClick property to specify the action that control executes when the user clicks
the column's head. The control fires the Sort event when the control sorts a column (the
user clicks the column's head) or when the sorting position is changed in the control's sort
bar. Use the AllowDragging property to specify whether the column's header can be
dragged. Use the DefaultSortOrder property to specify the column's default sort order,
when the user first clicks the column's header.

property Column.AutoSearch as AutoSearchEnum
Specifies the kind of searching while user types characters within the columns.

Type Description

AutoSearchEnum An AutoSearchEnum expression that defines the type of
incremental searching.

By default, the AutoSearch property is exStartWith. The AutoSearch property has effect
only if the AutoSearch property of the control is True. Use the AutoSearch property to
define a 'contains' incremental search. If the AutoSearch property is exContains, the control
searches for items that contains the typed characters. The searching column is defined by
the SearchColumnIndex property. Use the ExpandOnSearch property to expand items while
user types characters in the control.

property Column.AutoWidth as Long
Computes the column's width required to fit the entire column's content.

Type Description

Long A long expression that indicates the width of the column to
fit the entire column's content.

Use the AutoWidth property to arrange the columns to fit the entire control's content. The
AutoWidth property doesn't change the column's width. Use Width property to change the
column's width at runtime. Use the ColumnAutoResize property to specify whether the
control resizes all visible columns to fit the control's client area.

The following VB function resizes all columns:

Private Sub autoSize(ByVal t As EXGANTTLibCtl.Gantt)
 t.BeginUpdate
 Dim c As Column
 For Each c In t.Columns
 c.Width = c.AutoWidth
 Next
 t.EndUpdate
 t.Refresh
End Sub

The following C++ sample resizes all visible columns:

#include "Columns.h"
#include "Column.h"
void autoSize(CGantt& gantt)
{
 gantt.BeginUpdate();
 CColumns columns = gantt.GetColumns();
 for (long i = 0;i < columns.GetCount(); i++)
 {
 CColumn column = columns.GetItem(COleVariant(i));
 if (column.GetVisible())
 column.SetWidth(column.GetAutoWidth());
 }
 gantt.EndUpdate();

}

The following VB.NET sample resizes all visible columns:

Private Sub autoSize(ByRef gantt As AxEXGANTTLib.AxGantt)
 gantt.BeginUpdate()
 Dim i As Integer
 With gantt.Columns
 For i = 0 To .Count - 1
 If .Item(i).Visible Then
 .Item(i).Width = .Item(i).AutoWidth
 End If
 Next
 End With
 gantt.EndUpdate()
End Sub

The following C# sample resizes all visible columns:

private void autoSize(ref AxEXGANTTLib.AxGantt gantt)
{
 gantt.BeginUpdate();
 for (int i = 0; i < gantt.Columns.Count - 1; i++)
 if (gantt.Columns[i].Visible)
 gantt.Columns[i].Width = gantt.Columns[i].AutoWidth;
 gantt.EndUpdate();
}

The following VFP sample resizes all visible columns:

with thisform.Gantt1
 .BeginUpdate()
 for i = 0 to .Columns.Count - 1
 if (.Columns(i).Visible)
 .Columns(i).Width = .Columns(i).AutoWidth
 endif
 next
 .EndUpdate()
endwith

property Column.Caption as String

Retrieves or sets the text displayed to the column's header.

Type Description
String A string expression that indicates the column's caption.

Each property of Items object that has an argument ColIndex can use the column's caption
to identify a column. Adding two columns with the same caption is accepted and these are
differentiated by their indexes. Use the HTLMCaption property to display the column's
caption using HTML tags. To hide a column use the Visible property of the Column object.
The column's caption is displayed using the following font attributes: HeaderBold,
HeaderItalic, HeaderUnderline, HeaderStrikeout. Use the Add method to add new columns
and to specify their captions.

property Column.ComputedField as String
Retrieves or sets a value that indicates the formula of the computed column.

Type Description

String

A String expression that indicates the formula to compute
the field/cell. The formula is applied to all cells in the
column with the CellCaptionFormat property on exText (
the exText value is by default).

A computed field or cell displays the result of an arithmetic formula that may include
operators, variables and constants. By default, the ComputedField property is empty. If the
the ComputedField property is empty, the property have no effect. If the ComputedField
property is not empty, all cells in the column, that have the CellCaptionFormat property on
exText, uses the same formula to display their content. For instance, you can use the
CellCaptionFormat property on exHTML, for cells in the column, that need to display other
things than column's formula, or you can use the CellCaptionFormat property on
exComputedField, to change the formula for a particular cell. Use the FormatColumn
property to format the column. Use the CellCaptionFormat property to change the type for
a particular cell. Use the CellCaption property to specify the cell's content. For instance, if
the CellCaptionFormat property is exComputedField, the Caption property indicates the
formula to compute the cell's content. The Def(exCellCaptionFormat) property is changed
to exComputedField, each time the ComputeField property is changed to a not empty value.
If the ComputedField property is set to an empty string, the Def(exCellCaptionFormat)
property is set to exText. Call the Refresh method to force refreshing the control.

The expression supports cell's identifiers as follows:

%0, %1, %2, ... specifies the value of the cell in the column with the index 0, 1 2, ...
The CellCaption property specifies the cell's value. For instance, "%0 format ``"
formats the value on the cell with the index 0, using current regional setting, while
"int(%1)" converts the value of the column with the index 1, to integer.

This property/method supports predefined constants and operators/functions as described
here.

Samples:

1. "1", the cell displays 1
2. "%0 + %1", the cell displays the sum between cells in the first and second columns.
3. "%0 + %1 - %2", the cell displays the sum between cells in the first and second

columns minus the third column.
4. "(%0 + %1)*0.19", the cell displays the sum between cells in the first and second

columns multiplied with 0.19.

5. "(%0 + %1 + %2)/3", the cell displays the arithmetic average for the first three
columns.

6. "%0 + %1 < %2 + %3", displays 1 if the sum between cells in the first two columns is
less than the sum of third and forth columns.

7. "proper(%0)'" formats the cells by capitalizing first letter in each word
8. "currency(%1)'" displays the second column as currency using the format in the control

panel for money
9. "len(%0) ? currency(dbl(%0)) : ''" displays the currency only for not empty/blank

cells.
10. "int(date(%1)-date(%2)) + 'D ' + round(24*(date(%1)-date(%2) - floor(date(%1)-

date(%2)))) + 'H''" displays interval between two dates in days and hours, as xD yH
11. "2:=((1:=int(0:= date(%1)-date(%0))) = 0 ? '' : str(=:1) + ' day(s)') + (3:=round(24*

(=:0-floor(=:0))) ? (len(=:2) ? ' and ' : '') + =:3 + ' hour(s)' : '')" displays the interval
between two dates, as x day(s) [and y hour(s)], where the x indictaes the number of
days, and y the number of hours. The hour part is missing, if 0 hours is displayed, or
nothing is displayed if dates are identical.

property Column.CustomFilter as String
Retrieves or sets a value that indicates the list of custom filters.

Type Description
String A String expression that defines the list of custom filters.

By default, the CustomFilter property is empty. The CustomFilter property has effect only if
it is not empty, and the FilterType property is not exImage, exCheck or exNumeric. Use the
DisplayFilterPattern property to hide the text box to edit the pattern, in the drop down filter
window. The All predefined item and the list of custom filter is displayed in the drop down
filter window, if the CustomFilter property is not empty. The Blanks and NonBlanks
predefined items are not defined, when custom filter is displayed. Use the
Description(exFilterBarAll) property on empty string to hide the All predefined item, in the
drop down filter window. Use the DisplayFilterButton property to show the button on the
column's header to drop down the filter window. Use the Background property to define the
visual appearance for the drop down button.

The CustomFilter property defines the list of custom filters as pairs of (caption,pattern)
where the caption is displayed in the drop down filter window, and the pattern is get
selected when the user clicks the item in the drop down filter window (the FilterType
property is set on exPattern, and the Filter property defines the custom pattern being
selected). The caption and the pattern are separated by a "||" string (two vertical bars,
character 124). The pattern expression may contains multiple patterns separated by a
single "|" character (vertical bar, character 124). A pattern may contain the wild card
characters '?' for any single character, '*' for zero or more occurrences of any character, '#'
for any digit character. If any of the *, ?, # or | characters are preceded by a \ (escape
character) it masks the character itself. If the pattern is not present in the (caption,pattern)
pair, the caption is considered as being the pattern too. The pairs in the list of custom
patterns are separated by "|||" string (three vertical bars, character 124). So, the syntax
of the CustomFilter property should be of: CAPTION [|| PATTERN [| PATTERN]] [|||
CAPTION [|| PATTERN [| PATTERN]]].

For example, you may have a list of documents and instead of listing the name of each
document in the filter drop down list for the names column you may want to list the
following:

Excel Spreadsheets
Word Documents
Powerpoint Presentations
Text Documents

And define the filter patterns for each line above as follows:

*.xls
*.doc
*.pps
*.txt, *.log

and so the CustomFilter property should be "Excel Spreadsheets (*.xls)||*.xls|||Word
Documents||*.doc|||Powerpoint Presentations||*.pps|||Text Documents
(*.log,*.txt)||*.txt|*.log". The following screen shot shows this custom filter format:

property Column.Data as Variant
Associates an extra data to the column.

Type Description

Variant A Variant expression that indicates the column's extra
data.

Use the Data property to assign any extra data to a column. Use the CellData property to
assign an extra data to a cell. Use the ItemData property to assign an extra data to an
item. Use the SortUserData or SortUserDataString type to sort the column based on the
CellData value.

property Column.Def(Property as DefColumnEnum) as Variant
Retrieves or sets a value that indicates the default value of given properties for all cells in
the same column.

Type Description

Property as DefColumnEnum A DefColumnEnum expression that indicates the property
being changed.

Variant A Variant value that specifies the newly value.

Use the Def property to specify a common value for given properties for all cells in the
column. For instance, you can use the Def property to assign check boxes to all cells in the
column, without enumerating them.

The following VB sample assigns checkboxes for all cells in the first column:

Gantt1.Columns(0).Def(exCellHasCheckBox) = True

The following VB sample changes the background color for all cells in the first column:

Gantt1.Columns(0).Def(exCellBackColor) = RGB(240, 240, 240)

The following C++ sample assigns checkboxes for all cells in the first column:

COleVariant vtCheckBox(VARIANT_TRUE);
m_gantt.GetColumns().GetItem(COleVariant((long) 0)).SetDef(/*exCellHasCheckBox*/ 0,
vtCheckBox);

The following C++ sample changes the background color for all cells in the first column:

COleVariant vtBackColor((long)RGB(240, 240, 240));
m_gantt.GetColumns().GetItem(COleVariant((long) 0)).SetDef(/*exCellBackColor*/ 4,
vtBackColor);

The following VB.NET sample assigns checkboxes for all cells in the first column:

With AxGantt1.Columns(0)
 .Def(EXGANTTLib.DefColumnEnum.exCellHasCheckBox) = True
End With

The following VB.NET sample changes the background color for all cells in the first column:

With AxGantt1.Columns(0)
 .Def(EXGANTTLib.DefColumnEnum.exCellBackColor) = ToUInt32(Color.WhiteSmoke)
End With

where the ToUInt32 function converts a Color expression to OLE_COLOR,

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample assigns checkboxes for all cells in the first column:

axGantt1.Columns[0].set_Def(EXGANTTLib.DefColumnEnum.exCellHasCheckBox, true);

The following C# sample changes the background color for all cells in the first column:

axGantt1.Columns[0].set_Def(EXGANTTLib.DefColumnEnum.exCellBackColor,
ToUInt32(Color.WhiteSmoke));

where the ToUInt32 function converts a Color expression to OLE_COLOR,

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample assigns checkboxes for all cells in the first column:

with thisform.Gantt1.Columns(0)
 .Def(0) = .t.
endwith

The following VFP sample changes the background color for all cells in the first column:

with thisform.Gantt1.Columns(0)
 .Def(4) = RGB(240,240,240)
endwith

property Column.DefaultSortOrder as Boolean

Specifies whether the default sort order is ascending or descending.

Type Description

Boolean
A boolean expression that specifies whether the default
sort order is ascending or descending. True means
ascending, False means descending.

By default, the DefaultSortOrder property is False. Use the SortOnClick property to specify
the operation that control should execute when the user clicks the column's header. Use the
DefaultSortOrder to specify how the column is sorted at the first click on its header. Use the
SortOrder property to sort a column. Use the SingleSort property to allow sorting by
multiple columns.

property Column.DisplayExpandButton as Boolean
Shows or hides the expanding/collapsing button in the column's header.

Type Description

Boolean
A Boolean expression that specifies whether the +/-
expanding/collapsing button is shown in the column's
header.

By default, the DisplayExpandButton property is True. The DisplayExpandButton property
indicates whether the +/- expanding/collapsing button is shown in the column's header. Use
the Expanded property to programmatically expand/collapse the columns. For instance, the
Expanded property on False, collapse the column, while the Expanded property on True,
expands the columns indicated by the ExpandColumns property. The ExpandColumns
property specifies the columns to be shown/hidden when a column is expanded or
collapsed.

property Column.DisplayFilterButton as Boolean
Shows or hides the column's filter bar button.

Type Description

Boolean A boolean expression that indicates whether the column's
filter bar button is visible or hidden.

The column's filter button is displayed on the column's caption. The DisplayFilterPattern
property determines whether the column's filter window includes the pattern field. Use the
DisplayFilterDate property to include a date selector to the column's drop down filter
window. Use the FilterBarDropDownHeight to specify the height of the drop down filter
window. Use the FilterBarDropDownWidth property to specify the width of the drop down
filter window. Use the FilterBarHeight property to specify the height of the filter bar header.
Use the FilterList property to specify the list of items being included in the column's drop
down filter list. Use the FilterInclude property to specify whether the child items should be
included to the list when the user applies the filter. Use the FilterCriteria property to filter
items using the AND, OR and NOT operators. Use the CustomFilter property to define you
custom filters.

property Column.DisplayFilterDate as Boolean
Specifies whether the drop down filter window displays a date selector to specify the
interval dates to filter for.

Type Description

Boolean
A boolean expression that indicates whether the drop
down filter window displays a date selector to filter items
into a given interval.

By default, the DisplayFilterDate property is False. Use the DisplayFilterDate property to
filter items that match a given interval of dates. The DisplayFilterDate property includes a
date button to the right of the Date field in the drop down filter window. The
DisplayFilterDate property has effect only if the DisplayFilterPattern property is True. If the
user clicks the filter's date selector the control displays a built-in calendar editor to help
user to include a date to the date field of the drop down filter window. Use the Description
property to customize the strings being displayed on the drop down filter window. If the
Date field in the filter drop down window is not empty, the FilterType property of the Column
object is set on exDate, and the Filter property of the Column object points to the interval
of dates being used when filtering.

property Column.DisplayFilterPattern as Boolean
Specifies whether the dropdown filter bar contains a textbox for editing the filter as pattern.

Type Description

Boolean A boolean expression that indicates whether the pattern
field is visible or hidden.

Use the DisplayFilterButton property to show the column's filter button. If the
DisplayFilterButton property is False the drop down filter window doesn't include the "Filter
For" or "Date" field. Use the DisplayFilterDate property to filter items that match a given
interval of dates.

The drop down filter window displays the "Filter For" field if the DisplayFilterPattern
property is True, and the DisplayFilterDate property is False. If the drop down filter window
displays "Filter For" field, and user types the filter inside, the FilterType property of the
Column is set to exPattern, and Filter property of the Column object specifies the filter
being typed. Use the CustomFilter property to define you custom filters.

property Column.DisplaySortIcon as Boolean

Retrieves or sets a value indicating whether the sort icon is visible on column's header,
while the column is sorted.

Type Description

Boolean A boolean expression indicating whether the sort icon is
visible on column's header, while the column is sorted.

Use the DisplaySortIcon property to hide the sort icon. Use the SortChildren property of the
Items object to sort a column. Use the SortOrder property to sort a column. Use the
SingleSort property to allow multiple sort columns.

property Column.Enabled as Boolean

Returns or sets a value that determines whether a column's header can respond to user-
generated events.

Type Description

Boolean A boolean expression that determines whether a column's
header can respond to user-generated events.

If the Enabled property is False, then all cells in the column are disabled, no matter if the
CellEnabled property is True. Use the Enabled property to disable the control.

property Column.ExpandColumns as String
Specifies the list of columns to be shown when the current column is expanded.

Type Description

String

A String expression that specifies the columns to be
expanded/collapsed by current column. The expression
contains the index of the columns to be shown or hidden,
separated by comma. The list can includes the index of
the current column, and so the column is always visible no
matter if the column is expanded or collapsed.

By default, the ExpandColumns property is "". The ExpandColumns property specifies the
columns to be shown/hidden when a column is expanded or collapsed. The ExpandColumns
property can include the index of the current column, which indicates that the column is
visible no matter if the column is expanded or collapsed. In other words, the
Expanded/ExpandColumns properties provides expandable header. The Index property
specifies the index of the column. The Expanded property specifies whether a column is
expanded or collapsed. The DisplayExpandButton property indicates whether the +/-
expanding/collapsing button is shown in the column's header. The HasButtons property
specifies how the +/- buttons are shown.

The following screen shot shows the control's header when all columns are collapsed:

The following screen shot shows the control's header with columns expanded/collapsed :

property Column.Expanded as Boolean
Expands or collapses the column.

Type Description

Boolean A Boolean expression that specifies whether the column is
expanded / collapsed.

By default, the Expanded property is True. Use the Expanded property to programmatically
expand/collapse the columns. For instance, the Expanded property on False, collapse the
column, while the Expanded property on True, expands the columns indicated by the
ExpandColumns property. The ExpandColumns property specifies the columns to be
shown/hidden when a column is expanded or collapsed. The DisplayExpandButton property
indicates whether the +/- expanding/collapsing button is shown in the column's header.

property Column.Filter as String
Specifies the column's filter when the filter type is exFilter, exPattern, exDate, exNumeric,
exCheck or exImage.

Type Description
String A string expression that specifies the column's filter.

If the FilterType property is exFilter the Filter property indicates the list of values being
included when filtering. The values are separated by '|' character. For instance if the
Filter property is "CellA|CellB" the control includes only the items that have captions
like: "CellA" or "CellB".

If the FilterType is exPattern the Filter property defines the list of patterns used in
filtering. The list of patterns is separated by the '|' character. A pattern filter may
contain the wild card characters like '?' for any single character, '*' for zero or more
occurrences of any character, '#' for any digit character. The '|' character separates
the options in the pattern. For instance: '1*|2*' specifies all items that start with '1' or
'2'.

If the FilterType property is exDate, the Filter property should be of "[dateFrom] to
[dateTo]" format, and it indicates that only items between a specified range of dates
will be included. If the dateFrom value is missing, the control includes only the items
before the dateTo date, if the dateTo value is missing, the control includes the items
after the dateFrom date. If both dates (dateFrom and dateTo) are present, the
control includes the items between this interval of dates. For instance, the "2/13/2004
to" includes all items after 2/13/2004 inclusive, or "2/13/2004 to Feb 14 2005" includes
all items between 2/13/2004 and 2/14/2004.

If the FilterType property is exNumeric, the Filter property may include operators like
<, <=, =, <>, >= or > and numbers to define rules to include numbers in the control's
list. The Filter property should be of the following format "operator number [operator
number ...]". For instance, the "> 10" indicates all numbers greater than 10. The "<>10
<> 20" filter indicates all numbers except 10 and 20. The "> 10 < 100" filter indicates
all numbers greater than 10 and less than 100. The ">= 10 <= 100 <> 50" filter
includes all numbers from 10 to 100 excepts 50. The "10" filter includes only 10 in the
list. The "=10 =20" includes no items in the list because after control filters only 10
items, the second rule specifies only 20, and so we have no items. The Filter property
may include unlimited rules. A rule is composed by an operator and a number. The
rules are separated by space characters.

If the FilterType property is exCheck the Filter property may include "0" for unchecked
items, and "1" for checked items. The CellState property specifies the state of the

cell's checkbox. If the Filter property is empty, the filter is not applied to the column,
when ApplyFilter method is called.

If the FilterType property is exImage the Filter property indicates the list of icons (index
of the icon being displayed) being filtered. The values are separated by '|' character.
The CellImage property indicates the index of the icon being displayed in the cell. For
instance, the '1|2' indicates that the filter includes the cells that display first or the
second icon (with the index 1 or 2). The drop down filter window displays the (All)
item and the list of icons being displayed in the column

The Filter property has no effect if the FilterType property is one of the followings: exAll,
exBlanks and exNonBlanks

The ApplyFilter method should be called to update the control's content after changing the
Filter or FilterType property. The ClearFilter method clears the Filter and the FilterType
properties. Use the FilterCriteria property to filter items using the AND, OR and NOT
operators. Use the CustomFilter property to define you custom filters. Use the ShowFilter
method to show programmatically the column's drop down filter window.

property Column.FilterBarDropDownWidth as Double
Specifies the width of the drop down filter window proportionally with the width of the
column.

Type Description

Double

A double expression that indicates the width of the drop
down filter window proportionally with the width of the
column. If the FilterBarDropDownWidth expression is
negative, the absolute value indicates the width of the drop
down filter window in pixels. Else, the value indicates how
many times the width of the column is multiply to get the
width of the drop down filter window.

By default, the FilterBarDropDownWidth property is 1, and so, the width of the drop down
filter window coincides with the width of the column. Use the Width property to specify the
width of the column. Use FilterBarDropDownHeight property to specify the height of the
drop down filter window. Use the FilterBarHeight property to specify the height of the
control's filter bar. Use the DisplayFilterButton property to display a filter button to the
column's caption. Use the Description property to define predefined strings in the filter bar.
Use the FilterInclude property to specify whether the child items should be included to the
list when the user applies the filter. Use the FilterCriteria property to filter items using the
AND, OR and NOT operators. Use the ShowFilter method to show programmatically the
column's drop down filter window.

The following VB sample specifies that the width of the drop down filter window is double of
the column's width:

With Gantt1.Columns(0)
 .FilterBarDropDownWidth = 2
End With

The following VB sample specifies that the width of the drop down filter window is 150
pixels:

With Gantt1.Columns(0)
 .FilterBarDropDownWidth = -150
End With

property Column.FilterList as FilterListEnum
Specifies whether the drop down filter list includes visible or all items.

Type Description

FilterListEnum A FilterListEnum expression that indicates the items being
included in the drop down filter list.

By default, the FilterList property is exAllItems. Use the FilterList property to specify the
items being included in the column's drop down filter list. Use the DisplayFilterButton
property to display the column's filter bar button. The DisplayFilterDate property specifies
whether the drop down filter window displays a date selector to specify the interval dates to
filter for. Use the exSortItemsAsc flag to sort ascending the values in the drop down filter
list. For instance, the exAllItems OR exSortItemsAsc specifies that the drop down filter
window lists all items in ascending order. Add the exIncludeInnerCells flag if you require
adding the inner cells value to the drop down filter window.

property Column.FilterOnType as Boolean
Filters the column as user types characters in the drop down filter window.

Type Description

Boolean
A Boolean expression that specifies whether the column
gets filtered as the user types characters in the drop down
filter window.

By default, the FilterOnType property is False. The Filter-On-Type feature allows you to
filter the control's data based on the typed characters. Use the DisplayFilterButton property
to add a drop down filter button to the column's header. The Filter-On-Type feature works
like follows: User clicks the column's drop down filter button, so the drop down filter window
is shown. Use starts type characters, and the control filters the column based on the typed
characters as it includes all items that starts with typed characters, if the AutoSearch
property is exStartWith, or include in the filter list only the items that contains the typed
characters, if the AutoSearch property is exContains. Click the X button on the filterbar, and
so the control removes the filter, and so all data is displayed. The control fires the
FilterChange event to notify whether the control applies a new filter to control's data. Once,
the FilterOnType property is set on True, the column's FilterType property is changed to
exPattern, and the the Filter property indicates the typed string. Use the FilterCriteria
property to specify the expression being used to filter the control's data when multiple
columns are implied in the filter. Use the Description property to customize the text being
displayed in the drop down filter window. Use the FilterHeight property to specify the height
of the control's filterbar that's displayed on the bottom side of the control, once a filter is
applied. The "Filter For" (pattern) field in the drop down filter window is always shown if
the FilterOnType property is True, no matter of the DisplayFilterPattern property.

The following screen shot shows how the data gets filtered when the user types characters
in the Filter-On-Type columns:

Steps:

The user clicks the drop down filter window, in the column A
The "Filter For:" field is shown, and it waits for the user to start type characters.
As user types characters, the column gets filtered the items.

property Column.FilterType as FilterTypeEnum
Specifies the column's filter type.

Type Description

FilterTypeEnum A FilterTypeEnum expression that indicates the filter's
type.

The FilterType property defines the filter's type. By default, the FilterType is exAll. No filter
is applied if the FilterType is exAll. The Filter property defines the column's filter. Use the
DisplayFilterButton property to display the column's filter button.

The ApplyFilter method should be called to update the control's content after changing the
Filter or FilterType property. The ClearFilter method clears the Filter and the FilterType
properties. Use the FilterCriteria property to filter items using the AND, OR and NOT
operators.

property Column.FireFormatColumn as Boolean

Retrieves or sets a value that indicates whether the control fires FormatColumn to format
the caption of a cell hosted by column.

Type Description

Boolean
A boolean expression that indicates whether the control
fires the FireFormatColumn event for the cells in the
column.

By default, the FireFormatColumn property is False. The FormatColumn event is fired only
if the FireFormatColumn property of the Column object is True. The FormatColumn event
lets the user to provide the cell's caption before it is displayed on the control's list. For
instance, the FormatColumn event is useful when the column cells contains prices (numbers
), and you want to display that column formatted as currency, like $50 instead 50. Also, it is
useful to use the FormatColumn event when displaying computed cells.

property Column.FormatColumn as String
Specifies the format to display the cells in the column.

Type Description

String A string expression that defines the format to display the
cell, including HTML formatting, if the cell supports it.

By default, the FormatColumn property is empty. The cells in the column use the provided
format only if is valid (not empty, and syntactically correct), to display data in the column.
The FormatColumn property provides a format to display all cells in the column using a
predefined format. The expression may be a combination of variables, constants, strings,
dates and operators, and value. The value operator gives the value to be formatted. A
string is delimited by ", ` or ' characters, and inside they can have the starting character
preceded by \ character, ie "\"This is a quote\"". A date is delimited by # character, ie
#1/31/2001 10:00# means the January 31th, 2001, 10:00 AM. The cell's HTML format is
applied only if the CellCaptionFormat or Def(exCellCaptionFormat) is exHTML. If valid, the
FormatColumn is applied to all cells for which the CellCaptionFormat property is not
exComputedField. This way you can specify which cells use or not the FormatColumn
property. The ComputedField property indicates the formula of the computed column.

For instance:

the "currency(value)" displays the column using the current format for the currency ie,
1000 gets displayed as $1,000.00
the "longdate(date(value))" converts the value to a date and gets the long format to
display the date in the column, ie #1/1/2001# displays instead Monday, January 01,
2001
the "'' + ((0:=proper(value)) left 1) + '' + (=:0 mid 2)" converts the name to
proper, so the first letter is capitalized, bolds the first character, and let unchanged the
rest, ie a "mihai filimon" gets displayed "Mihai Filimon".
the "len(value) ? ((0:=dbl(value)) < 10 ? '<fgcolor=808080>' : '') +
currency(=:0)" displays the cells that contains not empty daya, the value in currency
format, with a different font and color for values less than 10, and bolded for those that
are greater than 10, as can see in the following screen shot in the column (A+B+C):

The value keyword in the FormatColumn property indicates the value to be formatted.

The expression supports cell's identifiers as follows:

%0, %1, %2, ... specifies the value of the cell in the column with the index 0, 1 2, ...
The CellCaption property specifies the cell's value. For instance, "%0 format ``"
formats the value on the cell with the index 0, using current regional setting, while
"int(%1)" converts the value of the column with the index 1, to integer.

This property/method supports predefined constants and operators/functions as described
here.

The following VB sample shows how can I display the column using currency:

With Gantt1
 .Columns.Add("Currency").FormatColumn = "currency(dbl(value))"
 With .Items
 .AddItem "1.23"
 .AddItem "2.34"
 .AddItem "0"
 .AddItem 5
 .AddItem "10000.99"
 End With
End With

The following VB.NET sample shows how can I display the column using currency:

With AxGantt1
 .Columns.Add("Currency").FormatColumn = "currency(dbl(value))"
 With .Items
 .AddItem "1.23"
 .AddItem "2.34"
 .AddItem "0"
 .AddItem 5
 .AddItem "10000.99"
 End With
End With

The following C++ sample shows how can I display the column using currency:

/*
 Copy and paste the following directives to your header file as

 it defines the namespace 'EXGANTTLib' for the library: 'ExGantt 1.0 Control Library'

 #import "C:\\Windows\\System32\\ExGantt.dll"
 using namespace EXGANTTLib;
*/
EXGANTTLib::IGanttPtr spGantt1 = GetDlgItem(IDC_GANTT1)->GetControlUnknown();
((EXGANTTLib::IColumnPtr)(spGantt1->GetColumns()->Add(L"Currency")))-
>PutFormatColumn(L"currency(dbl(value))");
EXGANTTLib::IItemsPtr var_Items = spGantt1->GetItems();
 var_Items->AddItem("1.23");
 var_Items->AddItem("2.34");
 var_Items->AddItem("0");
 var_Items->AddItem(long(5));
 var_Items->AddItem("10000.99");

The following C# sample shows how can I display the column using currency:

(axGantt1.Columns.Add("Currency") as EXGANTTLib.Column).FormatColumn =
"currency(dbl(value))";
EXGANTTLib.Items var_Items = axGantt1.Items;
 var_Items.AddItem("1.23");
 var_Items.AddItem("2.34");
 var_Items.AddItem("0");
 var_Items.AddItem(5);
 var_Items.AddItem("10000.99");

The following VFP sample shows how can I display the column using currency:

with thisform.Gantt1
 .Columns.Add("Currency").FormatColumn = "currency(dbl(value))"
 with .Items
 .AddItem("1.23")
 .AddItem("2.34")
 .AddItem("0")
 .AddItem(5)
 .AddItem("10000.99")
 endwith
endwith

property Column.HeaderAlignment as AlignmentEnum
Specifies the alignment of the column's caption.

Type Description

AlignmentEnum An AlignmentEnum expression that specifies the alignment
of the column's caption.

Use the HeaderAlignment property to align the column's caption inside the column's header.
Use the Alignment property to align the cells into a column. Use the HeaderImageAlignment
property to align the column's icon inside the column's header. Use the CellHAlignment
property to align a cell.

property Column.HeaderBold as Boolean

Retrieves or sets a value that indicates whether the column's caption should appear in bold.

Type Description

Boolean A boolean expression that indicates whether the column's
caption should appear in bold.

The HeaderBold property specifies whether the column's caption should appear in bold. Use
the CellBold or ItemBold properties to specify whether the cell or item should appear in
bold. Use the HTMLCaption property to specify portions of the caption using different
colors, fonts. Use the HeaderItalic, HeaderUnderline or HeaderStrikeOut property to specify
different font attributes when displaying the column's caption.

property Column.HeaderImage as Long

Retrieves or sets a value indicating the index of an Image in the Images collection, which is
displayed to the column's header.

Type Description

Long

A long expression that indicates the index of image in the
column's header. The last 7 bits in the high significant byte
of the long expression indicates the identifier of the skin
being used to paint the object. Use the Add method to add
new skins to the control. If you need to remove the skin
appearance from a part of the control you need to reset
the last 7 bits in the high significant byte of the color being
applied to the part.

Use the HeaderImage property to assign an icon to the column's header. Use the
HeaderImageAlignment property to align the column's icon inside the column's header.

property Column.HeaderImageAlignment as AlignmentEnum
Retrieves or sets the alignment of the image into the column's header.

Type Description

AlignmentEnum An AlignmentEnum expression that indicates the alignment
of the image in the column's header.

By default, the image is left aligned. Use the HeaderImageAlignment property to aligns the
icon in the column's header. Use the HeaderImage property to attach an icon to the
column's header.

property Column.HeaderItalic as Boolean

Retrieves or sets the Italic property of the Font object that it is used to paint the column's
caption.

Type Description

Boolean A boolean expression that indicates whether the column's
caption should appear in italic.

Use the HeaderItalic property to specify whether the column's caption should appear in
italic. Use the CellItalic or ItemItalic properties to specify whether the the cell or the item
should appear in italic. Use the HeaderBold, HeaderUnderline or HeaderStrikeOut property
to specify different font attributes when displaying the column's caption.

property Column.HeaderStrikeOut as Boolean

Retrieves or sets a value that indicates whether the column's caption should appear in
strikeout.

Type Description

Boolean A boolean expression that indicates whether the column's
caption should appear in strikeout.

Use the HeaderStrikeOut property to specify whether the column's caption should appear in
strikeout. Use the CellStrikeOut or ItemStrikeOut properties to specify whether the cell or
the item should appear in strikeout. Use the HeaderItalic, HeaderUnderline or HeaderBold
property to specify different font attributes when displaying the column's caption.

property Column.HeaderUnderline as Boolean

Retrieves or sets a value that indicates whether the column's caption should appear in
underline.

Type Description

Boolean A boolean expression that indicates whether the column's
caption should appear in underline.

Use the HeaderUnderline property to specify whether the column's caption should appear in
underline. Use the CellUnderline or ItemUnderline properties to specify whether the cell or
the item should appear in underline. Use the HeaderItalic, HeaderBold or HeaderStrikeOut
property to specify different font attributes when displaying the column's caption.

property Column.HTMLCaption as String
Retrieves or sets the text in HTML format displayed in the column's header.

Type Description

String A string expression that indicates the column's caption
using built-in HTML tags.

If the HTMLCaption property is empty, the Caption property is displayed in the column's
header. If the HTMLCaption property is not empty, the control uses it when displaying the
column's header. Use the HeaderHeight property to change the height of the control's
header bar. The list of built-in HTML tags supported are here.

property Column.Index as Long

Returns a value that represents the index of an object in a collection.

Type Description

Long A long expression that represents the index of an object in
a collection.

Use the Position property to change the column's position. The Columns collection is zero
based, so the Index property starts at 0. The last added column has the Index set to
Columns.Count - 1. When a column is removed from the collection, the control updates all
indexes. Use the Visible property to hide a column. Use the Columns property to access
column from it's index.

property Column.Key as String
Retrieves or sets the column's key.

Type Description
String A string expression that defines the column's key

The column's key defines a column when using the Item property. Use the Index or the Key
property to identify a column, when using the Columns property.

property Column.LevelKey as Variant
Retrieves or sets a value that indicates the key of the column's level.

Type Description

Variant A Variant expression that indicates the key of the column's
level.

By default, the LevelKey is empty. The control's header displays multiple levels if there are
two or more neighbor columns with the same non empty level key. The HeaderHeight
property specifies the height of one level when multiple levels header is on. Use the
BackColorLevelHeader property to specify the control's level header area. Use the
PictureLevelHeader property to assign a picture on the control's header. The
BackColorHeader property specifies the background color for column's captions. Use the
LevelCount property to specify the number of levels being displayed in the chart's header.

property Column.MaxWidthAutoResize as Long
Retrieves or sets a value that indicates the maximum column's width when the
WidthAutoResize is True.

Type Description

Long A long expression that indicates the maximum column's
width when the WidthAutoResize is True.

Use the MaxWidthAutoResize property to set the maximum column's width while the
WidthAutoResize property is True. If the MaxWidthAutoResize property is less than zero,
there is no maximum value for the column's width. By default, the MaxWidthAutoResize
property is -1. Use the ColumnAutoResize property to specify whether the control resizes
the visible columns so they fit the control's client area.

property Column.MinWidthAutoResize as Long
Retrieves or sets a value that indicates the minimum column's width when the
WidthAutoResize is True.

Type Description

Long A long expression that indicates the minimum column's
width when the WidthAutoResize is True.

Use the MinWidthAutoResize property to set the minimum column's width while the
WidthAutoResize property is True. Use the Width property to specify the column's width.
Use the ColumnAutoResize property to specify whether the control resizes the visible
columns so they fit the control's client area.

property Column.PartialCheck as Boolean

Specifies whether the column supports partial check feature.

Type Description

Boolean A boolean expression that indicates whether the control
supports the partial check feature,

The PartialCheck property specifies that the column supports partial check feature. By
default, the PartialCheck property is False. Use the CellHasCheckBox property to associate
a check box to a cell. Use the Def property to assign a cell box for the entire column. Use
the CellState property to determine the cell's state. If the PartialCheck property is True, the
CellState property has three states: 0 - Unchecked, 1 - Checked and 2 - Partial Checked.
Use the CheckImage property to define the icons for each state. The control supports
partial check feature for any column that your control contains. Use the Add method to add
new columns to the control.

property Column.Position as Long

Retrieves or sets a value that indicates the position of the column in the header bar area.

Type Description

Long A long expression that indicates the position of the column
in the header bar area.

The column's index is not the same with the column's position. The Index property of
Column cannot be changed by the user. Use the Position property to change the column's
position. The EnsureVisibleColumn method ensures that a given column fits the control's
client area. Use the SortPosition property to change the position of the column in the
control's sort bar. Use the Visible property to hide a column. Use the Width property to
specify the column's width.

method Column.ShowFilter ([Options as Variant])
Shows the column's filter window.

Type Description

Options as Variant

A string expression that indicates the position (in screen
coordinates) and the size (in pixels) where the drop
down filter window is shown. The Options parameter is
composed like follows:

the first parameter indicates the X coordinate in
screen coordinate, -1 if the current cursor position is
used, or empty if the coordinate is ignored
the second parameter indicates the Y coordinate in
screen coordinate, -1 if the current cursor position is
used, or empty if the coordinate is ignored
the third parameter indicates the width in pixels of the
drop down window, or empty if the width is ignored
the forth parameter indicates the height in pixels of
the drop down window, or empty if the height is
ignored

By default, the drop down filter window is shown at its
default position bellow the column's header.

Use the ShowFilter method to show the column's drop down filter programmatically. By
default, the drop down filter window is shown only if the user clicks the filter button in the
column's header, if the DisplayFilterButton property is True. The drop down filter window if
the user selects a predefined filter, or enters a pattern to match. If the Options parameter
is missing, or all parameters inside the Options are missing, the size of the drop down filter
window is automatcially computed based on the FilterBarDropDownWidth property and
FilterBarDropDownHeight property. Use the ColumnFromPoint property to get the index of
the column from the point.

For instance, the following VB sample displays the column's drop down filter window when

the user right clicks the control:

Private Sub Gantt1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single)
 If (Button = 2) Then
 With Gantt1.Columns
 With .Item(Gantt1.ColumnFromPoint(-1, -1))
 .ShowFilter "-1,-1,200,200"
 End With
 End With
 End If
End Sub

The following VB.NET sample displays the column's drop down filter window when the user
right clicks the control:

Private Sub AxGantt1_MouseUpEvent(ByVal sender As Object, ByVal e As
AxEXGANTTLib._IGanttEvents_MouseUpEvent) Handles AxGantt1.MouseUpEvent
 If (e.button = 2) Then
 With AxGantt1.Columns
 With .Item(AxGantt1.get_ColumnFromPoint(-1, -1))
 .ShowFilter("-1,-1,200,200")
 End With
 End With
 End If
End Sub

The following C# sample displays the column's drop down filter window when the user right
clicks the control:

private void axGantt1_MouseUpEvent(object sender,
AxEXGANTTLib._IGanttEvents_MouseUpEvent e)
{
 if (e.button == 2)
 {
 EXGANTTLib.Column c = axGantt1.Columns[axGantt1.get_ColumnFromPoint(-1, -1)];
 c.ShowFilter("-1,-1,200,200");
 }
}

The following C++ sample displays the column's drop down filter window when the user
right clicks the control:

void OnMouseUpGantt1(short Button, short Shift, long X, long Y)
{
 m_gantt.GetColumns().GetItem(COleVariant(m_gantt.GetColumnFromPoint(-1, -1))
).ShowFilter(COleVariant("-1,-1,200,200"));
}

The following VFP sample displays the column's drop down filter window when the user
right clicks the control:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

if (button = 2) then
 With thisform.Gantt1.Columns
 With .Item(thisform.Gantt1.ColumnFromPoint(-1, -1))
 .ShowFilter("-1,-1,200,200")
 EndWith
 EndWith
endif

property Column.SortOrder as SortOrderEnum

Specifies the column's sort order.

Type Description

SortOrderEnum A SortOrderEnum expression that indicates the column's
sort order.

The SortOrder property determines the column's sort order. By default, the SortOrder
property is SortNone. Use the SortOrder property to sort a column at runtime. Use the
SortType property to determine the way how the column is sorted. Use the AllowSort
property to avoid sorting a column when the user clicks the column. Use the SingleSort
property to specify whether the control supports sorting by single or multiple columns. If the
control supports sorting by multiple columns, the SortOrder property adds or removes the
column to the sorting columns collection. For instance, if the SortOrder property is set to
SortAscending or SortDescending the column is added to the sorting columns collection. If
the SortOrder property is set to SortNone the control removes the column from its sorting
columns collection. The Sort event is fired when the user sorts a column. The SortPosition
property changes the position of the column in the control's sort bar. Use the
DefaultSortOrder property to specify the column's default sort order, when the user first
clicks the column's header.

The control automatically sorts a column when the user clicks the column's header, if the
SortOnClick property is exDefaultSort. If the SortOnClick property is exNoSort, the control
disables sorting the items when the user clicks the column's header. There are two methods
to get the items sorted like follows:

Using the SortOrder property of the Column object::

Gantt1.Columns(ColIndex).SortOrder = SortAscending

The SortOrder property adds the sorting icon to the column's header, if the
DisplaySortIcon property is True.

Using the SortChildren method of the Items collection. The SortChildren sorts the
items. The SortChildren method sorts the child items of the given parent item in the
control. SortChildren will not recourse through the tree, only the immediate children of
the item will be sorted. The following sample sort descending the list of root items on
the "Column 1"(if your control displays a list, all items are considered being root items
).

Gantt1.Items.SortChildren 0, "Column 1", False

property Column.SortPosition as Long
Returns or sets a value that indicates the position of the column in the sorting columns
collection.

Type Description

Long A long expression that indicates the position of the column
in the control's sort bar. The collection is 0 - based.

Use the SortPosition to change programmatically the position of the column in the control's
sort bar. Use the SingleSort property to allow sorting by multiple columns. Use the
SortBarVisible property to show the control's sort bar. Use the SortOrder property to add
columns to the control's sort bar. The control fires the Sort event when the user sorts a
column. Use the ItemBySortPosition property to get the columns being sorted in their order.
Use the AllowSort property to avoid sorting a column when the user clicks the column.

property Column.SortType as SortTypeEnum

Returns or sets a value that indicates the way a control sorts the values for a column.

Type Description

SortTypeEnum A SortTypeEnum expression that indicates the way a
control sorts the values for a column.

The SortType property specifies how the column gets sorted. By default, the column's
SortType is String. The CellCaption property indicates the values being sorted. Use the
SortType property to specifies how the control will sort the column. Use the SortChildren
property of Items to do a sort based on a column. Use the SingleSort property to specify
whether the control supports sorting by single or multiple columns. The SortOrder property
determines the column's sort order. The Sort event is fired when the user sorts a column.
The SortPosition property changes the position of the column in the sorting columns
collection. The CellData property specifies the values being sorted, if the SortType property
is SortUserData, SortUserDataString.

property Column.ToolTip as String
Specifies the column's tooltip description.

Type Description

String A string expression that defines the column's tooltip. The
column's tooltip supports built-in HTML format

By default, the ToolTip property is "..." (three dots). Use the ToolTip property to assign a
tooltip to a column. If the ToolTip property is "...", the control displays the column's caption if
it doesn't fit the column's header. Use the Caption or HTMLCaption property to specify the
caption of the column. The column's tooltip shows up when the cursor hovers the column's
header. Use the CellToolTip property to assign a tooltip to a cell

property Column.Visible as Boolean

Retrieves or sets a value indicating whether the column is visible or hidden.

Type Description

Boolean A boolean expression indicating whether the column is
visible or hidden.

Use the Visible property to hide a column. Use the Width property to resize the column. The
ColumnAutoResize property specifies whether the visible columns fit the control's client
area. Use the Position property to specify the column's position. Use the HeaderVisible
property to show or hide the control's header bar. Use the ColumnFromPoint property to
get the column from point. Use the Remove method to remove a column.

property Column.Width as Long

Retrieves or sets the column's width.

Type Description

Long A long expression that indicates the column's width in
pixels.

The Width property specifies the column's width in pixels. Use the Visible property to hide a
column. Use the SortBarColumnWidth property to specify the column's head in the control's
sort bar. Use the ColumnAutoResize property to fit all visible columns in the control's client
area. Use the FilterBarDropDownWidth property to specify the width of the drop down filter
window.

The following VB sample shows how to set the width for all columns:

Private Sub Gantt1_AddColumn(ByVal Column As EXGANTTLibCtl.IColumn)
 Column.Width = 128
End Sub

The following VB.NET sample changes the column's width when a new column is added:

Private Sub AxGantt1_AddColumn(ByVal sender As Object, ByVal e As
AxEXGANTTLib._IGanttEvents_AddColumnEvent) Handles AxGantt1.AddColumn
 e.column.Width = 128
End Sub

The following C# sample changes the column's width when a new column is added:

private void axGantt1_AddColumn(object sender,
AxEXGANTTLib._IGanttEvents_AddColumnEvent e)
{
 e.column.Width = 128;
}

The following C++ sample changes the column's width when a new column is added:

#include "Column.h"
#include "Columns.h"
void OnAddColumnGantt1(LPDISPATCH Column)
{

 CColumn column(Column);
 column.SetWidth(128);
}

The following VFP sample changes the column's width when a new column is added:

*** ActiveX Control Event ***
LPARAMETERS column

with column
 .Width = 128
endwith

property Column.WidthAutoResize as Boolean
Retrieves or sets a value that indicates whether the column is automatically resized
according to the width of the contents within the column.

Type Description

Boolean
A boolean expression that indicates whether the column is
automatically resized according to the width of the
contents within the column.

If the WidthAutoResize property is True, the column's width is resized after user expands,
or collapse the items. Also, the column's width is refreshed if the user adds new items to
the control. If the WidthAutoResize property is True, the column's width is not larger than
MaxWidthAutoResize value, and it is not less than MinWidthAutoResize value. You can use
the AutoWidth property to computes the column's width to fit its content. For instance, if you
have a control with one column, and this property True, you can simulate a simple tree,
because the control will automatically add a horizontal scroll bar when required. Use the
ColumnAutoResize property to specify whether the control resizes the visible columns so
they fit the control's client area.

Columns object
The ExGantt control supports multiple columns. The Columns object contains a collection of
Column objects. Use the Columns property of the control to access the control columns. By
default, the control's columns collection is empty. The Columns object supports the following
method and properties:

Name Description

Add Adds a Column object to the collection and returns a
reference to the newly created object.

Clear Removes all objects in a collection.
Count Returns the number of objects in a collection.
Item Returns a specific Column of the Columns collection.
ItemBySortPosition Returns a Column object giving its sorting position.
Remove Removes a specific member from the Columns collection.

method Columns.Add (ColumnCaption as String)

Adds a Column object to the collection and returns a reference to the newly created object.

Type Description

ColumnCaption as String A string expression that indicates the caption for the
column being added

Return Description
Variant A Column object that indicates the newly added column.

By default, the control contains no columns. Before adding new items, you need to add
columns. Use the Add property to add new columns to the control. The control fires the
AddColumn event is fired when a new columns has been added to Columns collection. Use
the Caption property to change the column's caption. Use the HTLMCaption property to
display the column's caption using HTML tags. To hide a column use the Visible property of
the Column object. Use the AddItem, InsertItem, InsertControlItem, PutItems, DataSource
properties to add new items to the control. Use the BeginUpdate and EndUpdate methods
to maintain performance while adding new columns and items. Use the LoadXML/SaveXML
methods to load/save the control's data from/to XML files.

The following VB sample adds columns from a record set:

Set rs = CreateObject("ADODB.Recordset")
rs.Open "Orders", "Provider=Microsoft.Jet.OLEDB.3.51;Data Source= D:\Program
Files\Microsoft Visual Studio\VB98\NWIND.MDB", 3 ' Opens the table using static mode
Gantt1.BeginUpdate
' Add the columns
With Gantt1.Columns
For Each f In rs.Fields
 .Add f.Name
Next
End With
Gantt1.PutItems rs.getRows()
Gantt1.EndUpdate

The following VC sample adds a column:

#include "Columns.h"
#include "Column.h"
CColumns columns = m_gantt.GetColumns();

CColumn column(V_DISPATCH(&columns.Add("Column 1")));
column.SetHeaderBold(TRUE);

The following VB.NET sample adds a column:

With AxGantt1.Columns
 With .Add("Column 1")
 .HeaderBold = True
 End With
End With

The Add method returns a Column object in a VARIANT value, so you can use a code like
follows:

With AxGantt1.Columns
 Dim c As EXGANTTLib.Column
 c = .Add("Column 1")
 With c
 .HeaderBold = True
 End With
End With

this way, you can have the properties of the column at design time when typing the '.'
character.

The following C# sample adds a column:

EXGANTTLib.Column column = axGantt1.Columns.Add("Column 1") as
EXGANTTLib.Column;
column.HeaderBold = true;

The following VFP sample adds a column:

with thisform.Gantt1.Columns.Add("Column 1")
 .HeaderBold = .t.
endwith

method Columns.Clear ()

Removes all objects in a collection.

Type Description

Use the Remove method when you need to remove only a column. Use the Clear method to
remove all columns in the control. The Clear method removes all items, too. Use the
RemoveAllItems method to remove all items in the control.

property Columns.Count as Long

Returns the number of objects in a collection.

Type Description
Long Counts the Column object into the collection.

The Count property counts the columns in the collection. Use the Columns property to
access the control's Columns collection. Use the Item property to access a column by its
index or key. Use the Add method to add new columns to the control. Use the Remove
method to remove a column. Use the Clear method to clear the columns collection.

The following VB sample enumerates the columns in the control:

For Each c In Gantt1.Columns
 Debug.Print c.Caption
Next

The following VB sample enumerates the columns in the control:

For i = 0 To Gantt1.Columns.Count - 1
 Debug.Print Gantt1.Columns(i).Caption
Next

The following VC sample enumerates the columns in the control:

#include "Columns.h"
#include "Column.h"
CColumns columns = m_gantt.GetColumns();
for (long i = 0; i < columns.GetCount(); i++)
{
 CColumn column = columns.GetItem(COleVariant(i));
 OutputDebugString(column.GetCaption());
}

The following VB.NET sample enumerates the columns in the control:

With AxGantt1.Columns
 Dim i As Integer
 For i = 0 To .Count - 1

 Debug.WriteLine(.Item(i).Caption)
 Next
End With

The following C# sample enumerates the columns in the control:

EXGANTTLib.Columns columns =axGantt1.Columns;
for (int i = 0; i < columns.Count; i++)
{
 EXGANTTLib.Column column = columns[i];
 System.Diagnostics.Debug.WriteLine(column.Caption);
}

The following VFP sample enumerates the columns in the control:

with thisform.Gantt1.Columns
 for i = 0 to .Count - 1
 wait window nowait .Item(i).Caption
 next
endwith

property Columns.Item (Index as Variant) as Column

Returns a specific Column of the Columns collection.

Type Description

Index as Variant
A long expression that indicates the column's index or a
string expression that indicates the column's key or the
column's caption.

Column A column object being returned.

Use the Item property to access to a specific column. The Count property counts the
columns in the control. Use the Columns property to access the control's Columns
collection.

The Item property is the default property of the Columns object so the following statements
are equivalents:

Gantt1.Columns.Item ("Freight")
Gantt1.Columns ("Freight")

The following VB sample enumerates the columns in the control:

For i = 0 To Gantt1.Columns.Count - 1
 Debug.Print Gantt1.Columns(i).Caption
Next

The following VC sample enumerates the columns in the control:

#include "Columns.h"
#include "Column.h"
CColumns columns = m_gantt.GetColumns();
for (long i = 0; i < columns.GetCount(); i++)
{
 CColumn column = columns.GetItem(COleVariant(i));
 OutputDebugString(column.GetCaption());
}

The following VB.NET sample enumerates the columns in the control:

With AxGantt1.Columns
 Dim i As Integer

 For i = 0 To .Count - 1
 Debug.WriteLine(.Item(i).Caption)
 Next
End With

The following C# sample enumerates the columns in the control:

EXGANTTLib.Columns columns =axGantt1.Columns;
for (int i = 0; i < columns.Count; i++)
{
 EXGANTTLib.Column column = columns[i];
 System.Diagnostics.Debug.WriteLine(column.Caption);
}

The following VFP sample enumerates the columns in the control:

with thisform.Gantt1.Columns
 for i = 0 to .Count - 1
 wait window nowait .Item(i).Caption
 next
endwith

property Columns.ItemBySortPosition (Position as Variant) as Column
Returns a Column object giving its sorting position.

Type Description

Position as Variant A long expression that indicates the position of column
being requested.

Column A Column object being accessed.

Use the ItemBySortPosition property to get the list of sorted columns in their order. Use the
SortPosition property to specify the position of the column in the sorting columns collection.
Use the SingleSort property to specify whether the control supports sorting by single or
multiple columns. Use the SortOrder property to sort a column programmatically. The
control fires the Sort event when the user sorts a column.

The following VB sample displays the list of columns being sorted:

Dim s As String, i As Long, c As Column
i = 0
With Gantt1.Columns
 Set c = .ItemBySortPosition(i)
 While (Not c Is Nothing)
 s = s + """" & c.Caption & """ " & IIf(c.SortOrder = SortAscending, "A", "D") & " "
 i = i + 1
 Set c = .ItemBySortPosition(i)
 Wend
End With
s = "Sort: " & s
Debug.Print s

The following VC sample displays the list of columns being sorted:

CString strOutput;
CColumns columns = m_gantt.GetColumns();
long i = 0;
CColumn column = columns.GetItemBySortPosition(COleVariant(i));
while (column.m_lpDispatch)
{
 strOutput += "\"" + column.GetCaption() + "\" " + (column.GetSortOrder() == 1 ? "A" :
"D") + " ";

 i++;
 column = columns.GetItemBySortPosition(COleVariant(i));
}
OutputDebugString(strOutput);

The following VB.NET sample displays the list of columns being sorted:

With AxGantt1
 Dim s As String, i As Integer, c As EXGANTTLib.Column
 i = 0
 With AxGantt1.Columns
 c = .ItemBySortPosition(i)
 While (Not c Is Nothing)
 s = s + """" & c.Caption & """ " & IIf(c.SortOrder =
EXGANTTLib.SortOrderEnum.SortAscending, "A", "D") & " "
 i = i + 1
 c = .ItemBySortPosition(i)
 End While
 End With
 s = "Sort: " & s
 Debug.WriteLine(s)
End With

The following C# sample displays the list of columns being sorted:

string strOutput = "";
int i = 0;
EXGANTTLib.Column column = axGantt1.Columns.get_ItemBySortPosition(i);
while (column != null)
{
 strOutput += column.Caption + " " + (column.SortOrder ==
EXGANTTLib.SortOrderEnum.SortAscending ? "A" : "D") + " ";
 column = axGantt1.Columns.get_ItemBySortPosition(++i);
}
Debug.WriteLine(strOutput);

The following VFP sample displays the list of columns being sorted (the code is listed in the
Sort event) :

local s, i, c
i = 0
s = ""
With thisform.Gantt1.Columns
 c = .ItemBySortPosition(i)
 do While (!isnull(c))
 with c
 s = s + "'" + .Caption
 s = s + "' " + IIf(.SortOrder = 1, "A", "D") + " "
 i = i + 1
 endwith
 c = .ItemBySortPosition(i)
 enddo
endwith
s = "Sort: " + s
wait window nowait s

method Columns.Remove (Index as Variant)

Removes a specific member from the Columns collection.

Type Description

Index as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption or the
column's key.

The Remove method removes a specific column in the Columns collection. Use Clear
method to remove all Column objects. The RemoveColumn event is fired when a column is
about to be removed. Use the Visible property to hide a column.

ConditionalFormat object
The conditional formatting feature allows you to apply formats to a cell or range of cells,
and have that formatting change depending on the value of the cell or the value of a
formula. Use the Add method to add new ConditionalFormat objects. Use the Item property
to access a ConditionalFormat object. The ConditionalFormat object supports the following
properties and method:

Name Description

ApplyTo Specifies whether the format is applied to items or
columns.

ApplyToBars
Specifies the list of bars that the current format is applied
to. The list includes the name of the bars separated by
comma character.

BackColor Retrieves or sets the background color for objects that
match the condition.

BarColor Specifies the color to be applied to bars if the conditional
expression is accomplished.

BarOverviewColor
Specifies the color to be applied to bars, in the overview
portion of the control, if the conditional expression is
accomplished.

Bold Bolds the objects that match the condition.
ClearBackColor Clears the background color.
ClearBarColor Clears the bar's color.
ClearBarOverviewColor Clears the bar's overview color.
ClearForeColor Clears the foreground color.
Enabled Specifies whether the condition is enabled or disabled.

Expression Indicates the expression being used in the conditional
format.

Font Retrieves or sets the font for objects that match the
criteria.

ForeColor Retrieves or sets the foreground color for objects that
match the condition.

Italic Specifies whether the objects that match the condition
should appear in italic.

Key Checks whether the expression is syntactically correct.

StrikeOut Specifies whether the objects that match the condition

should appear in strikeout.
Underline Underlines the objects that match the condition.
Valid Checks whether the expression is syntactically correct.

property ConditionalFormat.ApplyTo as FormatApplyToEnum
Specifies whether the format is applied to items or columns.

Type Description

FormatApplyToEnum

A FormatApplyToEnum expression that indicates whether
the format is applied to items or to columns. If the ApplyTo
property is less than zero, the format is applied to the
items.

By default, the format is applied to items. The ApplyTo property specifies whether the
format is applied to the items or to the columns. If the ApplyTo property is greater or equal
than zero the format is applied to the column with the index ApplyTo. For instance, if the
ApplyTo property is 0, the format is applied to the cells in the first column. If the ApplyTo
property is 1, the format is applied to the cells in the second column, if the ApplyTo property
is 2, the format is applied to the cells in the third column, and so on. If the ApplyTo property
is -1, the format is applied to items. Use the ApplyToBars property to specify the list of bars
that the current format is applied to.

The following VB sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

With Gantt1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C++ sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

COleVariant vtEmpty;
CConditionalFormat cf = m_gantt.GetConditionalFormats().Add("%1+%2<%0", vtEmpty
);
cf.SetBold(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

With AxGantt1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True

End With

The following C# sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

EXGANTTLib.ConditionalFormat cf =
axGantt1.ConditionalFormats.Add("%1+%2<%0",null);
cf.Bold = true;
cf.ApplyTo = (EXGANTTLib.FormatApplyToEnum)1;

The following VFP sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

with thisform.Gantt1.ConditionalFormats.Add("%1+%2<%0")
 .Bold = .t.
 .ApplyTo = 1
endwith

property ConditionalFormat.ApplyToBars as String
Specifies the list of bars that the current format is applied to. The list includes the name of
the bars separated by comma character.

Type Description

String A String expression that indicates the list of bars that the
current format is applied to.

By default, the ApplyToBars property is empty, which means that the current format is not
applied to any bar. The list includes the name of the bars separated by comma character.
The Name property indicates the name of the bar. The ApplyTo property specifies whether
the format is applied to item or cell/column. For instance, if the ApplyToBars property is
"Task,Milestone", it indicates that the current format is applied to Task and Milestone bars
being displayed in the chart. The following properties of the ConditionalFormat object are
applied while the ApplyToBars property contains existing bars:

The BarColor property specifies the color to be applied to bars if the conditional
expression is accomplished.
The BarOverviewColor property specifies the color to be applied to bars, in the
overview portion of the control, if the conditional expression is accomplished.

The following screen shot shows different colors applied to different items, using the
ConditionalFormat feature:

property ConditionalFormat.BackColor as Color
Retrieves or sets the background color for objects that match the condition.

Type Description

Color

A color expression that indicates the background color for
the object that match the criteria. The last 7 bits in the high
significant byte of the color to indicates the identifier of the
skin being used. Use the Add method to add new skins to
the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits
in the high significant byte of the color being applied to the
background's part.

Use the BackColor property to change the background color for items or cells in the column
when a certain condition is met. Use the ForeColor property to specify the foreground color
for objects that match the criteria. Use the ClearBackColor method to remove the
background color being set using previously the BackColor property. If the BackColor
property is not set, it retrieves 0. The ApplyTo property specifies whether the
ConditionalFormat object is applied to items or to cells in the column.

property ConditionalFormat.BarColor as Color
Specifies the color to be applied to bars if the conditional expression is accomplished.

Type Description

Color

A color expression that indicates the color to show the bar
that matches the criteria. The last 7 bits in the high
significant byte of the color to indicates the identifier of the
skin being used. Use the Add method to add new skins to
the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits
in the high significant byte of the color being applied to the
background's part.

By default, the BarColor property is 0. The BarColor property has effect, if the ApplyToBars
property points to valid bars. The ApplyToBars property specifies the list of bars that the
current format is applied to. Use the ClearBarColor method to remove the color being set
using previously the BarColor property. If the BarColor property is not set, it retrieves 0.
The ItemBar(exBarColor) property specifies the color to show a particular bar. The
BarOverviewColor property specifies the color to be applied to bars, in the overview portion
of the control, if the conditional expression is accomplished. Use the BackColor property to
change the background color for items or cells in the column when a certain condition is
met. Use the ForeColor property to specify the foreground color for objects that match the
criteria.

property ConditionalFormat.BarOverviewColor as Color
Specifies the color to be applied to bars, in the overview portion of the control, if the
conditional expression is accomplished.

Type Description

Color
A Color expression that specifies the color to be applied to
bars, in the overview portion of the control, if the
conditional expression is accomplished.

By default, the BarOverviewColor property is 0. The BarOverviewColor property has effect,
if the ApplyToBars property points to valid bars. The ApplyToBars property specifies the list
of bars that the current format is applied to. The OverviewVisible property shows or hides
the control's overview map. Use the ClearBarOverviewColor method to remove the color
being set using previously the BarOverviewColor property. If the BarColor property is not
set, it retrieves 0. The ItemBar(exBarOverviewColor) property specifies the color to show a
different color in the overview part of the control, for a particular bar.

property ConditionalFormat.Bold as Boolean
Bolds the objects that match the condition.

Type Description

Boolean A boolean expression that indicates whether the objects
should appear in bold.

The ApplyTo property specifies whether the ConditionalFormat object is applied to items or
to cells in the column. The following VB sample bolds all cells in the second column (1), if
the sum between second and third column (2) is less than the value in the first column (0
):

With Gantt1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C++ sample bolds all cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

COleVariant vtEmpty;
CConditionalFormat cf = m_gantt.GetConditionalFormats().Add("%1+%2<%0", vtEmpty
);
cf.SetBold(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample bolds all cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

With AxGantt1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C# sample bolds all cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

EXGANTTLib.ConditionalFormat cf =
axGantt1.ConditionalFormats.Add("%1+%2<%0",null);
cf.Bold = true;

cf.ApplyTo = (EXGANTTLib.FormatApplyToEnum)1;

The following VFP sample bolds all cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

with thisform.Gantt1.ConditionalFormats.Add("%1+%2<%0")
 .Bold = .t.
 .ApplyTo = 1
endwith

method ConditionalFormat.ClearBackColor ()
Clears the background color.

Type Description

Use the ClearBackColor method to remove the background color being set using previously
the BackColor property. If the BackColor property is not set, it retrieves 0.

method ConditionalFormat.ClearBarColor ()
Clears the bar's color.

Type Description

Use the ClearBarColor method to remove the color being set using previously the BarColor
property. If the BarColor property is not set, it retrieves 0.

method ConditionalFormat.ClearBarOverviewColor ()
Clears the bar's overview color.

Type Description

Use the ClearBarOverviewColor method to remove the color being set using previously the
BarOverviewColor property. If the BarOverviewColor property is not set, it retrieves 0.

method ConditionalFormat.ClearForeColor ()
Clears the foreground color.

Type Description

Use the ClearBackColor method to remove the foreground color being set using previously
the ForeColor property. If the ForeColor property is not set, it retrieves 0.

property ConditionalFormat.Enabled as Boolean
Specifies whether the condition is enabled or disabled.

Type Description

Boolean A boolean expression that indicates whether the
expression is enabled or disabled.

By default, all expressions are enabled. A format is applied only if the expression is valid
and enabled. Use the Expression property to specify the format's formula. The Valid
property checks whether the formula is valid or not valid. Use the Enabled property to
disable applying the format for the moment. Use the Remove method to remove an
expression from ConditionalFormats collection.

property ConditionalFormat.Expression as String
Indicates the expression being used in the conditional format.

Type Description

String

A formal expression that indicates the formula being used
in formatting. For instance, "%0+%1>%2", highlights the
cells or the items, when the sum between first two
columns is greater than the value in the third column

The conditional formatting feature allows you to apply formats to a cell or range of cells,
and have that formatting change depending on the value of the cell or the value of a
formula. The Expression property specifies a formula that indicates the criteria to format the
items or the columns. Use the ApplyTo property to specify when the items or the columns
are formatted. Use the Add method to specify the expression at adding time. The
Expression property may include variables, constants, operators or () parenthesis. A
variable is defined as %n, where n is the index of the column (zero based). For instance,
the %0 indicates the first column, the %1, indicates the second column, and so on. A
constant is a float expression (for instance, 23.45). Use the Valid property checks whether
the expression is syntactically correct, and can be evaluated. If the expression contains a
variable that is not known, 0 value is used instead. For instance, if your control has 2
columns, and the expression looks like "%2 +%1 ", the %2 does not exist, 0 is used
instead. When the control contains two columns the known variables are %0 and %1.

The expression supports cell's identifiers as follows:

%0, %1, %2, ... specifies the value of the cell in the column with the index 0, 1 2, ...
The CellCaption property specifies the cell's value. For instance, "%0 format ``"
formats the value on the cell with the index 0, using current regional setting, while
"int(%1)" converts the value of the column with the index 1, to integer.

This property/method supports predefined constants and operators/functions as described
here.

Samples:

1. "1", highlights all cells or items. Use this form, when you need to highlight all cells or
items in the column or control.

2. "%0 >= 0", highlights the cells or items, when the cells in the first column have the value
greater or equal with zero

3. "%0 = 1 and %1 = 0", highlights the cells or items, when the cells in the first column
have the value equal with 0, and the cells in the second column have the value equal
with 0

4. "%0+%1>%2", highlights the cells or the items, when the sum between first two

columns is greater than the value in the third column
5. "%0+%1 > %2+%3", highlights the cells or items, when the sum between first two

columns is greater than the sum between third and forth column.
6. "%0+%1 >= 0 and (%2+%3)/2 < %4-5", highlights the cells or the items, when the sum

between first two columns is greater than 0 and the half of the sum between third and
forth columns is less than fifth column minus 5.

7. "%0 startwith 'A'" specifies the cells that starts with A
8. "%0 endwith 'Bc'" specifies the cells that ends with Bc
9. "%0 contains 'aBc'" specifies the cells that contains the aBc string

10. "lower(%0) contains 'abc'" specifies the cells that contains the abc, AbC, ABC, and
so on

11. "upper(%0)'" retrieves the uppercase string
12. "len(%0)>0'" specifies the not blanks cells
13. "len %0 = 0'" specifies the blanks cells

The conditional format feature may change the cells and items as follows:

Bold property. Bolds the cell or items
Italic property. Indicates whether the cells or items should appear in italic.
StrikeOut property. Indicates whether the cells or items should appear in strikeout.
Underline property. Underlines the cells or items
Font property. Changes the font for cells or items.
BackColor property. Changes the background color for cells or items, supports skins
as well.
ForeColor property. Changes the foreground color for cells or items.

The following VB samples bolds all items when the sum between first two columns is
greater than 0:

Gantt1.ConditionalFormats.Add("%0+%1>0").Bold = True

The following C++ sample bolds all items when the sum between first two columns is
greater than 0:

COleVariant vtEmpty;
m_tree.GetConditionalFormats().Add("%0+%1>0", vtEmpty).SetBold(TRUE);

The following VB.NET sample bolds all items when the sum between first two columns is
greater than 0:

AxGantt1.ConditionalFormats.Add("%0+%1>0").Bold = True

The following C# sample bolds all items when the sum between first two columns is greater

than 0:

axGantt1.ConditionalFormats.Add("%0+%1>0", null).Bold = true

The following VFP sample bolds all items when the sum between first two columns is
greater than 0:

thisform.Gantt1.ConditionalFormats.Add("%0+%1>0").Bold = .t.

property ConditionalFormat.Font as IFontDisp
Retrieves or sets the font for objects that match the criteria.

Type Description
IFontDisp A Font object that's applied to items or columns.

Use the Font property to change the font for items or columns that match the criteria. Use
the Font property only, if you need to change to a different font.

You can change directly the font attributes, like follows:

Bold property. Bolds the cell or items
Italic property. Indicates whether the cells or items should appear in italic.
StrikeOut property. Indicates whether the cells or items should appear in strikeout.
Underline property. Underlines the cells or items

The following VB sample changes the font for ALL cells in the first column:

With Gantt1.ConditionalFormats.Add("1")
 .ApplyTo = 0
 Set .Font = New StdFont
 With .Font
 .Name = "Comic Sans MS"
 End With
End With

property ConditionalFormat.ForeColor as Color
Retrieves or sets the foreground color for objects that match the condition.

Type Description

Color A color expression that indicates the foreground color for
the object that match the criteria.

Use the ForeColor property to specify the foreground color for objects that match the
criteria. Use the BackColor property to change the background color for items or cells in the
column when a certain condition is met. Use the ClearForeColor method to remove the
foreground color being set using previously the ForeColor property. If the ForeColor
property is not set, it retrieves 0. The ApplyTo property specifies whether the
ConditionalFormat object is applied to items or to cells in the column.

property ConditionalFormat.Italic as Boolean
Specifies whether the objects that match the condition should appear in italic.

Type Description

Boolean A boolean expression that indicates whether the objects
should look in italic.

The ApplyTo property specifies whether the ConditionalFormat object is applied to items or
to cells in the column. The following VB sample makes italic the cells in the second column (
1), if the sum between second and third column (2) is less than the value in the first
column (0):

With Gantt1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Italic = True
End With

The following C++ sample makes italic the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

COleVariant vtEmpty;
CConditionalFormat cf = m_gantt.GetConditionalFormats().Add("%1+%2<%0", vtEmpty
);
cf.SetItalic(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample makes italic the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

With AxGantt1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Italic = True
End With

The following C# sample makes italic the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

EXGANTTLib.ConditionalFormat cf =
axGantt1.ConditionalFormats.Add("%1+%2<%0",null);
cf.Italic = true;

cf.ApplyTo = (EXGANTTLib.FormatApplyToEnum)1;

The following VFP sample makes italic the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

with thisform.Gantt1.ConditionalFormats.Add("%1+%2<%0")
 .Italic = .t.
 .ApplyTo = 1
endwith

property ConditionalFormat.Key as Variant
Checks whether the expression is syntactically correct.

Type Description
Variant A String expression that indicates the key of the element

The Key property indicates the key of the element. Use the Add method to specify a key at
adding time. Use the Remove method to remove a formula giving its key.

property ConditionalFormat.StrikeOut as Boolean
Specifies whether the objects that match the condition should appear in strikeout.

Type Description

Boolean A Boolean expression that indicates whether the objects
should appear in strikeout.

The ApplyTo property specifies whether the ConditionalFormat object is applied to items or
to cells in the column. The following VB sample applies strikeout font attribute to cells in the
second column (1), if the sum between second and third column (2) is less than the value
in the first column (0):

With Gantt1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C++ sample applies strikeout font attribute to cells in the second column (1),
if the sum between second and third column (2) is less than the value in the first column (
0):

COleVariant vtEmpty;
CConditionalFormat cf = m_gantt.GetConditionalFormats().Add("%1+%2<%0", vtEmpty
);
cf.SetBold(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample applies strikeout font attribute to cells in the second column (
1), if the sum between second and third column (2) is less than the value in the first
column (0):

With AxGantt1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C# sample applies strikeout font attribute to cells in the second column (1), if
the sum between second and third column (2) is less than the value in the first column (0
):

EXGANTTLib.ConditionalFormat cf =
axGantt1.ConditionalFormats.Add("%1+%2<%0",null);
cf.Bold = true;
cf.ApplyTo = (EXGANTTLib.FormatApplyToEnum)1;

The following VFP sample applies strikeout font attribute to cells in the second column (1),
if the sum between second and third column (2) is less than the value in the first column (
0):

with thisform.Gantt1.ConditionalFormats.Add("%1+%2<%0")
 .Bold = .t.
 .ApplyTo = 1
endwith

property ConditionalFormat.Underline as Boolean
Underlines the objects that match the condition.

Type Description

Boolean A boolean expression that indicates whether the objects
are underlined.

The ApplyTo property specifies whether the ConditionalFormat object is applied to items or
to cells in the column. The following VB sample underlines the cells in the second column (1
), if the sum between second and third column (2) is less than the value in the first column
(0):

With Gantt1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Underline = True
End With

The following C++ sample underlines the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

COleVariant vtEmpty;
CConditionalFormat cf = m_gantt.GetConditionalFormats().Add("%1+%2<%0", vtEmpty
);
cf.SetUnderline(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample underlines the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

With AxGantt1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Underline = True
End With

The following C# sample underlines the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

EXGANTTLib.ConditionalFormat cf =
axGantt1.ConditionalFormats.Add("%1+%2<%0",null);
cf.Underline = true;

cf.ApplyTo = (EXGANTTLib.FormatApplyToEnum)1;

The following VFP sample underlines the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

with thisform.Gantt1.ConditionalFormats.Add("%1+%2<%0")
 .Underline = .t.
 .ApplyTo = 1
endwith

property ConditionalFormat.Valid as Boolean
Checks whether the expression is syntactically correct.

Type Description

Boolean A boolean expression that indicates whether the
Expression property is valid.

Use the Valid property to check whether the Expression formula is valid. The conditional
format is not applied to objects if expression is not valid, or the Enabled property is false.
An empty expression is not valid. Use the Enabled property to disable applying the format
to columns or items. Use the Remove method to remove an expression from
ConditionalFormats collection.

ConditionalFormats object
The conditional formatting feature allows you to apply formats to a cell or range of cells,
and have that formatting change depending on the value of the cell or the value of a
formula. The ConditionalFormats collection holds a collection of ConditionalFormat objects.
Use the ConditionalFormats property to access the control's ConditionalFormats collection
.The ConditionalFormats collection supports the following properties and methods:

Name Description

Add Adds a new expression to the collection and returns a
reference to the newly created object.

Clear Removes all expressions in a collection.
Count Returns the number of objects in a collection.
Item Returns a specific expression.
Remove Removes a specific member from the collection.

method ConditionalFormats.Add (Expression as String, [Key as Variant])
Adds a new expression to the collection and returns a reference to the newly created
object.

Type Description

Expression as String

A formal expression that indicates the formula being used
when the format is applied. Please check the Expression
property that shows the syntax of the expression that may
be used. For instance, the "%0 >= 10 and %1 > 67.23"
means all cells in the first column with the value less or
equal than 10, and all cells in the second column with a
value greater than 67.23

Key as Variant

A string or long expression that indicates the key of the
expression being added. If the Key parameter is missing,
by default, the current index in the ConditionalFormats
collection is used.

Return Description

ConditionalFormat A ConditionalFormat object that indicates the newly format
being added.

The conditional formatting feature allows you to apply formats to a cell or range of cells,
and have that formatting change depending on the value of the cell or the value of a
formula. Use the Add method to format cells or items based on values. Use the Add method
to add new ConditionalFormat objects to the ConditionalFormats collection. By default, the
ConditionalFormats collection is empty. A ConditionalFormat object indicates a formula and
a format to apply to cells or items. The ApplyTo property specifies whether the
ConditionalFormat object is applied to items or to cells in the column. Use the Expression
property to retrieve or set the formula. Use the Key property to retrieve the key of the
object. Use the Refresh method to update the changes on the control's content.

The conditional format feature may change the cells and items as follows:

Bold property. Bolds the cell or items
Italic property. Indicates whether the cells or items should appear in italic.
StrikeOut property. Indicates whether the cells or items should appear in strikeout.
Underline property. Underlines the cells or items
Font property. Changes the font for cells or items.
BackColor property. Changes the background color for cells or items, supports skins
as well.
ForeColor property. Changes the foreground color for cells or items.

The following VB sample bolds all items when the sum between first two columns is greater
than 0:

Gantt1.ConditionalFormats.Add("%0+%1>0").Bold = True

The following VB sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

With Gantt1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C++ sample bolds all items when the sum between first two columns is
greater than 0:

COleVariant vtEmpty;
m_gantt.GetConditionalFormats().Add("%0+%1>0", vtEmpty).SetBold(TRUE);

The following C++ sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

COleVariant vtEmpty;
CConditionalFormat cf = m_gantt.GetConditionalFormats().Add("%1+%2<%0", vtEmpty
);
cf.SetBold(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample bolds all items when the sum between first two columns is
greater than 0:

AxGantt1.ConditionalFormats.Add("%0+%1>0").Bold = True

The following VB.NET sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

With AxGantt1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C# sample bolds all items when the sum between first two columns is greater
than 0:

axGantt1.ConditionalFormats.Add("%0+%1>0", null).Bold = true

The following C# sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

EXGANTTLib.ConditionalFormat cf =
axGantt1.ConditionalFormats.Add("%1+%2<%0",null);
cf.Bold = true;
cf.ApplyTo = (EXGANTTLib.FormatApplyToEnum)1;

The following VFP sample bolds all items when the sum between first two columns is
greater than 0:

thisform.Gantt1.ConditionalFormats.Add("%0+%1>0").Bold = .t.

The following VFP sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

with thisform.Gantt1.ConditionalFormats.Add("%1+%2<%0")
 .Bold = .t.
 .ApplyTo = 1
endwith

method ConditionalFormats.Clear ()
Removes all expressions in a collection.

Type Description

Use the Clear method to remove all objects in the collection. Use the Remove method to
remove a particular object from the collection. Use the Enabled property to disable a
conditional format.

property ConditionalFormats.Count as Long
Returns the number of objects in a collection.

Type Description

Long A long expression that counts the number of elements in
the collection.

Use the Item and Count property to enumerate the elements in the collection. Use the
Expression property to get the expression of the format.

The following VB sample enumerates all elements in the ConditionalFormats collection:

Dim c As ConditionalFormat
For Each c In Gantt1.ConditionalFormats
 Debug.Print c.Expression
Next

The following VB sample enumerates all elements in the ConditionalFormats collection:

Dim i As Integer
With Gantt1.ConditionalFormats
 For i = 0 To .Count - 1
 Debug.Print .Item(i).Expression
 Next
End With

The following C++ sample enumerates all elements in the ConditionalFormats collection:

for (long i = 0; i < m_gantt.GetConditionalFormats().GetCount(); i++)
{
 CConditionalFormat cf = m_gantt.GetConditionalFormats().GetItem(COleVariant(i));
 OutputDebugString(cf.GetExpression());
}

The following VB.NET sample enumerates all elements in the ConditionalFormats collection:

Dim c As EXGANTTLib.ConditionalFormat
For Each c In AxGantt1.ConditionalFormats
 System.Diagnostics.Debug.Write(c.Expression)
Next

The following VB.NET sample enumerates all elements in the ConditionalFormats collection:

Dim i As Integer
With AxGantt1.ConditionalFormats
 For i = 0 To .Count - 1
 System.Diagnostics.Debug.Write(.Item(i).Expression)
 Next
End With

The following C# sample enumerates all elements in the ConditionalFormats collection:

foreach (EXGANTTLib.ConditionalFormat c in axGantt1.ConditionalFormats)
 System.Diagnostics.Debug.Write(c.Expression);

The following C# sample enumerates all elements in the ConditionalFormats collection:

for (int i = 0; i < axGantt1.ConditionalFormats.Count; i++)
 System.Diagnostics.Debug.Write(axGantt1.ConditionalFormats[i].Expression);

The following VFP sample enumerates all elements in the ConditionalFormats collection:

with thisform.Gantt1.ConditionalFormats
 for i = 0 to .Count - 1
 wait .Item(i).Expression
 next
endwith

property ConditionalFormats.Item (Key as Variant) as ConditionalFormat
Returns a specific expression.

Type Description

Key as Variant
A long expression that indicates the index of the element
being accessed, or a string expression that indicates the
key of the element being accessed.

ConditionalFormat A ConditionalFormat object being returned.

Use the Item and Count property to enumerate the elements in the collection. Use the
Expression property to get the expression of the format. Use the Key property to get the
key of the format.

The following VB sample enumerates all elements in the ConditionalFormats collection:

Dim c As ConditionalFormat
For Each c In Gantt1.ConditionalFormats
 Debug.Print c.Expression
Next

The following VB sample enumerates all elements in the ConditionalFormats collection:

Dim i As Integer
With Gantt1.ConditionalFormats
 For i = 0 To .Count - 1
 Debug.Print .Item(i).Expression
 Next
End With

The following C++ sample enumerates all elements in the ConditionalFormats collection:

for (long i = 0; i < m_gantt.GetConditionalFormats().GetCount(); i++)
{
 CConditionalFormat cf = m_gantt.GetConditionalFormats().GetItem(COleVariant(i));
 OutputDebugString(cf.GetExpression());
}

The following VB.NET sample enumerates all elements in the ConditionalFormats collection:

Dim c As EXGANTTLib.ConditionalFormat

For Each c In AxGantt1.ConditionalFormats
 System.Diagnostics.Debug.Write(c.Expression)
Next

The following VB.NET sample enumerates all elements in the ConditionalFormats collection:

Dim i As Integer
With AxGantt1.ConditionalFormats
 For i = 0 To .Count - 1
 System.Diagnostics.Debug.Write(.Item(i).Expression)
 Next
End With

The following C# sample enumerates all elements in the ConditionalFormats collection:

foreach (EXGANTTLib.ConditionalFormat c in axGantt1.ConditionalFormats)
 System.Diagnostics.Debug.Write(c.Expression);

The following C# sample enumerates all elements in the ConditionalFormats collection:

for (int i = 0; i < axGantt1.ConditionalFormats.Count; i++)
 System.Diagnostics.Debug.Write(axGantt1.ConditionalFormats[i].Expression);

The following VFP sample enumerates all elements in the ConditionalFormats collection:

with thisform.Gantt1.ConditionalFormats
 for i = 0 to .Count - 1
 wait .Item(i).Expression
 next
endwith

method ConditionalFormats.Remove (Key as Variant)
Removes a specific member from the collection.

Type Description

Key as Variant A Long or String expression that indicates the key of the
element to be removed.

Use the Remove method to remove a particular object from the collection. Use the Enabled
property to disable a conditional format. Use the Clear method to remove all objects in the
collection.

ExDataObject object
The OleDragDrop event notifies your application that the user drags some data on the
control. Defines the object that contains OLE drag and drop information. The ExDataObject
object supports the following method and properties:

Name Description
Clear Deletes the contents of the ExDataObject object.

Files
Returns an ExDataObjectFiles collection, which in turn
contains a list of all filenames used by an ExDataObject
object.

GetData Returns data from an ExDataObject object in the form of a
variant.

GetFormat Returns a value indicating whether an item in the
ExDataObject object matches a specified format.

SetData Inserts data into an ExDataObject object using the
specified data format.

method ExDataObject.Clear ()
Deletes the contents of the DataObject object.

Type Description

The Clear method can be called only for drag sources. The OleDragDrop event notifies
your application that the user drags some data on the control.

property ExDataObject.Files as ExDataObjectFiles
Returns a DataObjectFiles collection, which in turn contains a list of all filenames used by a
DataObject object.

Type Description

ExDataObjectFiles An ExDataObjectFiles object that contains a list of
filenames used in OLE drag and drop operations.

The Files property is valid only if the format of the clipboard data is exCFFiles. The
OleDragDrop event notifies your application that the user drags some data on the control.

method ExDataObject.GetData (Format as Integer)
Returns data from a DataObject object in the form of a variant.

Type Description

Format as Integer An exClipboardFormatEnum expression that defines the
data's format

Return Description

Variant A Variant value that contains the ExDataObject's data in
the given format

Use GetData property to retrieve the clipboard's data that has been dragged to the control.
It's possible for the GetData and SetData methods to use data formats other than
exClipboardFormatEnum , including user-defined formats registered with Windows via the
RegisterClipboardFormat() API function. The GetData method always returns data in a byte
array when it is in a format that it is not recognized. Use the Files property to retrieves the
filenames if the format of data is exCFFiles

method ExDataObject.GetFormat (Format as Integer)

Returns a value indicating whether the ExDataObject's data is of specified format.

Type Description

Format as Integer A constant or value that specifies a clipboard data format
like described in exClipboardFormatEnum enum.

Return Description

Boolean A boolean value that indicates whether the ExDataObject's
data is of specified format.

Use the GetFormat property to verify if the ExDataObject's data is of a specified clipboard
format. The GetFormat property retrieves True, if the ExDataObject's data format matches
the given data format.

method ExDataObject.SetData ([Value as Variant], [Format as Variant])

Inserts data into a ExDataObject object using the specified data format.

Type Description
Value as Variant A data that is going to be inserted to ExDataObject object.

Format as Variant A constant or value that specifies the data format, as
described in exClipboardFormatEnum enum

Use SetData property to insert data for OLE drag and drop operations. Use the Files
property is you are going to add new files to the clipboard data. The OleDragDrop event
notifies your application that the user drags some data on the control.

ExDataObjectFiles object
The ExDataObjectFiles contains a collection of filenames. The ExDataObjectFiles object is
used in OLE Drag and drop events. In order to get the list of files used in drag and drop
operations you have to use the Files property. The OleDragDrop event notifies your
application that the user drags some data on the control. The ExDataObjectFiles object
supports the following properties and methods:

Name Description
Add Adds a filename to the Files collection
Clear Removes all file names in the collection.
Count Returns the number of file names in the collection.
Item Returns an specific file name.
Remove Removes an specific file name.

method ExDataObjectFiles.Add (FileName as String)

Adds a filename to the Files collection

Type Description
FileName as String A string expression that indicates a filename.

Use Add method to add your files to ExDataObject object. The OleStartDrag event notifies
your application that the user starts dragging items.

method ExDataObjectFiles.Clear ()

Removes all file names in the collection.

Type Description

Use the Clear method to remove all filenames from the collection.

property ExDataObjectFiles.Count as Long

Returns the number of file names in the collection.

Type Description

Long A long value that indicates the count of elements into
collection.

You can use "for each" statements if you are going to enumerate the elements into
ExDataObjectFiles collection.

property ExDataObjectFiles.Item (Index as Long) as String

Returns a specific file name given its index.

Type Description
Index as Long A long expression that indicates the filename's index.
String A string value that indicates the filename.

method ExDataObjectFiles.Remove (Index as Long)

Removes a specific file name given its index into collection.

Type Description

Index as Long A long expression that indicates the index of filename into
collection.

Use Clear method to remove all filenames,.

Gantt object
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {09C0C400-3A0F-4CD3-8B93-8D42FCE66726}. The object's program identifier is: "Exontrol.Gantt". The
/COM object module is: "ExGantt.dll"

The Exontrol's ExGantt component is our approach to create timeline charts (also known as
Gantt charts). Gantt chart is a time-phased graphic display of activity durations. Activities
are listed with other tabular information on the left side with time intervals over the bars.
Activity durations are shown in the form of horizontal bars. The Gantt object supports the
following properties and methods:

Name Description

AllowChartScrollHeader Specifies whether the user can scroll the chart by clicking
the chart's header and move the cursor to a new position.

AllowChartScrollPage Specifies whether the chart's horizontal scroll bar includes
buttons to scroll the chart page by page.

AllowEdit Retrieves or sets a value that indicates whether the editing
tree is allowed or disabled.

AllowSelectNothing Specifies whether the current selection is erased, once the
user clicks outside of the items section.

AnchorFromPoint Retrieves the identifier of the anchor from point.
Appearance Retrieves or sets the control's appearance.
ApplyFilter Applies the filter.
ASCIILower Specifies the set of lower characters.
ASCIIUpper Specifies the set of upper characters.

AttachTemplate Attaches a script to the current object, including the
events, from a string, file, a safe array of bytes.

AutoDrag Gets or sets a value that indicates the way the component
supports the AutoDrag feature.

AutoSearch Enables or disables the auto search feature.

BackColor Retrieves or sets a value that indicates the control's
background color.

BackColorAlternate Specifies the background color used to display alternate
items in the control.

BackColorHeader Specifies the header's background color.
BackColorLevelHeader Specifies the multiple levels header's background color.

Retrieves or sets a value that indicates the control's

BackColorLock background color for the locked area.

BackColorSortBar Retrieves or sets a value that indicates the sort bar's
background color.

BackColorSortBarCaption Returns or sets a value that indicates the caption's
background color in the control's sort bar.

Background Returns or sets a value that indicates the background
color for parts in the control.

BeginUpdate
Maintains performance when items are added to the
control one at a time. This method prevents the control
from painting until the EndUpdate method is called.

BorderStyle Retrieves or sets the border style of the control.
Chart Gets the chart object.

ChartOnLeft Specifies whether the chart area is displayed on the left or
right side of the component.

CheckImage Retrieves or sets a value that indicates the image used by
cells of checkbox type.

ClearFilter Clears the filter.

ColumnAutoResize
Returns or sets a value indicating whether the control will
automatically size its visible columns to fit on the control's
client width.

ColumnFromPoint Retrieves the column from point.
Columns Retrieves the control's column collection.

ColumnsAllowSizing Retrieves or sets a value that indicates whether a user
can resize columns at run-time.

ColumnsFloatBarSortOrder Specifies the sorting order for the columns being shown in
the control's columns floating panel.

ColumnsFloatBarVisible Retrieves or sets a value that indicates whether the the
columns float bar is visible or hidden.

ConditionalFormats Retrieves the conditional formatting collection.

ContinueColumnScroll
Retrieves or sets a value indicating whether the control will
automatically scroll the visible columns by pixel or by
column width.

Copy Copies the control's content to the clipboard, in the EMF
format.

CopyTo Exports the control's view to an EMF file.

CountLockedColumns Retrieves or sets a value indicating the number of locked
columns. A locked column is not scrollable.

DataSource Retrieves or sets a value that indicates the data source for
object.

DefaultItemHeight Retrieves or sets a value that indicates the default item
height.

Description Changes descriptions for control objects.

DetectAddNew Specifies whether the control detects when a new record
is added to the bounded recordset.

DrawGridLines Retrieves or sets a value that indicates whether the grid
lines are visible or hidden.

Enabled Enables or disables the control.

EndUpdate Resumes painting the control after painting is suspended
by the BeginUpdate method.

EnsureOnSort
Specifies whether the control ensures that the focused
item fits the control's client area, when the user sorts the
items.

EnsureVisibleColumn Scrolls the control's content to ensure that the column fits
the client area.

EventParam Retrieves or sets a value that indicates the current's event
parameter.

ExecuteTemplate Executes a template and returns the result.

ExpandOnDblClick Specifies whether the item is expanded or collapsed if the
user dbl clicks the item.

ExpandOnKeys
Specifies a value that indicates whether the control
expands or collapses a node when user presses arrow
keys.

ExpandOnSearch Expands items automatically while user types characters
to search for a specific item.

Export Exports the control's data to a CSV format.
FilterBarBackColor Specifies the background color of the control's filter bar.
FilterBarCaption Specifies the filter bar's caption.

FilterBarDropDownHeight Specifies the height of the drop down filter window
proportionally with the height of the control's list.

FilterBarFont Retrieves or sets the font for control's filter bar.
FilterBarForeColor Specifies the foreground color of the control's filter bar.

FilterBarHeight
Specifies the height of the control's filter bar. If the value is
less than 0, the filter bar is automatically resized to fit its
description.

FilterBarPrompt Specifies the caption to be displayed when the filter
pattern is missing.

FilterBarPromptColumns Specifies the list of columns to be used when filtering
using the prompt.

FilterBarPromptPattern Specifies the pattern for the filter prompt.
FilterBarPromptType Specifies the type of the filter prompt.
FilterBarPromptVisible Shows or hides the filter prompt.
FilterCriteria Retrieves or sets the filter criteria.

FilterInclude Specifies the items being included after the user applies
the filter.

Font Retrieves or sets the control's font.

ForeColor Retrieves or sets a value that indicates the control's
foreground color.

ForeColorHeader Specifies the header's foreground color.

ForeColorLock Retrieves or sets a value that indicates the control's
foreground color for the locked area.

ForeColorSortBar Retrieves or sets a value that indicates the sort bar's
foreground color.

FormatABC Formats the A,B,C values based on the giving expression
and returns the result.

FormatAnchor Specifies the visual effect for anchor elements in HTML
captions.

FreezeEvents Prevents the control to fire any event.
FullRowSelect Enables full-row selection in the control.
GetItems Gets the collection of items into a safe array,
GridLineColor Specifies the grid line color.

GridLineStyle Specifies the style for gridlines in the list part of the
control.

HasButtons
Adds a button to the left side of each parent item. The
user can click the button to expand or collapse the child
items as an alternative to double-clicking the parent item.
Specifies the index of icons for +/- signs when the

HasButtonsCustom HasButtons property is exCustom.

HasLines
Enhances the graphic representation of a tree control's
hierarchy by drawing lines that link child items to their
corresponding parent item.

HeaderAppearance Retrieves or sets a value that indicates the header's
appearance.

HeaderHeight Retrieves or sets a value indicating the control's header
height.

HeaderSingleLine Specifies whether the control resizes the columns header
and wraps the captions in single or multiple lines.

HeaderVisible Retrieves or sets a value that indicates whether the tree's
header is visible or hidden.

HideSelection Returns a value that determines whether selected item
appears highlighted when a control loses the focus.

HotBackColor Retrieves or sets a value that indicates the hot-tracking
background color.

HotForeColor Retrieves or sets a value that indicates the hot-tracking
foreground color.

HTMLPicture Adds or replaces a picture in HTML captions.
hWnd Retrieves the control's window handle.
HyperLinkColor Specifies the hyperlink color.

Images Sets at runtime the control's image list. The Handle should
be a handle to an Image List Control.

ImageSize Retrieves or sets the size of icons the control displays.

Indent Retrieves or sets the amount, in pixels, that child items are
indented relative to their parent items.

ItemFromPoint Retrieves the item from point.
Items Retrieves the control's item collection.

ItemsAllowSizing Retrieves or sets a value that indicates whether a user
can resize items at run-time.

Layout Saves or loads the control's layout, such as positions of
the columns, scroll position, filtering values.

LinesAtRoot Link items at the root of the hierarchy.

LoadXML Loads an XML document from the specified location, using
MSXML parser.

MarkSearchColumn Retrieves or sets a value that indicates whether the
searching column is marked or unmarked

OLEDrag Causes a component to initiate an OLE drag/drop
operation.

OLEDropMode Returns or sets how a target component handles drop
operations

OnResizeControl Specifies whether the list or the chart part is resized once
the control is resized.

Picture Retrieves or sets a graphic to be displayed in the control.

PictureDisplay Retrieves or sets a value that indicates the way how the
graphic is displayed on the control's background

PictureDisplayLevelHeader Retrieves or sets a value that indicates the way how the
graphic is displayed on the control's header background.

PictureLevelHeader Retrieves or sets a graphic to be displayed in the control's
header when multiple levels is on.

PutItems Adds an array of integer, long, date, string, double, float,
or variant arrays to the control.

RadioImage Retrieves or sets a value that indicates the image used by
cells of radio type.

RClickSelect Retrieves or sets a value that indicates whether an item is
selected using right mouse button.

Refresh Refreshes the control's content.
RemoveSelection Removes the selected items (including the descendents)

ReplaceIcon Adds a new icon, replaces an icon or clears the control's
image list.

RightToLeft Indicates whether the component should draw right-to-left
for RTL languages.

SaveXML Saves the control's content as XML document to the
specified location, using the MSXML parser.

Scroll Scrolls the control's content.

ScrollBars Returns or sets a value that determines whether the
control has horizontal and/or vertical scroll bars.

ScrollButtonHeight Specifies the height of the button in the vertical scrollbar.
ScrollButtonWidth Specifies the width of the button in the horizontal scrollbar.

Retrieves or sets a value that indicates whether the

ScrollBySingleLine control scrolls the lines to the end. If you have at least a
cell that has SingleLine false, you have to check the
ScrollBySingleLine property..

ScrollFont Retrieves or sets the scrollbar's font.
ScrollHeight Specifies the height of the horizontal scrollbar.
ScrollOrderParts Specifies the order of the buttons in the scroll bar.

ScrollPartCaption Specifies the caption being displayed on the specified
scroll part.

ScrollPartCaptionAlignment Specifies the alignment of the caption in the part of the
scroll bar.

ScrollPartEnable Indicates whether the specified scroll part is enabled or
disabled.

ScrollPartVisible Indicates whether the specified scroll part is visible or
hidden.

ScrollPos Specifies the vertical/horizontal scroll position.
ScrollThumbSize Specifies the size of the thumb in the scrollbar.

ScrollToolTip Specifies the tooltip being shown when the user moves the
scroll box.

ScrollWidth Specifies the width of the vertical scrollbar.

SearchColumnIndex Retrieves or sets a value indicating the column's index that
is used for auto search feature.

SelBackColor Retrieves or sets a value that indicates the selection
background color.

SelBackMode Retrieves or sets a value that indicates whether the
selection is transparent or opaque.

SelectColumn
Specifies whether the user selects cells only in
SelectColumnIndex column, while FullRowSelect property
is False.

SelectColumnIndex
Retrieves or sets a value that indicates control column's
index where the user is able to select an item. It has effect
only for FullRowSelect = false.

SelectColumnInner Retrieves or sets a value that indicates the index of the
inner cell that's selected.

SelectOnRelease Indicates whether the selection occurs when the user
releases the mouse button.
Retrieves or sets a value that indicates the selection

SelForeColor foreground color.

SelLength Returns or sets the number of characters selected.

SelStart
Returns or sets the starting point of text selected;
indicates the position of the insertion point if no text is
selected.

ShowFocusRect Retrieves or sets a value indicating whether the control
draws a thin rectangle arround the focused item.

ShowImageList Specifies whether the control's image list window is visible
or hidden.

ShowLockedItems Retrieves or sets a value that indicates whether the
control displays the locked items.

ShowToolTip Shows the specified tooltip at given position.

SingleSel Retrieves or sets a value that indicates whether the
control supports single or multiple selection.

SingleSort Returns or sets a value that indicates whether the control
supports sorting by single or multiple columns.

SortBarCaption Specifies the caption being displayed on the control's sort
bar when the sort bar contains no columns.

SortBarColumnWidth Specifies the maximum width a column can be in the
control's sort bar.

SortBarHeight Retrieves or sets a value that indicates the height of the
control's sort bar.

SortBarVisible Retrieves or sets a value that indicates whether control's
sort bar is visible or hidden.

SortOnClick
Retrieves or sets a value that indicates whether the
control sorts automatically the data when the user click on
column's caption.

Statistics Gives statistics data of objects being hold by the control.
Template Specifies the control's template.

TemplateDef Defines inside variables for the next
Template/ExecuteTemplate call.

TemplatePut Defines inside variables for the next
Template/ExecuteTemplate call.

ToolTipDelay Specifies the time in ms that passes before the ToolTip
appears.

ToolTipFont Retrieves or sets the tooltip's font.

ToolTipPopDelay
Specifies the period in ms of time the ToolTip remains
visible if the mouse pointer is stationary within a control.

ToolTipWidth Specifies a value that indicates the width of the tooltip
window, in pixels.

TreeColumnIndex Retrieves or sets a value indicating the column's index
where the hierarchy will be displayed.

UseTabKey Specifies whether the TAB key is used to change the
searching column.

UseVisualTheme Specifies whether the control uses the current visual
theme to display certain UI parts.

Version Retrieves the control's version.
VisualAppearance Retrieves the control's appearance.
VisualDesign Invokes the control's VisualAppearance designer.

property Gantt.AllowChartScrollHeader as Boolean
Specifies whether the user can scroll the chart by clicking the chart's header and move the
cursor to a new position.

Type Description

Boolean A boolean expression that specifies whether the user can
click and scroll the chart's header.

By default, the AllowChartScrollHeader property is True. In this case, if the user clicks the
chart's header and drag the mouse to a new position the chart gets scrolled. While scrolling
the hand cursor is being displayed. You are still able to scroll the control's chart using the
horizontal scroll bar in the chart area. Use the FirstVisibleDate property to display a
different date in the chart. If the user clicks and releases the mouse in the chart's header a
date gets selected so it gets marked using the MarkSelectDateColor property.

The following screen show how the charts gets scrolled once the user clicks and drags the
mouse on the chart's header (AllowChartScrollHeader property is True) :

The following screen show how a new date gets selected once the user clicks a date in the
chart's header:

property Gantt.AllowChartScrollPage as Boolean
Specifies whether the chart's horizontal scroll bar includes buttons to scroll the chart page
by page.

Type Description

Boolean
A Boolean expression that specifies whether the control
includes the exLeftB5Part and exRightB1Part buttons to
the chart's horizontal scroll bar.

By default AllowChartScrollPage property is False. Use the AllowChartScrollPage property
to add fast scroll to the chart's page. If the AllowChartScrollPage property is True, the
control automatically adds the exLeftB5Part and exRightB1Part buttons to the chart's
horizontal scroll bar. Once that the user clicks any of these buttons the chart is scrolled
page by page. Use the ScrollPartCaption property to specify the caption being displayed in
any part of the control's scrollbar. Use the HTML tag to include icons or custom size
pictures to your scroll buttons.

property Gantt.AllowEdit as Boolean

Retrieves or sets a value that indicates whether the editing tree is allowed or disabled.

Type Description

Boolean A boolean expression that indicates whether the editing
tree is allowed or disabled.

By default, the AllowEdit property is False. If the AllowEdit property is False, the events
BeforeCellEdit and AfterCellEdit are not fired.

property Gantt.AllowSelectNothing as Boolean
Specifies whether the current selection is erased, once the user clicks outside of the items
section.

Type Description

Boolean
A Boolean expression that specifies whether the current
selection is erased, once the user clicks outside of the
items section.

By default, the AllowSelectNothing property is False. The AllowSelectNothing property
specifies whether the current selection is erased, once the user clicks outside of the items
section. For instance, if the control's SingleSel property is True, and AllowSelectNothing
property is True, you can un-select the single-selected item if pressing the CTRL + Space,
or by CTRL + click.

property Gantt.AnchorFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as String
Retrieves the identifier of the anchor from point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

String
A String expression that specifies the identifier (id) of the
anchor element from the point, or empty string if there is
no anchor element at the cursor

Use the AnchorFromPoint property to determine the identifier of the anchor from the point.
Use the <a id;options> anchor elements to add hyperlinks to cell's caption. The control fires
the AnchorClick event when the user clicks an anchor element. Use the ShowToolTip
method to show the specified tooltip at given or cursor coordinates. The MouseMove event
is generated continually as the mouse pointer moves across the control.

The following VB sample displays (as tooltip) the identifier of the anchor element from the
cursor:

Private Sub Gantt1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With Gantt1
 .ShowToolTip .AnchorFromPoint(-1, -1)
 End With
End Sub

The following VB.NET sample displays (as tooltip) the identifier of the anchor element
from the cursor:

Private Sub AxGantt1_MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_MouseMoveEvent) Handles AxGantt1.MouseMoveEvent
 With AxGantt1
 .ShowToolTip(.get_AnchorFromPoint(-1, -1))
 End With
End Sub

The following C# sample displays (as tooltip) the identifier of the anchor element from the
cursor:

private void axGantt1_MouseMoveEvent(object sender,
AxEXGANTTLib._IGanttEvents_MouseMoveEvent e)
{
 axGantt1.ShowToolTip(axGantt1.get_AnchorFromPoint(-1, -1));
}

The following C++ sample displays (as tooltip) the identifier of the anchor element from
the cursor:

void OnMouseMoveGantt1(short Button, short Shift, long X, long Y)
{
 COleVariant vtEmpty; V_VT(&vtEmpty) = VT_ERROR;
 m_gantt.ShowToolTip(m_gantt.GetAnchorFromPoint(-1, -1), vtEmpty, vtEmpty,
vtEmpty);
}

The following VFP sample displays (as tooltip) the identifier of the anchor element from
the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform
 With .Gantt1
 .ShowToolTip(.AnchorFromPoint(-1, -1))
 EndWith
endwith

property Gantt.Appearance as AppearanceEnum

Retrieves or sets the control's appearance.

Type Description

AppearanceEnum

An AppearanceEnum expression that indicates the
control's appearance, or a color expression whose last 7
bits in the high significant byte of the value indicates the
index of the skin in the Appearance collection, being
displayed as control's borders. For instance, if the
Appearance = 0x1000000, indicates that the first skin
object in the Appearance collection defines the control's
border. The Client object in the skin, defines the
client area of the control. The list/hierarchy/chart,
scrollbars are always shown in the control's client
area. The skin may contain transparent objects, and
so you can define round corners. The normal.ebn file
contains such of objects. Use the eXButton's Skin
builder to view or change this file

Use the Appearance property to specify the control's border. Use the HeaderAppearance
property to change the control's header bar appearance. Use the Add method to add new
skins to the control. Use the BackColor property to specify the control's background color.
Use the Background(exToolTipAppearance) property indicates the visual appearance of the
borders of the tooltips.

The following VB sample changes the visual aspect of the borders of the control (please
check the above picture for round corners):

https://exontrol.com/exbutton.jsp

With Gantt1
 .BeginUpdate
 .VisualAppearance.Add &H16, "c:\temp\normal.ebn"
 .Appearance = &H16000000
 .BackColor = RGB(250, 250, 250)
 .EndUpdate
End With

The following VB.NET sample changes the visual aspect of the borders of the control:

With AxGantt1
 .BeginUpdate()
 .VisualAppearance.Add(&H16, "c:\temp\normal.ebn")
 .Appearance = &H16000000
 .BackColor = Color.FromArgb(250, 250, 250)
 .EndUpdate()
End With

The following C# sample changes the visual aspect of the borders of the control:

axGantt1.BeginUpdate();
axGantt1.VisualAppearance.Add(0x16, "c:\\temp\\normal.ebn");
axGantt1.Appearance = (EXGANTTLib.AppearanceEnum)0x16000000;
axGantt1.BackColor = Color.FromArgb(250, 250, 250);
axGantt1.EndUpdate();

The following C++ sample changes the visual aspect of the borders of the control:

m_gantt.BeginUpdate();
m_gantt.GetVisualAppearance().Add(0x16, COleVariant("c:\\temp\\normal.ebn"));
m_gantt.SetAppearance(0x16000000);
m_gantt.SetBackColor(RGB(250,250,250));
m_gantt.EndUpdate();

The following VFP sample changes the visual aspect of the borders of the control:

with thisform.Gantt1
 .BeginUpdate
 .VisualAppearance.Add(0x16, "c:\temp\normal.ebn")

 .Appearance = 0x16000000
 .BackColor = RGB(250, 250, 250)
 .EndUpdate
endwith

method Gantt.ApplyFilter ()
Applies the filter.

Type Description

The ApplyFilter method updates the control's content once that user sets the filter using the
Filter and FilterType properties. Use the ClearFilter method to clear the control's filter. Use
the DisplayFilterButton property to show the filter drop down button in the column's caption.
Use the FilterInclude property to specify whether the child items should be included to the
list when the user applies the filter. Use the FilterCriteria property to filter items using the
AND, OR and NOT operators. Use the ShowFilter method to show programmatically the
column's drop down filter window. The VisibleItemCount property specifies the number of
visible items in the list. The control fires the FilterChanging event just before applying the
filter, and FilterChange once the list gets filtered.

property Gantt.ASCIILower as String
Specifies the set of lower characters.

Type Description

String A string expression that indicates the set of lower
characters used by auto search feature.

The ASCIILower and ASCIIUpper properties helps you to specify the set of characters that
are used by the auto search feature (incremental search). If you want to make the auto
search feature case sensitive you have to use ASCIIUpper = "" . By default, the
ASCIILower property is = "abcdefghijklmnopqrstuvwxyz�יגהאוחךכטןמלפצע�שבםףתס"

property Gantt.ASCIIUpper as String
Specifies the set of upper characters.

Type Description

String A string expression that indicates the set of upper
characters used by auto search feature.

The ASCIILower and ASCIIUpper properties helps you to specify the set of characters that
are used by the auto search (incremental search) feature. If you want to make the auto
search feature case sensitive you have to use ASCIIUpper = "" . By default, the
ASCIIUpper property is =
"ABCDEFGHIJKLMNOPQRSTUVWXYZÜÉÂÄŔĹÇĘËČĎÎĚÔÖŇŰŮÁÍÓÚŃ"

method Gantt.AttachTemplate (Template as Variant)
Attaches a script to the current object, including the events, from a string, file, a safe array
of bytes.

Type Description
Template as Variant A string expression that specifies the Template to execute.

The AttachTemplate/x-script code is a simple way of calling control/object's properties,
methods/events using strings. The AttachTemplate features allows you to attach a x-script
code to the component. The AttachTemplate method executes x-script code (including
events), from a string, file or a safe array of bytes. This feature allows you to run any x-
script code for any configuration of the component /COM, /NET or /WPF. Exontrol owns the
x-script implementation in its easiest form and it does not require any VB engine or
whatever to get executed. The x-script code can be converted to several programming
languages using the eXHelper tool.

The following sample opens the Windows Internet Explorer once the user clicks the control
(/COM version):

AttachTemplate("handle Click(){ CreateObject(`internetexplorer.application`){ Visible =
True; Navigate(`https://www.exontrol.com`) } } ")

This script is equivalent with the following VB code:

Private Sub Gantt1_Click()
 With CreateObject("internetexplorer.application")
 .Visible = True
 .Navigate ("https://www.exontrol.com")
 End With
End Sub

The AttachTemplate/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>
<lines> := <line>[<eol> <lines>] | <block>
<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]
<eol> := ";" | "\r\n"
<line> := <dim> | <createobject> | <call> | <set> | <comment> | <handle>[<eol>]{[<eol>]
<lines>[<eol>]}[<eol>]
<dim> := "DIM" <variables>
<variables> := <variable> [, <variables>]

<variable> := "ME" | <identifier>
<createobject> := "CREATEOBJECT(`"<type>"`)"
<call> := <variable> | <property> | <variable>"."<property> | <createobject>"."<property>
<property> := [<property>"."]<identifier>["("<parameters>")"]
<set> := <call> "=" <value>
<property> := <identifier> | <identifier>"("[<parameters>]")"
<parameters> := <value> [","<parameters>]
<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> | <call>
<boolean> := "TRUE" | "FALSE"
<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit16> := <digit10> | A | B | C | D | E | F
<integer> := <digit10>[<integer>]
<hexa> := <digit16>[<hexa>]
<color> := "RGB("<integer>","<integer>","<integer>")"
<date> := "#"<integer>"/"<integer>"/"<integer>" "[<integer>":"<integer>":"<integer>"]"#"
<string> := '"'<text>'"' | "`"<text>"`"
<comment> := "'"<text>
<handle> := "handle " <event>
<event> := <identifier>"("[<eparameters>]")"
<eparameters> := <eparameter> [","<eparameters>]
<parameters> := <identifier>

where:

<identifier> indicates an identifier of the variable, property, method or event, and should
start with a letter.
<type> indicates the type the CreateObject function creates, as a progID for /COM version
or the assembly-qualified name of the type to create for /NET or /WPF version
<text> any string of characters

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character.

The advantage of the AttachTemplate relative to Template / ExecuteTemplate is that the
AttachTemplate can add handlers to the control events.

property Gantt.AutoDrag as AutoDragEnum
Gets or sets a value that indicates the way the component supports the AutoDrag feature.

Type Description

AutoDragEnum
An AutoDragEnum expression that specifies what the
control does once the user clicks and start dragging an
item.

By default, the AutoDrag property is exAutoDragNone(0). The AutoDrag feature indicates
what the control does when the user clicks an item and starts dragging it. For instance,
using the AutoDrag feature you can automatically lets the user to drag and drop the data to
OLE compliant applications like Microsoft Word, Excel and so on. The SingleSel property
specifies whether the control supports single or multiple selection. The AutoDrag feature
adds automatically Drag and Drop, but you can still use the OLEDropMode property to
handle the OLE Drag and Drop event for your custom action. If you need moving a bar from
an item to another, you should use the Items.ItemBar(exBarCanMoveToAnother) property
on True.

The drag and drop operation starts:

once the user clicks and moves the cursor up or down, if the SingleSel property is
True.
once the user clicks, and waits for a short period of time, if SingleSel property is False
(multiple items in selection is allowed). In this case, you can drag and drop any item
that is not selected, or a contiguously selection

Once the drag and drop operation starts the mouse pointer is changed to MOVE cursor if
the operation is possible, else if the Drag and Drop operation fails or if it is not possible, the
mouse pointer is changed to NO cursor.

If using the AutoDrag property on:

exAutoDragPosition
exAutoDragPositionKeepIndent
exAutoDragPositionAny

the Drag and Drop starts only:

item from cursor is a selectable (SelectableItem property on True, default) and
sortable item (SortableItem property on True, default).
if multiple items are selected, the selection is contiguously.

Use the AutoDrag property to allow Drag and Drop operations like follows:

Ability to change the column or row position without having to manually add the OLE
drag and drop events
Ability to drag and drop the data as text, to your favorite Office applications, like
Word, Excel, or any other OLE-Automation compliant
Ability to drag and drop the data as it looks, to your favorite Office applications, like
Word, Excel, or any other OLE-Automation compliant
Ability to smoothly scroll the control's content moving the mouse cursor up or down
and more ...

https://www.youtube.com/watch?v=crG33cuKwC4
https://www.youtube.com/watch?v=4uA7ZI0W3Sk
https://www.youtube.com/watch?v=vunKapyV34g
https://www.youtube.com/watch?v=LIu7eo86GP8

property Gantt.AutoSearch as Boolean
Enables or disables the auto search feature.

Type Description

Boolean A boolean expression that indicates whether the auto
search feature is enabled or disabled.

By default, the AutoSearch property is True. The auto-search feature is is commonly known
as incremental search. An incremental search begins searching as soon as you type the
first character of the search string. As you type in the search string, the control selects the
item (and highlight the portion of the string that match where the string (as you have typed
it so far) would be found. The control supports 'starts with' or 'contains' incremental search
as described in the AutoSearch property of the Column object. Use the ExpandOnSearch
property to expand items while user types characters in the control. Use the
MarkSearchColumn property to specify whether the control draws a rectangle around the
searching column.

The control highlights the characters as the user types them:

property Gantt.BackColor as Color

Retrieves or sets a value that indicates the control's background color.

Type Description

Color A color expression that indicates the control's background
color.

The ExGantt ActiveX Control can group the columns into two categories: locked and
unlocked. The Locked category contains all the columns that are fixed to the left area of the
client area. These columns cannot be scrolled horizontally. Use the CountLockedColumns to
specify the number of locked columns. The unlocked are contains the columns that can be
scrolled horizontally. To change the background color of the control's locked area use
BackColorLock property. Use the SelBackColor property to specify the background color
for selected items. Use the CellBackColor property to assign a different background color
for a specified cell. Use the ItemBackColor property to specify the item's background color.
Use the BackColorAlternate property to specify the background color used to display
alternate items in the control. Use the Picture property to assign a picture to the control's
background. Use the BackColor property to specify the chart's background color.

property Gantt.BackColorAlternate as Color
Specifies the background color used to display alternate items in the control.

Type Description

Color A color expression that indicates the alternate background
color.

By default, the control's BackColorAlternate property is zero. The control ignores the
BackColorAlternate property if it is 0 (zero). Use the BackColor property to specify the
control's background color. Use the SelBackColor property to specify the selection
background color.

property Gantt.BackColorHeader as Color
Specifies the header's background color.

Type Description

Color A color expression that indicates the background color for
the control's header.

Use the BackColorHeader and ForeColorHeader properties to customize the control's
header. Use the Def(exHeaderBackColor) property to change the background color or the
visual appearance for a particular column, in the header area. If the
Def(exHeaderForeColor) property is not zero, it defines the foreground color to paint the
column's caption in the header area. Use the HeaderVisible property to hide the control's
header. Use the BackColor property to specify the control's background color. Use the
BackColorLevelHeader property to specify the background color of the header when it
displays multiple levels. Use the BackColorSortBar property to specify the background color
of the control's sort bar.

The following VB sample changes the visual appearance for the control's header. Shortly,
we need to add a skin to the Appearance object using the Add method, and we need to set
the last 7 bits in the BackColorHeader property to indicates the index of the skin that we
want to use. The sample applies the " " to the control' header bar:

With Gantt1
 With .VisualAppearance
 .Add &H24, App.Path + "\header.ebn"
 End With
 .BackColorLevelHeader = RGB(255, 255, 255)
 .BackColorHeader = &H24000000
End With

The following C++ sample changes the visual aspect of the control' header bar:

#include "Appearance.h"
m_gantt.GetVisualAppearance().Add(0x24,
COleVariant(_T("D:\\Temp\\ExGantt.Help\\header.ebn")));
m_gantt.SetBackColorHeader(0x24000000);

The following VB.NET sample changes the visual aspect of the control' header bar:

With AxGantt1
 With .VisualAppearance
 .Add(&H24, "D:\Temp\ExGantt.Help\header.ebn")
 End With
 .Template = "BackColorHeader = 603979776"
End With

The 603979776 value indicates the &H24000000 in hexadecimal.

The following C# sample changes the visual aspect of the control' header bar:

axGantt1.VisualAppearance.Add(0x24, "D:\\Temp\\ExGantt.Help\\header.ebn");
axGantt1.Template = "BackColorHeader = 603979776";

The 603979776 value indicates the 0x24000000 in hexadecimal.

The following VFP sample changes the visual aspect of the control' header bar:

With thisform.Gantt1
 With .VisualAppearance
 .Add(36, "D:\Temp\ExGantt.Help\header.ebn")
 EndWith
 .BackColorHeader = 603979776
EndWith

property Gantt.BackColorLevelHeader as Color
Specifies the multiple levels header's background color.

Type Description

Color A color expression that indicates the background color of
the control's header bar.

Use the BackColorHeader and ForeColorHeader properties to define colors used to paint
the control's header bar. Use the BackColorLevelHeader property to specify the
background color of the control's header bar when multiple levels are displayed. Use the
LevelKey property to display the control's header bar using multiple levels. If the control
displays the header bar using multiple levels the HeaderHeight property gets the height in
pixels of a single level in the header bar. The control's header displays multiple levels if
there are two or more neighbor columns with the same non empty level key.

property Gantt.BackColorLock as Color

Retrieves or sets a value that indicates the control's background color for the locked area.

Type Description

Color A boolean expression that indicates the control's
background color for the locked area.

The ExGantt ActiveX Control can group the columns into two categories: locked and
unlocked. The Locked category contains all the columns that are fixed to the left area of the
client area. These columns cannot be scrolled horizontally. Use the CountLockedColumns to
specify the number of locked columns. The unlocked are contains the columns that can be
scrolled horizontally. To change the background color of the control's unlocked area use
BackColor property

property Gantt.BackColorSortBar as Color
Retrieves or sets a value that indicates the sort bar's background color.

Type Description

Color A color expression that indicates the background color of
the sort bar.

Use the BackColorSortBar property to specify the background color of the control's sort
bar. Use the SortBarVisible property to show the control's sort bar. Use the
BackColorSortBarCaption property to specify the background color of the caption of the
sort bar. The caption of the sort bar is visible, if there are no columns in the sort bar. Use
the SortBarCaption property to specify the caption of the sort bar. Use the
ForeColorSortBar property to specify the foreground color of the control's sort bar. Use the
BackColor property to specify the control's background color. Use the BackColorHeader
property to specify the background color of the control's header bar. Use the
BackColorLevelHeader property to specify the background color of the control's header bar
when multiple levels are displayed.

property Gantt.BackColorSortBarCaption as Color
Returns or sets a value that indicates the caption's background color in the control's sort
bar.

Type Description

Color A color expression that indicates the caption's background
color in the control's sort bar.

Use the SortBarCaption property to specify the caption of the sort bar, when the control's
sort bar contains no columns. Use the BackColorSortBar property to specify the
background color of the control's sort bar. Use the ForeColorSortBar property to specify
the foreground color of the caption in the control's sort bar.

property Gantt.Background(Part as BackgroundPartEnum) as Color
Returns or sets a value that indicates the background color for parts in the control.

Type Description
Part as
BackgroundPartEnum

A BackgroundPartEnum expression that indicates a part in
the control.

Color

A Color expression that indicates the background color for
a specified part. The last 7 bits in the high significant byte
of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

The Background property specifies a background color or a visual appearance for specific
parts in the control. If the Background property is 0, the control draws the part as default.
Use the Add method to add new skins to the control. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the BeginUpdate and EndUpdate methods to maintain performance while init the control.
Use the Refresh method to refresh the control.

The following VB sample changes the visual appearance for the "drop down" filter button.
The sample applies the skin " " to the "drop down" filter buttons:

With Gantt1
 With .VisualAppearance
 .Add &H1, App.Path + "\fbardd.ebn"
 End With
 .Background(exHeaderFilterBarButton) = &H1000000
End With

The following C++ sample changes the visual appearance for the "drop down" filter button:

#include "Appearance.h"
m_gantt.GetVisualAppearance().Add(0x01,
COleVariant(_T("D:\\Temp\\ExGantt.Help\\fbardd.ebn")));

m_gantt.SetBackground(0 /*exHeaderFilterBarButton*/, 0x1000000);

The following VB.NET sample changes the visual appearance for the "drop down" filter
button:

With AxGantt1
 With .VisualAppearance
 .Add(&H1, "D:\Temp\ExGantt.Help\fbardd.ebn")
 End With
 .set_Background(EXGANTTLib.BackgroundPartEnum.exHeaderFilterBarButton,
&H1000000)
End With

The following C# sample changes the visual appearance for the "drop down" filter button:

axGantt1.VisualAppearance.Add(0x1, "D:\\Temp\\ExGantt.Help\\fbardd.ebn");
axGantt1.set_Background(EXGANTTLib.BackgroundPartEnum.exHeaderFilterBarButton,
0x1000000);

The following VFP sample changes the visual appearance for the "drop down" filter button:

With thisform.Gantt1
 With .VisualAppearance
 .Add(1, "D:\Temp\ExGantt.Help\fbardd.ebn")
 EndWith
 .Object.Background(0) = 16777216
EndWith

The 16777216 value is the 0x1000000 value in hexadecimal.

method Gantt.BeginUpdate ()

Maintains performance when items are added to the control one at a time.

Type Description

This method prevents the control from painting until the EndUpdate method is called. The
BeginUpdate and EndUpdate methods increases the speed of loading your items, by
preventing painting the control when it suffers any change. Once that BeginUpdate method
was called, you have to make sure that EndUpdate method will be called too.

The following VB sample prevents painting the control while adding data from a database:

Set rs = CreateObject("ADODB.Recordset")
rs.Open "Orders", "Provider=Microsoft.Jet.OLEDB.3.51;Data Source= D:\Program
Files\Microsoft Visual Studio\VB98\NWIND.MDB", 3 ' Opens the table using static mode

Gantt1.BeginUpdate
For Each f In rs.Fields
 Gantt1.Columns.Add f.Name
Next
Gantt1.PutItems rs.GetRows()
Gantt1.EndUpdate

The following C++ sample prevents refreshing the control while adding columns and items
from an ADODB recordset:

#include "Items.h"
#include "Columns.h"
#include "Column.h"

#pragma warning(disable : 4146)
#import <msado15.dll> rename ("EOF", "adoEOF")
using namespace ADODB;

_RecordsetPtr spRecordset;
if (SUCCEEDED(spRecordset.CreateInstance("ADODB.Recordset")))
{
 // Builds the connection string.
 CString strTableName = "Employees", strConnection =

"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=";
 CString strPath = "D:\\Program Files\\Microsoft Visual Studio\\VB98\\NWIND.MDB";
 strConnection += strPath;
 try
 {
 // Loads the table
 if (SUCCEEDED(spRecordset->Open(_variant_t((LPCTSTR)strTableName),
_variant_t((LPCTSTR)strConnection), adOpenStatic, adLockPessimistic, NULL)))
 {
 m_gantt.BeginUpdate();
 m_gantt.SetColumnAutoResize(FALSE);
 CColumns columns = m_gantt.GetColumns();
 long nCount = spRecordset->Fields->Count;
 if (nCount > 0)
 {
 // Adds the columns
 for (long i = 0 ; i < nCount; i++)
 columns.Add(spRecordset->Fields->Item[i]->Name);
 CItems items = m_gantt.GetItems();
 // Adds the items
 while (!spRecordset->adoEOF)
 {
 long j = 0;
 _variant_t vtI(items.AddItem(spRecordset->Fields->Item[j]->Value));
 for (++j ; j < nCount; j++)
 items.SetCellCaption(vtI, _variant_t(j), spRecordset->Fields->Item[j]-
>Value);
 spRecordset->MoveNext();
 }
 }
 m_gantt.EndUpdate();
 }
 }
 catch (_com_error& e)
 {
 AfxMessageBox(e.Description());
 }

}

The sample adds a column for each field in the recordset, and add a new items for each
record. You can use the DataSource property to bind a recordset to the control. The
#import statement imports definitions for ADODB type library, that's used to fill the control.

The following VB.NET sample prevents refreshing the control while adding columns and
items:

With AxGantt1
 .BeginUpdate()
 With .Columns
 .Add("Column 1")
 .Add("Column 2")
 End With
 With .Items
 Dim iNewItem As Integer
 iNewItem = .AddItem("Item 1")
 .CellCaption(iNewItem, 1) = "SubItem 1"
 iNewItem = .AddItem("Item 2")
 .CellCaption(iNewItem, 1) = "SubItem 2"
 End With
 .EndUpdate()
End With

The following C# sample prevents refreshing the control while adding columns and items:

axGantt1.BeginUpdate();
EXGANTTLib.Columns columns =axGantt1.Columns;
columns.Add("Column 1");
columns.Add("Column 2");
EXGANTTLib.Items items = axGantt1.Items;
int iNewItem = items.AddItem("Item 1");
items.set_CellCaption(iNewItem, 1, "SubItem 1");
items.InsertItem(iNewItem, "", "Child 1");
iNewItem = items.AddItem("Item 2");
items.set_CellCaption(iNewItem, 1, "SubItem 2");
axGantt1.EndUpdate();

The following VFP sample prevents refreshing the control while adding new columns and
items:

thisform.Gantt1.BeginUpdate()
with thisform.Gantt1.Columns
 .Add("Column 1")
 .Add("Column 2")
endwith

with thisform.Gantt1.Items
 .DefaultItem = .AddItem("Item 1")
 .CellCaption(0, 1) = "SubItem 1"
 .DefaultItem = .InsertItem(.DefaultItem,"","Child 1")
 .CellCaption(0, 1) = "SubChild 1"
endwith
thisform.Gantt1.EndUpdate()

property Gantt.BorderStyle as Long

Retrieves or sets the border style of the control.

Type Description

Long A long expression that indicates the border style of the
control.

Use the BorderStyle property to hide the control's border.

property Gantt.Chart as Chart
Gets the chart object.

Type Description
Chart A Chart object that indicates the control's chart area.

Use the Chart object to access all properties and methods related to the Gantt chart. Use
the Items property to access the items in the control. Use the Columns property to access
the control's Columns collection. Use the AddBar method to assign a bar to an item. Use
the LevelCount property to specify the number of levels being displayed in the chart's
header. Use the Level property to access the level in the chart area. Use the Bars property
to access the collection of control's bars. Use the HeaderVisible property to show or hide
the control's header. Use the SortBarVisible property to specify whether the control's sort
bar is visible or it is hidden. Use the PaneWidth property to specify the width of the control's
area or chart's area.

property Gantt.ChartOnLeft as Boolean
Specifies whether the chart area is displayed on the left or right side of the component.

Type Description

Boolean A booleane expression that specifies whether the chart is
displayed on left or right side of the control.

By default, the ChartOnLeft property is False, so the chart area is displayed on the right
side of the control. The RightToLeft property flips the order of the control's elements from
right to left. Use the PaneWidth property to specify the width of the panels. The
OnResizeControl property specifies which panel is getting resized when the control is
resized. Use the Chart property to access the chart's properties and methods.

property Gantt.CheckImage(State as CheckStateEnum) as Long
Retrieves or sets a value that indicates the image used by cells of checkbox type.

Type Description

State as CheckStateEnum
A CheckStateEnum expression that indicates the check's
state: 0 means unchecked, 1 means checked, and 2
means partial checked.

Long

A long expression that indicates the index of image used to
paint the cells of check box types. The last 7 bits in the
high significant byte of the long expression indicates the
identifier of the skin being used to paint the object. Use the
Add method to add new skins to the control. If you need
to remove the skin appearance from a part of the control
you need to reset the last 7 bits in the high significant byte
of the color being applied to the part.

Use CheckImage and RadioImage properties to define icons for radio and check box cells.
The CheckImage property defines the index of the icon being used by check boxes. Use the
CellHasCheckBox property to assign a checkbox to a cell. Use the CellHasRadioButton
property to assign a radio button to a cell. Use the CellImage or CellImages property to
assign one or multiple icons to a cell. Use the CellPicture property to assign a picture to a
cell. Use the CellStateChanged event to notify your application when the cell's state is
changed. Use the PartialCheck property to allow partial check feature within the column.
The ImageSize property defines the size (width/height) of the icons within the control's
Images collection.

method Gantt.ClearFilter ()
Clears the filter.

Type Description

The method clears the Filter and FilterType properties for all columns in the control, excepts
for exNumeric and exCheck values where only the Filter property is set on empty. The
ApplyFilter method is automatically called when ClearFilter method is invoked. Use the
FilterBarHeight property to hide the control's filter bar. Use the FilterBarCaption property to
specify the caption in the control's filter bar. Use the Description property to change
predefined strings in the control's filter bar. Use the FilterCriteria property to filter items
using the AND, OR and NOT operators. Use the ShowFilter method to show
programmatically the column's drop down filter window.

property Gantt.ColumnAutoResize as Boolean

Returns or sets a value indicating whether the control will automatically size its visible
columns to fit on the control's client width.

Type Description

Boolean
A boolean expression indicating whether the control will
automatically size its visible columns to fit on the control's
client width.

Use the ColumnAutoResize property to fit all your columns in the client area. Use the Width
property to specify the column's width. Use the SortBarColumnWidth property to specify the
column's head in the control's sort bar. By default, the ColumnAutoResize property is True.

property Gantt.ColumnFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Long
Retrieves the column from point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Long

A long expression that indicates the column's index, or -1 if
there is no column at the point. The property gets a
negative value less or equal with 256, if the point is in the
area between columns where the user can resize the
column.

Use the ColumnFromPoint property to access the column from the point specified by the
{X,Y} coordinates. The ColumnFromPoint property gets the index of the column when the
cursor hovers the control's header bar. The X and Y coordinates are expressed in client
coordinates, so a conversion must be done in case your coordinates are relative to the
screen or to other window. If the X parameter is -1 and Y parameter is -1 the
ItemFromPoint property determines the index of the column from the cursor. Use the
ItemFromPoint property to retrieve the item from cursor. Use the DateFromPoint property
to specify the date from the cursor. The control fires the ColumnClick event when user
clicks a column. Use the SortOnClick property to specify the operation that control odes
when user clicks the control's header. Use the LevelFromPoint property to retrieve the index
of the level from the cursor.

The following VB sample prints the caption of the column from the point:

Private Sub Gantt1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With Gantt1
 Dim c As Long
 c = .ColumnFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If (c >= 0) Then
 With .Columns(c)
 Debug.Print .Caption
 End With

 End If
 End With
End Sub

The following C++ sample prints the caption of the column from the point:

#include "Columns.h"
#include "Column.h"
void OnMouseMoveGantt1(short Button, short Shift, long X, long Y)
{
 long nColIndex = m_gantt.GetColumnFromPoint(X, Y);
 if (nColIndex >= 0)
 {
 CColumn column = m_gantt.GetColumns().GetItem(COleVariant(nColIndex));
 OutputDebugString(column.GetCaption());
 }
}

The following VB.NET sample prints the caption of the column from the point:

Private Sub AxGantt1_MouseMoveEvent(ByVal sender As Object, ByVal e As
AxEXGANTTLib._IGanttEvents_MouseMoveEvent) Handles AxGantt1.MouseMoveEvent
 With AxGantt1
 Dim i As Integer = .get_ColumnFromPoint(e.x, e.y)
 If (i >= 0) Then
 With .Columns(i)
 Debug.WriteLine(.Caption)
 End With
 End If
 End With
End Sub

The following C# sample prints the caption of the column from the point:

private void axGantt1_MouseMoveEvent(object sender,
AxEXGANTTLib._IGanttEvents_MouseMoveEvent e)
{
 int i = axGantt1.get_ColumnFromPoint(e.x,e.y);
 if (i >= 0)

 System.Diagnostics.Debug.WriteLine(axGantt1.Columns[i].Caption);
}

The following VFP sample prints the caption of the column from the point:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.Gantt1
 i = .ColumnFromPoint(x, y)
 if (i >= 0)
 wait window nowait .Columns(i).Caption
 endif
endwith

property Gantt.Columns as Columns

Retrieves the control's column collection.

Type Description

Columns A Columns object that holds the control's columns
collection.

Use the Columns property to access the Columns collection. Use the Columns collection to
add, remove or change columns. Use the Add method to add a new column to the control.
Use the Items property to access the control's items collection. Use the AddItem,
InsertItem, InsertControlItem or PutItems method to add new items to the control. Use the
DataSource property to add new columns and items to the control. Adding new items fails if
the control has no columns. Use the Chart object to access all properties and methods
related to the Gantt chart. Use the AddBar method to add bars to the item. Use the
PaneWidth property to specify the width of the chart. Use the LevelCount property to
specify the number of levels being displayed in the chart's header. Use the Level property to
access the level in the chart area.

property Gantt.ColumnsAllowSizing as Boolean
Retrieves or sets a value that indicates whether a user can resize columns at run-time.

Type Description

Boolean A Boolean expression that indicates whether a user can
resize columns at run-time.

By default, the ColumnsAllowSizing property is False. A column can be resized only if the
AllowSizing property is True. Use the DrawGridLines property to show or hide the control's
Gantt lines. Use the HeaderVisible property to show or hide the control's header bar. The
HeaderAppearance property specifies the appearance of the column in the control's header
bar.

property Gantt.ColumnsFloatBarSortOrder as SortOrderEnum
Specifies the sorting order for the columns being shown in the control's columns floating
panel.

Type Description

SortOrderEnum A SortOrderEnum expression that specifies how the
columns in the columns floating panel are displayed.

By default, the ColumnsFloatBarSortOrder property is SortNone. Use the
ColumnsFloatBarSortOrder property to sort the columns to be displayed in the columns
floating panel. The ColumnsFloatBarVisible property shows or hides the columns floating
panel.

property Gantt.ColumnsFloatBarVisible as
ColumnsFloatBarVisibleEnum
Retrieves or sets a value that indicates whether the the columns float bar is visible or
hidden.

Type Description

ColumnsFloatBarVisibleEnum
A ColumnsFloatBarVisibleEnum expression that specifies
whether the control's Columns float-bar is visible or
hidden.

The ColumnsFloatBarVisible property indicates whether the control displays a floating panel
that shows the hidden columns, so the user can drag and drop columns on order to show or
hide the columns from the control. Use the ColumnsFloatBarSortOrder property to sort the
columns to be displayed in the columns floating panel.

The floating panel displays the following columns:

hidden columns, so the Visible property is False.
drag able column, so the AllowDragging property is True.

In other words, the AllowDragging property may be used to choose if a hidden column is
displayed in the floating bar. The control fires the LayoutChanged event as soon as a new
column is drop on the control's header, sort or group-by bar. The
Description(exColumnsFloatBar) property indicates the text to be displayed on the caption
of the floating bar. The Background(exColumnsFloatAppearance) property specifies the
visual appearance of the floating panel's frame.

The following screen shot shows the control's Columns float bar:

The following movies show how ColumnsFloatBarVisible works:

 The ColumnsFloatBarVisible property is used to show or hide columns by drag and

https://www.youtube.com/watch?v=zU831iSGEqA

drop

 The movie shows how you can customize the visual appearance of the control's
Columns floating bar

https://www.youtube.com/watch?v=mhggutNHzuw

property Gantt.ConditionalFormats as ConditionalFormats
Retrieves the conditional formatting collection.

Type Description

ConditionalFormats A ConditionalFormats object that indicates the control's
ConditionalFormats collection.

The conditional formatting feature allows you to apply formats to a cell or range of cells,
and have that formatting change depending on the value of the cell or the value of a
formula. Use the Add method to format cells or items based on a formula. Use the Refresh
method to refresh the control, if a change occurs in the conditional format collection. Use
the CellCaption property indicates the cell's caption or value.

The conditional format feature may change the cells and items as follows:

Bold property. Bolds the cell or items
Italic property. Indicates whether the cells or items should appear in italic.
StrikeOut property. Indicates whether the cells or items should appear in strikeout.
Underline property. Underlines the cells or items
Font property. Changes the font for cells or items.
BackColor property. Changes the background color for cells or items, supports skins
as well.
ForeColor property. Changes the foreground color for cells or items.

The conditional format feature may change the bars as follows:

The BarColor property specifies the color to be applied to bars if the conditional
expression is accomplished.
The BarOverviewColor property specifies the color to be applied to bars, in the
overview portion of the control, if the conditional expression is accomplished.

The ApplyTo property specifies whether the ConditionalFormat object is applied to items or
to a column. Use the ApplyToBars property to specify the list of bars that the current format
is applied to.

The following screen shot shows different colors applied to different items, using the
ConditionalFormat feature:

property Gantt.ContinueColumnScroll as Boolean

Retrieves or sets a value indicating whether the control will automatically scroll the visible
columns by pixel or by column width.

Type Description

Boolean
A boolean expression indicating whether the control will
automatically scroll the visible columns by pixel or by
column width.

By default, the columns are scrolled pixel by pixel. Use the ContinueColumnScroll to scroll
horizontally the control column by column. Use the EnsureVisibleColumn property to ensure
that a visible column fits the control's client area. Use the Visible property to hide a column.
The ScrollBySingleLine property retrieves or sets a value that indicates whether the control
scrolls the lines to the end, item by item. Use the ScrollBars property to hide the control's
scroll bars. Use the Scroll method to programmatically scroll the control's content.

method Gantt.Copy ()
Copies the control's content to the clipboard, in the EMF format.

Type Description

Use the Copy method to copy the control's content to the clipboard, in Enhanced Metafile
(EMF) format. The Enhanced Metafile format is a 32-bit format that can contain both vector
information and bitmap information. Use the CopyTo method to copy the control's content to
EMF/BMP/GIF/PNG/JPEG or PDF files.

This format is an improvement over the Windows Metafile Format and contains extended
features, such as the following:

 Built-in scaling information
 Built-in descriptions that are saved with the file
 Improvements in color palettes and device independence

The EMF format is an extensible format, which means that a programmer can modify the
original specification to add functionality or to meet specific needs. You can paste this
format to Microsoft Word, Excel, Front Page, Microsoft Image Composer and any
application that know to handle EMF formats.

The Copy method copies the control's header if it's visible, and all visible items. The items
are not expanded, they are listed in the order as they are displayed on the screen. Use the
HeaderVisible property to show or hide the control's header. Use the ExpandItem property
to expand or collapse an item. The background of the copied control is transparent.

The following VB sample saves the control's content to a EMF file, when user presses the
CTRL+C key:

Private Sub Gantt1_KeyDown(KeyCode As Integer, Shift As Integer)
 If (KeyCode = vbKeyC) And Shift = 2 Then
 Clipboard.Clear
 Gantt1.Copy
 SavePicture Clipboard.GetData(), App.Path & "\test.emf"
 End If
End Sub

Now, you can open your MS Windows Word application, and you can insert the file using
the Insert\Picture\From File menu, or by pressing the CTRL+V key to paste the clipboard.

The following C++ function saves the clipboard's data (EMF format) to a picture file:

BOOL saveEMFtoFile(LPCTSTR szFileName)
{
 BOOL bResult = FALSE;
 if (::OpenClipboard(NULL))
 {
 CComPtr spPicture;
 PICTDESC pictDesc = {0};
 pictDesc.cbSizeofstruct = sizeof(pictDesc);
 pictDesc.emf.hemf = (HENHMETAFILE)GetClipboardData(CF_ENHMETAFILE);
 pictDesc.picType = PICTYPE_ENHMETAFILE;
 if (SUCCEEDED(OleCreatePictureIndirect(&pictDesc;, IID_IPicture, FALSE,
(LPVOID*)&spPicture;)))
 {
 HGLOBAL hGlobal = NULL;
 CComPtr spStream;
 if (SUCCEEDED(CreateStreamOnHGlobal(hGlobal = GlobalAlloc(GPTR, 0), TRUE,
&spStream;)))
 {
 long dwSize = NULL;
 if (SUCCEEDED(spPicture->SaveAsFile(spStream, TRUE, &dwSize;)))
 {
 USES_CONVERSION;
 HANDLE hFile = CreateFile(szFileName, GENERIC_WRITE, NULL, NULL,
CREATE_ALWAYS, NULL, NULL);
 if (hFile != INVALID_HANDLE_VALUE)
 {
 LARGE_INTEGER l = {NULL};
 spStream->Seek(l, STREAM_SEEK_SET, NULL);
 long dwWritten = NULL;
 while (dwWritten < dwSize)
 {
 unsigned long dwRead = NULL;
 BYTE b[10240] = {0};
 spStream->Read(&b;, 10240, &dwRead;);
 DWORD dwBWritten = NULL;
 WriteFile(hFile, b, dwRead, &dwBWritten;, NULL);
 dwWritten += dwBWritten;

 }
 CloseHandle(hFile);
 bResult = TRUE;
 }
 }
 }
 }
 CloseClipboard();
 }
 return bResult;
}

The following VB.NET sample copies the control's content to the clipboard (open the
mspaint application and paste the clipboard, after running the following code):

Clipboard.Clear()
With AxGantt1
 .Copy()
End With

The following C# sample copies the control's content to a file (open the mspaint application
and paste the clipboard, after running the following code):

Clipboard.Clear;
axGantt1.Copy();

property Gantt.CopyTo (File as String) as Variant
Exports the control's view to an EMF file.

Type Description

File as String

A String expression that indicates the name of the file to
be saved. If present, the CopyTo property retrieves True,
if the operation succeeded, else False it is failed. If the
File parameter is missing or empty, the CopyTo property
retrieves an one dimension safe array of bytes that
contains the EMF content.

If the File parameter is not empty, the extension (
characters after last dot) determines the graphical/
format of the file to be saved as follows:

*.bmp *.dib *.rle, saves the control's content in BMP
format.
*.jpg *.jpe *.jpeg *.jfif, saves the control's content in
JPEG format.
*.gif, , saves the control's content in GIF format.
*.tif *.tiff, saves the control's content in TIFF format.
*.png, saves the control's content in PNG format.
*.pdf, saves the control's content to PDF format. The
File argument may carry up to 4 parameters
separated by the | character in the following order:
filename.pdf | paper size | margins | options. In
other words, you can specify the file name of the PDF
document, the paper size, the margins and options to
build the PDF document. By default, the paper size is
210 mm × 297 mm (A4 format) and the margins are
12.7 mm 12.7 mm 12.7 mm 12.7 mm. The units for
the paper size and margins can be pt for PostScript
Points, mm for Millimeters, cm for Centimeters, in
for Inches and px for pixels. If PostScript Points are
used if unit is missing. For instance, 8.27 in x 11.69 in,
indicates the size of the paper in inches. Currently, the
options can be single, which indicates that the
control's content is exported to a single PDF page.
For instance, the CopyTo("shot.pdf|33.11 in x 46.81
in|0 0 0 0|single") exports the control's content to an
A0 single PDF page, with no margins.
*.emf or any other extension determines the control to

save the control's content in EMF format.

For instance, the CopyTo("c:\temp\snapshot.png")
property saves the control's content in PNG format to
snapshot.png file.

Variant
A boolean expression that indicates whether the File was
successful saved, or a one dimension safe array of bytes,
if the File parameter is empty string.

The CopyTo method copies/exports the control's view to BMP, PNG, JPG, GIF, TIFF, PDF
or EMF graphical files, including no scroll bars. Use the Copy method to copy the control's
content to the clipboard.

The BMP file format, also known as bitmap image file or device independent bitmap
(DIB) file format or simply a bitmap, is a raster graphics image file format used to
store bitmap digital images, independently of the display device (such as a graphics
adapter)
The JPEG file format (seen most often with the .jpg extension) is a commonly used
method of lossy compression for digital images, particularly for those images produced
by digital photography.
The GIF (Graphics Interchange Format) is a bitmap image format that was introduced
by CompuServe in 1987 and has since come into widespread usage on the World Wide
Web due to its wide support and portability.
The TIFF (Tagged Image File Format) is a computer file format for storing raster
graphics images, popular among graphic artists, the publishing industry, and both
amateur and professional photographers in general.
The PNG (Portable Network Graphics) is a raster graphics file format that supports
lossless data compression. PNG was created as an improved, non-patented
replacement for Graphics Interchange Format (GIF), and is the most used lossless
image compression format on the Internet
The PDF (Portable Document Format) is a file format used to present documents in a
manner independent of application software, hardware, and operating systems. Each
PDF file encapsulates a complete description of a fixed-layout flat document, including
the text, fonts, graphics, and other information needed to display it.
The EMF (Enhanced Metafile Format) is a 32-bit format that can contain both vector
information and bitmap information. This format is an improvement over the Windows
Metafile Format and contains extended features, such as the following

 Built-in scaling information
 Built-in descriptions that are saved with the file
 Improvements in color palettes and device independence

The EMF format is an extensible format, which means that a programmer can modify
the original specification to add functionality or to meet specific needs. You can paste
this format to Microsoft Word, Excel, Front Page, Microsoft Image Composer and any
application that know to handle EMF formats.

 The following VB sample saves the control's content to a file:

If (Gantt1.CopyTo("c:\temp\test.emf")) Then
 MsgBox "test.emf file created, open it using the mspaint editor."
End If

The following VB sample prints the EMF content (as bytes, File parameter is empty string
):

Dim i As Variant
For Each i In Gantt1.CopyTo("")
 Debug.Print i
Next

property Gantt.CountLockedColumns as Long

Retrieves or sets a value indicating the number of locked columns. A locked column is not
scrollable.

Type Description

Long A long expression indicating the number of locked
columns.

The ExGantt ActiveX Control can group the columns into two categories: locked and
unlocked. The Locked category contains all the columns that are fixed to the left area of the
client area. These columns cannot be scrolled horizontally. Use the CountLockedColumns to
specify the number of locked columns. The unlocked are contains the columns that can be
scrolled horizontally. Use the BackColorLock property to change the control's background
color for the locked area. Use the LockedItemCount property to add or remove items
locked (fixed) to the top or bottom side of the control.

property Gantt.DataSource as Object
Retrieves or sets a value that indicates the data source for object.

Type Description
Object An ADO or DAO Recordset object used to fill data from.

The /COM version provides ADO, ADODB and DAO database support. The DataSource
property takes a recordset and add a column for each field found, and add a new item for
each record in the recordset. Use the Visible property to hide a column. Use the
CellCaption property to retrieves the value of the cell. Use the PutItems to load an array to
the control. Use the DetectAddNew property to allow adding new items to the control when
the user adds new records to the table that's linked with the control. Use the
ConditionalFormats method to apply formats to a cell or range of cells, and have that
formatting change depending on the value of the cell or the value of a formula. Use the
DefaultItemHeight property before setting a DataSource property to specify the

The /NET version provides the following methods for data binding:

DataSource, gets or sets the data source that the control is displaying data for. By
default, this property is empty object. The DataSource property can be: DataTable,
DataView, DataSet, DataViewManager, any component that implements the
IListSource interface, or any component that implements the IList interface.
DataMember, indicates a sub-list of the DataSource to show in the control. By default,
this property is "". For instance, if DataSource property is a DataSet, the DataMember
should indicates the name of the table to be loaded.
DataTaskStart, The DataTaskStart property gets or sets the specific field in the data
source to indicate the starting point of each added task. If missing or empty, no tasks
are loaded during binding. In other words, it indicates the field to use be used as the
starting point for each task in any record. This member is automatically filled with the
first DATE field from the DataSource, when it is set. This member is automatically filled
with the first DATE field from the data source (DataSource/DataMember).
DataTaskEnd, DataTaskEnd property gets or sets the specific field in the data source
to indicate the ending point of each added task. If missing or empty, no tasks are
loaded during binding. If the DataTaskEnd points to a DateTime object, it indicates the
ending date of the newly bar, else, it indicates the duration of the task to be added. If
the DataTaskEnd is equal with DataTaskBegin, a one-day task is added for each
record found, during binding. This member is automatically filled with the second DATE
field from the DataSource collection. This member can be of DATE type, which
indicates the exBarEnd property of any bar in the collection, or a DOUBLE, when it
indicates the length/duration of the bar to be added.

Click here to watch a movie on how to assign a data source to the control, in design

https://www.youtube.com/watch?v=2arnUlkpVhs

mode, for /NET assembly.

The following VB sample binds an ADO recordset to the ExGantt control:

Set rs = CreateObject("ADODB.Recordset")
rs.Open "Orders", "Provider=Microsoft.Jet.OLEDB.3.51;Data Source= D:\Program
Files\Microsoft Visual Studio\VB98\NWIND.MDB", 3 ' Opens the table using static mode

Set Gantt1.DataSource = rs

The DataSource clears the columns collection, and load the recordset to the control. Use
SetParent method to make your list a hierarchy.

The following C++ sample binds a table to the control:

#include "Items.h"
#include "Columns.h"
#include "Column.h"

#pragma warning(disable : 4146)
#import <msado15.dll> rename ("EOF", "adoEOF")
using namespace ADODB;

_RecordsetPtr spRecordset;
if (SUCCEEDED(spRecordset.CreateInstance("ADODB.Recordset")))
{
 // Builds the connection string.
 CString strTableName = "Employees", strConnection =
"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=";
 CString strPath = "D:\\Program Files\\Microsoft Visual Studio\\VB98\\NWIND.MDB";
 strConnection += strPath;
 try
 {
 // Loads the table
 if (SUCCEEDED(spRecordset->Open(_variant_t((LPCTSTR)strTableName),
_variant_t((LPCTSTR)strConnection), adOpenStatic, adLockPessimistic, NULL)))
 {
 m_gantt.BeginUpdate();
 m_gantt.SetColumnAutoResize(FALSE);

 m_gantt.SetDataSource(spRecordset);
 m_gantt.EndUpdate();
 }
 }
 catch (_com_error& e)
 {
 AfxMessageBox(e.Description());
 }
}

The #import statement imports definitions for ADODB type library, that's used to fill the
control.

property Gantt.DefaultItemHeight as Long

Retrieves or sets a value that indicates the default item height.

Type Description
Long A long expression indicates the default item height.

The DefaultItemHeight property specifies the height of the items. Changing the property
fails if the control contains already items. You can change the DefaultItemHeight property at
design time, or at runtime, before adding any new items to the Items collection. Use the
ItemHeight property to specify the height of a specified item. Use the ScrollBySingleLine
property when using the items with different heights. Use the CellSingleLine property to
specify whether the cell displays the caption using multiple lines. Use the ItemAllowSizing
property to specify whether the user can resize the item at runtime. Use the Height property
to specify the height of the bars.

property Gantt.Description(Type as DescriptionTypeEnum) as String
Changes descriptions for control objects.

Type Description
Type as
DescriptionTypeEnum

A DescriptionTypeEnum expression that indicates the part
being changed.

String A string value that indicates the part's description.

Use the Description property to customize the captions for control filter bar window. For
instance, the Description(exFilterAll) = "(Include All)" changes the "(All)" item description in
the filter bar window. Use the Description property to change the predefined strings in the
filter bar window.

property Gantt.DetectAddNew as Boolean
Specifies whether the control detects when a new record is added to the bounded record
set.

Type Description

Boolean
A boolean expression that indicates whether the control
detects when a new record is added to the bounded
recordset

The DetectAddNew property detects adding new records to a recordset. Use the
DataSource property to bound the control to a table. If the DetectAddNew property is True,
and user adds a new record to the bounded recordset, the control automatically adds a
new item to the control. The DetectAddNew property has effect only if the control is
bounded to an ADO, ADODB recordset, using the DataSource property.

property Gantt.DrawGridLines as GridLinesEnum

Retrieves or sets a value that indicates whether the grid lines are visible or hidden.

Type Description

GridLinesEnum A GridLinesEnum expression that indicates whether the
grid lines are visible or hidden.

Use the DrawGridLines property to add grid lines to the items list view. Use the
GridLineColor property to specify the color for grid lines. The GridLineStyle property to
specify the style for horizontal or/and vertical gridlines in the control. Use the LinesAtRoot
property specifies whether the control links the root items of the control. Use the HasLines
property to specify whether the control draws the link between child items to their
corresponding parent item. Use the DrawLevelSeperator property to draw lines between
levels inside the chart's header. Use the DrawTickLines property to specify whether the grid
lines between time units in the level are visible or hidden. Use the DrawGridLines property
to specify whether the control draws the grid lines in the chart's area. Use the
ColumnsAllowSizing property to allow resizing the columns, when the control's header bar is
not visible.

The following screen shot shows the control using different style for gridlines:

In conclusion, the following properties are related to the control's gridlines:

DrawGridLines specifies whether the gridlines are shown in the column/list part of the
control. The gridlines in the chart part of the control are handled by the
Chart.DrawGridLines property.
GridLineColor specifies the color to show the horizontal grid line, and vertical grid lines
for the columns/list part of the control. The color for vertical grid lines in the chart view
part is handled by the Level.GridLineColor property.
GridLineStyle specifies the style for horizontal grid lines and vertical grid lines in the
columns/list part of the control. The Level.GridLineStyle property specifies the style for
vertical grid lines in the chart area.
Chart.DrawGridLines (belongs to Chart object) indicates whether gridlines are shown in
the chart view.
Level.DrawGridLines (belongs to Level object) specifies whether the level shows
vertical gridlines in the chart part of the control.
Level.GridLineColor (belongs to Level object) indicates the color for vertical gridlines in

the chart view.
Level.GridLineStyle (belongs to Level object) specifies the style to show the vertical
gridlines in the chart part area of the control.

property Gantt.Enabled as Boolean
Enables or disables the control.

Type Description

Boolean A boolean expression that indicates whether the control is
enabled or disabled.

Use the Enabled property to disable the control. Use the ForeColor property to change the
control's foreground color. Use the BackColor property to change the control's background
color. Use the EnableItem to disable an item. Use the CellEnabled property to disable a
cell. Use the Enabled property to disable a column. Use the SelectableItem property to
specify whether an user can select an item.

method Gantt.EndUpdate ()

Resumes painting the control after painting is suspended by the BeginUpdate method.

Type Description

The BeginUpdate and EndUpdate methods increases the speed of loading your items, by
preventing painting the control when it suffers any change. Once that BeginUpdate method
was called, you have to make sure that EndUpdate method will be called too.

The following VB sample prevents painting the control while adding data from a database:

Set rs = CreateObject("ADODB.Recordset")
rs.Open "Orders", "Provider=Microsoft.Jet.OLEDB.3.51;Data Source= D:\Program
Files\Microsoft Visual Studio\VB98\NWIND.MDB", 3 ' Opens the table using static mode

Gantt1.BeginUpdate
For Each f In rs.Fields
 Gantt1.Columns.Add f.Name
Next
Gantt1.PutItems rs.GetRows()
Gantt1.EndUpdate

The following VC sample prevents refreshing the control while adding columns and items
from an ADODB recordset:

#include "Items.h"
#include "Columns.h"
#include "Column.h"

#pragma warning(disable : 4146)
#import <msado15.dll> rename ("EOF", "adoEOF")
using namespace ADODB;

_RecordsetPtr spRecordset;
if (SUCCEEDED(spRecordset.CreateInstance("ADODB.Recordset")))
{
 // Builds the connection string.
 CString strTableName = "Employees", strConnection =

"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=";
 CString strPath = "D:\\Program Files\\Microsoft Visual Studio\\VB98\\NWIND.MDB";
 strConnection += strPath;
 try
 {
 // Loads the table
 if (SUCCEEDED(spRecordset->Open(_variant_t((LPCTSTR)strTableName),
_variant_t((LPCTSTR)strConnection), adOpenStatic, adLockPessimistic, NULL)))
 {
 m_gantt.BeginUpdate();
 m_gantt.SetColumnAutoResize(FALSE);
 CColumns columns = m_gantt.GetColumns();
 long nCount = spRecordset->Fields->Count;
 if (nCount > 0)
 {
 // Adds the columns
 for (long i = 0 ; i < nCount; i++)
 columns.Add(spRecordset->Fields->Item[i]->Name);
 CItems items = m_gantt.GetItems();
 // Adds the items
 while (!spRecordset->adoEOF)
 {
 long j = 0;
 _variant_t vtI(items.AddItem(spRecordset->Fields->Item[j]->Value));
 for (++j ; j < nCount; j++)
 items.SetCellCaption(vtI, _variant_t(j), spRecordset->Fields->Item[j]-
>Value);
 spRecordset->MoveNext();
 }
 }
 m_gantt.EndUpdate();
 }
 }
 catch (_com_error& e)
 {
 AfxMessageBox(e.Description());
 }

}

The sample adds a column for each field in the recordset, and add a new items for each
record. You can use the DataSource property to bind a recordset to the control. The
#import statement imports definitions for ADODB type library, that's used to fill the control.

The following VB.NET sample prevents refreshing the control while adding columns and
items:

With AxGantt1
 .BeginUpdate()
 With .Columns
 .Add("Column 1")
 .Add("Column 2")
 End With
 With .Items
 Dim iNewItem As Integer
 iNewItem = .AddItem("Item 1")
 .CellCaption(iNewItem, 1) = "SubItem 1"
 iNewItem = .AddItem("Item 2")
 .CellCaption(iNewItem, 1) = "SubItem 2"
 End With
 .EndUpdate()
End With

The following C# sample prevents refreshing the control while adding columns and items:

axGantt1.BeginUpdate();
EXGANTTLib.Columns columns =axGantt1.Columns;
columns.Add("Column 1");
columns.Add("Column 2");
EXGANTTLib.Items items = axGantt1.Items;
int iNewItem = items.AddItem("Item 1");
items.set_CellCaption(iNewItem, 1, "SubItem 1");
items.InsertItem(iNewItem, "", "Child 1");
iNewItem = items.AddItem("Item 2");
items.set_CellCaption(iNewItem, 1, "SubItem 2");
axGantt1.EndUpdate();

The following VFP sample prevents refreshing the control while adding new columns and
items:

thisform.Gantt1.BeginUpdate()
with thisform.Gantt1.Columns
 .Add("Column 1")
 .Add("Column 2")
endwith

with thisform.Gantt1.Items
 .DefaultItem = .AddItem("Item 1")
 .CellCaption(0, 1) = "SubItem 1"
 .DefaultItem = .InsertItem(.DefaultItem,"","Child 1")
 .CellCaption(0, 1) = "SubChild 1"
endwith
thisform.Gantt1.EndUpdate()

property Gantt.EnsureOnSort as Boolean
Specifies whether the control ensures that the focused item fits the control's client area,
when the user sorts the items.

Type Description

Boolean
A boolean expression that indicates whether the control
ensures that the focused item fits the control's client area
after sorting the items.

By default, the EnsureOnSort property is True. If the EnsureOnSort property is True, the
control calls the EnsureVisibleItem method to ensure that the focused item (FocusItem
property) fits the control's client area, once items get sorted. Use the SortOrder property
to sort a column. The SortChildren method sorts child items of an item. The EnsureOnSort
property prevents scrolling of the control when child items are sorted.

method Gantt.EnsureVisibleColumn (Column as Variant)

Scrolls the control's content to ensure that the column fits the client area.

Type Description

Column as Variant
A long expression that indicates the index of the column, a
string expression that indicates the column's caption or the
column's key.

The EnsureVisibleColumn method ensures that the given column fits the control's client
area. The EnsureVisibleColumn method has no effect if the column is hidded. Use the
Visible property to show or hide a column. Use the Position property to change the column's
position. Use the EnsureVisibleItem method to ensure that an item fits the control's client
area. Use the ScrollBars property to hide the control's scroll bars. Use the Scroll method to
programmatically scroll the control's content.

property Gantt.EventParam(Parameter as Long) as Variant
Retrieves or sets a value that indicates the current's event parameter.

Type Description

Parameter as Long

A long expression that indicates the index of the parameter
being requested ie 0 means the first parameter, 1 means
the second, and so on. If -1 is used the EventParam
property retrieves the number of parameters. Accessing
an not-existing parameter produces an OLE error, such as
invalid pointer (E_POINTER)

Variant A VARIANT expression that specifies the parameter's
value.

The EventParam method is provided to allow changing the event's parameters passed by
reference, even if your environment does not support changing it (uniPaas 1.5 (formerly
known as eDeveloper), DBase, and so on). For instance, Unipaas event-handling logic
cannot update ActiveX control variables by updating the received arguments. The
EventParam(0) retrieves the value of the first parameter of the event, while the
EventParam(1) = 0, changes the value of the second parameter to 0 (the operation is
successfully, only if the parameter is passed by reference). The EventParam(-1) retrieves
the number of the parameters of the current event.

Let's take the event "event KeyDown (KeyCode as Integer, ByVal Shift as Integer)", where
the KeyCode parameter is passed by reference. For instance, put the KeyCode parameter
on 0, and the arrow keys are disabled while the control has the focus.

In most languages you will type something like:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 KeyCode = 0
End Sub

In case your environment does not support events with parameters by reference, you can
use a code like follows:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 Control1.EventParam(0) = 0
End Sub

In other words, the EventParam property provides the parameters of the current event for
reading or writing access, even if your environment does not allow changing parameters by

reference.

Calling the EventParam property outside of an event produces an OLE error, such as
pointer invalid, as its scope was designed to be used only during events.

method Gantt.ExecuteTemplate (Template as String)
Executes a template and returns the result.

Type Description
Template as String A Template string being executed
Return Description

Variant A Variant expression that indicates the result after
executing the Template.

Use the ExecuteTemplate property to returns the result of executing a template file. Use the
Template property to execute a template without returning any result. Use the
ExecuteTemplate property to execute code by passing instructions as a string (template
string).

For instance, the following sample retrieves the beginning date (as string) for the default
bar in the first visible item:

Debug.Print Gantt1.ExecuteTemplate("Items.ItemBar(FirstVisibleItem(),``,1)")

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template or x-script is composed by lines of instructions. Instructions are separated by

"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.

CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property Gantt.ExpandOnDblClick as Boolean
Specifies whether the item is expanded or collapsed if the user dbl clicks the item.

Type Description

Boolean A boolean expression that indicates whether an item is
expanded on dbl click.

Use the ExpandOnDblClick property to disable expanding or collapsing items when user dbl
clicks an item. By default, the ExpandOnDblClick property is True. Use the ExpandOnKeys
property to specify whether the control expands or collapses a node when user presses
arrow keys. The ExpandOnSearch property specifies whether the control expands nodes
when incremental searching is on (AutoSearch property is different than 0) and user types
characters when the control has the focus. The control fires the DblClick event when user
double clicks the control. Use the ExpandItem property to programmatically expand or
collapse an item.

property Gantt.ExpandOnKeys as Boolean
Specifies a value that indicates whether the control expands or collapses a node when user
presses arrow keys.

Type Description

Boolean
A boolean expression that indicates whether the control
expands or collapses a node when user presses arrow
keys.

Use the ExpandOnKeys property to specify whether the control expands or collapses a
node when user presses arrow keys. By default, the ExpandOnKeys property is True. Use
the ExpandOnDblClick property to specify whether the control expands or collapses a node
when user dbl clicks a node. The ExpandOnSearch property specifies whether the control
expands nodes when incremental searching is on (AutoSearch property is different than 0)
and user types characters when the control has the focus. If the ExpandOnKeys property is
False, the user can't expand or collapse the items using the + or - keys on the numeric
keypad. Use the ExpandItem property to programmatically expand or collapse an item.

The following VB sample expands or collapses the focused item if the user presses the + or
- keys on the numeric keypad, and ExpandOnKeys property is False:

Private Sub Gantt1_KeyDown(KeyCode As Integer, Shift As Integer)
 With Gantt1.Items
 If (KeyCode = vbKeyAdd) Then
 .ExpandItem(.FocusItem) = True
 End If
 If (KeyCode = vbKeySubtract) Then
 .ExpandItem(.FocusItem) = False
 End If
 End With
End Sub

The following C++ sample expands or collapses the focused item if the user presses the +
or - keys on the numeric keypad, and ExpandOnKeys property is False:

#include "Items.h"
void OnKeyDownGantt1(short FAR* KeyCode, short Shift)
{
 CItems items = m_gantt.GetItems();
 switch (*KeyCode)

 {
 case VK_ADD:
 case VK_SUBTRACT:
 {
 items.SetExpandItem(items.GetFocusItem(), *KeyCode == VK_ADD ? TRUE : FALSE
);
 break;
 }
 }
}

The following VB.NET sample expands or collapses the focused item if the user presses
the + or - keys on the numeric keypad, and ExpandOnKeys property is False:

Private Sub AxGantt1_KeyDownEvent(ByVal sender As Object, ByVal e As
AxEXGANTTLib._IGanttEvents_KeyDownEvent) Handles AxGantt1.KeyDownEvent
 Select Case (e.keyCode)
 Case Keys.Add
 With AxGantt1.Items
 .ExpandItem(.FocusItem) = True
 End With
 Case Keys.Subtract
 With AxGantt1.Items
 .ExpandItem(.FocusItem) = False
 End With
 End Select
End Sub

The following C# sample expands or collapses the focused item if the user presses the + or
- keys on the numeric keypad, and ExpandOnKeys property is False:

private void axGantt1_KeyDownEvent(object sender,
AxEXGANTTLib._IGanttEvents_KeyDownEvent e)
{
 if ((e.keyCode == Convert.ToInt16(Keys.Add)) || (e.keyCode ==
Convert.ToInt16(Keys.Subtract)))
 axGantt1.Items.set_ExpandItem(axGantt1.Items.FocusItem, e.keyCode ==
Convert.ToInt16(Keys.Add));

}

The following VFP sample expands or collapses the focused item if the user presses the +
or - keys on the numeric keypad, and ExpandOnKeys property is False:

*** ActiveX Control Event ***
LPARAMETERS keycode, shift

with thisform.Gantt1.Items
 if (keycode = 107)
 .DefaultItem = .FocusItem
 .ExpandItem(0) = .t.
 else
 if (keycode = 109)
 .ExpandItem(0) = .f.
 endif
 endif
endwith

property Gantt.ExpandOnSearch as Boolean
Expands items automatically while user types characters to search for a specific item.

Type Description

Boolean
A boolean expression that indicates whether the control
expands items while user types characters to search for
items.

Use the ExpandOnSearch property to expand items while user types characters to search
for items using incremental search feature. Use the AutoSearch property to enable or
disable incremental searching feature. Use the AutoSearch property of the Column object to
specify the type of incremental searching being used within the column. The
ExpandOnSearch property has no effect when the AutoSearch property is False. For
instance, if the ExpandOnSearch property is True, the control fires the BeforeExpandItem
event for items that have the ItemHasChildren property is True, when user types
characters.

method Gantt.Export ([Destination as Variant], [Options as Variant])
Exports the control's data to a CSV or HTML format.

Type Description

Destination as Variant

A String expression that specifies the file/format to be
created. The Destination parameter indicates the format
to be created as follows:

if "htm" or "html", the control returns the HTML format
(including CSS style)
Any file-name that ends on ".htm" or ".html" creates
the file with the HTML format inside
missing, empty, or any other case the Export exports
the control's data in CSV format.

No error occurs, if the Export method can not create the
file.

Options as Variant A String expression that specifies the options to be used
when exporting the control's data, as explained bellow.

Return Description

Variant
A String expression that indicates the format being
exported. It could be CSV or HTML format based on the
Destination parameter.

The Export method can export the control's DATA to a CSV or HTML format. The Export
method can export a collection of columns from selected, visible, check or all items. By
default, the control export all items, unless there is no filter applied on the control, where
only visible items are exported. No visual appearance is saved in CSV format, instead the
HTML format includes the visual appearance in CSS style.

The following file samples, shows the format the Export method can export the control's
DATA:

CSV format
HTML format

Let's say we have the following control's DATA:

The following screen shot shows the control's DATA in CSV format:

The following screen shot shows the control's DATA in HTML format:

The Options parameter consists a list of fields separated by | character, in the following
order:

1. The first field could be all, vis, sel or chk, to export all, just visible, selected or
checked items. The all option is used, if the field is missing. The all option displays all
items, including the hidden or collapsed items. The vis option includes the visible items
only, not including the child items of a collapsed item, or not-visible items (item's height
is 0). The sel options lists the items being selected. The chk option lists all check and
visible items. If chk option is used, the first column in the columns list should indicate
the index of the column being queried for a check box state.

2. the second field indicates the column to be exported. All visible columns are exported,
if missing. The list of columns is separated by , character, and indicates the index of
the column to be shown on the exported data. The first column in the list indicates the
column being queried, if the option chk is used.

3. the third field indicates the character to separate the fields inside each exported line

[tab character-if missing]. This field is valid, only when exporting to a CSV format
4. the forth field could be ansi or unicode, which indicates the character-set to save the

control's content to Destination. For instance, Export(Destination,"|||unicode") saves
the control's content to destination in UNICODE format (two-bytes per character). By
default, the Export method creates an ANSI file (one-byte character)

The Destination parameter indicates the file to be created where exported date should be
saved. For instance, Export("c:\temp\export.html") exports the control's DATA to
export.html file in HTML format, or Export("","sel|0,1|;") returns the cells from columns 0, 1
from the selected items, to a CSV format using the ; character as a field separator.

The "CSV" refers to any file that:

CSV stands for Comma Separated Value
is plain text using a character set such as ASCII, Unicode,
consists of records (typically one record per line),
with the records divided into fields separated by delimiters (typically a single reserved
character such as tab, comma, or semicolon; sometimes the delimiter may include
optional spaces),
where every record has the same sequence of fields

The "HTML" refers to any file that:

HTML stands for HyperText Markup Language.
is plain text using a character set such as ASCII, Unicode
It's the way web pages are encoded to handle things like bold, italics and even color
text red.

You can use the Copy/CopyTo to export the control's view to
clipboard/EMF/BMP/JPG/PNG/GIF or PDF format.

property Gantt.FilterBarBackColor as Color
Specifies the background color of the control's filter bar.

Type Description

Color A color expression that defines the background color for
description of the control's filter.

Use the FilterBarForeColor and FilterBarBackColor properties to define the colors used to
paint the description for control's filter. Use the FilterBarHeight property to hide the control's
filter bar header. Use the BackColor property to specify the control's background color. Use
the BackColorLevelHeader property to specify the background color of the header when it
displays multiple levels. Use the BackColorSortBar property to specify the background color
of the control's sort bar.

property Gantt.FilterBarCaption as String
Specifies the filter bar's caption.

Type Description

String A string value that defines the expression to display the
control's filter bar.

By default, the FilterBarCaption property is empty. You can use the FilterBarCaption
property to define the way the filter bar's caption is being displayed. The FilterBarCaption is
displayed on the bottom side of the control where the control's filter bar is shown. While the
FilterBarCaption property is empty, the control automatically builds the caption to be
displayed on the filter bar from all columns that participates in the filter using its name and
values. For instance, if the control filters items based on the columns "EmployeeID" and
"ShipVia", the control's filter bar caption would appear such as "[EmployeeID] = '...' and
[ShipVia] = '...'". The FilterBarCaption property supports expressions as explained bellow.

For instance:

"no filter", shows no filter caption all the time

"" displays no filter bar, if no filter is applied, else it displays the current filter

"`<r>` + value", displays the current filter caption aligned to the right. You can include
the exFilterBarShowCloseOnRight flag into the FilterBarPromptVisible property to
display the close button aligned to the right

"value replace ` and ` with `<fgcolor=FF0000> and </fgcolor>`", replace the AND
keyword with a different foreground color

"value replace ` and ` with `<off 4> and </off>` replace `|` with ` <off 4>or</off> `
replace ` ` with ` `", replaces the AND and | values

"value replace `[` with `<bgcolor=000000><fgcolor=FFFFFF> ` replace `]` with `
</bgcolor></fgcolor>`", highlights the columns being filtered with a different
background/foreground colors.

"value + ` ` + available", displays the current filter, including all available columns to be
filtered

"allui" displays all available columns

"((allui + `<fgcolor=808080>` + (matchitemcount < 0 ? ((len(allui) ? `` : ``) + `<r>` +
abs(matchitemcount + 1) + ` result(s)`) : (`<r><fgcolor=808080>`+ itemcount + `
item(s)`))) replace `[` with `<bgcolor=000000><fgcolor=FFFFFF> ` replace
`]` with ` </bgcolor></fgcolor>` replace `[<s>` with `<bgcolor=C0C0C0>
<fgcolor=FFFFFF> ` replace `</s>]` with ` </bgcolor></fgcolor>`)" displays all
available columns to be filtered with different background/foreground colors including
the number of items/results

Use the FilterBarForeColor and FilterBarBackColor properties to define the colors used to
paint the description for control's filter. Use the FilterBarHeight property to specify the
height of the control's filter bar. Use the FilterBarFont property to specify the font for the
control's filter bar. Use the Description property to define predefined strings in the filter bar
caption. The VisibleItemCount property specifies the number of visible items in the list. The
MatchItemCount property returns the number of matching items. The FilterBarPromptVisible
property specifies whether how/where the control's filter/prompt is shown.

The FilterBarCaption method supports the following keywords, constants, operators and
functions:

value or current keyword returns the current filter as a string. At runtime the value
may return a string such as "[EmployeeID] = '4| 5| 6' and [ShipVia] =
1", so the control automatically applies HTML format, which you can
change it. For instance, "upper(value)" displays the caption in uppercase or "value
replace `` with `<fgcolor=808080>` replace `` with `</fgcolor>`" displays the
column's name with a different foreground color.
itemcount keyword returns the total number of items as indicated by ItemCount
property. At runtime the itemcount is a positive integer that indicates the count of all
items. For instance, "value + `<r><fgcolor=808080>Total: ` + itemcount" includes in the
filter bar the number of items aligned to the right.
visibleitemcount keyword returns the number of visible items as indicated by
VisibleItemCount property. At runtime, the visibleitemcount is a positive integer if no
filter is applied, and negative if a filter is applied. If positive, it indicates the number of
visible items. The visible items does not include child items of a collapsed item. If
negative, a filter is applied, and the absolute value minus one, indicates the number of
visible items after filter is applied. 0 indicates no visible items, while -1 indicates that a
filter is applied, but no item matches the filter criteria. For instance, "value + `<r>
<fgcolor=808080>` + (visibleitemcount < 0 ? (`Result: ` + (abs(visibleitemcount) - 1)
) : (`Visible: ` + visibleitemcount))" includes "Visible: " plus number of visible items, if
no filter is applied or "Result: " plus number of visible items, if filter is applied, aligned
to the right
matchitemcount keyword returns the number of items that match the filter as
indicated by MatchItemCount property. At runtime, the matchitemcount is a positive
integer if no filter is applied, and negative if a filter is applied. If positive, it indicates the
number of items within the control (ItemCount property). If negative, a filter is applied,
and the absolute value minus one, indicates the number of matching items after filter is
applied. A matching item includes its parent items, if the control's FilterInclude property
allows including child items. 0 indicates no visible items, while -1 indicates that a filter
is applied, but no item matches the filter criteria. For instance, "value + `<r>
<fgcolor=808080>` + (matchitemcount < 0 ? (`Result: ` + (abs(matchitemcount) - 1)

) : (`Visible: ` + matchitemcount))" includes "Visible: " plus number of visible items, if
no filter is applied or "Result: " plus number of macthing items, if filter is applied,
aligned to the right
leafitemcount keyword returns the number of leaf items. A leaf item is an item with no
child items. At runtime, the leafitemcount is a positive number that computes the
number of leaf items (expanded or collapsed). For instance, the "value + `<r>
<fgcolor=808080>` + leafitemcount" displays the number of leaf items aligned
to the right with a different font and foreground color.
promptpattern returns the pattern in the filter bar's prompt, as a string. The
FilterBarPromptPattern specifies the pattern for the filter prompt. The control's filter
bar prompt is visible, if the exFilterBarPromptVisible flag is included in the
FilterBarPromptVisible property.
available keyword returns the list of columns that are not currently part of the control's
filter, but are available to be filtered. A column is available to be filtered, if the
DisplayFilterButton property of the Column object, is True. At runtime, the available
keyword may return a string such as "<fgcolor=C0C0C0>[<s>OrderDate</s>]
<fgcolor> </fgcolor>[<s>RequiredDate</s>]<fgcolor> </fgcolor>
[<s>ShippedDate</s>]<fgcolor> </fgcolor>[<s>ShipCountry</s>]<fgcolor> </fgcolor>
[<s>Select</s>]</fgcolor>", so the control automatically applies HTML format, which
you can change it. For instance, "value + ` ` + available", displays the current filter,
including all available columns to be filtered. For instance, the "value + `<r>` + available
replace `C0C0C0` with `FF0000`" displays the available columns aligned to the right
with a different foreground color.
allui keyword returns the list of columns that are part of the current filter and available
columns to be filtered. A column is available to be filtered, if the DisplayFilterButton
property of the Column object, is True. At runtime, the allui keyword may return a string
such as "[EmployeeID] = '4| 5| 6'<fgcolor> </fgcolor><fgcolor=C0C0C0>
[<s>OrderDate</s>]</fgcolor><fgcolor> </fgcolor><fgcolor=C0C0C0>
[<s>RequiredDate</s>]</fgcolor><fgcolor> </fgcolor><fgcolor=C0C0C0>
[<s>ShippedDate</s>]</fgcolor><fgcolor> </fgcolor>[ShipVia] =
1<fgcolor> </fgcolor><fgcolor=C0C0C0>[<s>ShipCountry</s>]</fgcolor>
<fgcolor> </fgcolor><fgcolor=C0C0C0>[<s>Select</s>]</fgcolor>", so the control
automatically applies HTML format, which you can change it. For instance, "allui",
displays the current filter, including all available columns to be filtered. For instance, the
"((allui + `<fgcolor=808080>` + (matchitemcount < 0 ? ((len(allui) ? `` : ``) + `<r>` +
abs(matchitemcount + 1) + ` result(s)`) : (`<r><fgcolor=808080>`+ itemcount + `
item(s)`))) replace `[` with `<bgcolor=000000><fgcolor=FFFFFF> ` replace
`]` with ` </bgcolor></fgcolor>` replace `[<s>` with `<bgcolor=C0C0C0>
<fgcolor=FFFFFF> ` replace `</s>]` with ` </bgcolor></fgcolor>`)" displays all
available columns to be filtered with different background/foreground colors including
the number of items/results
all keyword returns the list of all columns (visible or hidden) no matter if the
DisplayFilterButton property is True or False. At runtime, the all keyword may return a

string such as "<fgcolor=C0C0C0>[<s>OrderID</s>]</fgcolor><fgcolor> </fgcolor>
[EmployeeID] = '4| 5| 6'<fgcolor> </fgcolor><fgcolor=C0C0C0>
[<s>OrderDate</s>]</fgcolor><fgcolor> </fgcolor><fgcolor=C0C0C0>
[<s>RequiredDate</s>]</fgcolor><fgcolor>", so the control automatically applies
HTML format, which you can change it. For instance, "all", displays the current filter,
including all other columns. For instance, the "((all + `<fgcolor=808080>` + (
matchitemcount < 0 ? ((len(allui) ? `` : ``) + `<r>` + abs(matchitemcount + 1) + `
result(s)`) : (`<r><fgcolor=808080>`+ itemcount + ` item(s)`))) replace `[` with
`<bgcolor=000000><fgcolor=FFFFFF> ` replace `]` with ` </bgcolor>
</fgcolor>` replace `[<s>` with `<bgcolor=C0C0C0><fgcolor=FFFFFF> ` replace
`</s>]` with ` </bgcolor></fgcolor>`)" displays all columns with different
background/foreground colors including the number of items/results

Also, the FilterBarCaption property supports predefined constants and operators/functions
as described here.

Also, the FilterBarCaption property supports HTML format as described here:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

about:blank

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.

& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Gantt.FilterBarDropDownHeight as Double
Specifies the height of the drop down filter window proportionally with the height of the
control's list.

Type Description

Double
A double expression that indicates the height of the drop
down filter window. The meaning of the value is explained
bellow.

By default, the FilterBarDropDownHeight property is 0.5. It means, the height of the drop
down filter window is half of the height of the control's list. Use the
FilterBarDropDownHeight property to specify the height of the drop down window filter
window. Use the DisplayFilterButton property to display a filter button to the column's
caption. Use the FilterBarDropDownWidth property to specify the width of the drop down
filter window. Use the Description property to define predefined strings in the filter bar. Use
the FilterInclude property to specify whether the child items should be included to the list
when the user applies the filter.

If the FilterBarDropDownHeight property is negative, the absolute value of the
FilterBarDropDownHeight property indicates the height of the drop down filter window in
pixels. In this case, the height of the drop down filter window is not proportionally with the
height of the control's list area. For instance, the following sample specifies the height of the
drop down filter window being 100 pixels:

With Gantt1
 .FilterBarDropDownHeight = -100
End With

If the FilterBarDropDownHeight property is greater than 0, it indicates the height of the drop
down filter window proportionally with the height of the control's height list. For instance, the
following sample specifies the height of the drop down filter window being the same with
the height of the control's list area:

With Gantt1
 .FilterBarDropDownHeight = 1
End With

The drop down filter window always include an item.

property Gantt.FilterBarFont as IFontDisp
Retrieves or sets the font for control's filter bar.

Type Description

IFontDisp A font object that indicates the font used to paint the
description for control's filter

Use the FilterBarFont property to specify the font for the control's filter bar object. Use the
Font property to set the control's font. Use the FilterBarHeight property to specify the height
of the filter bar. Use the FilterBarCaption property to define the control's filter bar caption.
Use the Refresh method to refresh the control.

property Gantt.FilterBarForeColor as Color
Specifies the foreground color of the control's filter bar.

Type Description

Color A color expression that defines the foreground color of the
description of the control's filter.

Use the FilterBarForeColor and FilterBarBackColor properties to define colors used to paint
the description of the control's filter. Use the FilterBarFont property to specify the filter bar's
font. Use the FilterBarCaption property to specify the caption of the control's filter bar.

property Gantt.FilterBarHeight as Long
Specifies the height of the control's filter bar. If the value is less than 0, the filter bar is
automatically resized to fit its description.

Type Description

Long A long expression that indicates the height of the filter bar
status.

The filter bar status defines the control's filter description. If the FilterBarHeight property is
less than 0 the control automatically updates the height of the filter's description to fit in the
control's client area. If the FilterBarHeight property is zero the filter's description is hidden.
If the FilterBarHeight property is grater than zero it defines the height in pixels of the filter's
description. Use the ClearFilter method to clear the control's filter. Use the FilterBarCaption
property to define the control's filter bar caption. Use the FilterBarFont property to specify
the font for the control's filter bar. Use the FilterBarDropDownWidth property to specify the
width of the drop down filter window. Use the FilterBarDropDownHeight to specify the
height of the drop down filter window. Use the ShowFilter method to show programmatically
the column's drop down filter window.

property Gantt.FilterBarPrompt as String
Specifies the caption to be displayed when the filter pattern is missing.

Type Description

String

A string expression that indicates the HTML caption being
displayed in the filter bar, when filter prompt pattern is
missing. The FilterBarPromptPattern property specifies
the pattern to filter the list using the filter prompt feature.

By default, the FilterBarPrompt property is "<i><fgcolor=808080>Start Filter...</fgcolor>
</i>". The FilterBarPromptPattern property specifies the pattern to filter the list using the
filter prompt feature. Changing the FilterBarPrompt property won't change the current filter.
The FilterBarPromptColumns property specifies the list of columns to be used when filtering
by prompt. The DisplayFilterButton property specifies whether the column's header displays
a filter button. The VisibleItemCount property retrieves the number of visible items in the list.
The control fires the FilterChanging event just before applying the filter, and FilterChange
once the list gets filtered. Use the FilterBarCaption property to change the caption in the
filter bar once a new filter is applied. The FilterBarFont property specifies the font to be
used in the filter bar. The FilterBarBackColor property specifies the background color or the
visual aspect of the control's filter bar. The FilterBarForeColor property specifies the
foreground color or the control's filter bar.

The FilterBarPrompt property supports HTML format as described here:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the

about:blank

anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part

of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the

color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

The FilterBarPrompt property has effect only if:

FilterBarPromptVisible property is True
FilterBarPromptPattern property is Empty.

property Gantt.FilterBarPromptColumns as Variant
Specifies the list of columns to be used when filtering using the prompt.

Type Description

Variant

A long expression that indicates the index of the column to
apply the filter prompt, a string expression that specifies
the list of columns (indexes) separated by comma to apply
the filter prompt, or a safe array of long expression that
specifies the indexes of the columns to apply the filter. The
filter prompt feature allows you to filter the items as you
type while the filter bar is visible on the bottom part of the
list area.

By default, the FilterBarPromptColumns property is -1. If the FilterBarPromptColumns
property is -1, the filter prompt is applied for all columns, visible or hidden. Use the
FilterBarPromptColumns property to specify the list of columns to apply the filter prompt
pattern. The FilterBarPromptVisible property specifies whether the filter prompt is visible or
hidden. Use the FilterBarPrompt property to specify the HTML caption being displayed in
the filter bar when the filter pattern is missing. The FilterBarPromptPattern property
specifies the pattern to filter the list. Changing the FilterBarPromptPattern property does
not require calling the ApplyFilter method to apply the new filter, only if filtering is required
right a way. The FilterBarPromptType property specifies the type of filtering when the user
edits the prompt in the filter bar.

property Gantt.FilterBarPromptPattern as String
Specifies the pattern for the filter prompt.

Type Description

String A string expression that specifies the pattern to filter the
list.

By default, the FilterBarPromptPattern property is empty. If the FilterBarPromptPattern
property is empty, the filter bar displays the FilterBarPrompt property, if the
FilterBarPromptVisible property is True. The FilterBarPromptPattern property indicates the
patter to filter the list. The pattern may include wild characters if the FilterBarPromptType
property is exFilterPromptPattern. The FilterBarPromptColumns specifies the list of columns
to be used when filtering. Changing the FilterBarPromptPattern property does not require
calling the ApplyFilter method to apply the new filter, only if filtering is required right a way.

The following samples shows the filter prompt, and filter for items that contains "london":

Access

With Gantt1
 .BeginUpdate
 .ColumnAutoResize = True
 .ContinueColumnScroll = 0
 .MarkSearchColumn = False
 .SearchColumnIndex = 1
 .FilterBarPromptVisible = True
 .FilterBarPromptPattern = "london"
 With .Columns
 .Add("Name").Width = 96
 .Add("Title").Width = 96
 .Add "City"
 End With
 With .Items
 h0 = .AddItem("Nancy Davolio")
 .CellCaption(h0,1) = "Sales Representative"
 .CellCaption(h0,2) = "Seattle"
 h0 = .AddItem("Andrew Fuller")
 .CellCaption(h0,1) = "Vice President, Sales"
 .CellCaption(h0,2) = "Tacoma"

 .SelectItem(h0) = 1
 h0 = .AddItem("Janet Leverling")
 .CellCaption(h0,1) = "Sales Representative"
 .CellCaption(h0,2) = "Kirkland"
 h0 = .AddItem("Margaret Peacock")
 .CellCaption(h0,1) = "Sales Representative"
 .CellCaption(h0,2) = "Redmond"
 h0 = .AddItem("Steven Buchanan")
 .CellCaption(h0,1) = "Sales Manager"
 .CellCaption(h0,2) = "London"
 h0 = .AddItem("Michael Suyama")
 .CellCaption(h0,1) = "Sales Representative"
 .CellCaption(h0,2) = "London"
 h0 = .AddItem("Robert King")
 .CellCaption(h0,1) = "Sales Representative"
 .CellCaption(h0,2) = "London"
 h0 = .AddItem("Laura Callahan")
 .CellCaption(h0,1) = "Inside Sales Coordinator"
 .CellCaption(h0,2) = "Seattle"
 h0 = .AddItem("Anne Dodsworth")
 .CellCaption(h0,1) = "Sales Representative"
 .CellCaption(h0,2) = "London"
 End With
 .EndUpdate
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXGANTTLib' for the library: 'ExGantt 1.0 Control Library'

 #import <ExGantt.dll>
 using namespace EXGANTTLib;
*/
EXGANTTLib::IGanttPtr spGantt1 = GetDlgItem(IDC_GANTT1)->GetControlUnknown();
spGantt1->BeginUpdate();

spGantt1->PutColumnAutoResize(VARIANT_TRUE);
spGantt1->PutContinueColumnScroll(VARIANT_FALSE);
spGantt1->PutMarkSearchColumn(VARIANT_FALSE);
spGantt1->PutSearchColumnIndex(1);
spGantt1->PutFilterBarPromptVisible(VARIANT_TRUE);
spGantt1->PutFilterBarPromptPattern(L"london");
EXGANTTLib::IColumnsPtr var_Columns = spGantt1->GetColumns();
 ((EXGANTTLib::IColumnPtr)(var_Columns->Add(L"Name")))->PutWidth(96);
 ((EXGANTTLib::IColumnPtr)(var_Columns->Add(L"Title")))->PutWidth(96);
 var_Columns->Add(L"City");
EXGANTTLib::IItemsPtr var_Items = spGantt1->GetItems();
 long h0 = var_Items->AddItem("Nancy Davolio");
 var_Items->PutCellCaption(h0,long(1),"Sales Representative");
 var_Items->PutCellCaption(h0,long(2),"Seattle");
 h0 = var_Items->AddItem("Andrew Fuller");
 var_Items->PutCellCaption(h0,long(1),"Vice President, Sales");
 var_Items->PutCellCaption(h0,long(2),"Tacoma");
 var_Items->PutSelectItem(h0,VARIANT_TRUE);
 h0 = var_Items->AddItem("Janet Leverling");
 var_Items->PutCellCaption(h0,long(1),"Sales Representative");
 var_Items->PutCellCaption(h0,long(2),"Kirkland");
 h0 = var_Items->AddItem("Margaret Peacock");
 var_Items->PutCellCaption(h0,long(1),"Sales Representative");
 var_Items->PutCellCaption(h0,long(2),"Redmond");
 h0 = var_Items->AddItem("Steven Buchanan");
 var_Items->PutCellCaption(h0,long(1),"Sales Manager");
 var_Items->PutCellCaption(h0,long(2),"London");
 h0 = var_Items->AddItem("Michael Suyama");
 var_Items->PutCellCaption(h0,long(1),"Sales Representative");
 var_Items->PutCellCaption(h0,long(2),"London");
 h0 = var_Items->AddItem("Robert King");
 var_Items->PutCellCaption(h0,long(1),"Sales Representative");
 var_Items->PutCellCaption(h0,long(2),"London");
 h0 = var_Items->AddItem("Laura Callahan");
 var_Items->PutCellCaption(h0,long(1),"Inside Sales Coordinator");
 var_Items->PutCellCaption(h0,long(2),"Seattle");
 h0 = var_Items->AddItem("Anne Dodsworth");

 var_Items->PutCellCaption(h0,long(1),"Sales Representative");
 var_Items->PutCellCaption(h0,long(2),"London");
spGantt1->EndUpdate();

C#

extree1.BeginUpdate();
extree1.ColumnAutoResize = true;
extree1.ContinueColumnScroll = false;
extree1.MarkSearchColumn = false;
extree1.SearchColumnIndex = 1;
extree1.FilterBarPromptVisible = true;
extree1.FilterBarPromptPattern = "london";
exontrol.EXGANTTLib.Columns var_Columns = extree1.Columns;
 (var_Columns.Add("Name") as exontrol.EXGANTTLib.Column).Width = 96;
 (var_Columns.Add("Title") as exontrol.EXGANTTLib.Column).Width = 96;
 var_Columns.Add("City");
exontrol.EXGANTTLib.Items var_Items = extree1.Items;
 int h0 = var_Items.AddItem("Nancy Davolio");
 var_Items.set_CellCaption(h0,1,"Sales Representative");
 var_Items.set_CellCaption(h0,2,"Seattle");
 h0 = var_Items.AddItem("Andrew Fuller");
 var_Items.set_CellCaption(h0,1,"Vice President, Sales");
 var_Items.set_CellCaption(h0,2,"Tacoma");
 var_Items.set_SelectItem(h0,1);
 h0 = var_Items.AddItem("Janet Leverling");
 var_Items.set_CellCaption(h0,1,"Sales Representative");
 var_Items.set_CellCaption(h0,2,"Kirkland");
 h0 = var_Items.AddItem("Margaret Peacock");
 var_Items.set_CellCaption(h0,1,"Sales Representative");
 var_Items.set_CellCaption(h0,2,"Redmond");
 h0 = var_Items.AddItem("Steven Buchanan");
 var_Items.set_CellCaption(h0,1,"Sales Manager");
 var_Items.set_CellCaption(h0,2,"London");
 h0 = var_Items.AddItem("Michael Suyama");
 var_Items.set_CellCaption(h0,1,"Sales Representative");
 var_Items.set_CellCaption(h0,2,"London");

 h0 = var_Items.AddItem("Robert King");
 var_Items.set_CellCaption(h0,1,"Sales Representative");
 var_Items.set_CellCaption(h0,2,"London");
 h0 = var_Items.AddItem("Laura Callahan");
 var_Items.set_CellCaption(h0,1,"Inside Sales Coordinator");
 var_Items.set_CellCaption(h0,2,"Seattle");
 h0 = var_Items.AddItem("Anne Dodsworth");
 var_Items.set_CellCaption(h0,1,"Sales Representative");
 var_Items.set_CellCaption(h0,2,"London");
extree1.EndUpdate();

C# for /COM

axGantt1.BeginUpdate();
axGantt1.ColumnAutoResize = true;
axGantt1.ContinueColumnScroll = false;
axGantt1.MarkSearchColumn = false;
axGantt1.SearchColumnIndex = 1;
axGantt1.FilterBarPromptVisible = true;
axGantt1.FilterBarPromptPattern = "london";
EXGANTTLib.Columns var_Columns = axGantt1.Columns;
 (var_Columns.Add("Name") as EXGANTTLib.Column).Width = 96;
 (var_Columns.Add("Title") as EXGANTTLib.Column).Width = 96;
 var_Columns.Add("City");
EXGANTTLib.Items var_Items = axGantt1.Items;
 int h0 = var_Items.AddItem("Nancy Davolio");
 var_Items.set_CellCaption(h0,1,"Sales Representative");
 var_Items.set_CellCaption(h0,2,"Seattle");
 h0 = var_Items.AddItem("Andrew Fuller");
 var_Items.set_CellCaption(h0,1,"Vice President, Sales");
 var_Items.set_CellCaption(h0,2,"Tacoma");
 var_Items.set_SelectItem(h0,true);
 h0 = var_Items.AddItem("Janet Leverling");
 var_Items.set_CellCaption(h0,1,"Sales Representative");
 var_Items.set_CellCaption(h0,2,"Kirkland");
 h0 = var_Items.AddItem("Margaret Peacock");
 var_Items.set_CellCaption(h0,1,"Sales Representative");

 var_Items.set_CellCaption(h0,2,"Redmond");
 h0 = var_Items.AddItem("Steven Buchanan");
 var_Items.set_CellCaption(h0,1,"Sales Manager");
 var_Items.set_CellCaption(h0,2,"London");
 h0 = var_Items.AddItem("Michael Suyama");
 var_Items.set_CellCaption(h0,1,"Sales Representative");
 var_Items.set_CellCaption(h0,2,"London");
 h0 = var_Items.AddItem("Robert King");
 var_Items.set_CellCaption(h0,1,"Sales Representative");
 var_Items.set_CellCaption(h0,2,"London");
 h0 = var_Items.AddItem("Laura Callahan");
 var_Items.set_CellCaption(h0,1,"Inside Sales Coordinator");
 var_Items.set_CellCaption(h0,2,"Seattle");
 h0 = var_Items.AddItem("Anne Dodsworth");
 var_Items.set_CellCaption(h0,1,"Sales Representative");
 var_Items.set_CellCaption(h0,2,"London");
axGantt1.EndUpdate();

Delphi

with AxGantt1 do
begin
 BeginUpdate();
 ColumnAutoResize := True;
 ContinueColumnScroll := False;
 MarkSearchColumn := False;
 SearchColumnIndex := 1;
 FilterBarPromptVisible := True;
 FilterBarPromptPattern := 'london';
 with Columns do
 begin
 (Add('Name') as EXGANTTLib.Column).Width := 96;
 (Add('Title') as EXGANTTLib.Column).Width := 96;
 Add('City');
 end;
 with Items do
 begin

 h0 := AddItem('Nancy Davolio');
 CellCaption[TObject(h0),TObject(1)] := 'Sales Representative';
 CellCaption[TObject(h0),TObject(2)] := 'Seattle';
 h0 := AddItem('Andrew Fuller');
 CellCaption[TObject(h0),TObject(1)] := 'Vice President, Sales';
 CellCaption[TObject(h0),TObject(2)] := 'Tacoma';
 SelectItem[h0] := True;
 h0 := AddItem('Janet Leverling');
 CellCaption[TObject(h0),TObject(1)] := 'Sales Representative';
 CellCaption[TObject(h0),TObject(2)] := 'Kirkland';
 h0 := AddItem('Margaret Peacock');
 CellCaption[TObject(h0),TObject(1)] := 'Sales Representative';
 CellCaption[TObject(h0),TObject(2)] := 'Redmond';
 h0 := AddItem('Steven Buchanan');
 CellCaption[TObject(h0),TObject(1)] := 'Sales Manager';
 CellCaption[TObject(h0),TObject(2)] := 'London';
 h0 := AddItem('Michael Suyama');
 CellCaption[TObject(h0),TObject(1)] := 'Sales Representative';
 CellCaption[TObject(h0),TObject(2)] := 'London';
 h0 := AddItem('Robert King');
 CellCaption[TObject(h0),TObject(1)] := 'Sales Representative';
 CellCaption[TObject(h0),TObject(2)] := 'London';
 h0 := AddItem('Laura Callahan');
 CellCaption[TObject(h0),TObject(1)] := 'Inside Sales Coordinator';
 CellCaption[TObject(h0),TObject(2)] := 'Seattle';
 h0 := AddItem('Anne Dodsworth');
 CellCaption[TObject(h0),TObject(1)] := 'Sales Representative';
 CellCaption[TObject(h0),TObject(2)] := 'London';
 end;
 EndUpdate();
end

VB

With Gantt1
 .BeginUpdate
 .ColumnAutoResize = True

 .ContinueColumnScroll = 0
 .MarkSearchColumn = False
 .SearchColumnIndex = 1
 .FilterBarPromptVisible = True
 .FilterBarPromptPattern = "london"
 With .Columns
 .Add("Name").Width = 96
 .Add("Title").Width = 96
 .Add "City"
 End With
 With .Items
 h0 = .AddItem("Nancy Davolio")
 .CellCaption(h0,1) = "Sales Representative"
 .CellCaption(h0,2) = "Seattle"
 h0 = .AddItem("Andrew Fuller")
 .CellCaption(h0,1) = "Vice President, Sales"
 .CellCaption(h0,2) = "Tacoma"
 .SelectItem(h0) = 1
 h0 = .AddItem("Janet Leverling")
 .CellCaption(h0,1) = "Sales Representative"
 .CellCaption(h0,2) = "Kirkland"
 h0 = .AddItem("Margaret Peacock")
 .CellCaption(h0,1) = "Sales Representative"
 .CellCaption(h0,2) = "Redmond"
 h0 = .AddItem("Steven Buchanan")
 .CellCaption(h0,1) = "Sales Manager"
 .CellCaption(h0,2) = "London"
 h0 = .AddItem("Michael Suyama")
 .CellCaption(h0,1) = "Sales Representative"
 .CellCaption(h0,2) = "London"
 h0 = .AddItem("Robert King")
 .CellCaption(h0,1) = "Sales Representative"
 .CellCaption(h0,2) = "London"
 h0 = .AddItem("Laura Callahan")
 .CellCaption(h0,1) = "Inside Sales Coordinator"
 .CellCaption(h0,2) = "Seattle"
 h0 = .AddItem("Anne Dodsworth")

 .CellCaption(h0,1) = "Sales Representative"
 .CellCaption(h0,2) = "London"
 End With
 .EndUpdate
End With

VB.NET

Dim h0
With Extree1
 .BeginUpdate()
 .ColumnAutoResize = True
 .ContinueColumnScroll = False
 .MarkSearchColumn = False
 .SearchColumnIndex = 1
 .FilterBarPromptVisible = True
 .FilterBarPromptPattern = "london"
 With .Columns
 .Add("Name").Width = 96
 .Add("Title").Width = 96
 .Add("City")
 End With
 With .Items
 h0 = .AddItem("Nancy Davolio")
 .set_CellCaption(h0,1,"Sales Representative")
 .set_CellCaption(h0,2,"Seattle")
 h0 = .AddItem("Andrew Fuller")
 .set_CellCaption(h0,1,"Vice President, Sales")
 .set_CellCaption(h0,2,"Tacoma")
 .set_SelectItem(h0,1)
 h0 = .AddItem("Janet Leverling")
 .set_CellCaption(h0,1,"Sales Representative")
 .set_CellCaption(h0,2,"Kirkland")
 h0 = .AddItem("Margaret Peacock")
 .set_CellCaption(h0,1,"Sales Representative")
 .set_CellCaption(h0,2,"Redmond")
 h0 = .AddItem("Steven Buchanan")

 .set_CellCaption(h0,1,"Sales Manager")
 .set_CellCaption(h0,2,"London")
 h0 = .AddItem("Michael Suyama")
 .set_CellCaption(h0,1,"Sales Representative")
 .set_CellCaption(h0,2,"London")
 h0 = .AddItem("Robert King")
 .set_CellCaption(h0,1,"Sales Representative")
 .set_CellCaption(h0,2,"London")
 h0 = .AddItem("Laura Callahan")
 .set_CellCaption(h0,1,"Inside Sales Coordinator")
 .set_CellCaption(h0,2,"Seattle")
 h0 = .AddItem("Anne Dodsworth")
 .set_CellCaption(h0,1,"Sales Representative")
 .set_CellCaption(h0,2,"London")
 End With
 .EndUpdate()
End With

VB.NET for /COM

Dim h0
With AxGantt1
 .BeginUpdate()
 .ColumnAutoResize = True
 .ContinueColumnScroll = False
 .MarkSearchColumn = False
 .SearchColumnIndex = 1
 .FilterBarPromptVisible = True
 .FilterBarPromptPattern = "london"
 With .Columns
 .Add("Name").Width = 96
 .Add("Title").Width = 96
 .Add("City")
 End With
 With .Items
 h0 = .AddItem("Nancy Davolio")
 .CellCaption(h0,1) = "Sales Representative"

 .CellCaption(h0,2) = "Seattle"
 h0 = .AddItem("Andrew Fuller")
 .CellCaption(h0,1) = "Vice President, Sales"
 .CellCaption(h0,2) = "Tacoma"
 .SelectItem(h0) = True
 h0 = .AddItem("Janet Leverling")
 .CellCaption(h0,1) = "Sales Representative"
 .CellCaption(h0,2) = "Kirkland"
 h0 = .AddItem("Margaret Peacock")
 .CellCaption(h0,1) = "Sales Representative"
 .CellCaption(h0,2) = "Redmond"
 h0 = .AddItem("Steven Buchanan")
 .CellCaption(h0,1) = "Sales Manager"
 .CellCaption(h0,2) = "London"
 h0 = .AddItem("Michael Suyama")
 .CellCaption(h0,1) = "Sales Representative"
 .CellCaption(h0,2) = "London"
 h0 = .AddItem("Robert King")
 .CellCaption(h0,1) = "Sales Representative"
 .CellCaption(h0,2) = "London"
 h0 = .AddItem("Laura Callahan")
 .CellCaption(h0,1) = "Inside Sales Coordinator"
 .CellCaption(h0,2) = "Seattle"
 h0 = .AddItem("Anne Dodsworth")
 .CellCaption(h0,1) = "Sales Representative"
 .CellCaption(h0,2) = "London"
 End With
 .EndUpdate()
End With

VFP

with thisform.Gantt1
 .BeginUpdate
 .ColumnAutoResize = .T.
 .ContinueColumnScroll = 0
 .MarkSearchColumn = .F.

 .SearchColumnIndex = 1
 .FilterBarPromptVisible = .T.
 .FilterBarPromptPattern = "london"
 with .Columns
 .Add("Name").Width = 96
 .Add("Title").Width = 96
 .Add("City")
 endwith
 with .Items
 h0 = .AddItem("Nancy Davolio")
 .CellCaption(h0,1) = "Sales Representative"
 .CellCaption(h0,2) = "Seattle"
 h0 = .AddItem("Andrew Fuller")
 .CellCaption(h0,1) = "Vice President, Sales"
 .CellCaption(h0,2) = "Tacoma"
 .SelectItem(h0) = 1
 h0 = .AddItem("Janet Leverling")
 .CellCaption(h0,1) = "Sales Representative"
 .CellCaption(h0,2) = "Kirkland"
 h0 = .AddItem("Margaret Peacock")
 .CellCaption(h0,1) = "Sales Representative"
 .CellCaption(h0,2) = "Redmond"
 h0 = .AddItem("Steven Buchanan")
 .CellCaption(h0,1) = "Sales Manager"
 .CellCaption(h0,2) = "London"
 h0 = .AddItem("Michael Suyama")
 .CellCaption(h0,1) = "Sales Representative"
 .CellCaption(h0,2) = "London"
 h0 = .AddItem("Robert King")
 .CellCaption(h0,1) = "Sales Representative"
 .CellCaption(h0,2) = "London"
 h0 = .AddItem("Laura Callahan")
 .CellCaption(h0,1) = "Inside Sales Coordinator"
 .CellCaption(h0,2) = "Seattle"
 h0 = .AddItem("Anne Dodsworth")
 .CellCaption(h0,1) = "Sales Representative"
 .CellCaption(h0,2) = "London"

 endwith
 .EndUpdate
endwith

property Gantt.FilterBarPromptType as FilterPromptEnum
Specifies the type of the filter prompt.

Type Description

FilterPromptEnum A FilterPromptEnum expression that specifies how the
items are being filtered.

By default, the FilterBarPromptType property is exFilterPromptContainsAll. The filter prompt
feature allows you to filter the items as you type while the filter bar is visible on the bottom
part of the list area. The Filter prompt feature allows at runtime filtering data on hidden
columns too. Use the FilterBarPromptVisible property to show the filter prompt. Use the
FilterBarPrompt property to specify the HTML caption being displayed in the filter bar when
the filter pattern is missing. The FilterBarPromptPattern property specifies the pattern to
filter the list. Changing the FilterBarPromptPattern property does not require calling the
ApplyFilter method to apply the new filter, only if filtering is required right a way. The
FilterBarPromptColumns property specifies the list of columns to be used when filtering by
prompt. The DisplayFilterButton property specifies whether the column's header displays a
filter button. The VisibleItemCount property retrieves the number of visible items in the list.
The control fires the FilterChanging event just before applying the filter, and FilterChange
once the list gets filtered. Use the FilterBarCaption property to change the caption in the
filter bar once a new filter is applied.

The FilterBarPromptType property supports the following values:

exFilterPromptContainsAll, The list includes the items that contains all specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptContainsAny, The list includes the items that contains any of specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptStartWith, The list includes the items that starts with any specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptEndWith, The list includes the items that ends with any specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptPattern, The filter indicates a pattern that may include wild characters
to be used to filter the items in the list. The FilterBarPromptPattern property may

include wild characters as follows:
'?' for any single character
'*' for zero or more occurrences of any character
'#' for any digit character
' ' space delimits the patterns inside the filter

property Gantt.FilterBarPromptVisible as FilterBarVisibleEnum
Shows or hides the control's filter bar including filter prompt.

Type Description

FilterBarVisibleEnum A FilterBarVisibleEnum expression that defines the way
the control's filter bar is shown.

By default, The FilterBarPromptVisible property is exFilterBarHidden. The filter prompt
feature allows you to filter the items as you type while the filter bar is visible on the bottom
part of the list area. The Filter prompt feature allows at runtime filtering data on hidden
columns too. Use the FilterBarPromptVisible property to show the filter prompt. Use the
FilterBarPrompt property to specify the HTML caption being displayed in the filter bar when
the filter pattern is missing. The FilterBarPromptPattern property specifies the pattern to
filter the list. Changing the FilterBarPromptPattern property does not require calling the
ApplyFilter method to apply the new filter, only if filtering is required right a way. The
FilterBarCaption property defines the caption to be displayed on the control's filter bar. The
FilterBarPromptType property specifies the type of filtering when the user edits the prompt
in the filter bar. The FilterBarPromptColumns property specifies the list of columns to be
used when filtering by prompt. The DisplayFilterButton property specifies whether the
column's header displays a filter button. The VisibleItemCount property retrieves the
number of visible items in the list. The control fires the FilterChanging event just before
applying the filter, and FilterChange once the list gets filtered.

The following screen show shows the filter prompt:

The following screen show shows the list once the user types "london":

property Gantt.FilterCriteria as String
Retrieves or sets the filter criteria.

Type Description
String A string expression that indicates the filter criteria.

By default, the FilterCriteria property is empty. Use the FilterCriteria property to specify
whether you need to filter items using OR, NOT operators between columns. If the
FilterCriteria property is empty, or not valid, the filter uses the AND operator between
columns. Use the FilterCriteria property to specify how the items are filtered.

The FilterCriteria property supports the following operators:

not operator (unary operator)
and operator (binary operator)
or operator (binary operator)

Use the (and) parenthesis to define the order execution in the clause, if case. The
operators are gantted in their priority order. The % character precedes the index of the
column (zero based), and indicates the column. For instance, %0 or %1 means that OR
operator is used when both columns are used, and that means that you can filter for values
that are in a column or for values that are in the second columns. If a column is not gantted
in the FilterCriteria property, and the user filters values by that column, the AND operator is
used by default. For instance, let's say that we have three columns, and FilterCriteria
property is "%0 or %1". If the user filter for all columns, the filter clause is equivalent with (
%0 or %1) and %2, and it means all that match the third column, and is in the first or the
second column.

Use the Filter and FilterType properties to define a filter for a column. The ApplyFilter
method should be called to update the control's content after changing the Filter or
FilterType property, in code! Use the DisplayFilterButton property to display a drop down
button to filter by a column.

property Gantt.FilterInclude as FilterIncludeEnum
Specifies the items being included after the user applies the filter.

Type Description

FilterIncludeEnum A FilterIncludeEnum expression that indicates the items
being included when the filter is applied.

By default, the FilterInclude property is exItemsWithoutChilds, which specifies that only
items (and parent-items) that match the filter are being displayed. Use the FilterInclude
property to specify whether the child- items should be displayed when the user applies the
filter. Use the Filter property and FilterType property to specify the column's filter. Use the
ApplyFilter to apply the filter at runtime. Use the ClearFilter method to clear the control's
filter. Use the FilterCriteria property to filter items using the AND, OR and NOT operators.
Use the FilterBarPromptVisible property to show the control's filter-prompt, that allows you
to filter items as you type.

The following table shows items to display, when filter for "A" items, using different values
for FilterInclude property:

no filter exItemsWithoutChilds
0

exItemsWithChilds
1

exRootsWithoutChilds
2

exRootsWithChilds
3

property Gantt.Font as IFontDisp

Retrieves or sets the control's font.

Type Description
IFontDisp A Font object used to paint the items.

Use the Font property to change the control's font . Use the FilterBarFont property to
assign a different font for the control's filter bar. Use the Refresh method to refresh the
control. Use the BeginUpdate and EndUpdate method to maintain performance while adding
new columns or items.

The following VB sample assigns by code a new font to the control:

With Gantt1
 With .Font
 .Name = "Tahoma"
 End With
 .Refresh
End With

The following C++ sample assigns by code a new font to the control:

COleFont font = m_gantt.GetFont();
font.SetName("Tahoma");
m_gantt.Refresh();

the C++ sample requires definition of COleFont class (#include "Font.h")

The following VB.NET sample assigns by code a new font to the control:

With AxGantt1
 Dim font As System.Drawing.Font = New System.Drawing.Font("Tahoma", 10,
FontStyle.Regular, GraphicsUnit.Point)
 .Font = font
 .CtlRefresh()
End With

The following C# sample assigns by code a new font to the control:

System.Drawing.Font font = new System.Drawing.Font("Tahoma", 10, FontStyle.Regular);

axGantt1.Font = font;
axGantt1.CtlRefresh();

The following VFP sample assigns by code a new font to the control:

with thisform.Gantt1.Object
 .Font.Name = "Tahoma"
 .Refresh()
endwith

The following Template sample assigns by code a new font to the control:

Font
{
 Name = "Tahoma"
}

property Gantt.ForeColor as Color

Retrieves or sets a value that indicates the control's foreground color.

Type Description

Color A color expression that indicates the control's foreground
color.

The ForeColor property changes the foreground color of the control's scrolled area. The
ExGantt control can group the columns into two categories: locked and unlocked. The
Locked category contains all the columns that are fixed to the left area of the client area.
These columns cannot be scrolled horizontally. Use the CountLockedColumns to specify the
number of locked columns. The unlocked are contains the columns that can be scrolled
horizontally. To change the background color of the control's locked area use
BackColorLock property. Use the CellForeColor property to specify the cell's foreground
color. Use the ItemForeColor property to specify the item's foreground color.

property Gantt.ForeColorHeader as Color
Specifies the header's foreground color.

Type Description

Color A color expression that indicates the foreground color for
control's header.

Use the BackColorHeader and ForeColorHeader properties to customize the control's
header. If the Def(exHeaderForeColor) property is not zero, it defines the foreground color
to paint the column's caption in the header area. Use the Font property to change the
control's font. Use the Add method to add new columns to the control. Use the
HeaderVisible property to hide the control's header bar.

property Gantt.ForeColorLock as Color

Retrieves or sets a value that indicates the control's foreground color for the locked area.

Type Description

Color A color expression that indicates the control's foreground
color for the locked area.

The ExGantt control can group the control columns into two categories: locked and
unlocked. The Locked category contains all the columns that are fixed to the left area of the
client area. These columns cannot be scrolled horizontally. Use the CountLockedColumns to
specify the number of locked columns. The unlocked are contains the columns that can be
scrolled horizontally. To change the background color of the control's locked area use
BackColorLock property.

property Gantt.ForeColorSortBar as Color
Retrieves or sets a value that indicates the sort bar's foreground color.

Type Description

Color A color expression that indicates the foreground color of
the control's sort bar.

Use the ForeColorSortBar property to specify the foreground color of the caption in the
control's sort bar. Use the SortBarVisible property to show the control's sort bar. Use the
SortBarCaption property to specify the caption of the sort bar, when the control's sort bar
contains no columns. Use the BackColorSortBar property to specify the background color
of the control's sort bar. Use the BackColorSortBarCaption property to specify the caption's
background color in the control's sort bar. Use the ForeColor property to specify the
control's foreground color. Use the ForeColorHeader property to specify the background
color of the control's header bar.

method Gantt.FormatABC (Expression as String, [A as Variant], [B as
Variant], [C as Variant])
Formats the A,B,C values based on the giving expression and returns the result.

Type Description
Expression as String A String that defines the expression to be evaluated.

A as Variant A VARIANT expression that indicates the value of the A
keyword.

B as Variant A VARIANT expression that indicates the value of the B
keyword.

C as Variant A VARIANT expression that indicates the value of the C
keyword.

Return Description

Variant A VARIANT expression that indicates the result of the
evaluation the Gantt.

The FormatABC method formats the A,B,C values based on the giving expression and
returns the result.

For instance:

"A + B + C", adds / concatenates the values of the A, B and C
"value MIN 0 MAX 99", limits the value between 0 and 99
"value format ``", formats the value with two decimals, according to the control's panel
setting
"date(`now`)" returns the current time as double

The FormatABC method supports the following keywords, constants, operators and
functions:

A or value keyword, indicates a variable A whose value is giving by the A parameter
B keyword, indicates a variable B whose value is giving by the B parameter
C keyword, indicates a variable C whose value is giving by the C parameter

This property/method supports predefined constants and operators/functions as described
here.

property Gantt.FormatAnchor(New as Boolean) as String
Specifies the visual effect for anchor elements in HTML captions.

Type Description

New as Boolean Boolean expression that indicates whether to specify the
anchors never clicked or anchors being clicked.

String A String expression that indicates the HTMLformat to
apply to anchor elements.

By default, the FormatAnchor(True) property is "<u><fgcolor=0000FF>#" that indicates
that the anchor elements (that were never clicked) are underlined and shown in light blue.
Also, the FormatAnchor(False) property is "<u><fgcolor=000080>#" that indicates that the
anchor elements are underlined and shown in dark blue. You can use the <a> anchor
elements to insert hyperlinks to cells, bars or links. Use the CellCaption property to specify
the cell's caption. Use the ItemBar(,,exBarCaption) property to specify the bar's caption.
Use the Link(,exLinkText) property to specify a caption to be displayed on the link.

The visual effect is applied to the anchor elements, if the FormatAnchor property is not
empty. For instance, if you want to do not show with a new effect the clicked anchor
elements, you can use the FormatAnchor(False) = "", that means that the clicked or not-
clicked anchors are shown with the same effect that's specified by FormatAnchor(True). An
anchor is a piece of text or some other object (for example an image) which marks the
beginning and/or the end of a hypertext link. The <a> element is used to mark that piece of
text (or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick event to notify that the user clicks an anchor element. This
event is fired only if prior clicking the control it shows the hand cursor. The AnchorClick
event carries the identifier of the anchor, as well as application options that you can specify
in the anchor element. The hand cursor is shown when the user hovers the mouse on the
anchor elements.

method Gantt.FreezeEvents (Freeze as Boolean)
Prevents the control to fire any event.

Type Description

Freeze as Boolean A Boolean expression that specifies whether the control'
events are froze or unfroze

The FreezeEvents(True) method freezes the control's events until the FreezeEvents(False)
method is called. You can use the FreezeEvents method to improve performance of the
control while loading data into it.

property Gantt.FullRowSelect as Boolean

Enables full-row selection in the control.

Type Description

Boolean A boolean expression that indicates whether the control
support full-row selection.

The FullRowSelect property specifies whether the selection spans the entire width of the
control. The column pointed by the SelectColumnIndex specifies the column where the
selected cell is marked. Use the SelectItem property to select programmatically an item.
Use the SingleSel property to allow multiple items selection.

method Gantt.GetItems (Options as Variant)
Gets the collection of items into a safe array,

Type Description

Options as Variant

Specifies a long expression as follows:

if 0, the result is a two-dimensional array with cell's
captions. The list includes the collapsed items, and
the items are included as they are displayed (sorted,
filtered). This option exports the captions of cells.
This option exports the captions of the cells (
CellCaption property)
if 1, the result the one-dimensional array of handles of
items in the control as they are displayed (sorted,
filtered). The list does not include the collapsed
items. For instance, the first element in the array
indicates the handle of the first item in the control,
which can be different that FirstVisibleItem result,
even if the control is vertically scrolled. This option
exports the handles of the items. For instance, you
can use the ItemToIndex property to get the index of
the item based on its handle.
else if other, and the number of columns is 1, the
result is a one-dimensional array that includes the
items and its child items as they are displayed (
sorted, filtered). In this case, the array may contains
other arrays that specifies the child items. The list
includes the collapsed items, and the items are
included as they are displayed (sorted, filtered). This
option exports the captions of the cells (CellCaption
property)

If missing, the Options parameter is 0. If the control
displays no items, the result is an empty object
(VT_EMPTY).

Return Description

Variant

A safe array that holds the items in the control. If the
control has a single column, the GetItems returns a single
dimension array (object[]), else The safe array being
returned has two dimensions (object[,]). The first

dimension holds the collection of columns, and the second
holds the cells.

The GetItems method to get a safe array that holds the items in the control. The GetItems
method gets the items as they are displayed, sorted and filtered. If the Options parameter
is 0, the GetItems method collect the child items as well, no matter if the parent item is
collapsed or expanded. Use the PutItems method to load an array to the control. The
method returns nothing if the control has no columns or items. Use the Items property to
access the items collection. You can use the GetItems(1) method to get the list of handles
for the items as they are displayed, sorted and filtered. The GetItems method returns an
empty expression (VT_EMPTY), if there is no items in the result.

/NET Assembly:

The following C# sample converts the returned value to a object[] when the control contains
a single column:

 object[] Items = (object[])exgantt1.GetItems()

or when the control contains multiple columns, the syntax is as follows:

 object[,] Items = (object[,])exgantt1.GetItems()

The following VB.NET sample converts the returned value to a Object() when the control
contains a single column:

 Dim Items As Object() = Exgantt1.GetItems()

or when the control contains multiple columns, the syntax is as follows:

 Dim Items As Object(,) = Exgantt1.GetItems()

/COM version:

The following VB sample gets the items from a control and put them to the second one:

With Gantt2
 .BeginUpdate
 .Columns.Clear
 Dim c As EXGANTTLibCtl.Column
 For Each c In Gantt1.Columns
 .Columns.Add c.Caption
 Next
 .PutItems Gantt1.GetItems

 .EndUpdate
End With

The following C++ sample gets the items from a control an put to the second one:

#include "Items.h"
#include "Columns.h"
#include "Column.h"
m_gantt2.BeginUpdate();
 CColumns columns = m_gantt.GetColumns(), columns2 = m_gantt2.GetColumns();
 for (long i = 0; i < columns.GetCount(); i++)
 columns2.Add(columns.GetItem(COleVariant(i)).GetCaption());
 COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
 COleVariant vtItems = m_gantt.GetItems(vtMissing);
 m_gantt2.PutItems(&vtItems, vtMissing);
m_gantt2.EndUpdate();

The following C# sample gets the items from a control and put them to a second one:

axGantt2.BeginUpdate();
for (int i = 0; i < axGantt1.Columns.Count; i++)
 axGantt2.Columns.Add(axGantt1.Columns[i].Caption);
object vtItems = axGantt1.GetItems("");
axGantt2.PutItems(ref vtItems);
axGantt2.EndUpdate();

The following VB.NET sample gets the items from a control and put them to a second one:

With AxGantt2
 .BeginUpdate()
 Dim j As Integer
 For j = 0 To AxGantt1.Columns.Count - 1
 .Columns.Add(AxGantt1.Columns(j).Caption)
 Next
 Dim vtItems As Object
 vtItems = AxGantt1.GetItems("")
 .PutItems(vtItems)
 .EndUpdate()
End With

The following VFP sample gets the items from a control and put them to a second one:

local i
with thisform.Gantt2
 .BeginUpdate()
 for i = 0 to thisform.Gantt1.Columns.Count - 1
 .Columns.Add(thisform.Gantt1.Columns(i).Caption)
 next
 local array vtItems[1]
 vtItems = thisform.Gantt1.GetItems("")
 .PutItems(@vtItems)
 .EndUpdate()
endwith

property Gantt.GridLineColor as Color
Specifies the grid line color.

Type Description
Color A color expression that indicates the color of the grid lines.

Use the GridLineColor property to specify the color for grid lines. Use the DrawGridLines
property to show the grid lines in the items area. The GridLineStyle property to specify the
style for horizontal or/and vertical gridlines in the control. Use the DrawLevelSeperator
property to draw lines between levels inside the chart's header. Use the DrawTickLines
property to specify whether the grid lines between time units in the level are visible or
hidden. Use the DrawGridLines property to specify whether the control draws the grid lines
in the chart's area. Use the LinesAtRoot property specifies whether the control links the
root items of the control. Use the HasLines property to specify whether the control draws
the link between child items to their corresponding parent item.

property Gantt.GridLineStyle as GridLinesStyleEnum
Specifies the style for gridlines in the list part of the control.

Type Description

GridLinesStyleEnum A GridLinesStyleEnum expression that specifies the style
to show the control's horizontal or vertical lines.

By default, the GridLineStyle property is exGridLinesDot. The GridLineStyle property has
effect only if the DrawGridLines property is not zero. The GridLineStyle property can be
used to specify the style for horizontal or/and vertical grid lines. Use the GridLineColor
property to specify the color for grid lines. Use the LinesAtRoot property specifies whether
the control links the root items of the control. Use the HasLines property to specify whether
the control draws the link between child items to their corresponding parent item. The grid
lines are shown only in the columns part of the controls, if you require the grid lines in the
chart view use the DrawGridLines property of the Chart object.

The following VB sample shows dash style for horizontal gridlines, and solid style for
vertical grid lines:

GridLineStyle = GridLinesStyleEnum.exGridLinesHDash Or
GridLinesStyleEnum.exGridLinesVSolid

The following VB/NET sample shows dash style for horizontal gridlines, and solid style for
vertical grid lines:

GridLineStyle = exontrol.EXGANTTLib.GridLinesStyleEnum.exGridLinesHDash Or
exontrol.EXGANTTLib.GridLinesStyleEnum.exGridLinesVSolid

The following C# sample shows dash style for horizontal gridlines, and solid style for
vertical grid lines:

GridLineStyle = exontrol.EXGANTTLib.GridLinesStyleEnum.exGridLinesHDash |
exontrol.EXGANTTLib.GridLinesStyleEnum.exGridLinesVSolid;

The following Delphi sample shows dash style for horizontal gridlines, and solid style for
vertical grid lines:

GridLineStyle := Integer(EXGANTTLib.GridLinesStyleEnum.exGridLinesHDash) Or
Integer(EXGANTTLib.GridLinesStyleEnum.exGridLinesVSolid);

The following VFP sample shows dash style for horizontal gridlines, and solid style for
vertical grid lines:

GridLineStyle = 36

The following screen shot shows the control using different grid lines for columns and chart
area:

property Gantt.HasButtons as ExpandButtonEnum

Adds a button to the left side of each parent item.

Type Description

ExpandButtonEnum An ExpandButtonEnum expression that indicates whether
the left side button of each parent item is visible or hidden.

The HasButtons property has effect only if the data is displayed as a tree. Use the
InsertItem method to insert child items. The control displays a +/- button to parent items, if
the HasButtons property is not zero, the ItemChild property is not empty, or the
ItemHasChildren property is True. The user can click the +/- button to expand or collapse
the child items as an alternative to double-clicking the parent item, in case the
ExpandOnDblClick property is True. Use the ExpandItem property of Items object to
programmatically expand/collapse an item. The HasButtonsCustom property specifies the
index of icons being used for +/- signs on parent items, when HasButtons property is
exCustom.

The following VB sample changes the +/- button appearance:

With Gantt1
 .HasButtons = ExpandButtonEnum.exWPlus
End With

The following C++ sample changes the +/- button appearance:

m_gantt.SetHasButtons(3 /*exWPlus*/);

The following VB.NET sample changes the +/- button appearance:

With AxGantt1
 .HasButtons = EXGANTTLib.ExpandButtonEnum.exWPlus
End With

The following C# sample changes the +/- button appearance:

axGantt1.HasButtons = EXGANTTLib.ExpandButtonEnum.exWPlus;

The following VFP sample changes the +/- button appearance:

with thisform.Gantt1
 .HasButtons = 3 && exWPlus

endwith

property Gantt.HasButtonsCustom(Expanded as Boolean) as Long
Specifies the index of icons for +/- signs when the HasButtons property is exCustom.

Type Description

Expanded as Boolean A boolean expression that indicates the sign being
changed.

Long

A long expression that indicates the icon being used for +/-
signs on the parent items. The last 7 bits in the high
significant byte of the long expression indicates the
identifier of the skin being used to paint the object. Use the
Add method to add new skins to the control. If you need
to remove the skin appearance from a part of the control
you need to reset the last 7 bits in the high significant byte
of the color being applied to the part.

Use the HasButtonsCustom property to assign custom icons to the +/- signs on the parent
items. The HasButtonsCustom property has effect only if the HasButtons property is
exCustom. Use the Images, ReplaceIcon methods to add new icons to the control, at
runtime.

The following VB sample specifies different (as in the screen shot) +/- signs for the
control:

With Gantt1
 .BeginUpdate
 .Images
"gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx2PyGRyWTymVy2XzGZzWbzmdz2f0Gh0WjwEWH0r08ekEikgAkso184iGkicPjcU2+zjW4jTnZ++jbv4Tvjbu4fF48adAv5fI4XO4ka4fRjO+4G73UZ3na7IAgI="

 .LinesAtRoot = exLinesAtRoot
 .HeaderVisible = False
 .HasButtons = exCustom
 .HasButtonsCustom(False) = 1
 .HasButtonsCustom(True) = 2
 .Columns.Add "Column 1"
 With .Items
 Dim h As HITEM
 h = .AddItem("Item 1")
 .InsertItem h, , "SubItem 1"

 .InsertItem h, , "SubItem 2"
 End With
 .EndUpdate
End With

The following C++ sample specifies different (as in the screen shot) +/- signs for the
control:

#include "Items.h"
#include "Columns.h"
#include "Column.h"
m_gantt.BeginUpdate();
m_gantt.Images(COleVariant(
"gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx2PyGRyWTymVy2XzGZzWbzmdz2f0Gh0WjwEWH0r08ekEikgAkso184iGkicPjcU2+zjW4jTnZ++jbv4Tvjbu4fF48adAv5fI4XO4ka4fRjO+4G73UZ3na7IAgI="
));
m_gantt.SetLinesAtRoot(-1);
m_gantt.SetHeaderVisible(FALSE);
m_gantt.SetHasButtons(4 /*exCustom*/);
m_gantt.SetHasButtonsCustom(FALSE, 1);
m_gantt.SetHasButtonsCustom(TRUE, 2);
m_gantt.GetColumns().Add("Column 1");
COleVariant vtMissing; V_VT(&vtMissing;) = VT_ERROR;
CItems items = m_gantt.GetItems();
long h = items.AddItem(COleVariant("Item 1"));
items.InsertItem(h, vtMissing, COleVariant("SubItem 1"));
items.InsertItem(h, vtMissing, COleVariant("SubItem 2"));
m_gantt.EndUpdate();

The following VB.NET sample specifies different (as in the screen shot) +/- signs for the
control:

With AxGantt1
 .BeginUpdate()

.Images("gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx2PyGRyWTymVy2XzGZzWbzmdz2f0Gh0WjwEWH0r08ekEikgAkso184iGkicPjcU2+zjW4jTnZ++jbv4Tvjbu4fF48adAv5fI4XO4ka4fRjO+4G73UZ3na7IAgI=")

 .LinesAtRoot = EXGANTTLib.LinesAtRootEnum.exLinesAtRoot
 .HeaderVisible = False
 .HasButtons = EXGANTTLib.ExpandButtonEnum.exCustom
 .set_HasButtonsCustom(False, 1)
 .set_HasButtonsCustom(True, 2)
 .Columns.Add("Column 1")
 With .Items
 Dim h As Long
 h = .AddItem("Item 1")
 .InsertItem(h, , "SubItem 1")
 .InsertItem(h, , "SubItem 2")
 End With
 .EndUpdate()
End With

The following C# sample specifies different (as in the screen shot) +/- signs for the
control:

axGantt1.BeginUpdate();
axGantt1.Images("gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx2PyGRyWTymVy2XzGZzWbzmdz2f0Gh0WjwEWH0r08ekEikgAkso184iGkicPjcU2+zjW4jTnZ++jbv4Tvjbu4fF48adAv5fI4XO4ka4fRjO+4G73UZ3na7IAgI=");

axGantt1.LinesAtRoot = EXGANTTLib.LinesAtRootEnum.exLinesAtRoot;
axGantt1.HeaderVisible = false;
axGantt1.HasButtons = EXGANTTLib.ExpandButtonEnum.exCustom;
axGantt1.set_HasButtonsCustom(false, 1);
axGantt1.set_HasButtonsCustom(true, 2);
axGantt1.Columns.Add("Column 1");
int h = axGantt1.Items.AddItem("Item 1");
axGantt1.Items.InsertItem(h, "", "SubItem 1");
axGantt1.Items.InsertItem(h, "", "SubItem 2");
axGantt1.EndUpdate();

The following VFP sample specifies different (as in the screen shot) +/- signs for the
control:

with thisform.Gantt1
 .BeginUpdate()
 local s

 s =
"gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls"

 s = s +
"1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx2PyGRyWTymVy2XzGZzWbzmdz2f0Gh0WjwEWH0r08ekEikgAkso184iGkicPjcU2+zjW4jTnZ++jbv4Tvjbu4fF48adAv5fI4XO4ka4fRjO+4G73UZ3na7IAgI="

 .Images(s)
 .LinesAtRoot = -1
 .HeaderVisible = .f.
 .HasButtons = 4 &&exCustom;
 local sT, sCR
 sCR = chr(13) + chr(10)
 sT = "HasButtonsCustom(True) = 2"+ sCR
 sT = sT + "HasButtonsCustom(False) = 1"+ sCR
 .Template = sT
 .Columns.Add("Column 1")
 With .Items
 local h
 h = .AddItem("Item 1")
 .InsertItem(h, , "SubItem 1")
 .InsertItem(h, , "SubItem 2")
 EndWith
 .EndUpdate()
endwith

property Gantt.HasLines as HierarchyLineEnum

Enhances the graphic representation of a tree control's hierarchy by drawing lines that link
child items to their corresponding parent item.

Type Description

HierarchyLineEnum An HierarchyLinesEnum expression that indicates whether
the control uses the lines to link the items of the hierarchy.

Use the HasLines property to hide the hierarchy lines. Use the LinesAtRoot property to
allow control displays a line that links that root items of the control. Use the InsertItem
method to insert new items to the control. Use HasButtons property to hide the buttons
displayed at the left of each parent item. Use the DrawGridLines property to display grid
lines. Use the InsertControlItem property to insert an ActiveX item.

property Gantt.HeaderAppearance as AppearanceEnum

Retrieves or sets a value that indicates the header's appearance.

Type Description

AppearanceEnum An AppearanceEnum expression that indicates the
header's appearance.

Use the HeaderAppearance property to change the appearance of the control's header bar.
Use the HeaderVisible property to hide the control's header bar. Use the Appearance
property to specify the control's appearance. Use the ColumnsAllowSizing property to allow
resizing the columns, when the control's header bar is not visible.

property Gantt.HeaderHeight as Long
Retrieves or sets a value indicating the control's header height.

Type Description

Long A long expression that indicates the height of the control's
header bar.

By default, the HeaderHeight property is 18 pixels. Use the HeaderHeight property to
change the height of the control's header bar. Use the HeaderVisible property to hide the
control's header bar. Use the LevelKey property to display the control's header bar using
multiple levels. If the control displays the header bar using multiple levels the HeaderHeight
property gets the height in pixels of a single level in the header bar. The control's header
displays multiple levels if there are two or more neighbor columns with the same non empty
level key. Use the HTMLCaption property to display multiple lines in the column's caption.
Use the Add method to add new columns to the control. Use the LevelKey property to
specify columns on the same level. Use the LevelCount property to specify the number of
levels being displayed in the chart's header. If the HeaderSingleLine property is False, the
HeaderHeight property specifies the maximum height of the control's header when the
user resizes the columns.

The following VB sample displays a header bar using multiple lines:

With Gantt1
 .BeginUpdate
 .HeaderHeight = 32
 With .Columns.Add("Column 1")
 .HTMLCaption = "Line1
Line2"
 End With
 With .Columns.Add("Column 2")
 .HTMLCaption = "Line1
Line2"
 End With
 .EndUpdate
End With

The following C++ sample displays a header bar using multiple lines:

#include "Columns.h"
#include "Column.h"
m_gantt.BeginUpdate();
m_gantt.SetHeaderHeight(32);

m_gantt.SetHeaderVisible(TRUE);
CColumn column1(V_DISPATCH(&m_gantt.GetColumns().Add("Column 1")));
 column1.SetHTMLCaption("Line1
Line2");
CColumn column2(V_DISPATCH(&m_gantt.GetColumns().Add("Column 2")));
 column2.SetHTMLCaption("Line1
Line2");
m_gantt.EndUpdate();

The following VB.NET sample displays a header bar using multiple lines:

With AxGantt1
 .BeginUpdate()
 .HeaderVisible = True
 .HeaderHeight = 32
 With .Columns.Add("Column 1")
 .HTMLCaption = "Line1
Line2"
 End With
 With .Columns.Add("Column 2")
 .HTMLCaption = "Line1
Line2"
 End With
 .EndUpdate()
End With

The following C# sample displays a header bar using multiple lines:

axGantt1.BeginUpdate();
axGantt1.HeaderVisible = true;
axGantt1.HeaderHeight = 32;
EXGANTTLib.Column column1 = axGantt1.Columns.Add("Column 1") as
EXGANTTLib.Column ;
column1.HTMLCaption = "Line1
Line2";
EXGANTTLib.Column column2 = axGantt1.Columns.Add("Column 2") as
EXGANTTLib.Column;
column2.HTMLCaption = "Line1
Line2";
axGantt1.EndUpdate();

The following VFP sample displays a header bar using multiple lines:

with thisform.Gantt1
 .BeginUpdate()

 .HeaderVisible = .t.
 .HeaderHeight = 32
 with .Columns.Add("Column 1")
 .HTMLCaption = "Line1
Line2"
 endwith
 with .Columns.Add("Column 2")
 .HTMLCaption = "Line1
Line2"
 endwith
 .EndUpdate()
endwith

property Gantt.HeaderSingleLine as Boolean
Specifies whether the control resizes the columns header and wraps the captions in single
or multiple lines.

Type Description

Boolean A boolean expression that specifies whether the header
displays single or multiple lines.

By defauly, the HeaderSingleLine property is True. If the HeaderSingleLine property is False
the control breaks the column's caption as soon as the user resizes the column. In this
case the HeaderHeight property specifies the maximum height of the control's
header. The initial height is computed based on the control's Font property. The Caption
property specifies the caption of the column being displayed in the control's header. The
HTMLCaption property specifies the HTML caption of the column being displayed in the
column's header. Use the LevelKey property to display the control's header on multiple
levels.

The following screen show shows the control's header while it displays a multiple lines (
HeaderSingleLine = False):

The following screen shot shows the control's header on multiple levels using the LevelKey
property:

The following screen show shows the control's header while it displays a single line (
HeaderSingleLine = True):

property Gantt.HeaderVisible as Boolean

Retrieves or sets a value that indicates whether the control's header is visible or hidden.

Type Description

Boolean A boolean expression that indicates whether the the
control's header is visible or hidden.

By default, the HeaderVisible property is True. Use the HeaderVisible property to hide the
control's header bar. The control's header bar displays the levels in the chart area too. Use
the LevelCount property to specify the number of levels being displayed in the chart's
header. Use the Level property to access the level in the chart area. Use the Caption
property to specify the column's caption being displayed in the control's header bar. Use the
HeaderAppearance property to change the header bar's appearance. Use the
BackColorHeader and ForeColorHeader properties to customize the control's header. Use
the BackColorLevelHeader property to specify the background color of the header when it
displays multiple levels. Use the HeaderHeight property to specify the height of the control's
header bar. Use the SortBarVisible property to specify whether the control's sort bar is
visible or it is hidden. Use the ColumnsAllowSizing property to allow resizing the columns,
when the control's header bar is not visible.

property Gantt.HideSelection as Boolean
Returns a value that determines whether selected item appears highlighted when a control
loses the focus.

Type Description

Boolean A boolean expression that indicates whether the selected
item appears highlighted when a control loses the focus.

By default, the HideSelection property is False. You can use this property to indicate which
item is highlighted while another form or a dialog box has the focus. Use the SelForeColor
and SelBackColor property to customize the colors for the selected items in the control.
Use the SelectItem property to programmatically select an item. Use the SelectedItem and
SelectCount property to retrieve the list of selected items. Use the SelectableItem property
to specify whether an items can be selected.

property Gantt.HotBackColor as Color
Retrieves or sets a value that indicates the hot-tracking background color.

Type Description

Color

A color expression that indicates the background color for
item from the cursor (hovering the item). Use the Add
method to add new skins to the control. If you need to
remove the skin appearance from a part of the control you
need to reset the last 7 bits in the high significant byte of
the color being applied to the background's part.

By default, the HotBackColor property is 0, which means that the HotBackColor property
has no effect. Use the HotBackColor property on a non-zero value to highlight the item from
the cursor. The HotForeColor property specifies the foreground color to highlight the item
from the cursor. The ItemFromPoint property gets the item from the cursor. The
SelBackColor property specifies the selection background color. The SelBackMode
property specifies the way the selected items are shown in the control.

The following sample displays a different background color mouse passes over an item.

VBA

With Gantt1
 .BeginUpdate
 .Columns.Add "Def"
 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 With .Items
 .AddItem "Item A"
 .AddItem "Item B"
 .AddItem "Item C"
 End With
 .EndUpdate
End With

VB6

With Gantt1
 .BeginUpdate
 .Columns.Add "Def"

 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 With .Items
 .AddItem "Item A"
 .AddItem "Item B"
 .AddItem "Item C"
 End With
 .EndUpdate
End With

VB.NET

With Exgantt1
 .BeginUpdate()
 .Columns.Add("Def")
 .HotBackColor = Color.FromArgb(0,0,128)
 .HotForeColor = Color.FromArgb(255,255,255)
 With .Items
 .AddItem("Item A")
 .AddItem("Item B")
 .AddItem("Item C")
 End With
 .EndUpdate()
End With

VB.NET for /COM

With AxGantt1
 .BeginUpdate()
 .Columns.Add("Def")
 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 With .Items
 .AddItem("Item A")
 .AddItem("Item B")
 .AddItem("Item C")
 End With
 .EndUpdate()

End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXGANTTLib' for the library: 'ExGantt 1.0 Control Library'

 #import <ExGantt.dll>
 using namespace EXGANTTLib;
*/
EXGANTTLib::IGanttPtr spGantt1 = GetDlgItem(IDC_GANTT1)->GetControlUnknown();
spGantt1->BeginUpdate();
spGantt1->GetColumns()->Add(L"Def");
spGantt1->PutHotBackColor(RGB(0,0,128));
spGantt1->PutHotForeColor(RGB(255,255,255));
EXGANTTLib::IItemsPtr var_Items = spGantt1->GetItems();
 var_Items->AddItem("Item A");
 var_Items->AddItem("Item B");
 var_Items->AddItem("Item C");
spGantt1->EndUpdate();

C++ Builder

Gantt1->BeginUpdate();
Gantt1->Columns->Add(L"Def");
Gantt1->HotBackColor = RGB(0,0,128);
Gantt1->HotForeColor = RGB(255,255,255);
Exganttlib_tlb::IItemsPtr var_Items = Gantt1->Items;
 var_Items->AddItem(TVariant("Item A"));
 var_Items->AddItem(TVariant("Item B"));
 var_Items->AddItem(TVariant("Item C"));
Gantt1->EndUpdate();

C#

exgantt1.BeginUpdate();
exgantt1.Columns.Add("Def");

exgantt1.HotBackColor = Color.FromArgb(0,0,128);
exgantt1.HotForeColor = Color.FromArgb(255,255,255);
exontrol.EXGANTTLib.Items var_Items = exgantt1.Items;
 var_Items.AddItem("Item A");
 var_Items.AddItem("Item B");
 var_Items.AddItem("Item C");
exgantt1.EndUpdate();

JavaScript

<OBJECT classid="clsid:CD481F4D-2D25-4759-803F-752C568F53B7" id="Gantt1">
</OBJECT>

<SCRIPT LANGUAGE="JScript">
 Gantt1.BeginUpdate()

 Gantt1.Columns.Add("Def")

 Gantt1.HotBackColor = 8388608

 Gantt1.HotForeColor = 16777215

 var var_Items = Gantt1.Items

 var_Items.AddItem("Item A")

 var_Items.AddItem("Item B")

 var_Items.AddItem("Item C")

 Gantt1.EndUpdate()

</SCRIPT>

C# for /COM

axGantt1.BeginUpdate();
axGantt1.Columns.Add("Def");

axGantt1.HotBackColor = Color.FromArgb(0,0,128);
axGantt1.HotForeColor = Color.FromArgb(255,255,255);
EXGANTTLib.Items var_Items = axGantt1.Items;
 var_Items.AddItem("Item A");
 var_Items.AddItem("Item B");
 var_Items.AddItem("Item C");
axGantt1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Items

 anytype var_Items

 super()

 exgantt1.BeginUpdate()

 exgantt1.Columns().Add("Def")

 exgantt1.HotBackColor(WinApi::RGB2int(0,0,128))

 exgantt1.HotForeColor(WinApi::RGB2int(255,255,255))

 var_Items = exgantt1.Items()
 com_Items = var_Items

 com_Items.AddItem("Item A")

 com_Items.AddItem("Item B")

 com_Items.AddItem("Item C")

 exgantt1.EndUpdate()

}

VFP

with thisform.Gantt1
 .BeginUpdate
 .Columns.Add("Def")
 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 with .Items
 .AddItem("Item A")
 .AddItem("Item B")
 .AddItem("Item C")
 endwith
 .EndUpdate
endwith

dBASE Plus

local oGantt,var_Items

oGantt = form.Activex1.nativeObject
oGantt.BeginUpdate()
oGantt.Columns.Add("Def")
oGantt.HotBackColor = 0x800000
oGantt.HotForeColor = 0xffffff
var_Items = oGantt.Items
 var_Items.AddItem("Item A")
 var_Items.AddItem("Item B")
 var_Items.AddItem("Item C")
oGantt.EndUpdate()

XBasic (Alpha Five)

Dim oGantt as P
Dim var_Items as P

oGantt = topparent:CONTROL_ACTIVEX1.activex
oGantt.BeginUpdate()
oGantt.Columns.Add("Def")
oGantt.HotBackColor = 8388608
oGantt.HotForeColor = 16777215
var_Items = oGantt.Items
 var_Items.AddItem("Item A")
 var_Items.AddItem("Item B")
 var_Items.AddItem("Item C")
oGantt.EndUpdate()

Delphi 8 (.NET only)

with AxGantt1 do
begin
 BeginUpdate();
 Columns.Add('Def');
 HotBackColor := Color.FromArgb(0,0,128);
 HotForeColor := Color.FromArgb(255,255,255);
 with Items do
 begin
 AddItem('Item A');
 AddItem('Item B');
 AddItem('Item C');
 end;
 EndUpdate();
end

Delphi (standard)

with Gantt1 do
begin
 BeginUpdate();
 Columns.Add('Def');
 HotBackColor := RGB(0,0,128);

 HotForeColor := RGB(255,255,255);
 with Items do
 begin
 AddItem('Item A');
 AddItem('Item B');
 AddItem('Item C');
 end;
 EndUpdate();
end

Visual Objects

local var_Items as IItems

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:Columns:Add("Def")
oDCOCX_Exontrol1:HotBackColor := RGB(0,0,128)
oDCOCX_Exontrol1:HotForeColor := RGB(255,255,255)
var_Items := oDCOCX_Exontrol1:Items
 var_Items:AddItem("Item A")
 var_Items:AddItem("Item B")
 var_Items:AddItem("Item C")
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oGantt,var_Items

oGantt = ole_1.Object
oGantt.BeginUpdate()
oGantt.Columns.Add("Def")
oGantt.HotBackColor = RGB(0,0,128)
oGantt.HotForeColor = RGB(255,255,255)
var_Items = oGantt.Items
 var_Items.AddItem("Item A")
 var_Items.AddItem("Item B")
 var_Items.AddItem("Item C")
oGantt.EndUpdate()

property Gantt.HotForeColor as Color
Retrieves or sets a value that indicates the hot-tracking foreground color.

Type Description

Color A color expression that indicates the foreground color for
item from the cursor (hovering the item).

By default, the HotForeColor property is 0, which means that the HotForeColor property
has no effect. Use the HotForeColor property on a non-zero value to highlight the item from
the cursor. The HotBackColor property specifies the background color to highlight the item
from the cursor. The ItemFromPoint property gets the item from the cursor. The
SelForeColor property specifies the selection foreground color.

The following sample displays a different background color mouse passes over an item.

VBA

With Gantt1
 .BeginUpdate
 .Columns.Add "Def"
 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 With .Items
 .AddItem "Item A"
 .AddItem "Item B"
 .AddItem "Item C"
 End With
 .EndUpdate
End With

VB6

With Gantt1
 .BeginUpdate
 .Columns.Add "Def"
 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 With .Items
 .AddItem "Item A"

 .AddItem "Item B"
 .AddItem "Item C"
 End With
 .EndUpdate
End With

VB.NET

With Exgantt1
 .BeginUpdate()
 .Columns.Add("Def")
 .HotBackColor = Color.FromArgb(0,0,128)
 .HotForeColor = Color.FromArgb(255,255,255)
 With .Items
 .AddItem("Item A")
 .AddItem("Item B")
 .AddItem("Item C")
 End With
 .EndUpdate()
End With

VB.NET for /COM

With AxGantt1
 .BeginUpdate()
 .Columns.Add("Def")
 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 With .Items
 .AddItem("Item A")
 .AddItem("Item B")
 .AddItem("Item C")
 End With
 .EndUpdate()
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXGANTTLib' for the library: 'ExGantt 1.0 Control Library'

 #import <ExGantt.dll>
 using namespace EXGANTTLib;
*/
EXGANTTLib::IGanttPtr spGantt1 = GetDlgItem(IDC_GANTT1)->GetControlUnknown();
spGantt1->BeginUpdate();
spGantt1->GetColumns()->Add(L"Def");
spGantt1->PutHotBackColor(RGB(0,0,128));
spGantt1->PutHotForeColor(RGB(255,255,255));
EXGANTTLib::IItemsPtr var_Items = spGantt1->GetItems();
 var_Items->AddItem("Item A");
 var_Items->AddItem("Item B");
 var_Items->AddItem("Item C");
spGantt1->EndUpdate();

C++ Builder

Gantt1->BeginUpdate();
Gantt1->Columns->Add(L"Def");
Gantt1->HotBackColor = RGB(0,0,128);
Gantt1->HotForeColor = RGB(255,255,255);
Exganttlib_tlb::IItemsPtr var_Items = Gantt1->Items;
 var_Items->AddItem(TVariant("Item A"));
 var_Items->AddItem(TVariant("Item B"));
 var_Items->AddItem(TVariant("Item C"));
Gantt1->EndUpdate();

C#

exgantt1.BeginUpdate();
exgantt1.Columns.Add("Def");
exgantt1.HotBackColor = Color.FromArgb(0,0,128);
exgantt1.HotForeColor = Color.FromArgb(255,255,255);
exontrol.EXGANTTLib.Items var_Items = exgantt1.Items;
 var_Items.AddItem("Item A");

 var_Items.AddItem("Item B");
 var_Items.AddItem("Item C");
exgantt1.EndUpdate();

JavaScript

<OBJECT classid="clsid:CD481F4D-2D25-4759-803F-752C568F53B7" id="Gantt1">
</OBJECT>

<SCRIPT LANGUAGE="JScript">
 Gantt1.BeginUpdate()

 Gantt1.Columns.Add("Def")

 Gantt1.HotBackColor = 8388608

 Gantt1.HotForeColor = 16777215

 var var_Items = Gantt1.Items

 var_Items.AddItem("Item A")

 var_Items.AddItem("Item B")

 var_Items.AddItem("Item C")

 Gantt1.EndUpdate()

</SCRIPT>

C# for /COM

axGantt1.BeginUpdate();
axGantt1.Columns.Add("Def");
axGantt1.HotBackColor = Color.FromArgb(0,0,128);
axGantt1.HotForeColor = Color.FromArgb(255,255,255);
EXGANTTLib.Items var_Items = axGantt1.Items;
 var_Items.AddItem("Item A");

 var_Items.AddItem("Item B");
 var_Items.AddItem("Item C");
axGantt1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Items

 anytype var_Items

 super()

 exgantt1.BeginUpdate()

 exgantt1.Columns().Add("Def")

 exgantt1.HotBackColor(WinApi::RGB2int(0,0,128))

 exgantt1.HotForeColor(WinApi::RGB2int(255,255,255))

 var_Items = exgantt1.Items()
 com_Items = var_Items

 com_Items.AddItem("Item A")

 com_Items.AddItem("Item B")

 com_Items.AddItem("Item C")

 exgantt1.EndUpdate()

}

VFP

with thisform.Gantt1
 .BeginUpdate
 .Columns.Add("Def")
 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 with .Items
 .AddItem("Item A")
 .AddItem("Item B")
 .AddItem("Item C")
 endwith
 .EndUpdate
endwith

dBASE Plus

local oGantt,var_Items

oGantt = form.Activex1.nativeObject
oGantt.BeginUpdate()
oGantt.Columns.Add("Def")
oGantt.HotBackColor = 0x800000
oGantt.HotForeColor = 0xffffff
var_Items = oGantt.Items
 var_Items.AddItem("Item A")
 var_Items.AddItem("Item B")
 var_Items.AddItem("Item C")
oGantt.EndUpdate()

XBasic (Alpha Five)

Dim oGantt as P
Dim var_Items as P

oGantt = topparent:CONTROL_ACTIVEX1.activex

oGantt.BeginUpdate()
oGantt.Columns.Add("Def")
oGantt.HotBackColor = 8388608
oGantt.HotForeColor = 16777215
var_Items = oGantt.Items
 var_Items.AddItem("Item A")
 var_Items.AddItem("Item B")
 var_Items.AddItem("Item C")
oGantt.EndUpdate()

Delphi 8 (.NET only)

with AxGantt1 do
begin
 BeginUpdate();
 Columns.Add('Def');
 HotBackColor := Color.FromArgb(0,0,128);
 HotForeColor := Color.FromArgb(255,255,255);
 with Items do
 begin
 AddItem('Item A');
 AddItem('Item B');
 AddItem('Item C');
 end;
 EndUpdate();
end

Delphi (standard)

with Gantt1 do
begin
 BeginUpdate();
 Columns.Add('Def');
 HotBackColor := RGB(0,0,128);
 HotForeColor := RGB(255,255,255);
 with Items do
 begin
 AddItem('Item A');

 AddItem('Item B');
 AddItem('Item C');
 end;
 EndUpdate();
end

Visual Objects

local var_Items as IItems

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:Columns:Add("Def")
oDCOCX_Exontrol1:HotBackColor := RGB(0,0,128)
oDCOCX_Exontrol1:HotForeColor := RGB(255,255,255)
var_Items := oDCOCX_Exontrol1:Items
 var_Items:AddItem("Item A")
 var_Items:AddItem("Item B")
 var_Items:AddItem("Item C")
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oGantt,var_Items

oGantt = ole_1.Object
oGantt.BeginUpdate()
oGantt.Columns.Add("Def")
oGantt.HotBackColor = RGB(0,0,128)
oGantt.HotForeColor = RGB(255,255,255)
var_Items = oGantt.Items
 var_Items.AddItem("Item A")
 var_Items.AddItem("Item B")
 var_Items.AddItem("Item C")
oGantt.EndUpdate()

property Gantt.HTMLPicture(Key as String) as Variant
Adds or replaces a picture in HTML captions.

Type Description

Key as String
A String expression that indicates the key of the picture
being added or replaced. If the Key property is Empty
string, the entire collection of pictures is cleared.

Variant

The HTMLPicture specifies the picture being associated to
a key. It can be one of the followings:

a string expression that indicates the path to the
picture file, being loaded.
a string expression that indicates the base64 encoded
string that holds a picture object, Use the eximages
tool to save your picture as base64 encoded format.
A Picture object that indicates the picture being added
or replaced. (A Picture object implements IPicture
interface),

If empty, the picture being associated to a key is removed.
If the key already exists the new picture is replaced. If the
key is not empty, and it doesn't not exist a new picture is
added

The HTMLPicture property handles a collection of custom size picture being displayed in the
HTML captions, using the tags. By default, the HTMLPicture collection is empty. Use
the HTMLPicture property to add new pictures to be used in HTML captions. For instance,
the HTMLPicture("pic1") = "c:\winnt\zapotec.bmp", loads the zapotec picture and
associates the pic1 key to it. Any "pic1" sequence in HTML captions, displays
the pic1 picture. On return, the HTMLPicture property retrieves a Picture object (this
implements the IPictureDisp interface).

The following sample shows how to put a custom size picture in the column's header:

<CONTROL>.HTMLPicture("pic1") = "c:/temp/editors.gif"
<CONTROL>.HTMLPicture("pic2") = "c:/temp/editpaste.gif"

<COLUMN1>.HTMLCaption = "A pic1"
<COLUMN2>.HTMLCaption = "B pic2"
<COLUMN3>.HTMLCaption = "A pic1 + B pic2"

https://exontrol.com/eximages.jsp

property Gantt.hWnd as Long

Retrieves the control's window handle.

Type Description

Long A long expression that indicates the control's window
handle.

Use the hWnd property to get the control's main window handle. Use the ItemWindowHost
property to get the handle of the container window that host an item's ActiveX Control. The
Microsoft Windows operating environment identifies each form and control in an application
by assigning it a handle, or hWnd. The hWnd property is used with Windows API calls.
Many Windows operating environment functions require the hWnd of the active window as
an argument.

property Gantt.HyperLinkColor as Color

Specifies the hyperlink color.

Type Description
Color A color expression that specifies the hyperlink color.

Use the HyperLinkColor property to specify the color used when the cursor is over the
hyperlink cells. A hyperlink cell has the CellHyperLink property true. The control fires the
HyperLinkClick property when user clicks a cell that has the CellHyperLink property on
True.

method Gantt.Images (Handle as Variant)

Sets the control's image list at runtime.

Type Description

Handle as Variant

The Handle parameter can be:

A string expression that specifies the ICO file to add.
The ICO file format is an image file format for
computer icons in Microsoft Windows. ICO files
contain one or more small images at multiple sizes
and color depths, such that they may be scaled
appropriately. For instance,
Images("c:\temp\copy.ico") method adds the sync.ico
file to the control's Images collection (string, loads the
icon using its path)
A string expression that indicates the BASE64
encoded string that holds the icons list. Use the
Exontrol's ExImages tool to save/load your icons as
BASE64 encoded format. In this case the string may
begin with "gBJJ..." (string, loads icons using base64
encoded string)
A reference to a Microsoft ImageList control
(mscomctl.ocx, MSComctlLib.ImageList type) that
holds the icons to add (object, loads icons from a
Microsoft ImageList control)
A reference to a Picture (IPictureDisp implementation)
that holds the icon to add. For instance, the VB's
LoadPicture (Function LoadPicture([FileName], [Size],
[ColorDepth], [X], [Y]) As IPictureDisp) or
LoadResPicture (Function LoadResPicture(id, restype
As Integer) As IPictureDisp) returns a picture object
(object, loads icon from a Picture object)
A long expression that identifies a handle to an Image
List Control (the Handle should be of HIMAGELIST
type). On 64-bit platforms, the Handle parameter
must be a Variant of LongLong / LONG_PTR data
type (signed 64-bit (8-byte) integers), saved under
llVal field, as VT_I8 type. The LONGLONG /
LONG_PTR is __int64, a 64-bit integer. For instance,
in C++ you can use as Images(COleVariant(
(LONG_PTR)hImageList)) or Images(COleVariant(
(LONGLONG)hImageList)), where hImageList is of

https://exontrol.com/eximages.jsp

HIMAGELIST type. The GetSafeHandle() method of
the CImageList gets the HIMAGELIST handle (long,
loads icon from HIMAGELIST type)

The user can add images at design time, by drag and drop files to combo's image holder.
The ImageSize property defines the size (width/height) of the icons within the control's
Images collection. Use the ReplaceIcon method to add, remove or clear icons in the
control's images collection. Use the CellImage, CellImages properties to assign icons to a
cell. Use the CellPicture property to assign a custom size picture to a cell. Use the
CheckImage or RadioImage property to specify a different look for checkboxes or radio
buttons in the cells.

The following VB sample adds the control's icons list from a BASE64 encoded string:

Dim s As String
With Gantt1
 .BeginUpdate
 s =
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBnqAQEZwmCxFhYGLib/xoAw9ZiFdxbAAGVxM5yOTzkPy+MzGRpmdx2kl2epGY1WgxmZl+Yyery2yyGHyeirGoo+03mM02Jzee029y2Ewum2+FnOTlGezHNx0b3/C3U258a4mP5HVvOw52s2fg2vH6ml8uf8OWmnMjXs9vRjXG8fa88068Z+/o/XJ8nm/zHrg4L/ti8TQts87svyljfuk+DlPfAbPPkicAJnCbsNbDDLO2xz5PlBi3O8x0EsZD7zuG8T1vrCD5uZE7zxM+CXQNB78RKw8RRbF8Rwyu0UPS/UYsfBSbw4lEJx3AEkwvGbxSY/clsPIT3L600pxhHECx6lsjLA7LbxZH7XJfK0Dwi/8iNPJMjSo0clvjMLuTHLkJTNCqVTSms2Tkq8jTzOcVP/BsePUocQLDQ9AJ3LtFUbR1HqaiwfJXSaPJAkSSAAkqUU2nE20gmp5oo6JwH+eZ31EjJwB+eBn1K/AHnBWIfvwAZwACYAHsMy9cIMyFeEBTrIADYKSWLX1ipLXxgJLYgDoyeDIA+cFngAfwAVWfFdIcAB8B+f1tn+YJ/D+f5"

 s = s + "Poyf5xoojKAg"
 .Images s

 .Columns.Add "Column 1"
 With .Items
 Dim h As HITEM
 h = .AddItem("Item 1")
 .CellImage(h, 0) = 1
 h = .AddItem("Item 2")
 .CellImages(h, 0) = "2,3"
 End With
 .EndUpdate
End With

If you run the sample you get:

The following VB sample loads images from a Microsoft Image List control:

Gantt1.Images ImageList1.hImageList

The following C++ sample loads icons from a BASE64 encoded string:

#include "Items.h"
#include "Columns.h"
#include "Column.h"
m_gantt.BeginUpdate();
CString s =
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBnqAQEZwmCxFhYGLib";

s +=
"/xoAw9ZiFdxbAAGVxM5yOTzkPy+MzGRpmdx2kl2epGY1WgxmZl+Yyery2yyGHyeirGoo+03mM02Jzee029y2Ewum2+FnOTlGezHNx0b3/C3U258a4mP5HVvOw52s2fg2vH6ml8uf8OWmnMjXs9vRjXG8fa88068Z+/o/XJ8nm/zHrg4L/ti8TQts87svyljfuk+DlPfAbPPkicAJnCbs";

s +=
"NbDDLO2xz5PlBi3O8x0EsZD7zuG8T1vrCD5uZE7zxM+CXQNB78RKw8RRbF8Rwyu0UPS/UYsfBSbw4lEJx3AEkwvGbxSY/clsPIT3L600pxhHECx6lsjLA7LbxZH7XJfK0Dwi/8iNPJMjSo0clvjMLuTHLkJTNCqVTSms2Tkq8jTzOcVP/BsePUocQLDQ9AJ3LtFUbR1HqaiwfJXSaPJA";

s +=
"kSSAAkqUU2nE20gmp5oo6JwH+eZ31EjJwB+eBn1K/AHnBWIfvwAZwACYAHsMy9cIMyFeEBTrIADYKSWLX1ipLXxgJLYgDoyeDIA+cFngAfwAVWfFdIcAB8B+f1tn+YJ/D+f5Poyf5xoojKAg";

m_gantt.Images(COleVariant(s));
m_gantt.GetColumns().Add("Column 1");
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
CItems items = m_gantt.GetItems();
long h = items.AddItem(COleVariant("Item 1"));
items.SetCellImage(COleVariant(h), COleVariant((long) 0), 1);
h = items.AddItem(COleVariant("Item 2"));
items.SetCellImages(COleVariant(h), COleVariant((long) 0), COleVariant("2,3"));
m_gantt.EndUpdate();

The following C++ sample loads icons from a HIMAGELIST type:

SHFILEINFO sfi; ZeroMemory(&sfi, sizeof(sfi));
 HIMAGELIST hSysImageList = (HIMAGELIST)SHGetFileInfo(_T("C:\\"), 0, &sfi, sizeof
(SHFILEINFO), SHGFI_SMALLICON | SHGFI_SYSICONINDEX);
 m_gantt.Images(_variant_t((long)hSysImageList));

The following VB.NET sample loads icons from a BASE64 encoded string:

Dim s As String
With AxGantt1
 .BeginUpdate()
 s =
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBnqAQEZwmCxFhYGLib/xoAw9ZiFdxbAAGVxM5yOTzkPy+MzGRpmdx2kl2epGY1WgxmZl+Yyery2yyGHyeirGoo+03mM02Jzee029y2Ewum2+FnOTlGezHNx0b3/C3U258a4mP5HVvOw52s2fg2vH6ml8uf8OWmnMjXs9vRjXG8fa88068Z+/o/XJ8nm/zHrg4L/ti8TQts87svyljfuk+DlPfAbPPkicAJnCbsNbDDLO2xz5PlBi3O8x0EsZD7zuG8T1vrCD5uZE7zxM+CXQNB78RKw8RRbF8Rwyu0UPS/UYsfBSbw4lEJx3AEkwvGbxSY/clsPIT3L600pxhHECx6lsjLA7LbxZH7XJfK0Dwi/8iNPJMjSo0clvjMLuTHLkJTNCqVTSms2Tkq8jTzOcVP/BsePUocQLDQ9AJ3LtFUbR1HqaiwfJXSaPJAkSSAAkqUU2nE20gmp5oo6JwH+eZ31EjJwB+eBn1K/AHnBWIfvwAZwACYAHsMy9cIMyFeEBTrIADYKSWLX1ipLXxgJLYgDoyeDIA+cFngAfwAVWfFdIcAB8B+f1tn+YJ/D+f5"

 s = s + "Poyf5xoojKAg"
 .Images(s)

 .Columns.Add("Column 1")
 With .Items
 Dim h As Integer
 h = .AddItem("Item 1")
 .CellImage(h, 0) = 1
 h = .AddItem("Item 2")
 .CellImages(h, 0) = "2,3"
 End With
 .EndUpdate()
End With

The following C# sample loads icons from a BASE64 encoded string:

axGantt1.BeginUpdate();
string s =
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBnqAQEZwmCxFhYGLib/xoAw9ZiFdxbAAGVxM5yOTzkPy+MzGRpmdx2kl2epGY1WgxmZl+Yyery2yyGHyeirGoo+03mM02Jzee029y2Ewum2+FnOTlGezHNx0b3/C3U258a4mP5HVvOw52s2fg2vH6ml8uf8OWmnMjXs9vRjXG8fa88068Z+/o/XJ8nm/zHrg4L/ti8TQts87svyljfuk+DlPfAbPPkicAJnCbsNbDDLO2xz5PlBi3O8x0EsZD7zuG8T1vrCD5uZE7zxM+CXQNB78RKw8RRbF8Rwyu0UPS/UYsfBSbw4lEJx3AEkwvGbxSY/clsPIT3L600pxhHECx6lsjLA7LbxZH7XJfK0Dwi/8iNPJMjSo0clvjMLuTHLkJTNCqVTSms2Tkq8jTzOcVP/BsePUocQLDQ9AJ3LtFUbR1HqaiwfJXSaPJAkSSAAkqUU2nE20gmp5oo6JwH+eZ31EjJwB+eBn1K/AHnBWIfvwAZwACYAHsMy9cIMyFeEBTrIADYKSWLX1ipLXxgJLYgDoyeDIA+cFngAfwAVWfFdIcAB8B+f1tn+YJ/D+f5";

s = s + "Poyf5xoojKAg";
axGantt1.Images(s);
axGantt1.Columns.Add("Column 1");
int h = axGantt1.Items.AddItem("Item 1");
axGantt1.Items.set_CellImage(h, 0, 1);
h = axGantt1.Items.AddItem("Item 2");
axGantt1.Items.set_CellImages(h, 0,"2,3");
axGantt1.EndUpdate();

The following VFP sample loads icons from a BASE64 encoded string:

local s

With thisform.Gantt1
 .BeginUpdate()
 s =
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrl"

 s = s +
"dr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBnqAQEZwmCxFhYGLib/xoAw9ZiFdxbAAGVxM5yOTzkPy+MzGRpmdx2kl2epGY1WgxmZl+Yyery2yyGHyeir"

 s = s +
"Goo+03mM02Jzee029y2Ewum2+FnOTlGezHNx0b3/C3U258a4mP5HVvOw52s2fg2vH6ml8uf8OWmnMjXs9vRjXG8fa88068Z+/o/XJ8nm/zHrg4L/ti8TQts87svyljfuk+DlPfAbPP"

 s = s +
"kicAJnCbsNbDDLO2xz5PlBi3O8x0EsZD7zuG8T1vrCD5uZE7zxM+CXQNB78RKw8RRbF8Rwyu0UPS/UYsfBSbw4lEJx3AEkwvGbxSY/clsPIT3L600pxhHECx6lsjLA7LbxZH7XJfK0D"

 s = s +
"wi/8iNPJMjSo0clvjMLuTHLkJTNCqVTSms2Tkq8jTzOcVP/BsePUocQLDQ9AJ3LtFUbR1HqaiwfJXSaPJAkSSAAkqUU2nE20gmp5oo6JwH+eZ31EjJwB+eBn1K/AHnBWIfvwAZwACYAHsMy9cIMyFeEBTrIADYKSWLX1ipLXxgJLYgDoyeDIA+cFngAfwAVWfFdIcAB8B+f1tn+YJ/D+f5"

 s = s + "Poyf5xoojKAg"
 .Images(s)

 .Columns.Add("Column 1")
 With .Items
 .DefaultItem = .AddItem("Item 1")
 .CellImage(0, 0) = 1
 .DefaultItem = .AddItem("Item 2")
 .CellImages(0, 0) = "2,3"
 EndWith
 .EndUpdate()
EndWith

property Gantt.ImageSize as Long
Retrieves or sets the size of control' icons/images/check-boxes/radio-buttons.

Type Description

Long A long expression that defines the size of icons the control
displays.

By default, the ImageSize property is 16 (pixels). The ImageSize property specifies the size
of icons being loaded using the Images method. The control's Images collection is cleared if
the ImageSize property is changed, so it is recommended to set the ImageSize property
before calling the Images method. The ImageSize property defines the size (width/height)
of the icons within the control's Images collection. For instance, if the ICO file to load
includes different types the one closest with the size specified by ImageSize property is
loaded by Images method. The ImageSize property does NOT change the height for the
control's font.

The ImageSize property defines the size to display the following UI elements:

any icon that a cell or column displays (number ex-html tag, CellImage,
CellImages)
check-box or radio-buttons (CellHasCheckBox, CellHasRadioButton)
expand/collapse glyphs (HasButtons, HasButtonsCustom)
header's sorting or drop down-filter glyphs

property Gantt.Indent as Long

Retrieves or sets the amount, in pixels, that child items are indented relative to their parent
items.

Type Description

Long A long expression that indicates the amount, in pixels, that
child items are indented relative to their parent items.

If the Indent property is 0, the child items are not indented relative to their parent item. Use
HasLines and LinesAtRoot properties to show the hierarchy lines. Use the HasButtons
property to define the +/- signs appearance. Use the TreeColumnIndex property to define
the index of the column that displays the hierarchy. Use the InsertItem method to insert a
child item. Use the InsertControlItem property to insert an ActiveX item.

property Gantt.ItemFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS, ColIndex as Long, HitTestInfo as HitTestInfoEnum)
as HITEM

Retrieves the item from the cursor.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

ColIndex as Long
A long expression that indicates on return, the column
where the point belongs. If the return value is zero, the
ColIndex may indicate the handle of the cell (inner cell).

HitTestInfo as
HitTestInfoEnum

A HitTestInfoEnum expression that determines on return,
the position of the cursor within the cell.

HITEM A long expression that indicates the item's handle where
the point is.

Use the ItemFromPoint property to get the item from the point specified by the {X,Y}. The X
and Y coordinates are expressed in client coordinates, so a conversion must be done in
case your coordinates are relative to the screen or to other window. If the X parameter is
-1 and Y parameter is -1 the ItemFromPoint property determines the handle of the
item from the cursor. Use the ColumnFromPoint property to retrieve the column from
cursor. Use the DateFromPoint property to specify the date from the cursor. Use the
SelectableItem property to specify the user can select an item. Use the LevelFromPoint
property to retrieve the index of the level from the cursor.

The following VB sample prints the cell's caption from the cursor (if the control contains no
inner cells. Use the SplitCell property to insert inner cells) :

Private Sub Gantt1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 On Error Resume Next
 ' Converts the container coordinates to client coordinates
 X = X / Screen.TwipsPerPixelX
 Y = Y / Screen.TwipsPerPixelY
 Dim h As HITEM

 Dim c As Long
 Dim hit As EXGANTTLibCtl.HitTestInfoEnum
 ' Gets the item from (X,Y)
 h = Gantt1.ItemFromPoint(X, Y, c, hit)
 If Not (h = 0) Then
 Debug.Print Gantt1.Items.CellCaption(h, c) & " HT = " & hit
 End If
End Sub

The following VB sample displays the cell's caption from the cursor (if the control contains
inner cells):

Private Sub Gantt1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 On Error Resume Next
 ' Converts the container coordinates to client coordinates
 X = X / Screen.TwipsPerPixelX
 Y = Y / Screen.TwipsPerPixelY
 Dim h As HITEM
 Dim c As Long
 Dim hit As EXGANTTLibCtl.HitTestInfoEnum
 ' Gets the item from (X,Y)
 h = Gantt1.ItemFromPoint(X, Y, c, hit)
 If Not (h = 0) Or Not (c = 0) Then
 Debug.Print Gantt1.Items.CellCaption(h, c) & " HT = " & hit
 End If
End Sub

The following VB sample displays the index of icon being clicked:

Private Sub Gantt1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single)
 Dim i As HITEM, h As HitTestInfoEnum, c As Long
 With Gantt1
 i = .ItemFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, c, h)
 End With
 If (i <> 0) or (c <> 0) Then
 If exHTCellIcon = (h And exHTCellIcon) Then
 Debug.Print "The index of icon being clicked is: " & (h And &HFFFF0000) / 65536

 End If
 End If
End Sub

The following C# sample displays the caption of the cell being double clicked (including the
inner cells):

 EXGANTTLib.HitTestInfoEnum hit;
 int c = 0, h = axGantt1.get_ItemFromPoint(e.x, e.y, out c, out hit);
 if ((h != 0) || (c != 0))
 MessageBox.Show(axGantt1.Items.get_CellCaption(h, c).ToString());

The following VC sample displays the caption of the cell being clicked:

#include "Items.h"

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnMouseDownGantt1(short Button, short Shift, long X, long Y)
{
 long c = 0, hit = 0, hItem = m_gantt.GetItemFromPoint(X, Y, &c, &hit);
 if ((hItem != 0) || (c != 0))
 {
 CItems items = m_gantt.GetItems();
 COleVariant vtItem(hItem), vtColumn(c);
 CString strCaption = V2S(&items.GetCellCaption(vtItem, vtColumn)), strOutput;

 strOutput.Format("Cell: '%s', Hit = %08X\n", strCaption, hit);
 OutputDebugString(strOutput);
 }
}

The following VB.NET sample displays the caption from the cell being clicked:

Private Sub AxGantt1_MouseDownEvent(ByVal sender As Object, ByVal e As
AxEXGANTTLib._IGanttEvents_MouseDownEvent) Handles AxGantt1.MouseDownEvent
 With AxGantt1
 Dim i As Integer, c As Integer, hit As EXGANTTLib.HitTestInfoEnum
 i = .get_ItemFromPoint(e.x, e.y, c, hit)
 If (Not (i = 0) Or Not (c = 0)) Then
 Debug.WriteLine("Cell: " & .Items.CellCaption(i, c) & " Hit: " & hit.ToString())
 End If
 End With
End Sub

The following C# sample displays the caption from the cell being clicked:

private void axGantt1_MouseDownEvent(object sender,
AxEXGANTTLib._IGanttEvents_MouseDownEvent e)
{
 int c = 0;
 EXGANTTLib.HitTestInfoEnum hit;
 int i = axGantt1.get_ItemFromPoint(e.x, e.y, out c,out hit);
 if ((i != 0) || (c != 0))
 {
 string s = axGantt1.Items.get_CellCaption(i,c).ToString();
 s = "Cell: " + s + ", Hit: " + hit.ToString();
 System.Diagnostics.Debug.WriteLine(s);
 }
}

The following VFP sample displays the caption from the cell being clicked (the code should
be in the Gantt1.MouseDown event):

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

local c, hit
c = 0
hit = 0
with thisform.Gantt1
 .Items.DefaultItem = .ItemFromPoint(x, y, @c, @hit)
 if (.Items.DefaultItem <> 0) or (c <> 0)
 wait window nowait .Items.CellCaption(0, c) + " " + Str(hit)
 endif
endwith

property Gantt.Items as Items

Retrieves the control's item collection.

Type Description
Items An Items object that holds the control's items collection.

Use the Items property to access the Items collection. Use the Items collection to add,
remove or change the control items. Use the GetItems method to get the items collection
into a safe array. Use the PutItems method to load items from a safe array. Use the
Columns property to access the control's Columns collection. Use the AddItem, InsertItem
or InsertControlItem method to add new items to the control. Use the DataSource to add
new columns and items to the control. Adding new items fails if the control has no columns.
Use the Chart object to access all properties and methods related to the Gantt chart. Use
the AddBar method to add bars to the item. The bars are always shown in the chart area.
Use the PaneWidth property to specify the width of the chart.

property Gantt.ItemsAllowSizing as ItemsAllowSizingEnum
Retrieves or sets a value that indicates whether a user can resize items at run-time.

Type Description

ItemsAllowSizingEnum
An ItemsAllowSizingEnum expression that specifies
whether the user can resize a single item at runtime, or all
items, at once.

By default, the ItemsAllowSizing property is exNoSizing. Use the ItemsAllowSizing property
to specify whether all items are resizable. Use the ItemAllowSizing property of the Items
object to specify only when few items are resizable or not. Use the ItemHeight property to
specify the height of the item. The CellSingleLine property specifies whether a cell displays
its caption using multiple lines. The DefaultItemHeight property specifies the default height
of the items. The DefaultItemHeight property affects only items that are going to be added.
It doesn't affect items already added.

property Gantt.Layout as String
Saves or loads the control's layout, such as positions of the columns, scroll position, filtering
values.

Type Description
String A String expression that specifies the control's layout.

You can use the Layout property to store the control's layout and to restore the layout later.
For instance, you can save the control's Layout property to a file when the application is
closing, and you can restore the control's layout when the application is loaded. The Layout
property saves almost all of the control's properties that user can change at runtime (like
changing the column's position by drag and drop). The Layout property does NOT save the
control's data, so the Layout property should be called once you loaded the data from your
database, xml or any other alternative. Once the data is loaded, you can call the Layout
property to restore the View as it was saved. Before closing the application, you can call
the Layout property and save the content to a file for reading next time the application is
opened.

The Layout property saves/loads the following information:

chart's FirstVisibleDate property, that indicates the first visible date in the chart section
panels width, through the PaneWidth property
columns size and position
current selection
scrolling position and size
expanded/collapsed items, if any
sorting columns
filtering options
SearchColumnIndex property, indicates the focusing column, or the column where the
user can use the control's incremental searching.
TreeColumnIndex property, which indicates the index of the column that displays the
hierarchy lines.

These properties are serialized to a string and encoded in BASE64 format.

The following movies show how Layout works:

 The Layout property is used to save and restore the control's view.

Generally, the Layout property can be used to save / load the control's layout (or as it is
displayed). Thought, you can benefit of this property to sort the control using one or more
columns as follows:

https://www.youtube.com/watch?v=TbWWnDJlD9w

multiplesort="";singlesort="", removes any previously sorting
multiplesort="C3:1", sorts ascending the column with the index 3 (and add it to the sort
bar if visible)
singlesort="C4:2", sorts descending the column with the index 4 (it is not added to sort
bar panel)
multiplesort="C3:1";singlesort="C4:2", sorts ascending the column with the index 3 (
and add it to the sort bar if visible), and sorts descending the column with the index 4.
In other words, it re-sort the control by columns 3 and 4.
multiplesort="C3:1 C5:2";singlesort="C4:2", sorts ascending the column with the index
3 (and add it to the sort bar if visible), sorts descending the column with the index 5 (
and add it to the sort bar if visible), and sorts descending the column with the index 4.
In other words, it re-sort the control by columns 3, 5 and 4.

The format of the Layout in non-encoded form is like follows:

c0.filtertype=0
c0.position=0
c0.select=0
c0.visible=1
c0.width=96
....
columns=13
collapse="0-3 5-63 80-81 83"
filterprompt=""
focus=8
focuscolumnindex=0
hasfilter=1
hscroll=0
multiplesort="C12:1 C2:2"
searchcolumnindex=3
select="39 2 13 8"
selectcolumnindex=0
singlesort="C5:2"
treecolumnindex=0
vscroll=12
vscrolloffset=0

property Gantt.LinesAtRoot as LinesAtRootEnum

Link items at the root of the hierarchy.

Type Description

LinesAtRootEnum A LinesAtRootEnum expression that indicates whether the
control link items at the root of the hierarchy.

The control paints the hierarchy lines to the right if the Column's Alignment property is
RightAlignment. The TreeColumnIndex property specifies the index of column where the
hierarchy lines are painted. Use the Indent property to increase or decrease the amount, in
pixels, that child items are indented relative to their parent items. Use the HasLines property
to enhances the graphic representation of a tree control's hierarchy by drawing lines that
link child items to their corresponding parent item. Use the InsertItem method to insert a
child item. Use the InsertControlItem property to insert an ActiveX item.

method Gantt.LoadXML (Source as Variant)
Loads an XML document from the specified location, using MSXML parser.

Type Description

Source as Variant

An indicator of the object that specifies the source for the
XML document. The object can represent a file name, a
URL, an IStream, a SAFEARRAY, or an
IXMLDOMDocument.

Return Description

Boolean
A boolean expression that specifies whether the XML
document is loaded without errors. If an error occurs, the
method retrieves a description of the error occurred.

The LoadXML method uses the MSXML (MSXML.DOMDocument, XML DOM Document)
parser to load XML documents, previously saved using the SaveXML method. The control is
emptied when the LoadXML method is called, and so the columns and items collection are
emptied before loading the XML document. The LoadXML method adds a new column for
each <column> tag found in the <columns> collection. Properties like Caption,
HTMLCaption, Image, Visible, LevelKey, DisplayFilterButton, DisplayFilterPattern,
FilterType, Width and Position are fetched for each column found in the XML document. The
control fires the AddColumn event for each found column. The <items> xml element
contains a collection of <item> objects. Each <item> object holds information about an item
in the control, including its cells, child items or bars. Each item contains a collection of
<cell> objects that defines the cell for each column. The <bars> element contains a
collection of <bar> each one is associated with the bars in the item. The Expanded attribute
specifies whether an item is expanded or collapsed, and it carries the value of the
ExpandItem property. The <chart> element contains data related to the chart data of the
control. For instance, it includes the collection of levels being displayed in the chart, the first
visible date, links and groups of bars. The <levels> element holds a collection of <level>
objects each one being associated with an level in the chart area. The <links> element
holds a collection of <link> objects each one indicating a link between two bars in the chart.
The <groups> element holds a collection of <group> objects that indicates the bars that
are grouped in the chart.

The XML format looks like follows:

- <Content Author Component Version ...>
 - <Chart FirstVisibleDate ...>
 - <Levels>
 <Level Label Unit Count />

 <Level Label Unit Count />
 ...
 </Levels>
 - <Links>
 <Link Key StartItem StartBar EndItem EndBar Visible StartPos EndPos Color Style
Width ShowDir Text ... />
 <Link Key StartItem StartBar EndItem EndBar Visible StartPos EndPos Color Style
Width ShowDir Text ... />
 ...
 </Links>
 </Chart>
 - <Columns>
 <Column Caption Position Width HTMLCaption LevelKey DisplayFilterButton
DisplayFilterPatter FilterType ... />
 <Column Caption Position Width HTMLCaption LevelKey DisplayFilterButton
DisplayFilterPatter FilterType ... />
 ...
 </Columns>
 - <Items>
 - <Item Expanded ...>
 <Cell Value ValueFormat Images Image ... />
 <Cell Value ValueFormat Images Image ... />
 ...
 - <Bars>
 <Bar Name Start End Caption HAlignCaption VAlignCaption Key ... />
 <Bar Name Start End Caption HAlignCaption VAlignCaption Key ... />
 ...
 </Bars>
 - <Items>
 - <Item Expanded ...>
 - <Item Expanded ...>

 </Items>
 </Item>
 </Items>
 </Content>

property Gantt.MarkSearchColumn as Boolean

Retrieves or sets a value that indicates whether the searching column is marked or
unmarked

Type Description

Boolean A boolean expression that indicates whether the searching
column is marked or unmarked.

The control supports incremental search feature. The MarkSearchColumn property
specifies whether the control highlights the searching column. Use the SearchColumnIndex
property to specify the index of the searching column. The user can change the searching
column by pressing the TAB ort Shift + TAB key. Use the AutoSearch property to specify
whether the control enables the incremental searching feature. Use the AutoSearch
property to specify the type of incremental searching the control supports within the column.
Use the UseTabKey property to specify whether the control uses the TAB key.

method Gantt.OLEDrag ()
Causes a component to initiate an OLE drag/drop operation.

Type Description

Only for internal use.

property Gantt.OLEDropMode as exOLEDropModeEnum
Returns or sets how a target component handles drop operations

Type Description

exOLEDropModeEnum An exOLEDropModeEnum expression that indicates the
OLE Drag and Drop mode.

In the /NET Assembly, you have to use the AllowDrop property as explained here:

https://www.exontrol.com/sg.jsp?content=support/faq/net/#dragdrop

By default, the OLEDropMode property is exOLEDropNone. Currently, the ExGantt control
supports only manual OLE Drag and Drop operation. Use the
Background(exDragDropBefore) property to specify the visual appearance for the dragging
items, before painting the items. Use the Background(exDragDropAfter) property to specify
the visual appearance for the dragging items, after painting the items. Use the
Background(exDragDropList) property to specify the graphic feedback for the item from the
cursor, while the OLE drag and drop operation is running. See the OLEStartDrag and
OLEDragDrop events for more details about implementing drag and drop operations into
the ExGantt control.

https://exontrol.com/faq.jsp/net/#dragdrop

property Gantt.OnResizeControl as OnResizeControlEnum
Specifies whether the list or the chart part is resized once the control is resized.

Type Description

OnResizeControlEnum
An OnResizeControlEnum expression that specifies
whether the list or the chart part of the control is resized,
when the entire control is resized.

By default, the OnResizeControl property is exResizeList. In other words, the list part of the
control (the part that lists the columns) gets resized, and the chart are stay fixed. Use the
OnResizeControl to specify whether the chart area should be resized when the user resizes
the control (whenever the chart is anchored to a form). Use the PaneWidth property to
specify the width of the list or chart part of the control.

property Gantt.Picture as IPictureDisp

Retrieves or sets a graphic to be displayed in the control.

Type Description

IPictureDisp A Picture object that's displayed on the control's
background.

By default, the control has no picture associated. The control uses the PictureDisplay
property to determine how the picture is displayed on the control's background. Use the
PictureLevelHeader property to specify the picture on the control's levels header bar. Use
the CellPicture property to assign a picture to a cell. Use the BackColor property to specify
the control's background color. Use the Picture property to assign a picture to the chart
area.

property Gantt.PictureDisplay as PictureDisplayEnum

Retrieves or sets a value that indicates the way how the graphic is displayed on the
control's background

Type Description

PictureDisplayEnum A PictureDisplayEnum expression that indicates the way
how the picture is displayed.

By default, the PictureDisplay property is exTile. The PictureDisplay property specifies how
the Picture is displayed on the control's background. If the control has no picture associated
the PictureDisplay property has no effect. Use the CellPicture property to assign a picture
to a cell. Use the BackColor property to specify the control's background color.

property Gantt.PictureDisplayLevelHeader as PictureDisplayEnum
Retrieves or sets a value that indicates the way how the graphic is displayed on the
control's header background.

Type Description

PictureDisplayEnum A PictureDisplayEnum expression that indicates the way
how the picture is displayed on the control's header.

Use the PictureDisplayLevelHeader property to arrange the picture on the control's multiple
levels header bar. Use the PictureLevelHeader property to load a picture on the control's
header bar when it displays multiple levels. The control's header bar displays multiple levels
if there are two or more neighbor columns with the same non empty level key. Use the
LevelKey property to specify the control's level key.

property Gantt.PictureLevelHeader as IPictureDisp
Retrieves or sets a graphic to be displayed in the control's header when multiple levels is
on.

Type Description

IPictureDisp A Picture object being displayed on the control's header
bar when multiple levels is on.

Use the PictureLevelHeader property to display a picture on the control's header bar when
it displays the columns using multiple levels. Use the PictureDisplayLevelHeader property to
arrange the picture on the control's multiple levels header bar. The control's header bar
displays multiple levels if there are two or more neighbor columns with the same non empty
level key. Use the LevelKey property to specify the control's level key. Use the Picture
property to display a picture on the control's list area. Use the BackColorLevelHeader
property to specify the background color for parts of the control's header bar that are not
occupied by column's headers.

method Gantt.PutItems (Items as Variant, [Parent as Variant])

Adds an array of integer, long, date, string, double, float, or variant arrays to the control

Type Description

Items as Variant

An array that control uses to fill with. The array can be
one or two- dimensional. If the array is one-dimensional,
the control requires one column being added before calling
the PutItems method. If the Items parameter indicates a
two-dimensional array, the first dimension defines the
columns, while the second defines the number of items to
be loaded. For instance, a(2,100) means 2 columns and
100 items.

Parent as Variant A long expression that specifies the handle of the item
where the array is being inserted, or 0 if missing.

The PutItems method loads items from a safe array. The Parent parameter of the PutItems
method specifies the handle of the item where the array is being inserted as child items.Use
the GetItems method to get a safe array with the items in the control. Use the Items
property to access the items collection. Use the AddItem method to add items one by one.
Use the DataSource property to bind the control to an ADO or DAO recordset. Use the
ColumnAutoResize property to specify whether the visible columns should fit the control's
client area. Use the ConditionalFormats method to apply formats to a cell or range of cells,
and have that formatting change depending on the value of the cell or the value of a
formula.

The following VB 6 sample loads a flat array to a single column control (and shows as in the
following picture):

With Gantt1
 .BeginUpdate
 .Columns.Add "Column 1"
 .PutItems Array("Item 1", "Item 2", "Item 3")
 .EndUpdate
End With

 or similar for /NET Assembly version:

 With Exgantt1
 .BeginUpdate()
 .Columns.Add("Column 1")

 .PutItems(New String() {"Item 1", "Item 2", "Item 3"})
 .EndUpdate()
End With

The following VB 6 sample loads a hierarchy to a single column control (and shows as in
the following picture):

With Gantt1
 .BeginUpdate
 .LinesAtRoot = exLinesAtRoot
 .Columns.Add ""
 .PutItems Array("Root 1", Array("Child 1.1", Array("Sub Child 1.1.1", "Sub Child 1.1.2"),
"Child 1.2"), "Root 2", Array("Child 2.1", "Child 2.2"))
 .EndUpdate
End With

 or similar for /NET Assembly version:

With Exgantt1
 .BeginUpdate()
 .LinesAtRoot = exontrol.EXGANTTLib.LinesAtRootEnum.exLinesAtRoot
 .Columns.Add("")
 .PutItems(New Object() {"Root 1", New Object() {"Child 1.1", New String() {"Sub Child
1.1.1", "Sub Child 1.1.2"}, "Child 1.2"}, "Root 2", New String() {"Child 2.1", "Child 2.2"}})
 .EndUpdate()
End With

The following VB 6 sample loads a list of items, in a three columns control (as shown in the
following picture):

Dim v(2, 2) As String
v(0, 0) = "One"
v(0, 1) = "Two"
v(0, 2) = "Three"
v(1, 0) = "One"
v(1, 1) = "Two"
v(1, 2) = "Three"
v(2, 0) = "One"
v(2, 1) = "Two"
v(2, 2) = "Three"

With Gantt1
 .BeginUpdate
 .Columns.Add "Column 1"
 .Columns.Add "Column 2"
 .Columns.Add "Column 3"

 .PutItems v
 .EndUpdate
End With

The following VB 6 sample loads a list of items, in a three columns control (as shown in the
following picture):

Dim v(2, 2) As String
v(0, 0) = "One"
v(0, 1) = "Two"
v(0, 2) = "Three"
v(1, 0) = "One"
v(1, 1) = "Two"
v(1, 2) = "Three"
v(2, 0) = "One"
v(2, 1) = "Two"
v(2, 2) = "Three"

With Gantt1
 .BeginUpdate
 .Columns.Add "Column 1"
 .Columns.Add "Column 2"
 .Columns.Add "Column 3"

 .Items.AddItem "Root"

 .PutItems v, .Items.FirstVisibleItem
 .EndUpdate
End With

The following VB sample loads an ADO recordset using PutItems method:

Set rs = CreateObject("ADODB.Recordset")
rs.Open "Orders", "Provider=Microsoft.Jet.OLEDB.3.51;Data Source= D:\Program
Files\Microsoft Visual Studio\VB98\NWIND.MDB", 3 ' Opens the table using static mode

Gantt1.BeginUpdate
For Each f In rs.Fields
 Gantt1.Columns.Add f.Name
Next
Gantt1.PutItems rs.GetRows()
Gantt1.EndUpdate

The following C++ sample loads records from an ADO recordset, using the PutItems
method:

#include "Items.h"
#include "Columns.h"
#include "Column.h"

#pragma warning(disable : 4146)
#import <msado15.dll> rename ("EOF", "adoEOF")
using namespace ADODB;

_RecordsetPtr spRecordset;
if (SUCCEEDED(spRecordset.CreateInstance("ADODB.Recordset")))
{
 // Builds the connection string.
 CString strTableName = "Employees", strConnection =
"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=";
 CString strPath = "D:\\Program Files\\Microsoft Visual Studio\\VB98\\NWIND.MDB";
 strConnection += strPath;
 try
 {
 // Loads the table
 if (SUCCEEDED(spRecordset->Open(_variant_t((LPCTSTR)strTableName),
_variant_t((LPCTSTR)strConnection), adOpenStatic, adLockPessimistic, NULL)))
 {
 m_gantt.BeginUpdate();
 m_gantt.SetColumnAutoResize(FALSE);
 CColumns columns = m_gantt.GetColumns();
 for (long i = 0; i < spRecordset->Fields->Count; i++)
 columns.Add(spRecordset->Fields->GetItem(i)->Name);
 COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
 m_gantt.PutItems(&spRecordset->GetRows(-1), vtMissing);
 m_gantt.EndUpdate();
 }
 }
 catch (_com_error& e)
 {
 AfxMessageBox(e.Description());
 }
}

The sample uses the #import statement to import ADODB recordset's type library. The
sample enumerates the fields in the recordset and adds a new column for each field found.

Also, the sample uses the GetRows method of the ADODB recordset to retrieves multiple
records of a Recordset object into a safe array. Please consult the ADODB documentation
for the GetRows property specification.

property Gantt.RadioImage(Checked as Boolean) as Long
Retrieves or sets a value that indicates the image used by cells of radio type.

Type Description

Checked as Boolean A boolean expression that indicates the radio's state. True
means checked, and False means unchecked.

Long

A long expression that indicates the index of image used to
paint the radio button. The last 7 bits in the high significant
byte of the long expression indicates the identifier of the
skin being used to paint the object. Use the Add method to
add new skins to the control. If you need to remove the
skin appearance from a part of the control you need to
reset the last 7 bits in the high significant byte of the color
being applied to the part.

Use RadioImage and CheckImage properties to define the icons used for radio and check
box cells. The RadioImage property defines the index of the icon being used by radio
buttons. Use the CellHasRadioButton property to assign a radio button to a cell. Use the
CellHasCheckBox property to assign a checkbox to a cell. Use the CellImage or CellImages
property to assign one or multiple icons to a cell. Use the CellPicture property to assign a
picture to a cell. Use the CellStateChanged event to notify your application when the cell's
state is changed. Use the PartialCheck property to allow partial check feature within the
column. Use the Images method to insert icons at runtime. The following samples require a
control with icons, else nothing will be changed. The ImageSize property defines the size
(width/height) of the icons within the control's Images collection.

The following VB sample changes the default icon for the cells of radio type:

Gantt1.RadioImage(True) = 1 ' Sets the icon for cells of radio type that are checked
Gantt1.RadioImage(False) = 2 ' Sets the icon for cells of radio type that are
unchecked

The Gantt1.RadioImage(True) = 0 makes the control to use the default icon for painting
cells of radio type that are checked.

The following C++ sample changes the default icon for the cells of radio type:

m_gantt.SetRadioImage(TRUE, 1);
m_gantt.SetRadioImage(FALSE, 2);

The following VB.NET sample changes the default icon for the cells of radio type:

With AxGantt1
 .set_RadioImage(True, 1)
 .set_RadioImage(False, 2)
End With

The following C# sample changes the default icon for the cells of radio type:

axGantt1.set_RadioImage(true, 1);
axGantt1.set_RadioImage(false, 2);

The following VFP sample changes the default icon for the cells of radio type:

with thisform.Gantt1
 local sT, sCR
 sCR = chr(13) + chr(10)
 sT = "RadioImage(True) = 1"+ sCR
 sT = sT + "RadioImage(False) = 2"+ sCR
 .Template = sT
endwith

The VFP considers the RadioImage call as being a call for an array, so an error occurs if
the method is called directly, so we built a template string that we pass to the Template
property.

property Gantt.RClickSelect as Boolean

Retrieves or sets a value that indicates whether an item is selected using right mouse
button.

Type Description

Boolean A boolean expression that indicates whether an item is
selected using the right mouse button.

Use the RClickSelect property to allow users select items using the right click. By default,
the RClickSelect property is False. The control fires the SelectionChanged event when user
selects an item. Use the SelectItem property to select programmatically select an item. Use
the SelectCount property to get the number of selected items. Use the SelectedItem
property to get the selected item. Use the FocusItem property to get the focused item. Use
the ItemFromPoint property to retrieve an item from the point.

method Gantt.Refresh ()

Refreshes the control's content.

Type Description

The Refresh method forces repainting the control. Use the BeginUpdate and EndUpdate
methods to maintain the control's performance while adding multiple items or columns. Use
the hWnd property to get the handle of the control's window.

The following VB sample calls the Refresh method:

Gantt1.Refresh

The following C++ sample calls the Refresh method:

m_gantt.Refresh();

The following VB.NET sample calls the Refresh method:

AxGantt1.CtlRefresh()

In VB.NET the System.Windows.Forms.Control class has already a Refresh method, so the
CtlRefresh method should be called.

The following C# sample calls the Refresh method:

axGantt1.CtlRefresh();

In C# the System.Windows.Forms.Control class has already a Refresh method, so the
CtlRefresh method should be called.

The following VFP sample calls the Refresh method:

thisform.Gantt1.Object.Refresh()

method Gantt.RemoveSelection ()
Removes the selected items (including the descendents)

Type Description

The RemoveSelection method removes the selected items (including the descendents). The
RemoveItem method removes an item (if the item has no descendents). The UnselectAll
method unselects all items in the list.

method Gantt.ReplaceIcon ([Icon as Variant], [Index as Variant])

Adds a new icon, replaces an icon or clears the control's image list.

Type Description
Icon as Variant A long expression that indicates the icon's handle.

Index as Variant A long expression that indicates the index where icon is
inserted.

Return Description

Long A long expression that indicates the index of the icon in the
images collection

Use the ReplaceIcon property to add, remove or replace an icon in the control's images
collection. Also, the ReplaceIcon property can clear the images collection. Use the Images
method to attach a image list to the control.

The following VB sample adds a new icon to control's images list:

 i = ExGantt1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle), i specifies the index
where the icon is added

The following VB sample replaces an icon into control's images list::

 i = ExGantt1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle, 0), i is zero, so the first
icon is replaced.

The following VB sample removes an icon from control's images list:

 ExGantt1.ReplaceIcon 0, i, i specifies the index of icon removed.

The following VB clears the control's icons collection:

 ExGantt1.ReplaceIcon 0, -1

property Gantt.RightToLeft as Boolean
Indicates whether the component should draw right-to-left for RTL languages.

Type Description

Boolean A boolean expression that specifies whether the control is
drawn from right to left or from left to right.

By default, the RightToLeft property is False. The RightToLeft gets or sets a value indicating
whether control's elements are aligned to right or left. The RightTolLeft property affects all
columns, and future columns being added.

Changing the RightToLeft property on True does the following:

flips the panels, so the chart panel is displayed on the left side (ChartOnLeft property
)
displays the vertical scroll bar on the left side of the control (Scrollbars property)
flips the order of the columns (Position property)
change the column's alignment to right, if the column is not centered (Alignment
property, HeaderAlignment property, HeaderImageAlignment property)
reverse the order of the drawing parts in the cells (Def(exCellDrawPartsOrder)
property to "caption,picture,icons,icon,check")
aligns the locked columns to the right (CountLockedColumns property)
aligns the control's group-by bar / sort bar to the right (SortBarVisible property)
the control's filter bar/prompt/close is aligned to the right (FilterBarPromptVisible
property)

(By default) Changing the RightToLeft property on False does the following:

flips the panels, so the chart panel is displayed on the right side (ChartOnLeft property
)
displays the vertical scroll bar on the right side of the control (Scrollbars property)
flips the order of the columns (Position property)
change the column's alignment to left, if the column is not centered (Alignment
property, HeaderAlignment property, HeaderImageAlignment property)
reverse the order of the drawing parts in the cells (Def(exCellDrawPartsOrder)
property to "check,icon,icons,picture,caption")
aligns the locked columns to the left (CountLockedColumns property)
aligns the control's group-by bar / sort bar to the left (SortBarVisible property)
the control's filter bar/prompt/close is aligned to the left (FilterBarPromptVisible
property)

method Gantt.SaveXML (Destination as Variant)
Saves the control's content as XML document to the specified location, using the MSXML
parser.

Type Description

Destination as Variant

This object can represent a file name, an XML document
object, or a custom object that supports persistence as
follows:

String - Specifies the file name. Note that this must be
a file name, rather than a URL. The file is created if
necessary and the contents are entirely replaced with
the contents of the saved document. For example:

Gantt1.SaveXML("sample.xml")

XML Document Object. For example:

Dim xmldoc as Object
Set xmldoc = CreateObject("MSXML.DOMDocument")
Gantt1.SaveXML(xmldoc)

Custom object supporting persistence - Any other
custom COM object that supports QueryInterface for
IStream, IPersistStream, or IPersistStreamInit can
also be provided here and the document will be saved
accordingly. In the IStream case, the IStream::Write
method will be called as it saves the document; in the
IPersistStream case, IPersistStream::Load will be
called with an IStream that supports the Read, Seek,
and Stat methods.

Return Description

Boolean A Boolen expression that specifies whether saving the
XML document was ok.

The SaveXML method uses the MSXML (MSXML.DOMDocument, XML DOM Document)
parser to save the control's data in XML documents. The LoadXML method loads XML
documents being created with SaveXML method. The SaveXML method saves each column
in <column> elements under the <columns> collection. Properties like Caption,
HTMLCaption, Image, Visible, LevelKey, DisplayFilterButton, DisplayFilterPattern,
FilterType, Width and Position are saved for each column in the control. The <items> xml
element saves a collection of <item> objects. Each <item> object holds information about

an item in the control, including its cells, child items or bars. Each item saves a collection of
<cell> objects that defines the cell for each column. The <bars> element saves a collection
of <bar> each one is associated with the bars in the item. The Expanded attribute specifies
whether an item is expanded or collapsed, and it carries the value of the ExpandItem
property. The <chart> element saves data related to the chart data of the control. For
instance, it includes the collection of levels being displayed in the chart, the first visible date,
links and groups of bars. The <levels> element holds a collection of <level> objects each
one being associated with an level in the chart area. The <links> element holds a collection
of <link> objects each one indicating a link between two bars in the chart. The <groups>
element holds a collection of <group> objects that indicates the bars that are grouped in
the chart.

The control saves the control's data in XML format like follows:

- <Content Author Component Version ...>
 - <Chart FirstVisibleDate ...>
 - <Levels>
 <Level Label Unit Count />
 <Level Label Unit Count />
 ...
 </Levels>
 - <Links>
 <Link Key StartItem StartBar EndItem EndBar Visible StartPos EndPos Color Style
Width ShowDir Text ... />
 <Link Key StartItem StartBar EndItem EndBar Visible StartPos EndPos Color Style
Width ShowDir Text ... />
 ...
 </Links>
 </Chart>
 - <Columns>
 <Column Caption Position Width HTMLCaption LevelKey DisplayFilterButton
DisplayFilterPatter FilterType ... />
 <Column Caption Position Width HTMLCaption LevelKey DisplayFilterButton
DisplayFilterPatter FilterType ... />
 ...
 </Columns>
 - <Items>
 - <Item Expanded ...>
 <Cell Value ValueFormat Images Image ... />

 <Cell Value ValueFormat Images Image ... />
 ...
 - <Bars>
 <Bar Name Start End Caption HAlignCaption VAlignCaption Key ... />
 <Bar Name Start End Caption HAlignCaption VAlignCaption Key ... />
 ...
 </Bars>
 - <Items>
 - <Item Expanded ...>
 - <Item Expanded ...>

 </Items>
 </Item>
 </Items>
 </Content>

method Gantt.Scroll (Type as ScrollEnum, [ScrollTo as Variant])
Scrolls the control's content.

Type Description

Type as ScrollEnum A ScrollEnum expression that indicates type of scrolling
being performed.

ScrollTo as Variant

A long expression that indicates the position where the
control is scrolled when Type is exScrollVTo or
exScrollHTo. If the ScrollTo parameter is missing, 0 value
is used.

Use the Scroll method to scroll the control's content by code. Use the EnsureVisibleItem
method to ensure that a specified item fits the control's client area. Use the ScrollPos
property to get the control's scroll position. Use the EnsureVisibleColumn method to ensure
that a specified column fits the control's client area. If the Type parameter is exScrollLeft,
exScrollRight or exScrollHTo the Scroll method scrolls horizontally the control's content pixel
by pixel, if the ContinueColumnScroll property is False, else the Scroll method scrolls
horizontally the control's content column by column.

The following VB sample scrolls the control's content to the first item (scrolls to the top):

Gantt1.Scroll exScrollVTo, 0

The following C++ sample scrolls the control's content to the top:

m_gantt.Scroll(2 /*exScrollVTo*/, COleVariant((long)0));

The following C# sample scrolls the control's content to the top:

axGantt1.Scroll(EXGANTTLib.ScrollEnum.exScrollVTo, 0);

The following VB.NET sample scrolls the control's content to the top:

AxGantt1.Scroll(EXGANTTLib.ScrollEnum.exScrollVTo, 0)

The following VFP sample scrolls the control's content to the top:

with thisform.Gantt1
 .Scroll(2, 0) && exScrollVTo
endwith

property Gantt.ScrollBars as ScrollBarsEnum
Returns or sets a value that determines whether the control has horizontal and/or vertical
scroll bars.

Type Description

ScrollBarsEnum A ScrollBarsEnum expression that identifies which scroll
bars are visible.

Use the ScrollBars property to disable the control's scroll bars. By default, the ScrollBars
property is exBoth, so both scroll bars are used if necessarily. For instance, if the
ScrollBars property is exNone the control displays no scroll bars. Use the
ScrollBySingleLine property on False, if you are displaying items of different heights. Use
the ScrollPos property to get the control's scroll position. Use the EnsureVisibleItem method
to ensure that an item fits the control's client area. Use the EnsureVisibleColumn method to
ensure that a specified column fits the control's client area. Use the Scroll method to scroll
programmatically the control. Use the ScrollOrderParts property to customize the order of
the buttons in the scroll bar.

property Gantt.ScrollButtonHeight as Long
Specifies the height of the button in the vertical scrollbar.

Type Description

Long A long expression that defines the height of the button in
the vertical scroll bar.

By default, the ScrollButtonHeight property is -1. If the ScrollButtonHeight property is -1, the
control uses the default height (from the system) for the buttons in the vertical scroll bar.
Use the ScrollButtonWidth property to specify the width of the buttons in the horizontal
scroll bar. Use the ScrollWidth property to specify the width of the vertical scroll bar. Use
the ScrollBars property to specify which scroll bar is visible or hidden in the control. Use the
ScrollHeight property to specify the height of the horizontal scroll bar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollThumbSize property to define a fixed size for the scrollbar's thumb.

property Gantt.ScrollButtonWidth as Long
Specifies the width of the button in the horizontal scrollbar.

Type Description

Long A long expression that defines the width of the button in
the horizontal scroll bar.

By default, the ScrollButtonWidth property is -1. If the ScrollButtonWidth property is -1, the
control uses the default width (from the system) for the buttons in the horizontal scroll bar.
Use the ScrollButtonHeight property to specify the height of the buttons in the vertical scroll
bar. Use the ScrollWidth property to specify the width of the vertical scroll bar. Use the
ScrollBars property to specify which scroll bar is visible or hidden in the control. Use the
ScrollHeight property to specify the height of the horizontal scroll bar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollThumbSize property to define a fixed size for the scrollbar's thumb.

property Gantt.ScrollBySingleLine as Boolean

Retrieves or sets a value that indicates whether the control scrolls the lines to the end, item
by item.

Type Description

Boolean A boolean expression that indicates whether the control
scrolls the lines to the end, item by item.

By default, the ScrollBySingleLine property is False. We recommend to set the
ScrollBySingleLine property on True if you have one of the following:

If you have at least a cell that has CellSingleLine property on exCaptionWordWrap /
exCaptionBreakWrap / False, or a column with Def(exCellSingleLine) on
exCaptionWordWrap / exCaptionBreakWrap / False
If your control contains at least an item that hosts an ActiveX control. See
InsertControlItem property.
If the control displays items with different height. Use the ItemHeight property to
specify the item's height.

In conclusion, If the ScrollBySingleLine property is

False, the first visible item can not be partially visible. The False value is recommended
when all items has the same height.
True, the first visible item can be partially visible, and clicking the up or down buttons
on the vertical scroll bar makes the control to scroll vertically pixel by pixel (The
DefaultItemHeight property indicates the number of pixels to scroll at once). You can
set the AutoDrag property on exAutoDragScroll, and so the user can scroll the control's
content by clicking the control and dragging the cursor up or down. The True value is
recommended when the control may display items of different sizes.

Click here to watch a movie on how Scroll Line by Line works.

Use the EnsureVisibleItem property to ensure that an item fits the control's client area. Use
the ScrollBars property to hide the control's scroll bars. Use the Scroll method to
programmatically scroll the control's content. Use the ItemsAllowSizing property to specify
whether all items are resizable or not. Use the ItemAllowSizing property to specify whether
the user can resize the item at runtime.

https://www.youtube.com/watch?v=Rst028aXBnU

property Gantt.ScrollFont (ScrollBar as ScrollBarEnum) as IFontDisp
Retrieves or sets the scrollbar's font.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical or
the horizontal scroll bar.

IFontDisp A Font object

Use the ScrollFont property to specify the font in the control's scroll bar. Use the
ScrolPartCaption property to specify the caption of the scroll's part. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar. By
default, when a part becomes visible, the ScrollPartEnable property is automatically called,
so the parts becomes enabled. Use the ScrollPartEnable property to specify enable or
disable parts in the control's scrollbar. Use the ScrollBars property to specify the visible
scrollbars in the control. Use the OffsetChanged event to notify your application that the
scroll position is changed. Use the OversizeChanged event to notify your application
whether the range for a specified scroll bar is changed. Use the ScrollPos property to
specify the position for the control's scroll bar. The control fires the ScrollButtonClick event
when the user clicks a part of the scroll bar.

property Gantt.ScrollHeight as Long
Specifies the height of the horizontal scrollbar.

Type Description

Long A long expression that defines the height of the horizontal
scroll bar.

By default, the ScrollHeight property is -1. If the ScrollHeight property is -1, the control uses
the default height of the horizontal scroll bar from the system. Use the ScrollHeight property
to specify the height of the horizontal scroll bar. Use the ScrollBars property to specify
which scroll bar is visible or hidden in the control. Use the ScrollButtonWidth property to
specify the width of the buttons in the horizontal scroll bar. Use the ScrollWidth property to
specify the width of the vertical scroll bar. Use the ScrollButtonHeight property to specify
the height of the buttons in the vertical scroll bar. Use the ScrollPartVisible property to
specify the visible parts in the control's scroll bar. Use the ScrollThumbSize property to
define a fixed size for the scrollbar's thumb.

property Gantt.ScrollOrderParts(ScrollBar as ScrollBarEnum) as String
Specifies the order of the buttons in the scroll bar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the order of buttons is displayed.

String

A String expression that indicates the order of the buttons
in the scroll bar. The list includes expressions like l, l1, ...,
l5, t, r, r1, ..., r6 separated by comma, each expression
indicating a part of the scroll bar, and its position indicating
the displaying order.

Use the ScrollOrderParts to customize the order of the buttons in the scroll bar. By default,
the ScrollOrderParts property is empty. If the ScrollOrderParts property is empty the
default order of the buttons in the scroll bar are displayed like follows:

so, the order of the parts is: l1, l2, l3, l4, l5, l, t, r, r1, r2, r3, r4, r5 and r6. Use the
ScrollPartVisible to specify whether a button in the scrollbar is visible or hidden. Use the
ScrollPartEnable property to enable or disable a button in the scroll bar. Use the
ScrollPartCaption property to assign a caption to a button in the scroll bar.

Use the ScrollOrderParts property to change the order of the buttons in the scroll bar. For
instance, "l,r,t,l1,r1" puts the left and right buttons to the left of the thumb area, and the l1
and r1 buttons right after the thumb area. If the parts are not specified in the
ScrollOrderParts property, automatically they are added to the end.

The list of supported literals in the ScrollOrderParts property is:

l for exLeftBPart, (<) The left or top button.
l1 for exLeftB1Part, (L1) The first additional button, in the left or top area.
l2 for exLeftB2Part, (L2) The second additional button, in the left or top area.
l3 for exLeftB3Part, (L3) The third additional button, in the left or top area.
l4 for exLeftB4Part, (L4) The forth additional button, in the left or top area.
l5 for exLeftB5Part, (L5) The fifth additional button, in the left or top area.
t for exLowerBackPart, exThumbPart and exUpperBackPart, The union between the
exLowerBackPart and the exUpperBackPart parts.
r for exRightBPart, (>) The right or down button.
r1 for exRightB1Part, (R1) The first additional button in the right or down side.

r2 for exRightB2Part, (R2) The second additional button in the right or down side.
r3 for exRightB3Part, (R3) The third additional button in the right or down side.
r4 for exRightB4Part, (R4) The forth additional button in the right or down side.
r5 for exRightB5Part, (R5) The fifth additional button in the right or down side.
r6 for exRightB6Part, (R6) The sixth additional button in the right or down side.

Any other literal between commas is ignored. If duplicate literals are found, the second is
ignored, and so on. For instance, "t,l,r" indicates that the left/top and right/bottom buttons
are displayed right/bottom after the thumb area.

property Gantt.ScrollPartCaption(ScrollBar as ScrollBarEnum, Part as
ScrollPartEnum) as String
Specifies the caption being displayed on the specified scroll part.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the caption is displayed.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll where the text is displated

String A String expression that specifies the caption being
displayed on the part of the scroll bar.

Use the ScrolPartCaption property to specify the caption of the scroll's part. The
ScrollPartCaptionAlignment property specifies the alignment of the caption in the part of the
scroll bar. Use the ScrollPartVisible property to add or remove buttons/parts in the control's
scrollbar. By default, when a part becomes visible, the ScrollPartEnable property is
automatically called, so the parts becomes enabled. Use the ScrollPartEnable property to
specify enable or disable parts in the control's scrollbar. Use the ScrollBars property to
specify the visible scrollbars in the control. Use the OffsetChanged event to notify your
application that the scroll position is changed. Use the OversizeChanged event to notify your
application whether the range for a specified scroll bar is changed. Use the ScrollPos
property to specify the position for the control's scroll bar. The control fires the
ScrollButtonClick event when the user clicks a part of the scroll bar. Use the ScrollFont
property to specify the font in the control's scroll bar. Use the ScrollOrderParts property to
customize the order of the buttons in the scroll bar.

By default, the following parts are shown:

exLeftBPart (the left or up button of the control)
exLowerBackPart (the part between the left/up button and the thumb part of the
control)
exThumbPart (the thumb/scrollbox part)
exUpperBackPart (the part between the the thumb and the right/down button of the
control)
exRightBPart (the right or down button of the control)

The following VB sample adds up and down additional buttons to the control's vertical scroll

bar :

With Gantt1
 .BeginUpdate
 .ScrollBars = exDisableBoth
 .ScrollPartVisible(exVScroll, exLeftB1Part Or exRightB1Part) = True
 .ScrollPartCaption(exVScroll, exLeftB1Part) = "1"
 .ScrollPartCaption(exVScroll, exRightB1Part) = "2"
 .EndUpdate
End With

The following VB.NET sample adds up and down additional buttons to the control's vertical
scroll bar :

With AxGantt1
 .BeginUpdate()
 .ScrollBars = EXGANTTLib.ScrollBarsEnum.exDisableBoth
 .set_ScrollPartVisible(EXGANTTLib.ScrollBarEnum.exVScroll,
EXGANTTLib.ScrollPartEnum.exLeftB1Part Or EXGANTTLib.ScrollPartEnum.exRightB1Part,
True)
 .set_ScrollPartCaption(EXGANTTLib.ScrollBarEnum.exVScroll,
EXGANTTLib.ScrollPartEnum.exLeftB1Part, "1")
 .set_ScrollPartCaption(EXGANTTLib.ScrollBarEnum.exVScroll,
EXGANTTLib.ScrollPartEnum.exRightB1Part, "2")
 .EndUpdate()
End With

The following C# sample adds up and down additional buttons to the control's vertical scroll
bar :

axGantt1.BeginUpdate();
axGantt1.ScrollBars = EXGANTTLib.ScrollBarsEnum.exDisableBoth;
axGantt1.set_ScrollPartVisible(EXGANTTLib.ScrollBarEnum.exVScroll,
EXGANTTLib.ScrollPartEnum.exLeftB1Part | EXGANTTLib.ScrollPartEnum.exRightB1Part,
true);
axGantt1.set_ScrollPartCaption(EXGANTTLib.ScrollBarEnum.exVScroll,
EXGANTTLib.ScrollPartEnum.exLeftB1Part , "1");
axGantt1.set_ScrollPartCaption(EXGANTTLib.ScrollBarEnum.exVScroll,
EXGANTTLib.ScrollPartEnum.exRightB1Part, "2");

axGantt1.EndUpdate();

The following C++ sample adds up and down additional buttons to the control's vertical
scroll bar :

m_gantt.BeginUpdate();
m_gantt.SetScrollBars(15 /*exDisableBoth*/);
m_gantt.SetScrollPartVisible(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ | 32
/*exRightB1Part*/, TRUE);
m_gantt.SetScrollPartCaption(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ , _T("
1"));
m_gantt.SetScrollPartCaption(0 /*exVScroll*/, 32 /*exRightB1Part*/ , _T("
2"));
m_gantt.EndUpdate();

The following VFP sample adds up and down additional buttons to the control's vertical
scroll bar :

With thisform.Gantt1
 .BeginUpdate
 .ScrollBars = 15
 .ScrollPartVisible(0, bitor(32768,32)) = .t.
 .ScrollPartCaption(0,32768) = "1"
 .ScrollPartCaption(0, 32) = "2"
 .EndUpdate
EndWith

*** ActiveX Control Event ***
LPARAMETERS scrollpart

wait window nowait ltrim(str(scrollpart))

property Gantt.ScrollPartCaptionAlignment(ScrollBar as ScrollBarEnum,
Part as ScrollPartEnum) as AlignmentEnum
Specifies the alignment of the caption in the part of the scroll bar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the caption is displayed.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll where the text is displayed

AlignmentEnum An AlignmentEnum expression that specifies the alignment
of the caption in the part of the scrollbar.

The ScrollPartCaptionAlignment property specifies the alignment of the caption in the part
of the scroll bar. By default, the caption is centered. Use the ScrolPartCaption property to
specify the caption being displayed on specified part of the scroll bar. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar.

The following VB sample displays "left" aligned to the left on the lower part of the control's
horizontal scroll bar, and "right" aligned to the right on the upper part of the control's
horizontal scroll bar:

With Gantt1
 .ScrollPartCaption(exHScroll,exLowerBackPart) = "left"
 .ScrollPartCaptionAlignment(exHScroll,exLowerBackPart) = LeftAlignment
 .ScrollPartCaption(exHScroll,exUpperBackPart) = "right"
 .ScrollPartCaptionAlignment(exHScroll,exUpperBackPart) = RightAlignment
 .ColumnAutoResize = False
 .Columns.Add 1
 .Columns.Add 2
 .Columns.Add 3
 .Columns.Add 4
End With

The following VB.NET sample displays "left" aligned to the left on the lower part of the
control's horizontal scroll bar, and "right" aligned to the right on the upper part of the
control's horizontal scroll bar:

With AxGantt1

.set_ScrollPartCaption(EXGANTTLib.ScrollBarEnum.exHScroll,EXGANTTLib.ScrollPartEnum.exLowerBackPart,"left")

.set_ScrollPartCaptionAlignment(EXGANTTLib.ScrollBarEnum.exHScroll,EXGANTTLib.ScrollPartEnum.exLowerBackPart,EXGANTTLib.AlignmentEnum.LeftAlignment)

.set_ScrollPartCaption(EXGANTTLib.ScrollBarEnum.exHScroll,EXGANTTLib.ScrollPartEnum.exUpperBackPart,"right")

.set_ScrollPartCaptionAlignment(EXGANTTLib.ScrollBarEnum.exHScroll,EXGANTTLib.ScrollPartEnum.exUpperBackPart,EXGANTTLib.AlignmentEnum.RightAlignment)

 .ColumnAutoResize = False
 .Columns.Add 1
 .Columns.Add 2
 .Columns.Add 3
 .Columns.Add 4
End With

The following C# sample displays "left" aligned to the left on the lower part of the control's
horizontal scroll bar, and "right" aligned to the right on the upper part of the control's
horizontal scroll bar:

axGantt1.set_ScrollPartCaption(EXGANTTLib.ScrollBarEnum.exHScroll,EXGANTTLib.ScrollPartEnum.exLowerBackPart,"left");

axGantt1.set_ScrollPartCaptionAlignment(EXGANTTLib.ScrollBarEnum.exHScroll,EXGANTTLib.ScrollPartEnum.exLowerBackPart,EXGANTTLib.AlignmentEnum.LeftAlignment);

axGantt1.set_ScrollPartCaption(EXGANTTLib.ScrollBarEnum.exHScroll,EXGANTTLib.ScrollPartEnum.exUpperBackPart,"right");

axGantt1.set_ScrollPartCaptionAlignment(EXGANTTLib.ScrollBarEnum.exHScroll,EXGANTTLib.ScrollPartEnum.exUpperBackPart,EXGANTTLib.AlignmentEnum.RightAlignment);

axGantt1.ColumnAutoResize = false;
axGantt1.Columns.Add(1.ToString());
axGantt1.Columns.Add(2.ToString());
axGantt1.Columns.Add(3.ToString());
axGantt1.Columns.Add(4.ToString());

The following C++ sample displays "left" aligned to the left on the lower part of the control's
horizontal scroll bar, and "right" aligned to the right on the upper part of the control's

horizontal scroll bar:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXGANTTLib' for the library: 'ExGantt 1.0 Control Library'

 #import "ExGantt.dll"
 using namespace EXGANTTLib;
*/
EXGANTTLib::IGanttPtr spGantt1 = GetDlgItem(IDC_GANTT1)->GetControlUnknown();
spGantt1-
>PutScrollPartCaption(EXGANTTLib::exHScroll,EXGANTTLib::exLowerBackPart,L"left");
spGantt1-
>PutScrollPartCaptionAlignment(EXGANTTLib::exHScroll,EXGANTTLib::exLowerBackPart,EXGANTTLib::LeftAlignment);

spGantt1-
>PutScrollPartCaption(EXGANTTLib::exHScroll,EXGANTTLib::exUpperBackPart,L"right");
spGantt1-
>PutScrollPartCaptionAlignment(EXGANTTLib::exHScroll,EXGANTTLib::exUpperBackPart,EXGANTTLib::RightAlignment);

spGantt1->PutColumnAutoResize(VARIANT_FALSE);
spGantt1->GetColumns()->Add(L"1");
spGantt1->GetColumns()->Add(L"2");
spGantt1->GetColumns()->Add(L"3");
spGantt1->GetColumns()->Add(L"4");

The following VFP sample displays "left" aligned to the left on the lower part of the control's
horizontal scroll bar, and "right" aligned to the right on the upper part of the control's
horizontal scroll bar:

with thisform.Gantt1
 .ScrollPartCaption(1,512) = "left"
 .ScrollPartCaptionAlignment(1,512) = 0
 .ScrollPartCaption(1,128) = "right"
 .ScrollPartCaptionAlignment(1,128) = 2
 .ColumnAutoResize = .F.
 .Columns.Add(1)
 .Columns.Add(2)

 .Columns.Add(3)
 .Columns.Add(4)
endwith

property Gantt.ScrollPartEnable(ScrollBar as ScrollBarEnum, Part as
ScrollPartEnum) as Boolean
Indicates whether the specified scroll part is enabled or disabled.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the part is enabled or disabled.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll bar being enabled or disabled.

Boolean A Boolean expression that specifies whether the
scrollbar's part is enabled or disabled.

By default, when a part becomes visible, the ScrollPartEnable property is automatically
called, so the parts becomes enabled. Use the ScrollPartVisible property to add or remove
buttons/parts in the control's scrollbar. Use the ScrollPartEnable property to specify enable
or disable parts in the control's scrollbar. Use the ScrollBars property to specify the visible
scrollbars in the control. Use the ScrolPartCaption property to specify the caption of the
scroll's part. Use the OffsetChanged event to notify your application that the scroll position
is changed. Use the OversizeChanged event to notify your application whether the range for
a specified scroll bar is changed. Use the ScrollPos property to specify the position for the
control's scroll bar. The control fires the ScrollButtonClick event when the user clicks a part
of the scroll bar. Use the ScrollOrderParts property to customize the order of the buttons in
the scroll bar.

property Gantt.ScrollPartVisible(ScrollBar as ScrollBarEnum, Part as
ScrollPartEnum) as Boolean
Indicates whether the specified scroll part is visible or hidden.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the part is visible or hidden.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll bar being visible

Boolean A Boolean expression that specifies whether the
scrollbar's part is visible or hidden.

Use the ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar.
By default, when a part becomes visible, the ScrollPartEnable property is automatically
called, so the parts becomes enabled. Use the ScrollPartEnable property to specify enable
or disable parts in the control's scrollbar. Use the ScrollBars property to specify the visible
scrollbars in the control. Use the ScrolPartCaption property to specify the caption of the
scroll's part. Use the OffsetChanged event to notify your application that the scroll position
is changed. Use the OversizeChanged event to notify your application whether the range for
a specified scroll bar is changed. Use the ScrollPos property to specify the position for the
control's scroll bar. The control fires the ScrollButtonClick event when the user clicks a part
of the scroll bar. Use the Background property to change the visual appearance for any part
in the control's scroll bar. Use the ScrollOrderParts property to customize the order of the
buttons in the scroll bar.

By default, the following parts are shown:

exLeftBPart (the left or up button of the control)
exLowerBackPart (the part between the left/up button and the thumb part of the
control)
exThumbPart (the thumb/scrollbox part)
exUpperBackPart (the part between the the thumb and the right/down button of the
control)
exRightBPart (the right or down button of the control)

The following VB sample adds up and down additional buttons to the control's vertical scroll
bar :

With Gantt1
 .BeginUpdate
 .ScrollBars = exDisableBoth
 .ScrollPartVisible(exVScroll, exLeftB1Part Or exRightB1Part) = True
 .ScrollPartCaption(exVScroll, exLeftB1Part) = "1"
 .ScrollPartCaption(exVScroll, exRightB1Part) = "2"
 .EndUpdate
End With

The following VB.NET sample adds up and down additional buttons to the control's vertical
scroll bar :

With AxGantt1
 .BeginUpdate()
 .ScrollBars = EXGANTTLib.ScrollBarsEnum.exDisableBoth
 .set_ScrollPartVisible(EXGANTTLib.ScrollBarEnum.exVScroll,
EXGANTTLib.ScrollPartEnum.exLeftB1Part Or EXGANTTLib.ScrollPartEnum.exRightB1Part,
True)
 .set_ScrollPartCaption(EXGANTTLib.ScrollBarEnum.exVScroll,
EXGANTTLib.ScrollPartEnum.exLeftB1Part, "1")
 .set_ScrollPartCaption(EXGANTTLib.ScrollBarEnum.exVScroll,
EXGANTTLib.ScrollPartEnum.exRightB1Part, "2")
 .EndUpdate()
End With

The following C# sample adds up and down additional buttons to the control's vertical scroll
bar :

axGantt1.BeginUpdate();
axGantt1.ScrollBars = EXGANTTLib.ScrollBarsEnum.exDisableBoth;
axGantt1.set_ScrollPartVisible(EXGANTTLib.ScrollBarEnum.exVScroll,
EXGANTTLib.ScrollPartEnum.exLeftB1Part | EXGANTTLib.ScrollPartEnum.exRightB1Part,
true);
axGantt1.set_ScrollPartCaption(EXGANTTLib.ScrollBarEnum.exVScroll,
EXGANTTLib.ScrollPartEnum.exLeftB1Part , "1");
axGantt1.set_ScrollPartCaption(EXGANTTLib.ScrollBarEnum.exVScroll,
EXGANTTLib.ScrollPartEnum.exRightB1Part, "2");
axGantt1.EndUpdate();

The following C++ sample adds up and down additional buttons to the control's vertical
scroll bar :

m_gantt.BeginUpdate();
m_gantt.SetScrollBars(15 /*exDisableBoth*/);
m_gantt.SetScrollPartVisible(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ | 32
/*exRightB1Part*/, TRUE);
m_gantt.SetScrollPartCaption(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ , _T("
1"));
m_gantt.SetScrollPartCaption(0 /*exVScroll*/, 32 /*exRightB1Part*/ , _T("
2"));
m_gantt.EndUpdate();

The following VFP sample adds up and down additional buttons to the control's vertical
scroll bar :

With thisform.Gantt1
 .BeginUpdate
 .ScrollBars = 15
 .ScrollPartVisible(0, bitor(32768,32)) = .t.
 .ScrollPartCaption(0,32768) = "1"
 .ScrollPartCaption(0, 32) = "2"
 .EndUpdate
EndWith

*** ActiveX Control Event ***
LPARAMETERS scrollpart

wait window nowait ltrim(str(scrollpart))

property Gantt.ScrollPos(Vertical as Boolean) as Long
Specifies the vertical/horizontal scroll position.

Type Description

Vertical as Boolean
A boolean expression that specifies the scrollbar being
requested. True indicates the Vertical scroll bar, False
indicates the Horizontal scroll bar.

Long A long expression that defines the scroll bar position.

Use the ScrollPos property to change programmatically the position of the control's scroll
bar. Use the ScrollPos property to get the horizontal or vertical scroll position.Use the
ScrollBars property to define the control's scroll bars. Use the Scroll method to scroll
programmatically the control's content. The control fires the OffsetChanged event when the
control's scroll position is changed.

property Gantt.ScrollThumbSize(ScrollBar as ScrollBarEnum) as Long
Specifies the size of the thumb in the scrollbar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical or
the horizontal scroll bar.

Long A long expression that defines the size of the scrollbar's
thumb.

Use the ScrollThumbSize property to define a fixed size for the scrollbar's thumb. By
default, the ScrollThumbSize property is -1, that makes the control computes automatically
the size of the thumb based on the scrollbar's range. If case, use the fixed size for your
thumb when you change its visual appearance using the Background(exVSThumb) or
Background(exHSThumb) property. Use the ScrollWidth property to specify the width of the
vertical scroll bar. Use the ScrollButtonWidth property to specify the width of the buttons in
the horizontal scroll bar. Use the ScrollHeight property to specify the height of the horizontal
scroll bar. Use the ScrollButtonHeight property to specify the height of the buttons in the
vertical scroll bar. Use the ScrollPartVisible property to specify the visible parts in the
control's scroll bar.

property Gantt.ScrollToolTip(ScrollBar as ScrollBarEnum) as String
Specifies the tooltip being shown when the user moves the scroll box.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical
scroll bar or the horizontal scroll bar.

String A string expression being shown when the user clicks and
moves the scrollbar's thumb.

Use the ScrollToolTip property to specify whether the control displays a tooltip when the
user clicks and moves the scrollbar's thumb. By default, the ScrollToolTip property is empty.
If the ScrollToolTip property is empty, the tooltip is not shown when the user clicks and
moves the thumb of the scroll bar. The OffsetChanged event notifies your application that
the user changes the scroll position. Use the SortPartVisible property to specify the parts
being visible in the control's scroll bar. Use the ScrollBars property to specify the visible
scrollbars in the control.

The following VB sample displays a tooltip when the user clicks and moves the thumb in the
control's scroll bar:

Private Sub Gantt1_OffsetChanged(ByVal Horizontal As Boolean, ByVal NewVal As Long)
 If (Not Horizontal) Then
 Gantt1.ScrollToolTip(exVScroll) = "Record " & NewVal
 End If
End Sub

The following VB.NET sample displays a tooltip when the user clicks and moves the thumb
in the control's scroll bar:

Private Sub AxGantt1_OffsetChanged(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_OffsetChangedEvent) Handles AxGantt1.OffsetChanged
 If (Not e.horizontal) Then
 AxGantt1.set_ScrollToolTip(EXGANTTLib.ScrollBarEnum.exVScroll, "Record " &
e.newVal.ToString())
 End If
End Sub

The following C++ sample displays a tooltip when the user clicks and moves the thumb in
the control's scroll bar:

void OnOffsetChangedGantt1(BOOL Horizontal, long NewVal)
{
 if (!Horizontal)
 {
 CString strFormat;
 strFormat.Format(_T("%i"), NewVal);
 m_gantt.SetScrollToolTip(0, strFormat);
 }
}

The following C# sample displays a tooltip when the user clicks and moves the thumb in the
control's scroll bar:

private void axGantt1_OffsetChanged(object sender,
AxEXGANTTLib._IGanttEvents_OffsetChangedEvent e)
{
 if (!e.horizontal)
 axGantt1.set_ScrollToolTip(EXGANTTLib.ScrollBarEnum.exVScroll, "Record " +
e.newVal.ToString());
}

The following VFP sample displays a tooltip when the user clicks and moves the thumb in
the control's scroll bar:

*** ActiveX Control Event ***
LPARAMETERS horizontal, newval

If (1 # horizontal) Then
 thisform.Gantt1.ScrollToolTip(0) = "Record " + ltrim(str(newval))
EndIf

property Gantt.ScrollWidth as Long
Specifies the width of the vertical scrollbar.

Type Description

Long A long expression that defines the width of the vertical
scroll bar.

By default, the ScrollWidth property is -1. If the ScrollWidth property is -1, the control uses
the default width of the vertical scroll bar from the system. Use the ScrollWidth property to
specify the width of the vertical scroll bar. Use the ScrollBars property to specify which
scroll bar is visible or hidden in the control. Use the ScrollButtonWidth property to specify
the width of the buttons in the horizontal scroll bar. Use the ScrollHeight property to specify
the height of the horizontal scroll bar. Use the ScrollButtonHeight property to specify the
height of the buttons in the vertical scroll bar. Use the ScrollPartVisible property to specify
the visible parts in the control's scroll bar. Use the ScrollThumbSize property to define a
fixed size for the scrollbar's thumb.

property Gantt.SearchColumnIndex as Long

Retrieves or sets a value indicating the column's index that is used for auto search feature.

Type Description

Long A long expression indicating the column's index that is used
for auto search feature.

The SearchColumnIndex property indicates the index of the column being used by the
control's incremental search feature. The user changes the searching column if he presses
TAB or Shift + TAB. Use the UseTabKey property to specify whether the control uses the
TAB key. Use the AutoSearch property to specify whether the control enables the
incremental searching feature. Use the AutoSearch property to specify the type of
incremental searching the control supports within the column. Use the MarkSearchColumn
property to hide the rectangle around the searching column.

property Gantt.SelBackColor as Color
Retrieves or sets a value that indicates the selection background color.

Type Description

Color

A color expression that indicates the selection background
color. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

By default, the SelBackColor property applies the background color only to list area. Use
the SelBackColor property to specify the background color for selected items in the chart
area. Use the SelBackColor and SelForeColor properties to define the colors used for
selected items. The control highlights the selected items only if the SelBackColor and
BackColor properties have different values, and the SelForeColor and ForeColor properties
have different values. Use the SelectCount property to get the number of selected items.
Use the SelectedItem property to get the selected item. Use the SelectItem to select or
unselect a specified item. Use the FocusItem property to get the focused item. The control
fires the SelectionChanged event when user changes the selection. Use the SelectableItem
property to specify the user can select an item. How do I assign a new look for the
selected item?

For instance, the following VB sample changes the visual appearance for the selected item.
The SelBackColor property indicates the selection background color. Shortly, we need to
add a skin to the Appearance object using the Add method, and we need to set the last 7
bits in the SelBackColor property to indicates the index of the skin that we want to use. The
sample applies the " " to the selected item(s):

With Gantt1
 With .VisualAppearance
 .Add &H23, App.Path + "\selected.ebn"
 End With
 .SelForeColor = RGB(0, 0, 0)
 .SelBackColor = &H23000000
End With

The sample adds the skin with the index 35 (Hexa 23), and applies to the selected item

using the SelBackColor property.

The following C++ sample applies a new appearance to the selected item(s):

#include "Appearance.h"
m_gantt.GetVisualAppearance().Add(0x23,
COleVariant(_T("D:\\Temp\\ExGantt_Help\\selected.ebn")));
m_gantt.SetSelBackColor(0x23000000);
m_gantt.SetSelForeColor(0);

The following VB.NET sample applies a new appearance to the selected item(s):

With AxGantt1
 With .VisualAppearance
 .Add(&H23, "D:\Temp\ExGantt_Help\selected.ebn")
 End With
 .SelForeColor = Color.Black
 .Template = "SelBackColor = 587202560"
End With

The VB.NET sample uses the Template property to assign a new value to the SelBackColor
property. The 587202560 value represents &23000000 in hexadecimal.

The following C# sample applies a new appearance to the selected item(s):

axGantt1.VisualAppearance.Add(0x23, "D:\\Temp\\ExGantt_Help\\selected.ebn");
axGantt1.Template = "SelBackColor = 587202560";

The following VFP sample applies a new appearance to the selected item(s):

With thisform.Gantt1
 With .VisualAppearance
 .Add(35, "D:\Temp\ExGantt_Help\selected.ebn")
 EndWith
 .SelForeColor = RGB(0, 0, 0)
 .SelBackColor = .587202560
EndWith

The 587202560 value represents &23000000 in hexadecimal. The 32 value represents &23
in hexadecimal

How do I assign a new look for the selected item?

The component supports skinning parts of the control, including the selected item. Shortly,
the idea is that identifier of the skin being added to the Appearance collection is stored in
the first significant byte of property of the color type. In our case, we know that the
SelBackColor property changes the background color for the selected item. This is what we
need to change. In other words, we need to change the visual appearance for the selected
item, and that means changing the background color of the selected item. So, the following
code (blue code) changes the appearance for the selected item:

With Gantt1
 .VisualAppearance.Add &H34, App.Path + "\aqua.ebn"
 .SelBackColor = &H34000000
End With

Please notice that the 34 hexa value is arbitrary chosen, it is not a predefined value. Shortly,
we have added a skin with the identifier 34, and we specified that the SelBackColor
property should use that skin, in order to change the visual appearance for the selected
item. Also, please notice that the 34 value is stored in the first significant byte, not in other
position. For instance, the following sample doesn't use any skin when displaying the
selected item:

With Gantt1
 .VisualAppearance.Add &H34, App.Path + "\aqua.ebn"
 .SelBackColor = &H34
End With

This code (red code) DOESN'T use any skin, because the 34 value is not stored in the
higher byte of the color value. The sample just changes the background color for the
selected item to some black color (RGB(0,0,34)). So, please pay attention when you
want to use a skin and when to use a color. Simple, if you are calling &H34000000, you
have 34 followed by 6 (six) zeros, and that means the first significant byte of the color
expression. Now, back to the problem. The next step is how we are creating skins? or EBN
files? The Exontrol's exbutton component includes a builder tool that saves skins to EBN
files. So, if you want to create new skin files, you need to download and install the exbutton
component from our web site. Once that the exbutton component is installed, please follow
the steps.

Let's say that we have a BMP file, that we want to stretch on the selected item's
background.

1. Open the VB\Builder or VC\Builder sample

https://exontrol.com/exbutton.jsp

2. Click the New File button (on the left side in the toolbar), an empty skin is created.
3. Locate the Background tool window and select the Picture\Add New item in the

menu, the Open file dialog is opened.
4. Select the picture file (GIF, BMP, JPG, JPEG). You will notice that the visual

appearance of the focused object in the skin is changed, actually the picture you have
selected is tiled on the object's background.

5. Select the None item, in the Background tool window, so the focused object in the skin
is not displaying anymore the picture being added.

6. Select the Root item in the skin builder window (in the left side you can find the
hierarchy of the objects that composes the skin), so the Root item is selected, and so
focused.

7. Select the picture file you have added at the step 4, so the Root object is filled with the
picture you have chosen.

8. Resize the picture in the Background tool window, until you reach the view you want to
have, no black area, or change the CX and CY fields in the Background tool window,
so no black area is displayed.

9. Select Stretch button in the Background tool window, so the Root object stretches the
picture you have selected.

10. Click the Save a file button, and select a name for the new skin, click the Save button
after you typed the name of the skin file. Add the .ebn extension.

11. Close the builder

You can always open the skin with the builder and change it later, in case you want to
change it.

Now, create a new project, and insert the component where you want to use the skin, and
add the skin file to the Appearance collection of the object, using blue code, by changing
the name of the file or the path where you have selected the skin. Once that you have
added the skin file to the Appearance collection, you can change the visual appearance for
parts of the controls that supports skinning. Usually the properties that changes the
background color for a part of the control supports skinning as well.

property Gantt.SelBackMode as BackModeEnum

Retrieves or sets a value that indicates whether the selection is transparent or opaque.

Type Description

BackModeEnum A BackModeEnum expression that indicates whether the
selection is transparent or opaque.

Use the SelBackMode property to specify how the selection appears. Use the
SelBackMode property to specify how the control displays the selection when the control
has a picture on its background. Use the SelBackColor property to specify the selection
background color. Use the SelForeColor property to specify the selection foreground color.

property Gantt.SelectColumn as Boolean

Specifies whether the user selects cells only in SelectColumnIndex column, while
FullRowSelect property is False.

Type Description

Boolean
A boolean expression that specifies whether the user
selects cells only in SelectColumnIndex column, while the
FullRowSelect property is False

By default, the SelectColumn property is False. The SelectColumn property has effect only
if the FullRowSelect is False. The control displays the selected cell in the
SelectColumnIndex column. The SelectColumnIndex property specifies the index of selected
column. Use the SelectableItem property to specify the user can select an item.

property Gantt.SelectColumnIndex as Long

Retrieves or sets a value that indicates the column's index where the user can select an
item by clicking.

Type Description

Long A long expression that indicates the column's index where
the user can select the item.

The property has effect only if the FullRowSelect property is False. Use the SelectedItem
property to determine the selected items. Use the SelectColumnInner property to get the
index of the inner cell that's selected or focused. Use the SplitCell property to split a
cell. Use the SelectableItem property to specify the user can select an item.

property Gantt.SelectColumnInner as Long
Retrieves or sets a value that indicates the index of the inner cell that's selected.

Type Description

Long A long expression that indicates the index of the inner cell
that's focused or selected.

Use the SelectColumnInner property to get the index of the inner cell that's selected or
focused. The SelectColumnInner property may be greater than zero, if the control contains
inner cells. The SplitCell method splits a cell in two cells. The newly created cell is called
inner cell. The FocusItem property indicates the focused item. The SelectColumnIndex
property determines the index of the column that's selected when FullRowSelect property is
False. Use the SelectableItem property to specify the user can select an item.

property Gantt.SelectOnRelease as Boolean
Indicates whether the selection occurs when the user releases the mouse button.

Type Description

Boolean A Boolean expression that indicates whether the selection
occurs when the user releases the mouse button.

By default, the SelectOnRelease property is False. By default, the selection occurs, as
soon as the user clicks an object. The SelectOnRelease property indicates whether the
selection occurs when the user releases the mouse button.

property Gantt.SelForeColor as Color
Retrieves or sets a value that indicates the selection foreground color.

Type Description

Color A color expression that indicates the selection foreground
color.

By default, the SelForeColor property is applied ONLY to selected items being displayed in
the list area. Use the SelForeColor property to change the foreground color of selected
items being displayed in the chart area. Use the SelForeColor and SelBackColor properties
to change the colors used for selected items. The control highlights the selected items only
if the SelBackColor and BackColor properties have different values, and the SelForeColor
and ForeColor properties have different values. Use the SelectCount property to get the
number of selected items. Use the SelectedItem property to get the selected item. Use the
SelectItem to select or unselect a specified item. Use the FocusItem property to get the
focused item. The control fires the SelectionChanged event when user changes the
selection. Use the SelectableItem property to specify the user can select an item.

property Gantt.SelLength as Long
Returns or sets the number of characters selected.

Type Description

Long A long expression that indicates the number of characters
selected.

By default, the SelLenght property is -1 (all text gets selected). Use the SelLenght
property to specify the number of characters being selected when the edit operations
begins. The SelStart and SelLength properties have effect only if the control is editable.
Use the AllowEdit property to allow control edits the data using a text box field. Use the Edit
method to programmatically edit a cell using a textbox field. The SelLength property must
be set in the code, before starting editing the cell. The control fires the BeforeCellEdit event
when the control is about to open the text box editor. The control fires the AfterCellEdit
property when the edit ends.

property Gantt.SelStart as Long
Returns or sets the starting point of text selected; indicates the position of the insertion
point if no text is selected.

Type Description

Long A long expression that indicates the starting point of text
selected

By default, the SelStart property is 0 (the text gets selected from the first character). Use
the SelStart property to specify the starting point of selected text, when edit operations
begins. The SelStart and SelLength properties are valid only if the control is editable. Use
the AllowEdit property to allow control edits the data using a text box field. Use the Edit
method to programmatically edit a cell using a textbox field. The SelStart property must be
set in the code, before starting editing the cell. The control fires the BeforeCellEdit event
when the control is about to open the text box editor. The control fires the AfterCellEdit
property when the edit ends.

property Gantt.ShowFocusRect as Boolean
Retrieves or sets a value indicating whether the control draws a thin rectangle around the
focused item.

Type Description

Boolean A boolean expression that indicates whether the control
draws a thin rectangle around the focused item.

Use the ShowFocusRect property to hide the rectangle drawn around the focused item. The
FocusItem property specifies the handle of the focused item. If there is no focused item the
FocusItem property retrieves 0. At one moment, only one item can be focused. When the
selection is changed the focused item is changed too. Use the SelectCount property to get
the number of selected items. Use the SelectedItem property to get the selected item. Use
the SelectItem to select or unselect a specified item. If the control supports only single
selection, you can use the FocusItem property to get the selected/focused item because
they are always the same.

property Gantt.ShowImageList as Boolean

Specifies whether the control's image list window is visible or hidden.

Type Description

Boolean A boolean expression that specifies whether the control's
image list window is visible or hidden.

By default, the ShowImageList property is True. Use the ShowImageList property to hide
the control's images list window. The control's images list window is visible only at design
time. Use the Images method to associate an images list control to the control. Use the
RepaceIcon method to add, remove or clear icons in the control's images collection. Use
the CellImage, CellImages properties to assign icons to a cell. Use the CellPicture property
to assign a picture to a cell. Use the CheckImage or RadioImage property to specify a
different look for checkboxes or radio buttons in the cells.

property Gantt.ShowLockedItems as Boolean
Retrieves or sets a value that indicates whether the locked items are visible or hidden.

Type Description

Boolean A boolean expression that specifies whether the locked
items are shown or hidden.

A locked or fixed item is always displayed on the top or bottom side of the control no matter
if the control's list is scrolled up or down. Use the ShowLockedItems property to show or
hide the locked items. Use the LockedItemCount property to add or remove items
fixed/locked to the top or bottom side of the control. Use the LockedItem property to
access a locked item by its position. Use the CellCaption property to specify the caption for
a cell.

method Gantt.ShowToolTip (ToolTip as String, [Title as Variant],
[Alignment as Variant], [X as Variant], [Y as Variant])
Shows the specified tooltip at given position.

Type Description

ToolTip as String

The ToolTip parameter can be any of the following:

NULL(BSTR) or "<null>"(string) to indicate that the
tooltip for the object being hovered is not changed
A String expression that indicates the description of
the tooltip, that supports built-in HTML format (adds,
replaces or changes the object's tooltip)

Title as Variant

The Title parameter can be any of the following:

missing (VT_EMPTY, VT_ERROR type) or "<null>"
(string) the title for the object being hovered is not
changed.
A String expression that indicates the title of the
tooltip (no built-in HTML format) (adds, replaces or
changes the object's title)

Alignment as Variant

A long expression that indicates the alignment of the tooltip
relative to the position of the cursor. If missing
(VT_EMPTY, VT_ERROR) the alignment of the tooltip for
the object being hovered is not changed.

The Alignment parameter can be one of the following:

0 - exTopLeft
1 - exTopRight
2 - exBottomLeft
3 - exBottomRight
0x10 - exCenter
0x11 - exCenterLeft
0x12 - exCenterRight
0x13 - exCenterTop
0x14 - exCenterBottom

By default, the tooltip is aligned relative to the top-left
corner (0 - exTopLeft).

X as Variant

Specifies the horizontal position to display the tooltip as
one of the following:

missing (VT_EMPTY, VT_ERROR type), indicates
that the tooltip is shown on its default position /
current cursor position (ignored)
-1, indicates the current horizontal position of the
cursor (current x-position)
a numeric expression that indicates the horizontal
screen position to show the tooltip (fixed screen x-
position)
a string expression that indicates the horizontal
displacement relative to default position to show the
tooltip (moved)

Y as Variant

Specifies the vertical position to display the tooltip as one
of the following:

missing (VT_EMPTY, VT_ERROR type), indicates
that the tooltip is shown on its default position /
current cursor position (ignored)
-1, indicates the current vertical position of the cursor
(current y-position)
a numeric expression that indicates the vertical screen
position to show the tooltip (fixed screen y-position)
a string expression that indicates the vertical
displacement relative to default position to show the
tooltip (displacement)

Use the ShowToolTip method to display a custom tooltip at specified position or to update
the object's tooltip, title or position. You can call the ShowToolTip method during the
MouseMove event. Use the ToolTipPopDelay property specifies the period in ms of time the
ToolTip remains visible if the mouse pointer is stationary within a control. The ToolTipDelay
property specifies the time in ms that passes before the ToolTip appears. Use the
ToolTipWidth property to specify the width of the tooltip window. Use the ToolTipFont
property to change the tooltip's font. Use the Background(exToolTipAppearance) property
indicates the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color.

For instance:

ShowToolTip(`<null>`,`<null>`,,`+8`,`+8`), shows the tooltip of the object moved relative

to its default position
ShowToolTip(`<null>`,`new title`), adds, changes or replaces the title of the object's
tooltip
ShowToolTip(`new content`), adds, changes or replaces the object's tooltip
ShowToolTip(`new content`,`new title`), shows the tooltip and title at current position
ShowToolTip(`new content`,`new title`,,`+8`,`+8`), shows the tooltip and title moved
relative to the current position
ShowToolTip(`new content`,``,,128,128), displays the tooltip at a fixed position
ShowToolTip(``,``), hides the tooltip

The ToolTip parameter supports the built-in HTML format like follows:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

about:blank

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold

<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Gantt.SingleSel as Boolean

Retrieves or sets a value that indicates whether the control supports single or multiple
selection.

Type Description

Boolean A boolean expression that indicates whether the control
supports single or multiple selection.

Use the SingleSel property to enable multiple selection. Use the SelectCount property to
get the number of selected items. Use the SelectedItem property to get the selected item.
Use the SelectItem to select or unselect a specified item. Use the FocusItem property to
get the focused item. If the control supports only single selection, you can use the
FocusItem property to get the selected/focused item because they are always the same.
The control fires the SelectionChanged event when user selects an item. Use the
SelForeColor and SelBackColor properties to specify colors for selected items. Use the
SelectableItem property to specify the user can select an item. The FullRowSelect property
specifies whether the selection spans the entire width of the control.

property Gantt.SingleSort as Boolean
Returns or sets a value that indicates whether the control supports sorting by single or
multiple columns.

Type Description

Boolean A boolean expression that indicates whether the control
supports sorting by single or multiple columns.

Use the SingleSort property to allow sorting by multiple columns. Sorting by a single column
in the control is a simple matter of clicking on the column head. Sorting by multiple columns,
however, is not so obvious. But it's actually quite easy. The user has two options to sort by
multiple columns:

First, sort by the first criterion, by clicking on the column head. Then hold the SHIFT
key down as you click on a second heading.
Click the column head and drag to the control's sort bar in the desired position.

By default, the SingleSort property is True, and so the user can have sorting by a single
column only. Use the SortBarVisible property to show the control's sort bar. The SingleSort
property is automatically set on False, if the SortBarVisible property is set to True. Use the
SortOnClick property to specify the action that control should execute when the user clicks
the control's header. Use the SortOrder property to sort a column programmatically. Use
the SortPosition property to specify the position of the column in the sorted columns list.
The control fires the Sort event when the user sorts a column. Use the ItemBySortPosition
property to get the columns being sorted in their order.

For instance, if the control contains multiple sorted columns, changing the SingleSort
property on True, erases all the columns in the sorting columns collection, and so no column
is sorted.

property Gantt.SortBarCaption as String
Specifies the caption being displayed on the control's sort bar when the sort bar contains no
columns.

Type Description

String A String expression that indicates the caption of the
control's sort bar.

The SortBarCaption property specifies the caption of the control's sort bar, when it contains
no sorted columns. Use the SortBarVisible property to show the control's sort bar. Use the
BackColorSortBar, BackColorSortBarCaption and ForeColorSortBar properties to specify
colors for the control's sort bar. Use the SortBarHeight property to specify the height of the
control's sort bar. Use the SortBarColumnWidth property to specify the width of the column
in the control's sort bar. By default, the SortBarCaption property is "Drag a column
header here to sort by that column.". Use the Font property to specify the control's font.
Use the ItemBySortPosition property to access the columns in the control's sort bar.

The SortBarCaption property may include built-in HTML tags like follows:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The

about:blank

Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously

loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Gantt.SortBarColumnWidth as Long
Specifies the maximum width a column can be in the control's sort bar.

Type Description

Long

A long expression that indicates the width of the columns
in the control's sort bar. If the value is negative, all
columns in the sort bar are displayed with the same width
(the absolute value represents the width of the columns,
in pixels). If the value is positive, it indicates the maximum
width, so the width of the columns in the sort bar may
differ.

Use the SortBarColumnWidth property to specify the width of the column in the control's
sort bar. Use the SortBarVisible property to show the control's sort bar. Use the Width
property to specify the width of the column in the control's header bar. Use the
SortBarHeight property to specify the height of the control's sort bar. Use the
SortBarCaption property to specify the caption being displayed in the control's sort bar
when it contains no columns.

property Gantt.SortBarHeight as Long
Retrieves or sets a value that indicates the height of the control's sort bar.

Type Description

Long A long expression that indicates the height of the control's
sort bar, in pixels.

Use the SortBarHeight property to specify the height of the control's sort bar. Use the
SortBarVisible property to show the control's sort bar. By default, the SortBarHeight
property is 18 pixels. Use the HeaderHeight property to specify the height of the control's
header bar. Use the SortBarColumnWidth property to specify the width of the columns
being displayed in the control's sort bar. Use the BackColorSortBar,
BackColorSortBarCaption and ForeColorSortBar properties to specify colors for the
control's sort bar. Use the SortBarCaption property to specify the caption being displayed in
the control's sort bar when it contains no columns.

property Gantt.SortBarVisible as Boolean
Retrieves or sets a value that indicates whether control's sort bar is visible or hidden.

Type Description

Boolean A boolean expression that indicates whether the sort bar is
visible or hidden.

Use the SortBarVisible property to show the control's sort bar. By default, the
SortBarVisible property is False. Use the SingleSort property to specify whether the control
supports sorting by single or multiple columns. Sorting by a single column in the control is a
simple matter of clicking on the column head. Sorting by multiple columns, however, is not
so obvious. But it's actually quite easy. The user has two options to sort by multiple
columns:

First, sort by the first criterion, by clicking on the column head. Then hold the SHIFT
key down as you click on a second heading.
Click the column head and drag to the control's sort bar in the desired position.

The control's sort bar displays the SortBarCaption expression, when it contains no columns,
like follows (the "Drag a column header ..." area is the control's sort bar) :

The sort bar displays the list of columns being sorted in their order as follows:

The SortOrder property adds or removes programmatically columns in the control's sort
bar. Use the SortPosition property to specify the position of the column in the sorting
columns collection. Use the ItemBySortPosition property to access the columns being
sorted. Use the SortOnClick property to specify the action that control should execute when
user clicks the column's header. Use the AllowSort property to specify whether the user
sorts a column by clicking the column's header. The control fires the Sort event when the
user sorts a column. Use the Chart object to access all properties and methods related to
the Gantt chart.

property Gantt.SortOnClick as SortOnClickEnum

Retrieves or sets a value that indicates whether the control sorts automatically the data
when the user click on column's caption.

Type Description

SortOnClickEnum
A SortOnClick expression that indicates whether the
control sorts automatically the data when the user click on
the column's header.

Use the SortOnClick property to disable sorting items when the user clicks on the column's
header. Use the SortBarVisible property to show the control's sort bar. Use the SingleSort
property to allow sorting by single or multiple columns. Use the AllowSort property to avoid
sorting a column when user clicks the column. Use the DefaultSortOrder property to specify
the column's default sort order, when the user first clicks the column's header.

There are two methods to get the items sorted like follows:

Using the SortOrder property of the Column object::

Gantt1.Columns(ColIndex).SortOrder = SortAscending

The SortOrder property adds the sorting icon to the column's header, if the
DisplaySortIcon property is True.

Using the SortChildren method of the Items collection. The SortChildren sorts the
items. The SortChildren method sorts the child items of the given parent item in the
control. SortChildren will not recourse through the tree, only the immediate children of
the item will be sorted. The following sample sorts descending the list of root items on
the "Column 1"(if your control displays a list, all items are considered being root items
).

Gantt1.Items.SortChildren 0, "Column 1", False

The control fires the Sort event when the control sorts a column (the user clicks the
column's head) or when the sorting position is changed in the control's sort bar. Use the
Sort event to sort the data when the SortOnClk property is exUserSort.

property Gantt.Statistics as String
Gives statistics data of objects being hold by the control.

Type Description

String A String expression that gives information about objects
being loaded into the control.

The Statistics property gives statistics data of objects being hold by the control. The
Statistics property gives a rough idea on how many columns, items, cell, bars, links, notes
and so on are loaded into the control. Also, the Statistics property gives percentage usage
of base-memory of different objects within the memory.

The following output shows how the Statistics looks like, on a 32-bits machine:

Cells: 832 x 57 = 47,424 (40.32%)
Control: 1 x 25,120 = 25,120 (21.36%)
Item-Bars: 64 x 336 = 21,504 (18.28%)
Column: 13 x 696 = 9,048 (7.69%)
Item: 64 x 96 = 6,144 (5.22%)
Charts: 1 x 4,872 = 4,872 (4.14%)
Bar: 7 x 160 = 1,120 (0.95%)
Levels: 1 x 992 = 992 (0.84%)
Items: 1 x 692 = 692 (0.59%)
Level: 1 x 424 = 424 (0.36%)
Columns: 1 x 172 = 172 (0.15%)
Links: 1 x 52 = 52 (0.04%)
Appearances: 1 x 28 = 28 (0.02%)
Bars: 1 x 20 = 20 (0.02%)
Appearance: 0 x 712 = 0 (0.00%)
CComVariant: 0 x 16 = 0 (0.00%)
Cells(Inner): 0 x 57 = 0 (0.00%)
CSmartVariant: 0 x 9 = 0 (0.00%)
Link: 0 x 336 = 0 (0.00%)

The following output shows how the Statistics looks like, on a 64-bits machine:

Cells: 832 x 97 = 80,704 (42.02%)
Control: 1 x 40,784 = 40,784 (21.24%)
Item-Bars: 64 x 488 = 31,232 (16.26%)

Column: 13 x 1,128 = 14,664 (7.64%)
Item: 64 x 176 = 11,264 (5.86%)
Charts: 1 x 7,760 = 7,760 (4.04%)
Bar: 7 x 240 = 1,680 (0.87%)
Levels: 1 x 1,472 = 1,472 (0.77%)
Items: 1 x 1,328 = 1,328 (0.69%)
Level: 1 x 672 = 672 (0.35%)
Columns: 1 x 320 = 320 (0.17%)
Links: 1 x 88 = 88 (0.05%)
Appearances: 1 x 48 = 48 (0.02%)
Bars: 1 x 40 = 40 (0.02%)
Appearance: 0 x 1,168 = 0 (0.00%)
CComVariant: 0 x 24 = 0 (0.00%)
Cells(Inner): 0 x 97 = 0 (0.00%)
CSmartVariant: 0 x 9 = 0 (0.00%)
Link: 0 x 480 = 0 (0.00%)

property Gantt.Template as String
Specifies the control's template.

Type Description
String A string expression that indicates the control's template.

The control's template uses the X-Script language to initialize the control's content. Use the
Template property page of the control to update the control's Template property. Use the
Template property to execute code by passing instructions as a string (template string).
Use the ExecuteTemplate property to execute a template script and gets the result.

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name

of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property Gantt.TemplateDef as Variant
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplateDef property has been added to allow programming languages such as
dBASE Plus to set control's properties with multiple parameters. It is known that
programming languages such as dBASE Plus or XBasic from AlphaFive, does not
support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef method. The first call of the TemplateDef
should be a declaration such as "Dim a,b" which means the next 2 calls of the TemplateDef
defines the variables a and b. The next call should be Template or ExecuteTemplate
property which can use the variable a and b being defined previously.

So, calling the TemplateDef property should be as follows:

with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith

This sample allocates a variable var_Column, assigns the value to the variable (the second
call of the TemplateDef), and the Template call uses the var_Column variable (as an object
), to call its Def property with the parameter 4.

Let's say we need to define the background color for a specified column, so we need to call
the Def(exCellBackColor) property of the column, to define the color for all cells in the
column.

The following VB6 sample shows setting the Def property such as:

With Control
 .Columns.Add("Column 1").Def(exCellBackColor) = 255
 .Columns.Add "Column 2"
 .Items.AddItem 0
 .Items.AddItem 1

 .Items.AddItem 2
End With

In dBASE Plus, calling the Def(4) has no effect, instead using the TemplateDef helps you to
use properly the Def property as follows:

local Control,var_Column

Control = form.Activex1.nativeObject
// Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith
Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The equivalent sample for XBasic in A5, is as follows:

Dim Control as P
Dim var_Column as P

Control = topparent:CONTROL_ACTIVEX1.activex
' Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
Control.TemplateDef = "Dim var_Column"
Control.TemplateDef = var_Column
Control.Template = "var_Column.Def(4) = 255"

Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The samples just call the Column.Def(4) = Value, using the TemplateDef. The first call of
TemplateDef property is "Dim var_Column", which indicates that the next call of the
TemplateDef will defines the value of the variable var_Column, in other words, it defines the
object var_Column. The last call of the Template property uses the var_Column member to
use the x-script and so to set the Def property so a new color is being assigned to the
column.

The TemplateDef, Template and ExecuteTemplate support x-script language (Template
script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please

make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

method Gantt.TemplatePut (NewVal as Variant)
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

NewVal as Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplatePut method / TemplateDef property has been added to allow programming
languages such as dBASE Plus to set control's properties with multiple parameters. It is
known that programming languages such as dBASE Plus or XBasic from AlphaFive, does
not support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef / TemplatePut method. The first call of the
TemplateDef should be a declaration such as "Dim a,b" which means the next 2 calls of the
TemplateDef defines the variables a and b. The next call should be Template or
ExecuteTemplate property which can use the variable a and b being defined previously.

The TemplateDef, TemplatePut, Template and ExecuteTemplate support x-script language (
Template script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the

Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property Gantt.ToolTipDelay as Long
Specifies the time in ms that passes before the ToolTip appears.

Type Description

Long A long expression that specifies the time in ms that passes
before the ToolTip appears.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. The
ToolTipPopDelay property specifies the period in ms of time the ToolTip remains visible if
the mouse pointer is stationary within a control. Use the ToolTipWidth property to specify
the width of the tooltip window. Use the ToolTipFont property to assign a font for the
control's tooltip. Use the Background(exToolTipAppearance) property indicates the visual
appearance of the borders of the tooltips. Use the Background(exToolTipBackColor)
property indicates the tooltip's background color. Use the Background(exToolTipForeColor)
property indicates the tooltip's foreground color. Use the CellToolTip property to specify the
cell's tooltip. Use the ItemBar(,,exBarToolTip) property to specify a tooltip for a bar. Use the
Link(,exLinkToolTip) property to specify the tooltip to be shown when the cursor hovers the
link.

property Gantt.ToolTipFont as IFontDisp
Retrieves or sets the tooltip's font.

Type Description
IFontDisp A Font object being used to display the tooltip.

Use the ToolTipFont property to assign a font for the control's tooltip. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. Use the ToolTipWidth property to specify the width of the tooltip
window. The ToolTipDelay property specifies the time in ms that passes before the ToolTip
appears. Use the HTML element to assign a different font for portions of text inside
the tooltip. Use the Background(exToolTipAppearance) property indicates the visual
appearance of the borders of the tooltips. Use the Background(exToolTipBackColor)
property indicates the tooltip's background color. Use the Background(exToolTipForeColor)
property indicates the tooltip's foreground color. Use the ShowToolTip method to display a
custom tooltip. Use the CellToolTip property to specify the cell's tooltip. Use the
ItemBar(,,exBarToolTip) property to specify a tooltip for a bar. Use the Link(,exLinkToolTip)
property to specify the tooltip to be shown when the cursor hovers the link.

property Gantt.ToolTipPopDelay as Long
Specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control.

Type Description

Long
A long expression that specifies the period in ms of time
the ToolTip remains visible if the mouse pointer is
stationary within a control.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. The
ToolTipDelay property specifies the time in ms that passes before the ToolTip appears. Use
the ToolTipWidth property to specify the width of the tooltip window. Use the ToolTipFont
property to assign a font for the control's tooltip. Use the
Background(exToolTipAppearance) property indicates the visual appearance of the borders
of the tooltips. Use the Background(exToolTipBackColor) property indicates the tooltip's
background color. Use the Background(exToolTipForeColor) property indicates the tooltip's
foreground color. Use the ShowToolTip method to display a custom tooltip. Use the
CellToolTip property to specify the cell's tooltip. Use the ItemBar(,,exBarToolTip) property to
specify a tooltip for a bar. Use the Link(,exLinkToolTip) property to specify the tooltip to be
shown when the cursor hovers the link.

property Gantt.ToolTipWidth as Long
Specifies a value that indicates the width of the tooltip window, in pixels.

Type Description

Long A long expression that indicates the width of the tooltip
window.

Use the ToolTipWidth property to change the tooltip window width. The height of the tooltip
window is automatically computed based on tooltip's description. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. The ToolTipDelay property specifies the time in ms that passes
before the ToolTip appears. Use the Background(exToolTipAppearance) property indicates
the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color. Use the
ShowToolTip method to display a custom tooltip. Use the ToolTipFont property to assign a
font for the control's tooltip. Use the CellToolTip property to specify the cell's tooltip. Use
the ItemBar(,,exBarToolTip) property to specify a tooltip for a bar. Use the
Link(,exLinkToolTip) property to specify the tooltip to be shown when the cursor hovers the
links.

property Gantt.TreeColumnIndex as Long

Retrieves or sets a value indicating the column's index where the hierarchy will be
displayed.

Type Description

Long A long expression that indicates the index of the column
where the control's hierarchy is displayed.

Use the TreeColumnIndex property to change the column's index where the hierarchy lines
are painted. Use HasLines and LinesAtRoot properties to show the hierarchy lines. Use the
HasButtons property to define the +/- signs appearance. If the TreeColumnIndex property is
-1, the control doesn't paint the hierarchy. Use the Indent property to define the amount, in
pixels, that child items are indented relative to their parent items.

property Gantt.UseTabKey as Boolean

Specifies whether the TAB key is used to change the searching column.

Type Description

Boolean A boolean expression that specifies whether the TAB key
is used to change the incremental searching column.

By default, the UseTabKey property is True. The UseTabKey property specifies whether the
control uses the TAB key to change the searching column. If the UseTabKey property is
False, the TAB key is used to navigate through the form's controls.

property Gantt.UseVisualTheme as UIVisualThemeEnum
Specifies whether the control uses the current visual theme to display certain UI parts.

Type Description

UIVisualThemeEnum
An UIVisualThemeEnum expression that specifies which UI
parts of the control are shown using the current visual
theme.

By default, the UseVisualTheme property is exDefaultVisualTheme, which means that all
known UI parts are shown as in the current theme. The UseVisualTheme property may
specify the UI parts that you need to enable or disable the current visual theme. The UI
Parts are like header, filterbar, check-boxes, buttons and so on. The UseVisualTheme
property has effect only a current theme is selected for your desktop. The UseVisualTheme
property. Use the Appearance property of the control to provide your own visual
appearance using the EBN files.

The following screen shot shows the control while the UseVisualTheme property is
exDefaultVisualTheme:

since the second screen shot shows the same data as the UseVisualTheme property is
exNoVisualTheme:

property Gantt.Version as String
Retrieves the control's version.

Type Description
String A string expression that indicates the control's version.

The version property specifies the control's version.

property Gantt.VisualAppearance as Appearance
Retrieves the control's appearance.

Type Description
Appearance An Appearance object that holds a collection of skins.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control. By using a
collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part.

The skin method may change the visual appearance for the following parts in the control:

levels on the chart area, BackColor property, BackColorLevelHeader property
bar's background, ItemBar(exBarBackColor) property

control's header bar, BackColorHeader property
control's filter bar, FilterBarBackColor property
control's sort bar, BackColorSort property
the caption of the control's sort bar, BackColorSortCaption property
selected item or cell, SelBackColor property
item, ItemBackColor property
cell, CellBackColor property
cell's button, "drop down" filter bar button, "close" filter bar button, and so on,
Background property

property Gantt.VisualDesign as String
Invokes the control's VisualAppearance designer.

Type Description

String A String expression that encodes the control's Visual
Appearance.

By default, the VisualDesign property is "". The VisualDesign property helps you to define
fast and easy the control's visual appearance using the XP-Theme elements or EBN
objects. The VisualDesign property can be accessed on design mode, and it can be used to
design the visual appearance of different parts of the control by drag and drop XP or EBN
elements. The VisualAppearance designer returns an encoded string that can be used to
define different looks, just by calling the VisualDesign = encoded_string. If you require
removing the current visual appearance, you can call the VisualDesign on "" (empty string).
The VisualDesign property encodes EBN or XP-Theme nodes, using the Add method of the
Appearance collection being accessed through the VisualAppearance property.

For the /COM version, click the control in Design mode, select the Properties, and
choose the "Visual Design" page.
For the /NET version, select the VisualDesign property in the Properties browser, and
then click ... so the "Visual Design" page is displayed.
The /WPF version does not provide a VisualAppearance designer, instead you can use
the values being generated by the /COM or /NET to apply the same visual appearance.

Click here to watch a movie on how you define the control's visual appearance using
the XP-Theme
Click here to watch a movie on how you define the control's visual appearance using
the EBN files.

The left panel, should be user to add your EBN or XP-Theme elements. Once you add them
drag and drop the EBN or XP-Theme element from the left side to the part which visual
appearance you want to change.

The following picture shows the control's VisualDesign form (empty):

https://exontrol.com/ebn.jsp
https://www.youtube.com/watch?v=eFhIzjE52I8
https://www.youtube.com/watch?v=JqEUQRhKYWo

The following picture shows the control's VisualDesign form after applying some EBN
objects:

This layout generates the following code:

With Exgantt1
 .VisualDesign =
"gBFLBWIgBAEHhEJAEGg7oB0HBSQAwABsIfj/jEJAcKhYEjgCAscA8ThQBA8cAgIjgDh8KBAPjgJCUcAIhmgij6AhKAf4CBMIhgACIgg7+jYAgRCJ1BjkHoIBctHnTACAxRDAMgBQKAAzQFAYaByHKGAAGEYRXgmFgAQhFcZQSKUOQTDKMIziYBYfgkMIgSbJUgDCAkRRdDSOYDmGQYDiCIoRShOMpTXJ8bRfGigIqMVI2PACQ5FRZOUByTRcUAFH6QAijOopViWGpHUZRETxCKQahLLivIhGUYKfgmY5lTzPdSUDL8RSUACmLglORLNi+M4zSBPUZTRLlZT7OK3IzECKxBpaF5YVhSN72eKFHzTAa1cDyCCcFpWV5aYjCNgLEAAo7hyM5YiyEQcAwawkACNZlG6OhLnUNwXFCDZegAGhtFQawZgyRxLioOBsg6UhvByMJvnOegrDcDg1jiWJuiAew9m4GhAAiBIUA0JgziGVJkGUGJIA2QB4BkCIblqDQNiEIoIE6IhKBiC4ODsfJGHoTJLmydx7H2fwvg+U5hnaeZ9n6P4PHwDQ8mYP5fmgAZ/gAYBIA4BoAiCCAWAmAZgigBQDCaThTn4EIEiEGD8AUYYIFIGoFmGOBmByBJQDIYJkD+YgohII4JGKCIeCqCYikiJgtgqYpohUAwlE4M5+DSDYjFiXg6g4Y5ImIPoOmOeJ2ECDdM16P5kGkIhHhIZJJC4ToSiUCQ2FGE5lCkJQDCOTgTn4WIWiWG"
 & _

"RuF6FxmAkchiheZg5gYZIW0yMhZhqD55jIboamcCY2HGG5nCmVh0h2ZYUAyCQ4Xqbh9h8J5qT0IJnnoFoCiGKBKB4fhAkgYx8n+IxonoOoQiSaQqFaEYlmkShihaJhpAQDICDeD56H7ioqCqFokimag6iaJoqiqCouiIQJHnMdJ/iwaw6kqNItmsapmjWLprgqco6i8axEAwfA3A+ewOkWMWliaSIymwew2kqM4sksPpGaMGwSlUP5tHsZpWjabYLHKWo3G4Cx+mKMQQDGWJbD+bhriKZ46G6S4um7rILjacY7m8K9tByTYjn6eI+i+G5un6PxwAucwCj+cA8AcBI+lAMZAlkP5wiwMwLkMcQMD8EpDjETBHBWRJxGwNQDBsTYDn8HJHjGXB/CKSByEzQhInIfIXCiR/YiiVw/nKbJDC+TBzEyTw2kyM4MlcOZNnOLJFAMGZyn0AJ/lCNBNAcRpQnQPoFwkRSjpC0G4LwgRKDnCCP8VA6g9CWFSKsdQ2hnCrFaOsDQ5haiuHUIgDIWg6gfH2B4ZYsg2DbCcNEWo7B9huGqLcNomw/DMECJYI4YR/i6HcPsWw8RejvC2O4eYvx3icAMP0YA72YBwDuB8fgPwJjEDiFwN4GVgh8EeB0ZIcgOCfAoIES4pxAj/GYPMPg1wcjPHmN0B4O2QAdBOEUaQ84PCGDyB8foX2oB1G6I8MI2R6j9FeGUbYdhOi/C4IETIBxQj/G8Pcfo9xAjhHwF4F4gxxj4E8EcR"
 & _

"o5B8MwE4HsD4/g/ijHQHoLwrxUjrH0H4Z4rR2h7A8N8UggRNBnGCP8eA/A/gXGSPMfg3wnjLkCB8M41R7D8g8LIPoHx/iflYH4b4zx4j9H8P8d49JnjjH+H4YgDA3gPlyAEMAPADCBAgC4AoQBsJ/HAGQCAgRoBGAIVUZAPxDj8AuIMGAYgGhBGwDkA44BuAhEGNARQEAhA4BoEAZ42R9CFCOOYCwQhMBaD6EgDIAQBEIKGQcLtHSkBYKUUwppTwiUiKmVUq5WStldK+MgNwMyyFmBiMQtRbC3FwLkXQuxeC9F8L8YAwRhDDCOGGGQWAOQCCKBGCgTgQgjAzEyHwawNwQCgCMNAagMACgNAaBcTwAASgwCSEABQXwQiBEEGMMAqROhCBeEYUQ0QRDRNybs3pvzgnDOKJ4aoYhqgpFKD4boSRSjSFKdMOgvgxAAF2NAMo8w8hVHsJkPwlwnigDCEoVAVhqgJDoC8Y4YAGBOBcC0OAlRphpHkAsMAAwEgDFUEAeA1hsVXAyIoRY2AWgXEWA0TQyQxDTHIOoXIcADBXBuHUSIZAThUE6Iwf4VxYDAHAC4GYuQag6GmFEVQ5g5DbESLQOYSwGjjEACwfQjQOBbD6FYXoawwg6GcCYHwqgECEEoA0EwMxQjUHIGUbwQBtDbHEkoY6TUngQE8BYXwEAMCLFQDkfYgRtD9GiPVNIvwPi/GuPceQ/xQBvGCMwPwHx4AcAWAIIA0AmARAKJ8d4xABD7A2OcaI/wE"
 & _

"DCDgJQFICxhDQGYBofYQYFCwD4J+XYQwIBECiCwJIExhhnCIDoNAnhzj8CyBcIosQ+BlAwMZVIOgygeUOHEDoRwYjcD6B4ZAERYAAH4BgM8jQRDIHkDQSIJRkhSDYISfQpxIj/BQMoOQlBUgrGUNIZgnh9gWGPGMFwyx5D0GCDEZgUwWC2DoBUc4eR/g0GaHMKg2QbjNGmIwZwVAOqHYEE4WYvB6g8GeJMHIQg7L1H6AMIAUAqAtASEMZg5BojUD+NEKgZQLhGGkBQPoJQZiSEPAsJQ0h6C1BiE0aYVB2DOCMJwc4/QghRCoDUDoTQpDVAmDkBgchPj1C6FsKwVRqiNDCFkZg4x8jGD+1EYobwuDXEqN0PoMxHgHAiP8MA2A7AVESGO3ITBnA5A4Acfr6gsi2D6KUNA2hJg4GsG8T49heizDZvQdouQ3jICUDUYocRuCXBaMYQIoAQFHKEUQAAwiGFJKWU0hJTxUkMpWVYrBWiuFeAwNwNgMKagjCCISnJbS3lxLmXUu7LxEDIDUCUSQyRxAjCiIQUQEwWCXCMIAKQKBuB2AODYSAwByASBSAACwXwWgWEaOcaAORCgGDOAQDQ0RxBDCyKQPwmgAAHGEGoGYqAmgpuqAAKo3x4h5AIjlHaPUfpBSGJAAIoRCAiDaKoGgNhCCKBUFcHQoAxAuGgKUKY4hqiqGkMYfgexgAUBgEQbgJgLgNEIMH3wBxdjyY4I8Qg1hID5B4D4K4LRLjDBCHMLA+huANC2"
 & _

"J8YQlwaBMCaCMd6hRnBpE+HoIwIQ9hdEKM8VYawoCcC8BUSYtxqBuDuFsOwTgLgLhZhAhxA4BdBWhqg0hDhjgog5A6gdA2AXAThAgshxB1ANAegZBrmTBrgxB7A5hMgvA/gjB8Bth4A0BFhOg/gQgsBihzg6h9GqBlBiAHhsg+A5h+AmBPgfgJAVh2hyh1wcgtBXg+AThvBWgGhIAEBwgAhOAYAVBaAqhggHhgD1gghDBOAOEshHA8BTgEhYBThmAWBWgJgIBkh3gGhbgiheAegCgMhYgGAbA9hchxh2AmBhBMg4glheBugMAYg0BYgLheBxgJhpA6hch4AggrBhBGAIhlg8gKhYhzh2A+BvAdBRBoB+gQhagmBFBXAghkgGBiBKBhhiBhh0hwgThLBpBEBbgUi5BWBGBfAbARhaBagShZBpBoB2BsBVgjBmBiNNBJBeA8gZhcBTgWBqBCOcCPCDqPgAAyufqSOguhCnCgAmOjE7KWOkqXumOnOoCyupOqC1urKeOsqfuuOvOwOxOyOzO0O1O2O3O4O5O6O7O8O9O+O/PAPBPCPDPEPFPGPHPIPJPKArvLPMPNPOEeEfEgEhEiPRvSvTvUvVvWvXvYvZvavbvcvdvevfvgvhvivjvkvlvmvnvovpvqgyBoB8PtPuPvPwPxPyPzP0P1ATBEBcv3v4v5v6v7v8v9v+v/wAwBwChrgLgPhVBhBxA8AKhPAbgbhNhKhyh5hdAthXBCgxADhqh0h5hdsHBjg"
 & _

"zhGhtoEB+AsArhnhLhehUB5BfA4BfARBPgWB9h3hhBZB/AvA+BzhkhLhCh7hPg8g1BfhzAKBgB/hbhHgdg8B/hGAGAVh8AqhdAVBcgDgChZgIA2AOgChIF+ARBjhbRZgWgDgZBoBYRdBbgoBNh0gHhXhEAlCQKPOeAXqROgKTCaCgALKVRsOkKXOlivhqAzAbuogwqcRxKdusKfOtgEOuuvuwuxuyuzu0u1gohYASATARAGBCBBBxh5hcgKAHAgAChLhlgihRhFACPVAcBMhggDBqBMBIBtA9geBPBCAQgagVL4gXgQACAhFtBJgMhoB1A5AZBGJ4BcAMgEBNgyBFhpvYBFBOhbA+AAAGK6Aag0Alh3B2B5BeAdBXgnBNhyh7E1BgAwA3owgqhwhyg7A+hwhNBMBah/Aag8hHhkAyA5AsgeBTAfgNBfhihagYBsAiBXA6r9ghBQB6AtAegTBLgmhThogzhoBchqBXAJB9hVAxhYBsAWACh1B0hABeBtg3AbB9hOhzB3g+hdBtB2AsAdBWADBGhEBhAvhWhrBFgPApBlhNhngtA5hdAegHBLgkgxhjgvh0B4AEAWgJgOhEBhgshWAKhvAPgPhFhkB/h6A9A+BPBfgbhFheBhh3AQB9g9ATApgOhFBWgqgVAfgPhXhnh3tsBfg4AFh9B+BfBTAVhxB2hdhDAwhKAyAKBygMghApAKASB4giAnhJhYBMgcB/hegIBaATAnBhACB6ANAoBggjAggCB3VrgI"
 & _

"hQH1hSgAgcAmghgIg2AugLBigiBqAnAzBiVdglA1ANAjBEgbAmAJMwA+gLgjgyBWA4A0BjBYgUhaA2BNBiBogXAlAjhCBOBLAkBJHqARgLBlAZBAgUAkBkhZAogUgRhNBpAVB/AgBmADgEheA3BkhYhsgWAnAJgCBaBmgLBmBpgiBqgaBkhZgIhdgYE+gCB0A5gOBTgQgTAkAIhpAsgSgTWSg2gAAlBkhiBQgSgehIhphghkgdAXhWASB0A7tXgwgNAiHphAgNAihJAaBegZgmApgqB2gcI5BiAugTAhhpADgyB0BhAYBmgOglgqhpAao/grgrAKg2gyA7AaA2AZgIApArgCANgfBqArhKh1gkBnhrgCgRgIBACuTWiDgYzYRozZCSigAMTbCqTcOlKYAMTeTfRvzgOqzhqeutBxRzzkx1TmR2znzozpzqzrzsztzuzvzwzxzyzzz0z1z2z3z4z5z6z7z8gDT9z+z/0AgIUB0C0D0EgxUF0G0H0I0J0K0L0M0N0O0P0Q0R0S0T0U0V0W0X0Y0Z0a0b0c0d0e0f0g0h0i0j0k0l0m0n0o0p0q0r0s0t0u0v0w0x0y0z000102030405060708090+0/1A1B1C1D1E1F1G1Hhkhzh51KBfBfB5gHhcBBh2h0BMgmA7AVBagqBUB9g/AfJnhzh3h+B+ggAHhMhFB7hdg3BwhMAygMgCgcgjGLBCgEgeAogJhyB2AQAnAhA4BUgfgFFFg0w1vfAchIAggdh"
 & _

"IAUgCA0AMhjA0ggWUgjh+GhBihI1yAKhiByBqAkV1gCAKAiV3141516g+Jmhj19V+V/AI2A2B2C2D2E2F2GhOBQgUglAZBOBQFpgZA2BKAlAkBzBaBFBfhIAZgEhhA3gNoTA7AlgJvigWgZhmhJgqBntSNTBNgYhNhZgEgBBgAnBjgYtEAJAyBAgOuwApA2gCAlBJA6AOgFghAoAJh0gOgegOBJhZB9BhZXA4htA7AIhSAkgHWghSAsgRgmBpg6Bqgcgnhp22AYI5BSAegSP+hmARgGNjh6g2gTgrgOhKhCgygrhrBDgxgjBhgYgCgSg6AghZh2ginQhaBGB+g6ApAYgEAECTiDiVCDiWgAGKgdAZAQaH6HgW6JAZaEgAaLaF6GgagQAWgaaOaPaQCf6ECEaMgoAdAbaP6U6QCAg"

End With

If running the empty control we get the following picture:

If running the control using the code being generated by the VisualAppearance designer we

get:

Items object
The Items object contains a collection of items. Each item is identified by a handle HITEM.
The HITEM is of long type. Each item contains a collection of cells. The number of cells is
determined by the number of Column objects in the control. To access the Items collection
use Items property of the control. Using the Items collection you can add, remove or
change the control items. The Items collection can be organized as a hierarchy or as a
tabular data. The Items collection supports the following properties and methods:

Name Description

AcceptSetParent Retrieves a value indicating whether the SetParent method
can be accomplished..

AddBar Adds a bar to an item.

AddItem Adds a new item, and returns a handle to the newly
created item.

AddLink Links a bar to another.
CellBackColor Retrieves or sets the cell's background color.

CellBold Retrieves or sets a value that indicates whether the cell's
caption should appear in bold.

CellButtonAutoWidth Retrieves or sets a value indicating whether the cell's
button fits the cell's caption.

CellCaption Retrieves or sets the text displayed on a specific cell.
CellCaptionFormat Specifies how the cell's caption is displayed.

CellChecked Retrieves the cell's handle that is checked on a specific
radio group.

CellData Retrieves or sets the extra data for a specific cell.

CellEnabled Returns or sets a value that determines whether a cell can
respond to user-generated events.

CellFont Retrieves or sets the cell's font.
CellForeColor Retrieves or sets the cell's foreground color.

CellHAlignment Retrieves or sets a value that indicates the alignment of
the cell's caption.

CellHasButton Retrieves or sets a value indicating whether the cell has
associated a push button or not.

CellHasCheckBox Retrieves or sets a value indicating whether the cell has
associated a checkbox or not.

CellHasRadioButton Retrieves or sets a value indicating whether the cell has
associated a radio button or not.

CellHyperLink Specifies whether the cell's is highlighted when the cursor
mouse is over the cell.

CellImage Retrieves or sets an Image that is displayed on the cell's
area.

CellImages Specifies an additional list of icons shown in the cell.

CellItalic Retrieves or sets a value that indicates whether the cell's
caption should appear in italic.

CellItem Retrieves the handle of item that is the owner of a specific
cell.

CellMerge Retrieves or sets a value that indicates the index of the
cell that's merged to.

CellParent Retrieves the parent of an inner cell.

CellPicture Retrieves or sets a value that indicates the Picture object
displayed by the cell.

CellPictureHeight Retrieves or sets a value that indicates the height of the
cell's picture.

CellPictureWidth Retrieves or sets a value that indicates the width of the
cell's picture.

CellRadioGroup Retrieves or sets a value indicating the radio group where
the cell is contained.

CellSingleLine Retrieves or sets a value indicating whether the cell's
caption is painted using one or more lines.

CellState Retrieves or sets the cell's state. Has effect only for check
and radio cells.

CellStrikeOut Retrieves or sets a value that indicates whether the cell's
caption should appear in strikeout.

CellToolTip Retrieves or sets a text that is used to show the tooltip's
cell.

CellUnderline Retrieves or sets a value that indicates whether the cell's
caption should appear in underline.

CellVAlignment Retrieves or sets a value that indicates how the cell's
caption is vertically aligned.

CellWidth Retrieves or sets a value that indicates the width of the
inner cell.

ChildCount Retrieves the number of children items.
ClearBars Clears the bars from the item.
ClearCellBackColor Clears the cell's background color.
ClearCellForeColor Clears the cell's foreground color.
ClearCellHAlignment Clears the cell's alignment.
ClearItemBackColor Clears the item's background color.
ClearItemForeColor Clears the item's foreground color.
ClearLinks Clears all links in the chart.
DefaultItem Retrieves or sets the default item.
Edit Edits a cell.

EnableItem Returns or sets a value that determines whether a item
can respond to user-generated events.

EnsureVisibleItem Ensures the given item is in the visible client area.

ExpandItem Expands, or collapses, the child items of the specified
item.

FindItem Finds an item, looking for Caption in ColIndex colum. The
searching starts at StartIndex item.

FindItemData Finds the item giving its data.

FindPath Finds the item, given its path. The control searches the
path on the SearchColumnIndex column.

FirstItemBar Gets the key of the first bar in the item.
FirstLink Gets the key of the first link.
FirstVisibleItem Retrieves the handle of the first visible item into control.
FocusItem Retrieves the handle of item that has the focus.
FormatCell Specifies the custom format to display the cell's content.

FullPath
Returns the fully qualified path of the referenced item in
the control. The caption is taken from the column
SearchColumnIndex.

InnerCell Retrieves the inner cell.

InsertControlItem Inserts a new item of ActiveX type, and returns a handle
to the newly created item.

InsertItem Inserts a new item, and returns a handle to the newly
created item.
Returns a value that indicates whether the item is locked

IsItemLocked or unlocked.

IsItemVisible Checks if the specific item is in the visible client area.

ItemAllowSizing Retrieves or sets a value that indicates whether a user
can resize the item at run-time.

ItemAppearance Specifies the item's appearance when the item hosts an
ActiveX control.

ItemBackColor Retrieves or sets a background color for a specific item.
ItemBar Gets or sets a bar property.

ItemBold Retrieves or sets a value that indicates whether the item
should appear in bold.

ItemByIndex Retrieves the handle of the item given its index in Items
collection..

ItemCell Retrieves the cell's handle based on a specific column.
ItemChild Retrieves the child of a specified item.

ItemControlID Retrieves the item's control identifier that was used by
InsertControlItem.

ItemCount Retrieves the number of items.
ItemData Retrieves or sets the extra data for a specific item.

ItemDivider
Specifies whether the item acts like a divider item. The
value indicates the index of column used to define the
divider's title.

ItemDividerLine Defines the type of line in the divider item.
ItemDividerLineAlignment Specifies the alignment of the line in the divider item.
ItemFont Retrieves or sets the item's font.
ItemForeColor Retrieves or sets a foreground color for a specific item.

ItemHasChildren Adds an expand button to left side of the item even if the
item has no child items.

ItemHeight Retrieves or sets the item's height.

ItemItalic Retrieves or sets a value that indicates whether the item
should appear in italic.

ItemMaxHeight Retrieves or sets a value that indicates the maximum
height when the item's height is variable.

ItemMinHeight Retrieves or sets a value that indicates the minimum height
when the item's height is sizing.

ItemObject Retrieves the ActiveX object associated, if the item was
created using InsertControlItem method.

ItemParent Returns the handle of parent item.

ItemPosition Retrieves or sets a value that indicates the item's position
in the children list.

ItemStrikeOut Retrieves or sets a value that indicates whether the item
should appear in strikeout.

ItemToIndex Retrieves the index of item into Items collection given its
handle.

ItemUnderline Retrieves or sets a value that indicates whether the item
should appear in underline.

ItemWidth Retrieves or sets a value that indicates the item's width
while it contains an ActiveX control.

ItemWindowHost
Retrieves the window's handle that hosts an ActiveX
control when the item was created using
InsertControlItem.

ItemWindowHostCreateStyle Retrieves or sets a value that indicates a combination of
window styles used to create the ActiveX window host.

LastVisibleItem Retrieves the handle of the last visible item.
Link Gets or sets a property for a link.
LockedItem Retrieves the handle of the locked/fixed item.

LockedItemCount Specifies the number of items fixed on the top or bottom
side of the control.

MatchItemCount Retrieves the number of items that match the filter.
MergeCells Merges a list of cells.
NextItemBar Gets the key of the next bar in the item.
NextLink Gets the key of the next link.

NextSiblingItem Retrieves the next sibling of the item in the parent's child
list.

NextVisibleItem Retrieves the handle of next visible item.

PathSeparator Returns or sets the delimiter character used for the path
returned by the FullPath property.

PrevSiblingItem Retrieves the previous sibling of the item in the parent's
child list.

PrevVisibleItem Retrieves the handle of previous visible item.

RemoveAllItems Removes all items from the control.
RemoveBar Removes a bar from an item.
RemoveItem Removes a specific item.
RemoveLink Removes a link.
RemoveSelection Removes the selected items (including the descendents).
RootCount Retrieves the number of root objects into Items collection.

RootItem Retrieves the handle of the root item giving its index into
the root items collection.

SelectableItem Specifies whether the user can select the item.
SelectAll Selects all items.

SelectCount Retrieves the handle of selected item giving its index in
selected items collection.

SelectedItem Retrieves the selected item's handle given its index in
selected items collection.

SelectItem Selects or unselects a specific item.
SelectPos Selects items by position.
SetParent Changes the parent of the given item.
SortableItem Specifies whether the item is sortable.

SortChildren
Sorts the child items of the given parent item in the
control. SortChildren will not recurse through the tree, only
the immediate children of Item will be sorted.

SplitCell Splits a cell, and returns the inner created cell.
UnmergeCells Unmerges a list of cells.
UnselectAll Unselects all items.
UnsplitCell Unsplits a cell.
VisibleCount Retrieves the number of visible items.
VisibleItemCount Retrieves the number of visible items.

property Items.AcceptSetParent (Item as HITEM, NewParent as HITEM) as
Boolean
Retrieves a value indicating whether the SetParent method can be accomplished.

Type Description

Item as HITEM A long expression that indicates the handle of the item
being moved.

NewParent as HITEM A long expression that indicates the handle of the parent
item where the item should be moved.

Boolean A boolean expression that indicates whether the item can
be child of the NewParent item.

Use this property to make sure that SetParent can be called. The AcceptSetParent
property checks if an item can be child of another item.

method Items.AddBar (Item as HITEM, BarName as Variant, DateStart as
Variant, DateEnd as Variant, [Key as Variant], [Text as Variant])
Adds a bar to an item.

Type Description

Item as HITEM A long expression that indicates the the handle of the item
where the bar is inserted.

BarName as Variant
A String expression that indicates the name of the bar
being inserted, or a long expression that indicates the
index of the bar being inserted

DateStart as Variant

A Date expression that indicates the date/time where the
bar starts, or a string expression that indicates the start
date and time. For instance, the "6/10/2003 10:13",
indicates the date and the time.

DateEnd as Variant

A Date expression that indicates the date where the bar
ends, or a string expression that indicates the end date
and time. For instance, the "6/10/2003 10:13", indicates
the date and the time.

Key as Variant

Optional. A String expression that indicates the key of the
bar being inserted. If missing, the Key parameter is empty.
If the Item has only a single Bar you can not use the Key
parameter, else an unique key should be used.

Text as Variant

Optional. A String expression that indicates the text being
displayed. The Text may include built-in HTML format. Use
the ItemBar(exBarHAlignCaption/exBarVAlignCaption) to
display and align the caption of the bar inside or outside of
the bar.

Use the AddBar property to add a bar to an item. Use the ShowEmptyBars property to
show the bars, even if the start and end dates are identical. If you want to assign multiple
bars to the same items, you have to use different keys (Key parameter), else the default
bar is overwritten. More than that, if the DateStart and DateEnd are identical, the bar or
text is not shown, except the Milestone bar. Use the Add method to add new types of bars
to the Bars collection. Use the FirstVisibleDate property to specify the first visible date in
the chart area. Use the Key parameter to identify a bar inside an item. If the AddBar
method is called multiple time with the same item, the bar is moved. Use the ItemBar
property to access a bar inside the item. Use the RemoveBar method to remove a bar from
an item. Use the ClearBars method to remove all bars in the item. Use the PaneWidth
property to specify the width of the chart. Use the NonworkingDays property to specify the
non-working days. Use the NextDate property to compute the next or previous date based

on a time unit. Use the ItemBar(exBarToolTip) property to assign a tooltip to a bar. Use the
ItemBar(exBarBackColor) property to change the background or the visual appearance for
the portion delimited by the start and end points. Use the FirstItemBar and NextItemBar
methods to enumerate the bars inside the item. Use the Height property to specify the
height of the bars. Use the ItemBar(exBarsCount) property to retrieve the number of bars
in a specified item.

The following VB sample adds a "Milestone" bar and a text beside:

With Gantt1.Items
 h = .AddItem("new task")
 .AddBar h, "Milestone", "5/30/2005 10:00", "5/31/2005"
 .AddBar h, "", "5/31/2005", "6/10/2005", "beside", "<fgcolor=FF0000>item
</fgcolor> to change"
End With

or

With Gantt1.Items
 .AddBar .AddItem("new task"), "Milestone", "5/30/2005 10:00", "6/10/2005", , "
<fgcolor=FF0000>item</fgcolor> to change"
End With

The following VB sample adds an item with a single "Task" bar:

Dim h As HITEM, d As Date
With Gantt1.Items

 d = Gantt1.Chart.FirstVisibleDate
 h = .AddItem("new task")
 .AddBar h, "Task", Gantt1.Chart.NextDate(d, exDay, 2), Gantt1.Chart.NextDate(d, exDay,
4)
End With

The following VB sample adds an item with three bars (two "Task" bars, and one "Split" bar
) that looks like):

Dim h As HITEM, d As Date
With Gantt1.Items
 d = Gantt1.Chart.FirstVisibleDate
 h = .AddItem("new task ")
 .AddBar h, "Task", d + 2, d + 4, "K1"
 .AddBar h, "Split", d + 4, d + 5, "K2"
 .AddBar h, "Task", d + 5, d + 9, "K3"
End With

The bar is composed by three parts: K1, K2 and K3.

The following C++ sample adds a "Milestone" bar and a text beside:

#include "Items.h"
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
CItems items = m_gantt.GetItems();
long h = items.AddItem(COleVariant("new task"));
items.AddBar(h, COleVariant("Milestone"), COleVariant("5/30/2005 10:00"), COleVariant(
"5/31/2005"), vtMissing, vtMissing);
items.AddBar(h, COleVariant(""), COleVariant("5/31/2005"), COleVariant("6/10/2005"),
COleVariant(_T("just a key")), COleVariant("<fgcolor=FF0000>item</fgcolor>
to change"));

or

#include "Items.h"
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
CItems items = m_gantt.GetItems();
long h = items.AddItem(COleVariant("new task"));
items.AddBar(h, COleVariant("Milestone"), COleVariant("5/30/2005 10:00"), COleVariant(

"6/10/2005"), vtMissing, COleVariant(" <fgcolor=FF0000>item</fgcolor> to
change"));

The following C++ sample adds an item with a single "Task" bar:

COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
CItems items = m_gantt.GetItems();
CChart chart = m_gantt.GetChart();
DATE d = V2D(&chart.GetFirstVisibleDate());
long h = items.AddItem(COleVariant("new task"));
items.AddBar(h, COleVariant("Task"), COleVariant((double)chart.GetNextDate(d, 4096,
COleVariant((long)2))), COleVariant((double)chart.GetNextDate(d, 4096,
COleVariant((long)4))), vtMissing , vtMissing);

The following C++ sample adds an item with three bars (two "Task" bars, and one "Split"
bar) that looks like above:

COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
CItems items = m_gantt.GetItems();
DATE d = V2D(&m_gantt.GetChart().GetFirstVisibleDate());
long h = items.AddItem(COleVariant("new task"));
items.AddBar(h, COleVariant("Task"), COleVariant(d + 2), COleVariant(d + 4),
COleVariant("K1"), vtMissing);
items.AddBar(h, COleVariant("Split"), COleVariant(d + 4), COleVariant(d + 5),
COleVariant("K2"), vtMissing);
items.AddBar(h, COleVariant("Task"), COleVariant(d + 5), COleVariant(d + 9),
COleVariant("K3"), vtMissing);

where the V2D function converts a Variant expression to a DATE expression and may look
like follows:

static DATE V2D(VARIANT* pvtDate)
{
 COleVariant vtDate;
 vtDate.ChangeType(VT_DATE, pvtDate);
 return V_DATE(&vtDate);
}

The following VB.NET sample adds a "Milestone" bar and a text beside:

With AxGantt1.Items
 Dim h As Integer = .AddItem("new task")
 .AddBar(h, "Milestone", "5/30/2005 10:00", "5/31/2005")
 .AddBar(h, "", "5/31/2005", "6/10/2005", "beside", "<fgcolor=FF0000>item
</fgcolor> to change")
End With

or

With AxGantt1.Items
 Dim h As Integer = .AddItem("new task")
 .AddBar(h, "Milestone", "5/30/2005 10:00", "6/10/2005", , " <fgcolor=FF0000>
item</fgcolor> to change")
End With

The following VB.NET sample adds an item with a single "Task" bar:

With AxGantt1.Items
 Dim d As DateTime = AxGantt1.Chart.FirstVisibleDate
 Dim h As Integer = .AddItem("new task")
 .AddBar(h, "Task", AxGantt1.Chart.NextDate(d, EXGANTTLib.UnitEnum.exDay, 2),
AxGantt1.Chart.NextDate(d, EXGANTTLib.UnitEnum.exDay, 4))
End With

The following VB.NET sample adds an item with three bars (two "Task" bars, and one
"Split" bar) that looks like above:

With AxGantt1.Items
 Dim d As DateTime = AxGantt1.Chart.FirstVisibleDate
 Dim h As Integer = .AddItem("new task ")
 .AddBar(h, "Task", d.AddDays(2), d.AddDays(4), "K1")
 .AddBar(h, "Split", d.AddDays(4), d.AddDays(5), "K2")
 .AddBar(h, "Task", d.AddDays(5), d.AddDays(9), "K3")
End With

The following C# sample adds a "Milestone" bar and a text beside:

EXGANTTLib.Items items = axGantt1.Items;
int h = items.AddItem("new task");

items.AddBar(h, "Milestone", "5/30/2005 10:00", "5/31/2005", null, null);
items.AddBar(h, "", "5/31/2005", "6/10/2005", "just a new key", "<fgcolor=FF0000>
item</fgcolor> to change");

or

EXGANTTLib.Items items = axGantt1.Items;
int h = items.AddItem("new task");
items.AddBar(h, "Milestone", "5/30/2005 10:00", "6/10/2005", null, " <fgcolor=FF0000>
item</fgcolor> to change");

The following C# sample adds an item with a single "Task" bar:

EXGANTTLib.Items items = axGantt1.Items;
int h = items.AddItem("new task");
DateTime d = Convert.ToDateTime(axGantt1.Chart.FirstVisibleDate);
items.AddBar(h, "Task", axGantt1.Chart.get_NextDate(d, EXGANTTLib.UnitEnum.exDay, 2),
axGantt1.Chart.get_NextDate(d, EXGANTTLib.UnitEnum.exDay, 4), null, null);

The following C# sample adds an item with three bars (two "Task" bars, and one "Split" bar
) that looks like above:

EXGANTTLib.Items items = axGantt1.Items;
int h = items.AddItem("new task");
DateTime d = Convert.ToDateTime(axGantt1.Chart.FirstVisibleDate);
items.AddBar(h, "Task", d.AddDays(2), d.AddDays(4), "K1", null);
items.AddBar(h, "Split", d.AddDays(4), d.AddDays(5), "K2", null);
items.AddBar(h, "Task", d.AddDays(5), d.AddDays(9), "K3", null);

The following VFP sample adds an item with a single "Task" bar:

With thisform.Gantt1.Items
 d = thisform.Gantt1.Chart.FirstVisibleDate
 .DefaultItem = .AddItem("new task")
 .AddBar(0, "Task", thisform.Gantt1.Chart.NextDate(d,4096,2),
thisform.Gantt1.Chart.NextDate(d,4096,4))
EndWith

The following VFP sample adds an item with three bars (two "Task" bars, and one "Split"
bar) that looks like above:

With thisform.Gantt1.Items
 thisform.Gantt1.Chart.FirstVisibleDate = "5/29/2005"
 .DefaultItem = .AddItem("new task")
 .AddBar(0, "Task", "5/31/2005", "6/2/2005", "K1", "")
 .AddBar(0, "Split", "6/2/2005", "6/4/2005", "K2", "")
 .AddBar(0, "Task", "6/4/2005", "6/9/2005", "K3", "")
EndWith

method Items.AddItem ([Caption as Variant])

Adds a new item, and returns a handle to the newly created item.

Type Description

Caption as Variant

A string expression that indicates the cell's caption for the
first column. or a safe array that contains the captions for
each column. The Caption accepts HTML format, if the
CellCaptionFormat property is exHTML.

Return Description

HITEM A long expression that indicates the handle of the newly
created item.

Use the Add method to add new columns to the control. If the control contains no columns,
the AddItem method fails. Use the AddItem property to add new items to the control. Use
the AddBar method to add bars to the item. The bars are always shown in the chart area.
Use the PaneWidth property to specify the width of the chart. Use InsertItem method to
insert child items to the list. Use the InsertControlItem property to insert and ActiveX
control. Use the LockedItemCount property to add or remove items locked to the top or
bottom side of the control. Use the MergeCells method to combine two or multiple cells in a
single cell. Use the SplitCell property to split a cell. Use the BeginUpdate and EndUpdate
methods to maintain performance while adding new columns and items. Use the
ConditionalFormats method to apply formats to a cell or range of cells, and have that
formatting change depending on the value of the cell or the value of a formula. Use the
LoadXML/SaveXML methods to load/save the control's data from/to XML files.

The AddItem property adds a new item that has no parent. When a new item is added
(inserted) to the Items collection, the control fires the AddItem event. If the control contains
more than one column use the CellCaption property to set the cell's caption. If there are no
columns AddItem method fails.

The following VB6 sample uses the VB Array function to add two items:

With Gantt1
 .BeginUpdate

 .Columns.Add "Column 1"
 .Columns.Add "Column 2"
 .Columns.Add "Column 3"

 With .Items

 .AddItem Array("Item 1.1", "Item 1.2", "Item 1.3")
 .AddItem Array("Item 2.1", "Item 2.2", "Item 2.3")
 End With

 .EndUpdate
End With

In VB/NET using the /NET assembly, the Array equivalent is New Object such as follows:

With Gantt1
 .BeginUpdate()

 .Columns.Add("Column 1")
 .Columns.Add("Column 2")
 .Columns.Add("Column 3")

 With .Items
 .AddItem(New Object() {"Item 1.1", "Item 1.2", "Item 1.3"})
 .AddItem(New Object() {"Item 2.1", "Item 2.2", "Item 2.3"})
 End With

 .EndUpdate()
End With

In C# using the /NET assembly, the Array equivalent is new object such as follows:

exgantt1.BeginUpdate();

exgantt1.Columns.Add("Column 1");
exgantt1.Columns.Add("Column 2");
exgantt1.Columns.Add("Column 3");

exgantt1.Items.AddItem(new object[] { "Item 1.1", "Item 1.2", "Item 1.3" });
exgantt1.Items.AddItem(new object[] { "Item 2.1", "Item 2.2", "Item 2.3" });

exgantt1.EndUpdate();

Use the PutItems method to load an array, like in the following VB sample:

Set rs = CreateObject("ADODB.Recordset")
rs.Open "Orders", "Provider=Microsoft.Jet.OLEDB.3.51;Data Source= D:\Program
Files\Microsoft Visual Studio\VB98\NWIND.MDB", 3 ' Opens the table using static mode
Gantt1.BeginUpdate
' Add the columns
With Gantt1.Columns
For Each f In rs.Fields
 .Add f.Name
Next
End With
Gantt1.PutItems rs.getRows()
Gantt1.EndUpdate

The following C++ sample adds new items to the control:

#include "Items.h"
CItems items = m_gantt.GetItems();
long iNewItem = items.AddItem(COleVariant("Item 1"));
items.SetCellCaption(COleVariant(iNewItem), COleVariant((long)1), COleVariant(
"SubItem 1"));
iNewItem = items.AddItem(COleVariant("Item 2"));
items.SetCellCaption(COleVariant(iNewItem), COleVariant((long)1), COleVariant(
"SubItem 2"));

The following VB.NET sample adds new items to the control:

With AxGantt1.Items
 Dim iNewItem As Integer
 iNewItem = .AddItem("Item 1")
 .CellCaption(iNewItem, 1) = "SubItem 1"
 iNewItem = .AddItem("Item 2")
 .CellCaption(iNewItem, 1) = "SubItem 2"
End With

The following C# sample adds new items to the control:

EXGANTTLib.Items items = axGantt1.Items;
int iNewItem = items.AddItem("Item 1");
items.set_CellCaption(iNewItem, 1, "SubItem 1");

iNewItem = items.AddItem("Item 2");
items.set_CellCaption(iNewItem, 1, "SubItem 2");

The following VFP sample adds new items to the control:

with thisform.Gantt1.Items
 .DefaultItem = .AddItem("Item 1")
 .CellCaption(0, 1) = "SubItem 1"
endwith

method Items.AddLink (LinkKey as Variant, StartItem as HITEM,
StartBarKey as Variant, EndItem as HITEM, EndBarKey as Variant)
Links a bar to another.

Type Description

LinkKey as Variant A String expression that indicates the key of the link. This
value is used to identify the link.

StartItem as HITEM A HITEM expression that indicates the handle of the item
where the link starts.

StartBarKey as Variant A String expression that indicates the key of the bar in the
StartItem where the link starts.

EndItem as HITEM A HITEM expression that indicates the handle of the item
where the link ends.

EndBarKey as Variant A String expression that indicates the key of the bar in the
EndItem where the link ends.

Use the AddLink method to draw a line between two bars. By default, the bar is drawn from
the right side of the starting bar, to the left side of the ending bar. Use the
Link(exLinkStartPos) property to change where the link starts in the starting bar. Use the
Link(exLinkEndPos) property to change where the link starts in the starting bar. Use the
AddBar method to add new bars to an item. Use the Link property to change the
appearance of the line between bars. Use the ShowLinks property to hide all links in the
chart area. Use the ClearLinks method to clear the links collection. The AddLink method
fails, if the StartItem or EndItem item is not valid, or if the StartBarKey or EndBarKey bar
does not exist. Use the LinkColor property to change the color for all links between bars.
Use the Link(exLinkShowDir) property to hide the link's arrow. Use the RemoveLink method
to remove a specific link. Use the BeginUpdate and EndUpdate methods to maintain
performance while adding columns, items, bars or links. Use the FirstLink and NextLink
properties to enumerate the links in the control.

The following VB sample adds a link between two bars:

Gantt1.BeginUpdate

With Gantt1.Items
 Dim h1 As HITEM
 h1 = .AddItem("Item 1")
 .AddBar h1, "Task", Gantt1.Chart.FirstVisibleDate + 2, Gantt1.Chart.FirstVisibleDate + 4
 Dim h2 As HITEM
 h2 = .AddItem("Item 2")
 .AddBar h2, "Task", Gantt1.Chart.FirstVisibleDate + 1, Gantt1.Chart.FirstVisibleDate + 2,
"A"
 .AddLink "Link11", h1, "", h2, "A"
End With
Gantt1.EndUpdate

The following C++ sample adds a link between two bars:

COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
m_gantt.BeginUpdate();
CItems items = m_gantt.GetItems();
CChart chart = m_gantt.GetChart();
long h1 = items.AddItem(COleVariant("Item1"));
items.AddBar(h1, COleVariant("Task"), COleVariant(V_DATE(&chart.GetFirstVisibleDate())
+ 2), COleVariant(V_DATE(&chart.GetFirstVisibleDate()) + 4), vtMissing, vtMissing);
long h2 = items.AddItem(COleVariant("Item2"));
items.AddBar(h2, COleVariant("Task"), COleVariant(V_DATE(&chart.GetFirstVisibleDate())
+ 1), COleVariant(V_DATE(&chart.GetFirstVisibleDate()) + 2), COleVariant("JustAKey"),
vtMissing);
items.AddLink(COleVariant("Link1"), h1, vtMissing, h2, COleVariant("JustAKey"));
m_gantt.EndUpdate();

The following VB.NET sample adds a link between two bars:

AxGantt1.BeginUpdate()
Dim d As Date = AxGantt1.Chart.FirstVisibleDate
With AxGantt1.Items
 Dim h1 As Integer = .AddItem("Item 1")
 .AddBar(h1, "Task", d.AddDays(2), d.AddDays(4))
 Dim h2 As Integer = .AddItem("Item 2")
 .AddBar(h2, "Task", d.AddDays(1), d.AddDays(2), "A")
 .AddLink("Link11", h1, "", h2, "A")

End With
AxGantt1.EndUpdate()

The following C# sample adds a link between two bars:

axGantt1.BeginUpdate();
DateTime d = Convert.ToDateTime(axGantt1.Chart.FirstVisibleDate);
EXGANTTLib.Items spItems = axGantt1.Items;
int h1 = spItems.AddItem("Item 1");
spItems.AddBar(h1, "Task", d.AddDays(2), d.AddDays(4) , null, null);
int h2 = spItems.AddItem("Item 2");
spItems.AddBar(h2, "Task", d.AddDays(1), d.AddDays(2), "A", null);
spItems.AddLink("Link1", h1, null, h2, "A");
axGantt1.EndUpdate();

The following VFP sample adds a link between two bars:

thisform.Gantt1.BeginUpdate
local d
d = thisform.Gantt1.Chart.FirstVisibleDate
With thisform.Gantt1.Items
 local h1
 .DefaultItem = .AddItem("Item 1")
 h1 = .DefaultItem
 .AddBar(0, "Task", thisform.Gantt1.Chart.NextDate(d,4096,2),
thisform.Gantt1.Chart.NextDate(d,4096,4))
 local h2
 .DefaultItem = .AddItem("Item 2")
 h2 = .DefaultItem
 .AddBar(0, "Task", thisform.Gantt1.Chart.NextDate(d,4096,1),
thisform.Gantt1.Chart.NextDate(d,4096,2), "A")
 .AddLink("Link11", h1, "", h2, "A")
EndWith
thisform.Gantt1.EndUpdate

property Items.CellBackColor([Item as Variant], [ColIndex as Variant]) as
Color

Retrieves or sets the cell's background color.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Color A color expression that indicates the cell's background
color.

To change the background color for the entire item you can use ItemBackColor property.
Use the ClearCellBackColor method to clear the cell's background color. Use the BackColor
property to specify the control's background color. Use the CellForeColor property to
specify the cell's foreground color. Use the ItemForeColor property to specify the item's
foreground color. Use the Def(exCellBackColor) property to specify the background color
for all cells in the column. Use the ConditionalFormats method to apply formats to a cell or
range of cells, and have that formatting change depending on the value of the cell or the
value of a formula.

In VB.NET or C# you require the following functions until the .NET framework will support
them:

You can use the following VB.NET function:

 Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
 End Function

You can use the following C# function:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;

 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following C# sample changes the background color for the focused cell:

axGantt1.Items.set_CellBackColor(axGantt1.Items.FocusItem, 0, ToUInt32(Color.Red));

The following VB.NET sample changes the background color for the focused cell:

With AxGantt1.Items
 .CellBackColor(.FocusItem, 0) = ToUInt32(Color.Red)
End With

The following C++ sample changes the background color for the focused cell:

#include "Items.h"
CItems items = m_gantt.GetItems();
items.SetCellBackColor(COleVariant(items.GetFocusItem()), COleVariant((long)0),
RGB(255,0,0));

The following VFP sample changes the background color for the focused cell:

with thisform.Gantt1.Items
 .DefaultItem = .FocusItem
 .CellBackColor(0, 0) = RGB(255,0,0)
endwith

For instance, the following VB code changes background color of the left top cell of your
control: Gantt1.Items.CellBackColor(Gantt.Items(0), 0) = vbBlue

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell (see ItemCell property). Here's few hints
how to use properties with Item and ColIndex parameters:

Gantt1.Items.CellBold(, Gantt1.Items.ItemCell(Gantt1.Items(0), 0)) = True

Gantt1.Items.CellBold(Gantt1.Items(0), 0) = True

Gantt1.Items.CellBold(Gantt1.Items(0), "ColumnName") = True

property Items.CellBold([Item as Variant], [ColIndex as Variant]) as
Boolean

Retrieves or sets a value that indicates whether the cell's caption should appear in bold.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Boolean A boolean expression that indicates whether the cell
should appear in bold.

Use the CellBold property to bold a cell. Use the ItemBold property to specify whether the
item should appear in bold. Use the HeaderBold property of the Column object to bold the
column's caption. Use the CellItalic, CellUnderline or CellStrikeOut property to apply
different font attributes to the cell. Use the ItemItalic, ItemUnderline or ItemStrikeOut
property to apply different font attributes to the item. Use the CellCaptionFormat property
to specify an HTML caption. Use the ConditionalFormats method to apply formats to a cell
or range of cells, and have that formatting change depending on the value of the cell or the
value of a formula.

The following VB sample bolds the cells in the first column

Dim h As Variant
Gantt1.BeginUpdate
With Gantt1.Items
For Each h In Gantt1.Items
 .CellBold(h, 0) = True
Next
End With
Gantt1.EndUpdate

The following C++ sample bolds the focused cell:

#include "Items.h"
CItems items = m_gantt.GetItems();
items.SetCellBold(COleVariant(items.GetFocusItem()), COleVariant((long)0), TRUE);

The following C# sample bolds the focused cell:

axGantt1.Items.set_CellBold(axGantt1.Items.FocusItem, 0, true);

The following VB.NET sample bolds the focused cell:

With AxGantt1.Items
 .CellBold(.FocusItem, 0) = True
End With

The following VFP sample bolds the focused cell:

with thisform.Gantt1.Items
 .DefaultItem = .FocusItem
 .CellBold(0, 0) = .t.
endwith

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell (see ItemCell property). Here's few hints
how to use properties with Item and ColIndex parameters:

Gantt1.Items.CellBold(, Gantt1.Items.ItemCell(Gantt1.Items(0), 0)) = True

Gantt1.Items.CellBold(Gantt1.Items(0), 0) = True

Gantt1.Items.CellBold(Gantt1.Items(0), "ColumnName") = True

property Items.CellButtonAutoWidth([Item as Variant], [ColIndex as
Variant]) as Boolean

Retrieves or sets a value indicating whether the cell's button fits the cell's caption.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption or the
column's key.

Boolean A boolean expression indicating whether the cell's button
fits the cell's caption.

By default, the CellButtonAutoWidth property is False. The CellButtonAutoWidth property
has effect only if the CellHasButton property is true. Use the Def property to specify that all
buttons in the column fit to the cell's content. If the CellButtonAutoWidth property is False,
the width of the button is the same as the width of the column. If the CellButtonAutoWidth
property is True, the button area covers only the cell's caption. Use the CellCaption
property to specify the button's caption. Use the CellCaptionFormat property to assign an
HTML caption to the button. The control fires the CellButtonClick property when the user
clicks a button.

property Items.CellCaption([Item as Variant], [ColIndex as Variant]) as
Variant

Retrieves or sets the text displayed on a specific cell.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant

A long expression that indicates the column's index, or the
handle to the cell, if the Item parameter is 0, a string
expression that indicates the column's caption or the
column's key.

Variant A variant expression that indicates the cell's caption. The
cell's caption supports built-in HTML format.

The CellCaption property specifies the cell's caption. To associate an user data for a cell
you can use CellData property. Use the CellCaptionFormat property to use HTML tags in
the cell's caption. Use the ItemData property to associate an extra data to an item. To hide
a column you have to use Visible property of the Column object. The AddItem method
specifies also the caption for the first cell in the item. Use the SplitCell property to split a
cell. The CellCaption property indicates the formula being used to compute the field, if the
CellCaptionFormat property is exComputedField. The ComputedField property specifies the
formula to compute the entire column. Use the ConditionalFormats method to apply formats
to a cell or range of cells, and have that formatting change depending on the value of the
cell or the value of a formula.

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell (see ItemCell property). Here's few hints
how to use properties with Item and ColIndex parameters:

Gantt1.Items.CellBold(, Gantt1.Items.ItemCell(Gantt1.Items(0), 0)) = True

Gantt1.Items.CellBold(Gantt1.Items(0), 0) = True

Gantt1.Items.CellBold(Gantt1.Items(0), "ColumnName") = True

property Items.CellCaptionFormat([Item as Variant], [ColIndex as
Variant]) as CaptionFormatEnum
Specifies how the cell's caption is displayed.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index or
cell's handle, or a string expression that specifies the
column's caption

CaptionFormatEnum A CaptionFormatEnum expression that defines the way
how the cell's caption is displayed.

The component supports built-in HTML format. That means that you can use HTML tags
when displays the cell's caption . By default, the CellCaptionFormat property is exText. If
the CellCaptionFormat is exText, the cell displays the CellCaption property like it is. If the
CellCaptionFormat is exHTML, the cell displays the CellCaption property using the HTML
tags specified in the CaptionFormatEnum type. If the CellCaptionFormat property is
exComputedField, the CellCaption property indicates the formula to calculate the cell,
based on the other cells. Use the Def property to specify that all cells in the column display
HTML format. Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply
different font attributes to the item. Use the CellItalic, CellUnderline, CellBold or
CellStrikeOut property to apply different font attributes to the cell. Use the FormatColumn
property to format the column.

property Items.CellChecked (RadioGroup as Long) as HCELL

Retrieves the cell's handle that is checked on a specific radio group.

Type Description
RadioGroup as Long A long expression that indicates the radio group identifier.

HCELL

A long expression that identifies the handle of the cell
that's checked in the specified radio group. To retrieve the
handle of the owner item you have to use CellItem
property.

A radio group contains a set of cells of radio types. Use the CellHasRadioButton property to
set the cell of radio type. To change the state for a cell you can use the CellState property.
To add or remove a cell to a given radio group you have to use CellHasRadioButton
property. Use the CellRadioGroup property to add cells in the same radio group. The
control fires the CellStateChanged event when the check box or radio button state is
changed.

The following VB sample groups all cells on the first column into a radio group, and display
the cell's checked on the radio group when the state of a radio group is changed:

Private Sub Gantt1_AddItem(ByVal Item As EXGANTTLibCtl.HITEM)
 Gantt1.Items.CellHasRadioButton(Item, 0) = True
 Gantt1.Items.CellRadioGroup(Item, 0) = 1234 ' The 1234 is arbirary and it represents the
identifier for the radio group
End Sub

Private Sub Gantt1_CellStateChanged(ByVal Item As EXGANTTLibCtl.HITEM, ByVal
ColIndex As Long)
 Debug.Print "In the 1234 radio group the """ & Gantt1.Items.CellCaption(,
Gantt1.Items.CellChecked(1234)) & """ is checked."
End Sub

The following C++ sample groups the radio cells on the first column, and displays the
caption of the checked radio cell:

#include "Items.h"
COleVariant vtColumn(long(0));
CItems items = m_gantt.GetItems();
m_gantt.BeginUpdate();

for (long i = 0; i < items.GetItemCount(); i++)
{
 COleVariant vtItem(items.GetItemByIndex(i));
 items.SetCellHasRadioButton(vtItem, vtColumn, TRUE);
 items.SetCellRadioGroup(vtItem, vtColumn, 1234);
}
m_gantt.EndUpdate();

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnCellStateChangedGantt1(long Item, long ColIndex)
{
 CItems items = m_gantt.GetItems();
 long hCell = items.GetCellChecked(1234);
 COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
 OutputDebugString(V2S(&items.GetCellCaption(vtMissing, COleVariant(hCell))));
}

The following VB.NET sample groups the radio cells on the first column, and displays the
caption of the checked radio cell:

With AxGantt1
 .BeginUpdate()
 With .Items
 Dim k As Integer
 For k = 0 To .ItemCount - 1

 .CellHasRadioButton(.ItemByIndex(k), 0) = True
 .CellRadioGroup(.ItemByIndex(k), 0) = 1234
 Next
 End With
 .EndUpdate()
End With

Private Sub AxGantt1_CellStateChanged(ByVal sender As Object, ByVal e As
AxEXGANTTLib._IGanttEvents_CellStateChangedEvent) Handles
AxGantt1.CellStateChanged
 With AxGantt1.Items
 Debug.WriteLine(.CellCaption(, .CellChecked(1234)))
 End With
End Sub

The following C# sample groups the radio cells on the first column, and displays the caption
of the checked radio cell:

axGantt1.BeginUpdate();
EXGANTTLib.Items items = axGantt1.Items;
for (int i = 0; i < items.ItemCount; i++)
{
 items.set_CellHasRadioButton(items[i], 0, true);
 items.set_CellRadioGroup(items[i], 0, 1234);
}
axGantt1.EndUpdate();

private void axGantt1_CellStateChanged(object sender,
AxEXGANTTLib._IGanttEvents_CellStateChangedEvent e)
{
 string strOutput = axGantt1.Items.get_CellCaption(0,
axGantt1.Items.get_CellChecked(1234)).ToString();
 strOutput += " state = " + axGantt1.Items.get_CellState(e.item, e.colIndex).ToString() ;
 System.Diagnostics.Debug.WriteLine(strOutput);
}

The following VFP sample groups the radio cells on the first column, and displays the
caption of the checked radio cell:

thisform.Gantt1.BeginUpdate()
with thisform.Gantt1.Items
 local i
 for i = 0 to .ItemCount - 1
 .DefaultItem = .ItemByIndex(i)
 .CellHasRadioButton(0,0) = .t.
 .CellRadioGroup(0,0) = 1234
 next
endwith
thisform.Gantt1.EndUpdate()

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell (see ItemCell property). Here's few hints
how to use properties with Item and ColIndex parameters:

Gantt1.Items.CellBold(, Gantt1.Items.ItemCell(Gantt1.Items(0), 0)) = True

Gantt1.Items.CellBold(Gantt1.Items(0), 0) = True

Gantt1.Items.CellBold(Gantt1.Items(0), "ColumnName") = True

property Items.CellData([Item as Variant], [ColIndex as Variant]) as
Variant

Retrieves or sets the extra data for a specific cell.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Variant A variant expression that indicates the cell's user data.

Use the CellData to associate an extra data to your cell. Use ItemData when you need to
associate an extra data with an item. The CellData value is not used by the control, it is only
for user use. Use the Data property to assign an extra data to a column. Use the
SortUserData or SortUserDataString type to sort the column based on the CellData value.
Use the CellCaption property to specify the cell's caption.

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell (see ItemCell property). Here's few hints
how to use properties with Item and ColIndex parameters:

Gantt1.Items.CellBold(, Gantt1.Items.ItemCell(Gantt1.Items(0), 0)) = True

Gantt1.Items.CellBold(Gantt1.Items(0), 0) = True

Gantt1.Items.CellBold(Gantt1.Items(0), "ColumnName") = True

property Items.CellEnabled([Item as Variant], [ColIndex as Variant]) as
Boolean

Returns or sets a value that determines whether a cell can respond to user-generated
events.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Boolean A boolean expression that indicates whether the cell is
enabled or disabled.

Use the CellEnabled property to disable a cell. A disabled cell looks grayed. Use the
EnableItem property to disable an item. Once that one cell is disabled it cannot be checked
or clicked. Use the SelectableItem property to specify the user can select an item. To
disable a column you can use Enabled property of the Column object.

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell (see ItemCell property). Here's few hints
how to use properties with Item and ColIndex parameters:

Gantt1.Items.CellBold(, Gantt1.Items.ItemCell(Gantt1.Items(0), 0)) = True

Gantt1.Items.CellBold(Gantt1.Items(0), 0) = True

Gantt1.Items.CellBold(Gantt1.Items(0), "ColumnName") = True

property Items.CellFont ([Item as Variant], [ColIndex as Variant]) as
IFontDisp
Retrieves or sets the cell's font.

Type Description

Item as Variant
A long expression that indicates the item's handle, or
optional if the cell's handle is passed to ColIndex
parameter

ColIndex as Variant
A long expression that indicates the column's index or
cell's handle, or a string expression that indicates the
column's caption.

IFontDisp A Font object that indicates the cell's font.

By default, the CellFont property is nothing. If the CellFont property is noting, the cell uses
the item's font. Use the CellFont and ItemFont properties to specify different fonts for cells
or items. Use the CellBold, CellItalic, CellUnderline, CellStrikeout, ItemBold, ItemUnderline,
ItemStrikeout, ItemItalic or CellCaptionFormat to specify different font attributes. Use the
Refresh method to refresh the control's content on the fly. Use the BeginUpdate and
EndUpdate methods if you are doing multiple changes, so no need for an update each time
a change is done.

The following VB sample changes the font for the focused cell:

With Gantt1.Items
 .CellFont(.FocusItem, 0) = Gantt1.Font
 With .CellFont(.FocusItem, 0)
 .Name = "Comic Sans MS"
 .Size = 10
 .Bold = True
 End With
End With
Gantt1.Refresh

The following C++ sample changes the font for the focused cell:

#include "Items.h"
#include "Font.h"
CItems items = m_gantt.GetItems();
COleVariant vtItem(items.GetFocusItem()), vtColumn((long)0);

items.SetCellFont(vtItem, vtColumn, m_gantt.GetFont().m_lpDispatch);
COleFont font = items.GetCellFont(vtItem, vtColumn);
font.SetName("Comic Sans MS");
font.SetBold(TRUE);
m_gantt.Refresh();

The following VB.NET sample changes the font for the focused cell:

With AxGantt1.Items
 .CellFont(.FocusItem, 0) = IFDH.GetIFontDisp(AxGantt1.Font)
 With .CellFont(.FocusItem, 0)
 .Name = "Comic Sans MS"
 .Bold = True
 End With
End With
AxGantt1.CtlRefresh()

where the IFDH class is defined like follows:

Public Class IFDH
 Inherits System.Windows.Forms.AxHost

 Sub New()
 MyBase.New("")
 End Sub

 Public Shared Function GetIFontDisp(ByVal font As Font) As Object
 GetIFontDisp = AxHost.GetIFontFromFont(font)
 End Function

End Class

The following C# sample changes the font for the focused cell:

axGantt1.Items.set_CellFont(axGantt1.Items.FocusItem, 0, IFDH.GetIFontDisp(
axGantt1.Font));
stdole.IFontDisp spFont = axGantt1.Items.get_CellFont(axGantt1.Items.FocusItem, 0);
spFont.Name = "Comic Sans MS";
spFont.Bold = true;

axGantt1.CtlRefresh();

where the IFDH class is defined like follows:

internal class IFDH : System.Windows.Forms.AxHost
{
 public IFDH() : base("")
 {
 }

 public static stdole.IFontDisp GetIFontDisp(System.Drawing.Font font)
 {
 return System.Windows.Forms.AxHost.GetIFontFromFont(font) as stdole.IFontDisp;
 }
}

The following VFP sample changes the font for the focused cell:

with thisform.Gantt1.Items
 .DefaultItem = .FocusItem
 .CellFont(0,0) = thisform.Gantt1.Font
 with .CellFont(0,0)
 .Name = "Comic Sans MS"
 .Bold = .t.
 endwith
endwith
thisform.Gantt1.Object.Refresh()

property Items.CellForeColor([Item as Variant], [ColIndex as Variant]) as
Color

Retrieves or sets the cell's foreground color.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Color A color expression that indicates the cell's foreground
color.

The CellForeColor property identifies the cell's foreground color. Use the
ClearCellForeColor property to clear the cell's foreground color. Use the ItemForeColor
property to specify the the item's foreground color. Use the Def(exCellForeColor) property
to specify the foreground color for all cells in the column.

For instance, the following VB code changes the left top cell of your control:
Gantt1.Items.CellForeColor(Gantt1.Items(0), 0) = vbBlue

In VB.NET or C# you require the following functions until the .NET framework will provide:

You can use the following VB.NET function:

 Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
 End Function

You can use the following C# function:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;

 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following C# sample changes the foreground color for the focused cell:

axGantt1.Items.set_CellForeColor(axGantt1.Items.FocusItem, 0, ToUInt32(Color.Red));

The following VB.NET sample changes the foreground color for the focused cell:

With AxGantt1.Items
 .CellForeColor(.FocusItem, 0) = ToUInt32(Color.Red)
End With

The following C++ sample changes the foreground color for the focused cell:

#include "Items.h"
CItems items = m_gantt.GetItems();
items.SetCellForeColor(COleVariant(items.GetFocusItem()), COleVariant((long)0),
RGB(255,0,0));

The following VFP sample changes the foreground color for the focused cell:

with thisform.Gantt1.Items
 .DefaultItem = .FocusItem
 .CellForeColor(0, 0) = RGB(255,0,0)
endwith

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

Gantt1.Items.CellBold(, Gantt1.Items.ItemCell(Gantt1.Items(0), 0)) = True

Gantt1.Items.CellBold(Gantt1.Items(0), 0) = True

Gantt1.Items.CellBold(Gantt1.Items(0), "ColumnName") = True

property Items.CellHAlignment ([Item as Variant], [ColIndex as Variant])
as AlignmentEnum
Retrieves or sets a value that indicates the alignment of the cell's caption.

Type Description
Item as Variant A long expression that indicates the handle of the item.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's key or the
column's caption.

AlignmentEnum An AlignmentEnum expression that indicates the alignment
of the cell's caption.

The CellHAlignment property aligns a particular cell. Use the Alignment property of the
Column object to align all the cells in the column. Use the CellVAlignment property to align
vertically the caption of the cell, when the item displays its content using multiple lines. Use
the ClearCellHAlignment method to clear the cell's alignment previously set by the
CellHAlignment property. If the CellHAlignment property is not set, the Alignment property of
the Column object indicates the cell's alignment. If the cell belongs to the column that
displays the hierarchy (TreeColumnIndex property), the cell can be aligned to the left or to
the right.

The following VB sample right aligns the focused cell:

With Gantt1.Items
 .CellHAlignment(.FocusItem, 0) = AlignmentEnum.RightAlignment
End With

The following C++ sample right aligns the focused cell:

#include "Items.h"
CItems items = m_gantt.GetItems();
items.SetCellHAlignment(COleVariant(items.GetFocusItem()), COleVariant((long)0), 2
/*RightAlignment*/);

The following VB.NET sample right aligns the focused cell:

With AxGantt1.Items
 .CellHAlignment(.FocusItem, 0) = EXGANTTLib.AlignmentEnum.RightAlignment
End With

The following C# sample right aligns the focused cell:

axGantt1.Items.set_CellHAlignment(axGantt1.Items.FocusItem, 0,
EXGANTTLib.AlignmentEnum.RightAlignment);

The following VFP sample right aligns the focused cell:

with thisform.Gantt1.Items
 .DefaultItem = .FocusItem
 .CellHAlignment(0,0) = 2 && RightAlignment
endwith

property Items.CellHasButton([Item as Variant], [ColIndex as Variant]) as
Boolean

Retrieves or sets a value indicating whether the cell has associated a push button or not.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Boolean A boolean expression that indicates whether the cell
contains a button.

The CellHasButton property specifies whether the cell display a button inside. When the
cell's button is clicked the control fires CellButtonClick event. The caption of the push button
is specified by the CellCaption property. Use the Def property to assign buttons for all cells
in the column. Use the Add method to add new skins to the control. Use the Background
property to specify a background color or a visual appearance for specific parts in the
control. See also: CellButtonAutoWidth property.

The following VB sample changes the appearance for buttons in the cells. The sample use
the skin " " when the button is up, and the skin " " when the button is down:

With Gantt1
 With .VisualAppearance
 .Add &H20, App.Path + "\buttonu.ebn"
 .Add &H21, App.Path + "\buttond.ebn"
 End With
 .Background(exCellButtonUp) = &H20000000
 .Background(exCellButtonDown) = &H21000000
End With

The following C++ sample changes the appearance for buttons in the cells:

#include "Appearance.h"
m_gantt.GetVisualAppearance().Add(0x20,
COleVariant(_T("D:\\Temp\\ExGantt.Help\\buttonu.ebn")));
m_gantt.GetVisualAppearance().Add(0x21,
COleVariant(_T("D:\\Temp\\ExGantt.Help\\buttond.ebn")));
m_gantt.SetBackground(2 /*exCellButtonUp*/, 0x20000000);

m_gantt.SetBackground(3 /*exCellButtonDown*/, 0x21000000);

The following VB.NET sample changes the appearance for buttons in the cells.

With AxGantt1
 With .VisualAppearance
 .Add(&H20, "D:\Temp\ExGantt.Help\buttonu.ebn")
 .Add(&H21, "D:\Temp\ExGantt.Help\buttond.ebn")
 End With
 .set_Background(EXGANTTLib.BackgroundPartEnum.exCellButtonUp, &H20000000)
 .set_Background(EXGANTTLib.BackgroundPartEnum.exCellButtonDown, &H21000000)
End With

The following C# sample changes the appearance for buttons in the cells.

axGantt1.VisualAppearance.Add(0x20, "D:\\Temp\\ExGantt.Help\\buttonu.ebn");
axGantt1.VisualAppearance.Add(0x21, "D:\\Temp\\ExGantt.Help\\buttond.ebn");
axGantt1.set_Background(EXGANTTLib.BackgroundPartEnum.exCellButtonUp,
0x20000000);
axGantt1.set_Background(EXGANTTLib.BackgroundPartEnum.exCellButtonDown,
0x21000000);

The following VFP sample changes the appearance for buttons in the cells.

With thisform.Gantt1
 With .VisualAppearance
 .Add(32, "D:\Temp\ExGantt.Help\buttonu.ebn")
 .Add(33, "D:\Temp\ExGantt.Help\buttond.ebn")
 EndWith
 .Object.Background(2) = 536870912
 .Object.Background(3) = 553648128
endwith

the 536870912 indicates the 0x20000000 value in hexadecimal, and the 553648128
indicates the 0x21000000 value in hexadecimal

The following VB sample sets the cells of the first column to be of button type, and displays
a message if the button is clicked:

Private Sub Gantt1_AddItem(ByVal Item As EXGANTTLibCtl.HITEM)

 Gantt1.Items.CellHasButton(Item, 0) = True
End Sub

Private Sub Gantt1_CellButtonClick(ByVal Item As EXGANTTLibCtl.HITEM, ByVal ColIndex
As Long)
 MsgBox "The cell of button type has been clicked"
End Sub

The following VB sample assigns a button to the focused cell:

With Gantt1.Items
 .CellHasButton(.FocusItem, 0) = True
End With

The following C++ sample assigns a button to the focused cell:

#include "Items.h"
CItems items = m_gantt.GetItems();
items.SetCellHasButton(COleVariant(items.GetFocusItem()), COleVariant((long)0), TRUE
);

The following VB.NET sample assigns a button to the focused cell:

With AxGantt1.Items
 .CellHasButton(.FocusItem, 0) = True
End With

The following C# sample assigns a button to the focused cell:

axGantt1.Items.set_CellHasButton(axGantt1.Items.FocusItem, 0, true);

The following VFP sample assigns a button to the focused cell:

with thisform.Gantt1.Items
 .DefaultItem = .FocusItem
 .CellHasButton(0,0) = .t.
endwith

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of

an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

Gantt1.Items.CellBold(, Gantt1.Items.ItemCell(Gantt1.Items(0), 0)) = True

Gantt1.Items.CellBold(Gantt1.Items(0), 0) = True

Gantt1.Items.CellBold(Gantt1.Items(0), "ColumnName") = True

property Items.CellHasCheckBox([Item as Variant], [ColIndex as Variant])
as Boolean

Retrieves or sets a value indicating whether the cell has associated a checkbox or not.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Boolean A boolean expression that indicates whether the cell
contains a check box button.

To change the state for a check cell you have to use CellState property. The cell cannot
display in the same time a radio and a check button. The control fires CellStateChanged
event when the cell's state has been changed. To set the cell of radio type you have call
CellHasRadioButton property. Use the Def property to assign check boxes for all cells in
the column. Use the CellImage property to add a single icon to a cell. Use the CellImages
property to assign multiple icons to a cell. Use the CellPicture property to load a custom
size picture to a cell. Use the PartialCheck property to allow partial check feature within the
column. Use the CheckImage property to change the check box appearance. Use the
FilterType property on exCheck to filter for checked or unchecked items. The
Column.Def(exCellDrawPartsOrder) property specifies the order of the drawing parts for
the entire column. By default, the parts are shows as check icon icons picture caption.

The following sample enumerates the cells in the first column and assign a checkbox to all
of them:

Dim h As Variant
Gantt1.BeginUpdate
With Gantt1.Items
For Each h In Gantt1.Items
 .CellHasCheckBox(h, 0) = True
Next
End With
Gantt1.EndUpdate

The same thing we can do using the Def property like follows:

With Gantt1.Columns(0)
 .Def(exCellHasCheckBox) = True

End With

The following sample shows how how set the type of cells to radio type while adding new
items:

Private Sub Gantt1_AddItem(ByVal Item As EXGANTTLibCtl.HITEM)
 Gantt1.Items.CellHasCheckBox(Item, 0) = True
End Sub

The following sample shows how to use the CellStateChanged event to display a message
when a cell of radio or check type has changed its state:

Private Sub Gantt1_CellStateChanged(ByVal Item As EXGANTTLibCtl.HITEM, ByVal
ColIndex As Long)
 Debug.Print "The cell """ & Gantt1.Items.CellCaption(Item, ColIndex) & """ has changed
its state. The new state is " & IIf(Gantt1.Items.CellState(Item, ColIndes) = 0, "Unchecked",
"Checked")
End Sub

The following VB sample adds a checkbox to the focused cell:

With Gantt1.Items
 .CellHasCheckBox(.FocusItem, 0) = True
End With

The following C++ sample adds a checkbox to the focused cell:

#include "Items.h"
CItems items = m_gantt.GetItems();
items.SetCellHasCheckBox(COleVariant(items.GetFocusItem()), COleVariant((long)0),
TRUE);

The following C# sample adds a checkbox to the focused cell:

axGantt1.Items.set_CellHasCheckBox(axGantt1.Items.FocusItem, 0, true);

The following VB.NET sample adds a checkbox to the focused cell:

With AxGantt1.Items
 .CellHasCheckBox(.FocusItem, 0) = True
End With

The following VFP sample adds a checkbox to the focused cell:

with thisform.Gantt1.Items
 .DefaultItem = .FocusItem
 .CellHasCheckBox(0,0) = .t.
endwith

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

Gantt1.Items.CellBold(, Gantt1.Items.ItemCell(Gantt1.Items(0), 0)) = True

Gantt1.Items.CellBold(Gantt1.Items(0), 0) = True

Gantt1.Items.CellBold(Gantt1.Items(0), "ColumnName") = True

property Items.CellHasRadioButton([Item as Variant], [ColIndex as
Variant]) as Boolean

Retrieves or sets a value indicating whether the cell has associated a radio button or not.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Boolean A boolean expression that indicates whether the cell
contains a radio button.

Retrieves or sets a value indicating whether the cell has associated a radio button or not. To
change the state for a radio cell you have to use CellState property. The cell cannot display
in the same time a radio and a check button. The control fires CellStateChanged event
when the cell's state has been changed. To set the cell of check type you have call
CellHasCheckBox property. To add or remove a cell to a given radio group you have to
use CellRadioGroup property. Use the Def property to assign radio buttons for all cells in
the column. Use the CellImage property to add a single icon to a cell. Use the CellImages
property to assign multiple icons to a cell. Use the CellPicture property to load a custom
size picture to a cell. Use the RadioImage property to change the radio button appearance.
The Column.Def(exCellDrawPartsOrder) property specifies the order of the drawing parts
for the entire column. By default, the parts are shows as check icon icons picture caption.

The following VB sample sets the radio type for all cells in the first column, and group all of
them in the same radio group (1234):

Dim h As Variant
Gantt1.BeginUpdate
With Gantt1.Items
For Each h In Gantt1.Items
 .CellHasRadioButton(h, 0) = True
 .CellRadioGroup(h, 0) = 1234
Next
End With
Gantt1.EndUpdate

or

Private Sub Gantt1_AddItem(ByVal Item As EXGANTTLibCtl.HITEM)

 Gantt1.Items.CellHasRadioButton(Item, 0) = True
 Gantt1.Items.CellRadioGroup(Item, 0) = 1234
End Sub

To find out the radio cell that is checked in the radio group 1234 you have to call: MsgBox
Gantt1.Items.CellCaption(, Gantt1.Items.CellChecked(1234))

The following sample group all cells of the first column into a radio group, and display the
cell's checked on the radio group when the state of a radio group has been changed:

Private Sub Gantt1_AddItem(ByVal Item As EXGANTTLibCtl.HITEM)
 Gantt1.Items.CellHasRadioButton(Item, 0) = True
 Gantt1.Items.CellRadioGroup(Item, 0) = 1234 ' The 1234 is arbirary and it represents the
identifier for the radio group
End Sub

Private Sub Gantt1_CellStateChanged(ByVal Item As EXGANTTLibCtl.HITEM, ByVal
ColIndex As Long)
 Debug.Print "In the 1234 radio group the """ & Gantt1.Items.CellCaption(,
Gantt1.Items.CellChecked(1234)) & """ is checked."
End Sub

The following VB sample assigns a radio button to the focused cell:

With Gantt1.Items
 .CellHasRadioButton(.FocusItem, 0) = True
 .CellRadioGroup(.FocusItem, 0) = 1234
End With

The following C++ sample assigns a radio button to the focused cell:

#include "Items.h"
CItems items = m_gantt.GetItems();
items.SetCellHasRadioButton(COleVariant(items.GetFocusItem()), COleVariant((long)0),
TRUE);
items.SetCellRadioGroup(COleVariant(items.GetFocusItem()), COleVariant((long)0),
1234);

The following VB.NET sample assigns a radio button to the focused cell:

With AxGantt1.Items
 .CellHasRadioButton(.FocusItem, 0) = True
 .CellRadioGroup(.FocusItem, 0) = 1234
End With

The following C# sample assigns a radio button to the focused cell:

axGantt1.Items.set_CellHasRadioButton(axGantt1.Items.FocusItem, 0, true);
axGantt1.Items.set_CellRadioGroup(axGantt1.Items.FocusItem, 0, 1234);

The following VFP sample assigns a radio button to the focused cell:

with thisform.Gantt1.Items
 .DefaultItem = .FocusItem
 .CellHasRadioButton(0,0) = .t.
 .CellRadioGroup(0,0) = 1234
endwith

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

Gantt1.Items.CellBold(, Gantt1.Items.ItemCell(Gantt1.Items(0), 0)) = True

Gantt1.Items.CellBold(Gantt1.Items(0), 0) = True

Gantt1.Items.CellBold(Gantt1.Items(0), "ColumnName") = True

property Items.CellHyperLink ([Item as Variant], [ColIndex as Variant]) as
Boolean

Specifies whether the cell's is highlighted when the cursor mouse is over the cell.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant A long expression that indicates the column's index, or a
string expression that indicates the column's caption.

Boolean A boolean expression that indicates whether the cell is
highlighted when the cursor is over the cell.

Use the CellHyperLink property to add hyperlink cells to your list/tree. Use the
HyperLinkClick event to notify your application when a hyperlink cell is clicked. Use the
CellForeColor property to specify the cell's foreground color. Use the HyperLinkColor
property to specify the hyperlink color.

property Items.CellImage ([Item as Variant], [ColIndex as Variant]) as
Long

Retrieves or sets an Image that is displayed on the cell's area.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Long

A long value that indicates the image index. The last 7 bits
in the high significant byte of the long expression indicates
the identifier of the skin being used to paint the object. Use
the Add method to add new skins to the control. If you
need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high
significant byte of the color being applied to the part.

Use the CellImage property to assign a single icon to a cell. Use the CellImages property to
assign multiple icons to a cell. The ImageSize property defines the size (width/height) of
the icons within the control's Images collection. Use the Images method to assign icons to
the control at runtime. You can add images at design time by dragging a file to image editor
of the control. The CellImage = 0 removes the cell's image. The collection of Images is 1
based. The CellImageClick event occurs when the cell's image is clicked. Use the
ItemFromPoint property to retrieve the part of the control being clicked. Use the
CellHasCheckBox property to add a check box to a cell. Use the CellHasRadioButton
property to assign a radio button to a cell. Use the CellPicture property to load a custom
size picture to a cell. Use the HTML tag to insert icons inside the cell's caption, if the
CellCaptionFormat property is exHTML. Use the FilterType property on exImage to filter
items by icons. The Column.Def(exCellDrawPartsOrder) property specifies the order of the
drawing parts for the entire column. By default, the parts are shows as check icon icons
picture caption.

The following VB sample sets cell's image for the first column while new items are added (
to run the sample make sure that control's images collection is not empty):

Private Sub Gantt1_AddItem(ByVal Item As EXGANTTLibCtl.HITEM)
 Gantt1.Items.CellImage(Item, 0) = 1
End Sub

The following VB sample changes the cell's image when the user has clicked on the cell's
image (to run the following sample you have to add two images to the gantt's images

collection.),

Private Sub Gantt1_AddItem(ByVal Item As EXGANTTLibCtl.HITEM)
 Gantt1.Items.CellImage(Item, 0) = 1
End Sub

Private Sub Gantt1_CellImageClick(ByVal Item As EXGANTTLibCtl.HITEM, ByVal ColIndex
As Long)
 Gantt1.Items.CellImage(Item, ColIndex) = Gantt1.Items.CellImage(Item, ColIndex) Mod 2
+ 1
End Sub

The following C++ sample displays the first icon in the focused cell:

#include "Items.h"
CItems items = m_gantt.GetItems();
items.SetCellImage(COleVariant(items.GetFocusItem()), COleVariant((long)0), 1);

The following C# sample displays the first icon in the focused cell:

axGantt1.Items.set_CellImage(axGantt1.Items.FocusItem, 0, 1);

The following VB.NET sample displays the first icon in the focused cell:

With AxGantt1.Items
 .CellImage(.FocusItem, 0) = 1
End With

The following VFP sample displays the first icon in the focused cell:

with thisform.Gantt1.Items
 .DefaultItem = .FocusItem
 .CellImage(0,0) = 1
endwith

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

Gantt1.Items.CellBold(, Gantt1.Items.ItemCell(Gantt1.Items(0), 0)) = True

Gantt1.Items.CellBold(Gantt1.Items(0), 0) = True

Gantt1.Items.CellBold(Gantt1.Items(0), "ColumnName") = True

property Items.CellImages ([Item as Variant], [ColIndex as Variant]) as
Variant
Specifies an additional list of icons shown in the cell.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Variant A string expression that indicates the list of icons shown in
the cell.

The CellImages property assigns multiple icons to a cell. The CellImage property assign a
single icon to the cell. Instead if multiple icons need to be assigned to a single cell you have
to use the CellImages property. The CellImages property takes a list of additional icons and
display them in the cell. The list is separated by ',' and should contain numbers that
represent indexes to Images list collection. Use the ItemFromPoint property to retrieve the
part of the control being clicked. Use the CellHasCheckBox property to add a check box to
a cell. Use the CellHasRadioButton property to assign a radio button to a cell. Use the
CellPicture property to load a custom size picture to a cell. The
Column.Def(exCellDrawPartsOrder) property specifies the order of the drawing parts for
the entire column. By default, the parts are shows as check icon icons picture caption. The
ImageSize property defines the size (width/height) of the icons within the control's Images
collection.

The following VB sample assigns the first and third icon to the cell:

With Gantt1.Items
 .CellImages(.ItemByIndex(0), 1) = "1,3"
End With

The following VB sample displays the index of icon being clicked:

Private Sub Gantt1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single)
 Dim i As HITEM, h As HitTestInfoEnum, c As Long
 With Gantt1
 i = .ItemFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, c, h)
 End With
 If (i <> 0) Then
 If exHTCellIcon = (h And exHTCellIcon) Then

 Debug.Print "The index of icon being clicked is: " & (h And &HFFFF0000) / 65536
 End If
 End If
End Sub

The following C++ sample assigns the first and the third icon to the cell:

#include "Items.h"
CItems items = m_gantt.GetItems();
items.SetCellImages(COleVariant(items.GetFocusItem()), COleVariant((long)0),
COleVariant("1,3"));

The following C++ sample displays the index of icon being clicked:

#include "Items.h"
void OnMouseUpGantt1(short Button, short Shift, long X, long Y)
{
 CItems items = m_gantt.GetItems();
 long c = 0, hit = 0, h = m_gantt.GetItemFromPoint(X, Y, &c, &hit);
 if (h != 0)
 {
 if ((hit & 0x44 /*exHTCellIcon*/) == 0x44)
 {
 CString strFormat;
 strFormat.Format("The index of icon being clicked is: %i\n", (hit >> 16));
 OutputDebugString(strFormat);
 }
 }
}

The following VB.NET sample assigns the first and the third icon to the cell:

With AxGantt1.Items
 .CellImages(.FocusItem, 0) = "1,3"
End With

The following VB.NET sample displays the index of icon being clicked:

Private Sub AxGantt1_MouseUpEvent(ByVal sender As Object, ByVal e As

AxEXGANTTLib._IGanttEvents_MouseUpEvent) Handles AxGantt1.MouseUpEvent
 With AxGantt1
 Dim i As Integer, c As Integer, hit As EXGANTTLib.HitTestInfoEnum
 i = .get_ItemFromPoint(e.x, e.y, c, hit)
 If (Not (i = 0)) Then
 Debug.WriteLine("The index of icon being clicked is: " & (hit And &HFFFF0000) /
65536)
 End If
 End With
End Sub

The following C# sample assigns the first and the third icon to the cell:

axGantt1.Items.set_CellImages(axGantt1.Items.FocusItem, 0, "1,3");

The following C# sample displays the index of icon being clicked:

private void axGantt1_MouseUpEvent(object sender,
AxEXGANTTLib._IGanttEvents_MouseUpEvent e)
{
 int c = 0;
 EXGANTTLib.HitTestInfoEnum hit;
 int i = axGantt1.get_ItemFromPoint(e.x, e.y, out c, out hit);
 if ((i != 0))
 {
 if ((Convert.ToUInt32(hit) &
Convert.ToUInt32(EXGANTTLib.HitTestInfoEnum.exHTCellIcon)) ==
Convert.ToUInt32(EXGANTTLib.HitTestInfoEnum.exHTCellIcon))
 {
 string s = axGantt1.Items.get_CellCaption(i, c).ToString();
 s = "Cell: " + s + ", Icon's Index: " + (Convert.ToUInt32(hit) >> 16).ToString();
 System.Diagnostics.Debug.WriteLine(s);
 }
 }
}

The following VFP sample assigns the first and the third icon to the cell:

with thisform.Gantt1.Items

 .DefaultItem = .FocusItem
 .CellImages(0,0) = "1,3"
endwith

The following VFP sample displays the index of icon being clicked:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

local c, hit
c = 0
hit = 0
with thisform.Gantt1
 .Items.DefaultItem = .ItemFromPoint(x, y, @c, @hit)
 if (.Items.DefaultItem <> 0)
 if (bitand(hit, 68)= 68)
 wait window nowait .Items.CellCaption(0, c) + " " + Str(Int((hit - 68)/65536))
 endif
 endif
endwith

Add the code to the MouseUp, MouseMove or MouseDown event,

property Items.CellItalic([Item as Variant], [ColIndex as Variant]) as
Boolean

Retrieves or sets a value that indicates whether the cell's caption should appear in italic.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Boolean A boolean expression that indicates whether the cell
should appear in italic.

Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply different font
attributes to the item. Use the CellItalic, CellUnderline, CellBold or CellStrikeOut property to
apply different font attributes to the cell. Use the CellCaptionFormat property to specify an
HTML caption. Use the ConditionalFormats method to apply formats to a cell or range of
cells, and have that formatting change depending on the value of the cell or the value of a
formula.

The following VB sample makes italic the focused cell:

With Gantt1.Items
 .CellItalic(.FocusItem, 0) = True
End With

The following C++ sample makes italic the focused cell:

#include "Items.h"
CItems items = m_gantt.GetItems();
items.SetCellItalic(COleVariant(items.GetFocusItem()), COleVariant((long)0), TRUE);

The following C# sample makes italic the focused cell:

axGantt1.Items.set_CellItalic(axGantt1.Items.FocusItem, 0, true);

The following VB.NET sample makes italic the focused cell:

With AxGantt1.Items
 .CellItalic(.FocusItem, 0) = True
End With

The following VFP sample makes italic the focused cell:

with thisform.Gantt1.Items
 .DefaultItem = .FocusItem
 .CellItalic(0, 0) = .t.
endwith

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

Gantt1.Items.CellBold(, Gantt1.Items.ItemCell(Gantt1.Items(0), 0)) = True

Gantt1.Items.CellBold(Gantt1.Items(0), 0) = True

Gantt1.Items.CellBold(Gantt1.Items(0), "ColumnName") = True

property Items.CellItem (Cell as HCELL) as HITEM

Retrieves the handle of the item that is owner for a specfic cell.

Type Description
Cell as HCELL A long expression that indicates the handle of the cell.
HITEM A long expression that indicates the handle of the item.

Use the CellItem property to retrieve the item's handle. Use the ItemCell property to gets
the cell's handle given an item and a column. Most of the properties of the Items object that
have parameters [Item as Variant], [ColIndex as Variant], could use the handle of the cell to
identify the cell, instead the ColIndex parameter. For instance the following statements are
equivalents:

With Gantt1.Items
 .CellCaption(.FocusItem, 0) = "this"
 .CellCaption(, .ItemCell(.FocusItem, 0)) = "this"
End With

property Items.CellMerge([Item as Variant], [ColIndex as Variant]) as
Variant
Retrieves or sets a value that indicates the index of the cell that's merged to.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Variant
A long expression that indicates the index of the cell that's
merged with, a safe array that holds the indexes of the
cells being merged.

Use the CellMerge property to combine two or more cells in the same item in a single cell.
The data of the source cell is displayed in the new larger cell. All the other cells' data is not
lost. Use the ItemDivider property to display a single cell in the entire item (merging all cells
in the same item). Use the UnmergeCells method to unmerge the merged cells. Use the
CellMerge property to unmerge a single cell. Use the MergeCells method to combine one or
more cells in a single cell. Use the Add method to add new columns to the control. Use the
SplitCell property to split a cell.

You can merge the first three cells in the root item using any of the following methods:

 With Gantt1
 With .Items
 .CellMerge(.RootItem(0), 0) = Array(1, 2)
 End With
End With

With Gantt1

 .BeginUpdate
 With .Items
 Dim r As Long
 r = .RootItem(0)
 .CellMerge(r, 0) = 1
 .CellMerge(r, 0) = 2
 End With
 .EndUpdate
End With

With Gantt1
 .BeginUpdate
 With .Items
 Dim r As Long
 r = .RootItem(0)
 .MergeCells .ItemCell(r, 0), .ItemCell(r, 1)
 .MergeCells .ItemCell(r, 0), .ItemCell(r, 2)
 End With
 .EndUpdate
End With

With Gantt1
 With .Items
 Dim r As Long
 r = .RootItem(0)
 .MergeCells .ItemCell(r, 0), Array(.ItemCell(r, 1), .ItemCell(r, 2))
 End With
End With

With Gantt1
 With .Items
 Dim r As Long
 r = .RootItem(0)
 .MergeCells Array(.ItemCell(r, 0), .ItemCell(r, 1), .ItemCell(r, 2))
 End With
End With

The following sample shows few methods to unmerge cells:

With Gantt1
 With .Items
 .UnmergeCells .ItemCell(.RootItem(0), 0)
 End With
End With

With Gantt1
 With .Items
 Dim r As Long
 r = .RootItem(0)
 .UnmergeCells Array(.ItemCell(r, 0), .ItemCell(r, 1))
 End With
End With

With Gantt1
 .BeginUpdate
 With .Items
 .CellMerge(.RootItem(0), 0) = -1
 .CellMerge(.RootItem(0), 1) = -1
 .CellMerge(.RootItem(0), 2) = -1
 End With
 .EndUpdate
End With

The following VB sample merges the first three cells in the focused item:

With Gantt1.Items
 .CellMerge(.FocusItem, 0) = 1
 .CellMerge(.FocusItem, 0) = 2
End With

The following C++ sample merges the first three cells in the focused item:

#include "Items.h"
CItems items = m_gantt.GetItems();
COleVariant vtItem(items.GetFocusItem()), vtColumn(long(0));
items.SetCellMerge(vtItem, vtColumn, COleVariant(long(1)));
items.SetCellMerge(vtItem, vtColumn, COleVariant(long(2)));

The following VB.NET sample merges the first three cells in the focused item:

With AxGantt1.Items
 .CellMerge(.FocusItem, 0) = 1
 .CellMerge(.FocusItem, 0) = 2
End With

The following C# sample merges the first three cells in the focused item:

axGantt1.Items.set_CellMerge(axGantt1.Items.FocusItem, 0, 1);
axGantt1.Items.set_CellMerge(axGantt1.Items.FocusItem, 0, 2);

The following VFP sample merges the first three cells in the focused item:

with thisform.Gantt1.Items
 .DefaultItem = .FocusItem
 .CellMerge(0,0) = 1
 .CellMerge(0,0) = 2
endwith

In other words, the sample shows how to display the first cell using the space occupied by
three cells.

property Items.CellParent ([Item as Variant], [ColIndex as Variant]) as
Variant
Retrieves the parent of an inner cell.

Type Description

Item as Variant
A long expression that indicates the handle of the item
where the cell is, or 0. If the Item parameter is 0, the
ColIndex parameter must indicate the handle of the cell.

ColIndex as Variant

A long expression that indicates the index of the column
where a cell is divided, or a long expression that indicates
the handle of the cell being divided, if the Item parameter
is missing or it is zero.

Variant A long expression that indicates the handle of the parent
cell.

Use the CellParent property to get the parent of the inner cell. The SplitCell method splits a
cell in two cells (the newly created cell is called inner cell). Use the InnerCell property to
get the inner cell. Use the CellItem property to get the item that's the owner of the cell. The
CellParent property gets 0 if the cell is not an inner cell. The parent cell is always displayed
to the left side of the cell. The inner cell (InnerCell) is displayed to the right side of the cell.

The following VB sample determines whether the cell is a master cell or an inner cell:

Private Function isMaster(ByVal g As EXGANTTLibCtl.Gantt, ByVal h As
EXGANTTLibCtl.HITEM, ByVal c As Long) As Boolean
 With g.Items
 isMaster = .CellParent(h, c) = 0
 End With
End Function

The following VB sample determines the master cell (the cell from where the splitting starts
):

Private Function getMaster(ByVal g As EXGANTTLibCtl.Gantt, ByVal h As
EXGANTTLibCtl.HITEM, ByVal c As Long) As EXGANTTLibCtl.HCELL
 With g.Items
 Dim r As EXGANTTLibCtl.HCELL
 r = c
 If Not (h = 0) Then
 r = .ItemCell(h, c)

 End If
 While Not (.CellParent(, r) = 0)
 r = .CellParent(, r)
 Wend
 getMaster = r
 End With
End Function

The following C++ sample determines whether the cell is a master cell or an inner cell:

#include "Items.h"

static long V2I(VARIANT* pv, long nDefault = 0)
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return nDefault;

 COleVariant vt;
 vt.ChangeType(VT_I4, pv);
 return V_I4(&vt);
 }
 return nDefault;
}

BOOL isMaster(CGantt gantt, long hItem, long nColIndex)
{
 return V2I(&gantt.GetItems().GetCellParent(COleVariant(hItem), COleVariant(
nColIndex))) == 0;
}

The following C++ sample determines the master cell (the cell from where the splitting
starts):

long getMaster(CGantt gantt, long hItem, long nColIndex)
{
 COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;

 CItems items = gantt.GetItems();
 long r = nColIndex;
 if (hItem)
 r = items.GetItemCell(hItem, COleVariant(nColIndex));
 long r2 = 0;
 while (r2 = V2I(&items.GetCellParent(vtMissing, COleVariant(r))))
 r = r2;
 return r;
}

The following VB.NET sample determines whether the cell is a master cell or an inner cell:

Private Function isMaster(ByVal g As AxEXGANTTLib.AxGantt, ByVal h As Long, ByVal c As
Long) As Boolean
 With g.Items
 isMaster = .CellParent(h, c) = 0
 End With
End Function

The following VB.NET sample determines the master cell (the cell from where the splitting
starts):

Shared Function getMaster(ByVal g As AxEXGANTTLib.AxGantt, ByVal h As Integer, ByVal c
As Integer) As Integer
 With g.Items
 Dim r As Integer
 r = c
 If Not (h = 0) Then
 r = .ItemCell(h, c)
 End If
 While Not (.CellParent(, r) = 0)
 r = .CellParent(, r)
 End While
 getMaster = r
 End With
End Function

The following C# sample determines whether the cell is a master cell or an inner cell:

private bool isMaster(AxEXGANTTLib.AxGantt gantt, int h, int c)
{
 return Convert.ToInt32(gantt.Items.get_CellParent(h, c)) != 0;
}

The following C# sample determines the master cell (the cell from where the splitting starts
):

private long getMaster(AxEXGANTTLib.AxGantt g, int h, int c)
{
 int r = c, r2 = 0;
 if (h != 0)
 r = Convert.ToInt32(g.Items.get_ItemCell(h,c));
 r2 = Convert.ToInt32(g.Items.get_CellParent(null, r));
 while (r2 != 0)
 {
 r = r2;
 r2 = Convert.ToInt32(g.Items.get_CellParent(null, r));
 }
 return r;
}

property Items.CellPicture ([Item as Variant], [ColIndex as Variant]) as
Variant
Retrieves or sets a value that indicates the Picture object displayed by the cell.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Variant

A Picture object that indicates the cell's picture. (A Picture
object implements IPicture interface), a string expression
that indicates the base64 encoded string that holds a
picture object. Use the eximages tool to save your picture
as base64 encoded format.

The control can associate to a cell a check or radio button, an icon, multiple icons, a
picture and a caption. Use the CellPicture property to associate a picture to a cell. You can
use the CellPicture property when you want to display images with different widths into a
cell. Use the CellImage property to associate an icon from Images collection. Use the
CellImages property to assign multiple icons to a cell. Use the CellHasCheckBox property
to add a check box to a cell. Use the CellHasRadioButton property to assign a radio button
to a cell. Use the CellPictureWidth and CellPictureHeight properties to stretch the cell's
picture on a specified size. The Column.Def(exCellDrawPartsOrder) property specifies the
order of the drawing parts for the entire column. By default, the parts are shows as check
icon icons picture caption.

The following VB sample loads a picture from a file:

Gantt1.Items.CellPicture(h, 0) = LoadPicture("c:\winnt\logo.gif")

The following VB sample associates a picture to a cell by loading it from a base64 encoded
string:

Dim s As String
s =
"gBCJr+BAAg0HGwEgwog4jg4ig4BAEFg4AZEKisZjUbAAzg5mg6Zg7Mg7/g0ek8oGcgjsijskjsmAEsmcoM0sM0uM0wM0ylwATMoTMsTMuTMwTMymAAZkoZksZkuZkwZkymQAf8of8sf8uf8wf8mlEdskekEekUekkesUqGcet9nGdpGdrGdilkruE3js5vtrnstk9BltnosttdJl8npsvs9Rl9rqsxk9ZmNnrsxtdhmcfskg0FAzskkEmM02t810Fzmuku8znGn2Ggv030mBv0zwk50GHnOkxU7g07s1PmeQnekyeBmeWnugzM90mcn9p0UgkXZpmik2EoGpoPY1lBklB7tE2VD7F+oflwOHoGEovYw9F8uKo8Go9o41H7KpqAybFKAyykuwzKkvKzilrW7aQPK7aSJIkzGqY1Kmwe1imwk17jKY2SnwevynwkwLIKYwiowew6owkxUAKYxqpweyCpwkybJqYyyqwezKqwkzirrErDOu7IkJyIyysNSrLStYrMJteraDK2ti+K2kStwmwLMqwwiutKw6uwmxSvyoxqvtKyCvwmybOKwyywtKzKwwnN6OTxPM9T3Pk+z9P9AUDP5V0JQtDUPRFE0SAFFUbR1FAAa9JUnSlJlnSZo0xStJGtStI03UFJUvUdQmuVtKU/TdT1RSpoGvS5WVKa9U1lWdRVrTtWVBS9c1nWlI0vSlY09WVg18a9MgAEla0nWliUkABHjXYCDUzSVY2daFSoNaBHWnWZH1/blN1TY1"

s = s +
"XgBadlDXdYSXRb9wWBclK2taF1gAI5HiPaN8oPdlNWbaF23KAwyWkNYyXxg9p3WNYjU/c1bWgABZoMiQS4YR984YNdpEeMgA2bgVtVHil0DVdY1CPhON44IGOI1XVPCPjl14RlmZ3XmZH3aWdYW1VF3DWMuWXXlw15PhlI3pgGJEfpGiZZgw1kTe1s0+g2Dalhmh6Pjgg5zrVx5/iV74bjGN41k9pCNl6D1dilKWDrGZ6ftmcZyNYAhKAGl7HemgoNs415XjI1XLmNm3sEho2jwdw4zmd+2+aFjFZVJWYpndf3xSPG2/koSWXW+I7JURZmtzO+XPe1K9RZ+S9HS1PllWfB9FiHEWZVBZWzeXdU32Fa973/SW34lr0nV1meH4/heb5/mWL4no+fUAAICA"

https://exontrol.com/eximages.jsp

With Gantt1
 .BeginUpdate
 .Columns.Add "Column 1"
 With .Items
 Dim h As HITEM
 h = .AddItem("Item 1")
 .CellPicture(h, 0) = s
 .ItemHeight(h) = 24
 End With
 .EndUpdate
End With

The following C++ loads a picture from a file:

#include
BOOL LoadPicture(LPCTSTR szFileName, IPictureDisp** ppPictureDisp)
{
 BOOL bResult = FALSE;
 if (szFileName)
 {
 OFSTRUCT of;
 HANDLE hFile = NULL;;
#ifdef _UNICODE
 USES_CONVERSION;
 if ((hFile = (HANDLE)OpenFile(W2A(szFileName), &of;, OF_READ |
OF_SHARE_COMPAT)) != (HANDLE)HFILE_ERROR)
#else
 if ((hFile = (HANDLE)OpenFile(szFileName, &of;, OF_READ | OF_SHARE_COMPAT)) !=
(HANDLE)HFILE_ERROR)
#endif
 {
 *ppPictureDisp = NULL;
 DWORD dwHighWord = NULL, dwSizeLow = GetFileSize(hFile, &dwHighWord;);
 DWORD dwFileSize = dwSizeLow;
 HRESULT hResult = NULL;
 if (HGLOBAL hGlobal = GlobalAlloc(GMEM_MOVEABLE, dwFileSize))
 if (void* pvData = GlobalLock(hGlobal))

 {
 DWORD dwReadBytes = NULL;
 BOOL bRead = ReadFile(hFile, pvData, dwFileSize, &dwReadBytes;, NULL);
 GlobalUnlock(hGlobal);
 if (bRead)
 {
 CComPtr spStream;
 _ASSERTE(dwFileSize == dwReadBytes);
 if (SUCCEEDED(CreateStreamOnHGlobal(hGlobal, TRUE, &spStream;)))
 if (SUCCEEDED(hResult = OleLoadPicture(spStream, 0, FALSE,
IID_IPictureDisp, (void**)ppPictureDisp)))
 bResult = TRUE;
 }
 }
 CloseHandle(hFile);
 }
 }
 return bResult;
}

IPictureDisp* pPicture = NULL;
if (LoadPicture("c:\\winnt\\zapotec.bmp", &pPicture;))
{
 COleVariant vtPicture;
 V_VT(&vtPicture;) = VT_DISPATCH;
 pPicture->QueryInterface(IID_IDispatch, (LPVOID*)&V;_DISPATCH(&vtPicture;));
 CItems items = m_gantt.GetItems();
 items.SetCellPicture(COleVariant(items.GetFocusItem()), COleVariant(long(0)), vtPicture
);
 pPicture->Release();
}

The following VB.NET sample loads a picture from a file:

With AxGantt1.Items
 .CellPicture(.FocusItem, 0) =
IPDH.GetIPictureDisp(Image.FromFile("c:\winnt\zapotec.bmp"))

End With

where the IPDH class is defined like follows:

Public Class IPDH
 Inherits System.Windows.Forms.AxHost

 Sub New()
 MyBase.New("")
 End Sub

 Public Shared Function GetIPictureDisp(ByVal image As Image) As Object
 GetIPictureDisp = AxHost.GetIPictureDispFromPicture(image)
 End Function

End Class

The following C# sample loads a picture from a file:

axGantt1.Items.set_CellPicture(axGantt1.Items.FocusItem, 0,
IPDH.GetIPictureDisp(Image.FromFile("c:\\winnt\\zapotec.bmp")));

where the IPDH class is defined like follows:

internal class IPDH : System.Windows.Forms.AxHost
{
 public IPDH() : base("")
 {
 }

 public static object GetIPictureDisp(System.Drawing.Image image)
 {
 return System.Windows.Forms.AxHost.GetIPictureDispFromPicture(image);
 }
}

The following VFP sample loads a picture from a file:

with thisform.Gantt1.Items

 .DefaultItem = .FocusItem
 .CellPicture(0, 0) = LoadPicture("c:\winnt\zapotec.bmp")
endwith

property Items.CellPictureHeight ([Item as Variant], [ColIndex as Variant])
as Long
Retrieves or sets a value that indicates the height of the cell's picture.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Long A long expression that indicates the height of the cell's
picture, or -1, if the property is ignored.

By default, the CellPictureHeight property is -1. Use the CellPicture property to assign a
custom size picture to a cell. Use the CellPictureWidth property to specify the width of the
cell's picture. The CellPictureWidth and CellPictureHeight properties specifies the size of the
area where the cell's picture is stretched. If the CellPictureWidth and CellPictureHeight
properties are -1 (by default), the cell displays the full size picture. If the CellPictureHeight
property is greater than 0, it indicates the height of the area where the cell's picture is
stretched. Use the ItemHeight property to specify the height of the item. Use the CellImage
or CellImages property to assign one or more icons to the cell.

property Items.CellPictureWidth ([Item as Variant], [ColIndex as Variant])
as Long
Retrieves or sets a value that indicates the width of the cell's picture.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Long A long expression that indicates the width of the cell's
picture, or -1, if the property is ignored.

By default, the CellPictureWidth property is -1. Use the CellPicture property to assign a
custom size picture to a cell. Use the CellPictureHeight property to specify the height of the
cell's picture. The CellPictureWidth and CellPictureHeight properties specifies the size of the
area where the cell's picture is stretched. If the CellPictureWidth and CellPictureHeight
properties are -1 (by default), the cell displays the full size picture. If the CellPictureWidth
property is greater than 0, it indicates the width of the area where the cell's picture is
stretched. Use the CellImage or CellImages property to assign one or more icons to the
cell.

property Items.CellRadioGroup([Item as Variant], [ColIndex as Variant])
as Long

Retrieves or sets a value indicating the radio group where the cell is contained.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Long A long value that identifies the cell's radio group.

Use the CellRadioGroup property to add or remove a radio button from a group. In a radio
group only one radio button can be checked. A radio cell cannot be contained by two
different radio groups. Use the CellHasRadioButton property to add a radio button to a cell.
When the cell's state is changed the control fires the CellStateChanged event. The
CellState property specifies the cell's state. By default, when a cell of radio type is created
the radio cell is not grouped to any of existent radio groups.

The following VB sample sets the radio type for all cells in the first column, and group all of
them in the same radio group (1234):

Dim h As Variant
Gantt1.BeginUpdate
With Gantt1.Items
For Each h In Gantt1.Items
 .CellHasRadioButton(h, 0) = True
 .CellRadioGroup(h, 0) = 1234
Next
End With
Gantt1.EndUpdate

or

Private Sub Gantt1_AddItem(ByVal Item As EXGANTTLibCtl.HITEM)
 Gantt1.Items.CellHasRadioButton(Item, 0) = True
 Gantt1.Items.CellRadioGroup(Item, 0) = 1234
End Sub

To find out the radio cell that is checked in the radio group 1234 you have to call: MsgBox

Gantt1.Items.CellCaption(, Gantt1.Items.CellChecked(1234))

The following sample group all cells of the first column into a radio group, and display the
cell's checked on the radio group when the state of a radio group has been changed:

Private Sub Gantt1_AddItem(ByVal Item As EXGANTTLibCtl.HITEM)
 Gantt1.Items.CellHasRadioButton(Item, 0) = True
 Gantt1.Items.CellRadioGroup(Item, 0) = 1234 ' The 1234 is arbirary and it represents the
identifier for the radio group
End Sub

Private Sub Gantt1_CellStateChanged(ByVal Item As EXGANTTLibCtl.HITEM, ByVal
ColIndex As Long)
 Debug.Print "In the 1234 radio group the """ & Gantt1.Items.CellCaption(,
Gantt1.Items.CellChecked(1234)) & """ is checked."
End Sub

The following VB sample assigns a radio button to the focused cell:

With Gantt1.Items
 .CellHasRadioButton(.FocusItem, 0) = True
 .CellRadioGroup(.FocusItem, 0) = 1234
End With

The following C++ sample assigns a radio button to the focused cell:

#include "Items.h"
CItems items = m_gantt.GetItems();
items.SetCellHasRadioButton(COleVariant(items.GetFocusItem()), COleVariant((long)0),
TRUE);
items.SetCellRadioGroup(COleVariant(items.GetFocusItem()), COleVariant((long)0),
1234);

The following VB.NET sample assigns a radio button to the focused cell:

With AxGantt1.Items
 .CellHasRadioButton(.FocusItem, 0) = True
 .CellRadioGroup(.FocusItem, 0) = 1234
End With

The following C# sample assigns a radio button to the focused cell:

axGantt1.Items.set_CellHasRadioButton(axGantt1.Items.FocusItem, 0, true);
axGantt1.Items.set_CellRadioGroup(axGantt1.Items.FocusItem, 0, 1234);

The following VFP sample assigns a radio button to the focused cell:

with thisform.Gantt1.Items
 .DefaultItem = .FocusItem
 .CellHasRadioButton(0,0) = .t.
 .CellRadioGroup(0,0) = 1234
endwith

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

Gantt1.Items.CellBold(, Gantt1.Items.ItemCell(Gantt1.Items(0), 0)) = True

Gantt1.Items.CellBold(Gantt1.Items(0), 0) = True

Gantt1.Items.CellBold(Gantt1.Items(0), "ColumnName") = True

property Items.CellSingleLine([Item as Variant], [ColIndex as Variant]) as
CellSingleLineEnum

Retrieves or sets a value indicating whether the cell's caption is painted using one or more
lines.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

CellSingleLineEnum A CellSingleLineEnum expression that indicates whether
the cell displays its caption using one or more lines.

By default, the CellSingleLine property is exCaptionSingleLine / True, which indicates that
the cell's caption is displayed on a single line. Use the Def(exCellSingleLine) property to
specify that all cells in the column display their content using multiple lines. The control can
displays the cell's caption using more lines, if the CellSingleLine property is
exCaptionWordWrap or exCaptionBreakWrap. The CellSingleLine property wraps the cell's
caption so it fits in the cell's client area. If the text doesn't fit the cell's client area, the height
of the item is increased or decreased. When the CellSingleLine is exCaptionWordWrap /
exCaptionBreakWrap / False, the height of the item is computed based on each cell
caption. If the CellSingleLine property is exCaptionWordWrap / exCaptionBreakWrap /
False, changing the ItemHeight property has no effect. Use the ItemMaxHeight property to
specify the maximum height of the item when its height is variable. Use the CellVAlignment
property to align vertically a cell.

If using the CellSingleLine / Def(exCellSingleLine) property, we recommend to set the
ScrollBySingleLine property on True so all items can be scrolled.

The following VB sample displays the caption of the focused cell using multiple lines:

With Gantt1.Items
 .CellSingleLine(.FocusItem, 0) = True
End With

The following C++ sample displays the caption of the focused cell using multiple lines:

#include "Items.h"
CItems items = m_gantt.GetItems();
items.SetCellSingleLine(COleVariant(items.GetFocusItem()), COleVariant(long(0)), FALSE
);

The following VB.NET sample displays the caption of the focused cell using multiple lines:

With AxGantt1.Items
 .CellSingleLine(.FocusItem, 0) = False
End With

The following C# sample displays the caption of the focused cell using multiple lines:

axGantt1.Items.set_CellSingleLine(axGantt1.Items.FocusItem, 0, false);

The following VFP sample displays the caption of the focused cell using multiple lines:

with thisform.Gantt1.Items
 .DefaultItem = .FocusItem
 .CellSingleLine(0, 0) = .f.
endwith

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

Gantt1.Items.CellBold(, Gantt1.Items.ItemCell(Gantt1.Items(0), 0)) = True

Gantt1.Items.CellBold(Gantt1.Items(0), 0) = True

Gantt1.Items.CellBold(Gantt1.Items(0), "ColumnName") = True

property Items.CellState([Item as Variant], [ColIndex as Variant]) as Long

Retrieves or sets the cell's state. Has effect only for check and radio cells.

Type Description

Item as Variant A long expression that indicates the item's handle that
indicates the owner of the cell.

ColIndex as Variant
A long expression that identifies the column's index, or a
string expression that specifies the column's caption or the
column's key.

Long A long value that indicates the cell's state.

Use the CellState property to change the cell's state. The CellState property has effect only
for check and radio cells. Use the CellHasCheckBox property to assign a check box to a
cell. Use the CellHasRadioButton property to add a radio button to a cell. The control fires
the CellStateChanged event when user changes the cell's state. Use the PartialCheck
property to allow partial check feature within the column. Use the CheckImage property to
change the check box appearance. Use the RadioImage property to change the radio
button appearance. Use the FilterType property on exCheck to filter for checked or
unchecked items.

The following VB sample adds a check box that's checked to the focused cell:

With Gantt1.Items
 .CellHasCheckBox(.FocusItem, 0) = True
 .CellState(.FocusItem, 0) = 1
End With

The following C++ sample adds a check box that's checked to the focused cell:

#include "Items.h"
CItems items = m_gantt.GetItems();
COleVariant vtItem(items.GetFocusItem()), vtColumn(long(0));
items.SetCellHasCheckBox(vtItem, vtColumn, TRUE);
items.SetCellState(vtItem, vtColumn, 1);

The following VB.NET sample adds a check box that's checked to the focused cell:

With AxGantt1.Items
 .CellHasCheckBox(.FocusItem, 0) = True
 .CellState(.FocusItem, 0) = 1

End With

The following C# sample adds a check box that's checked to the focused cell:

axGantt1.Items.set_CellHasCheckBox(axGantt1.Items.FocusItem, 0, true);
axGantt1.Items.set_CellState(axGantt1.Items.FocusItem, 0, 1);

The following VFP sample adds a check box that's checked to the focused cell:

with thisform.Gantt1.Items
 .DefaultItem = .FocusItem
 .CellHasCheckBox(0, 0) = .t.
 .CellState(0,0) = 1
endwith

The following VB sample changes the state for a cell to checked state:
Gantt1.Items.CellState(Gantt1.Items(0), 0) = 1,

The following VB sample changes the state for a cell to to unchecked state:
Gantt1.Items.CellState(Gantt1.Items(0), 0) = 0,

The following VB sample changes the state for a cell to partial checked state:
Gantt1.Items.CellState(Gantt1.Items(0), 0) = 2

The following VB sample displays a message when a cell of radio or check type is changing
its state:

Private Sub Gantt1_AddItem(ByVal Item As EXGANTTLibCtl.HITEM)
 Gantt1.Items.CellHasCheckBox(Item, 0) = True
End Sub

Private Sub Gantt1_CellStateChanged(ByVal Item As EXGANTTLibCtl.HITEM, ByVal
ColIndex As Long)
 Debug.Print "The cell """ & Gantt1.Items.CellCaption(Item, ColIndex) & """ has changed
its state. The new state is " & IIf(Gantt1.Items.CellState(Item, ColIndes) = 0, "Unchecked",
"Checked")
End Sub

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see

Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

Gantt1.Items.CellBold(, Gantt1.Items.ItemCell(Gantt1.Items(0), 0)) = True

Gantt1.Items.CellBold(Gantt1.Items(0), 0) = True

Gantt1.Items.CellBold(Gantt1.Items(0), "ColumnName") = True

property Items.CellStrikeOut([Item as Variant], [ColIndex as Variant]) as
Boolean

Retrieves or sets a value that indicates whether the cell's caption should appear in
strikeout.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Boolean A boolean expression that indicates whether the cell's
caption should appear in strikeout.

If the CellStrikeOut property is True, the cell's font is displayed with a horizontal line through
it. Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply different font
attributes to the item. Use the CellItalic, CellUnderline, CellBold or CellStrikeOut property to
apply different font attributes to the cell. Use the CellCaptionFormat property to specify an
HTML caption. Use the ConditionalFormats method to apply formats to a cell or range of
cells, and have that formatting change depending on the value of the cell or the value of a
formula.

The following VB sample draws a horizontal line through the caption of the cell that has the
focus:

With Gantt1.Items
 .CellStrikeOut(.FocusItem, 0) = True
End With

The following C++ sample draws a horizontal line through the caption of the cell that has the
focus:

#include "Items.h"
CItems items = m_gantt.GetItems();
items.SetCellStrikeOut(COleVariant(items.GetFocusItem()), COleVariant((long)0), TRUE);

The following C# sample draws a horizontal line through the caption of the cell that has the
focus:

axGantt1.Items.set_CellStrikeOut(axGantt1.Items.FocusItem, 0, true);

The following VB.NET sample draws a horizontal line through the caption of the cell that has
the focus:

With AxGantt1.Items
 .CellStrikeOut(.FocusItem, 0) = True
End With

The following VFP sample draws a horizontal line through the caption of the cell that has the
focus:

with thisform.Gantt1.Items
 .DefaultItem = .FocusItem
 .CellStrikeOut(0, 0) = .t.
endwith

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

Gantt1.Items.CellBold(, Gantt1.Items.ItemCell(Gantt1.Items(0), 0)) = True

Gantt1.Items.CellBold(Gantt1.Items(0), 0) = True

Gantt1.Items.CellBold(Gantt1.Items(0), "ColumnName") = True

property Items.CellToolTip([Item as Variant], [ColIndex as Variant]) as
String

Retrieves or sets a text that is used to show the tooltip's cell.

Type Description
Item as Variant A long expression that indicates the handle of the item.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

String A string expression that indicates the cell's tooltip.

By default, the CellToolTip property is "..." (three dots). If the CellToolTip property is "..." the
control displays the cell's caption if it doesn't fit the cell's client area. If the CellToolTip
property is different than "...", the control shows a tooltip that displays the CellToolTip
value. The control fires the ToolTip event when the column's tooltip is about to be
displayed. Use the ToolTipWidth property to specify the width of the tooltip window. The
ToolTipPopDelay property specifies the period in ms of time the ToolTip remains visible if
the mouse pointer is stationary within a control. The ToolTipDelay property specifies the
time in ms that passes before the ToolTip appears.

The tooltip supports the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the

about:blank

anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part

of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the

color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

Note: The intersection of an item with a column defines a cell. Each cell is uniquely
represented by its handle. The cell's handle is of HCELL type, that's equivalent with a long
type. All properties of Items object that have two parameters Item and ColIndex, that refers
a cell.

property Items.CellUnderline([Item as Variant], [ColIndex as Variant]) as
Boolean

Retrieves or sets a value that indicates whether the cell's caption should appear in
underline.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Boolean A boolean expression that indicates whether the cell is
underlined.

Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply different font
attributes to the item. Use the CellItalic, CellUnderline, CellBold or CellStrikeOut property to
apply different font attributes to the cell. Use the CellCaptionFormat property to specify an
HTML caption. Use the ConditionalFormats method to apply formats to a cell or range of
cells, and have that formatting change depending on the value of the cell or the value of a
formula.

The following VB sample underlines the focused cell:

With Gantt1.Items
 .CellUnderline(.FocusItem, 0) = True
End With

The following C++ sample underlines the focused cell:

#include "Items.h"
CItems items = m_gantt.GetItems();
items.SetCellUnderline(COleVariant(items.GetFocusItem()), COleVariant((long)0), TRUE);

The following C# sample underlines the focused cell:

axGantt1.Items.set_CellUnderline(axGantt1.Items.FocusItem, 0, true);

The following VB.NET sample underlines the focused cell:

With AxGantt1.Items
 .CellUnderline(.FocusItem, 0) = True

End With

The following VFP sample underlines the focused cell:

with thisform.Gantt1.Items
 .DefaultItem = .FocusItem
 .CellUnderline(0, 0) = .t.
endwith

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

Gantt1.Items.CellBold(, Gantt1.Items.ItemCell(Gantt1.Items(0), 0)) = True

Gantt1.Items.CellBold(Gantt1.Items(0), 0) = True

Gantt1.Items.CellBold(Gantt1.Items(0), "ColumnName") = True

property Items.CellVAlignment ([Item as Variant], [ColIndex as Variant])
as VAlignmentEnum
Retrieves or sets a value that indicates how the cell's caption is vertically aligned.

Type Description
Item as Variant A long expression that identifies the item's handle

ColIndex as Variant
A long expression that indicates the column's index or the
cell's handle, a string expression that indicates the
column's caption.

VAlignmentEnum A VAlignmentEnum expression that indicates the cell's
vertically alignment.

Use the CellVAlignment property to specify the vertically alignment for the cell's caption.
Use the CellSingleLine property to specify whether a cell uses single or multiple lines. Use
the CellHAlignment property to align horizontally the cell. The +/- button is aligned
accordingly to the cell's caption. Use the Def(exCellVAlignment) property to specify the
same vertical alignment for the entire column.

The following VB sample aligns the focused cell to the bottom:

With Gantt1.Items
 .CellVAlignment(.FocusItem, 0) = VAlignmentEnum.BottomAlignment
End With

The following C++ sample right aligns the focused cell:

#include "Items.h"
CItems items = m_gantt.GetItems();
items.SetCellVAlignment(COleVariant(items.GetFocusItem()), COleVariant((long)0), 2
/*BottomAlignment*/);

The following VB.NET sample right aligns the focused cell:

With AxGantt1.Items
 .CellVAlignment(.FocusItem, 0) = EXGANTTLib.VAlignmentEnum.BottomAlignment

End With

The following C# sample right aligns the focused cell:

axGantt1.Items.set_CellVAlignment(axGantt1.Items.FocusItem, 0,
EXGANTTLib.VAlignmentEnum.BottomAlignment);

The following VFP sample right aligns the focused cell:

with thisform.Gantt1.Items
 .DefaultItem = .FocusItem
 .CellVAlignment(0,0) = 2 && BottomAlignment
endwith

property Items.CellWidth([Item as Variant], [ColIndex as Variant]) as Long
Retrieves or sets a value that indicates the width of the inner cell.

Type Description

Item as Variant
A long expression that indicates the handle of the item
where the cell is, or 0. If the Item parameter is 0, the
ColIndex parameter must indicate the handle of the cell.

ColIndex as Variant

A long expression that indicates the index of the column
where a cell is divided, or a long expression that indicates
the handle of the cell being divided, if the Item parameter
is missing or it is zero.

Long A long expression that indicates the width of the cell.

The CellWidth property specifies the cell's width. The CellWidth property has effect only if
the cell contains inner cells. The SplitCell method splits a cell in two cells (the newly
created cell is called inner cell). Use the InnerCell property to get the inner cell. Use the
CellParent property to get the parent of the inner cell. Use the CellItem property to get the
item that's the owner of the cell. Use the BeginUpdate and EndUpdate methods to refresh
the cell's width when changing it on the fly.

The CellWidth property specifies the width of the cell, where the cell is divided in two or
multiple (inner) cells like follows:

if the CellWidth property is less than zero, the master cell calculates the width of the
inner cell, so all the inner cells with CellWidth less than zero have the same width in the
master cell.
if the CellWidth property is greater than zero, it indicates the width in pixels of the inner
cell.

By default, the CellWidth property is -1, and so when the user splits a cell the inner cell
takes the right half of the area occupied by the master cell.

The following VB sample splits the first visible cell in three cells:

With Gantt1
 .BeginUpdate
 .DrawGridLines = exAllLines

 With .Items
 Dim h As HITEM, f As HCELL
 h = .FirstVisibleItem
 f = .ItemCell(h, 0)
 f = .SplitCell(, f)
 .CellCaption(, f) = "Split 1"
 f = .SplitCell(, f)
 .CellCaption(, f) = "Split 2"
 End With
 .EndUpdate
End With

The following VB sample specifies that the inner cell should have 32 pixels:

With Gantt1
 .BeginUpdate
 .DrawGridLines = exAllLines
 With .Items
 Dim h As HITEM, f As HCELL
 h = .FirstVisibleItem
 f = .ItemCell(h, 0)
 f = .SplitCell(, f)
 .CellCaption(, f) = "Split"
 .CellWidth(, f) = 32
 End With
 .EndUpdate
End With

The following VB sample adds an inner cell to the focused cell with 48 pixels width:

Gantt1.BeginUpdate
With Gantt1.Items
 Dim h As Long
 h = .SplitCell(.FocusItem, 0)
 .CellBackColor(, h) = vbBlack
 .CellForeColor(, h) = vbWhite
 .CellHAlignment(, h) = CenterAlignment
 .CellCaption(, h) = "inner"

 .CellWidth(, h) = 48
End With
Gantt1.EndUpdate

The following C++ sample adds an inner cell to the focused cell with 48 pixels width:

#include "Items.h"
m_gantt.BeginUpdate();
CItems items = m_gantt.GetItems();
COleVariant vtItem(items.GetFocusItem()), vtColumn(long(0)), vtMissing; V_VT(
&vtMissing) = VT_ERROR;
COleVariant vtInner = items.GetSplitCell(vtItem, vtColumn);
items.SetCellWidth(vtMissing, vtInner, 48);
items.SetCellBackColor(vtMissing, vtInner, 0);
items.SetCellForeColor(vtMissing, vtInner, RGB(255,255,255));
items.SetCellCaption(vtMissing, vtInner, COleVariant("inner"));
items.SetCellHAlignment(vtMissing, vtInner, 1);
m_gantt.EndUpdate();

The following VB.NET sample adds an inner cell to the focused cell with 48 pixels width:

With AxGantt1
 .BeginUpdate()
 With .Items
 Dim iInner As Integer
 iInner = .SplitCell(.FocusItem, 0)
 .CellCaption(, iInner) = "inner"
 .CellHAlignment(, iInner) = EXGANTTLib.AlignmentEnum.CenterAlignment
 .CellWidth(, iInner) = 48
 .CellBackColor(, iInner) = 0
 .CellForeColor(, iInner) = ToUInt32(Color.White)
 End With
 .EndUpdate()
End With

The following C# sample adds an inner cell to the focused cell with 48 pixels width:

EXGANTTLib.Items items = axGantt1.Items;
axGantt1.BeginUpdate();

object iInner = items.get_SplitCell(axGantt1.Items.FocusItem, 0);
items.set_CellCaption(null, iInner, "inner");
items.set_CellHAlignment(null, iInner, EXGANTTLib.AlignmentEnum.CenterAlignment);
items.set_CellBackColor(null, iInner, ToUInt32(Color.Black));
items.set_CellForeColor(null, iInner, ToUInt32(Color.White));
items.set_CellWidth(null, iInner, 48);
axGantt1.EndUpdate();

property Items.ChildCount (Item as HITEM) as Long

Retrieves the number of children items.

Type Description
Item as HITEM A long expression that indicates the item's handle.
Long A long value that indicates the number of child items.

Use the ChildCount property checks whether an item has child items. Use the ItemChild
property to get the first child item, if there is one, 0 else. Use the ItemHasChildren property
to specify whether the item should display a +/- sign even if it contains no child items.

method Items.ClearBars (Item as HITEM)
Clears the bars from the item.

Type Description

Item as HITEM

A long expression that indicates the the handle of the item
where the bars are removed. If the Item parameter is 0,
the ClearBars method removes all bars from all items. In
this case the DefaultItem property should be 0 (by default
), else it refers a single item being indicated by the
DefaultItem property.

Use the ClearBars method to remove all bars in the specified item. If the Item parameter is
not 0 (indicates a valid handle), the ClearBars removes only bars in the specified item. If
the Item parameter is 0, the ClearBars method removes all bars from all items, in other
words from the entire chart. Use the BeginUpdate / EndUpdate methods to refresh the
control's content after removing a bar or several bars.

Use the RemoveBar method to remove a bar from an item. Use the Remove method to
remove a type of bar from the Bars collection. Use the Add method to add new types of
bars to the Bars collection. Use the FirstVisibleDate property to specify the first visible date
in the chart area. Use the Key parameter to identify a bar inside an item. Use the ItemBar
property to access a bar inside the item. Use the PaneWidth property to specify the width
of the chart. Use the NonworkingDays property to specify the non-working days.

method Items.ClearCellBackColor ([Item as Variant], [ColIndex as
Variant])
Clears the cell's background color.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index or the
cell's handle, a string expression that indicates the
column's caption.

The ClearCellBackColor method clears the cell's background color when the CellBackColor
property is used. Use the BackColor property to specify the control's background color.

method Items.ClearCellForeColor ([Item as Variant], [ColIndex as
Variant])
Clears the cell's foreground color.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index or the
cell's handle, a string expression that indicates the
column's caption.

The ClearCellForeColor method clears the cell's foreground color when CellForeColor
property was used.

method Items.ClearCellHAlignment ([Item as Variant], [ColIndex as
Variant])
Clears the cell's alignment.

Type Description
Item as Variant A long expression that indicates the handle of the item.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's key or the
column's caption.

Use the ClearCellHAlignment method to clear the alignment of the cell's caption previously
set using the CellHAlignment property. If the CellHAlignment property is not called, the
Alignment property of the Column object specifies the alignment of the cell's caption.

method Items.ClearItemBackColor (Item as HITEM)
Clears the item's background color.

Type Description

Item as HITEM
A long expression that indicates the item's handle. If the
Item is 0, the ClearItemBackColor clears the background
color for all items.

The ClearItemBackColor method clears the item's background color when ItemBackColor
property is used (columns/items part only). The ClearItemBackColor method clears the
item's background color when ItemBackColor property is used (chart part only).

method Items.ClearItemForeColor (Item as HITEM)
Clears the item's foreground color.

Type Description
Item as HITEM A long expression that indicates the item's handle.

The ClearItemForeColor method clears the item's foreground color when ItemForeColor
property is used. Use the ForeColor property to change the control's foreground color.

method Items.ClearLinks ()
Clears all links in the chart.

Type Description

Use the ClearLinks method to remove all links in the control. Use the ShowLinks property to
hide all links in the control. Use the RemoveLink method to remove a specified link. Use the
AddLink method to add a link between two bars. Use the RemoveAllItems method to
remove all items in the control. Use the RemoveItem method to remove an item. The
RemoveItem method removes all links related to the item.

property Items.DefaultItem as HITEM

Retrieves or sets the default item's handle.

Type Description

HITEM
A long expression that indicates the handle of the item
that's used by all properties of the Items object, that have
a parameter Item.

The property is used in VFP implementation. The VFP fires "Invalid Subscript Range" error,
while it tries to process a number grater than 65000. Since, the HITEM is a long value that
most of the time exceeds 65000, the VFP users have to use this property, instead passing
directly the handles to properties.

The following sample shows to change the cell's image:

.Items.DefaultItem = .Items.AddItem("Item 1")

.Items.CellImage(0,1) = 2

In VFP the following sample fires: "Invalid Subscript Range":

i = .Items.AddItem("Item 1")
.Items.CellImage(i,1) = 2

because the i variable is grater than 65000, and the VFP thinks that the CellImage is an
array, but it is not. It is a property. Hope that future versions will correct this problem in VFP.

So, if you pass zero to a property that has a parameter titled Item, the control takes
instead the DefaultItem value.

Let's say that your code looks like follows:

LOCAL h
SCAN
 key="K"+ALLTRIM(STR(projekte.ID))
 WITH THISFORM.myplan.Items
 h = .AddItem(ALLTRIM(projekte.project_name))
 .AddBar(h,"Project Summary" , DTOT(projekte.sdate),DTOT(projekte.edate), _key, "")
 .ItemBar(h ,_key,3) = "my text"
 ENDWITH
ENDSCAN

The h variable indicates the handle of the newly created item. This value is always greater
than 65000, so the VFP environment always fires an error when compiling the AddBar and
ItemBar properties because it considers accessing an array, and its limit is 65000. Of
course this problem is related to VFP ignoring the fact that it is calling a property! not an
array, so our products provide a DefaultItem property that help VFP users to pass this
error. So, in VFP the above code should look like follows:

SCAN
 key="K"+ALLTRIM(STR(projekte.ID))
 WITH THISFORM.myplan.Items
 .DefaultItem = .AddItem(ALLTRIM(projekte.project_name))
 .AddBar(0,"Project Summary" , DTOT(projekte.sdate),DTOT(projekte.edate),_key, "")
 THISFORM.myplan.Template = "Items.ItemBar(0,`" + _key + "`,3) = `my text`"
 ENDWITH
ENDSCAN

The difference (marked in red) is that the first parameter for properties like AddBar and
ItemBar is 0, and before calling them the Items.DefaultItem property indicates the handle of
the item being accessed. How it works? The control uses the value of the Items.DefaultItem
property, when the first parameter of the ItemBar, AddBar and so on is 0. The AddItem
property saves before the handle of the newly created item to the DefaultItem property, and
so the VFP error is gone, and the code works like you expect

method Items.Edit ([Item as Variant], [ColIndex as Variant])

Edits a cell.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

The Edit method starts editing an item. The edit operation starts only if the control's
AllowEdit property is True. When the edit operation starts the control fires the
BeforeCellEdit event. Use the BeforeCellEdit event to cancel the edit operation. When the
edit operation ends the control fires the AfterCellEdit event. Use the AfterCellEdit event to
change the cell's caption after edit operation ends. Use the SelStart, SelLength properties
to specify the coordinates of the text being selected when edit starts. The following code
starts editing the first cell: Gantt1.Items.Edit Gantt1.Items(0), 0.

The following VB sample changes the cell's caption when the edit operation ends:

Private Sub Gantt1_AfterCellEdit(ByVal Item As EXGANTTLibCtl.HITEM, ByVal ColIndex As
Long, ByVal NewCaption As String)
 Gantt1.Items.CellCaption(Item, ColIndex) = NewCaption
End Sub

The following VB sample starts editing the cell as soon as the user clicks the item:

Private Sub Gantt1_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 ' Converts the container coordinates to client coordinates
 X = X / Screen.TwipsPerPixelX
 Y = Y / Screen.TwipsPerPixelY
 Dim h As HITEM
 Dim c As Long
 Dim hit As EXGANTTLibCtl.HitTestInfoEnum
 ' Gets the item from (X,Y)
 h = Gantt1.ItemFromPoint(X, Y, c, hit)
 If Not (h = 0) Then
 With Gantt1
 .AllowEdit = True

 With .Items
 .Edit h, 0
 End With
 End With
 End If
End Sub

The following VB.NET sample changes the cell's caption as soon as the edit operation
ends.

Private Sub AxGantt1_AfterCellEdit(ByVal sender As Object, ByVal e As
AxEXGANTTLib._IGanttEvents_AfterCellEditEvent) Handles AxGantt1.AfterCellEdit
 AxGantt1.Items.CellCaption(e.item, e.colIndex) = e.newCaption
End Sub

The following C# sample changes the cell's caption as soon as the edit operation ends.

private void axGantt1_AfterCellEdit(object sender,
AxEXGANTTLib._IGanttEvents_AfterCellEditEvent e)
{
 axGantt1.Items.set_CellCaption(e.item, e.colIndex, e.newCaption);
}

The following C++ sample changes the cell's caption as soon as the edit operation ends.

void OnAfterCellEditGantt1(long Item, long ColIndex, LPCTSTR NewCaption)
{
 m_gantt.GetItems().SetCellCaption(COleVariant(Item), COleVariant(ColIndex),
COleVariant(NewCaption));
}

The following VFP sample changes the cell's caption as soon as the edit operation ends.

*** ActiveX Control Event ***
LPARAMETERS item, colindex, newcaption

with thisform.Gantt1.Items
 .DefaultItem = item
 .CellCaption(0, colindex) = newcaption

endwith

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

Gantt1.Items.CellBold(, Gantt1.Items.ItemCell(Gantt1.Items(0), 0)) = True

Gantt1.Items.CellBold(Gantt1.Items(0), 0) = True

Gantt1.Items.CellBold(Gantt1.Items(0), "ColumnName") = True

property Items.EnableItem(Item as HITEM) as Boolean

Returns or sets a value that determines whether a item can respond to user-generated
events.

Type Description

Item as HITEM A long expression that indicates the item's handle that is
enabled or disabled.

Boolean A boolean expression that indicates whether the item is
enabled or disabled.

Use the EnableItem property to disable an item. A disabled item looks grayed and it is
selectable. Use the SelectableItem property to specify the user can select an item. Once
that an item is disabled all the cells of the item are disabled, so CellEnabled property has
no effect. To disable a column you can use Enabled property of a Column object.

method Items.EnsureVisibleItem (Item as HITEM)

Ensures the given item is in the visible client area.

Type Description

Item as HITEM A long expression that indicates the item's handle that fits
the client area.

The method doesn't expand parent items. The EnsureVisibleItem method scrolls the
control's content until the item is visible. Use the IsItemVisible to check if an item fits the
control's client area. Use the Scroll method to scroll programmatically the control. Use the
EnsureVisibleColumn method to ensure that a specified column fits the control's client area.

The following VB sample ensures that first item is visible:

Gantt1.Items.EnsureVisibleItem Gantt1.Items(0)

The following C++ sample ensures that first item is visible:

#include "Items.h"
CItems items = m_gantt.GetItems();
items.EnsureVisibleItem(items.GetItemByIndex(0));

The following C# sample ensures that first item is visible:

axGantt1.Items.EnsureVisibleItem(axGantt1.Items[0]);

The following VB.NET sample ensures that first item is visible:

AxGantt1.Items.EnsureVisibleItem(AxGantt1.Items.FocusItem);

The following VFP sample ensures that first item is visible:

with thisform.Gantt1.Items
 .EnsureVisibleItem(.ItemByIndex(0))
endwith

property Items.ExpandItem(Item as HITEM) as Boolean

Expands, or collapses, the child items of the specified item.

Type Description

Item as HITEM

A long expression that indicates the handle of the item
being expanded or collapsed. If the Item is 0, setting the
ExpandItem property expands or collapses all items. For
instance, the ExpandItem(0) = False, collapses all items,
while the ExpandItem(0) = True, expands all items.

Boolean A boolean expression that indicates whether the item is
expanded or collapsed.

Use ExpandItem property to programmatically expand or collapse an item. Use the
ExpandItem property to check whether an items is expanded or collapsed. Before
expanding/collapsing an item, the control fires the BeforeExpandItem event. Use the
BeforeExpandIvent to cancel expanding/collapsing of an item. After item was
expanded/collapsed the control fires the AfterExpandItem event. The following samples
shows how to expand the selected item:
Gantt1.Items.ExpandItem(Gantt1.Items.SelectedItem()) = True. The property has no effect
if the item has no child items. To check if the item has child items you can use ChildCount
property. Use the ItemHasChildren property to display a +/- expand sign to the item even if
it doesn't contain child items. The ExpandOnSearch property specifies whether the control
expands nodes when incremental searching is on (AutoSearch property is different than 0)
and user types characters when the control has the focus. Use the ExpandOnKeys property
to specify whether the user expands or collapses the focused items using arrow keys. Use
the InsertItem property to add child items.

The following VB sample programmatically expands the item when the user selects it :

Private Sub Gantt1_SelectionChanged()
 Gantt1.Items.ExpandItem(Gantt1.Items.SelectedItem()) = True
End Sub

The following VB sample expands programmatically the focused item:

With Gantt1.Items
 .ExpandItem(.FocusItem) = True
End With

The following C++ sample expands programmatically the focused item:

#include "Items.h"
CItems items = m_gantt.GetItems();
items.SetExpandItem(items.GetFocusItem(), TRUE);

The following VB.NET sample expands programmatically the focused item:

AxGantt1.Items.ExpandItem(AxGantt1.Items.FocusItem) = True

The following C# sample expands programmatically the focused item:

axGantt1.Items.set_ExpandItem(axGantt1.Items.FocusItem, true);

The following VFP sample expands programmatically the focused item:

with thisform.Gantt1.Items
 .DefaultItem = .FocusItem
 .ExpandItem(0) = .t.
endwith

property Items.FindItem (Caption as Variant, [ColIndex as Variant],
[StartIndex as Variant]) as HITEM

Finds an item, looking for Caption in ColIndex column. The searching starts at StartIndex
item.

Type Description

Caption as Variant A Variant expression that indicates the caption that is
searched for.

ColIndex as Variant
A long expression that indicates the column's index or the
cell's handle, a string expression that indicates the
column's caption.

StartIndex as Variant A long value that indicates the index of item from where
the searching starts.

HITEM A long expression that indicates the item's handle that
matches the criteria.

Use the FindItem to search for an item. Finds a control's item that matches CellCaption(
Item, ColIndex) = Caption. The StartIndex parameter indicates the index from where the
searching starts. If it is missing, the searching starts from the item with the 0 index. The
searching is case sensitive only if the ASCIIUpper property is empty. Use the AutoSearch
property to enable incremental search feature within the column.

The following VB sample selects the first item that matches "DUMON" on the first column:

Gantt1.Items.SelectItem(Gantt1.Items.FindItem("DUMON", 0)) = True

The following C++ sample finds and selects an item:

#include "Items.h"
CItems items = m_gantt.GetItems();
COleVariant vtMissing;
long hFind = items.GetFindItem(COleVariant("King"), COleVariant("LastName"), vtMissing
);
if (hFind != NULL)
 items.SetSelectItem(hFind, TRUE);

The following C# sample finds and selects an item:

axGantt1.Items.set_SelectItem(axGantt1.Items.get_FindItem("Child 2", 0, 0), true);

The following VB.NET sample finds and selects an item:

With AxGantt1.Items
 Dim iFind As Integer
 iFind = .FindItem("Child 2", 0)
 If Not (iFind = 0) Then
 .SelectItem(iFind) = True
 End If
End With

The following VFP sample finds and selects an item:

with thisform.Gantt1.Items
 .DefaultItem = .FindItem("Child 2",0)
 if (.DefaultItem <> 0)
 .SelectItem(0) = .t.
 endif
endwith

property Items.FindItemData (UserData as Variant, [StartIndex as
Variant]) as HITEM

Finds the item giving its data.

Type Description

UserData as Variant A Variant expression that indicates the value being
searched.

StartIndex as Variant A long expression that indicates the index of the item
where the searching starts.

HITEM A long expression that indicates the handle of the item
found.

Use the FindItemData property to search for an item giving its extra-data. Use the ItemData
property to associate an extra data to an item. Use the FindItem property to locate an item
given its caption. Use the FindPath property to search for an item given its path.

property Items.FindPath (Path as String) as HITEM

Finds an item given its path.

Type Description
Path as String A string expression that indicates the item's path.

HITEM A long expression that indicates the item's handle that
matches the criteria.

The FindPath property searches the item on the column SearchColumnIndex. Use the
FullPath property in order to get the item's path. Use the FindItem to search for an item.

The following VB sample selects the item based on its path:

Gantt1.Items.SelectItem(Gantt1.Items.FindPath("Files and Folders\Hidden Files and
Folders\Do not show hidden files and folder")) = True

The following C++ sample selects the item based on its path:

#include "Items.h"
CItems items = m_gantt.GetItems();
COleVariant vtMissing;
long hFind = items.GetFindPath("Files and Folders\\Hidden Files and Folders\\Do not
show hidden files and folder");
if (hFind != NULL)
 items.SetSelectItem(hFind, TRUE);

The following VB.NET sample selects the item based on its path:

With AxGantt1.Items
 Dim iFind As Integer
 iFind = .FindPath("Files and Folders\Hidden Files and Folders\Do not show hidden files
and folder")
 If Not (iFind = 0) Then
 .SelectItem(iFind) = True
 End If
End With

The following C# sample selects the item based on its path:

int iFind = axGantt1.Items.get_FindPath("Files and Folders\\Hidden Files and Folders\\Do
not show hidden files and folder");
if (iFind != 0)
 axGantt1.Items.set_SelectItem(iFind, true);

The following VFP sample selects the item based on its path:

with thisform.Gantt1.Items
 .DefaultItem = .FindPath("Files and Folders\Hidden Files and Folders\Do not show
hidden files and folder")
 if (.DefaultItem <> 0)
 .SelectItem(0) = .t.
 endif
endwith

property Items.FirstItemBar (Item as HITEM) as Variant
Gets the key of the first bar in the item.

Type Description

Item as HITEM A HITEM expression that indicates the handle of the item
where the bars are enumerated.

Variant A String expression that indicates the key of the first bar in
the item, or empty if the item contains no bar.

Use the FirstItemBar and NextItemBar methods to enumerate the bars inside the item. Use
the ItemBar property to access properties of the specified bar. Use the AddBar method to
add new bars to the item. Use the RemoveBar method to remove a bar from an item. Use
the ClearBars method to remove all bars in the item. Use the ItemBar(exBarsCount)
property to retrieve the number of bars in a specified item.

The following VB sample enumerates the bars in the item (h indicates the handle of the
item):

With Gantt1
 If Not (h = 0) Then
 Dim k As Variant
 k = .Items.FirstItemBar(h)
 While Not IsEmpty(k)
 Debug.Print "Key = " & k
 k = .Items.NextItemBar(h, k)
 Wend
 End If
End With

The following C++ sample enumerates the bars in the item (h indicates the handle of the
item):

CItems items = m_gantt.GetItems();
COleVariant vtBar = items.GetFirstItemBar(h) ;
while (V_VT(&vtBar) != VT_EMPTY)
{
 OutputDebugString(V2S(&vtBar));
 OutputDebugString("\n");
 vtBar = items.GetNextItemBar(h, vtBar);

}

where the V2S function converts a Variant expression to a string:

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

The following VB.NET sample enumerates the bars in the item (h indicates the handle of
the item):

With AxGantt1
 If Not (h = 0) Then
 Dim k As Object
 k = .Items.FirstItemBar(h)
 While TypeOf k Is String
 System.Diagnostics.Debug.Print(k.ToString)
 k = .Items.NextItemBar(h, k)
 End While
 End If
End With

The following C# sample enumerates the bars in the item (h indicates the handle of the
item):

object k = axGantt1.Items.get_FirstItemBar(h);
while (k != null)
{
 System.Diagnostics.Debug.Print(k.ToString());

 k = axGantt1.Items.get_NextItemBar(h, k);
}

The following VFP sample enumerates the bars in the item (h indicates the handle of the
item):

With thisform.Gantt1
 If Not (h = 0) Then
 local k
 k = .Items.FirstItemBar(h)
 do While !empty(k)
 ?k
 k = .Items.NextItemBar(h, k)
 enddo
 Endif
EndWith

In VFP, please make sure that you are using non empty values for the keys. For instance, if
you are omitting the Key parameter of the AddBar method, an empty key is missing. If you
need to use the FirstItemBar and NextItemBar properties, you have to use non empty keys
for the bars.

property Items.FirstLink as Variant
Gets the key of the first link.

Type Description

Variant A string expression that indicates the key of the first link,
or empty, if there are no links.

Use the FirstLink and NextLink properties to enumerate the links in the control. The FirstLink
property retrieves an empty value, if there are no links in the control. Use the AddLink
property to link two bars. Use the ShowLinks property to show or hide the links. Use the
Link property to access a property of the link.

The following VB sample enumerates the links:

With Gantt1.Items
 Dim k As Variant
 k = .FirstLink()
 While Not IsEmpty(k)
 Debug.Print "LinkKey = " & k
 k = .NextLink(k)
 Wend
End With

The following C++ sample enumerates the links:

CItems items = m_gantt.GetItems();
COleVariant vtLinkKey = items.GetFirstLink() ;
while (V_VT(&vtLinkKey) != VT_EMPTY)
{
 OutputDebugString(V2S(&vtLinkKey));
 OutputDebugString("\n");
 vtLinkKey = items.GetNextLink(vtLinkKey);
}

where the V2S function converts a Variant expression to a string:

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)

 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

The following VB.NET sample enumerates the links:

With AxGantt1.Items
 Dim k As Object
 k = .FirstLink
 While (TypeOf k Is String)
 System.Diagnostics.Debug.Print(k.ToString)
 k = .NextLink(k)
 End While
End With

The following C# sample enumerates the links:

object k = axGantt1.Items.FirstLink;
while (k != null)
{
 System.Diagnostics.Debug.Print(k.ToString());
 k = axGantt1.Items.get_NextLink(k);
}

The following VFP sample enumerates the links:

With thisform.Gantt1.Items
 local k
 k = .FirstLink
 do While !empty(k)
 ?k
 k = .NextLink(k)

 enddo
endwith

property Items.FirstVisibleItem as HITEM

Retrieves the handle of the first visible item into control.

Type Description

HITEM A long expression that indicates the handle of the first
visible item.

Use the FirstVisibleItem, NextVisibleItem and IsItemVisible properties to get the items that
fit the client area. Use the NextVisibleItem property to get the next visible item. Use the
IsVisibleItem property to check whether an item fits the control's client area.

The following VB sample enumerates the items that fit the control's client area:

On Error Resume Next
Dim h As HITEM
Dim i As Long, j As Long, nCols As Long
nCols = Gantt1.Columns.Count
With Gantt1.Items
 h = .FirstVisibleItem
 While Not (h = 0) And .IsItemVisible(h)
 Dim s As String
 s = ""
 For j = 0 To nCols - 1
 s = s + .CellCaption(h, j) + Chr(9)
 Next
 Debug.Print s
 h = .NextVisibleItem(h)
 Wend
End With

The following C++ sample enumerates the items that fit the control's client area:

#include "Items.h"
CItems items = m_gantt.GetItems();
long hItem = items.GetFirstVisibleItem();
while (hItem && items.GetIsItemVisible(hItem))
{
 OutputDebugString(V2S(&items.GetCellCaption(COleVariant(hItem), COleVariant(

long(0)))));
 hItem = items.GetNextVisibleItem(hItem);
}

The following VB.NET sample enumerates the items that fit the control's client area:

With AxGantt1.Items
 Dim hItem As Integer
 hItem = .FirstVisibleItem
 While Not (hItem = 0)
 If (.IsItemVisible(hItem)) Then
 Debug.Print(.CellCaption(hItem, 0))
 hItem = .NextVisibleItem(hItem)
 Else
 Exit While
 End If
 End While
End With

The following C# sample enumerates the items that fit the control's client area:

EXGANTTLib.Items items = axGantt1.Items;
int hItem = items.FirstVisibleItem;
while ((hItem != 0) && (items.get_IsItemVisible(hItem)))
{
 object strCaption = items.get_CellCaption(hItem, 0);
 System.Diagnostics.Debug.WriteLine(strCaption != null ? strCaption.ToString() : "");
 hItem = items.get_NextVisibleItem(hItem);
}

The following VFP sample enumerates the items that fit the control's client area:

with thisform.Gantt1.Items
 .DefaultItem = .FirstVisibleItem
 do while ((.DefaultItem <> 0) and (.IsItemVisible(0)))
 wait window .CellCaption(0, 0)
 .DefaultItem = .NextVisibleItem(0)
 enddo
endwith

property Items.FocusItem as HITEM

Retrieves the handle of item that has the focus.

Type Description

HITEM A long expression that indicates the handle of the focused
item.

The FocusItem property specifies the handle of the focused item. If there is no focused
item the FocusItem property retrieves 0. At one moment, only one item can be focused.
When the selection is changed the focused item is changed too. Use the SelectCount
property to get the number of selected items. Use the SelectedItem property to get the
selected item. Use the SelectItem to select or unselect a specified item. If the control
supports only single selection, you can use the FocusItem property to get the
selected/focused item because they are always the same. Use the ShowFocusRect
property to indicate whether the control draws a marking rectangle around the focused
item. You can change the focused item, by selecting a new item using the SelectItem
method. If the items is not selectable, it is not focusable as well. Use the SelectableItem
property to specify whether an item is selectable/focusable.

property Items.FormatCell([Item as Variant], [ColIndex as Variant]) as
String
Specifies the custom format to display the cell's content.

Type Description
Item as Variant A long expression that indicates the handle of the item.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's key or the
column's caption.

String
A string expression that indicates the format to be applied
on the cell's value, including HTML formatting, if the cell
supports it.

By default, the FormatCell property is empty. The format is being applied if valid (not
empty, and syntactically correct). The expression may be a combination of variables,
constants, strings, dates and operators, and value. The value operator gives the value to
be formatted. A string is delimited by ", ` or ' characters, and inside they can have the
starting character preceded by \ character, ie "\"This is a quote\"". A date is delimited by #
character, ie #1/31/2001 10:00# means the January 31th, 2001, 10:00 AM. The
FormatColumn property applies the predefined format for all cells in the columns. The
CellCaption property indicates the cell's caption.

The CellValue property of the cell is being shown as:

formatted using the FormatCell property, if it is valid
formatted using the FormatColumn property, if it is valid

In other words, all cells applies the format of the FormatColumn property, excepts the cells
with the FormatCell property being set. If the cell belongs to a column with the
FireFormatColumn property on True, the Value parameter of the FormatColumn event
shows the newly caption for the cell to be shown.

For instance:

the "currency(value)" displays the column using the current format for the currency ie,
1000 gets displayed as $1,000.00
the "longdate(date(value))" converts the value to a date and gets the long format to
display the date in the column, ie #1/1/2001# displays instead Monday, January 01,
2001
the "'' + ((0:=proper(value)) left 1) + '' + (=:0 mid 2)" converts the name to
proper, so the first letter is capitalized, bolds the first character, and let unchanged the
rest, ie a "mihai filimon" gets displayed "Mihai Filimon".

the "len(value) ? ((0:=dbl(value)) < 10 ? '<fgcolor=808080>' : '') +
currency(=:0)" displays the cells that contains not empty daya, the value in currency
format, with a different font and color for values less than 10, and bolded for those that
are greater than 10, as can see in the following screen shot in the column (A+B+C):

The expression supports cell's identifiers as follows:

%0, %1, %2, ... specifies the value of the cell in the column with the index 0, 1 2, ...
The CellCaption property specifies the cell's value. For instance, "%0 format ``"
formats the value on the cell with the index 0, using current regional setting, while
"int(%1)" converts the value of the column with the index 1, to integer.

Other known operators for auto-numbering are:

number index 'format', indicates the index of the item. The first added item has the
index 0, the second added item has the index 1, and so on. The index of the item
remains the same even if the order of the items is changed by sorting. For instance, 1
index '' gets the index of the item starting from 1 while 100 index '' gets the index of the
item starting from 100. The number indicates the starting index, while the format is a
set of characters to be used for specifying the index. If the format is missing, the index
of the item is formatted as numbers. For instance: 1 index 'A-Z' gets the index as A, B,
C... Z, BA, BB, ... BZ, CA, The 1 index 'abc' gives the index as:
a,b,c,ba,bb,bc,ca,cb,cc,.... You can use other number formatting function to format the
returned value. For instance "1 index '' format '0||2|:'" gets the numbers grouped by 2
digits and separated by : character.

In the following screen shot the FormatColumn("Col 1") = "1 index ''"

In the following screen shot the FormatColumn("Col 1") = "1 index 'A-Z'"

number apos 'format' indicates the absolute position of the item. The first displayed
item has the absolute position 0 (scrolling position on top), the next visible item is 1,
and so on. The number indicates the starting position, while the format is a set of
characters to be used for specifying the position. For instance, 1 apos '' gets the
absolute position of the item starting from 1, while 100 apos '' gets the position of the
item starting from 100. If the format is missing, the absolute position of the item is
formatted as numbers.

In the following screen shot the FormatColumn("Col 1") = "1 apos ''"

In the following screen shot the FormatColumn("Col 1") = "1 apos 'A-Z'"

number pos 'format' indicates the relative position of the item. The relative position is
the position of the visible child item in the parent children collection. The number
indicates the starting position, while the format is a set of characters to be used for
specifying the position. For instance, 1 pos '' gets the relative position of the item
starting from 1, while 100 pos '' gets the relative position of the item starting from 100.
If the format is missing, the relative position of the item is formatted as numbers. The
difference between pos and opos can be seen while filtering the items in the control.
For instance, if no filter is applied to the control, the pos and opos gets the same
result. Instead, if the filter is applied, the opos gets the position of the item in the list
of unfiltered items, while the pos gets the position of the item in the filtered list.

In the following screen shot the FormatColumn("Col 2") = "'' + 1 pos '' + ' ' +
value"

In the following screen shot the FormatColumn("Col 2") = "'' + 1 pos 'A-Z' + ' '
+ value"

number opos 'format' indicates the relative old position of the item. The relative old
position is the position of the child item in the parent children collection. The number
indicates the starting position, while the format is a set of characters to be used for
specifying the position.For instance, 1 pos '' gets the relative position of the item
starting from 1, while 100 pos '' gets the relative position of the item starting from 100.
If the format is missing, the relative position of the item is formatted as numbers. The
difference between pos and opos can be seen while filtering the items in the control.
For instance, if no filter is applied to the control, the pos and opos gets the same
result. Instead, if the filter is applied, the opos gets the position of the item in the list
of unfiltered items, while the pos gets the position of the item in the filtered list.
number rpos 'format' indicates the relative recursive position of the item. The recursive
position indicates the position of the parent items too. The relative position is the
position of the visible child item in the parent children collection. The number indicates
the starting position, while the format is of the following type
"delimiter|format|format|...". If the format is missing, the delimiter is . character, and
the positions are formatted as numbers. The format is applied consecutively to each
parent item, from root to item itself.

In the following screen shot the FormatColumn("Col 1") = "1 rpos ''"

In the following screen shot the FormatColumn("Col 1") = "1 rpos ':|A-Z'"

In the following screen shot the FormatColumn("Col 1") = "1 rpos '.|A-Z|'"

In the following screen shot the FormatColumn("Col 1") = "1 apos ''" and
FormatColumn("Col 2") = "'' + 1 rpos '.|A-Z|' + ' ' +
value"

number rindex 'format', number rapos 'format' and number ropos 'format' are working
similar with number rpos 'format', excepts that they gives the index, absolute position,
or the old child position.

This property/method supports predefined constants and operators/functions as described
here.

property Items.FullPath (Item as HITEM) as String

Returns the fully qualified path of the referenced item in the ExGantt control.

Type Description
Item as HITEM A long expression that indicates the handle of the item.
String A string expression that indicates the fully qualified path.

Use the FullPath property in order to get the fully qualified path of the referenced item. Use
PathSeparator to change the separator used by FullPath property. Use the FindPath
property to get the item's selected based on its path. The fully qualified path is the
concatenation of the text in the given cell's caption property on the column
SearchColumnIndex with the CellCaption property values of all its ancestors.

property Items.InnerCell ([Item as Variant], [ColIndex as Variant], [Index
as Variant]) as Variant
Retrieves the inner cell.

Type Description

Item as Variant
A long expression that indicates the handle of the item
where the cell is, or 0. If the Item parameter is 0, the
ColIndex parameter must indicate the handle of the cell.

ColIndex as Variant

A long expression that indicates the index of the column
where a cell is divided, or a long expression that indicates
the handle of the cell being divided, if the Item parameter
is missing or it is zero.

Index as Variant
A long expression that indicates the index of the inner
being requested. If the Index parameter is missing or it is
zero, the InnerCell property retrieves the master cell.

Variant A long expression that indicates the handle of the inner
cell.

Use the InnerCell property to get the inner cell. The InnerCell(, , 0) property always
retrieves the same cell. The InnerCell(, , 1) retrieves the first inner cell, and so on. The
InnerCells property always retrieves a non empty value. For instance, if a cell contains only
two splited cells, the InnerCell(, , 3), or InnerCell(, , 4), and so on, always retrieves the
last inner cell. The SplitCell method splits a cell in two cells (the newly created cell is called
inner cell). Use the CellParent property to get the parent of the inner cell. Use the CellItem
property to get the item that's the owner of the cell. Use the CellWidth property to specify
the width of the inner cell. Use the CellParent property to determine whether the cell is a
master cell or an inner cell. If the CellParent property gets 0, it means that the cell is
master, else it is inner.

The following VB sample specifies whether a cell contains inner cells (the function checks
whether a cell is splitted):

Private Function isSplit(ByVal g As EXGANTTLibCtl.Gantt, ByVal h As
EXGANTTLibCtl.HITEM, ByVal c As Long) As Boolean
 With g.Items
 isSplit = IIf(Not .InnerCell(h, c, 0) = .InnerCell(h, c, 1), True, False)
 End With
End Function

The following VB sample gets the master cell:

Private Function getMaster(ByVal g As EXGANTTLibCtl.Gantt, ByVal h As
EXGANTTLibCtl.HITEM, ByVal c As Long) As EXGANTTLibCtl.HCELL
 With g.Items
 Dim r As EXGANTTLibCtl.HCELL
 r = c
 If Not (h = 0) Then
 r = .ItemCell(h, c)
 End If
 While Not (.CellParent(, r) = 0)
 r = .CellParent(, r)
 Wend
 getMaster = r
 End With
End Function

The following VB sample counts the inner cells:

Private Function getInnerCount(ByVal g As EXGANTTLibCtl.Gantt, ByVal h As
EXGANTTLibCtl.HITEM, ByVal c As Long) As Long
 With g.Items
 Dim i As Long
 i = -1
 Do
 i = i + 1
 Loop While Not (.InnerCell(h, c, i) = .InnerCell(h, c, i + 1))
 getInnerCount = i
 End With
End Function

The following C++ sample specifies whether a cell contains inner cells (the function checks
whether a cell is splitted):

long V2I(VARIANT* pvtValue)
{
 COleVariant vtResult;
 vtResult.ChangeType(VT_I4, pvtValue);
 return V_I4(&vtResult);
}

BOOL isSplit(CGantt& gantt, long h, long c)
{
 CItems items = gantt.GetItems();
 return V2I(&items.GetInnerCell(COleVariant(h), COleVariant(c), COleVariant((long)0)
)) != V2I(&items.GetInnerCell(COleVariant(h), COleVariant(c), COleVariant((long)1)));
}

The following C++ sample gets the master cell:

long getMaster(CGantt& gantt, long h, long c)
{
 COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
 CItems items = gantt.GetItems();
 long r = c;
 if (h != 0)
 r = items.GetItemCell(h, COleVariant(c));
 while (V2I(&items.GetCellParent(vtMissing, COleVariant(r))) != 0)
 r = V2I(&items.GetCellParent(vtMissing, COleVariant(r)));
 return r;
}

The following C++ sample counts the inner cells:

long getInnerCount(CGantt& gantt, long h, long c)
{
 CItems items = gantt.GetItems();
 COleVariant vtItem(h), vtColumn(c);
 long i = -1;
 do
 {
 i++;
 }
 while (V2I(&items.GetInnerCell(vtItem, vtColumn, COleVariant(i))) != V2I(
&items.GetInnerCell(vtItem, vtColumn, COleVariant((long)(i + 1)))));
 return i;
}

The following VB.NET sample splits the first visible cell in two cells:

With AxGantt1.Items
 Dim i As Object
 i = .SplitCell(.FirstVisibleItem, 0)
 .CellCaption(Nothing, i) = "inner cell"
End With

The following C# sample splits the first visible cell in two cells:

EXGANTTLib.Items items = axGantt1.Items;
object i = items.get_SplitCell(items.FirstVisibleItem, 0);
items.set_CellCaption(null, i, "inner cell");

The following VFP sample splits the first visible cell in two cells:

with thisform.Gantt1.Items
 local i
 i = .SplitCell(.FirstVisibleItem,0)
 local s, crlf
 crlf = chr(13) + chr(10)
 s = "Items" + crlf
 s = s + "{" + crlf
 s = s + "CellCaption(," + str(i) + ") = " + chr(34) + "inner cell" + chr(34) + crlf
 s = s + "}"
 thisform.Gantt1.Template = s
endwith

method Items.InsertControlItem (Parent as HITEM, ControlID as String,
[License as Variant])

Inserts a new item of ActiveX type, and returns a handle to the newly created item.

Type Description

Parent as HITEM

A long expression that indicates the handle of the parent
item where the ActiveX will be inserted. If the argument is
missing then the InsertControlItem property inserts the
ActiveX control as a root item. If the Parent property is
referring a locked item (ItemLocked property), the
InsertControlItem property doesn't insert a new child
ActiveX, instead insert the ActiveX control to the locked
item that's specified by the Parent property.

ControlID as String
A string expression that can be formatted as follows: a
prog ID, a CLSID, a URL, a reference to an Active
document , a fragment of HTML.

License as Variant
A string expression that indicates the runtime license key,
if it is required. An empty string, if the control doesn't
require a runtime license key.

Return Description

HITEM A long expression that indicates the handle of the newly
created item.

Use the AddBar method to add bars to the item. The bars are always shown in the chart
area. Use the PaneWidth property to specify the width of the chart. The control supports
ActiveX hosting, so you can insert any ActiveX component. The ControlID must be
formatted in one of the following ways:

A ProgID such as "Exontrol.Gantt"
A CLSID such as "{8E27C92B-1264-101C-8A2F-040224009C02}"
A URL such as "https://www.exontrol.com"
A reference to an Active document such as "c:\temp\myfile.doc", or
"c:\temp\picture.gif"
A fragment of HTML such as "MSHTML:<HTML><BODY>This is a line of
text</BODY></HTML>"
A fragment of XML

The InsertControlItem property creates an ActiveX control that's hosted by the exGrid
control. The look and feel of the inner ActiveX control depends on the identifier you
are using, and the version of the library that implements the ActiveX control, so you

need to consult the documentation of the inner ActiveX control you are inserting
inside the exGantt control.

Once that an item of ActiveX type has been added you can get the OLE control created
using the ItemObject property. To check if an item contains an ActiveX control you can use
ItemControlID property. To change the height of an ActiveX item you have to use ItemHeight
property. When the control contains at least an item of ActiveX type, it is recommended to
set ScrollBySingleLine property of control to true. Events from contained components are
fired through to your program using the exact same model used in VB6 for components
added at run time (See ItemOleEvent event, OleEvent and OleEventParam). For instance,
when an ActiveX control fires an event, the control forwards that event to your container
using ItemOleEvent event of the exGantt control. Use the ItemObject property to access
the object being created by the InsertControlItem property. Use the ItemHeight property to
specify the height of the item when containing an ActiveX control. Use the ItemWidth
property to specify the width of the ActiveX control. Use the BeginUpdate and EndUpdate
methods to update the control's content when adding ActiveX controls on the fly. Use the
ItemControlID property to retrieve the control's identifier.

The following VB sample adds the Exontrol's
ExCalendar Component:

With Gantt1
 .BeginUpdate
 .ScrollBySingleLine = True
 With Gantt1.Items
 Dim h As HITEM
 h = .InsertControlItem(,
"Exontrol.Calendar")
 .ItemHeight(h) = 182
 With .ItemObject(h)
 .Appearance = 0
 .BackColor = vbWhite
 .ForeColor = vbBlack
 .ShowTodayButton = False
 End With
 End With
 .EndUpdate
End With

The following C++ sample adds the Exontrol's ExOrgChart Component:

#include "Items.h"

#pragma warning(disable : 4146)
#import <ExOrgChart.dll>

CItems items = m_gantt.GetItems();
m_gantt.BeginUpdate();
m_gantt.SetScrollBySingleLine(TRUE);
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
long h = items.InsertControlItem(0, "Exontrol.ChartView", vtMissing);
items.SetItemHeight(h, 182);
EXORGCHARTLib::IChartViewPtr spChart(items.GetItemObject(h));
if (spChart != NULL)
{
 spChart->BeginUpdate();
 spChart->BackColor = RGB(255,255,255);
 spChart->ForeColor = RGB(0,0,0);
 EXORGCHARTLib::INodesPtr spNodes = spChart->Nodes;
 spNodes->Add("Child 1", "Root", "1", vtMissing, vtMissing);
 spNodes->Add("SubChild 1", "1", vtMissing, vtMissing, vtMissing);
 spNodes->Add("SubChild 2", "1", vtMissing, vtMissing, vtMissing);
 spNodes->Add("Child 2", "Root", vtMissing, vtMissing, vtMissing);
 spChart->EndUpdate();

}
m_gantt.EndUpdate();

The sample uses the #import statement to include the ExOrgChart's Type Library. In this
sample, the ItemObject property retrieves an IChartView object. The path to the library
should be provided in case it is not located in your system folder.

The following C# sample adds the Exontrol's ExGantt Component:

axGantt1.BeginUpdate();
EXGANTTLib.Items items = axGantt1.Items;
axGantt1.ScrollBySingleLine = true;
int h = items.InsertControlItem(0, "Exontrol.Gantt","");
items.set_ItemHeight(h, 182);
object ganttInside = items.get_ItemObject(h);
if (ganttInside != null)
{
 EXGANTTLib.Gantt gantt = ganttInside as EXGANTTLib.Gantt;
 if (gantt != null)
 {
 gantt.BeginUpdate();
 gantt.LinesAtRoot = EXGANTTLib.LinesAtRootEnum.exLinesAtRoot;
 gantt.Columns.Add("Column 1");
 gantt.Columns.Add("Column 2");
 gantt.Columns.Add("Column 3");
 EXGANTTLib.Items itemsInside = gantt.Items;
 int hInside = itemsInside.AddItem("Item 1");
 itemsInside.set_CellCaption(hInside, 1, "SubItem 1");
 itemsInside.set_CellCaption(hInside, 2, "SubItem 2");
 hInside = itemsInside.InsertItem(hInside, null, "Item 2");
 itemsInside.set_CellCaption(hInside, 1, "SubItem 1");
 itemsInside.set_CellCaption(hInside, 2, "SubItem 2");
 gantt.EndUpdate();
 }
}
axGantt1.EndUpdate();

The following VB.NET sample adds the Exontrol's ExOrgChart Component:

With AxGantt1
 .BeginUpdate()
 .ScrollBySingleLine = True
 With .Items
 Dim hItem As Integer
 hItem = .InsertControlItem(, "Exontrol.ChartView")
 .ItemHeight(hItem) = 182
 With .ItemObject(hItem)
 .BackColor = ToUInt32(Color.White)
 .ForeColor = ToUInt32(Color.Black)
 With .Nodes
 .Add("Child 1", , "1")
 .Add("SubChild 1", "1")
 .Add("SubChild 2", "1")
 .Add("Child 2")
 End With
 End With
 End With
 .EndUpdate()
End With

The following VFP sample adds the Exontrol's ExGrid Component:

with thisform.Gantt1
 .BeginUpdate()
 .ScrollBySingleLine = .t.
 with .Items
 .DefaultItem = .InsertControlItem(0, "Exontrol.Grid")
 .ItemHeight(0) = 182
 with .ItemObject(0)
 .BeginUpdate()
 with .Columns
 with .Add("Column 1").Editor()
 .EditType = 1 && EditType editor
 endwith
 endwith
 with .Items

 .AddItem("Text 1")
 .AddItem("Text 2")
 .AddItem("Text 3")
 endwith
 .EndUpdate()
 endwith
 endwith
 .EndUpdate()
endwith

The following VB sample adds dynamically an ExGantt ActiveX Control and a Microsoft
Calendar Control:

' Inserts a new ActiveX control of Exontrol.Gantt type
Dim hGantt As HITEM
hGantt = Gantt1.Items.InsertControlItem(Gantt1.Items(0), "Exontrol.Gantt",
runtimelicensekey)
' Sets the ActiveX control height
Gantt1.Items.ItemHeight(hGantt) = 212
' Gets the ExGantt control created. Since the ProgID used to create the item is
"Exontrol.Gantt"
' the object will be of EXGANTTLibCtl.Gantt type
Dim objGantt As Object
Set objGantt = Gantt1.Items.ItemObject(hGantt)
objGantt.Columns.Add "Column"
objGantt.Items.AddItem "One"
objGantt.Items.AddItem "Two"
objGantt.Items.AddItem "Three"

' Inserts a new ActiveX control of MSCAL.Calendar type
Dim hCalc As HITEM
hCalc = objGantt.Items.InsertControlItem(, "MSCal.Calendar")
Set objCalc = Gantt1.Items.ItemObject(hCalc)
objCalc.ShowTitle = False
objCalc.ShowDateSelectors = False

where the runtimelicensekey is the exGantt's runtime license key. Please contact us to get
the exGantt's runtime license key. Please notice that your development license key is not

https://exontrol.com/sg.jsp?content=techsupport&order=XXXXXXX&product=ExGantt

equivalent with the generated runtime license key. Your order number is required, when
requesting the control's runtime license key. If you are using the DEMO version for testing
purpose, you don't need a runtime license key.

The following VB sample handles any event that a contained ActiveX fires:

Private Sub Gantt1_ItemOleEvent(ByVal Item As EXGANTTLibCtl.HITEM, ByVal Ev As
EXGANTTLibCtl.IOleEvent)
 On Error Resume Next
 Dim i As Long
 Debug.Print "The " & Ev.Name & " was fired. "
 If Not (Ev.CountParam = 0) Then
 Debug.Print "The event has the following parameters: "
 For i = 0 To Ev.CountParam - 1
 Debug.Print " - " & Ev(i).Name & " = " & Ev(i).Value
 Next
 End If
End Sub

Some of ActiveX controls requires additional window styles to be added to the conatiner
window. For instance, the Web Brower added by the Gantt1.Items.InsertControlItem(,
"https://www.exontrol.com") won't add scroll bars, so you have to do the following:

First thing is to declare the WS_HSCROLL and WS_VSCROLL constants at the top of your
module:

Private Const WS_VSCROLL = &H200000
Private Const WS_HSCROLL = &H100000

Then you need to to insert a Web control use the following lines:

Dim hWeb As HITEM
hWeb = Gantt1.Items.InsertControlItem(, "https://www.exontrol.com")
Gantt1.Items.ItemHeight(hWeb) = 196

Next step is adding the AddItem event handler:

Private Sub Gantt1_AddItem(ByVal Item As EXGANTTLibCtl.HITEM)
 If (Gantt1.Items.ItemControlID(Item) = "https://www.exontrol.com") Then
 ' Some of controls like the WEB control, requires some additional window styles (like

WS_HSCROLL and WS_VSCROLL window styles)
 ' for the window that host that WEB control, to allow scrolling the web page
 Gantt1.Items.ItemWindowHostCreateStyle(Item) =
Gantt1.Items.ItemWindowHostCreateStyle(Item) + WS_HSCROLL + WS_VSCROLL
 End If
End Sub

If somehow the InsertItemControl wasn't able to create your ActiveX on some Windows
platforms, and you don't know why, you can use the following

code to make sure that ActiveX control can be created properly by using (the sample is
trying to add a new Microsoft RichText ActivX control into your form):

Controls.Add "RICHTEXT.RichtextCtrl", "rich"

method Items.InsertItem ([Parent as HITEM], [UserData as Variant],
[Caption as Variant])

Inserts a new item, and returns a handle to the newly created item.

Type Description

Parent as HITEM A long expression that indicates the item's handle that
indicates the parent item where the newly item is inserted.

UserData as Variant A Variant expression that indicates the item's extra data.

Caption as Variant
A string expression that indicates the cell's caption on the
first column, a safe array that holds the caption for each
column.

Return Description
HITEM Retrieves the handle of the newly created item.

Use the InsertItem property to add a new child item to the specified item. The InsertItem
property fires the AddItem event. You can use the InsertItem(,,"Root") or AddItem("Root")
to add a root item. An item that has no parent is a root item. Use the AddBar method to
add bars to the item. The bars are always shown in the chart area. Use the PaneWidth
property to specify the width of the chart. Use the CellCaption property to specify the cell's
caption when control contains multiple columns. Use the CellCaptionFormat property to
specify whether the cell displays the caption using the HTML format. To insert an ActiveX
control, use the InsertControlItem property of the Items property. Use the ExpandItem
property to expand an item. Use the MergeCells method to combine two or multiple cells in
a single cell. Use the SplitCell property to split a cell. Use the LinesAtRoot property to link
items at the root of the hierarchy. Use the ConditionalFormats method to apply formats to a
cell or range of cells, and have that formatting change depending on the value of the cell or
the value of a formula. Use the LoadXML/SaveXML methods to load/save the control's data
from/to XML files.

The following VB sample shows how to create a simple hierarchy:

With Gantt1
 .BeginUpdate
 .ColumnAutoResize = True
 .LinesAtRoot = exLinesAtRoot
 .FullRowSelect = False
 .MarkSearchColumn = False
 .Columns.Add "Default"
 With .Items

 Dim h As HITEM, hx As HITEM
 h = .InsertItem(, , "Root")
 hx = .InsertItem(h, , "This is an item that should break the line")
 .CellSingleLine(hx, 0) = False
 h = .InsertItem(h, , "Child 2")
 .InsertItem h, , "SubChild 2.1"
 h = .InsertItem(h, , "SubChild 2.2")
 End With
 .EndUpdate
End With

The following VB sample insert items and multiple columns as well:

With Gantt1
 .BeginUpdate
 .HeaderVisible = True
 .ColumnAutoResize = True
 .LinesAtRoot = exLinesAtRoot
 .FullRowSelect = False
 .MarkSearchColumn = False
 .Columns.Add "Column 1"
 .Columns.Add "Column 2"
 With .Items
 Dim h As HITEM, hx As HITEM
 h = .InsertItem(, , "Root")
 hx = .InsertItem(h, , Array("This is an item that should break
the line", "Just another cell that holds some info"))
 .CellSingleLine(hx, 0) = False
 .CellSingleLine(hx, 1) = False
 h = .InsertItem(h, , "Child 2")
 .InsertItem h, , Array("SubChild 2.1", "SubItem 2.1")
 h = .InsertItem(h, , Array("SubChild 2.2", "SubItem 2.2"))
 End With
 .EndUpdate
End With

The following VB sample inserts a child item and expands the focused item:

With Gantt1.Items
 .InsertItem .FocusItem, , "new child"
 .ExpandItem(.FocusItem) = True
End With

The following C++ sample inserts a child item and expands the focused item:

#include "Items.h"
CItems items = m_gantt.GetItems();
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
long h = items.InsertItem(items.GetFocusItem(), vtMissing, COleVariant("new child"));
items.SetExpandItem(items.GetFocusItem(), TRUE);

The following VB.NET sample inserts a child item and expands the focused item:

With AxGantt1.Items
 Dim hItem As Integer
 hItem = .InsertItem(.FocusItem, , "new child")
 .ExpandItem(.FocusItem) = True
End With

The following C# sample inserts a child item and expands the focused item:

int hItem = axGantt1.Items.InsertItem(axGantt1.Items.FocusItem, null, "new child");
axGantt1.Items.set_ExpandItem(axGantt1.Items.FocusItem, true);

The following VFP sample inserts a child item and expands the focused item:

with thisform.Gantt1.Items
 .DefaultItem = .InsertItem(.FocusItem, "", "new child")
 .DefaultItem = .FocusItem
 .ExpandItem(0) = .t.
endwith

property Items.IsItemLocked (Item as HITEM) as Boolean
Returns a value that indicates whether the item is locked or unlocked.

Type Description
Item as HITEM A long expression that indicates the handle of the item.

Boolean A boolean expression that indicates whether the item is
locked or unlocked.

Use the IsItemLocked property to check whether an item is locked or unlocked. A locked
item is always displayed on the top or bottom side of the control no matter if the control's
list is scrolled up or down. Use the LockedItemCount property to add or remove items
fixed/locked to the top or bottom side of the control. Use the LockedItem property to
access a locked item by its position. Use the ShowLockedItems property to show or hide
the locked items.

The following VB sample prints the locked item from the cursor:

Private Sub Gantt1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 On Error Resume Next
 ' Converts the container coordinates to client coordinates
 X = X / Screen.TwipsPerPixelX
 Y = Y / Screen.TwipsPerPixelY
 Dim h As HITEM
 Dim c As Long
 Dim hit As EXGANTTLibCtl.HitTestInfoEnum
 ' Gets the item from (X,Y)
 With Gantt1
 h = .ItemFromPoint(X, Y, c, hit)
 If Not (h = 0) Then
 If (.Items.IsItemLocked(h)) Then
 Debug.Print .Items.CellCaption(h, c)
 End If
 End If
 End With
End Sub

The following C++ sample prints the locked item from the cursor:

#include "Items.h"
void OnMouseMoveGantt1(short Button, short Shift, long X, long Y)
{
 long c = 0, hit = 0, hItem = m_gantt.GetItemFromPoint(X, Y, &c, &hit);
 if (hItem != 0)
 {
 CItems items = m_gantt.GetItems();
 if (items.GetIsItemLocked(hItem))
 {
 COleVariant vtItem(hItem), vtColumn(c);
 CString strCaption = V2S(&items.GetCellCaption(vtItem, vtColumn)), strOutput;
 strOutput.Format("Cell: '%s', Hit = %08X\n", strCaption, hit);
 OutputDebugString(strOutput);
 }
 }
}

The following VB.NET sample prints the locked item from the cursor:

Private Sub AxGantt1_MouseMoveEvent(ByVal sender As Object, ByVal e As
AxEXGANTTLib._IGanttEvents_MouseMoveEvent) Handles AxGantt1.MouseMoveEvent
 With AxGantt1
 Dim i As Integer, c As Integer, hit As EXGANTTLib.HitTestInfoEnum
 i = .get_ItemFromPoint(e.x, e.y, c, hit)
 If Not (i = 0) Then
 With .Items
 If (.IsItemLocked(i)) Then
 Debug.WriteLine("Cell: " & .CellCaption(i, c) & " Hit: " & hit.ToString())
 End If
 End With
 End If
 End With
End Sub

The following C# sample prints the locked item from the cursor:

private void axGantt1_MouseMoveEvent(object sender,
AxEXGANTTLib._IGanttEvents_MouseMoveEvent e)

{
 int c = 0;
 EXGANTTLib.HitTestInfoEnum hit;
 int i = axGantt1.get_ItemFromPoint(e.x, e.y, out c, out hit);
 if (i != 0)
 if (axGantt1.Items.get_IsItemLocked(i))
 {
 object cap = axGantt1.Items.get_CellCaption(i, c);
 string s = cap != null ? cap.ToString() : "";
 s = "Cell: " + s + ", Hit: " + hit.ToString();
 System.Diagnostics.Debug.WriteLine(s);
 }
}

The following VFP sample prints the locked item from the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

local c, hit
c = 0
hit = 0
with thisform.Gantt1
 .Items.DefaultItem = .ItemFromPoint(x, y, @c, @hit)
 with .Items
 if (.DefaultItem <> 0)
 if (.IsItemLocked(0))
 wait window nowait .CellCaption(0, c) + " " + Str(hit)
 endif
 endif
 endwith
endwith

property Items.IsItemVisible (Item as HITEM) as Boolean

Checks if the specific item fits the control's client area.

Type Description

Item as HITEM A long expression that indicates the handle of the item that
fits the client area.

Boolean A boolean expression that indicates whether the item fits
the client area.

To make sure that an item fits the client area call EnsureVisibleItem method. Use the
FirstVisibleItem, NextVisibleItem and IsItemVisible properties to get the items that fit the
client area. Use the NextVisibleItem property to get the next visible item. Use the
IsVisibleItem property to check whether an item fits the control's client area.

The following VB sample enumerates the items that fit the control's client area:

On Error Resume Next
Dim h As HITEM
Dim i As Long, j As Long, nCols As Long
nCols = Gantt1.Columns.Count
With Gantt1.Items
 h = .FirstVisibleItem
 While Not (h = 0) And .IsItemVisible(h)
 Dim s As String
 s = ""
 For j = 0 To nCols - 1
 s = s + .CellCaption(h, j) + Chr(9)
 Next
 Debug.Print s
 h = .NextVisibleItem(h)
 Wend
End With

The following C++ sample enumerates the items that fit the control's client area:

#include "Items.h"
CItems items = m_gantt.GetItems();
long hItem = items.GetFirstVisibleItem();

while (hItem && items.GetIsItemVisible(hItem))
{
 OutputDebugString(V2S(&items.GetCellCaption(COleVariant(hItem), COleVariant(
long(0)))));
 hItem = items.GetNextVisibleItem(hItem);
}

The following VB.NET sample enumerates the items that fit the control's client area:

With AxGantt1.Items
 Dim hItem As Integer
 hItem = .FirstVisibleItem
 While Not (hItem = 0)
 If (.IsItemVisible(hItem)) Then
 Debug.Print(.CellCaption(hItem, 0))
 hItem = .NextVisibleItem(hItem)
 Else
 Exit While
 End If
 End While
End With

The following C# sample enumerates the items that fit the control's client area:

EXGANTTLib.Items items = axGantt1.Items;
int hItem = items.FirstVisibleItem;
while ((hItem != 0) && (items.get_IsItemVisible(hItem)))
{
 object strCaption = items.get_CellCaption(hItem, 0);
 System.Diagnostics.Debug.WriteLine(strCaption != null ? strCaption.ToString() : "");
 hItem = items.get_NextVisibleItem(hItem);
}

The following VFP sample enumerates the items that fit the control's client area:

with thisform.Gantt1.Items
 .DefaultItem = .FirstVisibleItem
 do while ((.DefaultItem <> 0) and (.IsItemVisible(0)))
 wait window .CellCaption(0, 0)

 .DefaultItem = .NextVisibleItem(0)
 enddo
endwith

property Items.ItemAllowSizing(Item as HITEM) as Boolean
Retrieves or sets a value that indicates whether a user can resize the item at run-time.

Type Description

Item as HITEM A HITEM expression that indicates the handle of the item
that can be resized.

Boolean A Boolean expression that specifies whether the user can
resize the item at run-time.

By default, the user can resize the item at run-time using mouse movements. Use the
ItemAllowSizing property to specify whether a user can resize the item at run-time. Use the
ItemsAllowSizing property to specify whether all items are resizable or not. Use the
ItemHeight property to specify the height of the item. An item is resizable if the
ItemAllowSizing property is True, or if the ItemsAllowSizing property is True (that means all
items are resizable), and the ItemAllowSizing property is not False. For instance, if your
application requires all items being resizable but only few of them being not resizable, you
can have the ItemsAllowSizing property on True, and for those items that are not resizable,
you can call the ItemAllowSizing property on False. The user can resize an item by moving
the mouse between two items, so the vertical split cursor shows up, click and drag the
mouse to the new position. Use the CellSingleLine property to specify whether the cell
displays its caption using multiple lines. The ScrollBySingleLine property is automatically set
on True, as soon as the user resizes an item.

property Items.ItemAppearance(Item as HITEM) as AppearanceEnum
Specifies the item's appearance when the item hosts an ActiveX control.

Type Description

Item as HITEM A long expression that indicates the handle of the item that
was previously created by InsertControlItem property.

AppearanceEnum An AppearanceEnum expression that indicates the item's
appearance.

Use the ItemAppearance property to specify the item's appearance if the item is of ActiveX
type. Use the InsertControlItem property to insert an ActiveX control inside. Use the
ItemObject property to access the object being created by the InsertControlItem property.
Use the ItemHeight property to specify the height of the item when containing an ActiveX
control.

property Items.ItemBackColor(Item as HITEM) as Color

Retrieves or sets a background color for a specific item.

Type Description

Item as HITEM
A long expression that indicates the handle of the item. If
the Item is 0, the ItemBackColor changes the background
color for all items.

Color A color expression that indicates the item's background
color.

The ItemBackColor property specifies the background or the visual appearance for the
item's background on the columns/item section. Use the CellBackColor property to change
the cell's background color. To change the background color of the entire control you can
call BackColor property of the control. Use the ClearItemBackColor property to clear the
item's background color, after setting using the ItemBackColor property. Use the
ConditionalFormats method to apply formats to a cell or range of cells, and have that
formatting change depending on the value of the cell or the value of a formula. The
ItemBackColor property of the Chart object specifies the item's background or visual
appearance for the chart area.

In VB.NET or C# you require the following functions until the .NET framework will provide:

You can use the following VB.NET function:

 Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
 End Function

You can use the following C# function:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;

 return Convert.ToUInt32(i);
}

The following C# sample changes the background color for the focused item:

axGantt1.Items.set_ItemBackColor(axGantt1.Items.FocusItem, ToUInt32(Color.Red));

The following VB.NET sample changes the background color for the focused item:

With AxGantt1.Items
 .ItemBackColor(.FocusItem) = ToUInt32(Color.Red)
End With

The following C++ sample changes the background color for the focused item:

#include "Items.h"
CItems items = m_gantt.GetItems();
items.SetItemBackColor(items.GetFocusItem(), RGB(255,0,0));

The following VFP sample changes the background color for the focused item:

with thisform.Gantt1.Items
 .DefaultItem = .FocusItem
 .ItemBackColor(0) = RGB(255,0,0)
endwith

Use the following VB sample changes the background color for the cells in the first column,
when adding new items:

Private Sub Gantt1_AddItem(ByVal Item As EXGANTTLibCtl.HITEM)
 Gantt1.Items.CellBackColor(Item, o) = vbBlue
End Sub

property Items.ItemBar(Item as HITEM, Key as Variant, Property as
ItemBarPropertyEnum) as Variant
Gets or sets a bar property.

Type Description

Item as HITEM A long expression that indicates the the handle of the item
where the bar is removed.

Key as Variant

A String expression that indicates the key of the bar being
accessed. If missing, the Key parameter is empty. If the
Item has only a single Bar you may not use the Key
parameter, else an unique key should be used to allow
multiple bars inside the item. The Key may include a
pattern with wild characters as *,?,# or [], if the Key starts
with "<" and ends on ">" aka "<K*>" which indicates all
bars with the key K or starts on K. The pattern may
include a space which divides multiple patterns for
matching. For instance "<A* *K>" indicates all keys that
start on A and all keys that end on K.

Property as
ItemBarPropertyEnum

An ItemBarPropertyEnum expression that indicates the
property being accessed

Variant A Variant expression that indicates the property's value.

Use the ItemBar property to access properties related to the bars being shown in the item.
You can change a property for all bars with a specified key, from all items, by using the
Item parameter on 0. For instance, the ItemBar(0,"K1",exBarColor) = RGB(255,0,0)
changes the color for all bars with the key K1, from all items. If the Item parameter
indicates a valid item, the bars referred is only inside the item. For instance, the
ItemBar(FirstVisibleItem,"K1",exBarColor) = RGB(255,0,0) changes the color for the bar in
the first visible item with the key K1.

Based on the values of the Item and Key parameters the ItemBar property changes a
property for none, one or multiple bars as follows:

ItemBar(0,"<*>",Property) = Value changes the Property of all bars in the chart.
ItemBar(0,"<pattern>",Property) = Value changes the Property of all bars in the
chart that match a specified pattern using wild characters as *,?,# or [].
ItemBar(Item,"<*>",Property) = Value changes the Property of all bars in the item.
ItemBar(Item,"<pattern>",Property) = Value changes the Property of all bars in the
item that match a specified pattern using wild characters as *,?,# or []

The pattern may include the space character which indicates multiple patterns to be

used when matching. For instance "A* *K" indicates all keys that starts on A and all
keys that ends on K. If not using a pattern, the ItemBar changes the property for
specified key in all items if 0 is used for Item, or single Item if a valid handle is used on
the Item parameter.

Here's few samples of using the set ItemBar property:

ItemBar(Item,"K1",Property) = Value changes the Property of the bar K1 from the
specified Item.
ItemBar(0,"K1",Property) = Value changes the Property of the bar K1 from the
entire chart.
ItemBar(0,"<A* K*>",Property) = Value changes the Property of all bars from the
chart with the Key A or K or starts with A or K.
ItemBar(0,"<*K>",Property) = Value changes the Property of all bars from the
chart with the Key K or ends on K.
ItemBar(Item,"<K*>",Property) = Value changes the Property of all bars from the
specified Item with the Key K or starts on K.
ItemBar(Item,"<K??>",Property) = Value changes the Property of all bars from
the specified Item with the Key of 3 characters and starts with K.

Currently, the single read-only property that supports pattern for the Key parameter is
exBarsCount, which counts the bars as follows:

ItemBar(0,"<*>",exBarsCount) counts all bars in the chart.
ItemBar(0,"<pattern>",exBarsCount) counts all bars in the chart that match a
specified pattern using wild characters as *,?,# or [].
ItemBar(Item,"<*>",exBarsCount) counts all bars in the giving Item.
ItemBar(Item,"<pattern>",exBarsCount) counts all bars in the item that match a
specified pattern using wild characters as *,?,# or [].

The pattern may include the space character which indicates multiple patterns to be
used when matching. For instance "A* *K" indicates all keys that start on A and all keys
that end on K.

Here's few samples of using the get ItemBar(exBarsCount) property:

ItemBar(Item,"K1",exBarsCount) gets the count of the bar K1 from the specified
Item. This could be 0, if K1 is not found or 1, if the K1 is found on the Item, as an
item could hold a single bar with the same Key.
ItemBar(0,"K1",exBarsCount) counts all bars K1 from the entire chart.
ItemBar(Item,"<*>",exBarsCount) counts all bars in the specified item.
ItemBar(Item,"",exBarsCount) is equivalent with ItemBar(Item,"
<*>",exBarsCount).

ItemBar(0,"<*>",exBarsCount) counts all bars from the entire chart.
ItemBar(0,"",exBarsCount) is equivalent with ItemBar(0,"<*>",exBarsCount).
ItemBar(0,"<A* K*>",exBarsCount) gets the count of all bars from the chart with
the Key A or K or starts with A or K.
ItemBar(0,"<*K>",exBarsCount) gets the number of bars from the chart with the
Key K or ends on K.
ItemBar(Item,"<K*>",exBarsCount) counts all bars from the specified Item with
the Key K or starts on K.
ItemBar(Item,"<K??>",exBarsCount) counts all bars from the specified Item with
the Key of 3 characters and starts with K.

Use the AddBar property to add new bars to the item. Use the FirstVisibleDate property to
specify the first visible date in the chart area. Use the RemoveBar method to remove a bar
from an item. Use the ClearBars method to remove all bars in the item. Use the Refresh
method to refresh the chart.

The /NET Assembly version defines get/set shortcut properties as follow (they start with
get_ or set_ keywords):

BarName : String, retrieves or sets a value that indicates the name of the bar
BarStart : DateTime, retrieves or sets a value that indicates the start of the bar
BarEnd : DateTime, retrieves or sets a value that indicates the end of the bar
BarCaption : String Retrieves or sets a value that indicates the caption being assigned
to the bar
BarHAlignCaption : AlignmentEnum, retrieves or sets a value that indicates the
horizontal alignment of the caption inside the bar
BarVAlignCaption : VAlignmentEnum, retrieves or sets a value that indicates the
vertical alignment of the caption inside the bar
BarToolTip : String, retrieves or sets a value that indicates the tooltip being shown
when the cursor hovers the bar
BarBackColor : Color, retrieves or sets a value that indicates the background color for
the area being occupied by the bar
BarForeColor : Color, retrieves or sets a value that indicates the foreground color for
the caption of the bar
BarKey : Object, specifies key of the bar
BarPercent : Double, specifies the percent to display the progress on the bar
BarPercentCaptionFormat : String, specifies the HTML format to be displayed as
percent
BarShowPercentCaption : Boolean, specifies whether the percent is displayed as
caption on the bar
BarAlignPercentCaption : AlignmentEnum, specifies the alignment of the percent
caption on the bar

BarData : Object, associates an extra data to a bar
BarOffset : Integer, specifies the vertical offset where the bar is shown
BarTransparent : Integer, specifies the percent of the transparency to display the bar
BarsCount : Integer, retrieves a value that indicates the number of bars in the item
BarWorkingCount : Integer, specifies the count of working units in the bar
BarNonWorkingCount : Integer, retrieves the count of non-working units in the bar
BarColor : Color, specifies the color for the bar. If used it replaces the bar's type
color, for current bar only.
BarDuration : Double, specifies the duration of the bar in days
BarMove: Double, moves the bar by specified amount of time

So instead using the get_ItemBar or set_ItemBar properties you can use these functions.

For instance, the following sample changes the bar's color:

With Exgantt1.Items
 .set_BarColor(.FocusItem, .get_FirstItemBar(.FocusItem), Color.Red)
End With

The following VB sample changes the end date for the bar in the first visible item (in this
sample we consider that AddBar method was used with the Key parameter as being empty
) :

With Gantt1.Items
 .ItemBar(.FirstVisibleItem, "", exBarEnd) = "6/19/2005"
End With

The following C++ sample changes the end date for the bar in the first visible item:

CItems items = m_gantt.GetItems();
items.SetItemBar(items.GetFirstVisibleItem(), COleVariant(""), 2 /*exBarEnd*/,
COleVariant("6/19/2005"));

The following VB.NET sample changes the end date for the bar in the first visible item:

With AxGantt1.Items
 .ItemBar(.FirstVisibleItem, "", EXGANTTLib.ItemBarPropertyEnum.exBarEnd) =
"6/19/2005"
End With

The following C# sample changes the end date for the bar in the first visible item:

axGantt1.Items.set_ItemBar(axGantt1.Items.FirstVisibleItem, "",
EXGANTTLib.ItemBarPropertyEnum.exBarEnd, "6/19/2005");

The following VFP sample changes the end date for the bar in the first visible item:

with thisform.Gantt1.Items
 .DefaultItem = .FirstVisibleItem
 thisform.Gantt1.Template = "Items.ItemBar(0,`" + _key + "`,2) = `20/07/2005`"
endwith

where the _key is the key of the bar being resized.

The VFP sample uses the Template property in order to execute the ItemBar property, else
some version of VFP could fire "Function argument, value, type, or count is invalid". The
sample builds the script:

Items.ItemBar(0,_key,2) = `20/07/2005`

This way the ItemBar property for the default item is invoked

property Items.ItemBold(Item as HITEM) as Boolean

Retrieves or sets a value that indicates whether the item should appear in bold.

Type Description
Item as HITEM A long expression that indicates the handle of the item.

Boolean A boolean expression that indicates whether the item
should appear in bold.

Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply different font
attributes to the item. Use the CellItalic, CellUnderline, CellBold or CellStrikeOut property to
apply different font attributes to the cell. Use the CellCaptionFormat property to specify an
HTML caption. Use the ConditionalFormats method to apply formats to a cell or range of
cells, and have that formatting change depending on the value of the cell or the value of a
formula.

The following VB sample bolds the selected item:

Dim hOldBold As HITEM

Private Sub Gantt1_SelectionChanged()
 If Not (hOldBold = 0) Then
 Gantt1.Items.ItemBold(hOldBold) = False
 End If
 hOldBold = Gantt1.Items.SelectedItem()
 Gantt1.Items.ItemBold(hOldBold) = True
End Sub

The following VB sample bolds the focused item:

With Gantt1.Items
 .ItemBold(.FocusItem) = True
End With

The following C++ sample bolds the focused item:

#include "Items.h"
CItems items = m_gantt.GetItems();
items.SetItemBold(items.GetFocusItem() , TRUE);

The following C# sample bolds the focused item:

axGantt1.Items.set_ItemBold(axGantt1.Items.FocusItem, true);

The following VB.NET sample bolds the focused item:

With AxGantt1.Items
 .ItemBold(.FocusItem) = True
End With

The following VFP sample bolds the focused item:

with thisform.Gantt1.Items
 .DefaultItem = .FocusItem
 .ItemBold(0) = .t.
endwith

property Items.ItemByIndex (Index as Long) as HITEM

Retrieves the handle of the item given its index in Items collection..

Type Description
Index as Long A long expression that indicates the index of the item.
HITEM A long expression that indicates the item's handle.

Use the ItemByIndex to get the index of an item. Use the ItemCount property to count the
items in the control. the Use the ItemPosition property to get the item's position. Use the
ItemToIndex property to get the index of giving item. For instance, The ItemByIndex
property is the default property for Items object, so the following statements are
equivalents: Gantt1.Items(0), Gantt1.Items.ItemByIndex(0).

The following VB sample enumerates all items in the control:

Dim i As Long, n As Long
With Gantt1.Items
 n = .ItemCount
 For i = 0 To n - 1
 Debug.Print .ItemByIndex(i)
 Next
End With

The following C++ sample enumerates all items in the control:

#include "Items.h"
CItems items = m_gantt.GetItems();
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
for (long i = 0; i < items.GetItemCount(); i++)
{
 COleVariant vtItem(items.GetItemByIndex(i)), vtColumn(long(0));
 CString strCaption = V2S(&items.GetCellCaption(vtItem, vtColumn)), strOutput;
 strOutput.Format("Cell: '%s'\n", strCaption);
 OutputDebugString(strOutput);
}

The following VB.NET sample enumerates all items in the control:

With AxGantt1

 Dim i As Integer
 For i = 0 To .Items.ItemCount - 1
 Debug.Print(.Items.CellCaption(.Items(i), 0))
 Next
End With

The following C# sample enumerates all items in the control:

EXGANTTLib.Items items = axGantt1.Items;
for (int i = 0; i < items.ItemCount; i++)
{
 object caption = items.get_CellCaption(items[i], 0);
 string strCaption = caption != null ? caption.ToString() : "";
 System.Diagnostics.Debug.WriteLine(strCaption);
}

The following VFP sample enumerates all items in the control:

with thisform.Gantt1.Items
 local i
 for i = 0 to .ItemCount - 1
 .DefaultItem = .ItemByIndex(i)
 wait window nowait .CellCaption(0,0)
 next
endwith

property Items.ItemCell (Item as HITEM, ColIndex as Variant) as HCELL

Retrieves the cell's handle based on a specific column.

Type Description
Item as HITEM A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index or the
cell's handle, a string expression that indicates the
column's caption.

HCELL A long expression that indicates the handle of the cell.

A cell is the intersection of an item with a column. All properties that has an Item and a
ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

Gantt1.Items.CellBold(, Gantt1.Items.ItemCell(Gantt1.Items(0), 0)) = True

Gantt1.Items.CellBold(Gantt1.Items(0), 0) = True

Gantt1.Items.CellBold(Gantt1.Items(0), "ColumnName") = True

property Items.ItemChild (Item as HITEM) as HITEM

Retrieves the first child item of a specified item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

HITEM A long expression that indicates the handle of the first child
item.

If the ItemChild property gets 0, the item has no child items. Use this property to get the
first child of an item. NextVisibleItem or NextSiblingItem to get the next visible, sibling
item. The control displays a +/- sign to parent items, if the HasButtons property is not zero,
the ItemChild property is not empty, or the ItemHasChildren property is True.

The following VB function recursively enumerates the item and all its child items:

Sub RecItem(ByVal c As EXGANTTLibCtl.Gantt, ByVal h As HITEM)
 If Not (h = 0) Then
 Dim hChild As HITEM
 With c.Items
 Debug.Print .CellCaption(h, 0)
 hChild = .ItemChild(h)
 While Not (hChild = 0)
 RecItem c, hChild
 hChild = .NextSiblingItem(hChild)
 Wend
 End With
 End If
End Sub

The following C++ function recursively enumerates the item and all its child items:

void RecItem(CGantt* pGantt, long hItem)
{
 COleVariant vtColumn((long)0);
 if (hItem)
 {
 CItems items = pGantt->GetItems();

 CString strCaption = V2S(&items.GetCellCaption(COleVariant(hItem), vtColumn)),
strOutput;
 strOutput.Format("Cell: '%s'\n", strCaption);
 OutputDebugString(strOutput);

 long hChild = items.GetItemChild(hItem);
 while (hChild)
 {
 RecItem(pGantt, hChild);
 hChild = items.GetNextSiblingItem(hChild);
 }
 }
}

The following VB.NET function recursively enumerates the item and all its child items:

Shared Sub RecItem(ByVal c As AxEXGANTTLib.AxGantt, ByVal h As Integer)
 If Not (h = 0) Then
 Dim hChild As Integer
 With c.Items
 Debug.WriteLine(.CellCaption(h, 0))
 hChild = .ItemChild(h)
 While Not (hChild = 0)
 RecItem(c, hChild)
 hChild = .NextSiblingItem(hChild)
 End While
 End With
 End If
End Sub

The following C# function recursively enumerates the item and all its child items:

internal void RecItem(AxEXGANTTLib.AxGantt gantt, int hItem)
{
 if (hItem != 0)
 {
 EXGANTTLib.Items items = gantt.Items;
 object caption = items.get_CellCaption(hItem, 0);

 System.Diagnostics.Debug.WriteLine(caption != null ? caption.ToString() : "");

 int hChild = items.get_ItemChild(hItem);
 while (hChild != 0)
 {
 RecItem(gantt, hChild);
 hChild = items.get_NextSiblingItem(hChild);
 }
 }
}

The following VFP function recursively enumerates the item and all its child items (recitem
method):

LPARAMETERS h

with thisform.Gantt1
 If (h != 0) Then
 local hChild
 With .Items
 .DefaultItem = h
 wait window .CellCaption(0, 0)
 hChild = .ItemChild(h)
 do While (hChild != 0)
 thisform.recitem(hChild)
 hChild = .NextSiblingItem(hChild)
 enddo
 EndWith
 EndIf
endwith

property Items.ItemControlID (Item as HITEM) as String

Retrieves the item's control identifier that was used by InsertControlItem property.

Type Description

Item as HITEM A long expression that indicates the item's handle that was
previously created by the InsertControlItem property.

String
A string expression that indicates the control identifier
used by InsertControlItem method to create an item that
hosts an ActiveX control.

The ItemControlID property retrieves the control identifier used by the InsertControlItem
property. If the item was created using AddItem or InsertItem properties the ItemControlID
property retrieves an empty string. For instance, the ItemControlID property can be used to
check if an item contains an ActiveX control or not.

property Items.ItemCount as Long

Retrieves the number of items.

Type Description

Long A long value that indicates the number of items into the
Items collection.

The ItemCount property counts the items in the control. Use the ItemByIndex property to
access an item giving its index. Use the AddItem, InsertItem, InsertControlItem, PutItems or
DataSource property to add new items to the control. Use ChildCount to get the number of
child items.

The following VB sample enumerates all items in the control:

Dim i As Long, n As Long
With Gantt1.Items
 n = .ItemCount
 For i = 0 To n - 1
 Debug.Print .ItemByIndex(i)
 Next
End With

The following C++ sample enumerates all items in the control:

#include "Items.h"
CItems items = m_gantt.GetItems();
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
for (long i = 0; i < items.GetItemCount(); i++)
{
 COleVariant vtItem(items.GetItemByIndex(i)), vtColumn(long(0));
 CString strCaption = V2S(&items.GetCellCaption(vtItem, vtColumn)), strOutput;
 strOutput.Format("Cell: '%s'\n", strCaption);
 OutputDebugString(strOutput);
}

The following VB.NET sample enumerates all items in the control:

With AxGantt1
 Dim i As Integer

 For i = 0 To .Items.ItemCount - 1
 Debug.Print(.Items.CellCaption(.Items(i), 0))
 Next
End With

The following C# sample enumerates all items in the control:

EXGANTTLib.Items items = axGantt1.Items;
for (int i = 0; i < items.ItemCount; i++)
{
 object caption = items.get_CellCaption(items[i], 0);
 string strCaption = caption != null ? caption.ToString() : "";
 System.Diagnostics.Debug.WriteLine(strCaption);
}

The following VFP sample enumerates all items in the control:

with thisform.Gantt1.Items
 local i
 for i = 0 to .ItemCount - 1
 .DefaultItem = .ItemByIndex(i)
 wait window nowait .CellCaption(0,0)
 next
endwith

property Items.ItemData(Item as HITEM) as Variant

Retrieves or sets the extra data for a specific item.

Type Description

Item as HITEM A long expression that indicates the item's handle that has
associated some extra data.

Variant A variant value that indicates the item's extra data.

Use the ItemData property to assign an extra value to an item. Use CellData property to
associate an extra data with a cell. The ItemData and CellData are of Variant type, so you
will be able to save here what ever you want: numbers, objects, strings, and so on. The
user data is only for user use. The control doesn't use this value. Use the Data property to
assign an extra data to a column. For instance, you can use the RemoveItem event to
release any extra data that is associated to the item.

property Items.ItemDivider(Item as HITEM) as Long
Specifies whether the item acts like a divider item. The value indicates the index of column
used to define the divider's title.

Type Description
Item as HITEM A long expression that indicates the item's handle.
Long A long expression that indicates the column's index.

A divider item uses the item's client area to display a single cell. The ItemDivider property
specifies the index of the cell being displayed. In other words, the divider item merges the
item cells into a single cell. Use the ItemDividerLine property to define the line that
underlines the divider item. Use the LockedItemCount property to lock items on the top or
bottom side of the control. Use the MergeCells method to combine two or multiple cells in a
single cell. Use the SelectableItem property to specify the user can select an item. A divider
item has sense for a control with multiple columns.

The following VB sample adds a divider item that's locked to the top side of the control (
Before running this sample please make sure that your control has columns):

With Gantt1
 .BeginUpdate
 .DrawGridLines = exNoLines
 With .Items
 .LockedItemCount(TopAlignment) = 1
 Dim h As HITEM
 h = .LockedItem(TopAlignment, 0)
 .ItemDivider(h) = 0
 .ItemHeight(h) = 22
 .CellCaption(h, 0) = "Total:
$12.344.233"
 .CellCaptionFormat(h, 0) = exHTML
 .CellHAlignment(h, 0) = RightAlignment
 End With
 .EndUpdate
End With

The following C++ sample adds a divider item, that's not selectable too:

#include "Items.h"

CItems items = m_gantt.GetItems();
long i = items.AddItem(COleVariant("divider item"));
items.SetItemDivider(i, 0);
items.SetSelectableItem(i, FALSE);

The following C# sample adds a divider item, that's not selectable too:

int i = axGantt1.Items.AddItem("divider item");
axGantt1.Items.set_ItemDivider(i, 0);
axGantt1.Items.set_SelectableItem(i, false);

The following VB.NET sample adds a divider item, that's not selectable too:

With AxGantt1.Items
 Dim i As Integer
 i = .AddItem("divider item")
 .ItemDivider(i) = 0
 .SelectableItem(i) = False
End With

The following VFP sample adds a divider item, that's not selectable too:

with thisform.Gantt1.Items
 .DefaultItem = .AddItem("divider item")
 .ItemDivider(0) = 0
 .SelectableItem(0) = .f.
endwith

property Items.ItemDividerLine(Item as HITEM) as DividerLineEnum
Defines the type of line in the divider item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

DividerLineEnum A DividerLineEnum expression that indicates the type of
the line in the divider item.

By default, the ItemDividerLine property is SingleLine. The ItemDividerLine property
specifies the type of line that underlines a divider item. Use the ItemDivider property to
define a divider item. Use the ItemDividerLine and ItemDividerAlignment properties to define
the style of the line into the divider item. Use the CellMerge property to merge two or more
cells.

property Items.ItemDividerLineAlignment(Item as HITEM) as
DividerAlignmentEnum
Specifies the alignment of the line in the divider item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

DividerAlignmentEnum A DividerAlignmentEnum expression that specifies the
line's alignment.

By default, the ItemDividerLineAlignment property is DividerBottom. The Use the
ItemDividerLine and ItemDividerLineAlignment properties to define the style of the line into a
divider item. Use the ItemDivider property to define a divider item.

property Items.ItemFont (Item as HITEM) as IFontDisp
Retrieves or sets the item's font.

Type Description
Item as HITEM A long expression that specifies the item's handle.
IFontDisp A Font object that specifies the item's font.

By default, the ItemFont property is nothing. If the ItemFont property is nothing, the item
uses the control's font. Use the ItemFont property to define a different font for the item. Use
the CellFont and ItemFont properties to specify different fonts for cells or items. Use the
CellBold, CellItalic, CellUnderline, CellStrikeout, ItemBold, ItemUnderline, ItemStrikeout,
ItemItalic or CellCaptionFormat to specify different font attributes. Use the ItemHeight
property to specify the height of the item. Use the Refresh method to refresh the control's
content on the fly. Use the BeginUpdate and EndUpdate methods if you are doing multiple
changes, so no need for an update each time a change is done.

The following VB sample changes the font for the focused item:

With Gantt1.Items
 .ItemFont(.FocusItem) = Gantt1.Font
 With .ItemFont(.FocusItem)
 .Name = "Comic Sans MS"
 .Bold = True
 End With
End With
Gantt1.Refresh

The following C++ sample changes the font for the focused item:

#include "Items.h"
#include "Font.h"
CItems items = m_gantt.GetItems();
items.SetItemFont(items.GetFocusItem(), m_gantt.GetFont().m_lpDispatch);
COleFont font = items.GetItemFont(items.GetFocusItem());
font.SetName("Comic Sans MS");
font.SetBold(TRUE);
m_gantt.Refresh();

The following VB.NET sample changes the font for the focused item:

With AxGantt1.Items
 .ItemFont(.FocusItem) = IFDH.GetIFontDisp(AxGantt1.Font)
 With .ItemFont(.FocusItem)
 .Name = "Comic Sans MS"
 .Bold = True
 End With
End With
AxGantt1.CtlRefresh()

where the IFDH class is defined like follows:

Public Class IFDH
 Inherits System.Windows.Forms.AxHost

 Sub New()
 MyBase.New("")
 End Sub

 Public Shared Function GetIFontDisp(ByVal font As Font) As Object
 GetIFontDisp = AxHost.GetIFontFromFont(font)
 End Function

End Class

The following C# sample changes the font for the focused item:

axGantt1.Items.set_ItemFont(axGantt1.Items.FocusItem, IFDH.GetIFontDisp(
axGantt1.Font));
stdole.IFontDisp spFont = axGantt1.Items.get_ItemFont(axGantt1.Items.FocusItem);
spFont.Name = "Comic Sans MS";
spFont.Bold = true;
axGantt1.CtlRefresh();

where the IFDH class is defined like follows:

internal class IFDH : System.Windows.Forms.AxHost
{
 public IFDH() : base("")

 {
 }

 public static stdole.IFontDisp GetIFontDisp(System.Drawing.Font font)
 {
 return System.Windows.Forms.AxHost.GetIFontFromFont(font) as stdole.IFontDisp;
 }
}

The following VFP sample changes the font for the focused item:

with thisform.Gantt1.Items
 .DefaultItem = .FocusItem
 .ItemFont(0) = thisform.Gantt1.Font
 with .ItemFont(0)
 .Name = "Comic Sans MS"
 .Bold = .t.
 endwith
endwith
thisform.Gantt1.Object.Refresh()

property Items.ItemForeColor(Item as HITEM) as Color

Retrieves or sets a foreground color for a specific item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Color A color expression that defines the item's foreground
color.

Use the CellForeColor property to change the item's foreground color. Use the ForeColor
property to change the control's foreground color. Use the ClearItemForeColor property to
clear the item's foreground color.

The following VB sample changes the foreground color for cells in the first column as user
add new items:

Private Sub Gantt1_AddItem(ByVal Item As EXGANTTLibCtl.HITEM)
 Gantt1.Items.CellForeColor(Item, o) = vbBlue
End Sub

In VB.NET or C# you require the following functions until the .NET framework will provide:

You can use the following VB.NET function:

 Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
 End Function

You can use the following C# function:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;

 return Convert.ToUInt32(i);
}

The following C# sample changes the foreground color of the focused item:

axGantt1.Items.set_ItemForeColor(axGantt1.Items.FocusItem, ToUInt32(Color.Red));

The following VB.NET sample changes the foreground color of the focused item:

With AxGantt1.Items
 .ItemForeColor(.FocusItem) = ToUInt32(Color.Red)
End With

The following C++ sample changes the foreground color of the focused item:

#include "Items.h"
CItems items = m_gantt.GetItems();
items.SetItemForeColor(items.GetFocusItem(), RGB(255,0,0));

The following VFP sample changes the foreground color of the focused item:

with thisform.Gantt1.Items
 .DefaultItem = .FocusItem
 .ItemForeColor(0) = RGB(255,0,0)
endwith

property Items.ItemHasChildren (Item as HITEM) as Boolean

Adds an expand button to left side of the item even if the item has no child items.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Boolean
A boolean expression that indicates whether the control
adds an expand button to the left side of the item even if
the item has no child items.

By default, the ItemHasChidren property is False. Use the ItemHasChildren property to
build a virtual tree. Use the BeforeExpandItem event to add new child items to the
expanded item. Use the ItemChild property to get the first child item, if exists. Use the
ItemChild or ChildCount property to determine whether an item contains child items. The
control displays a +/- sign to parent items, if the HasButtons property is not empty, the
ItemChild property is not empty, or the ItemHasChildren property is True. Use the
InsertItem method to insert a new child item. Use the CellData or ItemData property to
assign an extra value to a cell or to an item.

The following VB sample inserts a child item as soon as user expands an item (the sample
has effect only if your control contains items that have the ItemHasChildren property on
True):

Private Sub Gantt1_BeforeExpandItem(ByVal Item As EXGANTTLibCtl.HITEM, Cancel As
Variant)
 With Gantt1.Items
 If (.ItemHasChildren(Item)) Then
 If .ChildCount(Item) = 0 Then
 Dim h As Long
 h = .InsertItem(Item, , "new " & Item)
 End If
 End If
 End With
End Sub

The following VB.NET sample inserts a child item when the user expands an item that has
the ItemHasChildren property on True:

Private Sub AxGantt1_BeforeExpandItem(ByVal sender As Object, ByVal e As
AxEXGANTTLib._IGanttEvents_BeforeExpandItemEvent) Handles

AxGantt1.BeforeExpandItem
 With AxGantt1.Items
 If (.ItemHasChildren(e.item)) Then
 If .ChildCount(e.item) = 0 Then
 Dim h As Long
 h = .InsertItem(e.item, , "new " & e.item.ToString())
 End If
 End If
 End With
End Sub

The following C# sample inserts a child item when the user expands an item that has the
ItemHasChildren property on True:

private void axGantt1_BeforeExpandItem(object sender,
AxEXGANTTLib._IGanttEvents_BeforeExpandItemEvent e)
{
 EXGANTTLib.Items items = axGantt1.Items;
 if (items.get_ItemHasChildren(e.item))
 if (items.get_ChildCount(e.item) == 0)
 {
 items.InsertItem(e.item, null, "new " + e.item.ToString());
 }
}

The following C++ sample inserts a child item when the user expands an item that has the
ItemHasChildren property on True:

#include "Items.h"
void OnBeforeExpandItemGantt1(long Item, VARIANT FAR* Cancel)
{
 CItems items = m_gantt.GetItems();
 if (items.GetItemHasChildren(Item))
 if (items.GetChildCount(Item) == 0)
 {
 COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
 items.InsertItem(Item, vtMissing, COleVariant("new item"));
 }

}

The following VFP sample inserts a child item when the user expands an item that has the
ItemHasChildren property on True(BeforeExpandItem event):

*** ActiveX Control Event ***
LPARAMETERS item, cancel

with thisform.Gantt1.Items
 if (.ItemHasChildren(item))
 if (.ChildCount(item) = 0)
 .InsertItem(item,"","new " + trim(str(item)))
 endif
 endif
endwith

property Items.ItemHeight(Item as HITEM) as Long

Retrieves or sets the item's height.

Type Description

Item as HITEM

A long expression that indicates the item's handle. If the
Item is 0, setting the ItemHeight property changes the
height for all items. For instance, the ItemHeight(0) = 24,
changes the height for all items to be 24 pixels wide.

Long A long value that indicates the item's height in pixels.

To change the default height of the item before inserting items to collection you can call
DefaultItemHeight property of the control. The control supports items with different heights.
When an item hosts an ActiveX control (was previously created by the InsertControlItem
property), the ItemHeight property changes the height of contained ActiveX control. The
CellSingleLine property specifies whether a cell displays its caption using multiple lines. The
ItemHeight property has no effect, if the CellSingleLine property is False. If the
CellSingleLine property is False, you can specify the maximum height for the item using the
ItemMaxHeight property. Use the ScrollBySingleLine property when using items with
different heights. Use the ItemAllowSizing property to specify whether the user can resize
the item at runtime. Use the Height property to specify the height of the bars.

property Items.ItemItalic(Item as HITEM) as Boolean

Retrieves or sets a value that indicates whether the item should appear in italic.

Type Description

Item as HITEM A long expression that indicates the item's handle that
uses italic font attribute.

Boolean A boolean expression that indicates whether the item
should appear in italic.

Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply different font
attributes to the item. Use the CellItalic, CellUnderline, CellBold or CellStrikeOut property to
apply different font attributes to the cell. Use the CellCaptionFormat property to specify an
HTML caption. Use the ConditionalFormats method to apply formats to a cell or range of
cells, and have that formatting change depending on the value of the cell or the value of a
formula.

The following VB sample makes italic the selected item:

Private Sub Gantt1_SelectionChanged()
 If Not (h = 0) Then Gantt1.Items.ItemItalic(h) = False
 h = Gantt1.Items.SelectedItem()
 Gantt1.Items.ItemItalic(h) = True
End Sub

The following VB sample makes italic the focused item:

With Gantt1.Items
 .ItemItalic(.FocusItem) = True
End With

The following C++ sample makes italic the focused item:

#include "Items.h"
CItems items = m_gantt.GetItems();
items.SetItemItalic(items.GetFocusItem() , TRUE);

The following C# sample makes italic the focused item:

axGantt1.Items.set_ItemItalic(axGantt1.Items.FocusItem, true);

The following VB.NET sample makes italic the focused item:

With AxGantt1.Items
 .ItemItalic(.FocusItem) = True
End With

The following VFP sample makes italic the focused item:

with thisform.Gantt1.Items
 .DefaultItem = .FocusItem
 .ItemItalic(0) = .t.
endwith

property Items.ItemMaxHeight(Item as HITEM) as Long
Retrieves or sets a value that indicates the maximum height when the item's height is
variable.

Type Description

Item as HITEM

A long expression that indicates the handle of the item. If
the Item is 0, setting the ItemMaxHeight property changes
the maximum-height for all items. For instance, the
ItemMaxHeight(0) = 24, changes the maximum height for
all items to be 24 pixels wide.

Long A long value that indicates the maximum height when the
item's height is variable.

By default, the ItemMaxHeight property is -1. The ItemMaxHeight property has effect only if
it is greater than 0, and the item contains cells with CellSingleLine property on False. The
CellSingleLine property specifies whether a cell displays its caption using multiple lines. The
ItemHeight property has no effect, if the CellSingleLine property is False. If the
CellSingleLine property is False, you can specify the maximum height for the item using the
ItemMaxHeight property. Use the ItemAllowSizing property to specify whether the user can
resize the item at runtime.

property Items.ItemMinHeight(Item as HITEM) as Long
Retrieves or sets a value that indicates the minimum height when the item's height is sizing.

Type Description

Item as HITEM

A long expression that indicates the handle of the item. If
the Item is 0, setting the ItemMinHeight property changes
the minimum-height for all items. For instance, the
ItemMinHeight(0) = 24, changes the minimum height for all
items to be 24 pixels wide.

Long A long value that indicates the minimum height when the
item's height is variable.

By default, the ItemMinHeight property is -1. The ItemMinHeight property has effect only if
the item contains cells with CellSingleLine property on False. The ItemMaxHeight property
specifies the maximum height of the item while resizing. The CellSingleLine property
specifies whether a cell displays its caption using multiple lines. The ItemHeight property
has no effect, if the CellSingleLine property is False. If the CellSingleLine property is False,
you can specify the minimum height for the item using the ItemMinHeight property. Use the
ItemAllowSizing property to specify whether the user can resize the item at runtime.

property Items.ItemObject (Item as HITEM) as Object

Retrieves the item's ActiveX object associated, if the item was previously created by
InsertControlItem property.

Type Description

Item as HITEM A long expression that indicates the handle of the item that
was previously created by InsertControlItem property.

Object An object that indicates the ActiveX hosted by the item.

Use the ItemObject to retrieve the ActiveX control created by the InsertControlItem method.
Use the ItemControlID property to retrieve the control's identifier. Use the ItemHeight
property to specify the item's height. If the item hosts an ActiveX control, the ItemHeight
property specifies the height of the ActiveX control also.

The following VB sample adds the Exontrol's ExCalendar Component:

With Gantt1
 .BeginUpdate
 .ScrollBySingleLine = True
 With Gantt1.Items
 Dim h As HITEM
 h = .InsertControlItem(,
"Exontrol.Calendar")
 .ItemHeight(h) = 182
 With .ItemObject(h)
 .Appearance = 0
 .BackColor = vbWhite
 .ForeColor = vbBlack
 .ShowTodayButton = False
 End With
 End With
 .EndUpdate
End With

The following C++ sample adds the Exontrol's ExOrgChart Component:

#include "Items.h"

#pragma warning(disable : 4146)
#import <ExOrgChart.dll>

CItems items = m_gantt.GetItems();
m_gantt.BeginUpdate();
m_gantt.SetScrollBySingleLine(TRUE);
COleVariant vtMissing; V_VT(&vtMissing) =
VT_ERROR;
long h = items.InsertControlItem(0,
"Exontrol.ChartView", vtMissing);
items.SetItemHeight(h, 182);
EXORGCHARTLib::IChartViewPtr spChart(
items.GetItemObject(h));
if (spChart != NULL)
{
 spChart->BeginUpdate();
 spChart->BackColor = RGB(255,255,255);
 spChart->ForeColor = RGB(0,0,0);
 EXORGCHARTLib::INodesPtr spNodes =
spChart->Nodes;
 spNodes->Add("Child 1", "Root", "1",
vtMissing, vtMissing);
 spNodes->Add("SubChild 1", "1", vtMissing,
vtMissing, vtMissing);
 spNodes->Add("SubChild 2", "1", vtMissing,
vtMissing, vtMissing);
 spNodes->Add("Child 2", "Root", vtMissing,
vtMissing, vtMissing);
 spChart->EndUpdate();
}
m_gantt.EndUpdate();

The sample uses the #import statement to include the ExOrgChart's Type Library. In this
sample, the ItemObject property retrieves an IChartView object. The path to the library
should be provided in case it is not located in your system folder.

The following C# sample adds the Exontrol's ExGantt Component:

axGantt1.BeginUpdate();
EXGANTTLib.Items items = axGantt1.Items;
axGantt1.ScrollBySingleLine = true;
int h = items.InsertControlItem(0, "Exontrol.Gantt","");
items.set_ItemHeight(h, 182);
object ganttInside = items.get_ItemObject(h);
if (ganttInside != null)
{
 EXGANTTLib.Gantt gantt = ganttInside as EXGANTTLib.Gantt;
 if (gantt != null)
 {
 gantt.BeginUpdate();
 gantt.LinesAtRoot = EXGANTTLib.LinesAtRootEnum.exLinesAtRoot;
 gantt.Columns.Add("Column 1");
 gantt.Columns.Add("Column 2");
 gantt.Columns.Add("Column 3");
 EXGANTTLib.Items itemsInside = gantt.Items;
 int hInside = itemsInside.AddItem("Item 1");
 itemsInside.set_CellCaption(hInside, 1, "SubItem 1");
 itemsInside.set_CellCaption(hInside, 2, "SubItem 2");
 hInside = itemsInside.InsertItem(hInside, null, "Item 2");
 itemsInside.set_CellCaption(hInside, 1, "SubItem 1");
 itemsInside.set_CellCaption(hInside, 2, "SubItem 2");
 gantt.EndUpdate();
 }
}
axGantt1.EndUpdate();

The following VB.NET sample adds the Exontrol's ExOrgChart Component:

With AxGantt1
 .BeginUpdate()
 .ScrollBySingleLine = True
 With .Items
 Dim hItem As Integer
 hItem = .InsertControlItem(, "Exontrol.ChartView")

 .ItemHeight(hItem) = 182
 With .ItemObject(hItem)
 .BackColor = ToUInt32(Color.White)
 .ForeColor = ToUInt32(Color.Black)
 With .Nodes
 .Add("Child 1", , "1")
 .Add("SubChild 1", "1")
 .Add("SubChild 2", "1")
 .Add("Child 2")
 End With
 End With
 End With
 .EndUpdate()
End With

The following VFP sample adds the Exontrol's ExGrid Component:

with thisform.Gantt1
 .BeginUpdate()
 .ScrollBySingleLine = .t.
 with .Items
 .DefaultItem = .InsertControlItem(0, "Exontrol.Grid")
 .ItemHeight(0) = 182
 with .ItemObject(0)
 .BeginUpdate()
 with .Columns
 with .Add("Column 1").Editor()
 .EditType = 1 && EditType editor
 endwith
 endwith
 with .Items
 .AddItem("Text 1")
 .AddItem("Text 2")
 .AddItem("Text 3")
 endwith
 .EndUpdate()
 endwith

 endwith
 .EndUpdate()
endwith

property Items.ItemParent (Item as HITEM) as HITEM

Returns the handle of the parent item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

HITEM A long expression that indicates the handle of the parent
item.

Use the ItemParent property to retrieve the parent item. Use the InsertItem property to
insert child items. Use the InsertControlItem property to insert ActiveX controls. The
SetParent method changes the item's parent at runtime. To verify if an item can be parent
for another item you can call AcceptSetParent property. If the item has no parent the
ItemParent property retrieves 0. If the ItemParent gets 0 for an item, than the item is called
root. The control is able to handle more root items. To get the collection of root items you
can use RootCount and RootItem properties. Use the ItemChild property to retrieve the first
child item.

property Items.ItemPosition(Item as HITEM) as Long
Retrieves or sets a value that indicates the item's position in the children list.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Long A long expression that indicates the item's position in the
children list.

The ItemPosition property gets the item's position in the children items list. You can use the
ItemPosition property to change the item's position after it been added to collection. When
the control sorts the tree, the item for each position can be changed, so you can use the
item's handle or item's index to identify an item. Use the SortChildren method to sort the
child items. Use the SortOrder property to sort a column.

property Items.ItemStrikeOut(Item as HITEM) as Boolean

Retrieves or sets a value that indicates whether the item should appear in strikeout.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Boolean A boolean expression that indicates whether the item
should appear in strikeout.

If the ItemStrikeOut property is True, the cell's font is displayed with a horizontal line
through it. Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply
different font attributes to the item. Use the CellItalic, CellUnderline, CellBold or
CellStrikeOut property to apply different font attributes to the cell. Use the
CellCaptionFormat property to specify an HTML caption. Use the ConditionalFormats
method to apply formats to a cell or range of cells, and have that formatting change
depending on the value of the cell or the value of a formula.

The following VB sample draws a horizontal line through the selected item:

Private Sub Gantt1_SelectionChanged()
 If Not (h = 0) Then Gantt1.Items.ItemStrikeOut(h) = False
 h = Gantt1.Items.SelectedItem()
 Gantt1.Items.ItemStrikeOut(h) = True
End Sub

The following VB sample draws a horizontal line through the focused item:

With Gantt1.Items
 .ItemStrikeOut(.FocusItem) = True
End With

The following C++ sample draws a horizontal line through the focused item:

#include "Items.h"
CItems items = m_gantt.GetItems();
items.SetItemStrikeOut(items.GetFocusItem() , TRUE);

The following C# sample draws a horizontal line through the focused item:

axGantt1.Items.set_ItemStrikeOut(axGantt1.Items.FocusItem, true);

The following VB.NET sample draws a horizontal line through the focused item:

With AxGantt1.Items
 .ItemStrikeOut(.FocusItem) = True
End With

The following VFP sample draws a horizontal line through the focused item:

with thisform.Gantt1.Items
 .DefaultItem = .FocusItem
 .ItemStrikeOut(0) = .t.
endwith

property Items.ItemToIndex (Item as HITEM) as Long
Retrieves the index of item into Items collection given its handle.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Long A long expression that indicates the index of the item in
Items collection.

Use the ItemToIndex property to get the item's index in the Items collection. Use
ItemPosition property to change the item's position. Use the ItemByIndex property to get an
item giving its index. The ItemCount property counts the items in the control. The ChildCount
property counts the child items.

property Items.ItemUnderline(Item as HITEM) as Boolean

Retrieves or sets a value that indicates whether the item should appear in underline.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Boolean A boolean expression that indicates whether the item
should appear in underline.

Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply different font
attributes to the item. Use the CellItalic, CellUnderline, CellBold or CellStrikeOut property to
apply different font attributes to the cell. Use the CellCaptionFormat property to specify an
HTML caption. Use the ConditionalFormats method to apply formats to a cell or range of
cells, and have that formatting change depending on the value of the cell or the value of a
formula.

The following VB sample underlines the selected item:

Private Sub Gantt1_SelectionChanged()
 If Not (h = 0) Then Gantt1.Items.ItemUnderline(h) = False
 h = Gantt1.Items.SelectedItem()
 Gantt1.Items.ItemUnderline(h) = True
End Sub

The following VB sample underlines the focused item:

With Gantt1.Items
 .ItemUnderline(.FocusItem) = True
End With

The following C++ sample underlines the focused item:

#include "Items.h"
CItems items = m_gantt.GetItems();
items.SetItemUnderline(items.GetFocusItem() , TRUE);

The following C# sample underlines the focused item:

axGantt1.Items.set_ItemUnderline(axGantt1.Items.FocusItem, true);

The following VB.NET sample underlines the focused item:

With AxGantt1.Items
 .ItemUnderline(.FocusItem) = True
End With

The following VFP sample underlines the focused item:

with thisform.Gantt1.Items
 .DefaultItem = .FocusItem
 .ItemUnderline(0) = .t.
endwith

property Items.ItemWidth(Item as HITEM) as Long

Retrieves or sets a value that indicates the item's width while it contains an ActiveX control.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Long A long expression that indicates the item's width, when the
item contains an ActiveX control.

By default, the ItemWidth property is -1. If the ItemWidth property is -1, the control resizes
the ActiveX control to fit the control's client area. Use the ItemHeight property to specify the
item's height. The property has effect only if the item contains an ActiveX control. Use the
InsertControlItem property to insert ActiveX controls. Use the ItemObject property to
retrieve the ActiveX object that's hosted by an item.

property Items.ItemWindowHost (Item as HITEM) as Long

Retrieves the window's handle that hosts an ActiveX control when the item was created
using InsertControlItem method.

Type Description

Item as HITEM A long expression that indicates the handle of the item that
was previously created by InsertControlItem method.

Long A long value that indicates the window handle that hosts
the item's ActiveX.

The ItemWindowHost property retrieves the handle of the window that's the container for
the item's ActiveX control. Use the InserControlItem method to insert an ActiveX control.
Use the ItemObject property to access the ActiveX properties and methods. Use the hWnd
property to get the handle of the control's window. The Microsoft Windows operating
environment identifies each form and control in an application by assigning it a handle, or
hWnd. The hWnd property is used with Windows API calls. Many Windows operating
environment functions require the hWnd of the active window as an argument.

property Items.ItemWindowHostCreateStyle(Item as HITEM) as Long

Retrieves or sets a value that indicates a combination of window styles used to create the
ActiveX window host.

Type Description

Item as HITEM A long expression that indicates the handle of the item that
was previously created by InsertControlItem method.

Long A long value that indicates the container window's style.

The ItemWindowHostCreateStyle property specifies the window styles of the ActiveX's
container window, when a new ActiveX control is inserted using the InsertControlItem
method. The ItemWindowHostCreateStyle property has no effect for non ActiveX items.
The ItemWindowHostCreateStyle property must be called during the AddItem event, like in
the following samples. Generally, the ItemWindowHostCreateStyle property is useful to
include WS_HSCROLL and WS_VSCROLL styles for a IWebBrowser control (WWW
browser control), to include scrollbars in the browsed web page.

Some of ActiveX controls requires additional window styles to be added to the container
window. For instance, the Web Brower added by the Gantt1.Items.InsertControlItem(,
"https://www.exontrol.com") won't add scroll bars, so you have to do the following:

First thing is to declare the WS_HSCROLL and WS_VSCROLL constants at the top of your
module:

Private Const WS_VSCROLL = &H200000
Private Const WS_HSCROLL = &H100000

Then you need to to insert a Web control use the following lines:

Dim hWeb As HITEM
hWeb = Gantt1.Items.InsertControlItem(, "https://www.exontrol.com")
Gantt1.Items.ItemHeight(hWeb) = 196

Next step is adding the AddItem event handler:

Private Sub Gantt1_AddItem(ByVal Item As EXGANTTLibCtl.HITEM)
 If (Gantt1.Items.ItemControlID(Item) = "https://www.exontrol.com") Then
 ' Some of controls like the WEB control, requires some additional window styles (like
WS_HSCROLL and WS_VSCROLL window styles)
 ' for the window that host that WEB control, to allow scrolling the web page

 Gantt1.Items.ItemWindowHostCreateStyle(Item) =
Gantt1.Items.ItemWindowHostCreateStyle(Item) + WS_HSCROLL + WS_VSCROLL
 End If
End Sub

property Items.LastVisibleItem ([Partially as Variant]) as HITEM

Retrieves the handle of the last visible item.

Type Description

Partially as Variant
A Boolean expression that indicates whether the item is
partially visible. By default, the Partially parameter is
False.

HITEM A long expression that indicates handle of the last visible
item.

To get the first visible item use FirstVisibleItem property. The LastVisibleItem property
retrieves the handle for the last visible item. Use the FirstVisibleItem, NextVisibleItem and
IsItemVisible properties to get the items that fit the client area. Use the NextVisibleItem
property to get the next visible item. Use the IsVisibleItem property to check whether an
item fits the control's client area.

The following VB sample enumerates the items that fit the control's client area:

On Error Resume Next
Dim h As HITEM
Dim i As Long, j As Long, nCols As Long
nCols = Gantt1.Columns.Count
With Gantt1.Items
 h = .FirstVisibleItem
 While Not (h = 0) And .IsItemVisible(h)
 Dim s As String
 s = ""
 For j = 0 To nCols - 1
 s = s + .CellCaption(h, j) + Chr(9)
 Next
 Debug.Print s
 h = .NextVisibleItem(h)
 Wend
End With

The following C++ sample enumerates the items that fit the control's client area:

#include "Items.h"
CItems items = m_gantt.GetItems();

long hItem = items.GetFirstVisibleItem();
while (hItem && items.GetIsItemVisible(hItem))
{
 OutputDebugString(V2S(&items.GetCellCaption(COleVariant(hItem), COleVariant(
long(0)))));
 hItem = items.GetNextVisibleItem(hItem);
}

The following VB.NET sample enumerates the items that fit the control's client area:

With AxGantt1.Items
 Dim hItem As Integer
 hItem = .FirstVisibleItem
 While Not (hItem = 0)
 If (.IsItemVisible(hItem)) Then
 Debug.Print(.CellCaption(hItem, 0))
 hItem = .NextVisibleItem(hItem)
 Else
 Exit While
 End If
 End While
End With

The following C# sample enumerates the items that fit the control's client area:

EXGANTTLib.Items items = axGantt1.Items;
int hItem = items.FirstVisibleItem;
while ((hItem != 0) && (items.get_IsItemVisible(hItem)))
{
 object strCaption = items.get_CellCaption(hItem, 0);
 System.Diagnostics.Debug.WriteLine(strCaption != null ? strCaption.ToString() : "");
 hItem = items.get_NextVisibleItem(hItem);
}

The following VFP sample enumerates the items that fit the control's client area:

with thisform.Gantt1.Items
 .DefaultItem = .FirstVisibleItem
 do while ((.DefaultItem <> 0) and (.IsItemVisible(0)))

 wait window .CellCaption(0, 0)
 .DefaultItem = .NextVisibleItem(0)
 enddo
endwith

property Items.Link(LinkKey as Variant, Property as LinkPropertyEnum)
as Variant
Gets or sets a property for a link.

Type Description

LinkKey as Variant A String expression that indicates the key of the link being
accessed.

Property as
LinkPropertyEnum

A LinkPropertyEnum expression that specifies the option
being accessed.

Variant A Variant value that indicates the newly value for the
property.

Use the Link property to access different properties for a specified link. Use the AddLink
method to add a new link between two bars. For instance, the Link(exLinkShowDir)
property indicates whether the arrow of the link that specifies the direction, is shown or
hidden. Use the RemoveLink method to remove a specific link. Use the FirstLink and
NextLink properties to enumerate the links in the control. Use the BeginUpdate and
EndUpdate methods to maintain performance while adding columns, items, bars or links.
Use the HTMLPicture property to add custom size pictures. Use the LinkFromPoint property
to get the key of the link from the cursor.

The /NET Assembly version defines get/set shortcut properties as follow (they start with
get_ or set_ keywords):

LinkStartItem : Integer, retrieves or sets a value that indicates the handle of the item
where the link start
LinkStartBar : Object, retrieves or sets a value that indicates the key of the bar where
the link starts
LinkEndItem : Integer, retrieves or sets a value that indicates the handle of the item
where the link ends
LinkEndBar : Object, retrieves or sets a value that indicates the key of the bar where
the link ends
LinkVisible : Boolean, specifies whether the link is visible or hidden
LinkUserData : Object, specifies an extra data associated with the link
LinkStartPos : AlignmentEnum, specifies the position where the link starts in the
source item
LinkEndPos : AlignmentEnum, specifies the position where the link ends in the target
item
LinkColor : Color, specifies the color to paint the link
LinkStyle : LinkStyleEnum, specifies the style to paint the link
LinkWidth : Integer, specifies the width in pixels of the link

LinkShowDir : Boolean, specifies whether the link shows the direction
LinkText : String, specifies the HTML text being displayed on the link
LinkToolTip : String, specifies the HTML text being shown when the cursor hovers the
link
LinksCount : Integer, specifies the number of the links within the chart

So instead using the get_Link or set_Link properties you can use these functions.

The following VB sample displays a text plus a picture on a link:

Gantt1.Items.Link("Link", exLinkText) = " excel

doc.xls"

property Items.LockedItem (Alignment as VAlignmentEnum, Index as
Long) as HITEM
Retrieves the handle of the locked item.

Type Description

Alignment as
VAlignmentEnum

A VAlignmentEnum expression that indicates whether the
locked item requested is on the top or bottom side of the
control.

Index as Long A long expression that indicates the position of item being
requested.

HITEM A long expression that indicates the handle of the locked
item

A locked or fixed item is always displayed on the top or bottom side of the control no matter
if the control's list is scrolled up or down. Use the LockedItem property to access a locked
item by its position. Use the LockedItemCount property to add or remove items fixed/locked
to the top or bottom side of the control. Use the ShowLockedItems property to show or
hide the locked items. Use the IsItemLocked property to check whether an item is locked or
unlocked. Use the CellCaption property to specify the caption for a cell. Use the
InsertControlItem property to assign an ActiveX control to a locked item only

The following VB sample adds an item that's locked to the top side of the control:

With Gantt1
 Dim a As EXGANTTLibCtl.VAlignmentEnum
 a = EXGANTTLibCtl.VAlignmentEnum.TopAlignment
 .BeginUpdate
 With .Items
 .LockedItemCount(a) = 1
 Dim h As EXGANTTLibCtl.HITEM
 h = .LockedItem(a, 0)
 .CellCaption(h, 0) = "locked item"
 .CellCaptionFormat(h, 0) = exHTML
 End With
 .EndUpdate
End With

The following C++ sample adds an item that's locked to the top side of the control:

#include "Items.h"
m_gantt.BeginUpdate();
CItems items = m_gantt.GetItems();
items.SetLockedItemCount(0 /*TopAlignment*/, 1);
long i = items.GetLockedItem(0 /*TopAlignment*/, 0);
COleVariant vtItem(i), vtColumn(long(0));
items.SetCellCaption(vtItem, vtColumn, COleVariant("locked item"));
items.SetCellCaptionFormat(vtItem, vtColumn, 1/*exHTML*/);
m_gantt.EndUpdate();

The following VB.NET sample adds an item that's locked to the top side of the control:

With AxGantt1
 .BeginUpdate()
 With .Items
 .LockedItemCount(EXGANTTLib.VAlignmentEnum.TopAlignment) = 1
 Dim i As Integer
 i = .LockedItem(EXGANTTLib.VAlignmentEnum.TopAlignment, 0)
 .CellCaption(i, 0) = "locked item"
 .CellCaptionFormat(i, 0) = EXGANTTLib.CaptionFormatEnum.exHTML
 End With
 .EndUpdate()
End With

The following C# sample adds an item that's locked to the top side of the control:

axGantt1.BeginUpdate();
EXGANTTLib.Items items = axGantt1.Items;
items.set_LockedItemCount(EXGANTTLib.VAlignmentEnum.TopAlignment, 1);
int i = items.get_LockedItem(EXGANTTLib.VAlignmentEnum.TopAlignment, 0);
items.set_CellCaption(i, 0, "locked item");
items.set_CellCaptionFormat(i, 0, EXGANTTLib.CaptionFormatEnum.exHTML);
axGantt1.EndUpdate();

The following VFP sample adds an item that's locked to the top side of the control:

with thisform.Gantt1
 .BeginUpdate()

 With .Items
 .LockedItemCount(0) = 1
 .DefaultItem = .LockedItem(0, 0)
 .CellCaption(0, 0) = "locked item"
 .CellCaptionFormat(0, 0) = 1 && EXGANTTLib.CaptionFormatEnum.exHTML
 EndWith
 .EndUpdate()
endwith

property Items.LockedItemCount(Alignment as VAlignmentEnum) as
Long
Specifies the number of items fixed on the top or bottom side of the control.

Type Description
Alignment as
VAlignmentEnum

A VAlignmentEnum expression that specifies the top or
bottom side of the control.

Long A long expression that indicates the number of items
locked to the top or bottom side of the control.

A locked or fixed item is always displayed on the top or bottom side of the control no matter
if the control's list is scrolled up or down. Use the LockedItemCount property to add or
remove items fixed/locked to the top or bottom side of the control. Use the LockedItem
property to access a locked item by its position. Use the ShowLockedItems property to
show or hide the locked items. Use the CellCaption property to specify the caption for a
cell. Use the CountLockedColumns property to lock or unlock columns in the control. Use
the ItemBackColor property to specify the item's background color. Use the ItemDivider
property to merge the cells. Use the MergeCells method to combine two or multiple cells in
a single cell.

The following VB sample adds two items that are locked to the top side of the control, and
one item that's locked to the bottom side of the control:

With Gantt1
 Dim h As EXGANTTLibCtl.HITEM
 Dim a As EXGANTTLibCtl.VAlignmentEnum
 a = EXGANTTLibCtl.VAlignmentEnum.TopAlignment
 .BeginUpdate
 With .Items
 .LockedItemCount(a) = 2

 For i = 0 To .LockedItemCount(a) - 1
 h = .LockedItem(a, i)
 .CellCaption(h, 0) = "item locked to the top side of the control"
 .CellCaptionFormat(h, 0) = exHTML
 .ItemBackColor(h) = SystemColorConstants.vb3DFace
 .ItemForeColor(h) = SystemColorConstants.vbWindowText
 Next
 a = EXGANTTLibCtl.VAlignmentEnum.BottomAlignment
 .LockedItemCount(a) = 1
 h = .LockedItem(a, 0)
 .CellCaption(h, 0) = "item locked to the bottom side of the control"
 .CellCaptionFormat(h, 0) = exHTML
 .ItemBackColor(h) = SystemColorConstants.vb3DFace
 End With
 .EndUpdate
End With

The following C++ sample adds an item that's locked to the top side of the control:

#include "Items.h"
m_gantt.BeginUpdate();
CItems items = m_gantt.GetItems();
items.SetLockedItemCount(0 /*TopAlignment*/, 1);
long i = items.GetLockedItem(0 /*TopAlignment*/, 0);
COleVariant vtItem(i), vtColumn(long(0));
items.SetCellCaption(vtItem, vtColumn, COleVariant("locked item"));
items.SetCellCaptionFormat(vtItem, vtColumn, 1/*exHTML*/);
m_gantt.EndUpdate();

The following VB.NET sample adds an item that's locked to the top side of the control:

With AxGantt1
 .BeginUpdate()
 With .Items
 .LockedItemCount(EXGANTTLib.VAlignmentEnum.TopAlignment) = 1
 Dim i As Integer
 i = .LockedItem(EXGANTTLib.VAlignmentEnum.TopAlignment, 0)
 .CellCaption(i, 0) = "locked item"

 .CellCaptionFormat(i, 0) = EXGANTTLib.CaptionFormatEnum.exHTML
 End With
 .EndUpdate()
End With

The following C# sample adds an item that's locked to the top side of the control:

axGantt1.BeginUpdate();
EXGANTTLib.Items items = axGantt1.Items;
items.set_LockedItemCount(EXGANTTLib.VAlignmentEnum.TopAlignment, 1);
int i = items.get_LockedItem(EXGANTTLib.VAlignmentEnum.TopAlignment, 0);
items.set_CellCaption(i, 0, "locked item");
items.set_CellCaptionFormat(i, 0, EXGANTTLib.CaptionFormatEnum.exHTML);
axGantt1.EndUpdate();

The following VFP sample adds an item that's locked to the top side of the control:

with thisform.Gantt1
 .BeginUpdate()
 With .Items
 .LockedItemCount(0) = 1
 .DefaultItem = .LockedItem(0, 0)
 .CellCaption(0, 0) = "locked item"
 .CellCaptionFormat(0, 0) = 1 && EXGANTTLib.CaptionFormatEnum.exHTML
 EndWith
 .EndUpdate()
endwith

property Items.MatchItemCount as Long
Retrieves the number of items that match the filter.

Type Description

Long
A long expression that specifies the number of matching
items in the control. The value could be a positive value if
no filter is applied, or negative while filter is on.

The MatchItemCount property counts the number of items that matches the current filter
criteria. At runtime, the MatchItemCount property is a positive integer if no filter is applied,
and negative if a filter is applied. If positive, it indicates the number of items within the
control (ItemCount property). If negative, a filter is applied, and the absolute value minus
one, indicates the number of matching items after filter is applied. A matching item includes
its parent items, if the control's FilterInclude property allows including child items.

The MatchItemCount property returns a value as explained bellow:

0, the control displays/contains no items, and no filter is applied to any column
-1, the control displays no items, and there is a filter applied (no match found)
positive number, indicates the number of items within the control (ItemCount property)
negative number, the absolute value minus 1, indicates the number of items that
matches the current filter (match found)

method Items.MergeCells ([Cell1 as Variant], [Cell2 as Variant], [Options
as Variant])
Merges a list of cells.

Type Description

Cell1 as Variant

A long expression that indicates the handle of the cell
being merged, or a safe array that holds a collection of
handles for the cells being merged. Use the ItemCell
property to retrieves the handle of the cell. The first cell
(in the list, if exists) specifies the cell being displayed in
the new larger cell.

Cell2 as Variant

A long expression that indicates the handle of the cell
being merged, or a safe array that holds a collection of
handles for the cells being merged. Use the ItemCell
property to retrieves the handle of the cell. The first cell in
the list specifies the cell being displayed in the new larger
cell.

Options as Variant Reserved.

The MergeCells method combines two or more cells into one cell. The data in the first
specified cell is displayed in the new larger cell. All the other cells' data is not lost. Use the
CellMerge property to merge or unmerge a cell with another cell in the same item. Use the
ItemDivider property to display a single cell in the entire item (merging all cells in the item).
Use the UnmergeCells method to unmerge the merged cells. Use the CellCaption property
to specify the cell's caption. Use the ItemCell property to retrieves the handle of the cell.
Use the BeginMethod and EndUpdate methods to maintain performance, when merging
multiple cells in the same time. The MergeCells methods creates a list of cells from Cell1
and Cell2 parameters that need to be merged, and the first cell in the list specifies the
displayed cell in the merged cell. Use the SplitCell property to split a cell. Use the
SelectableItem property to specify the user can select an item.

The following VB sample adds three columns, a root item and two child items:

With Gantt1
 .BeginUpdate
 .MarkSearchColumn = False
 .DrawGridLines = exAllLines
 .LinesAtRoot = exLinesAtRoot
 With .Columns.Add("Column 1")
 .Def(exCellCaptionFormat) = exHTML
 End With
 .Columns.Add "Column 2"
 .Columns.Add "Column 3"
 With .Items
 Dim h As Long
 h = .AddItem("Root. This is the root item")
 .InsertItem h, , Array("Child 1", "SubItem 2", "SubItem 3")
 .InsertItem h, , Array("Child 2", "SubItem 2", "SubItem 3")
 .ExpandItem(h) = True
 .SelectItem(h) = True
 End With
 .EndUpdate
End With

and it looks like follows (notice that the caption of the root item is truncated by the column
that belongs to):

If we are merging the first three cells in the root item we get:

You can merge the first three cells in the root item using any of the following methods:

 With Gantt1
 With .Items

 .CellMerge(.RootItem(0), 0) = Array(1, 2)
 End With
End With

With Gantt1
 .BeginUpdate
 With .Items
 Dim r As Long
 r = .RootItem(0)
 .CellMerge(r, 0) = 1
 .CellMerge(r, 0) = 2
 End With
 .EndUpdate
End With

With Gantt1
 .BeginUpdate
 With .Items
 Dim r As Long
 r = .RootItem(0)
 .MergeCells .ItemCell(r, 0), .ItemCell(r, 1)
 .MergeCells .ItemCell(r, 0), .ItemCell(r, 2)
 End With
 .EndUpdate
End With

With Gantt1
 With .Items
 Dim r As Long
 r = .RootItem(0)
 .MergeCells .ItemCell(r, 0), Array(.ItemCell(r, 1), .ItemCell(r, 2))
 End With
End With

With Gantt1
 With .Items
 Dim r As Long

 r = .RootItem(0)
 .MergeCells Array(.ItemCell(r, 0), .ItemCell(r, 1), .ItemCell(r, 2))
 End With
End With

The following VB sample merges the first three cells:

With Gantt1.Items
 .MergeCells .ItemCell(.FocusItem, 0), Array(.ItemCell(.FocusItem, 1), .ItemCell(.FocusItem,
2))
End With

The following C++ sample merges the first three cells:

#include "Items.h"
CItems items = m_gantt.GetItems();
COleVariant vtFocusCell(items.GetItemCell(items.GetFocusItem(), COleVariant((long)0))),
vtMissing; V_VT(&vtMissing) = VT_ERROR;
items.MergeCells(vtFocusCell, COleVariant(items.GetItemCell(items.GetFocusItem(),
COleVariant((long)1))), vtMissing);
items.MergeCells(vtFocusCell, COleVariant(items.GetItemCell(items.GetFocusItem(),
COleVariant((long)2))), vtMissing);

The following VB.NET sample merges the first three cells:

With AxGantt1.Items
 .MergeCells(.ItemCell(.FocusItem, 0), .ItemCell(.FocusItem, 1))
 .MergeCells(.ItemCell(.FocusItem, 0), .ItemCell(.FocusItem, 2))
End With

The following C# sample merges the first three cells:

EXGANTTLib.Items items = axGantt1.Items;
items.MergeCells(items.get_ItemCell(items.FocusItem, 0), items.get_ItemCell(
items.FocusItem, 1),"");
items.MergeCells(items.get_ItemCell(items.FocusItem, 0),
items.get_ItemCell(items.FocusItem, 2),"");

The following VFP sample merges the first three cells:

with thisform.Gantt1.Items
 .MergeCells(.ItemCell(.FocusItem,0), .ItemCell(.FocusItem,1), "")
 .MergeCells(.ItemCell(.FocusItem,0), .ItemCell(.FocusItem,2), "")
endwith

Now, the question is what should I use in my program in order to merge some cells? For
instance, if you are using handle to cells (HCELL type), we would recommend using the
MergeCells method, else you could use as well the CellMerge property.

property Items.NextItemBar (Item as HITEM, Key as Variant) as Variant
Gets the key of the next bar in the item.

Type Description

Item as HITEM A HITEM expression that indicates the handle of the item
where the bars are enumerated.

Key as Variant A String expression that indicates the key of the bar.

Variant A String expression that indicates the key of the next bar
in the item, or empty if there is no next bar in the item

Use the FirstItemBar and NextItemBar methods to enumerate the bars inside the item. Use
the ItemBar property to access properties of the specified bar. Use the AddBar method to
add new bars to the item. Use the RemoveBar method to remove a bar from an item. Use
the ClearBars method to remove all bars in the item. The FirstItemBar and NextItemBar
methods enumerates bars in alphabetic order of the keys. Use the ItemBar(exBarsCount)
property to retrieve the number of bars in a specified item.

The following VB sample enumerates the bars in the item (h indicates the handle of the
item):

With Gantt1
 If Not (h = 0) Then
 Dim k As Variant
 k = .Items.FirstItemBar(h)
 While Not IsEmpty(k)
 Debug.Print "Key = " & k
 k = .Items.NextItemBar(h, k)
 Wend
 End If
End With

The following C++ sample enumerates the bars in the item (h indicates the handle of the
item):

CItems items = m_gantt.GetItems();
COleVariant vtBar = items.GetFirstItemBar(h) ;
while (V_VT(&vtBar) != VT_EMPTY)
{
 OutputDebugString(V2S(&vtBar));

 OutputDebugString("\n");
 vtBar = items.GetNextItemBar(h, vtBar);
}

where the V2S function converts a Variant expression to a string:

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

The following VB.NET sample enumerates the bars in the item (h indicates the handle of
the item):

With AxGantt1
 If Not (h = 0) Then
 Dim k As Object
 k = .Items.FirstItemBar(h)
 While TypeOf k Is String
 System.Diagnostics.Debug.Print(k.ToString)
 k = .Items.NextItemBar(h, k)
 End While
 End If
End With

The following C# sample enumerates the bars in the item (h indicates the handle of the
item):

object k = axGantt1.Items.get_FirstItemBar(h);
while (k != null)

{
 System.Diagnostics.Debug.Print(k.ToString());
 k = axGantt1.Items.get_NextItemBar(h, k);
}

The following VFP sample enumerates the bars in the item (h indicates the handle of the
item):

With thisform.Gantt1
 If Not (h = 0) Then
 local k
 k = .Items.FirstItemBar(h)
 do While !empty(k)
 ?k
 k = .Items.NextItemBar(h, k)
 enddo
 Endif
EndWith

In VFP, please make sure that you are using non empty values for the keys. For instance, if
you are omitting the Key parameter of the AddBar method, an empty key is missing. If you
need to use the FirstItemBar and NextItemBar properties, you have to use non empty keys
for the bars.

property Items.NextLink (LinkKey as Variant) as Variant
Gets the key of the next link.

Type Description

LinkKey as Variant A string expression that indicates the key of the previous
link

Variant A string expression that indicates the key of the next link,
or empty value if there is no next link.

Use the FirstLink and NextLink properties to enumerate the links in the control. The NextLink
property retrieves an empty value, if there is no next link in the control. Use the AddLink
property to link two bars. Use the ShowLinks property to show or hide the links. Use the
Link property to access a property of the link.

The following VB sample enumerates the links:

With Gantt1.Items
 Dim k As Variant
 k = .FirstLink()
 While Not IsEmpty(k)
 Debug.Print "LinkKey = " & k
 k = .NextLink(k)
 Wend
End With

The following C++ sample enumerates the links:

CItems items = m_gantt.GetItems();
COleVariant vtLinkKey = items.GetFirstLink() ;
while (V_VT(&vtLinkKey) != VT_EMPTY)
{
 OutputDebugString(V2S(&vtLinkKey));
 OutputDebugString("\n");
 vtLinkKey = items.GetNextLink(vtLinkKey);
}

where the V2S function converts a Variant expression to a string:

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))

{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

The following VB.NET sample enumerates the links:

With AxGantt1.Items
 Dim k As Object
 k = .FirstLink
 While (TypeOf k Is String)
 System.Diagnostics.Debug.Print(k.ToString)
 k = .NextLink(k)
 End While
End With

The following C# sample enumerates the links:

object k = axGantt1.Items.FirstLink;
while (k != null)
{
 System.Diagnostics.Debug.Print(k.ToString());
 k = axGantt1.Items.get_NextLink(k);
}

The following VFP sample enumerates the links:

With thisform.Gantt1.Items
 local k
 k = .FirstLink
 do While !empty(k)

 ?k
 k = .NextLink(k)
 enddo
endwith

property Items.NextSiblingItem (Item as HITEM) as HITEM

Retrieves the next sibling of the item in the parent's child list.

Type Description
Item as HITEM A long expression that indicates the item's handle.

HITEM A long expression that indicates the handle of the next
sibling item.

The NextSiblingItem property retrieves the next sibling of the item in the parent's child list.
Use ItemChild and NextSiblingItem properties to enumerate the collection of child items.

The following VB function recursively enumerates the item and all its child items:

Sub RecItem(ByVal c As EXGANTTLibCtl.Gantt, ByVal h As HITEM)
 If Not (h = 0) Then
 Dim hChild As HITEM
 With c.Items
 Debug.Print .CellCaption(h, 0)
 hChild = .ItemChild(h)
 While Not (hChild = 0)
 RecItem c, hChild
 hChild = .NextSiblingItem(hChild)
 Wend
 End With
 End If
End Sub

The following C++ function recursively enumerates the item and all its child items:

void RecItem(CGantt* pGantt, long hItem)
{
 COleVariant vtColumn((long)0);
 if (hItem)
 {
 CItems items = pGantt->GetItems();

 CString strCaption = V2S(&items.GetCellCaption(COleVariant(hItem), vtColumn)),
strOutput;

 strOutput.Format("Cell: '%s'\n", strCaption);
 OutputDebugString(strOutput);

 long hChild = items.GetItemChild(hItem);
 while (hChild)
 {
 RecItem(pGantt, hChild);
 hChild = items.GetNextSiblingItem(hChild);
 }
 }
}

The following VB.NET function recursively enumerates the item and all its child items:

Shared Sub RecItem(ByVal c As AxEXGANTTLib.AxGantt, ByVal h As Integer)
 If Not (h = 0) Then
 Dim hChild As Integer
 With c.Items
 Debug.WriteLine(.CellCaption(h, 0))
 hChild = .ItemChild(h)
 While Not (hChild = 0)
 RecItem(c, hChild)
 hChild = .NextSiblingItem(hChild)
 End While
 End With
 End If
End Sub

The following C# function recursively enumerates the item and all its child items:

internal void RecItem(AxEXGANTTLib.AxGantt gantt, int hItem)
{
 if (hItem != 0)
 {
 EXGANTTLib.Items items = gantt.Items;
 object caption = items.get_CellCaption(hItem, 0);
 System.Diagnostics.Debug.WriteLine(caption != null ? caption.ToString() : "");

 int hChild = items.get_ItemChild(hItem);
 while (hChild != 0)
 {
 RecItem(gantt, hChild);
 hChild = items.get_NextSiblingItem(hChild);
 }
 }
}

The following VFP function recursively enumerates the item and all its child items (recitem
method):

LPARAMETERS h

with thisform.Gantt1
 If (h != 0) Then
 local hChild
 With .Items
 .DefaultItem = h
 wait window .CellCaption(0, 0)
 hChild = .ItemChild(h)
 do While (hChild != 0)
 thisform.recitem(hChild)
 hChild = .NextSiblingItem(hChild)
 enddo
 EndWith
 EndIf
endwith

property Items.NextVisibleItem (Item as HITEM) as HITEM

Retrieves the handle of next visible item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

HITEM A long expression that indicates the handle of the next
visible item.

Use the NextVisibleItem property to access the visible items. The NextVisibleItem property
retrieves 0 if there are no more visible items. Use the IsItemVisible property to check
whether an item fits the control's client area. Use the FirstVisibleItem property to retrieve
the first visible item.

The following VB sample enumerates all visible items:

Private Sub VisItems(ByVal c As EXGANTTLibCtl.Gantt)
 Dim h As HITEM
 With c.Items
 h = .FirstVisibleItem
 While Not (h = 0)
 Debug.Print .CellCaption(h, 0)
 h = .NextVisibleItem(h)
 Wend
 End With
End Sub

The following C++ sample enumerates all visible items:

#include "Items.h"
CItems items = m_gantt.GetItems();
long hItem = items.GetFirstVisibleItem();
while (hItem)
{
 OutputDebugString(V2S(&items.GetCellCaption(COleVariant(hItem), COleVariant(
long(0)))));
 hItem = items.GetNextVisibleItem(hItem);
}

The following C# sample enumerates all visible items:

EXGANTTLib.Items items = axGantt1.Items;
int hItem = items.FirstVisibleItem;
while (hItem != 0)
{
 object strCaption = items.get_CellCaption(hItem, 0);
 System.Diagnostics.Debug.WriteLine(strCaption != null ? strCaption.ToString() : "");
 hItem = items.get_NextVisibleItem(hItem);
}

The following VB.NET sample enumerates all visible items:

With AxGantt1.Items
 Dim hItem As Integer
 hItem = .FirstVisibleItem
 While Not (hItem = 0)
 Debug.Print(.CellCaption(hItem, 0))
 hItem = .NextVisibleItem(hItem)
 End While
End With

The following VFP sample enumerates all visible items:

with thisform.Gantt1.Items
 .DefaultItem = .FirstVisibleItem
 do while (.DefaultItem <> 0)
 wait window .CellCaption(0, 0)
 .DefaultItem = .NextVisibleItem(0)
 enddo
endwith

property Items.PathSeparator as String

Returns or sets the delimiter character used for the path returned by the FullPath and
FindPath properties.

Type Description

String
A string expression that indicates the delimiter character
used for the path returned by the FullPath and FindPath
properties.

By default the PathSeparator is "\". The PathSeparator property is used by properties like
FullPath and FindPath.

property Items.PrevSiblingItem (Item as HITEM) as HITEM

Retrieves the previous sibling of the item in the parent's child list.

Type Description
Item as HITEM A long expression that indicates the item's handle.

HITEM A long expression that indicates the handle of the previous
sibling item

The PrevSiblingItem retrieves 0 if there are no more previous sibling items. The
NextSiblingItem property retrieves the next sibling of the item in the parent's child list. Use
the FirstVisibleItem property to retrieve the first visible item. Use the ItemParent property to
retrieve the parent of the item.

property Items.PrevVisibleItem (Item as HITEM) as HITEM

Retrieves the handle of previous visible item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

HITEM A long expression that indicates the handle of the previous
visible item

The PrevVisibleItem property retrieves 0 if there are no previous visible items. The
NextVisibleItem property retrieves the next visible item. Use the FirstVisibleItem property to
retrieve the first visible item. Use the ItemParent property to retrieve the parent of the item.

method Items.RemoveAllItems ()

Removes all items from the control.

Type Description

Use the RemoveAllItems method to remove all items in the control. Use the Clear method to
remove all columns in the control. Use the RemoveItem method to remove a single item in
the control.

method Items.RemoveBar (Item as HITEM, [Key as Variant])
Removes a bar from an item.

Type Description

Item as HITEM

A long expression that indicates the the handle of the item
where the bar is removed. If the Item parameter is 0, the
RemoveBar method removes all bars with specified key
from all items. In this case the DefaultItem property should
be 0 (by default), else it refers a single item being
indicated by the DefaultItem property.

Key as Variant

A String expression that indicates the key of the bar to be
removed. If missing, the Key parameter is empty. The Key
may include a pattern with wild characters as *,?,# or [], if
the Key starts with "<" and ends on ">" aka "<K*>" which
indicates all bars with the key K or starts on K. The
pattern may include a space which divides multiple
patterns for matching. For instance "<A* *K>" indicates all
keys that start on A and all keys that end on K.

Use the RemoveBar method to remove a bar from an item. If the Item parameter is not 0 (
indicates a valid handle), the RemoveBar removes a single bar (if found, with the Key
being specified by the Key parameter). If the Item parameter is 0, the RemoveBar method
removes all bars with specified key from all items. Use the BeginUpdate / EndUpdate
methods to refresh the control's content after removing a bar or several bars. Use the
ClearBars method to remove all bars in the item.

Based on the values of Item and Key parameters the RemoveBar property remove none,
one or multiple bars as follow:

RemoveBar(0,"<*>") removes all bars in the chart
RemoveBar(0,"<pattern>") removes all bars in the chart that match a specified
pattern using wild characters as *,?,# or []
RemoveBar(Item,"<*>") removes all bars in the specified Item
RemoveBar(Item,"<pattern>") removes all bars from the giving Item that match a
specified pattern using wild characters as *,?,# or []

The pattern may include the space character which indicates multiple patterns to be used
when matching. For instance "A* *K" indicates all keys that start on A and all keys that end
on K.

Here's few samples of using the RemoveBar method:

RemoveBar(Item,"K1") removes the bar K1 from the specified Item
RemoveBar(0,"K1") removes the bar K1 from the entire chart
RemoveBar(0,"<A* K*>") removes all bars from the chart with the Key A or K or starts
with A or K
RemoveBar(0,"<*K>") removes all bars from the chart with the Key K or ends on K
RemoveBar(Item,"<K*>") removes all bars from the specified Item with the Key K or
starts on K
RemoveBar(Item,"<K??>") removes all bars from the specified Item with the Key of 3
characters and starts with K

Use the AddBar method to add new bars to the item. Use the Remove method to remove a
type of bar from the Bars collection. Use the Add method to add new types of bars to the
Bars collection. Use the FirstVisibleDate property to specify the first visible date in the chart
area. Use the Key parameter to identify a bar inside an item. Use the ItemBar property to
access a bar inside the item. Use the PaneWidth property to specify the width of the chart.
Use the NonworkingDays property to specify the non-working days.

method Items.RemoveItem (Item as HITEM)

Removes a specific item.

Type Description

Item as HITEM A long expression that indicates the handle of the item
being removed.

The RemoveItem method removes an item. The RemoveItem method does not remove the
item, if it contains child items. The following sample removes the first item:
Gantt1.Items.RemoveItem Gantt1.Items(0). Use the RemoveAllItems method to remove all
items in the control. Use the BeginUpdate and EndUpdate methods to maintain performance
while removing the items. The RemoveItem method can't remove an item that's locked.
Instead you can use the LockedItemCount property to add or remove locked items. Use the
IsItemLocked property to check whether an item is locked. The RemoveSelection method
removes the selected items (including the descendents).

The following VB sample removes recursively an item:

Private Sub RemoveItemRec(ByVal t As EXGANTTLibCtl.Gantt, ByVal h As HITEM)
 If Not h = 0 Then
 With t.Items
 t.BeginUpdate
 Dim hChild As HITEM
 hChild = .ItemChild(h)
 While (hChild <> 0)
 Dim hNext As HITEM
 hNext = .NextSiblingItem(hChild)
 RemoveItemRec t, hChild
 hChild = hNext
 Wend
 .RemoveItem h
 t.EndUpdate
 End With
 End If
End Sub

The following C++ sample removes recursively an item:

void RemoveItemRec(CGantt* pGantt, long hItem)

{
 if (hItem)
 {
 pGantt->BeginUpdate();
 CItems items = pGantt->GetItems();
 long hChild = items.GetItemChild(hItem);
 while (hChild)
 {
 long nNext = items.GetNextSiblingItem(hChild);
 RemoveItemRec(pGantt, hChild);
 hChild = nNext;
 }
 items.RemoveItem(hItem);
 pGantt->EndUpdate();
 }
}

The following VB.NET sample removes recursively an item:

Shared Sub RemoveItemRec(ByVal t As AxEXGANTTLib.AxGantt, ByVal h As Integer)
 If Not h = 0 Then
 With t.Items
 t.BeginUpdate()
 Dim hChild As Integer = .ItemChild(h)
 While (hChild <> 0)
 Dim hNext As Integer = .NextSiblingItem(hChild)
 RemoveItemRec(t, hChild)
 hChild = hNext
 End While
 .RemoveItem(h)
 t.EndUpdate()
 End With
 End If
End Sub

The following C# sample removes recursively an item:

internal void RemoveItemRec(AxEXGANTTLib.AxGantt gantt, int hItem)

{
 if (hItem != 0)
 {
 EXGANTTLib.Items items = gantt.Items;
 gantt.BeginUpdate();
 int hChild = items.get_ItemChild(hItem);
 while (hChild != 0)
 {
 int hNext = items.get_NextSiblingItem(hChild);
 RemoveItemRec(gantt, hChild);
 hChild = hNext;
 }
 items.RemoveItem(hItem);
 gantt.EndUpdate();
 }
}

The following VFP sample removes recursively an item (removeitemrec method):

LPARAMETERS h

with thisform.Gantt1
 If (h != 0) Then
 .BeginUpdate()
 local hChild
 With .Items
 hChild = .ItemChild(h)
 do While (hChild != 0)
 local hNext
 hNext = .NextSiblingItem(hChild)
 thisform.removeitemrec(hChild)
 hChild = hNext
 enddo
 .RemoveItem(h)
 EndWith
 .EndUpdate()
 EndIf

endwith

method Items.RemoveLink (LinkKey as Variant)
Removes a link.

Type Description

LinkKey as Variant A String expression that indicates the key of the link being
removed.

Use the RemoveLink method to remove the specified link. Use the Link(exLinkVisible)
property to hide a specific link between two bars. Use the AddLink method to add a link
between two bars. Use the ClearLinks method to remove all links in the control. Use the
ShowLinks property to hide all links in the control. Use the RemoveItem method to remove
an item. The RemoveItem method removes all links related to the item.

method Items.RemoveSelection ()
Removes the selected items (including the descendents).

Type Description

The RemoveSelection method removes the selected items (including the descendents). The
RemoveItem method removes an item (if the item has no descendents). The UnselectAll
method unselects all items in the list.

property Items.RootCount as Long

Retrieves the number of root objects into Items collection.

Type Description

Long A long value that indicates the count of root items in the
Items collection.

A root item is an item that has no parent (ItemParent() = 0). Use the RootItem property of
the Items object to enumerates the root items. Use the AddItem to add root items to the
control. Use the InsertItem method to insert child items.

The following VB sample enumerates all root items:

Dim i As Long, n As Long
With Gantt1.Items
 n = .RootCount
 For i = 0 To n - 1
 Debug.Print .CellCaption(.RootItem(i), 0)
 Next
End With

The following C++ sample enumerates all root items:

#include "Items.h"
CItems items = m_gantt.GetItems();
for (long i = 0 ; i < items.GetRootCount(); i++)
{
 COleVariant vtItem(items.GetRootItem(i)), vtColumn(long(0));
 OutputDebugString(V2S(&items.GetCellCaption(vtItem, vtColumn)));
}

The following VB.NET sample enumerates all root items:

With AxGantt1.Items
 Dim i As Integer
 For i = 0 To .RootCount - 1
 Debug.Print(.CellCaption(.RootItem(i), 0))
 Next
End With

The following C# sample enumerates all root items:

for (int i = 0; i < axGantt1.Items.RootCount; i++)
{
 object strCaption = axGantt1.Items.get_CellCaption(axGantt1.Items.get_RootItem(i), 0);
 System.Diagnostics.Debug.WriteLine(strCaption != null ? strCaption.ToString() : "");
}

The following VFP sample enumerates all root items:

with thisform.Gantt1.Items
 local i
 for i = 0 to .RootCount - 1
 .DefaultItem = .RootItem(i)
 wait window nowait .CellCaption(0,0)
 next
endwith

property Items.RootItem ([Position as Long]) as HITEM

Retrieves the handle of the root item giving its index into the root items collection.

Type Description

Position as Long A long value that indicates the position of the root item
being accessed.

HITEM A long expression that indicates the handle of the root
item.

A root item is an item that has no parent (ItemParent() = 0). Use the RootCount property of
to count the root items. Use the AddItem to add root items to the control. Use the
InsertItem method to insert child items.

The following VB sample enumerates all root items:

Dim i As Long, n As Long
With Gantt1.Items
 n = .RootCount
 For i = 0 To n - 1
 Debug.Print .CellCaption(.RootItem(i), 0)
 Next
End With

The following C++ sample enumerates all root items:

#include "Items.h"
CItems items = m_gantt.GetItems();
for (long i = 0 ; i < items.GetRootCount(); i++)
{
 COleVariant vtItem(items.GetRootItem(i)), vtColumn(long(0));
 OutputDebugString(V2S(&items.GetCellCaption(vtItem, vtColumn)));
}

The following VB.NET sample enumerates all root items:

With AxGantt1.Items
 Dim i As Integer
 For i = 0 To .RootCount - 1
 Debug.Print(.CellCaption(.RootItem(i), 0))

 Next
End With

The following C# sample enumerates all root items:

for (int i = 0; i < axGantt1.Items.RootCount; i++)
{
 object strCaption = axGantt1.Items.get_CellCaption(axGantt1.Items.get_RootItem(i), 0);
 System.Diagnostics.Debug.WriteLine(strCaption != null ? strCaption.ToString() : "");
}

The following VFP sample enumerates all root items:

with thisform.Gantt1.Items
 local i
 for i = 0 to .RootCount - 1
 .DefaultItem = .RootItem(i)
 wait window nowait .CellCaption(0,0)
 next
endwith

property Items.SelectableItem(Item as HITEM) as Boolean
Specifies whether the user can select the item.

Type Description

Item as HITEM A long expression that indicates the handle of the item
being selectable.

Boolean A boolean expression that specifies whether the item is
selectable.

By default, all items are selectable, excepts the locked items that are not selectable. A
selectable item is an item that user can select using the keys or the mouse. The
SelectableItem property specifies whether the user can select an item. The SelectableItem
property doesn't change the item's appearance. The LockedItemCount property specifies
the number of locked items to the top or bottom side of the control. Use the ItemDivider
property to define a divider item. Use the ItemForeColor property to specify the item's
foreground color. Use the ItemBackColor property to specify the item's background color.
Use the ItemFont, ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to assign a
different font to the item. Use the EnableItem property to disable an item. A disabled item
looks grayed, but it is selectable. For instance, the user can't change the check box state in
a disabled item. Use the SelectItem property to select an item. The ItemFromPoint property
gets the item from point. For instance, if the user clicks a non selectable item the
SelectionChanged event is not fired. A non selectable item is not focusable as well. It
means that if the incremental searching is on, the non selectable items are ignored. Use the
SelectCount property to get the number of selected items. Use the SelForeColor and
SelBackColor properties to customize the colors for selected items.

The following VB sample makes not selectable the first visible item:

With Gantt1.Items
 .SelectableItem(.FirstVisibleItem) = False
End With

The following C++ sample makes not selectable the first visible item:

#include "Items.h"
CItems items = m_gantt.GetItems();
items.SetSelectableItem(items.GetFirstVisibleItem(), FALSE);

The following VB.NET sample makes not selectable the first visible item:

With AxGantt1.Items
 .SelectableItem(.FirstVisibleItem) = False
End With

The following C# sample makes not selectable the first visible item:

axGantt1.Items.set_SelectableItem(axGantt1.Items.FirstVisibleItem, false);

The following VFP sample makes not selectable the first visible item:

with thisform.Gantt1.Items
 .DefaultItem = .FirstVisibleItem
 .SelectableItem(0) = .f.
endwith

method Items.SelectAll ()
Selects all items.

Type Description

Use the SelectAll method to select all visible items in the gantt. The SelectAll method has
effect only if the SingleSel property is False, if the control supports multiple items selection.
Use the UnselectAll method to unselect all items in the list. Use the SelectItem property to
select or unselect a specified item. Use the SelectedItem property to retrieve a value that
indicates whether the item is selected or unselected. Use the SelectCount property to
retrieve the number of selected items

property Items.SelectCount as Long

Counts the number of items that are selected into control.

Type Description

Long A long expression that identifies the number of selected
items.

The SelectCount property counts the selected items in the control. The SelectCount
property gets 0, if no items are selected in the control. The ExGantt control supports
multiple selection. Use the SingleSel property of the control to allow multiple selection. Use
the SelectedItem property to retrieve the handle of the selected item(s). The control fires
the SelectionChanged event when user changes the selection in the control. Use the
SelectItem property to select programmatically an item. Use the SelForeColor and
SelBackColor properties to specify colors for selected items. If the control supports only
single selection (SingleSel property is True), the FocusItem retrieves the selected item
too.

If the control's SingleSel is false, then the following statement retrieves the handle for the
selected item: Gantt1.Items.SelectedItem().

If the control supports multiple selection then the following VB sample shows how to
enumerate all selected items:

Dim h As HITEM
Dim i As Long, j As Long, nCols As Long, nSels As Long
nCols = Gantt1.Columns.Count
With Gantt1.Items
 nSels = .SelectCount
 For i = 0 To nSels - 1
 Dim s As String
 For j = 0 To nCols - 1
 s = s + .CellCaption(.SelectedItem(i), j) + Chr(9)
 Next
 Debug.Print s
 Next
End With

The following VB sample unselects all items in the control:

With Gantt1

 .BeginUpdate
 With .Items
 While Not .SelectCount = 0
 .SelectItem(.SelectedItem(0)) = False
 Wend
 End With
 .EndUpdate
End With

The following C++ sample enumerates the selected items:

CItems items = m_gantt.GetItems();
long n = items.GetSelectCount();
if (n != 0)
{
 for (long i = 0; i < n; i++)
 {
 long h = items.GetSelectedItem(i);
 COleVariant vtString;
 vtString.ChangeType(VT_BSTR, &items.GetCellCaption(COleVariant(h), COleVariant(
(long)0)));
 CString str = V_BSTR(&vtString);
 MessageBox(str);
 }
}

The following C++ sample unselects all items in the control:

m_gantt.BeginUpdate();
CItems items = m_gantt.GetItems();
while (items.GetSelectCount())
 items.SetSelectItem(items.GetSelectedItem(0), FALSE);
m_gantt.EndUpdate();

The following VB.NET sample enumerates the selected items:

With AxGantt1.Items
 Dim nCols As Integer = AxGantt1.Columns.Count, i As Integer
 For i = 0 To .SelectCount - 1

 Debug.Print(.CellCaption(.SelectedItem(i), 0))
 Next
End With

The following VB.NET sample unselects all items in the control:

With AxGantt1
 .BeginUpdate()
 With .Items
 While Not .SelectCount = 0
 .SelectItem(.SelectedItem(0)) = False
 End While
 End With
 .EndUpdate()
End With

The following C# sample enumerates the selected items:

for (int i = 0; i < axGantt1.Items.SelectCount; i++)
{
 object strCaption = axGantt1.Items.get_CellCaption(axGantt1.Items.get_SelectedItem(i),
0);
 System.Diagnostics.Debug.WriteLine(strCaption != null ? strCaption.ToString() : "");
}

The following C# sample unselects all items in the control:

axGantt1.BeginUpdate();
EXGANTTLib.Items items = axGantt1.Items;
while (items.SelectCount != 0)
 items.set_SelectItem(items.get_SelectedItem(0), false);
axGantt1.EndUpdate();

The following VFP sample enumerates the selected items:

with thisform.Gantt1.Items
 local i
 for i = 0 to .SelectCount - 1
 .DefaultItem = .SelectedItem(i)

 wait window nowait .CellCaption(0,0)
 next
endwith

The following VFP sample unselects all items in the control:

With thisform.Gantt1
 .BeginUpdate()
 with .Items
 do while (.SelectCount() # 0)
 .DefaultItem = .SelectedItem(0)
 .SelectItem(0) = .f.
 enddo
 endwith
 .EndUpdate()
EndWith

property Items.SelectedItem ([Index as Long]) as HITEM

Retrieves the selected item's handle given its index in selected items collection.

Type Description

Index as Long Identifies the index of the selected item into the selected
items collection.

HITEM A long expression that indicates the handle of the selected
item.

Use the SelectedItem property to get the handle of the selected item(s) in the control. Use
the SelectCount property to find out how many items are selected in the control. The control
fires the SelectionChanged event when user changes the selection in the control. Use the
SelectItem property to select programmatically an item. If the control supports only single
selection, you can use the FocusItem property to get the selected/focused item because
they are always the same. Use the SingleSel property to enable single or multiple
selection. Use the SelForeColor and SelBackColor properties to specify colors for selected
items.

The following sample shows hot to print the caption for the selected item: Debug.Print
Gantt1.Items.CellCaption(Gantt1.Items.SelectedItem(0), 0).

The following sample applies an italic font attribute to the selected item:

Private Sub Gantt1_SelectionChanged()
 If Not (h = 0) Then Gantt1.Items.ItemItalic(h) = False
 h = Gantt1.Items.SelectedItem()
 Gantt1.Items.ItemItalic(h) = True
End Sub

The following VB sample enumerates the selected items:

Dim i As Long
With Gantt1.Items
 For i = 0 To .SelectCount - 1
 Debug.Print .CellCaption(.SelectedItem(i), 0)
 Next
End With

The following VB sample unselects all items in the control:

With Gantt1
 .BeginUpdate
 With .Items
 While Not .SelectCount = 0
 .SelectItem(.SelectedItem(0)) = False
 Wend
 End With
 .EndUpdate
End With

The following VC sample displays the selected items:

#include "Items.h"

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

CItems items = m_gantt.GetItems();
for (long i = 0; i < items.GetSelectCount(); i++)
{
 COleVariant vtItem(items.GetSelectedItem(i));
 CString strOutput;
 strOutput.Format("%s\n", V2S(&items.GetCellCaption(vtItem, COleVariant((long)0)))
);
 OutputDebugString(strOutput);
}

The following C++ sample unselects all items in the control:

m_gantt.BeginUpdate();
CItems items = m_gantt.GetItems();
while (items.GetSelectCount())
 items.SetSelectItem(items.GetSelectedItem(0), FALSE);
m_gantt.EndUpdate();

The following VB.NET sample displays the selected items:

With AxGantt1.Items
 Dim i As Integer
 For i = 0 To .SelectCount - 1
 Debug.WriteLine(.CellCaption(.SelectedItem(i), 0))
 Next
End With

The following VB.NET sample unselects all items in the control:

With AxGantt1
 .BeginUpdate()
 With .Items
 While Not .SelectCount = 0
 .SelectItem(.SelectedItem(0)) = False
 End While
 End With
 .EndUpdate()
End With

The following C# sample displays the selected items:

for (int i = 0; i < axGantt1.Items.SelectCount - 1; i++)
{
 object cell = axGantt1.Items.get_CellCaption(axGantt1.Items.get_SelectedItem(i), 0);
 System.Diagnostics.Debug.WriteLine(cell != null ? cell.ToString() : "");
}

The following C# sample unselects all items in the control:

axGantt1.BeginUpdate();
EXGANTTLib.Items items = axGantt1.Items;
while (items.SelectCount != 0)
 items.set_SelectItem(items.get_SelectedItem(0), false);
axGantt1.EndUpdate();

The following VFP sample displays the selected items:

with thisform.Gantt1.Items
 for i = 0 to .SelectCount - 1
 .DefaultItem = .SelectedItem(i)
 wait window nowait .CellCaption(0, 0)
 next
endwith

The following VFP sample unselects all items in the control:

With thisform.Gantt1
 .BeginUpdate()
 with .Items
 do while (.SelectCount() # 0)
 .DefaultItem = .SelectedItem(0)
 .SelectItem(0) = .f.
 enddo
 endwith
 .EndUpdate()
EndWith

property Items.SelectItem(Item as HITEM) as Boolean

Selects or unselects a specific item.

Type Description

Item as HITEM A long expression that indicates the item's handle that is
selected or unselected.

Boolean
A boolean expression that indicates the item's state. True
if the item is selected, and False if the item is not
selected.

Use the SelectItem to select or unselect a specified item (that's selectable). Use the
SelectableItem property to specify the user can select an item. Use the SelectCount
property to get the number of selected items. Use the SelectedItem property to get the
selected item. Use the FocusItem property to get the focused item. If the control supports
only single selection, you can use the FocusItem property to get the selected/focused item
because they are always the same. The control fires the SelectionChanged event when
user selects an item. Use the SelForeColor and SelBackColor properties to specify colors
for selected items. Use the SingleSel property to allow multiple selection. Use the
SelectPos property to select an item giving its position. Use the EnsureVisibleItem property
to ensure that an item is visible.

The following VB sample shows how to select the first created item:
Gantt1.Items.SelectItem(Gantt1.Items(0)) = True

The following VB sample selects the first visible item:

With Gantt1.Items
 .SelectItem(.FirstVisibleItem) = True
End With

The following VB sample enumerates the selected items:

Dim i As Long
With Gantt1.Items
 For i = 0 To .SelectCount - 1
 Debug.Print .CellCaption(.SelectedItem(i), 0)
 Next
End With

The following C++ sample selects the first visible item:

#include "Items.h"
CItems items = m_gantt.GetItems();
items.SetSelectItem(items.GetFirstVisibleItem(), TRUE);

The following C++ sample unselects all items in the control:

m_gantt.BeginUpdate();
CItems items = m_gantt.GetItems();
while (items.GetSelectCount())
 items.SetSelectItem(items.GetSelectedItem(0), FALSE);
m_gantt.EndUpdate();

The following VB.NET sample selects the first visible item:

With AxGantt1.Items
 .SelectItem(.FirstVisibleItem) = True
End With

The following VB.NET sample unselects all items in the control:

With AxGantt1
 .BeginUpdate()
 With .Items
 While Not .SelectCount = 0
 .SelectItem(.SelectedItem(0)) = False
 End While
 End With
 .EndUpdate()
End With

The following C# sample selects the first visible item:

axGantt1.Items.set_SelectItem(axGantt1.Items.FirstVisibleItem, true);

The following C# sample unselects all items in the control:

axGantt1.BeginUpdate();
EXGANTTLib.Items items = axGantt1.Items;
while (items.SelectCount != 0)
 items.set_SelectItem(items.get_SelectedItem(0), false);

axGantt1.EndUpdate();

The following VFP sample selects the first visible item:

with thisform.Gantt1.Items
 .DefaultItem = .FirstVisibleItem
 .SelectItem(0) = .t.
endwith

The following VFP sample unselects all items in the control:

With thisform.Gantt1
 .BeginUpdate()
 with .Items
 do while (.SelectCount() # 0)
 .DefaultItem = .SelectedItem(0)
 .SelectItem(0) = .f.
 enddo
 endwith
 .EndUpdate()
EndWith

property Items.SelectPos as Variant
Selects items by position.

Type Description

Variant
A long expression that indicates the position of item being
selected, or a safe array that holds a collection of position
of items being selected.

Use the SelectPos property to select items by position. Use the SelectItem property to
select an item giving its handle. The SelectPos property selects an item giving its general
position. The ItemPosition property gives the relative position, or the position of the item in
the child items collection.

The following VB sample selects the first item in the control:

Gantt1.Items.SelectPos = 0

The following VB sample selects first two items:

Gantt1.Items.SelectPos = Array(0, 1)

The following C++ sample selects the first item in the control:

m_gantt.GetItems().SetSelectPos(COleVariant(long(0)));

The following VB.NET sample selects the first item in the control:

With AxGantt1.Items
 .SelectPos = 0
End With

The following C# sample selects the first item in the control:

axGantt1.Items.SelectPos = 0;

The following VFP sample selects the first item in the control:

with thisform.Gantt1.Items
 .SelectPos = 0
endwith

method Items.SetParent (Item as HITEM, NewParent as HITEM)

Changes the parent of the given item.

Type Description

Item as HITEM A long expression that indicates the handle of the item
being moved.

NewParent as HITEM A long expression that indicates the handle of the new
parent item.

Use the SetParent property to change the parent item at runtime. Use the InsertItem
property to insert child items. Use the InsertControlItem property to insert ActiveX controls.
Use AcceptSetParent property to verify if the the parent of an item can be changed. The
following VB sample changes the parent item of the first item: Gantt1.Items.SetParent
Gantt1.Items(0), Gantt1.Items(1). Use the ItemParent property to retrieve the parent of the
item.

property Items.SortableItem(Item as HITEM) as Boolean
Specifies whether the item is sortable.

Type Description

Item as HITEM A long expression that indicates the handle of the item
being sortable.

Boolean A boolean expression that specifies whether the item is
sortable.

By default, all items are sortable. A sortable item can change its position after sorting. An
unsortable item keeps its position after user performs a sort operation. Thought, the
position of an unsortable item can be changed using the ItemPosition property. Use the
SortableItem to specify a group item, a total item or a separator item. An unsortable item is
not counted by a total field. The SortType property specifies the type of repositioning is
being applied on the column when a sort operation is performed. The SortOrder property
specifies whether the column is sorted ascendant or descendent. Use the SortChildren
method to sort the items. Use the AllowSort property to avoid sorting a column when the
user clicks the column. The ItemDivider property indicates whether the item displays a
single cell, instead showing all cells. The SelectableItem property specifies whether an item
can be selected.

The following screen shots shows the control when no column is sorted: (Group 1 and
Group 2 has the SortableItem property on False)

The following screen shots shows the control when the column A is being sorted: (Group 1
and Group 2 keeps their original position after sorting)

method Items.SortChildren (Item as HITEM, ColIndex as Variant,
Ascending as Boolean)

Sorts the child items of the given parent item in the control.

Type Description

Item as HITEM A long expression that indicates the item's handle that is
going to be sorted.

ColIndex as Variant
A long expression that indicates the column's index or the
cell's handle, a string expression that indicates the
column's caption.

Ascending as Boolean A boolean expression that defines the sort order.

The SortChildren will not recurse through the tree, only the immediate children of item will
be sorted. If your control acts like a simple list you can use the following line of code to sort
ascending the list by first column: Gantt1.Items.SortChildren 0, 0. To change the way how a
column is sorted use SortType property of Column object. The SortChildren property
doesn't display the sort icon on column's header. The control automatically sorts the
children items when user clicks on column's header, depending on the SortOnClick property.
The SortOrder property sorts the items and displays the sorting icon in the column's
header. Use the AllowSort property to avoid sorting a column when the user clicks the
column.

property Items.SplitCell ([Item as Variant], [ColIndex as Variant]) as
Variant
Splits a cell, and returns the inner created cell.

Type Description

Item as Variant

A long expression that indicates the handle of the item
where a cell is being divided, or 0. If the Item parameter is
0, the ColIndex parameter must indicate the handle of the
cell.

ColIndex as Variant

A long expression that indicates the index of the column
where a cell is divided, or a long expression that indicates
the handle of the cell being divided, if the Item parameter
is missing or it is zero.

Variant A long expression that indicates the handle of the cell
being created.

The SplitCell method splits a cell in two cells. The newly created cell is called inner cell. The
SplitCell method always returns the handle of the inner cell. If the cell is already divided
using the SplitCell method, it returns the handle of the inner cell without creating a new inner
cell. You can split an inner cell too, and so you can have a master cell divided in multiple
cells. Use the CellWidth property to specify the width of the inner cell. Use the CellCaption
property to assign a caption to a cell. Use the InnerCell property to access an inner cell
giving its index. Use the CellParent property to get the parent of the inner cell. Use the
CellItem property to get the owner of the cell. Use the UnsplitCell method to remove the
inner cell if it exists. Use the MergeCells property to combine two or more cells in a single
cell. Use the SelectableItem property to specify the user can select an item. Include the
exIncludeInnerCells flag in the FilterList property and so the drop down filter window lists
the inner cells too.

("Merge" means multiple cells in a single cell, "Split" means multiple cells inside a single
cell)

The following VB sample splits a single cell in two cells (Before running the following
sample, please make sure that your control contains columns, and at least an item):

With Gantt1.Items
 Dim h As HITEM, f As HCELL
 h = .FirstVisibleItem
 f = .SplitCell(h, 0)
 .CellCaption(, f) = "inner cell"
End With

The following C++ sample splits the first visible cell in two cells:

#include "Items.h"
CItems items = m_gantt.GetItems();
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
COleVariant vtSplit = items.GetSplitCell(COleVariant(items.GetFirstVisibleItem()),
COleVariant(long(0)));
items.SetCellCaption(vtMissing, vtSplit, COleVariant("inner cell"));

The following VB.NET sample splits the first visible cell in two cells:

With AxGantt1.Items
 Dim i As Object
 i = .SplitCell(.FirstVisibleItem, 0)
 .CellCaption(Nothing, i) = "inner cell"
End With

The following C# sample splits the first visible cell in two cells:

EXGANTTLib.Items items = axGantt1.Items;
object i = items.get_SplitCell(items.FirstVisibleItem, 0);
items.set_CellCaption(null, i, "inner cell");

The following VFP sample splits the first visible cell in two cells:

with thisform.Gantt1.Items
 local i
 i = .SplitCell(.FirstVisibleItem,0)
 local s, crlf
 crlf = chr(13) + chr(10)

 s = "Items" + crlf
 s = s + "{" + crlf
 s = s + "CellCaption(," + str(i) + ") = " + chr(34) + "inner cell" + chr(34) + crlf
 s = s + "}"
 thisform.Gantt1.Template = s
endwith

method Items.UnmergeCells ([Cell as Variant])
Unmerges a list of cells.

Type Description

Cell as Variant

A long expression that indicates the handle of the cell
being unmerged, or a safe array that holds a collection of
handles for the cells being unmerged. Use the ItemCell
property to retrieves the handle of the cell.

Use the UnmergeCells method to unmerge merged cells. Use the MergeCells method or
CellMerge property to combine (merge) two or more cells in a single one. The
UnmergeCells method unmerges all the cells that was merged. The CellMerge property
unmerges only a single cell. The rest of merged cells remains combined.

The following samples show few methods to unmerge cells:

With Gantt1
 With .Items
 .UnmergeCells .ItemCell(.RootItem(0), 0)
 End With
End With

With Gantt1
 With .Items
 Dim r As Long
 r = .RootItem(0)
 .UnmergeCells Array(.ItemCell(r, 0), .ItemCell(r, 1))
 End With
End With

With Gantt1
 .BeginUpdate
 With .Items
 .CellMerge(.RootItem(0), 0) = -1
 .CellMerge(.RootItem(0), 1) = -1
 .CellMerge(.RootItem(0), 2) = -1
 End With
 .EndUpdate
End With

method Items.UnselectAll ()
Unselects all items.

Type Description

Use the UnselectAll method to unselect all items in the list. The UnselectAll method has
effect only if the SingleSel property is False, if the control supports multiple items selection.
Use the SelectAll method to select all items in the list. Use the SelectItem property to select
or unselect a specified item. Use the SelectedItem property to retrieve a value that
indicates whether the item is selected or unselected. Use the SelectCount property to
retrieve the number of selected items. The RemoveSelection method removes the selected
items (including the descendents)

method Items.UnsplitCell ([Item as Variant], [ColIndex as Variant])
Unsplits a cell.

Type Description

Item as Variant
A long expression that indicates the handle of the item, or
0. If the Item parameter is 0, the ColIndex parameter must
indicate the handle of the cell.

ColIndex as Variant

A long expression that indicates the index of the column
where a cell is divided, or a long expression that indicates
the handle of the cell being divided, if the Item parameter
is missing or it is zero.

Use the UnsplitCells method to remove the inner cells. The SplitCell method splits a cell in
two cells, and retrieves the newly created cell. The UnsplitCell method has no effect if the
cell contains no inner cells. The UnplitCells method remove recursively all inner cells. For
instance, if a cell contains an inner cell, and this inner cell contains another inner cell, when
calling the UnplitCells method for the master cell, all inner cells inside of the cell will be
deleted. Use the CellParent property to get the parent of the inner cell. Use the CellItem
property to get the owner of the cell. Use the InnerCell property to access an inner cell
giving its index. Use the UnmergeCells method to unmerge merged cells. ("Merge" means
multiple cells in a single cell, "Split" means multiple cells inside a single).

property Items.VisibleCount as Long

Retrieves the number of visible items.

Type Description
Long Counts the visible items.

Use FirstVisibleItem and NextVisibleItem properties to determine the items that fit the client
area. Use the IsItemVisible property to check whether an item fits the control's client area.
Use the ItemCount property to count the items in the control. Use the ChildCount property
to count the child items.

property Items.VisibleItemCount as Long
Retrieves the number of visible items.

Type Description

Long
A long expression that specifies the number of visible
items in the control. The value could be a positive value if
no filter is applied, or negative while filter is on.

The VisibleItemCount property counts the number of visible items in the list. For instance,
you can use the VisibleItemCount property to get the number the control displays once the
user applies a filter.

The VisibleItemCount property returns a value as explained bellow:

0, the control displays/contains no items, and no filter is applied to any column
-1, the control displays no items, and there is a filter applied (no match found)
positive number, indicates the number of visible items, and the control has no filter
applied to any column
negative number, the absolute value munus 1, indicates the number of visible items,
and there is a filter applied (match found)

The VisibleCount property retrieves the number of items being displayed in the control's
client area. Use FirstVisibleItem and NextVisibleItem properties to determine the items
being displayed in the control's client area. Use the IsItemVisible property to check whether
an item fits the control's client area. Use the ItemCount property to count the items in the
control. Use the ChildCount property to count the child items

Level object
The Level object describes a level in the chart. Use the Chart object to access the control's
Chart object. Use the Bars property to add new type of bars to the control. The Level
property supports the following properties and methods:

Name Description
Alignment Specifies the label's alignment.
BackColor Specifies the level's background color.
Count Counts the units in the level.

DrawGridLines Specifies whether the grid lines are shown or hidden for
specified level.

DrawTickLines Specifies whether the tick lines are shown or hidden.
ForeColor Specifies the level's foreground color.
GridLineColor Specifies the grid line color for the specified level.
GridLineStyle Specifies the style for the chart's vertical gridlines.

Label Retrieves or sets a value that indicates the format of the
level's label.

ReplaceLabel Specifies a HTML replacement for the given label.

ToolTip Specifies the format of the tooltip that's shown when the
cursor hovers the level.

Unit Retrieves or sets a value that indicates the unit of the
level.

property Level.Alignment as AlignmentEnum
Specifies the label's alignment.

Type Description

AlignmentEnum

An AlignmentEnum expression that indicates how the
level's label is aligned in the chart's header. The Alignment
property can combine the LeftAlignment, CenterAlignment
and RightAlignment with exHOutside which indicates that
the label is always visible when user does scrolling the
chart.

By default, the Alignment property is CenterAlignment. Use the Alignment property to align
labels in the chart's header. If the Alignment property includes the exHOutside, the label is
being visible while the time unit is visible. For instance, if the Alignment property is
CenterAlignment + exHOutside (17 = 1 + 16), the labels are always centered, and visible
while the time-unit is visible, so the label is still visible while the time unit is partially visible,
usually when the user does scroll left or right the chart. Use the Label property to specify
the label of the level. Use the ForeColor and BackColor properties to change the level's
appearance.

For instance the following screen shot shows the component if the Level.Alignment property
is 1 (CenterAlignment):

while the next screen shot shows the component if the Level.Alignment property is 17 (
CenterAlignment + exHOutside):

property Level.BackColor as Color
Specifies the level's background color.

Type Description

Color

A Color expression that indicates the level's background
color. The last 7 bits in the high significant byte of the color
to indicates the identifier of the skin being used. Use the
Add method to add new skins to the control. If you need
to remove the skin appearance from a part of the control
you need to reset the last 7 bits in the high significant byte
of the color being applied to the background's part.

Use the BackColor property to specify the background color for a specified level. Use the
ForeColor property to specify the foreground color for a specified level. Use the
BackColorLevelHeader property to specify the background color of the chart's header. Use
the ForeColorLevelHeader property to specify the foreground color of the chart's header.
Use the BackColor property to specify the chart's background color. Use the ForeColor
property to specify the chart's foreground color. Use the ItemBackColor property to change
the item's background color. Use the NonworkingDaysColor property the color of the brush
to fill the nonworking days area.

The following VB sample changes the appearance for the last level:

With Gantt1.Chart
 With .Level(.LevelCount - 1)
 .BackColor = SystemColorConstants.vbDesktop
 .ForeColor = RGB(255, 255, 255)

 End With
End With

The following C++ sample changes the appearance for the last level:

CLevel level = m_gantt.GetChart().GetLevel(m_gantt.GetChart().GetLevelCount()-1);
level.SetBackColor(0x80000000 | COLOR_DESKTOP);
level.SetForeColor(RGB(255,255,255));

The following VB.NET sample changes the appearance for the last level:

With AxGantt1.Chart
 With .Level(.LevelCount - 1)
 .BackColor = ToUInt32(SystemColors.Desktop)
 .ForeColor = RGB(255, 255, 255)
 End With
End With

where the ToUInt32 function converts a Color expression to an OLE_COLOR type:

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample changes the appearance for the last level:

EXGANTTLib.Level level = axGantt1.Chart.get_Level(axGantt1.Chart.LevelCount - 1);
level.BackColor = ToUInt32(SystemColors.Desktop);
level.ForeColor = ToUInt32(Color.FromArgb(255,255,255));

where the ToUInt32 function converts a Color expression to an OLE_COLOR type:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;

 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample changes the appearance for the last level:

With thisform.Gantt1.Chart
 With .Level(.LevelCount - 1)
 .BackColor = 0x80000001
 .ForeColor = RGB(255, 255, 255)
 EndWith
EndWith

property Level.Count as Long
Counts the units in the level.

Type Description

Long A Long expression that indicates the number of units being
displayed in the same place in the level.

By default, the Count property is 1. The Count property specifies the number of units being
displayed in the level. The Unit property specifies the unit being used to display labels in the
level. Use the Label property to assign a caption for the level. Use the NextDate property to
get the next date. Use the Zoom method to zoom the chart to a specified interval of dates.
Use the FormatDate property to format a date to a specified format.

The following screen shot shows a header that displays the dates from 3 by 3 days :

property Level.DrawGridLines as Boolean
Specifies whether the grid lines are shown or hidden for specified level.

Type Description

Boolean
A Boolean expression that indicates whether the vertical
grid lines between time units in the level are visible or
hidden.

By default, the DrawGridLines property is False. Use the DrawGridLines property to
specify whether the control draws the grid lines in the chart's area. The GridLineStyle
property to specify the style for horizontal or/and vertical gridlines in the level view. Use the
GridLineColor property to specify the color for the vertical grid lines between time units.
The DrawGridLines property draws the vertical grid lines only if the DrawGridLines property
of the Chart object is exVLines, exRowLines or exAllLines. If the DrawGridLines property is
exNoLines, exHLines, the DrawGridLines property has no effect. Use the MarkTodayColor
property to specify the color to mark the today date. Use the NonworkingDays property to
specify the nonworking days. Use the NonworkingDaysPattern property to specify the brush
to fill the nonworking days area. Use the DrawTickLines property to specify whether the
grid lines between time units in the level are visible or hidden.

property Level.DrawTickLines as Boolean
Specifies whether the tick lines are shown or hidden.

Type Description

Boolean
A Boolean expression that indicates whether the vertical
tick lines between time units in the level are visible or
hidden.

By default, the DrawTickLines property is True. Use the DrawGridLines property to specify
whether the control draws the grid lines in the chart's area. Use the GridLineColor property
to specify the color for grid lines. Use the DrawGridLines property to draw grid lines for a
specified level. Use the DrawLevelSeperator property to draw lines between levels inside
the chart's header. Use the MarkTodayColor property to specify the color to mark the today
date.

property Level.ForeColor as Color
Specifies the level's foreground color.

Type Description

Color A Color expression that indicates the level's foreground
color.

Use the ForeColor property to specify the foreground color for a specified level. Use the
BackColor property to specify the background color for a specified level. Use the
BackColorLevelHeader property to specify the background color of the chart's header. Use
the ForeColorLevelHeader property to specify the foreground color of the chart's header.
Use the BackColor property to specify the chart's background color. Use the ForeColor
property to specify the chart's foreground color. Use the ItemBackColor property to change
the item's background color. Use the NonworkingDaysColor property the color of the brush
to fill the nonworking days area.

The following VB sample changes the appearance for the last level:

With Gantt1.Chart
 With .Level(.LevelCount - 1)
 .BackColor = SystemColorConstants.vbDesktop
 .ForeColor = RGB(255, 255, 255)
 End With
End With

The following C++ sample changes the appearance for the last level:

CLevel level = m_gantt.GetChart().GetLevel(m_gantt.GetChart().GetLevelCount()-1);
level.SetBackColor(0x80000000 | COLOR_DESKTOP);
level.SetForeColor(RGB(255,255,255));

The following VB.NET sample changes the appearance for the last level:

With AxGantt1.Chart
 With .Level(.LevelCount - 1)
 .BackColor = ToUInt32(SystemColors.Desktop)
 .ForeColor = RGB(255, 255, 255)
 End With
End With

where the ToUInt32 function converts a Color expression to an OLE_COLOR type:

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample changes the appearance for the last level:

EXGANTTLib.Level level = axGantt1.Chart.get_Level(axGantt1.Chart.LevelCount - 1);
level.BackColor = ToUInt32(SystemColors.Desktop);
level.ForeColor = ToUInt32(Color.FromArgb(255,255,255));

where the ToUInt32 function converts a Color expression to an OLE_COLOR type:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample changes the appearance for the last level:

With thisform.Gantt1.Chart
 With .Level(.LevelCount - 1)
 .BackColor = 0x80000001
 .ForeColor = RGB(255, 255, 255)
 EndWith
EndWith

property Level.GridLineColor as Color
Specifies the grid line color for the specified level.

Type Description

Color A Color expression that indicates the color of the vertical
grid lines in the chart area.

Use the GridLineColor property to specify the color for the vertical grid lines between time
units. Use the DrawGridLines property to specify whether the control draws the grid lines in
the chart's area. The DrawGridLines property draws the vertical grid lines only if the
DrawGridLines property of the Chart object is exVLines, exRowLines or exAllLines. If the
DrawGridLines property is exNoLines, exHLines, the DrawGridLines property has no effect.
Use the MarkTodayColor property to specify the color to mark the today date.

property Level.GridLineStyle as GridLinesStyleEnum
Specifies the style for the chart's vertical gridlines.

Type Description

GridLinesStyleEnum A GridLinesStyleEnum expression that specifies the style
to show the chart's vertical gridlines.

By default, the GridLineStyle property is exGridLinesDot. The GridLineStyle property has
effect only if the chart's DrawGridLines property is not zero and one of the level's
DrawGridLines property is True. Use the GridLineColor property to specify the color for
vertical grid lines. Use the DrawTickLines property to specify whether the grid lines
between time units in the level are visible or hidden.

property Level.Label as Variant
Retrieves or sets a value that indicates the format of the level's label.

Type Description

Variant

A String expression that indicates the format of the level's
label, an UnitEnum expression that indicates the
predefined format being used. The Label property defines
predefined formats for labales.

The Label property defines the HTML labels being displayed on the chart's header. Use the
Alignment property to specify the label's alignment. Use the ToolTip property to specify the
tooltip being displayed when the cursor hovers the level. Use the BackColor and ForeColor
properties to change the level's appearance. The WeekDays property retrieves or sets a
value that indicates the list of names for each week day, separated by space. Use the
MonthNames property to specify the name of the months in the year. The FormatDate
property formats a date. Use the ReplaceLabel property to add icons/pictures/images or
change the captions of the levels. Valid date values range from January 1, 100 A.D.
(-647434) to December 31, 9999 A.D. (2958465). A date value of 0 represents December
30, 1899.

The Label property supports alternative HTML labels being separated by "<|>" and values
for Count and Unit being separated by "<||>". By alternate HTML label we mean that you
can define a list of HTML labels that may be displayed in the chart's header based on the
space allocated for the time-unit. In other words, the control chooses automatically the
alternate HTML label to be displayed for best fitting in the portion of the chart where the
time-unit should be shown.

The Label property format is "ALT1[<|>ALT2<|>...[<||>COUNT[<||>UNIT]]]" where

ALT defines a HTML label
COUNT specifies the value for the Count property
UNIT field indicates the value for the Unit property
and the parts delimited by [] brackets may miss.

The Label property may change the Unit and the Count property. You can always use
a different Unit or Count by setting the property after setting the Label property.

The following screen shots shows the chart's header using different values for UnitWidth
property.

The UnitWidth property is 6 pixels, so the base level displays nothing.

The UnitWidth property is 18 pixels, so the base level displays the first letter of the
weekday (S - S)

The UnitWidth property is 36 pixels, so the base level displays the first 3 letters of the
weekday (Sun - Sat)

For instance, Label = "<|><%d1%><|><%d2%><|><%d3%><|><%dddd%><|><%d3%>,
<%m3%> <%d%>, '<%yy%><|><%dddd%>, <%mmmm%> <%d%>, <%yyyy%>
<||>1<||>4096" indicates a list of 7 alternate HTML labels, the Count property set on 1 and
the Unit property set on exDay (4096).

So, the header of the level in the chart shows one of the following alternate HTML labels:

- displays nothing, if the space is less than 6 pixels.
<%d1%> - First letter of the weekday (S to S)
<%d2%> - First two letters of the weekday (Su to Sa)
<%d3%> - First three letters of the weekday (Sun to Sat)
<%dddd%> - Full name of the weekday (Sunday to Saturday)
<%d3%>, <%m3%> <%d%>, '<%yy%> -
<%dddd%>, <%mmmm%> <%d%>, <%yyyy%>

based on the space being allocated for the time unit. If the label is being shown on the base
level, the UnitWidth property defines the space for the time-unit, so the control chooses the
alternate HTML label which best fits the allocated space (width). The Font property
defines the font to show the chart's labels which is also used to get the best fit label to be
displayed. For any other level, the space is automatically calculated based on the base

level's width. In other words, when UnitWidth property is changed or the user rescale or
zoom the chart area, the chart's header displays alternate labels. If the Label property
defines no alternate labels, the single representation is shown no matter of the UnitWidth,
Font and other zooming settings.

The Label property may change the Unit property as in the following scenario. Let's say that
you need to display the weeks so you choose to have the week number "<%ww%>" or the
first day in the week in format "<%d3%>, <%m3%> <%d%>, '<%yy%>" so the Label
property should be "<%ww%><|><%d3%>, <%m3%> <%d%>, '<%yy%>". If you are using
this format, the Unit property will always be set on exDay, as in the second alternate label
the unit is day as the minimum scale unit being found is <%d3%> or <%d%> which
indicates days. In order to correct this, you should specify the Unit to be used for the
alternate labels as "<%ww%><|><%d3%>, <%m3%> <%d%>, '<%yy%><||><||>256".

For instance, if a level should display 15 to 15 minutes, you can do one of the following:

call the Label = "<%nn%>" and after call the Count = 15.
call the Label = "<%nn%><||>15", which means that the level displays minutes, and
the Count property is automatically set on 15.

Any of these statements can be used to let the level displays minutes from 15 to 15.

The Label property supports the following built-in tags:

<%d%> - Day of the month in one or two numeric digits, as needed (1 to 31).
<%dd%> - Day of the month in two numeric digits (01 to 31).
<%d1%> - First letter of the weekday (S to S). (Use the WeekDays property to
specify the name of the days in the week)
<%d2%> - First two letters of the weekday (Su to Sa). (Use the WeekDays property
to specify the name of the days in the week)
<%d3%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week)
<%ddd%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_ddd%> that indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%loc_ddd%> - Indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%dddd%> - Full name of the weekday (Sunday to Saturday). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_dddd%> that indicates day of week as its full name using the current user
regional and language settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user

regional and language settings.
<%i%> - Displays the number instead the date. For instance, you can display numbers
as 1000, 1001, 1002, 1003, instead dates. (the valid range is from -647,434 to
2,958,465)
<%w%> - Day of the week (1 to 7).
<%ww%> - Week of the year (1 to 53).
<%m%> - Month of the year in one or two numeric digits, as needed (1 to 12).
<%mr%> - Month of the year in Roman numerals, as needed (I to XII).
<%mm%> - Month of the year in two numeric digits (01 to 12).
<%m1%> - First letter of the month (J to D). (Use the MonthNames property to
specify the name of the months in the year)
<%m2%> - First two letters of the month (Ja to De). (Use the MonthNames property
to specify the name of the months in the year)
<%m3%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year)
<%mmm%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year). You can use the
<%loc_mmm%> that indicates month as a three-letter abbreviation using the current
user regional and language settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
regional and language settings.
<%mmmm%> - Full name of the month (January to December). (Use the
MonthNames property to specify the name of the months in the year). You can use the
<%loc_mmmm%> that indicates month as its full name using the current user regional
and language settings.
<%loc_mmmm%> - Indicates month as its full name using the current user regional
and language settings.
<%q%> - Date displayed as the quarter of the year (1 to 4).
<%y%> - Number of the day of the year (1 to 366).
<%yy%> - Last two digits of the year (01 to 99).
<%yyyy%> - Full year (0100 to 9999).
<%hy%> - Date displayed as the half of the year (1 to 2).
<%loc_gg%> - Indicates period/era using the current user regional and language
settings.
<%loc_sdate%> - Indicates the date in the short format using the current user regional
and language settings.
<%loc_ldate%> - Indicates the date in the long format using the current user regional
and language settings.
<%loc_dsep%> - Indicates the date separator using the current user regional and
language settings (/).
<%h%> - Hour in one or two digits, as needed (0 to 23).
<%hh%> - Hour in two digits (00 to 23).

<%n%> - Minute in one or two digits, as needed (0 to 59).
<%nn%> - Minute in two digits (00 to 59).
<%s%> - Second in one or two digits, as needed (0 to 59).
<%ss%> - Second in two digits (00 to 59).
<%AM/PM%> - Twelve-hour clock with the uppercase letters "AM" or "PM", as
appropriate. (Use the AMPM property to specify the name of the AM and PM
indicators). You can use the <%loc_AM/PM%> that indicates the time marker such as
AM or PM using the current user regional and language settings. You can use
<%loc_A/P%> that indicates the one character time marker such as A or P using the
current user regional and language settings
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user regional and language settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user regional and language settings.
<%loc_time%> - Indicates the time using the current user regional and language
settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user regional and language settings.
<%loc_tsep%> - indicates the time separator using the current user regional and
language settings (:).

The following tags are displayed based on the user's Regional and Language Options:

<%loc_sdate%> - Indicates the date in the short format using the current user
settings.
<%loc_ldate%> - Indicates the date in the long format using the current user settings.
<%loc_ddd%> - Indicates day of week as a three-letter abbreviation using the current
user settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
settings.
<%loc_mmmm%> - Indicates month as its full name using the current user settings.
<%loc_gg%> - Indicates period/era using the current user settings.
<%loc_dsep%> - Indicates the date separator using the current user settings.
<%loc_time%> - Indicates the time using the current user settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user settings.
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user settings.

<%loc_tsep%> - Indicates the time separator using the current user settings.
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed.

The Label property supports the following built-in HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the

about:blank

anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;

(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

The Label property may be a combination of any of these tags. For instance, the "
<%mmm%> <%d%>, '<%yy%>" displays a date like: "May 29,'05".

The first level displays the month, the year and the number of the week in the year , the
second level displays the name of the week day, and the third level displays the day of the
month. The LevelCount property specifies the number of levels being displayed, in our case
3.

The following Template shows how to display your header using three levels as arranged in
the picture above (just copy and paste the following script to Template page):

BeginUpdate()
Chart
{
 LevelCount = 3
 Level(0)
 {
 Label = "<%mmm%>, <%yyyy%> <r>Week: <%ww%>"
 Unit = 256 'exWeek
 }
 Level(1).Label = "<%d1%>"
 Level(2).Label = "<%d%>"
}
EndUpdate()

The following VB sample displays your header using 3 levels as shown above:

With Gantt1
 .BeginUpdate
 With .Chart
 .LevelCount = 3
 With .Level(0)
 .Label = "<%mmm%>, <%yyyy%> <r>Week: <%ww%>"
 .Unit = EXGANTTLibCtl.UnitEnum.exWeek

 End With
 .Level(1).Label = "<%d1%>"
 .Level(2).Label = "<%d%>"
 End With
 .EndUpdate
End With

 The following VFP sample displays your header using 3 levels:

with thisform.gantt1
.BeginUpdate()
with .Chart
 .LevelCount = 3
 with .Level(0)
 .Label = "<%mmm%>, <%yyyy%> <r>Week: <%ww%>"
 .Unit = 256
 endwith
 .Level(1).Label = "<%d1%>"
 .Level(2).Label = "<%d%>"
endwith
.EndUpdate()
endwith

 The following VB.NET sample displays your header using 3 levels:

With AxGantt1
 .BeginUpdate()
 With .Chart
 .LevelCount = 3
 With .Level(0)
 .Label = "<%mmm%>, <%yyyy%> <r>Week: <%ww%>"
 .Unit = EXGANTTLib.UnitEnum.exWeek
 End With
 .Level(1).Label = "<%d1%>"
 .Level(2).Label = "<%d%>"
 End With
 .EndUpdate()
End With

 The following C# sample displays your header using 3 levels:

axGantt1.BeginUpdate();
EXGANTTLib.Chart chart = axGantt1.Chart;
chart.LevelCount = 3;
chart.get_Level(0).Label = "<%mmm%>, <%yyyy%> <r>Week: <%ww%>";
chart.get_Level(0).Unit = EXGANTTLib.UnitEnum.exWeek;
chart.get_Level(1).Label = "<%d1%>";
chart.get_Level(2).Label = "<%d%>";
axGantt1.EndUpdate();

 The following C++ sample displays your header using 3 levels:

m_gantt.BeginUpdate();
CChart chart = m_gantt.GetChart();
chart.SetLevelCount(3);
chart.GetLevel(0).SetLabel(COleVariant("<%mmm%>, <%yyyy%> <r>Week:
<%ww%>"));
chart.GetLevel(0).SetUnit(256);
chart.GetLevel(1).SetLabel(COleVariant("<%d1%>"));
chart.GetLevel(2).SetLabel(COleVariant("<%d%>"));
m_gantt.EndUpdate();

property Level.ReplaceLabel(Label as String) as String
Specifies a HTML replacement for the given label.

Type Description

Label as String
A String expression that specifies the caption being
replaced. If empty, the set method removes all
replacements in the level.

String A String expression that specifies the new caption, that
can use built-n HTML tags as explained bellow.

By default, the Label property specifies the caption being displayed in the chart's header.
Use the ReplaceLabel property to customize your chart's header. The ReplaceLabel
property may be used to add icons or pictures (), or change the captions of the
levels in the chart's header. The ReplaceLabel property is a get/set property. When get
property is called, the ReplaceLabel(Label) property returns the replacement HTML string
for specified label. If the set property is called, the specified label is replaced with the
newly value, so the newly value is displayed instead. You can remove all replacement by
calling the set ReplaceLabel property with Label parameter as empty string. The Label
parameter never includes the HTML built tags. For instance, if your Label property is "
<%h%><%AM/PM%>", then the Label parameter should be: 12AM,1AM,2AM, and so on,
as they are displayed on the chart's header.

The following screen shot shows the chart's header when no replacements are performed:

The following screen shot shows the chart's header when the hours were replaced with
icons:

The following screen shot shows the chart's header when the hours were replaced with
icons, excepts the 12:00 PM were replaced by Noon caption:

The ReplaceLabel property supports the following built-in HTML elements:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using

about:blank

the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the

offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Level.ToolTip as Variant
Specifies the format of the tooltip that's shown when the cursor hovers the level.

Type Description

Variant

A String expression that indicates the format of the tooltip,
or an UnitEnum expression that indicates the predefined
tooltip being used. The LabelToolTip property specifies a
predefined tooltip.

The ToolTip property specifies the tooltip being shown when the cursor hovers the level. The
ToolTipDelay property specifies the time in ms that passes before the ToolTip appears. The
ToolTipPopDelay property specifies the period in ms of time the ToolTip remains visible if
the mouse pointer is stationary within a control. Use the ToolTipWidth property to specify
the width of the tooltip window. The WeekDays property retrieves or sets a value that
indicates the list of names for each week day, separated by space. Use the MonthNames
property to specify the name of the months in the year. The UnitScale property changes the
Label, Unit and the ToolTip for a level with predefined values defined by the Label and
LabelToolTip properties.

The ToolTip property supports the following built-in tags:

<%d%> - Day of the month in one or two numeric digits, as needed (1 to 31).
<%dd%> - Day of the month in two numeric digits (01 to 31).
<%d1%> - First letter of the weekday (S to S). (Use the WeekDays property to
specify the name of the days in the week)
<%d2%> - First two letters of the weekday (Su to Sa). (Use the WeekDays property
to specify the name of the days in the week)
<%d3%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week)
<%ddd%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_ddd%> that indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%loc_ddd%> - Indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%dddd%> - Full name of the weekday (Sunday to Saturday). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_dddd%> that indicates day of week as its full name using the current user
regional and language settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
regional and language settings.
<%i%> - Displays the number instead the date. For instance, you can display numbers

as 1000, 1001, 1002, 1003, instead dates. (the valid range is from -647,434 to
2,958,465)
<%w%> - Day of the week (1 to 7).
<%ww%> - Week of the year (1 to 53).
<%m%> - Month of the year in one or two numeric digits, as needed (1 to 12).
<%mr%> - Month of the year in Roman numerals, as needed (I to XII).
<%mm%> - Month of the year in two numeric digits (01 to 12).
<%m1%> - First letter of the month (J to D). (Use the MonthNames property to
specify the name of the months in the year)
<%m2%> - First two letters of the month (Ja to De). (Use the MonthNames property
to specify the name of the months in the year)
<%m3%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year)
<%mmm%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year). You can use the
<%loc_mmm%> that indicates month as a three-letter abbreviation using the current
user regional and language settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
regional and language settings.
<%mmmm%> - Full name of the month (January to December). (Use the
MonthNames property to specify the name of the months in the year). You can use the
<%loc_mmmm%> that indicates month as its full name using the current user regional
and language settings.
<%loc_mmmm%> - Indicates month as its full name using the current user regional
and language settings.
<%q%> - Date displayed as the quarter of the year (1 to 4).
<%y%> - Number of the day of the year (1 to 366).
<%yy%> - Last two digits of the year (01 to 99).
<%yyyy%> - Full year (0100 to 9999).
<%hy%> - Date displayed as the half of the year (1 to 2).
<%loc_gg%> - Indicates period/era using the current user regional and language
settings.
<%loc_sdate%> - Indicates the date in the short format using the current user regional
and language settings.
<%loc_ldate%> - Indicates the date in the long format using the current user regional
and language settings.
<%loc_dsep%> - Indicates the date separator using the current user regional and
language settings (/).
<%h%> - Hour in one or two digits, as needed (0 to 23).
<%hh%> - Hour in two digits (00 to 23).
<%n%> - Minute in one or two digits, as needed (0 to 59).
<%nn%> - Minute in two digits (00 to 59).

<%s%> - Second in one or two digits, as needed (0 to 59).
<%ss%> - Second in two digits (00 to 59).
<%AM/PM%> - Twelve-hour clock with the uppercase letters "AM" or "PM", as
appropriate. (Use the AMPM property to specify the name of the AM and PM
indicators). You can use the <%loc_AM/PM%> that indicates the time marker such as
AM or PM using the current user regional and language settings. You can use
<%loc_A/P%> that indicates the one character time marker such as A or P using the
current user regional and language settings
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user regional and language settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user regional and language settings.
<%loc_time%> - Indicates the time using the current user regional and language
settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user regional and language settings.
<%loc_tsep%> - indicates the time separator using the current user regional and
language settings (:).

The following tags are displayed based on the user's Regional and Language Options:

<%loc_sdate%> - Indicates the date in the short format using the current user
settings.
<%loc_ldate%> - Indicates the date in the long format using the current user settings.
<%loc_ddd%> - Indicates day of week as a three-letter abbreviation using the current
user settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
settings.
<%loc_mmmm%> - Indicates month as its full name using the current user settings.
<%loc_gg%> - Indicates period/era using the current user settings.
<%loc_dsep%> - Indicates the date separator using the current user settings.
<%loc_time%> - Indicates the time using the current user settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user settings.
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user settings.
<%loc_tsep%> - Indicates the time separator using the current user settings.
<%loc_y%> - Represents the Year only by the last digit, using current regional

settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed.

The ToolTip property supports the following built-in HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in

about:blank

underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR

character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Level.Unit as UnitEnum
Retrieves or sets a value that indicates the unit of the level.

Type Description
UnitEnum An UnitEnum expression that indicates the level's time unit.

The Unit property specifies the unit being used to display labels in the level. Use the Label
property to assign a caption for the level. Changing the Label property may change the Unit
property. For instance, if the user calls Label = "<%d%>", the Unit property is automatically
put on exDay. The UnitScale property indicates the minimum time unit from all levels. The
UnitScale property changes the Label, Unit and the ToolTip for a level with predefined
values defined by the Label and LabelToolTip properties. Use the LevelCount property to
specify the count of levels in the chart's header. Use the UnitWidth property to specify the
width of the time unit. Use the Count property to specify the number of units being displayed
in the same place. Use the NextDate property to get the next date. Use the Zoom method
to zoom the chart to a specified interval of dates.

The first level displays the month, the year and the number of the week in the year , the
second level displays the name of the week day, and the third level displays the day of the
month. The LevelCount property specifies the number of levels being displayed, in our case
3.

The following Template shows how to display your header using three levels as arranged in
the picture above (just copy and paste the following script to Template page):

BeginUpdate()
Chart
{
 LevelCount = 3
 Level(0)
 {
 Label = "<%mmm%>, <%yyyy%> <r>Week: <%ww%>"
 Unit = 256 'exWeek
 }
 Level(1).Label = "<%d1%>"
 Level(2).Label = "<%d%>"
}

EndUpdate()

The following VB sample displays your header using 3 levels as shown above:

With Gantt1
 .BeginUpdate
 With .Chart
 .LevelCount = 3
 With .Level(0)
 .Label = "<%mmm%>, <%yyyy%> <r>Week: <%ww%>"
 .Unit = EXGANTTLibCtl.UnitEnum.exWeek
 End With
 .Level(1).Label = "<%d1%>"
 .Level(2).Label = "<%d%>"
 End With
 .EndUpdate
End With

 The following VFP sample displays your header using 3 levels:

with thisform.gantt1
.BeginUpdate()
with .Chart
 .LevelCount = 3
 with .Level(0)
 .Label = "<%mmm%>, <%yyyy%> <r>Week: <%ww%>"
 .Unit = 256
 endwith
 .Level(1).Label = "<%d1%>"
 .Level(2).Label = "<%d%>"
endwith
.EndUpdate()
endwith

 The following VB.NET sample displays your header using 3 levels:

With AxGantt1
 .BeginUpdate()
 With .Chart

 .LevelCount = 3
 With .Level(0)
 .Label = "<%mmm%>, <%yyyy%> <r>Week: <%ww%>"
 .Unit = EXGANTTLib.UnitEnum.exWeek
 End With
 .Level(1).Label = "<%d1%>"
 .Level(2).Label = "<%d%>"
 End With
 .EndUpdate()
End With

 The following C# sample displays your header using 3 levels:

axGantt1.BeginUpdate();
EXGANTTLib.Chart chart = axGantt1.Chart;
chart.LevelCount = 3;
chart.get_Level(0).Label = "<%mmm%>, <%yyyy%> <r>Week: <%ww%>";
chart.get_Level(0).Unit = EXGANTTLib.UnitEnum.exWeek;
chart.get_Level(1).Label = "<%d1%>";
chart.get_Level(2).Label = "<%d%>";
axGantt1.EndUpdate();

 The following C++ sample displays your header using 3 levels:

m_gantt.BeginUpdate();
CChart chart = m_gantt.GetChart();
chart.SetLevelCount(3);
chart.GetLevel(0).SetLabel(COleVariant("<%mmm%>, <%yyyy%> <r>Week:
<%ww%>"));
chart.GetLevel(0).SetUnit(256);
chart.GetLevel(1).SetLabel(COleVariant("<%d1%>"));
chart.GetLevel(2).SetLabel(COleVariant("<%d%>"));
m_gantt.EndUpdate();

OleEvent object
The OleEvent object holds information about an event fired by an ActiveX control hosted by
in item that was created using the InsertControlItem method.

Name Description
CountParam Retrieves the count of the OLE event's arguments.

ID Retrieves a long expression that specifies the identifier of
the event.

Name Retrieves the original name of the fired event.

Param Retrieves an OleEventParam object given either the index
of the parameter, or its name.

ToString Retrieves information about the event.

property OleEvent.CountParam as Long

Retrieves the count of the OLE event's arguments.

Type Description
Long A long value that indicates the count of the arguments.

The following sample enumerates the arguments of an OLE event when ItemOLEEvent is
fired.

Private Sub Gantt1_ItemOleEvent(ByVal Item As EXGANTTLibCtl.HITEM, ByVal Ev As
EXGANTTLibCtl.IOleEvent)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VC sample displays the events that an ActiveX control is firing while it is
hosted by an item:

 #import <exgantt.dll> rename("GetItems", "exGetItems")

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);

 }
 return szDefault;
}

void OnItemOleEventGantt1(long Item, LPDISPATCH Ev)
{
 EXGANTTLib::IOleEventPtr spEvent(Ev);
 CString strOutput;
 strOutput.Format("Event's name: %s\n", spEvent->Name.operator const char *());
 OutputDebugString(strOutput);
 if (spEvent->CountParam == 0)
 OutputDebugString("The event has no parameters.");
 else
 {
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 EXGANTTLib::IOleEventParamPtr spParam = spEvent->GetParam(COleVariant(i));
 strOutput.Format("Name: %s, Value: %s\n", spParam->Name.operator const char *
(), V2S(&spParam->Value));
 OutputDebugString(strOutput);
 }
 }
 OutputDebugString("");
}

The #import clause is required to get the wrapper classes for IOleEvent and
IOleEventParam objects, that are not defined by the MFC class wizard. The same #import
statement defines the EXGANTTLib namespace that include all objects and types of the
control's TypeLibrary. In case your exgantt.dll library is located to another place than the
system folder or well known path, the path to the library should be provided, in order to let
the VC finds the type library.

The following VB.NET sample displays the events that an ActiveX control is firing while it is
hosted by an item:

Private Sub AxGantt1_ItemOleEvent(ByVal sender As Object, ByVal e As
AxEXGANTTLib._IGanttEvents_ItemOleEventEvent) Handles AxGantt1.ItemOleEvent
 Debug.WriteLine("Event's name: " & e.ev.Name)
 Dim i As Long

 For i = 0 To e.ev.CountParam - 1
 Dim eP As EXGANTTLib.OleEventParam
 eP = e.ev(i)
 Debug.WriteLine("Name: " & e.ev.Name & " Value: " & eP.Value)
 Next
End Sub

The following C# sample displays the events that an ActiveX control is firing while it is
hosted by an item:

private void axGantt1_ItemOleEvent(object sender,
AxEXGANTTLib._IGanttEvents_ItemOleEventEvent e)
{
 System.Diagnostics.Debug.WriteLine("Event's name: " + e.ev.Name.ToString());
 for (int i= 0; i < e.ev.CountParam ; i++)
 {
 EXGANTTLib.IOleEventParam evP = e.ev[i];
 System.Diagnostics.Debug.WriteLine("Name: " + evP.Name.ToString() + ", Value: " +
evP.Value.ToString());
 }
}

The following VFP sample displays the events that an ActiveX control fires when it is hosted
by an item:

*** ActiveX Control Event ***
LPARAMETERS item, ev

local s
s = "Event's name: " + ev.Name
for i = 0 to ev.CountParam - 1
 s = s + "Name: " + ev.Param(i).Name + " ,Value: " + Str(ev.Param(i).Value)
endfor
wait window nowait s

property OleEvent.ID as Long
Retrieves a long expression that specifies the identifier of the event.

Type Description

Long A Long expression that defines the identifier of the OLE
event.

The identifier of the event could be used to identify a specified OLE event. Use the Name
property of the OLE Event to get the name of the OLE Event. Use the ToString property to
display information about an OLE event. The ToString property displays the identifier of the
event after the name of the event in two [] brackets. For instance, the ToString property
gets the "KeyDown[-602](KeyCode/Short* = 9,Shift/Short = 0)" when TAB key is pressed,
so the identifier of the KeyDown event being fired by the inside User editor is -602.

property OleEvent.Name as String

Retrieves the original name of the fired event.

Type Description
String A string expression that indicates the event's name.

The Name property gets the name of the event. Use the ID property to access an event by
its identifier. Use the ToString property to display information about an OLE event. The
ToString property displays the identifier of the event after the name of the event in two []
brackets. For instance, the ToString property gets the "KeyDown[-602](KeyCode/Short* =
9,Shift/Short = 0)" when TAB key is pressed, so the identifier of the KeyDown event being
fired by the inside User editor is -602. The following sample enumerates the arguments of
an OLE event when ItemOLEEvent is fired.

Private Sub Gantt1_ItemOleEvent(ByVal Item As EXGANTTLibCtl.HITEM, ByVal Ev As
EXGANTTLibCtl.IOleEvent)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VC sample displays the events that an ActiveX control is firing while it is
hosted by an item:

 #import <exgantt.dll> rename("GetItems", "exGetItems")

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)

 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnItemOleEventGantt1(long Item, LPDISPATCH Ev)
{
 EXGANTTLib::IOleEventPtr spEvent(Ev);
 CString strOutput;
 strOutput.Format("Event's name: %s\n", spEvent->Name.operator const char *());
 OutputDebugString(strOutput);
 if (spEvent->CountParam == 0)
 OutputDebugString("The event has no parameters.");
 else
 {
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 EXGANTTLib::IOleEventParamPtr spParam = spEvent->GetParam(COleVariant(i));
 strOutput.Format("Name: %s, Value: %s\n", spParam->Name.operator const char *
(), V2S(&spParam->Value));
 OutputDebugString(strOutput);
 }
 }
 OutputDebugString("");
}

The #import clause is required to get the wrapper classes for IOleEvent and
IOleEventParam objects, that are not defined by the MFC class wizard. The same #import
statement defines the EXGANTTLib namespace that include all objects and types of the
control's TypeLibrary. In case your exgantt.dll library is located to another place than the
system folder or well known path, the path to the library should be provided, in order to let
the VC finds the type library.

The following VB.NET sample displays the events that an ActiveX control is firing while it is

hosted by an item:

Private Sub AxGantt1_ItemOleEvent(ByVal sender As Object, ByVal e As
AxEXGANTTLib._IGanttEvents_ItemOleEventEvent) Handles AxGantt1.ItemOleEvent
 Debug.WriteLine("Event's name: " & e.ev.Name)
 Dim i As Long
 For i = 0 To e.ev.CountParam - 1
 Dim eP As EXGANTTLib.OleEventParam
 eP = e.ev(i)
 Debug.WriteLine("Name: " & e.ev.Name & " Value: " & eP.Value)
 Next
End Sub

The following C# sample displays the events that an ActiveX control is firing while it is
hosted by an item:

private void axGantt1_ItemOleEvent(object sender,
AxEXGANTTLib._IGanttEvents_ItemOleEventEvent e)
{
 System.Diagnostics.Debug.WriteLine("Event's name: " + e.ev.Name.ToString());
 for (int i= 0; i < e.ev.CountParam ; i++)
 {
 EXGANTTLib.IOleEventParam evP = e.ev[i];
 System.Diagnostics.Debug.WriteLine("Name: " + evP.Name.ToString() + ", Value: " +
evP.Value.ToString());
 }
}

The following VFP sample displays the events that an ActiveX control fires when it is hosted
by an item:

*** ActiveX Control Event ***
LPARAMETERS item, ev

local s
s = "Event's name: " + ev.Name
for i = 0 to ev.CountParam - 1
 s = s + "Name: " + ev.Param(i).Name + " ,Value: " + Str(ev.Param(i).Value)
endfor

wait window nowait s

property OleEvent.Param (Item as Variant) as OleEventParam

Retrieves an OleEventParam object given either the index of the parameter, or its name.

Type Description

Item as Variant A long expression that indicates the argument's index or a
string expression that indicates the argument's name.

OleEventParam An OleEventParam object that contains the name and the
value for the argument.

The following sample enumerates the arguments of an OLE event when ItemOLEEvent is
fired.

Private Sub Gantt1_ItemOleEvent(ByVal Item As EXGANTTLibCtl.HITEM, ByVal Ev As
EXGANTTLibCtl.IOleEvent)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VC sample displays the events that an ActiveX control is firing while it is
hosted by an item:

 #import <exgantt.dll> rename("GetItems", "exGetItems")

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnItemOleEventGantt1(long Item, LPDISPATCH Ev)
{
 EXGANTTLib::IOleEventPtr spEvent(Ev);
 CString strOutput;
 strOutput.Format("Event's name: %s\n", spEvent->Name.operator const char *());
 OutputDebugString(strOutput);
 if (spEvent->CountParam == 0)
 OutputDebugString("The event has no parameters.");
 else
 {
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 EXGANTTLib::IOleEventParamPtr spParam = spEvent->GetParam(COleVariant(i));
 strOutput.Format("Name: %s, Value: %s\n", spParam->Name.operator const char *
(), V2S(&spParam->Value));
 OutputDebugString(strOutput);
 }
 }
 OutputDebugString("");
}

The #import clause is required to get the wrapper classes for IOleEvent and
IOleEventParam objects, that are not defined by the MFC class wizard. The same #import
statement defines the EXGANTTLib namespace that include all objects and types of the
control's TypeLibrary. In case your exgantt.dll library is located to another place than the
system folder or well known path, the path to the library should be provided, in order to let
the VC finds the type library.

The following VB.NET sample displays the events that an ActiveX control is firing while it is
hosted by an item:

Private Sub AxGantt1_ItemOleEvent(ByVal sender As Object, ByVal e As

AxEXGANTTLib._IGanttEvents_ItemOleEventEvent) Handles AxGantt1.ItemOleEvent
 Debug.WriteLine("Event's name: " & e.ev.Name)
 Dim i As Long
 For i = 0 To e.ev.CountParam - 1
 Dim eP As EXGANTTLib.OleEventParam
 eP = e.ev(i)
 Debug.WriteLine("Name: " & e.ev.Name & " Value: " & eP.Value)
 Next
End Sub

The following C# sample displays the events that an ActiveX control is firing while it is
hosted by an item:

private void axGantt1_ItemOleEvent(object sender,
AxEXGANTTLib._IGanttEvents_ItemOleEventEvent e)
{
 System.Diagnostics.Debug.WriteLine("Event's name: " + e.ev.Name.ToString());
 for (int i= 0; i < e.ev.CountParam ; i++)
 {
 EXGANTTLib.IOleEventParam evP = e.ev[i];
 System.Diagnostics.Debug.WriteLine("Name: " + evP.Name.ToString() + ", Value: " +
evP.Value.ToString());
 }
}

The following VFP sample displays the events that an ActiveX control fires when it is hosted
by an item:

*** ActiveX Control Event ***
LPARAMETERS item, ev

local s
s = "Event's name: " + ev.Name
for i = 0 to ev.CountParam - 1
 s = s + "Name: " + ev.Param(i).Name + " ,Value: " + Str(ev.Param(i).Value)
endfor
wait window nowait s

property OleEvent.ToString as String
Retrieves information about the event.

Type Description

String

A String expression that shows information about an OLE
event. The ToString property gets the information as
follows: Name[ID] (Param/Type = Value, Param/Type =
Value, ...). For instance, "KeyDown[-602]
(KeyCode/Short* = 9,Shift/Short = 0)" indicates that the
KeyDown event is fired, with the identifier -602 with two
parameters KeyCode as a reference to a short type with
the value 8, and Shift parameter as Short type with the
value 0.

Use the ToString property to display information about fired event such us name,
parameters, types and values. Using the ToString property you can quickly identifies the
event that you should handle in your application. Use the ID property to specify a specified
even by its identifier. Use the Name property to get the name of the event. Use the Param
property to access a specified parameter using its index or its name.

Displaying ToString property during the OLE Event event may show data like follows:

MouseMove[-606](Button/Short = 0,Shift/Short = 0,X/Long = 46,Y/Long = 15)
MouseDown[-605](Button/Short = 1,Shift/Short = 0,X/Long = 46,Y/Long = 15)
KeyDown[-602](KeyCode/Short* = 83,Shift/Short = 0)
KeyPress[-603](KeyAscii/Short* = 115)
Change[2]()
KeyUp[-604](KeyCode/Short* = 83,Shift/Short = 0)
MouseUp[-607](Button/Short = 1,Shift/Short = 0,X/Long = 46,Y/Long = 15)
MouseMove[-606](Button/Short = 0,Shift/Short = 0,X/Long = 46,Y/Long = 15)

OleEventParam object
The OleEventParam holds the name and the value for an event's argument.

Name Description
Name Retrieves the name of the event's parameter.
Value Retrieves or sets the value of the event's parameter.

property OleEventParam.Name as String

Retrieves the name of the event's parameter.

Type Description

String A string expression that indicates the name of the event's
parameter.

The following sample enumerates the arguments of an OLE event when ItemOLEEvent is
fired.

Private Sub Gantt1_ItemOleEvent(ByVal Item As EXGANTTLibCtl.HITEM, ByVal Ev As
EXGANTTLibCtl.IOleEvent)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VC sample displays the events that an ActiveX control is firing while it is
hosted by an item:

 #import <exgantt.dll> rename("GetItems", "exGetItems")

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);

 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnItemOleEventGantt1(long Item, LPDISPATCH Ev)
{
 EXGANTTLib::IOleEventPtr spEvent(Ev);
 CString strOutput;
 strOutput.Format("Event's name: %s\n", spEvent->Name.operator const char *());
 OutputDebugString(strOutput);
 if (spEvent->CountParam == 0)
 OutputDebugString("The event has no parameters.");
 else
 {
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 EXGANTTLib::IOleEventParamPtr spParam = spEvent->GetParam(COleVariant(i));
 strOutput.Format("Name: %s, Value: %s\n", spParam->Name.operator const char *
(), V2S(&spParam->Value));
 OutputDebugString(strOutput);
 }
 }
 OutputDebugString("");
}

The #import clause is required to get the wrapper classes for IOleEvent and
IOleEventParam objects, that are not defined by the MFC class wizard. The same #import
statement defines the EXGANTTLib namespace that include all objects and types of the
control's TypeLibrary. In case your exgantt.dll library is located to another place than the
system folder or well known path, the path to the library should be provided, in order to let
the VC finds the type library.

The following VB.NET sample displays the events that an ActiveX control is firing while it is
hosted by an item:

Private Sub AxGantt1_ItemOleEvent(ByVal sender As Object, ByVal e As
AxEXGANTTLib._IGanttEvents_ItemOleEventEvent) Handles AxGantt1.ItemOleEvent
 Debug.WriteLine("Event's name: " & e.ev.Name)

 Dim i As Long
 For i = 0 To e.ev.CountParam - 1
 Dim eP As EXGANTTLib.OleEventParam
 eP = e.ev(i)
 Debug.WriteLine("Name: " & e.ev.Name & " Value: " & eP.Value)
 Next
End Sub

The following C# sample displays the events that an ActiveX control is firing while it is
hosted by an item:

private void axGantt1_ItemOleEvent(object sender,
AxEXGANTTLib._IGanttEvents_ItemOleEventEvent e)
{
 System.Diagnostics.Debug.WriteLine("Event's name: " + e.ev.Name.ToString());
 for (int i= 0; i < e.ev.CountParam ; i++)
 {
 EXGANTTLib.IOleEventParam evP = e.ev[i];
 System.Diagnostics.Debug.WriteLine("Name: " + evP.Name.ToString() + ", Value: " +
evP.Value.ToString());
 }
}

The following VFP sample displays the events that an ActiveX control fires when it is hosted
by an item:

*** ActiveX Control Event ***
LPARAMETERS item, ev

local s
s = "Event's name: " + ev.Name
for i = 0 to ev.CountParam - 1
 s = s + "Name: " + ev.Param(i).Name + " ,Value: " + Str(ev.Param(i).Value)
endfor
wait window nowait s

property OleEventParam.Value as Variant

Retrieves or sets the value of the event's parameter.

Type Description

Variant A variant value that indicates the value of the event's
parameter.

The following sample enumerates the arguments of an OLE event when ItemOLEEvent is
fired.

Private Sub Gantt1_ItemOleEvent(ByVal Item As EXGANTTLibCtl.HITEM, ByVal Ev As
EXGANTTLibCtl.IOleEvent)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VC sample displays the events that an ActiveX control is firing while it is
hosted by an item:

 #import <exgantt.dll> rename("GetItems", "exGetItems")

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);

 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnItemOleEventGantt1(long Item, LPDISPATCH Ev)
{
 EXGANTTLib::IOleEventPtr spEvent(Ev);
 CString strOutput;
 strOutput.Format("Event's name: %s\n", spEvent->Name.operator const char *());
 OutputDebugString(strOutput);
 if (spEvent->CountParam == 0)
 OutputDebugString("The event has no parameters.");
 else
 {
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 EXGANTTLib::IOleEventParamPtr spParam = spEvent->GetParam(COleVariant(i));
 strOutput.Format("Name: %s, Value: %s\n", spParam->Name.operator const char *
(), V2S(&spParam->Value));
 OutputDebugString(strOutput);
 }
 }
 OutputDebugString("");
}

The #import clause is required to get the wrapper classes for IOleEvent and
IOleEventParam objects, that are not defined by the MFC class wizard. The same #import
statement defines the EXGANTTLib namespace that include all objects and types of the
control's TypeLibrary. In case your exgantt.dll library is located to another place than the
system folder or well known path, the path to the library should be provided, in order to let
the VC finds the type library.

The following VB.NET sample displays the events that an ActiveX control is firing while it is
hosted by an item:

Private Sub AxGantt1_ItemOleEvent(ByVal sender As Object, ByVal e As
AxEXGANTTLib._IGanttEvents_ItemOleEventEvent) Handles AxGantt1.ItemOleEvent
 Debug.WriteLine("Event's name: " & e.ev.Name)

 Dim i As Long
 For i = 0 To e.ev.CountParam - 1
 Dim eP As EXGANTTLib.OleEventParam
 eP = e.ev(i)
 Debug.WriteLine("Name: " & e.ev.Name & " Value: " & eP.Value)
 Next
End Sub

The following C# sample displays the events that an ActiveX control is firing while it is
hosted by an item:

private void axGantt1_ItemOleEvent(object sender,
AxEXGANTTLib._IGanttEvents_ItemOleEventEvent e)
{
 System.Diagnostics.Debug.WriteLine("Event's name: " + e.ev.Name.ToString());
 for (int i= 0; i < e.ev.CountParam ; i++)
 {
 EXGANTTLib.IOleEventParam evP = e.ev[i];
 System.Diagnostics.Debug.WriteLine("Name: " + evP.Name.ToString() + ", Value: " +
evP.Value.ToString());
 }
}

The following VFP sample displays the events that an ActiveX control fires when it is hosted
by an item:

*** ActiveX Control Event ***
LPARAMETERS item, ev

local s
s = "Event's name: " + ev.Name
for i = 0 to ev.CountParam - 1
 s = s + "Name: " + ev.Param(i).Name + " ,Value: " + Str(ev.Param(i).Value)
endfor
wait window nowait s

ExGantt events
The Exontrol's ExGantt component supports the following events:

Name Description
AddColumn Fired after a new column has been added.

AddItem Occurs after a new Item has been inserted to Items
collection.

AfterCellEdit Occurs after data in the current cell is edited.
AfterExpandItem Fired after an item is expanded (collapsed).
AnchorClick Occurs when an anchor element is clicked.

BeforeCellEdit Occurs just before the user enters edit mode by clicking in
a cell.

BeforeExpandItem Fired before an item is about to be expanded (collapsed).
CellButtonClick Fired after the user clicks on the cell of button type.
CellImageClick Fired after the user clicks on the image's cell area.
CellStateChanged Fired after cell's state has been changed.
CellStateChanging Fired before cell's state is about to be changed.

Click Occurs when the user presses and then releases the left
mouse button over the tree control.

ColumnClick Fired after the user clicks on column's header.
DateChange Occurs when the first visible date is changed.
DateTimeChanged Notifies your application that the current time is changed.

DblClick Occurs when the user dblclk the left mouse button over an
object.

Event Notifies the application once the control fires an event.
FilterChange Occurs when the filter was changed.
FilterChanging Notifies your application that the filter is about to change.
FormatColumn Fired when a cell requires to format its caption.
HyperLinkClick Occurs when the user clicks on a hyperlink cell.

ItemOleEvent Fired when an ActiveX control hosted by an item has fired
an event.

KeyDown Occurs when the user presses a key while an object has
the focus.

KeyPress Occurs when the user presses and releases an ANSI key.

KeyUp Occurs when the user releases a key while an object has
the focus.

LayoutChanged Occurs when column's position or column's size is
changed.

MouseDown Occurs when the user presses a mouse button.
MouseMove Occurs when the user moves the mouse.
MouseUp Occurs when the user releases a mouse button.
OffsetChanged Occurs when the scroll position has been changed.

OLECompleteDrag
Occurs when a source component is dropped onto a
target component, informing the source component that a
drag action was either performed or canceled

OLEDragDrop
Occurs when a source component is dropped onto a
target component when the source component determines
that a drop can occur.

OLEDragOver Occurs when one component is dragged over another.

OLEGiveFeedback Allows the drag source to specify the type of OLE drag-
and-drop operation and the visual feedback.

OLESetData
Occurs on a drag source when a drop target calls the
GetData method and there is no data in a specified format
in the OLE drag-and-drop DataObject.

OLEStartDrag Occurs when the OLEDrag method is called.

OversizeChanged Occurs when the right range of the scroll has been
changed.

OverviewZoom Occurs once the user selects a new time scale unit in the
overview zoom area.

RClick Fired when right mouse button is clicked
RemoveColumn Fired before deleting a Column.
RemoveItem Occurs before deleting an Item.
ScrollButtonClick Occurs when the user clicks a button in the scrollbar.
SelectionChanged Fired after a new item has been selected.
Sort Fired when the control sorts a column.
ToolTip Fired when the control prepares the object's tooltip.

C#

VB

private void AddColumn(object sender,exontrol.EXGANTTLib.Column Column)
{
}

Private Sub AddColumn(ByVal sender As System.Object,ByVal Column As
exontrol.EXGANTTLib.Column) Handles AddColumn
End Sub

C#

C++

C++
Builder

Delphi

private void AddColumn(object sender,
AxEXGANTTLib._IGanttEvents_AddColumnEvent e)
{
}

void OnAddColumn(LPDISPATCH Column)
{
}

void __fastcall AddColumn(TObject *Sender,Exganttlib_tlb::IColumn *Column)
{
}

procedure AddColumn(ASender: TObject; Column : IColumn);
begin
end;

event AddColumn (Column as Column)

Fired after a new column has been added.

Type Description
Column as Column A Column object that's added to the Columns collection.

The AddColumn event is fired after a new column has been inserted to Columns collection.
Use the AddColumn event to associate extra data to a new column. Use the Add method to
add new columns to Columns collection. Use the ColumnAutoSize property to fit all visible
columns in the control's client area.

Syntax for AddColumn event, /NET version, on:

Syntax for AddColumn event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure AddColumn(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_AddColumnEvent);
begin
end;

begin event AddColumn(oleobject Column)
end event AddColumn

Private Sub AddColumn(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_AddColumnEvent) Handles AddColumn
End Sub

Private Sub AddColumn(ByVal Column As EXGANTTLibCtl.IColumn)
End Sub

Private Sub AddColumn(ByVal Column As Object)
End Sub

LPARAMETERS Column

PROCEDURE OnAddColumn(oGantt,Column)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="AddColumn(Column)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AddColumn(Column)
End Function
</SCRIPT>

Procedure OnComAddColumn Variant llColumn
 Forward Send OnComAddColumn llColumn
End_Procedure

Syntax for AddColumn event, /COM version (others), on:

Visual
Objects

X++

XBasic

dBASE

METHOD OCX_AddColumn(Column) CLASS MainDialog
RETURN NIL

void onEvent_AddColumn(COM _Column)
{
}

function AddColumn as v (Column as OLE::Exontrol.Gantt.1::IColumn)
end function

function nativeObject_AddColumn(Column)
return

The following VB sample shows how to set the width for all columns:

Private Sub Gantt1_AddColumn(ByVal Column As EXGANTTLibCtl.IColumn)
 Column.Width = 128
End Sub

The following VB.NET sample changes the column's width when a new column is added:

Private Sub AxGantt1_AddColumn(ByVal sender As Object, ByVal e As
AxEXGANTTLib._IGanttEvents_AddColumnEvent) Handles AxGantt1.AddColumn
 e.column.Width = 128
End Sub

The following C# sample changes the column's width when a new column is added:

private void axGantt1_AddColumn(object sender,
AxEXGANTTLib._IGanttEvents_AddColumnEvent e)
{
 e.column.Width = 128;
}

The following C++ sample changes the column's width when a new column is added:

#include "Column.h"

#include "Columns.h"
void OnAddColumnGantt1(LPDISPATCH Column)
{
 CColumn column(Column);column.m_bAutoRelease = FALSE;
 column.SetWidth(128);
}

The following VFP sample changes the column's width when a new column is added:

*** ActiveX Control Event ***
LPARAMETERS column

with column
 .Width = 128
endwith

C#

VB

private void AddItem(object sender,int Item)
{
}

Private Sub AddItem(ByVal sender As System.Object,ByVal Item As Integer)
Handles AddItem
End Sub

C#

C++

C++
Builder

Delphi

private void AddItem(object sender, AxEXGANTTLib._IGanttEvents_AddItemEvent
e)
{
}

void OnAddItem(long Item)
{
}

void __fastcall AddItem(TObject *Sender,Exganttlib_tlb::HITEM Item)
{
}

procedure AddItem(ASender: TObject; Item : HITEM);

event AddItem (Item as HITEM)

Occurs after a new Item has been inserted to Items collection.

Type Description

Item as HITEM A long expression that indicates the handle of the item
that's inserted to the Items collection.

The AddItem event notifies your application that a new items is inserted. Use the AddItem
and InsertItem methods to insert new items to Items collection. Use the InsertControlItem
method to add a new item that hosts an ActiveX control. Use the Add method to add new
columns to Columns Collection. Use the Def property to specify a common value for all cells
in the same column.

Syntax for AddItem event, /NET version, on:

Syntax for AddItem event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin
end;

procedure AddItem(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_AddItemEvent);
begin
end;

begin event AddItem(long Item)
end event AddItem

Private Sub AddItem(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_AddItemEvent) Handles AddItem
End Sub

Private Sub AddItem(ByVal Item As EXGANTTLibCtl.HITEM)
End Sub

Private Sub AddItem(ByVal Item As Long)
End Sub

LPARAMETERS Item

PROCEDURE OnAddItem(oGantt,Item)
RETURN

Java…

VBSc…

<SCRIPT EVENT="AddItem(Item)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AddItem(Item)
End Function
</SCRIPT>

Syntax for AddItem event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComAddItem HITEM llItem
 Forward Send OnComAddItem llItem
End_Procedure

METHOD OCX_AddItem(Item) CLASS MainDialog
RETURN NIL

void onEvent_AddItem(int _Item)
{
}

function AddItem as v (Item as OLE::Exontrol.Gantt.1::HITEM)
end function

function nativeObject_AddItem(Item)
return

The following VB sample shows how to change the item's foreground color:

Private Sub Gantt1_AddItem(ByVal Item As EXGANTTLibCtl.HITEM)
 Gantt1.Items.ItemForeColor(Item) = vbBlue
End Sub

The following VB sample changes the background color for all cells in the first column:

Gantt1.Columns(0).Def(exCellBackColor) = RGB(240, 240, 240)

The following C++ sample changes the item's foreground color when a new items is
inserted:

#include "Items.h"
void OnAddItemGantt1(long Item)
{
 if (::IsWindow(m_gantt.m_hWnd))
 {
 CItems items = m_gantt.GetItems();
 items.SetItemForeColor(Item, RGB(0,0,255));

 }
}

The following C++ sample changes the background color for all cells in the first column:

COleVariant vtBackColor((long)RGB(240, 240, 240));
m_gantt.GetColumns().GetItem(COleVariant((long) 0)).SetDef(/*exCellBackColor*/ 4,
vtBackColor);

The following VB.NET sample changes the item's foreground color when a new items is
inserted:

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

Private Sub AxGantt1_AddItem(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_AddItemEvent) Handles AxGantt1.AddItem
 AxGantt1.Items.ItemForeColor(e.item) = ToUInt32(Color.Blue)
End Sub

The following VB.NET sample changes the background color for all cells in the first column:

With AxGantt1.Columns(0)
 .Def(EXGANTTLib.DefColumnEnum.exCellBackColor) = ToUInt32(Color.WhiteSmoke)
End With

The following C# sample changes the item's foreground color when a new items is inserted:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;

 return Convert.ToUInt32(i);
}

private void axGantt1_AddItem(object sender,
AxEXGANTTLib._IGanttEvents_AddItemEvent e)
{
 axGantt1.Items.set_ItemForeColor(e.item, ToUInt32(Color.Blue));
}

The following C# sample changes the background color for all cells in the first column:

axGantt1.Columns[0].set_Def(EXGANTTLib.DefColumnEnum.exCellBackColor,
ToUInt32(Color.WhiteSmoke));

The following VFP sample changes the item's foreground color when a new items is
inserted:

*** ActiveX Control Event ***
LPARAMETERS item

with thisform.Gantt1.Items
 .DefaultItem = item
 .ItemForeColor(0) = RGB(0,0,255)
endwith

The following VFP sample changes the background color for all cells in the first column:

with thisform.Gantt1.Columns(0)
 .Def(4) = RGB(240,240,240)
endwith

For instance, the following VB sample loads an ADO recordset.

Dim rs As Object

Private Sub Form_Load()

 Set rs = CreateObject("ADODB.Recordset")
 rs.Open "Orders", "Provider=Microsoft.Jet.OLEDB.3.51;Data Source= D:\Program

Files\Microsoft Visual Studio\VB98\NWIND.MDB", 3 ' Opens the table using static mode

 Gantt1.BeginUpdate
 ' Add the columns
 With Gantt1.Columns
 For Each f In rs.Fields
 .Add f.Name
 Next
 End With

 ' Add the items
 With Gantt1.Items
 rs.MoveFirst
 While Not rs.EOF
 .InsertItem , rs.Bookmark
 rs.MoveNext
 Wend
End With

 Gantt1.EndUpdate
End Sub

Private Sub Gantt1_AddItem(ByVal Item As EXGANTTLibCtl.HITEM)
 Dim i As Integer
 Dim n As Integer
 n = Gantt1.Columns.Count
 With Gantt1.Items
 For i = 0 To n - 1
 .CellCaption(Item, i) = rs(i).Value
 Next
 End With
End Sub

The following VB sample use the PutItems method to load items to the control:

Dim rs As Object

Private Sub Form_Load()

 Set rs = CreateObject("ADODB.Recordset")
 rs.Open "Orders", "Provider=Microsoft.Jet.OLEDB.3.51;Data Source= D:\Program
Files\Microsoft Visual Studio\VB98\NWIND.MDB", 3 ' Opens the table using static mode

 Gantt1.BeginUpdate
 ' Add the columns
 With Gantt1.Columns
 For Each f In rs.Fields
 .Add f.Name
 Next
 End With

 Gantt1.PutItems rs.getRows()

 Gantt1.EndUpdate
End Sub

C#

VB

private void AfterCellEdit(object sender,int Item,int ColIndex,string NewCaption)
{
}

Private Sub AfterCellEdit(ByVal sender As System.Object,ByVal Item As
Integer,ByVal ColIndex As Integer,ByVal NewCaption As String) Handles
AfterCellEdit
End Sub

C#

C++

private void AfterCellEdit(object sender,
AxEXGANTTLib._IGanttEvents_AfterCellEditEvent e)
{
}

void OnAfterCellEdit(long Item,long ColIndex,LPCTSTR NewCaption)
{
}

event AfterCellEdit (Item as HITEM, ColIndex as Long, NewCaption as
String)

Occurs after data in the current cell is edited.

Type Description

Item as HITEM A long expression that indicates the handle of the item
being changed.

ColIndex as Long
A long expression that specifies the index of the column
where the change occurs, or a handle to a cell being
edited if the Item parameter is 0.

NewCaption as String A string expression that indicates the newly cell's caption.

The AfterCellEdit and BeforeCellEdit events are fired only if the AllowEdit property of the
control is True. Use the Edit method to programmatically edits a cell. If the user doesn't
handle the AfterCellEdit event the cell's caption remains unchanged. Use the AfterCellEdit
event to change the cell's caption after user edits a cell. The AfterCellEdit event is not fired
if the user has canceled the edit operation using BeforeCellEdit event.

Syntax for AfterCellEdit event, /NET version, on:

Syntax for AfterCellEdit event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall AfterCellEdit(TObject *Sender,Exganttlib_tlb::HITEM Item,long
ColIndex,BSTR NewCaption)
{
}

procedure AfterCellEdit(ASender: TObject; Item : HITEM;ColIndex :
Integer;NewCaption : WideString);
begin
end;

procedure AfterCellEdit(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_AfterCellEditEvent);
begin
end;

begin event AfterCellEdit(long Item,long ColIndex,string NewCaption)
end event AfterCellEdit

Private Sub AfterCellEdit(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_AfterCellEditEvent) Handles AfterCellEdit
End Sub

Private Sub AfterCellEdit(ByVal Item As EXGANTTLibCtl.HITEM,ByVal ColIndex As
Long,ByVal NewCaption As String)
End Sub

Private Sub AfterCellEdit(ByVal Item As Long,ByVal ColIndex As Long,ByVal
NewCaption As String)
End Sub

LPARAMETERS Item,ColIndex,NewCaption

PROCEDURE OnAfterCellEdit(oGantt,Item,ColIndex,NewCaption)
RETURN

Syntax for AfterCellEdit event, /COM version (others), on:

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="AfterCellEdit(Item,ColIndex,NewCaption)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AfterCellEdit(Item,ColIndex,NewCaption)
End Function
</SCRIPT>

Procedure OnComAfterCellEdit HITEM llItem Integer llColIndex String
llNewCaption
 Forward Send OnComAfterCellEdit llItem llColIndex llNewCaption
End_Procedure

METHOD OCX_AfterCellEdit(Item,ColIndex,NewCaption) CLASS MainDialog
RETURN NIL

void onEvent_AfterCellEdit(int _Item,int _ColIndex,str _NewCaption)
{
}

function AfterCellEdit as v (Item as OLE::Exontrol.Gantt.1::HITEM,ColIndex as
N,NewCaption as C)
end function

function nativeObject_AfterCellEdit(Item,ColIndex,NewCaption)
return

The following VB sample changes the cell's caption as soon as the edit operation ends.

Private Sub Gantt1_AfterCellEdit(ByVal Item As EXGANTTLibCtl.HITEM, ByVal ColIndex As
Long, ByVal NewCaption As String)
 Gantt1.Items.CellCaption(Item, ColIndex) = NewCaption
End Sub

Use the BeforeCellEdit is you need to cancel editing cells. The following VB sample cancels
editing of any cell that' shoted by the first column:

Private Sub Gantt1_BeforeCellEdit(ByVal Item As EXGANTTLibCtl.HITEM, ByVal ColIndex As
Long, Value As Variant, Cancel As Variant)
 Cancel = ColIndex = 0
End Sub

The following VB.NET sample changes the cell's caption as soon as the edit operation
ends.

Private Sub AxGantt1_AfterCellEdit(ByVal sender As Object, ByVal e As
AxEXGANTTLib._IGanttEvents_AfterCellEditEvent) Handles AxGantt1.AfterCellEdit
 AxGantt1.Items.CellCaption(e.item, e.colIndex) = e.newCaption
End Sub

The following C# sample changes the cell's caption as soon as the edit operation ends.

private void axGantt1_AfterCellEdit(object sender,
AxEXGANTTLib._IGanttEvents_AfterCellEditEvent e)
{
 axGantt1.Items.set_CellCaption(e.item, e.colIndex, e.newCaption);
}

The following C++ sample changes the cell's caption as soon as the edit operation ends.

void OnAfterCellEditGantt1(long Item, long ColIndex, LPCTSTR NewCaption)
{
 m_gantt.GetItems().SetCellCaption(COleVariant(Item), COleVariant(ColIndex),
COleVariant(NewCaption));
}

The following VFP sample changes the cell's caption as soon as the edit operation ends.

*** ActiveX Control Event ***
LPARAMETERS item, colindex, newcaption

with thisform.Gantt1.Items
 .DefaultItem = item
 .CellCaption(0, colindex) = newcaption
endwith

C#

VB

private void AfterExpandItem(object sender,int Item)
{
}

Private Sub AfterExpandItem(ByVal sender As System.Object,ByVal Item As
Integer) Handles AfterExpandItem
End Sub

C#

C++

C++
Builder

Delphi

private void AfterExpandItem(object sender,
AxEXGANTTLib._IGanttEvents_AfterExpandItemEvent e)
{
}

void OnAfterExpandItem(long Item)
{
}

void __fastcall AfterExpandItem(TObject *Sender,Exganttlib_tlb::HITEM Item)
{
}

procedure AfterExpandItem(ASender: TObject; Item : HITEM);

event AfterExpandItem (Item as HITEM)

Fired after an item is expanded (collapsed).

Type Description

Item as HITEM A long expression that indicates the item's handle that
indicates the item expanded or collapsed.

The AfterExapndItem event notifies your application that an item is collapsed or expanded.
Use the ExpandItem method to programmatically expand or collapse an item. The
ExpandItem property also specifies whether an item is expand or collapsed. The ItemChild
property retrieves the first child item. Use the BeforeExpandItem event to cancel expanding
or collapsing items.

Syntax for AfterExpandItem event, /NET version, on:

Syntax for AfterExpandItem event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin
end;

procedure AfterExpandItem(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_AfterExpandItemEvent);
begin
end;

begin event AfterExpandItem(long Item)
end event AfterExpandItem

Private Sub AfterExpandItem(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_AfterExpandItemEvent) Handles AfterExpandItem
End Sub

Private Sub AfterExpandItem(ByVal Item As EXGANTTLibCtl.HITEM)
End Sub

Private Sub AfterExpandItem(ByVal Item As Long)
End Sub

LPARAMETERS Item

PROCEDURE OnAfterExpandItem(oGantt,Item)
RETURN

Java…

VBSc…

<SCRIPT EVENT="AfterExpandItem(Item)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AfterExpandItem(Item)
End Function
</SCRIPT>

Syntax for AfterExpandItem event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComAfterExpandItem HITEM llItem
 Forward Send OnComAfterExpandItem llItem
End_Procedure

METHOD OCX_AfterExpandItem(Item) CLASS MainDialog
RETURN NIL

void onEvent_AfterExpandItem(int _Item)
{
}

function AfterExpandItem as v (Item as OLE::Exontrol.Gantt.1::HITEM)
end function

function nativeObject_AfterExpandItem(Item)
return

The following VB sample prints the item's state when it is expanded or collapsed:

Private Sub Gantt1_AfterExpandItem(ByVal Item As EXGANTTLibCtl.HITEM)
 Debug.Print "The " & Item & " item was " & IIf(Gantt1.Items.ExpandItem(Item),
"expanded", "collapsed")
End Sub

The following C# sample prints the item's state when it is expanded or collapsed:

private void axGantt1_AfterExpandItem(object sender,
AxEXGANTTLib._IGanttEvents_AfterExpandItemEvent e)
{
 System.Diagnostics.Debug.WriteLine(axGantt1.Items.get_ExpandItem(e.item) ?
"expanded" : "collapsed");
}

The following VB.NET sample prints the item's state when it is expanded or collapsed:

Private Sub AxGantt1_AfterExpandItem(ByVal sender As Object, ByVal e As

AxEXGANTTLib._IGanttEvents_AfterExpandItemEvent) Handles AxGantt1.AfterExpandItem
 Debug.WriteLine(IIf(AxGantt1.Items.ExpandItem(e.item), "expanded", "collapsed"))
End Sub

The following C++ sample prints the item's state when it is expanded or collapsed:

void OnAfterExpandItemGantt1(long Item)
{
 CItems items = m_gantt.GetItems();
 CString strFormat;
 strFormat.Format("%s", items.GetExpandItem(Item) ? "expanded" : "collapsed");
 OutputDebugString(strFormat);
}

The following VFP sample sample prints the item's state when it is expanded or collapsed:

*** ActiveX Control Event ***
LPARAMETERS item

with thisform.Gantt1.Items
 if (.ExpandItem(item))
 wait window "expanded" nowait
 else
 wait window "collapsed" nowait
 endif
endwith

C#

VB

private void AnchorClick(object sender,string AnchorID,string Options)
{
}

Private Sub AnchorClick(ByVal sender As System.Object,ByVal AnchorID As
String,ByVal Options As String) Handles AnchorClick
End Sub

C#

C++

private void AnchorClick(object sender,
AxEXGANTTLib._IGanttEvents_AnchorClickEvent e)
{
}

void OnAnchorClick(LPCTSTR AnchorID,LPCTSTR Options)

event AnchorClick (AnchorID as String, Options as String)
Occurs when an anchor element is clicked.

Type Description

AnchorID as String A string expression that indicates the identifier of the
anchor.

Options as String A string expression that specifies options of the anchor
element.

The control fires the AnchorClick event to notify that the user clicks an anchor element. An
anchor is a piece of text or some other object (for example an image) which marks the
beginning and/or the end of a hypertext link. The <a> element is used to mark that piece of
text (or inline image), and to give its hypertextual relationship to other documents. The
AnchorClick event is fired only if prior clicking the control it shows the hand cursor. For
instance, if the cell is disabled, the hand cursor is not shown when hovers the anchor
element, and so the AnchorClick event is not fired. Use the FormatAnchor property to
specify the visual effect for anchor elements. For instance, if the user clicks the anchor
<a1>anchor, the control fires the AnchorClick event, where the AnchorID parameter is
1, and the Options parameter is empty. Also, if the user clicks the anchor <a
1;yourextradata>anchor, the AnchorID parameter of the AnchorClick event is 1, and
the Options parameter is "yourextradata".

Syntax for AnchorClick event, /NET version, on:

Syntax for AnchorClick event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

void __fastcall AnchorClick(TObject *Sender,BSTR AnchorID,BSTR Options)
{
}

procedure AnchorClick(ASender: TObject; AnchorID : WideString;Options :
WideString);
begin
end;

procedure AnchorClick(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_AnchorClickEvent);
begin
end;

begin event AnchorClick(string AnchorID,string Options)
end event AnchorClick

Private Sub AnchorClick(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_AnchorClickEvent) Handles AnchorClick
End Sub

Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

LPARAMETERS AnchorID,Options

PROCEDURE OnAnchorClick(oGantt,AnchorID,Options)
RETURN

Syntax for AnchorClick event, /COM version (others), on:

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="AnchorClick(AnchorID,Options)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AnchorClick(AnchorID,Options)
End Function
</SCRIPT>

Procedure OnComAnchorClick String llAnchorID String llOptions
 Forward Send OnComAnchorClick llAnchorID llOptions
End_Procedure

METHOD OCX_AnchorClick(AnchorID,Options) CLASS MainDialog
RETURN NIL

void onEvent_AnchorClick(str _AnchorID,str _Options)
{
}

function AnchorClick as v (AnchorID as C,Options as C)
end function

function nativeObject_AnchorClick(AnchorID,Options)
return

C#

VB

private void BeforeCellEdit(object sender,int Item,int ColIndex,ref object Value,ref
object Cancel)
{
}

Private Sub BeforeCellEdit(ByVal sender As System.Object,ByVal Item As
Integer,ByVal ColIndex As Integer,ByRef Value As Object,ByRef Cancel As Object)
Handles BeforeCellEdit
End Sub

C# private void BeforeCellEdit(object sender,
AxEXGANTTLib._IGanttEvents_BeforeCellEditEvent e)
{

event BeforeCellEdit (Item as HITEM, ColIndex as Long, Value as Variant,
Cancel as Variant)

Occurs just before the user enters edit mode by clicking twice in a cell.

Type Description

Item as HITEM A long expression that indicates the handle of the item
being changed.

ColIndex as Long
A long expression that specifies the index of the column
where the change occurs, or the handle of the cell being
edited if the Item parameter is 0.

Value as Variant
A Variant expression that indicates the edit's caption. By
default, the caption of the edit control is the cell's caption.
The user can change the text that the edit control displays.

Cancel as Variant A boolean expression that indicates whether the control
cancels the default operation.

The BeforeCellEdit event notifies your application that the user starts editing a cell. Use the
Edit method to programmatically edits a cell. Use the AllowEdit property to enable edit
feature in the control. Use the BeforeCellEdit event to cancel editing cells or to change the
edit's caption before it is displayed. Use the AfterCellEdit to change the cell's caption when
the edit operation ends.

Syntax for BeforeCellEdit event, /NET version, on:

Syntax for BeforeCellEdit event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

}

void OnBeforeCellEdit(long Item,long ColIndex,VARIANT FAR* Value,VARIANT
FAR* Cancel)
{
}

void __fastcall BeforeCellEdit(TObject *Sender,Exganttlib_tlb::HITEM Item,long
ColIndex,Variant * Value,Variant * Cancel)
{
}

procedure BeforeCellEdit(ASender: TObject; Item : HITEM;ColIndex : Integer;var
Value : OleVariant;var Cancel : OleVariant);
begin
end;

procedure BeforeCellEdit(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_BeforeCellEditEvent);
begin
end;

begin event BeforeCellEdit(long Item,long ColIndex,any Value,any Cancel)
end event BeforeCellEdit

Private Sub BeforeCellEdit(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_BeforeCellEditEvent) Handles BeforeCellEdit
End Sub

Private Sub BeforeCellEdit(ByVal Item As EXGANTTLibCtl.HITEM,ByVal ColIndex As
Long,Value As Variant,Cancel As Variant)
End Sub

Private Sub BeforeCellEdit(ByVal Item As Long,ByVal ColIndex As Long,Value As
Variant,Cancel As Variant)
End Sub

LPARAMETERS Item,ColIndex,Value,Cancel

Xbas… PROCEDURE OnBeforeCellEdit(oGantt,Item,ColIndex,Value,Cancel)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="BeforeCellEdit(Item,ColIndex,Value,Cancel)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function BeforeCellEdit(Item,ColIndex,Value,Cancel)
End Function
</SCRIPT>

Procedure OnComBeforeCellEdit HITEM llItem Integer llColIndex Variant llValue
Variant llCancel
 Forward Send OnComBeforeCellEdit llItem llColIndex llValue llCancel
End_Procedure

METHOD OCX_BeforeCellEdit(Item,ColIndex,Value,Cancel) CLASS MainDialog
RETURN NIL

void onEvent_BeforeCellEdit(int _Item,int _ColIndex,COMVariant /*variant*/
_Value,COMVariant /*variant*/ _Cancel)
{
}

function BeforeCellEdit as v (Item as OLE::Exontrol.Gantt.1::HITEM,ColIndex as
N,Value as A,Cancel as A)
end function

function nativeObject_BeforeCellEdit(Item,ColIndex,Value,Cancel)
return

Syntax for BeforeCellEdit event, /COM version (others), on:

The following VB sample cancels editing of any cell that belongs to the first column:

Private Sub Gantt1_BeforeCellEdit(ByVal Item As EXGANTTLibCtl.HITEM, ByVal ColIndex As
Long, Value As Variant, Cancel As Variant)
 Cancel = ColIndex = 0
End Sub

The following VB.NET sample cancels editing of any cell that belongs to the first column:

Private Sub AxGantt1_BeforeCellEdit(ByVal sender As Object, ByVal e As
AxEXGANTTLib._IGanttEvents_BeforeCellEditEvent) Handles AxGantt1.BeforeCellEdit
 e.cancel = e.colIndex = 0
End Sub

The following C# sample cancels editing of any cell that belongs to the first column:

private void axGantt1_BeforeCellEdit(object sender,
AxEXGANTTLib._IGanttEvents_BeforeCellEditEvent e)
{
 e.cancel = e.colIndex == 0;
}

The following C++ sample cancels editing of any cell that belongs to the first column:

void OnBeforeCellEditGantt1(long Item, long ColIndex, VARIANT FAR* Value, VARIANT
FAR* Cancel)
{
 if (ColIndex == 0)
 {
 V_VT(Cancel) = VT_BOOL;
 V_BOOL(Cancel) = VARIANT_TRUE;
 }
}

The following VFP sample cancels editing of any cell that belongs to the first column:

*** ActiveX Control Event ***
LPARAMETERS item, colindex, value, cancel

if (colindex = 0)
 cancel = .t.

endif

C#

VB

private void BeforeExpandItem(object sender,int Item,ref object Cancel)
{
}

Private Sub BeforeExpandItem(ByVal sender As System.Object,ByVal Item As
Integer,ByRef Cancel As Object) Handles BeforeExpandItem
End Sub

C#

C++

C++
Builder

private void BeforeExpandItem(object sender,
AxEXGANTTLib._IGanttEvents_BeforeExpandItemEvent e)
{
}

void OnBeforeExpandItem(long Item,VARIANT FAR* Cancel)
{
}

void __fastcall BeforeExpandItem(TObject *Sender,Exganttlib_tlb::HITEM

event BeforeExpandItem (Item as HITEM, Cancel as Variant)

Fired before an item is about to be expanded (collapsed).

Type Description

Item as HITEM A long expression that indicates the handle of the item
being expanded or collapsed.

Cancel as Variant A boolean expression that indicates whether the control
cancel expanding or collapsing the item.

The BeforeExpandItem event notifies your application that an item is about to be collapsed
or expanded. Use the BeforeExpandItem event to cancel expanding or collapsing items.
Use the BeforeExpandItem event to load new items when filling a virtual tree. The
AfterExpandItem event is fired after an item is expanded or collapsed. Use the ExpandItem
method to programmatically expand or collapse an item. Use the ExpandOnSearch property
to expand items while user types characters to search for items using incremental search
feature.

Syntax for BeforeExpandItem event, /NET version, on:

Syntax for BeforeExpandItem event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

Item,Variant * Cancel)
{
}

procedure BeforeExpandItem(ASender: TObject; Item : HITEM;var Cancel :
OleVariant);
begin
end;

procedure BeforeExpandItem(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_BeforeExpandItemEvent);
begin
end;

begin event BeforeExpandItem(long Item,any Cancel)
end event BeforeExpandItem

Private Sub BeforeExpandItem(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_BeforeExpandItemEvent) Handles
BeforeExpandItem
End Sub

Private Sub BeforeExpandItem(ByVal Item As EXGANTTLibCtl.HITEM,Cancel As
Variant)
End Sub

Private Sub BeforeExpandItem(ByVal Item As Long,Cancel As Variant)
End Sub

LPARAMETERS Item,Cancel

PROCEDURE OnBeforeExpandItem(oGantt,Item,Cancel)
RETURN

Java… <SCRIPT EVENT="BeforeExpandItem(Item,Cancel)" LANGUAGE="JScript">
Syntax for BeforeExpandItem event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function BeforeExpandItem(Item,Cancel)
End Function
</SCRIPT>

Procedure OnComBeforeExpandItem HITEM llItem Variant llCancel
 Forward Send OnComBeforeExpandItem llItem llCancel
End_Procedure

METHOD OCX_BeforeExpandItem(Item,Cancel) CLASS MainDialog
RETURN NIL

void onEvent_BeforeExpandItem(int _Item,COMVariant /*variant*/ _Cancel)
{
}

function BeforeExpandItem as v (Item as OLE::Exontrol.Gantt.1::HITEM,Cancel as A)
end function

function nativeObject_BeforeExpandItem(Item,Cancel)
return

The following VB sample cancels expanding or collapsing items:

Private Sub Gantt1_BeforeExpandItem(ByVal Item As EXGANTTLibCtl.HITEM, Cancel As
Variant)
 Cancel = True
End Sub

The following VB sample prints the item's state when it is expanded or collapsed:

Private Sub Gantt1_AfterExpandItem(ByVal Item As EXGANTTLibCtl.HITEM)
 Debug.Print "The " & Item & " item was " & IIf(Gantt1.Items.ExpandItem(Item),
"expanded", "collapsed")
End Sub

The following C# sample cancels expanding or collapsing items:

private void axGantt1_BeforeExpandItem(object sender,
AxEXGANTTLib._IGanttEvents_BeforeExpandItemEvent e)
{
 e.cancel = true;
}

The following VB.NET sample cancels expanding or collapsing items:

Private Sub AxGantt1_BeforeExpandItem(ByVal sender As Object, ByVal e As
AxEXGANTTLib._IGanttEvents_BeforeExpandItemEvent) Handles
AxGantt1.BeforeExpandItem
 e.cancel = True
End Sub

The following C++ sample cancels expanding or collapsing items:

void OnBeforeExpandItemGantt1(long Item, VARIANT FAR* Cancel)
{
 V_VT(Cancel) = VT_BOOL;
 V_BOOL(Cancel) = VARIANT_TRUE;
}

The following VFP sample cancels expanding or collapsing items:

*** ActiveX Control Event ***
LPARAMETERS item, cancel

cancel = .t.

C#

VB

private void CellButtonClick(object sender,int Item,int ColIndex)
{
}

Private Sub CellButtonClick(ByVal sender As System.Object,ByVal Item As
Integer,ByVal ColIndex As Integer) Handles CellButtonClick
End Sub

C#

C++

C++
Builder

private void CellButtonClick(object sender,
AxEXGANTTLib._IGanttEvents_CellButtonClickEvent e)
{
}

void OnCellButtonClick(long Item,long ColIndex)
{
}

void __fastcall CellButtonClick(TObject *Sender,Exganttlib_tlb::HITEM Item,long
ColIndex)

event CellButtonClick (Item as HITEM, ColIndex as Long)

Fired after the user clicks on the cell of button type.

Type Description

Item as HITEM A long expression that indicates the handle of the item
where the user clicks the cell's button.

ColIndex as Long

A long expression that specifies the index of the column
where the user clicks the cell's button, or a long
expression that indicates the handle of the cell being
clicked, if the Item parameter is 0.

The CellButtonClick event is fired after the user has released the left mouse button over a
cell of button type. Use the CellHasButton property to specify whether a cell is of button
type. The CellButtonClick event notifies your application that user presses a cell of button
type.

Syntax for CellButtonClick event, /NET version, on:

Syntax for CellButtonClick event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

procedure CellButtonClick(ASender: TObject; Item : HITEM;ColIndex : Integer);
begin
end;

procedure CellButtonClick(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_CellButtonClickEvent);
begin
end;

begin event CellButtonClick(long Item,long ColIndex)
end event CellButtonClick

Private Sub CellButtonClick(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_CellButtonClickEvent) Handles CellButtonClick
End Sub

Private Sub CellButtonClick(ByVal Item As EXGANTTLibCtl.HITEM,ByVal ColIndex
As Long)
End Sub

Private Sub CellButtonClick(ByVal Item As Long,ByVal ColIndex As Long)
End Sub

LPARAMETERS Item,ColIndex

PROCEDURE OnCellButtonClick(oGantt,Item,ColIndex)
RETURN

Java…

VBSc…

<SCRIPT EVENT="CellButtonClick(Item,ColIndex)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">

Syntax for CellButtonClick event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Function CellButtonClick(Item,ColIndex)
End Function
</SCRIPT>

Procedure OnComCellButtonClick HITEM llItem Integer llColIndex
 Forward Send OnComCellButtonClick llItem llColIndex
End_Procedure

METHOD OCX_CellButtonClick(Item,ColIndex) CLASS MainDialog
RETURN NIL

void onEvent_CellButtonClick(int _Item,int _ColIndex)
{
}

function CellButtonClick as v (Item as OLE::Exontrol.Gantt.1::HITEM,ColIndex as N)
end function

function nativeObject_CellButtonClick(Item,ColIndex)
return

The following VB sample sets the cells of the first column to be of button type, and displays
a message when one of them has been clicked.

Private Sub Gantt1_AddItem(ByVal Item As EXGANTTLibCtl.HITEM)
 Gantt1.Items.CellHasButton(Item, 0) = True
End Sub

Private Sub Gantt1_CellButtonClick(ByVal Item As EXGANTTLibCtl.HITEM, ByVal ColIndex
As Long)
 MsgBox "The cell of button type has been clicked"
End Sub

The following VB.NET sample displays a message when the user clicks a button in the cell:

Private Sub AxGantt1_CellButtonClick(ByVal sender As Object, ByVal e As
AxEXGANTTLib._IGanttEvents_CellButtonClickEvent) Handles AxGantt1.CellButtonClick
 MsgBox("The cell of button type has been clicked")

End Sub

The following C# sample displays a message when the user clicks a button in the cell:

private void axGantt1_CellButtonClick(object sender,
AxEXGANTTLib._IGanttEvents_CellButtonClickEvent e)
{
 MessageBox.Show("The cell of button type has been clicked");
}

The following C++ sample displays a message when the user clicks a button in the cell:

void OnCellButtonClickGantt1(long Item, long ColIndex)
{
 MessageBox("The cell of button type has been clicked.");
}

The following VFP sample displays a message when the user clicks a button in the cell:

*** ActiveX Control Event ***
LPARAMETERS item, colindex

wait window "The cell of button type has been clicked."

C#

VB

private void CellImageClick(object sender,int Item,int ColIndex)
{
}

Private Sub CellImageClick(ByVal sender As System.Object,ByVal Item As
Integer,ByVal ColIndex As Integer) Handles CellImageClick
End Sub

C#

C++

private void CellImageClick(object sender,
AxEXGANTTLib._IGanttEvents_CellImageClickEvent e)
{
}

void OnCellImageClick(long Item,long ColIndex)
{
}

event CellImageClick (Item as HITEM, ColIndex as Long)

Occurs when the user clicks the cell's icon.

Type Description

Item as HITEM A long expression that indicates the handle of the item
where the user clicks the cell's icon.

ColIndex as Long

A long expression that indicates the index of the column
where the user clicks the cell's icon, or a long expression
that indicates the handle of the cell being clicked, if the
Item parameter is 0.

The CellImageClick event is fired when user clicks on the cell's image. Use the CellImage
property to assign an icon to a cell. Use the CellImages property to assign multiple icons to
a cell. Use the ItemFromPoint property to determine the index of the icon being clicked, in
case the cell displays multiple icons using the CellImages property. Use the
CellHasCheckBox or CellHasRadioButton property to assign a check box or a radio button
to a cell.

Syntax for CellImageClick event, /NET version, on:

Syntax for CellImageClick event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall CellImageClick(TObject *Sender,Exganttlib_tlb::HITEM Item,long ColIndex)
{
}

procedure CellImageClick(ASender: TObject; Item : HITEM;ColIndex : Integer);
begin
end;

procedure CellImageClick(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_CellImageClickEvent);
begin
end;

begin event CellImageClick(long Item,long ColIndex)
end event CellImageClick

Private Sub CellImageClick(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_CellImageClickEvent) Handles CellImageClick
End Sub

Private Sub CellImageClick(ByVal Item As EXGANTTLibCtl.HITEM,ByVal ColIndex As
Long)
End Sub

Private Sub CellImageClick(ByVal Item As Long,ByVal ColIndex As Long)
End Sub

LPARAMETERS Item,ColIndex

PROCEDURE OnCellImageClick(oGantt,Item,ColIndex)
RETURN

Java… <SCRIPT EVENT="CellImageClick(Item,ColIndex)" LANGUAGE="JScript">
Syntax for CellImageClick event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function CellImageClick(Item,ColIndex)
End Function
</SCRIPT>

Procedure OnComCellImageClick HITEM llItem Integer llColIndex
 Forward Send OnComCellImageClick llItem llColIndex
End_Procedure

METHOD OCX_CellImageClick(Item,ColIndex) CLASS MainDialog
RETURN NIL

void onEvent_CellImageClick(int _Item,int _ColIndex)
{
}

function CellImageClick as v (Item as OLE::Exontrol.Gantt.1::HITEM,ColIndex as N)
end function

function nativeObject_CellImageClick(Item,ColIndex)
return

The following VB sample assigns an icon to each cell that's added, and changes the cell's
icon when the user clicks the icon:

Private Sub Gantt1_AddItem(ByVal Item As EXGANTTLibCtl.HITEM)
 Gantt1.Items.CellImage(Item, 0) = 1
End Sub

Private Sub Gantt1_CellImageClick(ByVal Item As EXGANTTLibCtl.HITEM, ByVal ColIndex
As Long)
 Gantt1.Items.CellImage(Item, ColIndex) = Gantt1.Items.CellImage(Item, ColIndex) Mod 2
+ 1
End Sub

The following VB sample displays the index of icon being clicked:

Private Sub Gantt1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single)
 Dim i As HITEM, h As HitTestInfoEnum, c As Long
 With Gantt1
 i = .ItemFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, c, h)
 End With
 If (i <> 0) or (c <> 0) Then
 If exHTCellIcon = (h And exHTCellIcon) Then
 Debug.Print "The index of icon being clicked is: " & (h And &HFFFF0000) / 65536
 End If
 End If
End Sub

The following C++ sample changes the cell's icon being clicked:

#include "Items.h"
void OnCellImageClickGantt1(long Item, long ColIndex)
{
 CItems items = m_gantt.GetItems();
 COleVariant vtItem(Item), vtColumn(ColIndex);
 items.SetCellImage(vtItem , vtColumn , items.GetCellImage(vtItem, vtColumn) % 2 + 1
);
}

The following C# sample changes the cell's icon being clicked:

private void axGantt1_CellImageClick(object sender,
AxEXGANTTLib._IGanttEvents_CellImageClickEvent e)
{
 axGantt1.Items.set_CellImage(e.item, e.colIndex, axGantt1.Items.get_CellImage(e.item,
e.colIndex) % 2 + 1);
}

The following VB/NET sample changes the cell's icon being clicked:

Private Sub AxGantt1_CellImageClick(ByVal sender As Object, ByVal e As
AxEXGANTTLib._IGanttEvents_CellImageClickEvent) Handles AxGantt1.CellImageClick
 With AxGantt1.Items
 .CellImage(e.item, e.colIndex) = .CellImage(e.item, e.colIndex) Mod 2 + 1

 End With
End Sub

The following VFP sample changes the cell's icon being clicked:

*** ActiveX Control Event ***
LPARAMETERS item, colindex

with thisform.Gantt1.Items
 .DefaultItem = item
 .CellImage(0,colindex) = .CellImage(0,colindex) + 1
endwith

C#

VB

private void CellStateChanged(object sender,int Item,int ColIndex)
{
}

Private Sub CellStateChanged(ByVal sender As System.Object,ByVal Item As
Integer,ByVal ColIndex As Integer) Handles CellStateChanged
End Sub

C#

C++

private void CellStateChanged(object sender,
AxEXGANTTLib._IGanttEvents_CellStateChangedEvent e)
{
}

void OnCellStateChanged(long Item,long ColIndex)
{
}

event CellStateChanged (Item as HITEM, ColIndex as Long)

Fired after cell's state has been changed.

Type Description

Item as HITEM A long expression that indicates the handle of the item
where the cell's state is changed.

ColIndex as Long

A long expression that indicates the index of the column
where the cell's state is changed, or a long expression
that indicates the handle of the cell, if the Item parameter
is 0.

A cell that contains a radio button or a check box button fires the CellStateChanged event
when its state is changed. Use the CellState property to change the cell's state. Use the
CellHasRadioButton or CellHasCheckBox property to enable radio or check box button into
a cell. Use the CellImage property to display an icon in the cell. Use the CellImages
property to display multiple icons in the same cell. Use the PartialCheck property to enable
partial check feature (check boxes with three states: partial, checked and unchecked).
Use the CellChecked property to determine the handle of the cell that's checked in a radio
group. Use the CellRadioGroup property to radio group cells.

Syntax for CellStateChanged event, /NET version, on:

Syntax for CellStateChanged event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall CellStateChanged(TObject *Sender,Exganttlib_tlb::HITEM Item,long
ColIndex)
{
}

procedure CellStateChanged(ASender: TObject; Item : HITEM;ColIndex : Integer);
begin
end;

procedure CellStateChanged(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_CellStateChangedEvent);
begin
end;

begin event CellStateChanged(long Item,long ColIndex)
end event CellStateChanged

Private Sub CellStateChanged(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_CellStateChangedEvent) Handles CellStateChanged
End Sub

Private Sub CellStateChanged(ByVal Item As EXGANTTLibCtl.HITEM,ByVal ColIndex
As Long)
End Sub

Private Sub CellStateChanged(ByVal Item As Long,ByVal ColIndex As Long)
End Sub

LPARAMETERS Item,ColIndex

PROCEDURE OnCellStateChanged(oGantt,Item,ColIndex)
RETURN

Java… <SCRIPT EVENT="CellStateChanged(Item,ColIndex)" LANGUAGE="JScript">
</SCRIPT>

Syntax for CellStateChanged event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function CellStateChanged(Item,ColIndex)
End Function
</SCRIPT>

Procedure OnComCellStateChanged HITEM llItem Integer llColIndex
 Forward Send OnComCellStateChanged llItem llColIndex
End_Procedure

METHOD OCX_CellStateChanged(Item,ColIndex) CLASS MainDialog
RETURN NIL

void onEvent_CellStateChanged(int _Item,int _ColIndex)
{
}

function CellStateChanged as v (Item as OLE::Exontrol.Gantt.1::HITEM,ColIndex as
N)
end function

function nativeObject_CellStateChanged(Item,ColIndex)
return

The following VB sample displays a message when the user clicks a check box or a radio
button:

Private Sub Gantt1_CellStateChanged(ByVal Item As EXGANTTLibCtl.HITEM, ByVal
ColIndex As Long)
 Debug.Print "The cell """ & Gantt1.Items.CellCaption(Item, ColIndex) & """ has changed
its state. The new state is " & IIf(Gantt1.Items.CellState(Item, ColIndes) = 0, "Unchecked",
"Checked")
End Sub

The following VC sample displays the caption of the cell whose checkbox's state is
changed:

#include "Items.h"

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}
void OnCellStateChangedGantt1(long Item, long ColIndex)
{
 CItems items = m_gantt.GetItems();
 COleVariant vtItem(Item), vtColumn(ColIndex);
 CString strCellCaption = V2S(&items.GetCellCaption(vtItem, vtColumn));
 CString strOutput;
 strOutput.Format("'%s''s checkbox state is %i\r\n", strCellCaption, items.GetCellState(
vtItem, vtColumn));
 OutputDebugString(strOutput);
}

The following VB.NET sample displays a message when the user clicks a check box or a
radio button:

Private Sub AxGantt1_CellStateChanged(ByVal sender As Object, ByVal e As
AxEXGANTTLib._IGanttEvents_CellStateChangedEvent) Handles
AxGantt1.CellStateChanged
 Debug.WriteLine("The cell """ & AxGantt1.Items.CellCaption(e.item, e.colIndex) & """ has
changed its state. The new state is " & IIf(AxGantt1.Items.CellState(e.item, e.colIndex) = 0,
"Unchecked", "Checked"))
End Sub

The following C# sample outputs a message when the user clicks a check box or a radio
button:

private void axGantt1_CellStateChanged(object sender,
AxEXGANTTLib._IGanttEvents_CellStateChangedEvent e)
{
 string strOutput = axGantt1.Items.get_CellCaption(e.item, e.colIndex).ToString();
 strOutput += " state = " + axGantt1.Items.get_CellState(e.item, e.colIndex).ToString() ;
 System.Diagnostics.Debug.WriteLine(strOutput);
}

The following VFP sample prints a message when the user clicks a check box or a radio
button:

*** ActiveX Control Event ***
LPARAMETERS item, colindex

local sOutput
sOutput = ""
with thisform.Gantt1.Items
 .DefaultItem = item
 sOutput = .CellCaption(0, colindex)
 sOutput = sOutput + ", state = " + str(.CellState(0, colindex))
 wait window nowait sOutput
endwith

event CellStateChanging (Item as HITEM, ColIndex as Long, NewState as
Long)
Fired before cell's state is about to be changed.

Type Description

Item as HITEM A long expression that indicates the handle of the item
where the cell's state is about to be changed.

ColIndex as Long

A long expression that indicates the index of the column
where the cell's state is changed, or a long expression
that indicates the handle of the cell, if the Item parameter
is 0.

NewState as Long A long expression that specifies the new state of the cell (
0- unchecked, 1 - checked, 2 - partial checked)

The control fires the CellStateChanging event just before cell's state is about to be
changed. For instance, you can prevent changing the cell's state, by calling the NewState =
Items.CellState(Item,ColIndex). A cell that contains a radio button or a check box button
fires the CellStateChanged event when its state is changed. Use the CellState property to
change the cell's state. Use the CellHasRadioButton or CellHasCheckBox property to
enable radio or check box button into a cell. Use the Def property to assign check-boxes /
radio-buttons for all cells in the column. Use the CellImage property to display an icon in the
cell. Use the CellImages property to display multiple icons in the same cell. Use the
PartialCheck property to enable partial check feature (check boxes with three states:
partial, checked and unchecked). Use the CellChecked property to determine the handle of
the cell that's checked in a radio group. Use the CellRadioGroup property to radio group
cells. We would not recommend changing the CellState property during the
CellStateChanging event, to prevent recursive calls, instead you can change the NewState
parameter which is passed by reference.

Once the user clicks a check-box, radio-button, the control fires the following events:

CellStateChanging event, where the NewState parameter indicates the new state of
the cell's checkbox / radio-button.

CellStateChanged event notifies your application that the cell's check-box or radio-

C#

VB

private void CellStateChanging(object sender,int Item,int ColIndex,ref int
NewState)
{
}

Private Sub CellStateChanging(ByVal sender As System.Object,ByVal Item As
Integer,ByVal ColIndex As Integer,ByRef NewState As Integer) Handles
CellStateChanging
End Sub

C#

C++

private void CellStateChanging(object sender,
AxEXGANTTLib._IGanttEvents_CellStateChangingEvent e)
{
}

void OnCellStateChanging(long Item,long ColIndex,long FAR* NewState)
{
}

button has been changed. The CellState property determines the check-box/radio-
button state of the cell.

For instance, the following VB sample prevents changing the cell's checkbox/radio-button,
when the control's ReadOnly property is set:

Private Sub Gantt1_CellStateChanging(ByVal Item As EXGANTTLibCtl.HITEM, ByVal
ColIndex As Long, NewState As Long)
 With Gantt1
 If (.ReadOnly) Then
 With .Items
 NewState = .CellState(Item, ColIndex)
 End With
 End If
 End With
End Sub

Syntax for CellStateChanging event, /NET version, on:

Syntax for CellStateChanging event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall CellStateChanging(TObject *Sender,Extreelib_tlb::HITEM Item,long
ColIndex,long * NewState)
{
}

procedure CellStateChanging(ASender: TObject; Item : HITEM;ColIndex :
Integer;var NewState : Integer);
begin
end;

procedure CellStateChanging(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_CellStateChangingEvent);
begin
end;

begin event CellStateChanging(long Item,long ColIndex,long NewState)

end event CellStateChanging

Private Sub CellStateChanging(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_CellStateChangingEvent) Handles
CellStateChanging
End Sub

Private Sub CellStateChanging(ByVal Item As EXGANTTLibCtl.HITEM,ByVal
ColIndex As Long,NewState As Long)
End Sub

Private Sub CellStateChanging(ByVal Item As Long,ByVal ColIndex As
Long,NewState As Long)
End Sub

LPARAMETERS Item,ColIndex,NewState

PROCEDURE OnCellStateChanging(oGantt,Item,ColIndex,NewState)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="CellStateChanging(Item,ColIndex,NewState)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function CellStateChanging(Item,ColIndex,NewState)
End Function
</SCRIPT>

Procedure OnComCellStateChanging HITEM llItem Integer llColIndex Integer
llNewState
 Forward Send OnComCellStateChanging llItem llColIndex llNewState
End_Procedure

METHOD OCX_CellStateChanging(Item,ColIndex,NewState) CLASS MainDialog
RETURN NIL

void onEvent_CellStateChanging(int _Item,int _ColIndex,COMVariant /*long*/
_NewState)
{
}

function CellStateChanging as v (Item as OLE::Exontrol.Gantt.1::HITEM,ColIndex
as N,NewState as N)
end function

function nativeObject_CellStateChanging(Item,ColIndex,NewState)
return

Syntax for CellStateChanging event, /COM version (others), on:

C#

VB

private void Click(object sender)
{
}

Private Sub Click(ByVal sender As System.Object) Handles Click
End Sub

C#

C++

C++
Builder

Delphi

private void ClickEvent(object sender, EventArgs e)
{
}

void OnClick()
{
}

void __fastcall Click(TObject *Sender)
{
}

procedure Click(ASender: TObject;);
begin
end;

event Click ()

Occurs when the user presses and then releases the left mouse button over the control.

Type Description

The Click event is fired when the user releases the left mouse button over the control. Use
a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers.

Syntax for Click event, /NET version, on:

Syntax for Click event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure ClickEvent(sender: System.Object; e: System.EventArgs);
begin
end;

begin event Click()
end event Click

Private Sub ClickEvent(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ClickEvent
End Sub

Private Sub Click()
End Sub

Private Sub Click()
End Sub

LPARAMETERS nop

PROCEDURE OnClick(oGantt)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="Click()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Click()
End Function
</SCRIPT>

Procedure OnComClick
 Forward Send OnComClick

Syntax for Click event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_Click() CLASS MainDialog
RETURN NIL

void onEvent_Click()
{
}

function Click as v ()
end function

function nativeObject_Click()
return

C#

VB

private void ColumnClick(object sender,exontrol.EXGANTTLib.Column Column)
{
}

Private Sub ColumnClick(ByVal sender As System.Object,ByVal Column As
exontrol.EXGANTTLib.Column) Handles ColumnClick
End Sub

C#

C++

C++
Builder

private void ColumnClick(object sender,
AxEXGANTTLib._IGanttEvents_ColumnClickEvent e)
{
}

void OnColumnClick(LPDISPATCH Column)
{
}

void __fastcall ColumnClick(TObject *Sender,Exganttlib_tlb::IColumn *Column)
{
}

event ColumnClick (Column as Column)

Fired after the user clicks on column's header.

Type Description
Column as Column A Column object that indicates clicked column.

The ColumnClick event is fired when the user clicks the column's header. By default, the
control sorts by the column when user clicks the column's header. Use the SortOnClick
property to specify the operation that control does when user clicks the column's caption.
Use the ColumnFromPoint property to access the column from point. Use the
ItemFromPoint property to access the item from point. The control fires Sort method when
the control sorts a column. Use the MouseDown or MouseUp event to notify the control
when the user clicks the control, including the columns.

Syntax for ColumnClick event, /NET version, on:

Syntax for ColumnClick event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure ColumnClick(ASender: TObject; Column : IColumn);
begin
end;

procedure ColumnClick(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_ColumnClickEvent);
begin
end;

begin event ColumnClick(oleobject Column)
end event ColumnClick

Private Sub ColumnClick(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_ColumnClickEvent) Handles ColumnClick
End Sub

Private Sub ColumnClick(ByVal Column As EXGANTTLibCtl.IColumn)
End Sub

Private Sub ColumnClick(ByVal Column As Object)
End Sub

LPARAMETERS Column

PROCEDURE OnColumnClick(oGantt,Column)
RETURN

Java…

VBSc…

<SCRIPT EVENT="ColumnClick(Column)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ColumnClick(Column)
End Function
</SCRIPT>

Syntax for ColumnClick event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComColumnClick Variant llColumn
 Forward Send OnComColumnClick llColumn
End_Procedure

METHOD OCX_ColumnClick(Column) CLASS MainDialog
RETURN NIL

void onEvent_ColumnClick(COM _Column)
{
}

function ColumnClick as v (Column as OLE::Exontrol.Gantt.1::IColumn)
end function

function nativeObject_ColumnClick(Column)
return

The following VB sample displays the caption of the column being clicked:

Private Sub Gantt1_ColumnClick(ByVal Column As EXGANTTLibCtl.IColumn)
 Debug.Print Column.Caption
End Sub

The following C++ sample displays the caption of the column being clicked:

#include "Column.h"
void OnColumnClickGantt1(LPDISPATCH Column)
{
 CColumn column(Column);
 column.m_bAutoRelease = FALSE;
 MessageBox(column.GetCaption());

}

The following VB.NET sample displays the caption of the column being clicked:

Private Sub AxGantt1_ColumnClick(ByVal sender As Object, ByVal e As

AxEXGANTTLib._IGanttEvents_ColumnClickEvent) Handles AxGantt1.ColumnClick
 MessageBox.Show(e.column.Caption)
End Sub

The following C# sample displays the caption of the column being clicked:

private void axGantt1_ColumnClick(object sender,
AxEXGANTTLib._IGanttEvents_ColumnClickEvent e)
{
 MessageBox.Show(e.column.Caption);
}

The following VFP sample displays the caption of the column being clicked:

*** ActiveX Control Event ***
LPARAMETERS column

with column
 wait window nowait .Caption
endwith

C#

VB

private void DateChange(object sender)
{
}

Private Sub DateChange(ByVal sender As System.Object) Handles DateChange
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

private void DateChange(object sender, EventArgs e)
{
}

void OnDateChange()
{
}

void __fastcall DateChange(TObject *Sender)
{
}

procedure DateChange(ASender: TObject;);
begin
end;

procedure DateChange(sender: System.Object; e: System.EventArgs);
begin
end;

event DateChange ()
Occurs when the first visible date is changed.

Type Description

The DateChange event is fired when the first visible date is changed. Use the
FirstVisibleDate property to specify the first visible date. Use the ScrollTo method to ensure
that a specified date is visible. Use the FormatDate property to format a date to a specified
format.

Syntax for DateChange event, /NET version, on:

Syntax for DateChange event, /COM version, on:

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin event DateChange()
end event DateChange

Private Sub DateChange(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles DateChange
End Sub

Private Sub DateChange()
End Sub

Private Sub DateChange()
End Sub

LPARAMETERS nop

PROCEDURE OnDateChange(oGantt)
RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="DateChange()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function DateChange()
End Function
</SCRIPT>

Procedure OnComDateChange
 Forward Send OnComDateChange
End_Procedure

METHOD OCX_DateChange() CLASS MainDialog
RETURN NIL

void onEvent_DateChange()
{

Syntax for DateChange event, /COM version (others), on:

XBasic

dBASE

}

function DateChange as v ()
end function

function nativeObject_DateChange()
return

The following VB sample displays the first visible date when the user changes the first
visible date:

Private Sub Gantt1_DateChange()
 With Gantt1.Chart
 Debug.Print FormatDateTime(.FirstVisibleDate)
 End With
End Sub

or you can use the FormatDate method like follows:

Private Sub Gantt1_DateChange()
 With Gantt1.Chart
 Debug.Print .FormatDate(.FirstVisibleDate, "<%yyyy%>-<%m%>-<%d%>")
 End With
End Sub

The following C++ sample displays the first visible date when the user changes the first
visible date:

#include "Gantt.h"
#include "Chart.h"

static DATE V2D(VARIANT* pvtDate)
{
 COleVariant vtDate;
 vtDate.ChangeType(VT_DATE, pvtDate);
 return V_DATE(&vtDate);
}

void OnDateChangeGantt1()
{
 if (m_gantt.GetControlUnknown())
 {
 CChart chart = m_gantt.GetChart();
 TCHAR szDate[1024] = _T("");
 SYSTEMTIME stDate = {0};
 VariantTimeToSystemTime(V2D(&chart.GetFirstVisibleDate()), &stDate);
 GetDateFormat(LOCALE_SYSTEM_DEFAULT, LOCALE_USE_CP_ACP, &stDate, NULL,
szDate, 1024);
 OutputDebugString(szDate);
 }
}

The following VB.NET sample displays the first visible date when the user changes the first
visible date:

Private Sub AxGantt1_DateChange(ByVal sender As Object, ByVal e As System.EventArgs)
Handles AxGantt1.DateChange
 Debug.Write(AxGantt1.Chart.FirstVisibleDate.ToString())
End Sub

The following C# sample displays the first visible date when the user changes the first
visible date:

private void axGantt1_DateChange(object sender, EventArgs e)
{
 System.Diagnostics.Debug.Write(axGantt1.Chart.FirstVisibleDate.ToString());
}

The following VFP sample displays the first visible date when the user changes the first
visible date:

*** ActiveX Control Event ***

with thisform.Gantt1.Chart
 wait window nowait .FormatDate(.FirstVisibleDate, "<%yyyy%>-<%m%>-<%d%>")
endwith

C#

VB

private void DateTimeChanged(object sender,DateTime DateTime)
{
}

Private Sub DateTimeChanged(ByVal sender As System.Object,ByVal DateTime As
Date) Handles DateTimeChanged
End Sub

C#

C++

private void DateTimeChanged(object sender,
AxEXGANTTLib._IGanttEvents_DateTimeChangedEvent e)
{
}

void OnDateTimeChanged(DATE DateTime)
{
}

event DateTimeChanged (DateTime as Date)
Notifies your application that the current time is changed.

Type Description

DateTime as Date A Date-Time expression that indicates the new current
time.

The DateTimeChanged event notifies your application when the current date-time is
changed. The DateTimeChanged event is fired ONLY if the MarkNowColor property is not
zero (0). Use the FirstVisibleDate property to specify the first visible Date-Time in the
control's chart. The MarkNowUnit property specifies the unit of time to count for. For
instance, you can show the current date-time from current second, to next second, from
minute to next minute, and so on. Use the MarkNowCount property to specify the number of
units of date-time to count from. For instance, you can show the current date-time from 5
seconds to 5 seconds, and so on. The MarkNowWidth property specifies the width in pixels
of the vertical bar that shows the current date-time. The MarkNowTransparent property
specifies the percent of transparency to show the vertical bar that indicates the current
date-time.

Syntax for DateTimeChanged event, /NET version, on:

Syntax for DateTimeChanged event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall DateTimeChanged(TObject *Sender,DATE DateTime)
{
}

procedure DateTimeChanged(ASender: TObject; DateTime : TDateTime);
begin
end;

procedure DateTimeChanged(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_DateTimeChangedEvent);
begin
end;

begin event DateTimeChanged(datetime DateTime)
end event DateTimeChanged

Private Sub DateTimeChanged(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_DateTimeChangedEvent) Handles
DateTimeChanged
End Sub

Private Sub DateTimeChanged(ByVal DateTime As Date)
End Sub

Private Sub DateTimeChanged(ByVal DateTime As Date)
End Sub

LPARAMETERS DateTime

PROCEDURE OnDateTimeChanged(oGantt,DateTime)
RETURN

Java… <SCRIPT EVENT="DateTimeChanged(DateTime)" LANGUAGE="JScript">
Syntax for DateTimeChanged event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function DateTimeChanged(DateTime)
End Function
</SCRIPT>

Procedure OnComDateTimeChanged DateTime llDateTime
 Forward Send OnComDateTimeChanged llDateTime
End_Procedure

METHOD OCX_DateTimeChanged(DateTime) CLASS MainDialog
RETURN NIL

void onEvent_DateTimeChanged(date _DateTime)
{
}

function DateTimeChanged as v (DateTime as T)
end function

function nativeObject_DateTimeChanged(DateTime)
return

C#

VB

private void DblClick(object sender,short Shift,int X,int Y)
{
}

Private Sub DblClick(ByVal sender As System.Object,ByVal Shift As Short,ByVal X
As Integer,ByVal Y As Integer) Handles DblClick
End Sub

C#

C++

private void DblClick(object sender, AxEXGANTTLib._IGanttEvents_DblClickEvent
e)
{
}

void OnDblClick(short Shift,long X,long Y)
{
}

event DblClick (Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS)

Occurs when the user dblclk the left mouse button over an object.

Type Description

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates

The DblClick event is fired when user double clicks the control. Use the ItemFromPoint
method to determine the cell over the cursor. Use the ExpandOnDblClk property to specify
whether an item is expanded or collapsed when user double clicks it. Use the
ColumnFromPoint property to get the column from point.

Syntax for DblClick event, /NET version, on:

Syntax for DblClick event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall DblClick(TObject *Sender,short Shift,int X,int Y)
{
}

procedure DblClick(ASender: TObject; Shift : Smallint;X : Integer;Y : Integer);
begin
end;

procedure DblClick(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_DblClickEvent);
begin
end;

begin event DblClick(integer Shift,long X,long Y)
end event DblClick

Private Sub DblClick(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_DblClickEvent) Handles DblClick
End Sub

Private Sub DblClick(Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub DblClick(ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long)
End Sub

LPARAMETERS Shift,X,Y

PROCEDURE OnDblClick(oGantt,Shift,X,Y)
RETURN

Java…

VBSc…

<SCRIPT EVENT="DblClick(Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">

Syntax for DblClick event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Function DblClick(Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComDblClick Short llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS
llY
 Forward Send OnComDblClick llShift llX llY
End_Procedure

METHOD OCX_DblClick(Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_DblClick(int _Shift,int _X,int _Y)
{
}

function DblClick as v (Shift as N,X as OLE::Exontrol.Gantt.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Gantt.1::OLE_YPOS_PIXELS)
end function

function nativeObject_DblClick(Shift,X,Y)
return

The following VB sample prints a message when an item has been double clicked:

Private Sub Gantt1_DblClick(Shift As Integer, X As Single, Y As Single)
 ' Converts the container coordinates to client coordinates
 X = X / Screen.TwipsPerPixelX
 Y = Y / Screen.TwipsPerPixelY
 Dim h As HITEM
 Dim c As Long, hit as Long
 ' Gets the item from (X,Y)
 h = Gantt1.ItemFromPoint(X, Y, c, hit)
 If Not (h = 0) Then
 MsgBox "The " & h & " item has been double clicked."
 End If
End Sub

The following VB sample displays a message when a cell has been double clicked:

Private Sub Gantt1_DblClick(Shift As Integer, X As Single, Y As Single)
 ' Converts the container coordinates to client coordinates
 X = X / Screen.TwipsPerPixelX
 Y = Y / Screen.TwipsPerPixelY
 Dim h As HITEM
 Dim c As Long, hit as Long
 ' Gets the item from (X,Y)
 h = Gantt1.ItemFromPoint(X, Y, c, hit)
 If Not (h = 0) Then
 MsgBox "The """ & Gantt1.Items.CellCaption(h, c) & """ cell has been double clicked."
 End If
End Sub

The following C++ sample displays the caption of the cell being double clicked (including
the inner cells):

#include "Items.h"

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnDblClickGantt1(short Shift, long X, long Y)
{
 long c = NULL, hit = NULL;
 long h = m_gantt.GetItemFromPoint(X, Y, &c, &hit);

 if ((h != 0) || (c != 0))
 {
 COleVariant vtItem(h), vtColumn(c);
 CString strCaption = V2S(&m_gantt.GetItems().GetCellCaption(vtItem, vtColumn));
 MessageBox(strCaption);
 }
}

The following VB.NET sample displays the caption of the cell being double clicked (
including the inner cells):

Private Sub AxGantt1_DblClick(ByVal sender As Object, ByVal e As
AxEXGANTTLib._IGanttEvents_DblClickEvent) Handles AxGantt1.DblClick
 Dim h As Integer, c As Integer, hit As EXGANTTLib.HitTestInfoEnum
 With AxGantt1
 h = .get_ItemFromPoint(e.x, e.y, c, hit)
 If Not (h = 0) Or Not (c = 0) Then
 MessageBox.Show(.Items.CellCaption(h, c))
 End If
 End With
End Sub

The following C# sample displays the caption of the cell being double clicked (including the
inner cells):

private void axGantt1_DblClick(object sender, AxEXGANTTLib._IGanttEvents_DblClickEvent
e)
{
 EXGANTTLib.HitTestInfoEnum hit;
 int c = 0, h = axGantt1.get_ItemFromPoint(e.x, e.y, out c, out hit);
 if ((h != 0) || (c != 0))
 MessageBox.Show(axGantt1.Items.get_CellCaption(h, c).ToString());
}

The following VFP sample displays the caption of the cell being double clicked:

*** ActiveX Control Event ***
LPARAMETERS shift, x, y

local c, hit
c = 0
hit = 0

with thisform.Gantt1
 .Items.DefaultItem = .ItemFromPoint(x, y, @c, @hit)
 if (.Items.DefaultItem != 0)
 wait window nowait .Items.CellCaption(0, c)
 endif
endwith

event Event (EventID as Long)
Notifies the application once the control fires an event.

Type Description

EventID as Long

A Long expression that specifies the identifier of the event.
Use the EventParam(-2) to display entire information
about fired event (such as name, identifier, and properties
).

The Event notification occurs ANY time the control fires an event.

This is useful for X++ language, which does not support event with parameters passed by
reference.

In X++ the "Error executing code: FormActiveXControl (data source), method ... called with
invalid parameters" occurs when handling events that have parameters passed by
reference. Passed by reference, means that in the event handler, you can change the value
for that parameter, and so the control will takes the new value, and use it. The X++ is NOT
able to handle properly events with parameters by reference, so we have the solution.

The solution is using and handling the Event notification and EventParam method., instead
handling the event that gives the "invalid parameters" error executing code.

Let's presume that we need to handle the BarParentChange event to change the _Cancel
parameter from false to true, which fires the "Error executing code: FormActiveXControl
(data source), method onEvent_BarParentChange called with invalid parameters." We need
to know the identifier of the BarParentChange event (each event has an unique identifier
and it is static, defined in the control's type library). If you are not familiar with what a type
library means just handle the Event of the control as follows:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 print exgantt1.EventParam(-2).toString();
}

This code allows you to display the information for each event of the control being fired as
in the list bellow:

"MouseMove/-606(1 , 0 , 145 , 36)" VT_BSTR
"BarParentChange/125(192998632 , 'B' , 192999592 , =false)" VT_BSTR
"BeforeDrawPart/54(2 , -1962866148 , =0 , =0 , =0 , =0 , =false)" VT_BSTR

"AfterDrawPart/55(2 , -1962866148 , 0 , 0 , 0 , 0)" VT_BSTR
"MouseMove/-606(1 , 0 , 145 , 35)" VT_BSTR

Each line indicates an event, and the following information is provided: the name of the
event, its identifier, and the list of parameters being passed to the event. The parameters
that starts with = character, indicates a parameter by reference, in other words one that
can changed during the event handler.

Now, we can see that the identifier for the BarParentChange event is 125, so we need to
handle the Event event as:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 ;
 if (_EventID == 125) /*event BarParentChange (Item as HITEM, Key as Variant, NewItem
as HITEM, Cancel as Boolean) */
 exgantt1.EventParam(3 /*Cancel*/, COMVariant::createFromBoolean(true));
}

The code checks if the BarParentChange (_EventID == 125) event is fired, and changes
the third parameter of the event to true. The definition for BarParentChange event can be
consulted in the control's documentation or in the ActiveX explorer. So, anytime you need to
access the original parameters for the event you should use the EventParam method that
allows you to get or set a parameter. If the parameter is not passed by reference, you can
not change the parameter's value.

Now, let's add some code to see a complex sample, so let's say that we need to prevent
moving the bar from an item to any disabled item. So, we need to specify the Cancel
parameter as not Items.EnableItem(NewItem), in other words cancels if the new parent is
disabled. Shortly the code will be:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 ;
 if (_EventID == 125) /*event BarParentChange (Item as HITEM, Key as Variant, NewItem
as HITEM, Cancel as Boolean) */
 if (!exgantt1.Items().EnableItem(exgantt1.EventParam(2 /*NewItem*/)))
 exgantt1.EventParam(3 /*Cancel*/, COMVariant::createFromBoolean(true));
}

C#

VB

private void Event(object sender,int EventID)
{
}

Private Sub Event(ByVal sender As System.Object,ByVal EventID As Integer)
Handles Event
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

private void Event(object sender, AxEXGANTTLib._IGanttEvents_EventEvent e)
{
}

void OnEvent(long EventID)
{
}

void __fastcall Event(TObject *Sender,long EventID)
{
}

procedure Event(ASender: TObject; EventID : Integer);
begin
end;

procedure Event(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_EventEvent);
begin
end;

begin event Event(long EventID)
end event Event

In conclusion, anytime the X++ fires the "invalid parameters." while handling an event, you
can use and handle the Event notification and EventParam methods of the control

Syntax for Event event, /NET version, on:

Syntax for Event event, /COM version, on:

VB.NET

VB6

VBA

VFP

Xbas…

Private Sub Event(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_EventEvent) Handles Event
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

LPARAMETERS EventID

PROCEDURE OnEvent(oGantt,EventID)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

Visual
Objects

<SCRIPT EVENT="Event(EventID)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Event(EventID)
End Function
</SCRIPT>

Procedure OnComEvent Integer llEventID
 Forward Send OnComEvent llEventID
End_Procedure

METHOD OCX_Event(EventID) CLASS MainDialog
RETURN NIL

void onEvent_Event(int _EventID)
{
}

function Event as v (EventID as N)

Syntax for Event event, /COM version (others), on:

dBASE

end function

function nativeObject_Event(EventID)
return

C#

VB

private void FilterChange(object sender)
{
}

Private Sub FilterChange(ByVal sender As System.Object) Handles FilterChange
End Sub

C#

C++

C++
Builder

Delphi

private void FilterChange(object sender, EventArgs e)
{
}

void OnFilterChange()
{
}

void __fastcall FilterChange(TObject *Sender)
{
}

procedure FilterChange(ASender: TObject;);
begin
end;

event FilterChange ()
Occurs when filter was changed.

Type Description

Use the FilterChange event to notify your application that the control's filter is changed. The
FilterChanging event occurs just before applying the filter. Use the Filter and FilterType
properties to retrieve the column's filter string, if case, and the column's filter type. The
ApplyFilter and ClearFilter methods fire the FilterChange event. Use the DisplayFilterButton
property to add a filter bar button to the column's caption. Use the FilterBarHeight property
to specify the height of the control's filter bar. Use the FilterBarFont property to specify the
font for the control's filter bar.

Syntax for FilterChange event, /NET version, on:

Syntax for FilterChange event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure FilterChange(sender: System.Object; e: System.EventArgs);
begin
end;

begin event FilterChange()
end event FilterChange

Private Sub FilterChange(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles FilterChange
End Sub

Private Sub FilterChange()
End Sub

Private Sub FilterChange()
End Sub

LPARAMETERS nop

PROCEDURE OnFilterChange(oGantt)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="FilterChange()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function FilterChange()
End Function
</SCRIPT>

Procedure OnComFilterChange
 Forward Send OnComFilterChange

Syntax for FilterChange event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_FilterChange() CLASS MainDialog
RETURN NIL

void onEvent_FilterChange()
{
}

function FilterChange as v ()
end function

function nativeObject_FilterChange()
return

C#

VB

private void FilterChanging(object sender)
{
}

Private Sub FilterChanging(ByVal sender As System.Object) Handles
FilterChanging
End Sub

C#

C++

C++
Builder

Delphi

private void FilterChanging(object sender, EventArgs e)
{
}

void OnFilterChanging()
{
}

void __fastcall FilterChanging(TObject *Sender)
{
}

procedure FilterChanging(ASender: TObject;);
begin

event FilterChanging ()
Notifies your application that the filter is about to change.

Type Description

The FilterChanging event occurs just before applying the filter. The FilterChange event
occurs once the filter is applied, so the list gets filtered. Use the Filter and FilterType
properties to retrieve the column's filter string, if case, and the column's filter type. The
ApplyFilter and ClearFilter methods fire the FilterChange event. Use the DisplayFilterButton
property to add a filter bar button to the column's caption. Use the FilterBarHeight property
to specify the height of the control's filter bar. Use the FilterBarFont property to specify the
font for the control's filter bar. For instance, you can use the FilterChanging event to start a
timer, and count the time to get the filter applied, when the FilterChange event is fired.

Syntax for FilterChanging event, /NET version, on:

Syntax for FilterChanging event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

procedure FilterChanging(sender: System.Object; e: System.EventArgs);
begin
end;

begin event FilterChanging()
end event FilterChanging

Private Sub FilterChanging(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles FilterChanging
End Sub

Private Sub FilterChanging()
End Sub

Private Sub FilterChanging()
End Sub

LPARAMETERS nop

PROCEDURE OnFilterChanging(oGantt)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="FilterChanging()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function FilterChanging()
End Function
</SCRIPT>

Procedure OnComFilterChanging
 Forward Send OnComFilterChanging
End_Procedure

Syntax for FilterChanging event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

METHOD OCX_FilterChanging() CLASS MainDialog
RETURN NIL

void onEvent_FilterChanging()
{
}

function FilterChanging as v ()
end function

function nativeObject_FilterChanging()
return

C#

VB

private void FormatColumn(object sender,int Item,int ColIndex,ref object Value)
{
}

Private Sub FormatColumn(ByVal sender As System.Object,ByVal Item As
Integer,ByVal ColIndex As Integer,ByRef Value As Object) Handles FormatColumn
End Sub

C#

C++

private void FormatColumn(object sender,
AxEXGANTTLib._IGanttEvents_FormatColumnEvent e)
{
}

void OnFormatColumn(long Item,long ColIndex,VARIANT FAR* Value)
{

event FormatColumn (Item as HITEM, ColIndex as Long, Value as Variant)

Fired when a cell requires to format its caption.

Type Description

Item as HITEM A long expression that indicates the handle of the item
being formatted.

ColIndex as Long A long expression that indicates the index of the column
being formatted.

Value as Variant
A Variant value that indicates the value being displayed in
the cell. By default, the Value parameter is initialized with
the CellCaption property.

Use the FormatColumn event to display a string different than the CellCaption property. The
FormatColumn event is fired only if the FireFormatColumn property of the Column is True.
The FormatColumn event lets the user to provide the cell's caption before it is displayed on
the control's list. For instance, the FormatColumn event is useful when the column cells
contains prices(numbers), and you want to display that column formatted as currency, like
$50 instead 50. Also, you can use the FormatColumn event to display item's index in the
column, or to display the result of some operations based on the cells in the item (totals,
currency conversion and so on).

Syntax for FormatColumn event, /NET version, on:

Syntax for FormatColumn event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

void __fastcall FormatColumn(TObject *Sender,Exganttlib_tlb::HITEM Item,long
ColIndex,Variant * Value)
{
}

procedure FormatColumn(ASender: TObject; Item : HITEM;ColIndex : Integer;var
Value : OleVariant);
begin
end;

procedure FormatColumn(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_FormatColumnEvent);
begin
end;

begin event FormatColumn(long Item,long ColIndex,any Value)
end event FormatColumn

Private Sub FormatColumn(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_FormatColumnEvent) Handles FormatColumn
End Sub

Private Sub FormatColumn(ByVal Item As EXGANTTLibCtl.HITEM,ByVal ColIndex
As Long,Value As Variant)
End Sub

Private Sub FormatColumn(ByVal Item As Long,ByVal ColIndex As Long,Value As
Variant)
End Sub

LPARAMETERS Item,ColIndex,Value

PROCEDURE OnFormatColumn(oGantt,Item,ColIndex,Value)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="FormatColumn(Item,ColIndex,Value)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function FormatColumn(Item,ColIndex,Value)
End Function
</SCRIPT>

Procedure OnComFormatColumn HITEM llItem Integer llColIndex Variant llValue
 Forward Send OnComFormatColumn llItem llColIndex llValue
End_Procedure

METHOD OCX_FormatColumn(Item,ColIndex,Value) CLASS MainDialog
RETURN NIL

void onEvent_FormatColumn(int _Item,int _ColIndex,COMVariant /*variant*/
_Value)
{
}

function FormatColumn as v (Item as OLE::Exontrol.Gantt.1::HITEM,ColIndex as
N,Value as A)
end function

function nativeObject_FormatColumn(Item,ColIndex,Value)
return

Syntax for FormatColumn event, /COM version (others), on:

The following VB samples use the FormatCurrency function, to display a number as a
currency. The FormatCurrency VB function returns an expression formatted as a currency
value using the currency symbol defined in the system control panel.

Gantt1.Columns("Freight").FireFormatColumn = True
Gantt1.Columns("Freight").HeaderBold = True
Gantt1.Columns("Freight").Alignment = RightAlignment

Private Sub Gantt1_FormatColumn(ByVal Item As EXGANTTLibCtl.HITEM, ByVal

ColIndex As Long, Value As Variant)

 Value = FormatCurrency(Value, 2) ' The FormatCurrency is a VB function

End Sub

if the sample looks like following:

Gantt1.Columns("Freight").FireFormatColumn = False
Gantt1.Columns("Freight").HeaderBold = True
Gantt1.Columns("Freight").Alignment = RightAlignment

For instance, you can use the FormatColumn event to display "Yes" or "No" caption
for a boolean column. The following VB sample shows how to do it:

Private Sub Gantt1_FormatColumn(ByVal Item As EXGANTTLibCtl.HITEM, ByVal ColIndex
As Long, Value As Variant)
 Value = IIf(Value < 50, "Yes", "No")
End Sub

The following VB sample displays the result of adding (concatenating) of two cells:

Private Sub Gantt1_FormatColumn(ByVal Item As EXGANTTLibCtl.HITEM, ByVal ColIndex
As Long, Value As Variant)
 With Gantt1.Items
 Value = .CellCaption(Item, 0) + .CellCaption(Item, 1)
 End With
End Sub

The following C++ sample displays a date column using a format like "Saturday, January
31, 2004":

void OnFormatColumnGantt1(long Item, long ColIndex, VARIANT FAR* Value)
{
 COleDateTime date(*Value);
 COleVariant vtNewValue(date.Format(_T("%A, %B %d, %Y")));
 VariantCopy(Value, vtNewValue);
}

The following VB.NET sample displays a date column using LongDate format:

Private Sub AxGantt1_FormatColumn(ByVal sender As Object, ByVal e As
AxEXGANTTLib._IGanttEvents_FormatColumnEvent) Handles AxGantt1.FormatColumn
 e.value = DateTime.Parse(e.value).ToLongDateString()
End Sub

The following C# sample displays a date column using LongDate format:

private void axGantt1_FormatColumn(object sender,
AxEXGANTTLib._IGanttEvents_FormatColumnEvent e)
{
 e.value = DateTime.Parse(e.value.ToString()).ToLongDateString();
}

The following VFP sample displays the item's index using the FormatColumn event:

*** ActiveX Control Event ***
LPARAMETERS item, colindex, value

with thisform.Gantt1.Items
 .DefaultItem = item
 value = .ItemToIndex(0)
endwith

before running the sample please make sure that the :

application.AutoYield = .f.

is called during the Form.Init event.

C#

VB

private void HyperLinkClick(object sender,int Item,int ColIndex)
{
}

Private Sub HyperLinkClick(ByVal sender As System.Object,ByVal Item As
Integer,ByVal ColIndex As Integer) Handles HyperLinkClick
End Sub

C#

C++

C++
Builder

private void HyperLinkClick(object sender,
AxEXGANTTLib._IGanttEvents_HyperLinkClickEvent e)
{
}

void OnHyperLinkClick(long Item,long ColIndex)
{
}

void __fastcall HyperLinkClick(TObject *Sender,Exganttlib_tlb::HITEM Item,long
ColIndex)
{

event HyperLinkClick (Item as HITEM, ColIndex as Long)

Occurs when the user clicks on a hyperlink cell.

Type Description
Item as HITEM A long expression that indicates the item's handle.
ColIndex as Long A long expression that indicates the column's index.

The HyperLinkClick event is fired when user clicks a hyperlink cell. A hyperlink cell has the
CellHyperLink property on True. The control changes the shape of the cursor when the
mouse hovers a hyper linkcell. Use the HyperLinkClick event to notify your application that
a hyperlink cell is clicked. Use the HyperLinkColor property to specify the hyperlink color.
The HyperLinkClick event is fired only if the user clicks a cell that has the CellHyperLink
property on True. Use the ItemFromPoint property to get an item or a cell from point. Use
the ColumnFromPoint property to get the column from point.

Syntax for HyperLinkClick event, /NET version, on:

Syntax for HyperLinkClick event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure HyperLinkClick(ASender: TObject; Item : HITEM;ColIndex : Integer);
begin
end;

procedure HyperLinkClick(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_HyperLinkClickEvent);
begin
end;

begin event HyperLinkClick(long Item,long ColIndex)
end event HyperLinkClick

Private Sub HyperLinkClick(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_HyperLinkClickEvent) Handles HyperLinkClick
End Sub

Private Sub HyperLinkClick(ByVal Item As EXGANTTLibCtl.HITEM,ByVal ColIndex As
Long)
End Sub

Private Sub HyperLinkClick(ByVal Item As Long,ByVal ColIndex As Long)
End Sub

LPARAMETERS Item,ColIndex

PROCEDURE OnHyperLinkClick(oGantt,Item,ColIndex)
RETURN

Java…

VBSc…

<SCRIPT EVENT="HyperLinkClick(Item,ColIndex)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function HyperLinkClick(Item,ColIndex)

Syntax for HyperLinkClick event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

End Function
</SCRIPT>

Procedure OnComHyperLinkClick HITEM llItem Integer llColIndex
 Forward Send OnComHyperLinkClick llItem llColIndex
End_Procedure

METHOD OCX_HyperLinkClick(Item,ColIndex) CLASS MainDialog
RETURN NIL

void onEvent_HyperLinkClick(int _Item,int _ColIndex)
{
}

function HyperLinkClick as v (Item as OLE::Exontrol.Gantt.1::HITEM,ColIndex as N)
end function

function nativeObject_HyperLinkClick(Item,ColIndex)
return

The following VB sample displays the caption of the hyperlink cell that's been clicked:

Private Sub Gantt1_HyperLinkClick(ByVal Item As EXGANTTLibCtl.HITEM, ByVal ColIndex
As Long)
 Debug.Print Gantt1.Items.CellCaption(Item, ColIndex)
End Sub

The following VC sample displays the caption of the hyperlink cell that's been clicked:

#include "Items.h"

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnHyperLinkClickGantt1(long Item, long ColIndex)
{
 CItems items = m_gantt.GetItems();
 COleVariant vtItem(Item), vtColumn(ColIndex);
 OutputDebugString(V2S(&items.GetCellCaption(vtItem, vtColumn)));
}

The following VB.NET sample displays the caption of the hyperlink cell that's been clicked:

Private Sub AxGantt1_HyperLinkClick(ByVal sender As Object, ByVal e As
AxEXGANTTLib._IGanttEvents_HyperLinkClickEvent) Handles AxGantt1.HyperLinkClick
 With AxGantt1.Items
 Debug.WriteLine(.CellCaption(e.item, e.colIndex))
 End With
End Sub

The following C# sample displays the caption of the hyperlink cell that's been clicked:

private void axGantt1_HyperLinkClick(object sender,
AxEXGANTTLib._IGanttEvents_HyperLinkClickEvent e)
{
 System.Diagnostics.Debug.WriteLine(axGantt1.Items.get_CellCaption(e.item, e.colIndex
));
}

The following VFP sample displays the caption of the hyperlink cell that's been clicked:

*** ActiveX Control Event ***
LPARAMETERS item, colindex

with thisform.Gantt1.Items
 .DefaultItem = item

 wait window nowait .CellCaption(0, colindex)
endwith

C#

VB

private void ItemOleEvent(object sender,int Item,exontrol.EXGANTTLib.OleEvent
Ev)
{
}

Private Sub ItemOleEvent(ByVal sender As System.Object,ByVal Item As
Integer,ByVal Ev As exontrol.EXGANTTLib.OleEvent) Handles ItemOleEvent
End Sub

C#

C++

private void ItemOleEvent(object sender,
AxEXGANTTLib._IGanttEvents_ItemOleEventEvent e)
{
}

void OnItemOleEvent(long Item,LPDISPATCH Ev)
{
}

event ItemOleEvent (Item as HITEM, Ev as OleEvent)

Fired when an ActiveX control hosted by an item has fired an event.

Type Description

Item as HITEM A long expression that indicates the handle of the item that
hosts an ActiveX control.

Ev as OleEvent An OleEvent object that contains information about the
fired event.

The Exontrol's ExGantt control supports ActiveX hosting. The InsertItemControl method
inserts an item that hosts an ActiveX control. The ItemOleEvent event notifies your
application that a hosted ActiveX control fires an event. The ItemObject property gets the
ActiveX object hosted by an item that is inserted using the InsertControlItem method. The
ItemObject property gets nothing if the item doesn't host an ActiveX control, or if inserting
an ActiveX control failed).

Syntax for ItemOleEvent event, /NET version, on:

Syntax for ItemOleEvent event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall ItemOleEvent(TObject *Sender,Exganttlib_tlb::HITEM
Item,Exganttlib_tlb::IOleEvent *Ev)
{
}

procedure ItemOleEvent(ASender: TObject; Item : HITEM;Ev : IOleEvent);
begin
end;

procedure ItemOleEvent(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_ItemOleEventEvent);
begin
end;

begin event ItemOleEvent(long Item,oleobject Ev)
end event ItemOleEvent

Private Sub ItemOleEvent(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_ItemOleEventEvent) Handles ItemOleEvent
End Sub

Private Sub ItemOleEvent(ByVal Item As EXGANTTLibCtl.HITEM,ByVal Ev As
EXGANTTLibCtl.IOleEvent)
End Sub

Private Sub ItemOleEvent(ByVal Item As Long,ByVal Ev As Object)
End Sub

LPARAMETERS Item,Ev

PROCEDURE OnItemOleEvent(oGantt,Item,Ev)
RETURN

Syntax for ItemOleEvent event, /COM version (others), on:

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="ItemOleEvent(Item,Ev)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ItemOleEvent(Item,Ev)
End Function
</SCRIPT>

Procedure OnComItemOleEvent HITEM llItem Variant llEv
 Forward Send OnComItemOleEvent llItem llEv
End_Procedure

METHOD OCX_ItemOleEvent(Item,Ev) CLASS MainDialog
RETURN NIL

void onEvent_ItemOleEvent(int _Item,COM _Ev)
{
}

function ItemOleEvent as v (Item as OLE::Exontrol.Gantt.1::HITEM,Ev as
OLE::Exontrol.Gantt.1::IOleEvent)
end function

function nativeObject_ItemOleEvent(Item,Ev)
return

The following VB sample adds an item that hosts the Microsoft Calendar Control and prints
each event fired by that ActiveX control:

Gantt1.Items.ItemHeight(Gantt1.Items.InsertControlItem(, "MSCal.Calendar")) = 256

Private Sub Gantt1_ItemOleEvent(ByVal Item As EXGANTTLibCtl.HITEM, ByVal Ev As
EXGANTTLibCtl.IOleEvent)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VC sample displays the events that an ActiveX control is firing while it is
hosted by an item:

 #import <exgantt.dll> rename("GetItems", "exGetItems")

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnItemOleEventGantt1(long Item, LPDISPATCH Ev)
{
 EXGANTTLib::IOleEventPtr spEvent(Ev);
 CString strOutput;

 strOutput.Format("Event's name: %s\n", spEvent->Name.operator const char *());
 OutputDebugString(strOutput);
 if (spEvent->CountParam == 0)
 OutputDebugString("The event has no parameters.");
 else
 {
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 EXGANTTLib::IOleEventParamPtr spParam = spEvent->GetParam(COleVariant(i));
 strOutput.Format("Name: %s, Value: %s\n", spParam->Name.operator const char *
(), V2S(&spParam->Value));
 OutputDebugString(strOutput);
 }
 }
 OutputDebugString("");
}

The #import clause is required to get the wrapper classes for IOleEvent and
IOleEventParam objects, that are not defined by the MFC class wizard. The same #import
statement defines the EXGANTTLib namespace that include all objects and types of the
control's TypeLibrary. In case your exgantt.dll library is located to another place than the
system folder or well known path, the path to the library should be provided, in order to let
the VC finds the type library.

The following VB.NET sample displays the events that an ActiveX control is firing while it is
hosted by an item:

Private Sub AxGantt1_ItemOleEvent(ByVal sender As Object, ByVal e As
AxEXGANTTLib._IGanttEvents_ItemOleEventEvent) Handles AxGantt1.ItemOleEvent
 Debug.WriteLine("Event's name: " & e.ev.Name)
 Dim i As Long
 For i = 0 To e.ev.CountParam - 1
 Dim eP As EXGANTTLib.OleEventParam
 eP = e.ev(i)
 Debug.WriteLine("Name: " & e.ev.Name & " Value: " & eP.Value)
 Next
End Sub

The following C# sample displays the events that an ActiveX control is firing while it is

hosted by an item:

private void axGantt1_ItemOleEvent(object sender,
AxEXGANTTLib._IGanttEvents_ItemOleEventEvent e)
{
 System.Diagnostics.Debug.WriteLine("Event's name: " + e.ev.Name.ToString());
 for (int i= 0; i < e.ev.CountParam ; i++)
 {
 EXGANTTLib.IOleEventParam evP = e.ev[i];
 System.Diagnostics.Debug.WriteLine("Name: " + evP.Name.ToString() + ", Value: " +
evP.Value.ToString());
 }
}

The following VFP sample displays the events that an ActiveX control fires when it is hosted
by an item:

*** ActiveX Control Event ***
LPARAMETERS item, ev

local s
s = "Event's name: " + ev.Name
for i = 0 to ev.CountParam - 1
 s = s + "Name: " + ev.Param(i).Name + " ,Value: " + Str(ev.Param(i).Value)
endfor
wait window nowait s

C#

VB

private void KeyDown(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyDown(ByVal sender As System.Object,ByRef KeyCode As
Short,ByVal Shift As Short) Handles KeyDown
End Sub

event KeyDown (KeyCode as Integer, Shift as Integer)

Occurs when the user presses a key while an object has the focus.

Type Description
KeyCode as Integer An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use KeyDown and KeyUp event procedures if you need to respond to both the pressing
and releasing of a key. Use the ExpandOnKeys property to specify whether the user
expands or collapses the focused items using arrow keys. You test for a condition by first
assigning each result to a temporary integer variable and then comparing shift to a bit
mask. Use the And operator with the shift argument to test whether the condition is greater
than 0, indicating that the modifier was pressed, as in this example:

ShiftDown = (Shift And 1) > 0
CtrlDown = (Shift And 2) > 0
AltDown = (Shift And 4) > 0
In a procedure, you can test for any combination of conditions, as in this example:
If AltDown And CtrlDown Then

Syntax for KeyDown event, /NET version, on:

Syntax for KeyDown event, /COM version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

private void KeyDownEvent(object sender, AxEXGANTTLib._IGanttEvents_KeyDownEvent
e)
{
}

void OnKeyDown(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyDown(TObject *Sender,short * KeyCode,short Shift)
{
}

procedure KeyDown(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyDownEvent(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_KeyDownEvent);
begin
end;

begin event KeyDown(integer KeyCode,integer Shift)
end event KeyDown

Private Sub KeyDownEvent(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_KeyDownEvent) Handles KeyDownEvent
End Sub

Private Sub KeyDown(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyDown(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

Xbas… PROCEDURE OnKeyDown(oGantt,KeyCode,Shift)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="KeyDown(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyDown(KeyCode,Shift)
End Function
</SCRIPT>

Procedure OnComKeyDown Short llKeyCode Short llShift
 Forward Send OnComKeyDown llKeyCode llShift
End_Procedure

METHOD OCX_KeyDown(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyDown(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyDown as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyDown(KeyCode,Shift)
return

Syntax for KeyDown event, /COM version (others), on:

C#

VB

private void KeyPress(object sender,ref short KeyAscii)
{
}

Private Sub KeyPress(ByVal sender As System.Object,ByRef KeyAscii As Short)
Handles KeyPress
End Sub

C#

C++

C++
Builder

private void KeyPressEvent(object sender,
AxEXGANTTLib._IGanttEvents_KeyPressEvent e)
{
}

void OnKeyPress(short FAR* KeyAscii)
{
}

void __fastcall KeyPress(TObject *Sender,short * KeyAscii)
{
}

event KeyPress (KeyAscii as Integer)

Occurs when the user presses and releases an ANSI key.

Type Description
KeyAscii as Integer An integer that returns a standard numeric ANSI keycode.

The KeyPress event lets you immediately test keystrokes for validity or for formatting
characters as they are typed. Changing the value of the keyascii argument changes the
character displayed. Use KeyDown and KeyUp event procedures to handle any keystroke
not recognized by KeyPress, such as function keys, editing keys, navigation keys, and any
combinations of these with keyboard modifiers. Unlike the KeyDown and KeyUp events,
KeyPress does not indicate the physical state of the keyboard; instead, it passes a
character. KeyPress interprets the uppercase and lowercase of each character as
separate key codes and, therefore, as two separate characters.

Syntax for KeyPress event, /NET version, on:

Syntax for KeyPress event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure KeyPress(ASender: TObject; var KeyAscii : Smallint);
begin
end;

procedure KeyPressEvent(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_KeyPressEvent);
begin
end;

begin event KeyPress(integer KeyAscii)
end event KeyPress

Private Sub KeyPressEvent(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_KeyPressEvent) Handles KeyPressEvent
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

LPARAMETERS KeyAscii

PROCEDURE OnKeyPress(oGantt,KeyAscii)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyPress(KeyAscii)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyPress(KeyAscii)
End Function
</SCRIPT>

Syntax for KeyPress event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComKeyPress Short llKeyAscii
 Forward Send OnComKeyPress llKeyAscii
End_Procedure

METHOD OCX_KeyPress(KeyAscii) CLASS MainDialog
RETURN NIL

void onEvent_KeyPress(COMVariant /*short*/ _KeyAscii)
{
}

function KeyPress as v (KeyAscii as N)
end function

function nativeObject_KeyPress(KeyAscii)
return

C#

VB

private void KeyUp(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyUp(ByVal sender As System.Object,ByRef KeyCode As Short,ByVal
Shift As Short) Handles KeyUp
End Sub

C#

C++

C++
Builder

private void KeyUpEvent(object sender,
AxEXGANTTLib._IGanttEvents_KeyUpEvent e)
{
}

void OnKeyUp(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyUp(TObject *Sender,short * KeyCode,short Shift)

event KeyUp (KeyCode as Integer, Shift as Integer)

Occurs when the user releases a key while an object has the focus.

Type Description
KeyCode as Integer An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use the KeyUp event procedure to respond to the releasing of a key.

Syntax for KeyUp event, /NET version, on:

Syntax for KeyUp event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

procedure KeyUp(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyUpEvent(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_KeyUpEvent);
begin
end;

begin event KeyUp(integer KeyCode,integer Shift)
end event KeyUp

Private Sub KeyUpEvent(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_KeyUpEvent) Handles KeyUpEvent
End Sub

Private Sub KeyUp(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyUp(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyUp(oGantt,KeyCode,Shift)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyUp(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyUp(KeyCode,Shift)

Syntax for KeyUp event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

End Function
</SCRIPT>

Procedure OnComKeyUp Short llKeyCode Short llShift
 Forward Send OnComKeyUp llKeyCode llShift
End_Procedure

METHOD OCX_KeyUp(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyUp(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyUp as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyUp(KeyCode,Shift)
return

C#

VB

private void LayoutChanged(object sender)
{
}

Private Sub LayoutChanged(ByVal sender As System.Object) Handles
LayoutChanged
End Sub

C#

C++

C++
Builder

Delphi

private void LayoutChanged(object sender, EventArgs e)
{
}

void OnLayoutChanged()
{
}

void __fastcall LayoutChanged(TObject *Sender)
{
}

procedure LayoutChanged(ASender: TObject;);
begin
end;

event LayoutChanged ()

Occurs when column's position or column's size is changed.

Type Description

The LayoutChanged event is fired each time when the user resizes a column, or drags the
column to a new position. Use the LayoutChanged event to notify your application that the
columns position or size is changed. Use the LayoutChanged event to save the columns
position and size for future use. Use the Width property to retrieve the column's width. Use
the Position property to retrieve the column's position. The Visible property specifies
whether a column is shown or hidden. Use the ColumnAutoResize property to specify
whether the visible columns fit the control's client area.

Syntax for LayoutChanged event, /NET version, on:

Syntax for LayoutChanged event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure LayoutChanged(sender: System.Object; e: System.EventArgs);
begin
end;

begin event LayoutChanged()
end event LayoutChanged

Private Sub LayoutChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles LayoutChanged
End Sub

Private Sub LayoutChanged()
End Sub

Private Sub LayoutChanged()
End Sub

LPARAMETERS nop

PROCEDURE OnLayoutChanged(oGantt)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="LayoutChanged()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function LayoutChanged()
End Function
</SCRIPT>

Procedure OnComLayoutChanged
 Forward Send OnComLayoutChanged
End_Procedure

Syntax for LayoutChanged event, /COM version (others), on:

Visual
Objects

X++

XBasic

dBASE

METHOD OCX_LayoutChanged() CLASS MainDialog
RETURN NIL

void onEvent_LayoutChanged()
{
}

function LayoutChanged as v ()
end function

function nativeObject_LayoutChanged()
return

C#

VB

private void MouseDownEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseDownEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseDownEvent
End Sub

C# private void MouseDownEvent(object sender,
AxEXGANTTLib._IGanttEvents_MouseDownEvent e)

event MouseDown (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)

Occurs when the user presses a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. Use the ItemFromPoint property to get the item from point. Use the
ColumnFromPoint property to get the column from point. Use the DateFromPoint property
to specify the date from the cursor.

Syntax for MouseDown event, /NET version, on:

Syntax for MouseDown event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

{
}

void OnMouseDown(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseDown(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseDown(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseDownEvent(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_MouseDownEvent);
begin
end;

begin event MouseDown(integer Button,integer Shift,long X,long Y)
end event MouseDown

Private Sub MouseDownEvent(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_MouseDownEvent) Handles MouseDownEvent
End Sub

Private Sub MouseDown(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseDown(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

Xbas…

PROCEDURE OnMouseDown(oGantt,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseDown(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseDown(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseDown Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseDown llButton llShift llX llY
End_Procedure

METHOD OCX_MouseDown(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseDown(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseDown as v (Button as N,Shift as N,X as
OLE::Exontrol.Gantt.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Gantt.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseDown(Button,Shift,X,Y)
return

Syntax for MouseDown event, /COM version (others), on:

The following VB sample prints the cell's caption that has been clicked:

Private Sub Gantt1_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As

Single)
 ' Converts the container coordinates to client coordinates
 X = X / Screen.TwipsPerPixelX
 Y = Y / Screen.TwipsPerPixelY
 Dim h As HITEM
 Dim c As Long
 Dim hit As EXGANTTLibCtl.HitTestInfoEnum
 ' Gets the item from (X,Y)
 h = Gantt1.ItemFromPoint(X, Y, c, hit)
 If Not (h = 0) Then
 Debug.Print Gantt1.Items.CellCaption(h, c) & " HT = " & hit
 End If
End Sub

If you need to add a context menu based on the item you can use the MouseUp event, like
in the following VB sample (the sample uses the Exontrol's ExPopupMenu Component):

Private Sub Gantt1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single)
 If (Button = 2) Then
 ' Converts the container coordinates to client coordinates
 X = X / Screen.TwipsPerPixelX
 Y = Y / Screen.TwipsPerPixelY
 Dim h As HITEM
 Dim c As Long, hit as Long
 ' Gets the item from (X,Y)
 h = Gantt1.ItemFromPoint(X, Y, c, hit)
 If Not (h = 0) Then
 Dim i As Long
 PopupMenu1.Items.Add Gantt1.Items.CellCaption(h, c)
 i = PopupMenu1.ShowAtCursor
 End If
 End If
End Sub

The following VC sample displays the caption of the cell being clicked:

#include "Items.h"

https://exontrol.com/expopupmenu.jsp

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnMouseDownGantt1(short Button, short Shift, long X, long Y)
{
 int c = 0, hit = 0, hItem = m_gantt.GetItemFromPoint(X, Y, &c, &hit);
 if ((hItem != 0) || (c != 0))
 {
 CItems items = m_gantt.GetItems();
 COleVariant vtItem(hItem), vtColumn(c);
 CString strCaption = V2S(&items.GetCellCaption(vtItem, vtColumn)), strOutput;
 strOutput.Format("Cell: '%s', Hit = %08X\n", strCaption, hit);
 OutputDebugString(strOutput);
 }
}

The following VB.NET sample displays the caption from the cell being clicked:

Private Sub AxGantt1_MouseDownEvent(ByVal sender As Object, ByVal e As
AxEXGANTTLib._IGanttEvents_MouseDownEvent) Handles AxGantt1.MouseDownEvent
 With AxGantt1
 Dim i As Integer, c As Integer, hit As EXGANTTLib.HitTestInfoEnum
 i = .get_ItemFromPoint(e.x, e.y, c, hit)
 If (Not (i = 0) Or Not (c = 0)) Then
 Debug.WriteLine("Cell: " & .Items.CellCaption(i, c) & " Hit: " & hit.ToString())
 End If

 End With
End Sub

The following C# sample displays the caption from the cell being clicked:

private void axGantt1_MouseDownEvent(object sender,
AxEXGANTTLib._IGanttEvents_MouseDownEvent e)
{
 int c = 0;
 EXGANTTLib.HitTestInfoEnum hit;
 int i = axGantt1.get_ItemFromPoint(e.x, e.y, out c,out hit);
 if ((i != 0) || (c != 0))
 {
 string s = axGantt1.Items.get_CellCaption(i,c).ToString();
 s = "Cell: " + s + ", Hit: " + hit.ToString();
 System.Diagnostics.Debug.WriteLine(s);
 }
}

The following VFP sample displays the caption from the cell being clicked:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

local c, hit
c = 0
hit = 0
with thisform.Gantt1
 .Items.DefaultItem = .ItemFromPoint(x, y, @c, @hit)
 if (.Items.DefaultItem <> 0) or (c <> 0)
 wait window nowait .Items.CellCaption(0, c) + " " + Str(hit)
 endif
endwith

C#

VB

private void MouseMoveEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseMoveEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseMoveEvent
End Sub

C# private void MouseMoveEvent(object sender,
AxEXGANTTLib._IGanttEvents_MouseMoveEvent e)

event MouseMove (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)

Occurs when the user moves the mouse.

Type Description

Button as Integer An integer that corresponds to the state of the mouse
buttons in which a bit is set if the button is down.

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

The MouseMove event is generated continually as the mouse pointer moves across objects.
Unless another object has captured the mouse, an object recognizes a MouseMove event
whenever the mouse position is within its borders. Use the ItemFromPoint property to get
the item from cursor. Use the ColumnFromPoint property to get the column from point. Use
the DateFromPoint property to specify the date from the cursor. Use the DrawDateTicker
property to draw a ticker as cursor hovers the chart's area. Use the LevelFromPoint
property to retrieve the index of the level from the cursor.

Syntax for MouseMove event, /NET version, on:

Syntax for MouseMove event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

{
}

void OnMouseMove(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseMove(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseMove(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseMoveEvent(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_MouseMoveEvent);
begin
end;

begin event MouseMove(integer Button,integer Shift,long X,long Y)
end event MouseMove

Private Sub MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_MouseMoveEvent) Handles MouseMoveEvent
End Sub

Private Sub MouseMove(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseMove(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

Xbas…

PROCEDURE OnMouseMove(oGantt,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseMove(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseMove(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseMove Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseMove llButton llShift llX llY
End_Procedure

METHOD OCX_MouseMove(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseMove(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseMove as v (Button as N,Shift as N,X as
OLE::Exontrol.Gantt.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Gantt.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseMove(Button,Shift,X,Y)
return

Syntax for MouseMove event, /COM version (others), on:

The following VB sample prints the cell's caption from the cursor (if the control contains no
inner cells. Use the SplitCell property to insert inner cells) :

Private Sub Gantt1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 On Error Resume Next
 ' Converts the container coordinates to client coordinates
 X = X / Screen.TwipsPerPixelX
 Y = Y / Screen.TwipsPerPixelY
 Dim h As HITEM
 Dim c As Long
 Dim hit As EXGANTTLibCtl.HitTestInfoEnum
 ' Gets the item from (X,Y)
 h = Gantt1.ItemFromPoint(X, Y, c, hit)
 If Not (h = 0) Then
 Debug.Print Gantt1.Items.CellCaption(h, c) & " HT = " & hit
 End If
End Sub

The following VB sample displays the cell's caption from the cursor (if the control contains
inner cells):

Private Sub Gantt1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 On Error Resume Next
 ' Converts the container coordinates to client coordinates
 X = X / Screen.TwipsPerPixelX
 Y = Y / Screen.TwipsPerPixelY
 Dim h As HITEM
 Dim c As Long
 Dim hit As EXGANTTLibCtl.HitTestInfoEnum
 ' Gets the item from (X,Y)
 h = Gantt1.ItemFromPoint(X, Y, c, hit)
 If Not (h = 0) Or Not (c = 0) Then
 Debug.Print Gantt1.Items.CellCaption(h, c) & " HT = " & hit
 End If
End Sub

The following VB sample displays the date from the cursor:

Private Sub Gantt1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As

Single)
 With Gantt1.Chart
 Dim d As Date
 d = .DateFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 Debug.Print .FormatDate(d, "<%m%>/<%d%>/<%yyyy%>")
 End With
End Sub

The following C++ sample displays the cell's from the point:

#include "Items.h"

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnMouseMoveGantt1(short Button, short Shift, long X, long Y)
{
 long c = 0, hit = 0, hItem = m_gantt.GetItemFromPoint(X, Y, &c, &hit);
 if ((hItem != 0) || (c != 0))
 {
 CItems items = m_gantt.GetItems();
 COleVariant vtItem(hItem), vtColumn(c);
 CString strCaption = V2S(&items.GetCellCaption(vtItem, vtColumn)), strOutput;
 strOutput.Format("Cell: '%s', Hit = %08X\n", strCaption, hit);
 OutputDebugString(strOutput);
 }

}

The following C++ sample displays the date from the point:

void OnMouseMoveGantt1(short Button, short Shift, long X, long Y)
{
 CChart chart = m_gantt.GetChart();
 DATE d = chart.GetDateFromPoint(X, Y);
 CString strFormat = chart.GetFormatDate(d, "<%m%>/<%d%>/<%yyyy%>");
 OutputDebugString(strFormat);
}

The following VB.NET sample displays the cell's from the point:

Private Sub AxGantt1_MouseMoveEvent(ByVal sender As Object, ByVal e As
AxEXGANTTLib._IGanttEvents_MouseMoveEvent) Handles AxGantt1.MouseMoveEvent
 With AxGantt1
 Dim i As Integer, c As Integer, hit As EXGANTTLib.HitTestInfoEnum
 i = .get_ItemFromPoint(e.x, e.y, c, hit)
 If (Not (i = 0) Or Not (c = 0)) Then
 Debug.WriteLine("Cell: " & .Items.CellCaption(i, c) & " Hit: " & hit.ToString())
 End If
 End With
End Sub

The following VB.NET sample displays the date from the point:

Private Sub AxGantt1_MouseMoveEvent(ByVal sender As Object, ByVal e As
AxEXGANTTLib._IGanttEvents_MouseMoveEvent) Handles AxGantt1.MouseMoveEvent
 With AxGantt1.Chart
 Dim d As Date
 d = .DateFromPoint(e.x, e.y)
 Debug.Write(.FormatDate(d, "<%m%>/<%d%>/<%yyyy%>"))
 End With
End Sub

The following C# sample displays the cell's from the point:

private void axGantt1_MouseMoveEvent(object sender,

AxEXGANTTLib._IGanttEvents_MouseMoveEvent e)
{
 int c = 0;
 EXGANTTLib.HitTestInfoEnum hit;
 int i = axGantt1.get_ItemFromPoint(e.x, e.y, out c,out hit);
 if ((i != 0) || (c != 0))
 {
 object cap = axGantt1.Items.get_CellCaption(i, c);
 string s = cap != null ? cap.ToString() : "";
 s = "Cell: " + s + ", Hit: " + hit.ToString();
 System.Diagnostics.Debug.WriteLine(s);
 }
}

The following C# sample displays the date from the point:

private void axGantt1_MouseMoveEvent(object sender,
AxEXGANTTLib._IGanttEvents_MouseMoveEvent e)
{
 DateTime d = axGantt1.Chart.get_DateFromPoint(e.x, e.y);
 System.Diagnostics.Debug.Write(axGantt1.Chart.get_FormatDate(d, "
<%m%>/<%d%>/<%yyyy%>"));
}

The following VFP sample displays the cell's from the point:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

local c, hit
c = 0
hit = 0
with thisform.Gantt1
 .Items.DefaultItem = .ItemFromPoint(x, y, @c, @hit)
 if (.Items.DefaultItem <> 0) or (c <> 0)
 wait window nowait .Items.CellCaption(0, c) + " " + Str(hit)
 endif
endwith

The following VFP sample displays the date from the point:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.Gantt1.Chart
 d = .DateFromPoint(x,y)
 wait window nowait .FormatDate(d, "<%m%>/<%d%>/<%yyyy%>")
endwith

C#

VB

private void MouseUpEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseUpEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseUpEvent
End Sub

C# private void MouseUpEvent(object sender,
AxEXGANTTLib._IGanttEvents_MouseUpEvent e)

event MouseUp (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)

Occurs when the user releases a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event.

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. Use the ItemFromPoint property to get the item from point. Use the
ColumnFromPoint property to get the column from point. Use the DateFromPoint property
to specify the date from the cursor.

Syntax for MouseUp event, /NET version, on:

Syntax for MouseUp event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

{
}

void OnMouseUp(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseUp(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseUp(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseUpEvent(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_MouseUpEvent);
begin
end;

begin event MouseUp(integer Button,integer Shift,long X,long Y)
end event MouseUp

Private Sub MouseUpEvent(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_MouseUpEvent) Handles MouseUpEvent
End Sub

Private Sub MouseUp(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseUp(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

Xbas…

PROCEDURE OnMouseUp(oGantt,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseUp(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseUp(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseUp Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseUp llButton llShift llX llY
End_Procedure

METHOD OCX_MouseUp(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseUp(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseUp as v (Button as N,Shift as N,X as
OLE::Exontrol.Gantt.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Gantt.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseUp(Button,Shift,X,Y)
return

Syntax for MouseUp event, /COM version (others), on:

The following VB sample prints the cell's caption where the mouse has been released:

Private Sub Gantt1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single)

 ' Converts the container coordinates to client coordinates
 X = X / Screen.TwipsPerPixelX
 Y = Y / Screen.TwipsPerPixelY
 Dim h As HITEM
 Dim c As Long, hit as Long
 ' Gets the item from (X,Y)
 h = Gantt1.ItemFromPoint(X, Y, c, hit)
 If Not (h = 0) Then
 Debug.Print Gantt1.Items.CellCaption(h, c)
 End If
End Sub

If you need to add a context menu based on the item you can use the MouseUp event, like
in the following VB sample (the sample uses the Exontrol's ExPopupMenu Component):

Private Sub Gantt1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single)
 If (Button = 2) Then
 ' Converts the container coordinates to client coordinates
 X = X / Screen.TwipsPerPixelX
 Y = Y / Screen.TwipsPerPixelY
 Dim h As HITEM
 Dim c As Long, hit as Long
 ' Gets the item from (X,Y)
 h = Gantt1.ItemFromPoint(X, Y, c, hit)
 If Not (h = 0) Then
 Dim i As Long
 PopupMenu1.Items.Add Gantt1.Items.CellCaption(h, c)
 i = PopupMenu1.ShowAtCursor
 End If
 End If
End Sub

The following VC sample displays the caption of the cell where the mouse is released:

#include "Items.h"

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{

https://exontrol.com/expopupmenu.jsp

 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnMouseUpGantt1(short Button, short Shift, long X, long Y)
{
 long c = 0, hit = 0, hItem = m_gantt.GetItemFromPoint(X, Y, &c, &hit);
 if ((hItem != 0) || (c != 0))
 {
 CItems items = m_gantt.GetItems();
 COleVariant vtItem(hItem), vtColumn(c);
 CString strCaption = V2S(&items.GetCellCaption(vtItem, vtColumn)), strOutput;
 strOutput.Format("Cell: '%s', Hit = %08X\n", strCaption, hit);
 OutputDebugString(strOutput);
 }
}

The following VB.NET sample displays the caption of the cell where the mouse is released:

Private Sub AxGantt1_MouseUpEvent(ByVal sender As Object, ByVal e As
AxEXGANTTLib._IGanttEvents_MouseUpEvent) Handles AxGantt1.MouseUpEvent
 With AxGantt1
 Dim i As Integer, c As Integer, hit As EXGANTTLib.HitTestInfoEnum
 i = .get_ItemFromPoint(e.x, e.y, c, hit)
 If (Not (i = 0) Or Not (c = 0)) Then
 Debug.WriteLine("Cell: " & .Items.CellCaption(i, c) & " Hit: " & hit.ToString())
 End If
 End With
End Sub

The following C# sample displays the caption of the cell where the mouse is released:

private void axGantt1_MouseUpEvent(object sender,
AxEXGANTTLib._IGanttEvents_MouseUpEvent e)
{
 int c = 0;
 EXGANTTLib.HitTestInfoEnum hit;
 int i = axGantt1.get_ItemFromPoint(e.x, e.y, out c,out hit);
 if ((i != 0) || (c != 0))
 {
 string s = axGantt1.Items.get_CellCaption(i,c).ToString();
 s = "Cell: " + s + ", Hit: " + hit.ToString();
 System.Diagnostics.Debug.WriteLine(s);
 }
}

The following VFP sample displays the caption of the cell where the mouse is released:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

local c, hit
c = 0
hit = 0
with thisform.Gantt1
 .Items.DefaultItem = .ItemFromPoint(x, y, @c, @hit)
 if (.Items.DefaultItem <> 0) or (c <> 0)
 wait window nowait .Items.CellCaption(0, c) + " " + Str(hit)
 endif
endwith

C#

VB

private void OffsetChanged(object sender,bool Horizontal,int NewVal)
{
}

Private Sub OffsetChanged(ByVal sender As System.Object,ByVal Horizontal As
Boolean,ByVal NewVal As Integer) Handles OffsetChanged
End Sub

C#

C++

C++
Builder

private void OffsetChanged(object sender,
AxEXGANTTLib._IGanttEvents_OffsetChangedEvent e)
{
}

void OnOffsetChanged(BOOL Horizontal,long NewVal)
{
}

void __fastcall OffsetChanged(TObject *Sender,VARIANT_BOOL Horizontal,long
NewVal)
{
}

event OffsetChanged (Horizontal as Boolean, NewVal as Long)

Occurs when the scroll position has been changed.

Type Description

Horizontal as Boolean A boolean expression that indicates whether the horizontal
scroll bar has changed.

NewVal as Long A long value that indicates the new scroll bar value in
pixels.

If the control has no scroll bars the OffsetChanged and OversizeChanged events are not
fired. Use the ScrollBars property of the control to determine which scroll bars are visible
within the control.

Syntax for OffsetChanged event, /NET version, on:

Syntax for OffsetChanged event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure OffsetChanged(ASender: TObject; Horizontal : WordBool;NewVal : Integer);
begin
end;

procedure OffsetChanged(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_OffsetChangedEvent);
begin
end;

begin event OffsetChanged(boolean Horizontal,long NewVal)
end event OffsetChanged

Private Sub OffsetChanged(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_OffsetChangedEvent) Handles OffsetChanged
End Sub

Private Sub OffsetChanged(ByVal Horizontal As Boolean,ByVal NewVal As Long)
End Sub

Private Sub OffsetChanged(ByVal Horizontal As Boolean,ByVal NewVal As Long)
End Sub

LPARAMETERS Horizontal,NewVal

PROCEDURE OnOffsetChanged(oGantt,Horizontal,NewVal)
RETURN

Java…

VBSc…

<SCRIPT EVENT="OffsetChanged(Horizontal,NewVal)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OffsetChanged(Horizontal,NewVal)
End Function
</SCRIPT>

Syntax for OffsetChanged event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComOffsetChanged Boolean llHorizontal Integer llNewVal
 Forward Send OnComOffsetChanged llHorizontal llNewVal
End_Procedure

METHOD OCX_OffsetChanged(Horizontal,NewVal) CLASS MainDialog
RETURN NIL

void onEvent_OffsetChanged(boolean _Horizontal,int _NewVal)
{
}

function OffsetChanged as v (Horizontal as L,NewVal as N)
end function

function nativeObject_OffsetChanged(Horizontal,NewVal)
return

The following VB sample displays the new scroll position when user scrolls horizontally the
control:

Private Sub Gantt1_OffsetChanged(ByVal Horizontal As Boolean, ByVal NewVal As Long)
 If (Horizontal) Then
 Debug.Print "The horizontal scroll bar has been moved to " & NewVal
 End If
End Sub

The following VC sample displays the new scroll position when the user scrolls vertically the
control:

void OnOffsetChangedGantt1(BOOL Horizontal, long NewVal)
{
 if (!Horizontal)
 {
 CString strFormat;
 strFormat.Format("NewPos = %i\n", NewVal);
 OutputDebugString(strFormat);
 }

}

The following VB.NET sample displays the new scroll position when the user scrolls
vertically the control:

Private Sub AxGantt1_OffsetChanged(ByVal sender As Object, ByVal e As
AxEXGANTTLib._IGanttEvents_OffsetChangedEvent) Handles AxGantt1.OffsetChanged
 If (Not e.horizontal) Then
 Debug.WriteLine(e.newVal)
 End If
End Sub

The following C# sample displays the new scroll position when the user scrolls vertically the
control:

private void axGantt1_OffsetChanged(object sender,
AxEXGANTTLib._IGanttEvents_OffsetChangedEvent e)
{
 if (!e.horizontal)
 System.Diagnostics.Debug.WriteLine(e.newVal);
}

The following VFP sample displays the new scroll position when the user scrolls vertically
the control:

*** ActiveX Control Event ***
LPARAMETERS horizontal, newval

if (0 # horizontal)
 wait window nowait str(newval)
endif

C#

VB

// OLECompleteDrag event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

// OLECompleteDrag event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

C# private void OLECompleteDrag(object sender,
AxEXGANTTLib._IGanttEvents_OLECompleteDragEvent e)
{

event OLECompleteDrag (Effect as Long)
Occurs when a source component is dropped onto a target component, informing the
source component that a drag action was either performed or canceled

Type Description

Effect as Long

A long set by the source object identifying the action that
has been performed, thus allowing the source to take
appropriate action if the component was moved (such as
the source deleting data if it is moved from one component
to another

The OLECompleteDrag event is the final event to be called in an OLE drag/drop operation.
This event informs the source component of the action that was performed when the object
was dropped onto the target component. The target sets this value through the effect
parameter of the OLEDragDrop event. Based on this, the source can then determine the
appropriate action it needs to take. For example, if the object was moved into the target
(exDropEffectMove), the source needs to delete the object from itself after the move. The
control supports only manual OLE drag and drop events. In order to enable OLE drag and
drop feature into control you have to set the OLEDropMode and OLEDrag properties.

The settings for Effect are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

Syntax for OLECompleteDrag event, /NET version, on:

Syntax for OLECompleteDrag event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

void OnOLECompleteDrag(long Effect)
{
}

void __fastcall OLECompleteDrag(TObject *Sender,long Effect)
{
}

procedure OLECompleteDrag(ASender: TObject; Effect : Integer);
begin
end;

procedure OLECompleteDrag(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_OLECompleteDragEvent);
begin
end;

begin event OLECompleteDrag(long Effect)
end event OLECompleteDrag

Private Sub OLECompleteDrag(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_OLECompleteDragEvent) Handles
OLECompleteDrag
End Sub

Private Sub OLECompleteDrag(ByVal Effect As Long)
End Sub

Private Sub OLECompleteDrag(ByVal Effect As Long)
End Sub

LPARAMETERS Effect

PROCEDURE OnOLECompleteDrag(oGantt,Effect)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="OLECompleteDrag(Effect)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLECompleteDrag(Effect)
End Function
</SCRIPT>

Procedure OnComOLECompleteDrag Integer llEffect
 Forward Send OnComOLECompleteDrag llEffect
End_Procedure

METHOD OCX_OLECompleteDrag(Effect) CLASS MainDialog
RETURN NIL

// OLECompleteDrag event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

function OLECompleteDrag as v (Effect as N)
end function

function nativeObject_OLECompleteDrag(Effect)
return

Syntax for OLECompleteDrag event, /COM version (others), on:

event OLEDragDrop (Data as ExDataObject, Effect as Long, Button as
Integer, Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS)
Occurs when a source component is dropped onto a target component when the source
component determines that a drop can occur.

Type Description

Data as ExDataObject

An ExDataObject object containing formats that the source
will provide and, in addition, possibly the data for those
formats. If no data is contained in the ExDataObject, it is
provided when the control calls the GetData method. The
SetData and Clear methods cannot be used here.

Effect as Long

A Long set by the target component identifying the action
that has been performed (if any), thus allowing the source
to take appropriate action if the component was moved
(such as the source deleting the data). The possible
values are listed in Remarks.

Button as Integer

An integer which acts as a bit field corresponding to the
state of a mouse button when it is depressed. The left
button is bit 0, the right button is bit 1, and the middle
button is bit 2. These bits correspond to the values 1, 2,
and 4, respectively. It indicates the state of the mouse
buttons; some, all, or none of these three bits can be set,
indicating that some, all, or none of the buttons are
depressed.

Shift as Integer

An integer which acts as a bit field corresponding to the
state of the SHIFT, CTRL, and ALT keys when they are
depressed. The SHIFT key is bit 0, the CTRL key is bit 1,
and the ALT key is bit 2. These bits correspond to the
values 1, 2, and 4, respectively. The shift parameter
indicates the state of these keys; some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are depressed. For example, if both the CTRL and
ALT keys were depressed, the value of shift would be 6.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

C#

VB

// OLEDragDrop event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

// OLEDragDrop event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

C#

C++

private void OLEDragDrop(object sender,
AxEXGANTTLib._IGanttEvents_OLEDragDropEvent e)
{
}

void OnOLEDragDrop(LPDISPATCH Data,long FAR* Effect,short Button,short
Shift,long X,long Y)
{
}

In the /NET Assembly, you have to use the DragDrop event as explained here:

https://www.exontrol.com/sg.jsp?content=support/faq/net/#dragdrop

The OLEDragDrop event is fired when the user has dropped files or clipboard information
into the control. Use the OLEDropMode property on exOLEDropManual to enable OLE
drop and drop support. Use the ItemFromPoint property to get the item from point. Use the
ColumnFromPoint property to get the column from point. Use the AddItem method to add a
new item to the control. Use the InsertItem method to insert a new child item. Use the
ItemPosition property to specify the item's position.

The settings for Effect are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

Syntax for OLEDragDrop event, /NET version, on:

Syntax for OLEDragDrop event, /COM version, on:

https://exontrol.com/faq.jsp/net/#dragdrop

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall OLEDragDrop(TObject *Sender,Exganttlib_tlb::IExDataObject *Data,long *
Effect,short Button,short Shift,int X,int Y)
{
}

procedure OLEDragDrop(ASender: TObject; Data : IExDataObject;var Effect :
Integer;Button : Smallint;Shift : Smallint;X : Integer;Y : Integer);
begin
end;

procedure OLEDragDrop(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_OLEDragDropEvent);
begin
end;

begin event OLEDragDrop(oleobject Data,long Effect,integer Button,integer
Shift,long X,long Y)
end event OLEDragDrop

Private Sub OLEDragDrop(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_OLEDragDropEvent) Handles OLEDragDrop
End Sub

Private Sub OLEDragDrop(ByVal Data As EXGANTTLibCtl.IExDataObject,Effect As
Long,ByVal Button As Integer,ByVal Shift As Integer,ByVal X As Single,ByVal Y As
Single)
End Sub

Private Sub OLEDragDrop(ByVal Data As Object,Effect As Long,ByVal Button As
Integer,ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long)
End Sub

LPARAMETERS Data,Effect,Button,Shift,X,Y

PROCEDURE OnOLEDragDrop(oGantt,Data,Effect,Button,Shift,X,Y)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="OLEDragDrop(Data,Effect,Button,Shift,X,Y)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLEDragDrop(Data,Effect,Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComOLEDragDrop Variant llData Integer llEffect Short llButton
Short llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS llY
 Forward Send OnComOLEDragDrop llData llEffect llButton llShift llX llY
End_Procedure

METHOD OCX_OLEDragDrop(Data,Effect,Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

// OLEDragDrop event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

function OLEDragDrop as v (Data as OLE::Exontrol.Gantt.1::IExDataObject,Effect as
N,Button as N,Shift as N,X as OLE::Exontrol.Gantt.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Gantt.1::OLE_YPOS_PIXELS)
end function

function nativeObject_OLEDragDrop(Data,Effect,Button,Shift,X,Y)
return

Syntax for OLEDragDrop event, /COM version (others), on:

The following VB sample adds a new item when the user drags a file (Open the Windows
Explorer, click and drag a file to the control) :

Private Sub Gantt1_OLEDragDrop(Index As Integer, ByVal Data As
EXGANTTLibCtl.IExDataObject, Effect As Long, ByVal Button As Integer, ByVal Shift As

Integer, ByVal X As Single, ByVal Y As Single)
 If Data.GetFormat(exCFFiles) Then
 Data.GetData (exCFFiles)
 Dim strFile As String
 strFile = Data.Files(0)
 'Adds a new item to the control
 Gantt1(Index).Visible = False
 With Gantt1(Index)
 .BeginUpdate
 Dim i As HITEM
 i = .Items.AddItem(strFile)
 .Items.EnsureVisibleItem i
 .EndUpdate
 End With
 Gantt1(Index).Visible = True
 End If
End Sub

The following VC sample inserts a child item for each file that user drags:

#import <exgantt.dll> rename("GetItems", "exGetItems")

#include "Items.h"
void OnOLEDragDropGantt1(LPDISPATCH Data, long FAR* Effect, short Button, short Shift,
long X, long Y)
{
 EXGANTTLib::IExDataObjectPtr spData(Data);
 if (spData != NULL)
 if (spData->GetFormat(EXGANTTLib::exCFFiles))
 {
 CItems items = m_gantt.GetItems();
 // Gets the handle of the item where the files will be inserted
 long c = 0, h = 0, nParentItem = m_gantt.GetItemFromPoint(X, Y, &c, &h);
 if (nParentItem == 0)
 if (c != 0)
 nParentItem = items.GetCellItem(c);
 EXGANTTLib::IExDataObjectFilesPtr spFiles(spData->Files);

 if (spFiles->Count > 0)
 {
 m_gantt.BeginUpdate();
 COleVariant vtMissing; vtMissing.vt = VT_ERROR;
 for (long i = 0; i < spFiles->Count; i++)
 items.InsertItem(nParentItem, vtMissing, COleVariant(spFiles->GetItem(i
).operator const char *()));
 if (nParentItem)
 items.SetExpandItem(nParentItem, TRUE);
 m_gantt.EndUpdate();
 }

 }
}

The #import statement imports definition for the ExDataObject and ExDataObjectFiles
objects. If the exgantt.dll file is located in another folder than the system folder, the path to
the file must be specified. The sample gets the item where the files were dragged and
insert all files in that position, as child items, if case.

The following VB.NET sample inserts a child item for each file that user drags:

Private Sub AxGantt1_OLEDragDrop(ByVal sender As Object, ByVal e As
AxEXGANTTLib._IGanttEvents_OLEDragDropEvent) Handles AxGantt1.OLEDragDrop
 If e.data.GetFormat(EXGANTTLib.exClipboardFormatEnum.exCFFiles) Then
 If (e.data.Files.Count > 0) Then
 AxGantt1.BeginUpdate()
 With AxGantt1.Items
 Dim iParent As Integer, c As Integer, hit As EXGANTTLib.HitTestInfoEnum
 iParent = AxGantt1.get_ItemFromPoint(e.x, e.y, c, hit)
 If iParent = 0 Then
 If Not c = 0 Then
 iParent = .CellItem(c)
 End If
 End If
 Dim i As Long
 For i = 0 To e.data.Files.Count - 1
 .InsertItem(iParent, , e.data.Files(i))

 Next
 If Not (iParent = 0) Then
 .ExpandItem(iParent) = True
 End If
 End With
 AxGantt1.EndUpdate()
 End If
 End If
End Sub

The following C# sample inserts a child item for each file that user drags:

private void axGantt1_OLEDragDrop(object sender,
AxEXGANTTLib._IGanttEvents_OLEDragDropEvent e)
{
 if (e.data.GetFormat(Convert.ToInt16(EXGANTTLib.exClipboardFormatEnum.exCFFiles)
))
 if (e.data.Files.Count > 0)
 {
 EXGANTTLib.HitTestInfoEnum hit;
 int c = 0, iParent = axGantt1.get_ItemFromPoint(e.x, e.y, out c, out hit);
 if (iParent == 0)
 if (c != 0)
 iParent = axGantt1.Items.get_CellItem(c);

 axGantt1.BeginUpdate();
 for (int i = 0; i < e.data.Files.Count; i++)
 axGantt1.Items.InsertItem(iParent,"", e.data.Files[i].ToString());
 if (iParent != 0)
 axGantt1.Items.set_ExpandItem(iParent, true);
 axGantt1.EndUpdate();
 }
}

The following VFP sample inserts a child item for each file that user drags:

*** ActiveX Control Event ***
LPARAMETERS data, effect, button, shift, x, y

local c, hit, iParent
c = 0
hit = 0
if (data.GetFormat(15)) && exCFFiles
 if (data.Files.Count() > 0)
 with thisform.Gantt1.Items
 iParent = thisform.Gantt1.ItemFromPoint(x, y, @c, @hit)

 thisform.Gantt1.BeginUpdate()
 for i = 0 to data.files.Count() - 1
 .InsertItem(iParent, "", data.files(i))
 next
 if (iParent != 0)
 .DefaultItem = iParent
 .ExpandItem(0) = .t.
 endif
 thisform.Gantt1.EndUpdate()
 endwith
 endif
endif

event OLEDragOver (Data as ExDataObject, Effect as Long, Button as
Integer, Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS, State as Integer)
Occurs when one component is dragged over another.

Type Description

Data as ExDataObject

An ExDataObject object containing formats that the source
will provide and, in addition, possibly the data for those
formats. If no data is contained in the ExDataObject, it is
provided when the control calls the GetData method. The
SetData and Clear methods cannot be used here

Effect as Long

A Long set by the target component identifying the action
that has been performed (if any), thus allowing the source
to take appropriate action if the component was moved
(such as the source deleting the data). The possible
values are listed in Remarks.

Button as Integer

An integer which acts as a bit field corresponding to the
state of a mouse button when it is depressed. The left
button is bit 0, the right button is bit 1, and the middle
button is bit 2. These bits correspond to the values 1, 2,
and 4, respectively. It indicates the state of the mouse
buttons; some, all, or none of these three bits can be set,
indicating that some, all, or none of the buttons are
depressed.

Shift as Integer

An integer which acts as a bit field corresponding to the
state of the SHIFT, CTRL, and ALT keys when they are
depressed. The SHIFT key is bit 0, the CTRL key is bit 1,
and the ALT key is bit 2. These bits correspond to the
values 1, 2, and 4, respectively. The shift parameter
indicates the state of these keys; some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are depressed. For example, if both the CTRL and
ALT keys were depressed, the value of shift would be 6.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

C# // OLEDragOver event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

State as Integer An integer that corresponds to the transition state of the
control being dragged in relation to a target form or
control. The possible values are listed in Remarks.

The settings for effect are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

The settings for state are:

exOLEDragEnter (0), Source component is being dragged within the range of a target.
exOLEDragLeave (1), Source component is being dragged out of the range of a
target.
exOLEOLEDragOver (2), Source component has moved from one position in the target
to another.

Note If the state parameter is 1, indicating that the mouse pointer has left the target, then
the x and y parameters will contain zeros.
The source component should always mask values from the effect parameter to ensure
compatibility with future implementations of ActiveX components. As a precaution against
future problems, drag sources and drop targets should mask these values appropriately
before performing any comparisons.
For example, a source component should not compare an effect against, say,
exOLEDropEffectCopy, such as in this manner:

If Effect = exOLEDropEffectCopy...
Instead, the source component should mask for the value or values being sought, such as
this:
If Effect And exOLEDropEffectCopy = exOLEDropEffectCopy...
-or-
If (Effect And exOLEDropEffectCopy)...
This allows for the definition of new drop effects in future versions while preserving
backwards compatibility with your existing code.
The control supports only manual OLE drag and drop events.

Syntax for OLEDragOver event, /NET version, on:

VB // OLEDragOver event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

private void OLEDragOver(object sender,
AxEXGANTTLib._IGanttEvents_OLEDragOverEvent e)
{
}

void OnOLEDragOver(LPDISPATCH Data,long FAR* Effect,short Button,short
Shift,long X,long Y,short State)
{
}

void __fastcall OLEDragOver(TObject *Sender,Exganttlib_tlb::IExDataObject
*Data,long * Effect,short Button,short Shift,int X,int Y,short State)
{
}

procedure OLEDragOver(ASender: TObject; Data : IExDataObject;var Effect :
Integer;Button : Smallint;Shift : Smallint;X : Integer;Y : Integer;State : Smallint);
begin
end;

procedure OLEDragOver(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_OLEDragOverEvent);
begin
end;

begin event OLEDragOver(oleobject Data,long Effect,integer Button,integer
Shift,long X,long Y,integer State)
end event OLEDragOver

Private Sub OLEDragOver(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_OLEDragOverEvent) Handles OLEDragOver
End Sub

Syntax for OLEDragOver event, /COM version, on:

VB6

VBA

VFP

Xbas…

Private Sub OLEDragOver(ByVal Data As EXGANTTLibCtl.IExDataObject,Effect As
Long,ByVal Button As Integer,ByVal Shift As Integer,ByVal X As Single,ByVal Y As
Single,ByVal State As Integer)
End Sub

Private Sub OLEDragOver(ByVal Data As Object,Effect As Long,ByVal Button As
Integer,ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long,ByVal State As
Integer)
End Sub

LPARAMETERS Data,Effect,Button,Shift,X,Y,State

PROCEDURE OnOLEDragOver(oGantt,Data,Effect,Button,Shift,X,Y,State)
RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="OLEDragOver(Data,Effect,Button,Shift,X,Y,State)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLEDragOver(Data,Effect,Button,Shift,X,Y,State)
End Function
</SCRIPT>

Procedure OnComOLEDragOver Variant llData Integer llEffect Short llButton Short
llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS llY Short llState
 Forward Send OnComOLEDragOver llData llEffect llButton llShift llX llY llState
End_Procedure

METHOD OCX_OLEDragOver(Data,Effect,Button,Shift,X,Y,State) CLASS MainDialog
RETURN NIL

// OLEDragOver event is not supported. Use the DragEnter,DragLeave,DragOver,

Syntax for OLEDragOver event, /COM version (others), on:

XBasic

dBASE

DragDrop ... events.

function OLEDragOver as v (Data as OLE::Exontrol.Gantt.1::IExDataObject,Effect as
N,Button as N,Shift as N,X as OLE::Exontrol.Gantt.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Gantt.1::OLE_YPOS_PIXELS,State as N)
end function

function nativeObject_OLEDragOver(Data,Effect,Button,Shift,X,Y,State)
return

event OLEGiveFeedback (Effect as Long, DefaultCursors as Boolean)
Allows the drag source to specify the type of OLE drag-and-drop operation and the visual
feedback.

Type Description

Effect as Long

A long integer set by the target component in the
OLEDragOver event specifying the action to be performed
if the user drops the selection on it. This allows the source
to take the appropriate action (such as giving visual
feedback). The possible values are listed in Remarks.

DefaultCursors as Boolean

Boolean value that determines whether to use the default
mouse cursor, or to use a user-defined mouse cursor.True
(default) = use default mouse cursor.False = do not use
default cursor. Mouse cursor must be set with the
MousePointer property of the Screen object.

The settings for Effect are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

If there is no code in the OLEGiveFeedback event, or if the defaultcursors parameter is set
to True, the mouse cursor will be set to the default cursor provided by the control. The
source component should always mask values from the effect parameter to ensure
compatibility with future implementations of ActiveX components. As a precaution against
future problems, drag sources and drop targets should mask these values appropriately
before performing any comparisons.

For example, a source component should not compare an effect against, say,
exOLEDropEffectCopy, such as in this manner:
If Effect = exOLEDropEffectCopy...
Instead, the source component should mask for the value or values being sought, such as
this:
If Effect And exOLEDropEffectCopy = exOLEDropEffectCopy...
-or-
If (Effect And exOLEDropEffectCopy)...
This allows for the definition of new drop effects in future versions while preserving
backwards compatibility with your existing code.

C#

VB

// OLEGiveFeedback event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

// OLEGiveFeedback event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

private void OLEGiveFeedback(object sender,
AxEXGANTTLib._IGanttEvents_OLEGiveFeedbackEvent e)
{
}

void OnOLEGiveFeedback(long Effect,BOOL FAR* DefaultCursors)
{
}

void __fastcall OLEGiveFeedback(TObject *Sender,long Effect,VARIANT_BOOL *
DefaultCursors)
{
}

procedure OLEGiveFeedback(ASender: TObject; Effect : Integer;var DefaultCursors
: WordBool);
begin
end;

procedure OLEGiveFeedback(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_OLEGiveFeedbackEvent);
begin
end;

begin event OLEGiveFeedback(long Effect,boolean DefaultCursors)
end event OLEGiveFeedback

The control supports only manual OLE drag and drop events.

Syntax for OLEGiveFeedback event, /NET version, on:

Syntax for OLEGiveFeedback event, /COM version, on:

VB.NET

VB6

VBA

VFP

Xbas…

Private Sub OLEGiveFeedback(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_OLEGiveFeedbackEvent) Handles OLEGiveFeedback
End Sub

Private Sub OLEGiveFeedback(ByVal Effect As Long,DefaultCursors As Boolean)
End Sub

Private Sub OLEGiveFeedback(ByVal Effect As Long,DefaultCursors As Boolean)
End Sub

LPARAMETERS Effect,DefaultCursors

PROCEDURE OnOLEGiveFeedback(oGantt,Effect,DefaultCursors)
RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="OLEGiveFeedback(Effect,DefaultCursors)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLEGiveFeedback(Effect,DefaultCursors)
End Function
</SCRIPT>

Procedure OnComOLEGiveFeedback Integer llEffect Boolean llDefaultCursors
 Forward Send OnComOLEGiveFeedback llEffect llDefaultCursors
End_Procedure

METHOD OCX_OLEGiveFeedback(Effect,DefaultCursors) CLASS MainDialog
RETURN NIL

// OLEGiveFeedback event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

Syntax for OLEGiveFeedback event, /COM version (others), on:

XBasic

dBASE

function OLEGiveFeedback as v (Effect as N,DefaultCursors as L)
end function

function nativeObject_OLEGiveFeedback(Effect,DefaultCursors)
return

C#

VB

// OLESetData event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

// OLESetData event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

C#

C++

C++
Builder

private void OLESetData(object sender,
AxEXGANTTLib._IGanttEvents_OLESetDataEvent e)
{
}

void OnOLESetData(LPDISPATCH Data,short Format)
{
}

void __fastcall OLESetData(TObject *Sender,Exganttlib_tlb::IExDataObject
*Data,short Format)
{
}

event OLESetData (Data as ExDataObject, Format as Integer)
Occurs on a drag source when a drop target calls the GetData method and there is no data
in a specified format in the OLE drag-and-drop DataObject.

Type Description

Data as ExDataObject
An ExDataObject object in which to place the requested
data. The component calls the SetData method to load the
requested format.

Format as Integer

An integer specifying the format of the data that the target
component is requesting. The source component uses this
value to determine what to load into the ExDataObject
object.

The OLESetData is not currently supported.

Syntax for OLESetData event, /NET version, on:

Syntax for OLESetData event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure OLESetData(ASender: TObject; Data : IExDataObject;Format : Smallint);
begin
end;

procedure OLESetData(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_OLESetDataEvent);
begin
end;

begin event OLESetData(oleobject Data,integer Format)
end event OLESetData

Private Sub OLESetData(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_OLESetDataEvent) Handles OLESetData
End Sub

Private Sub OLESetData(ByVal Data As EXGANTTLibCtl.IExDataObject,ByVal
Format As Integer)
End Sub

Private Sub OLESetData(ByVal Data As Object,ByVal Format As Integer)
End Sub

LPARAMETERS Data,Format

PROCEDURE OnOLESetData(oGantt,Data,Format)
RETURN

Java…

VBSc…

<SCRIPT EVENT="OLESetData(Data,Format)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLESetData(Data,Format)
End Function

Syntax for OLESetData event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComOLESetData Variant llData Short llFormat
 Forward Send OnComOLESetData llData llFormat
End_Procedure

METHOD OCX_OLESetData(Data,Format) CLASS MainDialog
RETURN NIL

// OLESetData event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

function OLESetData as v (Data as OLE::Exontrol.Gantt.1::IExDataObject,Format as
N)
end function

function nativeObject_OLESetData(Data,Format)
return

event OLEStartDrag (Data as ExDataObject, AllowedEffects as Long)
Occurs when the OLEDrag method is called.

Type Description

Data as ExDataObject

An ExDataObject object containing formats that the source
will provide and, optionally, the data for those formats. If
no data is contained in the ExDataObject, it is provided
when the control calls the GetData method. The
programmer should provide the values for this parameter
in this event. The SetData and Clear methods cannot be
used here.

AllowedEffects as Long

A long containing the effects that the source component
supports. The possible values are listed in Settings. The
programmer should provide the values for this parameter
in this event

In the /NET Assembly, you have to use the DragEnter event as explained here:

https://www.exontrol.com/sg.jsp?content=support/faq/net/#dragdrop

Use the Background(exDragDropBefore) property to specify the visual appearance for the
dragging items, before painting the items. Use the Background(exDragDropAfter) property
to specify the visual appearance for the dragging items, after painting the items. Use the
Background(exDragDropList) property to specify the graphic feedback for the item from the
cursor, while the OLE drag and drop operation is running.

The settings for AllowEffects are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

The source component should logically Or together the supported values and places the
result in the AllowedEffects parameter. The target component can use this value to
determine the appropriate action (and what the appropriate user feedback should be). You
may wish to defer putting data into the ExDataObject object until the target component
requests it. This allows the source component to save time. If the user does not load any
formats into the ExDataObject, then the drag/drop operation is canceled. Use exCFFiles
and Files property to add files to the drag and drop data object.

https://exontrol.com/faq.jsp/net/#dragdrop

C#

VB

// OLEStartDrag event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

// OLEStartDrag event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

C#

C++

C++
Builder

Delphi

private void OLEStartDrag(object sender,
AxEXGANTTLib._IGanttEvents_OLEStartDragEvent e)
{
}

void OnOLEStartDrag(LPDISPATCH Data,long FAR* AllowedEffects)
{
}

void __fastcall OLEStartDrag(TObject *Sender,Exganttlib_tlb::IExDataObject
*Data,long * AllowedEffects)
{
}

procedure OLEStartDrag(ASender: TObject; Data : IExDataObject;var
AllowedEffects : Integer);
begin
end;

The idea of drag and drop in exGantt control is the same as in other controls. To start
accepting drag and drop sources the exGantt control should have the OLEDropMode to
exOLEDropManual. Once that is is set, the exGantt starts accepting any drag and drop
sources.

The first step is if you want to be able to drag items from your exGantt control to other
controls the idea is to handle the OLE_StartDrag event. The event passes an object
ExDataObject (Data) as argument. The Data and AllowedEffects can be changed only in
the OLEStartDrag event. The OLE_StartDrag event is fired when user is about to drag
items from the control. The AllowedEffect parameter and SetData property must be set
to continue drag and drop operation, as in the following samples:

Syntax for OLEStartDrag event, /NET version, on:

Syntax for OLEStartDrag event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure OLEStartDrag(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_OLEStartDragEvent);
begin
end;

begin event OLEStartDrag(oleobject Data,long AllowedEffects)
end event OLEStartDrag

Private Sub OLEStartDrag(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_OLEStartDragEvent) Handles OLEStartDrag
End Sub

Private Sub OLEStartDrag(ByVal Data As
EXGANTTLibCtl.IExDataObject,AllowedEffects As Long)
End Sub

Private Sub OLEStartDrag(ByVal Data As Object,AllowedEffects As Long)
End Sub

LPARAMETERS Data,AllowedEffects

PROCEDURE OnOLEStartDrag(oGantt,Data,AllowedEffects)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="OLEStartDrag(Data,AllowedEffects)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLEStartDrag(Data,AllowedEffects)
End Function
</SCRIPT>

Procedure OnComOLEStartDrag Variant llData Integer llAllowedEffects
 Forward Send OnComOLEStartDrag llData llAllowedEffects
End_Procedure

Syntax for OLEStartDrag event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

METHOD OCX_OLEStartDrag(Data,AllowedEffects) CLASS MainDialog
RETURN NIL

// OLEStartDrag event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

function OLEStartDrag as v (Data as
OLE::Exontrol.Gantt.1::IExDataObject,AllowedEffects as N)
end function

function nativeObject_OLEStartDrag(Data,AllowedEffects)
return

The following VB sample drags data from a control to another, by registering a new
clipboard format:

Private Sub Gantt1_OLEStartDrag(Index As Integer, ByVal Data As
EXGANTTLibCtl.IExDataObject, AllowedEffects As Long)

 ' We are going to add two clipboard formats: text and "EXGANTT" clipboard format.
 ' We need to use RegisterClipboardFormat API function in order to register our
 ' clipboard format. One cliboard format is enough, but the sample shows
 ' how to filter in OLEDragDrop event the other clipboard formats

 ' Builds a string that contains each cell's caption on a new line
 Dim n As Long
 Dim s As String
 With Gantt1(Index)
 s = Index & vbCrLf ' Saves the source
 For n = 0 To .Columns.Count - 1
 s = s & .Items.CellCaption(.Items.SelectedItem(0), n) & vbCrLf
 Next
 End With

 AllowedEffects = 0
 ' Checks whether the selected item has a parent
 If (Gantt1(Index).Items.ItemParent(Gantt1(Index).Items.SelectedItem(0)) <> 0) Then

 AllowedEffects = 1
 End If
 ' Sets the text clipboard format
 Data.SetData s, exCFText

 ' Builds an array of bytes, and copy there all characters in the s string.
 ' Passes the array to the SetData method.
 ReDim v(Len(s)) As Byte
 For n = 0 To Len(s) - 1
 v(n) = Asc(Mid(s, n + 1, 1))
 Next
 Data.SetData v, RegisterClipboardFormat("EXGANTT")

End Sub

The code fills data for two types of clipboard formats: text (CF_TEXT) and "EXGANTT"
registered clipboard format. The registered clipboard format must be an array of bytes. As
you can see we have used the RegisterClipboardFormat API function, and it should be
declared like:

Private Declare Function RegisterClipboardFormat Lib "user32" Alias
"RegisterClipboardFormatA" (ByVal lpString As String) As Integer

The second step is accepting OLE drag and drop source objects. That means, if you would
like to let your control accept drag and drop objects, you have to handle the OLEDragDrop
event. It gets as argument an object Data that stores the drag and drop information. The
next sample shows how handle the OLEDragDrop event:

Private Sub Gantt1_OLEDragDrop(Index As Integer, ByVal Data As
EXGANTTLibCtl.IExDataObject, Effect As Long, ByVal Button As Integer, ByVal Shift As
Integer, ByVal X As Single, ByVal Y As Single)
 ' Checks whether the clipboard format is our. Since we have registered the clipboard in
the
 ' OLEStartData format we now its format, so we can handle this type of clip formats.
 If (Data.GetFormat(RegisterClipboardFormat("EXGANTT"))) Then
 ' Builds the saved string from the array passed
 Dim s As String
 Dim v() As Byte
 Dim n As Integer

 v = Data.GetData(RegisterClipboardFormat("EXGANTT"))
 For n = LBound(v) To UBound(v)
 s = s + Chr(v(n))
 Next
 Debug.Print s

 'Adds a new item to the control, and sets the cells captions like we saved, line by line
 Gantt1(Index).Visible = False
 With Gantt1(Index)
 .BeginUpdate
 Dim i As HITEM
 Dim item As String
 Dim nCur As Long
 i = .Items.AddItem()
 nCur = InStr(1, s, vbCrLf) + Len(vbCrLf) ' Jumps the source
 For n = 0 To .Columns.Count - 1
 Dim nnCur As Long
 nnCur = InStr(nCur, s, vbCrLf)
 .Items.CellCaption(i, n) = Mid(s, nCur, nnCur - nCur)
 nCur = nnCur + Len(vbCrLf)
 Next
 .Items.CellImage(i, "EmployeeID") = Int(.Items.CellCaption(i, "EmployeeID"))
 .Items.SetParent i, h(Index, Int(.Items.CellCaption(i, "EmployeeID")) - 1)
 .Items.EnsureVisibleItem i
 .EndUpdate
 End With
 Gantt1(Index).Visible = True
 End If
End Sub

The following VC sample copies the selected items to the clipboard, as soon as the user
starts dragging the items:

#import <exgantt.dll> rename("GetItems", "exGetItems")

#include "Items.h"
#include "Columns.h"

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnOLEStartDragGantt1(LPDISPATCH Data, long FAR* AllowedEffects)
{
 CItems items = m_gantt.GetItems();
 long nCount = items.GetSelectCount(), nColumnCount =
m_gantt.GetColumns().GetCount();
 if (nCount > 0)
 {
 *AllowedEffects = /*exOLEDropEffectCopy */ 1;
 EXGANTTLib::IExDataObjectPtr spData(Data);
 if (spData !=NULL)
 {
 CString strData;
 for (long i = 0; i < nCount; i++)
 {
 COleVariant vtItem(items.GetSelectedItem(i));
 for (long j = 0; j < nColumnCount; j++)
 strData += V2S(&items.GetCellCaption(vtItem, COleVariant(j))) + "\t";
 }
 strData += "\r\n";
 spData->SetData(COleVariant(strData), COleVariant((long)EXGANTTLib::exCFText)
);
 }
 }

}

The sample saves data as CF_TEXT format (EXGANTTLib::exCFText). The data is a text,
where each item is separated by "\r\n" (new line), and each cell is separated by "\t" (TAB
charcater). Of course, data can be saved as you want. The sample only gives an idea of
what and how it could be done. The sample uses the #import statement to import the
control's type library, including definitions for ExDataObject and ExDataObjectFiles that are
required to fill data to be dragged. If your exgantt.dll file is located in another place than
your system folder, the path to the exgantt.dll file needs to be specified, else compiler
errors occur.

The following VB.NET sample copies the selected items to the clipboard, as soon as the
user starts dragging the items:

Private Sub AxGantt1_OLEStartDrag(ByVal sender As Object, ByVal e As
AxEXGANTTLib._IGanttEvents_OLEStartDragEvent) Handles AxGantt1.OLEStartDrag
 With AxGantt1.Items
 If (.SelectCount > 0) Then
 e.allowedEffects = 1 'exOLEDropEffectCopy
 Dim i As Integer, j As Integer, strData As String, nColumnCount As Long =
AxGantt1.Columns.Count
 For i = 0 To .SelectCount - 1
 For j = 0 To nColumnCount - 1
 strData = strData + .CellCaption(.SelectedItem(i), j) + Chr(Keys.Tab)
 Next
 Next
 strData = strData + vbCrLf
 e.data.SetData(strData, EXGANTTLib.exClipboardFormatEnum.exCFText)
 End If
 End With
End Sub

The following C# sample copies the selected items to the clipboard, as soon as the user
starts dragging the items:

private void axGantt1_OLEStartDrag(object sender,
AxEXGANTTLib._IGanttEvents_OLEStartDragEvent e)
{
 int nCount = axGantt1.Items.SelectCount;
 if (nCount > 0)

 {
 int nColumnCount = axGantt1.Columns.Count;
 e.allowedEffects = /*exOLEDropEffectCopy*/ 1;
 string strData = "";
 for (int i =0 ; i < nCount; i++)
 {
 for (int j = 0; j < nColumnCount; j++)
 {
 object strCell =
axGantt1.Items.get_CellCaption(axGantt1.Items.get_SelectedItem(i), j);
 strData += (strCell != null ? strCell.ToString() : "") + "\t";
 }
 strData += "\r\n";
 }
 e.data.SetData(strData, EXGANTTLib.exClipboardFormatEnum.exCFText);
 }
}

The following VFP sample copies the selected items to the clipboard, as soon as the user
starts dragging the items:

*** ActiveX Control Event ***
LPARAMETERS data, allowedeffects

local sData, nColumnCount, i, j
with thisform.Gantt1.Items
 if (.SelectCount() > 0)
 allowedeffects = 1 && exOLEDropEffectCopy
 sData = ""
 nColumnCount = thisform.Gantt1.Columns.Count
 for i = 0 to .SelectCount - 1
 for j = 0 to nColumnCount
 sData = sData + .CellCaption(.SelectedItem(i), j) + chr(9)
 next
 sData = sData + chr(10)+ chr(13)
 next
 data.SetData(sData, 1) && exCFText
 endif

endwith

C#

VB

private void OversizeChanged(object sender,bool Horizontal,int NewVal)
{
}

Private Sub OversizeChanged(ByVal sender As System.Object,ByVal Horizontal As
Boolean,ByVal NewVal As Integer) Handles OversizeChanged
End Sub

C#

C++

C++
Builder

private void OversizeChanged(object sender,
AxEXGANTTLib._IGanttEvents_OversizeChangedEvent e)
{
}

void OnOversizeChanged(BOOL Horizontal,long NewVal)
{
}

void __fastcall OversizeChanged(TObject *Sender,VARIANT_BOOL Horizontal,long
NewVal)
{
}

event OversizeChanged (Horizontal as Boolean, NewVal as Long)

Occurs when the right range of the scroll has been changed.

Type Description

Horizontal as Boolean A boolean expression that indicates whether the horizontal
scroll bar has changed.

NewVal as Long A long value that indicates the new scroll bar value.

If the control has no scroll bars the OffsetChanged and OversizeChanged events are not
fired. When the scroll bar range is changed the OversizeChanged event is fired. Use the
ScrollBars property of the control to determine which scroll bars are visible within the
control. The control fires the LayoutChanged event when the user resizes a column, or
change its position.

Syntax for OversizeChanged event, /NET version, on:

Syntax for OversizeChanged event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure OversizeChanged(ASender: TObject; Horizontal : WordBool;NewVal :
Integer);
begin
end;

procedure OversizeChanged(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_OversizeChangedEvent);
begin
end;

begin event OversizeChanged(boolean Horizontal,long NewVal)
end event OversizeChanged

Private Sub OversizeChanged(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_OversizeChangedEvent) Handles OversizeChanged
End Sub

Private Sub OversizeChanged(ByVal Horizontal As Boolean,ByVal NewVal As Long)
End Sub

Private Sub OversizeChanged(ByVal Horizontal As Boolean,ByVal NewVal As Long)
End Sub

LPARAMETERS Horizontal,NewVal

PROCEDURE OnOversizeChanged(oGantt,Horizontal,NewVal)
RETURN

Java…

VBSc…

<SCRIPT EVENT="OversizeChanged(Horizontal,NewVal)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OversizeChanged(Horizontal,NewVal)
End Function
</SCRIPT>

Syntax for OversizeChanged event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComOversizeChanged Boolean llHorizontal Integer llNewVal
 Forward Send OnComOversizeChanged llHorizontal llNewVal
End_Procedure

METHOD OCX_OversizeChanged(Horizontal,NewVal) CLASS MainDialog
RETURN NIL

void onEvent_OversizeChanged(boolean _Horizontal,int _NewVal)
{
}

function OversizeChanged as v (Horizontal as L,NewVal as N)
end function

function nativeObject_OversizeChanged(Horizontal,NewVal)
return

C#

VB

private void OverviewZoom(object sender)
{
}

Private Sub OverviewZoom(ByVal sender As System.Object) Handles
OverviewZoom
End Sub

C#

C++

C++
Builder

private void OverviewZoom(object sender, EventArgs e)
{
}

void OnOverviewZoom()
{
}

void __fastcall OverviewZoom(TObject *Sender)
{
}

event OverviewZoom ()
Occurs once the user selects a new time scale unit in the overview zoom area.

Type Description

The OverviewZoom event notifies your application once the user clicks or select a new
time-scale in the overview-zoom area. The UnitScale property specifies the new selected
time scale. Use the UnitWidth property to specify the width of the units in the chart area.
Use the OverviewVisible property to show the control's overview area. Use the
AllowOverviewZoom property to specify how the zoom scale is displayed on the control's
overview area.

Syntax for OverviewZoom event, /NET version, on:

Syntax for OverviewZoom event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure OverviewZoom(ASender: TObject;);
begin
end;

procedure OverviewZoom(sender: System.Object; e: System.EventArgs);
begin
end;

begin event OverviewZoom()
end event OverviewZoom

Private Sub OverviewZoom(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles OverviewZoom
End Sub

Private Sub OverviewZoom()
End Sub

Private Sub OverviewZoom()
End Sub

LPARAMETERS nop

PROCEDURE OnOverviewZoom(oGantt)
RETURN

Java…

VBSc…

<SCRIPT EVENT="OverviewZoom()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OverviewZoom()
End Function
</SCRIPT>

Syntax for OverviewZoom event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComOverviewZoom
 Forward Send OnComOverviewZoom
End_Procedure

METHOD OCX_OverviewZoom() CLASS MainDialog
RETURN NIL

void onEvent_OverviewZoom()
{
}

function OverviewZoom as v ()
end function

function nativeObject_OverviewZoom()
return

C#

VB

private void RClick(object sender)
{
}

Private Sub RClick(ByVal sender As System.Object) Handles RClick
End Sub

C#

C++

C++
Builder

Delphi

private void RClick(object sender, EventArgs e)
{
}

void OnRClick()
{
}

void __fastcall RClick(TObject *Sender)
{
}

procedure RClick(ASender: TObject;);
begin

event RClick ()

Fired when right mouse button is clicked.

Type Description

Use the RClick event to add your context menu. The RClick event notifies your application
when the user right clicks the control. Use the Click event to notify your application that the
user clicks the control (using the left mouse button). Use the MouseDown or MouseUp
event if you require the cursor position during the RClick event. Use the RClickSelect
property to specify whether the user can select items by right clicking the mouse. Use the
ItemFromPoint property to get the item from point. Use the ColumnFromPoint property to
get the column from point. Use the AllowOverviewZoom property to specify whether the
control displays the zooming scale on the overview area, when the user right clicks the
overview area.

Syntax for RClick event, /NET version, on:

Syntax for RClick event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

procedure RClick(sender: System.Object; e: System.EventArgs);
begin
end;

begin event RClick()
end event RClick

Private Sub RClick(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles RClick
End Sub

Private Sub RClick()
End Sub

Private Sub RClick()
End Sub

LPARAMETERS nop

PROCEDURE OnRClick(oGantt)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="RClick()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function RClick()
End Function
</SCRIPT>

Procedure OnComRClick
 Forward Send OnComRClick
End_Procedure

Syntax for RClick event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

METHOD OCX_RClick() CLASS MainDialog
RETURN NIL

void onEvent_RClick()
{
}

function RClick as v ()
end function

function nativeObject_RClick()
return

The following VB sample use Exontrol's ExPopupMenu Component to display a context
menu when user has clicked the right mouse button in the control's client area:

Private Sub Gantt1_RClick()
 Dim i As Long
 i = PopupMenu1.ShowAtCursor
End Sub

If you need to add a context menu based on the item you can use the MouseUp event, like
in the following VB sample:

Private Sub Gantt1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single)
 If (Button = 2) Then
 ' Converts the container coordinates to client coordinates
 X = X / Screen.TwipsPerPixelX
 Y = Y / Screen.TwipsPerPixelY
 Dim h As HITEM
 Dim c As Long, hit as Long
 ' Gets the item from (X,Y)
 h = Gantt1.ItemFromPoint(X, Y, c, hit)
 If Not (h = 0) Then
 Dim i As Long
 PopupMenu1.Items.Add Gantt1.Items.CellCaption(h, c)
 i = PopupMenu1.ShowAtCursor
 End If

https://exontrol.com/expopupmenu.jsp

 End If
End Sub

The following VC sample displays the caption of the cell where the mouse is released:

#include "Items.h"

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnMouseUpGantt1(short Button, short Shift, long X, long Y)
{
 long c = 0, hit = 0, hItem = m_gantt.GetItemFromPoint(X, Y, &c, &hit);
 if ((hItem != 0) || (c != 0))
 {
 CItems items = m_gantt.GetItems();
 COleVariant vtItem(hItem), vtColumn(c);
 CString strCaption = V2S(&items.GetCellCaption(vtItem, vtColumn)), strOutput;
 strOutput.Format("Cell: '%s', Hit = %08X\n", strCaption, hit);
 OutputDebugString(strOutput);
 }
}

The following VB.NET sample displays the caption of the cell where the mouse is released:

Private Sub AxGantt1_MouseUpEvent(ByVal sender As Object, ByVal e As
AxEXGANTTLib._IGanttEvents_MouseUpEvent) Handles AxGantt1.MouseUpEvent

 With AxGantt1
 Dim i As Integer, c As Integer, hit As EXGANTTLib.HitTestInfoEnum
 i = .get_ItemFromPoint(e.x, e.y, c, hit)
 If (Not (i = 0) Or Not (c = 0)) Then
 Debug.WriteLine("Cell: " & .Items.CellCaption(i, c) & " Hit: " & hit.ToString())
 End If
 End With
End Sub

The following C# sample displays the caption of the cell where the mouse is released:

private void axGantt1_MouseUpEvent(object sender,
AxEXGANTTLib._IGanttEvents_MouseUpEvent e)
{
 int c = 0;
 EXGANTTLib.HitTestInfoEnum hit;
 int i = axGantt1.get_ItemFromPoint(e.x, e.y, out c,out hit);
 if ((i != 0) || (c != 0))
 {
 string s = axGantt1.Items.get_CellCaption(i,c).ToString();
 s = "Cell: " + s + ", Hit: " + hit.ToString();
 System.Diagnostics.Debug.WriteLine(s);
 }
}

The following VFP sample displays the caption of the cell where the mouse is released:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

local c, hit
c = 0
hit = 0
with thisform.Gantt1
 .Items.DefaultItem = .ItemFromPoint(x, y, @c, @hit)
 if (.Items.DefaultItem <> 0) or (c <> 0)
 wait window nowait .Items.CellCaption(0, c) + " " + Str(hit)
 endif

endwith

C#

VB

private void RemoveColumn(object sender,exontrol.EXGANTTLib.Column Column)
{
}

Private Sub RemoveColumn(ByVal sender As System.Object,ByVal Column As
exontrol.EXGANTTLib.Column) Handles RemoveColumn
End Sub

C#

C++

C++
Builder

private void RemoveColumn(object sender,
AxEXGANTTLib._IGanttEvents_RemoveColumnEvent e)
{
}

void OnRemoveColumn(LPDISPATCH Column)
{
}

void __fastcall RemoveColumn(TObject *Sender,Exganttlib_tlb::IColumn *Column)
{
}

event RemoveColumn (Column as Column)

Fired before deleting a column.

Type Description
Column as Column A Column object being removed.

The RemoveColumn event is invoked when the control is about to remove a column. Use the
RemoveColumn event to release any extra data associated to the column. Use the Remove
method to remove a specific column from Columns collection. Use the Clear method to
clear the columns collection. Use the RemoveItem method to remove an item. Use the
RemoveAllItems method to remove all items. Use the CellData property to assign an extra
data to a cell. Use the ItemData property to assign an extra data to an item. Use the Data
property to assign an extra data to a column.

Syntax for RemoveColumn event, /NET version, on:

Syntax for RemoveColumn event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure RemoveColumn(ASender: TObject; Column : IColumn);
begin
end;

procedure RemoveColumn(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_RemoveColumnEvent);
begin
end;

begin event RemoveColumn(oleobject Column)
end event RemoveColumn

Private Sub RemoveColumn(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_RemoveColumnEvent) Handles RemoveColumn
End Sub

Private Sub RemoveColumn(ByVal Column As EXGANTTLibCtl.IColumn)
End Sub

Private Sub RemoveColumn(ByVal Column As Object)
End Sub

LPARAMETERS Column

PROCEDURE OnRemoveColumn(oGantt,Column)
RETURN

Java…

VBSc…

<SCRIPT EVENT="RemoveColumn(Column)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function RemoveColumn(Column)
End Function
</SCRIPT>

Syntax for RemoveColumn event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComRemoveColumn Variant llColumn
 Forward Send OnComRemoveColumn llColumn
End_Procedure

METHOD OCX_RemoveColumn(Column) CLASS MainDialog
RETURN NIL

void onEvent_RemoveColumn(COM _Column)
{
}

function RemoveColumn as v (Column as OLE::Exontrol.Gantt.1::IColumn)
end function

function nativeObject_RemoveColumn(Column)
return

C#

VB

private void RemoveItem(object sender,int Item)
{
}

Private Sub RemoveItem(ByVal sender As System.Object,ByVal Item As Integer)
Handles RemoveItem
End Sub

C#

C++

C++
Builder

private void RemoveItem(object sender,
AxEXGANTTLib._IGanttEvents_RemoveItemEvent e)
{
}

void OnRemoveItem(long Item)
{
}

void __fastcall RemoveItem(TObject *Sender,Exganttlib_tlb::HITEM Item)
{
}

event RemoveItem (Item as HITEM)

Occurs before removing an Item.

Type Description

Item as HITEM A long expression that indicates the handle of the item
being removed.

Use the RemoveItem to release any extra data that you might have used. The control fires
the RemoveItem event before removing the item. Use the RemoveItem method to remove
an item from Items collection. Use the RemoveAllItems method to clear the items collection.
Use the Remove method to remove a column. Use the Clear method to clear the columns
collection. Use the CellData property to assign an extra data to a cell. Use the ItemData
property to assign an extra data to an item. Use the Data property to assign an extra data
to a column.

Syntax for RemoveItem event, /NET version, on:

Syntax for RemoveItem event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure RemoveItem(ASender: TObject; Item : HITEM);
begin
end;

procedure RemoveItem(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_RemoveItemEvent);
begin
end;

begin event RemoveItem(long Item)
end event RemoveItem

Private Sub RemoveItem(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_RemoveItemEvent) Handles RemoveItem
End Sub

Private Sub RemoveItem(ByVal Item As EXGANTTLibCtl.HITEM)
End Sub

Private Sub RemoveItem(ByVal Item As Long)
End Sub

LPARAMETERS Item

PROCEDURE OnRemoveItem(oGantt,Item)
RETURN

Java…

VBSc…

<SCRIPT EVENT="RemoveItem(Item)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function RemoveItem(Item)
End Function
</SCRIPT>

Syntax for RemoveItem event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComRemoveItem HITEM llItem
 Forward Send OnComRemoveItem llItem
End_Procedure

METHOD OCX_RemoveItem(Item) CLASS MainDialog
RETURN NIL

void onEvent_RemoveItem(int _Item)
{
}

function RemoveItem as v (Item as OLE::Exontrol.Gantt.1::HITEM)
end function

function nativeObject_RemoveItem(Item)
return

C#

VB

private void ScrollButtonClick(object sender,exontrol.EXGANTTLib.ScrollBarEnum
ScrollBar,exontrol.EXGANTTLib.ScrollPartEnum ScrollPart)
{
}

Private Sub ScrollButtonClick(ByVal sender As System.Object,ByVal ScrollBar As
exontrol.EXGANTTLib.ScrollBarEnum,ByVal ScrollPart As
exontrol.EXGANTTLib.ScrollPartEnum) Handles ScrollButtonClick
End Sub

C# private void ScrollButtonClick(object sender,
AxEXGANTTLib._IGanttEvents_ScrollButtonClickEvent e)
{
}

event ScrollButtonClick (ScrollBar as ScrollBarEnum, ScrollPart as
ScrollPartEnum)
Occurs when the user clicks a button in the scrollbar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that specifies the scroll bar
being clicked.

ScrollPart as ScrollPartEnum A ScrollPartEnum expression that indicates the part of the
scroll being clicked.

Use the ScrollButtonClick event to notify your application that the user clicks a button in the
control's scrollbar. The ScrollButtonClick event is fired when the user clicks and releases
the mouse over an enabled part of the scroll bar. Use the ScrollBars property to specify the
visible scrollbars in the control. Use the ScrollPartVisible property to add or remove
buttons/parts in the control's scrollbar. Use the ScrollPartEnable property to specify enable
or disable parts in the control's scrollbar. Use the ScrolPartCaption property to specify the
caption of the scroll's part. Use the OffsetChanged event to notify your application that the
scroll position is changed. Use the OversizeChanged event to notify your application
whether the range for a specified scroll bar is changed. Use the ScrollPos property to
specify the position for the control's scroll bar. Use the Background property to change the
visual appearance for any part in the control's scroll bar.

Syntax for ScrollButtonClick event, /NET version, on:

Syntax for ScrollButtonClick event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnScrollButtonClick(long ScrollBar,long ScrollPart)
{
}

void __fastcall ScrollButtonClick(TObject *Sender,Exganttlib_tlb::ScrollBarEnum
ScrollBar,Exganttlib_tlb::ScrollPartEnum ScrollPart)
{
}

procedure ScrollButtonClick(ASender: TObject; ScrollBar :
ScrollBarEnum;ScrollPart : ScrollPartEnum);
begin
end;

procedure ScrollButtonClick(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_ScrollButtonClickEvent);
begin
end;

begin event ScrollButtonClick(long ScrollBar,long ScrollPart)
end event ScrollButtonClick

Private Sub ScrollButtonClick(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_ScrollButtonClickEvent) Handles ScrollButtonClick
End Sub

Private Sub ScrollButtonClick(ByVal ScrollBar As
EXGANTTLibCtl.ScrollBarEnum,ByVal ScrollPart As EXGANTTLibCtl.ScrollPartEnum)
End Sub

Private Sub ScrollButtonClick(ByVal ScrollBar As Long,ByVal ScrollPart As Long)
End Sub

LPARAMETERS ScrollBar,ScrollPart

PROCEDURE OnScrollButtonClick(oGantt,ScrollBar,ScrollPart)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="ScrollButtonClick(ScrollBar,ScrollPart)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ScrollButtonClick(ScrollBar,ScrollPart)
End Function
</SCRIPT>

Procedure OnComScrollButtonClick OLEScrollBarEnum llScrollBar
OLEScrollPartEnum llScrollPart
 Forward Send OnComScrollButtonClick llScrollBar llScrollPart
End_Procedure

METHOD OCX_ScrollButtonClick(ScrollBar,ScrollPart) CLASS MainDialog
RETURN NIL

void onEvent_ScrollButtonClick(int _ScrollBar,int _ScrollPart)
{
}

function ScrollButtonClick as v (ScrollBar as
OLE::Exontrol.Gantt.1::ScrollBarEnum,ScrollPart as
OLE::Exontrol.Gantt.1::ScrollPartEnum)
end function

function nativeObject_ScrollButtonClick(ScrollBar,ScrollPart)
return

Syntax for ScrollButtonClick event, /COM version (others), on:

The following VB sample displays the identifier of the scroll's button being clicked:

With Gantt1
 .BeginUpdate
 .ScrollBars = exDisableBoth
 .ScrollPartVisible(exVScroll, exLeftB1Part Or exRightB1Part) = True
 .ScrollPartCaption(exVScroll, exLeftB1Part) = "1"

 .ScrollPartCaption(exVScroll, exRightB1Part) = "2"
 .EndUpdate
End With

Private Sub Gantt1_ScrollButtonClick(ByVal ScrollPart As EXGANTTLibCtl.ScrollPartEnum)
 MsgBox (ScrollPart)
End Sub

The following VB.NET sample displays the identifier of the scroll's button being clicked:

With AxGantt1
 .BeginUpdate()
 .ScrollBars = EXGANTTLib.ScrollBarsEnum.exDisableBoth
 .set_ScrollPartVisible(EXGANTTLib.ScrollBarEnum.exVScroll,
EXGANTTLib.ScrollPartEnum.exLeftB1Part Or EXGANTTLib.ScrollPartEnum.exRightB1Part,
True)
 .set_ScrollPartCaption(EXGANTTLib.ScrollBarEnum.exVScroll,
EXGANTTLib.ScrollPartEnum.exLeftB1Part, "1")
 .set_ScrollPartCaption(EXGANTTLib.ScrollBarEnum.exVScroll,
EXGANTTLib.ScrollPartEnum.exRightB1Part, "2")
 .EndUpdate()
End With

Private Sub AxGantt1_ScrollButtonClick(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_ScrollButtonClickEvent) Handles AxGantt1.ScrollButtonClick
 MessageBox.Show(e.scrollPart.ToString())
End Sub

The following C# sample displays the identifier of the scroll's button being clicked:

axGantt1.BeginUpdate();
axGantt1.ScrollBars = EXGANTTLib.ScrollBarsEnum.exDisableBoth;
axGantt1.set_ScrollPartVisible(EXGANTTLib.ScrollBarEnum.exVScroll,
EXGANTTLib.ScrollPartEnum.exLeftB1Part | EXGANTTLib.ScrollPartEnum.exRightB1Part,
true);
axGantt1.set_ScrollPartCaption(EXGANTTLib.ScrollBarEnum.exVScroll,
EXGANTTLib.ScrollPartEnum.exLeftB1Part , "1");
axGantt1.set_ScrollPartCaption(EXGANTTLib.ScrollBarEnum.exVScroll,

EXGANTTLib.ScrollPartEnum.exRightB1Part, "2");
axGantt1.EndUpdate();

private void axGantt1_ScrollButtonClick(object sender,
AxEXGANTTLib._IGanttEvents_ScrollButtonClickEvent e)
{
 MessageBox.Show(e.scrollPart.ToString());
}

The following C++ sample displays the identifier of the scroll's button being clicked:

m_gantt.BeginUpdate();
m_gantt.SetScrollBars(15 /*exDisableBoth*/);
m_gantt.SetScrollPartVisible(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ | 32
/*exRightB1Part*/, TRUE);
m_gantt.SetScrollPartCaption(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ , _T("
1"));
m_gantt.SetScrollPartCaption(0 /*exVScroll*/, 32 /*exRightB1Part*/ , _T("
2"));
m_gantt.EndUpdate();

void OnScrollButtonClickGantt1(long ScrollPart)
{
 CString strFormat;
 strFormat.Format(_T("%i"), ScrollPart);
 MessageBox(strFormat);
}

The following VFP sample displays the identifier of the scroll's button being clicked:

With thisform.Gantt1
 .BeginUpdate
 .ScrollBars = 15
 .ScrollPartVisible(0, bitor(32768,32)) = .t.
 .ScrollPartCaption(0,32768) = "1"
 .ScrollPartCaption(0, 32) = "2"
 .EndUpdate
EndWith

*** ActiveX Control Event ***
LPARAMETERS scrollpart

wait window nowait ltrim(str(scrollpart))

C#

VB

private void SelectionChanged(object sender)
{
}

Private Sub SelectionChanged(ByVal sender As System.Object) Handles
SelectionChanged
End Sub

C#

C++

C++
Builder

private void SelectionChanged(object sender, EventArgs e)
{
}

void OnSelectionChanged()
{
}

void __fastcall SelectionChanged(TObject *Sender)
{
}

event SelectionChanged ()

Fired after a new item has been selected.

Type Description

Use the SelectionChanged event to notify your application that the user selects an item
(that's selectable). Use the SelectableItem property to specify the user can select an item.
The control supports single or multiple selection as well. When an item is selected or
unselected the control fires the SelectionChanged event. Use the SingleSel property to
specify if your control supports single or multiple selection. Use the SelectCount property to
get the number of selected items. Use the SelectedItem property to get the selected item.
Use the SelectItem to select or unselect a specified item. Use the FocusItem property to
get the focused item. If the control supports only single selection, you can use the
FocusItem property to get the selected/focused item because they are always the same.
Use the SelForeColor and SelBackColor properties to specify colors for selected items.

Syntax for SelectionChanged event, /NET version, on:

Syntax for SelectionChanged event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure SelectionChanged(ASender: TObject;);
begin
end;

procedure SelectionChanged(sender: System.Object; e: System.EventArgs);
begin
end;

begin event SelectionChanged()
end event SelectionChanged

Private Sub SelectionChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles SelectionChanged
End Sub

Private Sub SelectionChanged()
End Sub

Private Sub SelectionChanged()
End Sub

LPARAMETERS nop

PROCEDURE OnSelectionChanged(oGantt)
RETURN

Java…

VBSc…

<SCRIPT EVENT="SelectionChanged()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function SelectionChanged()
End Function
</SCRIPT>

Syntax for SelectionChanged event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComSelectionChanged
 Forward Send OnComSelectionChanged
End_Procedure

METHOD OCX_SelectionChanged() CLASS MainDialog
RETURN NIL

void onEvent_SelectionChanged()
{
}

function SelectionChanged as v ()
end function

function nativeObject_SelectionChanged()
return

The following VB sample displays the selected items:

Private Sub Gantt1_SelectionChanged()
 On Error Resume Next
 Dim h As HITEM
 Dim i As Long, j As Long, nCols As Long, nSels As Long
 nCols = Gantt1.Columns.Count
 With Gantt1.Items
 nSels = .SelectCount
 For i = 0 To nSels - 1
 Dim s As String
 For j = 0 To nCols - 1
 s = s + .CellCaption(.SelectedItem(i), j) + Chr(9)
 Next
 Debug.Print s
 Next
 End With
End Sub

The following VB sample expands programmatically items when the selection is changed:

Private Sub Gantt1_SelectionChanged()
 Gantt1.Items.ExpandItem(Gantt1.Items.SelectedItem()) = True
End Sub

The following VB sample displays the selected items:

Private Sub Gantt1_SelectionChanged()
 Dim i As Long
 With Gantt1.Items
 For i = 0 To .SelectCount - 1
 Debug.Print .CellCaption(.SelectedItem(i), 0)
 Next
 End With
End Sub

The following VC sample displays the selected items:

#include "Items.h"

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnSelectionChangedGantt1()
{
 CItems items = m_gantt.GetItems();
 for (long i = 0; i < items.GetSelectCount(); i++)
 {

 COleVariant vtItem(items.GetSelectedItem(i));
 CString strOutput;
 strOutput.Format("%s\n", V2S(&items.GetCellCaption(vtItem, COleVariant((long)0)
)));
 OutputDebugString(strOutput);
 }
}

The following VB.NET sample displays the selected items:

Private Sub AxGantt1_SelectionChanged(ByVal sender As Object, ByVal e As
System.EventArgs) Handles AxGantt1.SelectionChanged
 With AxGantt1.Items
 Dim i As Integer
 For i = 0 To .SelectCount - 1
 Debug.WriteLine(.CellCaption(.SelectedItem(i), 0))
 Next
 End With
End Sub

The following C# sample displays the selected items:

private void axGantt1_SelectionChanged(object sender, System.EventArgs e)
{
 for (int i = 0; i < axGantt1.Items.SelectCount - 1; i++)
 {
 object cell = axGantt1.Items.get_CellCaption(axGantt1.Items.get_SelectedItem(i), 0);
 System.Diagnostics.Debug.WriteLine(cell != null ? cell.ToString() : "");
 }
}

The following VFP sample displays the selected items:

*** ActiveX Control Event ***

with thisform.Gantt1.Items
 for i = 0 to .SelectCount - 1
 .DefaultItem = .SelectedItem(i)
 wait window nowait .CellCaption(0, 0)

 next
endwith

C#

VB

private void Sort(object sender)
{
}

Private Sub Sort(ByVal sender As System.Object) Handles Sort
End Sub

C#

C++

C++
Builder

Delphi

private void Sort(object sender, EventArgs e)
{
}

void OnSort()
{
}

void __fastcall Sort(TObject *Sender)
{
}

procedure Sort(ASender: TObject;);
begin

event Sort ()
Occurs when the control sorts a column.

Type Description

The control fires the Sort event when the control sorts a column (the user clicks the
column's head) or when the sorting position is changed in the control's sort bar. Use the
SortOnClick property to specify the action that control executes when the user clicks the
column's head. Use the SortBarVisible property to show the control's sort bar. Use the
SortOrder property to sorts a column at runtime. Use the SortPosition property to
determine the position of the column in the sorting columns collection. Use the
ItemBySortPosition property to access a column giving its position in the sorting columns
collection. Use the Sort event to sort the data when the SortOnClk property is exUserSort.
Use the SingleSort property to allow sorting by single or multiple columns.

Syntax for Sort event, /NET version, on:

Syntax for Sort event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

procedure Sort(sender: System.Object; e: System.EventArgs);
begin
end;

begin event Sort()
end event Sort

Private Sub Sort(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Sort
End Sub

Private Sub Sort()
End Sub

Private Sub Sort()
End Sub

LPARAMETERS nop

PROCEDURE OnSort(oGantt)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="Sort()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Sort()
End Function
</SCRIPT>

Procedure OnComSort
 Forward Send OnComSort
End_Procedure

Syntax for Sort event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

METHOD OCX_Sort() CLASS MainDialog
RETURN NIL

void onEvent_Sort()
{
}

function Sort as v ()
end function

function nativeObject_Sort()
return

The following VB sample displays the list of columns being sorted:

Private Sub Gantt1_Sort()
 Dim s As String, i As Long, c As Column
 i = 0
 With Gantt1.Columns
 Set c = .ItemBySortPosition(i)
 While (Not c Is Nothing)
 s = s + """" & c.Caption & """ " & IIf(c.SortOrder = SortAscending, "A", "D") & " "
 i = i + 1
 Set c = .ItemBySortPosition(i)
 Wend
 End With
 s = "Sort: " & s
 Debug.Print s
End Sub

The following VC sample displays the list of columns being sorted:

void OnSortGantt1()
{
 CString strOutput;
 CColumns columns = m_gantt.GetColumns();
 long i = 0;
 CColumn column = columns.GetItemBySortPosition(COleVariant(i));

 while (column.m_lpDispatch)
 {
 strOutput += "\"" + column.GetCaption() + "\" " + (column.GetSortOrder() == 1 ?
"A" : "D") + " ";
 i++;
 column = columns.GetItemBySortPosition(COleVariant(i));
 }
 OutputDebugString(strOutput);
}

The following VB.NET sample displays the list of columns being sorted:

Private Sub AxGantt1_Sort(ByVal sender As Object, ByVal e As System.EventArgs) Handles
AxGantt1.Sort
 With AxGantt1
 Dim s As String, i As Integer, c As EXGANTTLib.Column
 i = 0
 With AxGantt1.Columns
 c = .ItemBySortPosition(i)
 While (Not c Is Nothing)
 s = s + """" & c.Caption & """ " & IIf(c.SortOrder =
EXGANTTLib.SortOrderEnum.SortAscending, "A", "D") & " "
 i = i + 1
 c = .ItemBySortPosition(i)
 End While
 End With
 s = "Sort: " & s
 Debug.WriteLine(s)
 End With
End Sub

The following C# sample displays the list of columns being sorted:

private void axGantt1_Sort(object sender, System.EventArgs e)
{
 string strOutput = "";
 int i = 0;
 EXGANTTLib.Column column = axGantt1.Columns.get_ItemBySortPosition(i);

 while (column != null)
 {
 strOutput += column.Caption + " " + (column.SortOrder ==
EXGANTTLib.SortOrderEnum.SortAscending ? "A" : "D") + " ";
 column = axGantt1.Columns.get_ItemBySortPosition(++i);
 }
 Debug.WriteLine(strOutput);
}

The following VFP sample displays the list of columns being sorted (the code is listed in the
Sort event) :

local s, i, c
i = 0
s = ""
With thisform.Gantt1.Columns
 c = .ItemBySortPosition(i)
 do While (!isnull(c))
 with c
 s = s + "'" + .Caption
 s = s + "' " + IIf(.SortOrder = 1, "A", "D") + " "
 i = i + 1
 endwith
 c = .ItemBySortPosition(i)
 enddo
endwith
s = "Sort: " + s
wait window nowait s

C#

VB

private void ToolTip(object sender,int Item,int ColIndex,ref bool Visible,ref int X,ref
int Y,int CX,int CY)
{
}

Private Sub ToolTip(ByVal sender As System.Object,ByVal Item As Integer,ByVal
ColIndex As Integer,ByRef Visible As Boolean,ByRef X As Integer,ByRef Y As
Integer,ByVal CX As Integer,ByVal CY As Integer) Handles ToolTip
End Sub

event ToolTip (Item as HITEM, ColIndex as Long, Visible as Boolean, X as
Long, Y as Long, CX as Long, CY as Long)
Fired when the control prepares the object's tooltip.

Type Description

Item as HITEM A long expression that indicates the item's handle or 0 if
the cursor is not over the cell.

ColIndex as Long A long expression that indicates the column's index.

Visible as Boolean A boolean expression that indicates whether the object's
tooltip is visible.

X as Long
A long expression that indicates the left location of the
tooltip window. The x values is always expressed in
screen coordinates.

Y as Long
A long expression that indicates the top location of the
tooltip window. The y values is always expressed in
screen coordinates.

CX as Long A long expression that indicates the width of the tooltip
window.

CY as Long A long expression that indicates the height of the tooltip
window.

The ToolTip event notifies your application that the control prepares the tooltip for a cell or
column. Use the ToolTip event to change the default position of the tooltip window. Use the
CellToolTip property to specify the cell's tooltip. Use the Tooltip property to assign a tooltip
to a column. Use the ToolTipWidth property to specify the width of the tooltip window.

Syntax for ToolTip event, /NET version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

private void ToolTip(object sender, AxEXGANTTLib._IGanttEvents_ToolTipEvent e)
{
}

void OnToolTip(long Item,long ColIndex,BOOL FAR* Visible,long FAR* X,long FAR*
Y,long CX,long CY)
{
}

void __fastcall ToolTip(TObject *Sender,Exganttlib_tlb::HITEM Item,long
ColIndex,VARIANT_BOOL * Visible,long * X,long * Y,long CX,long CY)
{
}

procedure ToolTip(ASender: TObject; Item : HITEM;ColIndex : Integer;var Visible :
WordBool;var X : Integer;var Y : Integer;CX : Integer;CY : Integer);
begin
end;

procedure ToolTip(sender: System.Object; e:
AxEXGANTTLib._IGanttEvents_ToolTipEvent);
begin
end;

begin event ToolTip(long Item,long ColIndex,boolean Visible,long X,long Y,long
CX,long CY)
end event ToolTip

Private Sub ToolTip(ByVal sender As System.Object, ByVal e As
AxEXGANTTLib._IGanttEvents_ToolTipEvent) Handles ToolTip
End Sub

Private Sub ToolTip(ByVal Item As EXGANTTLibCtl.HITEM,ByVal ColIndex As
Long,Visible As Boolean,X As Long,Y As Long,ByVal CX As Long,ByVal CY As Long)
End Sub

Private Sub ToolTip(ByVal Item As Long,ByVal ColIndex As Long,Visible As

Syntax for ToolTip event, /COM version, on:

VFP

Xbas…

Boolean,X As Long,Y As Long,ByVal CX As Long,ByVal CY As Long)
End Sub

LPARAMETERS Item,ColIndex,Visible,X,Y,CX,CY

PROCEDURE OnToolTip(oGantt,Item,ColIndex,Visible,X,Y,CX,CY)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="ToolTip(Item,ColIndex,Visible,X,Y,CX,CY)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ToolTip(Item,ColIndex,Visible,X,Y,CX,CY)
End Function
</SCRIPT>

Procedure OnComToolTip HITEM llItem Integer llColIndex Boolean llVisible Integer
llX Integer llY Integer llCX Integer llCY
 Forward Send OnComToolTip llItem llColIndex llVisible llX llY llCX llCY
End_Procedure

METHOD OCX_ToolTip(Item,ColIndex,Visible,X,Y,CX,CY) CLASS MainDialog
RETURN NIL

void onEvent_ToolTip(int _Item,int _ColIndex,COMVariant /*bool*/
_Visible,COMVariant /*long*/ _X,COMVariant /*long*/ _Y,int _CX,int _CY)
{
}

function ToolTip as v (Item as OLE::Exontrol.Gantt.1::HITEM,ColIndex as N,Visible as
L,X as N,Y as N,CX as N,CY as N)
end function

function nativeObject_ToolTip(Item,ColIndex,Visible,X,Y,CX,CY)

Syntax for ToolTip event, /COM version (others), on:

return

Expressions

An expression is a string which defines a formula or criteria, that's evaluated at runtime. The
expression may be a combination of variables, constants, strings, dates and
operators/functions. For instance 1000 format `` gets 1,000.00 for US format, while
1.000,00 is displayed for German format.

The Exontrol's eXPression component is a syntax-editor that helps you to define, view, edit
and evaluate expressions. Using the eXPression component you can easily view or check if
the expression you have used is syntactically correct, and you can evaluate what is the
result you get giving different values to be tested. The Exontrol's eXPression component
can be used as an user-editor, to configure your applications.

Usage examples:

100 + 200, adds numbers and returns 300
"100" + 200, concatenates the strings, and returns "100200"
currency(1000) displays the value in currency format based on the current regional
setting, such as "$1,000.00" for US format.
1000 format `` gets 1,000.00 for English format, while 1.000,00 is displayed for
German format
1000 format `2|.|3|,` always gets 1,000.00 no matter of settings in the control panel.
upper("string") converts the giving string in uppercase letters, such as "STRING"
date(dateS('3/1/' + year(9:=#1/1/2018#)) + ((1:=(((255 - 11 * (year(=:9) mod 19)) - 21)
mod 30) + 21) + (=:1 > 48 ? -1 : 0) + 6 - ((year(=:9) + int(year(=:9) / 4)) + =:1 + (=:1
> 48 ? -1 : 0) + 1) mod 7)) returns the date the Easter Sunday will fall, for year 2018.
In this case the expression returns #4/1/2018#. If #1/1/2018# is replaced with
#1/1/2019#, the expression returns #4/21/2019#.

Listed bellow are all predefined constants, operators and functions the general-expression
supports:

The constants can be represented as:

numbers in decimal format (where dot character specifies the decimal separator).
For instance: -1, 100, 20.45, .99 and so on
numbers in hexa-decimal format (preceded by 0x or 0X sequence), uses sixteen
distinct symbols, most often the symbols 0-9 to represent values zero to nine, and A,
B, C, D, E, F (or alternatively a, b, c, d, e, f) to represent values ten to fifteen.
Hexadecimal numerals are widely used by computer system designers and
programmers. As each hexadecimal digit represents four binary digits (bits), it allows a
more human-friendly representation of binary-coded values. For instance, 0xFF,

https://exontrol.com/expression.jsp

0x00FF00, and so so.
date-time in format #mm/dd/yyyy hh:mm:ss#, For instance, #1/31/2001 10:00#
means the January 31th, 2001, 10:00 AM
string, if it starts / ends with any of the ' or ` or " characters. If you require the starting
character inside the string, it should be escaped (preceded by a \ character). For
instance, `Mihai`, "Filimon", 'has', "\"a quote\"", and so on

The predefined constants are:

bias (BIAS constant), defines the difference, in minutes, between Coordinated
Universal Time (UTC) and local time. For example, Middle European Time (MET,
GMT+01:00) has a time zone bias of "-60" because it is one hour ahead of UTC.
Pacific Standard Time (PST, GMT-08:00) has a time zone bias of "+480" because it is
eight hours behind UTC. For instance, date(value - bias/24/60) converts the UTC time
to local time, or date(date('now') + bias/24/60) converts the current local time to UTC
time. For instance, "date(value - bias/24/60)" converts the value date-time from UTC to
local time, while "date(value + bias/24/60)" converts the local-time to UTC time.
dpi (DPI constant), specifies the current DPI setting. and it indicates the minimum
value between dpix and dpiy constants. For instance, if current DPI setting is 100%,
the dpi constant returns 1, if 150% it returns 1.5, and so on. For instance, the
expression value * dpi returns the value if the DPI setting is 100%, or value * 1.5 in
case, the DPI setting is 150%
dpix (DPIX constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpix constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpix returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%
dpiy (DPIY constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpiy constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpiy returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported binary range operators, all these with the same priority 5, are :

a MIN b (min operator), indicates the minimum value, so a MIN b returns the value of
a, if it is less than b, else it returns b. For instance, the expression value MIN 10
returns always a value greater than 10.
a MAX b (max operator), indicates the maximum value, so a MAX b returns the value
of a, if it is greater than b, else it returns b. For instance, the expression value MAX
100 returns always a value less than 100.

The supported binary operators, all these with the same priority 0, are :

:= (Store operator), stores the result of expression to variable. The syntax for :=
operator is

variable := expression

where variable is a integer between 0 and 9. You can use the =: operator to restore
any stored variable (please make the difference between := and =:). For instance,
(0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and prints zero
if it is 0, else the converted number. Please pay attention that the := and =: are two
distinct operators, the first for storing the result into a variable, while the second for
restoring the variable

=: (Restore operator), restores the giving variable (previously saved using the store
operator). The syntax for =: operator is

=: variable

where variable is a integer between 0 and 9. You can use the := operator to store the
value of any expression (please make the difference between := and =:). For

instance, (0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and
prints zero if it is 0, else the converted number. Please pay attention that the := and =:
are two distinct operators, the first for storing the result into a variable, while the
second for restoring the variable

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for ? operator is

expression ? true_part : false_part

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the %0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found') returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

expression array (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D') is equivalent with month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D').

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

expression in (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the value in (11,22,33,44,13) is equivalent with
(expression = 11) or (expression = 22) or (expression = 33) or (expression = 44) or
(expression = 13). The in operator is not a time consuming as the equivalent or version
is, so when you have large number of constant elements it is recommended using the
in operator. Shortly, if the collection of elements has 1000 elements the in operator
could take up to 8 operations in order to find if an element fits the set, else if the or

statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

expression switch (default,c1,c2,c3,...,cn)

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the %0 switch ('not found',1,4,7,9,11) gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

expression case ([default : default_expression ;] c1 : expression1 ; c2 : expression2 ; c3 :
expression3 ;....)

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1) indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8) statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions. Obviously, the priority of the operations inside the expression is
determined by () parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. The type operator may return
any of the following: 0 - empty (not initialized), 1 - null, 2 - short, 3 - long, 4 - float, 5 -
double, 6 - currency, 7 - date, 8 - string, 9 - object, 10 - error, 11 - boolean, 12 -
variant, 13 - any, 14 - decimal, 16 - char, 17 - byte, 18 - unsigned short, 19 - unsigned
long, 20 - long on 64 bits, 21 - unsigned long on 64 bites. For instance type(%1) = 8
specifies the cells (on the column with the index 1) that contains string values.
str (unary operator) converts the expression to a string. The str operator converts the
expression to a string. For instance, the str(-12.54) returns the string "-12.54".
dbl (unary operator) converts the expression to a number. The dbl operator converts
the expression to a number. For instance, the dbl("12.54") returns 12.54
date (unary operator) converts the expression to a date, based on your regional
settings. For instance, the date(``) gets the current date (no time included), the
date(`now`) gets the current date-time, while the date("01/01/2001") returns
#1/1/2001#
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS. For instance, the dateS("01/01/2001 14:00:00") returns
#1/1/2001 14:00:00#
hex (unary operator) converts the giving string from hexa-representation to a numeric
value, or converts the giving numeric value to hexa-representation as string. For
instance, hex(`FF`) returns 255, while the hex(255) or hex(0xFF) returns the `FF`
string. The hex(hex(`FFFFFFFF`)) always returns `FFFFFFFF` string, as the second
hex call converts the giving string to a number, and the first hex call converts the
returned number to string representation (hexa-representation).

The bitwise operators for numbers are:

a bitand b (binary operator) computes the AND operation on bits of a and b, and
returns the unsigned value. For instance, 0x01001000 bitand 0x10111000 returns
0x00001000.
a bitor b (binary operator) computes the OR operation on bits of a and b, and returns
the unsigned value. For instance, 0x01001000 bitor 0x10111000 returns 0x11111000.
a bitxor b (binary operator) computes the XOR (exclusive-OR) operation on bits of a
and b, and returns the unsigned value. For instance, 0x01110010 bitxor 0x10101010
returns 0x11011000.
a bitshift (b) (binary operator) shifts every bit of a value to the left if b is negative, or
to the right if b is positive, for b times, and returns the unsigned value. For instance,
128 bitshift 1 returns 64 (dividing by 2) or 128 bitshift (-1) returns 256 (multiplying by

2)
bitnot (unary operator) flips every bit of x, and returns the unsigned value. For
instance, bitnot(0x00FF0000) returns 0xFF00FFFF.

The operators for numbers are:

int (unary operator) retrieves the integer part of the number. For instance, the
int(12.54) returns 12
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2. For
instance, the round(12.54) returns 13
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument. For instance, the floor(12.54) returns 12
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2.
For instance, the abs(-12.54) returns 12.54
sin (unary operator) returns the sine of an angle of x radians. For instance, the
sin(3.14) returns 0.001593.
cos (unary operator) returns the cosine of an angle of x radians. For instance, the
cos(3.14) returns -0.999999.
asin (unary operator) returns the principal value of the arc sine of x, expressed in
radians. For instance, the 2*asin(1) returns the value of PI.
acos (unary operator) returns the principal value of the arc cosine of x, expressed in
radians. For instance, the 2*acos(0) returns the value of PI
sqrt (unary operator) returns the square root of x. For instance, the sqrt(81) returns 9.
currency (unary operator) formats the giving number as a currency string, as indicated
by the control panel. For instance, currency(value) displays the value using the current
format for the currency ie, 1000 gets displayed as $1,000.00, for US format.
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of

the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

The operators for strings are:

len (unary operator) retrieves the number of characters in the string. For instance, the
len("Mihai") returns 5.
lower (unary operator) returns a string expression in lowercase letters. For instance,
the lower("MIHAI") returns "mihai"
upper (unary operator) returns a string expression in uppercase letters. For instance,
the upper("mihai") returns "MIHAI"
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names. For instance, the proper("mihai") returns "Mihai"
ltrim (unary operator) removes spaces on the left side of a string. For instance, the
ltrim(" mihai") returns "mihai"
rtrim (unary operator) removes spaces on the right side of a string. For instance, the
rtrim("mihai ") returns "mihai"
trim (unary operator) removes spaces on both sides of a string. For instance, the
trim(" mihai ") returns "mihai"
reverse (unary operator) reverses the order of the characters in the string a. For
instance, the reverse("Mihai") returns "iahiM"
a startwith b (binary operator) specifies whether a string starts with specified string (

0 if not found, -1 if found). For instance "Mihai" startwith "Mi" returns -1
a endwith b (binary operator) specifies whether a string ends with specified string (0
if not found, -1 if found). For instance "Mihai" endwith "ai" returns -1
a contains b (binary operator) specifies whether a string contains another specified
string (0 if not found, -1 if found). For instance "Mihai" contains "ha" returns -1
a left b (binary operator) retrieves the left part of the string. For instance "Mihai" left 2
returns "Mi".
a right b (binary operator) retrieves the right part of the string. For instance "Mihai"
right 2 returns "ai"
a lfind b (binary operator) The a lfind b (binary operator) searches the first occurrence
of the string b within string a, and returns -1 if not found, or the position of the result (
zero-index). For instance "ABCABC" lfind "C" returns 2
a rfind b (binary operator) The a rfind b (binary operator) searches the last
occurrence of the string b within string a, and returns -1 if not found, or the position of
the result (zero-index). For instance "ABCABC" rfind "C" returns 5.
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on). For instance "Mihai" mid 2 returns "ihai"
a count b (binary operator) retrieves the number of occurrences of the b in a. For
instance "Mihai" count "i" returns 2.
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result. For instance, the "Mihai" replace "i" with "" returns "Mha" string, as it replaces
all "i" with nothing.
a split b (binary operator) splits the a using the separator b, and returns an array. For
instance, the weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' ' gets the
weekday as string. This operator can be used with the array.
a like b (binary operator) compares the string a against the pattern b. The pattern b
may contain wild-characters such as *, ?, # or [] and can have multiple patterns
separated by space character. In order to have the space, or any other wild-character
inside the pattern, it has to be escaped, or in other words it should be preceded by a \
character. For instance value like `F*e` matches all strings that start with F and ends
on e, or value like `a* b*` indicates any strings that start with a or b character.
a lpad b (binary operator) pads the value of a to the left with b padding pattern. For
instance, 12 lpad "0000" generates the string "0012".
a rpad b (binary operator) pads the value of a to the right with b padding pattern. For
instance, 12 lpad "____" generates the string "12__".
a concat b (binary operator) concatenates the a (as string) for b times. For instance,
"x" concat 5, generates the string "xxxxx".

The operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel. For instance, the time(#1/1/2001 13:00#) returns "1:00:00 PM"

timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance, the timeF(#1/1/2001 13:00#) returns "13:00:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel. For instance, the shortdate(#1/1/2001
13:00#) returns "1/1/2001"
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance, the shortdateF(#1/1/2001 13:00#) returns
"01/01/2001"
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format. For instance, the dateF(#01/01/2001 14:00:00#)
returns #01/01/2001 14:00:00#
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel. For instance, the longdate(#1/1/2001 13:00#)
returns "Monday, January 01, 2001"
year (unary operator) retrieves the year of the date (100,...,9999). For instance, the
year(#12/31/1971 13:14:15#) returns 1971
month (unary operator) retrieves the month of the date (1, 2,...,12). For instance, the
month(#12/31/1971 13:14:15#) returns 12.
day (unary operator) retrieves the day of the date (1, 2,...,31). For instance, the
day(#12/31/1971 13:14:15#) returns 31
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365). For instance, the yearday(#12/31/1971 13:14:15#) returns
365
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday). For instance, the weekday(#12/31/1971 13:14:15#) returns
5.
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23). For instance, the
hour(#12/31/1971 13:14:15#) returns 13
min (unary operator) retrieves the minute of the date (0, 1, ..., 59). For instance, the
min(#12/31/1971 13:14:15#) returns 14
sec (unary operator) retrieves the second of the date (0, 1, ..., 59). For instance, the
sec(#12/31/1971 13:14:15#) returns 15

The expression supports also immediate if (similar with iif in visual basic, or ? : in C++) ie
cond ? value_true : value_false, which means that once that cond is true the value_true is
used, else the value_false is used. Also, it supports variables, up to 10 from 0 to 9. For
instance, 0:="Abc" means that in the variable 0 is "Abc", and =:0 means retrieves the value
of the variable 0. For instance, the len(%0) ? (0:=(%1+%2) ? currency(=:0) else ``) : ``
gets the sum between second and third column in currency format if it is not zero, and only
if the first column is not empty. As you can see you can use the variables to avoid
computing several times the same thing (in this case the sum %1 and %2 .

OrderID EmployeeID OrderDate RequiredDate ShippedDate ShipVia FreightShipName
102485 8/4/1994 9/1/1994 8/16/1994 3 32.38 Vins et alcools Chevalier
102496 8/5/1994 9/16/1994 8/10/1994 1 11.61 Toms Spezialitäten
102504 8/8/1994 9/5/1994 8/12/1994 2 65.83 Hanari Carnes
102513 8/8/1994 9/5/1994 8/15/1994 1 41.34 Victuailles en stock
102524 8/9/1994 9/6/1994 8/11/1994 2 51.3 Supręmes délices
102533 8/10/1994 8/24/1994 8/16/1994 2 58.17 Hanari Carnes
102545 8/11/1994 9/8/1994 8/23/1994 2 22.98 Chop-suey Chinese
102559 8/12/1994 9/9/1994 8/15/1994 3 148.33 Richter Supermarkt
102563 8/15/1994 9/12/1994 8/17/1994 2 13.97 Wellington Importadora
102574 8/16/1994 9/13/1994 8/22/1994 3 81.91 HILARIÓN-Abastos
102581 8/17/1994 9/14/1994 8/23/1994 1 140.51 Ernst Handel
102594 8/18/1994 9/15/1994 8/25/1994 3 3.25 Centro comercial Moctezuma
102604 8/19/1994 9/16/1994 8/29/1994 1 55.09 Ottilies Käseladen
102614 8/19/1994 9/16/1994 8/30/1994 2 3.05 Que Delícia
102628 8/22/1994 9/19/1994 8/25/1994 3 48.29 Rattlesnake Canyon Grocery
102639 8/23/1994 9/20/1994 8/31/1994 3 146.06 Ernst Handel
102646 8/24/1994 9/21/1994 9/23/1994 3 3.67 Folk och fä HB
102652 8/25/1994 9/22/1994 9/12/1994 1 55.28 Blondel pčre et fils
102663 8/26/1994 10/7/1994 8/31/1994 3 25.73 Wartian Herkku
102674 8/29/1994 9/26/1994 9/6/1994 1 208.58 Frankenversand
102688 8/30/1994 9/27/1994 9/2/1994 3 66.29 GROSELLA-Restaurante
102695 8/31/1994 9/14/1994 9/9/1994 1 4.56 White Clover Markets
102701 9/1/1994 9/29/1994 9/2/1994 1 136.54 Wartian Herkku
102716 9/1/1994 9/29/1994 9/30/1994 2 4.54 Split Rail Beer & Ale
102726 9/2/1994 9/30/1994 9/6/1994 2 98.03 Rattlesnake Canyon Grocery
102733 9/5/1994 10/3/1994 9/12/1994 3 76.07 QUICK-Stop
102746 9/6/1994 10/4/1994 9/16/1994 1 6.01 Vins et alcools Chevalier
102751 9/7/1994 10/5/1994 9/9/1994 1 26.93 Magazzini Alimentari Riuniti
102768 9/8/1994 9/22/1994 9/14/1994 3 13.84 Tortuga Restaurante
102772 9/9/1994 10/7/1994 9/13/1994 3 125.77 Morgenstern Gesundkost
102788 9/12/1994 10/10/1994 9/16/1994 2 92.69 Berglunds snabbköp
102798 9/13/1994 10/11/1994 9/16/1994 2 25.83 Lehmanns Marktstand
102802 9/14/1994 10/12/1994 10/13/1994 1 8.98 Berglunds snabbköp
102814 9/14/1994 9/28/1994 9/21/1994 1 2.94 Romero y tomillo
102824 9/15/1994 10/13/1994 9/21/1994 1 12.69 Romero y tomillo
102833 9/16/1994 10/14/1994 9/23/1994 3 84.81 LILA-Supermercado
102844 9/19/1994 10/17/1994 9/27/1994 1 76.56 Lehmanns Marktstand
102851 9/20/1994 10/18/1994 9/26/1994 2 76.83 QUICK-Stop

102868 9/21/1994 10/19/1994 9/30/1994 3 229.24 QUICK-Stop
102878 9/22/1994 10/20/1994 9/28/1994 3 12.76 Ricardo Adocicados
102884 9/23/1994 10/21/1994 10/4/1994 1 7.45 Reggiani Caseifici
102897 9/26/1994 10/24/1994 9/28/1994 3 22.77 B's Beverages
102908 9/27/1994 10/25/1994 10/4/1994 1 79.7 Comércio Mineiro
102916 9/27/1994 10/25/1994 10/5/1994 2 6.4 Que Delícia
102921 9/28/1994 10/26/1994 10/3/1994 2 1.35 Tradiçăo Hipermercados
102931 9/29/1994 10/27/1994 10/12/1994 3 21.18 Tortuga Restaurante
102944 9/30/1994 10/28/1994 10/6/1994 2 147.26 Rattlesnake Canyon Grocery
102952 10/3/1994 10/31/1994 10/11/1994 2 1.15 Vins et alcools Chevalier
102966 10/4/1994 11/1/1994 10/12/1994 1 0.12 LILA-Supermercado
102975 10/5/1994 11/16/1994 10/11/1994 2 5.74 Blondel pčre et fils
102986 10/6/1994 11/3/1994 10/12/1994 2 168.22 Hungry Owl All-Night Grocers
102994 10/7/1994 11/4/1994 10/14/1994 2 29.76 Ricardo Adocicados
103002 10/10/199411/7/1994 10/19/1994 2 17.68 Magazzini Alimentari Riuniti
103018 10/10/199411/7/1994 10/18/1994 2 45.08 Die Wandernde Kuh
103024 10/11/1994 11/8/1994 11/9/1994 2 6.27 Supręmes délices
103037 10/12/199411/9/1994 10/19/1994 2 107.83 Godos Cocina Típica
103041 10/13/199411/10/1994 10/18/1994 2 63.79 Tortuga Restaurante
103058 10/14/199411/11/1994 11/9/1994 3 257.62 Old World Delicatessen
103061 10/17/199411/14/1994 10/24/1994 3 7.56 Romero y tomillo
103072 10/18/199411/15/1994 10/26/1994 2 0.56 Lonesome Pine Restaurant
103087 10/19/199411/16/1994 10/25/1994 3 1.61 Ana Trujillo Emparedados y helados
103093 10/20/199411/17/1994 11/23/1994 1 47.3 Hungry Owl All-Night Grocers

103108 10/21/199411/18/1994 10/28/1994 2 17.52 The Big Cheese

10311 1 10/21/199411/4/1994 10/27/1994 3 24.69 Du monde entier

method
Items.RemoveItem
(Item
as
HITEM)

Removes
a
specific
item.

Type Description

Item as HITEM

A
long
expression
that
indicates
the
handle
of
the
item
being
removed.

The
RemoveItem
method
removes
an
item.
The
RemoveItem
method
does
not
remove
the
item,
if
it
contains
child
items.
The
following
sample
removes
the
first

The
following
VB
sample
removes
recursively
an
item:

Private

Sub

RemoveItemRec(ByVal

t

As

EXGANTTLibCtl.Gantt,

ByVal

h

As

HITEM)

The
following
C++
sample
removes
recursively
an
item:

void

RemoveItemRec(

CGantt*

pGantt,

long

hItem

)

{

if

The
following
VB.NET
sample
removes
recursively
an
item:

Shared

Sub

RemoveItemRec(ByVal

t

As

AxEXGANTTLib.AxGantt,

ByVal

h

The
following
C#
sample
removes
recursively
an
item:

internal

void

RemoveItemRec(AxEXGANTTLib.AxGantt

gantt,

int

hItem)

{

The
following
VFP
sample
removes
recursively
an
item
(
removeitemrec
method
):

LPARAMETERS

h

with

thisform.Gantt1

item:
Gantt1.Items.RemoveItem
Gantt1.Items(0).
Use
the
RemoveAllItems
method
to
remove
all
items
in
the
control.
Use
the
BeginUpdate
and
EndUpdate
methods
to
maintain
performance
while
removing
the
items. The
RemoveItem
method
can't
remove
an
item
that's
locked.
Instead
you
can
use
the
LockedItemCount
property
to

add
or
remove
locked
items.
Use
the
IsItemLocked
property
to
check
whether
an
item
is
locked.
The
RemoveSelection
method
removes
the
selected
items
(including
the
descendents).

method
Items.UnselectAll
()

Unselects
all
items. Type Description

Use
the
UnselectAll
method
to
unselect
all
items
in
the
list.
The
UnselectAll
method
has
effect
only
if
the
SingleSel
property
is
False,
if
the
control
supports
multiple
items
selection.
Use
the
SelectAll
method
to
select
all

items
in
the
list.
Use
the
SelectItem
property
to
select
or
unselect
a
specified
item.
Use
the
SelectedItem
property
to
retrieve
a
value
that
indicates
whether
the
item
is
selected
or
unselected.
Use
the
SelectCount
property
to
retrieve
the
number
of
selected
items.

The
RemoveSelection
method
removes
the
selected
items
(including
the
descendents)

method
Items.RemoveAllItems
()

Removes
all
items
from
the
control.

Type Description

Use
the
RemoveAllItems
method
to
remove
all
items
in
the
control.
Use
the
Clear
method
to
remove
all
columns
in
the
control.
Use
the
RemoveItem
method
to
remove
a
single
item
in
the
control.

method
Gantt.BeginUpdate
()

Maintains
performance
when
items
are
added
to
the
control
one
at
a
time.

Type Description

This
method
prevents
the
control
from
painting
until
the
EndUpdate
method
is
called.
The
BeginUpdate
and
EndUpdate
methods
increases
the
speed
of
loading
your
items,
by
preventing
painting
the
control
when
it
suffers
any
change.
Once
that

The
following
VB
sample
prevents
painting
the
control
while
adding
data
from
a
database:

Set

rs

=

CreateObject("ADODB.Recordset")

rs.Open

"Orders",

"Provider=Microsoft.Jet.OLEDB.3.51;Data

Source=

D:\Program

Files\Microsoft

Visual

Studio\VB98\NWIND.MDB",

3

'

Opens

the

The
following
C++
sample
prevents
refreshing
the
control
while
adding
columns
and
items
from
an
ADODB
recordset:

#include

"Items.h"

#include

"Columns.h"

#include

"Column.h"

#pragma

warning(

disable

:

4146

)

#import

<msado15.dll>

The
sample
adds
a
column
for
each
field
in
the
recordset,
and
add
a
new
items
for
each
record.
You
can
use
the
DataSource
property
to
bind
a
recordset
to
the

The
following
VB.NET
sample
prevents
refreshing
the
control
while
adding
columns
and
items:

With

AxGantt1

.BeginUpdate()

With

.Columns

The
following
C#
sample
prevents
refreshing
the
control
while
adding
columns
and
items:

axGantt1.BeginUpdate();

EXGANTTLib.Columns

columns

=axGantt1.Columns;

columns.Add("Column

1");

columns.Add("Column

2");

EXGANTTLib.Items

items

=

axGantt1.Items;

The
following
VFP
sample
prevents
refreshing
the
control
while
adding
new
columns
and
items:

thisform.Gantt1.BeginUpdate()

with

thisform.Gantt1.Columns

.Add("Column

1")

.Add("Column

2")

endwith

with

thisform.Gantt1.Items

BeginUpdate
method
was
called,
you
have
to
make
sure
that
EndUpdate
method
will
be
called
too.

control.
The
#import
statement
imports
definitions
for
ADODB
type
library,
that's
used
to
fill
the
control.

method
Gantt.EndUpdate
()

Resumes
painting
the
control
after
painting
is
suspended
by
the
BeginUpdate
method.

Type Description

The
BeginUpdate
and
EndUpdate
methods
increases
the
speed
of
loading
your
items,
by
preventing
painting
the
control
when
it
suffers
any
change.
Once
that
BeginUpdate
method
was
called,
you
have
to
make
sure
that
EndUpdate
method
will

The
following
VB
sample
prevents
painting
the
control
while
adding
data
from
a
database:

Set

rs

=

CreateObject("ADODB.Recordset")

rs.Open

"Orders",

"Provider=Microsoft.Jet.OLEDB.3.51;Data

Source=

D:\Program

Files\Microsoft

Visual

Studio\VB98\NWIND.MDB",

3

'

Opens

the

The
following
VC
sample
prevents
refreshing
the
control
while
adding
columns
and
items
from
an
ADODB
recordset:

#include

"Items.h"

#include

"Columns.h"

#include

"Column.h"

#pragma

warning(

disable

:

4146

)

#import

<msado15.dll>

The
sample
adds
a
column
for
each
field
in
the
recordset,
and
add
a
new
items
for
each
record.
You
can
use
the
DataSource
property
to
bind
a
recordset
to
the

The
following
VB.NET
sample
prevents
refreshing
the
control
while
adding
columns
and
items:

With

AxGantt1

.BeginUpdate()

With

.Columns

The
following
C#
sample
prevents
refreshing
the
control
while
adding
columns
and
items:

axGantt1.BeginUpdate();

EXGANTTLib.Columns

columns

=axGantt1.Columns;

columns.Add("Column

1");

columns.Add("Column

2");

EXGANTTLib.Items

items

=

axGantt1.Items;

The
following
VFP
sample
prevents
refreshing
the
control
while
adding
new
columns
and
items:

thisform.Gantt1.BeginUpdate()

with

thisform.Gantt1.Columns

.Add("Column

1")

.Add("Column

2")

endwith

with

thisform.Gantt1.Items

be
called
too.

control.
The
#import
statement
imports
definitions
for
ADODB
type
library,
that's
used
to
fill
the
control.

property
Items.LockedItemCount(Alignment
as
VAlignmentEnum)
as
Long

Specifies
the
number
of
items
fixed
on
the
top
or
bottom
side
of
the
control.

Type Description

Alignment as VAlignmentEnum

A
VAlignmentEnum
expression
that
specifies
the
top
or
bottom
side
of
the
control.

Long

A
long
expression
that
indicates
the
number
of
items
locked
to
the
top
or
bottom
side
of
the
control.

A
locked
or
fixed
item

is
always
displayed
on
the
top
or
bottom
side
of
the
control
no
matter
if
the
control's
list
is
scrolled
up
or
down.
Use
the
LockedItemCount
property
to
add
or
remove
items
fixed/locked
to
the
top
or
bottom
side
of
the
control.
Use

the
LockedItem
property
to
access
a
locked
item
by
its
position.
Use
the
ShowLockedItems
property
to
show
or
hide
the
locked
items.
Use
the
CellCaption
property
to
specify
the
caption
for
a
cell.
Use
the
CountLockedColumns
property
to
lock
or
unlock
columns
in

the
control.
Use
the
ItemBackColor
property
to
specify
the
item's
background
color.
Use
the
ItemDivider
property
to
merge
the
cells.
Use
the
MergeCells
method
to
combine
two
or
multiple
cells
in
a
single
cell.

The
following
VB
sample
adds
two
items

With

Gantt1
The
following
C++
sample
adds

#include

"Items.h"
The
followingWith

that
are
locked
to
the
top
side
of
the
control,
and
one
item
that's
locked
to
the
bottom
side
of
the
control:

an
item
that's
locked
to
the
top
side
of
the
control:

VB.NET
sample
adds
an
item
that's
locked
to
the
top
side
of
the
control:

The
following
C#
sample
adds
an
item
that's
locked
to
the
top
side
of
the
control:

axGantt1.BeginUpdate();

EXGANTTLib.Items

items

=

axGantt1.Items;

items.set_LockedItemCount(EXGANTTLib.VAlignmentEnum.TopAlignment,

1);

int

i

=

items.get_LockedItem(EXGANTTLib.VAlignmentEnum.TopAlignment,

0);

items.set_CellCaption(i,

0,

"
locked

item");

items.set_CellCaptionFormat(i,

0,

The
following
VFP
sample
adds
an
item
that's
locked
to
the
top
side
of
the
control:

with

thisform.Gantt1

.BeginUpdate()

With

.Items

.LockedItemCount(0)

=

1

.DefaultItem

=

.LockedItem(0,

0)

property
Items.IsItemLocked
(Item
as
HITEM)
as
Boolean

Returns
a
value
that
indicates
whether
the
item
is
locked
or
unlocked.

Type Description

Item as HITEM

A
long
expression
that
indicates
the
handle
of
the
item.

Boolean

A
boolean
expression
that
indicates
whether
the
item
is
locked
or
unlocked.

Use
the
IsItemLocked
property
to
check
whether
an
item
is
locked
or
unlocked.
A
locked

item
is
always
displayed
on
the
top
or
bottom
side
of
the
control
no
matter
if
the
control's
list
is
scrolled
up
or
down.
Use
the
LockedItemCount
property
to
add
or
remove
items
fixed/locked
to
the
top
or
bottom
side
of
the
control.

Use
the
LockedItem
property
to
access
a
locked
item
by
its
position.
Use
the
ShowLockedItems
property
to
show
or
hide
the
locked
items.

The
following
VB
sample
prints
the
locked
item
from
the
cursor:

Private

Sub

Gantt1_MouseMove(Button

As

Integer,

Shift

As

Integer,

The
following
C++
sample
prints
the
locked
item
from
the
cursor:

#include

"Items.h"

void

OnMouseMoveGantt1(short

Button,

short

Shift,

The
following
VB.NET
sample
prints
the
locked
item
from
the
cursor:

Private

Sub

AxGantt1_MouseMoveEvent(ByVal

sender

As

Object,

The
following
C#
sample
prints
the
locked
item
from
the
cursor:

private

void

axGantt1_MouseMoveEvent(object

sender,

AxEXGANTTLib._IGanttEvents_MouseMoveEvent

The
following
VFP
sample
prints
the
locked
item
from
the

ActiveX

Control

Event

cursor:

method
Items.RemoveSelection
()

Removes
the
selected
items
(including
the
descendents).

Type Description

The
RemoveSelection
method
removes
the
selected
items
(including
the
descendents).
The
RemoveItem
method
removes
an
item
(if
the
item
has
no
descendents).
The
UnselectAll
method
unselects
all
items
in
the
list.

property
Gantt.SingleSel
as
Boolean

Retrieves
or
sets
a
value
that
indicates
whether
the
control
supports
single
or
multiple
selection.

Type Description

Boolean

A
boolean
expression
that
indicates
whether
the
control
supports
single
or
multiple
selection.

Use
the
SingleSel
property
to
enable
multiple
selection.
Use
the
SelectCount
property
to
get
the
number
of
selected
items.
Use
the
SelectedItem
property
to

get
the
selected
item.
Use
the
SelectItem
to
select
or
unselect
a
specified
item.
Use
the
FocusItem
property
to
get
the
focused
item.
If
the
control
supports
only
single
selection,
you
can
use
the
FocusItem
property
to
get
the
selected/focused
item
because
they

are
always
the
same.
The
control
fires
the
SelectionChanged
event
when
user
selects
an
item.
Use
the
SelForeColor
and
SelBackColor
properties
to
specify
colors
for
selected
items.
Use
the
SelectableItem
property
to
specify
the
user
can
select
an
item.
The
FullRowSelect
property
specifies

whether
the
selection
spans
the
entire
width
of
the
control.

method
Items.SelectAll
()

Selects
all
items. Type Description

Use
the
SelectAll
method
to
select
all
visible
items
in
the
gantt.
The
SelectAll
method
has
effect
only
if
the
SingleSel
property
is
False,
if
the
control
supports
multiple
items
selection.
Use
the
UnselectAll
method
to
unselect

all
items
in
the
list.
Use
the
SelectItem
property
to
select
or
unselect
a
specified
item.
Use
the
SelectedItem
property
to
retrieve
a
value
that
indicates
whether
the
item
is
selected
or
unselected.
Use
the
SelectCount
property
to
retrieve
the
number
of
selected

items

property
Items.SelectItem(Item
as
HITEM)
as
Boolean

Selects
or
unselects
a
specific
item.

Type Description

Item as HITEM

A
long
expression
that
indicates
the
item's
handle
that
is
selected
or
unselected.

Boolean

A
boolean
expression
that
indicates
the
item's
state.
True
if
the
item
is
selected,
and
False
if
the
item
is
not
selected.

Use

the
SelectItem
to
select
or
unselect
a
specified
item
(that's
selectable).
Use
the
SelectableItem
property
to
specify
the
user
can
select
an
item.
Use
the
SelectCount
property
to
get
the
number
of
selected
items.
Use
the
SelectedItem
property
to
get
the
selected
item.

The
following
VB
sample
shows
how
to select
the
first
created
item:
Gantt1.Items.SelectItem(Gantt1.Items(0))
=
True

The
following
VB
sample
selects
the
first
visible
item:

With

Gantt1.Items

.SelectItem(.FirstVisibleItem)

=

True

End

With

The
following
VB
sample
enumerates
the
selected
items:

Dim

i

As

Long

With

Gantt1.Items

For

i

=

0

To

.SelectCount

-

1

The
following
C++
sample
selects
the
first
visible
item:

#include

"Items.h"

CItems

items

=

m_gantt.GetItems();

items.SetSelectItem(

items.GetFirstVisibleItem(),

TRUE

);

The
following
C++
sample
unselects
all
items
in
the
control:

m_gantt.BeginUpdate();

CItems

items

=

m_gantt.GetItems();

while

(

items.GetSelectCount()

)

items.SetSelectItem(

items.GetSelectedItem(

0

),

FALSE

);

The
following
VB.NET
sample
selects
the
first
visible
item:

With

AxGantt1.Items

.SelectItem(.FirstVisibleItem)

=

True

End

With

The
following
VB.NET
sample
unselects
all
items
in
the
control:

With

AxGantt1

.BeginUpdate()

With

.Items

The
following
C#
sample
selects
the
first
visible
item:

axGantt1.Items.set_SelectItem(axGantt1.Items.FirstVisibleItem,

true);
The
following
C#
sample
unselects
all
items
in
the
control:

axGantt1.BeginUpdate();

EXGANTTLib.Items

items

=

axGantt1.Items;

while

(items.SelectCount

!=

0)

items.set_SelectItem(items.get_SelectedItem(0),

false);

The
following
VFP
sample
selects
the
first
visible
item:

with

thisform.Gantt1.Items

.DefaultItem

=

.FirstVisibleItem

.SelectItem(0)

=

.t.

endwith

The
following
VFP
sample
unselects
all
items
in
the
control:

With

thisform.Gantt1

.BeginUpdate()

with

.Items

do

while

Use
the
FocusItem
property
to
get
the
focused
item.
If
the
control
supports
only
single
selection,
you
can
use
the
FocusItem
property
to
get
the
selected/focused
item
because
they
are
always
the
same.
The
control
fires
the
SelectionChanged
event
when
user
selects
an

item.
Use
the
SelForeColor
and
SelBackColor
properties
to
specify
colors
for
selected
items.
Use
the
SingleSel
property
to
allow
multiple
selection.
Use
the
SelectPos
property
to
select
an
item
giving
its
position.
Use
the
EnsureVisibleItem
property
to
ensure
that
an
item
is
visible.

property
Items.SelectCount
as
Long

Counts
the
number
of
items
that
are
selected
into
control.

Type Description

Long

A
long
expression
that
identifies
the
number
of
selected
items.

The
SelectCount
property
counts
the
selected
items
in
the
control.
The
SelectCount
property
gets
0,
if
no
items
are
selected
in
the
control.
The
ExGantt
control
supports

If
the
control's
SingleSel
is
false,
then
the
following
statement
retrieves
the
handle
for
the
selected
item:
Gantt1.Items.SelectedItem().

If
the
control
supports
multiple
selection
then
the
following
VB
sample
shows
how
to
enumerate
all
selected
items:

Dim

h

As

HITEM

Dim

i

As

Long,

j

As

Long,

The
following
VB
sample
unselects
all
items
in
the
control:

With

Gantt1

.BeginUpdate

With

.Items

The
following
C++
sample
enumerates
the
selected
items:

CItems

items

=

m_gantt.GetItems();

long

n

=

items.GetSelectCount();

if

The
following
C++
sample
unselects
all
items
in
the
control:

m_gantt.BeginUpdate();

CItems

items

=

m_gantt.GetItems();

while

(

items.GetSelectCount()

The
following
VB.NET
sample
enumerates
the
selected
items:

With

AxGantt1.Items

Dim

nCols

As

The
following
VB.NET
sample
unselects
all
items
in
the
control:

With

AxGantt1

.BeginUpdate()

The
following
C#
sample
enumerates
the
selected
items:

for

(int

i

=

0;

The
following
C#
sample
unselects
all
items
in

axGantt1.BeginUpdate();

EXGANTTLib.Items

items

=

The
following
VFP
sample
enumerates
the

with

thisform.Gantt1.Items
The
following
VFP

With

thisform.Gantt1

multiple
selection.
Use
the
SingleSel
property
of
the
control
to
allow
multiple
selection.
Use
the
SelectedItem
property
to
retrieve
the
handle
of
the
selected
item(s).
The
control
fires
the
SelectionChanged
event
when
user
changes
the
selection
in
the
control.
Use
the
SelectItem
property

the
control:
selected
items:
sample
unselects
all
items
in
the
control:

to
select
programmatically
an
item.
Use
the
SelForeColor
and
SelBackColor
properties
to
specify
colors
for
selected
items.
If
the
control
supports
only
single
selection
(
SingleSel
property
is
True
),
the
FocusItem
retrieves
the
selected
item
too.

method
Columns.Clear
()

Removes
all
objects
in
a
collection.

Type Description

Use
the
Remove
method
when
you
need
to
remove
only
a
column.
Use
the
Clear
method
to
remove
all
columns
in
the
control.
The
Clear
method
removes
all
items,
too.
Use
the
RemoveAllItems
method
to
remove
all

items
in
the
control.

property
Gantt.DataSource
as
Object

Retrieves
or
sets
a
value
that
indicates
the
data
source
for
object.

Type Description

Object

An
ADO
or
DAO
Recordset
object
used
to
fill
data
from.

The
/COM
version
provides
ADO,
ADODB
and
DAO
database
support.
The
DataSource
property
takes
a
recordset
and
add
a
column
for
each
field
found,
and
add

a
new
item
for
each
record
in
the
recordset.
Use
the
Visible
property
to
hide
a
column.
Use
the
CellCaption
property
to
retrieves
the
value
of
the
cell.
Use
the
PutItems
to
load
an
array
to
the
control. Use
the
DetectAddNew
property
to
allow

adding
new
items
to
the
control
when
the
user
adds
new
records
to
the
table
that's
linked
with
the
control.
Use
the
ConditionalFormats
method
to
apply
formats
to
a
cell
or
range
of
cells,
and
have
that
formatting
change
depending
on
the
value

of
the
cell
or
the
value
of
a
formula.
Use
the
DefaultItemHeight
property
before
setting
a
DataSource
property
to
specify
the

The
/NET
version
provides
the
following
methods
for
data
binding:

DataSource,
gets
or
sets
the
data
source
that
the
control
is
displaying
data
for.
By
default,
this
property
is
empty

DataMember,
indicates
a
sub-
list
of
the
DataSource
to
show
in
the
control.
By
default,
this
property
is
"".
For

DataTaskStart,
The
DataTaskStart
property
gets
or
sets
the
specific
field
in
the
data
source
to
indicate
the
starting
point
of

DataTaskEnd,
DataTaskEnd
property
gets
or
sets
the
specific
field
in
the
data
source
to
indicate
the
ending
point
of

Click
here
to
watch
a
movie
on
how
to
assign
a
data
source
to
the
control,
in
design
mode,

https://www.youtube.com/watch?v=2arnUlkpVhs

object.
The
DataSource
property
can
be:
DataTable,
DataView,
DataSet,
DataViewManager,
any
component
that
implements
the
IListSource
interface,
or
any
component
that
implements
the
IList
interface.

instance,
if
DataSource
property
is
a
DataSet,
the
DataMember
should
indicates
the
name
of
the
table
to
be
loaded.

each
added
task.
If
missing
or
empty,
no
tasks
are
loaded
during
binding.
In
other
words,
it
indicates
the
field
to
use
be
used
as
the
starting
point
for
each
task
in
any
record.
This
member
is
automatically
filled
with
the
first
DATE

each
added
task.
If
missing
or
empty,
no
tasks
are
loaded
during
binding.
If
the
DataTaskEnd
points
to
a
DateTime
object,
it
indicates
the
ending
date
of
the
newly
bar,
else,
it
indicates
the
duration
of
the
task
to
be
added.
If
the

for
/NET
assembly.

The
following
VB
sample
binds
an
ADO
recordset
to
the
ExGantt
control:

Set

rs

=

CreateObject("ADODB.Recordset")

rs.Open

"Orders",

"Provider=Microsoft.Jet.OLEDB.3.51;Data

Source=

D:\Program

Files\Microsoft

Visual

Studio\VB98\NWIND.MDB",

3

'

Opens

the

table

The
DataSource
clears
the
columns
collection,
and
load
the
recordset
to
the
control.
Use
SetParent
method
to
make
your
list
a
hierarchy.

The
following
C++
sample
binds
a
table
to
the
control:

#include

"Items.h"

#include

"Columns.h"

#include

"Column.h"

#pragma

warning(

disable

:

4146

)

#import

<msado15.dll>

rename

The
#import
statement
imports
definitions
for
ADODB
type
library,
that's
used
to
fill
the
control.

field
from
the
DataSource,
when
it
is
set.
This
member
is
automatically
filled
with
the
first
DATE
field
from
the
data
source
(
DataSource/DataMember
).

DataTaskEnd
is
equal
with
DataTaskBegin,
a
one-
day
task
is
added
for
each
record
found,
during
binding.
This
member
is
automatically
filled
with
the
second
DATE
field
from
the
DataSource
collection.
This
member
can
be
of
DATE
type,
which
indicates
the
exBarEnd
property

of
any
bar
in
the
collection,
or
a
DOUBLE,
when
it
indicates
the
length/duration
of
the
bar
to
be
added.

constants
VAlignmentEnumSpecifies

how
the
cell's
caption
is
vertically
aligned.
Use
the
CellVAlignment
property
to
align
vertically
the
cell's
caption.

Name Value Description

TopAlignment 0

The
caption
is
aligned
to
top
of
the
cell

MiddleAlignment 1

The
cell's
caption
is
vertically
centered

BottomAlignment 2

The
caption
is
aligned
to
bottom
of
the
cell

exVOutside 16

The
object
is
displayed
outside
of
the
source

property
Items.LockedItem
(Alignment
as
VAlignmentEnum,
Index
as
Long)
as
HITEM

Retrieves
the
handle
of
the
locked
item.

Type Description

Alignment as VAlignmentEnum

A
VAlignmentEnum
expression
that
indicates
whether
the
locked
item
requested
is
on
the
top
or
bottom
side
of
the
control.

Index as Long

A
long
expression
that
indicates
the
position
of
item
being
requested.

HITEM

A
long
expression
that
indicates
the

handle
of
the
locked
item

A
locked
or
fixed
item
is
always
displayed
on
the
top
or
bottom
side
of
the
control
no
matter
if
the
control's
list
is
scrolled
up
or
down.
Use
the
LockedItem
property
to
access
a
locked
item

by
its
position.
Use
the
LockedItemCount
property
to
add
or
remove
items
fixed/locked
to
the
top
or
bottom
side
of
the
control.
Use
the
ShowLockedItems
property
to
show
or
hide
the
locked
items.
Use
the
IsItemLocked
property
to
check
whether
an
item
is

locked
or
unlocked.
Use
the
CellCaption
property
to
specify
the
caption
for
a
cell.
Use
the
InsertControlItem
property
to
assign
an
ActiveX
control
to
a
locked
item
only

The
following
VB
sample
adds
an
item
that's
locked
to
the
top
side
of

With

Gantt1

Dim

a

The
following
C++
sample
adds
an
item
that's
locked
to
the
top

#include

"Items.h"

m_gantt.BeginUpdate();

CItems

items

The
following
VB.NET
sample
adds
an
item
that's
locked
to

With

AxGantt1
The
following
C#
sample
adds
an
item

axGantt1.BeginUpdate();

EXGANTTLib.Items

items

The
following
VFP
sample
adds

with

thisform.Gantt1

the
control:
side
of
the
control:

the
top
side
of
the
control:

that's
locked
to
the
top
side
of
the
control:

an
item
that's
locked
to
the
top
side
of
the
control:

property
Gantt.ShowLockedItems
as
Boolean

Retrieves
or
sets
a
value
that
indicates
whether
the
locked
items
are
visible
or
hidden.

Type Description

Boolean

A
boolean
expression
that
specifies
whether
the
locked
items
are
shown
or
hidden.

A
locked
or
fixed
item
is
always
displayed
on
the
top
or
bottom
side
of
the
control
no
matter
if
the
control's
list
is

scrolled
up
or
down.
Use
the
ShowLockedItems
property
to
show
or
hide
the
locked
items.
Use
the
LockedItemCount
property
to
add
or
remove
items
fixed/locked
to
the
top
or
bottom
side
of
the
control.
Use
the
LockedItem
property
to
access
a
locked
item

by
its
position.
Use
the
CellCaption
property
to
specify
the
caption
for
a
cell.

property
Items.CellCaption([Item
as
Variant],
[ColIndex
as
Variant])
as
Variant

Retrieves
or
sets
the
text
displayed
on
a
specific
cell.

Type Description

Item as Variant

A
long
expression
that
indicates
the
item's
handle.

ColIndex as Variant

A
long
expression
that
indicates
the
column's
index,
or
the
handle
to
the
cell,
if
the
Item
parameter
is
0,
a
string
expression
that
indicates
the
column's
caption
or

the
column's
key.

Variant

A
variant
expression
that
indicates
the
cell's
caption.
The
cell's
caption
supports
built-
in
HTML
format.

The
CellCaption
property
specifies
the
cell's
caption.
To
associate
an
user
data
for
a
cell
you
can
use
CellData
property.
Use
the
CellCaptionFormat

Note:
A
cell
is
the
intersection
of
an
item
with
a
column.
All
properties
that
has
an
Item
and
a
ColIndex
parameters

Gantt1.Items.CellBold(,

Gantt1.Items.ItemCell(Gantt1.Items(0),

0))

=

True

Gantt1.Items.CellBold(Gantt1.Items(0),

0)

=

True

Gantt1.Items.CellBold(Gantt1.Items(0),

"ColumnName")

=

True

property
to
use
HTML
tags
in
the
cell's
caption.
Use
the
ItemData
property
to
associate
an
extra
data
to
an
item.
To
hide
a
column
you
have
to
use
Visible
property
of
the
Column
object.
The
AddItem
method
specifies
also
the
caption
for

are
referring
to
a
cell.
The
Item
parameter
represents
the
handle
of
an
item,
and
the
ColIndex
parameter
indicates
an
index
(
a
numerical
value,
see
Column.Index
property
)
of
a
column
,
the
column's
caption
(
a
string
value,
see
Column.Caption
property

the
first
cell
in
the
item. Use
the
SplitCell
property
to
split
a
cell. The
CellCaption
property
indicates
the
formula
being
used
to
compute
the
field,
if
the
CellCaptionFormat
property
is
exComputedField.
The
ComputedField
property
specifies
the
formula
to
compute
the
entire
column.
Use
the

),
or
a
handle
to
a
cell
(
see
ItemCell
property
).
Here's
few
hints
how
to
use
properties
with
Item
and
ColIndex
parameters:

ConditionalFormats
method
to
apply
formats
to
a
cell
or
range
of
cells,
and
have
that
formatting
change
depending
on
the
value
of
the
cell
or
the
value
of
a
formula.

property
Gantt.CountLockedColumns
as
Long

Retrieves
or
sets
a
value
indicating
the
number
of
locked
columns.
A
locked
column
is
not
scrollable.

Type Description

Long

A
long
expression
indicating
the
number
of
locked
columns.

The
ExGantt
ActiveX
Control
can
group
the
columns
into
two
categories:
locked
and
unlocked.
The
Locked
category
contains
all
the
columns
that
are
fixed
to
the
left
area

of
the
client
area.
These
columns
cannot
be
scrolled
horizontally.
Use
the
CountLockedColumns
to
specify
the
number
of
locked
columns.
The
unlocked
are
contains
the
columns
that
can
be
scrolled
horizontally.
Use
the
BackColorLock
property
to
change
the
control's
background
color
for
the

locked
area.
Use
the
LockedItemCount
property
to
add
or
remove
items
locked
(
fixed
)
to
the
top
or
bottom
side
of
the
control.

property
Items.ItemBackColor(Item
as
HITEM)
as
Color

Retrieves
or
sets
a
background
color
for
a
specific
item.

Type Description

Item as HITEM

A
long
expression
that
indicates
the
handle
of
the
item.
If
the
Item
is
0,
the
ItemBackColor
changes
the
background
color
for
all
items.

Color

A
color
expression
that
indicates
the
item's
background
color.

The
ItemBackColor
property
In
VB.NETYouYou

specifies
the
background
or
the
visual
appearance
for
the
item's
background
on
the
columns/item
section.
Use
the
CellBackColor
property
to
change
the
cell's
background
color.
To
change
the
background
color
of
the
entire
control
you
can
call
BackColor
property
of
the
control. Use
the

or
C#
you
require
the
following
functions
until
the
.NET
framework
will
provide:

can
use
the
following
VB.NET
function:

Shared

Function

ToUInt32(ByVal

c

As

Color)

As

UInt32

Dim

can
use
the
following
C#
function:

private

UInt32

ToUInt32(Color

c)

{

long

i;

i

=

c.R;

i

=

i

+

256

The
following
C#
sample
changes
the
background
color
for
the
focused
item:

axGantt1.Items.set_ItemBackColor(axGantt1.Items.FocusItem,

ToUInt32(Color.Red)

);

The
following
VB.NET
sample
changes
the
background
color
for
the
focused
item:

With

AxGantt1.Items

.ItemBackColor(.FocusItem)

=

ToUInt32(Color.Red)

End

With

The
following
C++
sample
changes
the
background
color
for
the
focused
item:

#include

"Items.h"

CItems

items

=

m_gantt.GetItems();

items.SetItemBackColor(

items.GetFocusItem(),

RGB(255,0,0)

);

The
following
VFP
sample
changes
the
background
color
for
the
focused
item:

with

thisform.Gantt1.Items

.DefaultItem

=

.FocusItem

.ItemBackColor(

0

)

=

RGB(255,0,0)

endwith

Use
the
following
VB
sample
changes
the
background
color
for
the
cells
in
the
first
column,
when
adding
new
items:

Private

Sub

Gantt1_AddItem(ByVal

Item

As

EXGANTTLibCtl.HITEM)

Gantt1.Items.CellBackColor(Item,

o)

=

vbBlue

End

Sub

ClearItemBackColor
property
to
clear
the
item's
background
color,
after
setting
using
the
ItemBackColor
property.
Use
the
ConditionalFormats
method
to
apply
formats
to
a
cell
or
range
of
cells,
and
have
that
formatting
change
depending
on
the
value
of
the
cell
or
the
value

of
a
formula.
The
ItemBackColor
property
of
the
Chart
object
specifies
the
item's
background
or
visual
appearance
for
the
chart
area.

property
Items.ItemDivider(Item
as
HITEM)
as
Long

Specifies
whether
the
item
acts
like
a
divider
item.
The
value
indicates
the
index
of
column
used
to
define
the
divider's
title.

Type Description

Item as HITEM

A
long
expression
that
indicates
the
item's
handle.

Long

A
long
expression
that
indicates
the
column's
index.

A
divider
item
uses
the
item's
client
area
to
display
a
single
cell.
The
ItemDivider
property
specifies
the
index
of
the

cell
being
displayed.
In
other
words,
the
divider
item
merges
the
item
cells
into
a
single
cell.
Use
the
ItemDividerLine
property
to
define
the
line
that
underlines
the
divider
item.
Use
the
LockedItemCount
property
to
lock
items
on
the
top
or
bottom
side

of
the
control.
Use
the
MergeCells
method
to
combine
two
or
multiple
cells
in
a
single
cell.
Use
the
SelectableItem
property
to
specify
the
user
can
select
an
item.
A
divider
item
has
sense
for
a
control
with
multiple
columns.

The
followingWith

VB
sample
adds
a
divider
item
that's
locked
to
the
top
side
of
the
control
(
Before
running
this
sample
please
make
sure
that
your
control
has
columns
):

The
following
C++
sample
adds
a
divider
item,
that's
not
selectable
too:

#include

"Items.h"

CItems

items

=

m_gantt.GetItems();

long

i

=

items.AddItem(

COleVariant("divider

item")

);

items.SetItemDivider(

i,

0

);

items.SetSelectableItem(

i,

The
following
C#
sample
adds
a
divider
item,
that's
not
selectable
too:

int

i

=

axGantt1.Items.AddItem("divider

item");

axGantt1.Items.set_ItemDivider(i,

0);

axGantt1.Items.set_SelectableItem(i,

false);

The
following
VB.NET
sample
adds
a
divider
item,
that's
not
selectable
too:

With

AxGantt1.Items

Dim

i

As

Integer

i

=

.AddItem("divider

item")

.ItemDivider(i)

The
following
VFP
sample
adds
a
divider
item,
that's
not
selectable
too:

with

thisform.Gantt1.Items

.DefaultItem

=

.AddItem("divider

item")

.ItemDivider(0)

=

0

.SelectableItem(0)

=

.f.

endwith

method
Items.MergeCells
([Cell1
as
Variant],
[Cell2
as
Variant],
[Options
as
Variant])

Merges
a
list
of
cells.

Type Description

Cell1 as Variant

A
long
expression
that
indicates
the
handle
of
the
cell
being
merged,
or
a
safe
array
that
holds
a
collection
of
handles
for
the
cells
being
merged.
Use
the
ItemCell
property
to
retrieves
the
handle
of
the
cell.

The
first
cell
(in
the
list,
if
exists)
specifies
the
cell
being
displayed
in
the
new
larger
cell.
A
long
expression
that
indicates
the
handle
of
the
cell
being
merged,
or
a
safe
array
that
holds
a
collection
of
handles
for
the

Cell2 as Variant

cells
being
merged.
Use
the
ItemCell
property
to
retrieves
the
handle
of
the
cell.
The
first
cell
in
the
list
specifies
the
cell
being
displayed
in
the
new
larger
cell.

Options as Variant Reserved.

The
MergeCells
method
combines
two
or
more
cells
into
one
cell.

The
data
in
the
first
specified
cell
is
displayed
in
the
new
larger
cell.
All
the
other
cells'
data
is
not
lost.
Use
the
CellMerge
property
to
merge
or
unmerge
a
cell
with
another
cell
in
the
same
item.
Use
the
ItemDivider
property

to
display
a
single
cell
in
the
entire
item
(
merging
all
cells
in
the
item
).
Use
the
UnmergeCells
method
to
unmerge
the
merged
cells.
Use
the
CellCaption
property
to
specify
the
cell's
caption.
Use
the
ItemCell
property
to
retrieves
the
handle

of
the
cell.
Use
the
BeginMethod
and
EndUpdate
methods
to
maintain
performance,
when
merging
multiple
cells
in
the
same
time.
The
MergeCells
methods
creates
a
list
of
cells
from
Cell1
and
Cell2
parameters
that
need
to
be
merged,
and
the
first
cell
in

the
list
specifies
the
displayed
cell
in
the
merged
cell.
Use
the
SplitCell
property
to
split
a
cell. Use
the
SelectableItem
property
to
specify
the
user
can
select
an
item.

The
following
VB
sample
adds
three
columns,
a
root
item
and
two

With

Gantt1

.BeginUpdate

and
it
looks
like
follows
(
notice
that

If
we
are
merging
the

You
can
merge

 With

Gantt1
With
With

The
With

child
items:
the
caption
of
the
root
item
is
truncated
by
the
column
that
belongs
to
):

first
three
cells
in
the
root
item
we
get:

the
first
three
cells
in
the
root
item
using
any
of
the
following
methods:

With

Gantt1

With

.Items

Dim

r

As

Long

r

With

Gantt1

With

.Items

Dim

r

As

Long

r

following
VB
sample
merges
the
first
three
cells:

The
following
C++
sample
merges
the
first
three
cells:

#include

"Items.h"

CItems

items

=

m_gantt.GetItems();

COleVariant

vtFocusCell(

items.GetItemCell(items.GetFocusItem(),

COleVariant(

(long)0

)

)

),

vtMissing;

V_VT(

&vtMissing

)

=

The
following
VB.NET
sample
merges
the
first
three
cells:

With

AxGantt1.Items

.MergeCells(.ItemCell(.FocusItem,

0),

.ItemCell(.FocusItem,

1))

.MergeCells(.ItemCell(.FocusItem,

0),

.ItemCell(.FocusItem,

2))

End

With

The
following
C#
sample
merges
the
first
three
cells:

EXGANTTLib.Items

items

=

axGantt1.Items;

items.MergeCells(items.get_ItemCell(

items.FocusItem,

0

),

items.get_ItemCell(

items.FocusItem,

1

),"");

items.MergeCells(items.get_ItemCell(items.FocusItem,

0),

items.get_ItemCell(items.FocusItem,

2),"");

The
following
VFP
sample
merges
the
first
three
cells:

with

thisform.Gantt1.Items

.MergeCells(.ItemCell(.FocusItem,0),

.ItemCell(.FocusItem,1),

"")

.MergeCells(.ItemCell(.FocusItem,0),

.ItemCell(.FocusItem,2),

"")

endwith

Now,
the
question
is
what
should
I
use
in
my
program
in
order
to
merge
some
cells?
For
instance,
if
you
are
using
handle
to
cells
(
HCELL
type
),
we
would
recommend
using

the
MergeCells
method,
else
you
could
use
as
well
the
CellMerge
property.

property
Items.SelectedItem
([Index
as
Long])
as
HITEM

Retrieves
the
selected
item's
handle
given
its
index
in
selected
items
collection.

Type Description

Index as Long

Identifies
the
index
of
the
selected
item
into
the
selected
items
collection.

HITEM

A
long
expression
that
indicates
the
handle
of
the
selected
item.

Use
the
SelectedItem
property
to
get
the
handle
of
the
selected
item(s)
in

The
following
sample
shows
hot
to
print
the
caption
for
the
selected

The
following
sample
applies
an
italic
font
attribute
to
the
selected

Private

Sub

Gantt1_SelectionChanged()

If

The
following
VB
sample
enumerates
the
selected
items:

Dim

i

As

Long

The
following
VB
sample
unselects
all

With

Gantt1
The
following
VC
sample

#include

"Items.h"
The
followingm_gantt.BeginUpdate();

the
control.
Use
the
SelectCount
property
to
find
out
how
many
items
are
selected
in
the
control. The
control
fires
the
SelectionChanged
event
when
user
changes
the
selection
in
the
control.
Use
the
SelectItem
property
to
select
programmatically
an
item.
If
the
control
supports

item:
Debug.Print
Gantt1.Items.CellCaption(Gantt1.Items.SelectedItem(0),
0).

item:items
in
the
control:

displays
the
selected
items:

C++
sample
unselects
all
items
in
the
control:

The
following
VB.NET
sample
displays
the
selected
items:

With

AxGantt1.Items

Dim

i

As

Integer

For

i

=

0

To

.SelectCount

-

1

The
following
VB.NET
sample
unselects
all
items
in
the
control:

With

AxGantt1

.BeginUpdate()

With

.Items

While

Not

.SelectCount

=

0

The
following
C#
sample
displays
the
selected
items:

for

(

int

i

=

0;

i

<

axGantt1.Items.SelectCount

-

1;

i++

)

{

object

cell

The
following
C#
sample
unselects
all
items
in
the
control:

axGantt1.BeginUpdate();

EXGANTTLib.Items

items

=

axGantt1.Items;

while

(items.SelectCount

!=

0)

items.set_SelectItem(items.get_SelectedItem(0),

false);

axGantt1.EndUpdate();

The
following
VFP
sample
displays
the
selected
items:

with

thisform.Gantt1.Items

for

i

=

0

to

.SelectCount

-

1

.DefaultItem

=

.SelectedItem(

The
following
VFP
sample
unselects
all
items
in
the
control:

With

thisform.Gantt1

.BeginUpdate()

with

.Items

do

while

(

.SelectCount()

#

0

)

only
single
selection,
you
can
use
the
FocusItem
property
to
get
the
selected/focused
item
because
they
are
always
the
same.
Use
the
SingleSel
property
to
enable
single
or
multiple
selection. Use
the
SelForeColor
and
SelBackColor
properties
to
specify
colors
for
selected
items.

property
Items.FocusItem
as
HITEM

Retrieves
the
handle
of
item
that
has
the
focus.

Type Description

HITEM

A
long
expression
that
indicates
the
handle
of
the
focused
item.

The
FocusItem
property
specifies
the
handle
of
the
focused
item.
If
there
is
no
focused
item
the
FocusItem
property
retrieves
0.
At
one
moment,
only
one

item
can
be
focused.
When
the
selection
is
changed
the
focused
item
is
changed
too.
Use
the
SelectCount
property
to
get
the
number
of
selected
items.
Use
the
SelectedItem
property
to
get
the
selected
item.
Use
the
SelectItem
to
select
or
unselect
a

specified
item.
If
the
control
supports
only
single
selection,
you
can
use
the
FocusItem
property
to
get
the
selected/focused
item
because
they
are
always
the
same.
Use
the
ShowFocusRect
property
to
indicate
whether
the
control
draws
a
marking
rectangle
around
the
focused
item.

You
can
change
the
focused
item,
by
selecting
a
new
item
using
the
SelectItem
method.
If
the
items
is
not
selectable,
it
is
not
focusable
as
well.
Use
the
SelectableItem
property
to
specify
whether
an
item
is
selectable/focusable.

C#

VB
C#

C++

C++
Builder

JavaScript

event
SelectionChanged
()

Fired
after
a
new
item
has
been
selected.

Type Description

Use
the
SelectionChanged
event
to
notify
your
application
that
the
user
selects
an
item
(that's
selectable).
Use
the
SelectableItem
property
to
specify
the
user
can
select
an
item.
The
control
supports
single
or
multiple
selection
as
well.

Syntax
for
SelectionChanged
event,
/NET
version,
on:

Syntax
for
SelectionChanged
event,
/COM
version,
on:

Syntax
for
SelectionChanged
event,
/COM
version
(others),
on:

The
following
VB
sample
displays
the
selected

Private

Sub

Gantt1_SelectionChanged()

The
following
VB
sample
expands

Private

Sub
The
followingPrivate

private

void

SelectionChanged(object

sender)

{

}

Private

Sub

SelectionChanged(ByVal

sender

As

System.Object)

Handles

SelectionChanged

private

void

SelectionChanged(object

sender,

EventArgs

e)

{

void

OnSelectionChanged()

{

}void

<SCRIPT

EVENT="SelectionChanged()"

LANGUAGE="JScript">

Delphi

Delphi
8
(.NET
only)
PowerBuilder

VB.NET

VB6

VBA

VBScript

Visual
DataFlex

Visual
Objects

X++

XBasic

dBASE

When
an
item
is
selected
or
unselected
the
control
fires
the
SelectionChanged
event.
Use
the
SingleSel
property
to
specify
if
your
control
supports
single
or
multiple
selection. Use
the
SelectCount
property
to
get
the
number
of
selected
items.
Use
the
SelectedItem
property
to
get

items:programmatically
items
when
the
selection
is
changed:

VB
sample
displays
the
selected
items:

The
following
VC
sample
displays
the
selected
items:

#include

"Items.h"

static

CString

V2S(

VARIANT*

pv,

LPCTSTR

szDefault

=

_T("")

)

{

if

(

pv

)

The
following
VB.NET
sample
displays
the
selected
items:

Private

Sub

AxGantt1_SelectionChanged(ByVal

sender

As

Object,

ByVal

e

As

System.EventArgs)

Handles

AxGantt1.SelectionChanged

With

AxGantt1.Items

The
following
C#
sample
displays
the
selected
items:

private

void

axGantt1_SelectionChanged(object

sender,

System.EventArgs

e)

{

for

(

int

i

=

0;

i

<

axGantt1.Items.SelectCount

The
following
VFP
sample
displays
the
selected
items:

ActiveX

Control

Event

with

thisform.Gantt1.Items

for

i

=

0

to

.SelectCount

-

1

procedure

SelectionChanged(ASender:

TObject;

);

begin

end;

procedure

SelectionChanged(sender:

System.Object;

e:

System.EventArgs);

begin

end;

begin

event

SelectionChanged()

end

event

SelectionChanged

Private

Sub

SelectionChanged(ByVal

sender

As

System.Object,

ByVal

e

Private

Sub

SelectionChanged()

End

Sub

Private

Sub

SelectionChanged()

<SCRIPT

LANGUAGE="VBScript">

Function

SelectionChanged()

End

Function

</SCRIPT>

Procedure

OnComSelectionChanged

Forward

Send

OnComSelectionChanged

End_Procedure

METHOD

OCX_SelectionChanged()

CLASS

MainDialog

RETURN

NIL

void

onEvent_SelectionChanged()

{

}function

SelectionChanged

as

v

()

end

function

nativeObject_SelectionChanged()

return

VFP

Xbase++

the
selected
item.
Use
the
SelectItem
to
select
or
unselect
a
specified
item.
Use
the
FocusItem
property
to
get
the
focused
item.
If
the
control
supports
only
single
selection,
you
can
use
the
FocusItem
property
to
get
the
selected/focused
item
because
they
are

LPARAMETERS

nop

PROCEDURE

OnSelectionChanged(oGantt)

RETURN

always
the
same.
Use
the
SelForeColor
and
SelBackColor
properties
to
specify
colors
for
selected
items.

property
Gantt.SelForeColor
as
Color

Retrieves
or
sets
a
value
that
indicates
the
selection
foreground
color.

Type Description

Color

A
color
expression
that
indicates
the
selection
foreground
color.

By
default,
the
SelForeColor
property
is
applied
ONLY
to
selected
items
being
displayed
in
the
list
area.
Use
the
SelForeColor
property
to
change
the
foreground
color
of
selected

items
being
displayed
in
the
chart
area.
Use
the
SelForeColor
and
SelBackColor
properties
to
change
the
colors
used
for
selected
items.
The
control
highlights
the
selected
items
only
if
the
SelBackColor
and
BackColor
properties
have
different
values,
and
the
SelForeColor
and
ForeColor
properties

have
different
values.
Use
the
SelectCount
property
to
get
the
number
of
selected
items.
Use
the
SelectedItem
property
to
get
the
selected
item.
Use
the
SelectItem
to
select
or
unselect
a
specified
item.
Use
the
FocusItem
property
to
get
the
focused
item.
The

control
fires
the
SelectionChanged
event
when
user
changes
the
selection.
Use
the
SelectableItem
property
to
specify
the
user
can
select
an
item.

property
Gantt.SelBackColor
as
Color

Retrieves
or
sets
a
value
that
indicates
the
selection
background
color.

Type Description

Color

A
color
expression
that
indicates
the
selection
background
color.
Use
the
Add
method
to
add
new
skins
to
the
control.
If
you
need
to
remove
the
skin
appearance
from
a
part
of
the
control
you
need
to
reset

the
last
7
bits
in
the
high
significant
byte
of
the
color
being
applied
to
the
background's
part.

By
default,
the
SelBackColor
property
applies
the
background
color
only
to
list
area.
Use
the
SelBackColor
property
to
specify
the
background
color
for
selected

For
instance,
the
following
VB
sample
changes
the
visual
appearance
for
the
selected
item.
The
SelBackColor
property
indicates
the
selection
background
color.

With

Gantt1

With

.VisualAppearance

The
sample
adds
the
skin
with
the
index
35
(
Hexa
23
),
and
applies
to
the
selected
item

The
following
C++
sample
applies
a
new
appearance
to
the
selected
item(s):

#include

"Appearance.h"

m_gantt.GetVisualAppearance().Add(

0x23,

COleVariant(_T("D:\\Temp\\ExGantt_Help\\selected.ebn"))

);

m_gantt.SetSelBackColor(

0x23000000

The
following
VB.NET
sample
applies
a
new
appearance
to
the
selected
item(s):

With

AxGantt1

With

.VisualAppearance

The
VB.NET
sample
uses
the
Template
property
to
assign
a
new
value
to
the

The
following
C#
sample
applies
a
new
appearance
to
the
selected
item(s):

axGantt1.VisualAppearance.Add(0x23,

"D:\\Temp\\ExGantt_Help\\selected.ebn");

axGantt1.Template

=

"SelBackColor

=

The
following
VFP
sample
applies
a
new
appearance
to
the

With

thisform.Gantt1

With

The
587202560
value
represents
&23000000
in
hexadecimal.
The

How
do
I
assign
a
new

The
component
supports
skinning
parts

items
in
the
chart
area.
Use
the
SelBackColor
and
SelForeColor
properties
to
define
the
colors
used
for
selected
items.
The
control
highlights
the
selected
items
only
if
the
SelBackColor
and
BackColor
properties
have
different
values,
and
the
SelForeColor
and
ForeColor
properties
have
different

Shortly,
we
need
to
add
a
skin
to
the
Appearance
object
using
the
Add
method,
and
we
need
to
set
the
last
7
bits
in
the
SelBackColor
property
to
indicates
the
index
of
the
skin
that
we
want
to
use.
The
sample
applies

using
the
SelBackColor
property.

SelBackColor
property.
The
587202560
value
represents
&23000000
in
hexadecimal.

selected
item(s):
32
value
represents
&23
in
hexadecimal

look
for
the
selected
item?

of
the
control,
including
the
selected
item.
Shortly,
the
idea
is
that
identifier
of
the
skin
being
added
to
the
Appearance
collection
is
stored
in
the
first
significant
byte
of
property
of
the
color
type.
In
our
case,
we
know
that
the
SelBackColor

values.
Use
the
SelectCount
property
to
get
the
number
of
selected
items.
Use
the
SelectedItem
property
to
get
the
selected
item.
Use
the
SelectItem
to
select
or
unselect
a
specified
item.
Use
the
FocusItem
property
to
get
the
focused
item.
The
control
fires

the
"
"
to
the
selected
item(s):

property
changes
the
background
color
for
the
selected
item.
This
is
what
we
need
to
change.
In
other
words,
we
need
to
change
the
visual
appearance
for
the
selected
item,
and
that
means
changing
the
background
color
of
the
selected
item.
So,
the

the
SelectionChanged
event
when
user
changes
the
selection.
Use
the
SelectableItem
property
to
specify
the
user
can
select
an
item.
How
do
I
assign
a
new
look
for
the
selected
item?

following
code
(
blue
code
)
changes
the
appearance
for
the
selected
item:

With

Gantt1

.VisualAppearance.Add

&H34,

App.Path

+

"\aqua.ebn"

.SelBackColor

=

Please
notice
that
the
34
hexa
value
is
arbitrary
chosen,
it
is
not
a
predefined
value.
Shortly,
we
have
added
a
skin
with
the
identifier
34,
and
we

With

Gantt1

.VisualAppearance.Add

&H34,

App.Path

+

"\aqua.ebn"

.SelBackColor

This
code
(
red
code
)
DOESN'T
use
any
skin,
because
the
34
value
is
not
stored
in
the
higher
byte
of
the
color
value.
The

Let's
say
that
we
have
a
BMP
file,
that
we
want
to
stretch
on
the
selected
item's
background.

1. Open
the
VB\Builder
or
VC\Builder
sample

2. Click
the
New
File
button
(
on
the
left
side
in
the
toolbar
),
an
empty
skin
is
created.

3. Locate
the
Background
tool
window
and
select
the
Picture\Add
New
item
in
the
menu,
the
Open
file
dialog
is
opened.

4. Select
the
picture
file
(
GIF,
BMP,
JPG,
JPEG
).
You
will
notice
that
the
visual
appearance
of
the
focused
object
in
the

5. Select
the
None
item,
in
the
Background
tool
window,
so
the
focused
object
in
the
skin
is
not
displaying
anymore
the
picture

6. Select
the
Root
item
in
the
skin
builder
window
(
in
the
left
side
you
can
find
the
hierarchy
of
the
objects

7. Select
the
picture
file
you
have
added
at
the
step
4,
so
the
Root
object
is
filled
with
the
picture
you
have

8. Resize
the
picture
in
the
Background
tool
window,
until
you
reach
the
view
you
want
to
have,
no
black
area,
or
change

9. Select
Stretch
button
in
the
Background
tool
window,
so
the
Root
object
stretches
the
picture
you
have
selected.

10. Click
the
Save
a
file
button,
and
select
a
name
for
the
new
skin,
click
the
Save
button
after
you
typed

11. Close
the
builder

You
can
always
open
the
skin
with
the
builder
and
change
it
later,
in
case
you
want
to
change
it.

Now,
create
a
new
project,
and
insert
the
component
where
you
want
to
use
the
skin,
and
add
the
skin
file

specified
that
the
SelBackColor
property
should
use
that
skin,
in
order
to
change
the
visual
appearance
for
the
selected
item.
Also,
please
notice
that
the
34
value
is
stored
in
the
first
significant
byte,
not
in
other
position.
For
instance,
the
following
sample

sample
just
changes
the
background
color
for
the
selected
item
to
some
black
color
(
RGB(0,0,34
)
).
So,
please
pay
attention
when
you
want
to
use
a
skin
and
when
to
use
a
color.
Simple,
if
you
are
calling
&H34000000,
you
have

skin
is
changed,
actually
the
picture
you
have
selected
is
tiled
on
the
object's
background.

being
added.
that
composes
the
skin
),
so
the
Root
item
is
selected,
and
so
focused.

chosen.the
CX
and
CY
fields
in
the
Background
tool
window,
so
no
black
area
is
displayed.

the
name
of
the
skin
file.
Add
the
.ebn
extension.

to
the
Appearance
collection
of
the
object,
using
blue
code,
by
changing
the
name
of
the
file
or
the
path
where
you
have
selected
the
skin.
Once
that
you
have
added
the
skin
file
to
the
Appearance
collection,
you
can
change
the
visual

doesn't
use
any
skin
when
displaying
the
selected
item:

34
followed
by
6
(
six
)
zeros,
and
that
means
the
first
significant
byte
of
the
color
expression.
Now,
back
to
the
problem.
The
next
step
is
how
we
are
creating
skins?
or
EBN
files?
The
Exontrol's
exbutton
component
includes
a
builder

appearance
for
parts
of
the
controls
that
supports
skinning.
Usually
the
properties
that
changes
the
background
color
for
a
part
of
the
control
supports
skinning
as
well.

https://exontrol.com/exbutton.jsp

tool
that
saves
skins
to
EBN
files.
So,
if
you
want
to
create
new
skin
files,
you
need
to
download
and
install
the
exbutton
component
from
our
web
site.
Once
that
the
exbutton
component
is
installed,
please
follow
the
steps.

property
Items.SelectableItem(Item
as
HITEM)
as
Boolean

Specifies
whether
the
user
can
select
the
item.

Type Description

Item as HITEM

A
long
expression
that
indicates
the
handle
of
the
item
being
selectable.

Boolean

A
boolean
expression
that
specifies
whether
the
item
is
selectable.

By
default,
all
items
are
selectable,
excepts
the
locked
items
that
are
not
selectable.
A

selectable
item
is
an
item
that
user
can
select
using
the
keys
or
the
mouse.
The
SelectableItem
property
specifies
whether
the
user
can
select
an
item.
The
SelectableItem
property
doesn't
change
the
item's
appearance.
The
LockedItemCount
property
specifies
the
number
of
locked
items

to
the
top
or
bottom
side
of
the
control.
Use
the
ItemDivider
property
to
define
a
divider
item.
Use
the
ItemForeColor
property
to
specify
the
item's
foreground
color.
Use
the
ItemBackColor
property
to
specify
the
item's
background
color.
Use
the
ItemFont,
ItemBold,
ItemItalic,

ItemUnderline
or
ItemStrikeOut
property
to
assign
a
different
font
to
the
item.
Use
the
EnableItem
property
to
disable
an
item.
A
disabled
item
looks
grayed,
but
it
is
selectable.
For
instance,
the
user
can't
change
the
check
box
state
in
a
disabled
item.

Use
the
SelectItem
property
to
select
an
item.
The
ItemFromPoint
property
gets
the
item
from
point.
For
instance,
if
the
user
clicks
a
non
selectable
item
the
SelectionChanged
event
is
not
fired.
A
non
selectable
item
is
not
focusable
as
well.
It
means

that
if
the
incremental
searching
is
on,
the
non
selectable
items
are
ignored.
Use
the
SelectCount
property
to
get
the
number
of
selected
items.
Use
the
SelForeColor
and
SelBackColor
properties
to
customize
the
colors
for
selected
items.

The
following
VB
sample

With

Gantt1.Items
The
following#include

makes
not
selectable
the
first
visible
item:

C++
sample
makes
not
selectable
the
first
visible
item:

The
following
VB.NET
sample
makes
not
selectable
the
first
visible
item:

With

AxGantt1.Items

.SelectableItem(.FirstVisibleItem)

=

False

End

With

The
following
C#
sample
makes
not
selectable
the
first
visible
item:

axGantt1.Items.set_SelectableItem(axGantt1.Items.FirstVisibleItem,

false);
The
following
VFP
sample
makes
not
selectable
the
first
visible
item:

with

thisform.Gantt1.Items

.DefaultItem

=

.FirstVisibleItem

.SelectableItem(0)

=

.f.

endwith

property
Gantt.FullRowSelect
as
Boolean

Enables
full-
row
selection
in
the
control.

Type Description

Boolean

A
boolean
expression
that
indicates
whether
the
control
support
full-
row
selection.

The
FullRowSelect
property
specifies
whether
the
selection
spans
the
entire
width
of
the
control.
The
column
pointed
by
the
SelectColumnIndex
specifies
the
column
where
the

selected
cell
is
marked.
Use
the
SelectItem
property
to
select
programmatically
an
item.
Use
the
SingleSel
property
to
allow
multiple
items
selection.

property
Items.SelectPos
as
Variant

Selects
items
by
position.

Type Description

Variant

A
long
expression
that
indicates
the
position
of
item
being
selected,
or
a
safe
array
that
holds
a
collection
of
position
of
items
being
selected.

Use
the
SelectPos
property
to
select
items
by
position.
Use
the
SelectItem

property
to
select
an
item
giving
its
handle.
The
SelectPos
property
selects
an
item
giving
its
general
position.
The
ItemPosition
property
gives
the
relative
position,
or
the
position
of
the
item
in
the
child
items
collection.

The
following
VB
sample
selects
the

Gantt1.Items.SelectPos

=

0

The
following
VB
sample

Gantt1.Items.SelectPos

=
The
followingm_gantt.GetItems().SetSelectPos(

first
item
in
the
control:

selects
first
two
items:

C++
sample
selects
the
first
item
in
the
control:

The
following
VB.NET
sample
selects
the
first
item
in
the
control:

With

AxGantt1.Items

.SelectPos

=

0

End

With

The
following
C#
sample
selects
the
first
item
in
the
control:

axGantt1.Items.SelectPos

=

0;

The
following
VFP
sample
selects
the
first
item
in
the
control:

with

thisform.Gantt1.Items

.SelectPos

=

0

endwith

method
Items.EnsureVisibleItem
(Item
as
HITEM)

Ensures
the
given
item
is
in
the
visible
client
area.

Type Description

Item as HITEM

A
long
expression
that
indicates
the
item's
handle
that
fits
the
client
area.

The
method
doesn't
expand
parent
items.
The
EnsureVisibleItem
method
scrolls
the
control's
content
until
the
item
is
visible.
Use
the
IsItemVisible
to
check
if

The
following
VB
sample
ensures
that
first
item
is
visible:

Gantt1.Items.EnsureVisibleItem

Gantt1.Items(0)
The
following
C++
sample
ensures
that
first
item
is
visible:

#include

"Items.h"

CItems

items

=

m_gantt.GetItems();

items.EnsureVisibleItem(

items.GetItemByIndex(

0

The
following
C#
sample
ensures
that
first
item
is
visible:

axGantt1.Items.EnsureVisibleItem(axGantt1.Items[0]);
The
following
VB.NET
sample
ensures
that
first
item
is
visible:

AxGantt1.Items.EnsureVisibleItem(

AxGantt1.Items.FocusItem

);

The
following
VFP
sample
ensures
that
first
item
is
visible:

with

thisform.Gantt1.Items

.EnsureVisibleItem(

.ItemByIndex(

0

an
item
fits
the
control's
client
area. Use
the
Scroll
method
to
scroll
programmatically
the
control.
Use
the
EnsureVisibleColumn
method
to
ensure
that
a
specified
column
fits
the
control's
client
area.

method
Columns.Remove
(Index
as
Variant)

Removes
a
specific
member
from
the
Columns
collection.

Type Description

Index as Variant

A
long
expression
that
indicates
the
column's
index,
or
a
string
expression
that
indicates
the
column's
caption
or
the
column's
key.

The
Remove
method
removes
a
specific
column
in
the
Columns
collection.
Use
Clear
method
to
remove

all
Column
objects.
The
RemoveColumn
event
is
fired
when
a
column
is
about
to
be
removed.
Use
the
Visible
property
to
hide
a
column.

property
Column.Visible
as
Boolean

Retrieves
or
sets
a
value
indicating
whether
the
column
is
visible
or
hidden.

Type Description

Boolean

A
boolean
expression
indicating
whether
the
column
is
visible
or
hidden.

Use
the
Visible
property
to
hide
a
column.
Use
the
Width
property
to
resize
the
column.
The
ColumnAutoResize
property
specifies
whether
the
visible
columns
fit
the

control's
client
area.
Use
the
Position
property
to
specify
the
column's
position.
Use
the
HeaderVisible
property
to
show
or
hide
the
control's
header
bar.
Use
the
ColumnFromPoint
property
to
get
the
column
from
point.
Use
the
Remove
method
to
remove
a
column.

method
Gantt.PutItems
(Items
as
Variant,
[Parent
as
Variant])

Adds
an
array
of
integer,
long,
date,
string,
double,
float,
or
variant
arrays
to
the
control

Type Description

Items as Variant

An
array
that
control
uses
to
fill
with.
The
array
can
be
one
or
two-
dimensional.
If
the
array
is
one-
dimensional,
the
control
requires
one
column
being
added
before
calling
the
PutItems
method.
If
the
Items
parameter

indicates
a
two-
dimensional
array,
the
first
dimension
defines
the
columns,
while
the
second
defines
the
number
of
items
to
be
loaded.
For
instance,
a(2,100)
means
2
columns
and
100
items.

Parent as Variant

A
long
expression
that
specifies
the
handle
of
the
item
where
the

array
is
being
inserted,
or
0
if
missing.

The
PutItems
method
loads
items
from
a
safe
array.
The
Parent
parameter
of
the
PutItems
method
specifies
the
handle
of
the
item
where
the
array
is
being
inserted
as
child
items.Use
the
GetItems
method

The
following
VB
6
sample
loads
a
flat
array
to
a
single
column
control
(and
shows
as
in
the
following
picture
):

With

Gantt1

.BeginUpdate

.Columns.Add

"Column

1"

.PutItems

Array("Item

or
similar
for
/NET
Assembly
version:

With

Exgantt1

.BeginUpdate()

.Columns.Add("Column

1")

.PutItems(New

String()

The
following
VB
6
sample
loads
a
hierarchy
to
a
single
column
control
(and
shows
as
in
the
following
picture
):

With

Gantt1

.BeginUpdate

.LinesAtRoot

=

exLinesAtRoot

or
similar
for
/NET
Assembly
version:

With

Exgantt1

.BeginUpdate()

.LinesAtRoot

=

exontrol.EXGANTTLib.LinesAtRootEnum.exLinesAtRoot

The
following
VB
6
sample
loads
a
list
of
items,
in
a
three
columns
control
(
as
shown
in
the
following

Dim

v(2,

2)

As

String

v(0,

0)

=

"One"

The
following
VB
6
sample
loads
a
list
of
items,
in
a
three
columns
control
(
as
shown

Dim

v(2,

2)

As

String

v(0,

0)

=

The
following
VB
sample
loads
an
ADO
recordset
using
PutItems
method:

Set

rs

=

CreateObject("ADODB.Recordset")

rs.Open

"Orders",

The
following
C++
sample
loads
records
from
an
ADO
recordset,
using
the

#include

"Items.h"

#include

"Columns.h"

#include

The
sample
uses
the
#import
statement
to
import
ADODB
recordset's

to
get
a
safe
array
with
the
items
in
the
control.
Use
the
Items
property
to
access
the
items
collection.
Use
the
AddItem
method
to
add
items
one
by
one.
Use
the
DataSource
property
to
bind
the
control
to
an
ADO
or
DAO

picture
):
in
the
following
picture
):

PutItems
method:
type
library.
The
sample
enumerates
the
fields
in
the
recordset
and
adds
a
new
column
for
each
field
found.
Also,
the
sample
uses
the
GetRows
method
of
the
ADODB
recordset
to
retrieves
multiple
records
of
a
Recordset
object
into
a
safe
array.
Please

recordset.
Use
the
ColumnAutoResize
property
to
specify
whether
the
visible
columns
should
fit
the
control's
client
area.
Use
the
ConditionalFormats
method
to
apply
formats
to
a
cell
or
range
of
cells,
and
have
that
formatting
change
depending
on
the
value
of
the
cell

consult
the
ADODB
documentation
for
the
GetRows
property
specification.

or
the
value
of
a
formula.

property
Gantt.DetectAddNew
as
Boolean

Specifies
whether
the
control
detects
when
a
new
record
is
added
to
the
bounded
record
set.

Type Description

Boolean

A
boolean
expression
that
indicates
whether
the
control
detects
when
a
new
record
is
added
to
the
bounded
recordset

The
DetectAddNew
property
detects
adding
new
records
to
a
recordset.
Use
the
DataSource
property
to
bound
the
control

to
a
table.
If
the
DetectAddNew
property
is
True,
and
user
adds
a
new
record
to
the
bounded
recordset,
the
control
automatically
adds
a
new
item
to
the
control.
The
DetectAddNew
property
has
effect
only
if
the
control
is
bounded
to
an
ADO,

ADODB
recordset,
using
the
DataSource
property.

property
Gantt.ConditionalFormats
as
ConditionalFormats

Retrieves
the
conditional
formatting
collection.

Type Description

ConditionalFormats

A
ConditionalFormats
object
that
indicates
the
control's
ConditionalFormats
collection.

The
conditional
formatting
feature
allows
you
to
apply
formats
to
a
cell
or
range
of
cells,
and
have
that
formatting
change
depending
on
the
value
of
the
cell

or
the
value
of
a
formula.
Use
the
Add
method
to
format
cells
or
items
based
on
a
formula.
Use
the
Refresh
method
to
refresh
the
control,
if
a
change
occurs
in
the
conditional
format
collection.
Use
the
CellCaption
property
indicates
the
cell's

caption
or
value.

The
conditional
format
feature
may
change
the
cells
and
items
as
follows:

Bold
property.
Bolds
the
cell
or
items

Italic
property.
Indicates
whether
the
cells
or
items
should
appear
in
italic.

StrikeOut
property.
Indicates
whether
the
cells
or
items
should
appear
in
strikeout.

Underline
property.
Underlines
the
cells
or
items

Font
property.
Changes
the
font
for
cells
or
items.

BackColor
property.
Changes
the
background
color
for
cells
or
items,
supports
skins
as
well.

ForeColor
property.
Changes
the
foreground
color
for
cells
or
items.

The
conditional
format
feature
may
change
the
bars
as
follows:

The
BarColor
property
specifies
the
color
to
be
applied
to
bars
if
the
conditional
expression
is
accomplished.

The
BarOverviewColor
property
specifies
the
color
to
be
applied
to
bars,
in
the
overview
portion
of
the
control,
if
the
conditional
expression
is
accomplished.

The
ApplyTo
property
specifies
whether
the
ConditionalFormat
object
is
applied
to
items
or
to
a
column.
Use
the
ApplyToBars
property
to
specify
the
list
of
bars
that
the
current
format
is
applied
to.

The
following
screen
shot
shows
different
colors
applied
to
different
items,
using
the
ConditionalFormat
feature:

property
Gantt.DefaultItemHeight
as
Long

Retrieves
or
sets
a
value
that
indicates
the
default
item
height.

Type Description

Long

A
long
expression
indicates
the
default
item
height.

The
DefaultItemHeight
property
specifies
the
height
of
the
items.
Changing
the
property
fails
if
the
control
contains
already
items.
You
can
change
the
DefaultItemHeight
property
at
design
time,
or

at
runtime,
before
adding
any
new
items
to
the
Items
collection.
Use
the
ItemHeight
property
to
specify
the
height
of
a
specified
item.
Use
the
ScrollBySingleLine
property
when
using
the
items
with
different
heights.
Use
the
CellSingleLine
property
to
specify
whether
the
cell

displays
the
caption
using
multiple
lines.
Use
the
ItemAllowSizing
property
to
specify
whether
the
user
can
resize
the
item
at
runtime.
Use
the
Height
property
to
specify
the
height
of
the
bars.

method
Items.SetParent
(Item
as
HITEM,
NewParent
as
HITEM)

Changes
the
parent
of
the
given
item.

Type Description

Item as HITEM

A
long
expression
that
indicates
the
handle
of
the
item
being
moved.

NewParent as HITEM

A
long
expression
that
indicates
the
handle
of
the
new
parent
item.

Use
the
SetParent
property
to
change
the
parent
item
at
runtime.
Use

the
InsertItem
property
to
insert
child
items.
Use
the
InsertControlItem
property
to
insert
ActiveX
controls.
Use
AcceptSetParent
property
to
verify
if
the
the
parent
of
an
item
can
be
changed.
The
following
VB
sample
changes
the
parent
item
of
the
first
item:
Gantt1.Items.SetParent

Gantt1.Items(0),
Gantt1.Items(1).
Use
the
ItemParent
property
to
retrieve
the
parent
of
the
item.

property
Items.CellVAlignment
([Item
as
Variant],
[ColIndex
as
Variant])
as
VAlignmentEnum

Retrieves
or
sets
a
value
that
indicates
how
the
cell's
caption
is
vertically
aligned.

Type Description

Item as Variant

A
long
expression
that
identifies
the
item's
handle

ColIndex as Variant

A
long
expression
that
indicates
the
column's
index
or
the
cell's
handle,
a
string
expression
that
indicates
the
column's
caption.

VAlignmentEnum

A
VAlignmentEnum
expression
that
indicates
the
cell's
vertically
alignment.

Use
the
CellVAlignment
property
to
specify
the
vertically
alignment
for
the
cell's
caption.
Use
the
CellSingleLine
property
to
specify
whether
a
cell
uses
single
or
multiple
lines.
Use
the
CellHAlignment
property
to
align
horizontally
the
cell.
The
+/-
button
is
aligned
accordingly
to

The
following
VB
sample
aligns
the
focused
cell
to
the
bottom:

With

Gantt1.Items

.CellVAlignment(.FocusItem,

0)

=

VAlignmentEnum.BottomAlignment

End

With

The
following
C++
sample
right
aligns
the
focused
cell:

#include

"Items.h"

CItems

items

=

m_gantt.GetItems();

items.SetCellVAlignment(

COleVariant(

items.GetFocusItem()

),

COleVariant(

(long)0

),

2

/*BottomAlignment*/

);

The
following
VB.NET
sample
right
aligns
the
focused
cell:

With

AxGantt1.Items

.CellVAlignment(.FocusItem,

0)

=

EXGANTTLib.VAlignmentEnum.BottomAlignment

End

With

The
following
C#
sample
right
aligns
the
focused
cell:

axGantt1.Items.set_CellVAlignment(axGantt1.Items.FocusItem,

0,

EXGANTTLib.VAlignmentEnum.BottomAlignment);

The
following
VFP
sample
right
aligns
the
focused
cell:

with

thisform.Gantt1.Items

.DefaultItem

=

.FocusItem

.CellVAlignment(0,0)

=

2

&&

BottomAlignment

endwith

the
cell's
caption.
Use
the
Def(exCellVAlignment)
property
to
specify
the
same
vertical
alignment
for
the
entire
column.

method
Items.InsertControlItem
(Parent
as
HITEM,
ControlID
as
String,
[License
as
Variant])

Inserts
a
new
item
of
ActiveX
type,
and
returns
a
handle
to
the
newly
created
item.

Type Description

Parent as HITEM

A
long
expression
that
indicates
the
handle
of
the
parent
item
where
the
ActiveX
will
be
inserted.
If
the
argument
is
missing
then
the
InsertControlItem
property
inserts
the
ActiveX
control
as
a
root
item.
If
the
Parent
property

is
referring
a
locked
item
(
ItemLocked
property
),
the
InsertControlItem
property
doesn't
insert
a
new
child
ActiveX,
instead
insert
the
ActiveX
control
to
the
locked
item
that's
specified
by
the
Parent
property.
A
string
expression
that
can
be
formatted
as
follows:
a

ControlID as String

prog
ID,
a
CLSID,
a
URL,
a
reference
to
an
Active
document
, a
fragment
of
HTML.

License as Variant

A
string
expression
that
indicates
the
runtime
license
key,
if it
is
required.
An
empty
string,
if
the
control
doesn't
require
a
runtime
license
key.

Return Description

HITEM

A
long
expression
that
indicates
the
handle
of
the
newly
created
item.

Use
the
AddBar
method
to
add
bars
to
the
item.
The
bars
are
always
shown
in
the
chart
area.
Use
the
PaneWidth
property
to
specify
the
width
of
the
chart.

A
ProgID
such
as
"Exontrol.Gantt"

A
CLSID
such
as
"
{8E27C92B-
1264-
101C-
8A2F-
040224009C02}"

A
URL
such
as
"https://www.exontrol.com"

A
reference
to
an
Active
document
such
as
"c:\temp\myfile.doc",
or
"c:\temp\picture.gif"

A
fragment
of
HTML
such
as
"MSHTML:
<HTML>
<BODY>This
is
a
line
of
text</BODY>
</HTML>"

A
fragment
of
XML

The
InsertControlItem
property
creates
an
ActiveX
control
that's
hosted
by
the
exGrid
control.
The
look
and
feel
of
the
inner
ActiveX
control
depends
on
the
identifier
you

Once
that
an
item
of
ActiveX
type
has
been
added
you
can
get
the
OLE
control
created
using
the
ItemObject
property.
To
check
if
an
item
contains

The
following
VB
sample
adds
the
Exontrol's
ExCalendar
Component:

With

Gantt1

.BeginUpdate

.ScrollBySingleLine

=

True

The
following
C++
sample
adds
the
Exontrol's
ExOrgChart
Component:

#include

"Items.h"

#pragma

warning(

disable

:

4146

)

#import

The
sample
uses
the
#import
statement

to
include
the
ExOrgChart's
Type
Library.
In
this
sample,
the
ItemObject
property
retrieves

The
following
C#
sample
adds

the
Exontrol's
ExGantt
Component:

axGantt1.BeginUpdate();

EXGANTTLib.Items

items

=

axGantt1.Items;

axGantt1.ScrollBySingleLine

=

true;

The
following
VB.NET

sample
adds
the
Exontrol's
ExOrgChart
Component:

With

AxGantt1

.BeginUpdate()

The
following
VFP
sample
adds
the
Exontrol's
ExGrid
Component:

with

thisform.Gantt1

.BeginUpdate()

.ScrollBySingleLine

=

The
following
VB
sample
adds
dynamically
an
ExGantt
ActiveX
Control
and
a

'

Inserts

a

new

ActiveX

where
the
runtimelicensekey
is
the
exGantt's
runtime
license
key.

The
following
VB
sample
handles
any
event
that

Private

Sub

Gantt1_ItemOleEvent(ByVal

Item

Some
of
ActiveX
controls
requires
additional

First
thing
is
to
declare

Private

Const
Then
you
need

Dim

The
control
supports
ActiveX
hosting,
so
you
can
insert
any
ActiveX
component.
The
ControlID
must
be
formatted
in
one
of
the
following
ways:

are
using,
and
the
version
of
the
library
that
implements
the
ActiveX
control,
so
you
need
to
consult
the
documentation
of
the
inner
ActiveX
control
you
are
inserting
inside
the
exGantt
control.

an
ActiveX
control
you
can
use
ItemControlID
property.
To
change
the
height
of
an
ActiveX
item
you
have
to
use
ItemHeight
property.
When
the
control
contains
at
least
an
item
of
ActiveX
type,
it
is
recommended
to
set
ScrollBySingleLine
property
of
control
to

an
IChartView
object.
The
path
to
the
library
should
be
provided
in
case
it
is
not
located
in
your
system
folder.

Microsoft
Calendar
Control:

Please
contact
us
to
get
the
exGantt's
runtime
license
key.
Please
notice
that
your
development
license
key
is
not
equivalent
with
the
generated
runtime
license
key.
Your
order
number
is
required,
when
requesting
the
control's
runtime
license
key.
If
you
are
using
the

a
contained
ActiveX
fires:

window
styles
to
be
added
to
the
conatiner
window.
For
instance,
the
Web
Brower
added
by
the
Gantt1.Items.InsertControlItem(,
"https://www.exontrol.com")
won't
add
scroll
bars,
so
you
have
to
do
the
following:

the
WS_HSCROLL
and
WS_VSCROLL
constants
at
the
top
of
your
module:

to
to
insert
a
Web
control
use
the
following
lines:

Next
step
is
adding
the
AddItem
event
handler:

Private

Sub

Gantt1_AddItem(ByVal

Item

As

EXGANTTLibCtl.HITEM)

If

(Gantt1.Items.ItemControlID(Item)

=

"https://www.exontrol.com")

Then

'

Some

If
somehow
the
InsertItemControl
wasn't
able
to
create
your
ActiveX
on
some
Windows
platforms,
and
you
don't
know
why,
you
can
use
the
following

code
to
make
sure
that
ActiveX
control
can
be
created
properly
by
using
(
the
sample
is
trying
to
add
a
new
Microsoft
RichText
ActivX
control
into
your
form):

Controls.Add

"RICHTEXT.RichtextCtrl",

"rich"

https://exontrol.com/sg.jsp?content=techsupport&order=XXXXXXX&product=ExGantt

true.
Events
from
contained
components
are
fired
through
to
your
program
using
the
exact
same
model
used
in
VB6
for
components
added
at
run
time
(
See
ItemOleEvent
event,
OleEvent
and
OleEventParam
).
For
instance,
when
an
ActiveX
control
fires
an
event,
the

DEMO
version
for
testing
purpose,
you
don't
need
a
runtime
license
key.

control
forwards
that
event
to
your
container
using
ItemOleEvent
event
of
the
exGantt
control.
Use
the
ItemObject
property
to
access
the
object
being
created
by
the
InsertControlItem
property.
Use
the
ItemHeight
property
to
specify
the
height
of
the
item
when
containing
an
ActiveX

control.
Use
the
ItemWidth
property
to
specify
the
width
of
the
ActiveX
control.
Use
the
BeginUpdate
and
EndUpdate
methods
to
update
the
control's
content
when
adding
ActiveX
controls
on
the
fly.
Use
the
ItemControlID
property
to
retrieve
the
control's
identifier.

property
Items.CellData([Item
as
Variant],
[ColIndex
as
Variant])
as
Variant

Retrieves
or
sets
the
extra
data
for
a
specific
cell.

Type Description

Item as Variant

A
long
expression
that
indicates
the
item's
handle.

ColIndex as Variant

A
long
expression
that
indicates
the
column's
index,
a
string
expression
that
indicates
the
column's
caption
or
the
column's
key.

Variant

A
variant
expression
that
indicates
the
cell's
user
data.

Use
the
CellData
to
associate
an
extra
data
to
your
cell.
Use
ItemData
when
you
need
to
associate
an
extra
data
with
an
item.
The
CellData
value
is
not
used
by
the
control,
it
is
only
for
user
use.
Use
the
Data
property

Note:
A
cell
is
the
intersection
of
an
item
with
a
column.
All
properties
that
has
an
Item
and
a
ColIndex
parameters
are
referring
to
a
cell.
The
Item
parameter
represents
the
handle
of
an
item,
and
the
ColIndex
parameter
indicates
an

Gantt1.Items.CellBold(,

Gantt1.Items.ItemCell(Gantt1.Items(0),

0))

=

True

Gantt1.Items.CellBold(Gantt1.Items(0),

0)

=

True

Gantt1.Items.CellBold(Gantt1.Items(0),

"ColumnName")

=

True

to
assign
an
extra
data
to
a
column.
Use
the
SortUserData
or
SortUserDataString
type
to
sort
the
column
based
on
the
CellData
value.
Use
the
CellCaption
property
to
specify
the
cell's
caption.

index
(
a
numerical
value,
see
Column.Index
property
)
of
a
column
,
the
column's
caption
(
a
string
value,
see
Column.Caption
property
),
or
a
handle
to
a
cell
(
see
ItemCell
property
).
Here's
few
hints
how
to
use
properties
with

Item
and
ColIndex
parameters:

property
Items.CellCaptionFormat([Item
as
Variant],
[ColIndex
as
Variant])
as
CaptionFormatEnum

Specifies
how
the
cell's
caption
is
displayed.

Type Description

Item as Variant

A
long
expression
that
indicates
the
item's
handle.

ColIndex as Variant

A
long
expression
that
indicates
the
column's
index
or
cell's
handle,
or
a
string
expression
that
specifies
the
column's
caption

CaptionFormatEnum

A
CaptionFormatEnum
expression
that
defines
the
way
how
the

cell's
caption
is
displayed.

The
component
supports
built-
in
HTML
format.
That
means
that
you
can
use
HTML
tags
when
displays
the
cell's
caption
.
By
default,
the
CellCaptionFormat
property
is
exText.
If
the
CellCaptionFormat
is
exText,
the
cell
displays
the
CellCaption

property
like
it
is.
If
the
CellCaptionFormat
is
exHTML,
the
cell
displays
the
CellCaption
property
using
the
HTML
tags
specified
in
the
CaptionFormatEnum
type.
If
the
CellCaptionFormat
property
is
exComputedField,
the
CellCaption
property
indicates
the
formula
to
calculate
the
cell,
based
on
the

other
cells.
Use
the
Def
property
to
specify
that
all
cells
in
the
column
display
HTML
format.
Use
ItemBold,
ItemItalic,
ItemUnderline
or
ItemStrikeOut
property
to
apply
different
font
attributes
to
the
item.
Use
the
CellItalic,
CellUnderline,
CellBold
or
CellStrikeOut
property
to
apply
different

font
attributes
to
the
cell.
Use
the
FormatColumn
property
to
format
the
column.

property
Items.ItemData(Item
as
HITEM)
as
Variant

Retrieves
or
sets
the
extra
data
for
a
specific
item.

Type Description

Item as HITEM

A
long
expression
that
indicates
the
item's
handle
that
has
associated
some
extra
data.

Variant

A
variant
value
that
indicates
the
item's
extra
data.

Use
the
ItemData
property
to
assign
an
extra
value
to
an
item.
Use

CellData
property
to
associate
an
extra
data
with
a
cell.
The
ItemData
and
CellData
are
of
Variant
type,
so
you
will
be
able
to
save
here
what
ever
you
want:
numbers,
objects,
strings,
and
so
on.
The
user
data
is
only
for
user

use.
The
control
doesn't
use
this
value.
Use
the
Data
property
to
assign
an
extra
data
to
a
column.
For
instance,
you
can
use
the
RemoveItem
event
to
release
any
extra
data
that
is
associated
to
the
item.

Column
objectThe

ExGantt
component
supports
multiple
columns.
The
Columns
object
contains
a
collection
of
Column
objects.
By
default,
the
control
doesn't
add
any
default
column,
so
the
user
has
to
add
at
least
one
column,
before
inserting
any
new
items.
The
Column
object

Name Description

Alignment

Retrieves
or
sets
the
alignment
of
the
caption
into
the
column's
header.

AllowDragging

Retrieves
or
sets
a
value
indicating
whether
the
user
will
be
able
to
drag
the
column.
Retrieves
or
sets
a
value
indicating
whether
the
user

holds
information
about
a
control's
column
like:
Alignment,
Caption,
Position
and
so
on.
The
Column
object
supports
the
following
properties
and
methods:

AllowSizing
will
be
able
to
change
the
width
of
the
visible
columns
by
dragging.

AllowSort

Returns
or
sets
a
value
that
indicates
whether
the
user
can
sort
the
column
by
clicking
the
column's
header.

AutoSearch

Specifies
the
kind
of
searching
while
user
types
characters
within

the
columns.

AutoWidth

Computes
the
column's
width
required
to
fit
the
entire
column's
content.

Caption

Retrieves
or
sets
the
text
displayed
to
the
column's
header.

ComputedField

Retrieves
or
sets
a
value
that
indicates
the
formula
of
the
computed
column.
Retrieves
or
sets
a
value
that

CustomFilter indicates
the
list
of
custom
filters.

Data

Associates
an
extra
data
to
the
column.

Def

Retrieves
or
sets
a
value
that
indicates
the
default
value
of
given
properties
for
all
cells
in
the
same
column.

DefaultSortOrder

Specifies
whether
the
default
sort
order
is
ascending

or
descending.

DisplayExpandButton

Shows
or
hides
the
expanding/collapsing
button
in
the
column's
header.

DisplayFilterButton

Specifies
whether
the
column's
header
displays
the
filter
button.

DisplayFilterDate

Specifies
whether
the
drop
down
filter
window
displays
a
date
selector
to
specify
the
interval
dates
to
filter
for.
Specifies

DisplayFilterPattern

whether
the
dropdown
filter
bar
contains
a
textbox
for
editing
the
filter
as
pattern.

DisplaySortIcon

Retrieves
or
sets
a
value
indicating
whether
the
sort
icon
is
visible
on
column's
header,
while
the
column
is
sorted.
Returns
or
sets
a
value
that
determines
whether

Enabled a
column's
header
can
respond
to
user-
generated
events.

ExpandColumns

Specifies
the
list
of
columns
to
be
shown
when
the
current
column
is
expanded.

Expanded

Expands
or
collapses
the
column.

Filter

Specifies
the
column's
filter
when
filter
type
is
exFilter,
exPattern
or
exDate.
Specifies

FilterBarDropDownWidth

the
width
of
the
drop
down
filter
window
proportionally
with
the
width
of
the
column.

FilterList

Specifies
whether
the
drop
down
filter
list
includes
visible
or
all
items.

FilterOnType

Filters
the
column
as
user
types
characters
in
the
drop
down
filter
window.
Specifies
the

FilterType column's
filter
type.

FireFormatColumn

Retrieves
or
sets
a
value
that
indicates
whether
the
control
fires
FormatColumn
to
format
the
caption
of
a
cell
hosted
by
column.

FormatColumn

Specifies
the
format
to
display
the
cells
in
the
column.

HeaderAlignment

Specifies
the
alignment
of
the
column's
caption.

HeaderBold

Retrieves
or
sets
a
value
that
indicates
whether
the
column's
caption
should
appear
in
bold.

HeaderImage

Retrieves
or
sets
a
value
indicating
the
index
of
an
Image
in
the
Images
collection,
which
is
displayed
to
the
column's
header.
Retrieves
or
sets
the

HeaderImageAlignment
alignment
of
the
image
into
the
column's
header.

HeaderItalic

Retrieves
or
sets
a
value
that
indicates
whether
the
column's
caption
should
appear
in
italic.

HeaderStrikeOut

Retrieves
or
sets
a
value
that
indicates
whether
the
column's
caption
should
appear
in
strikeout.
Retrieves
or
sets
a

HeaderUnderline

value
that
indicates
whether
the
column's
caption
should
appear
in
underline..

HTMLCaption

Retrieves
or
sets
the
text
in
HTML
format
displayed
in
the
column's
header.

Index

Returns
a
value
that
represents
the
index
of
an
object
in
a
collection.

Key

Retrieves
or
sets
the

column's
key.

LevelKey

Retrieves
or
sets
a
value
that
indicates
the
key
of
the
column's
level.

MaxWidthAutoResize

Retrieves
or
sets
a
value
that
indicates
the
maximum
column's
width
when
the
WidthAutoResize
is
True.

MinWidthAutoResize

Retrieves
or
sets
a
value
that
indicates
the
minimum
column's

width
when
the
WidthAutoResize
is
True.

PartialCheck

Specifies
whether
the
column
supports
partial
check
feature.

Position

Retrieves
or
sets
a
value
that
indicates
the
position
of
the
column
in
the
header
bar
area.

ShowFilter

Shows
the
column's
filter
window.

SortOrder

Specifies
the
column's
sort
order.

SortPosition

Returns
or
sets
a
value
that
indicates
the
position
of
the
column
in
the
sorting
columns
collection.

SortType

Returns
or
sets
a
value
that
indicates
the
way
a
control
sorts
the
values
for
a
column.

ToolTip

Specifies
the
column's
tooltip
description.
Retrieves
or
sets

Visible

a
value
indicating
whether
the
column
is
visible
or
hidden.

Width

Retrieves
or
sets
the
column's
width.

WidthAutoResize

Retrieves
or
sets
a
value
that
indicates
whether
the
column
is
automatically
resized
according
to
the
width
of
the
contents
within
the
column.

method
Items.AddItem
([Caption
as
Variant])

Adds
a
new
item,
and
returns
a
handle
to
the
newly
created
item.

Type Description

Caption as Variant

A
string
expression
that
indicates
the
cell's
caption
for
the
first
column.
or
a
safe
array
that
contains
the
captions
for
each
column.
The
Caption
accepts
HTML
format,
if
the
CellCaptionFormat
property
is
exHTML.

Return Description
A

HITEM

long
expression
that
indicates
the
handle
of
the
newly
created
item.

Use
the
Add
method
to
add
new
columns
to
the
control.
If
the
control
contains
no
columns,
the
AddItem
method
fails.
Use
the
AddItem
property
to
add
new
items
to
the

The
AddItem
property
adds
a
new
item
that
has
no
parent.
When
a
new
item
is
added
(inserted)
to
the
Items
collection,
the
control
fires
the
AddItem
event.
If
the

The
following
VB6
sample
uses
the
VB
Array
function
to
add
two
items:

With

Gantt1

.BeginUpdate

.Columns.Add

In
VB/NET
using
the
/NET
assembly,
the
Array
equivalent
is
New
Object
such
as
follows:

With

Gantt1

.BeginUpdate()

.Columns.Add("Column

1")

In
C#
using
the
/NET
assembly,
the
Array
equivalent
is
new
object
such
as
follows:

exgantt1.BeginUpdate();

exgantt1.Columns.Add("Column

1");

exgantt1.Columns.Add("Column

2");

exgantt1.Columns.Add("Column

3");

exgantt1.Items.AddItem(new

object[]

{

Use
the
PutItems
method
to
load
an
array,
like
in
the
following
VB
sample:

Set

rs

=

CreateObject("ADODB.Recordset")

rs.Open

"Orders",

"Provider=Microsoft.Jet.OLEDB.3.51;Data

Source=

D:\Program

Files\Microsoft

The
following
C++
sample
adds
new
items
to
the
control:

#include

"Items.h"

CItems

items

=

m_gantt.GetItems();

long

iNewItem

=

The
following
VB.NET
sample
adds
new
items
to
the
control:

With

AxGantt1.Items

Dim

iNewItem

As

Integer

The
following
C#
sample
adds
new
items
to
the
control:

EXGANTTLib.Items

items

=

axGantt1.Items;

int

iNewItem

=

The
following
VFP
sample
adds
new
items
to
the
control:

with

thisform.Gantt1.Items

.DefaultItem

=

.AddItem("Item

control.
Use
the
AddBar
method
to
add
bars
to
the
item.
The
bars
are
always
shown
in
the
chart
area.
Use
the
PaneWidth
property
to
specify
the
width
of
the
chart.
Use
InsertItem
method
to
insert
child
items
to
the
list.
Use
the

control
contains
more
than
one
column
use
the
CellCaption
property
to
set
the
cell's
caption.
If
there
are
no
columns
AddItem
method
fails.

InsertControlItem
property
to
insert
and
ActiveX
control.
Use
the
LockedItemCount
property
to
add
or
remove
items
locked
to
the
top
or
bottom
side
of
the
control. Use
the
MergeCells
method
to
combine
two
or
multiple
cells
in
a
single
cell. Use
the
SplitCell
property
to

split
a
cell. Use
the
BeginUpdate
and
EndUpdate
methods
to
maintain
performance
while
adding
new
columns
and
items. Use
the
ConditionalFormats
method
to
apply
formats
to
a
cell
or
range
of
cells,
and
have
that
formatting
change
depending
on
the
value
of
the
cell
or

the
value
of
a
formula.
Use
the
LoadXML/SaveXML
methods
to
load/save
the
control's
data
from/to
XML
files.

property
Items.SplitCell
([Item
as
Variant],
[ColIndex
as
Variant])
as
Variant

Splits
a
cell,
and
returns
the
inner
created
cell.

Type Description

Item as Variant

A
long
expression
that
indicates
the
handle
of
the
item
where
a
cell
is
being
divided,
or
0.
If
the
Item
parameter
is
0,
the
ColIndex
parameter
must
indicate
the
handle
of
the
cell.
A
long
expression

ColIndex as Variant

that
indicates
the
index
of
the
column
where
a
cell
is
divided,
or
a
long
expression
that
indicates
the
handle
of
the
cell
being
divided,
if
the
Item
parameter
is
missing
or
it
is
zero.

Variant

A
long
expression
that
indicates
the
handle
of

the
cell
being
created.

The
SplitCell
method
splits
a
cell
in
two
cells.
The
newly
created
cell
is
called
inner
cell.
The
SplitCell
method
always
returns
the
handle
of
the
inner
cell.
If
the
cell
is
already
divided
using
the
SplitCell

method,
it
returns
the
handle
of
the
inner
cell
without
creating
a
new
inner
cell.
You
can
split
an
inner
cell
too,
and
so
you
can
have
a
master
cell
divided
in
multiple
cells.
Use
the
CellWidth
property
to
specify
the
width
of

the
inner
cell.
Use
the
CellCaption
property
to
assign
a
caption
to
a
cell.
Use
the
InnerCell
property
to
access
an
inner
cell
giving
its
index.
Use
the
CellParent
property
to
get
the
parent
of
the
inner
cell.
Use
the
CellItem
property
to

get
the
owner
of
the
cell.
Use
the
UnsplitCell
method
to
remove
the
inner
cell
if
it
exists.
Use
the
MergeCells
property
to
combine
two
or
more
cells
in
a
single
cell.
Use
the
SelectableItem
property
to
specify
the
user
can
select
an

item.
Include
the
exIncludeInnerCells
flag
in
the
FilterList
property
and
so
the
drop
down
filter
window
lists
the
inner
cells
too.

(
"Merge"
means
multiple
cells
in
a
single
cell,
"Split"
means
multiple
cells
inside
a
single
cell
)

The
following
VB
sample
splits
a
single
cell
in
two
cells
(
Before
running
the
following
sample,
please
make

With

Gantt1.Items

Dim

h

As

HITEM,

The
following
C++
sample
splits
the
first
visible
cell
in
two
cells:

#include

"Items.h"

CItems

items

=

m_gantt.GetItems();

COleVariant

The
following
VB.NET
sample
splits
the
first
visible
cell
in
two
cells:

With

AxGantt1.Items

Dim

i

The
following
C#
sample
splits
the
first
visible
cell
in
two
cells:

EXGANTTLib.Items

items

=

axGantt1.Items;

object

The
following
VFP
sample
splits
the
first
visible
cell
in

with

thisform.Gantt1.Items

local

i

sure
that
your
control
contains
columns,
and
at
least
an
item
):

two
cells:

property
Column.ComputedField
as
String

Retrieves
or
sets
a
value
that
indicates
the
formula
of
the
computed
column.

Type Description

String

A
String
expression
that
indicates
the
formula
to
compute
the
field/cell. The
formula
is
applied
to
all
cells
in
the
column
with
the
CellCaptionFormat
property
on
exText
(
the
exText
value
is
by
default
).

A
computed
field

or
cell
displays
the
result
of
an
arithmetic
formula
that
may
include
operators,
variables
and
constants.
By
default,
the
ComputedField
property
is
empty.
If
the
the
ComputedField
property
is
empty,
the
property
have
no
effect.
If
the
ComputedField
property
is
not
empty,
all

cells
in
the
column,
that
have
the
CellCaptionFormat
property
on
exText,
uses
the
same
formula
to
display
their
content.
For
instance,
you
can
use
the
CellCaptionFormat
property
on
exHTML,
for
cells
in
the
column,
that
need
to
display
other
things
than
column's
formula,

or
you
can
use
the
CellCaptionFormat
property
on
exComputedField,
to
change
the
formula
for
a
particular
cell.
Use
the
FormatColumn
property
to
format
the
column.
Use
the
CellCaptionFormat
property
to
change
the
type
for
a
particular
cell.
Use
the
CellCaption
property
to
specify

the
cell's
content.
For
instance,
if
the
CellCaptionFormat
property
is
exComputedField,
the
Caption
property
indicates
the
formula
to
compute
the
cell's
content.
The
Def(exCellCaptionFormat)
property
is
changed
to
exComputedField,
each
time
the
ComputeField
property
is
changed
to
a
not
empty
value.
If
the

ComputedField
property
is
set
to
an
empty
string,
the
Def(exCellCaptionFormat)
property
is
set
to
exText.
Call
the
Refresh
method
to
force
refreshing
the
control.

The
expression
supports
cell's
identifiers
as
follows:

%0,
%1,
%2,
...
specifies
the
value
of
the
cell
in
the
column
with
the

This
property/method
supports
predefined
constants
and
operators/functions
as
described
here.

Samples:
1. "1",

the
cell
displays
1

2. "%0
+
%1",
the
cell
displays
the
sum
between
cells
in
the
first

3. "%0
+
%1
-
%2",
the
cell
displays
the
sum
between
cells
in

4. "
(%0
+
%1)*0.19",
the
cell
displays
the
sum
between
cells
in
the

5. "
(%0
+
%1
+
%2)/3",
the
cell
displays
the
arithmetic
average
for

6. "%0
+
%1
<
%2
+
%3",
displays
1
if
the
sum

7. "proper(%0)'"
formats
the
cells
by
capitalizing
first
letter
in
each
word

8. "currency(%1)'"
displays
the
second
column
as
currency
using
the
format
in
the

9. "len(%0)
?
currency(dbl(%0))
:
''"
displays
the
currency
only
for
not
empty/blank

10. "int(date(%1)-
date(%2))
+
'D
'
+
round(24*
(date(%1)-
date(%2)
-
floor(date(%1)-

11. "2:=
((1:=int(0:=
date(%1)-
date(%0)))
=
0
?
''
:
str(=:1)
+

index
0,
1
2,
...
The
CellCaption
property
specifies
the
cell's
value.
For
instance,
"%0
format
``"
formats
the
value
on
the
cell
with
the
index
0,
using
current
regional
setting,
while
"int(%1)"
converts
the
value
of
the
column
with
the

and
second
columns.

the
first
and
second
columns
minus
the
third
column.

first
and
second
columns
multiplied
with
0.19.

the
first
three
columns.

between
cells
in
the
first
two
columns
is
less
than
the
sum
of
third
and
forth
columns.

control
panel
for
money

cells.date(%2))))
+
'H''"
displays
interval
between
two
dates
in
days
and
hours,
as
xD
yH

'
day(s)')
+
(
3:=round(24*
(=:0-
floor(=:0)))
?
(len(=:2)
?
'
and
'
:
'')
+
=:3
+
'
hour(s)'
:
''
)"
displays
the
interval
between
two
dates,
as
x
day(s)
[and
y
hour(s)],
where
the
x
indictaes
the
number
of

index
1,
to
integer.

days,
and
y
the
number
of
hours.
The
hour
part
is
missing,
if
0
hours
is
displayed,
or
nothing
is
displayed
if
dates
are
identical.

property
Gantt.BackColorLock
as
Color

Retrieves
or
sets
a
value
that
indicates
the
control's
background
color
for
the
locked
area.

Type Description

Color

A
boolean
expression
that
indicates
the
control's
background
color
for
the
locked
area.

The
ExGantt
ActiveX
Control
can
group
the
columns
into
two
categories:
locked
and
unlocked.
The
Locked
category
contains
all
the
columns
that
are
fixed

to
the
left
area
of
the
client
area.
These
columns
cannot
be
scrolled
horizontally.
Use
the
CountLockedColumns
to
specify
the
number
of
locked
columns.
The
unlocked
are
contains
the
columns
that
can
be
scrolled
horizontally.
To
change
the
background
color
of
the
control's

unlocked
area
use
BackColor
property

property
Items.CellBackColor([Item
as
Variant],
[ColIndex
as
Variant])
as
Color

Retrieves
or
sets
the
cell's
background
color.

Type Description

Item as Variant

A
long
expression
that
indicates
the
item's
handle.

ColIndex as Variant

A
long
expression
that
indicates
the
column's
index,
a
string
expression
that
indicates
the
column's
caption
or
the
column's
key.

Color

A
color
expression
that
indicates
the
cell's
background
color.

To
change
the
background
color
for
the
entire
item
you
can
use
ItemBackColor
property.
Use
the
ClearCellBackColor
method
to
clear
the
cell's
background
color. Use
the
BackColor
property
to
specify
the
control's
background
color.
Use
the
CellForeColor
property
to
specify
the
cell's
foreground
color.

In
VB.NET
or
C#
you
require
the
following
functions
until
the
.NET
framework
will
support
them:

You
can
use
the
following
VB.NET
function:

Shared

Function

ToUInt32(ByVal

c

As

Color)

As

UInt32

You
can
use
the
following
C#
function:

private

UInt32

ToUInt32(Color

c)

{

long

i;

i

=

c.R;

i

=

i

The
following
C#
sample
changes
the
background
color
for
the
focused
cell:

axGantt1.Items.set_CellBackColor(axGantt1.Items.FocusItem,

0,

ToUInt32(Color.Red));

The
following
VB.NET
sample
changes
the
background
color
for
the
focused
cell:

With

AxGantt1.Items

.CellBackColor(.FocusItem,

0)

=

ToUInt32(Color.Red)

End

With

The
following
C++
sample
changes
the
background
color
for
the
focused
cell:

#include

"Items.h"

CItems

items

=

m_gantt.GetItems();

items.SetCellBackColor(

COleVariant(

items.GetFocusItem()

),

COleVariant(

(long)0

),

RGB(255,0,0)

);

The
following
VFP
sample
changes
the
background
color
for
the
focused
cell:

with

thisform.Gantt1.Items

.DefaultItem

=

.FocusItem

.CellBackColor(

0,

0

)

=

RGB(255,0,0)

endwith

For
instance,
the
following
VB
code
changes
background
color
of
the
left
top
cell
of
your
control:
Gantt1.Items.CellBackColor(Gantt.Items(0),
0)
=
vbBlue

Note:
A
cell
is
the
intersection
of
an
item
with
a
column.
All
properties
that
has
an
Item
and
a
ColIndex
parameters
are
referring
to
a
cell.
The
Item

Gantt1.Items.CellBold(,
Gantt1.Items.ItemCell(Gantt1.Items(0),
0))
=
True

Gantt1.Items.CellBold(Gantt1.Items(0),
0)
=
True

Gantt1.Items.CellBold(Gantt1.Items(0),
"ColumnName")
=
True

Use
the
ItemForeColor
property
to
specify
the
item's
foreground
color.
Use
the
Def(exCellBackColor)
property
to
specify
the
background
color
for
all
cells
in
the
column. Use
the
ConditionalFormats
method
to
apply
formats
to
a
cell
or
range
of
cells,
and
have
that
formatting
change

parameter
represents
the
handle
of
an
item,
and
the
ColIndex
parameter
indicates
an
index
(
a
numerical
value,
see
Column.Index
property
)
of
a
column
,
the
column's
caption
(
a
string
value,
see
Column.Caption
property
),
or
a
handle
to
a
cell

depending
on
the
value
of
the
cell
or
the
value
of
a
formula.

(
see
ItemCell
property
).
Here's
few
hints
how
to
use
properties
with
Item
and
ColIndex
parameters:

property
Gantt.BackColor
as
Color

Retrieves
or
sets
a
value
that
indicates
the
control's
background
color.

Type Description

Color

A
color
expression
that
indicates
the
control's
background
color.

The
ExGantt
ActiveX
Control
can
group
the
columns
into
two
categories:
locked
and
unlocked.
The
Locked
category
contains
all
the
columns
that
are
fixed
to
the
left
area

of
the
client
area.
These
columns
cannot
be
scrolled
horizontally.
Use
the
CountLockedColumns
to
specify
the
number
of
locked
columns.
The
unlocked
are
contains
the
columns
that
can
be
scrolled
horizontally.
To
change
the
background
color
of
the
control's
locked
area
use
BackColorLock

property.
Use
the
SelBackColor
property
to
specify
the
background
color
for
selected
items.
Use
the
CellBackColor
property
to
assign
a
different
background
color
for
a
specified
cell.
Use
the
ItemBackColor
property
to
specify
the
item's
background
color.
Use
the
BackColorAlternate
property
to
specify

the
background
color
used
to
display
alternate
items
in
the
control.
Use
the
Picture
property
to
assign
a
picture
to
the
control's
background.
Use
the
BackColor
property
to
specify
the
chart's
background
color.

method
Items.ClearItemBackColor
(Item
as
HITEM)

Clears
the
item's
background
color.

Type Description

Item as HITEM

A
long
expression
that
indicates
the
item's
handle.
If
the
Item
is
0,
the
ClearItemBackColor
clears
the
background
color
for
all
items.

The
ClearItemBackColor
method
clears
the
item's
background
color
when
ItemBackColor
property
is
used
(
columns/items

part
only).
The
ClearItemBackColor
method
clears
the
item's
background
color
when
ItemBackColor
property
is
used
(
chart
part
only
).

property
Chart.ItemBackColor(Item
as
HITEM)
as
Color

Retrieves
or
sets
a
background
color
for
a
specific
item,
in
the
chart
area.

Type Description

Item as HITEM

A
long
expression
that
indicates
the
handle
of
the
item.
A
color
expression
that
indicates
the
item's
background
color.
The
last
7
bits
in
the
high
significant
byte
of
the
color
to
indicates
the
identifier
of
the

Color

skin
being
used.
Use
the
Add
method
to
add
new
skins
to
the
control.
If
you
need
to
remove
the
skin
appearance
from
a
part
of
the
control
you
need
to
reset
the
last
7
bits
in
the
high
significant
byte
of
the

color
being
applied
to
the

By
default,
the
ItemBackColor
property
is
the
same
as
Chart's
BackColor
property.
The
ItemBackColor
property
specifies
the
background
or
the
visual
appearance
for
the
item's
background
on
the
chart
area.
The
ItemBackColor
property
specifies
the
item's
background

color
for
the
list
area
(
columns
part
of
the
control
).
The
ClearItemBackColor
method
clears
the
item's
background
on
the
chart
part
of
the
control.

The
following
screen
shot
shows
the
chart
part
when
using
the
ItemBackColor
property
of
the
Chart

The
following
samples
changes
the
background
color
for
the
item
in
the
chart
part

VBA
(MS
Access,
Excell...)

With

Gantt1

.Columns.Add

"Default"

With

VB6
With

Gantt1

.Columns.Add

"Default"

VB.NET
Dim

h,hC

With

Exgantt1

VB.NET
for
/COM

Dim

h,hC

With

C++
/*

C#
exgantt1.Columns.Add("Default");

object:only.C#
for
/COM

axGantt1.Columns.Add("Default");

EXGANTTLib.Items

var_Items

=

axGantt1.Items;

int

h

=

var_Items.AddItem("Root");

int

hC

=

var_Items.InsertItem(h,0,"Child

1");

axGantt1.Chart.set_ItemBackColor(hC,
(uint)ColorTranslator.ToWin32(Color.FromArgb(255,0,0)));

var_Items.InsertItem(h,0,"Child

Delphi
8
(.NET
only)

with

AxGantt1

do

begin

Columns.Add('Default');

with

Items

do

begin

h

:=

AddItem('Root');

hC

:=

Delphi
(standard)with

Gantt1

do

begin

Columns.Add('Default');

with

Items

do

begin

h

:=

AddItem('Root');

hC

VFP
with

thisform.Gantt1

.Columns.Add("Default")

with

.Items

h

=

.AddItem("Root")

hC

=

.InsertItem(h,0,"Child

1")

property
Items.ItemDividerLine(Item
as
HITEM)
as
DividerLineEnum

Defines
the
type
of
line
in
the
divider
item.

Type Description

Item as HITEM

A
long
expression
that
indicates
the
item's
handle.

DividerLineEnum

A
DividerLineEnum
expression
that
indicates
the
type
of
the
line
in
the
divider
item.

By
default,
the
ItemDividerLine
property
is
SingleLine.
The
ItemDividerLine
property
specifies
the
type
of
line

that
underlines
a
divider
item.
Use
the
ItemDivider
property
to
define
a
divider
item.
Use
the
ItemDividerLine
and
ItemDividerAlignment
properties
to
define
the
style
of
the
line
into
the
divider
item.
Use
the
CellMerge
property
to
merge
two
or
more
cells.

property
Items.ItemCell
(Item
as
HITEM,
ColIndex
as
Variant)
as
HCELL

Retrieves
the
cell's
handle
based
on
a
specific
column.

Type Description

Item as HITEM

A
long
expression
that
indicates
the
item's
handle.

ColIndex as Variant

A
long
expression
that
indicates
the
column's
index
or
the
cell's
handle,
a
string
expression
that
indicates
the
column's
caption.

HCELL

A
long
expression
that
indicates
the
handle
of
the

cell.

A
cell
is
the
intersection
of
an
item
with
a
column.
All
properties
that
has
an
Item
and
a
ColIndex
parameters
are
referring
to
a
cell.
The
Item
parameter
represents
the
handle
of
an
item,
and
the
ColIndex
parameter
indicates
an

Gantt1.Items.CellBold(,

Gantt1.Items.ItemCell(Gantt1.Items(0),

0))

=

True

Gantt1.Items.CellBold(Gantt1.Items(0),

0)

=

True

Gantt1.Items.CellBold(Gantt1.Items(0),

"ColumnName")

=

True

index
(
a
numerical
value,
see
Column.Index
property
)
of
a
column
,
the
column's
caption
(
a
string
value,
see
Column.Caption
property
),
or
a
handle
to
a
cell.
Here's
few
hints
how
to
use
properties
with
Item
and
ColIndex
parameters:

property
Items.CellMerge([Item
as
Variant],
[ColIndex
as
Variant])
as
Variant

Retrieves
or
sets
a
value
that
indicates
the
index
of
the
cell
that's
merged
to.

Type Description

Item as Variant

A
long
expression
that
indicates
the
item's
handle.

ColIndex as Variant

A
long
expression
that
indicates
the
column's
index,
a
string
expression
that
indicates
the
column's
caption
or
the
column's
key.
A
long
expression
that
indicates
the
index
of
the

Variant

cell
that's
merged
with,
a
safe
array
that
holds
the
indexes
of
the
cells
being
merged.

Use
the
CellMerge
property
to
combine
two
or
more
cells
in
the
same
item
in
a
single
cell.
The
data
of
the
source
cell
is
displayed

in
the
new
larger
cell.
All
the
other
cells'
data
is
not
lost.
Use
the
ItemDivider
property
to
display
a
single
cell
in
the
entire
item
(
merging
all
cells
in
the
same
item
).
Use
the
UnmergeCells
method
to
unmerge
the
merged

cells.
Use
the
CellMerge
property
to
unmerge
a
single
cell. Use
the
MergeCells
method
to
combine
one
or
more
cells
in
a
single
cell.
Use
the
Add
method
to
add
new
columns
to
the
control.
Use
the
SplitCell
property
to
split
a
cell.

You
can
merge
the
first
three
cells
in
the
root
item
using
any
of
the
following
methods:

 With

Gantt1

With

.Items

.CellMerge(.RootItem(0),

0)

=

Array(1,

2)

End

With

With

Gantt1

.BeginUpdate

With

.Items

Dim

r

As

Long

With

Gantt1

.BeginUpdate

With

.Items

Dim

r

As

Long

With

Gantt1

With

.Items

Dim

r

As

Long

With

Gantt1

With

.Items

Dim

r

As

Long

The
following
sample
shows
few
methods
to
unmerge
cells:

With

Gantt1

With

.Items

.UnmergeCells

.ItemCell(.RootItem(0),

0)

End

With

End

With

Gantt1

With

.Items

Dim

r

As

Long

With

Gantt1

.BeginUpdate

With

.Items

.CellMerge(.RootItem(0),

0)

=

-1

The
following
VB
sample
merges
the
first
three
cells
in
the
focused
item:

With

Gantt1.Items

.CellMerge(.FocusItem,

0)

=

1

.CellMerge(.FocusItem,

0)

=

2

End

With

The
following
C++
sample
merges
the
first
three
cells
in
the
focused
item:

#include

"Items.h"

CItems

items

=

m_gantt.GetItems();

COleVariant

vtItem(

items.GetFocusItem()

),

vtColumn(

long(

0

)

);

items.SetCellMerge(

The
following
VB.NET
sample
merges
the
first
three
cells
in
the
focused
item:

With

AxGantt1.Items

.CellMerge(.FocusItem,

0)

=

1

.CellMerge(.FocusItem,

0)

=

2

End

The
following
C#
sample
merges
the
first
three
cells
in
the
focused
item:

axGantt1.Items.set_CellMerge(axGantt1.Items.FocusItem,

0,

1);

axGantt1.Items.set_CellMerge(axGantt1.Items.FocusItem,

0,

2);

The
following
VFP
sample
merges
the
first
three
cells
in
the
focused
item:

with

thisform.Gantt1.Items

.DefaultItem

=

.FocusItem

.CellMerge(0,0)

=

1

.CellMerge(0,0)

=

2

In
other
words,
the
sample
shows
how
to
display
the
first
cell
using
the
space
occupied
by
three
cells.

method
Items.UnmergeCells
([Cell
as
Variant])

Unmerges
a
list
of
cells.

Type Description

Cell as Variant

A
long
expression
that
indicates
the
handle
of
the
cell
being
unmerged,
or
a
safe
array
that
holds
a
collection
of
handles
for
the
cells
being
unmerged.
Use
the
ItemCell
property
to
retrieves
the
handle
of
the
cell.

Use
the
UnmergeCells
method
to
unmerge
merged
cells.
Use
the
MergeCells
method
or
CellMerge
property
to
combine
(
merge
)
two
or
more
cells
in
a
single
one.
The
UnmergeCells
method
unmerges
all
the
cells
that
was
merged.
The
CellMerge
property
unmerges
only

a
single
cell.
The
rest
of
merged
cells
remains
combined.

The
following
samples
show
few
methods
to
unmerge
cells:

With

Gantt1

With

.Items

.UnmergeCells

.ItemCell(.RootItem(0),

0)

With

Gantt1

With

.Items

Dim

r

As

Long

With

Gantt1

.BeginUpdate

With

.Items

Items
objectThe

Items
object
contains
a
collection
of
items.
Each
item
is
identified
by
a
handle
HITEM.
The
HITEM
is
of
long
type.
Each
item
contains
a
collection
of
cells.
The
number
of
cells
is
determined
by
the
number
of
Column
objects
in

Name Description

AcceptSetParent

Retrieves
a
value
indicating
whether
the
SetParent
method
can
be
accomplished..

AddBar

Adds
a
bar
to
an
item.

AddItem

Adds
a
new
item,
and
returns
a
handle
to
the
newly
created
item.

AddLink

Links
a
bar
to
another.
Retrieves

the
control.
To
access
the
Items
collection
use
Items
property
of
the
control.
Using
the
Items
collection
you
can
add,
remove
or
change
the
control
items.
The
Items
collection
can
be
organized
as
a
hierarchy
or
as
a
tabular
data.
The
Items
collection

CellBackColor

or
sets
the
cell's
background
color.

CellBold

Retrieves
or
sets
a
value
that
indicates
whether
the
cell's
caption
should
appear
in
bold.

CellButtonAutoWidth

Retrieves
or
sets
a
value
indicating
whether
the
cell's
button
fits
the
cell's
caption.

CellCaption

Retrieves
or
sets
the
text
displayed
on

supports
the
following
properties
and
methods:

a
specific
cell.

CellCaptionFormat

Specifies
how
the
cell's
caption
is
displayed.

CellChecked

Retrieves
the
cell's
handle
that
is
checked
on
a
specific
radio
group.

CellData

Retrieves
or
sets
the
extra
data
for
a
specific
cell.

CellEnabled

Returns
or
sets
a
value
that
determines
whether
a
cell

can
respond
to
user-
generated
events.

CellFont

Retrieves
or
sets
the
cell's
font.

CellForeColor

Retrieves
or
sets
the
cell's
foreground
color.

CellHAlignment

Retrieves
or
sets
a
value
that
indicates
the
alignment
of
the
cell's
caption.

CellHasButton

Retrieves
or
sets
a
value
indicating
whether
the
cell

has
associated
a
push
button
or
not.

CellHasCheckBox

Retrieves
or
sets
a
value
indicating
whether
the
cell
has
associated
a
checkbox
or
not.

CellHasRadioButton

Retrieves
or
sets
a
value
indicating
whether
the
cell
has
associated
a
radio
button
or
not.
Specifies
whether
the
cell's

CellHyperLink

is
highlighted
when
the
cursor
mouse
is
over
the
cell.

CellImage

Retrieves
or
sets
an
Image
that
is
displayed
on
the
cell's
area.

CellImages

Specifies
an
additional
list
of
icons
shown
in
the
cell.

CellItalic

Retrieves
or
sets
a
value
that
indicates
whether
the
cell's

caption
should
appear
in
italic.

CellItem

Retrieves
the
handle
of
item
that
is
the
owner
of
a
specific
cell.

CellMerge

Retrieves
or
sets
a
value
that
indicates
the
index
of
the
cell
that's
merged
to.

CellParent

Retrieves
the
parent
of
an
inner
cell.
Retrieves

CellPicture

or
sets
a
value
that
indicates
the
Picture
object
displayed
by
the
cell.

CellPictureHeight

Retrieves
or
sets
a
value
that
indicates
the
height
of
the
cell's
picture.

CellPictureWidth

Retrieves
or
sets
a
value
that
indicates
the
width
of
the
cell's
picture.
Retrieves
or
sets

CellRadioGroup

a
value
indicating
the
radio
group
where
the
cell
is
contained.

CellSingleLine

Retrieves
or
sets
a
value
indicating
whether
the
cell's
caption
is
painted
using
one
or
more
lines.

CellState

Retrieves
or
sets
the
cell's
state.
Has
effect
only
for
check
and
radio
cells.

CellStrikeOut

Retrieves
or
sets
a
value
that
indicates
whether
the
cell's
caption
should
appear
in
strikeout.

CellToolTip

Retrieves
or
sets
a
text
that
is
used
to
show
the
tooltip's
cell.

CellUnderline

Retrieves
or
sets
a
value
that
indicates
whether
the
cell's
caption
should
appear
in

underline.

CellVAlignment

Retrieves
or
sets
a
value
that
indicates
how
the
cell's
caption
is
vertically
aligned.

CellWidth

Retrieves
or
sets
a
value
that
indicates
the
width
of
the
inner
cell.

ChildCount

Retrieves
the
number
of
children
items.

ClearBars

Clears
the
bars
from
the
item.

ClearCellBackColor
Clears
the
cell's
background
color.

ClearCellForeColor

Clears
the
cell's
foreground
color.

ClearCellHAlignment

Clears
the
cell's
alignment.

ClearItemBackColor

Clears
the
item's
background
color.

ClearItemForeColor

Clears
the
item's
foreground
color.

ClearLinks

Clears
all
links
in
the
chart.

DefaultItem

Retrieves
or
sets
the
default
item.

Edit
Edits
a
cell.

EnableItem

Returns
or
sets
a
value
that
determines
whether
a
item
can
respond
to
user-
generated
events.

EnsureVisibleItem

Ensures
the
given
item
is
in
the
visible
client
area.

ExpandItem

Expands,
or
collapses,
the
child
items
of
the
specified
item.
Finds
an
item,
looking
for
Caption

FindItem
in
ColIndex
colum.
The
searching
starts
at
StartIndex
item.

FindItemData

Finds
the
item
giving
its
data.

FindPath

Finds
the
item,
given
its
path.
The
control
searches
the
path
on
the
SearchColumnIndex
column.

FirstItemBar

Gets
the
key
of
the
first
bar
in
the
item.
Gets

FirstLink

the
key
of
the
first
link.

FirstVisibleItem

Retrieves
the
handle
of
the
first
visible
item
into
control.

FocusItem

Retrieves
the
handle
of
item
that
has
the
focus.

FormatCell

Specifies
the
custom
format
to
display
the
cell's
content.
Returns
the
fully
qualified
path
of
the

FullPath

referenced
item
in
the
control.
The
caption
is
taken
from
the
column
SearchColumnIndex.

InnerCell

Retrieves
the
inner
cell.

InsertControlItem

Inserts
a
new
item
of
ActiveX
type,
and
returns
a
handle
to
the
newly
created
item.

InsertItem

Inserts
a
new
item,
and
returns
a
handle
to

the
newly
created
item.

IsItemLocked

Returns
a
value
that
indicates
whether
the
item
is
locked
or
unlocked.

IsItemVisible

Checks
if
the
specific
item
is
in
the
visible
client
area.

ItemAllowSizing

Retrieves
or
sets
a
value
that
indicates
whether
a
user
can
resize
the
item

at
run-
time.

ItemAppearance

Specifies
the
item's
appearance
when
the
item
hosts
an
ActiveX
control.

ItemBackColor

Retrieves
or
sets
a
background
color
for
a
specific
item.

ItemBar

Gets
or
sets
a
bar
property.

ItemBold

Retrieves
or
sets
a
value
that
indicates
whether
the
item
should

appear
in
bold.

ItemByIndex

Retrieves
the
handle
of
the
item
given
its
index
in
Items
collection..

ItemCell

Retrieves
the
cell's
handle
based
on
a
specific
column.

ItemChild

Retrieves
the
child
of
a
specified
item.

ItemControlID

Retrieves
the
item's
control
identifier
that
was
used
by
InsertControlItem.

ItemCount

Retrieves
the
number
of
items.

ItemData

Retrieves
or
sets
the
extra
data
for
a
specific
item.

ItemDivider

Specifies
whether
the
item
acts
like
a
divider
item.
The
value
indicates
the
index
of
column
used
to
define
the
divider's
title.
Defines
the
type
of

ItemDividerLine line
in
the
divider
item.

ItemDividerLineAlignment

Specifies
the
alignment
of
the
line
in
the
divider
item.

ItemFont

Retrieves
or
sets
the
item's
font.

ItemForeColor

Retrieves
or
sets
a
foreground
color
for
a
specific
item.

ItemHasChildren

Adds
an
expand
button
to
left
side
of
the
item
even

if
the
item
has
no
child
items.

ItemHeight

Retrieves
or
sets
the
item's
height.

ItemItalic

Retrieves
or
sets
a
value
that
indicates
whether
the
item
should
appear
in
italic.

ItemMaxHeight

Retrieves
or
sets
a
value
that
indicates
the
maximum
height
when
the
item's
height

is
variable.

ItemMinHeight

Retrieves
or
sets
a
value
that
indicates
the
minimum
height
when
the
item's
height
is
sizing.

ItemObject

Retrieves
the
ActiveX
object
associated,
if
the
item
was
created
using
InsertControlItem
method.

ItemParent

Returns
the
handle
of
parent
item.
Retrieves
or
sets
a

ItemPosition

value
that
indicates
the
item's
position
in
the
children
list.

ItemStrikeOut

Retrieves
or
sets
a
value
that
indicates
whether
the
item
should
appear
in
strikeout.

ItemToIndex

Retrieves
the
index
of
item
into
Items
collection
given
its
handle.
Retrieves
or
sets
a
value
that

ItemUnderline indicates
whether
the
item
should
appear
in
underline.

ItemWidth

Retrieves
or
sets
a
value
that
indicates
the
item's
width
while
it
contains
an
ActiveX
control.

ItemWindowHost

Retrieves
the
window's
handle
that
hosts
an
ActiveX
control
when
the
item
was
created
using
InsertControlItem.
Retrieves

ItemWindowHostCreateStyle

or
sets
a
value
that
indicates
a
combination
of
window
styles
used
to
create
the
ActiveX
window
host.

LastVisibleItem

Retrieves
the
handle
of
the
last
visible
item.

Link

Gets
or
sets
a
property
for
a
link.

LockedItem

Retrieves
the
handle
of
the
locked/fixed
item.

LockedItemCount

Specifies
the
number
of
items
fixed
on
the
top
or
bottom
side
of
the
control.

MatchItemCount

Retrieves
the
number
of
items
that
match
the
filter.

MergeCells

Merges
a
list
of
cells.

NextItemBar

Gets
the
key
of
the
next
bar
in
the
item.
Gets
the

NextLink key
of
the
next
link.

NextSiblingItem

Retrieves
the
next
sibling
of
the
item
in
the
parent's
child
list.

NextVisibleItem

Retrieves
the
handle
of
next
visible
item.

PathSeparator

Returns
or
sets
the
delimiter
character
used
for
the
path
returned
by
the
FullPath
property.
Retrieves
the

PrevSiblingItem

previous
sibling
of
the
item
in
the
parent's
child
list.

PrevVisibleItem

Retrieves
the
handle
of
previous
visible
item.

RemoveAllItems

Removes
all
items
from
the
control.

RemoveBar

Removes
a
bar
from
an
item.

RemoveItem

Removes
a
specific
item.

RemoveLink
Removes
a
link.

RemoveSelection

Removes
the
selected
items

(including
the
descendents).

RootCount

Retrieves
the
number
of
root
objects
into
Items
collection.

RootItem

Retrieves
the
handle
of
the
root
item
giving
its
index
into
the
root
items
collection.

SelectableItem

Specifies
whether
the
user
can
select
the
item.

SelectAll
Selects
all
items.
Retrieves
the
handle

SelectCount

of
selected
item
giving
its
index
in
selected
items
collection.

SelectedItem

Retrieves
the
selected
item's
handle
given
its
index
in
selected
items
collection.

SelectItem

Selects
or
unselects
a
specific
item.

SelectPos

Selects
items
by
position.

SetParent

Changes
the
parent
of
the
given
item.
Specifies

SortableItem
whether
the
item
is
sortable.

SortChildren

Sorts
the
child
items
of
the
given
parent
item
in
the
control.
SortChildren
will
not
recurse
through
the
tree,
only
the
immediate
children
of
Item
will
be
sorted.

SplitCell

Splits
a
cell,
and
returns
the
inner
created

cell.

UnmergeCells

Unmerges
a
list
of
cells.

UnselectAll
Unselects
all
items.

UnsplitCell
Unsplits
a
cell.

VisibleCount

Retrieves
the
number
of
visible
items.

VisibleItemCount

Retrieves
the
number
of
visible
items.

property
Gantt.ShowFocusRect
as
Boolean

Retrieves
or
sets
a
value
indicating
whether
the
control
draws
a
thin
rectangle
around
the
focused
item.

Type Description

Boolean

A
boolean
expression
that
indicates
whether
the
control
draws
a
thin
rectangle
around
the
focused
item.

Use
the
ShowFocusRect
property
to
hide
the
rectangle
drawn
around
the
focused
item.
The
FocusItem
property
specifies
the
handle
of
the

focused
item.
If
there
is
no
focused
item
the
FocusItem
property
retrieves
0.
At
one
moment,
only
one
item
can
be
focused.
When
the
selection
is
changed
the
focused
item
is
changed
too.
Use
the
SelectCount
property
to
get
the
number
of
selected

items.
Use
the
SelectedItem
property
to
get
the
selected
item.
Use
the
SelectItem
to
select
or
unselect
a
specified
item.
If
the
control
supports
only
single
selection,
you
can
use
the
FocusItem
property
to
get
the
selected/focused
item
because
they
are
always
the

same.

property
Chart.SelForeColor
as
Color

Retrieves
or
sets
a
value
that
indicates
the
selection
foreground
color.

Type Description

Color

A
color
expression
that
specifies
the
foreground
color
for
selected
items
that's
displayed
on
the
chart
area.

By
default,
the
SelForeColor
property
is
the
same
as
chart's
foreground
color
that's
specified
by
ForeColor
property
of
the
Chart

object.
In
other
words,
by
default,
the
chart
does
not
display
a
different
foreground
color
for
selected
items
in
the
chart
area.
The
SelForeColor
property
of
the
Chart
object
changes
the
foreground
for
the
selected
items
in
the
chart
area.
Use
the
SelForeColor

property
to
change
the
selection
foreground
color
in
the
list
area.
Use
the
SelBackColor
property
to
change
the
foreground
color
of
the
selected
items
in
the
chart
area.
The
SelForeColor
property
is
applied
ONLY
if
the
SelForeColor
property
is
different
that
the

ForeColor
property.

property
Gantt.ForeColor
as
Color

Retrieves
or
sets
a
value
that
indicates
the
control's
foreground
color.

Type Description

Color

A
color
expression
that
indicates
the
control's
foreground
color.

The
ForeColor
property
changes
the
foreground
color
of
the
control's
scrolled
area.
The
ExGantt
control
can
group
the
columns
into
two
categories:
locked
and
unlocked.
The
Locked
category

contains
all
the
columns
that
are
fixed
to
the
left
area
of
the
client
area.
These
columns
cannot
be
scrolled
horizontally.
Use
the
CountLockedColumns
to
specify
the
number
of
locked
columns.
The
unlocked
are
contains
the
columns
that
can
be
scrolled
horizontally.
To

change
the
background
color
of
the
control's
locked
area
use
BackColorLock
property.
Use
the
CellForeColor
property
to
specify
the
cell's
foreground
color.
Use
the
ItemForeColor
property
to
specify
the
item's
foreground
color.

method
Appearance.Add
(ID
as
Long,
Skin
as
Variant)

Adds
or
replaces
a
skin
object
to
the
control.

Type Description

ID as Long

A
Long
expression
that
indicates
the
index
of
the
skin
being
added
or
replaced.
The
value
must
be
between
1
and
126,
so
Appearance
collection
should
holds
no
more
than
126
elements.
The
Skin
parameter
of
the

Add
method
can
a
STRING
as
explained
bellow,
a
BYTE[]
/
safe
arrays
of
VT_I1
or
VT_UI1
expression
that
indicates
the
content
of
the
EBN
file.
You
can
use
the
BYTE[]
/
safe
arrays
of
VT_I1
or
VT_UI1
option
when
using
the
EBN

https://exontrol.com/ebn.jsp

Skin as Variant
file
directly
in
the
resources
of
the
project.
For
instance,
the
VB6
provides
the
LoadResData
to
get
the
safe
array
o
bytes
for
specified
resource,
while
in
VB/NET
or
C#
the
internal
class
Resources
provides
definitions
for
all
files
being
inserted.
(
ResourceManager.GetObject("ebn",

resourceCulture)
)

If
the
Skin
parameter
points
to
a
string
expression,
it
can
be
one
of
the
following:

A
path
to
the
skin
file
(
*.EBN
).
The
ExButton
component
or
ExEBN
tool
can
be
used
to
create,
view
or
edit
EBN
files.
For
instance,
"C:\Program
Files\Exontrol\ExButton\Sample\EBN\MSOffice-
Ribbon\msor_frameh.ebn"

A
BASE64
encoded
string
that
holds
the
skin
file
(
*.EBN
).
Use
the
ExImages
tool
to
build
BASE
64
encoded
strings
of
the
skin
file
(
*.EBN
). The
BASE64
encoded
string
starts
with
"gBFLBCJw..."

An
Windows
XP
theme
part,
if
the
Skin
parameter
starts
with
"XP:
Use
this
option,
to
display
any
UI
element
of
the
Current
Windows
XP
Theme,
on
any
part
of
the
control.
In
this
case,
the
syntax
of
the

The
following
screen
shots
show
a
few
Windows
XP
Theme
Elements,
running
on
Windows
Vista
and
Windows
10:

 A
copy
of
another
skin
with
different
coordinates
(
position,
size
),
if
the
Skin
parameter
starts
with
"CP:".
Use
this
option,
to
display
the
EBN,
using
different
coordinates
(
position,
size
).
By
default,
the
EBN

The
following
screen
shot
shows
the
same
EBN
being
displayed,
using
different
CP:
options:

Return Description

Boolean

A
Boolean
expression
that
indicates
whether
the
new
skin
was
added
or
replaced.

Use
the
Add
method
to
add
or
replace
skins
to
the
control.
The
skin
method,
in
it's
simplest
form,

https://exontrol.com/ebn.jsp
https://exontrol.com/exbutton.jsp
https://exontrol.com/exebn.jsp
https://exontrol.com/ebn.jsp
https://exontrol.com/eximages.jsp
https://exontrol.com/ebn.jsp

Skin
parameter
is:
"XP:ClassName
Part
State"
where
the
ClassName
defines
the
window/control
class
name
in
the
Windows
XP
Theme,
the
Part
indicates
a
long
expression
that
defines
the
part,
and
the
State
indicates
the
state
of
the
part
to
be
shown.
All
known

skin
object
is
rendered
on
the
part's
client
area.
Using
this
option,
you
can
display
the
same
EBN,
on
a
different
position
/
size.
In
this
case,
the
syntax
of
the
Skin
parameter
is:
"CP:ID
Left
Top
Right
Bottom"
where
the
ID
is

uses
a
single
graphic
file
(*.ebn)
assigned
to
a
part
of
the
control.
By
using
a
collection
of
objects
laid
over
the
graphic,
it
is
possible
to
define
which
sections
of
the
graphic
will
be
used
as
borders,
corners
and
other
possible
elements,

values
for
window/class,
part
and
start
are
defined
at
the
end
of
this
document.
For
instance
the
"XP:Header
1
2"
indicates
the
part
1
of
the
Header
class
in
the
state
2,
in
the
current
Windows
XP
theme.

the
identifier
of
the
EBN
to
be
used
(
it
is
a
number
that
specifies
the
ID
parameter
of
the
Add
method
),
Left,
Top,
Right
and
Bottom
parameters/numbers
specifies
the
relative
position
to
the
part's
client
area,
where
the
EBN
should
be

fixing
them
to
their
proper
position
regardless
of
the
size
of
the
part.
Use
the
Remove
method
to
remove
a
specific
skin
from
the
control.
Use
the
Clear
method
to
remove
all
skins
in
the
control. Use
the
BeginUpdate
and
EndUpdate
methods
to
maintain

rendered.
The
Left,
Top,
Right
and
Bottom
parameters
are
numbers
(
negative,
zero
or
positive
values,
with
no
decimal
),
that
can
be
followed
by
the
D
character
which
indicates
the
value
according
to
the
current
DPI
settings.
For
instance,
"CP:1
-2
-2

performance
while
init
the
control.
Use
the
Refresh
method
to
refresh
the
control.

The
identifier
you
choose
for
the
skin
is
very
important
to
be
used
in
the
background
properties
like
explained
bellow.
Shortly,
the
color
properties
uses
4
bytes
(

The
skin
method
may
change
the
visual
appearance
for
the
following
parts
in
the
control:

control's
border,
Appearance
property

levels
on
the
chart
area,
BackColor
property,
BackColorLevelHeader
property

bar's
background,
ItemBar(exBarBackColor)
property

control's
header
bar,
BackColorHeader
property

control's
filter
bar,
FilterBarBackColor
property

control's
sort
bar,
BackColorSort
property

the
caption
of
the
control's
sort
bar,
BackColorSortCaption
property

selected
item
or
cell,
SelBackColor
property

item,
ItemBackColor
property

cell,
CellBackColor
property

cell's
button,
"drop
down"
filter
bar
button,
"close"
filter
bar
button,
tooltip,
and
so
on,
Background
property

CellImage,
CellImages,
HeaderImage,
CheckImage
or
RadioImage,
HasButtonsCustom
property

For
instance,
the
following
VB
sample
changes
the
visual
appearance
for
the
selected
item.
The
SelBackColor
property
indicates
the
selection
background
color.
Shortly,
we
need

With

Gantt1

With

.VisualAppearance

.Add

The
sample
adds
the
skin
with
the
index
35
(
Hexa
23
),
and
applies
to
the
selected
item
using
the
SelBackColor
property.

The
following
C++
sample
applies
a
new
appearance
to
the
selected
item(s):

#include

"Appearance.h"

m_gantt.GetVisualAppearance().Add(

0x23,

COleVariant(_T("D:\\Temp\\ExGantt_Help\\selected.ebn"))

);

m_gantt.SetSelBackColor(

0x23000000

);

The
following
VB.NET
sample
applies
a
new
appearance
to
the
selected
item(s):

With

AxGantt1

With

.VisualAppearance

The
VB.NET
sample
uses
the
Template
property
to
assign
a
new
value
to
the
SelBackColor
property.
The

The
following
C#
sample
applies
a
new
appearance
to
the
selected
item(s):

axGantt1.VisualAppearance.Add(0x23,

"D:\\Temp\\ExGantt_Help\\selected.ebn");

axGantt1.Template

=

"SelBackColor

=

587202560";

The
following
VFP
sample
applies
a
new
appearance
to
the
selected
item(s):

With

thisform.Gantt1

With

.VisualAppearance

The
587202560
value
represents
&23000000
in
hexadecimal.
The
32
value
represents

Starting
with
Windows
XP,
the
following
table
shows
how
the

Control/ClassName Part States

BUTTON BP_CHECKBOX = 3

CBS_UNCHECKEDNORMAL =
1 CBS_UNCHECKEDHOT = 2
CBS_UNCHECKEDPRESSED
= 3
CBS_UNCHECKEDDISABLED
= 4 CBS_CHECKEDNORMAL =
5 CBS_CHECKEDHOT = 6
CBS_CHECKEDPRESSED = 7

2
2",
uses
the
EBN
with
the
identifier
1,
and
displays
it
on
a
2-
pixels
wider
rectangle
no
matter
of
the
DPI
settings,
while
"CP:1
-2D
-2D
2D
2D"
displays
it
on
a
2-
pixels
wider
rectangle
if
DPI
settings
is
100%,

DWORD,
double
WORD,
and
so
on
)
to
hold
a
RGB
value.
More
than
that,
the
first
byte
(
most
significant
byte
in
the
color
)
is
used
only
to
specify
system
color.
if
the
first
bit
in
the
byte
is
1,
the

to
add
a
skin
to
the
Appearance
object
using
the
Add
method,
and
we
need
to
set
the
last
7
bits
in
the
SelBackColor
property
to
indicates
the
index
of
the
skin
that
we
want
to
use.
The
sample
applies
the
"
"

587202560
value
represents
&23000000
in
hexadecimal.

&23
in
hexadecimal

common
controls
are
broken
into
parts
and
states:

CBS_CHECKEDDISABLED = 8
CBS_MIXEDNORMAL = 9
CBS_MIXEDHOT = 10
CBS_MIXEDPRESSED = 11
CBS_MIXEDDISABLED = 12

BP_GROUPBOX = 4 GBS_NORMAL = 1
GBS_DISABLED = 2

BP_PUSHBUTTON = 1

PBS_NORMAL = 1 PBS_HOT
= 2 PBS_PRESSED = 3
PBS_DISABLED = 4
PBS_DEFAULTED = 5

BP_RADIOBUTTON = 2

RBS_UNCHECKEDNORMAL =
1 RBS_UNCHECKEDHOT = 2
RBS_UNCHECKEDPRESSED
= 3
RBS_UNCHECKEDDISABLED
= 4 RBS_CHECKEDNORMAL =
5 RBS_CHECKEDHOT = 6
RBS_CHECKEDPRESSED = 7
RBS_CHECKEDDISABLED = 8

BP_USERBUTTON = 5
CLOCK CLP_TIME = 1 CLS_NORMAL = 1

COMBOBOX CP_DROPDOWNBUTTON = 1

CBXS_NORMAL = 1
CBXS_HOT = 2
CBXS_PRESSED = 3
CBXS_DISABLED = 4

EDIT EP_CARET = 2

EP_EDITTEXT = 1

ETS_NORMAL = 1 ETS_HOT =
2 ETS_SELECTED = 3
ETS_DISABLED = 4
ETS_FOCUSED = 5
ETS_READONLY = 6
ETS_ASSIST = 7

EXPLORERBAR EBP_HEADERBACKGROUND = 1

EBP_HEADERCLOSE = 2
EBHC_NORMAL = 1
EBHC_HOT = 2
EBHC_PRESSED = 3

EBP_HEADERPIN = 3

EBHP_NORMAL = 1
EBHP_HOT = 2
EBHP_PRESSED = 3
EBHP_SELECTEDNORMAL =

and
on
on
a
3-
pixels
wider
rectangle
if
DPI
settings
is
150%.

rest
of
bits
indicates
the
index
of
the
system
color
being
used.
So,
we
use
the
last
7
bits
in
the
high
significant
byte
of
the
color
to
indicates
the
identifier
of
the
skin
being
used.
So,
since
the
7
bits
can
cover

to
the
selected
item(s):

4 EBHP_SELECTEDHOT = 5
EBHP_SELECTEDPRESSED =
6

EBP_IEBARMENU = 4 EBM_NORMAL = 1 EBM_HOT
= 2 EBM_PRESSED = 3

EBP_NORMALGROUPBACKGROUND = 5

EBP_NORMALGROUPCOLLAPSE = 6
EBNGC_NORMAL = 1
EBNGC_HOT = 2
EBNGC_PRESSED = 3

EBP_NORMALGROUPEXPAND = 7
EBNGE_NORMAL = 1
EBNGE_HOT = 2
EBNGE_PRESSED = 3

EBP_NORMALGROUPHEAD = 8
EBP_SPECIALGROUPBACKGROUND = 9

EBP_SPECIALGROUPCOLLAPSE = 10
EBSGC_NORMAL = 1
EBSGC_HOT = 2
EBSGC_PRESSED = 3

EBP_SPECIALGROUPEXPAND = 11
EBSGE_NORMAL = 1
EBSGE_HOT = 2
EBSGE_PRESSED = 3

EBP_SPECIALGROUPHEAD = 12

HEADER HP_HEADERITEM = 1 HIS_NORMAL = 1 HIS_HOT =
2 HIS_PRESSED = 3

HP_HEADERITEMLEFT = 2 HILS_NORMAL = 1 HILS_HOT
= 2 HILS_PRESSED = 3

HP_HEADERITEMRIGHT = 3 HIRS_NORMAL = 1 HIRS_HOT
= 2 HIRS_PRESSED = 3

HP_HEADERSORTARROW = 4 HSAS_SORTEDUP = 1
HSAS_SORTEDDOWN = 2

LISTVIEW LVP_EMPTYTEXT = 5
LVP_LISTDETAIL = 3
LVP_LISTGROUP = 2

LVP_LISTITEM = 1

LIS_NORMAL = 1 LIS_HOT =
2 LIS_SELECTED = 3
LIS_DISABLED = 4
LIS_SELECTEDNOTFOCUS =
5

LVP_LISTSORTEDDETAIL = 4
MS_NORMAL = 1
MS_SELECTED = 2

127
values,
excluding
0,
we
have
126
possibilities
to
store
an
identifier
in
that
byte.
This
way,
a
DWORD
expression
indicates
the
background
color
stored
in
RRGGBB
format
and
the
index
of
the
skin
(
ID
parameter
)
in
the
last
7
bits

MENU MP_MENUBARDROPDOWN = 4 MS_DEMOTED = 3

MP_MENUBARITEM = 3
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_CHEVRON = 5
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUDROPDOWN = 2
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUITEM = 1
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_SEPARATOR = 6
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MENUBAND MDP_NEWAPPBUTTON = 1

MDS_NORMAL = 1 MDS_HOT
= 2 MDS_PRESSED = 3
MDS_DISABLED = 4
MDS_CHECKED = 5
MDS_HOTCHECKED = 6

MDP_SEPERATOR = 2

PAGE PGRP_DOWN = 2
DNS_NORMAL = 1 DNS_HOT
= 2 DNS_PRESSED = 3
DNS_DISABLED = 4

PGRP_DOWNHORZ = 4

DNHZS_NORMAL = 1
DNHZS_HOT = 2
DNHZS_PRESSED = 3
DNHZS_DISABLED = 4

PGRP_UP = 1
UPS_NORMAL = 1 UPS_HOT
= 2 UPS_PRESSED = 3
UPS_DISABLED = 4

PGRP_UPHORZ = 3

UPHZS_NORMAL = 1
UPHZS_HOT = 2
UPHZS_PRESSED = 3
UPHZS_DISABLED = 4

PROGRESS PP_BAR = 1
PP_BARVERT = 2
PP_CHUNK = 3

in
the
high
significant
byte
of
the
color.
For
instance,
the
BackColor
=
BackColor
Or
&H2000000
indicates
that
we
apply
the
skin
with
the
index
2
using
the
old
color,
to
the
object
that
BackColor
is
applied.

PP_CHUNKVERT = 4
REBAR RP_BAND = 3

RP_CHEVRON = 4
CHEVS_NORMAL = 1
CHEVS_HOT = 2
CHEVS_PRESSED = 3

RP_CHEVRONVERT = 5
RP_GRIPPER = 1
RP_GRIPPERVERT = 2

SCROLLBAR SBP_ARROWBTN = 1

ABS_DOWNDISABLED,
ABS_DOWNHOT,
ABS_DOWNNORMAL,
ABS_DOWNPRESSED,
ABS_UPDISABLED,
ABS_UPHOT,
ABS_UPNORMAL,
ABS_UPPRESSED,
ABS_LEFTDISABLED,
ABS_LEFTHOT,
ABS_LEFTNORMAL,
ABS_LEFTPRESSED,
ABS_RIGHTDISABLED,
ABS_RIGHTHOT,
ABS_RIGHTNORMAL,
ABS_RIGHTPRESSED

SBP_GRIPPERHORZ = 8
SBP_GRIPPERVERT = 9

SBP_LOWERTRACKHORZ = 4

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_LOWERTRACKVERT = 6

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_THUMBBTNHORZ = 2

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_THUMBBTNVERT = 3

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3

SCRBS_DISABLED = 4

SBP_UPPERTRACKHORZ = 5
SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_UPPERTRACKVERT = 7

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_SIZEBOX = 10 SZB_RIGHTALIGN = 1
SZB_LEFTALIGN = 2

SPIN SPNP_DOWN = 2
DNS_NORMAL = 1 DNS_HOT
= 2 DNS_PRESSED = 3
DNS_DISABLED = 4

SPNP_DOWNHORZ = 4

DNHZS_NORMAL = 1
DNHZS_HOT = 2
DNHZS_PRESSED = 3
DNHZS_DISABLED = 4

SPNP_UP = 1
UPS_NORMAL = 1 UPS_HOT
= 2 UPS_PRESSED = 3
UPS_DISABLED = 4

SPNP_UPHORZ = 3

UPHZS_NORMAL = 1
UPHZS_HOT = 2
UPHZS_PRESSED = 3
UPHZS_DISABLED = 4

STARTPANEL SPP_LOGOFF = 8

SPP_LOGOFFBUTTONS = 9
SPLS_NORMAL = 1
SPLS_HOT = 2
SPLS_PRESSED = 3

SPP_MOREPROGRAMS = 2

SPP_MOREPROGRAMSARROW = 3 SPS_NORMAL = 1 SPS_HOT
= 2 SPS_PRESSED = 3

SPP_PLACESLIST = 6
SPP_PLACESLISTSEPARATOR = 7
SPP_PREVIEW = 11
SPP_PROGLIST = 4
SPP_PROGLISTSEPARATOR = 5
SPP_USERPANE = 1
SPP_USERPICTURE = 10

STATUS SP_GRIPPER = 3

SP_PANE = 1
SP_GRIPPERPANE = 2

TAB TABP_BODY = 10

TABP_PANE = 9

TABP_TABITEM = 1

TIS_NORMAL = 1 TIS_HOT =
2 TIS_SELECTED = 3
TIS_DISABLED = 4
TIS_FOCUSED = 5

TABP_TABITEMBOTHEDGE = 4

TIBES_NORMAL = 1
TIBES_HOT = 2
TIBES_SELECTED = 3
TIBES_DISABLED = 4
TIBES_FOCUSED = 5

TABP_TABITEMLEFTEDGE = 2

TILES_NORMAL = 1
TILES_HOT = 2
TILES_SELECTED = 3
TILES_DISABLED = 4
TILES_FOCUSED = 5

TABP_TABITEMRIGHTEDGE = 3

TIRES_NORMAL = 1
TIRES_HOT = 2
TIRES_SELECTED = 3
TIRES_DISABLED = 4
TIRES_FOCUSED = 5

TABP_TOPTABITEM = 5

TTIS_NORMAL = 1 TTIS_HOT
= 2 TTIS_SELECTED = 3
TTIS_DISABLED = 4
TTIS_FOCUSED = 5

TABP_TOPTABITEMBOTHEDGE = 8

TTIBES_NORMAL = 1
TTIBES_HOT = 2
TTIBES_SELECTED = 3
TTIBES_DISABLED
TTIBES_FOCUSED = 5

TABP_TOPTABITEMLEFTEDGE = 6

TTILES_NORMAL = 1
TTILES_HOT = 2
TTILES_SELECTED = 3
TTILES_DISABLED
TTILES_FOCUSED = 5

TABP_TOPTABITEMRIGHTEDGE = 7

TTIRES_NORMAL = 1
TTIRES_HOT = 2
TTIRES_SELECTED = 3

TTIRES_DISABLED
TTIRES_FOCUSED = 5

TASKBAND TDP_GROUPCOUNT = 1
TDP_FLASHBUTTON = 2
TDP_FLASHBUTTONGROUPMENU = 3

TASKBAR TBP_BACKGROUNDBOTTOM = 1
TBP_BACKGROUNDLEFT = 4
TBP_BACKGROUNDRIGHT = 2
TBP_BACKGROUNDTOP = 3
TBP_SIZINGBARBOTTOM = 5
TBP_SIZINGBARBOTTOMLEFT = 8
TBP_SIZINGBARRIGHT = 6
TBP_SIZINGBARTOP = 7

TOOLBAR TP_BUTTON = 1

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_DROPDOWNBUTTON = 2

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SPLITBUTTON = 3

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SPLITBUTTONDROPDOWN = 4

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SEPARATOR = 5

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6
TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3

TP_SEPARATORVERT = 6 TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TOOLTIP TTP_BALLOON = 3 TTBS_NORMAL = 1
TTBS_LINK = 2

TTP_BALLOONTITLE = 4
TTBS_NORMAL = 1
TTBS_LINK = 2

TTP_CLOSE = 5
TTCS_NORMAL = 1
TTCS_HOT = 2
TTCS_PRESSED = 3

TTP_STANDARD = 1 TTSS_NORMAL = 1
TTSS_LINK = 2

TTP_STANDARDTITLE = 2 TTSS_NORMAL = 1
TTSS_LINK = 2

TRACKBAR TKP_THUMB = 3

TUS_NORMAL = 1 TUS_HOT =
2 TUS_PRESSED = 3
TUS_FOCUSED = 4
TUS_DISABLED = 5

TKP_THUMBBOTTOM = 4

TUBS_NORMAL = 1
TUBS_HOT = 2
TUBS_PRESSED = 3
TUBS_FOCUSED = 4
TUBS_DISABLED = 5

TKP_THUMBLEFT = 7

TUVLS_NORMAL = 1
TUVLS_HOT = 2
TUVLS_PRESSED = 3
TUVLS_FOCUSED = 4
TUVLS_DISABLED = 5

TKP_THUMBRIGHT = 8

TUVRS_NORMAL = 1
TUVRS_HOT = 2
TUVRS_PRESSED = 3
TUVRS_FOCUSED = 4
TUVRS_DISABLED = 5

TKP_THUMBTOP = 5

TUTS_NORMAL = 1
TUTS_HOT = 2
TUTS_PRESSED = 3
TUTS_FOCUSED = 4
TUTS_DISABLED = 5

TKP_THUMBVERT = 6

TUVS_NORMAL = 1
TUVS_HOT = 2
TUVS_PRESSED = 3

TUVS_FOCUSED = 4
TUVS_DISABLED = 5

TKP_TICS = 9 TSS_NORMAL = 1
TKP_TICSVERT = 10 TSVS_NORMAL = 1
TKP_TRACK = 1 TRS_NORMAL = 1
TKP_TRACKVERT = 2 TRVS_NORMAL = 1

TRAYNOTIFY TNP_ANIMBACKGROUND = 2
TNP_BACKGROUND = 1

TREEVIEW TVP_BRANCH = 3

TVP_GLYPH = 2 GLPS_CLOSED = 1
GLPS_OPENED = 2

TVP_TREEITEM = 1

TREIS_NORMAL = 1
TREIS_HOT = 2
TREIS_SELECTED = 3
TREIS_DISABLED = 4
TREIS_SELECTEDNOTFOCUS
= 5

WINDOW WP_CAPTION = 1 CS_ACTIVE = 1 CS_INACTIVE
= 2 CS_DISABLED = 3

WP_CAPTIONSIZINGTEMPLATE = 30

WP_CLOSEBUTTON = 18
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_DIALOG = 29

WP_FRAMEBOTTOM = 9 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMEBOTTOMSIZINGTEMPLATE = 36

WP_FRAMELEFT = 7 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMELEFTSIZINGTEMPLATE = 32

WP_FRAMERIGHT = 8 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMERIGHTSIZINGTEMPLATE = 34

WP_HELPBUTTON = 23
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_HORZSCROLL = 25
HSS_NORMAL = 1 HSS_HOT
= 2 HSS_PUSHED = 3
HSS_DISABLED = 4

WP_HORZTHUMB = 26
HTS_NORMAL = 1 HTS_HOT =
2 HTS_PUSHED = 3
HTS_DISABLED = 4

WP_MAX_BUTTON

MAXBS_NORMAL = 1
MAXBS_HOT = 2
MAXBS_PUSHED = 3
MAXBS_DISABLED = 4

WP_MAXCAPTION = 5
MXCS_ACTIVE = 1
MXCS_INACTIVE = 2
MXCS_DISABLED = 3

WP_MDICLOSEBUTTON = 20
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_MDIHELPBUTTON = 24
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_MDIMINBUTTON = 16

MINBS_NORMAL = 1
MINBS_HOT = 2
MINBS_PUSHED = 3
MINBS_DISABLED = 4

WP_MDIRESTOREBUTTON = 22
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_MDISYSBUTTON = 14
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_MINBUTTON = 15

MINBS_NORMAL = 1
MINBS_HOT = 2
MINBS_PUSHED = 3
MINBS_DISABLED = 4

WP_MINCAPTION = 3
MNCS_ACTIVE = 1
MNCS_INACTIVE = 2
MNCS_DISABLED = 3

WP_RESTOREBUTTON = 21
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_SMALLCAPTION = 2 CS_ACTIVE = 1 CS_INACTIVE
= 2 CS_DISABLED = 3

WP_SMALLCAPTIONSIZINGTEMPLATE = 31
CBS_NORMAL = 1 CBS_HOT

WP_SMALLCLOSEBUTTON = 19 = 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_SMALLFRAMEBOTTOM = 12 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMEBOTTOMSIZINGTEMPLATE
= 37

WP_SMALLFRAMELEFT = 10
FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMELEFTSIZINGTEMPLATE =
33

WP_SMALLFRAMERIGHT = 11 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMERIGHTSIZINGTEMPLATE =
35

WP_SMALLHELPBUTTON
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_SMALLMAXBUTTON

MAXBS_NORMAL = 1
MAXBS_HOT = 2
MAXBS_PUSHED = 3
MAXBS_DISABLED = 4

WP_SMALLMAXCAPTION = 6
MXCS_ACTIVE = 1
MXCS_INACTIVE = 2
MXCS_DISABLED = 3

WP_SMALLMINCAPTION = 4
MNCS_ACTIVE = 1
MNCS_INACTIVE = 2
MNCS_DISABLED = 3

WP_SMALLRESTOREBUTTON
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_SMALLSYSBUTTON
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_SYSBUTTON = 13
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_VERTSCROLL = 27
VSS_NORMAL = 1 VSS_HOT
= 2 VSS_PUSHED = 3
VSS_DISABLED = 4
VTS_NORMAL = 1 VTS_HOT =

WP_VERTTHUMB = 28 2 VTS_PUSHED = 3
VTS_DISABLED = 4

property
Chart.SelBackColor
as
Color

Retrieves
or
sets
a
value
that
indicates
the
selection
background
color.

Type Description

Color

A
color
expression
that
indicates
the
background
color
to
display
the
selected
items
in
the
chart
area.
Use
the
Add
method
to
add
new
skins
to
the
control.
If
you
need
to
remove
the
skin
appearance
from
a

part
of
the
control
you
need
to
reset
the
last
7
bits
in
the
high
significant
byte
of
the
color
being
applied
to
the
background's
part.

By
default,
the
SelBackColor
property
is
the
same
as
chart's
background
color
that's
specified
by
BackColor

property
of
the
Chart
object.
In
other
words,
by
default,
the
chart
does
not
display
a
different
background
color
for
selected
items
in
the
chart
area.
The
SelBackColor
property
of
the
Chart
object
changes
the
background
for
the
selected
items
in
the
chart

area.
Use
the
SelBackColor
property
to
change
the
selection
background
color
in
the
list
area.
Use
the
SelForeColor
property
to
change
the
foreground
color
of
the
selected
items
in
the
chart
area.
The
SelBackColor
property
is
applied
ONLY
if
the
SelBackColor
property
is

different
that
the
BackColor
property.

property
Gantt.Template
as
String

Specifies
the
control's
template.

Type Description

String

A
string
expression
that
indicates
the
control's
template.

The
control's
template
uses
the
X-
Script
language
to
initialize
the
control's
content.
Use
the
Template
property
page
of
the
control
to
update
the
control's
Template
property.
Use
the

Most
of
our
UI
components
provide
a
Template
page
that's
accessible
in
design
mode.
No
matter
what
programming
language
you
are
using,
you
can
have
a
quick
view

Place
the
control
to
your
form
or
dialog.

Locate
the
Properties
item,
in
the
control's
context
menu,
in
design
mode.
If
your
environment
doesn't
provide
a
Properties
item
in
the
control's
context
menu,
please

Click
it,
and
locate
the
Template
page.

Click
the
Help
button.
In
the
left
side,
you
will
see
the
component,
in
the
right
side,
you
will
see
a
x-
script
code
that
calls

The
control's
Template
page
helps
user
to
initialize
the
control's
look
and
feel
in
design
mode,
using
the
x-
script
language
that's
easy
and
powerful.

The
Template
or
x-
script
is
composed
by
lines
of
instructions.
Instructions
are
separated
by
"\n\r"
(
newline
characters
)
or
";"
character.
The

An
x-
script
instruction/line
can
be
one
of
the
following:

Dim
list
of
variables
Declares
the
variables.
Multiple
variables
are
separated
by
commas.
(
Sample:
Dim
h,
h1,
h2
)

variable
=
property(
list
of
arguments
)
Assigns
the
result
of
the
property
to
a
variable.
The
"variable"
is
the
name

property(
list
of
arguments
)
=
value
Changes
the
property.
The
value
can
be
a
variable,
a
string,
a
number,
a

method(
list
of
arguments
)
Invokes
the
method.
The
"list
or
arguments"
may
include
variables
or
values
separated
by
commas.

{
Beginning
the
object's
context.
The
properties
or
methods
called
between
{
and
}
are
related
to
the
last
object

}
Ending
the
object's
context

object.
property(
list
of
arguments
).property(
list
of
arguments
)....
The
.
(dot)
character
splits
the
object
from
its
property.

The
x-
script
may
uses
constant
expressions
as
follow:

boolean
expression
with
possible
values
as
True
or
False

numeric
expression
may
starts
with
0x
which
indicates
a
hexa
decimal
representation,
else
it
should
starts
with
digit,
or
+/-

date
expression
is
delimited
by
#
character
in
the
format
#mm/dd/yyyy
hh:mm:ss#.
Sample:
#31/12/1971#
indicates
the
December
31,
1971

string
expression
is
delimited
by
"
or
`
characters.
If
using
the
`
character,
please
make
sure
that
it

Also
,
the
template
or
x-
script
code
may
support
general
functions
as
follows:

Me
property
indicates
the
original
object.

RGB(R,G,B)
property
retrieves
an
RGB
value,
where
the
R,
G,
B
are
byte
values
that
indicates
the

LoadPicture(file)
property
loads
a
picture
from
a
file
or
from
BASE64
encoded
strings,
and
returns
a
Picture

CreateObject(progID)
property
creates
and
retrieves
a
single
uninitialized
object
of
the
class
associated
with
a
specified

Template
property
to
execute
code
by
passing
instructions
as
a
string
(
template
string
).
Use
the
ExecuteTemplate
property
to
execute
a
template
script
and
gets
the
result.

of
the
component's
features
using
the
WYSWYG
Template
editor.

try
to
locate
in
the
Properties
browser.

methods
and
properties
of
the
control.

The
Template
page
displays
the
control
on
the
left
side
of
the
page.
On
the
right
side
of
the
Template
page,
a
simple
editor
is
displayed
where
user
writes
the
initialization
code.
The
control's
look
and
feel
is
automatically
updated
as
soon
as

;
character
may
be
available
only
for
newer
versions
of
the
components.

of
a
declared
variable.
The
"property"
is
the
property
name
of
the
object
in
the
context.
The
"list
or
arguments"
may
include
variables
or
values
separated
by
commas.
(
Sample:
h
=
InsertItem(0,"New
Child")
)

boolean
value
or
a
RGB
value.

returned
by
the
property
prior
to
{
declaration.

For
instance,
the
Columns.Add("Column1").HeaderBackColor
=
RGB(255,0,0),
adds
a
new
column
and
changes
the
column's
header
back
color.

followed
by
a
digit,
and
.
is
the
decimal
separator.
Sample:
13
indicates
the
integer
13,
or
12.45
indicates
the
double
expression
12,45

is
different
than
'
which
allows
adding
comments
inline.
Sample:
"text"
indicates
the
string
text.

R
G
B
values
for
the
color
being
specified.
For
instance,
the
following
code
changes
the
control's
background
color
to
red:
BackColor
=
RGB(255,0,0)

object
required
by
the
picture
properties.

program
identifier.

the
user
types
new
instructions.
The
Template
script
is
saved
to
the
container
persistence
(
when
Apply
button
is
pressed
),
and
it
is
executed
when
the
control
is
initialized
at
runtime.
Any
component
that
provides
a
WYSWYG
Template
page,
provides
a
Template

property.
The
Template
property
executes
code
from
a
string
(
template
string
).

property
Items.ItemForeColor(Item
as
HITEM)
as
Color

Retrieves
or
sets
a
foreground
color
for
a
specific
item.

Type Description

Item as HITEM

A
long
expression
that
indicates
the
item's
handle.

Color

A
color
expression
that
defines
the
item's
foreground
color.

Use
the
CellForeColor
property
to
change
the
item's
foreground
color.
Use
the
ForeColor
property
to
change
the
control's
foreground

The
following
VB
sample
changes
the
foreground
color
for
cells
in
the
first
column
as
user
add
new

Private

Sub

Gantt1_AddItem(ByVal

Item

As

EXGANTTLibCtl.HITEM)

Gantt1.Items.CellForeColor(Item,

In
VB.NET
or
C#
you
require
the
following
functions
until
the
.NET
framework
will
provide:

You
can
use
the
following
VB.NET
function:

Shared

You
can
use
the
following
C#
function:

private

UInt32

ToUInt32(Color

The
following
C#
sample
changes
the
foreground
color
of
the
focused
item:

axGantt1.Items.set_ItemForeColor(axGantt1.Items.FocusItem,

ToUInt32(Color.Red)

);

The
following
VB.NET
sample
changes
the
foreground
color
of
the
focused

With

AxGantt1.Items

.ItemForeColor(.FocusItem)

The
following
C++
sample
changes
the
foreground
color
of

#include

"Items.h"

CItems

items

The
following
VFP
sample
changes
the
foreground

with

thisform.Gantt1.Items

.DefaultItem

color. Use
the
ClearItemForeColor
property
to
clear
the
item's
foreground
color.

items:item:the
focused
item:

color
of
the
focused
item:

property
Items.ItemFont
(Item
as
HITEM)
as
IFontDisp

Retrieves
or
sets
the
item's
font.

Type Description

Item as HITEM

A
long
expression
that
specifies
the
item's
handle.

IFontDisp

A
Font
object
that
specifies
the
item's
font.

By
default,
the
ItemFont
property
is
nothing.
If
the
ItemFont
property
is
nothing,
the
item
uses
the
control's
font.
Use

The
following
VB
sample
changes
the
font
for
the
focused
item:

With

Gantt1.Items

.ItemFont(.FocusItem)

=

Gantt1.Font

The
following
C++
sample
changes
the
font
for

the
focused
item:

#include

"Items.h"

#include

"Font.h"

CItems

items

=

The
following
VB.NET
sample
changes
the

font
for
the
focused
item:

With

AxGantt1.Items

.ItemFont(.FocusItem)

=

where
the
IFDH
class
is
defined
like
follows:

Public

Class

IFDH

The

following
C#
sample
changes
the
font
for
the

axGantt1.Items.set_ItemFont(

axGantt1.Items.FocusItem,

IFDH.GetIFontDisp(

axGantt1.Font

where
the
IFDH
class
is
defined
like
follows:

internal

class

IFDH

The
following
VFP
sample
changes

with

thisform.Gantt1.Items

the
ItemFont
property
to
define
a
different
font
for
the
item.
Use
the
CellFont
and
ItemFont
properties
to
specify
different
fonts
for
cells
or
items.
Use
the
CellBold,
CellItalic,
CellUnderline,
CellStrikeout,
ItemBold,
ItemUnderline,
ItemStrikeout,
ItemItalic
or
CellCaptionFormat
to
specify
different
font
attributes.
Use

focused
item:
the
font
for
the
focused
item:

the
ItemHeight
property
to
specify
the
height
of
the
item.
Use
the
Refresh
method
to
refresh
the
control's
content
on
the
fly.
Use
the
BeginUpdate
and
EndUpdate
methods
if
you
are
doing
multiple
changes,
so
no
need
for
an
update
each
time
a

change
is
done.

property
Items.ItemBold(Item
as
HITEM)
as
Boolean

Retrieves
or
sets
a
value
that
indicates
whether
the
item
should
appear
in
bold.

Type Description

Item as HITEM

A
long
expression
that
indicates
the
handle
of
the
item.

Boolean

A
boolean
expression
that
indicates
whether
the
item
should
appear
in
bold.

Use
ItemBold,
ItemItalic,
ItemUnderline
or
ItemStrikeOut
property
to
apply
different
font
attributes
to
the

The
following
VB
sample
bolds
the
selected
item:

Dim

hOldBold

As

HITEM

Private

Sub

Gantt1_SelectionChanged()

If

The
following
VB
sample
bolds
the
focused
item:

With

Gantt1.Items
The
following
C++
sample
bolds
the
focused

#include

"Items.h"

CItems

The
following
C#
sample
bolds

axGantt1.Items.set_ItemBold(axGantt1.Items.FocusItem,

true);
The
followingWith

item.
Use
the
CellItalic,
CellUnderline,
CellBold
or
CellStrikeOut
property
to
apply
different
font
attributes
to
the
cell.
Use
the
CellCaptionFormat
property
to
specify
an
HTML
caption.
Use
the
ConditionalFormats
method
to
apply
formats
to
a
cell
or
range
of
cells,
and
have
that

item:the
focused
item:

VB.NET
sample
bolds
the
focused
item:

The
following
VFP
sample
bolds
the
focused
item:

with

thisform.Gantt1.Items

.DefaultItem

=

.FocusItem

.ItemBold(

0

)

=

.t.

endwith

formatting
change
depending
on
the
value
of
the
cell
or
the
value
of
a
formula.

property
Items.ItemItalic(Item
as
HITEM)
as
Boolean

Retrieves
or
sets
a
value
that
indicates
whether
the
item
should
appear
in
italic.

Type Description

Item as HITEM

A
long
expression
that
indicates
the
item's
handle
that
uses
italic
font
attribute.

Boolean

A
boolean
expression
that
indicates
whether
the
item
should
appear
in
italic.

Use
ItemBold,
ItemItalic,
ItemUnderline
or
ItemStrikeOut
property
to
apply
different
font

The
following
VB
sample
makes
italic
the
selected
item:

Private

Sub

Gantt1_SelectionChanged()

If

The
following
VB
sample
makes
italic
the
focused

With

Gantt1.Items
The
following
C++
sample
makes

#include

"Items.h"

CItems

The
following
C#

axGantt1.Items.set_ItemItalic(axGantt1.Items.FocusItem,

true);
The

attributes
to
the
item.
Use
the
CellItalic,
CellUnderline,
CellBold
or
CellStrikeOut
property
to
apply
different
font
attributes
to
the
cell.
Use
the
CellCaptionFormat
property
to
specify
an
HTML
caption.
Use
the
ConditionalFormats
method
to
apply
formats
to
a
cell
or
range
of
cells,

item:italic
the
focused
item:

sample
makes
italic
the
focused
item:

following
VB.NET
sample
makes
italic
the
focused
item:

With

AxGantt1.Items

.ItemItalic(.FocusItem)

=

True

End

With

The
following
VFP
sample
makes
italic
the
focused
item:

with

thisform.Gantt1.Items

.DefaultItem

=

.FocusItem

.ItemItalic(

0

)

=

.t.

endwith

and
have
that
formatting
change
depending
on
the
value
of
the
cell
or
the
value
of
a
formula.

property
Items.ItemUnderline(Item
as
HITEM)
as
Boolean

Retrieves
or
sets
a
value
that
indicates
whether
the
item
should
appear
in
underline.

Type Description

Item as HITEM

A
long
expression
that
indicates
the
item's
handle.

Boolean

A
boolean
expression
that
indicates
whether
the
item
should
appear
in
underline.

Use
ItemBold,
ItemItalic,
ItemUnderline
or
ItemStrikeOut
property
to
apply
different
font
attributes
to
the
item.
Use

The
following
VB
sample
underlines
the
selected
item:

Private

Sub

Gantt1_SelectionChanged()

If

Not

(h

The
following
VB
sample
underlines
the
focused
item:

With

Gantt1.Items

.ItemUnderline(.FocusItem)

=

The
following
C++
sample
underlines
the
focused
item:

#include

"Items.h"

CItems

items

=

The
following
C#
sample
underlines
the
focused
item:

axGantt1.Items.set_ItemUnderline(axGantt1.Items.FocusItem,

true);
The
following
VB.NET
sample
underlines
the

With

AxGantt1.Items
The
following
VFP

with

thisform.Gantt1.Items

the
CellItalic,
CellUnderline,
CellBold
or
CellStrikeOut
property
to
apply
different
font
attributes
to
the
cell.
Use
the
CellCaptionFormat
property
to
specify
an
HTML
caption.
Use
the
ConditionalFormats
method
to
apply
formats
to
a
cell
or
range
of
cells,
and
have
that
formatting
change

focused
item:
sample
underlines
the
focused
item:

depending
on
the
value
of
the
cell
or
the
value
of
a
formula.

property
Items.ItemStrikeOut(Item
as
HITEM)
as
Boolean

Retrieves
or
sets
a
value
that
indicates
whether
the
item
should
appear
in
strikeout.

Type Description

Item as HITEM

A
long
expression
that
indicates
the
item's
handle.

Boolean

A
boolean
expression
that
indicates
whether
the
item
should
appear
in
strikeout.

If
the
ItemStrikeOut
property
is
True,
the
cell's
font
is
displayed
with
a
horizontal
line
through

it.
Use
ItemBold,
ItemItalic,
ItemUnderline
or
ItemStrikeOut
property
to
apply
different
font
attributes
to
the
item.
Use
the
CellItalic,
CellUnderline,
CellBold
or
CellStrikeOut
property
to
apply
different
font
attributes
to
the
cell.
Use
the
CellCaptionFormat
property
to
specify
an
HTML
caption.
Use
the

ConditionalFormats
method
to
apply
formats
to
a
cell
or
range
of
cells,
and
have
that
formatting
change
depending
on
the
value
of
the
cell
or
the
value
of
a
formula.

The
following
VB
sample
draws
a
horizontal
line
through
the
selected
item:

Private

Sub

Gantt1_SelectionChanged()

If

The
following
VB
sample
draws
a
horizontal
line
through
the

With

Gantt1.Items
The
following
C++
sample
draws
a
horizontal
line

#include

"Items.h"

CItems

The
following
C#
sample
draws

axGantt1.Items.set_ItemStrikeOut(axGantt1.Items.FocusItem,

true);
The
following
VB.NET

With
The

focused
item:
through
the
focused
item:

a
horizontal
line
through
the
focused
item:

sample
draws
a
horizontal
line
through
the
focused
item:

following
VFP
sample
draws
a
horizontal
line
through
the
focused
item:

with

thisform.Gantt1.Items

.DefaultItem

=

.FocusItem

.ItemStrikeOut(

0

)

=

.t.

endwith

property
Items.EnableItem(Item
as
HITEM)
as
Boolean

Returns
or
sets
a
value
that
determines
whether
a
item
can
respond
to
user-
generated
events.

Type Description

Item as HITEM

A
long
expression
that
indicates
the
item's
handle
that
is
enabled
or
disabled.

Boolean

A
boolean
expression
that
indicates
whether
the
item
is
enabled
or
disabled.

Use
the
EnableItem
property
to
disable
an
item.
A
disabled
item

looks
grayed
and
it
is
selectable.
Use
the
SelectableItem
property
to
specify
the
user
can
select
an
item.
Once
that
an
item
is
disabled
all
the
cells
of
the
item
are
disabled,
so
CellEnabled
property
has
no
effect.
To
disable
a
column
you

can
use
Enabled
property
of
a
Column
object.

property
Gantt.ItemFromPoint
(X
as
OLE_XPOS_PIXELS,
Y
as
OLE_YPOS_PIXELS,
ColIndex
as
Long,
HitTestInfo
as
HitTestInfoEnum)
as
HITEM

Retrieves
the
item
from
the
cursor.

Type Description

X as OLE_XPOS_PIXELS

A
single
that
specifies
the
current
X
location
of
the
mouse
pointer.
The
x
values
is
always
expressed
in
client
coordinates.

Y as OLE_YPOS_PIXELS

A
single
that
specifies
the
current
Y
location
of
the
mouse
pointer.
The
y
values
is

always
expressed
in
client
coordinates.

ColIndex as Long

A
long
expression
that
indicates
on
return,
the
column
where
the
point
belongs.
If
the
return
value
is
zero,
the
ColIndex
may
indicate
the
handle
of
the
cell
(
inner
cell
).
A
HitTestInfoEnum
expression
that
determines

HitTestInfo as HitTestInfoEnum

on
return,
the
position
of
the
cursor
within
the
cell.

HITEM

A
long
expression
that
indicates
the
item's
handle
where
the
point
is.

Use
the
ItemFromPoint
property
to
get
the
item
from
the
point
specified
by
the
{X,Y}.
The
X
and
Y
coordinates

The
following
VB
sample
prints
the
cell's
caption
from
the
cursor
(
if
the
control
contains
no
inner
cells.

Private

Sub

Gantt1_MouseMove(Button

As

Integer,

Shift

As

Integer,

The
following
VB
sample
displays
the
cell's
caption
from
the
cursor
(
if
the
control
contains

Private

Sub

Gantt1_MouseMove(Button

As

Integer,

Shift

As

The
following
VB
sample
displays
the
index
of
icon
being
clicked:

Private

Sub

Gantt1_MouseUp(Button

As

Integer,

Shift

The
following
C#
sample
displays
the
caption
of
the
cell
being
double

EXGANTTLib.HitTestInfoEnum

hit;

int

c

The
following
VC
sample
displays
the
caption
of
the

#include

"Items.h"

static

CString

The
following
VB.NET
sample
displays
the
caption

Private

Sub

AxGantt1_MouseDownEvent(ByVal

The
following
C#
sample
displays

private

void
The
following***

are
expressed
in
client
coordinates,
so
a
conversion
must
be
done
in
case
your
coordinates
are
relative
to
the
screen
or
to
other
window.
If
the
X
parameter
is
-1
and
Y
parameter
is
-1
the
ItemFromPoint
property
determines
the
handle
of

Use
the
SplitCell
property
to
insert
inner
cells
)
:

inner
cells
):

clicked
(
including
the
inner
cells
):

cell
being
clicked:

from
the
cell
being
clicked:

the
caption
from
the
cell
being
clicked:

VFP
sample
displays
the
caption
from
the
cell
being
clicked
(
the
code
should
be
in
the
Gantt1.MouseDown
event
):

the
item
from
the
cursor.
Use
the
ColumnFromPoint
property
to
retrieve
the
column
from
cursor. Use
the
DateFromPoint
property
to
specify
the
date
from
the
cursor.
Use
the
SelectableItem
property
to
specify
the
user
can
select
an
item.
Use
the
LevelFromPoint
property
to
retrieve

the
index
of
the
level
from
the
cursor.

property
Gantt.SelectColumnIndex
as
Long

Retrieves
or
sets
a
value
that
indicates
the
column's
index
where
the
user
can
select
an
item
by
clicking.

Type Description

Long

A
long
expression
that
indicates
the
column's
index
where
the
user
can
select
the
item.

The
property
has
effect
only
if
the
FullRowSelect
property
is
False.
Use
the
SelectedItem
property
to
determine
the
selected
items.
Use
the

SelectColumnInner
property
to
get
the
index
of
the
inner
cell
that's
selected
or
focused.
Use
the
SplitCell
property
to
split
a
cell. Use
the
SelectableItem
property
to
specify
the
user
can
select
an
item.

property
Items.ItemPosition(Item
as
HITEM)
as
Long

Retrieves
or
sets
a
value
that
indicates
the
item's
position
in
the
children
list.

Type Description

Item as HITEM

A
long
expression
that
indicates
the
item's
handle.

Long

A
long
expression
that
indicates
the
item's
position
in
the
children
list.

The
ItemPosition
property
gets
the
item's
position
in
the
children
items
list.
You
can
use
the

ItemPosition
property
to
change
the
item's
position
after
it
been
added
to
collection.
When
the
control
sorts
the
tree,
the
item
for
each
position
can
be
changed,
so
you
can
use
the
item's
handle
or
item's
index
to
identify
an
item.
Use
the

SortChildren
method
to
sort
the
child
items.
Use
the
SortOrder
property
to
sort
a
column.

property
Items.IsItemVisible
(Item
as
HITEM)
as
Boolean

Checks
if
the
specific
item
fits
the
control's
client
area.

Type Description

Item as HITEM

A
long
expression
that
indicates
the
handle
of
the
item
that
fits
the
client
area.

Boolean

A
boolean
expression
that
indicates
whether
the
item
fits
the
client
area.

To
make
sure
that
an
item
fits
the
client

The
following
VB
sample
enumerates
the
items
that

On

Error

Resume

Next

The
following
C++
sample
enumerates
the

#include

"Items.h"

CItems

The
following
VB.NET

With

AxGantt1.Items
The

EXGANTTLib.Items

area
call
EnsureVisibleItem
method.
Use
the
FirstVisibleItem,
NextVisibleItem
and
IsItemVisible
properties
to
get
the
items
that
fit
the
client
area.
Use
the
NextVisibleItem
property
to
get
the
next
visible
item.
Use
the
IsVisibleItem
property
to
check
whether
an
item
fits
the
control's
client

fit
the
control's
client
area:

items
that
fit
the
control's
client
area:

sample
enumerates
the
items
that
fit
the
control's
client
area:

following
C#
sample
enumerates
the
items
that
fit
the
control's
client
area:

The
following
VFP
sample
enumerates
the
items
that
fit
the
control's
client
area:

with

thisform.Gantt1.Items

.DefaultItem

=

.FirstVisibleItem

do

while

(

(

.DefaultItem

<>

0

)

and

(

.IsItemVisible(

0

)

area.

method
Gantt.Scroll
(Type
as
ScrollEnum,
[ScrollTo
as
Variant])

Scrolls
the
control's
content.

Type Description

Type as ScrollEnum

A
ScrollEnum
expression
that
indicates
type
of
scrolling
being
performed.

ScrollTo as Variant

A
long
expression
that
indicates
the
position
where
the
control
is
scrolled
when
Type
is
exScrollVTo
or
exScrollHTo.
If
the
ScrollTo
parameter
is
missing,
0
value
is

used.

Use
the
Scroll
method
to
scroll
the
control's
content
by
code.
Use
the
EnsureVisibleItem
method
to
ensure
that
a
specified
item
fits
the
control's
client
area.
Use
the
ScrollPos
property
to
get
the
control's
scroll
position.
Use
the
EnsureVisibleColumn
method
to

ensure
that
a
specified
column
fits
the
control's
client
area.
If
the
Type
parameter
is
exScrollLeft,
exScrollRight
or
exScrollHTo
the
Scroll
method
scrolls
horizontally
the
control's
content
pixel
by
pixel,
if
the
ContinueColumnScroll
property
is
False,
else
the
Scroll
method
scrolls
horizontally
the

control's
content
column
by
column.

The
following
VB
sample
scrolls
the
control's
content
to
the
first
item
(
scrolls
to
the
top
):

Gantt1.Scroll

exScrollVTo,

0

The
following
C++
sample
scrolls
the
control's
content
to
the
top:

m_gantt.Scroll(

2

/*exScrollVTo*/,

COleVariant(

(long)0

)

);

The
following
C#
sample
scrolls
the
control's
content
to
the
top:

axGantt1.Scroll(EXGANTTLib.ScrollEnum.exScrollVTo,

0);
The
following
VB.NET
sample
scrolls
the
control's
content
to
the
top:

AxGantt1.Scroll(EXGANTTLib.ScrollEnum.exScrollVTo,

0)
The
following
VFP
sample
scrolls
the
control's
content
to
the
top:

with

thisform.Gantt1

.Scroll(

2,

0

)

&&

exScrollVTo

endwith

method
Gantt.EnsureVisibleColumn
(Column
as
Variant)

Scrolls
the
control's
content
to
ensure
that
the
column
fits
the
client
area.

Type Description

Column as Variant

A
long
expression
that
indicates
the
index
of
the
column,
a
string
expression
that
indicates
the
column's
caption
or
the
column's
key.

The
EnsureVisibleColumn
method
ensures
that
the
given
column
fits
the
control's
client
area.
The
EnsureVisibleColumn

method
has
no
effect
if
the
column
is
hidded.
Use
the
Visible
property
to
show
or
hide
a
column.
Use
the
Position
property
to
change
the
column's
position.
Use
the
EnsureVisibleItem
method
to
ensure
that
an
item
fits
the
control's
client
area. Use
the

ScrollBars
property
to
hide
the
control's
scroll
bars.
Use
the
Scroll
method
to
programmatically
scroll
the
control's
content.

	Information
	How to get support?
	How to start?
	Appearance
	Add method
	Clear method
	Remove method
	RenderType property

	Bar
	Color property
	EndColor property
	EndShape property
	Height property
	Name property (readonly)
	Pattern property
	Shape property
	Shortcut property
	StartColor property
	StartShape property

	Bars
	Add method
	AddShapeCorner method
	Clear method
	Copy method
	Count property (readonly)
	Item property (readonly)
	Remove method
	RemoveShapeCorner method

	Chart
	AddNonworkingDate method
	AllowOverviewZoom property
	AMPM property
	BackColor property
	BackColorLevelHeader property
	BarFromPoint property (readonly)
	Bars property (readonly)
	ClearItemBackColor method
	ClearNonworkingDates method
	CountVisibleUnits property (readonly)
	DateFromPoint property (readonly)
	DrawDateTicker property
	DrawGridLines property
	DrawLevelSeparator property
	EndPrintDate property
	FirstVisibleDate property
	FirstWeekDay property
	ForeColor property
	ForeColorLevelHeader property
	FormatDate property (readonly)
	GridLineStyle property
	IsDateVisible property (readonly)
	IsNonworkingDate property (readonly)
	ItemBackColor property
	Label property
	LabelToolTip property
	Level property (readonly)
	LevelCount property
	LevelFromPoint property (readonly)
	LinkFromPoint property (readonly)
	LinksColor property
	LinksStyle property
	LinksWidth property
	LocAMPM property (readonly)
	LocFirstWeekDay property (readonly)
	LocMonthNames property (readonly)
	LocWeekDays property (readonly)
	MarkNowColor property
	MarkNowCount property
	MarkNowTransparent property
	MarkNowUnit property
	MarkNowWidth property
	MarkSelectDateColor property
	MarkTodayColor property
	MonthNames property
	NextDate property (readonly)
	NonworkingDays property
	NonworkingDaysColor property
	NonworkingDaysPattern property
	NonworkingHours property
	NonworkingHoursColor property
	NonworkingHoursPattern property
	OverviewBackColor property
	OverviewHeight property
	OverviewLevelLines property
	OverviewSelBackColor property
	OverviewToolTip property
	OverviewVisible property
	OverviewZoomCaption property
	OverviewZoomUnit property
	PaneWidth property
	Picture property
	PictureDisplay property
	RemoveNonworkingDate method
	ScrollBar property
	ScrollRange property
	ScrollTo method
	SelBackColor property
	SelectDate property
	SelectLevel property
	SelForeColor property
	ShowEmptyBars property
	ShowEmptyBarsUnit property
	ShowLinks property
	ShowNonworkingDates property
	ShowNonworkingUnits property
	ShowTransparentBars property
	StartPrintDate property
	ToolTip property
	UnitScale property
	UnitWidth property
	UnselectDates method
	WeekDays property
	WeekNumberAs property
	Zoom method

	Column
	Alignment property
	AllowDragging property
	AllowSizing property
	AllowSort property
	AutoSearch property
	AutoWidth property (readonly)
	Caption property
	ComputedField property
	CustomFilter property
	Data property
	Def property
	DefaultSortOrder property
	DisplayExpandButton property
	DisplayFilterButton property
	DisplayFilterDate property
	DisplayFilterPattern property
	DisplaySortIcon property
	Enabled property
	ExpandColumns property
	Expanded property
	Filter property
	FilterBarDropDownWidth property
	FilterList property
	FilterOnType property
	FilterType property
	FireFormatColumn property
	FormatColumn property
	HeaderAlignment property
	HeaderBold property
	HeaderImage property
	HeaderImageAlignment property
	HeaderItalic property
	HeaderStrikeOut property
	HeaderUnderline property
	HTMLCaption property
	Index property (readonly)
	Key property
	LevelKey property
	MaxWidthAutoResize property
	MinWidthAutoResize property
	PartialCheck property
	Position property
	ShowFilter method
	SortOrder property
	SortPosition property
	SortType property
	ToolTip property
	Visible property
	Width property
	WidthAutoResize property

	Columns
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	ItemBySortPosition property (readonly)
	Remove method

	ConditionalFormat
	ApplyTo property
	ApplyToBars property
	BackColor property
	BarColor property
	BarOverviewColor property
	Bold property
	ClearBackColor method
	ClearBarColor method
	ClearBarOverviewColor method
	ClearForeColor method
	Enabled property
	Expression property
	Font property
	ForeColor property
	Italic property
	Key property (readonly)
	StrikeOut property
	Underline property
	Valid property (readonly)

	ConditionalFormats
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	Remove method

	ExDataObject
	Clear method
	Files property (readonly)
	GetData method
	GetFormat method
	SetData method

	ExDataObjectFiles
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	Remove method

	Gantt
	AllowChartScrollHeader property
	AllowChartScrollPage property
	AllowEdit property
	AllowSelectNothing property
	AnchorFromPoint property (readonly)
	Appearance property
	ApplyFilter method
	ASCIILower property
	ASCIIUpper property
	AttachTemplate method
	AutoDrag property
	AutoSearch property
	BackColor property
	BackColorAlternate property
	BackColorHeader property
	BackColorLevelHeader property
	BackColorLock property
	BackColorSortBar property
	BackColorSortBarCaption property
	Background property
	BeginUpdate method
	BorderStyle property
	Chart property (readonly)
	ChartOnLeft property
	CheckImage property
	ClearFilter method
	ColumnAutoResize property
	ColumnFromPoint property (readonly)
	Columns property (readonly)
	ColumnsAllowSizing property
	ColumnsFloatBarSortOrder property
	ColumnsFloatBarVisible property
	ConditionalFormats property (readonly)
	ContinueColumnScroll property
	Copy method
	CopyTo property (readonly)
	CountLockedColumns property
	DataSource property
	DefaultItemHeight property
	Description property
	DetectAddNew property
	DrawGridLines property
	Enabled property
	EndUpdate method
	EnsureOnSort property
	EnsureVisibleColumn method
	EventParam property
	ExecuteTemplate method
	ExpandOnDblClick property
	ExpandOnKeys property
	ExpandOnSearch property
	Export method
	FilterBarBackColor property
	FilterBarCaption property
	FilterBarDropDownHeight property
	FilterBarFont property
	FilterBarForeColor property
	FilterBarHeight property
	FilterBarPrompt property
	FilterBarPromptColumns property
	FilterBarPromptPattern property
	FilterBarPromptType property
	FilterBarPromptVisible property
	FilterCriteria property
	FilterInclude property
	Font property
	ForeColor property
	ForeColorHeader property
	ForeColorLock property
	ForeColorSortBar property
	FormatABC method
	FormatAnchor property
	FreezeEvents method
	FullRowSelect property
	GetItems method
	GridLineColor property
	GridLineStyle property
	HasButtons property
	HasButtonsCustom property
	HasLines property
	HeaderAppearance property
	HeaderHeight property
	HeaderSingleLine property
	HeaderVisible property
	HideSelection property
	HotBackColor property
	HotForeColor property
	HTMLPicture property
	hWnd property (readonly)
	HyperLinkColor property
	Images method
	ImageSize property
	Indent property
	ItemFromPoint property (readonly)
	Items property (readonly)
	ItemsAllowSizing property
	Layout property
	LinesAtRoot property
	LoadXML method
	MarkSearchColumn property
	OLEDrag method
	OLEDropMode property
	OnResizeControl property
	Picture property
	PictureDisplay property
	PictureDisplayLevelHeader property
	PictureLevelHeader property
	PutItems method
	RadioImage property
	RClickSelect property
	Refresh method
	RemoveSelection method
	ReplaceIcon method
	RightToLeft property
	SaveXML method
	Scroll method
	ScrollBars property
	ScrollButtonHeight property
	ScrollButtonWidth property
	ScrollBySingleLine property
	ScrollFont property
	ScrollHeight property
	ScrollOrderParts property
	ScrollPartCaption property
	ScrollPartCaptionAlignment property
	ScrollPartEnable property
	ScrollPartVisible property
	ScrollPos property
	ScrollThumbSize property
	ScrollToolTip property
	ScrollWidth property
	SearchColumnIndex property
	SelBackColor property
	SelBackMode property
	SelectColumn property
	SelectColumnIndex property
	SelectColumnInner property
	SelectOnRelease property
	SelForeColor property
	SelLength property
	SelStart property
	ShowFocusRect property
	ShowImageList property
	ShowLockedItems property
	ShowToolTip method
	SingleSel property
	SingleSort property
	SortBarCaption property
	SortBarColumnWidth property
	SortBarHeight property
	SortBarVisible property
	SortOnClick property
	Statistics property (readonly)
	Template property
	TemplateDef property
	TemplatePut method
	ToolTipDelay property
	ToolTipFont property
	ToolTipPopDelay property
	ToolTipWidth property
	TreeColumnIndex property
	UseTabKey property
	UseVisualTheme property
	Version property
	VisualAppearance property (readonly)
	VisualDesign property

	Items
	AcceptSetParent property (readonly)
	AddBar method
	AddItem method
	AddLink method
	CellBackColor property
	CellBold property
	CellButtonAutoWidth property
	CellCaption property
	CellCaptionFormat property
	CellChecked property (readonly)
	CellData property
	CellEnabled property
	CellFont property
	CellForeColor property
	CellHAlignment property
	CellHasButton property
	CellHasCheckBox property
	CellHasRadioButton property
	CellHyperLink property
	CellImage property
	CellImages property
	CellItalic property
	CellItem property (readonly)
	CellMerge property
	CellParent property (readonly)
	CellPicture property
	CellPictureHeight property
	CellPictureWidth property
	CellRadioGroup property
	CellSingleLine property
	CellState property
	CellStrikeOut property
	CellToolTip property
	CellUnderline property
	CellVAlignment property
	CellWidth property
	ChildCount property (readonly)
	ClearBars method
	ClearCellBackColor method
	ClearCellForeColor method
	ClearCellHAlignment method
	ClearItemBackColor method
	ClearItemForeColor method
	ClearLinks method
	DefaultItem property
	Edit method
	EnableItem property
	EnsureVisibleItem method
	ExpandItem property
	FindItem property (readonly)
	FindItemData property (readonly)
	FindPath property (readonly)
	FirstItemBar property (readonly)
	FirstLink property (readonly)
	FirstVisibleItem property (readonly)
	FocusItem property (readonly)
	FormatCell property
	FullPath property (readonly)
	InnerCell property (readonly)
	InsertControlItem method
	InsertItem method
	IsItemLocked property (readonly)
	IsItemVisible property (readonly)
	ItemAllowSizing property
	ItemAppearance property
	ItemBackColor property
	ItemBar property
	ItemBold property
	ItemByIndex property (readonly)
	ItemCell property (readonly)
	ItemChild property (readonly)
	ItemControlID property (readonly)
	ItemCount property (readonly)
	ItemData property
	ItemDivider property
	ItemDividerLine property
	ItemDividerLineAlignment property
	ItemFont property
	ItemForeColor property
	ItemHasChildren property
	ItemHeight property
	ItemItalic property
	ItemMaxHeight property
	ItemMinHeight property
	ItemObject property (readonly)
	ItemParent property (readonly)
	ItemPosition property
	ItemStrikeOut property
	ItemToIndex property (readonly)
	ItemUnderline property
	ItemWidth property
	ItemWindowHost property (readonly)
	ItemWindowHostCreateStyle property
	LastVisibleItem property (readonly)
	Link property
	LockedItem property (readonly)
	LockedItemCount property
	MatchItemCount property (readonly)
	MergeCells method
	NextItemBar property (readonly)
	NextLink property (readonly)
	NextSiblingItem property (readonly)
	NextVisibleItem property (readonly)
	PathSeparator property
	PrevSiblingItem property (readonly)
	PrevVisibleItem property (readonly)
	RemoveAllItems method
	RemoveBar method
	RemoveItem method
	RemoveLink method
	RemoveSelection method
	RootCount property (readonly)
	RootItem property (readonly)
	SelectableItem property
	SelectAll method
	SelectCount property (readonly)
	SelectedItem property (readonly)
	SelectItem property
	SelectPos property
	SetParent method
	SortableItem property
	SortChildren method
	SplitCell property (readonly)
	UnmergeCells method
	UnselectAll method
	UnsplitCell method
	VisibleCount property (readonly)
	VisibleItemCount property (readonly)

	Level
	Alignment property
	BackColor property
	Count property
	DrawGridLines property
	DrawTickLines property
	ForeColor property
	GridLineColor property
	GridLineStyle property
	Label property
	ReplaceLabel property
	ToolTip property
	Unit property

	OleEvent
	CountParam property (readonly)
	ID property (readonly)
	Name property (readonly)
	Param property (readonly)
	ToString property (readonly)

	OleEventParam
	Name property (readonly)
	Value property

	ExGantt events
	AddColumn event
	AddItem event
	AfterCellEdit event
	AfterExpandItem event
	AnchorClick event
	BeforeCellEdit event
	BeforeExpandItem event
	CellButtonClick event
	CellImageClick event
	CellStateChanged event
	CellStateChanging event
	Click event
	ColumnClick event
	DateChange event
	DateTimeChanged event
	DblClick event
	Event event
	FilterChange event
	FilterChanging event
	FormatColumn event
	HyperLinkClick event
	ItemOleEvent event
	KeyDown event
	KeyPress event
	KeyUp event
	LayoutChanged event
	MouseDown event
	MouseMove event
	MouseUp event
	OffsetChanged event
	OLECompleteDrag event
	OLEDragDrop event
	OLEDragOver event
	OLEGiveFeedback event
	OLESetData event
	OLEStartDrag event
	OversizeChanged event
	OverviewZoom event
	RClick event
	RemoveColumn event
	RemoveItem event
	ScrollButtonClick event
	SelectionChanged event
	Sort event
	ToolTip event

