
 ExG2antt

The Exontrol's ExG2antt component is our approach to create timeline charts (also known
as Gantt charts). Gantt chart is a time-phased graphic display of activity durations.
Activities are listed with other tabular information on the left side with time intervals over the
bars. Activity durations are shown in the form of horizontal bars. The ex(G)rid-ex(G)antt,
shortly exG2antt, combines the ExGrid and ExGantt components in a standalone
component. The exG2antt component shows timeline charts on a multi-columns tree control.
The ExG2antt component lets the user changes its visual appearance using skins, each
one providing an additional visual experience that enhances viewing pleasure. Skins are
relatively easy to build and put on any part of the control.

Features include:

Print and Print Preview support
ADO and DAO support, DataSets for /NET
Skinable Interface support (ability to apply a skin to the parts of the control)
Custom Row Designer (Have your rows display however you want with the control
row layout capabilities)
Ability to save/load the control's data to/from XML files
EMF Format support (Ability to save the control's content to Enhanced Metafile (EMF)
file, and so to any BMP, JPG, GIF or PNG formats)
Overview Layout/Map support
Histogram support
Conditional Format support
Computed Fields support
Filter support

Filter-Prompt support, allows you to filter the items as you type while the filter bar
is always visible on the bottom part of the list area.
Filter-On-Type support. Ability to filter items by a column, as you type.

Editors support
Scroll Line by Line support, for smoothing scroll items with different heights
Multiple Columns
Sorting by Single or Multiple Column support
Locked/Fixed columns support
Split, Merge cells support
Single/ Multiple Lines/Levels/Expandable Header support
Regional and Language Options support to display date and times.
Alternative HTML labels support for best fit in the level's time unit.
Ability to show the control's element from right-to-left for Hebrew, Arabic and other
RTL languages

Ability to specify multiple levels, using custom built-in HTML format for each of level
Ability to insert hyperlinks anywhere in the cells, bars or links
Zoom and Scale support (including at run-time too)
Ability to enlarge or magnify (zoom-in,zoom-out) the entire chart, by dragging the
header or resizing it using the middle mouse button, with or without re-scalling the
chart.
Ability to magnify only a portion of the chart, so the rest of the chart stay unchanged,
ie shows hours of selected day(s).
Ability to show the position of current date-time, using different styles including EBN
files
Ability to highlight or mark different date-time zones, using different colors, EBNs,
patterns, multiple HTML captions
Nonworking support

Nonworking Days, Nonworking Hours support
Ability to specify non-working parts for any item
Ability to specify bars that are treated as non-working parts of the items

Draw lines or links between bars support
Semi-Transparent and Opaque Bars support
Ability to summarize the bars, so they get updated as soon as child bars are moved or
resized
Ability to group bars, preserve the length of the bars, fixing (or within a specified
range) the distance between bars
Ability to show the position of current date-time, using different styles including EBN
files
Ability to select bars and links at runtime
Ability to move and resizes the bars on the fly
Ability to customize the overlaid bars using different offset, transparency, colors,
patterns, shapes, and so on
Ability to link bars using the mouse
Ability to display pictures or HTML text on any link
Ability to assign multiple bars to a single item
Predefined list of bars like task, milestone and so on
Ability to define your own type of bars using custom shapes and patterns
Ability to define the starting and ending corners from icons
Multi-Lines Built-In HTML Tooltip support
Undo/Redo support
Precedence Diagramming Method (PDM or scheduling activities in a project plan)
Ability to associate a bar/date with fully customizable, movable boxes or notes,
including HTML text, images, links and so on

Ž ExG2antt is a trademark of Exontrol. All Rights Reserved.

How to get support?

To keep your business applications running, you need support you can count on.

Here are few hints what to do when you're stuck on your programming:

Check out the samples - they are here to provide some quick info on how things should
be done
Check out the how-to questions using the eXHelper tool
Check out the help - includes documentation for each method, property or event
Check out if you have the latest version, and if you don't have it send an update
request here.
Submit your problem(question) here.

Don't forget that you can contact our development team if you have ideas or requests for
new components, by sending us an e-mail at support@exontrol.com (please include the
name of the product in the subject, ex: exgrid) . We're sure our team of developers will try
to find a way to make you happy - and us too, since we helped.

Regards,
Exontrol Development Team

https://www.exontrol.com

https://exontrol.com/exhelper.jsp
https://exontrol.com/update.jsp
https://exontrol.com/techsupport.jsp
https://www.exontrol.com

How to start?

The following screen shot, shows a general idea how parts and objects of the control are
arranged:

click to enlarge

The following steps shows you progressively how to start programming the Exontrol's
ExG2antt component:

Load / Save Data. The control provides several ways to serialize your data, as listed:

LoadXML / SaveXML methods, to load / save data using XML format.
DataSource property, to load / update / save data from a table, query,
dataset and so on.
GetItems / PutItems methods, to load / save data from a/to safe array of
data.

For instance,

With G2antt1
 .LoadXML "https://www.exontrol.net/testing.xml"
End With

loads control's data from specified URL.

Chart. The control's chart displays tasks based on the time-unit scale, using a multiple-
levels header.

UnitScale property, determines the base time-unit scale to be displayed on the
chart.
Label property, indicates the predefined format of the level's label for a
specified unit, to be shown on the chart.
LevelCount property, specifies the number of levels to be shown on the chart's
header.

For instance,

With G2antt1
 With .Chart
 .LevelCount = 2
 .UnitScale = exDay
 End With
End With

specifies that the chart's header should display two levels, and the base time-unit
scale to be day.

Bars. The chart's bars collection holds the types of the bars the chart can display. By
default, it includes Task, Milestone, Summary, Project Summary, ...

Add method, adds a new type of bar, including a combination of any of
already predefined bars to display split or/and progress bars.
Copy property, clones an already predefined bar.

For instance,

With G2antt1
 .Chart.Bars.Add("Task%Progress").Shortcut = "TProgress"
End With

defines a new task bar to display a progress bar inside. See Item-Bars, to see

how you can add tasks/bars to the control's chart panel.

Links. See Item-Links, to see how you can add links between tasks/bars to the
control's chart panel.
Notes. See Item-Notes, to see how you can add notes on the control's chart panel.
Columns. The control supports multiple columns, so always you can add / remove /
move / hide any column

Add method, adds a new column.
ExpandColumns property specifies the columns to be shown/hidden when the
column is expanded or collapsed.

For instance,

With G2antt1
 With .Columns.Add("Check")
 .Position = 0
 .Def(exCellHasCheckBox) = True
 End With
End With

adds a new column that displays check-boxes, and that's the first visible column.

Editors. Any cell / column of the control supports built-in editors, that let user edits
data

EditType method, specifies the built-in to be assigned to a cell or column.
Editor property, gets access to the column's built-in editor
CellEditorVisible property specifies the built-in editor for a particular cell.

For instance,

With G2antt1
 With .Columns.Add("Date")
 .Editor.EditType = DateType
 End With
End With

adds a new column that displays and edits column's data as date type.

Items. Any item can hold a collection of child items. Any item is divided in cells, once
cell for each column in the control.

AddItem method, adds a new item.
InsertItem method, inserts a child item
InsertControlItem method, inserts a child item that hosts another control
inside.

For instance,

With G2antt1
 With .Items
 .AddItem "new item"
 End With
End With

adds a new item.

Cells. An item contains a collection of cells, one cell for each column in the control. Any
cell can be split or merge with one or more neighbor cells.

CellValue property, specifies the cell's value.

For instance,

With G2antt1
 With .Items
 h = .InsertItem(.FocusItem,"","item 1.1")
 .CellValue(h,1) = "item 1.2"
 .CellValue(h,2) = "item 1.3"
 .ExpandItem(.FocusItem) = True
 End With
End With

adds a new child item of the focused item, and fills the cell's value for the second
and third column.

Item-Bars. Any item can display one or more tasks/bars.

AddBar method, adds a new bar of specified type, giving its time interval.
ItemBar property, updates properties of specified bar, like caption, effort, and
so on
DefineSummaryBars method, defines child-bars of a summary bar.

For instance,

With G2antt1
 With .Items
 .AddBar .FocusItem,"Task",#4/1/2006#,#4/14/2006#,"new"
 End With
End With

adds a new task to the focus item, with the key "new".

Item-Links. Any two-bars of the chart, can be linked.

AddLink method, links two bars.
Link property, gets access to the link's properties

For instance,

With G2antt1
 With .Items
 .AddBar .FocusItem,"Task",#4/1/2006#,#4/14/2006#,"A"
 .AddBar .FocusItem,"Task",#4/18/2006#,#4/30/2006#,"B"
 .AddLink "AB",.FocusItem,"A",.FocusItem,"B"
 End With
End With

adds two linked bars A and B in the same item.

Item-Notes. The chart panel of the control supports notes, that can be associated with
any date or bar in the chart.

Add method, associates a note to a date or task/bar.

For instance,

With G2antt1
 With .Chart.Notes
 With
.Add("D1",G2antt1.Items.FirstVisibleItem,G2antt1.Chart.FirstVisibleDate,"Date:

<%dd%>/<%mm%>
<%yyyy%>")
 .PartCanMove(exNoteEnd) = True
 .PartVOffset(exNoteEnd) = 20
 .PartHOffset(exNoteEnd) = 20

 End With
 End With
End With

adds a note associated with first visible date.

Send comments on this topic.
Š 1999-2016 Exontrol. All rights reserved.

https://exontrol.com/sg.jsp?content=techsupport&order=start.html&product=ExG2antt
https://www.exontrol.com

constants AlignmentEnum
The Column object uses the AlignmentEnum enumeration to align a column. See the
Alignment property of the Column and Alignment properties related.

Name Value Description
LeftAlignment 0 The source is left aligned.
CenterAlignment 1 The source is centered.
RightAlignment 2 The source is right aligned.
exHOutside 16 The caption is displayed outside of the source.

constants AllowSplitPaneEnum
The AllowSplitPaneEnum type specifies the number of splitting panels the control's chart
supports. The AllowSplitPane property specifies whether the chart panel supports splitting.
Once the AllowSplitPane property is set, the user can click the lower-right split bar, and
drag to a new position to add a new split to the current chart. The AllowSplitPaneEnum
type supports the following values.

Name Value Description
exNoSplitPane 0 No split panel.
exAllowOneSplitPane 1 The chart allows adding one splitting panel.
exAllowTwoSplitPane 2 The chart allows adding two splitting panel.

constants AppearanceEnum
The AppearanceEnum enumeration is used to specify the appearance of the control's
header bar. See also the HeaderAppearance property.

Name Value Description

None2 0
No border (while the HeaderAppearance property is
0, the user can't resize the columns while cursor
hovers the control's header bar)

Flat 1 Flat border
Sunken 2 Sunken border
Raised 3 Raised border
Etched 4 Etched border
Bump 5 Bump border

constants ArrowHandleEnum
The ArrorHandleEnum expression specifies the options for exLeftArrow, exRightArrow,
exDownArrow or exUpArrow values when the Option property is used.

Name Value Description

exHandleEditor 0

The editor handles the arrow key. The key moves
the cursor, if exists, inside the edit control. If the
editor displays a caret, the F2 key selects or
unselects the entire text.

exHandleControl -1

The control handles the arrow key. The key moves
the focus to a new cell. If the editor displays a
caret, the F2 key selects or unselects the entire
text. If the entire text is selected the key moves the
focus to a new cell. If the text is not fully selected,
the key moves the cursor to the next position, and if
it is not available the next cell is focused.

exHandleEditSel 1

The editor handles the arrow key. The key moves
the focus to a new cell, if the editor displays a caret
and the key is pressed. If the text is not fully
selected, the key moves the caret inside the editor.
The F2 key selects or unselects the text inside the
editor.

constants AutoDragEnum
The AutoDragEnum type indicates what the control does when the user clicks and start
dragging a row or an item. The AutoDrag property indicates the way the component
supports the AutoDrag feature. The AutoDrag feature indicates what the control does when
the user clicks an item and start dragging. For instance, using the AutoDrag feature you can
automatically lets the user to drag and drop the data to OLE compliant applications like
Microsoft Word, Excel and so on. The SingleSel property specifies whether the control
supports single or multiple selection. The drag and drop operation starts once the user
clicks and moves the cursor up or down, if the SingleSel property is True, and if SingleSel
property is False, the drag and drop starts once the user clicks, and waits for a short
period of time. If SingleSel property is False, moving up or down the cursor selects the
items by drag and drop.

The flag that ends on ...OnShortTouch indicates the action the control does when the
user short touches the screen
The flag that ends on ...OnRight indicates the action the control does when the user
right clicks the control.
The flag that ends on ...OnLongTouch indicates the action the control does when the
user long touches the screen

The AutoDragEnum type supports the following values:

Name Value Description

exAutoDragNone 0
AutoDrag is disabled. You can use the
OLEDropMode property to handle the OLE Drag
and Drop event for your custom action.

exAutoDragPosition 1

The item can be dragged from a position to
another, but not outside of its group. If your items
are arranged as a flat list, no hierarchy, this option
can be used to allow the user change the item's
position at runtime by drag and drop. This option
does not change the parent of any dragged item.
The dragging items could be the focused item or a
contiguously selection. Click the selection and
moves the cursor up or down, so the position of the
dragging items is changed. The draggable collection
is a collection of sortable items between 2 non-
sortable items (SortableItem property). The drag
and drop operation can not start on a non-sortable
or non-selectable item (SelectableItem property).
In other words, you can specify a range where an
item can be dragged using the SortableItem

property. Just set the SortableItem property on
False, for margins, and so the items can be
dragged between these items only.

exAutoDragPositionKeepIndent2

The item can be dragged to any position or to any
parent, while the dragging object keeps its
indentation. This option can be used to allow the
user change the item's position at runtime by drag
and drop. In the same time, the parent's item could
be changed but keeping the item's indentation. The
dragging items could be the focused item or a
contiguously selection. Click the selection and
moves the cursor up or down, so the position or
parent of the dragging items is changed. The drag
and drop operation can not start on a non-sortable
or non-selectable item (SelectableItem property).
In other words, you can specify a range where an
item can be dragged using the SortableItem
property. Just set the SortableItem property on
False, for margins, and so the items can be
dragged between these items only.

exAutoDragPositionAny 3

The item can be dragged to any position or to any
parent, with no restriction. The dragging items could
be the focused item or a contiguously selection. The
parent of the dragging items could change with no
restrictions, based on the position of the dragging
item. Click the selection and moves the cursor up or
down, so the position or parent of the dragging
items is changed. Click the selection and moves the
cursor left or right, so the item's indentation is
decreased or increased. The drag and drop
operation can not start on a non-sortable or non-
selectable item (SelectableItem property). In other
words, you can specify a range where an item can
be dragged using the SortableItem property. Just
set the SortableItem property on False, for
margins, and so the items can be dragged between
these items only.

Click here to watch a movie on how
exAutoDragCopyText works.

Drag and drop the selected items to a target

https://www.youtube.com/watch?v=crG33cuKwC4

exAutoDragCopy 8
application, and paste them as image or text.
Pasting the data to the target application depends
on the application. You can use the
exAutoDragCopyText to specify that you want to
paste as Text, or exAutoDragCopyImage as an
image.

exAutoDragCopyText 9

Drag and drop the selected items to a target
application, and paste them as text only. Ability to
drag and drop the data as text, to your favorite
Office applications, like Word, Excel, or any other
OLE-Automation compliant. The drag and drop
operation can start anywhere

Click here to watch a movie on how
exAutoDragCopyText works.

exAutoDragCopyImage 10

Drag and drop the selected items to a target
application, and paste them as image only. Ability to
drag and drop the data as it looks, to your favorite
Office applications, like Word, Excel, or any other
OLE-Automation compliant. The drag and drop
operation can start anywhere

Click here to watch a movie on how
exAutoDragCopyImage works.

exAutoDragCopySnapShot 11

Drag and drop a snap shot of the current
component. This option could be used to drag and
drop the current snap shot of the control to your
favorite Office applications, like Word, Excel, or any
other OLE-Automation compliant.

exAutoDragScroll 16

The component is scrolled by clicking the item and
dragging to a new position. This option can be used
to allow user scroll the control's content with NO
usage of the scroll bar, like on your IPhone. Ability
to smoothly scroll the control's content. The feature
is useful for touch screens or tables pc, so no need
to click the scroll bar in order to scroll the control's
content. Use the ScrollBySingleLine property on
False, to allow scrolling pixel by pixel when user
clicks the up or down buttons on the vertical scroll
bar. By default, the scrolling starts as soon as user

https://www.youtube.com/watch?v=4uA7ZI0W3Sk
https://www.youtube.com/watch?v=vunKapyV34g

clicks an item. If the cursor hovers a bar or
AllowCreateBar property is not exNoCreateBar,
click and wait for a second to start scrolling the
chart.

Click here or to watch a movie on how
exAutoDragScroll works.

exAutoDragPositionOnShortTouch256 The object can be dragged from a position to
another, but not outside of its group.

exAutoDragPositionKeepIndentOnShortTouch512
The object can be dragged to any position or to any
parent, while the dragging object keeps its
indentation.

exAutoDragPositionAnyOnShortTouch768 The object can be dragged to any position or to any
parent, with no restriction.

exAutoDragCopyOnShortTouch2048 Drag and drop the selected objects to a target
application, and paste them as image or text.

exAutoDragCopyTextOnShortTouch2304 Drag and drop the selected objects to a target
application, and paste them as text only.

exAutoDragCopyImageOnShortTouch2560 Drag and drop the selected objects to a target
application, and paste them as image only.

exAutoDragCopySnapShotOnShortTouch2816 Drag and drop a snap shot of the current
component.

exAutoDragScrollOnShortTouch4096 The component is scrolled by clicking the object and
dragging to a new position.

exAutoDragPositionOnRight 65536 The object can be dragged from a position to
another, but not outside of its group.

exAutoDragPositionKeepIndentOnRight131072
The object can be dragged to any position or to any
parent, while the dragging object keeps its
indentation.

exAutoDragPositionAnyOnRight196608The object can be dragged to any position or to any
parent, with no restriction.

exAutoDragCopyOnRight 524288Drag and drop the selected objects to a target
application, and paste them as image or text.

exAutoDragCopyTextOnRight 589824Drag and drop the selected objects to a target
application, and paste them as text only.

exAutoDragCopyImageOnRight655360Drag and drop the selected objects to a target
application, and paste them as image only.

https://www.youtube.com/watch?v=LIu7eo86GP8
https://www.youtube.com/watch?v=TDFns1Jt53g

exAutoDragCopySnapShotOnRight720896Drag and drop a snap shot of the current
component.

exAutoDragScrollOnRight 1048576The component is scrolled by clicking the object and
dragging to a new position.

exAutoDragPositionOnLongTouch16777216The object can be dragged from a position to
another, but not outside of its group.

exAutoDragPositionKeepIndentOnLongTouch33554432
The object can be dragged to any position or to any
parent, while the dragging object keeps its
indentation.

exAutoDragPositionAnyOnLongTouch50331648The object can be dragged to any position or to any
parent, with no restriction.

exAutoDragCopyOnLongTouch134217728Drag and drop the selected objects to a target
application, and paste them as image or text.

exAutoDragCopyTextOnLongTouch150994944Drag and drop the selected objects to a target
application, and paste them as text only.

exAutoDragCopyImageOnLongTouch167772160Drag and drop the selected objects to a target
application, and paste them as image only.

exAutoDragCopySnapShotOnLongTouch184549376Drag and drop a snap shot of the current
component.

exAutoDragScrollOnLongTouch268435456The component is scrolled by clicking the object and
dragging to a new position.

constants AutoSearchEnum
Specifies the kind of searching while user types characters within a column. Use the
AutoSearch property to allow 'start with' incremental search or 'contains' incremental search
feature in the control.

Name Value Description

exStartWith 0

Defines the 'starts with' incremental search within
the column. If the user type characters within the
column the control looks for items that start with the
typed characters.

exContains 1

Defines the 'contains' incremental search within the
column. If the user type characters within the
column the control looks for items that contain the
typed characters.

constants BackgroundPartEnum
The BackgroundPartEnum type indicates parts in the control. Use the Background property
to specify a background color or a visual appearance for specific parts in the control. A
Color expression that indicates the background color for a specified part. The last 7 bits in
the high significant byte of the color to indicates the identifier of the skin being used. Use
the Add method to add new skins to the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits in the high significant byte of the
color being applied to the background's part.

Name Value Description

exHeaderFilterBarButton 0

Specifies the background color for the drop down
filter bar button. Use the DisplayFilterButton
property to specify whether the drop down filter bar
button is visible or hidden.

exFooterFilterBarButton 1

Specifies the background color for the closing
button in the filter bar (-1 hides the closing button in
the filter bar). Use the ClearFilter method to remove
the filter from the control.

exCellButtonUp 2

Specifies the background color for the cell's button,
when it is up. Use the CellHasButton property to
assign a button to a cell.

exCellButtonDown 3

Specifies the background color for the cell's button,
when it is down. Use the CellHasButton property to
assign a button to a cell.

exDropDownButtonUp 4

Specifies the visual appearance for the drop down
button, when it is up. Usually the editors with a drop
down portion displays a drop down button.

exDropDownButtonDown 5

Specifies the visual appearance for the drop down
button, when it is down. Usually the editors with a
drop down portion displays a drop down button.

exButtonUp 6

Specifies the visual appearance for the button
inside the editor, when it is up. Use the AddButton
method to add new buttons to an editor.

exButtonDown 7

Specifies the visual appearance for the button
inside the editor, when it is down. Use the
AddButton method to add new buttons to an editor.

exDateHeader 8

Specifies the visual appearance for the header in a
calendar control. The DateType editor allows user
to select dates from a drop down calendar panel.

exDateTodayUp 9

Specifies the visual appearance for the today button
in a calendar control, when it is up. The DateType
editor allows user to select dates from a drop down
calendar panel.

exDateTodayDown 10

Specifies the visual appearance for the today button
in a calendar control, when it is down. The
DateType editor allows user to select dates from a
drop down calendar panel.

exDateScrollThumb 11

Specifies the visual appearance for the scrolling
thumb in a calendar control. The DateType editor
allows user to select dates from a drop down
calendar panel.

exDateScrollRange 12

Specifies the visual appearance for the scrolling
range in a calendar control. The DateType editor
allows user to select dates from a drop down
calendar panel.

exDateSeparatorBar 13

Specifies the visual appearance for the separator
bar in a calendar control. The DateType editor
allows user to select dates from a drop down
calendar panel.

exDateSelect 14

Specifies the visual appearance for the selected
date in a calendar control. The DateType editor
allows user to select dates from a drop down
calendar panel.

exSliderRange 15
exSliderRange. Specifies the visual appearance for
the slider's bar.

exSliderThumb 16 exSliderThumb. Specifies the visual appearance for
the thumb of the slider.

exSelectInPlace 17

Specifies the visual appearance for the selection
when a drop down editor is focused and closed.
The option is valid for drop-down list editors
(CheckListType, DropDownList).

exSplitBar 18

Specifies the visual appearance for control's split
bar.

exShowFocusRect 19

Specifies the visual appearance to display the cell
with the focus. The ShowFocusRect property
retrieves or sets a value indicating whether the
control draws a thin rectangle around the focused
item.

exSelBackColorFilter 20

Specifies the visual appearance for the selection in
the drop down filter window. Use the
exBackColorFilter option to specify the background
color in the drop down filter window.

Specifies the foreground color for the selection in
the drop down filter window. Use the
exForeColorFilter option to specify the foreground
color in the drop down filter window.

exSelForeColorFilter 21

exSpinUpButtonUp 22

Specifies the visual appearance for the up spin
button when it is not pressed.

exSpinUpButtonDown 23

Specifies the visual appearance for the up spin
button when it is pressed.

exSpinDownButtonUp 24

Specifies the visual appearance for the down spin
button when it is not pressed.

exSpinDownButtonDown 25

Specifies the visual appearance for the down spin
button when it is pressed.

exBackColorFilter 26

Specifies the background color for the drop down
filter window. If not specified, the BackColorHeader
property specifies the drop down filter's background
color. Use the exSelBackColorFilter option to
specify the selection background visual appearance
in the drop down filter window.

exForeColorFilter 27

Specifies the foreground color for the drop down
filter window. If not specified, the ForeColorHeader
property specifies the drop down filter's foreground
color. Use the exSelForeColorFilter option to
specify the selection foreground color in the drop
down filter window.

exSortBarLinkColor 28

Indicates the color or the visual appearance of the
links between columns in the control's sort bar.

exCursorHoverColumn 32

Specifies the visual appearance for the column
when the cursor hovers the column. By default, the
exCursorHoverColumn property is zero, and it has
no effect, so the visual appearance for the column
is not changed when the cursor hovers the header.

exDragDropBefore 33

Specifies the visual appearance for the drag and
drop cursor before showing the items. This option

can be used to apply a background to the dragging
items, before painting the items.

exDragDropAfter 34

Specifies the visual appearance for the drag and
drop cursor after showing the items. This option can
be used to apply a semi-transparent/opaque
background to the dragging items, after painting the
items. If the exDragDropAfter option is set on white
(0x00FFFFFF), the image is not showing on OLE
Drag and drop.

exDragDropListTop 35

Specifies the graphic feedback of the item from the
drag and drop cursor if the cursor is in the top half
of the row. Please note, that if a visual effect is
specified for exDragDropListOver AND
exDragDropListBetween states, and a visual effect
is specified for exDragDropListTop OR/AND
exDragDropListBottom state(s), the
exDragDropListTop visual effect is displayed ONLY
if the cursor is over the first visible item, and the
exDragDropListBottom visual effect is shown ONLY
for the last visible item. Use the ItemFromPoint
property to retrieve the hit test code for the part
from the cursor. This option can be changed during
the OLEDragOver event to change the visual effect
for the item from the cursor at runtime.

exDragDropListBottom 36

Specifies the graphic feedback of the item from the
drag and drop cursor if the cursor is in the bottom
half of the row. Please note, that if a visual effect is
specified for exDragDropListOver AND
exDragDropListBetween states, and a visual effect
is specified for exDragDropListTop OR/AND
exDragDropListBottom state(s), the
exDragDropListTop visual effect is displayed ONLY
if the cursor is over the first visible item, and the
exDragDropListBottom visual effect is shown ONLY
for the last visible item. Use the ItemFromPoint
property to retrieve the hit test code for the part
from the cursor. This option can be changed during
the OLEDragOver event to change the visual effect
for the item from the cursor at runtime.

exDragDropForeColor 37 Specifies the foreground color for the items being
dragged. By default, the foreground color is black.

exDragDropListOver 38

Specifies the graphic feedback of the item from the
cursor if it is over the item. Please note, that if a
visual effect is specified for exDragDropListOver
AND exDragDropListBetween states, and a visual
effect is specified for exDragDropListTop OR/AND
exDragDropListBottom state(s), the
exDragDropListTop visual effect is displayed ONLY
if the cursor is over the first visible item, and the
exDragDropListBottom visual effect is shown ONLY
for the last visible item. Use the ItemFromPoint
property to retrieve the hit test code for the part
from the cursor. This option can be changed during
the OLEDragOver event to change the visual effect
for the item from the cursor at runtime.

exDragDropListBetween 39

Specifies the graphic feedback of the item when the
drag and drop cursor is between items. Please
note, that if a visual effect is specified for
exDragDropListOver AND exDragDropListBetween
states, and a visual effect is specified for
exDragDropListTop OR/AND
exDragDropListBottom state(s), the
exDragDropListTop visual effect is displayed ONLY
if the cursor is over the first visible item, and the
exDragDropListBottom visual effect is shown ONLY
for the last visible item. Use the ItemFromPoint
property to retrieve the hit test code for the part
from the cursor. This option can be changed during
the OLEDragOver event to change the visual effect
for the item from the cursor at runtime.

Specifies the alignment of the drag and drop image
relative to the cursor. By default, the
exDragDropAlign option is 0, which initially the drag
and drop image is shown centered relative to the
position of the cursor.

The valid values are listed as follows (hexa
representation):

0x00000000, (default), the drag and drop

exDragDropAlign 40 image is shown centered relative to the cursor,
and shows up.
0x01000000, (left), the drag and drop image is
shown to the left of the cursor.
0x02000000, (right), the drag and drop image
is shown to the right of the cursor.
0x04000000, (center-down), the drag and drop
image is shown centered relative to the cursor,
and shows down.
0xFF000000, (as- is), the drag and drop image
is shown as it is clicked.

exHeaderFilterBarActive 41

Specifies the visual appearance of the drop down
filter bar button, while filter is applied to the column.

exToolTipAppearance 64

Indicates the visual appearance of the borders of
the tooltips. Use the ToolTipPopDelay property
specifies the period in ms of time the ToolTip
remains visible if the mouse pointer is stationary
within a control. The ToolTipDelay property
specifies the time in ms that passes before the
ToolTip appears. Use the CellToolTip property to
specify the cell's tooltip. Use the ToolTipWidth
property to specify the width of the tooltip window.
Use the ItemBar(,,exBarToolTip) property to specify
a tooltip for a bar. Use the Link(,exLinkToolTip)
property to specify the tooltip to be shown when the
cursor hovers the link. Use the ShowToolTip method
to display a custom tooltip

exToolTipBackColor 65

Specifies the tooltip's background color.

exToolTipForeColor 66

Specifies the tooltip's foreground color.

exColumnsFloatBackColor 87

Specifies the background color for the Columns
float bar.

exColumnsFloatScrollBackColor88
Specifies the background color for the scroll bars in
the Columns float bar.

Specifies the background color for the scroll bars in

exColumnsFloatScrollPressBackColor89

the Columns float bar, while the scroll part is
pressed.

exColumnsFloatScrollUp 90

Specifies the visual appearance of the up scroll bar.

exColumnsFloatScrollDown 91

Specifies the visual appearance of the down scroll
bar.

Specifies the visual appearance for the
frame/borders of the Column's float bar. The option

exColumnsFloatAppearance 92

has effect only if set before calling the
ColumnsFloatBarVisible property.

exColumnsFloatCaptionBackColor93

Specifies the visual appearance for caption, if the
Background(exColumnsFloatAppearance) property
is specified.

exColumnsFloatCaptionForeColor94

Specifies the foreground color for the caption, if the
Background(exColumnsFloatAppearance) property
is specified.

exColumnsFloatCloseButton 95

exColumnsFloatCloseButton. Specifies the visual
appearance for the closing button, if the
Background(exColumnsFloatAppearance) property

is specified.

exListOLEDropPosition 96

By default, the exListOLEDropPosition is 0, which
means no effect. Specifies the visual appearance
of the dropping position over the list part of the
control, when it is implied in a OLE Drag and Drop
operation. The exListOLEDropPosition has effect
only if different than 0, and the OLEDropMode
property is not exOLEDropNone. For instance, set
the Background(exListOLEDropPosition) property
on RGB(0,0,255), and a blue line is shown at the
item where the cursor is hover the list part of the
control, during an OLE Drag and Drop position. The
OLEDragDrop event notifies your application once
an object is drop in the control.

exChartOLEDropPosition 97

By default, the exChartOLEDropPosition is 0, which
means no effect. Specifies the visual appearance
of the dropping position over the chart part of the
control, when it is implied in a OLE Drag and Drop
operation. The exChartOLEDropPosition has effect
only if different than 0, and the OLEDropMode
property is not exOLEDropNone. For instance, set
the Background(exChartOLEDropPosition) property
on RGB(0,0,255), and a blue line is shown at the
date-time position where the cursor is hover the
chart part of the control, during an OLE Drag and
Drop position. The OLEDragDrop event notifies
your application once an object is drop in the
control.

exHSplitBar 141

Specifies the visual appearance for horizontal split
bar.

Specifies the solid color / visual appearance of the

exCSplitBar 142

split bar that creates new views. The
AllowSplitPane property specifies whether the chart
panel supports splitting.

exCursorHoverCellButton 157

Specifies the visual appearance for the cell's button
when the cursor hovers it. The CellHasButton
property specifies whether the cell display a button
inside.

>

exSelBackColorHide 166

Specifies the selection's background color, when
the control has no focus. This has effect while the
control's HideSelection property is False

Specifies the selection's foreground color, when the
control has no focus. This has effect while the
control's HideSelection property is False

exSelForeColorHide 167

exTreeGlyphOpen 180

Specifies the visual appearance for the +/- buttons
when it is collapsed. This option is valid while
HasButtons property is exPlus (by default), and
any of
Background(exTreeGlyphOpen)/Background(exTreeGlyphClose)
is not-zero.

exTreeGlyphClose 181

Specifies the visual appearance for the +/- buttons
when it is expanded. This option is valid while
HasButtons property is exPlus (by default), and
any of
Background(exTreeGlyphOpen)/Background(exTreeGlyphClose)
is not-zero

exColumnsPositionSign 182

Specifies the visual appearance for the position sign
between columns, when the user changes the
position of the column by drag an drop. The
AllowDragging property specifies whether the user
can change the column's position by drag an drop.

exTreeLinesColor 186

Specifies the color to show the tree-lines
(connecting lines from the parent to the children).
The HasLines property enhances the graphic
representation of a tree control's hierarchy by
drawing lines that link child items to their
corresponding parent item.

exChartCreateBar 188

Specifies the visual appearance to show the frame
to create newly bars by drag and drop in the chart
panel. The AllowCreateBar property specifies
whether the user can create new bars by drag and
drop.

exCreateBarHeight 189

Specifies the height of the frame to create newly
bars by drag and drop in the chart panel. The
AllowCreateBar property specifies whether the user
can create new bars by drag and drop.

exDateTickerLabelBack 192

Specifies the visual appearance to display the date
label, while create, resize or move a bar. The
background of the date label is not applied if -1. By
default, the background of the date label is white
(0). The DateTickerLabel property specifies the
label to show the start/end margins of the bar being
created, resize or moved by drag and drop.

exDateTickerLabelFore 193

Specifies the label's foreground color, while create,
resize or move a bar. By default, the background of
the date label is black (0). The DateTickerLabel
property specifies the label to show the start/end
margins of the bar being created, resize or moved
by drag and drop.

exDateTickerLabelHAlign 194

Specifies the default horizontal alignment of the
date label, while create, resize or move a bar. The
DateTickerLabel property specifies the label to
show the start/end margins of the bar being
created, resize or moved by drag and drop. The
exDateTickerLabelHAlign property supports the
following values:

0, (left,default) the lines of the date-label are
left-aligned
1, (center) the lines of the date-label are
horizontally centered
2, (right) the lines of the date-label are right-
aligned

exDateTickerLabelVAlign 195

Specifies the default vertical alignment of the date
label, while create, resize or move a bar. The
DateTickerLabel property specifies the label to
show the start/end margins of the bar being
created, resize or moved by drag and drop. The
exDateTickerLabelVAlign property supports the
following values:

0, (top,default) the date-label is shown right
below the chart's header bar
1, (center) the date-label is following the bar
being created, resized or moved

Specifies the distance between the date-label and

exDateTickerLabelHMargin 196 the bar. The DateTickerLabel property specifies the
label to show the start/end margins of the bar being
created, resize or moved by drag and drop.

exPSLinkColorEditSel 197

Specifies the color to highlight the links being
selected within an editable predecessor/successor
column. The exPSLinkColorEditSel property has
effect if it is not zero. The following properties must
be set to add an editable predecessor/successor
column:

Items.AllowCellValueToItemBar = True
Column.Def(exCellValueToItemBarProperty) =
exBarPredecessor(270) or
Column.Def(exCellValueToItemBarProperty) =
exBarSuccessor(271) (property of Column
object)
Editor.EditType = EditType(1) or
Editor.EditType = MaskType(8) (property of
Editor object)

The following screen shot highlights (in gray) the
selected-link within a predecessor column:

The following screen shot highlights the selected-
link and its incoming-bars (in gray) within a
predecessor column:

Specifies the color to highlight the
incoming/outgoing bars of the links being selected
within an editable predecessor/successor column.

exPSBarColorEditSel 198

The exPSBarColorEditSel property has effect if it is
not zero. The following properties must be set to
add an editable predecessor/successor column:

Items.AllowCellValueToItemBar = True
Column.Def(exCellValueToItemBarProperty) =
exBarPredecessor(270) or
Column.Def(exCellValueToItemBarProperty) =
exBarSuccessor(271) (property of Column
object)
Editor.EditType = EditType(1) or
Editor.EditType = MaskType(8) (property of
Editor object)

The following screen shot highlights the outgoing
bar (in gray) of a selected link, within a successor
column:

The following screen shot highlights the selected-
link and its outgoing-bars (in gray) within a
successor column:

exOverviewSelResize 199

Specifies the visual appearance to show and use
the left/ resize-margins of the overview's selection.
By default, the Background(exOverviewSelResize)
property is 0 which indicates no effect. The
Background(exOverviewSelResize) property can be
a solid color such as RGB(0,0,1) or an EBN color
should as 0x1000000. The user can resize the chart
by drag and drop the left or right resize-margins of
the overview-selection, while the
Background(exOverviewSelResize) property is not
zero. The AllowResizeChart property specifies
whether the user can enlarge (zoom-in,zoom-out) or

resize the chart using the control's header, middle
mouse button.

exOverviewSelOut 200

Specifies the visual-appearance to display the
left/right parts outside of the overview-selection. By
default, the Background(exOverviewSelOut)
property is 0 which indicates no effect. The
Background(exOverviewSelUnit) property specifies
the background color / visual appearance to display
the selected unit within the control's overview. The
Chart.OverviewSelBackColor property specifies
background color or the visual appearance for the
selection in the chart's overview

exOverviewSelUnit 201

Specifies the background color / visual appearance
to display the selected unit within the control's
overview. By default, the
Background(exOverviewSelUnit) property is 0 which
indicates that the Chart.OverviewSelBackColor
property specifies the background color of the
selected unit-scale

exVSUp 256

 align="top"> The up button in normal state.
exVSUpP 257 The up button when it is pressed.
exVSUpD 258 The up button when it is disabled.
exVSUpH 259 The up button when the cursor hovers it.

exVSThumb 260

 align="top"> The thumb part (exThumbPart) in
normal state.

exVSThumbP 261 The thumb part (exThumbPart) when it is pressed.

exVSThumbD 262 The thumb part (exThumbPart) when it is disabled.

exVSThumbH 263
The thumb part (exThumbPart) when cursor hovers
it.

exVSDown 264

 align="top"> The down button in normal state.
exVSDownP 265 The down button when it is pressed.
exVSDownD 266 The down button when it is disabled.
exVSDownH 267 The down button when the cursor hovers it.

exVSLower 268

 align="top"> The lower part (
exLowerBackPart) in normal state.

exVSLowerP 269 The lower part (exLowerBackPart) when it is
pressed.
The lower part (exLowerBackPart) when it is

exVSLowerD 270 disabled.

exVSLowerH 271 The lower part (exLowerBackPart) when the
cursor hovers it.

exVSUpper 272

 align="top"> The upper part (
exUpperBackPart) in normal state.

exVSUpperP 273 The upper part (exUpperBackPart) when it is
pressed.

exVSUpperD 274 The upper part (exUpperBackPart) when it is
disabled.

exVSUpperH 275 The upper part (exUpperBackPart) when the
cursor hovers it.

exVSBack 276
 align="top"> The background part (

exLowerBackPart and exUpperBackPart) in normal
state.

exVSBackP 277 The background part (exLowerBackPart and
exUpperBackPart) when it is pressed.

exVSBackD 278 The background part (exLowerBackPart and
exUpperBackPart) when it is disabled.

exVSBackH 279 The background part (exLowerBackPart and
exUpperBackPart) when the cursor hovers it.

exHSLeft 384 The left button in normal state.
exHSLeftP 385 The left button when it is pressed.
exHSLeftD 386 The left button when it is disabled.
exHSLeftH 387 The left button when the cursor hovers it.

 The thumb part (exThumbPart) in

exHSThumb 388 normal state.

exHSThumbP 389 The thumb part (exThumbPart) when it is pressed.
exHSThumbD 390 The thumb part (exThumbPart) when it is disabled.

exHSThumbH 391 The thumb part (exThumbPart) when the cursor
hovers it.

exHSRight 392 The right button in normal state.
exHSRightP 393 The right button when it is pressed.
exHSRightD 394 The right button when it is disabled.
exHSRightH 395 The right button when the cursor hovers it.

exHSLower 396 The lower part (exLowerBackPart)
in normal state.

exHSLowerP 397 The lower part (exLowerBackPart) when it is
pressed.

exHSLowerD 398 The lower part (exLowerBackPart) when it is
disabled.

exHSLowerH 399 The lower part (exLowerBackPart) when the cursor
hovers it.

exHSUpper 400 The upper part (exUpperBackPart)
in normal state.

exHSUpperP 401 The upper part (exUpperBackPart) when it is
pressed.

exHSUpperD 402 The upper part (exUpperBackPart) when it is
disabled.

exHSUpperH 403 The upper part (exUpperBackPart) when the cursor
hovers it.

exHSBack 404
 The background part

(exLowerBackPart and exUpperBackPart) in normal
state.

exHSBackP 405 The background part (exLowerBackPart and
exUpperBackPart) when it is pressed.
The background part (exLowerBackPart and

exHSBackD 406 exUpperBackPart) when it is disabled.

exHSBackH 407 The background part (exLowerBackPart and
exUpperBackPart) when the cursor hovers it.

exSBtn 324 All button parts (L1-L5, LButton,
exThumbPart, RButton, R1-R6), in normal state.

exSBtnP 325 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when it is pressed.

exSBtnD 326 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when it is disabled.

exSBtnH 327 All button parts (L1-L5, LBUtton, exThumbPart,
RButton, R1-R6), when the cursor hovers it .

exScrollHoverAll 500

Enables or disables the hover-all feature. By default
(Background(exScrollHoverAll) = 0), the left/top,
right/bottom and thumb parts of the control'
scrollbars are displayed in hover state while the
cursor hovers any part of the scroll bar (hover-all
feature). The hover-all feature is available on
Windows 11 or greater, if only left/top, right/bottom,
thumb, lower and upper-background parts of the
scrollbar are visible, no custom visual-appearance
is applied to any visible part. The hover-all feature
is always on If Background(exScrollHoverAll) = -1.
The Background(exScrollHoverAll) = 1 disables the
hover-all feature.

exVSThumbExt 503

The thumb-extension part in normal state. The
ScrollPartVisible property indicates whether the
specified scroll part is visible or hidden. The
exExtentThumbPart part indicates the thumb-
extension part..

exVSThumbExtP 504 The thumb-extension part when it is pressed.
exVSThumbExtD 505 The thumb-extension part when it is disabled.
exVSThumbExtH 506 The thumb-extension when the cursor hovers it.

exHSThumbExt 507

The thumb-extension in normal state.

exHSThumbExtP 508 The thumb-extension when it is pressed.
exHSThumbExtD 509 The thumb-extension when it is disabled.
exHSThumbExtH 510 The thumb-extension when the cursor hovers it.

exScrollSizeGrip 511

 Specifies the visual appearance of the control's
size grip when both scrollbars are shown.

If you refer a part of the scroll bar please notice the following:

All BackgroundPartEnum expressions that starts with exVS changes a part in a vertical
scroll bar
All BackgroundPartEnum expressions that starts with exHS changes a part in the
horizontal scroll bar
Any BackgroundPartEnum expression that ends with P (and starts with exVS or exHS
) specifies a part of the scrollbar when it is pressed.
Any BackgroundPartEnum expression that ends with D (and starts with exVS or exHS
) specifies a part of the scrollbar when it is disabled.
Any BackgroundPartEnum expression that ends with H (and starts with exVS or exHS
) specifies a part of the scrollbar when the cursor hovers it.
Any BackgroundPartEnum expression that ends with no H, P or D (and starts with

exVS or exHS) specifies a part of the scrollbar on normal state

constants BackModeEnum
Specifies how the control displays the selection. The SelBackMode property specifies the
way the selected items are shown in the control. Use the SelBackColor property to specify
the background color for selected items in the component. The SelForeColor property
specifies the foreground color of the selected item. Use the SelectItem property to selects
an item by code. The BackModeEnum type supports the following values:

Name Value Description

exOpaque 0

(Default) The selection is opaque. The selected
items overrides any background color or picture.

The following screen shot shows the selected items
(10249, 10250, 10251), when the SelBackMode
on exOpaque:

exTransparent 1

The selection is transparent. The selected items is
combined with background color or picture.

The following screen shot shows the selected items
(10249, 10250, 10251), when the SelBackMode
on exTransparent:

The control paints a grid selection. The selected
items is shown in an array of dots.

The following screen shot shows the selected items

exGrid 2

(10249, 10250, 10251), when the SelBackMode
on exTransparent:

constants BarOperationEnum
The BarOperationEnum type specifies an operation being notified in the chart area.

Name Value Description

exMoveBar 1
A bar is resized or moved. The ItemBar(exBarStart)
and ItemBar(exBarEnd) indicates the start and
ending points of the bar.

exResizeStartBar 2 A bar is resized to the left. The ItemBar(exBarStart)
specifies the starting date-time of the bar.

exResizeEndBar 3
A bar is resized to the right. The
ItemBar(exBarEnd) specifies the ending date-time
of the bar.

exAddLink 4

Adds a new link. The AddLink method adds a link
between two bars. Use the Link(exLinkGroupBars)
to group two linked bars, preventing their length,
interval and so on.

exResizePercentBar 5
Resizes the percent value of the bar. The
ItemBar(exBarPercent) specifies the value of the
percent being displays in the percent bar.

exCreateBar 6 Creates a new bar. The AddBar method adds a
new bar.

exResizeBaseLevel 7

Resizes a time scale unit in the base level area. The
AllowInsizeZoom property specifies whether the
user may resize different time-scale units, while
other start unchanged. The Width property specifies
the width of the inside zoom unit.

exBaseLevelDblClk 8

Magnifies a time scale unit by double clicking the
base level area. The AllowInsizeZoom property
specifies whether the user may resize different
time-scale units, while other start unchanged.

exSelectDate 9

The user selects or unselects a date. The
SelectDate property selects a date in the chart
area. The SelectedDates property specifies the list
of selected date-time units. The SelectLevel
property specifies the index of the level in the chart
that shows the selecting area in the chart.
The user resizes the list/chart area using the
control's vertical splitter. The vertical splitter may

exVSplitterChange 10

change the width of the items/chart area, so the
PaneWidth property specifies the width of the
columns / chart panel. The OnResizeControl
property (exDisableSplitter) to specify whether the
user can resize chart at runtime. The
exVSplitterChange notification occurs only when the
user start dragging the vertical splitter bar.

exHSplitterChange 11

The user resizes the list/chart area using the
control's horizontal splitter (histogram). The
HistogramVisible property specifies whether the
chart's histogram is visible or hidden. The chart's
horizontal splitter bar is visible only, if the
HistogramVisible property is True. The
OnResizeControl property (exDisableHistogram) to
specify whether the user can resize the histogram
at runtime. The exHSplitterChange notification
occurs only when the user start dragging the
horizontal splitter bar.

exPDM 12

Scheduling PDM operation is performed. The PDM
or Precedence Diagramming Method is a tool for
scheduling activities in a project plan. The
SchedulePDM method schedules the bars using the
PDM.

exResizeLevel 13

The user resizes the chart. The AllowResizeChart
property of the Chart object specifies whether the
user can enlarge (zoom-in,zoom-out) or resize the
chart using the control's header, middle mouse
button.

exResizeSelect 14

The user zooms the chart by right-selecting the
overview-zoom part. The AllowOverviewZoom
property of the Chart gets or sets a value that
indicates whether the user can zoom and scale the
chart at runtime.

exOSplitterChange 15

The user resizes the list/chart area using the
control's horizontal splitter (overview). The
OverviewVisible property specifies whether the
control's overview is visible or hidden. Include the
exOverviewSplitter flag into the OverviewVisible
property so the user can resize the chart's overview
at runtime by clicking and dragging.
An Undo operation is performed, or the Undo

exUndo 17
method has been called. Use the UndoListAction
property to list undo operations that can be
performed. For instance, if the user presses the
CTRL + Z and an Undo operation is available, this
event is fired.

exRedo 18

An Undo operation is performed, or the Redo
method has been called. Use the RedoListAction
property to list redo operations that can be
performed. For instance, if the user presses the
CTRL + Y and a Redo operation is available, this
event is fired.

exUndoRedoUpdate 16

The Undo/Redo queue is updated. Use the
UndoListAction/RedoListAction property to list
undo/redo operations that can be performed. The
CanUndo property specifies whether an Undo
operation is available. The CanRedo property
specifies whether a Redo operation is available.

exSplitPaneChange 19 The user splits/resizes the chart's panel into multiple
views.

exNoteChange 20 The user changes / moves a note.

constants CellSelectEnum
Specifies how the control selects cells or items within the control. Use the FullRowSelect
property to enables full-row selection.

Name Value Description
exColumnSel 0 (False) Enables single-cell selection in the control.
exItemSel -1 (True) Enables full-row selection in the control.
exRectSel 1 Enables rectangle selection in the control.

When the FullRowSelect property is exColumnSel the selection looks like:

When the FullRowSelect property is exItemSel the selection looks like:

When the FullRowSelect property is exRectSel the selection looks like:

constants CellSingleLineEnum
The CellSingleLineEnum type defines whether the cell's caption is displayed on a single or
multiple lines. The CellSingleLine property retrieves or sets a value indicating whether the
cell is displayed using one line, or more than one line. The Def(exCellSingleLine) property
specifies that all cells in the column display their content using multiple lines. The
CellSingleLineEnum type supports the following values:

Name Value Description

exCaptionSingleLine -1

Indicates that the cell's caption is displayed on a
single line. In this case any \r\n or
 HTML tags
is ignored. For instance the "This is the first
line.\r\nThis is the second line.\r\nThis is the third
line." shows as:

exCaptionWordWrap 0

Specifies that the cell's caption is displayed on
multiple lines, by wrapping the words. Any \r\n or

 HTML tag breaks the line. For instance the
"This is the first line.\r\nThis is the second
line.\r\nThis is the third line." shows as:

exCaptionBreakWrap 1

Specifies that the cell's caption is displayed on
multiple lines, by wrapping the breaks only. Only
The \r\n or
 HTML tag breaks the line. For
instance the "This is the first line.\r\nThis is the
second line.\r\nThis is the third line." shows as:

constants CheckStateEnum
Specifies the cell's state if CellHasCheckBox or CellHasRadioButton property is True.

Name Value Description
Unchecked 0 The cell is not checked.
Checked 1 The cell is checked.

PartialChecked 2
The cell is partially checked. To allow partially
checks for a cell, the PartialCheck property should
be True.

constants ColumnsFloatBarVisibleEnum
The ColumnsFloatBarVisibleEnum type specifies whether the control's Columns float-bar is
visible or hidden. The ColumnsFloatBarVisibleEnum type supports the following values:

Name Value Description

exColumnsFloatBarHidden 0 Indicates that the control's Columns float-panel is
not visible (hidden)

exColumnsFloatBarVisibleIncludeHiddenColumns-1

Specifies that the control's Columns float-panel
shows only hidden-columns (dragable-columns
only). The Visible property specifies whether the
column is visible or hidden.

exColumnsFloatBarVisibleIncludeGroupByColumns1

Specifies that the control's Columns float-panel
shows only columns that can be group- by
(dragable-columns only). The AllowGroupBy
property specifies whether the column can be
group-by.

exColumnsFloatBarVisibleIncludeCheckColumns2

Indicates that the control's Columns float-panel
shows visible and hidden columns with a check-box
associated (dragable-columns only), The Visible
property specifies whether the column is visible or
hidden.

constants CreateBarEnum
The CreateBarEnum type specifies if a new bar is added automatically or manually during
the CreateBar event. Use the AllowCreateBar property to let user creates new bars by
selecting the bar's area at runtime. By default, the AllowCreateBar is exCreateBarManual.

Name Value Description

exNoCreateBar 0

The user can not create bars by drag an drop.
Instead, if the AllowSelectObjects property is not-
zero the user can select objects of the chart by
drag and drop. No CreateBar event is fired.

exCreateBarManual -1

The user can create new bars by drag and drop. If
the user clicks the empty portion of the control
(anywhere below the last visible item) the AddItem
event occurs where the Item parameter of the event
is a negative value and indicates the number of
items to add to fill the empty space. The CreateBar
event is fired and no bar is added, so you need to
call AddBar method to add a new bar.

exCreateBarAuto 1

The user can create automatically new bars by
drag and drop. If the user clicks the empty portion
of the control (anywhere below the last visible item)
the control automatically adds new items to fill the
empty space and so prior to CreateBar event,
several AddItem event may occur. The CreateBar
event is fired and a 'newbar' of 'Task' type is added.
The exCreateBarAuto option creates empty bars
(bars with zero-length) when user simple clicks the
control (no drag). During the CreateEvent you can
decide what to do with the newly created bar:
keep, change or remove. Use the ItemBar property
to change the key, the name or any other property
of the newly created bar whose exBarKey property
is "newbar" and it's exBarName is "Task". In other
words, when this value is set, the control
automatically adds a new bar to selected position,

with the key 'newbar' that looks like this:
. If the ChangeBar event is not handled, only a
single bar is added to the same item, as the key is
never changed. If you handle the CreateBar event
and assign a different key for the newly created
bar, multiple bars can be added at runtime.

exCreateBarAutoEndInclusive 2

The user can create automatically new bars by
drag and drop. The exCreateBarAutoEndInclusive
value is similar with exCreateBarAuto, excepts that
the end-margin of the bar to create, is defined by
the end-date of the date-time unit from the cursor. If
the user clicks and drags the bar over the empty
portion of the control (anywhere below the last
visible item) the control automatically adds new
items to fill the empty space and so prior to
CreateBar event, several AddItem event may occur.
The CreateBar event is fired and a 'newbar' of
'Task' type is added. No items or bar are
automatically created if the user just simple clicks
the chart (no drag).

The user can create new bars by drag and drop.
The exCreateBarManualEndInclusive value is similar
with exCreateBarManual, excepts that the end-
margin of the bar to draw, is defined by the end-
date of the date-time unit from the cursor. If the
user clicks and drags the bar over the empty
portion of the control (anywhere below the last
visible item) the AddItem event occurs where the
Item parameter of the event is a negative value and
indicates the number of items to add to fill the

exCreateBarManualEndInclusive-2 empty space. The CreateBar event is fired and no
bar is added, so you need to call AddBar method to
add a new bar. No AddItem or CreateBar event is
called if the user just simple clicks the chart (no
drag).

constants DefColumnEnum
The Def property retrieves or sets a value that indicates the default value of given
properties for all cells in the same column.

Name Value Description

exCellHasCheckBox 0

Assigns check boxes to all cells in the column, if it is
True. Similar with the CellHasCheckBox property.
By default, the exCellHasCheckBox property is
False (0).

(Boolean expression)

exCellHasRadioButton 1

Assigns radio buttons to all cells in the column, if it
is True. Similar with the CellHasRadioButton
property. By default, the exCellHasRadioButton
property is False (0).

(Boolean expression)

exCellHasButton 2

Specifies that all cells in the column are buttons, if it
is True. Similar with the CellHasButton property. By
default, the exCellHasButton property is False (0).

(Boolean expression)

exCellButtonAutoWidth 3

Similar with the CellButtonAutoWidth property. By
default, the exCellButtonAutoWidth property is
False (0). The exCellButtonAutoWidth has effect
only if the exCellHasButton option is True.

(Boolean expression)

exCellBackColor 4

Specifies the background color for all cells in the
column. Use the CellBackColor property to assign a
background color for a specific cell. The property
has effect only if the property is different than zero
(default value).

(Color expression)

Specifies the foreground color for all cells in the

exCellForeColor 5

column. Use the CellForeColor property to assign a
foreground color for a specific cell. The property
has effect only if the property is different than zero
(default value).

(Color expression)

exCellVAlignment 6

Specifies the column's vertical alignment. By
default, the Def(exCellVAlignment) property is
exMiddle. Use the CellVAlignment property to
specify the vertical alignment for a particular cell.
By default, the exCellVAlignment property is
MiddleAlignment (1).

(VAlignmentEnum expression)

exHeaderBackColor 7

Specifies the column's header background color.
Use this option to change the background color for
a column in the header area. The
exHeaderBackColor option supports skinning, so
the last 7 bits in the high significant byte of the color
to indicates the identifier of the skin being used.
Use the Add method to add new skins to the
control. The property has effect only if the property
is different than zero (default value).

(Color expression)

exHeaderForeColor 8

Specifies the column's header background color.
The property has effect only if the property is
different than zero (default value).

(Color expression)

exCellSingleLine 16

Specifies that all cells in the column displays its
content into single or multiple lines. Similar with the
CellSingleLine property. If using the CellSingleLine /
Def(exCellSingleLine) property, we recommend to
set the ScrollBySingleLine property on True so all
items can be scrolled.

(CellSingleLineEnum type, previously Boolean
expression)

exCellValueFormat 17

The exCellValueFormat indicates that format to
display all cells in the column such as text or HTML
text. The CellValueFormat property specifies
whether a particular cells displays text or HTML
text. By default, the exCellValueFormat property is
exText (0).

(ValueFormatEnum expression)

exCellValueToItemBarProperty18

Specifies the ItemBarPropertyEnum property of the
bars being shown in the column. By default, the
exCellValueToItemBarProperty is -1, so the cells
are no associated with any bar. The
exCellValueToItemBarProperty has effect only if
the AllowCellValueToItemBar property is True. For
instance, you can use the
exCellValueToItemBarProperty and
exCellValueToItemBarKey options to display the
start and ending date of any bar in the item, in the
entire column. The values in the cells are
automatically changed once the bar is resized or
moved and reverse, if the cell's value is changed
the bar is moved or resized. The
CellValueToItemBar method associates the cell's
value with a property of the bar in the item. By
default, the exCellValueToItemBarProperty is -1,
which indicates that the column is not affiliated with
any property of the bar.

(ItemBarPropertyEnum expression or -1)

exCellValueToItemBarKey 19

Indicates the key of the bars whose property is
shown in the column. The
exCellValueToItemBarKey has effect only if the
AllowCellValueToItemBar property is True. The
exCellValueToItemBarProperty option indicates the
property being displayed in the column, while the
exCellValueToItemBarKey indicates the key of the
bar in the item. The Key parameter of the AddBar
indicates the key of the bar being added. For
instance, you can use the
exCellValueToItemBarProperty and

exCellValueToItemBarKey options to display the
start and ending date of any bar in the item, in the
entire column. The values in the cells are
automatically changed once the bar is resized or
moved and reverse, if the cell's value is changed
the bar is moved or resized. The
CellValueToItemBar method associates the cell's
value with a property of the bar in the item.

(Variant expression)

exCellFormatLevel 32

Specifies the format layout for the cells. The
CellFormatLevel property indicates the format
layout for a specified cell. Use the FormatLevel
property to specify the layout of the column in the
control's header bar.

(CRD string expression)

exCellDrawPartsOrder 34

Specifies the order of the drawing parts for the
entire column. By default, this option is
"check,icon,icons,picture,caption", which means that
the cell displays its parts in the following order:
check box/ radio buttons (
CellHasCheckBox/CellRadioButton), single icon (
CellImage), multiple icons (CellImages), custom
size picture (CellPicture), and the cell's caption.
Use the exCellDrawPartsOrder option to specify a
new order for the drawing parts in the cells of the
column. The RightToLeft property automatically flips
the order of the columns. By default, the
exCellDrawPartsOrder property is
"check,icon,icons,picture,caption".

(String expression)

exCellPaddingLeft 48

The padding defines the space between the
element border and the element content. Gets or
sets the left padding (space) of the cells within the
column. This option applies a padding to all cells in
the column. Use the exHeaderPaddingLeft option to
apply the padding to the column's caption in the
control's header. The padding does not affect the

element's background color. By default, the
exCellPaddingLeft property is 0.

(Long expression)

exCellPaddingRight 49

Gets or sets the right padding (space) of the cells
within the column. This option applies a padding to
all cells in the column. Use the
exHeaderPaddingRight option to apply the padding
to the column's caption in the control's header. The
padding does not affect the element's background
color. By default, the exCellPaddingRight property
is 0.

(Long expression)

exCellPaddingTop 50

Gets or sets the top padding (space) of the cells
within the column. This option applies a padding to
all cells in the column. Use the exHeaderPaddingTop
option to apply the padding to the column's caption
in the control's header. The padding does not affect
the element's background color. By default, the
exCellPaddingTop property is 0.

(Long expression)

exCellPaddingBottom 51

Gets or sets the bottom padding (space) of the
cells within the column. This option applies a
padding to all cells in the column. Use the
exHeaderPaddingBottom option to apply the
padding to the column's caption in the control's
header. The padding does not affect the element's
background color. By default, the
exCellPaddingBottom property is 0.

(Long expression)

exHeaderPaddingLeft 52

Gets or sets the left padding (space) of the
column's header. This option applies the padding to
the column's caption in the control's header. Use the
exCellPaddingLeft option to apply the padding to all
cells in the column. The padding does not affect the
element's background color. By default, the

exHeaderPaddingLeft property is 0.

(Long expression)

exHeaderPaddingRight 53

Gets or sets the right padding (space) of the
column's header. This option applies the padding to
the column's caption in the control's header. Use the
exCellPaddingRight option to apply the padding to
all cells in the column. The padding does not affect
the element's background color. By default, the
exHeaderPaddingRight property is 0.

(Long expression)

exHeaderPaddingTop 54

Gets or sets the top padding (space) of the
column's header. This option applies the padding to
the column's caption in the control's header. Use the
exCellPaddingTop option to apply the padding to all
cells in the column. The padding does not affect the
element's background color. By default, the
exHeaderPaddingTop property is 0.

(Long expression)

exHeaderPaddingBottom 55

Gets or sets the bottom padding (space) of the
column's header. This option applies the padding to
the column's caption in the control's header. Use the
exCellPaddingBottom option to apply the padding to
all cells in the column. The padding does not affect
the element's background color. By default, the
exHeaderPaddingBottom property is 0.

(Long expression)

exColumnResizeContiguously 64
exColumnResizeContiguously. Gets or sets a value
that indicates whether the control's content is
updated while the user is resizing the column.

constants DefSchedulePDMEnum
The DefSchedulePDMEnum type defines options to be used by the SchedulePDM method.
The DefSchedulePDM property indicates the default options to be used by the next call of
the SchedulePDM method. In other words, we will recommend calling/setting the
DefSchedulePDM property before calling the SchedulePDM method.

The DefSchedulePDMEnum type defines the following values:

Name Value Description

exPDMScheduleType 0

Specifies the type of scheduling the next
SchedulePDM call executes. The valid values are 0,
1, 2 as explained bellow:

0, (default). exPDMScheduleDate has no
effect. The start and end of the project is not
fixed, so once a bar is moved the starting or
ending point of the project may be variable.
1, exPDMScheduleDate indicates the start of
the project. If this option is set, the next call of
the SchedulePDM consider this value as being
the start of the project, and so all the bars
starts scheduling using this date. If
DefSchedulePDM(exPDMScheduleType)
property is 1, the
DefSchedulePDM(exPDMScheduleDate)
property indicates the date to start the project.
2, exPDMScheduleDate indicates the end of
the project. If this option is set, the next call of
the SchedulePDM consider this value as being
the end of the project, and so all the bars
starts scheduling using this date as the end of
the project, so where the project should end. If
DefSchedulePDM(exPDMScheduleType)
property is 2, the
DefSchedulePDM(exPDMScheduleDate)
property indicates the date to end the project.

(long expression)

Specifies the date to start or end the project. This
option is valid only if the exPDMScheduleType is 1
or 2.

exPDMScheduleDate 1

For instance the following sample specifies the start
of the project to be 1/8/2001,

With G2antt1
 With .Items
 .DefSchedulePDM(exPDMScheduleType)
= 1
 .DefSchedulePDM(exPDMScheduleDate)
= #1/8/2001#
 .SchedulePDM 0,"K1"
 End With
End With

and the following sample specifies the end of the
project to be 1/8/2001

With G2antt1
 With .Items
 .DefSchedulePDM(exPDMScheduleType)
= 2
 .DefSchedulePDM(exPDMScheduleDate)
= #1/8/2001#
 .SchedulePDM 0,"K1"
 End With
End With

(date expression)

exPDMErrorColor 2

Specifies the color to show the error nodes. This
property can be used to highlight the nodes that
makes the layout impossible to complete. This
property is ignored if the exPDMErrorColor is 0.

(color expression)

Specifies the color to show the cycling nodes. This
property can be used to highlight the nodes that
makes the layout impossible to complete. This
property is ignored if the exPDMCycleColor is 0.

exPDMCycleColor 3

Set the exPDMCallHasCycle property on True, so
the chart displays the entire cycle, not just the node
that fails to be arranged in the layout.

The following screen shot shows in red the cycle
that fails to layout the chart based on the links:

(color expression)

exPDMCallHasCycle 4

Indicates whether the control shows the entire
cycle, so the layout can not be completed. By
default, the exPDMCallHasCycle property is False,
which indicates that the control shows no cycles, if
the layout fails to complete.

(boolean expression)

exPDMCriticalPathBarColor 5

Indicates the color to show the activities on the
critical path. By default, the
exPDMCriticalPathBarColor is 0. This property is
ignored if the exPDMCriticalPathBarColor is 0. The
exPDMCriticalPathBarColor color is applied to the
node, only if it has no color associated using the
Items.ItemBar(exBarColor) (
Items.ItemBar(exBarColor) property is 0). The
Items.ItemBar(exBarCriticalPath) property on True
specifies whether the bar makes part of the critical
path.

The following screen shot shows in green the
critical path (T1, T3, T5, T7 and T8) for the layout:

(color expression)

exPDMCriticalPathOffBarColor6

Indicates the color to show the activities off the
critical path. By default, the
exPDMCriticalPathOffBarColor is 0. This property is
ignored if the exPDMCriticalPathOffBarColor is 0.
The exPDMCriticalPathOffBarColor color is applied
to the node, only if it has no color associated using
the Items.ItemBar(exBarColor) (
Items.ItemBar(exBarColor) property is 0). The
Items.ItemBar(exBarCriticalPath) property on
False specifies whether the bar is off of the critical
path.

(color expression)

exPDMCriticalPathLinkColor 7

Indicates the color to show the links on the critical
path. By default, the exPDMCriticalPathLinkColor is
0. This property is ignored if the
exPDMCriticalPathLinkColor is 0.

(color expression)

exPDMCriticalPathOffLinkColor8

Indicates the color to show the links off of the
critical path. By default, the
exPDMCriticalPathOffLinkColor is 0. This property
is ignored if the exPDMCriticalPathOffLinkColor is
0.

(color expression)

exPDMCriticalPathLenMethod9

Determines the way how the length of the path is
computed.

(long expression)

constants DescriptionTypeEnum
The control's Description property defines descriptions for few control parts.

Name Value Description

exFilterBarAll 0

Defines the caption of (All) in the drop down filter
window. If the Description(exFilterBarAll) property
is empty, the (All) predefined item is not shown in
the drop down filter window.

exFilterBarBlanks 1

Defines the caption of (Blanks) in the drop down
filter window. If the Description(exFilterBarBlanks)
property is empty, the (Blanks) predefined item is
not shown in the drop down filter window. The
(Blanks) option is displayed in the drop down filter
window only if the FilterList property includes the
exShowBlanks flag.

exFilterBarNonBlanks 2

Defines the caption of (NonBlanks) in the drop down
filter window. If the
Description(exFilterBarNonBlanks) property is
empty, the (NonBlanks) predefined item is not
shown in the drop down filter window. The (Blanks)
option is displayed in the drop down filter window
only if the FilterList property includes the
exShowBlanks flag.

exFilterBarFilterForCaption 3 Defines the caption of "Filter For:" in the drop down
filter window

exFilterBarFilterTitle 4
Defines the title for the filter tooltip. The tooltip is
shown only if the FilterList property includes the
exEnableToolTip flag.

exFilterBarPatternFilterTitle 5
Defines the title for the filter pattern tooltip. The
tooltip is shown only if the FilterList property
includes the exEnableToolTip flag.

exFilterBarTooltip 6
Defines the tooltip for filter window. The tooltip is
shown only if the FilterList property includes the
exEnableToolTip flag.

exFilterBarPatternTooltip 7
Defines the tooltip for filter pattern window. The
tooltip is shown only if the FilterList property
includes the exEnableToolTip flag.

exFilterBarFilterForTooltip 8
Defines the tooltip for "Filter For:" window. The
tooltip is shown only if the FilterList property

includes the exEnableToolTip flag.

exFilterBarIsBlank 9 Defines the caption of the function 'IsBlank' in the
control's filter bar.

exFilterBarIsNonBlank 10 Defines the caption of the function 'not IsBlank' in
the control's filter bar.

exFilterBarAnd 11
Customizes the ' and ' text in the control's filter bar
when multiple columns are used to filter the items in
the control.

exFilterBarDate 12

Specifies the "Date:" caption being displayed in the
drop down filter window when DisplayFilterPattern
property is True, and DisplayFilterDate property is
True.

exFilterBarDateTo 13

Specifies the "to" sequence being used to split the
from date and to date in the Date field of the drop
down filter window. For instance, the "to
12/13/2004" specifies the items before 12/13/2004,
"12/23/2004 to 12/24/2004" filters the items
between 12/23/2004 and 12/24/2004, or "Feb 12
2004 to" specifies all items after a date.

exFilterBarDateTooltip 14

Describes the tooltip that shows up when cursor is
over the Date field. "You can filter the items into a
given interval of dates. For instance, you can filter
all items dated before a specified date (to
2/13/2004), or all items dated after a date (Feb
13 2004 to) or all items that are in a given interval (
2/13/2004 to 2/13/2005)." The tooltip is shown
only if the FilterList property includes the
exEnableToolTip flag.

exFilterBarDateTitle 15

Describes the title of the tooltip that shows up when
the cursor is over the Date field. By default, the
exFilterBarDateTitle is "Date". The tooltip is shown
only if the FilterList property includes the
exEnableToolTip flag.

exFilterBarDateTodayCaption 16
Specifies the caption for the 'Today' button in a date
filter window. By default, the
exFilterBarDateTodayCaption property is "Today".

exFilterBarDateMonths 17

Specifies the name for months to be displayed in a
date filter window. The list of months should be
delimitated by space characters. By default, the

exFilterBarDateMonths is "January February March
April May June July August September October
November December".

exFilterBarDateWeekDays 18

Specifies the shortcut for the weekdays to be
displayed in a date filter window. The list of shortcut
for the weekdays should be separated by space
characters. By default, the
exFilterBarDateWeekDays is "S M T W T F S".
The first shortcut in the list indicates the shortcut for
the Sunday, the second shortcut indicates the
shortcut for Monday, and so on.

exFilterBarChecked 19

Defines the caption of (Checked) in the filter bar
window. The exFilterBarChecked option is
displayed only if the FilterType property is exCheck.
If the Description(exFilterBarChecked) property is
empty, the (Checked) predefined item is not shown
in the drop down filter window. If the user selects
the (Checked) item the control filter checked items.
The CellState property indicates the state of the
cell's checkbox.

exFilterBarUnchecked 20

Defines the caption of (Unchecked) in the filter bar
window. The exFilterBarUnchecked option is
displayed only if the FilterType property is exCheck.
If the Description(exFilterBarUnchecked) property is
empty, the (Unchecked) predefined item is not
shown in the drop down filter window. If the user
selects the (Unchecked) item the control filter
unchecked items. The CellState property indicates
the state of the cell's checkbox.

exFilterBarIsChecked 21

Defines the caption of the 'IsChecked' function in
the control's filter bar. The 'IsChecked' function may
appear only if the user selects (Checked) item in
the drop down filter window, when the FilterType
property is exCheck.

exFilterBarIsUnchecked 22

Defines the caption of the 'not IsChecked' function
in the control's filter bar. The 'not IsChecked'
function may appear only if the user selects
(Unchecked) item in the drop down filter window,
when the FilterType property is exCheck.

exFilterBarOr 23
Customizes the 'or' operator in the control's filter
bar when multiple columns are used to filter the

items in the control.

exFilterBarNot 24
Customizes the 'not' operator in the control's filter
bar.

exFilterBarExclude 25

Specifies the 'Exclude' caption being displayed in
the drop down filter. The Exclude option is
displayed in the drop down filter window only if the
FilterList property includes the exShowExlcude
flag.

exColumnsFloatBar 26 Specifies the caption to be shown on control's
Columns float bar.

constants DividerAlignmentEnum
Defines the alignment for a divider line into a divider item. Use the ItemDividerLineAlignment
property to align the line in a divider item. Use the ItemDivider property to add a divider item

Name Value Description

DividerBottom 0 The divider line is displayed on bottom side of the
item.

DividerCenter 1 The divider line is displayed on center of the item.
DividerTop 2 The divider line is displayed at the top of the item.

DividerBoth 3 The divider line is displayed at the top and bottom
of the item.

constants DividerLineEnum
Defines the type of divider line. The ItemDividerLine property uses the DividerLineEnum
type.

Name Value Description
EmptyLine 0 No line.
SingleLine 1 Single line
DoubleLine 2 Double line
DotLine 3 Dotted line
DoubleDotLine 4 DoubleDottted line
ThinLine 5 Thin line
DoubleThinLine 6 Double thin line

constants DrawPartEnum
The DrawPartEnum type specifies the identifier of parts that can be overridden using the
BeforeDrawPart and AfterDrawPart events. Currently, the supported values are:

Name Value Description

exOwnerDrawBar 0

Specifies that the "OwnerDraw" bar is drawing. Use
the Add or Copy method to add a "OwnerDraw"
bar. The DrawPartItem property specifies the
handle of the item that hosts the "OwnerDraw" bar.
The DrawPartKey property specifies the key of the
bar to be painted. Use the
ItemBar(DrawPartItem,DrawPartKey) property to
access properties of the drawing bar.

exDrawLeftHistogram 1

Specifies the left part of the histogram. The area is
shown in the histogram part just bellow the
list/items area. Use the HistogramRulerLinesColor
property to automatically show the ruler in the left
part of the histogram. Use the
HistogramCumulativeShowLegend property to
automatically show the legend for items being
included in the histogram when cumulative colors
are shown. The control fires the
HistogramBoundsChanged event when the bound of
the left histogram part is changed, so you can
automatically updates the position for inside
controls if you display them on the histogram part.

exDrawRightHistogram 2

Specifies the right part of the histogram. The area
is shown in the histogram part just bellow the chart
area. The right part of the histogram shows the
chart's histogram when HistogramVisible property is
True and the HistogramPattern or/and
HistogramColor property is set.

constants DropDownWidthType
The DropDownWidthType expression specifies the width of the drop down portion of an
editor. The DropDownAutoWidth property specifies the width of the drop down portion of
the editor. The DropDownMinWidth property specifies the minimum width for the drop down
portion.

Name Value Description

exDropDownAutoWidth -1
The drop down width is automatically computed to
let all predefined items in the editor fi the drop down
portion.

exDropDownEditorWidth 0
The width of the drop down portion of the editor is
specified by the width of the cell that holds the
editor.

exDropDownAutoEditorWidth 1

The width of the drop down portion of the editor is
specified by the width of the cell that holds the
editor. The width of the drop down can't be less
than the width required to let all predefined items
being visible. The width of the drop down portion is
always greater than the DropDownMinWidth
value.

constants EditorOptionEnum
Specifies different options for a built-in editor. The Option property specifies the editor's
options. Use the DefaultEditorOption property to specify default option for the editors of a
specified type. The following options are supported:

Name Value Description

exMemoHScrollBar 1

Adds the horizontal scroll bar to a MemoType or
MemoDropDownType editor.

(boolean expression, by default it is false)

exMemoVScrollBar 2

Adds the vertical scroll bar to a MemoType or
MemoDropDownType editor.

(boolean expression, by default it is false)

exMemoAutoSize 3

Specifies whether the MemoType editor is resized
when user alters the text.

(boolean expression, by default it is true)

exColorListShowName 4

Specifies whether a ColorListType editor displays
the name of the color.

(boolean expression, by default it is false)

exColorShowPalette 5

Specifies whether the ColorList editor displays the
palette colors list.

(boolean expression, by default it is true)

exColorShowSystem 6

Specifies whether the ColorType editor shows the
system colors list.

(boolean expression, by default it is true)

exMemoDropDownWidth 7

Specifies the width for a MemoDropDownType
editor.

(long expression, by default it is 128)

exMemoDropDownHeight 8

Specifies the height for a MemoDropDownType
editor.

(long expression, by default it is 116)

exMemoDropDownAcceptReturn9

Specifies whether the Return key is used to add
new lines into a MemoDropDownType editor.

(boolean expression, by default it is true)

exEditRight 10

Right-aligns text in a single-line or multiline edit
control.

(boolean expression, by default it is false)

exProgressBarBackColor 11

Specifies the background color for a progress bar
editor. Use the exProgressBarMarkTicker option to
specify the background color or visual appearance
of the progress bar.

(color expression, by default it is 0x80000000 |
COLOR_HIGHLIGHT)

exProgressBarAlignment 12

Specifies the alignment of the caption inside of a
progress bar editor.

(AlignmentEnum expression, by default it is
LeftAlignment)

exProgressBarMarkTicker 13

Retrieves or sets a value that indicates whether the
ticker of a progress bar editor is visible or hidden. If
value is 0 (false), no progress's background is
shown. If -1(true), the progress's background is
shown using the current visual theme, else the solid
color or the EBN object is applied on the progress's
background.

(color expression, by default it is -1)

exDateAllowNullDate 14

Allows you to specify an empty date to a DateType
editor.

(boolean expression, by default it is true)

exCheckValue0 15

Specifies the check box state being displayed for
unchecked state.

(long expression, valid values are 0, 1 or 2, by
default it is 0)

exCheckValue1 16

Specifies the check box state being displayed for
checked state.

(long expression, valid values are 0, 1 or 2, by
default it is 1)

exCheckValue2 17

Specifies the check box state being displayed for
partial checked state. (long expression, valid values
are 0, 1 or 2). For instance, if your cells load
boolean values (True is -1, False is 0), the control
displays the partial-check icon for True values. You
can call
G2antt1.DefaultEditorOption(exCheckValue2) = 1
before loading the CheckValueType editor, and so
the partial-check cells show as check icons.

(long expression, valid values are 0, 1 or 2, by
default it is 2)

exEditPassword 18

Specifies a value that indicates whether an edit
control displays all characters as an asterisk (*) as
they are typed (passwords).

(boolean expression, by default it is false)

exEditPasswordChar 19

Specifies a value that indicates the password
character.

(character expression, by default it is '*')

(VK_LEFT) Specifies whether the left arrow key is
handled by the control or by the editor. By default,
the Option(exLeftArrow) property is
exHandleControl. Use the exLeftArrow option to
disable focusing a new cell if the user presses the

exLeftArrow 20 left arrow key while editing. The option is valid for
all editors.

(ArrowHandleEnum expression, by default it is
exHandleControl)

exRightArrow 21

(VK_RIGHT) Specifies whether the right arrow key
is handled by the control or by the editor. By
default, the Option(exRightArrow) property is
exHandleControl. Use the exRightArrow option to
disable focusing a new cell if the user presses the
right arrow key while editing. The option is valid for
all editors.

(ArrowHandleEnum expression, by default it is
exHandleControl)

exUpArrow 22

(VK_UP) Specifies whether the up arrow key is
handled by the control or by the editor. By default,
the Option(exUpArrow) property is
exHandleControl. Use the exUpArrow option to
disable focusing a new cell if the user presses the
up arrow key while editing. The option is valid for all
editors.

(ArrowHandleEnum expression, by default it is
exHandleControl)

exDownArrow 23

(VK_DOWN) Specifies whether the down arrow key
is handled by the control or by the editor. By
default, the Option(exDownArrow) property is
exHandleControl. Use the exDownArrow option to
disable focusing a new cell if the user presses the
down arrow key while editing. The option is valid for
all editors.

(ArrowHandleEnum expression, by default it is
exHandleControl)

(VK_HOME) Specifies whether the home key is
handled by the control or by the current editor. By
default, the Option(exHomeKey) property is True.

exHomeKey 24 Use the exHomeKey option to disable focusing a
new cell if the user presses the home key while
editing. The option is valid for all editors.

(boolean expression, by default it is true)

exEndKey 25

(VK_END) Specifies whether the end key is handled
by the control or by the current editor. By default,
the Option(exEndKey) property is True. Use the
exEndKey option to disable focusing a new cell if
the user presses the end key while editing. The
option is valid for all editors.

(boolean expression, by default it is true)

exPageUpKey 26

(VK_PRIOR) Specifies whether the page up key is
handled by the control or by the current editor. By
default, the Option(exPageUpKey) property is True.
Use the exPageUpKey option to disable focusing a
new cell if the user presses the page up key while
editing. The option is valid for all editors.

(boolean expression, by default it is true)

exPageDownKey 27

(VK_NEXT) Specifies whether the page down key
is handled by the control or by the current editor. By
default, the Option(exPageDownKey) property is
True. Use the exPageDownKey option to disable
focusing a new cell if the user presses the page
down key while editing. The option is valid for all
editors.

(boolean expression, by default it is true)

exDropDownImage 28

Displays the predefined icon in the control's cell, if
the user selects an item from a drop down editor.
By default, the exDropDownImage property is True.
The option is valid for DropDownListType, PickEdit
and ColorListType editors.

(boolean expression, by default it is true)

Specifies the caption for the 'Today' button in a

exDateTodayCaption 29 DateType editor.

(string expression, by default it is "Today")

exDateMonths 30

Specifies the name for months to be displayed in a
DateType editor. The list of months should be
delimitated by spaces.

(string expression, by default it is "January
February March April May June July August
September October November December")

exDateWeekDays 31

Specifies the shortcut for the weekdays to be
displayed in a DateType editor. The list of shortcut
for the weekdays should be separated by spaces.
The first shortcut in the list indicates the shortcut for
the Sunday, the second shortcut indicates the
shortcut for Monday, and so on.

(string expression, by default it is ""S M T W T F
S")

exDateFirstWeekDay 32

Specifies the first day of the week in a DateType
editor. The valid values for the
Editor.Option(exDateFirstWeekDay) property are
like follows: 0 - Sunday, 1 - Monday, 2 - Tuesday, 3
- Wednesday, 4 - Thursday, 5 - Friday and 6 -
Saturday.

(long expression, valid values are 0 to 6, by
default it is 0)

exDateShowTodayButton 33

Specifies whether the 'Today' button is visible or
hidden in a DateType editor.

(boolean expression, by default it is true)

exDateMarkToday 34

Gets or sets a value that indicates whether the
today date is marked in a DateType editor.

(boolean expression, by default it is false)

exDateShowScroll 35 Specifies whether the years scroll bar is visible or
hidden in a DateType editor.

(boolean expression, by default it is true)

exEditLimitText 36

Limits the length of the text that the user may enter
into an edit control. By default, the
Editor.Option(exEditLimitText) is zero, and so no
limit is applied to the edit control.

(long expression, by default it is 0)

exAutoDropDownList 37

The exAutoDropDownList has no effect
Editor.Option(exAutoDropDownList) property is 0 (
default). Automatically shows the drop down list
when user starts typing characters into a
DropDownList editor, if the
Editor.Option(exAutoDropDownList) property is -1.
If the Editor.Option(exAutoDropDownList) property
is +1, the control selects a new item that matches
typed characters without opening the drop down
portion of the editor.

(long expression, valid values are -1, 0 and +1, by
default it is 0)

exExpandOnSearch 38

Expands items while user types characters into a
drop down editor. The exExpandOnSearch type has
effect for drop down type editors.

(boolean expression, by default it is false)

exAutoSearch 39

Specifies the kind of searching while user types
characters within the drop down editor. The
exExpandOnSearch type has effect for drop down
type editors.

(AutoSearchEnum expression, valid values are 0
and 1, by default it is exStartWith)

Specifies the proposed change when user clicks a
spin control. The exSpinStep should be a positive
number, else clicking the spin has no effect. Integer

exSpinStep 40

or floating points allowed as well. For instance, if
the exSpinStep is 0.01, the proposed change when
user clicks the spin is 0.01. If the exSpinStep
property is 0, the spin control is hidden (useful if
you have a slider control).

(positive numeric expression, by default it is 1)

exSliderWidth 41

Specifies the width in pixels of the slider control.
The exSliderWidth value could be 0, when the slider
control is hidden, a positive value that indicates the
width in pixels of the slider in the control, a negative
number when its absolute value indicates the
percent of the cell's size being used by the slider.
For instance, Option(exSliderWidth) = 0, hides the
slider, Option(exSliderWidth) = 100, shows a slider
of 100 pixels width, Option(exSliderWidth) = -50,
uses half of the cell's client area to display a slider
control. By default the Option(exSliderWidth)
property is 64 pixels. Use the exSpinStep to hide
the spin control.

(long expression, by default it is 64)

exSliderStep 42

Specifies a value that represents the proposed
change in the slider control's position. The
exSliderTickFrequency property specifies the
frequency to display ticks on a slider control. The
exSliderMin and exSliderMax determines the range
of values for the slider control.

(numeric expression , by default it is 1)

exSliderMin 43
Specifies the slider's minimum value.

(numeric expression, by default it is 0)

exSliderMax 44
Specifies the slider's maximum value.

(numeric expression, by default it is 100)

Keeps the selection background color while the

exKeepSelBackColor 45

editor is visible. The exKeepSelBackColor option is
valid for all editors. Use the exKeepSelBackColor to
let the editor to display the control's selection
background color when it is visible.

(boolean expression, by default it is false)

exEditDecimalSymbol 46

Specifies the symbol that indicates the decimal
values while editing a floating point number. Use the
exEditDecimaSymbol option to assign a different
symbol for floating point numbers, when Numeric
property is exFloat.

(long expression, that indicates the ASCII code for
the character being used as decimal symbol, by
default, it is the "Decimal symbol" settings as in the
Regional Options, in your control panel)

exDateWeeksHeader 47

Sets or gets a value that indicates whether the
weeks header is visible or hidden in a DateType
editor.

(boolean expression, by default it is false)

exEditSelStart 48

Sets the starting point of text selected, when an
EditType editor is opened. If the exEditSelStart
property is 0, the text gets selected from the first
character. If the exEditSelStart property is -1, the
cursor is placed at the end of the text.

(long expression, by default it is 0)

exEditSelLength 49

Sets the number of characters selected, when an
EditType editor is opened. If the exEditSelLength is
0, no text is selected, instead the exEditSelStart
changes the position of the cursor. If the
exEditSelLength property is -1, the text from the
exEditSelStart position to the end gets selected.

(long expression, by default it is -1)

Specifies the background color for a locked edit

exEditLockedBackColor 50

control. By default, the exEditLockedBackColor
property is a system color that indicates the face
color for three-dimensional display elements and for
dialog box backgrounds.

(color expression, by default it is 0x80000000 |
COLOR_3DFACE)

exEditLockedForeColor 51

Specifies the foreground color for a locked edit
control.

(color expression, by default it is 0)

exShowPictureType 52

Specifies whether a PictureType editor displays the
type of the picture.

(boolean expression, by default it is true)

exSliderTickFrequency 53

Gets or sets the interval between tick marks slider
types. By default, the exSliderTickFrequency
property is 0 which makes the slider to display no
ticks. The exSliderTickFrequency property specifies
the frequency to display ticks on a slider control.
The exSliderStep proposed change in the slider
control's position. The exSliderMin and exSliderMax
determines the range of values for the slider
control. The exSliderWidth option specifies the
width of the slider within the cell.

(numeric expression, by default it is 0)

exPickAllowEmpty 54

Specifies whether the editor of PickEditType
supports empty value.

(boolean expression, by default it is false)

exDropDownBackColor 55

Specifies the drop down's background color. If 0
the exDropDownBackColor has no effect.

(color expression, by default it is 0)

Specifies the drop down's foreground color. If 0 the

exDropDownForeColor 56 exDropDownBackColor has no effect.

(color expression, by default it is 0)

exDropDownColumnCaption 57

Specifies the HTML caption for each column within
the drop down list, separated by Ś character
(vertical broken bar, ALT + 221). For instance, "
<sha ;;0>Name</sha>Ś<sha ;;0>ID</sha>" defines
two columns for the drop down editor. The header
of the drop down list is visible, if the
exDropDownColumnCaption is not empty.

(string expression, by default it is "")

exDropDownColumnWidth 58

Specifies the width for each column within the drop
down list, separated by Ś character (vertical broken
bar, ALT + 221). For instance, "Ś32" defines the
width of the second column to 32 pixels, within a
drop down multiple columns editor.

(string expression, by default it is "")

exDropDownColumnPosition 59

Specifies the position for each column within the
drop down list, separated by Ś character (vertical
broken bar, ALT + 221). For instance, "Ś0" defines
sets the second column to be first visible-column,
within a drop down multiple columns editor.

(string expression, by default it is "")

exDropDownColumnAutoResize60

Specifies whether the drop down list resizes
automatically its visible columns to fit the drop down
width. Specifies whether the drop down multiple
columns editor displays horizontal-scroll bar.

(boolean expression, by default it is true)

exSliderTickStyle 63 exSliderTickStyle. Gets or sets the style to display
the slider' ticks.

exCalcExecuteKeys 100

Specifies whether the calculator editor executes the
keys while focused and the drop down portion is
hidden.

(boolean expression, by default it is true)

exCalcCannotDivideByZero 101

Specifies the message whether a division by zero
occurs in a calendar editor.

(string expression, by default it is "Cannot divide
by zero.")

exCalcButtonWidth 102

Specifies the width in pixels of the buttons in the
calculator editor.

(long expression, by default it is 24)

exCalcButtonHeight 103

Specifies the height in pixels of the buttons in the
calculator editor.

(long expression, by default it is 24)

exCalcButtons 104

Specifies buttons in a calendar editor. The property
specifies the buttons and the layout of the buttons in
the control. A string expression that indicates the list
of buttons being displayed. The rows are separated
by chr(13)+chr(10) (vbCrLf) sequence, and the
buttons inside the row are separated by ';'
character.

(string expression)

exCalcPictureUp 105

Specifies the picture when the button is up in a drop
down calendar editor. A Picture object that
indicates the node's picture.

(A Picture object that implements IPicture interface,
a string expression that indicates the base64
encoded string that holds a picture object (use the
eximages tool to save your picture as base64
encoded format, by default it is "")

Specifies the picture when the button is down in a
drop down calendar editor. A Picture object that
indicates the node's picture.

https://exontrol.com/eximages.jsp

exCalcPictureDown 106 (A Picture object that implements IPicture interface,
a string expression that indicates the base64
encoded string that holds a picture object (use the
eximages tool to save your picture as base64
encoded format, by default it is "")

exEditAllowOverType 200

Specifies whether the editor supports overtype
mode. The option is valid for EditType and
MemoType editors.

(boolean expression, by default it is false)

exEditOverType 201

Retrieves or sets a value that indicates whether the
editor is in insert or overtype mode. The option is
valid for EditType and MemoType editors.

(boolean expression, by default it is false)

exEditAllowContextMenu 202

Specifies whether the editor displays the edit's
default context menu when the user right clicks the
field.

(boolean expression, by default it is true)

https://exontrol.com/eximages.jsp

constants EditorVisibleEnum
The EditorVisibleEnum type specifies the way the editor is shown/hidden on the cell. The
CellEditorVisible property specifies whether the cell's editor is visible or hidden. The
EditorVisibleEnum type supports the following values:

Name Value Description
exEditorHidden 0 The editor is hidden.
exEditorVisible 1 The editor is always visible.

exEditorVisibleOnFocus -1 The editor is visible when the cell receives the
focus.

constants EditTypeEnum
Use the EditType property to specify the editor for a cell or a column. Any editor can have a
check box (use CellHasCheckBox property) , radio button (use CellHasRadioButton
property) associated, or multiple buttons to the left or right side (use AddButton method).
The Mask property is applied to most of all editors that has associated a standard edit
control. Use the Option property to assign different options for a given editor. Use the
DefaultEditorOption property to specify default option for the editors of a specified type.
The CellValue property indicates the value for the editor. A cell or a column supports the
following type of editors:

Name Value Description
ReadOnly 0 The column or the cell has no editor associated.

EditType 1

A standard text edit field.

The editor supports the following options:

exEditRight, Right-aligns text in a single-line or
multiline edit control.
exEditPassword, Specifies a value that
indicates whether an edit control displays all
characters as an asterisk (*) as they are typed
(passwords).
exEditPasswordChar, Specifies a value that
indicates the password character.
exEditLimitText, Limits the length of the text
that the user may enter into an edit control.
exEditDecimalSymbol, Specifies the symbol
that indicates the decimal values while editing a
floating point number. The Numeric property
should be on exFloat.
exEditSelStart, Sets the starting point of text
selected, when an EditType editor is opened.
exEditSelLength, Sets the number of
characters selected, when an EditType editor
is opened.
exEditLockedBackColor property. Specifies the
background color for a locked edit control.
exEditLockedForeColor property. Specifies the
foreground color for a locked edit control.

It provides an intuitive interface for your

DropDownType 2

users to select values from pre-defined
lists presented in a drop-down window,
but it accepts new values at runtime too.
The DropDownType editor has
associated a standard text edit field too. Use
AddItem or InsertItem method to add predefined
values to the drop down list. The DropDownRows
property specifies the maximum number of visible
rows into the drop-down list. The editor displays the
CellValue value, not the identifier of the selected
item. The EditType options are supported too.

The following sample adds a column with a
DropDownType editor:

With .Columns.Add("Editor").Editor
 .EditType = DropDownType
 .AddItem 0, "Single Bed", 1
 .AddItem 1, "Double Bed", 2
 .AddItem 2, "Apartment", 3
 .AddItem 3, "Suite", 4
 .AddItem 4, "Royal Suite", 5
End With
.Items.CellValue(.Items(0), "Editor") = "Apartment"

The editor supports the following options:

exDropDownBackColor, specifies the drop
down's background color
exDropDownForeColor, specifies the drop
down's foreground color
exDropDownColumnCaption, specifies the
HTML caption for each column within the drop
down list, separated by Ś character (vertical
broken bar, ALT + 221)
exDropDownColumnWidth, specifies the width
for each column within the drop down list,
separated by Ś character (vertical broken bar,
ALT + 221).
exDropDownColumnPosition, specifies the
position for each column within the drop down
list, separated by Ś character (vertical broken

bar, ALT + 221).
exDropDownColumnAutoResize, specifies
whether the drop down list resizes
automatically its visible columns to fit the drop
down width

DropDownListType 3

It provides an intuitive interface
for your users to select values
from predefined lists presented
in a drop-down window. The
DropDownListType editor has
no standard edit field
associated. Use the AddItem or
InsertItem method to add predefined values to the
drop down list. The DropDownRows property
specifies the maximum number of visible rows into
the drop-down list. The editor displays the caption
of the item that matches the CellValue value. The
item's icon is also displayed if it exists.

The following sample adds a column with a
DropDownListType editor:

With .Columns.Add("Editor").Editor
 .DropDownAutoWidth = False
 .EditType = DropDownListType
 .AddItem 0, "Single Bed", 1
 .AddItem 1, "Double Bed", 2
 .AddItem 2, "Apartments", 3
 .InsertItem 3, "1 Bed Apartment", 4, 2
 .InsertItem 4, "2 Bed Apartment", 5, 2
 .AddItem 5, "Suite", 4
 .InsertItem 6, "Royal Suite", 1, 5
 .InsertItem 7, "Deluxe Suite", 2, 5
 .ExpandAll
End With
.Items.CellValue(.Items(0), "Editor") = 3

The editor supports the following options:

exDropDownImage, displays the predefined
icon in the control's cell, if the user selects an
item from a drop down editor.
exDropDownBackColor, specifies the drop
down's background color
exDropDownForeColor, specifies the drop
down's foreground color
exDropDownColumnCaption, specifies the
HTML caption for each column within the drop
down list, separated by Ś character (vertical
broken bar, ALT + 221)
exDropDownColumnWidth, specifies the width
for each column within the drop down list,
separated by Ś character (vertical broken bar,
ALT + 221).
exDropDownColumnPosition, specifies the
position for each column within the drop down
list, separated by Ś character (vertical broken
bar, ALT + 221).
exDropDownColumnAutoResize, specifies
whether the drop down list resizes
automatically its visible columns to fit the drop
down width

SpinType 4

The SpinType allows your users to view and
change numeric values using a familiar up/down
button (spin control) combination. The AddItem or
InsertItem method has no effect, if the EditType is
SpinType. Use the exSpinStep option to specify the
proposed change when user clicks the spin. Use the
Numeric property to specify whether the edit control
allows only numeric values only. Use the
exSpinUpButtonUp, exSpinUpButtonDown,
exSpinDownButtonUp and exSpinDownButtonDown
to change the visual appearance for the spin
control.

The MemoType is designed to
provide an unique and intuitive
interface, which you can implement within your
application to assist users in working with textual

MemoType 5
information. If all information does not fit within the
edit box, the window of the editor is enlarged. The
AddItem or InsertItem method has no effect, if the
EditType is MemoType. You can use options like
exMemoHScrollBar, exMemoVScrollBar and so on.

CheckListType 6

It provides an intuitive interface for
your users to check values from
predefined lists presented in a
drop-down window. Each item has
a check box associated. The editor
displays the list of item captions, separated by
comma, that is OR combination of CellValue value.
Use the The AddItem or InsertItem method to add
new predefined values to the drop down list. The
DropDownRows property specifies the maximum
number of visible rows into the drop-down list. Use
the CheckImage property to change the check box
appearance.

The following sample adds a column with a
CheckListType editor:

With .Columns.Add("Editor").Editor
 .EditType = CheckListType
 .AddItem 1, "Single Bed", 1
 .AddItem 2, "Double Bed", 2
 .AddItem 4, "Apartment", 3
 .AddItem 8, "Suite", 4
 .AddItem 16, "Royal Suite", 5
End With
.Items.CellValue(.Items(0), "Editor") = 5

The editor supports the following options:

exDropDownBackColor, specifies the drop
down's background color
exDropDownForeColor, specifies the drop
down's foreground color

DateType 7

The DateType is a date/calendar
control (not the Microsoft
Calendar Control). The dropdown
calendar provides an efficient and
appealing way to edit dates at
runtime. The DateType editor has
a standard edit control
associated. The user can easy
select a date by selecting a date
from the drop down calendar, or
by typing directly the date. The editor displays the
CellValue value as date. To change how the way
how the control displays the date you can use
FormatColumn event. The AddItem or InsertItem
method has no effect, if the EditType is DateType.

The following sample adds a column with a
DateType editor:

With .Columns.Add("Editor").Editor
 .EditType = DateType
End With
.Items.CellValue(.Items(0), "Editor") = Date

MaskType 8

You can use the MaskType to enter
any data that includes literals and requires a mask
to filter characters during data input. You can use
this control to control the entry of many types of
formatted information such as telephone numbers,
social security numbers, IP addresses, license keys
etc. The Mask property specifies the editor's mask.
The MaskChar property specifies the masking
character. The AddItem or InsertItem method has
no effect, if the EditType is MaskType. The Mask
property can use one or more literals: #,x,X,A,?
<,>,*,\,{nMin,nMax},[...].

The following sample shows how to mask a column
for input phone numbers:

With .Columns.Add("Editor").Editor

 .EditType = MaskType
 .Mask = "(###) ### - ####"
End With
.Items.CellValue(.Items(0), "Editor") = "(214) 345 -
789"

ColorType 9

You can include a color selection
control in your applications via the
ColorType editor. Check the
ColorListType also. The editor has
a standard edit control and a color
drop-down window. The color
drop-down window contains two
tabs that can be used to select
colors, the "Pallette" tab shows a grid of colors,
while the "System" tab shows the current windows
color constants. The AddItem or InsertItem
methodhas no effect, if the EditType is
ColorType. You can use options like
exColorShowPalette or exColorShowSystem.

The following sample adds a column with a
ColorType editor:

With .Columns.Add("Editor").Editor
 .EditType = ColorType
End With
.Items.CellValue(.Items(0), "Editor") = vbRed

FontType 10

Provides an intuitive way for
selecting fonts. The FontType
editor contains a standard edit
control and a font drop-down
window. The font drop-down
window contains a list with all

system fonts. The AddItem or InsertItem method
has no effect, if the EditType is FontType. The
DropDownRows property specifies the maximum
number of visible rows into the drop=down list.

The following sample adds a column with a
FontType editor:

With .Columns.Add("Editor").Editor
 .EditType = FontType
End With
.Items.CellValue(.Items(0), "Editor") = "Times New
Roman"

PictureType 11

The PictureType provides an
elegant way for displaying
the fields of OLE Object
type and cells that have a
reference to an IPicture
interface. An OLE Object
field can contain a picture, a
Microsoft Clip Gallery, a
package, a chart,
PowerPoint slide, a word document, a WordPad
document, a wave file, an so on. In MS Access you
can specify the field type to OLE Object. The
DropDownMinWidth property specifies the minimum
width for the drop=down window. The drop-down
window is scaled based on the picture size. The
AddItem or InsertItem method has no effect, if the
EditType is PictureType. If your control is bounded
to a ADO recordset, it automatically detects the
OLE Object fields, so setting the editor's type to
PictureType is not necessary. If your control is not
bounded to an ADO recordset you can use the
following sample to view OLE objects in the column
"OLEObject" (the sample uses the NWIND
database installed in your VB folder.

Change the path if necessary, in the following
sample:

' Creates an ADO Recordset
Dim rs As Object
Set rs = CreateObject("ADODB.Recordset")
rs.Open "Employees",

"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=
D:\Program Files\Microsoft Visual
Studio\VB98\NWIND.MDB", 3

' Adds a column of PictureType edit
Dim c As Column
Set c = .Columns.Add("OLEObject")
With c.Editor
.EditType = PictureType
End With
.Items.CellValue(.Items(0), "OLEObject") =
rs("Photo").Value

ButtonType 12

The ButtonType editor consists into a
standard edit field and a "..." button.
The ButtonClick event is fired if the user has clicked
the button. The AddItem or InsertItem method has
no effect, if the EditType is ButtonType. Of course,
you can apply for multiple buttons using the
AddButton method, for any types.

ProgressBarType 13

Uses the CellValue property to
specify the percent being displayed in the
ProgressBarTpe editor. The CellValue property
should be between 0 and 100.

It provides an intuitive interface for
your users to select values from
pre-defined lists presented in a
drop-down window. The
PickEditType editor has a standard
edit field associated, that useful for searching items
while typing. The DropDownRows property
specifies the maximum number of visible rows into
the drop=down list. Use AddItem or InsertItem
method to add new predefined values to the drop

PickEditType 14

down list. The editor displays the caption of the
item that matches the CellValue value. The item's
icon is also displayed if it exists.

The following sample shows how to add values to a
drop down list:

With .Columns.Add("Editor").Editor
 .EditType = PickEditType
 .AddItem 0, "Single Bed", 1
 .AddItem 1, "Double Bed", 2
 .AddItem 2, "Apartment", 3
 .AddItem 3, "Suite", 4
 .AddItem 4, "Royal Suite", 5
End With
.Items.CellValue(.Items(0), "Editor") = "Apartment"

The editor supports the following options:

exDropDownBackColor, specifies the drop
down's background color
exDropDownForeColor, specifies the drop
down's foreground color
exDropDownColumnCaption, specifies the
HTML caption for each column within the drop
down list, separated by Ś character (vertical
broken bar, ALT + 221)
exDropDownColumnWidth, specifies the width
for each column within the drop down list,
separated by Ś character (vertical broken bar,
ALT + 221).
exDropDownColumnPosition, specifies the
position for each column within the drop down
list, separated by Ś character (vertical broken
bar, ALT + 221).
exDropDownColumnAutoResize, specifies
whether the drop down list resizes
automatically its visible columns to fit the drop
down width

The LinkEditType control allows
your application to edit and display hyperlink

LinkEditType 15 addresses.

UserEditorType 16

The control is able to use
ActiveX controls as a built-in
editor. The control uses the
UserEditor property to define
the user control. If it succeeded
the UserEditorObject property
retrieves the newly created object. Events like:
UserEditOpen, UserEditClose and
UserEditorOleEvent are fired when the control uses
custom editors. The setup installs the VB\UserEdit,
VC\User.Edit samples that uses Exontrol's
ExComboBox component as a new editor into the
ExG2antt component (a multiple columns
combobox control).

ColorListType 17

You can include a color
selection control in your
application via the
ColorListType editor,
also. The editor hosts a
predefined list of colors.
By default. the following
colors are added: Black, White, Dark Red, Dark
Green, Dark Yellow, Dark Blue, Dark Magenta,
Dark Cyan, Light Grey, Dark Grey, Red, Green,
Yellow, Blue, Magenta, Cyan. The AddItem method
adds a new color to your color list editor. You can
use the exColorListShowName option to display the
color's name.

The following sample adds few custom colors to the
ColorListType editor:

With .Columns.Add("Editor").Editor
 .EditType = ColorListType
 .AddItem 128, "Dark Red"

https://exontrol.com/excombobox.jsp

 .AddItem RGB(0, 128, 0), "Dark Green"
 .AddItem RGB(0, 0, 128), "Dark Blue"
End With
.Items.CellValue(.Items(0), "Editor") = 128

MemoDropDownType 18

It provides a multiple lines edit
control that's displayed into a drop
down window.

The Editor.Option(exMemoDropDownWidth)
specifies the width (in pixels) of the
MemoDropDownType editor when it is
dropped.
The Editor.Option(exMemoDropDownHeight)
specifies the height (in pixels) of the
MemoDropDownType editor when it is
dropped.
The Editor.Option(
exMemoDropDownAcceptReturn) specifies
whether the user closes the
MemoDropDownType editor by pressing the
ENTER key. If the Editor.Option(
exMemoDropDownAcceptReturn) is True, the
user inserts new lines by pressing the ENTER
key. The user can close the editor by pressing
the CTRL + ENTER key. If the Editor.Option(
exMemoDropDownAcceptReturn) is False, the
user inserts new lines by pressing the CTRL +
ENTER key. The user can close the editor by
pressing the ENTER key.
The Editor.Option(exMemoHScrollBar) adds
the horizontal scroll bar to a MemoType or
MemoDropDownType editor.
The Editor.Option(exMemoVScrollBar) adds
the vertical scroll bar to a MemoType or
MemoDropDownType editor
Use the Items.CellSingleLine property to
specify whether the cell displays multiple lines

The AddItem or InsertItem method has no effect, if
the EditType is MemoDropDownType.

CheckValueType 19

Displays check boxes in the column or cell. The
CellValue property indicates the state of the cell's
check box. See also: CellHasCheckBox property.
The CheckValueType editor supports the following
options:

exCheckValue0. Specifies the check box state
being displayed for unchecked state
exCheckValue1. Specifies the check box state
being displayed for checked state
exCheckValue2. Specifies the check box state
being displayed for partial-check state

For instance, if your cells load boolean values (
True is -1, False is 0), the control displays the
partial-check icon for True values. You can call the
following code before loading the CheckValueType
editor:

G2antt1.DefaultEditorOption(exCheckValue2) = 1

in order to replace the partial-check appearance, to
check state appearance.

SliderType 20

Adds a slider control to a cell. Use
the exSliderWidth, exSliderStep,
exSliderMin, exSliderMax options to control the
slider properties. Use the exSpinStep option to hide
the spin control. Use the exSpinUpButtonUp,
exSpinUpButtonDown, exSpinDownButtonUp and
exSpinDownButtonDown to change the visual
appearance for the spin control. Use the
exSliderRange and exSliderThumb to change the
visual appearance for the slider control.

CalculatorType 21

Adds a drop down calculator to a
node. Use the
exCalcExecuteKeys,
exCalcCannotDivideByZero,
exCalcButtonWidth,
exCalcButtonHeight,
exCalcButtons, exCalcPictureUp,
exCalcPictureDown to specify different options for
calculator editor.

All editors support the following options:

exLeftArrow, Disables focusing a new cell if the user presses the left arrow key while
editing.
exRightArrow, Disables focusing a new cell if the user presses the right arrow key
while editing.
exUpArrow, Disable focusing a new cell if the user presses the up arrow key while
editing.
exDownArrow, Disable focusing a new cell if the user presses the down arrow key
while editing.
exHomeKey, Disable focusing a new cell if the user presses the home key while
editing.
exEndKey, Disables focusing a new cell if the user presses the end key while editing.
exPageUpKey, Disable focusing a new cell if the user presses the page up key while
editing.
exKeepSelBackColor. Keeps the selection background color while editor is visible.

constants exClipboardFormatEnum
Defines the clipboard format constants. Use GetFormat property to check whether the
clipboard data is of given type

Name Value Description

exCFText 1 Null-terminated, plain ANSI text in a global memory
bloc.

exCFBitmap 2 A bitmap compatible with Windows 2.x.

exCFMetafile 3
A Windows metafile with some additional
information about how the metafile should be
displayed.

exCFDIB 8 A global memory block containing a Windows
device-independent bitmap (DIB).

exCFPalette 9 A color-palette handle.
exCFEMetafile 14 A Windows enhanced metafile.

exCFFiles 15 A collection of files. Use Files property to get or set
the collection of files.

exCFRTF -16639A RTF document.

constants exOLEDragOverEnum

State transition constants for the OLEDragOver event

Name Value Description

exOLEDragEnter 0 Source component is being dragged within the
range of a target.

exOLEDragLeave 1 Source component is being dragged out of the
range of a target.

exOLEDragOver 2 Source component has moved from one position in
the target to another.

constants exOLEDropEffectEnum

Drop effect constants for OLE drag and drop events.

Name Value Description

exOLEDropEffectNone 0 Drop target cannot accept the data, or the drop
operation was cancelled.

exOLEDropEffectCopy 1
Drop results in a copy of data from the source to
the target. The original data is unaltered by the
drag operation.

exOLEDropEffectMove 2
Drop results in data being moved from drag source
to drop source. The drag source should remove the
data from itself after the move.

exOLEDropEffectScroll -2147483648This one is not implemented.

constants exOLEDropModeEnum

Constants for the OLEDropMode property, that defines how the control accepts OLE drag
and drop operations. Use the OLEDropMode property to set how the component handles
drop operations.

Name Value Description

exOLEDropNone 0 The control is not used OLE drag and drop
functionality.

exOLEDropManual 1
The control triggers the OLE drop events, allowing
the programmer to handle the OLE drop operation
in code.

Here's the list of events related to OLE drag and drop: OLECompleteDrag, OLEDragDrop,
OLEDragOver, OLEGiveFeedback, OLESetData, OLEStartDrag.

constants ExpandButtonEnum
Defines how the control displays the expanding/collapsing buttons.

Name Value Description
exNoButtons 0 The control displays no expand buttons.

exPlus -1 A plus sign is displayed for collapsed items, and a
minus sign for expanded items.()

exArrow 1 The control uses icons to display the expand
buttons.()

exCircle 2 The control uses icons to display the expand
buttons. ()

exWPlus 3 The control uses icons to display the expand
buttons. ()

exCustom 4 The HasButtonsCustom property specifies the index
of icons being used for +/- signs on parent items.

constants FilterBarVisibleEnum
The FilterBarVisibleEnum type defines the flags you can use on FilterBarPromptVisible
property. The FilterBarCaption property defines the caption to be displayed on the control's
filter bar. The FilterBarPromptVisible property , specifies how the control's filter bar is
displayed and behave. The FilterBarVisibleEnum type includes several flags that can be
combined together, as described bellow:

Name Value Description

exFilterBarHidden 0
No filter bar is shown while there is no filter applied.
The control's filter bar is automatically displayed as
soon a a filter is applied.

exFilterBarPromptVisible 1

The exFilterBarPromptVisible flag specifies that the
control's filter bar displays the filter prompt. The
exFilterBarPromptVisible, exFilterBarVisible,
exFilterBarCaptionVisible flag , forces the control's
filter-prompt, filter bar or filter bar description (
even empty) to be shown. If missing, no filter
prompt is displayed. The FilterBarPrompt property
to specify the HTML caption being displayed in the
filter bar when the filter pattern is missing.

exFilterBarVisible 2

The exFilterBarVisible flag forces the control's filter
bar to be shown, no matter if any filter is applied. If
missing, no filter bar is displayed while the control
has no filter applied.

or combined with exFilterBarPromptVisible

exFilterBarCaptionVisible 4

The exFilterBarVisible flag forces the control's filter
bar to display the FilterBarCaption property.

exFilterBarSingleLine 16

The exFilterBarVisible flag specifies that the caption
on the control's filter bar id displayed on a single
line. The exFilterBarSingleLine flag , specifies that
the filter bar's caption is shown on a single line, so

 HTML tag or \r\n are not handled. By default,
the control's filter description applies word
wrapping. Can be combined to exFilterBarCompact
to display a single-line filter bar. If missing, the
caption on the control's filter bar is displayed on
multiple lines. You can change the height of the
control's filter bar using the FilterBarHeight
property.

exFilterBarToggle 256

The exFilterBarToggle flag specifies that the user
can close the control's filter bar (removes the
control's filter) by clicking the close button of the
filter bar or by pressing the CTRL + F, while the
control's filter bar is visible. If no filter bar is
displayed, the user can display the control's filter
bar by pressing the CTRL + F key. While the
control's filter bar is visible the user can navigate
though the list or control's filter bar using the ALT +
Up/Down keys. If missing, the control's filter bar is
always shown if any of the following flags is present
exFilterBarPromptVisible, exFilterBarVisible,
exFilterBarCaptionVisible.

exFilterBarShowCloseIfRequired512

The exFilterBarShowCloseIfRequired flag indicates
that the close button of the control's filter bar is
displayed only if the control has any currently filter
applied. The Background(exFooterFilterBarButton)
property on -1 hides permanently the close button
of the control's filter bar.

exFilterBarShowCloseOnRight1024

The exFilterBarShowCloseOnRight flag specifies
that the close button of the control's filter bar should
be displayed on the right side. If the control's
RightToLeft property is True, the close button of the
control's filter bar would be automatically displayed
on the left side.

exFilterBarCompact 2048

The exFilterBarCompact flag compacts the control's
filter bar, so the filter-prompt will be displayed to
the left, while the control's filter bar caption will be
displayed to the right. This flag has effect only if
combined with the exFilterBarPromptVisible. This
flag can be combined with the exFilterBarSingleLine
flag, so all filter bar will be displayed compact and
on a single line.

exFilterBarShort 4096 exFilterBarShort

exFilterBarTop 8192

The exFilterBarTop flag displays the filter-bar on top
(between control's header and items section as
shown:

By default, the filter-bar is shown aligned to the
bottom (between items and horizontal-scroll bar) as
shown:

constants FilterIncludeEnum
The FilterIncludeEnum type defines the items to include when control's filter is applied. The
FilterInclude property specifies the items being included, when the list is filtered. The
FilterIncludeEnum type supports the following values:

Name Value Description

exItemsWithoutChilds 0 Items (and parent-items) that match the filter are
shown (no child-items are included)

exItemsWithChilds 1 Items (parent and child-items) that match the filter
are shown

exRootsWithoutChilds 2 Only root-items (excludes child-items) that match
the filter are displayed

exRootsWithChilds 3 Root-items (and child-items) that match the filter
are displayed

exMatchingItemsOnly 4 Shows only the items that matches the filter (no
parent or child-items are included)

exMatchIncludeParent 240

Specifies that the item matches the filter if any of its
parent-item matches the filter. The
exMatchIncludeParent flag can be combined with
any other value.

constants FilterListEnum
The FilterListEnum type specifies the type of items being included in the column's drop
down list filter. The FilterList property specifies the items being included to the column's
drop down filter-list, including other options for filtering. Use the DisplayFilterPattern and/or
DisplayFilterDate property to display the pattern field, a date pattern or a calendar control
inside the drop down filter window.

The FilterList can be a bit-combination of exAllItems, exVisibleItems or exNoItems with any
other flags being described bellow:

Name Value Description
exAllItems 0 The filter's list includes all items in the column.

exVisibleItems 1
The filter's list includes only visible (filtered) items
from the column. The visible items include child
items of collapsed items.

exNoItems 2
The filter's list does not include any item from the
column. Use this option if the drop down filter
displays a calendar control for instance.

exLeafItems 3 The filter's list includes the leaf items only. A leaf
item is an item with no child items.

exRootItems 4 The filter's list includes the root items only.

exSortItemsDesc 16

If the exSortItemsDesc flag is set the values in the
drop down filter's list gets listed descending. If none
of the exSortItemsAsc or exSortItemsDesc is
present, the list is built as the items are displayed in
the control.

exSortItemsAsc 32

If the exSortItemsAsc flag is set the values in the
drop down filter's list gets listed ascending. If none
of the exSortItemsAsc or exSortItemsDesc is
present, the list is built as the items are displayed in
the control.

exIncludeInnerCells 64

The exIncludeInnerCells flag specifies whether the
inner cells values are included in the drop down
filter's list. The SplitCell method adds an inner cell,
on in other words splits a cell.

exSingleSel 128

If this flag is present, the filter's list supports single
selection. By default, (If missing), the user can
select multiple items using the CTRL key. Use the
exSingleSel property to prevent multiple items

selection in the drop down filter list.

exShowCheckBox 256

The filter's list displays a check box for each
included item. Clicking the checkbox, makes the
item to be include din the filter. If this flag is
present, the filter is closed once the user presses
ENTER or clicks outside of the drop down filter
window. By default, (this flag is missing), clicking
an item closes the drop down filter, if the CTRL key
is not pressed. This flag can be combined with
exHideCheckSelect.

The following screen shot shows the drop down
filter with or with no exShowCheckBox flag:

 or

exHideCheckSelect 512

The selection background is not shown for checked
items in the filter's list. This flag can be combined
with exShowCheckBox.

The following screen shot shows no selection
background for the checked items:

This flag allows highlighting the focus cell value in
the filter's list. The focus cell value is the cell's
content at the moment the drop down filter window
is shown. For instance, click an item so a new item
is selected, and click the drop down filter button. A

exShowFocusItem 1024

item being focused in the drop down filter list is the
one you have in the control's selection. This flag has
effect also, if displaying a calendar control in the
drop down filter list.

The following screen shot shows the focused item
in the filter's list (The Integration ... item in the
background is the focused item, and the same is in
the filter's list) :

exShowPrevSelectOpaque 2048

By default, the previously selection in the drop down
filter's list is shown using a semi-transparent color.
Use this flag to show the previously selection using
an opaque color. The exSelFilterForeColor and
exSelFilterBackColor options defines the filter's list
selection foreground and background colors.

exEnableToolTip 4096

This flag indicates whether the filter's tooltip is
shown. The
Description(exFilterBarTooltip,exFilterBarPatternTooltip,
...) properties defines the filter's tooltips.

exShowExclude 8192

This flag indicates whether the Exclude option is
shown in the drop down filter window. This option
has effect also if the drop down filter window shows
a calendar control. The exFilterExclude flag
excludes programmatically the selected items in the
drop down filter panel.

The following screen shot shows the Exclude field in
the drop down filter window:

exShowBlanks 16384 This flag indicates whether the (Blanks) and
(NonBlanks) items are shown in the filter's list

constants FilterPromptEnum
The FilterPromptEnum type specifies the type of prompt filtering. Use the
FilterBarPromptType property to specify the type of filtering when using the prompt. The
FilterBarPromptColumns specifies the list of columns to be used when filtering. The
FilterBarPromptPattern property specifies the pattern for filtering. The pattern may contain
one or more words being delimited by space characters.

The filter prompt feature supports the following values:

Name Value Description

exFilterPromptContainsAll 1

The list includes the items that contains all specified
sequences in the filter. Can be combined with
exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptContainsAny 2

The list includes the items that contains any of
specified sequences in the filter. Can be combined
with exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptStartWith 3

The list includes the items that starts with any
specified sequences in the filter. Can be combined
with exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptEndWith 4

The list includes the items that ends with any
specified sequences in the filter. Can be combined
with exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptPattern 16

The filter indicates a pattern that may include wild
characters to be used to filter the items in the list.
Can be combined with
exFilterPromptCaseSensitive. The
FilterBarPromptPattern property may include wild
characters as follows:

'?' for any single character
'*' for zero or more occurrences of any
character
'#' for any digit character

' ' space delimits the patterns inside the filter

exFilterPromptCaseSensitive 256

Filtering the list is case sensitive. Can be combined
with exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith, exFilterPromptEndWith or
exFilterPromptPattern

exFilterPromptStartWords 4608

The list includes the items that starts with specified
words, in any position. Can be combined with
exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith or exFilterPromptEndWith.

exFilterPromptEndWords 8704

The list includes the items that ends with specified
words, in any position. Can be combined with
exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith or exFilterPromptEndWith.

exFilterPromptWords 12800

The filter indicates a list of words. Can be combined
with exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith or exFilterPromptEndWith.

constants FilterTypeEnum
Defines the type of filter applies to a column. Use the FilterType property of the Column
object to specify the type of filter being used. Use the Filter property of Column object to
specify the filter being used. The value for Filter property depends on the FilterType
property.

Name Value Description
exAll 0 No filter applied
exBlanks 1 Only blank items are included
exNonBlanks 2 Only non blanks items are included

exPattern 3

Only items that match the pattern are included. The
Filter property defines the pattern. A pattern may
contain the wild card characters '?' for any single
character, '*' for zero or more occurrences of any
character, '#' for any digit character, and [chars]
indicates a group of characters. If any of the *, ?, #
or | characters are preceded by a \ (escape
character) it masks the character itself.

exDate 4

Use the exDate type to filter items into a given
interval. The Filter property of the Column object
defines the interval of dates being used to filter
items. The interval of dates should be as
[dateFrom] to [dateTo]. Use the Description
property to changes the "to" conjunction used to
split the dates in the interval. If the dateFrom value
is missing, the control includes only the items before
the dateTo date, if the dateTo value is missing, the
control includes the items after the dateFrom date.
If both dates (dateFrom and dateTo) are present,
the control includes the items between this interval
of dates. For instance, the "2/13/2004 to" includes
all items after 2/13/2004 inclusive, or "2/13/2004 to
Feb 14 2005" includes all items between 2/13/2004
and 2/14/2004.

exNumeric 5

If the FilterType property is exNumeric, the Filter
property may include operators like <, <=, =, <>,
>= or > and numbers to define rules to include
numbers in the control's list. For instance, the "> 10
< 100" filter indicates all numbers greater than 10
and less than 100. If the FilterType property is

exNumeric, the drop down filter window doesn't
display the filter list that includes items "(All)", "
(Blanks)", ... and so on.

exCheck 6

Only checked or unchecked items are included. The
CellState property indicates the state of the cell's
checkbox. The control filters for checked items, if
the Filter property is "1". The control filters for
unchecked items, if the Filter property is "0". A
checked item has the the CellState property
different than zero. An unchecked item has the
CellState property on zero.

exImage 10 Filters items by icons. The CellImage property
indicates the cell's icon

exFilter 240 Only the items that are in the Filter property are
included.

exFilterDoCaseSensitive 256

If this flag is present, the filtering on the column is
case-sensitive. If this flag is missing, the filtering is
case-insensitive (by default). You can use the
exFilterDoCaseSensitive flag to perform case-
sensitive filtering within the column. This flag is not
applied to filter prompt feature.

exFilterExclude 512
The flag indicates that the Exclude field of the
column is checked. The flag indicates that the items
that match the filter are excluded from the list.

constants FormatApplyToEnum
The FormatApplyToEnum expression indicates whether a format is applied to an item or to
a column. Any value that's greater than 0 indicates that the conditional format is applied to
the column with the value as index. A value less than zero indicates that the conditional
format object is applied to items. Use the ApplyTo property to specify whether the
conditional format is applied to items or to columns.

Name Value Description
exFormatToItems -1 Specifies whether the condition is applied to items.

exFormatToColumns 0

Specifies whether the condition is applied to
columns. The 0 value indicates that the conditional
format is applied to the first column. The 1 value
indicates the conditional format is applied to the
second column. The 2 value indicates the
conditional format is applied to the third column, and
so on.

constants GridLinesEnum
Defines how the control paints the grid lines.

Name Value Description
exNoLines 0 The control displays no grid lines.

exAllLines -1 The control displays vertical and horizontal grid
lines.

exRowLines -2 The control paints grid lines only for current rows.
exHLines 1 Only horizontal grid lines are shown.
exVLines 2 Only vertical grid lines are shown.

constants GridLinesStyleEnum
The GridLinesStyle type specifies the style to show the control's grid lines. The
GridLineStyle property indicates the style of the gridlines being displayed in the view if the
DrawGridLines property is not zero. The GridLinesStyle enumeration specifies the style for
horizontal or/and vertical gridlines in the control. The DrawGridLines property of the Chart
object specifies whether the grid lines are shown in the chart part of the control.

Name Value Description
exGridLinesDot 0 The control's gridlines are shown as dotted.

exGridLinesHDot4 1 The horizontal control's gridlines are shown as
dotted.

exGridLinesVDot4 2 The vertical control's gridlines are shown as dotted.
exGridLinesDot4 3 The control's gridlines are shown as solid.

exGridLinesHDash 4 The horizontal control's gridlines are shown as
dashed.

exGridLinesVDash 8 The vertical control's gridlines are shown as
dashed.

exGridLinesDash 12 The control's gridlines are shown as
dashed.

exGridLinesHSolid 16 The horizontal control's gridlines are shown as solid.
exGridLinesVSolid 32 The vertical control's gridlines are shown as solid.
exGridLinesSolid 48 The control's gridlines are shown as solid.

The exGridLinesBehind flag specifies whether the:

chart's vertical gridlines are shown behind bars.
For instance, Chart.GridLineStyle =
GridLinesStyleEnum.exGridLinesHSolid Or
GridLinesStyleEnum.exGridLinesBehind shows
horizontal gridlines as solid, and the vertical
gridlines shows behind the bars
non-working part of the item is shown behind
the item's background

The following screen shot shows the non-working
part (gray section) behind the item's background
(Chart.GridLineStyle property includes the
exGridLinesBehind flag)

exGridLinesBehind 256

The following screen shot shows the non-working
part (gray section) in front of the item's background
(Chart.GridLineStyle property without the
exGridLinesBehind flag)

The exGridLinesBehind flag has effect for the chart
area only, so it has to be used with the
Chart.GridLineStyle property.

exGridLinesGeometric 512

The control's gridlines are drawn using a geometric
pen. The exGridLinesGeometric flag can be
combined with any other flag. A geometric pen can
have any width and can have any of the attributes
of a brush, such as dithers and patterns. A
cosmetic pen can only be a single pixel wide and
must be a solid color, but cosmetic pens are
generally faster than geometric pens. The width of
a geometric pen is always specified in world units.
The width of a cosmetic pen is always 1.

constants GroupBarsOptionsEnum
The GroupBarsOptionEnum type specifies the way two bars gets grouped together. It may
specify to prevent changing the lengths of the bars, or limit the interval between them when
grouping. The GroupBars method groups two bars, so they are moving or resizing together,
when any bar in the group changes.

The length of the bar and interval between two bars are defined as follows:

The length of the bar is the same as its duration, in other words it is the difference
between ending date of the bar and starting date of the bar. If the
ItemBar(exBarKeepWorkingCount) property of the bar is True, the length indicates the
bar's working count (ItemBar(exBarWorkingCount) property)
The interval between bars is the same as the distance between the starting and
ending points of the grouping bars. For instance, if you have linked the end of the bar A
with the start of the bar B, the interval is defined as difference between the starting
date of the bar B and ending date of the bar A. In other sample, you may have linked
the start of the bar A with start of the bar B, in this case the interval is defined as being
the difference between the start of the bar A and starting date of the bar B, nothing
else.

The GroupBarsOptionEnum value mat be a combination of any of the following values:

Name Value Description

exGroupBarsNone -1

Performs ungrouping the bars or specifies that the
bars are not grouped. The exGroupBarsNone can't
be used with any other options. Set the
Link(exLinkGroupBars) property on
exGroupBarsNone and if the linked bars were
grouped they are ungrouped.

exGroupBarsOptionNone 0 Specifies no options when grouping bars. Default
option.

exPreserveBarLengthA 1

Preserves the length of the bar A when grouping.
The length of the bar A is not changed if another
bar in the same group may change it by grouping.
Use the exPreserveBarLength value to specify that
both bars should preserve their lengths.

exPreserveBarLengthB 2

Preserves the length of the bar B when grouping.
The length of the bar B is not changed if another
bar in the same group may change it by grouping.
Use the exPreserveBarLength value to specify that
both bars should preserve their lengths.

exPreserveBarLength 3
Preserves the length of both bars when grouping.
The length of both bars is not changed when
another bar in the same group may change the
length of bars A and B.

exIgnoreOriginalInterval 4

Ignores the original interval between bars when
grouping. At the moment GroupBars method is
called, the control keeps the original interval
between bars, so this option will specify whether to
handle or not. For instance, you can have the
exIgnoreOriginalInterval, and you can specify a
different interval between bars using the first
parameter (Fixed Interval) in the Options
parameter of the GroupBars method.

exLimitIntervalMin 8 Limits the interval between bars so it can't be less
than a specified value.

exLimitIntervalMax 16 Limits the interval between bars so it can't be
greater than a specified value.

exLimitInterval 24 Limits the interval between bars so it fits a specified
range.

exFlexibleInterval 32 The interval between bars is not limited and the bar
B can be moved anywhere to the right of the bar A.

exLimitIntervalTreatAsWorking64

The interval between bars is specified in working
units. The NonworkingDays property specifies the
days to be non-working. The
exLimitIntervalTreatAsWorking can be combined
with exLimitIntervalMin, exLimitIntervalMax or
exLimitInterval. If the exLimitIntervalTreatAsWorking
is set, interval value indicates working days, else it
indicates days.

constants HeaderVisibleEnum
YThe HeaderVisibleEnum type specifies whether the control's header bar is visible or
hidden. The HeaderVisible property retrieves or sets a value that indicates whether the
control's header is visible or hidden. Use the HeaderHeight property to specify the height of
the control's header bar. The HeaderVisibleEnum type supports the following values:

Name Value Description

exHeaderVisible -1

The control's header is visible.

exHeaderHidden 0

The control's header is hidden.

exHeaderVisibleExtendLevels 1

The control's header is visible, and each column's
height is extended to cover all levels of the control's
chart (LevelCount property).

constants HierarchyLineEnum
Defines how the control paints the hierarchy lines. Use the TreeColumnIndex property to
define the index of the column that displays the hierarchy. Use the LinesAtRoot property to
connect root items. Use the HasLines property to connect a child items to their
correspondent parent item.

Name Value Description

exNoLine 0 The control displays no lines when painting the
hierarchy.

exDotLine -1 The control uses a dotted line to paint the hierarchy.
exSolidLine 1 The control uses a solid line to paint the hierarchy.
exThinLine 2 The control uses a thin line to paint the hierarchy.

constants HistogramCumulativeOriginalColorBarsEnum
The HistogramCumulativeOriginalColorBarsEnum type indicates whether the color for the
bars being represented in the histogram is changed. The
Bar.HistogramCumulativeOriginalColorBars property indicates whether the bar's color is
changed while representing them in the histogram.

Name Value Description

exShowCumulativeColor -1

The color for bar is not changed, but its reflection in
the histogram shows the corresponding cumulative
color.

The HistogramCumulativeShowLegend property
specifies the index of the column to show the
legend for the items being displayed in the
cumulative histogram. The
HistogramCumulativeColors property defines the
number of colors being displayed in the cumulative
histogram. The HistogramCumulativeColor property
specifies a cumulative color based on its index.

exChangeColor 0

The color for bar and its reflection in the histogram
is showing the corresponding cumulative color.

The HistogramCumulativeColors property defines
the number of colors being displayed in the

cumulative histogram. The
HistogramCumulativeColor property specifies a
cumulative color based on its index. The
HistogramCumulativeShowLegend property
specifies the index of the column to show the
legend for the items being displayed in the
cumulative histogram.

exKeepOriginalColor 1

The color for bar and its reflection in the histogram
is not changed.

Use the ItemBar(exBarColor) property to specify a
different color for a specified bar. The ItemBar(
exBarHistLegend) property specifies the description
to show within the histogram's legend for the bar in
the control's histogram (exKeepOriginalColor only).
For exKeepOriginalColor, the
HistogramCumulativeShowLegend property
specifies whether the bar's legend (ItemBar(
exBarHistLegend) property) is shown or hidden.

VBA Is it possible to define the bar colors, and have the cumulative histogram showing the
same colors?

With G2antt1
 .BeginUpdate
 .SingleSel = False
 With .Chart
 .LevelCount = 2
 .AllowLinkBars = False
 .DrawGridLines = -1
 .FirstVisibleDate = #12/29/2000#
 .HistogramVisible = True

 .HistogramHeight = 72
 .PaneWidth(0) = 64
 .HistogramView = 1298
 With .Bars.Item("Task")
 .HistogramType = 256
 .HistogramItems = 6
 .HistogramPattern = .Pattern
 .HistogramCumulativeOriginalColorBars = 1
 End With
 End With
 .Columns.Add "Column"
 With .Items
 h = .AddItem("Project")
 .ItemBold(h) = True
 .SelectableItem(h) = False
 h1 = .InsertItem(h,0,"Item 1")
 .AddBar h1,"Task",#1/2/2001#,#1/4/2001#
 h1 = .InsertItem(h,0,"Item 2")
 .AddBar h1,"Task",#1/3/2001#,#1/5/2001#
 h1 = .InsertItem(h,0,"Item 3")
 .AddBar h1,"Task",#1/4/2001#,#1/6/2001#
 .AddBar h1,"Task",#1/1/2001#,#1/3/2001#,"green"
 .ItemBar(h1,"green",33) = 65280
 .AddBar h1,"Task",#1/8/2001#,#1/10/2001#,"red"
 .ItemBar(h1,"red",33) = 255
 .ExpandItem(h) = True
 .SelectAll
 End With
 .EndUpdate
End With

VB6 Is it possible to define the bar colors, and have the cumulative histogram showing the
same colors?

With G2antt1
 .BeginUpdate
 .SingleSel = False

 With .Chart
 .LevelCount = 2
 .AllowLinkBars = False
 .DrawGridLines = exAllLines
 .FirstVisibleDate = #12/29/2000#
 .HistogramVisible = True
 .HistogramHeight = 72
 .PaneWidth(0) = 64
 .HistogramView = HistogramViewEnum.exHistogramSelectedItems Or
HistogramViewEnum.exHistogramUnlockedItems Or
HistogramViewEnum.exHistogramLeafItems Or
HistogramViewEnum.exHistogramNoGrouping
 With .Bars.Item("Task")
 .HistogramType = exHistCumulative
 .HistogramItems = 6
 .HistogramPattern = .Pattern
 .HistogramCumulativeOriginalColorBars = exKeepOriginalColor
 End With
 End With
 .Columns.Add "Column"
 With .Items
 h = .AddItem("Project")
 .ItemBold(h) = True
 .SelectableItem(h) = False
 h1 = .InsertItem(h,0,"Item 1")
 .AddBar h1,"Task",#1/2/2001#,#1/4/2001#
 h1 = .InsertItem(h,0,"Item 2")
 .AddBar h1,"Task",#1/3/2001#,#1/5/2001#
 h1 = .InsertItem(h,0,"Item 3")
 .AddBar h1,"Task",#1/4/2001#,#1/6/2001#
 .AddBar h1,"Task",#1/1/2001#,#1/3/2001#,"green"
 .ItemBar(h1,"green",exBarColor) = 65280
 .AddBar h1,"Task",#1/8/2001#,#1/10/2001#,"red"
 .ItemBar(h1,"red",exBarColor) = 255
 .ExpandItem(h) = True
 .SelectAll
 End With

 .EndUpdate
End With

VB.NET Is it possible to define the bar colors, and have the cumulative histogram showing
the same colors?

Dim h,h1
With Exg2antt1
 .BeginUpdate()
 .SingleSel = False
 With .Chart
 .LevelCount = 2
 .AllowLinkBars = False
 .DrawGridLines = exontrol.EXG2ANTTLib.GridLinesEnum.exAllLines
 .FirstVisibleDate = #12/29/2000#
 .HistogramVisible = True
 .HistogramHeight = 72
 .set_PaneWidth(False,64)
 .HistogramView =
exontrol.EXG2ANTTLib.HistogramViewEnum.exHistogramSelectedItems Or
exontrol.EXG2ANTTLib.HistogramViewEnum.exHistogramUnlockedItems Or
exontrol.EXG2ANTTLib.HistogramViewEnum.exHistogramLeafItems Or
exontrol.EXG2ANTTLib.HistogramViewEnum.exHistogramNoGrouping
 With .Bars.Item("Task")
 .HistogramType = exontrol.EXG2ANTTLib.HistogramTypeEnum.exHistCumulative
 .HistogramItems = 6
 .HistogramPattern = .Pattern
 .HistogramCumulativeOriginalColorBars =
exontrol.EXG2ANTTLib.HistogramCumulativeOriginalColorBarsEnum.exKeepOriginalColor
 End With
 End With
 .Columns.Add("Column")
 With .Items
 h = .AddItem("Project")
 .set_ItemBold(h,True)
 .set_SelectableItem(h,False)
 h1 = .InsertItem(h,0,"Item 1")

 .AddBar(h1,"Task",#1/2/2001#,#1/4/2001#)
 h1 = .InsertItem(h,0,"Item 2")
 .AddBar(h1,"Task",#1/3/2001#,#1/5/2001#)
 h1 = .InsertItem(h,0,"Item 3")
 .AddBar(h1,"Task",#1/4/2001#,#1/6/2001#)
 .AddBar(h1,"Task",#1/1/2001#,#1/3/2001#,"green")

.set_ItemBar(h1,"green",exontrol.EXG2ANTTLib.ItemBarPropertyEnum.exBarColor,65280)
 .AddBar(h1,"Task",#1/8/2001#,#1/10/2001#,"red")
 .set_ItemBar(h1,"red",exontrol.EXG2ANTTLib.ItemBarPropertyEnum.exBarColor,255)
 .set_ExpandItem(h,True)
 .SelectAll()
 End With
 .EndUpdate()
End With

VB.NET for /COM Is it possible to define the bar colors, and have the cumulative histogram
showing the same colors?

Dim h,h1
With AxG2antt1
 .BeginUpdate()
 .SingleSel = False
 With .Chart
 .LevelCount = 2
 .AllowLinkBars = False
 .DrawGridLines = EXG2ANTTLib.GridLinesEnum.exAllLines
 .FirstVisibleDate = #12/29/2000#
 .HistogramVisible = True
 .HistogramHeight = 72
 .PaneWidth(False) = 64
 .HistogramView = EXG2ANTTLib.HistogramViewEnum.exHistogramSelectedItems Or
EXG2ANTTLib.HistogramViewEnum.exHistogramUnlockedItems Or
EXG2ANTTLib.HistogramViewEnum.exHistogramLeafItems Or
EXG2ANTTLib.HistogramViewEnum.exHistogramNoGrouping
 With .Bars.Item("Task")
 .HistogramType = EXG2ANTTLib.HistogramTypeEnum.exHistCumulative

 .HistogramItems = 6
 .HistogramPattern = .Pattern
 .HistogramCumulativeOriginalColorBars =
EXG2ANTTLib.HistogramCumulativeOriginalColorBarsEnum.exKeepOriginalColor
 End With
 End With
 .Columns.Add("Column")
 With .Items
 h = .AddItem("Project")
 .ItemBold(h) = True
 .SelectableItem(h) = False
 h1 = .InsertItem(h,0,"Item 1")
 .AddBar(h1,"Task",#1/2/2001#,#1/4/2001#)
 h1 = .InsertItem(h,0,"Item 2")
 .AddBar(h1,"Task",#1/3/2001#,#1/5/2001#)
 h1 = .InsertItem(h,0,"Item 3")
 .AddBar(h1,"Task",#1/4/2001#,#1/6/2001#)
 .AddBar(h1,"Task",#1/1/2001#,#1/3/2001#,"green")
 .ItemBar(h1,"green",EXG2ANTTLib.ItemBarPropertyEnum.exBarColor) = 65280
 .AddBar(h1,"Task",#1/8/2001#,#1/10/2001#,"red")
 .ItemBar(h1,"red",EXG2ANTTLib.ItemBarPropertyEnum.exBarColor) = 255
 .ExpandItem(h) = True
 .SelectAll()
 End With
 .EndUpdate()
End With

C++ Is it possible to define the bar colors, and have the cumulative histogram showing the
same colors?

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/

EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->BeginUpdate();
spG2antt1->PutSingleSel(VARIANT_FALSE);
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutLevelCount(2);
 var_Chart->PutAllowLinkBars(VARIANT_FALSE);
 var_Chart->PutDrawGridLines(EXG2ANTTLib::exAllLines);
 var_Chart->PutFirstVisibleDate("12/29/2000");
 var_Chart->PutHistogramVisible(VARIANT_TRUE);
 var_Chart->PutHistogramHeight(72);
 var_Chart->PutPaneWidth(VARIANT_FALSE,64);
 var_Chart->PutHistogramView(EXG2ANTTLib::exHistogramSelectedItems |
EXG2ANTTLib::exHistogramUnlockedItems | EXG2ANTTLib::exHistogramLeafItems |
EXG2ANTTLib::exHistogramNoGrouping);
 EXG2ANTTLib::IBarPtr var_Bar = var_Chart->GetBars()->GetItem("Task");
 var_Bar->PutHistogramType(EXG2ANTTLib::exHistCumulative);
 var_Bar->PutHistogramItems(6);
 var_Bar->PutHistogramPattern(var_Bar->GetPattern());
 var_Bar-
>PutHistogramCumulativeOriginalColorBars(EXG2ANTTLib::exKeepOriginalColor);
spG2antt1->GetColumns()->Add(L"Column");
EXG2ANTTLib::IItemsPtr var_Items = spG2antt1->GetItems();
 long h = var_Items->AddItem("Project");
 var_Items->PutItemBold(h,VARIANT_TRUE);
 var_Items->PutSelectableItem(h,VARIANT_FALSE);
 long h1 = var_Items->InsertItem(h,long(0),"Item 1");
 var_Items->AddBar(h1,"Task","1/2/2001","1/4/2001",vtMissing,vtMissing);
 h1 = var_Items->InsertItem(h,long(0),"Item 2");
 var_Items->AddBar(h1,"Task","1/3/2001","1/5/2001",vtMissing,vtMissing);
 h1 = var_Items->InsertItem(h,long(0),"Item 3");
 var_Items->AddBar(h1,"Task","1/4/2001","1/6/2001",vtMissing,vtMissing);
 var_Items->AddBar(h1,"Task","1/1/2001","1/3/2001","green",vtMissing);
 var_Items->PutItemBar(h1,"green",EXG2ANTTLib::exBarColor,long(65280));
 var_Items->AddBar(h1,"Task","1/8/2001","1/10/2001","red",vtMissing);
 var_Items->PutItemBar(h1,"red",EXG2ANTTLib::exBarColor,long(255));
 var_Items->PutExpandItem(h,VARIANT_TRUE);

 var_Items->SelectAll();
spG2antt1->EndUpdate();

C++ Builder Is it possible to define the bar colors, and have the cumulative histogram
showing the same colors?

G2antt1->BeginUpdate();
G2antt1->SingleSel = false;
Exg2anttlib_tlb::IChartPtr var_Chart = G2antt1->Chart;
 var_Chart->LevelCount = 2;
 var_Chart->AllowLinkBars = false;
 var_Chart->DrawGridLines = Exg2anttlib_tlb::GridLinesEnum::exAllLines;
 var_Chart->set_FirstVisibleDate(TVariant(TDateTime(2000,12,29).operator double()));
 var_Chart->HistogramVisible = true;
 var_Chart->HistogramHeight = 72;
 var_Chart->set_PaneWidth(false,64);
 var_Chart->HistogramView =
Exg2anttlib_tlb::HistogramViewEnum::exHistogramSelectedItems |
Exg2anttlib_tlb::HistogramViewEnum::exHistogramUnlockedItems |
Exg2anttlib_tlb::HistogramViewEnum::exHistogramLeafItems |
Exg2anttlib_tlb::HistogramViewEnum::exHistogramNoGrouping;
 Exg2anttlib_tlb::IBarPtr var_Bar = var_Chart->Bars->get_Item(TVariant("Task"));
 var_Bar->HistogramType = Exg2anttlib_tlb::HistogramTypeEnum::exHistCumulative;
 var_Bar->HistogramItems = 6;
 var_Bar->HistogramPattern = var_Bar->Pattern;
 var_Bar->HistogramCumulativeOriginalColorBars =
Exg2anttlib_tlb::HistogramCumulativeOriginalColorBarsEnum::exKeepOriginalColor;
G2antt1->Columns->Add(L"Column");
Exg2anttlib_tlb::IItemsPtr var_Items = G2antt1->Items;
 long h = var_Items->AddItem(TVariant("Project"));
 var_Items->set_ItemBold(h,true);
 var_Items->set_SelectableItem(h,false);
 long h1 = var_Items->InsertItem(h,TVariant(0),TVariant("Item 1"));
 var_Items->AddBar(h1,TVariant("Task"),TVariant(TDateTime(2001,1,2).operator
double()),TVariant(TDateTime(2001,1,4).operator double()),TNoParam(),TNoParam());
 h1 = var_Items->InsertItem(h,TVariant(0),TVariant("Item 2"));
 var_Items->AddBar(h1,TVariant("Task"),TVariant(TDateTime(2001,1,3).operator

double()),TVariant(TDateTime(2001,1,5).operator double()),TNoParam(),TNoParam());
 h1 = var_Items->InsertItem(h,TVariant(0),TVariant("Item 3"));
 var_Items->AddBar(h1,TVariant("Task"),TVariant(TDateTime(2001,1,4).operator
double()),TVariant(TDateTime(2001,1,6).operator double()),TNoParam(),TNoParam());
 var_Items->AddBar(h1,TVariant("Task"),TVariant(TDateTime(2001,1,1).operator
double()),TVariant(TDateTime(2001,1,3).operator double()),TVariant("green"),TNoParam());
 var_Items-
>set_ItemBar(h1,TVariant("green"),Exg2anttlib_tlb::ItemBarPropertyEnum::exBarColor,TVariant(65280));

 var_Items->AddBar(h1,TVariant("Task"),TVariant(TDateTime(2001,1,8).operator
double()),TVariant(TDateTime(2001,1,10).operator double()),TVariant("red"),TNoParam());
 var_Items-
>set_ItemBar(h1,TVariant("red"),Exg2anttlib_tlb::ItemBarPropertyEnum::exBarColor,TVariant(255));

 var_Items->set_ExpandItem(h,true);
 var_Items->SelectAll();
G2antt1->EndUpdate();

C# Is it possible to define the bar colors, and have the cumulative histogram showing the
same colors?

exg2antt1.BeginUpdate();
exg2antt1.SingleSel = false;
exontrol.EXG2ANTTLib.Chart var_Chart = exg2antt1.Chart;
 var_Chart.LevelCount = 2;
 var_Chart.AllowLinkBars = false;
 var_Chart.DrawGridLines = exontrol.EXG2ANTTLib.GridLinesEnum.exAllLines;
 var_Chart.FirstVisibleDate = Convert.ToDateTime("12/29/2000");
 var_Chart.HistogramVisible = true;
 var_Chart.HistogramHeight = 72;
 var_Chart.set_PaneWidth(false,64);
 var_Chart.HistogramView =
exontrol.EXG2ANTTLib.HistogramViewEnum.exHistogramSelectedItems |
exontrol.EXG2ANTTLib.HistogramViewEnum.exHistogramUnlockedItems |
exontrol.EXG2ANTTLib.HistogramViewEnum.exHistogramLeafItems |
exontrol.EXG2ANTTLib.HistogramViewEnum.exHistogramNoGrouping;
 exontrol.EXG2ANTTLib.Bar var_Bar = var_Chart.Bars["Task"];

 var_Bar.HistogramType =
exontrol.EXG2ANTTLib.HistogramTypeEnum.exHistCumulative;
 var_Bar.HistogramItems = 6;
 var_Bar.HistogramPattern = var_Bar.Pattern;
 var_Bar.HistogramCumulativeOriginalColorBars =
exontrol.EXG2ANTTLib.HistogramCumulativeOriginalColorBarsEnum.exKeepOriginalColor;

exg2antt1.Columns.Add("Column");
exontrol.EXG2ANTTLib.Items var_Items = exg2antt1.Items;
 int h = var_Items.AddItem("Project");
 var_Items.set_ItemBold(h,true);
 var_Items.set_SelectableItem(h,false);
 int h1 = var_Items.InsertItem(h,0,"Item 1");

var_Items.AddBar(h1,"Task",Convert.ToDateTime("1/2/2001"),Convert.ToDateTime("1/4/2001

 h1 = var_Items.InsertItem(h,0,"Item 2");

var_Items.AddBar(h1,"Task",Convert.ToDateTime("1/3/2001"),Convert.ToDateTime("1/5/2001

 h1 = var_Items.InsertItem(h,0,"Item 3");

var_Items.AddBar(h1,"Task",Convert.ToDateTime("1/4/2001"),Convert.ToDateTime("1/6/2001

var_Items.AddBar(h1,"Task",Convert.ToDateTime("1/1/2001"),Convert.ToDateTime("1/3/2001

var_Items.set_ItemBar(h1,"green",exontrol.EXG2ANTTLib.ItemBarPropertyEnum.exBarColor,65280);

var_Items.AddBar(h1,"Task",Convert.ToDateTime("1/8/2001"),Convert.ToDateTime("1/10/2001

var_Items.set_ItemBar(h1,"red",exontrol.EXG2ANTTLib.ItemBarPropertyEnum.exBarColor,255);

 var_Items.set_ExpandItem(h,true);

 var_Items.SelectAll();
exg2antt1.EndUpdate();

JavaScript Is it possible to define the bar colors, and have the cumulative histogram
showing the same colors?

<OBJECT classid="clsid:CD481F4D-2D25-4759-803F-752C568F53B7" id="G2antt1">
</OBJECT>

<SCRIPT LANGUAGE="JScript">
 G2antt1.BeginUpdate()

 G2antt1.SingleSel = false

 var var_Chart = G2antt1.Chart

 var_Chart.LevelCount = 2

 var_Chart.AllowLinkBars = false

 var_Chart.DrawGridLines = -1

 var_Chart.FirstVisibleDate = "12/29/2000"

 var_Chart.HistogramVisible = true

 var_Chart.HistogramHeight = 72

 var_Chart.PaneWidth(0) = 64

 var_Chart.HistogramView = 1298

 var var_Bar = var_Chart.Bars.Item("Task")

 var_Bar.HistogramType = 256

 var_Bar.HistogramItems = 6

 var_Bar.HistogramPattern = var_Bar.Pattern

 var_Bar.HistogramCumulativeOriginalColorBars = 1

 G2antt1.Columns.Add("Column")

 var var_Items = G2antt1.Items

 var h = var_Items.AddItem("Project")

 var_Items.ItemBold(h) = true

 var_Items.SelectableItem(h) = false

 var h1 = var_Items.InsertItem(h,0,"Item 1")

 var_Items.AddBar(h1,"Task","1/2/2001","1/4/2001",null,null)

 h1 = var_Items.InsertItem(h,0,"Item 2")

 var_Items.AddBar(h1,"Task","1/3/2001","1/5/2001",null,null)

 h1 = var_Items.InsertItem(h,0,"Item 3")

 var_Items.AddBar(h1,"Task","1/4/2001","1/6/2001",null,null)

 var_Items.AddBar(h1,"Task","1/1/2001","1/3/2001","green",null)

 var_Items.ItemBar(h1,"green",33) = 65280

 var_Items.AddBar(h1,"Task","1/8/2001","1/10/2001","red",null)

 var_Items.ItemBar(h1,"red",33) = 255

 var_Items.ExpandItem(h) = true

 var_Items.SelectAll()

 G2antt1.EndUpdate()

</SCRIPT>

C# for /COM Is it possible to define the bar colors, and have the cumulative histogram
showing the same colors?

axG2antt1.BeginUpdate();
axG2antt1.SingleSel = false;
EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;
 var_Chart.LevelCount = 2;
 var_Chart.AllowLinkBars = false;
 var_Chart.DrawGridLines = EXG2ANTTLib.GridLinesEnum.exAllLines;
 var_Chart.FirstVisibleDate = Convert.ToDateTime("12/29/2000");
 var_Chart.HistogramVisible = true;
 var_Chart.HistogramHeight = 72;
 var_Chart.set_PaneWidth(false,64);
 var_Chart.HistogramView =
EXG2ANTTLib.HistogramViewEnum.exHistogramSelectedItems |
EXG2ANTTLib.HistogramViewEnum.exHistogramUnlockedItems |
EXG2ANTTLib.HistogramViewEnum.exHistogramLeafItems |
EXG2ANTTLib.HistogramViewEnum.exHistogramNoGrouping;
 EXG2ANTTLib.Bar var_Bar = var_Chart.Bars["Task"];
 var_Bar.HistogramType = EXG2ANTTLib.HistogramTypeEnum.exHistCumulative;
 var_Bar.HistogramItems = 6;
 var_Bar.HistogramPattern = var_Bar.Pattern;
 var_Bar.HistogramCumulativeOriginalColorBars =
EXG2ANTTLib.HistogramCumulativeOriginalColorBarsEnum.exKeepOriginalColor;
axG2antt1.Columns.Add("Column");
EXG2ANTTLib.Items var_Items = axG2antt1.Items;
 int h = var_Items.AddItem("Project");
 var_Items.set_ItemBold(h,true);
 var_Items.set_SelectableItem(h,false);
 int h1 = var_Items.InsertItem(h,0,"Item 1");

var_Items.AddBar(h1,"Task",Convert.ToDateTime("1/2/2001"),Convert.ToDateTime("1/4/2001

 h1 = var_Items.InsertItem(h,0,"Item 2");

var_Items.AddBar(h1,"Task",Convert.ToDateTime("1/3/2001"),Convert.ToDateTime("1/5/2001

 h1 = var_Items.InsertItem(h,0,"Item 3");

var_Items.AddBar(h1,"Task",Convert.ToDateTime("1/4/2001"),Convert.ToDateTime("1/6/2001

var_Items.AddBar(h1,"Task",Convert.ToDateTime("1/1/2001"),Convert.ToDateTime("1/3/2001

var_Items.set_ItemBar(h1,"green",EXG2ANTTLib.ItemBarPropertyEnum.exBarColor,65280);

var_Items.AddBar(h1,"Task",Convert.ToDateTime("1/8/2001"),Convert.ToDateTime("1/10/2001

 var_Items.set_ItemBar(h1,"red",EXG2ANTTLib.ItemBarPropertyEnum.exBarColor,255);
 var_Items.set_ExpandItem(h,true);
 var_Items.SelectAll();
axG2antt1.EndUpdate();

X++ (Dynamics Ax 2009) Is it possible to define the bar colors, and have the cumulative
histogram showing the same colors?

public void init()
{
 COM com_Bar,com_Chart,com_Items

 anytype var_Bar,var_Chart,var_Items

 int h,h1

 super()

 exg2antt1.BeginUpdate()

 exg2antt1.SingleSel(false)

 var_Chart = exg2antt1.Chart()
 com_Chart = var_Chart

 com_Chart.LevelCount(2)

 com_Chart.AllowLinkBars(false)

 com_Chart.DrawGridLines(-1/*exAllLines*/)

com_Chart.FirstVisibleDate(COMVariant::createFromDate(str2Date("12/29/2000",213)))

 com_Chart.HistogramVisible(true)

 com_Chart.HistogramHeight(72)

 /*should be called during the form's activate method*/ com_Chart.PaneWidth(0,64);
 com_Chart.HistogramView(1298/*exHistogramSelectedItems |
exHistogramUnlockedItems | exHistogramLeafItems | exHistogramNoGrouping*/)

 var_Bar = COM::createFromObject(com_Chart.Bars()).Item("Task")
 com_Bar = var_Bar

 com_Bar.HistogramType(256/*exHistCumulative*/)

 com_Bar.HistogramItems(6)

 com_Bar.HistogramPattern(com_Bar.Pattern())

 com_Bar.HistogramCumulativeOriginalColorBars(1/*exKeepOriginalColor*/)

 exg2antt1.Columns().Add("Column")

 var_Items = exg2antt1.Items()
 com_Items = var_Items

 h = com_Items.AddItem("Project")

 com_Items.ItemBold(h,true)

 com_Items.SelectableItem(h,false)

 h1 = com_Items.InsertItem(h,COMVariant::createFromInt(0),"Item 1")

com_Items.AddBar(h1,"Task",COMVariant::createFromDate(str2Date("1/2/2001",213)),COMVariant::createFromDate(str2Date(

 h1 = com_Items.InsertItem(h,COMVariant::createFromInt(0),"Item 2")

com_Items.AddBar(h1,"Task",COMVariant::createFromDate(str2Date("1/3/2001",213)),COMVariant::createFromDate(str2Date(

 h1 = com_Items.InsertItem(h,COMVariant::createFromInt(0),"Item 3")

com_Items.AddBar(h1,"Task",COMVariant::createFromDate(str2Date("1/4/2001",213)),COMVariant::createFromDate(str2Date(

com_Items.AddBar(h1,"Task",COMVariant::createFromDate(str2Date("1/1/2001",213)),COMVariant::createFromDate(str2Date(

 com_Items.ItemBar(h1,"green",33/*exBarColor*/,COMVariant::createFromInt(65280))

com_Items.AddBar(h1,"Task",COMVariant::createFromDate(str2Date("1/8/2001",213)),COMVariant::createFromDate(str2Date(

 com_Items.ItemBar(h1,"red",33/*exBarColor*/,COMVariant::createFromInt(255))

 com_Items.ExpandItem(h,true)

 com_Items.SelectAll()

 exg2antt1.EndUpdate()

}

/*
public void activate(boolean _active)
{
 super(_active)

 exg2antt1.Chart().PaneWidth(0,64)

}
*/

VFP Is it possible to define the bar colors, and have the cumulative histogram showing the
same colors?

with thisform.G2antt1
 .BeginUpdate
 .SingleSel = .F.
 with .Chart
 .LevelCount = 2
 .AllowLinkBars = .F.
 .DrawGridLines = -1
 .FirstVisibleDate = {^2000-12-29}
 .HistogramVisible = .T.
 .HistogramHeight = 72

 .PaneWidth(0) = 64
 .HistogramView = 1298
 with .Bars.Item("Task")
 .HistogramType = 256
 .HistogramItems = 6
 .HistogramPattern = .Pattern
 .HistogramCumulativeOriginalColorBars = 1
 endwith
 endwith
 .Columns.Add("Column")
 with .Items
 h = .AddItem("Project")
 .ItemBold(h) = .T.
 .SelectableItem(h) = .F.
 h1 = .InsertItem(h,0,"Item 1")
 .AddBar(h1,"Task",{^2001-1-2},{^2001-1-4})
 h1 = .InsertItem(h,0,"Item 2")
 .AddBar(h1,"Task",{^2001-1-3},{^2001-1-5})
 h1 = .InsertItem(h,0,"Item 3")
 .AddBar(h1,"Task",{^2001-1-4},{^2001-1-6})
 .AddBar(h1,"Task",{^2001-1-1},{^2001-1-3},"green")
 .ItemBar(h1,"green",33) = 65280
 .AddBar(h1,"Task",{^2001-1-8},{^2001-1-10},"red")
 .ItemBar(h1,"red",33) = 255
 .ExpandItem(h) = .T.
 .SelectAll
 endwith
 .EndUpdate
endwith

dBASE Plus Is it possible to define the bar colors, and have the cumulative histogram
showing the same colors?

local h,h1,oG2antt,var_Bar,var_Chart,var_Items

oG2antt = form.Activex1.nativeObject
oG2antt.BeginUpdate()

oG2antt.SingleSel = false
var_Chart = oG2antt.Chart
 var_Chart.LevelCount = 2
 var_Chart.AllowLinkBars = false
 var_Chart.DrawGridLines = -1
 var_Chart.FirstVisibleDate = "12/29/2000"
 var_Chart.HistogramVisible = true
 var_Chart.HistogramHeight = 72
 // var_Chart.PaneWidth(false) = 64
 with (oG2antt)
 TemplateDef = [Dim var_Chart]
 TemplateDef = var_Chart
 Template = [var_Chart.PaneWidth(false) = 64]
 endwith
 var_Chart.HistogramView = 1298 /*exHistogramSelectedItems |
exHistogramUnlockedItems | exHistogramLeafItems | exHistogramNoGrouping*/
 var_Bar = var_Chart.Bars.Item("Task")
 var_Bar.HistogramType = 256
 var_Bar.HistogramItems = 6
 var_Bar.HistogramPattern = var_Bar.Pattern
 var_Bar.HistogramCumulativeOriginalColorBars = 1
oG2antt.Columns.Add("Column")
var_Items = oG2antt.Items
 h = var_Items.AddItem("Project")
 // var_Items.ItemBold(h) = true
 with (oG2antt)
 TemplateDef = [Dim var_Items,h]
 TemplateDef = var_Items
 TemplateDef = h
 Template = [var_Items.ItemBold(h) = true]
 endwith
 // var_Items.SelectableItem(h) = false
 with (oG2antt)
 TemplateDef = [Dim var_Items,h]
 TemplateDef = var_Items
 TemplateDef = h
 Template = [var_Items.SelectableItem(h) = false]

 endwith
 h1 = var_Items.InsertItem(h,0,"Item 1")
 var_Items.AddBar(h1,"Task","01/02/2001","01/04/2001")
 h1 = var_Items.InsertItem(h,0,"Item 2")
 var_Items.AddBar(h1,"Task","01/03/2001","01/05/2001")
 h1 = var_Items.InsertItem(h,0,"Item 3")
 var_Items.AddBar(h1,"Task","01/04/2001","01/06/2001")
 var_Items.AddBar(h1,"Task","01/01/2001","01/03/2001","green")
 // var_Items.ItemBar(h1,"green",33) = 65280
 with (oG2antt)
 TemplateDef = [Dim var_Items,h1]
 TemplateDef = var_Items
 TemplateDef = h1
 Template = [var_Items.ItemBar(h1,"green",33) = 65280]
 endwith
 var_Items.AddBar(h1,"Task","01/08/2001","01/10/2001","red")
 // var_Items.ItemBar(h1,"red",33) = 255
 with (oG2antt)
 TemplateDef = [Dim var_Items,h1]
 TemplateDef = var_Items
 TemplateDef = h1
 Template = [var_Items.ItemBar(h1,"red",33) = 255]
 endwith
 // var_Items.ExpandItem(h) = true
 with (oG2antt)
 TemplateDef = [Dim var_Items,h]
 TemplateDef = var_Items
 TemplateDef = h
 Template = [var_Items.ExpandItem(h) = true]
 endwith
 var_Items.SelectAll()
oG2antt.EndUpdate()

XBasic (Alpha Five) Is it possible to define the bar colors, and have the cumulative
histogram showing the same colors?

Dim h as N

Dim h1 as N
Dim oG2antt as P
Dim var_Bar as P
Dim var_Chart as P
Dim var_Items as P

oG2antt = topparent:CONTROL_ACTIVEX1.activex
oG2antt.BeginUpdate()
oG2antt.SingleSel = .f.
var_Chart = oG2antt.Chart
 var_Chart.LevelCount = 2
 var_Chart.AllowLinkBars = .f.
 var_Chart.DrawGridLines = -1
 var_Chart.FirstVisibleDate = {12/29/2000}
 var_Chart.HistogramVisible = .t.
 var_Chart.HistogramHeight = 72
 ' var_Chart.PaneWidth(.f.) = 64
 oG2antt.TemplateDef = "Dim var_Chart"
 oG2antt.TemplateDef = var_Chart
 oG2antt.Template = "var_Chart.PaneWidth(False) = 64"

 var_Chart.HistogramView = 1298 'exHistogramSelectedItems +
exHistogramUnlockedItems + exHistogramLeafItems + exHistogramNoGrouping
 var_Bar = var_Chart.Bars.Item("Task")
 var_Bar.HistogramType = 256
 var_Bar.HistogramItems = 6
 var_Bar.HistogramPattern = var_Bar.Pattern
 var_Bar.HistogramCumulativeOriginalColorBars = 1
oG2antt.Columns.Add("Column")
var_Items = oG2antt.Items
 h = var_Items.AddItem("Project")
 ' var_Items.ItemBold(h) = .t.
 oG2antt.TemplateDef = "Dim var_Items,h"
 oG2antt.TemplateDef = var_Items
 oG2antt.TemplateDef = h
 oG2antt.Template = "var_Items.ItemBold(h) = True"

 ' var_Items.SelectableItem(h) = .f.
 oG2antt.TemplateDef = "Dim var_Items,h"
 oG2antt.TemplateDef = var_Items
 oG2antt.TemplateDef = h
 oG2antt.Template = "var_Items.SelectableItem(h) = False"

 h1 = var_Items.InsertItem(h,0,"Item 1")
 var_Items.AddBar(h1,"Task",{01/02/2001},{01/04/2001})
 h1 = var_Items.InsertItem(h,0,"Item 2")
 var_Items.AddBar(h1,"Task",{01/03/2001},{01/05/2001})
 h1 = var_Items.InsertItem(h,0,"Item 3")
 var_Items.AddBar(h1,"Task",{01/04/2001},{01/06/2001})
 var_Items.AddBar(h1,"Task",{01/01/2001},{01/03/2001},"green")
 ' var_Items.ItemBar(h1,"green",33) = 65280
 oG2antt.TemplateDef = "Dim var_Items,h1"
 oG2antt.TemplateDef = var_Items
 oG2antt.TemplateDef = h1
 oG2antt.Template = "var_Items.ItemBar(h1,\"green\",33) = 65280"

 var_Items.AddBar(h1,"Task",{01/08/2001},{01/10/2001},"red")
 ' var_Items.ItemBar(h1,"red",33) = 255
 oG2antt.TemplateDef = "Dim var_Items,h1"
 oG2antt.TemplateDef = var_Items
 oG2antt.TemplateDef = h1
 oG2antt.Template = "var_Items.ItemBar(h1,\"red\",33) = 255"

 ' var_Items.ExpandItem(h) = .t.
 oG2antt.TemplateDef = "Dim var_Items,h"
 oG2antt.TemplateDef = var_Items
 oG2antt.TemplateDef = h
 oG2antt.Template = "var_Items.ExpandItem(h) = True"

 var_Items.SelectAll()
oG2antt.EndUpdate()

Delphi 8 (.NET only) Is it possible to define the bar colors, and have the cumulative
histogram showing the same colors?

with AxG2antt1 do
begin
 BeginUpdate();
 SingleSel := False;
 with Chart do
 begin
 LevelCount := 2;
 AllowLinkBars := False;
 DrawGridLines := EXG2ANTTLib.GridLinesEnum.exAllLines;
 FirstVisibleDate := '12/29/2000';
 HistogramVisible := True;
 HistogramHeight := 72;
 PaneWidth[False] := 64;
 HistogramView :=
Integer(EXG2ANTTLib.HistogramViewEnum.exHistogramSelectedItems) Or
Integer(EXG2ANTTLib.HistogramViewEnum.exHistogramUnlockedItems) Or
Integer(EXG2ANTTLib.HistogramViewEnum.exHistogramLeafItems) Or
Integer(EXG2ANTTLib.HistogramViewEnum.exHistogramNoGrouping);
 with Bars.Item['Task'] do
 begin
 HistogramType := EXG2ANTTLib.HistogramTypeEnum.exHistCumulative;
 HistogramItems := 6;
 HistogramPattern := Pattern;
 HistogramCumulativeOriginalColorBars :=
EXG2ANTTLib.HistogramCumulativeOriginalColorBarsEnum.exKeepOriginalColor;
 end;
 end;
 Columns.Add('Column');
 with Items do
 begin
 h := AddItem('Project');
 ItemBold[h] := True;
 SelectableItem[h] := False;
 h1 := InsertItem(h,TObject(0),'Item 1');
 AddBar(h1,'Task','1/2/2001','1/4/2001',Nil,Nil);
 h1 := InsertItem(h,TObject(0),'Item 2');
 AddBar(h1,'Task','1/3/2001','1/5/2001',Nil,Nil);

 h1 := InsertItem(h,TObject(0),'Item 3');
 AddBar(h1,'Task','1/4/2001','1/6/2001',Nil,Nil);
 AddBar(h1,'Task','1/1/2001','1/3/2001','green',Nil);
 ItemBar[h1,'green',EXG2ANTTLib.ItemBarPropertyEnum.exBarColor] :=
TObject(65280);
 AddBar(h1,'Task','1/8/2001','1/10/2001','red',Nil);
 ItemBar[h1,'red',EXG2ANTTLib.ItemBarPropertyEnum.exBarColor] := TObject(255);
 ExpandItem[h] := True;
 SelectAll();
 end;
 EndUpdate();
end

Delphi (standard) Is it possible to define the bar colors, and have the cumulative histogram
showing the same colors?

with G2antt1 do
begin
 BeginUpdate();
 SingleSel := False;
 with Chart do
 begin
 LevelCount := 2;
 AllowLinkBars := False;
 DrawGridLines := EXG2ANTTLib_TLB.exAllLines;
 FirstVisibleDate := '12/29/2000';
 HistogramVisible := True;
 HistogramHeight := 72;
 PaneWidth[False] := 64;
 HistogramView := Integer(EXG2ANTTLib_TLB.exHistogramSelectedItems) Or
Integer(EXG2ANTTLib_TLB.exHistogramUnlockedItems) Or
Integer(EXG2ANTTLib_TLB.exHistogramLeafItems) Or
Integer(EXG2ANTTLib_TLB.exHistogramNoGrouping);
 with Bars.Item['Task'] do
 begin
 HistogramType := EXG2ANTTLib_TLB.exHistCumulative;
 HistogramItems := 6;

 HistogramPattern := Pattern;
 HistogramCumulativeOriginalColorBars :=
EXG2ANTTLib_TLB.exKeepOriginalColor;
 end;
 end;
 Columns.Add('Column');
 with Items do
 begin
 h := AddItem('Project');
 ItemBold[h] := True;
 SelectableItem[h] := False;
 h1 := InsertItem(h,OleVariant(0),'Item 1');
 AddBar(h1,'Task','1/2/2001','1/4/2001',Null,Null);
 h1 := InsertItem(h,OleVariant(0),'Item 2');
 AddBar(h1,'Task','1/3/2001','1/5/2001',Null,Null);
 h1 := InsertItem(h,OleVariant(0),'Item 3');
 AddBar(h1,'Task','1/4/2001','1/6/2001',Null,Null);
 AddBar(h1,'Task','1/1/2001','1/3/2001','green',Null);
 ItemBar[h1,'green',EXG2ANTTLib_TLB.exBarColor] := OleVariant(65280);
 AddBar(h1,'Task','1/8/2001','1/10/2001','red',Null);
 ItemBar[h1,'red',EXG2ANTTLib_TLB.exBarColor] := OleVariant(255);
 ExpandItem[h] := True;
 SelectAll();
 end;
 EndUpdate();
end

Visual Objects Is it possible to define the bar colors, and have the cumulative histogram
showing the same colors?

local var_Bar as IBar
local var_Chart as IChart
local var_Items as IItems
local h,h1 as USUAL

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:SingleSel := false

var_Chart := oDCOCX_Exontrol1:Chart
 var_Chart:LevelCount := 2
 var_Chart:AllowLinkBars := false
 var_Chart:DrawGridLines := exAllLines
 var_Chart:FirstVisibleDate := SToD("20001229")
 var_Chart:HistogramVisible := true
 var_Chart:HistogramHeight := 72
 var_Chart:[PaneWidth,false] := 64
 var_Chart:HistogramView := exHistogramSelectedItems | exHistogramUnlockedItems |
exHistogramLeafItems | exHistogramNoGrouping
 var_Bar := var_Chart:Bars:[Item,"Task"]
 var_Bar:HistogramType := exHistCumulative
 var_Bar:HistogramItems := 6
 var_Bar:HistogramPattern := var_Bar:Pattern
 var_Bar:HistogramCumulativeOriginalColorBars := exKeepOriginalColor
oDCOCX_Exontrol1:Columns:Add("Column")
var_Items := oDCOCX_Exontrol1:Items
 h := var_Items:AddItem("Project")
 var_Items:[ItemBold,h] := true
 var_Items:[SelectableItem,h] := false
 h1 := var_Items:InsertItem(h,0,"Item 1")
 var_Items:AddBar(h1,"Task",SToD("20010102"),SToD("20010104"),nil,nil)
 h1 := var_Items:InsertItem(h,0,"Item 2")
 var_Items:AddBar(h1,"Task",SToD("20010103"),SToD("20010105"),nil,nil)
 h1 := var_Items:InsertItem(h,0,"Item 3")
 var_Items:AddBar(h1,"Task",SToD("20010104"),SToD("20010106"),nil,nil)
 var_Items:AddBar(h1,"Task",SToD("20010101"),SToD("20010103"),"green",nil)
 var_Items:[ItemBar,h1,"green",exBarColor] := 65280
 var_Items:AddBar(h1,"Task",SToD("20010108"),SToD("20010110"),"red",nil)
 var_Items:[ItemBar,h1,"red",exBarColor] := 255
 var_Items:[ExpandItem,h] := true
 var_Items:SelectAll()
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder Is it possible to define the bar colors, and have the cumulative histogram
showing the same colors?

OleObject oG2antt,var_Bar,var_Chart,var_Items
any h,h1

oG2antt = ole_1.Object
oG2antt.BeginUpdate()
oG2antt.SingleSel = false
var_Chart = oG2antt.Chart
 var_Chart.LevelCount = 2
 var_Chart.AllowLinkBars = false
 var_Chart.DrawGridLines = -1
 var_Chart.FirstVisibleDate = 2000-12-29
 var_Chart.HistogramVisible = true
 var_Chart.HistogramHeight = 72
 var_Chart.PaneWidth(false,64)
 var_Chart.HistogramView = 1298 /*exHistogramSelectedItems |
exHistogramUnlockedItems | exHistogramLeafItems | exHistogramNoGrouping*/
 var_Bar = var_Chart.Bars.Item("Task")
 var_Bar.HistogramType = 256
 var_Bar.HistogramItems = 6
 var_Bar.HistogramPattern = var_Bar.Pattern
 var_Bar.HistogramCumulativeOriginalColorBars = 1
oG2antt.Columns.Add("Column")
var_Items = oG2antt.Items
 h = var_Items.AddItem("Project")
 var_Items.ItemBold(h,true)
 var_Items.SelectableItem(h,false)
 h1 = var_Items.InsertItem(h,0,"Item 1")
 var_Items.AddBar(h1,"Task",2001-01-02,2001-01-04)
 h1 = var_Items.InsertItem(h,0,"Item 2")
 var_Items.AddBar(h1,"Task",2001-01-03,2001-01-05)
 h1 = var_Items.InsertItem(h,0,"Item 3")
 var_Items.AddBar(h1,"Task",2001-01-04,2001-01-06)
 var_Items.AddBar(h1,"Task",2001-01-01,2001-01-03,"green")
 var_Items.ItemBar(h1,"green",33,65280)
 var_Items.AddBar(h1,"Task",2001-01-08,2001-01-10,"red")
 var_Items.ItemBar(h1,"red",33,255)
 var_Items.ExpandItem(h,true)

 var_Items.SelectAll()
oG2antt.EndUpdate()

constants HistogramTypeEnum
The HistogramTypeEnum type specifies the types of the histogram that currently the control
supports. Use the HistogramType property to specify the histogram-graph to be displayed
for a specified type of bar.

Changes the HistogramPattern or/and HistogramColor property, else no bars will be
shown in the histogram.

Use the HistogramBorderColor property to define the color to draw the frame arround the
histogram from rectangular patterns, or the color to show the curve, when non-rectangular
values are used for HistogramPattern property. The HistogramBorderSize property defines
the size of the curve when showing in the histogram. Use the ResizeScaleUnit property to
refine the histogram based on the resizing unit. Use the HistogramCriticalValue property to
define a critical value. Use the HistogramCriticalColor property to define the color to show
the values in the histogram greater than critical values. Use the HistogramRulerLinesColor
property to specify the color to show the ruler in the left part of the histogram.

Name Value Description

exHistOverload 0

The histogram shows the overloads and subloads
of your current planning situation. The histogram-
graph shows the count of specified tasks day by
day, or unit by unit. Use the HistogramItems
property to specify the number of items being
displayed in the histogram. Use the
HistogramGridLinesColor property to specify the
color to show the grid lines in the histogram.

exHistOverAllocation 1

The histogram shows in percents, the over-
allocations of your current planning situation using
the effort of the task divided by the length of the
task (effort/length). The exHistOverAllocation flag
can be combined with exHistOverAllocationFixed or
exHistOverAllocationMultiply. The work-load for a
task is computed as exBarEffort / length of the bar.
The work-load for the task is the work effort / task
duration. (i.e. If item.exBarEffort = 1 and bar's
length is 10 days, then the work-load = 0.1 or
10%). The histogram- graph shows the sum of the
work-loads (the work-load of each task item is
added, unit by unit).

The bars in the histogram shows cumulative colors.
The exHistCumulative can be applied to
exHistOverload and exHistOverAllocation values.
For instance, the exHistOverAllocation +
exHistCumulative defines a cumulative histogram for
exHistOverAllocation type. The
HistogramCumulativeColors property defines the
number of colors being displayed in the cumulative
histogram. The HistogramCumulativeColor property
specifies a cumulative color based on its index. Use
the HistogramCumulativeShowLegend property to
specify whether the index of the column being
shown in the left side of the histogram to show the
legend of the colors being used for cumulative bars.
The HistogramPattern property should not be a
curve, in order to show a cumulative histogram, in
other words should be a predefined pattern. You
can change the original color of the bars that
generates the cumulative histogram using the
HistogramCumulativeOriginalColorBars property.

The following screen shot shows the bars using the
original color in the items that generates the
histogram (when
HistogramCumulativeOriginalColorBars property is

exHistCumulative 256

-1 (True), by default). All bars in the same item
does not change their color, instead the reflection of
the bar in the histogram gets a cumulative color.

The following screen shot shows the bars that
generates the cumulative histogram using
cumulative colors when
HistogramCumulativeOriginalColorBars property is
0 (False). All bars in the same item gets a
cumulative color.

The following screen shot shows the bars that
generates the cumulative histogram using

cumulative colors when
HistogramCumulativeOriginalColorBars property is
1 (exKeepOriginalColor). The bars keeps their
original color in the histogram.

exHistOverAllocationFixed 512

The histogram shows in percents, the over-
allocations of your current planning situation using
the effort of the task (effort). The
exHistOverAllocationFixed can be combined with
the exHistOverAllocation flag only.

exHistOverAllocationMultiply 1024

The histogram shows in percents, the over-
allocations of your current planning situation using
the effort of the task multiplied by the length of the
task (effort * length). The exHistOverAllocationFixed
can be combined with the exHistOverAllocation flag
only.

constants HistogramViewEnum
The HistogramViewEnum type specifies the items being included in the histogram. Use the
HistogramView property to specify the items or bars being displayed in the histogram. The
HistogramViewEnum type supports the following values:

Name Value Description

exHistogramVisibleItems 1

The histogram is shown for the visible items only.
The Histogram is updated as soon as the control
changes its first visible item (FirstVisibleItem,
NextVisibleItem and IsItemVisible properties
determines the items to be included in the
histogram), in other words the control gets
vertically scrolled. This flag can be combined with

exHistogramLeafItems
exHistogramRecLeafItems
exHistogramNoGrouping

The histogram is shown for the selected items only
(SelectCount, SelectedItem property determines
the items to be shown in the chart's histogram).
Use the SingleSel property to specify whether the
control can select multiple items. Use the
SelectOnClick property to disable selecting new
items when the user clicks the chart area. The
Histogram is updated as soon as the selection is

exHistogramSelectedItems 2

changed. This flag can be combined with:

exHistogramLeafItems
exHistogramRecLeafItems
exHistogramNoGrouping

exHistogramCheckedItems 4

The histogram is shown for the checked items only.
You must combine this with
exHistogramUnlockedItems,
exHistogramLockedTopItems or
exHistogramLockedBottomItems. The CellState
property specifies the state of the cell / item. The
histogram includes only items that have the
CellState property on 1 (locked and unlocked items
). By default, the check box should be on the first
column (the column with the index 0). Use the high
word of the HistogramView property to specify a
different column. For instance, if you need to
display the histogram based on the check boxes of
the column index 5, the HistogramView property
should be 0x50000 + exHistogramCheckedItems
+ exHistogramUnlockedItems. Another sample, if
the HistogramView property is
exHistogramCheckedItems +
exHistogramLockedBottomItems the histogram
shows only the checked items in the bottom locked
area. The Histogram is updated as soon as the
user changes the state of the cell's check box. This

flag can be combined with:

exHistogramLeafItems
exHistogramRecLeafItems
exHistogramNoGrouping

exHistogramFilteredItems 128

The histogram is shown for the filtered items only.
The Histogram is updated as soon as the user
changes the control's filter. This flag can be
combined with:

exHistogramLeafItems
exHistogramRecLeafItems
exHistogramNoGrouping

exHistogramSelectedBars 8

The histogram is shown for the selected bars only.
The ItemBar(exBarSelected) property specifies
whether a bar is selected or unselected. The
ChartSelectionChanged event notifies the
application once a new bar is selected or
unselected.

The histogram is shown only for unlocked items.
Use the AddItem/InsertItem methods to add
unlocked items. This option can be combined with
exHistogramCheckedItems,
exHistogramLockedTopItems or

exHistogramUnlockedItems 16 exHistogramLockedBottomItems. For instance, if
the HistogramView property is
exHistogramUnlockedItems +
exHistogramLockedTopItems the histogram shows
all the items in the unlocked plus the items in the
top locked area.

exHistogramLockedTopItems 32

The histogram is shown only for locked items in the
top side of the control. Use the LockedItemCount
property to specify how many items are in the
locked area. This option can be combined with
exHistogramCheckedItems,
exHistogramUnlockedItems or
exHistogramLockedBottomItems. For instance, if
the HistogramView property is
exHistogramUnlockedItems +
exHistogramLockedTopItems the histogram shows
all the items in the unlocked plus the items in the
top locked area.

exHistogramLockedBottomItems64

The histogram is shown only for locked items in the
bottom side of the control. Use the
LockedItemCount property to specify how many
items are in the locked area. This option can be
combined with exHistogramCheckedItems,
exHistogramUnlockedItems or
exHistogramLockedTopItems. For instance, if the
HistogramView property is
exHistogramUnlockedItems +
exHistogramLockedBottomItems the histogram
shows all the items in the unlocked plus the items
in the bottom locked area.

The histogram is shown for all items, locked and
unlocked items too. The exHistogramAllItems is a
shortcut for the exHistogramUnlockedItems +
exHistogramLockedTopItems +
exHistogramLockedBottomItems. This flag can be
combined with:

exHistogramLeafItems
exHistogramRecLeafItems
exHistogramNoGrouping

exHistogramAllItems 112

exHistogramLeafItems 256

The histogram shows the bars for leaf items, in
other words, the item itself if contains no child
items, or all child items that contains no other child
items. Use this flag to include in the histogram the
bars in the child items too.

exHistogramRecLeafItems 512

The histogram shows all bars for all recursive leaf
items, so all child leaf items are displayed. Use this
flag to include in the histogram the bars in all child
items (recursively) too.
(exHistogramNoGrouping/1024) If present, the
histogram shows all bars without grouping based on

exHistogramNoGrouping 1024

the item's parent, and so all bars shares the same
space for the histogram. If missing, the bars
included in the histogram are grouped based on
their parents, and each group has allocated a
space in the histogram, so each group is shown
separately. The exHistogramNoGrouping flag can
not be combined with exHistogramNoGroupCaption
or exHistogramGroupCumulative flag.

The following screen shot shows the histogram
grouped by parent items (exHistogramNoGrouping
is not used):

The following screen shot shows the histogram
without grouping (exHistogramNoGrouping is
used):

exHistogramBackground 2048

(exHistogramBackground/2048) The histogram's
chart goes on the background, while the non-
working part is shown on front (erases the non-
working parts).

The following screen shot shows the histogram with
the exHistogramBackground flag set (histogram on
background):

while the following shows the same histogram with
no exHistogramBackground flag (histogram on
front):

exHistogramNoGroupCaption 4096

(exHistogramNoGroupCaption/4096) The histogram
shows no caption for groups being shown. The
exHistogramNoGroupCaption flag has no effect if
the exHistogramNoGrouping flag is set.

The following screen shot shows shows the group
captions when exHistogramNoGroupCaption flag is
not set:

exHistogramGroupCumulative 8192

(exHistogramGroupCumulative/8192) The histogram
shows cumulative groups. The
exHistogramGroupCumulative flag has no effect if
the exHistogramNoGrouping flag is set. The
HistogramCumulativeColors property of the Bar
indicates the number of colors that can be used in
the representation. The HistogramCumulativeColor
property of the Bar specifies the color to be used in
the representation.

The following screen shot shows shows the
histogram when the exHistogramGroupCumulative
flag is set:

Sample 1, will display the histogram for all Task bars:

With G2antt1
 .BeginUpdate
 .SingleSel = False
 With .Chart
 .FirstVisibleDate = #1/1/2001#
 .LevelCount = 2
 .HistogramVisible = True
 .HistogramHeight = 32
 .HistogramView = 112
 .Bars.Item("Task").HistogramPattern = 6
 End With
 .Columns.Add "Column"
 With .Items
 .AddBar .AddItem("Item 1"),"Task",#1/2/2001#,#1/4/2001#
 .AddBar .AddItem("Item 2"),"Task",#1/3/2001#,#1/7/2001#
 End With
 .EndUpdate
End With

This sample displays the histogram for all Task bars no matter if the selected items/bars is
changed.

Sample 2, will display the histogram for Task bars in the selected items only:

With G2antt1

 .BeginUpdate
 .SingleSel = False
 With .Chart
 .FirstVisibleDate = #1/1/2001#
 .HistogramVisible = True
 .HistogramView = 2
 .HistogramHeight = 32
 .Bars.Item("Task").HistogramPattern = 6
 End With
 .Columns.Add "Column"
 With .Items
 .AddBar .AddItem("Item 1"),"Task",#1/3/2001#,#1/5/2001#
 .AddBar .AddItem("Item 2"),"Task",#1/4/2001#,#1/7/2001#
 .AddBar .AddItem("Item 3"),"Task",#1/2/2001#,#1/6/2001#
 .SelectAll
 End With
 .EndUpdate
End With

This sample displays the histogram for all Task bars in the selected items. Run the sample
and selects one or multiple items. The histogram is shown for bars in the selected items
only.

Sample 3, will display the histogram for selected Task bars only:

With G2antt1
 .BeginUpdate
 With .Chart
 .LevelCount = 2
 .PaneWidth(False) = 64
 .FirstVisibleDate = #1/1/2001#
 .HistogramVisible = True
 .HistogramView = 8
 .HistogramHeight = 32
 .Bars.Item("Task").HistogramPattern = 6
 End With
 .Columns.Add "Column"
 With .Items

 .AddBar .AddItem("Item 1"),"Task",#1/3/2001#,#1/5/2001#,1
 .AddBar .AddItem("Item 2"),"Task",#1/4/2001#,#1/7/2001#,2
 .AddBar .AddItem("Item 3"),"Task",#1/2/2001#,#1/6/2001#,3
 .ItemBar(0,2,257) = True
 .ItemBar(0,3,257) = True
 End With
 .EndUpdate
End With

This sample displays the histogram for all Task bars in the selected items. Run the sample
and selects one or multiple items. The histogram is shown for bars in the selected items
only.

Sample 4, will display the histogram for checked Task bars only:

With G2antt1
 With .Chart
 .FirstVisibleDate = #1/1/2001#
 .HistogramVisible = True
 .HistogramHeight = 32
 .HistogramView = 276
 .Bars.Item("Task").HistogramPattern = 6
 End With
 .Columns.Add "Column"
 With .Items
 h = .AddItem("Project")
 .CellHasCheckBox(h,0) = True
 .AddBar .InsertItem(h,0,"Item 1"),"Task",#1/2/2001#,#1/4/2001#
 .AddBar .InsertItem(h,0,"Item 2"),"Task",#1/3/2001#,#1/7/2001#
 .ExpandItem(h) = True
 End With
End With

This sample displays the histogram for all Task bars in the checked items. Run the sample
and check one or multiple items..

Sample 5, displays the non-working pattern over the bars:

With G2antt1

 .BeginUpdate
 .Columns.Add "Tasks"
 With .Chart
 .NonworkingDaysPattern = exPatternBDiagonal
 .NonworkingDaysColor = RGB(0,0,0)
 .PaneWidth(0) = 40
 .FirstVisibleDate = #6/20/2005#
 .HistogramVisible = True
 .HistogramHeight = 64
 .HistogramView = HistogramViewEnum.exHistogramUnlockedItems Or
HistogramViewEnum.exHistogramLockedTopItems Or
HistogramViewEnum.exHistogramLockedBottomItems Or
HistogramViewEnum.exHistogramBackground
 .LevelCount = 2
 With .Bars
 With .Add("Empty")
 .Color = RGB(0,0,0)
 .Pattern = exPatternFDiagonal
 .Shape = exShapeSolidFrameless
 End With
 With .Add("Task:Empty")
 .Shortcut = "Task"
 .HistogramItems = -5
 .HistogramCriticalValue = 3
 .HistogramType = exHistOverload
 .HistogramPattern = .Pattern
 .Def(exBarCaption) = "<%=%258%> working days bar"
 .Def(exBarHAlignCaption) = 18
 .Def(exBarKeepWorkingCount) = True
 End With
 End With
 .UnitWidthNonworking = -12
 .Level(1).FormatLabel = "weekday(dvalue) in (0,6) ? `` : value"
 End With
 With .Items
 .AddBar .AddItem("Task A"),"Task",#6/23/2005#,#6/29/2005#,""
 .AddBar .AddItem("Task B"),"Task",#6/24/2005#,#6/28/2005#,""

 End With
 .EndUpdate
End With

constants HitTestInfoEnum
The HitTestInfoEnum expression defines the hit area within a cell. Use the ItemFromPoint
property to determine the hit test code within the cell.

Name Value Description
exHTCell 0 In the cell's client area.

exHTExpandButton 1
In the +/- button associated with a cell. The
HasButtons property specifies whether the cell
displays a +/- sign to let user expands the item.

exHTCellIndent 2

In the indentation associated with a cell. The Indent
property retrieves or sets the amount, in pixels, that
child items are indented relative to their parent
items.

exHTCellInside 4 On the icon, picture, check or caption associated
with a cell.

exHTCellCaption 20 (HEXA 14) In the caption associated with a cell.
The CellValue property specifies the cell's value.

exHTCellCheck 36

(HEXA 24) In the check/radio button associated
with a cell. The CellHasCheckBox or
CellHasRadioButton property specifies whether the
cell displays a checkbox or a radio button.

exHTCellIcon 68
(HEXA 44) In first icon associated with a cell. The
CellImage or CellImages property specifies the
cell's icon displayed next to the cell's caption.

exHTCellPicture 132 (HEXA 84)In a picture associated to a cell.

exHTCellCaptionIcon 1044

(HEXA 414) In the icon's area inside the cell's
caption. The tag inserts an icon inside the
cell's caption. The tag is valid only if the
CellValueFormat property exHTML

exHTBottomHalf 2048

(HEXA 800) The cursor is in the bottom half of the
row. If this flag is not set, the cursor is in the top
half of the row. This is an OR combination with the
rest of predefined values. For instance, you can
check if the cursor is in the bottom half of the row
using HitTestCode AND 0x800

exHTBetween 4096

(HEXA 1000) The cursor is between two rows. This
is an OR combination with the rest of predefined
values. For instance, you can check if the cursor is

between two items using HitTestCode AND 0x1000

exHTItemChart 256 (HEXA 100) The cursor is in the chart's area over
an item.

constants LevelLineEnum
The LevelLineEnum type specifies the style of lines being shown in the chart's levels. Use
the DrawLevelSeparator, DrawTickLines and DrawTickLinesFrom properties to show or
hide lines in the chart's header. For instance, if the DrawTickLines property is
exLevelSolidLine + exLevelMiddleLine, the level shows tick lines in the middle part of the
time unit. The DrawTickLines and DrawTickLinesFrom properties draw vertically the lines,
while the DrawLevelSeparator property draw horizontally the line. The LevelLineEnum type
supports the following values.

Name Value Description
exLevelNoLine 0 No line is shown.
exLevelDefaultLine -1 The default line indicates a dotted line.

exLevelDotLine 1

Indicates a dotted line. For vertical/tick lines, it can
be combined with exLevelLowerHalf,
exLevelUpperHalf or exLevelMiddleLine. Can be
combined with exLevelLowerHalf,
exLevelUpperHalf or exLevelMiddleLine option.

exLevelSolidLine 2

Indicates a solid line. For vertical/tick lines, it can be
combined with exLevelLowerHalf, exLevelUpperHalf
or exLevelMiddleLine. Can be combined with
exLevelLowerHalf, exLevelUpperHalf or
exLevelMiddleLine option.

exLevelLowerHalf 16
Indicates that the line is shown in the lower half of
the level. For vertical/tick lines, it can be combined
with exLevelDotLine or exLevelSolidLine

exLevelUpperHalf 32
Indicates that the line is shown in the upper half of
the level. For vertical/tick lines, it can be combined
with exLevelDotLine or exLevelSolidLine

exLevelMiddleLine 64
Indicates that the line is shown in the middle. For
vertical/tick lines, it can be combined with
exLevelDotLine or exLevelSolidLine

exLevelQuarterHeight 256

Indicates that the line is shown as a quarter of the
full height. Specify the exLevelQuarterHeight option
to show shorter tick lines in the chart's level. Can be
combined with exLevelLowerHalf,
exLevelUpperHalf or exLevelMiddleLine option.

constants LinesAtRootEnum
Defines how the control displays the lines at root. The LinesAtRoot property defines the
way the tree lines are shown. The HasLines property defines the type of the line to be
shown. The HasButtons property defines the expand/collapse buttons for parent items.

The LinesAtRootEnum type support the following values:

Name Value Description

exNoLinesAtRoot 0

No lines at root items.

exLinesAtRoot -1

The control links the root items.

The control shows no links between roots, and
divides them as being in the same group.

exGroupLinesAtRoot 1

exGroupLines 2

The lines between root items are no shown, and the
links show the items being included in the group.

exGroupLinesInside 3

The lines between root items are no shown, and the
links are shown between child only.

The lines between root items are no shown, and the
links are shown for first and last visible child item.

exGroupLinesInsideLeaf 4

exGroupLinesOutside 5

The lines between root items are no shown, and the
links are shown for first and last visible child item. A
parent item that contains flat child items only, does
not indent the child part. By a flat child we mean an
item that does not contain any child item.

constants LinkPropertyEnum
Use the Link property to access a specified link. The AddLink method can be used to add
links programmatically. The AllowLinkBars property indicates whether the user can link bars
at runtime. The AllowLink event notifies your application when the user creates a link at
runtime. The AddLink event notifies your application once the user adds a link between two
bars. The ShowLinksColor property specifies the color for links that starts or ends on
selected bars. The ShowLinksStyle property specifies the width to show the links when the
link starts from selected bar, ends on selected bar, or when it is not related to any of
selected bars. The SelBarColor property specifies the color to display the selected bars.

The /NET Assembly version defines get/set shortcut properties as follow (they start with
get_ or set_ keywords):

LinkStartItem : Integer, retrieves or sets a value that indicates the handle of the item
where the link start
LinkStartBar : Object, retrieves or sets a value that indicates the key of the bar where
the link starts
LinkEndItem : Integer, retrieves or sets a value that indicates the handle of the item
where the link ends
LinkEndBar : Object, retrieves or sets a value that indicates the key of the bar where
the link ends
LinkVisible : Boolean, specifies whether the link is visible or hidden
LinkUserData : Object, specifies an extra data associated with the link
LinkStartPos : AlignmentEnum, specifies the position where the link starts in the
source item
LinkEndPos : AlignmentEnum, specifies the position where the link ends in the target
item
LinkColor : Color, specifies the color to paint the link
LinkArrowColor : Color, specifies the color to paint the arrow of the link
LinkArrowColor32 : Color, specifies the color to paint the arrow of the link
LinkStyle : LinkStyleEnum, specifies the style to paint the link
LinkWidth : Integer, specifies the width in pixels of the link
LinkShowDir : Boolean, specifies whether the link shows the direction
LinkShowRound : Boolean, specifies whether the link is round or rectangular
LinkText : String, specifies the HTML text being displayed on the link
LinkToolTip : String, specifies the HTML text being shown when the cursor hovers the
link
LinkSelected : Boolean, specifies whether the link is selected or unselected
LinkGroupBars : GroupBarsOptionsEnum, groups or ungroups the bars being linked
with the specified options
LinkKey : renames the link's key
LinkType : defines the link's type as SF, FS, FF or SS

LinksCount : Integer, specifies the number of the links within the chart

The link between two bars supports the following properties:

Name Value Description

exLinkStartItem 0

Retrieves or sets a value that indicates the handle
of the item where the link start. A HITEM
expression (long), that indicates the handle of the
item where the link starts.

(Long/HITEM expression)

exLinkStartBar 1

Retrieves or sets a value that indicates the key of
the bar where the link starts. A String expression
that indicates the key of the bar where the link
starts.

(Variant expression)

exLinkEndItem 2

Retrieves or sets a value that indicates the handle
of the item where the link ends. A HITEM
expression (long), that indicates the handle of the
item where the link ends.

(Long/HITEM expression)

exLinkEndBar 3

Retrieves or sets a value that indicates the key of
the bar where the link ends. A String expression
that indicates the key of the bar where the link
ends.

(Variant expression)

exLinkVisible 4

By default, the exLinkVisible property is True.
Specifies whether the link is visible or hidden. A
Boolean expression that indicates whether the link
is visible or hidden. Use the ShowLinks property to
hide all links in the control.

(Boolean expression)

Specifies an extra data associated with the link.

exLinkUserData 5
Use the exLinkUserData option to associate an
extra data to your link.

(Variant expression)

exLinkStartPos 6

By default, the exLinkStartPos property is
2(RightAlignment). Specifies the position where the
link starts in the source item. An AlignmentEnum
expression that indicates the position where the link
starts. The exLinkType property defines the link's
type as SF, FS(default), FF or SS. The
exLinkShowRound property specifies whether the
link is shown as round, rectangular, direct or
straight.

Links start from right and end on the left part of the
bar:

Links start from center and end on right part of the
bar:

 A link between two bars is:

SF (Start-Finish), if the exLinkStartPos is
0(Left) and exLinkEndPos is 2(Right)
FS (Finish-Start), if the exLinkStartPos is
2(Right) and exLinkEndPos is 0(Left) (default)
FF (Finish-Finish), if the exLinkStartPos is
2(Right) and exLinkEndPos is 2(Right)
SS (Start-Start), if the exLinkStartPos is
0(Left) and exLinkEndPos is 0(Left)

The SchedulePDM method arranges the activities
on the plan based on the links / relationships /
dependencies.

(AlignmentEnum expression)

exLinkEndPos 7

By default, the exLinkEndPos property is 0
(LeftAlignment). Specifies the position where the
link ends in the target item. An AlignmentEnum
expression that indicates the position where the link
ends. The exLinkType property defines the link's
type as SF, FS(default), FF or SS. The
exLinkShowRound property specifies whether the
link is shown as round, rectangular, direct or
straight.

Links start on right and end on the left part of the
bar(default):

Links start on right and end on the center part of
the bar:

A link between two bars is:

SF (Start-Finish), if the exLinkStartPos is
0(Left) and exLinkEndPos is 2(Right)
FS (Finish-Start), by default, if the
exLinkStartPos is 2(Right) and exLinkEndPos is
0(Left)
FF (Finish-Finish), if the exLinkStartPos is
2(Right) and exLinkEndPos is 2(Right)
SS (Start-Start), if the exLinkStartPos is
0(Left) and exLinkEndPos is 0(Left)

The SchedulePDM method arranges the activities
on the plan based on the links / relationships /
dependencies.

(AlignmentEnum expression)

By default, the exLinkColor property is -1
(0xFFFFFFFF). Specifies the color to paint the
link.If the exLinkColor property is -1, the control
uses the LinksColor property to show the link. If the

exLinkColor 8

exLinkColor property is not -1, it indicates the color
to draw the link. Use the exLinkArrowColor property
to specify a different color to show the link's arrow.
The ShowLinksColor property specifies the color to
show the links when a bar is being selected.

Links show same color:

Links show different colors:

(Long/Color expression)

exLinkStyle 9

By default, the exLinkStyle property is -1. Specifies
the style to paint the link. A LinkStyleEnum
expression that indicates the style of the link
between two bars. If the exLinkStyle property is -1,
the LinksStyle property specifies the style of the
link. The ShowLinksStyle property specifies the
width to show the links when the link starts from
selected bar, ends on selected bar, or when it is not
related to any of selected bars.

Links show default style:

Links show different styles:

(LinkStyleEnum expression)

By default, the exLinkWidth property is -1. Specifies
the width in pixels of the link. A long expression that
indicates the width of the pen, in pixels, to draw the

exLinkWidth 10

link between two bars. If the exLinkWidth property
is -1, the LinksWidth property indicates the width of
the link. The ShowLinksWidth property specifies the
width to show the links when the link starts from
selected bar, ends on selected bar, or when it is not
related to any of selected bars.

Links show with different widths:

(Long/Color expression)

exLinkShowDir 11

By default, the exLinkShowDir property is True.
Specifies whether the link shows the direction. A
Boolean expression that indicates whether the
arrow in the link that specifies the direction, is
visible or hidden.

Links show no direction (no arrow, False):

(Boolean expression)

exLinkText 12

By default, the exLinkText property is empty, and so
the link displays no text or picture. Specifies the
HTML text being displayed on the link. Use the
 tag to display an icon or a custom size
picture on the link. Use the HTMLPicture property to
include custom size picture to HTML captions.

The link shows a caption on: (word
<bgcolor=FFFFFF><a>Link</bgcolor>):

(String expression)

By default, the exLinkToolTip property is empty, and

exLinkToolTip 13

so nothing is shown when cursor is hovering the
link. Specifies the HTML text being shown when the
cursor hovers the link. Use the element to
specify a different font or size for the tooltip, or use
the ToolTipFont property to specify a different font
or size for all tooltips in the control. The Tooltip(0,
-3, , , , ,) event occurs once the link's tooltip
(exLinkToolTip) is about to be shown (-3 if the
mouse pointer hovers the links of the chart).

(String expression)

exLinkArrowColor 14

By default, the exLinkArrowColor is -1 (
0xFFFFFFFF) which indicates that the exLinkColor
property indicates the color to show the link's arrow
(same color as the link itself). Specifies the color to
show the link's arrow. If the exLinkArrowColor is not
-1, it indicates the color to display the arrow of the
link or if the the last 7 bits in the high significant byte
of the color indicates the identifier of the skin being
used to show the arrow. Use the Add method to
add new skins to the control.

The arrow or the direction of the Link is displayed
with a solid color:

The arrow or the direction of the Link is displayed
with an EBN color:

(Long/Color/EBN expression)

By default, the exLinkShowRound property is 0,
which indicates that the link is displayed
rectangular. Specifies whether the link is shown as
round, rectangular, direct or straight. The
exLinkStartPos and exLinkEndPos defines the
position/side of the bar where the link

exLinkShowRound 15

starts/ends. The exLinkType property defines the
link's type as SF, FS(default), FF or SS.

The exLinkShowRound property supports the
following values/types:

-1 (round)

0 (rectangular, starts horizontally, ends
horizontally, default)

3 (rectangular EV, starts horizontally, ends
vertically)

4 (rectangular SV, starts vertically, ends
horizontally)

5 (rectangular SEV, starts vertically, ends
vertically)

1 (direct)

2 (straight)

(Long expression, valid values are -1, 0, 1, 2, 3, 4
and 5)

exLinkPDMWorkingDelay 16

By default, the exLinkPDMWorkingDelay is 0.
Specifies the working delay for the activity during
PDM scheduling. This property specifies the
number of working days between two linked bars.
The property keeps count on the non-working area
of the chart. The SchedulePDM method uses the
exLinkPDMWorkingDelay property when arranging
bars, if it is not zero. For instance, if the bar A links
to bar B using a FS (Finish-Start type), and the
exLinkPDMWorkingDelay property is 2 (working
days), it means the bar B starts 2 working days
after activity A ends. Use the exLinkPDMDelay
proeprty to specify the LAG in days, rather than
working days. Only one of these 2 properties have
effect at once. The first non-zero value in order of
exLinkPDMWorkingDelay, exLinkPDMDelay is used
by SchedulePDM method. For instance, if both
properties are set to 2, the SchedulePDM
takes/considers exLinkPDMWorkingDelay as
primary, and ignores the other.

The following screen shot shows a LAG of 3
working days:

(Double expression)

By default, the exLinkPDMDelay is 0. Specifies the
delay for the activity during PDM scheduling.
Specifies the delay for the activity during PDM

exLinkPDMDelay 17

scheduling. This property specifies the number of
days between two linked bars. The property does
not keeps count on the non-working area of the
chart. The SchedulePDM method uses the
exLinkPDMDelay property when arranging bars, if it
is not zero. For instance, if the bar A links to bar B
using a FS (Finish-Start type), and the
exLinkPDMWorkingDelay property is 2 (days), it
means the bar B starts 2 days after activity A ends.
The first non-zero value in order of
exLinkPDMWorkingDelay, exLinkPDMDelay is used
by SchedulePDM method. For instance, if both
properties are set to 2, the SchedulePDM
takes/considers exLinkPDMWorkingDelay as
primary, and ignores the other.

The following screen shot shows a LAG of 3 days:

(Double expression)

exLinkSelected 257

By default, the exLinkSelected is False. Specifies
whether the link is selected or unselected.The
AllowSelectObjects property allows users to select
at runtime the bars and links in the chart area. The
ChartSelectionChanged event is fired when the
selection in the chart is changed. The
ShowLinksColor property specifies the color to
show the links when a bar is being selected. The
ShowLinksWidth property specifies the width to
show the links when the link starts from selected
bar, ends on selected bar, or when it is not related
to any of selected bars. The ShowLinksStyle
property specifies the width to show the links when
the link starts from selected bar, ends on selected
bar, or when it is not related to any of selected
bars.

(Boolean expression)

exLinkGroupBars 258

Groups or ungroup the bars being linked with the
specified options . For instance. this option is
equivalent with grouping the end of starting bar with
the start of the ending bar of the link. For instance,
the .Link(LinkKey, exLinkGroupBars) =
GroupBarsOptionsEnum.exPreserveBarLength +
GroupBarsOptionsEnum.exFlexibleInterval +
GroupBarsOptionsEnum.exIgnoreOriginalInterval
is equivalent with .GroupBars .Link(LinkKey,
exLinkStartItem), .Link(LinkKey, exLinkStartBar),
False, .Link(LinkKey, exLinkEndItem),
.Link(LinkKey, exLinkEndBar), True,
GroupBarsOptionsEnum.exPreserveBarLength +
GroupBarsOptionsEnum.exFlexibleInterval +
GroupBarsOptionsEnum.exIgnoreOriginalInterval.
The GroupBars method groups two bars. If calling
the set property, the value of the exLinkGroupBars
option can be a a long expression that specifies a
combination of GroupBarsOptionsEnum type, or a
string expression in format
groupbarsoptions;options, where the first argument
indicates the value of GroupBarsOptionsEnum type,
since the rest of asguments, are passed to Options
parameter of the GroupBars method to specify a
fixed interval, a minimum interval value and so on.
The AddLink event notifies your application once the
user adds a link between two bars.

The following VB sample groups the bars being
linked:

Private Sub G2antt1_AddLink(ByVal LinkKey As
String)
 With G2antt1.Items
 .Link(LinkKey, exLinkGroupBars) =
GroupBarsOptionsEnum.exFlexibleInterval Or
GroupBarsOptionsEnum.exPreserveBarLength Or
GroupBarsOptionsEnum.exIgnoreOriginalInterval
 End With
End Sub

The following C# sample groups the bars being
linked:

private void exg2antt1_AddLink(object sender,
string LinkKey)
{
 exg2antt1.Items.set_LinkGroupBars(LinkKey,
exontrol.EXG2ANTTLib.GroupBarsOptionsEnum.exFlexibleInterval
 |

exontrol.EXG2ANTTLib.GroupBarsOptionsEnum.exIgnoreOriginalInterval
 |

exontrol.EXG2ANTTLib.GroupBarsOptionsEnum.exPreserveBarLength);

}

Once the user moves a grouped bar, the relative
bar is moved resized accordingly with the grouping
options.

(GroupBarsOptionsEnum expression)

exLinkKey 259

Changes the key of the giving link. The get function
retrieves the link's key if the link is found, else it
returns an empty string. You can use the
get_LinkKey function to check if a specified link is
found or not. The set function may be used to
rename the key of the link, when AddLink event is
fired. The key of the link may be changed if the new
key is available, in other words, if there is no other
link with the new key.

(String expression)

By default the exLinkType property is 2 (FS or
Finish-Start). The exLinkStartPos / exLinkEndPos
defines the position/side of the bar the link starts or
ends. The exLinkType property depends on
exLinkStartPos / exLinkEndPos properties, to

exLinkType 260

define the link's type as one of the following values:

1 (Start to Finish (SF), the exLinkStartPos is
0(Left) and exLinkEndPos is 2(Right))
2 (Finish to Start (FS), the exLinkStartPos is
2(Right) and exLinkEndPos is 0(Left))
4 (Finish to Finish (FF), the exLinkStartPos is
2(Right) and exLinkEndPos is 2(Right))
8 (Start to Start (SS), the exLinkStartPos is
0(Left) and exLinkEndPos is 0(Left))

Tasks may have multiple predecessors or multiple
successors. Before you begin establishing
dependencies, it​s important to understand that
there are four types:

Finish to Start (FS), the predecessor ends
before the successor can begin
Start to Start (SS), the predecessor begins
before the successor can begin
Finish to Finish (FF), the predecessor ends
before the successor can end
Start to Finish (SF), the predecessor begins
before the successor can end

The SchedulePDM method arranges the activities
on the plan based on the links / relationships /
dependencies.

The Link(exLinkType) = value changes the link's
type to value, where value can be any of the
following values:

1 or "SF" to define a Start to Finish (SF) link,
changes the exLinkStartPos to 0(Left) and
exLinkEndPos to 2(Right)
2 or "FS" to define a Finish to Start (FS) link,
changes the exLinkStartPos to 2(Right) and
exLinkEndPos to 0(Left)
4 or "FF" to define a Finish to Finish (FF) link,
changes the exLinkStartPos to 2(Right) and
exLinkEndPos to 2(Right)
8 or "SS" to define a Start to Start (SS) link,
changes the exLinkStartPos to 0(Left) and

exLinkEndPos to 0(Left)

(Long expression)

exLinksCount 512

Specifies the number of the links within the chart.
This property requires no key to be invoked, so it
counts the number of links in your chart. Use the
FirstLink and NextLink properties to enumerate the
links in the control. For instance,
Items.Link(Nothing,exLinksCount) gets the number
of links in the chart.

(Long expression)

constants LinkStyleEnum
Use the LinksStyle property to specify the style of the pen to draw all links in the chart. Use
the Link(exLinkStyle) property to change the style for a specific link. Use the
Link(exLinkShowRound) property to show round links. Use the AntiAliasing property to
specify anti-aliasing rendering to show the links within the chart. The link can have one of
the following styles:

Name Value Description

exLinkSolid 0
The link

is solid.

exLinkDash 1
 The link

is dashed.

exLinkDot 2
 The link

is dotted.

exLinkDashDot 3
 The link

has alternating dashes and dots.

exLinkDashDotDot 4
 The link

has alternating dashes and double dots.

exLinkTDot 255 Default.
The link is dotted. This style is valid only when the
exLinkWidth is 1.

constants NoteLinkTypeEnum
The NoteLinkTypeEnum expression specifies whether the link between the parts of the note
is visible or hidden, whether the link is shown the direction between parts. The ShowLink
property specifies whether the note shows or hides the link between parts of the notes. Use
the PartVisible property to specify whether the start or ending part of the note is visible or
hidden. The LinkStyle property determines the style of the link between parts of the note.
The LinkColor property specifies the color of the link between parts of the notes, while the
LinkWidth property determines the width of the link between parts of the notes. The link
between parts of the note is shown if the ShowLink property includes the exNoteLinkVisible
flag, LinkWidth property is greater than 0, the start and end part of the note do not
intersect.

The following screen shows the link between starting and ending parts of the note:

Name Value Description
exNoteLinkHidden 0 The link between parts of the note is not shown.
exNoteLinkVisible 1 The link between parts of the note is shown.

exNoteLinkShowDirStartToEnd2 The link between parts of the note shows the
direction from start to end.

exNoteLinkShowDirEndToStart4 The link between parts of the note shows the
direction from end to start.

exNoteLinkStartToEnd 3 The link shows its direction and goes from start to
end.

exNoteLinkEndToStart 5 The link shows its direction and goes from end to
start.

constants NotePartEnum
The NotePartEnum expression determines the part of note being accessed, by properties
prefixed with Part, such as: PartCanMove, PartText, and so on.

The following screen shot shows (in red) the starting and ending part of a note:

The position of the starting part is relative to the associated object (DATE or BAR), while
the ending part is relative to the starting part. The NotePartEnum type contains the following
values:

Name Value Description
exNoteStart 0 Indicates the starting part of the note.
exNoteEnd 1 Indicates the ending part of the note.

constants NotesClipToEnum
The NotesClipToEnum type specifies how the chart's notes are clipped. The ClipTo property
specifies the chart's notes limits. The NotesClipToEnum type supports the following values:

Name Value Description

exNotesClipNone 0 (By default) Indicates that the notes are shown on
the chart with no clipping.

exNotesClipToList 1 Notes are clipped to list portion of the chart.
exNotesClipToItems 2 Notes are clipped to items portion of the chart.

constants InplaceAppearanceEnum
Defines the editor's appearance. Use the Appearance property to change the editor's
appearance. Use the PopupAppearance property to define the appearance of the editor's
drop-down window, if it exists.

Name Value Description
NoApp 0 No border
FlatApp 1 Flat appearance
SunkenApp 2 Sunken appearance
RaisedApp 3 Raised appearance
EtchedApp 4 Etched appearance
BumpApp 5 Bump appearance
ShadowApp 6 Shadow appearance
InsetApp 7 Inset appearance
SingleApp 8 Single appearance

constants NumericEnum
Use the Numeric property to specify the format of numbers when editing a field.

Name Value Description

exInteger -1

Allows editing numbers of integer type. The format
of the integer number is: [+/-]digit, where digit is
any combination of digit characters. This flag can
be combined with exDisablePlus, exDisableMinus or
exDisableSigns flags. For instance, the 0x3FF (hexa
representation, 1023 decimal) value indicates an
integer value with no +/- signs.

exAllChars 0 Allows all characters. No filtering.

exFloat 1

Allows editing floating point numbers. The format of
the floating point number is: [+/-
]digit[.digit[[e/E/d/D][+/-]digit]], where digit is any
combination of digit characters. Use the
exEditDecimalSymbol option to assign a new
symbol for '.' character (decimal values). This flag
can be combined with exDisablePlus,
exDisableMinus or exDisableSigns flags.

exFloatInteger 2

Allows editing floating point numbers without
exponent characters such as e/E/d/D, so the
accepted format is [+/-]digit[.digit]. Use the
exEditDecimalSymbol option to assign a new
symbol for '.' character (decimal values). This flag
can be combined with exDisablePlus,
exDisableMinus or exDisableSigns flags.

exDisablePlus 256
Prevents using the + sign when editing numbers. If
this flag is included, the user can not add any + sign
in front of the number.

exDisableMinus 512
Prevents using the - sign when editing numbers. If
this flag is included, the user can not add any - sign
in front of the number.

exDisableSigns 768

Prevents using the +/- signs when editing numbers.
If this flag is included, the user can not add any +/-
sign in front of the number. For instance
exFloatInteger + exDisableSigns allows editing
floating points numbers without using the exponent
and plus/minus characters, so the allowed format is

digit[.digit]

constants OnResizeControlEnum
The OnResizeControlEnum type specifies the parts of the controls being resized when the
control itself gets resized. Use the OnControlResize property to specify which part list or
chart of the control is getting resized once the control itself is resized. For instance, the
OnControlResize property may be (exResizeChart or exDisableSplitter) that specifies that
the control resizes the chart area, and the vertical splitter is disabled.

Name Value Description

exResizeList 0

Resizes the list part of the control. The control fires
the ChartStartChanging(exVSplitterChange) and
ChartEndChanging(exVSplitterChange) event when
the list or chart area gets resized. The PaneWidth
property specifies the width of the list/item/chart
area.

exResizeChart 1

Resizes the chart part of the control. The control
fires the ChartStartChanging(exHSplitterChange)
and ChartEndChanging(exHSplitterChange) event
when the list or chart area gets resized. The
PaneWidth property specifies the width of the
list/item/chart area. The controls vertical splitter is
hidden if the OnControlResize property is
exResizeChart + exDisableSplitter (129) and the
PaneWidth(False) property is 0.

exDisableSplitter 128

Disables the splitter. If this option is set the user
can not resize the chart or the list using the control's
splitter, at runtime. The disabled cursor is shown
when the cursor-mouse hovers the vertical splitter.
The controls vertical splitter is hidden if the
OnControlResize property is exResizeChart +
exDisableSplitter (129) and the PaneWidth(False)
property is 0.

exDisableHistogram 256

Disables resizing the histogram at runtime. If this is
set the user can't resize the histogram at runtime.
Use the HistogramVisible property to show or hide
the chart's histogram. The HistogramHeight
property specifies the height in pixels of the chart's
histogram. The control fires
the ChartStartChanging(exHSplitterChange) and
ChartEndChanging(exHSplitterChange) event when
the histogram's bound is changed. The disabled
cursor is shown when the cursor-mouse hovers the

horizontal splitter.
exSplitterShowButtons 512 Shows the resize buttons on the vertical splitter.

exDisableOverview 1024
Disables resizing the overview. If this flag is
present, the user is not able to resize the control's
overview by dragging the horizontal split bar.

exDisableSplitPane 2048

Disables the splitting the pane. If this flag is
present, the user is not able to resize any split
panels by dragging the vertical split bar. This flag
has effect, only if the AllowSplitPane property is
set.

The following screen shot shows the resizing buttons when the exSplitterShowButtons is
set:

constants OverlaidBarsTypeEnum
The OverlaidBarsTypeEnum type specifies the type of the overlay bar supported. The
OverlaidType property specifies how two or multiple bars inside the item covers each
other.

Name Value Description
exOverlaidBarsNone 0 No overlaid bars are shown (default).

exOverlaidBarsOffset 1

The overlaid bars are shown using a different
vertical offset . The
Overlaid(exOverlaidBarsOffset) specifies the
vertical offset, in pixels, to display the overlaid
bars. The Overlaid(exOverlaidBarsTransparent)
specifies the percent of transparency being applied
to bars in the same item that are not moved or
resized. By default, the Overlaid(
exOverlaidBarsOffset) property is 3 pixels. The
ItemBar(exBarOffset) property specifies the vertical
offset to display the bar. The exOverlaidBarsOffset
flag can be combined with
exOverlaidBarsTransparent or
exOverlaidBarsIncludeCaption flag. This option
does NOT change the height of the item.

If three bars get intersected each other, the first is
shown on the top, the second on the middle, and

the third on the bottom.

Click here to watch a movie on how the
exOverlaidBarsOffset mechanism works.

The overlaid portion is shown using a different type
of bar. The Overlaid(exOverlaidBarsIntersect)
specifies the name of the bar to be displayed on
the portion that laid over bars. By default, the
Overlaid(exOverlaidBarsIntersect) property is
empty, so nothing is displayed if the Overlaid is
exOverlaidBarsIntersect. You MUST specify the

https://www.youtube.com/watch?v=sUxHta3xu-M

exOverlaidBarsIntersect 2

name of the task to display the portion that covers
the bars if the Overlaid is exOverlaidBarsIntersect.
The exOverlaidBarsIntersect flag can be combined
with exOverlaidBarsTransparent flag. This option
does NOT change the height of the item.

The intersection between bars is shown with a
different color, pattern, shape or EBN object.

Click here to watch a movie on how the
exOverlaidBarsIntersect mechanism works.

exOverlaidBarsStack 3

The bars that covers each other are shown as a
stack. This option changes the height of the item
so the bars that covers each other are displayed
entirely. The Overlaid(exOverlaidBarsStack)
specifies the distance in pixels between two bars
that covers each other. The
Overlaid(exOverlaidBarsTransparent) specifies the
percent of transparency being applied to bars in
the same item that are not moved or resized. The
exOverlaidBarsStack flag can be combined with
exOverlaidBarsStackAutoArrange,
exOverlaidBarsTransparent or
exOverlaidBarsIncludeCaption flag. The ItemHeight
property specifies the height of the item. The
ItemMaxHeight property specifies the maximum
height for the item. Use the ScrollBySingleLine
property to allow the entire chart to be scrollable (
using items with different heigths).

The bars get arranged into a stack. If the
exOverlaidBarsStackAutoArrange flag is not used,

each bar is shown on a row, else the bars get
automatically arranged.

https://www.youtube.com/watch?v=l_J06fkWHDw

Click here to watch a movie on how the
exOverlaidBarsStack +
exOverlaidBarsStackAutoArrange mechanism
works.

exOverlaidBarsCascade 4

The bars gets arranged as a cascade with the z-
order being indicated by
ItemBar(exBarOverlaidCascade) key. Arrange the
bars on the same level for those with the same
exBarOverlaidCascade key, and on a different level
for bars with a different exBarOverlaidCascade key
like in the following picture (The K1, K2, K3 are
being arranged on the level A, while the T1, T2, and
T3 on level B). This option changes the height of
the item so the bars that covers each other are
displayed entirely.

The difference between cascade and stack is that if
two bars with the same exBarOverlaidCascade key
are shown in the same level if they do not intersect,
and two bars with a different
exBarOverlaidCascade key shows in different levels
like shown in the following screen shot.

The bars get arranged into a cascade based on the
key (exOverlaidBarsCascade). The T1, T2, T3 are

shown on the same level, as they have the same
exBarOverlaidCascade key, and does not intersect

the K1, K2, K3 level.

The bars get arranged into a stack
(exOverlaidBarsStack).

Click here to watch a movie on how the

https://www.youtube.com/watch?v=Fy0B_QDrm2Y
https://www.youtube.com/watch?v=X1leUGPmHNo

exOverlaidBarsCascade mechanism works.

exOverlaidBarsTransparent 256

The overlaid portion is shown using a semi-
transparent color. The
Overlaid(exOverlaidBarsTransparent) specifies the
percent of transparency being applied to the
covered bar. By default, the Overlaid(
exOverlaidBarsTransparent) property is 50 (semi-
transparent). The ItemBar(exBarTransparent)
property specifies the vertical offset to display the
bar. The exOverlaidBarsTransparent flag maybe
combined with exOverlaidBarsOffset,
exOverlaidBarsIntersect or exOverlaidBarsStack
flag.

exOverlaidBarsStackAutoArrange512

The overlaid stack is automatically arranged for
best fit in the item. The
exOverlaidBarsStackAutoArrange flag can be
combined with exOverlaidBarsStack flag only.

exOverlaidBarsIncludeCaption4096

The overlaid mechanism includes the bar's caption.
Use the ItemBar(exBarCaption) property to specify
a caption being displayed with the bar. Use the
ItemBar(exBarHAlignCaption) property to specify
the alignment of the bar's caption or to specify
whether the caption is displayed inside or outside of
the bar. For instance, you can use the
exOverlaidBarsIncludeCaption flag to specify
whether the caption of the bar does not cover with
other bars. The exOverlaidBarsIncludeCaption flag
can be combined with exOverlaidBarsOffset or
exOverlaidBarsStack flags.

exOverlaidBarsStrict 8192

The overlaid mechanism includes only bars in the
same group (OverlaidGroup property) but of
different types. This flag can be used in combination
with: exOverlaidBarsOffset,
exOverlaidBarsIntersect, exOverlaidBarsStack or
exOverlaidBarsCascade. For instance, you can use
this option to stack or cascade a specified type of
bar when it get intersected with other type of bars.

Click here to watch a movie on how the

https://www.youtube.com/watch?v=6OU0msiNICY

exOverlaidBarsCascade + exOverlaidBarsStrict
works.

constants OverviewVisibleEnum
The OverviewVisibleEnum type specifies the way items are represented in the overview
area. Use the OverviewVisible property to specify whether the control's overview visible is
hidden or shown.

The following screen shot the control's overview part:

The OverviewVisibleEnum type includes the following values:

Name Value Description
exOverviewHidden 0 The control's overview is not visible.

exOverviewShowAll -1

The control's overview shows the bars from the
visible items using the range for all bars in the chart.
The exOverviewShowAll ignores the
exOverviewHideBars. This flag should not be used
with newer versions, it is provided for backward
compatibility.

The following screen shot shows the control's
overview when exOverviewShowAll flag is specified
only:

exOverviewShowOnlyVisible 1

The control's overview shows the bars from the
visible items using the range of bars in the visible
items only.

The following screen shot shows the control's
overview when exOverviewShowOnlyVisible flag is
specified only:

exOverviewShowAllVisible 2

The control's overview shows the bars from the
visible items using the range for all bars in the chart.

The following screen shot shows the control's
overview when exOverviewShowAllVisible flag is
specified only:

exOverviewAllowVerticalScroll256

Indicates whether the user can vertically scroll the
chart while navigating up or down the overview part
of the control. For instance, you can click the
overview panel, the chart displays the selected
area, and you can drag the cursor left or right to
select a new date-time range to be displayed, or
you can go up or down, to scroll items up or down.

exOverviewHideBars 512

Prevents showing the bars in the overview part of
the control. For instance, you can use this flag in
combination of any other flag to show just the time-
scale in the overview part of the control, to allow
the user to quickly scroll the chart's content to a
specific time-zone. The exOverviewHideBars is
ignored if the OverviewVisible property is
exOverviewShowAll.

The following screen shot shows the control's
overview when exOverviewHideBars flag is
specified:

Specifies whether the overview part of the control
displays the date-time scale. This flag includes the
time-scale on the overview. The time-scale
intersects the bars in the overview. By default, the

exOverviewShowDateTimeScale4096

time-scale of the overview part is shown on the top
of it, so you can combine the
exOverviewShowDateTimeScale flag with
exOverviewShowDateTimeScaleBottom flag, to
display the time-scale on the bottom side of the
overview part of the control.

The following screen shot shows the control's
overview when exOverviewShowDateTimeScale
flag is specified:

exOverviewShowDateTimeScaleSplit5120

Specifies whether the overview's date-time scale is
displayed into a separate portion of the overview.
This flag includes the time-scale on the overview.
The time-scale does not intersect the bars in the
overview. By default, the time-scale of the overview
part is shown on the top of it, so you can combine
the exOverviewShowDateTimeScaleSplit flag with
exOverviewShowDateTimeScaleBottom flag, to
display the time-scale on the bottom side of the
overview part of the control.

The following screen shot shows the control's
overview when
exOverviewShowDateTimeScaleSplit flag is
specified:

Specifies whether the overview's date-time scale is
displayed on the bottom side of the overview. By
default, the time-scale of the overview part is
shown on the top of it, so you can use the
exOverviewShowDateTimeScaleBottom flag with
exOverviewShowDateTimeScale or
exOverviewShowDateTimeScaleSplit to display the
time-scale on the bottom side of the overview part
of the control.

exOverviewShowDateTimeScaleBottom6144 The following screen shot shows the control's
overview when
exOverviewShowDateTimeScaleBottom flag is
specified:

exOverviewShowMargins 8192

Displays the limits of the overview bars. You can
include the exOverviewShowMargins flag to display
the margins/limits of all (project) / visible bars. In
other words, the exOverviewShowMargins flag
displays the minimal ItemBar(exBarStart) value, and
the maximal ItemBar(exBarEnd) value.

The following screen shot shows the control's
overview when exOverviewShowMargins flag is
specified:

exOverviewShowSelMargins 16384

Displays the selection limits (first/last visible date in
the chart).

The following screen shot shows the control's
overview when exOverviewShowSelMargins flag is
specified:

Specifies whether the overview's horizontal splitter
is visible or hidden. Include the exDisableOverview
in the OnResizeControl property to disable resizing

exOverviewSplitter 65536

the chart's overview part of the control. You can use
the Background(exSplitBar) property to change the
back color / visual appearance of the overview's
split bar.

The following screen show shows the splitter of the
control's overview, so the exOverviewSplitter flag is
set:

constants OverviewZoomEnum
The OverviewZoomEnum type specifies when the zooming scale is displayed. Use the
AllowOverviewZoom property to specify whether the zooming zoom is shown or hidden.

Name Value Description
exDisableZoom 0 Zooming the chart at runtime is disabled.

exAlwaysZoom 1 The zooming scale is displayed on the overview
area.

exSelectOnRClick 2 The user selects a portion of the chart to be
zoomed, if the user right clicks the overview area.

exZoomOnRClick -1 The zooming scale is displayed only if the user right
clicks the overview area.

constants PatternEnum
The PatternEnum expression indicates the type of brush. Use the NonworkingDaysPattern
property to specify the pattern to fill non-working days. Use the Pattern property to specify
the brush to fill the bar. The HistogramPattern property defines the pattern to be shown
when the bar is included in the histogram. The Color property specifies the pattern's color
or an EBN object to define the skin to be applied on the bar. The Color property is applied
to all bars of the same type, while the ItemBar(exBarColor) property specifies a different
color/skin for a particular bar. You can use the ItemBar(exBarPattern) property to specify a
different pattern for a particular bar.

Name Value Description
exPatternEmpty 0 The pattern/bar is not visible.
exPatternSolid 1
exPatternDot 2
exPatternShadow 3
exPatternNDot 4
exPatternFDiagonal 5
exPatternBDiagonal 6
exPatternDiagCross 7
exPatternVertical 8
exPatternHorizontal 9
exPatternCross 10
exPatternBrick 11
exPatternYard 12

 The Color
property specifies the color for the border, while the
StartColor and EndColor properties defines the
start and ending color to show a linear-horizontal
gradient bar. The liner gradient is shown if the
StartColor or EndColor is not zero, and have
different values. If the StartColor and EndColor are
different that zero and have the same the same
value the exPatternBox bar shows solid fill with a
solid border being defined by the Color property.
This option can be combined with any predefined
pattern, exPatternGradientVBox,
exPatternGradient3Colors, exPatternThickBox or

exPatternBox 32

exPatternFrameShadow. This option can not be
applied to EBN bars.

The following pictures where generated if the bar's
Pattern is exPatternBox

 StartColor and EndColor properties are
not used (0).

 StartColor is RGB(0,255,0) [green] and
EndColor is RGB(255,255,0) [yellow].

 StartColor is RGB(0,255,0) [green],
EndColor is RGB(255,255,0) [yellow] and
Color is RGB(255,0,0) [red].

The following pictures where generated if the bar's
Pattern is exPatternBox + exPatternDot

 StartColor and EndColor properties are
not used (0).

 StartColor is RGB(0,255,0) [green] and
EndColor is RGB(255,255,0) [yellow].

 StartColor is RGB(0,255,0) [green],
EndColor is RGB(255,255,0) [yellow] and
Color is RGB(255,0,0) [red].

The Color property specifies the color for the
border, while the StartColor and EndColor
properties defines the start and ending color to
show a linear-vertical gradient bar. The liner
gradient is shown if the StartColor or EndColor is
not zero, and have different values. If the StartColor
and EndColor are different that zero and have the
same the same value the exPatternBox bar shows
solid fill with a solid border being defined by the
Color property. This option must be combined with
exPatternBox, and can be combined with any
predefined pattern, exPatternGradient3Colors,
exPatternThickBox or exPatternFrameShadow. This
option can not be applied to EBN bars.

The following pictures where generated if the bar's
Pattern is exPatternBox + exPatternGradientVBox

exPatternGradientVBox 64
 StartColor and EndColor properties are

not used (0).
 StartColor is RGB(0,255,0) [green] and

EndColor is RGB(255,255,0) [yellow].
 StartColor is RGB(0,255,0) [green],

EndColor is RGB(255,255,0) [yellow] and
Color is RGB(255,0,0) [red].

The following pictures where generated if the bar's
Pattern is exPatternBox + exPatternGradientVBox +
exPatternDot

 StartColor and EndColor properties are
not used (0).

 StartColor is RGB(0,255,0) [green] and
EndColor is RGB(255,255,0) [yellow].

 StartColor is RGB(0,255,0) [green],
EndColor is RGB(255,255,0) [yellow] and
Color is RGB(255,0,0) [red].

exPatternGradient3Colors 128

This option defines the gradient from 3 colors
defined by StartColor, Color and EndColor. The
gradient starts with StartColor, continue to Color
and ends on EndColor color. This option must be
combined with exPatternBox and can be combined
with any predefined pattern,
exPatternGradientVBox, exPatternThickBox or
exPatternFrameShadow. This option can not be
applied to EBN bars.

The following pictures where generated if the bar's
Pattern is exPatternBox +
exPatternGradient3Colors

 StartColor and EndColor properties are
not used (0).

 StartColor is RGB(0,255,0) [green] and
EndColor is RGB(255,255,0) [yellow].

 StartColor is RGB(0,255,0) [green],
EndColor is RGB(255,255,0) [yellow] and
Color is RGB(255,0,0) [red].

The following pictures where generated if the bar's
Pattern is exPatternBox + exPatternGradientVBox +
exPatternGradient3Colors

 StartColor and EndColor properties are
not used (0).

 StartColor is RGB(0,255,0) [green] and
EndColor is RGB(255,255,0) [yellow].

 StartColor is RGB(0,255,0) [green],
EndColor is RGB(255,255,0) [yellow] and
Color is RGB(255,0,0) [red].

exPatternThickBox 4096

Use this option to specify a thicker border for bars.
This option can be combined with any predefined
pattern, exPatternBox, exPatternGradientVBox,
exPatternGradient3Colors or
exPatternFrameShadow. This option can not be
applied to EBN bars too.

The following pictures where generated based on
the exPatternThickBox flag:

 exPatternThickBox flag is not set (
Pattern = exPatternBDiagonal).

 exPatternThickBox flag is set (Pattern
= exPatternBDiagonal + exPatternThickBox)

exPatternFrameShadow 8192

This option can be used to display a shadow for the
bars. This option can be combined with any
predefined pattern, exPatternBox,
exPatternGradientVBox, exPatternGradient3Colors
or exPatternThickBox. This option can be applied to
EBN bars too.

The following pictures where generated based on
the exPatternThickBox flag:

 exPatternFrameShadow flag is not set (
Pattern = exPatternShadow).

 exPatternFrameShadow flag is set (
Pattern = exPatternShadow +
exPatternFrameShadow)

 exPatternFrameShadow flag is set (
Pattern = exPatternShadow +
exPatternFrameShadow + exPatternBox +
exPatternGradientVBox)

exBezierCurve 512

This option is valid for HistogramPattern property
only. The exBezierCurve flag can be combined with
any of the predefined patterns to define a filled
bezier or empty curve (if combined with
exPatternEmpty (ForeColor) or exPatternBox (
BackColor)). For instance, if the HistogramPattern
property is exBezierCurve+ exPatternEmpty, the
bar's histogram shows a bezier curve not filled.

exRoundCurve 1024

This option is valid for HistogramPattern property
only. The exRoundCurve flag can be combined with
any of the predefined patterns to define a filled
round curve or empty curve (if combined with
exPatternEmpty (ForeColor) or exPatternBox (
BackColor)). For instance, if the HistogramPattern
property is exRoundCurve+ exPatternDiagCross,
the bar's histogram shows a round curve filled with
exPatternDiagCross pattern.

exRectangularCurve 2048

This option is valid for HistogramPattern property
only. The exRectangularCurve flag can be combined
with any of the predefined patterns to define a filled
rectangular curve or empty rectangular curve (if
combined with exPatternEmpty (ForeColor) or
exPatternBox (BackColor)). For instance, if the
HistogramPattern property is exRectangularCurve +
exPatternYard, the bar's histogram shows a
rectangular curve filled with exPatternYard pattern.

constants PictureDisplayEnum
Specifies how the picture is displayed on the control's background. Use the PictureDisplay
property to specify how the control displays its picture.

Name Value Description
UpperLeft 0 Aligns the picture to the upper left corner.
UpperCenter 1 Centers the picture on the upper edge.
UpperRight 2 Aligns the picture to the upper right corner.

MiddleLeft 16 Aligns horizontally the picture on the left side, and
centers the picture vertically.

MiddleCenter 17 Puts the picture on the center of the source.

MiddleRight 18 Aligns horizontally the picture on the right side, and
centers the picture vertically.

LowerLeft 32 Aligns the picture to the lower left corner.
LowerCenter 33 Centers the picture on the lower edge.
LowerRight 34 Aligns the picture to the lower right corner.
Tile 48 Tiles the picture on the source.
Stretch 49 The picture is resized to fit the source.

constants PutResEnum
The PutResEnum type indicates the values to load or save the resources associated to a
bar using the Items.ItemBar(exBarResources), while using the PutRes method. The PutRes
method saves or loads the bar's resources. The PutRes feature adds the ability to display
the resources usage to a different exg2antt component. The PutRes method saves or
updates the resources to or from a different exg2antt component. The PutRes feature must
use 2 different eXG2antt controls.

The PutResEnum type supports the following values:

Name Value Description

exPutResLoad 1

Loads the bar's resources from another control. For
instance, the Target.PutRes(Source.ResHandle,
exPutResLoad) method loads the bar's usage of
resources in Target. The exPutResLoad option must
be used on the Target component that displays the
Resources column, where all resources being found
are set on lines, while bars in the chart indicates the
bars in the Source that uses the current resource.

The following picture shows the Target once the
Target.PutRes(Source.ResHandle, exPutResLoad)
is called:

exPutResSave 2

Saves the bar's resources to another control. , For
instance the Source.PutRes(Target.ResHandle,
exPutResSave) saves the bar's allocations to
Source taking data from the Target. The
exPutResSave option must be used on Source
control, so the changes in the Target control are
updated to the Source control.

The following picture shows the Source (the
original Gantt control) once the Source.PutRes(
Target.ResHandle, exPutResSave) is called:

constants ReadOnlyEnum
The ReadOnly property makes the control read-only. Use the Enabled property to disable
the control. Use the Locked property to lock a specific editor. Use the CellEditorVisible
property to hide the cell's editor.

Name Value Description

exReadWrite 0
(boolean False) The control allows changes. The
user can use the cell's editor to change the cell's
value.

exReadOnly -1 (boolean True) The control is read only and the
cell's editor is not visible.

exLocked 1

The control is read only, and the cell's editor is
visible but locked. For instance, if the cell's editor
contains a drop down portion, the user can display
the drop down portion of the control, but it can't
select a new value. Also, if the editor contains
multiple buttons they are active as the control is not
read only.

constants ResizeChartEnum
The ResizeChartEnum type indicates whether the user can enlarge or magnify (zoom-
in,zoom-out) the entire chart, by dragging the header or resizing it using the middle mouse
button, with or without re-scaling the chart. The AllowResizeChart property specifies
whether the user can perform zoom-in/zoom-out over the control's chart area. The
AllowResizeChart property supports the following options:

Name Value Description

exDisableResizeChart 0
The user can not enlarge or magnify (zoom-
in,zoom-out) the entire chart, by dragging the
header or resizing it using the middle mouse button.

exAllowResizeChartHeader 2
The user can enlarge or magnify (zoom-in,zoom-
out) the entire chart, by dragging the header. Can
be combined with any other non-zero option.

exAllowResizeChartMiddle 4

The user can enlarge or magnify (zoom-in,zoom-
out) the entire chart, by resizing it using the middle
mouse button. Can be combined with any other
non-zero option.

exAllowChangeUnitScale 256
The chart's unit scale can be changed by resizing
the chart at runtime. Can be combined with any
other non-zero option.

https://exontrol.com/content/products/exg2antt/demo-swf/exg2antt-resize.htm

constants ScrollBarEnum
The ScrollBarEnum type specifies the vertical or horizontal scroll bar in the control. Use the
ScrollBars property to specify whether the vertical or horizontal scroll bar is visible or
hidden. Use the ScrollPartVisible property to specify the visible parts in the control's scroll
bars.

Name Value Description
exVScroll 0 Indicates the vertical scroll bar.
exHScroll 1 Indicates the horizontal scroll bar.
exHChartScroll 2 Indicates the horizontal scroll bar in the chart area.

constants ScrollBarsEnum
Specifies which scroll bars will be visible on a control. The ScrollBars property of the control
specifies the scroll bars being visible in the control. By default, the ScrollBars property is
exBoth, which indicates that both scroll bars of the component are being displayed only
when they require.

The horizontal scroll bar is not shown, if the ColumnAutoResize property is True, or if
the ScrollBars property is exNoScroll. The horizontal scroll bar is shown if required, if
the ScrollBars property is exBoth or exHorizontal, else it is always shown if the
ScrollBars property is exDisableBoth or exDisableNoHorizontal
The vertical scroll bar of the control is shown if required, if the ScrollBars is exBoth or
exVertical, else if it is always shown if the ScrollBars property is exDisableBoth or
exDisableVertical. For instance, if the ScrollBars property is exBoth OR
exVScrollOnThumbRelease, the control's content is scrolled when the user releases
the vertical thumb.

Use the Scroll method to programmatically scroll the control's content to specified position.
The ScrollPos property determines the position of the control's scroll bars. The ScrollWidth
property specifies the width in pixels, of the vertical scroll bar. The ScrollHeight property
specifies the height in pixels of the horizontal scroll bar. The ScrollOrderParts property
specifies the order to display the parts of the scroll bar (buttons, thumbs and so on). The
ScrollPartCaption property specifies the caption to be shown on any part of the scroll bar.
Use the SelectPos property to select items giving its position.

The ScrollBars property supports a bitwise OR combination of the following values:

Name Value Description
exNoScroll 0 No scroll bars are shown
exHorizontal 1 Only horizontal scroll bars are shown.
exVertical 2 Only vertical scroll bars are shown.
exBoth 3 Both horizontal and vertical scroll bars are shown.

exDisableNoHorizontal 5 The horizontal scroll bar is always shown, it is
disabled if it is unnecessary.

exDisableNoVertical 10 The vertical scroll bar is always shown, it is
disabled if it is unnecessary.

exDisableBoth 15 Both horizontal and vertical scroll bars are always
shown, disabled if they are unnecessary.

exHScrollOnThumbRelease 256

Scrolls the control's content when the user releases
the thumb of the horizontal scroll bar. Use this
option to specify that the user scrolls the control's

content when the thumb of the scroll box is
released.

exVScrollOnThumbRelease 512

Scrolls the control's content when the user releases
the thumb of the vertical scroll bar. Use this option
to specify that the user scrolls the control's content
when the thumb of the scroll box is released.

exHScrollEmptySpace 1024

Allows empty space, when the control's content is
horizontally scrolled to the end. If this flag is set, the
user can horizontally scrolls the control's content
until last column is visible, and so you can have
empty space to the right or left of the columns.

exVScrollEmptySpace 2048

Allows empty space, when the control's content is
vertically scrolled to the end. If this flag is set, the
user can vertically scrolls the control's content until
last item is visible, and so you can have empty
space after the last visible item.

constants ScrollEnum
The ScrollEnum expression indicates the type of scroll that control supports. Use the Scroll
method to scroll the control's content by code.

Name Value Description
exScrollUp 0 Scrolls up the control by a single line.
exScrollDown 1 Scrolls down the control by a single line.
exScrollVTo 2 Scrolls vertically the control to a specified position.

exScrollLeft 3
Scrolls the control to the left by a single pixel, or by
a single column if the ContinueColumnScroll
property is True.

exScrollRight 4
Scrolls the control to the right by a single pixel, or
by a single column if the ContinueColumnScroll
property is True.

exScrollHTo 5 Scrolls horizontaly the control to a specified
position.

constants ScrollPartEnum
The ScrollPartEnum type defines the parts in the control's scrollbar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollPartCaption property to specify the caption being displayed in any part of the control's
scrollbar. The control fires the ScrollButtonClick event when the user clicks any button in the
control's scrollbar.

Name Value Description
exExtentThumbPart 65536 The thumb-extension part.

exLeftB1Part 32768 (L1) The first additional button, in the left or top
area. By default, this button is hidden.

exLeftB2Part 16384 (L2) The second additional button, in the left or top
area. By default, this button is hidden.

exLeftB3Part 8192 (L3) The third additional button, in the left or top
area. By default, this button is hidden.

exLeftB4Part 4096 (L4) The forth additional button, in the left or top
area. By default, this button is hidden.

exLeftB5Part 2048 (L5) The fifth additional button, in the left or top
area. By default, this button is hidden.

exLeftBPart 1024 (<) The left or top button. By default, this button is
visible.

exLowerBackPart 512 The area between the left/top button and the
thumb. By default, this part is visible.

exThumbPart 256 The thumb part or the scroll box region. By default,
the thumb is visible.

exUpperBackPart 128 The area between the thumb and the right/bottom
button. By default, this part is visible.

exBackgroundPart 640
The union between the exLowerBackPart and the
exUpperBackPart parts. By default, this part is
visible.

exRightBPart 64 (>) The right or down button. By default, this button
is visible.

exRightB1Part 32 (R1) The first additional button in the right or down
side. By default, this button is hidden.

exRightB2Part 16 (R2) The second additional button in the right or
down side. By default, this button is hidden.

exRightB3Part 8 (R3) The third additional button in the right or down
side. By default, this button is hidden.

exRightB4Part 4 (R4) The forth additional button in the right or down
side. By default, this button is hidden

exRightB5Part 2 (R5) The fifth additional button in the right or down
side. By default, this button is hidden.

exRightB6Part 1 (R6) The sixth additional button in the right or down
side. By default, this button is hidden.

exPartNone 0 No part.

constants ScrollRangeEnum
The ScrollRangeEnum type specifies the positions being accessed by the ScrollRange
property. The ScrollRange method specifies that the chart to be scrolled within a range of
dates. Use the ItemBar property to access properties of a created bar. The CreateBar
event is called once the user creates at runtime a new bar by drag and drop on the chart
section.

The ScrollRangeEnum type supports the following values.

Name Value Description

exStartDate 0 Indicates that the starting date or time of the
scrolling range is accessed or requested.

exEndDate 1 Indicates that the ending date or time of the
scrolling range is accessed or requested.

exMinDate 2

This option is read-only, so setting the exMinDate
has no effect. Instead use the exStartDate.
Retrieves the minimum date when the chart's
scrolling range is specified by
Chart.ScrollRange(exStartDate) and
Chart.ScrollRange(exEndDate). For instance, you
can specify the .Items.ItemBar(Item, "newbar",
exBarMinStart) = .Chart.ScrollRange(exMinDate) to
limit the starting point of the bar to the scrolling
range.

exMaxDate 3

This option is read-only, so setting the exMaxDate
has no effect. Instead use the exEndDate.
Retrieves the maximum date when the chart's
scrolling range is specified by
Chart.ScrollRange(exStartDate) and
Chart.ScrollRange(exEndDate). For instance, you
can specify the .Items.ItemBar(Item, "newbar",
exBarMaxEnd) = .Chart.ScrollRange(exMaxDate) to
limit the ending point of the bar to the scrolling
range.

The following samples shows how can I limit the bars to scrolling range only.

VBA

' CreateBar event - Fired when the user creates a new bar.
Private Sub G2antt1_CreateBar(ByVal Item As Long,ByVal DateStart As Date,ByVal DateEnd

As Date)
 With G2antt1
 With .Items
 .ItemBar(Item,"newbar",22) = G2antt1.Chart.ScrollRange(2)
 .ItemBar(Item,"newbar",25) = G2antt1.Chart.ScrollRange(3)
 End With
 End With
End Sub

With G2antt1
 .BeginUpdate
 .Columns.Add "Task"
 With .Chart
 .LevelCount = 2
 .PaneWidth(0) = 56
 .ScrollRange(0) = #1/1/2001#
 .ScrollRange(1) = #1/15/2001#
 .FirstVisibleDate = #1/12/2001#
 .AllowCreateBar = 1
 End With
 With .Items
 .AddItem "Task 1"
 .AddItem "Task 2"
 .AddItem "Task 3"
 End With
 .EndUpdate
End With

VB6

' CreateBar event - Fired when the user creates a new bar.
Private Sub G2antt1_CreateBar(ByVal Item As EXG2ANTTLibCtl.HITEM,ByVal DateStart As
Date,ByVal DateEnd As Date)
 With G2antt1
 With .Items
 .ItemBar(Item,"newbar",exBarMinStart) = G2antt1.Chart.ScrollRange(exMinDate)
 .ItemBar(Item,"newbar",exBarMaxEnd) = G2antt1.Chart.ScrollRange(exMaxDate)

 End With
 End With
End Sub

With G2antt1
 .BeginUpdate
 .Columns.Add "Task"
 With .Chart
 .LevelCount = 2
 .PaneWidth(0) = 56
 .ScrollRange(exStartDate) = #1/1/2001#
 .ScrollRange(exEndDate) = #1/15/2001#
 .FirstVisibleDate = #1/12/2001#
 .AllowCreateBar = exCreateBarAuto
 End With
 With .Items
 .AddItem "Task 1"
 .AddItem "Task 2"
 .AddItem "Task 3"
 End With
 .EndUpdate
End With

VB.NET

' CreateBar event - Fired when the user creates a new bar.
Private Sub Exg2antt1_CreateBar(ByVal sender As System.Object,ByVal Item As
Integer,ByVal DateStart As Date,ByVal DateEnd As Date) Handles Exg2antt1.CreateBar
 With Exg2antt1
 With .Items

.set_ItemBar(Item,"newbar",exontrol.EXG2ANTTLib.ItemBarPropertyEnum.exBarMinStart,Exg2antt1.

.set_ItemBar(Item,"newbar",exontrol.EXG2ANTTLib.ItemBarPropertyEnum.exBarMaxEnd,Exg2antt1.

 End With

 End With
End Sub

With Exg2antt1
 .BeginUpdate()
 .Columns.Add("Task")
 With .Chart
 .LevelCount = 2
 .set_PaneWidth(False,56)
 .set_ScrollRange(exontrol.EXG2ANTTLib.ScrollRangeEnum.exStartDate,#1/1/2001#)
 .set_ScrollRange(exontrol.EXG2ANTTLib.ScrollRangeEnum.exEndDate,#1/15/2001#)
 .FirstVisibleDate = #1/12/2001#
 .AllowCreateBar = exontrol.EXG2ANTTLib.CreateBarEnum.exCreateBarAuto
 End With
 With .Items
 .AddItem("Task 1")
 .AddItem("Task 2")
 .AddItem("Task 3")
 End With
 .EndUpdate()
End With

VB.NET for /COM

' CreateBar event - Fired when the user creates a new bar.
Private Sub AxG2antt1_CreateBar(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_CreateBarEvent) Handles AxG2antt1.CreateBar
 With AxG2antt1
 With .Items
 .ItemBar(e.item,"newbar",EXG2ANTTLib.ItemBarPropertyEnum.exBarMinStart) =
AxG2antt1.Chart.ScrollRange(EXG2ANTTLib.ScrollRangeEnum.exMinDate)
 .ItemBar(e.item,"newbar",EXG2ANTTLib.ItemBarPropertyEnum.exBarMaxEnd) =
AxG2antt1.Chart.ScrollRange(EXG2ANTTLib.ScrollRangeEnum.exMaxDate)
 End With
 End With
End Sub

With AxG2antt1
 .BeginUpdate()
 .Columns.Add("Task")
 With .Chart
 .LevelCount = 2
 .PaneWidth(False) = 56
 .ScrollRange(EXG2ANTTLib.ScrollRangeEnum.exStartDate) = #1/1/2001#
 .ScrollRange(EXG2ANTTLib.ScrollRangeEnum.exEndDate) = #1/15/2001#
 .FirstVisibleDate = #1/12/2001#
 .AllowCreateBar = EXG2ANTTLib.CreateBarEnum.exCreateBarAuto
 End With
 With .Items
 .AddItem("Task 1")
 .AddItem("Task 2")
 .AddItem("Task 3")
 End With
 .EndUpdate()
End With

C++

// CreateBar event - Fired when the user creates a new bar.
void OnCreateBarG2antt1(long Item,DATE DateStart,DATE DateEnd)
{
 /*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'
 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib
 */
 EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown()
 EXG2ANTTLib::IItemsPtr var_Items = spG2antt1->GetItems()
 var_Items->PutItemBar(Item,"newbar",EXG2ANTTLib::exBarMinStart,spG2antt1-
>GetChart()->GetScrollRange(EXG2ANTTLib::exMinDate))
 var_Items->PutItemBar(Item,"newbar",EXG2ANTTLib::exBarMaxEnd,spG2antt1-
>GetChart()->GetScrollRange(EXG2ANTTLib::exMaxDate))

}

EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->BeginUpdate();
spG2antt1->GetColumns()->Add(L"Task");
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutLevelCount(2);
 var_Chart->PutPaneWidth(VARIANT_FALSE,56);
 var_Chart->PutScrollRange(EXG2ANTTLib::exStartDate,"1/1/2001");
 var_Chart->PutScrollRange(EXG2ANTTLib::exEndDate,"1/15/2001");
 var_Chart->PutFirstVisibleDate("1/12/2001");
 var_Chart->PutAllowCreateBar(EXG2ANTTLib::exCreateBarAuto);
EXG2ANTTLib::IItemsPtr var_Items = spG2antt1->GetItems();
 var_Items->AddItem("Task 1");
 var_Items->AddItem("Task 2");
 var_Items->AddItem("Task 3");
spG2antt1->EndUpdate();

C++ Builder

// CreateBar event - Fired when the user creates a new bar.
void __fastcall TForm1::G2antt1CreateBar(TObject *Sender,Exg2anttlib_tlb::HITEM
Item,DATE DateStart,DATE DateEnd)
{
 Exg2anttlib_tlb::IItemsPtr var_Items = G2antt1->Items
 var_Items-
>set_ItemBar(Item,TVariant("newbar"),Exg2anttlib_tlb::ItemBarPropertyEnum::exBarMinStart,TVariant(G2antt1-
>Chart->get_ScrollRange(Exg2anttlib_tlb::ScrollRangeEnum::exMinDate)))
 var_Items-
>set_ItemBar(Item,TVariant("newbar"),Exg2anttlib_tlb::ItemBarPropertyEnum::exBarMaxEnd,TVariant(G2antt1-
>Chart->get_ScrollRange(Exg2anttlib_tlb::ScrollRangeEnum::exMaxDate)))
}

G2antt1->BeginUpdate();
G2antt1->Columns->Add(L"Task");
Exg2anttlib_tlb::IChartPtr var_Chart = G2antt1->Chart;

 var_Chart->LevelCount = 2;
 var_Chart->set_PaneWidth(false,56);
 var_Chart-
>set_ScrollRange(Exg2anttlib_tlb::ScrollRangeEnum::exStartDate,TVariant(TDateTime(2001,1,1).operator
 double()));
 var_Chart-
>set_ScrollRange(Exg2anttlib_tlb::ScrollRangeEnum::exEndDate,TVariant(TDateTime(2001,1,15).operator
 double()));
 var_Chart->set_FirstVisibleDate(TVariant(TDateTime(2001,1,12).operator double()));
 var_Chart->AllowCreateBar = Exg2anttlib_tlb::CreateBarEnum::exCreateBarAuto;
Exg2anttlib_tlb::IItemsPtr var_Items = G2antt1->Items;
 var_Items->AddItem(TVariant("Task 1"));
 var_Items->AddItem(TVariant("Task 2"));
 var_Items->AddItem(TVariant("Task 3"));
G2antt1->EndUpdate();

C#

// CreateBar event - Fired when the user creates a new bar.
private void exg2antt1_CreateBar(object sender,int Item,DateTime DateStart,DateTime
DateEnd)
{
 exontrol.EXG2ANTTLib.Items var_Items = exg2antt1.Items

var_Items.set_ItemBar(Item,"newbar",exontrol.EXG2ANTTLib.ItemBarPropertyEnum.exBarMinStart,exg2antt1.

var_Items.set_ItemBar(Item,"newbar",exontrol.EXG2ANTTLib.ItemBarPropertyEnum.exBarMaxEnd,exg2antt1.

}
//this.exg2antt1.CreateBar += new
exontrol.EXG2ANTTLib.exg2antt.CreateBarEventHandler(this.exg2antt1_CreateBar);

exg2antt1.BeginUpdate();
exg2antt1.Columns.Add("Task");
exontrol.EXG2ANTTLib.Chart var_Chart = exg2antt1.Chart;

 var_Chart.LevelCount = 2;
 var_Chart.set_PaneWidth(false,56);

var_Chart.set_ScrollRange(exontrol.EXG2ANTTLib.ScrollRangeEnum.exStartDate,Convert.ToDateTime(

var_Chart.set_ScrollRange(exontrol.EXG2ANTTLib.ScrollRangeEnum.exEndDate,Convert.ToDateTime(

 var_Chart.FirstVisibleDate = Convert.ToDateTime("1/12/2001");
 var_Chart.AllowCreateBar = exontrol.EXG2ANTTLib.CreateBarEnum.exCreateBarAuto;
exontrol.EXG2ANTTLib.Items var_Items = exg2antt1.Items;
 var_Items.AddItem("Task 1");
 var_Items.AddItem("Task 2");
 var_Items.AddItem("Task 3");
exg2antt1.EndUpdate();

JavaScript

<SCRIPT FOR="G2antt1" EVENT="CreateBar(Item,DateStart,DateEnd)"
LANGUAGE="JScript">
 var var_Items = G2antt1.Items
 var_Items.ItemBar(Item,"newbar",22) = G2antt1.Chart.ScrollRange(2)
 var_Items.ItemBar(Item,"newbar",25) = G2antt1.Chart.ScrollRange(3)
</SCRIPT>

<OBJECT classid="clsid:CD481F4D-2D25-4759-803F-752C568F53B7" id="G2antt1">
</OBJECT>

<SCRIPT LANGUAGE="JScript">
 G2antt1.BeginUpdate()

 G2antt1.Columns.Add("Task")

 var var_Chart = G2antt1.Chart

 var_Chart.LevelCount = 2

 var_Chart.PaneWidth(0) = 56

 var_Chart.ScrollRange(0) = "1/1/2001"

 var_Chart.ScrollRange(1) = "1/15/2001"

 var_Chart.FirstVisibleDate = "1/12/2001"

 var_Chart.AllowCreateBar = 1

 var var_Items = G2antt1.Items

 var_Items.AddItem("Task 1")

 var_Items.AddItem("Task 2")

 var_Items.AddItem("Task 3")

 G2antt1.EndUpdate()

</SCRIPT>

C# for /COM

// CreateBar event - Fired when the user creates a new bar.
private void axG2antt1_CreateBar(object sender,
AxEXG2ANTTLib._IG2anttEvents_CreateBarEvent e)
{
 EXG2ANTTLib.Items var_Items = axG2antt1.Items

var_Items.set_ItemBar(e.item,"newbar",EXG2ANTTLib.ItemBarPropertyEnum.exBarMinStart,axG2antt1.

var_Items.set_ItemBar(e.item,"newbar",EXG2ANTTLib.ItemBarPropertyEnum.exBarMaxEnd,axG2antt1.

}
//this.axG2antt1.CreateBar += new

AxEXG2ANTTLib._IG2anttEvents_CreateBarEventHandler(this.axG2antt1_CreateBar);

axG2antt1.BeginUpdate();
axG2antt1.Columns.Add("Task");
EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;
 var_Chart.LevelCount = 2;
 var_Chart.set_PaneWidth(false,56);

var_Chart.set_ScrollRange(EXG2ANTTLib.ScrollRangeEnum.exStartDate,Convert.ToDateTime(

var_Chart.set_ScrollRange(EXG2ANTTLib.ScrollRangeEnum.exEndDate,Convert.ToDateTime(

 var_Chart.FirstVisibleDate = Convert.ToDateTime("1/12/2001");
 var_Chart.AllowCreateBar = EXG2ANTTLib.CreateBarEnum.exCreateBarAuto;
EXG2ANTTLib.Items var_Items = axG2antt1.Items;
 var_Items.AddItem("Task 1");
 var_Items.AddItem("Task 2");
 var_Items.AddItem("Task 3");
axG2antt1.EndUpdate();

X++ (Dynamics Ax 2009)

// CreateBar event - Fired when the user creates a new bar.
void onEvent_CreateBar(int _Item,date _DateStart,date _DateEnd)
{
 COM com_Items
 anytype var_Items
 var_Items = exg2antt1.Items()
 com_Items = var_Items

com_Items.ItemBar(_Item,"newbar",22/*exBarMinStart*/,exg2antt1.Chart().ScrollRange(2/*exMinDate*/

com_Items.ItemBar(_Item,"newbar",25/*exBarMaxEnd*/,exg2antt1.Chart().ScrollRange(3/*exMaxDate*/

}

public void init()
{
 COM com_Chart,com_Items

 anytype var_Chart,var_Items

 super()

 exg2antt1.BeginUpdate()

 exg2antt1.Columns().Add("Task")

 var_Chart = exg2antt1.Chart()
 com_Chart = var_Chart

 com_Chart.LevelCount(2)

 /*should be called during the form's activate method*/ com_Chart.PaneWidth(0,56);

com_Chart.ScrollRange(0/*exStartDate*/,COMVariant::createFromDate(str2Date("1/1/2001"

com_Chart.ScrollRange(1/*exEndDate*/,COMVariant::createFromDate(str2Date("1/15/2001"

 com_Chart.FirstVisibleDate(COMVariant::createFromDate(str2Date("1/12/2001",213)))

 com_Chart.AllowCreateBar(1/*exCreateBarAuto*/)

 var_Items = exg2antt1.Items()

 com_Items = var_Items

 com_Items.AddItem("Task 1")

 com_Items.AddItem("Task 2")

 com_Items.AddItem("Task 3")

 exg2antt1.EndUpdate()

}

/*
public void activate(boolean _active)
{
 super(_active)

 exg2antt1.Chart().PaneWidth(0,56)

}
*/

VFP

*** CreateBar event - Fired when the user creates a new bar. ***
LPARAMETERS Item,DateStart,DateEnd
 with thisform.G2antt1
 with .Items
 .ItemBar(Item,"newbar",22) = thisform.G2antt1.Chart.ScrollRange(2)
 .ItemBar(Item,"newbar",25) = thisform.G2antt1.Chart.ScrollRange(3)
 endwith
 endwith

with thisform.G2antt1
 .BeginUpdate
 .Columns.Add("Task")

 with .Chart
 .LevelCount = 2
 .PaneWidth(0) = 56
 .ScrollRange(0) = {^2001-1-1}
 .ScrollRange(1) = {^2001-1-15}
 .FirstVisibleDate = {^2001-1-12}
 .AllowCreateBar = 1
 endwith
 with .Items
 .AddItem("Task 1")
 .AddItem("Task 2")
 .AddItem("Task 3")
 endwith
 .EndUpdate
endwith

dBASE Plus

/*
with (this.ACTIVEX1.nativeObject)
 CreateBar = class::nativeObject_CreateBar
endwith
*/
// Fired when the user creates a new bar.
function nativeObject_CreateBar(Item,DateStart,DateEnd)
 local oG2antt,var_Items
 oG2antt = form.Activex1.nativeObject
 var_Items = oG2antt.Items
 // var_Items.ItemBar(Item,"newbar",22) = oG2antt.Chart.ScrollRange(2)
 with (oG2antt)
 TemplateDef = [Dim var_Items,Item]
 TemplateDef = var_Items
 TemplateDef = Item
 Template = [var_Items.ItemBar(Item,"newbar",22) = oG2antt.Chart.ScrollRange(2)]
 endwith
 // var_Items.ItemBar(Item,"newbar",25) = oG2antt.Chart.ScrollRange(3)
 with (oG2antt)

 TemplateDef = [Dim var_Items,Item]
 TemplateDef = var_Items
 TemplateDef = Item
 Template = [var_Items.ItemBar(Item,"newbar",25) = oG2antt.Chart.ScrollRange(3)]
 endwith
return

local oG2antt,var_Chart,var_Items

oG2antt = form.Activex1.nativeObject
oG2antt.BeginUpdate()
oG2antt.Columns.Add("Task")
var_Chart = oG2antt.Chart
 var_Chart.LevelCount = 2
 // var_Chart.PaneWidth(false) = 56
 with (oG2antt)
 TemplateDef = [Dim var_Chart]
 TemplateDef = var_Chart
 Template = [var_Chart.PaneWidth(false) = 56]
 endwith
 // var_Chart.ScrollRange(0) = "01/01/2001"
 with (oG2antt)
 TemplateDef = [Dim var_Chart]
 TemplateDef = var_Chart
 Template = [var_Chart.ScrollRange(0) = "01/01/2001"]
 endwith
 // var_Chart.ScrollRange(1) = "01/15/2001"
 with (oG2antt)
 TemplateDef = [Dim var_Chart]
 TemplateDef = var_Chart
 Template = [var_Chart.ScrollRange(1) = "01/15/2001"]
 endwith
 var_Chart.FirstVisibleDate = "01/12/2001"
 var_Chart.AllowCreateBar = 1
var_Items = oG2antt.Items
 var_Items.AddItem("Task 1")
 var_Items.AddItem("Task 2")

 var_Items.AddItem("Task 3")
oG2antt.EndUpdate()

XBasic (Alpha Five)

' Fired when the user creates a new bar.
function CreateBar as v (Item as OLE::Exontrol.G2antt.1::HITEM,DateStart as T,DateEnd as T)
 Dim oG2antt as P
 Dim var_Items as P
 oG2antt = topparent:CONTROL_ACTIVEX1.activex
 var_Items = oG2antt.Items
 ' var_Items.ItemBar(Item,"newbar",22) = oG2antt.Chart.ScrollRange(2)
 oG2antt.TemplateDef = "Dim var_Items,Item"
 oG2antt.TemplateDef = var_Items
 oG2antt.TemplateDef = Item
 oG2antt.Template = "var_Items.ItemBar(Item,\"newbar\",22) =
oG2antt.Chart.ScrollRange(2)"
 ' var_Items.ItemBar(Item,"newbar",25) = oG2antt.Chart.ScrollRange(3)
 oG2antt.TemplateDef = "Dim var_Items,Item"
 oG2antt.TemplateDef = var_Items
 oG2antt.TemplateDef = Item
 oG2antt.Template = "var_Items.ItemBar(Item,\"newbar\",25) =
oG2antt.Chart.ScrollRange(3)"
end function

Dim oG2antt as P
Dim var_Chart as P
Dim var_Items as P

oG2antt = topparent:CONTROL_ACTIVEX1.activex
oG2antt.BeginUpdate()
oG2antt.Columns.Add("Task")
var_Chart = oG2antt.Chart
 var_Chart.LevelCount = 2
 ' var_Chart.PaneWidth(.f.) = 56
 oG2antt.TemplateDef = "Dim var_Chart"
 oG2antt.TemplateDef = var_Chart

 oG2antt.Template = "var_Chart.PaneWidth(False) = 56"

 ' var_Chart.ScrollRange(0) = {01/01/2001}
 oG2antt.TemplateDef = "Dim var_Chart"
 oG2antt.TemplateDef = var_Chart
 oG2antt.Template = "var_Chart.ScrollRange(0) = #01/01/2001#"

 ' var_Chart.ScrollRange(1) = {01/15/2001}
 oG2antt.TemplateDef = "Dim var_Chart"
 oG2antt.TemplateDef = var_Chart
 oG2antt.Template = "var_Chart.ScrollRange(1) = #01/15/2001#"

 var_Chart.FirstVisibleDate = {01/12/2001}
 var_Chart.AllowCreateBar = 1
var_Items = oG2antt.Items
 var_Items.AddItem("Task 1")
 var_Items.AddItem("Task 2")
 var_Items.AddItem("Task 3")
oG2antt.EndUpdate()

Delphi 8 (.NET only)

// CreateBar event - Fired when the user creates a new bar.
procedure TWinForm1.AxG2antt1_CreateBar(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_CreateBarEvent);
begin
 with AxG2antt1 do
 begin
 with Items do
 begin
 ItemBar[e.item,'newbar',EXG2ANTTLib.ItemBarPropertyEnum.exBarMinStart] :=
AxG2antt1.Chart.ScrollRange[EXG2ANTTLib.ScrollRangeEnum.exMinDate];
 ItemBar[e.item,'newbar',EXG2ANTTLib.ItemBarPropertyEnum.exBarMaxEnd] :=
AxG2antt1.Chart.ScrollRange[EXG2ANTTLib.ScrollRangeEnum.exMaxDate];
 end
 end
end;

with AxG2antt1 do
begin
 BeginUpdate();
 Columns.Add('Task');
 with Chart do
 begin
 LevelCount := 2;
 PaneWidth[False] := 56;
 ScrollRange[EXG2ANTTLib.ScrollRangeEnum.exStartDate] := '1/1/2001';
 ScrollRange[EXG2ANTTLib.ScrollRangeEnum.exEndDate] := '1/15/2001';
 FirstVisibleDate := '1/12/2001';
 AllowCreateBar := EXG2ANTTLib.CreateBarEnum.exCreateBarAuto;
 end;
 with Items do
 begin
 AddItem('Task 1');
 AddItem('Task 2');
 AddItem('Task 3');
 end;
 EndUpdate();
end

Delphi (standard)

// CreateBar event - Fired when the user creates a new bar.
procedure TForm1.G2antt1CreateBar(ASender: TObject; Item : HITEM;DateStart :
TDateTime;DateEnd : TDateTime);
begin
 with G2antt1 do
 begin
 with Items do
 begin
 ItemBar[Item,'newbar',EXG2ANTTLib_TLB.exBarMinStart] :=
G2antt1.Chart.ScrollRange[EXG2ANTTLib_TLB.exMinDate];
 ItemBar[Item,'newbar',EXG2ANTTLib_TLB.exBarMaxEnd] :=
G2antt1.Chart.ScrollRange[EXG2ANTTLib_TLB.exMaxDate];

 end
 end
end;

with G2antt1 do
begin
 BeginUpdate();
 Columns.Add('Task');
 with Chart do
 begin
 LevelCount := 2;
 PaneWidth[False] := 56;
 ScrollRange[EXG2ANTTLib_TLB.exStartDate] := '1/1/2001';
 ScrollRange[EXG2ANTTLib_TLB.exEndDate] := '1/15/2001';
 FirstVisibleDate := '1/12/2001';
 AllowCreateBar := EXG2ANTTLib_TLB.exCreateBarAuto;
 end;
 with Items do
 begin
 AddItem('Task 1');
 AddItem('Task 2');
 AddItem('Task 3');
 end;
 EndUpdate();
end

Visual Objects

METHOD OCX_Exontrol1CreateBar(Item,DateStart,DateEnd) CLASS MainDialog
 // CreateBar event - Fired when the user creates a new bar.
 local var_Items as IItems
 var_Items := oDCOCX_Exontrol1:Items
 var_Items:[ItemBar,Item,"newbar",exBarMinStart] := oDCOCX_Exontrol1:Chart:
[ScrollRange,exMinDate]
 var_Items:[ItemBar,Item,"newbar",exBarMaxEnd] := oDCOCX_Exontrol1:Chart:
[ScrollRange,exMaxDate]
RETURN NIL

local var_Chart as IChart
local var_Items as IItems

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:Columns:Add("Task")
var_Chart := oDCOCX_Exontrol1:Chart
 var_Chart:LevelCount := 2
 var_Chart:[PaneWidth,false] := 56
 var_Chart:[ScrollRange,exStartDate] := SToD("20010101")
 var_Chart:[ScrollRange,exEndDate] := SToD("20010115")
 var_Chart:FirstVisibleDate := SToD("20010112")
 var_Chart:AllowCreateBar := exCreateBarAuto
var_Items := oDCOCX_Exontrol1:Items
 var_Items:AddItem("Task 1")
 var_Items:AddItem("Task 2")
 var_Items:AddItem("Task 3")
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

/*begin event CreateBar(long Item,datetime DateStart,datetime DateEnd) - Fired when the
user creates a new bar.*/
/*
 OleObject oG2antt,var_Items
 oG2antt = ole_1.Object
 var_Items = oG2antt.Items
 var_Items.ItemBar(Item,"newbar",22,oG2antt.Chart.ScrollRange(2))
 var_Items.ItemBar(Item,"newbar",25,oG2antt.Chart.ScrollRange(3))
*/
/*end event CreateBar*/

OleObject oG2antt,var_Chart,var_Items

oG2antt = ole_1.Object
oG2antt.BeginUpdate()
oG2antt.Columns.Add("Task")

var_Chart = oG2antt.Chart
 var_Chart.LevelCount = 2
 var_Chart.PaneWidth(false,56)
 var_Chart.ScrollRange(0,2001-01-01)
 var_Chart.ScrollRange(1,2001-01-15)
 var_Chart.FirstVisibleDate = 2001-01-12
 var_Chart.AllowCreateBar = 1
var_Items = oG2antt.Items
 var_Items.AddItem("Task 1")
 var_Items.AddItem("Task 2")
 var_Items.AddItem("Task 3")
oG2antt.EndUpdate()

constants SelectDateEnum
The SelectDateEnum type specifies how the user can select dates in the chart part of the
control. The user can select a date in the chart at runtime by clicking the date in the
control's header. The AllowSelectDate property specifies whether the user can select a
date by clicking the chart's header. The MarkSelectDateColor property indicates the color
to show the selected dates within the chart. Programmatically you can select a date using
the SelectDate or SelectDates properties. The SelectLevel property indicates the level
being selected. The selected dates are not shown if the MarkSelectDateColor property has
the same value as BackColor property in the Chart object. The control fires the
ChartStartChaning(exSelectDate)/ChartEndChaning(exSelectDate) events once the user
selects a new date by clicking the chart's header.

Name Value Description

exNoSelectDate 0

No date is selected if the user clicks the chart's
header. Even so, you still can programmatically
show selected dates using the SelectDate or
SelectDates properties.

exSelectDefault -1

A date is being selected once the user clicks the
chart's header. The old selection of dates is cleared
if no CTRL key is pressed. Clicking the date by
keeping the CTRL key down, will select or unselect
the date from the cursor. The SelectLevel property
indicates the date from the level is selected. For
instance, if the chart displays 2 levels, months and
days, and clicking the month header, the entire
month is being selected. Clicking the days header
will make the day selected. If the chart is zoom-in
or zoom-out (a new scale is being selected) the
selected zones are shown relative to the new
levels. This option can not be combined with any
flag.

exSelectSingleDate 8
Only a single date can be selected by clicking the
chart's header. This is a bit-flag that can be
combined with other flags.

exSelectToggle 16

A date is selected if previously was not selected
and a date is being unselected if previously was
selected. This is a bit-flag that can be combined
with other flags. For instance, if the
AllowSelectDate property is exSelectToggle +
exSelectZone, indicates that the user can toggle the
selected dates, and the zones are shown relative to

any scale when zoom-in or zoom-out is preformed.

exSelectZone 256

The zone is being selected once the user clicks the
chart's header. For instance, if the chart displays 2
levels, months and days, and clicking the month
header, the entire month is being selected. Clicking
the days header will make the day selected. If the
control is zoom-in or zoom-out zone will be relative
to the new scale, so it is not indicating another
zone. The zone is keep even if the user zoom-in or
zoom-out the chart, so the original selected zone
will be shown relative to the new scale, comparing
with with the exSelectDefault, where the zone is lost
once a new scale is being selected. This is a bit-
flag that can be combined with other flags. For
instance, if the AllowSelectDate property is
exSelectToggle + exSelectZone, indicates that the
user can toggle the selected dates, and the zones
are shown relative to any scale when zoom-in or
zoom-out is preformed.

constants SelectObjectsEnum
The SelectObjectEnum type specifies whether the user can select bars, links single bar
selection or single link selection, and so on. Use the AllowSelectObjects property to specify
the objects that can be selected in the chart at runtime. Use the SelectedObjects property
to get a list of selected objects based on your criteria.

Name Value Description
exNoSelectObjects 0 The user can't select any object in the chart area.
exSelectBarsOnly 1 The user can select bars only.
exSelectLinksOnly 2 The user can select links only.
exSelectObjects 3 The user can select any object in the chart.

exSelectSingleObject 16

If present, it specifies whether the user can select
one or multiple objects. For instance, the
exSelectBarsOnly Or exSelectSingleObject
specifies that the user can select a single bar in the
chart. The exSelectLinksOnly Or
exSelectSingleObject specifies that the user can
select a single link in the chart.

exObjectsJustAdded 32

The SelectedObjects property retrieves only the
object being added since last selection change. For
instance, the SelectedObjects(exSelectBarsOnly
Or exObjectsJustAdded) retrieves a collection that
specifies only the bars being selected since last
selection change.

exObjectsJustRemoved 64

The SelectedObjects property retrieves only the
object being removed since last selection change.
For instance, the SelectedObjects(
exSelectBarsOnly Or exObjectsJustRemoved)
retrieves a collection that specifies only the bars
being un-selected since last selection change.

constants ShapeBarEnum
The ShapeBarEnum type indicates the height and the alignment of the bar. Use the Shape
property to specify the height and the vertical alignment of the bar.

Name Value Description
exShapeEmpty 0 The shape is empty.
exShapeSolid 1 The bar draws the frame around.
exShapeSolidUp 2
exShapeSolidCenter 3
exShapeSolidDown 4

exShapeSolidFrameless 17 The bar does not draw the frame
around.

exShapeThinUp 18
exShapeThinCenter 19
exShapeThinDown 20

constants ShapeCornerEnum
The ShapeCornerEnum expression defines the shape of the start and end part of the bar.
Use the StartShape and EndShape properties to define the start and end parts of the bar
using custom shapes. Use the AddShapeCorner method to define a corner from an icon.
Use the Images or ReplaceIcon method to update the list of control's icons.

Name Value Description
exShapeIconEmpty 0 No corner.
exShapeIconUp1 1
exShapeIconDown1 2
exShapeIconRhombus 3
exShapeIconCircleDot 4
exShapeIconUp2 5
exShapeIconDown2 6
exShapeIconLeft 7
exShapeIconRight 8
exShapeIconCircleUp1 9
exShapeIconCircleDown1 10
exShapeIconUp3 11
exShapeIconDown3 12
exShapeIconCircleUp2 13
exShapeIconCircleDown2 14
exShapeIconUp4 15
exShapeIconDown4 16
exShapeIconVBar 17
exShapeIconSquare 18
exShapeIconCircle 19
exShapeIconStar 20
exShapeIconFrameUp1 61441
exShapeIconFrameDown1 61442
exShapeIconFrameRhombus 61443
exShapeIconFrameCircleDot 61444

exShapeIconFrameUp2 61445

exShapeIconFrameDown2 61446
exShapeIconFrameLeft 61447
exShapeIconFrameRight 61448
exShapeIconFrameCircleUp1 61449
exShapeIconFrameCircleDown161450
exShapeIconFrameUp3 61451
exShapeIconFrameDown3 61452
exShapeIconFrameCircleUp2 61453
exShapeIconFrameCircleDown261454
exShapeIconFrameUp4 61455
exShapeIconFrameDown4 61456
exShapeIconFrameVBar 61457
exShapeIconFrameSquare 61458
exShapeIconFrameCircle 61459
exShapeIconFrameStar 61460

constants ShowExtendedLinksEnum
The ShowExtendedLinksEnum type specifies the way the control shows the links between
bars in the chart area. The ShowLinks property specifies whether the links are shown or
hidden. The ShowExtendedLinksEnum type supports the following values:

Name Value Description

exHideLinks 0

(False) Hides the links in the chart. No links are
shown in the chart

exShowLinks -1

(True) (By default) Shows the links in the chart.

exShowExtendedLinks 1

Shows the extended links in the chart. The
extended links are shown when two or more links
starts or ends on the same bar, so they will be
shown distinctly, rather than showing them one over
another. This flag can be combined with the
exShowLinksFront, to bring the links in front, or to
put over the bar, rather than behind bars. There are
some situations when the links are required to be
on the background, for instance, if using the
ShowLinksColor property, which require changing
the color of the bars based on the links of the
selected bar.

exShowDefaultLinks 2

Shows the default links in the chart. This value is
identical with the exShowLinks, excepts that this
can be combined with the exShowLinksFront, to
bring the links in the front.

exShowLinksFront 16
Shows the links on the front. This flag can be
combined with exShowExtendedLinks or
exShowLinksFront flags.

constants ShowLinksEnum
The ShowLinksEnum type specifies the type of links that can be show differently based on
the selected bars. The ShowLinksColor property specifies the color to display the links
when link starts from selected bar, ends on selected bar, or when it is not related to any of
selected bars. The ShowLinksWidth property specifies the width to show the links when the
link starts from selected bar, ends on selected bar, or when it is not related to any of
selected bars. The ShowLinksStyle property specifies the width to show the links when the
link starts from selected bar, ends on selected bar, or when it is not related to any of
selected bars.

Name Value Description

exShowLinksStartFrom 1 Shows the links that starts from selected bars
(outgoing links/bars).

exShowLinksEndTo 2 Shows the links that ends on the selected bars
(incoming links/bars).

exShowUnselectedLinks 4 Shows the links that are not related to any selected
bar.

exUpdateColorLinksOnly 16

Prevents applying the link's color to related bars.
This flag can be combined with any of the above
values when calling the set property of the
ShowLinksColor property. It has no effect for get
method of ShowLinksColor property. For instance,
ShowLinksColor(exShowLinksEndTo +
exUpdateColorLinksOnly) = RGB(255,0,0) shows in
red all incoming links (the color of the incoming
bars remains unchanged), Instead if the
ShowLinksColor(exShowLinksEndTo) =
RGB(255,0,0) the incoming links and bars are
shown in red.

constants SortOnClickEnum
Specifies the action that control takes when user clicks the column's header. The
SortOnClick Property specifies whether the control sorts a column when its caption is
clicked.

Name Value Description

exNoSort 0 The column is not sorted when the user clicks the
column's header.

exDefaultSort -1 The control sorts the column when user clicks the
column's header.

exUserSort 1

The control displays the sort icons, but it doesn't
sort the column. The user is responsible with listing
the items as being sorted. Use the ItemByPosition
property to access the sorted column in their order.

constants SortOrderEnum
Specifies the column's sort order. Use the SortOrder property to specify the column's sort
order.

Name Value Description

SortNone 0
The column is not sorted. (if the control supports
sorting by multiple columns, the column is removed
from the sorting columns collection)

SortAscending 1
The column is sorted ascending. (if the control
supports sorting by multiple columns, the column is
added to the sorting columns collection)

SortDescending 2
The column is sorted descending. (if the control
supports sorting by multiple columns, the column is
added to the sorting columns collection)

constants SortTypeEnum
The SortTypeEnum enumeration defines the ways how the control can sort the columns.
Use the SortType property to specify how the column gets sorted. The CellValue property
indicates the values being sorted.

Name Value Description
SortString 0 (Default) Values are sorted as strings.

SortNumeric 1 Values are sorted as numbers. Any non-numeric
value is evaluated as 0.

SortDate 2 Values are sorted as dates. Group ranges are one
day.

SortDateTime 3 Values are sorted as dates and times. Group
ranges are one second.

SortTime 4 Values are sorted using the time part of a date and
discarding the date. Group ranges are one second.

SortUserData 5 The CellData property indicates the values being
sorted. Values are sorted as numbers.

SortUserDataString 6 The CellData property indicates the values being
sorted. Values are sorted as strings.

exSortByValue 16 The column gets sorted by cell's value rather than
cell's caption.

exSortByState 32 The column gets sorted by cell's state rather than
cell's caption.

exSortByImage 48 The column gets sorted by cell's image rather than
cell's caption.

constants ItemBarPropertyEnum
The ItemBarPropertyEnum type specifies a property related to a bar inside an item. Use
the ItemBar property to retrieve or sets a value for bars in the item. The
AllowCellValueToItemBar property allows the cells to display properties of the bars. The
ShowLinksColor property specifies the color for links that starts or ends on selected bars.
The ShowLinksStyle property specifies the width to show the links when the link starts from
selected bar, ends on selected bar, or when it is not related to any of selected bars. The
SelBarColor property specifies the color to display the selected bars.

The ItemBarPropertyEnum type supports the following values:

Name Value Description

exBarName 0

Retrieves or sets a value that indicates the name of
the bar. The name of the bar does not indicate the
bar's caption as exBarCaption property. The
exBarName indicates a string such as "Task",
"Progress", "Split", or any other predefined type of
bar using the Add method. The BarName
parameter of the AddBar method indicates the
name of the bar to be added to an item. Use the
Add method to add new type of bars to your
chart. Use the exBarCaption or exBarExtraCaption
to associate a caption to be displayed on the
current bar. Use the exBarToolTip to assign a tooltip
to a bar. Use the exBarStart and
exBarEnd/exBarEndInclusive to specify the start
and end points of the bar.

(String expression)

exBarStart 1

Retrieves or sets a value that indicates the starting
date-time of the bar. The DateStart parameter of
the AddBar method indicates the starting date-time
of the bar being added. The exBarStart property
can be a DATE or a string expression that defines
the starting date-time of the bar. Use the
exBarMove, exBarMoveStart or exBarDuration to
move or resize programmatically the bar. Use the
exBarStartPrev property to get the starting date-
time before resizing the bar. You can call the
AddBar method with the new coordinates, same
item and key, to change at once the starting /

ending date-time of an existing bar. Use the
ShowEmptyBars property to show the bars, even if
the start and end dates are identical.

(Date expression)

exBarEnd 2

Retrieves or sets a value that indicates the ending
date-time of the bar. The DateEnd parameter of the
AddBar method indicates the ending date-time of
the bar being added. The exBarEnd property can
be a DATE or a string expression that defines the
ending date-time of the bar. Use the exBarMove,
exBarMoveEnd or exBarDuration to move or resize
programmatically the bar. Use the exBarEndPrev
property to get the ending date before resizing the
bar. You can call the AddBar method with the new
coordinates, same item and key, to change at once
the starting / ending date-time of an existing bar.
Use the ShowEmptyBars property to show the
bars, even if the start and end dates are identical.

You can use the exBarEndInclusive to display
exBarEnd - 1 when associate a cell with a bar,
using the AllowCellValueToItemBar property, so the
ending point displayed on the list section is one day
less. Changing the exBarEnd value may change
the exBarEndInclusive value, or reverse. For
instance, a a task bar from 1/1/2001 to 1/3/2001
shows two days, the exBarEnd displays 1/3/2001,
while the exBarEndInclusive displays 1/2/2001.

(Date expression)

Retrieves or sets a value that indicates the caption
being assigned to the bar. The Text parameter of
the AddBar method indicates the caption of the bar.
Use the exBarHAlignCaption and
exBarVAlignCaption to specify the alignment of the
bar's caption. Use the exBarExtraCaption option to
specify additional labels or captions for the bar. Use
the Add method to associate a note with a bar. You
can use the HTML tag to add icons or
custom size pictures to your bar. The

exBarCaption 3

exBarShowCaption hides the bar's caption.

This option supports built-in HTML format including
the <%=formula%> tag. The <%=formula%> tag
indicates the result of the giving formula. The
formula supports value formatting.

The formula supports the following keywords:

%0, %1, %2, ... specifies the
corresponding property of the bar, such as %0
indicates the exBarName, %1 exBarStart, %2
exBarEnd, and so on.
%C0, %C1, %C2, ... specifies the caption of
the cell, or the string the cell displays in the
column with the index 0, 1 2, ... The
CellCaption property specifies the cell's
caption. The cell's value may be different than
what the cell displays as a string. For
instance, let's say a cell display HTML format.
The %0 returns the html format including the
HTML tags, while %C0 returns the cell's
content as string without HTML tags. For
instance, "upper(%C1)" converts the caption of
the cell with the index 1, to upper case, while
"%C0 left 2" returns the leftmost two
characters on the cell with the index 0.
%CD0, %CD1, %CD2, ... specifies the cell's
extra data in the column with the index 0, 1 2,
... The CellData property associates any
extra/user data to a cell. For instance, "%CD0
= `your user data`" specifies all cells whose
CellData property is `your user data`, on the
column with the index 0.
%CS0, %CS1, %CS2, ... specifies the cell's
state in the column with the index 0, 1 2, ...
The CellState property specifies the cell's
state, and so it indicates whether the cell is
checked or un-checked. For instance, "%CS0"
defines all checked items on the column with
the index 0, or "not %CS1" defines all un-
checked items in the column with the index 1.

https://exontrol.com/faq.jsp/all/#html

For instance the Items.ItemBar(exBarCaption) = "
<%=%9 + '/' + %C0%>
Duration: <%=
(%2-%1)%>
Working: <%=%258%>

Progress: <%=round(100*%12)+'%'%>"
defines the bar's caption as in the following screen
shot:

The <%=formula%> tag allows you to specify
custom HTML format for caption, tooltip or bar's
legend based on the properties(%) and the cells in
the owner item (%C). Newer versions, allow you to
specify additional captions to the same bar using
the exBarExtraCaption option.

This property/method supports predefined
constants and operators/functions as described
here.

(HTML String expression)

Retrieves or sets a value that indicates the
horizontal alignment / clipping of the caption inside /
outside the bar. Use the exBarHAlignCaption
property to align horizontally the caption being
displayed between exBarStart and exBarEnd. The
exBarCaptionHOffset / exBarCaptionVOffset
specifies the horizontal/vertical offset of the bar's
caption relative to its default position.

exBarHAlignCaption 4

Use the exBarHAlignCaption property to clip the
bar's caption to bar's client area as described
bellow.

If the exBarHAlignCaption property is:

0,1 or 2 the caption is not clipped and it is
aligned to the left, center or right side of the
bar (no clip).
3, 4 or 5 the caption of the bar gets clipped to
the bar's client area, else the caption is aligned
to the left, center or right side of the bar (clip,
inside).
6, 7 or 8 the bar's caption is hidden if its size is
less or equal with MinUnitWidth property, else if
it does not fit the bar's client are, gets clipped
or else fully aligned to left, center or right side
of the bar. (hide if min, clip if not fit, inside
).
9, 10 or 11 the bar's caption is hidden if it does
not fit entirely into the bar's client area, else it
is fully displayed aligned to the left, center or
right side of the bar. (hide if not fit, no clip,
inside).
12, 13 or 13 the bar's caption is displayed
inside of the bar's client area if it fits entirely,
else it is displayed outside of the bar aligned to
the left, center or right. (no clip, inside,
outside).
16, 17, 18, the bar's caption is displayed
outside of the bar to the left or to the right. (
no clip, outside).

Also, the field supports the following flag (OR
combination with any other value):

32 (0x20), which indicates that the bar's
caption fits the bar and view (that bar's caption
is aligned relative to the horizontal-intersection
of the bar with the view) (for instance, 33
{number}, (1 + 32) the item-bar's caption is
always shown within the center (horizontally) of
item-bar intersected with the current view)

By default, the exBarHAlignCaption is
CenterAlignment (1, no clip, center)

(AlignmentEnum expression)

exBarVAlignCaption 5

Retrieves or sets a value that indicates the vertical
alignment of the caption inside the bar. Use the
exBarHAlignCaption property to align vertically the
caption being displayed between exBarStart and
exBarEnd. If the exBarVAlignCaption property
includes the VAlignmentEnum.exVOutside the
caption is displayed outside of the bar at the top or
bottom side of the bar. For instance, if the
exBarVAlignCaption property is
VAlignmentEnum.exTop OR
VAlignmentEnum.exVOutside, the caption is
displayed outside of the bar in the top side of the
bar. If the exBarVAlignCaption property is
VAlignmentEnum.exBottom OR
VAlignmentEnum.exVOutside, the caption is
displayed outside of the bar in the bottom side of
the bar. By default, the exBarVAlignCaption is
exMiddle.

(VAlignmentEnum expression)

Retrieves or sets a value that indicates the tooltip
being shown when the cursor hovers the bar. The
property supports built-in HTML format. Use the
exBarToolTip property to assign a tooltip to a bar or
to a text in the chart's area. Use the ShowToolTip
method to show a tooltip at runtime for different
parts of the chart. The Tooltip(0, -2, , , , ,) event
occurs once the bar's tooltip (exBarToolTip) is about
to be shown (-2 if the mouse pointer hovers the
bars of the chart).

This option supports built-in HTML format including
the <%=formula%> tag. The <%=formula%> tag
indicates the result of the giving formula. The
formula supports value formatting.

https://exontrol.com/faq.jsp/all/#html
https://exontrol.com/faq.jsp/all/#formatting

exBarToolTip 6

The formula supports the following keywords:

%0, %1, %2, ... specifies the
corresponding property of the bar, such as %0
indicates the exBarName, %1 exBarStart, %2
exBarEnd, and so on.
%C0, %C1, %C2, ... specifies the caption of
the cell, or the string the cell displays in the
column with the index 0, 1 2, ... The
CellCaption property specifies the cell's
caption. The cell's value may be different than
what the cell displays as a string. For
instance, let's say a cell display HTML format.
The %0 returns the html format including the
HTML tags, while %C0 returns the cell's
content as string without HTML tags. For
instance, "upper(%C1)" converts the caption of
the cell with the index 1, to upper case, while
"%C0 left 2" returns the leftmost two
characters on the cell with the index 0.
%CD0, %CD1, %CD2, ... specifies the cell's
extra data in the column with the index 0, 1 2,
... The CellData property associates any
extra/user data to a cell. For instance, "%CD0
= `your user data`" specifies all cells whose
CellData property is `your user data`, on the
column with the index 0.
%CS0, %CS1, %CS2, ... specifies the cell's
state in the column with the index 0, 1 2, ...
The CellState property specifies the cell's
state, and so it indicates whether the cell is
checked or un-checked. For instance, "%CS0"
defines all checked items on the column with
the index 0, or "not %CS1" defines all un-
checked items in the column with the index 1.

For instance the Items.ItemBar(exBarToolTip) = "
<%=%9 + '/' + %C0%>
Duration: <%=
(%2-%1)%>
Working: <%=%258%>

Progress: <%=round(100*%12)+'%'%>"
defines the bar's tooltip to show as in the following
screen shot:

The <%=formula%> tag allows you to specify
custom HTML format for caption or bar's tooltip
based on the properties(%) and the cells in the
owner item (%C).

(HTML String expression)

exBarBackColor 7

Retrieves or sets a value that indicates the
background color for the area being occupied by
the bar. Color expression. This option has effect
only if the exBarBackColor property is not zero. The
last 7 bits in the high significant byte of the color
indicates the identifier of the skin being used. Use
the Add method to add new skins to the control. If
you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits
in the high significant byte of the color being applied
to the background's part. The
exSummaryBarBackColor property specifies the
background color for the portion occupied by the
bar while it is hosted by a summary bar, while the
exBarColor property specifies the bar's color.

(Color expression)

exBarForeColor 8

Retrieves or sets a value that indicates the
foreground color for the caption of the bar. Color
expression. This option has effect only if the
exBarBackColor property is not zero.

(Color expression)

Specifies key of the bar. The Key parameter of the
AddBar method indicates the key of the bar.

exBarKey 9 (Variant expression)

exBarCanResize 10

Specifies whether the user can resize the bar. Use
the BarsAllowSizing property to specify whether the
control supports moving or resizing the bars.

If the exBarCanResize is 0/False, the bar can
not be resized.
If the exBarCanResize is -1/True, the bar can
be resized on both sides.
If the exBarCanResize is 1, the bar can be
resized on left side, and can not be resized on
right.
If the exBarCanResize is 2, the bar can be
resized on right side, and can not be resized on
left.

The exBarSelectable specifies whether a bar is
fixed to its position, in other words if it can be
selected or not.

(Boolean/Long expression)

exBarCanMove 11

Specifies whether the user can move the bar. Use
the BarsAllowSizing property to specify whether the
control supports moving or resizing the bars. Use
the exBarCanMoveToAnother option to specify
whether the user can move a bar from one item to
another by drag and drop. The exBarSelectable
specifies whether the bar can be selected at
runtime.

(Boolean expression)

 Specifies the percent from the
original bar where the progress bar is displayed.
This float value should be between 0 and 1 (1
means 100%). You can use also the
exBarpercent100 to specify long expression value
from 0 to 100. Use the Add("A%B") to add a
combination of two bars, so the exBarPercent value
specifies the percent from the bar A to be displayed

exBarPercent 12

as bar B. For instance, the Add("Task%Progress")
adds a combination of Task and Progress bars, so
the Task shape is displayed on the full bar, and the
Progress shape is displayed only on the portion
determined by the exBarPercent value. When you
resize the original bar (A), the inside bar (B) is
shown proportionally. Use the
exBarShowPercentCaption option to show the
percent value as caption on the bar. Use the
exBarPercentCaptionFormat property to define the
format of the percent value being displayed as text.
Use the exBarAlignmentPercentCaption property to
specify the alignment of the percent on the bar. The
BarResize event is fired when the exBarPercent
value is changed. You can use the exBarPercent100
option to work with integer values from 0 to 100 for
specifying the bar's percent. The 0 value
corresponds to the exBarStart, while 1 corresponds
to the exBarEnd, so the formula
Items.ItemBar(exBarStart) +
(Items.ItemBar(exBarEnd)-
Items.ItemBar(exBarStart))*Items.ItemBar(exBarPercent)
gives exactly the date time where progress bar is
in the chart.

(Float expression, between 0 and 1, by default it is
0)

exBarPercentCaptionFormat 13

Specifies the HTML format to be displayed as
percent. The percent is displayed on the bar only if
the exBarShowPercentCaption option is True. By
default, the exBarPercentCaptionFormat property is
"%p%" where the %p is the value of the
percent (exBarPercent property), and it displays
the percent as 15%, where exBarPercent is 0.15.
The indicates that the text is bolded.

(String expression)

Specifies whether the percent is displayed as
caption on the bar. By default, the
exBarShowPercentCaption property is False, which

exBarShowPercentCaption 14

means that the percent value is not shown. Use the
exBarPercent property to specify the value of the
percent. Use the exBarPercentCaptionFormat
property to define the format of the percent being
displayed on the bar. Use the
exBarAlignPercentCaption property to indicates the
alignment of the percent in the bar.

(Boolean expression)

exBarAlignPercentCaption 15

Specifies the horizontal alignment of the percent
caption on the bar. Use the exBarVAlignPercent
option to specify the vertical alignment of the
percent bar relative to the owner bar.

If the exBarAlignPercentCaption property is:

0, 1 or 2 the percent caption is not clipped and
it is aligned to the left, center or right side of
the progress bar (no clip)
3, 4 or 5 the percent caption of the progress
bar gets clipped to the progress bar's client
area, else the percent caption is aligned to the
left, center or right side of the progress bar (
clip, inside).
6, 7 or 8 the percent caption of the progress
bar is hidden if its size is less or equal with
MinUnitWidth property, else if it does not fit the
progress bar's client area, gets clipped or else
fully aligned to left, center or right side of the
progress bar. (hide if min, clip if not fit,
inside).
9, 10 or 11 the percent caption of the progress
bar is hidden if it does not fit entirely into the
progress bar's client area, else it is fully
displayed aligned to the left, center or right
side of the progress bar. (hide if not fit, no
clip, inside).
12, 13 or 14 the percent caption of the
progress bar is displayed inside of the
progress bar's client area if it fits entirely, else
it is displayed outside of the progress bar
aligned to the left, center or right. (no clip,

inside, outside).
16, 17 or 18, the percent caption of the
progress bar is displayed outside of the
progress bar to the left or to the right (no clip,
outside).

By default, the exBarAlignPercentCaption is
RightAlignment (2, no clip, right).

(AlignmentEnum expression)

exBarCanResizePercent 16

Specifies whether the user can resize the percent
at runtime. By default, the exBarCanResizePercent
is True. Here's how the user can resize the percent
value at runtime. Move the mouse to the last portion
of the percent, so the Percent cursor is shown.
Click and drag the bar to a new position, so the
exBarPercent value is defined proportionally by the
position of the cursor in the original bar. The
BarResize event is fired when the user changes the
percent value at runtime.

(Boolean expression)

exBarData 17

Associates an extra data to a bar. Use this property
to assign your extra data to any bar in the item.

(Variant expression)

exBarOffset 18

 Specifies the vertical offset
where the bar is shown. By default, this property is
0 and the bar is shown in the center. Use this
property to show up or down the bar. Use the
OverlaidType property to specify how two or more
bars that cross over are displayed.

(Long expression)

 Specifies the percent of the
transparency to display the bar, or to show or hide
a bar and its links. By default, this property is 0,
which means that the bar is opaque. If the property

exBarTransparent 19

is 50, the bar is shown semi-transparent. Use the
ShowTransparentBars property to draw all bars
using a semi- transparent color. Use the
OverlaidType property to specify how two or more
bars that cross over are displayed. If the
exBarTransparent property is 100, the bar is
hidden, along with its links if any.

(Long expression between 0-opaque, 50-semi-
transparent100-hidden)

exBarKeepWorkingCount 20

By default, the exBarKeepWorkingCount property is
False. Specifies a value that indicates whether the
bar keeps constant the working units, while the user
moves the bar to a new position. The
NonworkingDays property specifies the non-working
days. Use the AddNonworkingDate property to add
custom non-working days. Use the
NonworkingHours property to specify the non-
working hours. The exBarWorkingCount option
specifies the number of working units being
unchanged. This option is ignored for summary bars
or exBarTreatAsNonworking bars. We are not
recommending using the ShowEmptyBars property
on a non-zero value, if using bars with the
ItemBar(exBarKeepWorkingCount) property on
True.

(Boolean expression)

(exBarEffort/21) By default, the exBarEffort is 1 (
double expression). Specifies the effort to execute
an unit in the task. This property has effect only
when the bar is represented in the chart's
histogram. Use the HistogramVisible property to
specify whether the control shows the chart's
histogram. Changes the HistogramPattern or/and
HistogramColor property, else no bars will be
shown in the histogram.

The representation of the exBarEffort value
depends on the HistogramType property as follow:

exHistOverload, the exBarEffort value
represents the effort to execute an unit in the
bar. For instance, if the bars display activities
the exBarEffort value may represent the
number of workers for each activity so the
overload histogram displays the total number of
workers on the activity.

The following screen shot shows the
exHistOverload histogram when exBarEffort

property is 1 (by default):

The following screen shot shows the
exHistOverload histogram when exBarEffort

property is different for bars as seen in the columns
section:

exHistOverAllocation, the exBarEffort value
defines the workload to show in the

exBarEffort 21

exHistOverAllocation histogram. The work-load
for a task is computed as exBarEffort / length
of the bar. The work-load for the task is the
work effor / task duration. (i.e. If
item.exBarEffort = 1 and gantt bar length is 10
days, then the work-load = 0.1 or 10%). The
histogram- graph shows the sum of the work-
loads (the work-load of each task item is
added, unit by unit).

The following screen shot shows the
exHistOverallocation histogram when exBarEffort

property is 1 (by default):

The following screen shot shows the
exHistOverallocation histogram when exBarEffort

property is different for bars as seen in the columns
section:

Starting from version 14.0, the exBarEffort could
be:

a numeric value which it is applied for all units
in the task
a string that indicates the expression/formula to
get the effort of the bar to be represented on
the chart's histogram. The value keyword
indicates the date-time being queried, the start
and end keywords specify the starting and
ending points of the bar as indicated by
exBarStart and exBarEnd fields in the ItemBar
property. For instance, the exBarEffort on
"weekday(value) in (0,6) ? 0 : 2", means that
that effort to do the job is 2 for any day in the
task, excepts the Sundays(0) and Saturdays(6)
(weekend)

Here's a few samples of using the exBarEffort:

2.5 means that effort to do the job is 2.5 for
any day in the task
0 means that the task has no representation on
the chart's histogram
"weekday(value) in (0,6) ? 0 : 2", means that
that effort to do the job is 2 for any day,
excepts the Sundays(0) and Saturdays(6)
"weekday(value) = 1 ? 2 : 1" indicates that the
effort to do the job is 2 for Mondays(1), else 1
"month (value) = 7 ? 1 : 0", indicates that the
effort to do the job is 1 for any day in July, and
0 for any other
"(month(value)=month(value+1)) ? 1 : 0",
indicates that the effort to do the job is 1 for
any day, excepts the last day in the month.
"int(value-start) ? 1 : 2" indicates that the effort
to do the job is 2 for the first day in the task,
and 1 for the others.
"(int(value-start) and int(end-value) != 0) ? 1 :
2" indicates that the effort to do the job is 2 for
the first and last days in the task, and 1 for the
others.
"int(value-start) in (0,1,2) ? 1 : 2" indicates that
the effort to do the job is 1 for the first three
(0,1,2) days in the task, and 1 for the others.
"(int(value-start)+1) mod 2 ? 1 : 0" indicates

that the effort to do the job is 1 for the first
day, 0 for the second day, 1 for the third day, 0
for the forth day, and so on.

Here's a screen shot of a few exBarEffort samples:

Here's what you can represent with the exBarEffort
property:

Click here to watch the movie on how you
can use expressions on exBarEffort.

The supported keywords are:

value which indicates the date-time being
queried
start and end specify the starting and ending
points of the bar as indicated by exBarStart
and exBarEnd fields in the ItemBar property.

This property/method supports predefined
constants and operators/functions as described
here.

(Float expression [or String expression (starting
with version 14.0)])

Specifies the minimum value for the starting date of
the bar. Use this value to limit bar to move in a
specified range. Use the exBarMinDuration and

https://www.youtube.com/watch?v=ekdrCLX96Do

exBarMinStart 22 exBarMaxDuration properties to specify the limits
for the bar's duration.

(Date expression)

exBarMaxStart 23

Specifies the maximum value for the starting date of
the bar. Use this value to limit bar to move in a
specified range. Use the exBarMinDuration and
exBarMaxDuration properties to specify the limits
for the bar's duration.

(Date expression)

exBarMinEnd 24

Specifies the minimum value for the ending date of
the bar. Use this value to limit bar to move in a
specified range. Use the exBarMinDuration and
exBarMaxDuration properties to specify the limits
for the bar's duration.

(Date expression)

exBarMaxEnd 25

Specifies the maximum value for the ending date of
the bar. Use this value to limit bar to move in a
specified range. Use the exBarMinDuration and
exBarMaxDuration properties to specify the limits
for the bar's duration.

(Date expression)

exBarShowRange 26

Indicates whether the bar shows its range where it
can be moved or resized. It indicates a
PatternEnum expression that specifies the way to
mark the range of the bar, or a skin identifier to be
used for showing the range.

(Boolean expression)

exBarShowRangeTransparent27

Specifies the percent of the transparency to display
the range of the bar. By default this property is 0.

(Long expression, from 0 to 100, where 100
means fully transparent)

exBarCanMoveToAnother 28

By default, the bar can NOT be moved from an item
to another. Specifies whether the bar can be moved
to another item by drag and drop. Use the
exBarPercent property to change the parent item of
the bar by code. In order to move a bar from one
item to another using the drag and drop operations,
this option MUST be set on True. The control fires
the BarParentChange event just before moving the
bar to another item. Use this event to control the
items where your bar can be moved. A bar can be
moved to another item, ONLY if the second item
does not contain a bar with the same key. The
exBarKey property specifies the key of the bar. The
AutoDrag property indicates what the control does
when the user clicks an item and starts dragging it.
A Bar can be moved from an item to another, if the
new parent item contains no bars with the same
key as the dragging one.

(Boolean expression)

exBarSelectable 29

Specifies whether the bar can be selected. The
exBarCanMove specifies whether a bar can be
moved at runtime. The exBarCanResize specifies
whether a bar can be resized at runtime. The
exBarSelectable specifies whether a bar is fixed to
its position. Use a non-selectable bar to add custom
non-selectable entries to your chart.

(Boolean expression)

exBarCanStartLink 30

Specifies whether a link can start from this bar. By
default, the exBarCanStartLink is True. The
exBarCanStartLink option has effect only if the
exBarCanBeLinked option is True. You can control
enabling or disabling links at runtime using the
AllowLink event.

(Boolean expression)

exBarCanEndLink 31

Specifies whether a link can end on this bar. . By
default, the exBarCanEndLink is True. The
exBarCanEndLink option has effect only if the
exBarCanBeLinked option is True. You can control
enabling or disabling links at runtime using the
AllowLink event.

(Boolean expression)

exBarCanBeLinked 32

Specifies whether the bar can be linked. . By
default, the exBarCanBeLinked is True. You can
control enabling or disabling links at runtime using
the AllowLink event. (Boolean expression)

exBarColor 33

Specifies the color for a particular bar. If used, it
replaces the bar's type color. By default, the
exBarColor is 0, which means that the default bar's
color is used. The Color property defines the
default's bar color. The Color property defines the
color for all bars of the same type. Use the
exBarColor to change the color for particular bars.
As usual, this option may indicates a skin object to
display the bar. If the EBN identifier (last 7 bits in
the high significant byte of the color) is not
specified(0), but the Color property indicates an
EBN object, the exBarColor specifies the color to
apply to the EBN object. The exBarOverviewColor
option may be used to specify the color within the
overview part of the control. The
HistogramCumulativeOriginalColorBars property
indicates whether the bars that generate the
histogram change their original color. If available,
you can change the bar's pattern using the
exBarPattern option. The ItemBar(
exBarHistLegend) property specifies the description
to show within the histogram's legend for the bar in
the control's histogram (exKeepOriginalColor only).

(Color expression)

Specifies the item's background color for child bars
owned by the summary bar. The last 7 bits in the
high significant byte of the color indicates the

exSummaryBarBackColor 34

identifier of the skin being used. Use the Add
method to add new skins to the control. If you need
to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high
significant byte of the color being applied to the
background's part. The DefineSummaryBars
property defines bars that belongs to a summary
bar.

By default, the exSummaryBarBackColor property
is 0, which means that it has no effect.

If the exSummaryBarBackColor property is set to a
non- zero value it indicates the background color for
the portion of the summary bar as seen in the
following screen shot:

The following screen shot shows the bars that
belongs to a summary bars using EBN colors and
semi-transparent
(exSummaryBarBackColorTransparent = 50):

The exBarBackColor property specifies the
background color for the portion occupied by the
bar, while the exBarColor property specifies the
bar's color.

(Color expression)

Specifies the percent of the transparency to display
the background of the bars that belongs to a
summary bar. By default, the
exSummaryBarBackColorTransparent property is 0,
which means opaque since 100 means fully

exSummaryBarBackColorTransparent35

transparent, and 50 means semi-transparent. The
exSummaryBarBackColorTransparent property has
effect only if the exSummaryBarBackColor property
is not 0.

The following screen shot displays the bars that
belongs to a summary bar using a semi-transparent
color (so the non-working portion is visible)

(Long expression between 0-opaque, 100-
transparent)

exBarMinDuration 36

Specifies the minimum duration of the bar in days .
By default, the exBarMinDuration property is 0,
which means that there is no lower limit, or the
length of the bar can be any value. If the
exBarMinDuration property is not 0, the duration of
the bar must be greater than specified value, or in
other words, the bar will not be shown with its
duration less than exBarMinDuration value. Use the
exBarDuration property to change the bar's
duration. (Float expression)

exBarMaxDuration 37

Specifies the maximum duration of the bar in days.
By default, the exBarMaxDuration property is -1,
which means that there is no upper limit, or the
length of the bar can be any value. If the
exBarMaxDuration property is not -1, the duration
of the bar must be less than specified value, or in
other words, the bar will not be shown with its
duration greater than exBarMaxDuration value. Use
the exBarDuration property to change the bar's
duration.

(Float expression)

Specifies whether the bar is treated as non-working
part of the item. By default, the

exBarTreatAsNonworking 38

exBarTreatAsNonworking is False.

This option has effect only if:

AllowNonworkingBars property is True.
ItemNonworkingUnits property is not empty,
and points to a valid expression. The
ItemNonworkingUnits property indicates a
repetitive expression to determine the parts of
the item being non-working.

In other words, the exBarTreatAsNonworking bars
are treated as regular bars if the
AllowNonworkingBars property is False, or if
ItemNonworkingUnits property is empty

(Boolean expression)

exBarPercentColor 39

Specifies the color to show inside percent bar. The
option is valid for bars that displays inside a percent
bar. A bar can display a percent bar if it was
creates using the Chart.Bars.Add("A%B") syntax.
For instance Chart.Bars.Add("Task%Progress")
adds a task bar that displays inside a percent bar.

(Color expression)

exBarNonWorkingColor 40

Specifies the color to show non-working parts of
the bar. A bar may show different shape, pattern
for non-working parts of the bar if it was previously
created using the Bars.Add("A:B"). For instance the
Bars.Add("Task:Split") adds a a bar that displays
the split if it covers a non-working part.

(Color expression)

Specifies the color to show the bar in the overview
area. The OverviewVisible property specifies
whether the control displays the overview/layout
map of bars within the chart.

The color to specify the bar in the overview area is
determined as follows:

exBarOverviewColor 41

If ItemBar(exBarOverviewColor) property is not
0, the exBarOverviewColor indicates the color
to show the bar in the overview area, else
If OverviewColor property is not 0, the
OverviewColor property indicates the color to
show the bar in the overview area, else
If the ItemBar(exBarColor) is not 0, the
exBarColor indicates the color to show the bar
in the overview area, else
The Color property of the Bar indicates the
color to show the bar in the overview part of
the control.

(The bar is represented into the control's overview
only if its determined color is not -1)

(Color expression)

exBarPattern 42

By default the exBarPattern option is empty. If the
exBarPattern property is empty, the option is
ignored. Use the exBarPattern to specify a different
pattern to be displayed on the bar in the chart area.
The Pattern property of the Bar specifies the
pattern to be applied for all bars of the same type.
For instance, includes the exPatternFrameShadow
in the bar's pattern to show a shadow around the
bar.

(PatternEnum expression)

exBarVAlignPercent 43

Specifies the vertical alignment of the percent bar
relative to the owner bar. Use the
exBarAlignPercentCaption option to align
horizontally the caption inside the percent bar. By
default, the exBarVAlignCaption is exMiddle.

(VAlignmentEnum expression)

Use the exBarExtraCaption property to assign
multiple captions to a bar at once. Retrieves or sets

a collection of extra captions being assigned to the
bar. If a single extra caption is being added, you
can use the caption, or if multiple you have to build
a safe array of strings. By default, any extra
caption is added to the center of the bar. Use the
exBarExtraCaptionHAlign to specify the horizontal
alignment of the extra caption being added. Use the
exBarExtraCaptionHOffset to specify the horizontal
offset to move the extra caption relative to its
default position. Use the exBarExtraCaptionVAlign
to specify the vertical alignment of the extra caption
being added. Use the exBarExtraCaptionVOffset to
specify the vertical offset to move the extra caption
relative to its default position. The /NET assembly
provides, the get_BarExtraCaption and
set_BarExtraCaption properties to get and set the
extra captions. Use the Add method to associate a
note with a bar. You can use the HTML tag
to add icons or custom size pictures to your bar.
The exBarShowExtraCaption hides the bar's extra
caption.

This option supports built-inHTML format including
the <%=formula%> tag. The <%=formula%> tag
indicates the result of the giving formula. The
formula supports value formatting. Inside the
formula the %0, %1, ... indicates the value of
corresponding property of the bar, such as %0
specifies the exBarName, %1 exBarStart, and so
on. The %C0, %C1, ... indicates the cell's values. A
bar belongs to an item which displays a cell for
each column. The %CIndex indicates the cell on the
column with the specified index. For instance, the
%C0 indicates the cell on the first column, %C1
specifies the cell in the second column, and so on.

For instance the Items.ItemBar(exBarCaption) =
"Duration of <%=%9 + ' of ' + %C0%> is
<%=(%2-%1)%> days" specifies that the bar's
caption shows the duration of the bar such as :
"Duration of K1 of Task1 is 3 days." where the %9
indicates the exBarKey, while %2 is exBarEnd and
%1 is exBarStart. Using the <%=formula%> html

https://exontrol.com/faq.jsp/all/#formatting

exBarExtraCaption 44

TAG, you will be able to format the bar's caption to
display its content based on the current properties
of the bar, without having to redefine the caption
once a bar is updated.

The following VB sample adds a single extra
caption in the right side of the bar:

With G2antt1.Items
 .ItemBar(.FocusItem, .FirstItemBar(.FocusItem),
exBarExtraCaption) = "right"
 .ItemBar(.FocusItem, .FirstItemBar(.FocusItem),
exBarExtraCaptionHAlign) = RightAlignment Or
exHOutside
End With

The following VB sample adds two extra captions,
one in the left side, and one to the right side:

With G2antt1.Items
 .ItemBar(.FocusItem, .FirstItemBar(.FocusItem),
exBarExtraCaption) = Array("left", "right")
 .ItemBar(.FocusItem, .FirstItemBar(.FocusItem),
exBarExtraCaptionHAlign) = Array(LeftAlignment
Or exHOutside, RightAlignment Or exHOutside)
End With

When retrieving the exBarExtraCaption returns the
extra caption, if there is only, one, else it returns a
safe arrea (collection) of string that indicates the
extra captions of the bar.

The following VB/NET sample adds a single extra
caption in the right side of the bar:

With Exg2antt1.Items
 .set_BarExtraCaption(.FocusItem,
.get_FirstItemBar(.FocusItem), "right")
 .set_BarExtraCaptionHAlign(.FocusItem,
.get_FirstItemBar(.FocusItem),

exontrol.EXG2ANTTLib.AlignmentEnum.RightAlignment
 Or
exontrol.EXG2ANTTLib.AlignmentEnum.exHOutside)

End With

The following VB/NET sample adds two extra
captions, one in the left side, and one to the right
side:

With Exg2antt1.Items
 .set_BarExtraCaption(.FocusItem,
.get_FirstItemBar(.FocusItem), New String() {"left",
"right"})
 .set_BarExtraCaptionHAlign(.FocusItem,
.get_FirstItemBar(.FocusItem), _
 New exontrol.EXG2ANTTLib.AlignmentEnum()
{exontrol.EXG2ANTTLib.AlignmentEnum.LeftAlignment
 Or
exontrol.EXG2ANTTLib.AlignmentEnum.exHOutside,
 _

exontrol.EXG2ANTTLib.AlignmentEnum.RightAlignment
 Or
exontrol.EXG2ANTTLib.AlignmentEnum.exHOutside})

End With

The following C# sample adds a single extra
caption in the right side of the bar:

exontrol.EXG2ANTTLib.Items items =
exg2antt1.Items;
items.set_BarExtraCaption(items.FocusItem,
items.get_FirstItemBar(items.FocusItem), "right");
items.set_BarExtraCaptionHAlign(items.FocusItem,
items.get_FirstItemBar(items.FocusItem),
exontrol.EXG2ANTTLib.AlignmentEnum.RightAlignment

 |
exontrol.EXG2ANTTLib.AlignmentEnum.exHOutside);

The following C# sample adds two extra captions,
one in the left side, and one to the right side:

exontrol.EXG2ANTTLib.Items items =
exg2antt1.Items;
items.set_BarExtraCaption(items.FocusItem,
items.get_FirstItemBar(items.FocusItem),
 new string[2] { "left", "right" });
items.set_BarExtraCaptionHAlign(items.FocusItem,
items.get_FirstItemBar(items.FocusItem),
 new exontrol.EXG2ANTTLib.AlignmentEnum[2]
{
exontrol.EXG2ANTTLib.AlignmentEnum.LeftAlignment
 |
exontrol.EXG2ANTTLib.AlignmentEnum.exHOutside,

exontrol.EXG2ANTTLib.AlignmentEnum.RightAlignment
 |
exontrol.EXG2ANTTLib.AlignmentEnum.exHOutside
 });

The following picture shows a bar with its default
caption and two other additional captions.

(HTML string expression or safe array of HTML
string expressions)

Specifies the horizontal alignment for each extra
caption assigned to the bar.

If the exBarExtraCaptionHAlign property is:

0,1 or 2 the caption is not clipped and it is
aligned to the left, center or right side of the

bar (no clip).
3, 4 or 5 the caption of the bar gets clipped to
the bar's client area, else the caption is aligned
to the left, center or right side of the bar (clip,
inside).
6, 7 or 8 the bar's caption is hidden if its size is
less or equal with MinUnitWidth property, else if
it does not fit the bar's client are, gets clipped
or else fully aligned to left, center or right side
of the bar. (hide if min, clip if not fit, inside
).
9, 10 or 11 the bar's caption is hidden if it does
not fit entirely into the bar's client area, else it
is fully displayed aligned to the left, center or
right side of the bar. (hide if not fit, no clip,
inside).
12, 13 or 13 the bar's caption is displayed
inside of the bar's client area if it fits entirely,
else it is displayed outside of the bar aligned to
the left, center or right. (no clip, inside,
outside).
16, 17, 18, the bar's caption is displayed
outside of the bar to the left or to the right. (
no clip, outside).

Also, the field supports the following flag (OR
combination with any other value):

32 (0x20), which indicates that the bar's
caption fits the bar and view (that bar's caption
is aligned relative to the horizontal-intersection
of the bar with the view) (for instance, 33
{number}, (1 + 32) the item-bar's caption is
always shown within the center (horizontally) of
item-bar intersected with the current view)

By default, the exBarExtraCaptionHAlign is
CenterAlignment (1, no clip, center)

The following VB sample adds a single extra
caption in the right side of the bar:

With G2antt1.Items

 .ItemBar(.FocusItem, .FirstItemBar(.FocusItem),
exBarExtraCaption) = "right"
 .ItemBar(.FocusItem, .FirstItemBar(.FocusItem),
exBarExtraCaptionHAlign) = RightAlignment Or
exHOutside
 .ItemBar(.FocusItem, .FirstItemBar(.FocusItem),
exBarExtraCaptionVAlign) = exBottom Or
exVOutside
End With

The following VB sample adds two extra captions,
one in the left side, and one to the right side:

With G2antt1.Items
 .ItemBar(.FocusItem, .FirstItemBar(.FocusItem),
exBarExtraCaption) = Array("left", "right")
 .ItemBar(.FocusItem, .FirstItemBar(.FocusItem),
exBarExtraCaptionHAlign) = Array(LeftAlignment
Or exHOutside, RightAlignment Or exHOutside)
 .ItemBar(.FocusItem, .FirstItemBar(.FocusItem),
exBarExtraCaptionVAlign) = Array(exTop Or
exVOutside, exBottom Or exVOutside)
End With

When retrieving the exBarExtraCaption returns the
extra caption, if there is only one, else it returns a
safe array (collection) of string that indicates the
extra captions of the bar.

The following VB/NET sample adds a single extra
caption in the right side of the bar:

With Exg2antt1.Items
 .set_BarExtraCaption(.FocusItem,
.get_FirstItemBar(.FocusItem), "right")
 .set_BarExtraCaptionHAlign(.FocusItem,
.get_FirstItemBar(.FocusItem),
exontrol.EXG2ANTTLib.AlignmentEnum.RightAlignment
 Or

exBarExtraCaptionHAlign 45

exontrol.EXG2ANTTLib.AlignmentEnum.exHOutside)

 .set_BarExtraCaptionVAlign(.FocusItem,
.get_FirstItemBar(.FocusItem),
exontrol.EXG2ANTTLib.VAlignmentEnum.exBottom
 Or
exontrol.EXG2ANTTLib.VAlignmentEnum.exVOutside)

End With

The following VB/NET sample adds two extra
captions, one in the left side, and one to the right
side:

With Exg2antt1.Items
 .set_BarExtraCaption(.FocusItem,
.get_FirstItemBar(.FocusItem), New String() {"left",
"right"})
 .set_BarExtraCaptionHAlign(.FocusItem,
.get_FirstItemBar(.FocusItem), _
 New exontrol.EXG2ANTTLib.AlignmentEnum()
{exontrol.EXG2ANTTLib.AlignmentEnum.LeftAlignment
 Or
exontrol.EXG2ANTTLib.AlignmentEnum.exHOutside,
 _

exontrol.EXG2ANTTLib.AlignmentEnum.RightAlignment
 Or
exontrol.EXG2ANTTLib.AlignmentEnum.exHOutside})

 .set_BarExtraCaptionVAlign(.FocusItem,
.get_FirstItemBar(.FocusItem), _
 New exontrol.EXG2ANTTLib.VAlignmentEnum()
{exontrol.EXG2ANTTLib.VAlignmentEnum.exTop
Or
exontrol.EXG2ANTTLib.VAlignmentEnum.exVOutside,
 _

exontrol.EXG2ANTTLib.VAlignmentEnum.exBottom
 Or
exontrol.EXG2ANTTLib.VAlignmentEnum.exVOutside})

End With

The following C# sample adds a single extra
caption in the right side of the bar:

exontrol.EXG2ANTTLib.Items items =
exg2antt1.Items;
items.set_BarExtraCaption(items.FocusItem,
items.get_FirstItemBar(items.FocusItem), "right");
items.set_BarExtraCaptionHAlign(items.FocusItem,
items.get_FirstItemBar(items.FocusItem),
exontrol.EXG2ANTTLib.AlignmentEnum.RightAlignment
 |
exontrol.EXG2ANTTLib.AlignmentEnum.exHOutside);

items.set_BarExtraCaptionVAlign(items.FocusItem,
items.get_FirstItemBar(items.FocusItem),
exontrol.EXG2ANTTLib.VAlignmentEnum.exBottom
 |
exontrol.EXG2ANTTLib.VAlignmentEnum.exVOutside);

The following C# sample adds two extra captions,
one in the left side, and one to the right side:

exontrol.EXG2ANTTLib.Items items =
exg2antt1.Items;
items.set_BarExtraCaption(items.FocusItem,
items.get_FirstItemBar(items.FocusItem),
 new string[2] { "left", "right" });
items.set_BarExtraCaptionHAlign(items.FocusItem,
items.get_FirstItemBar(items.FocusItem),
 new exontrol.EXG2ANTTLib.AlignmentEnum[2]
{
exontrol.EXG2ANTTLib.AlignmentEnum.LeftAlignment

 |
exontrol.EXG2ANTTLib.AlignmentEnum.exHOutside,

exontrol.EXG2ANTTLib.AlignmentEnum.RightAlignment
 |
exontrol.EXG2ANTTLib.AlignmentEnum.exHOutside
 });
items.set_BarExtraCaptionVAlign(items.FocusItem,
items.get_FirstItemBar(items.FocusItem),
 new
exontrol.EXG2ANTTLib.VAlignmentEnum[2] {
exontrol.EXG2ANTTLib.VAlignmentEnum.exTop |
exontrol.EXG2ANTTLib.VAlignmentEnum.exVOutside,

exontrol.EXG2ANTTLib.VAlignmentEnum.exBottom
 |
exontrol.EXG2ANTTLib.VAlignmentEnum.exVOutside
 });

(AlignmentEnum expression, or a safe array of
AlignmentEnum/long/vt_i4 expression)

Specifies the vertical alignment for each extra
caption assigned to the bar.

The following VB sample adds a single extra
caption in the right side of the bar:

With G2antt1.Items
 .ItemBar(.FocusItem, .FirstItemBar(.FocusItem),
exBarExtraCaption) = "right"
 .ItemBar(.FocusItem, .FirstItemBar(.FocusItem),
exBarExtraCaptionHAlign) = RightAlignment Or
exHOutside
 .ItemBar(.FocusItem, .FirstItemBar(.FocusItem),
exBarExtraCaptionVAlign) = exBottom Or
exVOutside
End With

The following VB sample adds two extra captions,
one in the left side, and one to the right side:

With G2antt1.Items
 .ItemBar(.FocusItem, .FirstItemBar(.FocusItem),
exBarExtraCaption) = Array("left", "right")
 .ItemBar(.FocusItem, .FirstItemBar(.FocusItem),
exBarExtraCaptionHAlign) = Array(LeftAlignment
Or exHOutside, RightAlignment Or exHOutside)
 .ItemBar(.FocusItem, .FirstItemBar(.FocusItem),
exBarExtraCaptionVAlign) = Array(exTop Or
exVOutside, exBottom Or exVOutside)
End With

When retrieving the exBarExtraCaption returns the
extra caption, if there is only one, else it returns a
safe array (collection) of string that indicates the
extra captions of the bar.

The following VB/NET sample adds a single extra
caption in the right side of the bar:

With Exg2antt1.Items
 .set_BarExtraCaption(.FocusItem,
.get_FirstItemBar(.FocusItem), "right")
 .set_BarExtraCaptionHAlign(.FocusItem,
.get_FirstItemBar(.FocusItem),
exontrol.EXG2ANTTLib.AlignmentEnum.RightAlignment
 Or
exontrol.EXG2ANTTLib.AlignmentEnum.exHOutside)

 .set_BarExtraCaptionVAlign(.FocusItem,
.get_FirstItemBar(.FocusItem),
exontrol.EXG2ANTTLib.VAlignmentEnum.exBottom
 Or
exontrol.EXG2ANTTLib.VAlignmentEnum.exVOutside)

End With

exBarExtraCaptionVAlign 46

The following VB/NET sample adds two extra
captions, one in the left side, and one to the right
side:

With Exg2antt1.Items
 .set_BarExtraCaption(.FocusItem,
.get_FirstItemBar(.FocusItem), New String() {"left",
"right"})
 .set_BarExtraCaptionHAlign(.FocusItem,
.get_FirstItemBar(.FocusItem), _
 New exontrol.EXG2ANTTLib.AlignmentEnum()
{exontrol.EXG2ANTTLib.AlignmentEnum.LeftAlignment
 Or
exontrol.EXG2ANTTLib.AlignmentEnum.exHOutside,
 _

exontrol.EXG2ANTTLib.AlignmentEnum.RightAlignment
 Or
exontrol.EXG2ANTTLib.AlignmentEnum.exHOutside})

 .set_BarExtraCaptionVAlign(.FocusItem,
.get_FirstItemBar(.FocusItem), _
 New exontrol.EXG2ANTTLib.VAlignmentEnum()
{exontrol.EXG2ANTTLib.VAlignmentEnum.exTop
Or
exontrol.EXG2ANTTLib.VAlignmentEnum.exVOutside,
 _

exontrol.EXG2ANTTLib.VAlignmentEnum.exBottom
 Or
exontrol.EXG2ANTTLib.VAlignmentEnum.exVOutside})

End With

The following C# sample adds a single extra
caption in the right side of the bar:

exontrol.EXG2ANTTLib.Items items =

exg2antt1.Items;
items.set_BarExtraCaption(items.FocusItem,
items.get_FirstItemBar(items.FocusItem), "right");
items.set_BarExtraCaptionHAlign(items.FocusItem,
items.get_FirstItemBar(items.FocusItem),
exontrol.EXG2ANTTLib.AlignmentEnum.RightAlignment
 |
exontrol.EXG2ANTTLib.AlignmentEnum.exHOutside);

items.set_BarExtraCaptionVAlign(items.FocusItem,
items.get_FirstItemBar(items.FocusItem),
exontrol.EXG2ANTTLib.VAlignmentEnum.exBottom
 |
exontrol.EXG2ANTTLib.VAlignmentEnum.exVOutside);

The following C# sample adds two extra captions,
one in the left side, and one to the right side:

exontrol.EXG2ANTTLib.Items items =
exg2antt1.Items;
items.set_BarExtraCaption(items.FocusItem,
items.get_FirstItemBar(items.FocusItem),
 new string[2] { "left", "right" });
items.set_BarExtraCaptionHAlign(items.FocusItem,
items.get_FirstItemBar(items.FocusItem),
 new exontrol.EXG2ANTTLib.AlignmentEnum[2]
{
exontrol.EXG2ANTTLib.AlignmentEnum.LeftAlignment
 |
exontrol.EXG2ANTTLib.AlignmentEnum.exHOutside,

exontrol.EXG2ANTTLib.AlignmentEnum.RightAlignment
 |
exontrol.EXG2ANTTLib.AlignmentEnum.exHOutside
 });
items.set_BarExtraCaptionVAlign(items.FocusItem,
items.get_FirstItemBar(items.FocusItem),
 new

exontrol.EXG2ANTTLib.VAlignmentEnum[2] {
exontrol.EXG2ANTTLib.VAlignmentEnum.exTop |
exontrol.EXG2ANTTLib.VAlignmentEnum.exVOutside,

exontrol.EXG2ANTTLib.VAlignmentEnum.exBottom
 |
exontrol.EXG2ANTTLib.VAlignmentEnum.exVOutside
 });

(VAlignmentEnum expression, or a safe array of
VAlignmentEnum/long/vt_i4 expression)

Retrieves or sets the offset to move horizontally the
extra caption relative to its default position.

The following VB sample adds a single extra
caption in the right side of the bar:

With G2antt1.Items
 .ItemBar(.FocusItem, .FirstItemBar(.FocusItem),
exBarExtraCaption) = "right"
 .ItemBar(.FocusItem, .FirstItemBar(.FocusItem),
exBarExtraCaptionHAlign) = RightAlignment Or
exHOutside
 .ItemBar(.FocusItem, .FirstItemBar(.FocusItem),
exBarExtraCaptionVAlign) = exBottom Or
exVOutside
 .ItemBar(.FocusItem, .FirstItemBar(.FocusItem),
exBarExtraCaptionHOffset) = 8
End With

The following VB sample adds two extra captions,
one in the left side, and one to the right side:

With G2antt1.Items
 .ItemBar(.FocusItem, .FirstItemBar(.FocusItem),
exBarExtraCaption) = Array("left", "right")
 .ItemBar(.FocusItem, .FirstItemBar(.FocusItem),

exBarExtraCaptionHAlign) = Array(LeftAlignment
Or exHOutside, RightAlignment Or exHOutside)
 .ItemBar(.FocusItem, .FirstItemBar(.FocusItem),
exBarExtraCaptionVAlign) = Array(exTop Or
exVOutside, exBottom Or exVOutside)
 .ItemBar(.FocusItem, .FirstItemBar(.FocusItem),
exBarExtraCaptionHOffset) = Array(-8, 8)
End With

When retrieving the exBarExtraCaption returns the
extra caption, if there is only one, else it returns a
safe array (collection) of string that indicates the
extra captions of the bar.

The following VB/NET sample adds a single extra
caption in the right side of the bar:

With Exg2antt1.Items
 .set_BarExtraCaption(.FocusItem,
.get_FirstItemBar(.FocusItem), "right")
 .set_BarExtraCaptionHAlign(.FocusItem,
.get_FirstItemBar(.FocusItem),
exontrol.EXG2ANTTLib.AlignmentEnum.RightAlignment
 Or
exontrol.EXG2ANTTLib.AlignmentEnum.exHOutside)

 .set_BarExtraCaptionVAlign(.FocusItem,
.get_FirstItemBar(.FocusItem),
exontrol.EXG2ANTTLib.VAlignmentEnum.exBottom
 Or
exontrol.EXG2ANTTLib.VAlignmentEnum.exVOutside)

 .set_BarExtraCaptionHOffset(.FocusItem,
.get_FirstItemBar(.FocusItem), 8)
End With

The following VB/NET sample adds two extra
captions, one in the left side, and one to the right
side:

exBarExtraCaptionHOffset 47

With Exg2antt1.Items
 .set_BarExtraCaption(.FocusItem,
.get_FirstItemBar(.FocusItem), New String() {"left",
"right"})
 .set_BarExtraCaptionHAlign(.FocusItem,
.get_FirstItemBar(.FocusItem), _
 New exontrol.EXG2ANTTLib.AlignmentEnum()
{exontrol.EXG2ANTTLib.AlignmentEnum.LeftAlignment
 Or
exontrol.EXG2ANTTLib.AlignmentEnum.exHOutside,
 _

exontrol.EXG2ANTTLib.AlignmentEnum.RightAlignment
 Or
exontrol.EXG2ANTTLib.AlignmentEnum.exHOutside})

 .set_BarExtraCaptionVAlign(.FocusItem,
.get_FirstItemBar(.FocusItem), _
 New exontrol.EXG2ANTTLib.VAlignmentEnum()
{exontrol.EXG2ANTTLib.VAlignmentEnum.exTop
Or
exontrol.EXG2ANTTLib.VAlignmentEnum.exVOutside,
 _

exontrol.EXG2ANTTLib.VAlignmentEnum.exBottom
 Or
exontrol.EXG2ANTTLib.VAlignmentEnum.exVOutside})

 .set_BarExtraCaptionHOffset(.FocusItem,
.get_FirstItemBar(.FocusItem), _
 New Integer() {-8, 8})
End With

The following C# sample adds a single extra
caption in the right side of the bar:

exontrol.EXG2ANTTLib.Items items =

exg2antt1.Items;
items.set_BarExtraCaption(items.FocusItem,
items.get_FirstItemBar(items.FocusItem), "right");
items.set_BarExtraCaptionHAlign(items.FocusItem,
items.get_FirstItemBar(items.FocusItem),
exontrol.EXG2ANTTLib.AlignmentEnum.RightAlignment
 |
exontrol.EXG2ANTTLib.AlignmentEnum.exHOutside);

items.set_BarExtraCaptionVAlign(items.FocusItem,
items.get_FirstItemBar(items.FocusItem),
exontrol.EXG2ANTTLib.VAlignmentEnum.exBottom
 |
exontrol.EXG2ANTTLib.VAlignmentEnum.exVOutside);

items.set_BarExtraCaptionHOffset(items.FocusItem,
 items.get_FirstItemBar(items.FocusItem), 8);

The following C# sample adds two extra captions,
one in the left side, and one to the right side:

exontrol.EXG2ANTTLib.Items items =
exg2antt1.Items;
items.set_BarExtraCaption(items.FocusItem,
items.get_FirstItemBar(items.FocusItem),
 new string[2] { "left", "right" });
items.set_BarExtraCaptionHAlign(items.FocusItem,
items.get_FirstItemBar(items.FocusItem),
 new exontrol.EXG2ANTTLib.AlignmentEnum[2]
{
exontrol.EXG2ANTTLib.AlignmentEnum.LeftAlignment
 |
exontrol.EXG2ANTTLib.AlignmentEnum.exHOutside,

exontrol.EXG2ANTTLib.AlignmentEnum.RightAlignment
 |
exontrol.EXG2ANTTLib.AlignmentEnum.exHOutside
 });

items.set_BarExtraCaptionVAlign(items.FocusItem,
items.get_FirstItemBar(items.FocusItem),
 new
exontrol.EXG2ANTTLib.VAlignmentEnum[2] {
exontrol.EXG2ANTTLib.VAlignmentEnum.exTop |
exontrol.EXG2ANTTLib.VAlignmentEnum.exVOutside,

exontrol.EXG2ANTTLib.VAlignmentEnum.exBottom
 |
exontrol.EXG2ANTTLib.VAlignmentEnum.exVOutside
 });
items.set_BarExtraCaptionHOffset(items.FocusItem,
 items.get_FirstItemBar(items.FocusItem),
 new int[2] { -8, 8 });

(long expression, or a safe array of long/vt_i4
expression)

exBarExtraCaptionVOffset 48

Retrieves or sets the offset to move vertically the
extra caption relative to its default position. Please
check the exBarExtraCaptionHOffset for usage.

(long expression, or a safe array of long/vt_i4
expression)

This option can be user with the PutRes method.
Specifies the list of resources associated to the
bar. The exBarResources property (get/set)
indicates the resources to be used by the current
bar in the Source, as a string expression. The
exBarResources property is a string expression that
indicate the list of resources (including its usage, or
100% if missing). The resources are separated by
, (comma) character, while the usage is specified
as a double expression (using the . dot character
as a decimal separator). For instance the
"Resource1,Resource2,Resource3" indicates that
the bar uses the Resource1,Resource2,Resource3,
while "R1,R2[50%],R3[67.89%]" specifies that the

exBarResources 49

bar uses the R1 on 100%, R2 on 50% and R3 on
67.89%.

You can use the exBarCaption to display the
bar's resources using the <%=formula%>
format, like in the following VB sample:

With G2antt1.Chart.Bars("Task")

.Def(EXG2ANTTLibCtl.ItemBarPropertyEnum.exBarCaption)
 = "<%=%" &
EXG2ANTTLibCtl.ItemBarPropertyEnum.exBarResources
 & "%>"

.Def(EXG2ANTTLibCtl.ItemBarPropertyEnum.exBarHAlignCaption)
 = 18
End With

In other words, the sample allows you to
display the bar's exBarResources property as
shown bellow:

The set exBarResources property could be
used in the following format based on the first
character as listed:

If the first character is +(plus), the rest of
the expression indicates the resources to
be assigned to the current bar. For
instance, if the current bar has the
exBarResources property as "R1,R2" ,
and we call set exBarResources as
"+R3", it means that the R3 is added to
the bar's resources, and so the new
exBarResources property is "R1,R2,R3".
If the first character is -(minus), the rest
of the expression indicates the resources

to be removed from the current bar. For
instance, if the current bar has the
exBarResources property as "R1,R2" ,
and we call set exBarResources as "-R2",
it means that the R2 is removed from the
bar's resources, and so the new
exBarResources property is "R1".
If no +,- character, the new expression
replaces the exBarResources property.
For instance, if the current bar has the
exBarResources property as "R1,R2" ,
and we call set exBarResources as
"R3,R4", it means that the new
exBarResources property is "R3,R4".

(String expression)

This option can be user with the PutRes method.
Specifies the format to display the bar's resource.
The exBarResourceFormat property (get/set)
indicates the format or the expression to be used if
you need to display the bar's resource in a different
format, in Source, as a string expression. The
expression supports the name keyword which
indicates the name of the resource, and the
percent keyword to get the usage percent a a
double expression between 0 and 1. The
expression supports all predefined functions listed
here. Use the exBarResourcesFormat (NOT
exBarResourceFormat, whith no s) to get the
HTML value of the formatted string using the bar's
resources. For instance, let's say we need to
display the resource names in bold, and the usage
percent in a smaller font and a different foreground
color, so the Items.ItemBar(exBarResourceFormat)
property could be "`` + name + `
<fgcolor=404040>` + (percent = 1 ? `` :
(round(100*percent) format ``) + `%`) +
`</fgcolor>`", and so the VB sample could
show as:

With G2antt1.Chart.Bars("Task")

https://exontrol.com/faq.jsp/all/#formatting

exBarResourceFormat 50 .Def(exBarResourceFormat) = "`` +
name + `<fgcolor=404040>`
+ (percent = 1 ? `` : (round(100*percent)
format ``) + `%`) + `</fgcolor>`"

.Def(EXG2ANTTLibCtl.ItemBarPropertyEnum.exBarCaption)
 = "<%=%" &
EXG2ANTTLibCtl.ItemBarPropertyEnum.exBarResourcesFormat
 & "%>"

.Def(EXG2ANTTLibCtl.ItemBarPropertyEnum.exBarHAlignCaption)
 = 18
End With

In other words, the sample allows you to
display the bar's exBarResources property as
shown bellow:

(String expression)

Specifies the color to show the bar's frame or an
additional EBN object that may be displayed on the
bar to indicate a frame, a note or a symbol. The
last 7 bits in the high significant byte of the color
indicates the identifier of the skin being used. Use
the Add method to add new skins to the control. If
you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits
in the high significant byte of the color being applied
to the background's part. For instance, you can use
the exBarColor to specify the inside bar's color,
while the exBarFrameColor indicates the color for
the border to be shown.

The following screen shot shows a symbol using the
exBarFrameColor:

exBarFrameColor 51

The following sample adds a Task bar with a Red
frame:

With G2antt1.Items
 h = .AddItem("Red-Frame")
 .AddBar h,"Task",#1/3/2001#,#1/6/2001#,"K1"
 .ItemBar(h,"K1",exBarFrameColor) =
RGB(255,0,0)
End With

The following sample adds a Task bar with an EBN
frame:

With G2antt1
 .VisualAppearance.Add 1,".../tickers.ebn"
 With .Items
 h = .AddItem("EBN-Frame")
 .AddBar
h,"Task",#1/3/2001#,#1/6/2001#,"K1"
 .ItemBar(h,"K1",exBarFrameColor) =
&H1000000
 End With
End Withh

(Color expression)

Indicates the z-order when the bar is arranged in
cascade, when the bar is overlapping with other
bars. This option is valid only if the OverlaidType
property of the current bar is
exOverlaidBarsCascade. The cascade type allows
you to arrange the bars on the same levels for
those with the same exBarOverlaidCascade key,
and on a different level for bars with a different
exBarOverlaidCascade key, like in the following
screen shot. The levels in the cascade is displayed
in the alphabetic order like explained in the following
sample.

exBarOverlaidKey 52

The following screen shot shows the bars arranged
on cascade, K1, K2, K3 on the first level, and the
T1, T2, T3 on the second level.

The bars get arranged into a cascade/levels based
on the key (exOverlaidBarsCascade). The T1, T2,
T3 are shown on the same level "B", as they have
the same exBarOverlaidCascade key, and does not
intersect the K1, K2, K3 level "A".

For instance the following sample:

Items.ItemBar(0,"<K*>",exBarOverlaidKey) = "A"
Items.ItemBar(0,"<T*>",exBarOverlaidKey) = "B"

specifies that the K* bars (all bars with the key
starting with the K character), should be displayed
on the same level "A", and the T* bars on the level
"B", which indicates that the A will be displayed as
the first level, and the B as the second level. In
other words, the cascades/levels are being
displayed in their alphabetic order.

If we exchange the "A" with "B" like in the following
sample:

Items.ItemBar(0,"<K*>",exBarOverlaidKey) = "B"
Items.ItemBar(0,"<T*>",exBarOverlaidKey) = "A"

we get the following screen show

(Variant expression)

Specifies unlimited options to show any HTML text,
images, colors, EBNs, patterns, frames anywhere
on the bar's background, using EBN String

https://exontrol.com/faq.jsp/all/#backgroundext

Format. The exBarBackgroundExtFlags, specifies
whether the extension is shown on the back or the
front of the bar, while exBarBackgroundExtInflate
increases or decreases the margins of the portion
where the exBarBackgroundExt is applied/shown.

The following screen shot shows a few options you
can have by using the EBN String Format on
bars/tasks:

The EBN String Format syntax in BNF notation is
defined like follows:

<EBN> ::= <elements> | <root> "(" [<elements>]
")"
<elements> ::= <element> ["," <elements>]
<root> ::= "root" [<attributes>] | [<attributes>
]
<element> ::= <anchor> [<attributes>] ["("
[<elements>] ")"]
<anchor> ::= "none" | "left" | "right" | "client" |
"top" | "bottom"

<attributes> ::= "[" [<client> ","] <attribute> [","
<attributes>] "]"
<client> ::= <expression> | <expression> ","
<expression> "," <expression> "," <expression>
<expression> ::= <number> | <number> "%"
<attribute> ::= <backcolor> | <text> |
<wordwrap> | <align> | <pattern> |
<patterncolor> | <frame> | <framethick> |
<data> | <others>
<equal> ::= "="
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<decimal> ::= <digit><decimal>
<hexadigit> ::= <digit> | "A" | "B" "C" | "D" | "E"
"F"
<hexa> ::= <hexadigit><hexa>
<number> ::= <decimal> | "0x" <hexa>
<color> ::= <rgbcolor> | number
<rgbcolor> ::= "RGB" "(" <number> ","
<number> "," <number> ")"
<string> ::= "`" <characters> "`" | "'" <characters>
"'" | " <characters> "
<characters> ::= <char>|<characters>
<char> ::= <any_character_excepts_null>
<backcolor> ::= "back" <equal> <color>
<text> ::= "text" <equal> <string>
<align> ::= "align" <equal> <number>
<pattern> ::= "pattern" <equal> <number>
<patterncolor> ::= "patterncolor" <equal>
<color>
<frame> ::= "frame" <equal> <color>
<data> ::= "data" <equal> <number> | <string>
<framethick> ::= "framethick"
<wordwrap> ::= "wordwrap"

Others like: pic, stretch, hstretch, vstretch,
transparent, from, to are reserved for future use
only.

exBarBackgroundExt 53

Here's a few easy samples:

"[pattern=6]", shows the BDiagonal pattern on
the object's background.

"[frame=RGB(255,0,0),framethick]", draws a
red thick-border around the object.

"
[frame=RGB(255,0,0),framethick,pattern=6,patterncolor=RGB(255,0,0)]",
draws a red thick-border around the object,
with a patter inside.

"[[patterncolor=RGB(255,0,0)]
(none[(4,4,100%-8,100%-8),pattern=0x006,patterncolor=RGB(255,0,0),frame=RGB(255,0,0),framethick])]",
draws a red thick-border around the object,
with a patter inside, with a 4-pixels wide
padding:

"top[4,back=RGB(0,0,255)]", draws a blue line
on the top side of the object's background, of
4-pixels wide.

"[text=`caption`,align=0x22]", shows the
caption string aligned to the bottom-right side
of the object's background.

"[text=`flag`,align=0x11]" shows
the flag picture and the sweden string aligned
to the bottom side of the object.

"left[10,back=RGB(255,0,0)]", draws a red line
on the left side of the object's background, of
10-pixels wide.

"bottom[50%,pattern=6,frame]", shows the
BDiagonal pattern with a border arround on the
lower-half part of the object's background.

"root[text=`caption 2`,align=0x22]
(client[text=`caption 1`,align=0x20])",

shows the caption 1 aligned to the bottom-left
side, and the caption 2 to the bottom-right side

(String expression)

exBarBackgroundExtFlags 54

Specifies the flags to show the
exBarBackgroundExt on the bar's background. By
default, the exBarBackgroundExtFlags property is
0, which indicates that the exBarBackgroundExt
property is applied in front of the bar's client area.
The exBarBackgroundExtInflate increases or
decreases the margins of the portion where the
exBarBackgroundExt is applied/shown.

The exBarBackgroundExtFlagssupports a
combination of the following values:

0, the exBarBackgroundExt is applied in front,
using the bar's client area. The Height of the
bar specifies the height of the bar, and so it
defines the bar's client area.
1, the exBarBackgroundExt is applied on the
back of the bar. If missing, the
exBarBackgroundExt is applied on front.
2, the exBarBackgroundExt is uses the bar's
background client are to show the
exBarBackgroundExt option. The Height of the
item that hosts the bar specifies the client area
of the bar's background. If missing, the bar's
client area is used instead.

(Long expression, between 0 and 3, by default it is
0)

Increases or decreases the margins of the portion
where the exBarBackgroundExt is applied/shown.
By default, the exBarBackgroundExtInflate property

exBarBackgroundExtInflate 55

is 0, which indicates that the bar's client area is the
portion where the exBarBackgroundExt is applied.
For instance, "-10,0,10,0" enlarges the bar's
margins by 10 pixels, to left and right, and so the
exBarBackgroundExt looks wider. If the
exBarBackgroundExtInflate property is of numeric
type, it specifies the range to increases or
decreases all the margins. The
exBarBackgroundExt adds unlimited options to
show any HTML text, images, colors, EBNs,
patterns, frames anywhere on the bar's
background. Ability to draw additional
EBN/Color/Text/Patterns/Images on the bar, using
the EBN String Format (create and run at runtime
EBN objects)

(Long expression, which indicates that all margins
of the extension is increased or decreased with
specified value, a String expression such as
"left,top,right,bottom", to specify different margins
for the portion to show the extension)

Shows or hides the bar's caption. The exBarCaption
specifies the bar's caption. The exBarHAlignCaption

exBarShowCaption 56 / exBarVAlignCaption aligns horizontally / vertically
the bar's caption relative to bar's client-rectangle.

(Boolean expression)

exBarShowExtraCaption 57

Shows or hides the bar's extra caption. The
exBarExtraCaption specifies the bar's extra caption.
The exBarExtraCaptionHAlign/
exBarExtraCaptionVAlignaligns horizontally /
vertically the bar's extra caption relative to bar's
client-rectangle.

(Boolean expression)

exBarCaptionHOffset 58

Indicates the bar's caption horizontal offset. The
exBarCaptionVOffset indicates the bar's caption
vertical offset. The exBarCaption specifies the bar's
caption. The exBarHAlignCaption /
exBarVAlignCaption aligns horizontally / vertically
the bar's caption relative to bar's client-rectangle.

(short expression)

exBarCaptionVOffset 59

Indicates the bar's caption vertical offset. The
exBarCaptionHOffset indicates the bar's caption
horizontal offset. The exBarCaption specifies the
bar's caption. The exBarHAlignCaption /
exBarVAlignCaption aligns horizontally / vertically
the bar's caption relative to bar's client-rectangle.

(short expression)

Specifies the description to show within the
histogram's legend for the bar in the control's
histogram. Use the ItemBar(exBarColor) property
to specify a different color for a specified bar. The
exBarHistLegend option has effect only if the bar's
HistogramCumulativeOriginalColorBars property is
exKeepOriginalColor. For exKeepOriginalColor, the
HistogramCumulativeShowLegend property
specifies whether the bar's legend (ItemBar(

exBarHistLegend 60

exBarHistLegend) property) is shown or hidden.

This option supports built-in HTML format including
the <%=formula%> tag. The <%=formula%> tag
indicates the result of the giving formula. The
formula supports value formatting.

The formula supports the following keywords:

%0, %1, %2, ... specifies the
corresponding property of the bar, such as %0
indicates the exBarName, %1 exBarStart, %2
exBarEnd, and so on.
%C0, %C1, %C2, ... specifies the caption of
the cell, or the string the cell displays in the
column with the index 0, 1 2, ... The
CellCaption property specifies the cell's
caption. The cell's value may be different than
what the cell displays as a string. For
instance, let's say a cell display HTML format.
The %0 returns the html format including the
HTML tags, while %C0 returns the cell's
content as string without HTML tags. For
instance, "upper(%C1)" converts the caption of
the cell with the index 1, to upper case, while
"%C0 left 2" returns the leftmost two
characters on the cell with the index 0.
%CD0, %CD1, %CD2, ... specifies the cell's
extra data in the column with the index 0, 1 2,
... The CellData property associates any
extra/user data to a cell. For instance, "%CD0
= `your user data`" specifies all cells whose
CellData property is `your user data`, on the
column with the index 0.
%CS0, %CS1, %CS2, ... specifies the cell's
state in the column with the index 0, 1 2, ...
The CellState property specifies the cell's
state, and so it indicates whether the cell is
checked or un-checked. For instance, "%CS0"
defines all checked items on the column with
the index 0, or "not %CS1" defines all un-
checked items in the column with the index 1.

https://exontrol.com/faq.jsp/all/#html

For instance the Items.ItemBar(exBarHistLegend)
= "<fgcolor=666666><%=lower(%3)%>" defines
the bar's histogram-legend as the following screen
shot:

This property/method supports predefined
constants and operators/functions as described
here.

(HTML String expression)

exBarsCount 256

Retrieves a value that indicates the number of bars
in the item. The exBarsCount property counts the
bars being displayed in the item. Use the AddBar
property to add new bars to the item. This option
ignores the Key parameter, so no matter what you
are using for the Key parameter it gets the number
of bars in the item. For instance, the
Items.ItemBar(Item,Nothing,exBarsCount) property
gets the number of bars inside the specified item.

(Long expression)

exBarSelected 257

Specifies whether the bar is selected or unselected.
By default, the exBarSelected is False. The
AllowSelectObjects property allows users to select
at runtime the bars and links in the chart area. The
ChartSelectionChanged event is fired when the
selection in the chart is changed.

(Boolean expression)

exBarWorkingCount 258

Specifies the count of working units (days) in the
bar. For instance, 1 indicates one working day,
while 0.5 indicates 12 hours from a working day.
The NonworkingDays property specifies the non-
working days. Use the AddNonworkingDate
property to add custom non-working days. Use the
NonworkingHours property to specify the non-
working hours. Use the exBarWorkingCount
property to specify the number of working days for
a specified bar. For instance, if your chart displays
days, and the NonworkingDays is set, the
exBarWorkingCount property sets or gets the count
of working days in the bar. If the chart displays
hours, and the NonworkingHours property is set,
the exBarWorkingCount property sets or gets the
count of working hours in the bar.

(Float expression)

exBarNonWorkingCount 259

Specifies the count of non-working units (days) in
the bar. For instance, 1 indicates one non-working
day, while 0.5 indicates 12 hours from a non-
working day. The NonworkingDays property
specifies the non-working days. Use the
AddNonworkingDate property to add custom non-
working days. Use the NonworkingHours property
to specify the non-working hours. For instance, if
your chart displays days, and the NonworkingDays
is set, the exBarNonworkingCount property gets the
count of non-working days in the bar. If the chart
displays hours, and the NonworkingHours property
is set, the exBarNonWorkingCount property gets
the count of non-working hours in the bar.

(Float expression)

Retrieves a collection of pairs (start-end) that
indicates the non-working parts of the bar. You can
use the exBarNonWorkingUnitsAsString property to
get the non-working parts of the bar as a string.
The /NET Assembly provides a

exBarNonWorkingUnits 260

get_BarNonWorkingUnits method that retrieves a
collection of DateTime objects.

The following VB sample lists the start and end
date-time values for non-working parts of the bar (
for the /COM version):

Private Sub G2antt1_BarResize(ByVal item As
EXG2ANTTLibCtl.HITEM, ByVal Key As Variant)
 Debug.Print "Non-working parts of the bar:"
 With G2antt1.Items
 Dim i As Variant, j As Long
 For Each i In .ItemBar(item, Key,
exBarNonWorkingUnits)
 Debug.Print IIf(j Mod 2 = 0, "Start ", "End
") & i
 j = j + 1
 Next
 End With
End Sub

The following VB/NET sample lists the start and end
date-time values for non-working parts of the bar (
for the /NET Assembly version):

Private Sub Exg2antt1_BarResize(ByVal sender As
System.Object, ByVal Item As System.Int32, ByVal
Key As System.Object) Handles
Exg2antt1.BarResize
 Debug.Print("Non-working parts of the bar:")
 With Exg2antt1.Items
 Dim i As Object, j As Long
 For Each i In .get_BarNonWorkingUnits(Item,
Key)
 Debug.Print(IIf(j Mod 2 = 0, "Start ", "End
") & i)
 j = j + 1
 Next
 End With

End Sub

(safe array of pairs of dates indicating the start and
end of the non-working area)

exBarNonWorkingUnitsAsString261

Displays as string the collection of pairs (start-end
) that indicates the non-working parts of the bar.
The /NET Assembly provides a
get_BarNonWorkingUnitsAsString method that
retrieves the non-working parts of the bar as string

The following VB sample lists the start and end
date-time values for non-working parts of the bar (
for the /COM version):

Private Sub G2antt1_BarResize(ByVal item As
EXG2ANTTLibCtl.HITEM, ByVal Key As Variant)
 Debug.Print "Non-working parts of the bar:"
 With G2antt1.Items
 Debug.Print .ItemBar(item, Key,
exBarNonWorkingUnitsAsString)
 End With
End Sub

The following VB/NET sample lists the start and end
date-time values for non-working parts of the bar (
for the /NET Assembly version):

Private Sub Exg2antt1_BarResize(ByVal sender As
System.Object, ByVal Item As System.Int32, ByVal
Key As System.Object) Handles
Exg2antt1.BarResize
 Debug.Print("Non-working parts of the bar:")
 With Exg2antt1.Items

Debug.Print(.get_BarNonWorkingUnitsAsString(Item,
 Key))
 End With
End Sub

(String expression)

exBarWorkingUnits 262

Retrieves a collection of pairs (start-end) that
indicates the working parts of the bar. You can use
the exBarWorkingUnitsAsString property to get the
working parts of the bar as a string. The /NET
Assembly provides a get_BarWorkingUnits method
that retrieves a collection of DateTime objects. Use
the exBarStartWorking option to get the start
working date of the bar. Use the exBarEndWorking
option to get the end working date of the bar.

The following VB sample lists the start and end
date-time values for working parts of the bar (for
the /COM version):

Private Sub G2antt1_BarResize(ByVal item As
EXG2ANTTLibCtl.HITEM, ByVal Key As Variant)
 Debug.Print "Working parts of the bar:"
 With G2antt1.Items
 Dim i As Variant, j As Long
 For Each i In .ItemBar(item, Key,
exBarWorkingUnits)
 Debug.Print IIf(j Mod 2 = 0, "Start ", "End
") & i
 j = j + 1
 Next
 End With
End Sub

The following VB/NET sample lists the start and end
date-time values for working parts of the bar (for
the /NET Assembly version):

Private Sub Exg2antt1_BarResize(ByVal sender As
System.Object, ByVal Item As System.Int32, ByVal
Key As System.Object) Handles
Exg2antt1.BarResize
 Debug.Print("Working parts of the bar:")
 With Exg2antt1.Items

 Dim i As Object, j As Long
 For Each i In .get_BarWorkingUnits(Item, Key)
 Debug.Print(IIf(j Mod 2 = 0, "Start ", "End
") & i)
 j = j + 1
 Next
 End With
End Sub

(safe array of pairs of dates indicating the start and
end of the working area)

exBarWorkingUnitsAsString 263

Displays as string the collection of pairs (start-end
) that indicates the working parts of the bar. The
/NET Assembly provides a
get_BarWorkingUnitsAsString method that retrieves
the working parts of the bar as string.

The following VB sample lists the start and end
date-time values for working parts of the bar (for
the /COM version):

Private Sub G2antt1_BarResize(ByVal item As
EXG2ANTTLibCtl.HITEM, ByVal Key As Variant)
 Debug.Print "Working parts of the bar:"
 With G2antt1.Items
 Debug.Print .ItemBar(item, Key,
exBarWorkingUnitsAsString)
 End With
End Sub

The following VB/NET sample lists the start and end
date-time values for working parts of the bar (for
the /NET Assembly version):

Private Sub Exg2antt1_BarResize(ByVal sender As
System.Object, ByVal Item As System.Int32, ByVal
Key As System.Object) Handles

Exg2antt1.BarResize
 Debug.Print("Working parts of the bar:")
 With Exg2antt1.Items

Debug.Print(.get_BarWorkingUnitsAsString(Item,
Key))
 End With
End Sub

(String expression)

exBarStartWorking 264

Retrieves the start working date of the bar. Use the
exBarWorkingUnits option to get the list of working
units in the specified bar. For instance, if the bar
starts in a working area, the exBarStart and
exBarStartWorking properties gets the same result.
If the bar starts into a non-working portion of the
chart, the exBarStartWorking gets the first working
units, where the bar begins.

(Date expression)

exBarEndWorking 265

Retrieves the end working date of the bar. Use the
exBarWorkingUnits option to get the list of working
units in the specified bar. For instance, if the bar
ends in a working area, the exBarEnd and
exBarEndWorking properties gets the same result.
If the bar ends into a non-working portion of the
chart, the exBarEndWorking gets the previously
working units, where the bar ends.

(Date expression)

exBarResourcesFormat 266

This option can be used with the PutRes method.
Retrieves the list of bar's resources using a
formatted string. The exBarResourcesFormat
property (get only) returns formatted expression of
the exBarResources using the
exBarResourceFormat (no s, so it is
exBarResourceFormat, not exBarResourcesFormat

).

(String expression)

exBarResourcesNames 267

This option can be used with the PutRes method.
Retrieves the list of names of resources being
assigned to the bar. exBarResourcesNames
property (get only) returns the name of each
resource to be used by the current bar, in the
Source, as a string expression. This option returns
no percent or usage of any resource. For instance,
if the exBarResources property is
"R3[67.89%],R4[23.23%]", the
exBarResourcesNames property gets the "R3,R4".

(String expression)

exBarResourcesUsages 268

This option can be used with the PutRes method.
Retrieves the list of usages of resources being
assigned to the bar. The exBarResourcesUsages
property (get only) returns the usage (double
expression from 0 to 1) of each resource to be
used by the current bar, in the Source, as a string
expression. This option returns no name any
resource. For instance, if the exBarResources
property is "R3[67.89%],R4[23.23%]", the
exBarResourcesUsages property gets the
"0.6789,0.2323".

(String expression)

Indicates whether the current bar is part of the
critical path, if the value is not 0. The
DefSchedulePDM(exPDMCriticalPathBarColor)
specifies the color to display the activities (bars) in
the critical path. The value of the exBarCriticalPath
property is valid only after calling the SchedulePDM
method, and the
DefSchedulePDM(exPDMCriticalPathBarColor) is
not zero. The SchedulePDM method arranges the
activities (bars) in the chart based on their

exBarCriticalPath 269

relationships (links). Previously, the value of the
exBarCriticalPath was 0/False (if the bar is not part
of the critical path), or -1/True (indicates that the
bar is part of the critical path). Currently, the
exBarCriticalPath property specifies the position (1-
based) of the bar in the critical path. In other words
the current bar is part of the critical path, if the
exBarCriticalPath property is not 0. Any positive
value indicates the position of the current bar in the
critical path.

You can automatically specify the critical path
position of the bar in its caption using a code like:

Items.ItemBar(0, "<*>", exBarCaption) = "
<%=int(%269) > 0 ? %269 : ``%>"

The code, changes the caption of all bars, using an
expression that shows the integer (value of
property 269/exBarCriticalPath) if it is positive, else
displays nothing.

The following screen shot shows the critical path,
including the position of the bars:

(Currently, Long expression, Previously Boolean
expression)

Indicates the list of predecessor bars, separated by

exBarPredecessor 270

comma. A dependency/link is the relationship
between predecessor and successor tasks. Tasks
may have multiple predecessors or multiple
successors. Before you begin establishing
dependencies, it​s important to understand that
there are four types:

Finish to Start (FS), the predecessor ends
before the successor can begin
Start to Start (SS), the predecessor begins
before the successor can begin
Finish to Finish (FF), the predecessor ends
before the successor can end
Start to Finish (SF), the predecessor begins
before the successor can end

The format of bar's predecessor is
INDEX1["SF"|"FS"|"FF"|"SS"][KEY][:
["W"]LAG|:LAG["W"]], where

INDEX1 is the 1-based index of the item that
hosts the bar
followed by the type of the link which can be
one any of SF(Start-Finish), FS(Finish-Start),
SS(Start-Start) or FF(Finish-Finish) sequence
(FS if missing)
continues with the KEY of the bar (empty is not
used)
and ends with the LAG of the link (specifies the
delay the activity is postponed by the link). The
"W" indicates a working-lag for the link
(specifies the delay in working-units the activity
is postponed by the link).

For instance:

 "2FSZ", specifies that the current item-bar is
linked with the "Z" bar of the second item (item
with the index 1) using a Finish-Start link
"1SF:-2", adds a Start-Finish link with the bar ''
of the first-item, using a lag of -2 days

Changing the ItemBar(exBarPredecessor) property
updates the links related to the current bar. The

AddLink., RemoveLink, RemoveLinkOf methods
adds, removes links. The
Background(exPSLinkColorEditSel) property
specifies the color to highlight the links being
selected within an editable predecessor/successor
column. The Background(exPSBarColorEditSel)
property specifies the color to highlight the
incoming/outgoing bars of the links being selected
within an editable predecessor/successor column

(String expression)

exBarSuccessor 271

Indicates the list of successor bars, separated by
comma.

A dependency/link is the relationship between
predecessor and successor tasks. Tasks may have
multiple predecessors or multiple successors.
Before you begin establishing dependencies, it​s
important to understand that there are four types:

Finish to Start (FS), the predecessor ends
before the successor can begin
Start to Start (SS), the predecessor begins
before the successor can begin
Finish to Finish (FF), the predecessor ends
before the successor can end
Start to Finish (SF), the predecessor begins
before the successor can end

The format of bar's successo is
INDEX1["SF"|"FS"|"FF"|"SS"][KEY][:
["W"]LAG|:LAG["W"]], where

INDEX1 is the 1-based index of the item that
hosts the bar
followed by the type of the link which can be
one any of SF(Start-Finish), FS(Finish-Start),
SS(Start-Start) or FF(Finish-Finish) sequence
(FS if missing)
continues with the KEY of the bar (empty is not
used)
and ends with the LAG of the link (specifies the

delay the activity is postponed by the link). The
"W" indicates a working-lag for the link
(specifies the delay in working-units the activity
is postponed by the link).

For instance:

 "3SFy", specifies that the current item-bar is
linked with the "y" bar of the third item (item
with the index 1) using a Start-Finish link

Changing the ItemBar(exBarSuccessor) property
updates the links related to the current bar. The
AddLink., RemoveLink, RemoveLinkOf methods
adds, removes links.

(String expression)

exBarParent 512

Specifies the handle of the parent item that displays
the bar. The Item parameter of the AddBar method
indicates the handle of the item that hosts the bar.
Use the exBarCanMoveToAnother option to specify
whether the user can move a bar from one item to
another by drag and drop. The control fires the
BarParentChange event just before moving the bar
to another item. Use this event to control the items
where your bar can be moved. A bar can be moved
to another item, ONLY if the second item does not
contain a bar with the same key. The exBarKey
property specifies the key of the bar. Moving a bar
from an item to another (changing the Bar's parent
) fails, if the new parent already contains a bar with
the same key. An item can hold multiple bars, so
each bar is identified by its key, so this key must be
unique in the item, but could be the same on several
items.

(Long expression)

Specifies the duration or the length of the bar in
days (or hours if including the decimal point, for
instance 0.5 indicates a 12 hours lenght). Gets the

exBarDuration 513

difference between exBarEnd and exBarStart as a
double expression. If calling the set property, it
changes the bar's duration or length. If negative the
start date is computed as the end - duration, since
if it is positive, the end date is start + duration. The
round part indicates the number of days. Use the
exBarMove property to move programmatically a
bar by specified time. If you need to change both
start and end points of the bar in the same time,
you can call the AddBar method with the new
coordinates, same item and key. Use the
exBarDurationPrev property to get the length or
duration of the bar before resizing it. Use the
exBarMinDuration and exBarMaxDuration properties
to specify the limits for the bar's duration.

(Float expression)

exBarMove 514

Moves the bar inside the same item by specified
amount of time. If you need to change both start
and end points of the bar in the same time, you can
call the AddBar method with the new coordinates,
same item and key. The exBarParent changes the
bar's parent. Use the exBarCanMoveToAnother
option to specify whether the user can move a bar
from one item to another by drag and drop.

(Float expression)

exBarStartPrev 515

Retrieves the starting date of the bar before
changing it ie if the user moves or resizes the bar at
runtime, the exBarStartPrev gives during the
BarResize event the previously starting date of the
bar.

(Date expression)

exBarEndPrev 516

Retrieves the ending date of the bar before
changing it ie if the user moves or resizes the bar at
runtime, the exBarEndPrev gives during the
BarResize event the previously starting date of the
bar.

(Date expression)

exBarDurationPrev 517

Retrieves the duration or length of the bar before
resizing it. During the BarResize event the
exBarDurationPrev gives the length or duration of
the bar before resizing it. You can distingue moving
or resizing a specified bar by comparing the
exBarDuration and exBarDurationPrev values.

(Float expression)

exBarPercent100 518

 Specifies the percent from the
original bar where the progress bar is displayed.
Specifies the percent to display the progress on the
bar, between 0 and 100. The exBarPercent100
option does the same thing as exBarPercent
excepts that it works with integer values between 0
and 100, instead float expression from 0 to 1. Use
the Add("A%B") to add a combination of two bars,
so the exBarPercent value specifies the percent
from the bar A to be displayed as bar B. For
instance, the Add("Task%Progress") adds a
combination of Task and Progress bars, so the Task
shape is displayed on the full bar, and the Progress
shape is displayed only on the portion determined
by the exBarPercent100 value. When you resize the
original bar (A), the inside bar (B) is shown
proportionally. For instance, you can use the
exBarPercent100 to display and edit values in the
cells, when this property is associated with the cell
using the AllowCellValueToItemBar property. The 0
value corresponds to the exBarStart, while 100
corresponds to the exBarEnd, so the formula
Items.ItemBar(exBarStart) +
(Items.ItemBar(exBarEnd)-
Items.ItemBar(exBarStart))*Items.ItemBar(exBarPercent100)/100
gives exactly the date time where progress bar is
in the chart.

(Long expression, between 0 and 100)

exBarIntersectWith 519

Gets a collection of bars that intersect with the
current bar. Use the exBarIntersectWithCount
property to retrieve only the count of intersected
bars. The result of exBarIntersectWith property is a
collection of VARIANT values that indicates the keys
of the bar in the current item that intersects with the
current bar. The /NET or /WPF version provides a
template function as public virtual List<object>
get_BarIntersectWith(int Item, object Key) that
returns a list of keys. The IntersectBars property
specifies whether two bars intersect if returns 0, if
1 A is before B and -1 if A is after bar B. The
exBarIntersectWith, exBarIntersectWithAsString,
exBarIntersectWithCount checks all bars in the
same item, of the same type or any other type
indicated by the bar's OverlaidGroup property.

The following screen shot shows the intersection of
the bars of type TaskA:

(Safe array of variant expression)

exBarIntersectWithAsString 520

Gets a collection of bars that intersect with the
current bar as string. The list is separated by
comma character. The exBarIntersectWith,
exBarIntersectWithAsString,
exBarIntersectWithCount checks all bars in the
same item, of the same type or any other type
indicated by the bar's OverlaidGroup property.

(String expression)

Specifies the number of bars that intersects with
the current bar. The IntersectBars property
specifies whether two bars intersect if returns 0, if

exBarIntersectWithCount 521
1 A is before B and -1 if A is after bar B. The
exBarIntersectWith, exBarIntersectWithAsString,
exBarIntersectWithCount checks all bars in the
same item, of the same type or any other type
indicated by the bar's OverlaidGroup property.

(Long expression)

exBarsGroup 522

Retrieves a collection of bars being grouped with
the current bar. The result of exBarsGroup property
is a collection of VARIANT values that indicates the
handle of the item and the key of the bars being
grouped with specified bar. The GroupBars method
group two bars, while the Use the UngroupBars
method to ungroup two bars or all bars. The /NET
or /WPF version provides a template function as
public virtual List<SelectedBar> get_BarsGroup(int
Item, object Key) that returns a list of bars. The
SelectedBar structure provides two members the
Item and the Key, where the Item indicates the
handle of the item that hosts the bar, while the Key
indicates the key of the bar.

The following VB/NET sample displays the bars
being grouped with selected bar(s):

With Exg2antt1.Items
 Dim sSelected As List(Of
exontrol.EXG2ANTTLib.Items.SelectedBar) =
.get_SelectedBars()
 If Not sSelected Is Nothing Then
 Dim s As
exontrol.EXG2ANTTLib.Items.SelectedBar
 For Each s In sSelected
 Debug.Print(s.Key & " from " &
.get_CellCaption(s.Item, 0))
 Dim sGrouped As List(Of
exontrol.EXG2ANTTLib.Items.SelectedBar) =
.get_BarsGroup(s.Item, s.Key)
 If Not sGrouped Is Nothing Then
 Dim b As

exontrol.EXG2ANTTLib.Items.SelectedBar
 For Each b In sGrouped
 Debug.Print(vbTab & b.Key & " from "
& .get_CellCaption(b.Item, 0))
 Next
 End If
 Next
 End If
End With

(Safe array of variant expression)

exBarOutgoingLinks 523

Retrieves a collection of links that start from the
current bar. The element in the collection indicates
the name of the link that starts from the current bar.
The Items.ItemBar(exBarOutgoingLinks) and
Items.ItemBar(exBarOutgoingLinksAll) gives a
collection of links that start on the current bar,
including its descendents. The
exBarOutgoingLinksAsString and
exBarOutgoingLinksAllAsString gives the same
information excepts that the result is returned as a
string. The Link property can be used to access the
link properties.

The following sample displays all links that starts
directly from the bar on the cursor:

With G2antt1.Items
 Dim h As HITEM, c As Long, hit As
HitTestInfoEnum
 h = G2antt1.ItemFromPoint(-1, -1, c, hit)
 Dim l As Variant
 For Each l In .ItemBar(h,
G2antt1.Chart.BarFromPoint(-1, -1),
exBarOutgoingLinks)
 Debug.Print "Link: " & l
 Next
End With

The following sample shows the outgoing bars/links
in green (B, D, F), when the current bar is A:

(Safe array of variant expression)

exBarOutgoingLinksAsString 524

Retrieves the links that start from the current bar,
as string, separated by , (comma character). The
Link property can be used to access the link
properties. The exBarOutgoingLinksAllAsString
option gives the list of links that starts from the
current bar, including the descendents.

The following sample displays the list of links that
starts from the bar on the cursor:

With G2antt1.Items
 Dim h As HITEM, c As Long, hit As
HitTestInfoEnum
 h = G2antt1.ItemFromPoint(-1, -1, c, hit)
 Debug.Print .ItemBar(h,
G2antt1.Chart.BarFromPoint(-1, -1),
exBarOutgoingLinksAsString)
End With

(String expression)

Retrieves a collection of links that start from the
current bar, including the descendents. The element
in the collection indicates the name of the link that
starts from the current bar. The Link property can

exBarOutgoingLinksAll 525

be used to access the link properties.

The following sample displays all links that starts
from the bar on the cursor, including the
descendents:

With G2antt1.Items
 Dim h As HITEM, c As Long, hit As
HitTestInfoEnum
 h = G2antt1.ItemFromPoint(-1, -1, c, hit)
 Dim l As Variant
 For Each l In .ItemBar(h,
G2antt1.Chart.BarFromPoint(-1, -1),
exBarOutgoingLinksAll)
 Debug.Print "Link: " & l
 Next
End With

(Safe array of variant expression)

exBarOutgoingLinksAllAsString526

Retrieves a collection of links that start from the
current bar, including the descendents, as string.
The Link property can be used to access the link
properties.

The following sample displays the list of links that
starts from the bar on the cursor:

With G2antt1.Items
 Dim h As HITEM, c As Long, hit As
HitTestInfoEnum
 h = G2antt1.ItemFromPoint(-1, -1, c, hit)
 Debug.Print .ItemBar(h,
G2antt1.Chart.BarFromPoint(-1, -1),
exBarOutgoingLinksAllAsString)
End With

(String expression)

exBarOutgoingBars 527

Retrieves a collection of outgoing bars from the
current bar. The element in the collection is a string
that indicates the handle of the item, the :
character, and the key of the bar, aka
"78253912:newbar". The exBarOutgoingBars gives
a collection of bars that are linked with the current
bar. You can use the Split method to decompose
the element to get the handle and the key, and so
you can use the Items.ItemBar(Item,Key) to access
the properties of the outgoing bar.

The following sample displays the bars that are
linked with a FS link from the bar on the cursor:

With G2antt1.Items
 Dim h As HITEM, c As Long, hit As
HitTestInfoEnum
 h = G2antt1.ItemFromPoint(-1, -1, c, hit)
 Dim b As Variant
 For Each b In .ItemBar(h,
G2antt1.Chart.BarFromPoint(-1, -1),
exBarOutgoingBars)
 Debug.Print "Outgoing Bar: " & b
 Next
End With

(Safe array of variant expression)

Retrieves a collection of outgoing bars from the
current bar, as string. The
exBarOutgoingBarsAsString displays the list of
outgoing bar aka
"79225544:newbar,79229032:newbar". The
elements in the collections are separated by a , (
comma) character. You can use the
exBarOutgoingBarsDebug for debugging purpose to
get displayed the caption on the hierarchy column
instead displaying the handle of the item.

The following sample displays the list of outgoing
bars:

exBarOutgoingBarsAsString 528 With G2antt1.Items
 Dim h As HITEM, c As Long, hit As
HitTestInfoEnum
 h = G2antt1.ItemFromPoint(-1, -1, c, hit)
 Debug.Print .ItemBar(h,
G2antt1.Chart.BarFromPoint(-1, -1),
exBarOutgoingBarsAsString)
End With

(String expression)

exBarOutgoingBarsAll 529

Retrieves a collection of all outgoing bars (including
descendents) from the current bar. The element in
the collection is a string that indicates the handle of
the item, the : character, and the key of the bar,
aka "78253912:newbar", where the 78253912 is
the handle of the item and the newbar is the key of
the bar. The exBarOutgoingBars gives a collection
of bars that are linked with the current bar. You can
use the Split method to decompose the element to
get the handle and the key, and so you can use the
Items.ItemBar(Item,Key) to access the properties
of the outgoing bar.

The following sample displays all bars (including
descendents) that are linked with a FS link from
the bar on the cursor:

With G2antt1.Items
 Dim h As HITEM, c As Long, hit As
HitTestInfoEnum
 h = G2antt1.ItemFromPoint(-1, -1, c, hit)
 Dim b As Variant
 For Each b In .ItemBar(h,
G2antt1.Chart.BarFromPoint(-1, -1),
exBarOutgoingBarsAll)
 Debug.Print "Outgoing Bar: " & b
 Next

End With

(Safe array of variant expression)

exBarOutgoingBarsAllAsString530

Retrieves a collection of all outgoing bars (including
descendents) from the current bar, as string. The
exBarOutgoingBarsAllAsString displays the list of
outgoing bars aka
"79225544:newbar,79229032:newbar". The
elements in the collections are separated by a , (
comma) character. You can use the
exBarOutgoingBarsAllDebug for debugging purpose
to get displayed the caption on the hierarchy column
instead displaying the handle of the item.

The following sample displays the list of outgoing
bars:

With G2antt1.Items
 Dim h As HITEM, c As Long, hit As
HitTestInfoEnum
 h = G2antt1.ItemFromPoint(-1, -1, c, hit)
 Debug.Print .ItemBar(h,
G2antt1.Chart.BarFromPoint(-1, -1),
exBarOutgoingBarsAllAsString)
End With

(String expression)

Retrieves a collection of outgoing bars from the
current bar, as string (the bar is indicated using the
caption of the tree/hierarchy column, or
TreeColumnIndex column). You can use this option
for debugging purpose, instead
exBarOutgoingBarsAsString, so instead displaying
the handle of the item, the caption of the column is
being displayed aka "Item 4:newbar,Item
5:newbar,Item 3:newbar". The element in the
collection is separated by , (comma) character.

The following sample displays the direct outgoing

exBarOutgoingBarsDebug 531 bars, for debugging purpose:

With G2antt1.Items
 Dim h As HITEM, c As Long, hit As
HitTestInfoEnum
 h = G2antt1.ItemFromPoint(-1, -1, c, hit)
 Debug.Print .ItemBar(h,
G2antt1.Chart.BarFromPoint(-1, -1),
exBarOutgoingBarsDebug)
End With

(String expression)

exBarOutgoingBarsAllDebug 532

Retrieves a collection of of all outgoing bars
(including descendents) from the current bar, as
string (the bar is indicated using the caption of the
tree/hierarchy column, or TreeColumnIndex column
). You can use this option for debugging purpose,
instead exBarOutgoingBarsAllAsString, so instead
displaying the handle of the item, the caption of the
column is being displayed aka "Item 4:newbar,Item
5:newbar,Item 3:newbar". The element in the
collection is separated by , (comma) character.

The following sample displays the outgoing bars
(including descendents), for debugging purpose:

With G2antt1.Items
 Dim h As HITEM, c As Long, hit As
HitTestInfoEnum
 h = G2antt1.ItemFromPoint(-1, -1, c, hit)
 Debug.Print .ItemBar(h,
G2antt1.Chart.BarFromPoint(-1, -1),
exBarOutgoingBarsAllDebug)
End With

(String expression)

Retrieves a collection of links that end on the

exBarIncomingLinks 533

current bar. The element in the collection indicates
the name of the link that ends on the current bar.
The Items.ItemBar(exBarIncomingLinks) and
Items.ItemBar(exBarIncomingLinksAll) gives a
collection of links that ends on the current bar,
including its ascendants. The
exBarIncomingLinksAsString and
exBarIncomingLinksAllAsString gives the same
information excepts that the result is returned as a
string. The Link property can be used to access the
link properties.

The following sample displays all links that ends
directly on the bar from the cursor:

With G2antt1.Items
 Dim h As HITEM, c As Long, hit As
HitTestInfoEnum
 h = G2antt1.ItemFromPoint(-1, -1, c, hit)
 Dim l As Variant
 For Each l In .ItemBar(h,
G2antt1.Chart.BarFromPoint(-1, -1),
exBarIncomingLinks)
 Debug.Print "Incomming Link: " & l
 Next
End With

The following sample shows the incoming bars/links
in green (C, P), when the current bar is A:

(Safe array of variant expression)

exBarIncomingLinksAsString 534

Retrieves a collection of links that end on the
current bar, as string. The elements in the collection
are separated by , (comma) character. The Link
property can be used to access the link properties.
The exBarIncomingLinksAsString option gives the
list of links that ends on the current bar, including
the ascendants.

The following sample displays the list of links that
ends on the bar from the cursor:

With G2antt1.Items
 Dim h As HITEM, c As Long, hit As
HitTestInfoEnum
 h = G2antt1.ItemFromPoint(-1, -1, c, hit)
 Debug.Print .ItemBar(h,
G2antt1.Chart.BarFromPoint(-1, -1),
exBarIncomingLinksAsString)
End With

(String expression)

exBarIncomingLinksAll 535

Retrieves a collection of links that end on the
current bar, including the ascendants. The element
in the collection indicates the name of the link that
ends on the current bar. The Link property can be
used to access the link properties.

The following sample displays all links that ends on
the bar from the cursor, including the ascendants:

With G2antt1.Items
 Dim h As HITEM, c As Long, hit As
HitTestInfoEnum
 h = G2antt1.ItemFromPoint(-1, -1, c, hit)
 Dim l As Variant
 For Each l In .ItemBar(h,
G2antt1.Chart.BarFromPoint(-1, -1),
exBarIncomingLinksAll)

 Debug.Print "Incomming Link: " & l
 Next
End With

(Safe array of variant expression)

exBarIncomingLinksAllAsString536

Retrieves a collection of links that end on the
current bar, including the ascendants, as string. The
Link property can be used to access the link
properties.

The following sample displays the list of links that
ends on the bar from the cursor:

With G2antt1.Items
 Dim h As HITEM, c As Long, hit As
HitTestInfoEnum
 h = G2antt1.ItemFromPoint(-1, -1, c, hit)
 Debug.Print .ItemBar(h,
G2antt1.Chart.BarFromPoint(-1, -1),
exBarIncomingLinksAllAsString)
End With

(String expression)

Retrieves a collection of incoming bars from the
current bar. The element in the collection is a string
that indicates the handle of the item, the :
character, and the key of the bar, aka
"78253912:newbar". The exBarOutgoingBars gives
a collection of bars that are linked with the current
bar. You can use the Split method to decompose
the element to get the handle and the key, and so
you can use the Items.ItemBar(Item,Key) to access
the properties of the incoming bar.

The following sample displays the bars that are
linked with a SF link from the bar on the cursor:

exBarIncomingBars 537 With G2antt1.Items
 Dim h As HITEM, c As Long, hit As
HitTestInfoEnum
 h = G2antt1.ItemFromPoint(-1, -1, c, hit)
 Dim b As Variant
 For Each b In .ItemBar(h,
G2antt1.Chart.BarFromPoint(-1, -1),
exBarIncomingBars)
 Debug.Print "Outgoing Bar: " & b
 Next
End With

(Safe array of variant expression)

exBarIncomingBarsAsString 538

Retrieves a collection of incoming bars from the
current bar, as string. The
exBarIncomingBarsAsString displays the list of
outgoing bar aka
"79225544:newbar,79229032:newbar". The
elements in the collections are separated by a , (
comma) character. You can use the
exBarIncomingBarsDebug for debugging purpose to
get displayed the caption on the hierarchy column
instead displaying the handle of the item.

The following sample displays the list of incoming
bars:

With G2antt1.Items
 Dim h As HITEM, c As Long, hit As
HitTestInfoEnum
 h = G2antt1.ItemFromPoint(-1, -1, c, hit)
 Debug.Print .ItemBar(h,
G2antt1.Chart.BarFromPoint(-1, -1),
exBarIncomingBarsAsString)
End With

(String expression)

exBarIncomingBarsAll 539

Retrieves a collection of all incoming bars (including
ascendants) from the current bar. The element in
the collection is a string that indicates the handle of
the item, the : character, and the key of the bar,
aka "78253912:newbar", where the 78253912 is
the handle of the item and the newbar is the key of
the bar. The exBarIncomingBarsAll gives a
collection of bars that are linked with the current
bar. You can use the Split method to decompose
the element to get the handle and the key, and so
you can use the Items.ItemBar(Item,Key) to access
the properties of the incoming bar.

The following sample displays all bars (including
descendents) that are linked with a SF link from
the bar on the cursor:

With G2antt1.Items
 Dim h As HITEM, c As Long, hit As
HitTestInfoEnum
 h = G2antt1.ItemFromPoint(-1, -1, c, hit)
 Dim b As Variant
 For Each b In .ItemBar(h,
G2antt1.Chart.BarFromPoint(-1, -1),
exBarIncomingBarsAll)
 Debug.Print "Outgoing Bar: " & b
 Next
End With

(Safe array of variant expression)

Retrieves a collection of all incoming bars (including
ascendants) from the current bar, as string. The
exBarIncomingBarsAllAsString displays the list of
incoming bars aka
"79225544:newbar,79229032:newbar". The
elements in the collections are separated by a , (
comma) character. You can use the
exBarIncomingBarsAllDebug for debugging purpose
to get displayed the caption on the hierarchy column

exBarIncomingBarsAllAsString540

instead displaying the handle of the item.

The following sample displays the list of incoming
bars:

With G2antt1.Items
 Dim h As HITEM, c As Long, hit As
HitTestInfoEnum
 h = G2antt1.ItemFromPoint(-1, -1, c, hit)
 Debug.Print .ItemBar(h,
G2antt1.Chart.BarFromPoint(-1, -1),
exBarIncomingBarsAllAsString)
End With

(String expression)

exBarIncomingBarsDebug 541

Retrieves a collection of incoming bars from the
current bar, as string (the bar is indicated using the
caption of the tree/hierarchy column, or
TreeColumnIndex column). You can use this option
for debugging purpose, instead
exBarIncomingBarsAsString, so instead displaying
the handle of the item, the caption of the column is
being displayed aka "Item 4:newbar,Item
5:newbar,Item 3:newbar". The element in the
collection is separated by , (comma) character.

The following sample displays the direct incoming
bars, for debugging purpose:

With G2antt1.Items
 Dim h As HITEM, c As Long, hit As
HitTestInfoEnum
 h = G2antt1.ItemFromPoint(-1, -1, c, hit)
 Debug.Print .ItemBar(h,
G2antt1.Chart.BarFromPoint(-1, -1),
exBarIncomingBarsDebug)
End With

(String expression)

exBarIncomingBarsAllDebug 542

Retrieves a collection of of all incoming bars
(including ascendants) from the current bar, as
string (the bar is indicated using the caption of the
tree/hierarchy column, or TreeColumnIndex column
). You can use this option for debugging purpose,
instead exBarIncomingBarsAllAsString, so instead
displaying the handle of the item, the caption of the
column is being displayed aka "Item 4:newbar,Item
5:newbar,Item 3:newbar". The element in the
collection is separated by , (comma) character.

The following sample displays the incoming bars
(including ascendants), for debugging purpose:

With G2antt1.Items
 Dim h As HITEM, c As Long, hit As
HitTestInfoEnum
 h = G2antt1.ItemFromPoint(-1, -1, c, hit)
 Debug.Print .ItemBar(h,
G2antt1.Chart.BarFromPoint(-1, -1),
exBarIncomingBarsAllDebug)
End With

(String expression)

Retrieves or sets a value that indicates the inclusive
ending point of the bar. Generally, the inclusive
ending point of the bar is exBarEnd - 1. You can
use the exBarEndInclusive to display exBarEnd - 1
when associate a cell with a bar, using the
AllowCellValueToItemBar property, so the ending
point displayed on the list section is one day less.
The exBarEndInclusive option was designed to be
used when the chart's unit scale is exDay, so days
are being displayed. Changing the exBarEnd value
may change the exBarEndInclusive value, or
reverse. For instance, a a task bar from 1/1/2001
to 1/3/2001 shows two days, the exBarEnd
displays 1/3/2001, while the exBarEndInclusive
displays 1/2/2001.

exBarEndInclusive 543

The following screen shot shows the values of
exBarEnd and exBarEndInclusive displayed on End
and EndInclusive columns:

In the previously picture you can notice that the
exBarEnd of the Task 1 is 1/7/2009, while the
exBarEndInclusive indicates the 1/6/2009.

Using the exBarEndInclusive you can show and edit
the finish column like shown in the following picture:

(Date expression)

exBarMoveStart 544

Retrieves or sets (by preserving the bar's
length/duration) a value that indicates the start of
the bar. This property returns the same value as
exBarStart property. If used to change the starting
point of the bar, the exBarMoveStart property
moves the bar, while the exBarStart property
resizes the bar, or in other words, the
exBarMoveStart moves the starting point of the bar,
by preserving the bar's length/duration. For
instance, this property can be associated with a
column of drop down calendar type, so once the
user changes the date in the calendar, the
associated bar is moved to start at selected date.

(Date expression)

Retrieves or sets (by preserving the bar's
length/duration) a value that indicates the end of
the bar. This property returns the same value as
exBarEnd property. If used to change the ending

exBarMoveEnd 545

point of the bar, the exBarMoveEnd property moves
the bar, while the exBarEnd property resizes the
bar, or in other words, the exBarMoveEnd moves
the ending point of the bar, by preserving the bar's
length/duration. For instance, this property can be
associated with a column of drop down calendar
type, so once the user changes the date in the
calendar, the associated bar is moved to end at
selected date.

(Date expression)

exBarMoveEndInclusive 546

Retrieves or sets (by preserving the bar's
length/duration) a value that indicates the inclusive
ending point of the bar. Generally, the inclusive
ending point of the bar is exBarEnd - 1. This
property returns the same value as
exBarEndInclusive property. If used to change the
inclusive ending point of the bar, the
exBarMoveEndInclusive property moves the bar,
while the exBarEndInclusive property resizes the
bar, or in other words, the exBarMoveEndInclusive
moves the inclusive ending point of the bar, by
preserving the bar's length/duration. For instance,
this property can be associated with a column of
drop down calendar type, so once the user changes
the date in the calendar, the associated bar is
moved to end at selected date.

(Date expression)

constants ItemsAllowSizingEnum
The ItemsAllowSizingEnum type specifies whether the user can resize items individuals or
all items at once, at runtime. Use the ItemsAllowSizing property to specify whether the user
can resize items individuals or all items at once, at runtime. Currently, the
ItemsAllowSizingEnum type supports the following values:

Name Value Description
exNoSizing 0 The user can't resize the items at runtime.

exResizeItem -1 Specifies whether the user resizes the item from
the cursor.

exResizeAllItems 1 Specifies whether the user resizes all items at
runtime.

constants UIVisualThemeEnum
The UIVisualThemeEnum expression specifies the UI parts that the control can shown using
the current visual theme. The UseVisualTheme property specifies whether the UI parts of
the control are displayed using the current visual theme.

Name Value Description
exNoVisualTheme 0 exNoVisualTheme
exDefaultVisualTheme 16777215exDefaultVisualTheme
exHeaderVisualTheme 1 exHeaderVisualTheme
exFilterBarVisualTheme 2 exFilterBarVisualTheme
exButtonsVisualTheme 4 exButtonsVisualTheme
exCalendarVisualTheme 8 exCalendarVisualTheme
exSliderVisualTheme 16 exSliderVisualTheme
exSpinVisualTheme 32 exSpinVisualTheme
exCheckBoxVisualTheme 64 exCheckBoxVisualTheme
exProgressVisualTheme 128 exProgressVisualTheme
exCalculatorVisualTheme 256 exCalculatorVisualTheme

constants UnitEnum
The UnitEnum type specifies the time units supported. Use the UnitScale property to specify
the time scale. Use the Unit property to specify the time unit in the level. The UnitEnum type
includes the following time units:

Name Value Description

exYear 0 Indicates the year. Values: ..., 2001, 2002, 2003,
...

exHalfYear 1

A date between January 1st and June 31 indicates
the first half of the year, and from July 1 to
December 31, indicates the second half of the year.
Values: 1 and 2

exQuarterYear 2

A date between January 1st and March 31
indicates the first quarter of the year, a date
between April 1st and June 30 indicates the second
quarter of the year, a date between July 1st and
September 30 indicates the third quarter of the
year, and if a date between October 1st and
December 31 indicates the forth quarter of the
year. Values: 1, 2, 3 and 4

exMonth 16

Indicates the month. Values: 1 (January), 2 (
February), ..., and 12 (December). Use the
MonthNames property to specify the name of the
months.

exThirdMonth 17

The first ten days in a month indicates the first third
of the month, the next 10 days indicates the second
third of the month, and the last 10 days in the month
indicates the last third of the month. Values: 1, 2
and 3.

exWeek 256
Indicates the week in the year. Values: 1,2,...,53.
Use the WeekDays property to specify the name of
the days in the week.

exDay 4096 Indicates the day of the date. Values: 1,2,..,31
exHour 65536 Indicates the hour.
exMinute 1048576Indicates the minute.
exSecond 16777216Indicates the second.

constants ValidateValueType
The ValidateValueType specifies the type of validation that control supports. The
CauseValidateValue property specifies whether the ValidateValue event is fired before
Change event, so the user can validate the values being entered. The ValidateValue event is
not fired if the CauseValidateValue property is False ~ exNoValidate. The ValidateValue
event is fired once the user tries to leaves the focused cell (exValidateCell) or focused
item (exValidateItem). The ValidateValueType enumeration supports the following values:

Name Value Description

exValidateCell -1
The ValidateValue event is called just before leaving
the cell. Use this option to validate the values per
cell.

exNoValidate 0 The ValidateValue event is not fired.

exValidateItem 1
The ValidateValue event is fired when the user
leaves the focused item. Use this option to validate
the values per item.

constants VAlignmentEnum
Specifies the source's vertical alignment.

Name Value Description
exTop 0 The source is aligned to the top.
exMiddle 1 The source is centered.
exBottom 2 The source is aligned to the bottom.
exVOutside 16 The object is displayed outside of the source.

constants ValueFormatEnum
Defines how the cell's value is shown. The CellValueFormat property indicates the way the
cell displays its content. The Def(exCellValueFormat) property indicates the format for all
cells within the column. The CellValue property indicates the cell's value, content or
formula. The ComputedField property indicates the formula to compute all cells in the
column. The FormatColumn property indicates the format to be applied for cells in the
columns.The ValueFormatEnum type supports can be a combination of the following values:

Name Value Description
exText 0 No HTML tags are painted

Currently, the Exontrol's built-in HTML format
supports the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor
element that can be clicked. An anchor is a
piece of text or some other object (for example
an image) which marks the beginning and/or
the end of a hypertext link.The <a> element is
used to mark that piece of text (or inline
image), and to give its hypertextual relationship
to other documents. The control fires the
AnchorClick(AnchorID, Options) event when
the user clicks the anchor element. The
FormatAnchor property customizes the visual
effect for anchor elements.

The control supports expandable HTML
captions feature which allows you to
expand(show)/collapse(hide) different
information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor
stores the HTML line/lines to show once the
user clicks/collapses/expands the caption.

exp, stores the plain text to be shown
once the user clicks the anchor, such as
<a ;exp=show lines>
e64, encodes in BASE64 the HTML text to

about:blank

be shown once the user clicks the anchor,
such as <a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
 that displays show lines- in gray
when the user clicks the + anchor. The
gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the <fgcolor 808080>show
lines<a>-</fgcolor> The
Decode64Text/Encode64Text methods of
the eXPrint can be used to decode/encode
e64 fields.

Any ex-HTML caption can be transformed to an
expandable-caption, by inserting the anchor ex-
HTML tag. For instance, <solidline>
Header</solidline>
Line1<r><a
;exp=show lines>+
Line2
Line3
shows the Header in underlined and bold on the
first line and Line1, Line2, Line3 on the rest.
The show lines is shown instead of Line1,
Line2, Line3 once the user clicks the + sign.

 ... displays portions
of text with a different font and/or different
size. For instance, the bit draws the bit text using
the Tahoma font, on size 12 pt. If the name of
the font is missing, and instead size is present,
the current font is used with a different size.
For instance, bit displays the
bit text using the current font, but with a
different size.
<fgcolor rrggbb> ... </fgcolor> or
<fgcolor=rrggbb> ... </fgcolor> displays text
with a specified foreground color. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or
<bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<solidline rrggbb> ... </solidline> or

exHTML 1

<solidline=rrggbb> ... </solidline> draws a
solid-line on the bottom side of the current text-
line, of specified RGB color. The <solidline> ...
</solidline> draws a black solid-line on the
bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values
of the color in hexa values.
<dotline rrggbb> ... </dotline> or
<dotline=rrggbb> ... </dotline> draws a dot-line
on the bottom side of the current text-line, of
specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom
side of the current text-line. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<upline> ... </upline> draws the line on the
top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon
inside the text. The number indicates the index
of the icon being inserted. Use the Images
method to assign a list of icons to your chart.
The last 7 bits in the high significant byte of the
number expression indicates the identifier of
the skin being used to paint the object. Use the
Add method to add new skins to the control. If
you need to remove the skin appearance from
a part of the control you need to reset the last
7 bits in the high significant byte of the color
being applied to the part. The width is optional
and indicates the width of the icon being
inserted. Using the width option you can
overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the
width is 18 pixels.
key[:width] inserts a custom
size picture into the text being previously
loaded using the HTMLPicture property. The
Key parameter indicates the key of the picture
being displayed. The Width parameter

indicates a custom size, if you require to
stretch the picture, else the original size of the
picture is used.
& glyph characters as & (&), < (<),
> (>), &qout; (") and &#number; (the
character with specified code), For instance,
the € displays the EUR character. The
& ampersand is only recognized as markup
when it is followed by a known letter or a
#character and a digit. For instance if you want
to display bold in HTML caption you
can use bold
<off offset> ... </off> defines the vertical
offset to display the text/element. The offset
parameter defines the offset to display the
element. This tag is inheritable, so the offset is
keep while the associated </off> tag is found.
You can use the <off offset> HTML tag in
combination with the to define
a smaller or a larger font to be displayed. For
instance: Text with <off 6>subscript
displays the text such as: Text with subscript
The Text with <off -6>superscript
displays the text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines
a gradient text. The text color or <fgcolor>
defines the starting gradient color, while the
rr/gg/bb represents the red/green/blue values
of the ending color, 808080 if missing as gray.
The mode is a value between 0 and 4, 1 if
missing, and blend could be 0 or 1, 0 if
missing. The HTML tag can be used to
define the height of the font. Any of the rrggbb,
mode or blend field may not be specified. The
<gra> with no fields, shows a vertical gradient
color from the current text color to gray
(808080). For instance the <gra
FFFFFF;1;1>gradient-center</gra>
generates the following picture:

<out rrggbb;width> ... </out> shows the text

with outlined characters, where rr/gg/bb
represents the red/green/blue values of the
outline color, 808080 if missing as gray, width
indicates the size of the outline, 1 if missing.
The text color or <fgcolor> defines the color to
show the inside text. The HTML tag can
be used to define the height of the font. For
instance the <out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>
 generates the following picture:

<sha rrggbb;width;offset> ... </sha> define
a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the
shadow color, 808080 if missing as gray, width
indicates the size of shadow, 4 if missing, and
offset indicates the offset from the origin to
display the text's shadow, 2 if missing. The text
color or <fgcolor> defines the color to show
the inside text. The HTML tag can be
used to define the height of the font. For
instance the <sha>shadow</sha>
 generates the following picture:

or <sha 404040;5;0>
<fgcolor=FFFFFF>outline anti-
aliasing</fgcolor></sha> gets:

For instance, the following HTML caption

This is a bit of text with a
different font
<upline><dotline>left 1<r>right
2
1<c><a><s>center
pic1:64 picture</s><r>

2
left 3 <c>center<r>right 4

 generates the following screen shot:

exComputedField 2

Indicates a computed field. The CellValue property
indicates the formula to compute the field. A
computed field can display its content using the
values from any other cell in the same item/row. For
instance %1 + %2 indicates that the cell displays
the addition from the second and third cells in the
same item (cells are 0 based). For instance, if the
cells are of numeric format the result is the sum of
two values, while if any of the cell is of string type it
performs a concatenation of the specified cells. The
ComputedField property indicates the formula to
compute all cells in the column. The
exComputedField can be combined with exText or
exHTML. For instance, the exComputedField +
exHTML indicates that the computed field may
display HTML tags.

The syntax for the CellValue property should be:
formula where %n indicates the cell from the n-
index. The operation being supported are listed
bellow.

For instance %1 + %2 indicates the sum of all cells
in the second and third column from the current
item.

Indicates a total/subtotal field. The CellValue
property indicates the formula for total field that
includes an aggregate function such as: sum, min,
max, count, avg. The exTotalField can be combined
with exText or exHTML. For instance, the
exTotalField + exHTML indicates that the total field

exTotalField 4

may display HTML tags.

The syntax for the CellValue property should be:
aggregate(list,direction,formula) where:

aggregate must be one of the following:

sum - calculates the sum of values.
min - retrieves the minimum value.
max - retrieves the maximum value.
count - counts the number of items.
avg - calculates the average of values.

list must be one of the following:

a long expression that specifies the index of
the item being referred.
a predefined string expression as follows:

all - indicates all items, so the formula is
being applied to all items. The direction
has no effect.
current - the current item.
parent - the parent item.
root - the root item.

direction must be one of the following:

dir - collects the direct descendents.
rec - collects the leaf descendents (leaf items
). A leaf item is an item with no child items.
all - collects all descendents.

Currently, the following items are excluded by
aggregate functions:

not-sortable items. The SortableItem property
specifies whether the item can be sorted (a
sortable item can change its position after
sorting, while a not-sortable item keeps its
position after sorting.
not-selectable items. The SelectableItem
property specifies whether the user can
selects/focus the specified item.
divider items. The ItemDivider property

specifies whether the item displays a single
cell, instead displaying whole cells.

In conclusion, aggregate functions counts ONLY
items that are:

sortable, SortableItem is True, by default.
selectable, SelectableItem is True, by default.
not divider, ItemDivider is -1, by default.

Shortly, by setting to a different value to any of
these properties, makes the item to be ignored by
the aggregate functions.

For instance

count(current,dir,1) counts the number of child
items (not implies recursively child items).
count(current,all,1) counts the number of all
child items (implies recursively child items).
count(current,rec,1) counts the number of leaf
items (implies recursively leaf items).
count(current,rec,1) counts the number of leaf
items (a leaf item is an item with no child items
).
sum(parent,dir,%1=0?0:1) counts the not-zero
values in the second column (%1)
sum(parent,dir,%1 + %2) indicates the sum of
all cells in the second (%1) and third (%2)
column that are directly descendent from the
parent item.
sum(all,rec,%1 + %2) sums all leaf cells in the
second (%1) and third (%2) columns.

The formula on the CellValue property (if the CellValueFormat property indicates the
exComputedField or exTotalField) may include the formatting operators as follows:

The expression supports cell's identifiers as follows:

%0, %1, %2, ... specifies the value of the cell in the column with the index 0, 1 2, ...
The CellValue property specifies the cell's value. For instance, "%0 format ``" formats
the value on the cell with the index 0, using current regional setting, while "int(%1)"
converts the value of the column with the index 1, to integer.

%C0, %C1, %C2, ... specifies the caption of the cell, or the string the cell displays in
the column with the index 0, 1 2, ... The CellCaption property specifies the cell's
caption. The cell's value may be different than what the cell displays as a string. For
instance, let's say a cell display HTML format. The %0 returns the html format
including the HTML tags, while %C0 returns the cell's content as string without HTML
tags. For instance, "upper(%C1)" converts the caption of the cell with the index 1, to
upper case, while "%C0 left 2" returns the leftmost two characters on the cell with the
index 0.
%CD0, %CD1, %CD2, ... specifies the cell's extra data in the column with the index
0, 1 2, ... The CellData property associates any extra/user data to a cell. For instance,
"%CD0 = `your user data`" specifies all cells whose CellData property is `your user
data`, on the column with the index 0.
%CS0, %CS1, %CS2, ... specifies the cell's state in the column with the index 0, 1 2,
... The CellState property specifies the cell's state, and so it indicates whether the cell
is checked or un-checked. For instance, "%CS0" defines all checked items on the
column with the index 0, or "not %CS1" defines all un-checked items in the column
with the index 1.

This property/method supports predefined constants and operators/functions as described
here.

Usage examples:

1. "1", the cell displays 1
2. "%0 + %1", the cell displays the sum between cells in the first and second columns.
3. "%0 + %1 - %2", the cell displays the sum between cells in the first and second

columns minus the third column.
4. "(%0 + %1)*0.19", the cell displays the sum between cells in the first and second

columns multiplied with 0.19.
5. "(%0 + %1 + %2)/3", the cell displays the arithmetic average for the first three

columns.
6. "%0 + %1 < %2 + %3", displays 1 if the sum between cells in the first two columns is

less than the sum of third and forth columns.
7. "proper(%0)'" formats the cells by capitalizing first letter in each word
8. "currency(%1)'" displays the second column as currency using the format in the control

panel for money
9. "len(%0) ? currency(dbl(%0)) : ''" displays the currency only for not empty/blank

cells.
10. "int(date(%1)-date(%2)) + 'D ' + round(24*(date(%1)-date(%2) - floor(date(%1)-

date(%2)))) + 'H''" displays interval between two dates in days and hours, as xD yH
11. "2:=((1:=int(0:= date(%1)-date(%0))) = 0 ? '' : str(=:1) + ' day(s)') + (3:=round(24*

(=:0-floor(=:0))) ? (len(=:2) ? ' and ' : '') + =:3 + ' hour(s)' : '')" displays the interval

between two dates, as x day(s) [and y hour(s)], where the x indicates the number of
days, and y the number of hours. The hour part is missing, if 0 hours is displayed, or
nothing is displayed if dates are identical.

constants WeekDayEnum
The WeekDayEnum type indicates the days in the week. The WeekDays property indicates
the name of the days in the week. The WeekDayEnum type includes the following values.

Name Value Description
exSunday 0 Sunday
exMonday 1 Monday
exTuesday 2 Tuesday
exWednesday 3 Wednesday
exThursday 4 Thursday
exFriday 5 Friday
exSaturday 6 Saturday

constants WeekNumberAsEnum
The WeekNumberAsEnum type specifies the ways the control displays the week number
for dates. The WeekNumberAs property specifies the way the control displays the week
number. The FirstWeekDay property specifies the first day of the week where the week
begins. The WeekNumberAsEnum type supports the following values:

Name Value Description

exISO8601WeekNumber 0

Indicates that the week number is displayed
according to the ISO8601 standard, which specifies
that the first week of the year is the one that
includes the January the 4th

exSimpleWeekNumber 1
The first week starts on January 1st of a given
year, week n+1 starts 7 days after week n (default
)

constants ZoomOnFlyEnum
The ZoomOnFlyEnum type indicates the flags that can be combined to show the control's
Zoom-OnFly view. The Zoom-OnFly view was provided to let you magnify a portion of the
chart without affecting the chart's scale. The Zoom-OnFly view displays the item and its
neighbors from the cursor, and additional information about the bar from the cursor. The
Chart.AllowZoomOnFly property indicates whether the Zoom-OnFly view is shown once the
user presses the CTRL or SHIFT key over a bar. The ZoomOnFlyEnum type supports the
following values:

Name Value Description
exNoZoomOnFly 0 (Default) The Zoom-OnFly view is not available.

exZoomOnFlyShift 1
If this flag is present, the Zoom-OnFly view can be
shown if pressing the SHIFT, not requiring the CTRL
+ SHIFT keys combination.

exZoomOnFlyCtrl 2
If this flag is present, the Zoom-OnFly view can be
shown if pressing the CTRL, not requiring the CTRL
+ SHIFT keys combination.

exAllowRefineOnFly 8 Specifies whether the Zoom-OnFly view is visible
when the user clicks the mouse.

exAllowInfoOnFly 16 Specifies whether the Zoom-OnFly view is visible
when the user hovers the mouse.

exZoomOnFlyBarsOnly 32
Specifies whether the Zoom-OnFly view is visible if
the cursor hovers a bar, and show nothing, if there
is no bar at the cursor position.

exZoomOnFly 24

Specifies that the Zoom-OnFly view is visible when
the user clicks or hovers the mouse on the chart
area, while pressing the CTRL + SHIFT keys
combination. For instance, if the
Chart.AllowZoomOnFly property is exZoomOnFly +
exZoomOnFlyShift (25), the view can be shown if
the user presses the SHIFT, not requiring the CTRL
+ SHIFT keys combination.

exZoomOnFlyIncludeNeighborItems256

Specifies whether the Zoom-OnFly view displays
the neighbors items (previously visible item and
next visible items). For instance, if the
Chart.AllowZoomOnFly property is exZoomOnFly +
exZoomOnFlyIncludeNeighborItems (280), the
view shows the previously and next visible item of
the one from the cursor. In other words, the view

can show up to 3 items including the item from the
cursor, the previously visible item and the next
visible items. The last two are shown only if they
exists. Use this option to display more than one
item in the view for better alignment of the bars
based on their neighbors.

exZoomOnFlyIncludeSelectedItems768

Indicates that the view can show the item from the
cursor, including the previously selected item and
the next selected item. You can use this flag to
show the current item among with any other
selected item. Use exZoomOnFly +
exZoomOnFlyIncludeSelectedItems (793) option
to include the next and previously selected items for
a better comparing between selection and the item
from the cursor. For instance, click or selects an
item to be compared and next go to other item, and
so the view will include these items. Use the
SelectOnClick property to prevent selecting a row /
item when clicking the chart portion of the control.

Appearance object
The component lets the user changes its visual appearance using skins, each one providing
an additional visual experience that enhances viewing pleasure. Skins are relatively easy to
build and put on any part of the control. The Appearance object holds a collection of skins.
The Appearance object supports the following properties and methods:

Name Description
Add Adds or replaces a skin object to the control.
Clear Removes all skins in the control.
Remove Removes a specific skin from the control.

RenderType Specifies the way colored EBN objects are displayed on
the component.

method Appearance.Add (ID as Long, Skin as Variant)
Adds or replaces a skin object to the control.

Type Description

ID as Long

A Long expression that indicates the index of the skin
being added or replaced. The value must be between 1
and 126, so Appearance collection should holds no more
than 126 elements.
The Skin parameter of the Add method can a STRING as
explained bellow, a BYTE[] / safe arrays of VT_I1 or
VT_UI1 expression that indicates the content of the EBN
file. You can use the BYTE[] / safe arrays of VT_I1 or
VT_UI1 option when using the EBN file directly in the
resources of the project. For instance, the VB6 provides
the LoadResData to get the safe array o bytes for
specified resource, while in VB/NET or C# the internal
class Resources provides definitions for all files being
inserted. (ResourceManager.GetObject("ebn",
resourceCulture))

If the Skin parameter points to a string expression, it can
be one of the following:

A path to the skin file (*.EBN). The ExButton
component or ExEBN tool can be used to create,
view or edit EBN files. For instance, "C:\Program
Files\Exontrol\ExButton\Sample\EBN\MSOffice-
Ribbon\msor_frameh.ebn"
A BASE64 encoded string that holds the skin file (
*.EBN). Use the ExImages tool to build BASE 64
encoded strings of the skin file (*.EBN). The
BASE64 encoded string starts with "gBFLBCJw..."
An Windows XP theme part, if the Skin parameter
starts with "XP:". Use this option, to display any UI
element of the Current Windows XP Theme, on any
part of the control. In this case, the syntax of the Skin
parameter is: "XP:ClassName Part State" where the
ClassName defines the window/control class name in
the Windows XP Theme, the Part indicates a long
expression that defines the part, and the State
indicates the state of the part to be shown. All known
values for window/class, part and start are defined at

https://exontrol.com/ebn.jsp
https://exontrol.com/ebn.jsp
https://exontrol.com/exbutton.jsp
https://exontrol.com/exebn.jsp
https://exontrol.com/ebn.jsp
https://exontrol.com/eximages.jsp
https://exontrol.com/ebn.jsp

Skin as Variant

the end of this document. For instance the
"XP:Header 1 2" indicates the part 1 of the Header
class in the state 2, in the current Windows XP
theme.

The following screen shots show a few Windows XP
Theme Elements, running on Windows Vista and
Windows 10:

A copy of another skin with different coordinates (
position, size), if the Skin parameter starts with
"CP:". Use this option, to display the EBN, using
different coordinates (position, size). By default, the
EBN skin object is rendered on the part's client area.
Using this option, you can display the same EBN, on a
different position / size. In this case, the syntax of the
Skin parameter is: "CP:ID Left Top Right Bottom"

where the ID is the identifier of the EBN to be used (
it is a number that specifies the ID parameter of the
Add method), Left, Top, Right and Bottom
parameters/numbers specifies the relative position to
the part's client area, where the EBN should be
rendered. The Left, Top, Right and Bottom
parameters are numbers (negative, zero or positive
values, with no decimal), that can be followed by the
D character which indicates the value according to the
current DPI settings. For instance, "CP:1 -2 -2 2 2",
uses the EBN with the identifier 1, and displays it on a
2-pixels wider rectangle no matter of the DPI settings,
while "CP:1 -2D -2D 2D 2D" displays it on a 2-pixels
wider rectangle if DPI settings is 100%, and on on a
3-pixels wider rectangle if DPI settings is 150%.

The following screen shot shows the same EBN being
displayed, using different CP: options:

Return Description

Boolean A Boolean expression that indicates whether the new skin
was added or replaced.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control. By using a
collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the BeginUpdate and EndUpdate methods to maintain performance while init the control.
Use the Refresh method to refresh the control.

The identifier you choose for the skin is very important to be used in the background
properties like explained bellow. Shortly, the color properties uses 4 bytes (DWORD,
double WORD, and so on) to hold a RGB value. More than that, the first byte (most
significant byte in the color) is used only to specify system color. if the first bit in the byte is
1, the rest of bits indicates the index of the system color being used. So, we use the last 7
bits in the high significant byte of the color to indicates the identifier of the skin being used.
So, since the 7 bits can cover 127 values, excluding 0, we have 126 possibilities to store an
identifier in that byte. This way, a DWORD expression indicates the background color
stored in RRGGBB format and the index of the skin (ID parameter) in the last 7 bits in the
high significant byte of the color. For instance, the BackColor = BackColor Or &H2000000
indicates that we apply the skin with the index 2 using the old color, to the object that
BackColor is applied.

The skin method may change the visual appearance for the following parts in the control:

control's border, Appearance property
levels on the chart area, BackColor property, BackColorLevelHeader property
bar's background, ItemBar(exBarBackColor) property
control's header bar, BackColorHeader property
control's filter bar, FilterBarBackColor property
control's sort bar, BackColorSort property
the caption of the control's sort bar, BackColorSortCaption property
selected item or cell, SelBackColor property
item, ItemBackColor property
cell, CellBackColor property
bars, Color property
cell's button, "drop down" filter bar button, "close" filter bar button, tooltips, and so
on, Background property
'focus' box in the chart's overview area, OverviewSelBackColor property.

For instance, the following VB sample changes the visual appearance for the selected item.
The SelBackColor property indicates the selection background color. Shortly, we need to
add a skin to the Appearance object using the Add method, and we need to set the last 7
bits in the SelBackColor property to indicates the index of the skin that we want to use. The
sample applies the " " to the selected item(s):

With G2antt1
 With .VisualAppearance
 .Add &H23, App.Path + "\selected.ebn"
 End With
 .SelForeColor = RGB(0, 0, 0)
 .SelBackColor = &H23000000
End With

The sample adds the skin with the index 35 (Hexa 23), and applies to the selected item
using the SelBackColor property.

The following C++ sample applies a new appearance to the selected item(s):

#include "Appearance.h"
m_g2antt.GetVisualAppearance().Add(0x23,
COleVariant(_T("D:\\Temp\\ExG2antt_Help\\selected.ebn")));
m_g2antt.SetSelBackColor(0x23000000);
m_g2antt.SetSelForeColor(0);

The following VB.NET sample applies a new appearance to the selected item(s):

With AxG2antt1
 With .VisualAppearance
 .Add(&H23, "D:\Temp\ExG2antt_Help\selected.ebn")
 End With
 .SelForeColor = Color.Black
 .Template = "SelBackColor = 587202560"
End With

The VB.NET sample uses the Template property to assign a new value to the SelBackColor
property. The 587202560 value represents &23000000 in hexadecimal.

The following C# sample applies a new appearance to the selected item(s):

axG2antt1.VisualAppearance.Add(0x23, "D:\\Temp\\ExG2antt_Help\\selected.ebn");

axG2antt1.Template = "SelBackColor = 587202560";

The following VFP sample applies a new appearance to the selected item(s):

With thisform.G2antt1
 With .VisualAppearance
 .Add(35, "D:\Temp\ExG2antt_Help\selected.ebn")
 EndWith
 .SelForeColor = RGB(0, 0, 0)
 .SelBackColor = .587202560
EndWith

The 587202560 value represents &23000000 in hexadecimal. The 32 value represents &23
in hexadecimal

 The screen shot was generated using the following template:

BeginUpdate

Images("gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDh+Dw1bwuJh0Sf8txeHyFXx+Ryk9wsnxbAzUpycYxWNiWMyujleXjOm0+gjKA1gA1iA0Wf0mz2WY1WwjWywuvz2N1GzyO11ON3mXxe6xfFzvAwXI1UY3mh5292PJ1vMw3T7Hbo3T73L7nhl3f5/i8034Xn9Xr9nt91Cio+lXyjsfkMjAEkk/69Hg97UpSeZ3pSeBnpScAHwO/iMmBBaMQalJAQc10JvylUJkAD8Dh+lJ8Q4k5/D+zjygAgI")

Images("gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwV/YGFAGFYGDxVbxGHw2NxuLyVKyGPy2JxsPiT/yedn+RjOVzGGzWlh2bz2pl+gjGsx2jxOaQGz1Gmzma1Wq2aAk+uzOn2wA3fC2nB3OSxvDjXJ2m/znD4Oa13Hxei4m85ek4Hb5+06Hc6nh1uX1+o7G18HT8XrjXR0/n8/G9nzl/uznq+n5mXy/X9/z/wBAKaIqHyVQKjqPpCkYAJIk8Gpu3EBJS06TnmziTnBC6NHAH6UmAB8PAGlJAQejMSJVESUxSjRAAOlJwRck58RAk5/Ro9pPwnDSMoCA=")

Images("gBJJgBggAAkGAAQhIAf8Nf4hhkOiRCJo2AEXjAAi0XFEYIEYhUXAIAEEZi8hk0plUrlktl0vmExmUzmk1m03nE5nU7lqAnwAYFBnlDolFo1HpFJmkOAE+QFAoVBYFQqdKq1XrFZrU2plMp1UsFfr9Srdls1ntEzrsNiL/ps/sU/sleuVRoVpvF5vVDtduulPudswNuslju1VveJxWLk19ttvwFCpmDsGToVxp+MzWbs2Ov+Vtk/t8XymUx2c1GppOOw1Ty1T0WismmtlM1W33FEz+zw9hzOxzOetm54nFoe8qfIsGF3/B2vDjGi43T6k45XXy/Nnva6vd7007HJ7MX4Hk7nS7/p9Utskz8vr+Hxono+X1+33/HGig+lX8jiPJAjCRpGjLMpwph/D+lJ+A+lJ8AOlJ4QIjJwJUxECpnCaMgGlUOJMYAEwilR+BylJ/j3Ey3JMgIA=")

Images("gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1BAmBhOCwMKwuDw2ExWJxmIx2HyGLx+SyONyuTy2UzWZzmYz2X0Gbx1k0Od0uf0Wnw9g1d/omHTJmjOx2eyAG02+23G73W92u/3MZ0+84HE4PH43J30t2HL5XF53R6Fu5sZePXAHXePZ7Haib/7/hiHih/h3HD23e9XY8ft8vu8Hw822lnV7nb9fb+X79/9+Lytwtj7HVAj7wM/LyP/BUEuO9DrO7CD8PY/0GP48EApW+0EQRC0KwpDC1QHAsCHVA8IwNDr5PO0TcRJE0JO2GZMhnD0FxU+kMsFFsCw27BmRpGsgxAtMRRLF0XR7GEgvHFbOx3I0eOxGUaSmAEqxTD8cJVIoASRH0gR+jMwyXLLqR02xxzTLsRzZEskxRCkmNtB01yhEsqzxGcrT1K84zK5kzozI8CzHQswUOjMsQvLUiUCAE0nHR81UHO0X0tG7hRZNFJwLPMaO9T09xpDsho2+1ITqAFDQe7dV1VIFSUYtFTzVVFUUpVM3u9OVMydTdI1RKtcVBPli1HP760dW01THYcvzFREGVKs77G7a1JWBWtOUrL0lQRJrPNxZds0jXFu1FdFdwBWSNVpclsVTZ1W2jdVFzMhTcGvfQAWsbt4XHeM20s71wMvcVtXfW+BXPKtv3ZXrj4BgFzSjedWQNaazPtfRrgBjl+WviVt4DN0T4KyWD4ThF4YpktvOxjLHZTf+V4VbmK0tmLSUdj+e33fuaXfluMTnTSM5FlWhYXnGCYfmVf6DqObZJnOnZ3fDpORrLn604E6a5sGt6zr+xOnruzuMy+rtQ0zU7dtu4bZuTVbfue67puO1LGiwfJXvqPJAkSSAAkqUcKnDxtcpCKPK7/EkAAfIcgjPJcigwAcryfMctzXM8vz3Kc5z/RdDyvS8t0/O9JzfTcdxqAgA==")

Font
{
 Name = "Tahoma"
}

VisualAppearance
{
 ' Header

Add(1,"gBFLBCJwBAEHhEJAEGg4BawDg6AADACAxRDAMgBQKAAzQFAYZhoHKGAAGEYxRgmFgAQhFcZQSKUOQTDKNYyAWCQCgkOA3STDIxxCKIbhrEAYQIjeCROD1F4hThHMBzVDEcQ1CKUQAkeYKEhyII+T5PE6UPRELSDIaERhoWa6Bo2IZKTLVUTxCKQahLLivIhGUYKfgmY5lVpVcbQHRlNSfFFscp1DJ0YRHNiaJqtGa7Lj2WpASYNdRxFIEDz3DasLwwcALPwOUocVTiYAYTb2DzBNDJbBsaxLCxzEoWZRbNTWfQNZRhIIbBqkCQJVjee6hZJpFwjHo8E5TILWLy1e7dCo3F6/ZrmFjxDR1M4rEASIRDHL+GiACYJGCcBwGKJEFwYg2hwJACGAXAMgQTZtkaBpQhERAkEuSoZgYIpvAAVgtC4PQXHuPgen+D5Tmedp5H4Po/h+P5rnufB/l+OAFn6AIgAeRAAgCYIIBYCoBCCSAmA2ApgmgDgHHyRInkIFQlmEeBmBaBphggcgagcYgIH4IoHiISIGCWCJiGiJgfHuYQwjiIAUAMOI+DGDAjCiVg0g2Yw4mYNoOiOCJuD6DxkAichCg+ZA4mIBh8GQSQmEGEokFkNhMhOZI5EYOYRl6cogFQDJlGkYhXhYZZJG4XoWiYCR2GGF5mCmFhkhmZg5iYZoaiWeRQC4KgFHkYhxhwJwplYdIdmcOZmHaHongmbh+h8aAJnKAofmgOZ2G4K5FiCToIiKKIaC6DojGkCgyhKI5pDoRoUiWaRqGaFYmmmChyhGIZFlCYIvigag6gqJIpmoaomiWKpqgqMoqisawKj6MorisSpGjWKhqAqTo2i6a4qnaN4vmuSwCj6KgmmKXBgA8bBrCKR4yGySwuk6MotAsNpRjObQrFaVI1m0OxmlaNosnsFBljILZyl6YY4m4C4WmKOYuEuHpqjobpLiKbo6m6e42nCPJuEsFBnBCCx7l6eY+C+K52nyP5vjwBp+kCMAMA8BpBHCDATAqQZwjufhuC+RoxAsEJEjEHBPBaRRxgwUwakWcY8GcHJHnGbIHB2SJyAyEwZkORpxBiP5KHKPIrCyS5ymyRwtkycwMlMMpNHODJfDqTYzkyZw9kwcJxk8KpQgufQTEaUJ0g0FxJlGdItDcTJTnSPRHE6VI1A0TxWlGZpjCMQpWgQbRzF6Vp2A0dxhledgthcZJZnYPYnGaWo2g2LxulkNYRlwJwMgbgtimHOLod4GxfD1F2G8TYzh9i9HeNwB6Oh3j8BeAUYYbwphxE8D0RLg07NNEeCEZI8R+CvBKMsOQnBfg1GYPMTgxwejNHmPwU4FAfgKFMH8JI0w6C9B+FUag9ROhHC6NUeo/Q3hhGyPYLorwxjbHsJ0Y4WRigQC6C8PQZx7j+AeH0cI+APAnEKOIfIHgfiVHGHkTwTxNjlHyN4R4hQbgaHIDgXI6h9D+FuLEdo+wvDvFmO8fYnwDi9HgPwT4HxmjxD6B8F40x3h6EIF8V49wND/EOOWLonxHjrHyP4b4zx4j9H8P8d49B/ifHGP8QATxmj2EMCccYARCBcAQIEKAHgDBAEwBsAQ4A6AREEBAJwBxghYBKAUUApALiDCgCkG4IQKAhAONAPgIRBjQEUBAEAYgBEB")

 ' HeaderFilterBarButton

Add(2,"gBFLBCJwBAEHhEJAEGg4BAQEg6AADACAxRDAMgBQKAAzQFAYZhoHKGAAGEYxRgmFgAQhFcZQSKUOQTDKNYyAWCQCgkOA3STDIxxCKIbhrEAYQIjeCROD1F4hThHMBzVDEcQ1CKUQAkeYKEhyII+T5PE6UPRELSDIaERhoWa6Bo2IZKTLVUTxCKQahLLivIhGUYKfgmY5lVpVcbQHRlNSfFFscp1DJ0YRHNiaJqtGa7Lj2WpASYNdRxFIEDz3DasLwwcALPwOUocVTiYAYTb2DzBNDJbBsaxLCxzEoWZRbNTWfQNZRhIIbBqkCQJVjee6hZJpFwjHo8E5TILWLy1e7dCo3F6/ZrmFjxDR1MgACzjBIhqCUQTuACzRZGPj+RwNAOF5cGm95sCQEwJAkQhBhwa5ei4E5cgGGINgcUwojiRBvDuG49iaU4EgATALgGEIJj8aJQloEgoEIQhXC0MwGBEc5AAoYpJHCdAugIYI4CoDIDmCaBGA2BJhAgUgSgUYYIF4GoFiGSBmB2BpgkAAgegiYgIhYH4JmISIiCaChhmiCgOBKII4kCF4MiMSJGDaDJjHiVg4g6Y4onYOYPmOSQCD6EBkEiagKguApigAUAMmSKQyEuExlAkPhShOJRJEYVYUmUaRmFiFplHkdhaheJQ4gYDIXmYSRyGWGAmgmHhqhmJpJFIYoCgqARQDOHBnDmSh0h2ZxpmYdYemeCZyHqHxoAmfoCh+KBKAaBYeiacI4igFZnDoMoLiMaQKD6EojikShGhWJJpGoZoYiaaR6HaGonimCgki8FoDDqDolikKhqiaKIqmoeo2iqK4qkqPoyiwaxKkKNosmseoyiIFxDgKPo8i+K5an6QowGwSwCkaMJsHsFpIjKbIrDaSYzmySxCkSLpsmsRpWjUbYLEqWo1m2OxmkOIhLHGAA9jgbg7gqZI5m4a4mmWOpuguMpqjsbwLj6co7i8S5GnWOouAGFpjj6Cx7nKfo+nAC53AGP5wCwFwEkGcA8CcBpCjCDAvA6P5uAGHBCC2cQsFME5FHGDBfBqRYxkwZwdkacZsgcIJInGfIXCKSYxioJI/BqRAsi8LZLZaRwwkycp8lcMpNjKQ5/DqTZzkyUw9k4NAMn8QvVCGPBGC+dBtCMR5SHSTQvE6Uo1A0NxKk6NRNFcUZTnULRnFiVp1H0dxakqBw9B8YQvnYPYXGKWZ2E2IxmlodRdjcbpaHcDYvHKWo3E2I4dYuRogmCMMMXoCBtjmH6L0eAGx3gDF+PALgLwEjDHgHwJ4DRihxA4F8Dowg3gjFwJwMgcguCnBOMoeYHBfg1GWHMTgzwdjNHmN0B4QRojzH6C8Io0w5uiE8D0RI3QvhbGs1UR4YRsj1H6K8MrQhOi/DqNwe4nW0DdHuP0U4VAfgKFMH8RI4w8C+B+JUcg+RPBHE668fwbxQjpH0F4V4ox1j6E8McuoEAvAvF0GcfY/wHi9HiPwD4JxijyH6B8H41R5h9LGNuJg3xHjFCIJocgOBcj6H8P8W48R+j/C+O8eQ/xvjkAAH8aABgBBABwA1RYRACptHyPoBAt4HiGF4BAQQUAfAKCCBgFYBBwC0AyIMCAbgFjBGwDUA4oByAfEIFAJwBhDAoBGAkQgXAUCFCgJ4CwQhMBbAUOEOgMRDAQGcBcYYWAygNFCKQG4hwoCpCIKIYgVwHjRCoEEQ40QFAgBEBIARAQ=")

Add(3,"gBFLBCJwBAEHhEJAEGg4BBAEg6AADACAxRDAMgBQKAAzQFAYZhoHKGAAGEYxRgmFgAQhFcZQSKUOQTDKNYyAWCQCgkOA3STDIxxCKIbhrEAYQIjeCROD1F4hThHMBzVDEcQ1CKUQAkeYKEhyII+T5PE6UPRELSDIaERhoWa6Bo2IZKTLVUTxCKQahLLivIhGUYKfgmY5lVpVcbQHRlNSfFFscp1DJ0YRHNiaJqtGa7Lj2WpASYNdRxFIEDz3DasLwwcALPwOUocVTiYAYTb2DzBNDJbBsaxLCxzEoWZRbNTWfQNZRhIIbBqkCQJVjee6hZJpFwjHo8E5TILWLy1e7dCo3F6/ZrmFjxDR1MgACzjBIhqCUQTuACzRZGTj+RBpCAHJ1mm950CQEQJmQQJCDwa5ei4E5cgGGINgcUwojiRhsDeHJ9gYIxpkIQAmAWQJIESX48GgbQJAo+gVksTJBgQXJwAKGIyFwPQLiCKAyAuAxhAgPgSgOIRIEYFYEmEaBmBiBphHgdgageIZIDQAIHmISIGCaCAigiFgpgmYooH4I4DkTHwxCWYw4lYMoNmMSJiDaDhjkibg+g6JAInYQYPmQKQWDuApinCOIgBQAw5C4TYTCSaRGFCFJknkVhShWJRJF4WoWGWSRiF6FplnkUgigMZgJhYXYZiZVxohqZh5jYVYYmCMogFQDJnCmUhzh0Z4Jl4eodieSZmH2HpnmoBoAiCZ56BaAohieOZAC4KgFHmUoNiMKJqEaEIkmiehWhKJYpEoXoaiYaZKGKHommmehmgoK5FiCTokimKhah6KoqGqSoii6KpqnqNowiyawqlaMYtmsSpii2KJFlCYIvi8a56nqQIwmwKwWkGMZsEsIpGjIbJLC6Toyi0Cw2lGMRrksPpSjWbRrGaU42m2CxylqMQoiKXBgA8bgrhKY45G6C4emqOYukuJptjqbprkacI8m6e5WnKPYujuBBljkL4yl6fY/m+TAGn6QIwAwDwGj6T58CcCpBkOXArAuQRxAwEwSkMMRMAKYQZkQIpfBiRoxhwbwekccgMHMIpHnIPIDA6SethMKpIHKPIXC6SpoiKfBrBCMwslMM5NHODJfDqTYzkyZw9k6cxciMPpQnQDQXD+UZ0EycwxBuRBin8TJTjSXQ/FKVB1E0QxWlSdR9QuUI1g0dxVleNYdgcXpMEcPQ3GUL52H2JxmlqdoNjMapbHcDYXEKWo3D2Ox2lwO4fYfh6i1GiEYIwyxfgIG4AcAovx4CcAeAsYI8BuBPAiMUeA/A3gVGOHETgfwSjEDeKMXAnAyByG4McF6sxODfB6M0OgHB3hDWiF0F4SV6B9CeE1qI1AoieB6Ikbof2Sh2C6K8NI2x7B9GeG0bodwOjfD6N4fAHRziFG+PgPoxwuA/AUKYP4kXRA+C+7ofQHgzilHOPoPwjxUjrH0N4Z4qx2j7A8OcUI1wIBeCeMIM4/A/gvGKPMfgnwjjNHoP0T4Xxuj1D8B8N44x7j+C+K8ZoRQNDkBwLkfg/w/jXHwP8b49AAh/FgA4AAQAkAFACGAIgBxAhQA0AYIAmANgAE+MARYfw4BIDWMEJALQCDgGI3kGAXgGhBGwDkA44BuAhEGNARQEAhA4CaAUcAiAxCCFgKgIowhkBdAUOEQgLRDAwF8BkIYWA0gNHCJwkY0B1AcCGLgPoCxKBSBaEUSIDQKjECwIUCIogRAiBACAgI")

 ' SelectedItem
 Add(4,
"gBFLBCJwBAEHhEJAEGg4BV4Fg6AABACAxWgKBADQKAAyDIKsEQGGIZRhhGIwAgaFIXQKMUIxVAcLQxCgCYRhYABRiUAoJkjkMYhSDOFgzARHcxRPDgARrDyZQAkOQ5FDGFo+ShFQxTRC9CQpHaEYqkeA3fgmTYXTxJM7yfQVFxlCwTIwFGQqJgmVpPABYERyWKoSzJMyERpGCyIDqqbJXVxFYj3DCscw/KIYaqlGS5Ni+IZ2TLNMz4BAdEQfKSEaAgOToboaE5GB5GeRRbT1HYtKDEcQhepIbpaH5YQjkMBibBNZ4pAavcroeK7FqeI5ua7ach5fisB5EAARYREGrcEqPGZ5ShjGJ1MK0CxzIwDboBPbNdwXP56cIAAx8IJbD0GJQGoIQ1jgGAbhmTZXGsLZ7AsTpKDEVolG0QAaJyA4bleZgCiEJpjHmSJaGENgLgwRpTgUCAhAMEIElCSZ+EUAxkCQKB2huJR0BgRQPkAPZuFOCpSGgewckOUACBSBYhFgXgagYYZIGIHoGmGeB2CCCJiCiFghgmYhIiIJoFmEEZtEwAAilKFB9JWUooi2DRjHiWg4g6Y4onYOYPmOSQCD6EBkEkDhGhCJIJBYSYRmOCJIFKCxhmMBIuCwZQpFIU4VGWCReFqFYlkkZjpGWaYGGCGJlnmFhihmJhJh4F4Hg+eY0kULILFmPhxhwJwplYdIdmcOZmHaHongmbh+h8aAJnKAofmgOgGHKGxPnmLgXiIDISli+BonoOtEGkKhWhGJZpEoYoWiYaZKG6HomioCh2iGJ5pAoIoKgUaIDDCOgvCqKoyiuKxrAqPuCisSpGjWLJrGqZo4i6ax6naOoviuSo2iaBRmkmNJQC+DALB6SYyCyKw2kyM5sjsRpOjSLUIFaNRtgsUpajWbY7GaSowlAOguG0NQMCMEpkjmLhbh6ao6G6S4im6OpunuNpwjybwrlacY9m8S5inaOZuAsFJ/DYDBjCMAJAjAHAPAaQRwgwEwKkGcI8CcDJDnCbBHA2RJxAwUwSkCb5bgifw3AyMwzByR4xlwfwikgchMgMJpInIfIXCiSpyiyNwpkucpMkMLpHnGGoiG0OAMnMQw4k6M4cm8PpPHR2BCk+dA9AcRJRnQbQnEWUp0g0MxKk6cxVgYbQ5eSUxUlWNRdF8WpWHWTRjF6Vp1n0dxglidgthcYZZnYTYjGaVZ1BoIJoDWTYNj8cZcDcLZXHSXZ3D2M4dovQ3gbG8P0Xw8ANjnAKL8eAfAHDlFsM0U4WRbBtHiFwM4FxjDyA4H8Eoxw5CcEeCsZI8huDPBiM0eQ/B3g1GeHMTgbwIB/eYPkX40h6D9BuFEao9QuhvCmNceonRDhdGwPYTonw2jZDuB0V4cxtj1A67AOInA+j/EGOAPAXgXiJHGPgPwTxGjlDyB4L7zB9AeDOKUc4+g/CPEKNETw5wcjPHYPsPw1xcjvH2N8B4ux4j8A+CcYo8h+gfB+NUeYfRPhPiiPsToGR4B0E6D8T74A/DfGePEfo/h/jvHoP8T44x/iACgAYAQQAEANAAOAHgBQ/DPGQHUBwoR4gDDBA4QQEAnAJCCFgEYBRwCkAwIIaAZgHBBFwD0AwoQCAdEIDAPwBhdAxHkDsA4ZATiFBgKICoQhsBZAWOELgMRCjQGUBgIYOA2gNDCMQGghwoDeA6MMTAVQEiHDQO0D4MUXDEBQIkCI4gaBJEQLEFwJAiDIEqBMMQhAniKCiDoFQRQMCrAoOIBYowPhDF4HcYouBdgXBEPQMIjAIiOBeMYLAxQMijBIGcRoURTA2CMIg144w+BtEWNENAeBHgRikGMXgdqgjuB6EcbA8wPjjHIIAR40gDBCCQDkBoIBSBEEKJEGQHgdTVHsDwQ4lBHiSBkEIJISQsgpBKOQTgmRJDSDUEwJIuQegnDKAQTglApB+CiMpboI0kj0A+HIUwVRlCpCyCscodBYiVFkM4LASwkhlBaGUYgtxLhSG0F4JYmQ9guHKEujggxqB6GYDkRYMQTA0GSJkCYLgxjMGyJUGYpgyDPE0FMIwagmgJFaDQcwvBqiYGmAgPYjw4j5BuGYfg3hOATEcHEJwWRhg5HOCQdAnBpimDsE4XI3QdCnEIO0TwMxfBumqPoHwRxmD3E+DMcQfQnjZHyD8c58xPjUAVKYHQDQghoCKAQUIVAPTnEyPUHohxoD6A+LQIwiRogqBSEUdAtQMiiFoG4RlfwahHDSAUD4pAqB6EkFIDQSwkDoEXRxLAfgpC6C2EsFIdQYimAoM4S40wtBlCaKkUoNxThUHMJ4KYig+hOHSP0HopRqCojeNEfoUQ1A9CMKkuApQqDaEmFMdQZQoCpGqEYVQVQdCtCoKoYoVRVg1C8KIV41AxCMGoEUMIrAqiOFkFYLQzQsjrCKGkVoVRXCzBIOQUAUwIhqBSK4JArhdAiFUO0Lg6xeh1FeAgUwtxKDSAEQEA=")

 ' Marks a cell

Add(5,"gBFLBCJwBAEHhEJAEGg4BF4Gg6AABACAxWgKBADQKAAyDIKsEQGGIZRhhGIwAgaFIXQKMUIxVAcLQxCgCYRhYABRiUAoJkjkMYhSDOFgzARHcxRPDgARrDyZQAkOQ5FDGFo+ShFQxTRC9CQpHaEYqkeA3fgmTYXTxJM7yfQVFxlCwTIwFGQqJgmVpPABYERyWKoSzJMyERpGCyIDqqbJXVxFYiXDCscw/KIYaqlGS5Ni+IZ2TLNMz4BAdEQfKSEaAgOToboaE5GB5dAg1bAdPydDC8KjoGK6Wh+WIJZDAdZwHicOy9S6mMwjOxbHiObquWrIebaPAeQgAE6EdJuXBLDwmJtVMTqYZoFjmRpWSKHe6XPr1c6BF7hRqzWKMfwrAmUYADkXI4j0WBvlKRINm+Aw+g6SxpjuHRdCsMAwmcbxNgWRIMAcNRhkiQp4DCH5fm4EA5gwDA7AkeoAAaWYOHGGSJAkQhGGGPBjB0RwwjgYgbEcBQIBAQJECENAygSURAlkCQKB0dplF0BgREOcAPHsVJCjSGgex8dAAgoYo4ioLILmKaJGC2DJjAiUgyg0Y4Il4OoNiOSJmD2DpikiGB7GoZAihQfQUg6cgIGuEhkjkKhMhOZJpEYTYUmUCRSFKFRlgkXhahWJZJGYXYWmSSQYFKEIjDOQIFBuJhpiIZ4aGaSYuG6GonAmNhxhuZwplYdIdmcOZmHaHongmbgshkSIRkicIgEwYxMlaIRoHoGoIiKaIqDaCYjmiShCg6JBpEoToWiSKYKFaGYjigOgKgGH5ikPDodGoIZUm8PJPHqHopioKoqjaLIrmqOpGi6LIrAqTo2i0a4KlKOotmuOpCiWKRqAiKJxCOR4LAweA8CqCwgneMosksJpOjKbJ7DaUI0m0KxWlGNZtEsYpWjYbZLEqRoxiwEAAnIJJHskfDtkPNQ6i6G4um6OxvAuMpyjubw7kadI9m8a5mnWPpvgucpxjmLhrgScglgefAMH8PBuhwIJ4kKMJMCcDpCnCfA3BCRJxCwVwRkWcVphaRhxkwSwGkGLgTkyGggjIIgInIPRPgyHwpkplY3CyS5yjyRwukyMwMk8NpNHODJTDqTZzjyQ1QnIEh0gUPJ0CyHJ5lGNIDlcR5SjSHQvE6Ux1A0MxSlOdQ9EcVJVnUbRnFWUo0E0DxCjgTxCgCCZYEjyR2D4dhtiMZ5aHaTYvG6Wo3A2NxxludwtlcdJdncPZnHaL0No+wTDJFgBQQgYR0jAHeHwFw8RhhvE4E8CIxR4D8DcOEYI8AuANGEHoSg5A/goCOJ4Q4uR6jMHmHwa4ORnjzG6A8HY0R6AdBOEUaQ9QOg/CqNMOonQnhbGiHIfgvwTBVAkGcV4aA9DzC6MEeo3Q7idGeH0bo9x+jvEC34LwLxBjjHwJ4I4jRyD5E8C8N42nIixC4EsPQRBbBRG6J8DwxxajrH2J4Z4ux2j7G+A8YI8R9j/BeMWFInwfjVHiPoXwrxRBYEmCcW44A9gfAON8dI+w/C/F+PUfg/xPjHH4P4b4+x+iAAgA4AIQAsADACOAEgCBABPGaPgFwER3AtAIOQB4ggRjkD6I8PAKQCigFYBcQYUAzAOCCIgHoBhwD8A6IQCAjgIhCCwEMBI4QSAoEGLAIQCZajwBcAUAgLwKAQFUBoIQmA2gJFCLwGohwIDuA6EIDAZQGChDgLsCgYxxAhB6JEe4ERRBAH0IgeIKgSDEFwJ0CYYhCBMEUFEHwKRigYFSBUcQtAsiKFiDIEQxASjCB8EUfAphGAREQH2Pw8wMhjB4GYRoERXA1CMNgaYGxxhkDgI0aKPAjg4HaBwUYxA6iPN+DAYwOBfAwEKFAfIkAIBSBmA8XICwQu3ESJAaQKgiBIFyB0EYZEcCSCkD4JIyQMgpBKOQRggxIALEIH0BgUQtgnDIPwQwiQhjyCiMoLIRQUjlBIKgSg0hTBWCULkLoKhSiEFaJYGQvgshLCyF0E4pQCCcAyCIYAfQli5AYD8Mo/BggfEmAIMIzAUiJBiOYGgyRMCzBcGQJgyRKgzMKM8TQUwdBhGWNkPILhrgIH2BkQQ0g2hNGSKkGgZh+DTE4BMRwcQnBZGGDkcwjBtibFmGQM4iw4j3B2GYDA/RPAzGYH4Z4KR1g9BOLQfInwJv8GeNkeoPxTjkH+KAKgBhBBQASOsHY5w6DtC4CMeAaRFiqAyEMQ46B/CYDoEoRA0QdAtCKGgYoFBRhUC9T4TQOQjjoHqCEUYtBHCQCkEoHoQw0B9AWBoYQ+A/BSF0CIH4qQ+gxA+NQYQmRpgqDSE0dItQcimFoO4TgUxlB1CeGoAoPxUBUH0JkaQ2gshKuKP0DYQwDClAYBoM4Ux1CFCiKoKoTs1BaFaFUdQxQsirCoMIUo1BtCSBuEYEA/RWADHwH8R4+hk5zBaGfN4phbBWEUN0LTYw2iuAqM4XIVwtDjC6OsUoeBWi1EULAawBRhA/EOAAY4sABgeFkNgLYDQwjsCKIkWIVgXDGCwNsDoYx2CFDMLAGwDhfiOCCJYH4rBaiYFkPYMwzgsi7B6GYVoBROi0BsH4aIWgthJDSO0DoqRaDWFUNQLQZB/CRCkDgf6MwdDZC2EsM4bQ2jFFuLcKw2hvBbE2HsNw7R6jBFwBcBw3xuBbEKHEVwJRahMCSJECQog6B9DmNIAo0Qjj3CcOgLoS2KhRhOCkUgBCAg=")

Add(6,"gBFLBCJwBAEHhEJAEGg4BaAFg6AADACAxRDAMgBQKAAzQFAYZhxBaERiGIZ4JhUAIIRZGMQxXAcMQ1DICYRhQABRiUAoJDKMchxEKcPBmAiPZhjEYocheMoWSLIcijDD0eRRDyDZrjaL5ZgmHonQK/cI0VDMdRLHqXKApCYYeCaGgpSJRUI1HRgAS7CqVRpEWwbDgkNQwWTAdj2TSkEgNDQRaxjWZ6EgmO5TSjKYxSbJEQzpGSaIDwGZrfACRYEU7dVQxDQcNYbAYPJpwOh6LxWTZ2YjBGJ4FScPyrBLIYDFWCRHpqA5cZZOEQ2FYkRzXVy0JDzaCZQxCCQlQiIOjYLaUSRNFC+IZqMZhWw+FrGAbvIJbXakPZbVYSZ52AQuHcHY7lqAABhoDZllcEAxjwcCOD4GJbisGZPmmYQ1ggHIPg0dJnmCNYWG2D5OlkFYpmUPYaE6Xxzk+OxylAMZAHUHJGgGFBkAuBghjQcBQAEBAMEIExDCgNQWA2EIQiGahuFWIBhBYPwAnedReD+T5yjSGgekcMJ0ACCRiHiGgogqYoojYKYLmKSJCC6DBjEiTg2gyI4IlYOYNmKCIIHuCAUiieIlB8RQjHiTwxg8c4cmeEhkjkKhMhOZJpEYTYUmUCRSFKFRlgkXhahWJZJGYXYUiQYwaEMFIjmiPhhD0ThThYaIaiaGYuG6GxnAmMhyhuZw5kYdIdmcaZmHWHpngmch6hqZgYiIL4QA8M4MmOIRoHoGoIiKaIqDaCdXEoQoOiQaRKE6FokimChWhmJZogkAoCgoJADkSYQ4GoKoSiOKRqgqHoqimKpKiaLYqmqapGjCLJqnqVoyi2KxKhaHoJigOIAm8N5NnqfpBjALArBaRIxmwOwmkaMosgsLpOjMbQLDKUozm0OxGkKLpQDqAggDsTZTHaXI3i2Wx+mKOBuEuApmjibh7haaI6m6K42mmO5ukuQpujebYKnSfw6k2MxuniPovhubp+j8cALnMAo/nAPAHASQZwGwJwFkKcIMDMCo+m8Wxon8OhNhMZwUkWMRcF8GpGHGTBjB6RpxnwdwgkicgshcIZJnITIjCaRZxBiGhADoDRzGMMJMjMHJPDaTRzgyU2ynOPJnDyT5zm0Bw9lCdANBMQpMnKWB8n8OYNFMWxMlONJdD8UpUHUTRDFaVJ1H0VxYladYtHcWZXnWTYDF6U7QACZA0k0TYfGmWg2i2Nxsludo9kcbpcjcBsTw7RdDvA2KYeoux3h7GcNUWQxADgRFEGkOAXATgHGEPEDgPwKjDDiJwJ6ex4jcEeCEZI8R+CvBKMsOQnAXgAD+JwAweRQjOHmPwe4QRoj0C6C8IY0x6CdCOE0ag9ROhfC6NUOwHQ3hjGuPQDg2ReBmEyN0X4cxuB3C6O8PI3x7h+AeH0cIeAPAfEaOIfIHgTiVHGPkPwTw6jNE2IYLImR0D6D8JcVI6x9DeGeKsdo+1Fi1HcPwDw/xijvD4J8B4yx4j6E4NkWgZAMhfC+NsewfRviPHCPkfo/xXjlH2H4T4vx6j8H+J8Y4/B/DfH2P0Pozg2BsAYGESIAQwA8AMIECALgChAGwBMAY4AyAQECNAIwCggg4BaAQUAxAKiDBgF4AgORYisBiAYGgHxCAwEEBEIQWAkgJHCBwFIhBoCqAoEIXAXQFhhEICxIovgMjDAwER1ooBhAYEgOYDowxUB5AeOEegQRDixAcCAIgSBCgRDEEQI4iQovFCIJgTYEhwjjE2BoIYAAwhFBwKsCoIhaBZEWBENwKxijYFqBcUQ5AviMCiIYGQRgEDNAwOMHgZRFSwDQAscIgQNhjD4G4RwERnA5COFgcYHRxikDwI4aI5gfBHFwP0DwpACB9EgDEfwOJqQsAKPQQ4kQZAiCKEgbIGQRjkC4JESI0glBICSDkFoJQyDEEoJMKQXgmjJEyBR1oYBdAXEkIYKIygUhJBSOUGgqRKCyFcFQJQyQqgrDKIQV4lgpC6C0EsDKIBygjE2BkMQ4AujLFyHsF4JR6DBEwBMBwXxmBZEKDEUwJBjiZCmCYMwTBEidBkOYPgzRLywDIIsMIcwahmF4NYTYEw3BtCaNkWYNxzDkHAJsaYhg5BOByM0HApwiDlE6DMTwbJqCOBaAUXg7xPAzGEHkJ4WR0g9HOJwfInhpjqD4E8XI/QfhoAIPwUAUx/TFAyOR1oKBZAWFo8ac4GQhjoDqBEUItAnCICiEoEoRQ0DFAuKMKgWhHBRE0DsIw6AxibAwGIYAWRpA6CXYoGoKRSgUFcJMaQ2gqhLFSGUF4pgqDGE0FMBQbQmDpF6DUUksAwCKHCGMJ4aR+g+FQBUBwocRiDCiOoEoSBUDVBNkIXQnQpCqEKE0VQNQfCgBoJQYQkACj4FYBUeoZhWjVFULkK46h6hhFWLURwsArBKGKFkNYRQzitCqJoWwVhNDbCwJIAQgQriJASCIKodBAhdHWMUPIrwqjuF8FcbQ/QvjsAKIEIgCba5CEAI8SI1REhHEsC0Do2GwhjFYGUR4RwkD5BAAAAQAiAg==")

}
BackColorHeader = 16777216 '0x01BBGGRR
BackColorSortBarCaption = 33488896 '0x01BBGGRR
FilterBarBackColor = 16777216 '0x01BBGGRR
Background(0) = 33554432 '0x02BBGGRR
Background(1) = 50331648 '0x03BBGGRR
Background(2) = 67108864 '0x04BBGGRR
Background(3) = 100663296 '0x06BBGGRR
Background(8) = 67108864 '0x04BBGGRR
Background(9) = 67108864 '0x04BBGGRR
Background(10) = 100663296 '0x06BBGGRR
Background(11) = 100663296 '0x06BBGGRR
Background(12) = 100663296 '0x06BBGGRR
Background(13) = 100663296 '0x06BBGGRR
Background(14) = 100663296 '0x06BBGGRR
Background(15) = 16777216 '0x01BBGGRR
SelBackColor = 67108864 '0x04BBGGRR
BackColorSortBar = RGB(61,101,183)
FilterBarForeColor = RGB(255,255,255)

ForeColorHeader = RGB(255,255,255)
ForeColorSortBar = RGB(255,255,255)
SelForeColor = 0

SortBarVisible = True
MarkSearchColumn = False
LinesAtRoot = 1
ForeColor = RGB(0,0,255)
BackColor = RGB(255,255,255)
BackColorLevelHeader = RGB(255,255,255)
DrawGridLines = -1
ScrollBySingleLine = True
HasLines = 2
HasButtons = 3
CheckImage(1) = 4
CheckImage(0) = 5
CheckImage(2) = 6
Chart
{
 DrawGridLines = -1
 BackColor = RGB(255,255,255)
 BackColorLevelHeader = 16777216 '0x01BBGGRR
 ForeColorLevelHeader = RGB(255,255,255)
 ScrollBar = False
 Bars
 {
 AddShapeCorner(1234,1)
 AddShapeCorner(1235,2)
 Add("Custom")
 {
 Color = RGB(255,0,0)
 Shape = 19
 Pattern = 2
 StartShape = 1234
 StartColor = RGB(255,0,0)
 EndShape = 1235
 EndColor = RGB(255,0,0)

 }
 }
}
Columns
{
 "Task"
 {
 HeaderBold = True
 DisplayFilterButton = True
 DisplayFilterDate = True
 Width = 196
 }
 1
 {
 AllowSizing = False
 HTMLCaption = "1 First"
 Def(0) = True
 LevelKey = 1
 Width = 25
 Alignment = 1
 }
 2
 {
 AllowSizing = False
 HTMLCaption = "2 Second"
 Def(0) = True
 LevelKey = 1
 Width = 25
 Alignment = 1
 }
 3
 {
 AllowSizing = False
 HTMLCaption = "3 Third"
 Def(0) = True
 LevelKey = 1
 Width = 25

 PartialCheck = True
 Alignment = 1
 }
 ""
 {
 LevelKey = 1
 Width = 20
 }
 ""
 {
 Position = 0
 Def(2) = True
 Width = 16
 }

}
Chart
{
 FirstVisibleDate = "5/29/2005"
}
Items
{
 Dim h, h1,hx
 h = AddItem(" exG2antt Add an advanced g2antt chart to your application.")
 CellTooltip(h,0) = "You can have a HTML multiple lines tooltip for any cell in the tree."
 CellValueFormat(h,0) = 1
 CellSingleLine(h,0) = False
 CellImages(h,1) = "1,2,3,"
 CellHAlignment(h,1) = 2
 CellMerge(h,0) = 1
 CellMerge(h,0) = 2
 CellMerge(h,0) = 3
 AddBar(h,"Progress","5/30/2005","6/4/2005",1,"
- TODO: project -")
 AddBar(h,"Deadline","5/29/2005 16:00","6/2/2005",2)
 AddBar(h,"Deadline","6/4/2005 07:00","6/10/2005",3)

 h1 = InsertItem(h,,"Project Sumarry1")
 CellHasCheckBox(h1,0) = True
 CellImage(h1,0) = 1
 AddBar(h1,"Project Summary","5/31/2005","6/15/2005"")
 AddBar(h1,"Milestone","5/30/2005","5/31/2005","M")
 AddBar(h1,"Milestone","6/16/2005","6/17/2005","E")

 h1 = InsertItem(h,,"Task...Split")
 CellHasCheckBox(h1,0) = True
 CellState(h1,0) = 1
 CellImage(h1,0) = 2
 AddBar(h1,"Task","6/1/2005","6/4/2005","S")
 AddBar(h1,"Split","6/4/2005","6/6/2005","Split")
 AddBar(h1,"Task","6/6/2005","6/12/2005","E")

 ExpandItem(h) = True

 h = AddItem("")
 CellValue(h,1) = "Custom icons ..."
 CellValueFormat(h,1) = 1
 ItemDivider(h) = 1
 ItemHeight(h) = 28
 ItemDividerLine(h) = 3
 CellHAlignment(h,1) = 1
 SelectableItem(h) = False
 CellPicture(h,1) =
"gBHJJGHA5MIqAAXAD3AENhozhpmhqZhrMhr/h0QGcQM0QTMQZkQf8QAESGcSM0STMSZkSf8SAEUGcUM0UTMUZkUf8UAEWGcWM0WTMWZkWf8WAEYGcYM0YTMYZkYf8Yh8ak0yn1KAEbrkdmcbkNLjcljcdlMzjstpcdmMbj81mcfnNLj89sEnkNDn8ho8ijcjpszkdRpcjiMclE0oFMrdes9woMnwEls0plMroMpl8qjuYlc3oMrncstMpltDoMto8ujubl9PoMvqcwusrmM2oVOrcftFxmd5kc0t+ez+n1+3uM1m83nNPm89uUr5s5otPnNJj+jnfOqNPncVkEsnFEqFbsNqudFn+DkshzOh1OxoMxvOn6fUndEkNF1NDoqiqOoy+NUnMAqOqakMMl7sKSoypK2ka1ropa+JGpjANc0TVNkmLgte7aju8p6esGl7uqjAEDqTCzZJ3BCpxgh0ZRnGkaxtG8cRzHUdx5HqHBCfICAChprgAFkZIQhQAAQjBXgSDgkFgUBgkGBAJg0fhTlgUJhkGGQHBgDh8CeERggqB4Zg8BBqDKMRiiyf4YC8fZ7ieIxgkSDIEgMIBSGMJZkj+RBrEgVIcAkUgkkCFgyFAJg8naIAHBkNYVA4SAUhmQBiAAR4JA6YAUBGY5RgGG4pg8DBdAMZAIhADhrDILoZhWQANBANYHBwHAADoJpREkA5GA0KAsBiY5NBkI1LBiORCAGA4RiADx+hQKZKkYJ5fCAU4dDgahVGXMwJE6QQCj2UBhE0UAHGscgUEmIZXGqVQ1kcIg/CYcwIlEToBGiZwlHoPAYkEAYwBWHAUHGABAkGZA5HSDwQnGQBhiqTIpgiKweEAdBonGGQDi4E45DAIJGkGZI+A6dBsAUAggnMEY1mMFRaAkEAAGgXh/k8cw4CgQIGEEDgdGoQhlhKAZ7GiexViMYRBBsXBhBiCAQGAEpPjsBhqgCDJrAqJx1lQKAAnYdhYBYWBymKMY3myU5jDSaAOlAIYsjGNpzkAAIc5iK4MkeZAwEACpdB6KRLCqH4gAOYgzFecpIA0LIyHIOAgAgIhkkIJAABEDJiE2N4xgaCpCDwMgACqcQBgcUgbmGEZHigUwDAyCoMCqKIAF0OpgkEIgoAKeBH9qchihGJgCCkLAojeKQjEqKAkAMWlDiyWY+DMKgLl8SJAgGSIjBCGRlgYdZ4iIKQiDWRpCEQJYDgYWhKESHgQkIEhDFCm8aAUg0jWDyA0Twch9ApHQKAQgFgtBQCAAAHZAQ="

 AddBar(h,"Custom","5/31/2005","6/4/2005")
 ItemBackColor(h) = 100663296

 h = AddItem("Root 2")
 CellImages(h,0) = "2,3"
 ItemBold(h) = True
 CellMerge(h,0) = 1
 CellMerge(h,0) = 2
 CellMerge(h,0) = 3

 h1 = InsertItem(h,,"Task 1")
 AddBar(h1,"Task","6/4/2005","6/5/2005","S")
 AddBar(h1,"Split","6/5/2005","6/8/2005","Split")
 AddBar(h1,"Task","6/8/2005","6/10/2005","E")
 AddBar(h1,"","5/30/2005 12:00","6/3/2005 11:00",,"some text")
 ItemBar(h1,,7) = 83886080
' ItemBar(h1,,8) = RGB(255,255,255)
 ItemBar(h1,,6) = "This is a bit of text that should occur when the cursor hovers the bar
or the text."

 h1 = InsertItem(h,,"Task 2")

 ExpandItem(h) = true

}

EndUpdate

On Windows XP, the following table shows how the common controls are broken into parts
and states:

Control/ClassName Part States

BUTTON BP_CHECKBOX = 3

CBS_UNCHECKEDNORMAL =
1 CBS_UNCHECKEDHOT = 2
CBS_UNCHECKEDPRESSED
= 3
CBS_UNCHECKEDDISABLED
= 4 CBS_CHECKEDNORMAL =
5 CBS_CHECKEDHOT = 6
CBS_CHECKEDPRESSED = 7
CBS_CHECKEDDISABLED = 8
CBS_MIXEDNORMAL = 9
CBS_MIXEDHOT = 10
CBS_MIXEDPRESSED = 11
CBS_MIXEDDISABLED = 12

BP_GROUPBOX = 4 GBS_NORMAL = 1
GBS_DISABLED = 2
PBS_NORMAL = 1 PBS_HOT
= 2 PBS_PRESSED = 3

BP_PUSHBUTTON = 1 PBS_DISABLED = 4
PBS_DEFAULTED = 5

BP_RADIOBUTTON = 2

RBS_UNCHECKEDNORMAL =
1 RBS_UNCHECKEDHOT = 2
RBS_UNCHECKEDPRESSED
= 3
RBS_UNCHECKEDDISABLED
= 4 RBS_CHECKEDNORMAL =
5 RBS_CHECKEDHOT = 6
RBS_CHECKEDPRESSED = 7
RBS_CHECKEDDISABLED = 8

BP_USERBUTTON = 5
CLOCK CLP_TIME = 1 CLS_NORMAL = 1

COMBOBOX CP_DROPDOWNBUTTON = 1

CBXS_NORMAL = 1
CBXS_HOT = 2
CBXS_PRESSED = 3
CBXS_DISABLED = 4

EDIT EP_CARET = 2

EP_EDITTEXT = 1

ETS_NORMAL = 1 ETS_HOT =
2 ETS_SELECTED = 3
ETS_DISABLED = 4
ETS_FOCUSED = 5
ETS_READONLY = 6
ETS_ASSIST = 7

EXPLORERBAR EBP_HEADERBACKGROUND = 1

EBP_HEADERCLOSE = 2
EBHC_NORMAL = 1
EBHC_HOT = 2
EBHC_PRESSED = 3

EBP_HEADERPIN = 3

EBHP_NORMAL = 1
EBHP_HOT = 2
EBHP_PRESSED = 3
EBHP_SELECTEDNORMAL =
4 EBHP_SELECTEDHOT = 5
EBHP_SELECTEDPRESSED =
6

EBP_IEBARMENU = 4 EBM_NORMAL = 1 EBM_HOT
= 2 EBM_PRESSED = 3

EBP_NORMALGROUPBACKGROUND = 5

EBP_NORMALGROUPCOLLAPSE = 6
EBNGC_NORMAL = 1
EBNGC_HOT = 2
EBNGC_PRESSED = 3

EBP_NORMALGROUPEXPAND = 7
EBNGE_NORMAL = 1
EBNGE_HOT = 2
EBNGE_PRESSED = 3

EBP_NORMALGROUPHEAD = 8
EBP_SPECIALGROUPBACKGROUND = 9

EBP_SPECIALGROUPCOLLAPSE = 10
EBSGC_NORMAL = 1
EBSGC_HOT = 2
EBSGC_PRESSED = 3

EBP_SPECIALGROUPEXPAND = 11
EBSGE_NORMAL = 1
EBSGE_HOT = 2
EBSGE_PRESSED = 3

EBP_SPECIALGROUPHEAD = 12

HEADER HP_HEADERITEM = 1 HIS_NORMAL = 1 HIS_HOT =
2 HIS_PRESSED = 3

HP_HEADERITEMLEFT = 2 HILS_NORMAL = 1 HILS_HOT
= 2 HILS_PRESSED = 3

HP_HEADERITEMRIGHT = 3 HIRS_NORMAL = 1 HIRS_HOT
= 2 HIRS_PRESSED = 3

HP_HEADERSORTARROW = 4 HSAS_SORTEDUP = 1
HSAS_SORTEDDOWN = 2

LISTVIEW LVP_EMPTYTEXT = 5
LVP_LISTDETAIL = 3
LVP_LISTGROUP = 2

LVP_LISTITEM = 1

LIS_NORMAL = 1 LIS_HOT =
2 LIS_SELECTED = 3
LIS_DISABLED = 4
LIS_SELECTEDNOTFOCUS =
5

LVP_LISTSORTEDDETAIL = 4

MENU MP_MENUBARDROPDOWN = 4
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUBARITEM = 3
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_CHEVRON = 5
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3
MS_NORMAL = 1
MS_SELECTED = 2

MP_MENUDROPDOWN = 2 MS_DEMOTED = 3

MP_MENUITEM = 1
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_SEPARATOR = 6
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MENUBAND MDP_NEWAPPBUTTON = 1

MDS_NORMAL = 1 MDS_HOT
= 2 MDS_PRESSED = 3
MDS_DISABLED = 4
MDS_CHECKED = 5
MDS_HOTCHECKED = 6

MDP_SEPERATOR = 2

PAGE PGRP_DOWN = 2
DNS_NORMAL = 1 DNS_HOT
= 2 DNS_PRESSED = 3
DNS_DISABLED = 4

PGRP_DOWNHORZ = 4

DNHZS_NORMAL = 1
DNHZS_HOT = 2
DNHZS_PRESSED = 3
DNHZS_DISABLED = 4

PGRP_UP = 1
UPS_NORMAL = 1 UPS_HOT
= 2 UPS_PRESSED = 3
UPS_DISABLED = 4

PGRP_UPHORZ = 3

UPHZS_NORMAL = 1
UPHZS_HOT = 2
UPHZS_PRESSED = 3
UPHZS_DISABLED = 4

PROGRESS PP_BAR = 1
PP_BARVERT = 2
PP_CHUNK = 3
PP_CHUNKVERT = 4

REBAR RP_BAND = 3

RP_CHEVRON = 4
CHEVS_NORMAL = 1
CHEVS_HOT = 2
CHEVS_PRESSED = 3

RP_CHEVRONVERT = 5
RP_GRIPPER = 1
RP_GRIPPERVERT = 2

ABS_DOWNDISABLED,

SCROLLBAR SBP_ARROWBTN = 1

ABS_DOWNHOT,
ABS_DOWNNORMAL,
ABS_DOWNPRESSED,
ABS_UPDISABLED,
ABS_UPHOT,
ABS_UPNORMAL,
ABS_UPPRESSED,
ABS_LEFTDISABLED,
ABS_LEFTHOT,
ABS_LEFTNORMAL,
ABS_LEFTPRESSED,
ABS_RIGHTDISABLED,
ABS_RIGHTHOT,
ABS_RIGHTNORMAL,
ABS_RIGHTPRESSED

SBP_GRIPPERHORZ = 8
SBP_GRIPPERVERT = 9

SBP_LOWERTRACKHORZ = 4

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_LOWERTRACKVERT = 6

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_THUMBBTNHORZ = 2

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_THUMBBTNVERT = 3

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_UPPERTRACKHORZ = 5

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_UPPERTRACKVERT = 7

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4
SZB_RIGHTALIGN = 1

SBP_SIZEBOX = 10 SZB_LEFTALIGN = 2

SPIN SPNP_DOWN = 2

DNS_NORMAL = 1 DNS_HOT
= 2 DNS_PRESSED = 3
DNS_DISABLED = 4

SPNP_DOWNHORZ = 4

DNHZS_NORMAL = 1
DNHZS_HOT = 2
DNHZS_PRESSED = 3
DNHZS_DISABLED = 4

SPNP_UP = 1
UPS_NORMAL = 1 UPS_HOT
= 2 UPS_PRESSED = 3
UPS_DISABLED = 4

SPNP_UPHORZ = 3

UPHZS_NORMAL = 1
UPHZS_HOT = 2
UPHZS_PRESSED = 3
UPHZS_DISABLED = 4

STARTPANEL SPP_LOGOFF = 8

SPP_LOGOFFBUTTONS = 9
SPLS_NORMAL = 1
SPLS_HOT = 2
SPLS_PRESSED = 3

SPP_MOREPROGRAMS = 2

SPP_MOREPROGRAMSARROW = 3 SPS_NORMAL = 1 SPS_HOT
= 2 SPS_PRESSED = 3

SPP_PLACESLIST = 6
SPP_PLACESLISTSEPARATOR = 7
SPP_PREVIEW = 11
SPP_PROGLIST = 4
SPP_PROGLISTSEPARATOR = 5
SPP_USERPANE = 1
SPP_USERPICTURE = 10

STATUS SP_GRIPPER = 3
SP_PANE = 1
SP_GRIPPERPANE = 2

TAB TABP_BODY = 10
TABP_PANE = 9

TABP_TABITEM = 1

TIS_NORMAL = 1 TIS_HOT =
2 TIS_SELECTED = 3
TIS_DISABLED = 4
TIS_FOCUSED = 5

TABP_TABITEMBOTHEDGE = 4

TIBES_NORMAL = 1
TIBES_HOT = 2
TIBES_SELECTED = 3
TIBES_DISABLED = 4
TIBES_FOCUSED = 5

TABP_TABITEMLEFTEDGE = 2

TILES_NORMAL = 1
TILES_HOT = 2
TILES_SELECTED = 3
TILES_DISABLED = 4
TILES_FOCUSED = 5

TABP_TABITEMRIGHTEDGE = 3

TIRES_NORMAL = 1
TIRES_HOT = 2
TIRES_SELECTED = 3
TIRES_DISABLED = 4
TIRES_FOCUSED = 5

TABP_TOPTABITEM = 5

TTIS_NORMAL = 1 TTIS_HOT
= 2 TTIS_SELECTED = 3
TTIS_DISABLED = 4
TTIS_FOCUSED = 5

TABP_TOPTABITEMBOTHEDGE = 8

TTIBES_NORMAL = 1
TTIBES_HOT = 2
TTIBES_SELECTED = 3
TTIBES_DISABLED
TTIBES_FOCUSED = 5

TABP_TOPTABITEMLEFTEDGE = 6

TTILES_NORMAL = 1
TTILES_HOT = 2
TTILES_SELECTED = 3
TTILES_DISABLED
TTILES_FOCUSED = 5

TABP_TOPTABITEMRIGHTEDGE = 7

TTIRES_NORMAL = 1
TTIRES_HOT = 2
TTIRES_SELECTED = 3
TTIRES_DISABLED
TTIRES_FOCUSED = 5

TASKBAND TDP_GROUPCOUNT = 1
TDP_FLASHBUTTON = 2
TDP_FLASHBUTTONGROUPMENU = 3

TASKBAR TBP_BACKGROUNDBOTTOM = 1
TBP_BACKGROUNDLEFT = 4
TBP_BACKGROUNDRIGHT = 2

TBP_BACKGROUNDTOP = 3
TBP_SIZINGBARBOTTOM = 5
TBP_SIZINGBARBOTTOMLEFT = 8
TBP_SIZINGBARRIGHT = 6
TBP_SIZINGBARTOP = 7

TOOLBAR TP_BUTTON = 1

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_DROPDOWNBUTTON = 2

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SPLITBUTTON = 3

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SPLITBUTTONDROPDOWN = 4

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SEPARATOR = 5

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SEPARATORVERT = 6

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TOOLTIP TTP_BALLOON = 3 TTBS_NORMAL = 1
TTBS_LINK = 2

TTP_BALLOONTITLE = 4 TTBS_NORMAL = 1
TTBS_LINK = 2
TTCS_NORMAL = 1

TTP_CLOSE = 5 TTCS_HOT = 2
TTCS_PRESSED = 3

TTP_STANDARD = 1 TTSS_NORMAL = 1
TTSS_LINK = 2

TTP_STANDARDTITLE = 2 TTSS_NORMAL = 1
TTSS_LINK = 2

TRACKBAR TKP_THUMB = 3

TUS_NORMAL = 1 TUS_HOT =
2 TUS_PRESSED = 3
TUS_FOCUSED = 4
TUS_DISABLED = 5

TKP_THUMBBOTTOM = 4

TUBS_NORMAL = 1
TUBS_HOT = 2
TUBS_PRESSED = 3
TUBS_FOCUSED = 4
TUBS_DISABLED = 5

TKP_THUMBLEFT = 7

TUVLS_NORMAL = 1
TUVLS_HOT = 2
TUVLS_PRESSED = 3
TUVLS_FOCUSED = 4
TUVLS_DISABLED = 5

TKP_THUMBRIGHT = 8

TUVRS_NORMAL = 1
TUVRS_HOT = 2
TUVRS_PRESSED = 3
TUVRS_FOCUSED = 4
TUVRS_DISABLED = 5

TKP_THUMBTOP = 5

TUTS_NORMAL = 1
TUTS_HOT = 2
TUTS_PRESSED = 3
TUTS_FOCUSED = 4
TUTS_DISABLED = 5

TKP_THUMBVERT = 6

TUVS_NORMAL = 1
TUVS_HOT = 2
TUVS_PRESSED = 3
TUVS_FOCUSED = 4
TUVS_DISABLED = 5

TKP_TICS = 9 TSS_NORMAL = 1
TKP_TICSVERT = 10 TSVS_NORMAL = 1
TKP_TRACK = 1 TRS_NORMAL = 1
TKP_TRACKVERT = 2 TRVS_NORMAL = 1

TRAYNOTIFY TNP_ANIMBACKGROUND = 2
TNP_BACKGROUND = 1

TREEVIEW TVP_BRANCH = 3

TVP_GLYPH = 2 GLPS_CLOSED = 1
GLPS_OPENED = 2

TVP_TREEITEM = 1

TREIS_NORMAL = 1
TREIS_HOT = 2
TREIS_SELECTED = 3
TREIS_DISABLED = 4
TREIS_SELECTEDNOTFOCUS
= 5

WINDOW WP_CAPTION = 1 CS_ACTIVE = 1 CS_INACTIVE
= 2 CS_DISABLED = 3

WP_CAPTIONSIZINGTEMPLATE = 30

WP_CLOSEBUTTON = 18
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_DIALOG = 29

WP_FRAMEBOTTOM = 9 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMEBOTTOMSIZINGTEMPLATE = 36

WP_FRAMELEFT = 7 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMELEFTSIZINGTEMPLATE = 32

WP_FRAMERIGHT = 8 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMERIGHTSIZINGTEMPLATE = 34

WP_HELPBUTTON = 23
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_HORZSCROLL = 25
HSS_NORMAL = 1 HSS_HOT
= 2 HSS_PUSHED = 3
HSS_DISABLED = 4

WP_HORZTHUMB = 26
HTS_NORMAL = 1 HTS_HOT =
2 HTS_PUSHED = 3
HTS_DISABLED = 4

WP_MAX_BUTTON

MAXBS_NORMAL = 1
MAXBS_HOT = 2
MAXBS_PUSHED = 3
MAXBS_DISABLED = 4
MXCS_ACTIVE = 1

WP_MAXCAPTION = 5 MXCS_INACTIVE = 2
MXCS_DISABLED = 3

WP_MDICLOSEBUTTON = 20
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_MDIHELPBUTTON = 24
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_MDIMINBUTTON = 16

MINBS_NORMAL = 1
MINBS_HOT = 2
MINBS_PUSHED = 3
MINBS_DISABLED = 4

WP_MDIRESTOREBUTTON = 22
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_MDISYSBUTTON = 14
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_MINBUTTON = 15

MINBS_NORMAL = 1
MINBS_HOT = 2
MINBS_PUSHED = 3
MINBS_DISABLED = 4

WP_MINCAPTION = 3
MNCS_ACTIVE = 1
MNCS_INACTIVE = 2
MNCS_DISABLED = 3

WP_RESTOREBUTTON = 21
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_SMALLCAPTION = 2 CS_ACTIVE = 1 CS_INACTIVE
= 2 CS_DISABLED = 3

WP_SMALLCAPTIONSIZINGTEMPLATE = 31

WP_SMALLCLOSEBUTTON = 19
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_SMALLFRAMEBOTTOM = 12 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMEBOTTOMSIZINGTEMPLATE
= 37

WP_SMALLFRAMELEFT = 10 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMELEFTSIZINGTEMPLATE =
33

WP_SMALLFRAMERIGHT = 11 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMERIGHTSIZINGTEMPLATE =
35

WP_SMALLHELPBUTTON
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_SMALLMAXBUTTON

MAXBS_NORMAL = 1
MAXBS_HOT = 2
MAXBS_PUSHED = 3
MAXBS_DISABLED = 4

WP_SMALLMAXCAPTION = 6
MXCS_ACTIVE = 1
MXCS_INACTIVE = 2
MXCS_DISABLED = 3

WP_SMALLMINCAPTION = 4
MNCS_ACTIVE = 1
MNCS_INACTIVE = 2
MNCS_DISABLED = 3

WP_SMALLRESTOREBUTTON
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_SMALLSYSBUTTON
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_SYSBUTTON = 13
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_VERTSCROLL = 27
VSS_NORMAL = 1 VSS_HOT
= 2 VSS_PUSHED = 3
VSS_DISABLED = 4

WP_VERTTHUMB = 28
VTS_NORMAL = 1 VTS_HOT =
2 VTS_PUSHED = 3
VTS_DISABLED = 4

method Appearance.Clear ()
Removes all skins in the control.

Type Description

Use the Clear method to clear all skins from the control. Use the Remove method to
remove a specific skin. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being applied
to the background's part.

The skin method may change the visual appearance for the following parts in the control:

control's border, Appearance property
levels on the chart area, BackColor property, BackColorLevelHeader property
bar's background, ItemBar(exBarBackColor) property
control's header bar, BackColorHeader property
control's filter bar, FilterBarBackColor property
control's sort bar, BackColorSort property
the caption of the control's sort bar, BackColorSortCaption property
selected item or cell, SelBackColor property
item, ItemBackColor property
cell, CellBackColor property
cell's button, "drop down" filter bar button, "close" filter bar button, tooltips, and so
on, Background property
'focus' box in the chart's overview area, OverviewSelBackColor property.

method Appearance.Remove (ID as Long)
Removes a specific skin from the control.

Type Description

ID as Long A Long expression that indicates the index of the skin
being removed.

Use the Remove method to remove a specific skin. The identifier of the skin being removed
should be the same as when the skin was added using the Add method. Use the Clear
method to clear all skins from the control. If you need to remove the skin appearance from
a part of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the background's part.

The skin method may change the visual appearance for the following parts in the control:

control's border, Appearance property
levels on the chart area, BackColor property, BackColorLevelHeader property
bar's background, ItemBar(exBarBackColor) property
control's header bar, BackColorHeader property
control's filter bar, FilterBarBackColor property
control's sort bar, BackColorSort property
the caption of the control's sort bar, BackColorSortCaption property
selected item or cell, SelBackColor property
item, ItemBackColor property
cell, CellBackColor property
cell's button, "drop down" filter bar button, "close" filter bar button, tooltips, and so
on, Background property
'focus' box in the chart's overview area, OverviewSelBackColor property.

property Appearance.RenderType as Long
Specifies the way colored EBN objects are displayed on the component.

Type Description

Long A long expression that indicates how the EBN objects are
shown in the control, like explained bellow.

By default, the RenderType property is 0, which indicates an A-color scheme. The
RenderType property can be used to change the colors for the entire control, for parts of
the controls that uses EBN objects. The RenderType property is not applied to the currently
XP-theme if using.

The RenderType property is applied to all parts that displays an EBN object. The properties
of color type may support the EBN object if the property's description includes "A color
expression that indicates the cell's background color. The last 7 bits in the high significant
byte of the color to indicates the identifier of the skin being used. Use the Add method to
add new skins to the control. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being
applied to the background's part." In other words, a property that supports EBN objects
should be of format 0xIDRRGGBB, where the ID is the identifier of the EBN to be applied,
while the BBGGRR is the (Red,Green,Blue, RGB-Color) color to be applied on the selected
EBN. For instance, the 0x1000000 indicates displaying the EBN as it is, with no color
applied, while the 0x1FF0000, applies the Blue color (RGB(0x0,0x0,0xFF), RGB(0,0,255)
on the EBN with the identifier 1. You can use the EBNColor tool to visualize applying EBN
colors.

Click here to watch a movie on how you can change the colors to be applied on EBN
objects.

For instance, the following sample changes the control's header appearance, by using an
EBN object:

With Control
 .VisualAppearance.Add 1,"c:\exontrol\images\normal.ebn"
 .BackColorHeader = &H1000000
End With

In the following screen shot the following objects displays the current EBN with a different
color:

"A" in Red (RGB(255,0,0), for instance the bar's property exBarColor is 0x10000FF
"B" in Green (RGB(0,255,0), for instance the bar's property exBarColor is 0x100FF00

https://exontrol.com/skintut.jsp#colors
https://www.youtube.com/watch?v=-PcCepMVclQ

"C" in Blue (RGB(0,0,255), for instance the bar's property exBarColor is 0x1FF0000
"Default", no color is specified, for instance the bar's property exBarColor is
0x1000000

The RenderType property could be one of the following:

-3, no color is applied. For instance, the BackColorHeader = &H1FF0000 is displayed
as would be .BackColorHeader = &H1000000, so the 0xFF0000 color (Blue color) is
ignored. You can use this option to allow the control displays the EBN colors or not.

-2, OR-color scheme. The color to be applied on the part of the control is a OR bit
combination between the original EBN color and the specified color. For instance, the
BackColorHeader = &H1FF0000, applies the OR bit for the entire Blue channel, or in
other words, it applies a less Blue to the part of the control. This option should be used
with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

-1, AND-color scheme, The color to be applied on the part of the control is an AND bit
combination between the original EBN color and the specified color. For instance, the
BackColorHeader = &H1FF0000, applies the AND bit for the entire Blue channel, or in
other words, it applies a more Blue to the part of the control. This option should be
used with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

0, default, the specified color is applied to the EBN. For instance, the
BackColorHeader = &H1FF0000, applies a Blue color to the object. This option could
be used to specify any color for the part of the components, that support EBN objects,
not only solid colors.

0xAABBGGRR, where the AA a value between 0 to 255, which indicates the
transparency, and RR, GG, BB the red, green and blue values. This option applies the
same color to all parts that displays EBN objects, whit ignoring any specified color in
the color property. For instance, the RenderType on 0x4000FFFF, indicates a 25%
Yellow on EBN objects. The 0x40, or 64 in decimal, is a 25 % from in a 256 interal, and
the 0x00FFFF, indicates the Yellow (RGB(255,255,0)). The same could be if the
RenderType is 0x40000000 + vbYellow, or &H40000000 + RGB(255, 255, 0), and so,
the RenderType could be the 0xAA000000 + Color, where the Color is the RGB format
of the color.

The following picture shows the control with the RenderType property on 0x4000FFFF
(25% Yellow, 0x40 or 64 in decimal is 25% from 256):

The following picture shows the control with the RenderType property on 0x8000FFFF
(50% Yellow, 0x80 or 128 in decimal is 50% from 256):

The following picture shows the control with the RenderType property on 0xC000FFFF
(75% Yellow, 0xC0 or 192 in decimal is 75% from 256):

The following picture shows the control with the RenderType property on 0xFF00FFFF
(100% Yellow, 0xFF or 255 in decimal is 100% from 255):

Bar object
The Bar object identifies a bar in the chart. A Bar object contains three parts: the start part
and end part identifies the corners of the bar, and the middle part of the bar. The look and
feel of the middle part of the bar are defined by the properties: Color, Pattern and Shape.
The StartShape and StartColor properties defines the start part of the bar. The EndShape
and EndColor properties defines the end part of the bar. Use the Bars property to access
the Bars collection. Use the Chart object property to access the control's chart. Use the
AddBar method to add a bar to an item. Use the Add and Copy methods to add new Bar
objects. The Bar object supports the following properties and methods:

Name Description
Color Specifies the color of the bar.

Def Specifies the default value of the given property for bars
of the same type.

EndColor Returns or sets a value that indicates the color for the
right side corner.

EndShape Retrieves or sets a value that indicates the shape of the
right side corner.

FormatHistogramValues Specifies the format to show bar's value in the histogram.

Height Retrieves or sets a value that indicates the height in pixels
of the bar.

HistogramBorderColor Retrieves or sets a value that indicates the color to show
the histogram's border.

HistogramBorderSize Specifies the size of the border in pixels to show the bar's
histogram.

HistogramColor Retrieves or sets a value that indicates the color to be
used in the histogram.

HistogramCriticalColor Retrieves or sets a value that indicates the color to paint
the overallocations in the histogram.

HistogramCriticalValue Specifies the histogram's critical value.

HistogramCumulativeColor Retrieves or sets a value that indicates a cumulative color
to be shown in the histogram.

HistogramCumulativeColors Specifies the number of colors that the histogram may
show when it displays bars using cumulative type.

HistogramCumulativeOriginalColorBarsSpecifies whether the original bar's color is changed
accordingly to the cumulative histogram.
Specifies the index of the column to display the legend for

HistogramCumulativeShowLegendthe cumulative bars in the histogram.

HistogramGridLinesColor Retrieves or sets a value that indicates the color to show
the histogram's grid lines.

HistogramItems Specifies the number of items being represented in the
histogram when overload is shown.

HistogramPattern Retrieves or sets a value that indicates the pattern to be
used in the histogram.

HistogramRulerLinesColor Retrieves or sets a value that indicates the color to show
the histogram's ruler lines.

HistogramType Retrieves or sets a value that indicates the type of the
histogram.

Name Retrieves the name of the bar.

Overlaid Retrieves or sets a value that indicates options for the
specified overlaid type.

OverlaidGroup Specifies the list of bars beside the current bar that may
cover each other.

OverlaidType Specifies how the overlaid bars are shown.

OverviewColor Retrieves or sets a value that indicates the color to show
the bars of this type in the control's overview panel.

Pattern Retrieves or sets a value that indicates the pattern being
used to fill the bar.

Shape Retrieves or sets a value that indicates the shape of the
bar.

Shortcut Specifies a value that indicates a shortcut for the current
bar.

ShowHistogramValues Specifies the formula that returns the color to display the
selected values in the histogram for specified type of bar.

StartColor Returns or sets a value that indicates the color for the left
side corner.

StartShape Retrieves or sets a value that indicates the shape of the
left side corner.

property Bar.Color as Color
Specifies the color of the bar.

Type Description

Color

A Color expression that indicates the color of the bar. The
last 7 bits in the high significant byte of the color indicates
the identifier of the skin being used to paint the bar. Use
the Add method to add new skins to the control. The skin
object is used to draw the bar in the chart area.

Use the Color property to specify the color to fill the bar. This color is applied to all bars of
the same type. The Color property specifies the color to show all bars of the same type.
For instance, Chart.Bars("Task").Color = vbRed indicates that all "Task" bars will be shown
in red.

The following properties may be used to change the color for a particular bar:

The ItemBar(exBarColor) property specifies a different color/skin for a particular bar. If
the ItemBar(exBarColor) property indicates using an EBN object (the last 7 bits in the
high significant byte is not 0), it indicates using another EBN object to display the bar.
If the ItemBar(exBarColor) property indicates no EBN object (the last 7 bits in the high
significant byte is 0) but the Color property indicates using an EBN object, the
ItemBar(exBarColor) color is applied over the bar's default EBN color.

The ItemBar(exBarBackColor) property specifies the background color for the area
being occupied by the bar. The exBarBackColor fills the item's background color for the
area being delimited by the bar.

The ItemBar(exBarPercentColor) specifies the color to show inside percent bar. The
option is valid for bars that displays inside a percent bar. A bar can display a percent
bar if it was creates using the Chart.Bars.Add("A%B") syntax. For instance, the
Add("Task%Progress") adds a combination of Task and Progress

 bars, so the Task shape is displayed on the full bar, and the Progress
shape is displayed only on the portion determined by the
Items.ItemBar(,,exBarPercent) value as . The ItemBar(exBarPercent)
/ ItemBar(exBarPercent100) property specifies the value of the percent to be displayed
inside the bar.

The ItemBar(exBarNonWorkingColor) specifies the color to show non-working parts of
the bar. A bar may show different shape, pattern for non-working parts of the bar if it
was previously created using the Bars.Add("A:B"). For instance, the Add("Task:Split")
property adds a combination of Task and Split bars, so the Task
bar is displayed in working area, and the Split bar is displayed in the non-working area

as . The NonworkingDays, NonworkingHours, ItemNonworkingUnits and
related indicate the non-working parts of the chart.

The ItemBar(exSummaryBarBackColor) specifies the item's background color for child
bars owned by the summary bar. The DefineSummaryBars property defines bars that
belongs to a summary bar. The UndefineSummaryBars method does the reverse
operation, as it removes a bar from a summary bar.

The ItemBar(exBarOverviewColor) property indicates the color for a particular bar in
the overview part of the control. If not specified, the exBarColor property indicates the
color of the bar in the overview part of the control. If the exBarColor property is not
specified, the Color property indicates the color to display the bars in the overview part
of the control. The OverviewVisible property specifies whether the control displays the
overview/layout map of bars within the chart.

If the bar's Pattern is exPatternBox, the Color property indicates the color to show the bar's
frame. In the same context, the StartColor and EndColor properties indicates the color to
show the bar in gradient.

Use the Pattern property to specify the brush being used to fill the bar. Use the Shape
property to specify the height and the vertical alignment of the middle part of the bar. Use
the StartColor property to specify the color for the beginning part of the bar, if the
StartShape property is not exShapeIconEmpty. Use the EndColor property to specify the
color for the ending part of the bar, if the EndShape property is not exShapeIconEmpty.

In VB.NET or C# you require the following functions until the .NET framework will provide:

You can use the following VB.NET function:

 Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B

 ToUInt32 = Convert.ToUInt32(i)
 End Function

You can use the following C# function:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VB sample creates a new bar called "Task2", that's similar with the "Task" bar
excepts that we change the color to fill the bar:

With G2antt1.Chart.Bars
 With .Copy("Task", "Task2")
 .Color = RGB(255, 0, 0)
 End With
End With

The following C++ sample creates a new bar called "Task2", that's similar with the "Task"
bar excepts that we change the color to fill the bar:

CBars bars = m_g2antt.GetChart().GetBars();
CBar bar = bars.Copy("Task", "Task2");
bar.SetColor(RGB(255,0,0));

The following VB.NET sample creates a new bar called "Task2", that's similar with the
"Task" bar excepts that we change the color to fill the bar:

With AxG2antt1.Chart.Bars
 With .Copy("Task", "Task2")
 .Color = ToUInt32(Color.Red)
 End With
End With

The following C# sample creates a new bar called "Task2", that's similar with the "Task" bar

excepts that we change the color to fill the bar:

EXG2ANTTLib.Bar bar = axG2antt1.Chart.Bars.Copy("Task", "Task2");
bar.Color = ToUInt32(Color.Red);

The following VFP sample creates a new bar called "Task2", that's similar with the "Task"
bar excepts that we change the color to fill the bar:

with thisform.G2antt1.Chart.Bars
 with .Copy("Task", "Task2")
 .Color = RGB(255,0,0)
 endwith
endwith

property Bar.Def(Property as ItemBarPropertyEnum) as Variant
Specifies the default value of the given property for bars of the same type.

Type Description
Property as
ItemBarPropertyEnum

An ItemBarPropertyEnum expression that indicates the
property to access or set the default value.

Variant A VARIANT expression that indicates the default value for
giving property.

The Def property can be used to define your type of bars, or specify the values for ItemBar
property when a new bar is added. The Def property has no effect for already added bars.
For instance, you can set the Def(exBarCaption) so all added bars will display the caption
giving a specified format. You can always use the ItemBar property to specify any property
of the existing bar, while the Def property can define the default values for specified
properties. Let's say you need to specify the ItemBar(exBarKeepWorkingCount) property
for your bars, so they will keep their working units, while moving, so instead calling the
ItemBar(exBarKeepWorkingCount) for each added bar, you can have the
Def(exBarKeepWorkingCount) = True, and so any new bar to be added, will have this
property set, so the ItemBar(exBarKeepWorkingCount) will gets True, for all new bars.

For instance the Bar.Def(exBarCaption) = "<%=%9 + '/' + %C0%>
Duration:
<%=(%2-%1)%>
Working: <%=%258%>
Progress: <%=round(100*%12)+'%'%>"
specifies that the bar's caption as in the following screen shot:

In the same manner, you can define the bar's tooltip such as: Bar.Def(exBarToolTip) = "
<%=%9 + '/' + %C0%>
Duration: <%=(%2-%1)%>
Working: <%=%258%>

Progress: <%=round(100*%12)+'%'%>"

property Bar.EndColor as Color
Returns or sets a value that indicates the color for the right side corner.

Type Description

Color A Color expression that indicates the color for the ending
part of the bar.

Use the EndColor property to specify the color to fill the end part of the bar, if the
EndShape property is not exShapeIconEmpty or Pattern is exPatternBox. Use the Color
property to specify the color to fill the middle part of the bar. Use the StartColor and
StartShape properties to define the look and feel for the starting part of the bar. Use the
AddShapeCorner property to add custom icons to the bars. In this case, the icon is
processed before displaying based on the StartColor/ EndColor property. For instance, if
you add an black and white icon, and the StartColor/EndColor is red, the icon will be
painted in red. Instead, if the StartColor/EndColor property is -1 (0xFFFFFFFF, not white
which is 0x00FFFFFF), the icon is painted as it was. If the Pattern property is
exPatternBox, the StartColor and EndColor properties defines the start and ending color to
show a gradient bar.

The following VB sample changes the "Task" bar visual appearance using liner gradient with
margins as shown :

With G2antt1.Chart.Bars.Item("Task")
 .Color = vbWhite
 .Pattern = exPatternBox
 .StartShape = exShapeIconCircleDot
 .StartColor = vbRed
 .EndShape = exShapeIconCircleDot
 .EndColor = vbBlue
End With

The following VB sample changes the "Task" bar visual appearance using liner gradient with
solid border as shown :

With G2antt1.Chart.Bars.Item("Task")
 .Color = vbRed
 .Pattern = exPatternBox
 .StartColor = vbRed
 .EndColor = vbBlue
End With

The following VB sample defines a new bar that looks like this :

With G2antt1.Chart.Bars.Add("Task2")
 .Pattern = exPatternShadow
 .Color = RGB(0, 0, 255)
 .EndShape = exShapeIconCircleDot
 .EndColor = RGB(255, 0, 0)
End With

The following C++ sample defines a bar that looks like this above:

CBar bar = m_g2antt.GetChart().GetBars().Add("Task2");
bar.SetPattern(3 /*exPatternShadow*/);
bar.SetColor(RGB(0, 0, 255));
bar.SetEndShape(4 /* exShapeIconCircleDot*/);
bar.SetEndColor(RGB(255, 0, 0));

The following VB.NET sample defines a bar that looks like this above:

With AxG2antt1.Chart.Bars.Add("Task2")
 .Pattern = EXG2ANTTLib.PatternEnum.exPatternShadow
 .Color = RGB(0, 0, 255)
 .EndShape = EXG2ANTTLib.ShapeCornerEnum.exShapeIconCircleDot
 .EndColor = RGB(255, 0, 0)
End With

The following VB.NET sample adds a custom icon to the start of all Task bars:

With AxG2antt1.Chart.Bars
 .AddShapeCorner(12345, 1)
 .Item("Task").StartShape = 12345
 .Item("Task").StartColor = UInteger.MaxValue
End With

The following C# sample defines a bar that looks like this above:

EXG2ANTTLib.Bar bar = axG2antt1.Chart.Bars.Add("Task2");
bar.Pattern = EXG2ANTTLib.PatternEnum.exPatternShadow;
bar.Color = ToUInt32(Color.FromArgb(0, 0, 255));

bar.EndShape = EXG2ANTTLib.ShapeCornerEnum.exShapeIconCircleDot;
bar.EndColor = ToUInt32(Color.FromArgb(255, 0, 0));

The following C# sample adds a custom icon to the start of all Task bars:

EXG2ANTTLib.Bars bars = axG2antt1.Chart.Bars;
bars.AddShapeCorner(12345, 1);
bars["Task"].StartShape = EXG2ANTTLib.ShapeCornerEnum.exShapeIconEmpty + 12345;
bars["Task"].StartColor = 0xFFFFFFFF;

The following VFP sample defines a bar that looks like this above:

with thisform.G2antt1.Chart.Bars.Add("Task2")
 .Pattern = 3 && exPatternShadow
 .Color = RGB(0, 0, 255)
 .EndShape = 4 && exShapeIconCircleDot
 .EndColor = RGB(255, 0, 0)
EndWith

In VB.NET or C# you require the following functions until the .NET framework will provide:

You can use the following VB.NET function:

 Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
 End Function

You can use the following C# function:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);

}

property Bar.EndShape as ShapeCornerEnum
Retrieves or sets a value that indicates the shape of the right side corner.

Type Description

ShapeCornerEnum A ShapeCornerEnum expression that defines the shape of
the icon being used to draw the corner.

By default, the EndShape property is exShapeIconEmpty. If the EndShape property is
exShapeIconEmpty the bas has no ending part. Use the Color property to specify the color
to fill the middle part of the bar. Use the Pattern property to specify the brush being used to
fill the bar. Use the Shape property to specify the height and the vertical alignment of the
middle part of the bar. Use the AddShapeCorner method to add a custom icon to be used
as a starting or ending part of the bar. Use the Images or ReplaceIcon method to update
the list of control's icons.

The following VB sample adds a custom shape and defines a bar like this :

With G2antt1.Chart.Bars
 .AddShapeCorner 12345, 1
 With .Add("Task2")
 .Pattern = exPatternDot
 .Shape = exShapeThinDown
 .EndShape = 12345
 .EndColor = RGB(255, 0, 0)
 .Color = .EndColor
 End With
End With

The following C++ sample adds a custom shape and defines a bar like above:

CBars bars = m_g2antt.GetChart().GetBars();
bars.AddShapeCorner(COleVariant((long)12345), COleVariant((long)1));
CBar bar = bars.Add("Task2");
bar.SetPattern(2 /*exPatternDot*/);
bar.SetShape(20 /*exShapeThinDown*/);
bar.SetEndShape(12345);
bar.SetEndColor(RGB(255, 0, 0));
bar.SetColor(bar.GetEndColor());

The following VB.NET sample adds a custom shape and defines a bar like above:

With AxG2antt1.Chart.Bars
 .AddShapeCorner(12345, 1)
 With .Add("Task2")
 .Pattern = EXG2ANTTLib.PatternEnum.exPatternDot
 .Shape = EXG2ANTTLib.ShapeBarEnum.exShapeThinDown
 .EndShape = 12345
 .EndColor = RGB(255, 0, 0)
 .Color = .EndColor
 End With
End With

The following C# sample adds a custom shape and defines a bar like above:

axG2antt1.Chart.Bars.AddShapeCorner(12345, 1);
EXG2ANTTLib.Bar bar = axG2antt1.Chart.Bars.Add("Task2");
bar.Pattern = EXG2ANTTLib.PatternEnum.exPatternDot;
bar.Shape = EXG2ANTTLib.ShapeBarEnum.exShapeThinDown;
bar.EndShape = (EXG2ANTTLib.ShapeCornerEnum)12345;
bar.EndColor = ToUInt32(Color.FromArgb(255, 0, 0));
bar.Color = bar.EndColor;

The following VFP sample adds a custom shape and defines a bar like above:

With thisform.G2antt1.Chart.Bars
 .AddShapeCorner(12345, 1)
 With .Add("Task2")
 .Pattern = 2 && exPatternDot
 .Shape = 20 && exShapeThinDown
 .EndShape = 12345
 .EndColor = RGB(255, 0, 0)
 .Color = .EndColor
 EndWith
EndWith

The following VB sample defines a new bar that looks like this :

With .Chart.Bars.Add("Task2")
 .Pattern = exPatternShadow

 .Color = RGB(0, 0, 255)
 .EndShape = exShapeIconCircleDot
 .EndColor = RGB(255, 0, 0)
End With

The following C++ sample defines a bar that looks like this above:

CBar bar = m_g2antt.GetChart().GetBars().Add("Task2");
bar.SetPattern(3 /*exPatternShadow*/);
bar.SetColor(RGB(0, 0, 255));
bar.SetEndShape(4 /* exShapeIconCircleDot*/);
bar.SetEndColor(RGB(255, 0, 0));

The following VB.NET sample defines a bar that looks like this above:

With AxG2antt1.Chart.Bars.Add("Task2")
 .Pattern = EXG2ANTTLib.PatternEnum.exPatternShadow
 .Color = RGB(0, 0, 255)
 .EndShape = EXG2ANTTLib.ShapeCornerEnum.exShapeIconCircleDot
 .EndColor = RGB(255, 0, 0)
End With

The following C# sample defines a bar that looks like this above:

EXG2ANTTLib.Bar bar = axG2antt1.Chart.Bars.Add("Task2");
bar.Pattern = EXG2ANTTLib.PatternEnum.exPatternShadow;
bar.Color = ToUInt32(Color.FromArgb(0, 0, 255));
bar.EndShape = EXG2ANTTLib.ShapeCornerEnum.exShapeIconCircleDot;
bar.EndColor = ToUInt32(Color.FromArgb(255, 0, 0));

The following VFP sample defines a bar that looks like this above:

with thisform.G2antt1.Chart.Bars.Add("Task2")
 .Pattern = 3 && exPatternShadow
 .Color = RGB(0, 0, 255)
 .EndShape = 4 && exShapeIconCircleDot
 .EndColor = RGB(255, 0, 0)
EndWith

property Bar.FormatHistogramValues as String
Specifies the format to show bar's value in the histogram.

Type Description

String A String that specifies the expression to display the values
in the bar's histogram.

By default, the FormatHistogramValues property is empty. The bar's histogram value gets
formatted, if the FormatHistogramValues expression is not empty and valid. You can use the
FormatHistogramValues property to customize the bar's values in the histogram. The bar is
represented in the control's histogram, if its HistogramPattern / HistogramColor property is
defined. Use the HistogramType property to specify the type of the graph to be displayed in
the histogram for specified bar. The ResizeUnitScale property determines the refinement for
the histogram part.

The following screen show shows how the bar's value/effort is displayed in the control's
histogram by default:

The following screen show shows how the formatted bar's value/effort is displayed in the
control's histogram (FormatHistogramValues property is "(value format `1`) + ` units`"):

The value keyword in the FormatHistogramValues property indicates the value to be
formatted (ItemBar(exBarEffort)).

This property/method supports predefined constants and operators/functions as described
here.

property Bar.Height as Long
Retrieves or sets a value that indicates the height in pixels of the bar.

Type Description

Long A Long expression that indicates the height of the bar, in
pixels.

Use the Height property to change the heights for your bars. If the Height property is 0, the
bar is not displayed. If the Height property is negative, the height of the bar is specified by
the height of the item that displays the bar. If the Height property is positive it indicates the
height of the bar to be displayed, in pixels. Use the DefaultItemHeight property to specify
the default height for all items in the control. Use the ItemHeight property to specify the
height for a specified item. The CellSingleLine property specifies whether a cell displays its
caption using multiple lines. If you require a single bar with a different height, you can use
the Copy method to copy a new bar, and use the Height property to specify a different
height.

The control provides several predefined bars as follows:

"Deadline":
"Project Summary":
"Summary":
"Milestone":
"Progress":
"Split":
"Task":

For instance, the following VB sample changes the height of the "Task" bar:

G2antt1.Chart.Bars("Task").Height = 18

The following VC++ sample changes the height of the "Task" bar:

m_g2antt.GetChart().GetBars().GetItem(COleVariant("Task")).SetHeight(18);

The following VFP sample changes the height of the "Task" bar:

With thisform.G2antt1.Chart.Bars
 .Item("Task").Height = 18
endwith

The following C# sample changes the height of the "Task" bar:

axG2antt1.Chart.Bars["Task"].Height = 18;

The following VB.NET sample changes the height of the "Task" bar:

AxG2antt1.Chart.Bars("Task").Height = 18

property Bar.HistogramBorderColor as Color
Retrieves or sets a value that indicates the color to show the histogram's border.

Type Description

Color A Color expression that specifies the color for the frame
being shown in the histogram. If 0, the property is ignored.

By default the HistogramBorderColor property is 0 which means that it has no effect. In this
case, if the HistogramPattern property points to a predefined value, the color for the frame
in the histogram is automatically determined by the HistogramColor property. Use the
HistogramBorderSize property to specify the width of the frame being shown in the
histogram, only when curves are shown (the HistogramPattern property is not a predefined
value, 256, 512, 1024, and so on).

The following screen shot shows the histogram of bars using different size and color for the
frame:

The following screen shot shows the bar's diagram if the HistogramPattern property is
exPolygonCurve + exPatternEmpty, or simple exPolygonCurve, the AntiAliasing
property is True, and the HistogramColor and HistogramBorderColor propertis have
different values.

(HistogramPattern value is 256, AntiAliasing = True, HistogramColor !=
HistogramBorderColor)

The following screen shot shows the bar's diagram if the HistogramPattern property is
exRectangularCurve + exPatternEmpty, or simple exRectangularCurve, the AntiAliasing
property is True, and the HistogramColor and HistogramBorderColor propertis have
different values.

(HistogramPattern value is 2048, AntiAliasing = True, HistogramColor !=
HistogramBorderColor)

The following screen shot shows the bar's diagram if the HistogramPattern property is
exBezierCurve + exPatternEmpty, or simple exBezierCurve, the AntiAliasing property is
True, and the HistogramColor and HistogramBorderColor propertis have different values.

(HistogramPattern value is 512, AntiAliasing = True, HistogramColor !=
HistogramBorderColor)

The following screen shot shows the bar's diagram if the HistogramPattern property is
exRoundCurve + exPatternEmpty, or simple exRoundCurve, the AntiAliasing property is
True, and the HistogramColor and HistogramBorderColor propertis have different values.

(HistogramPattern value is 1024, AntiAliasing = True, HistogramColor !=
HistogramBorderColor)

property Bar.HistogramBorderSize as Long
Specifies the size of the border in pixels to show the bar's histogram.

Type Description

Long A long expression that specifies the size of the frame
being shown in the histogram.

By default, the HistogramBorderSize property is 3. Use the HistogramBorderSize property
to specify the width of the frame being shown in the histogram, only when curves are shown
(the HistogramPattern property is not a predefined value, 256, 512, 1024, and so son).
Use the HistogramBorderColor property to change the color for the frame being shown in
the histogram. For instance, if the HistogramPattern property points to a predefined value,
the color for the frame in the histogram is automatically determined by the HistogramColor
property.

The following screen shot shows the histogram of bars using different size and color for the
frame:

property Bar.HistogramColor as Color
Retrieves or sets a value that indicates the color to be used in the histogram.

Type Description

Color

A Color expression that specifies the color of the pattern
being displayed for the bar in the histogram. The last 7
bits in the high significant byte of the color indicates the
identifier of the skin being used. Use the Add method to
add new skins to the control. The skin object is used to
draw the histogram.

By default, the HistogramColor property is identical with the Color property. By default, no
bar is represented in the histogram. A bar is represented in the histogram only if
HistogramPattern or HistogramColor property is set. Use the HistogramColor property to
define the color of the pattern or the skin object to be displayed in the histogram. Use the
HistogramType property to specify the type of the graph to be displayed in the histogram
for specified bar. Use the HistogramBackColor property to specify the histogram's
background color. Use the HistogramVisible property to show or hide the histogram. Use
the HistogramHeight property to specify at runtime the height of the histogram. The
ResizeUnitScale property determines the refinement for the histogram part. For instance, if
the chart displays days, while the bars are represented up to hours, the ResizeUnitScale
property on exHour, will determine the histogram to show up to hours.

Please follow the steps in order to view your bars in the histogram.

1. Changes the HistogramVisible property on True (by default, it is False). After setting
the HistogramVisible property on True, the control shows a horizontal splitter in the
bottom side of the control.

2. Adjusts the height of the histogram view using the HistogramHeight property (by
default it is 0). After setting the HistogramHeight property on a value greater than 0,
the control shows a the histogram view in the bottom side of the control.

3. Changes the HistogramPattern or/and HistogramColor property, else no bars will be
shown in the histogram. The HistogramPattern/HistogramColor properties belong to a
Bar object. For instance the Chart.Bars("Task").HistogramPattern = exPatternDot,
specifies that the Task bars will be represented in the histogram using the exPatternDot
pattern ()

The followings are optional properties that you can set in order to customize your
histogram:

The HistogramType property indicates the type of the histogram being displayed for a
specified bar.

Use the HistogramView property to specify the items being represented in the
histogram view. By default, only visible items are displayed in the histogram. For
instance, using the HistogramView property you can select the items being represented
in the histogram
Use the HistogramBackColor property to specify the histogram's background color.

property Bar.HistogramCriticalColor as Color
Retrieves or sets a value that indicates the color to paint the overallocations in the
histogram.

Type Description

Color A Color expression that specifies the color to display the
histogram-graph when the allocations exceeds 100%

By default, the HistogramCriticalColor is red (RGB(255,0,0)). The histogram-chart shows
the critical part for the bar ONLY if the HistogramCriticalColor is different that the
HistogramColor property. Use the HistogramCriticalValue property to specify a critical value.
The critical value is interpreted differently based on the HistogramType property. For
instance, if the HistogramType property is exHistOverload, the critical value represents the
count of cumulative bars since if the HistogramType property is exHistOverAllocation the
critical value represents a percent value. Use HistogramRulerLinesColor property to specify
the color to show the ruler in the left part of the histogram. Use the
HistogramGridLinesColor specifies the color to show the grid lines when the HistogramType
property is exHistOverload.

The following screen shot shows the critical part when HistogramType property is
exHistOverload, and the HistogramCriticalValue property is 3. The bars over value 3 gets
colored in red. The grid lines are shown and the ruler shows the count of the bars.

The following screen shot shows the critical part when HistogramType property is
exHistOverload + exHistCumulative, and the HistogramCriticalValue property is 4. The bars
over value 4 gets colored in black. The grid lines are shown and the ruler shows the count
of the bars and the legend of the bars being colored.

The following screen shot shows the critical part when HistogramType property is
exHistOverallocation, and the HistogramCriticalValue property is 100%. The bars over
100% gets colored in red. The grid lines are NOT shown and the ruler shows the percents.

The following screen shot shows how the histogram curve is changed once the user resizes
or moves bars (in this case the HistogramType property is exHistOverAllocation)

property Bar.HistogramCriticalValue as Double
Specifies the histogram's critical value.

Type Description

Double

A double expression that specifies the critical value. The
critical value is interpreted in different way based on the
HistogramType property. For instance, if the
HistogramType property is exHistOverload the
HistogramCriticalValue property specifies the count of bars
while if the HistogramType property is
exHistOverallocation it indicates a percent value.

By default, the HistogramCriticalValue property is 100. The HistogramCriticalColor property
specifies the color to show the bars that are exceed the critical value. The histogram-chart
shows the critical part for the bar ONLY if the HistogramCriticalColor is different that the
HistogramColor property.

The critical value is interpreted in different way based on the HistogramType property as
follows:

if the HistogramType property is exHistOverload, the critical value indicates a count of
bars. So, if the count of bars in the histogram exceeds the critical value they are shown
using the critical color. When using exHistOverload you can specify the number of
maximum bars being displayed in the histogram using the HistogramItems property.
The following screen shot shows the overload histogram, critical value 3, and the ruler
displayed on the left side of the histogram displays the count of bars . The red part
indicates a portion that has more than 3 bars over.

if the HistogramType property is exHistOverallocation, the critical value indicates a
percent value. So, if the allocation of the bar per unit exceeds the critical value the bars

are show in the critical color. The work-load for a task is computed as
ItemBar(exBarEffort) / length of the bar. The work-load for the task is the work effort /
task duration. (i.e. If item.exBarEffort = 1 and gantt bar length is 10 days, then the
work-load = 0.1 or 10%). The following screen shots show the critical part in red when
exHistOverallocation type is displayed:

property Bar.HistogramCumulativeColor(Index as Long) as Color
Retrieves or sets a value that indicates a cumulative color to be shown in the histogram.

Type Description

Index as Long A long expression that specifies the index of the color
being requested

Color A Color expression that specifies a cumulative color

A cumulative histogram shows bars that generated the histogram using different colors. The
cumulative histogram shows overloads or work-loads as well. The
HistogramCumulativeColors property specifies the number of colors that the histogram may
show when it displays bars using cumulative type. The histogram shows cumulative values
only if the HistogramCumulativeColors property is greater than 1, the HistogramType
property includes the exHistCumulative flag. Use the
HistogramCumulativeOriginalColorBars property to specify whether the bars that generated
the cumulative histogram change their original colors. The
HistogramCumulativeShowLegend property specifies the index of the column to show the
legend for the items being displayed in the cumulative histogram.

By default, the HistogramCumulativeColor values are:

1. RGB(000, 000, 255)
2. RGB(255, 000, 000)
3. RGB(000, 255, 000)
4. RGB(000, 255, 255)
5. RGB(255, 000, 255)
6. RGB(255, 255, 000)

Use the HistogramCumulativeColor property to define different colors for your cumulative
histogram.

property Bar.HistogramCumulativeColors as Long
Specifies the number of colors that the histogram may show when it displays bars using
cumulative type.

Type Description

Long

A long expression that specifies the number of colors
being used when a cumulative histogram is shown for the
current bar. The value should be greater than 1, else the
property has no effect.

By default, the HistogramCumulativeColors property is 6. A cumulative histogram shows
bars that generated the histogram using different colors. The cumulative histogram shows
overloads or work-loads as well. The histogram shows cumulative values only if the
HistogramCumulativeColors property is greater than 1, the HistogramType property
includes the exHistCumulative flag. The HistogramCumulativeColor property specifies a
color being used when showing cumulative histogram. Use the
HistogramCumulativeOriginalColorBars property to specify whether the bars that generated
the cumulative histogram change their original colors. The
HistogramCumulativeShowLegend property specifies the index of the column to show the
legend for the items being displayed in the cumulative histogram.

The following screen shot shows the cumulative histogram for HistogramCumulativeColors =
6, HistogramCumulativeOriginalColorBars = False

The following screen shot shows the cumulative histogram for HistogramCumulativeColors =
6, HistogramCumulativeOriginalColorBars = True

The following screen shot shows the cumulative histogram for HistogramCumulativeColors =
2, HistogramCumulativeOriginalColorBars = True

The following screen shot shows the cumulative histogram for HistogramCumulativeColors =
2, HistogramCumulativeOriginalColorBars = False

The following screen shot shows the cumulative histogram for HistogramCumulativeColors =
1 (as it would not have effect)

property Bar.HistogramCumulativeOriginalColorBars as
HistogramCumulativeOriginalColorBarsEnum
Specifies whether the original bar's color is changed accordingly to the cumulative
histogram.

Type Description

HistogramCumulativeOriginalColorBarsEnum
A HistogramCumulativeOriginalColorBarsEnum expression
that specifies whether the color of the bars that generated
the histogram are changed.

By default, the HistogramCumulativeOriginalColorBars property is -1 (True). If the
HistogramCumulativeOriginalColorBars property is 0 (False), the bars that generate the
cumulative histogram shows with a different color being specified by the
HistogramCumulativeColor property. The HistogramCumulativeShowLegend property
specifies the index of the column to show the legend for the items being displayed in the
cumulative histogram. You can specify a non-existing column so the legend will not be
shown in the left part of the histogram. Use the ItemBar(exBarColor) property to specify a
different color for a specified bar. If the HistogramCumulativeOriginalColorBars property is
0 only bars that has the ItemBar(exBarColor) on 0 show with a different cumulative color.
The ItemBar(exBarHistLegend) property specifies the description to show within the
histogram's legend for the bar in the control's histogram (exKeepOriginalColor only).

If the HistogramCumulativeOriginalColorBars property is:

-1, exShowCumulativeColor (default), the bars in the same item are represented in
the histogram with a cumulative color. The color of the bar in the chart is not changed.
0, exChangeColor, the bars and their reflections in the histogram use a cumulative color
to be shown. The color of the bar in the chart is changed accordingly to the cumulative
color.
1, exKeepOriginalColor, the bars keeps their original color in the chart as in the
histogram. The color of the bar in the chart is not changed. The ItemBar(exBarColor)
property indicates the bar's color in histogram-representation as well. The ItemBar(
exBarHistLegend) property specifies the description to show within the histogram's
legend for the bar in the control's histogram (exKeepOriginalColor only).

The following screen shots shows the histogram using different values for
HistogramCumulativeOriginalColorBars property:

Original Layout
Histogram Representation,

HistogramCumulativeOriginalColorBars
is

-1 (True), by default is:

This is the original layout, so no items are selected, and the
effort for the bar in the "Item 1" is 2, and all bars has the same

color.

The bars in the same item are
represented in the histogram with a
cumulative color. The color of the bar in
the chart is not changed.

0 (False) is:

The bars and their reflections in the
histogram use a cumulative color to be
shown. The color of the bar in the chart is
changed accordingly to the cumulative
color.

This is the original layout, so no items are selected, and the
effort for the bar in the "Item 1" is 2, and the item "Item 3"

contains a red bar

1 (exKeepOriginalColor)

The bars keeps their original color in the
chart as in the histogram. The color of the
bar in the chart is not changed. The
ItemBar(exBarColor) property indicates
the local bar's color. This option may be
available for newer versions only.

The following screen shot shows the cumulative histogram for HistogramCumulativeColors =
8, HistogramCumulativeOriginalColorBars = 0 (False). In this case the A1, A2, A3, A4 and
A5 bars are shown in the chart using a different color as specified by the cumulative
histogram.

The following screen shot shows the cumulative histogram for HistogramCumulativeColors =
8, HistogramCumulativeOriginalColorBars = -1 (True). In this case the A1, A2, A3, A4 and
A5 bars shows in the chart with the color to show the cumulative histogram.

property Bar.HistogramCumulativeShowLegend as Long
Specifies the index of the column to display the legend for the cumulative bars in the
histogram.

Type Description

Long
A long expression that specifies the index of the column to
show the legend for items being displayed in the
cumulative histogram.

By default, the HistogramCumulativeShowLegend property is 0 which means that the
column with the index 0 is used to display the legend for the items being included in the
histogram. The HistogramCumulativeShowLegend property has effect only if the
HistogramType property includes the exHistCumulative flag. The
HistogramCumulativeColors property specifies the number of colors being used to display
the cumulative histogram for a bar. The HistogramCumulativeColor property specifies a
color being used when showing cumulative histogram. Use the
HistogramCumulativeOriginalColorBars property to specify whether the bars that generated
the cumulative histogram change their original colors. Use the Item property to access a
column in the columns collection.

property Bar.HistogramGridLinesColor as Color
Retrieves or sets a value that indicates the color to show the histogram's grid lines.

Type Description

Color
A Color expression that specifies whether the grid lines
are shown in the histogram. Use the value on 1, incase
you actually need a black grid lines color.

By default, the HistogramGridLinesColor property is 0, which means that it has no effect. If
the HistogramGridLinesColor property is not 0, it indicates the color to show the grid lines in
the histogram. The grid lines for the histogram are shown only if the HistogramType
property is exOverload and they are shown only in the right part of the histogram. Instead,
you can use the HistogramRulerLinesColor property to specify the color to show the bar's
histogram ruler that are always shown in the left part of the histogram. You can always use
the BeforeDrawPart/AfterDrawPart events to provide your custom drawing in the
histogram.

The following screen show shows the grid lines color in the right side of the histogram:

property Bar.HistogramItems as Long
Specifies the number of items being represented in the histogram when overload histogram
is shown.

Type Description

Long

A long expression that specifies the minimum number of
items being show in the histogram, if positive, or a fixed
number of items, if negative. If 0, the histogram is re-
scaled to fit all elements.

By default, the HistogramItems property is 0. The property has effect while the
HistogramType property is exOverload. By default, when the HistogramItems property is 0,
the height of the units being displayed in the histogram is computed, so all units fit the
histogram area. If the HistogramItems property is greater than 0 this value indicates the
number of minimum units being displayed on the vertical axis. If the HistogramItems
property less than 0, the absolute value represents the fixed number of units being
displayed on the vertical axis.

For instance, the following sample shows the histogram while HistogramItems property is 0:

If the HistogramItems property is 0, and the user resizes the histogram the height of the
units being displayed is automatically updated so all units fit the histogram area. Also, if the
user includes or excludes items to be shown in the histogram the height of the unit is
recomputed. For instance, if a single item is being included in the histogram the entire height
of the histogram specifies the height for the unit for the bars. Instead, if the HistogramItems
property is greater than 0, the height of the units being displayed in the histogram is
changed only if requires multiple units being displayed on the vertical axis.

The following sample shows the histogram while HistogramItems property is -6:

In this case, HistogramItems property is -6, so the number of units being displayed on the
vertical axis is always 6 no matter how many units are required.

The following VB sample specifies a fixed number of units being shown in the histogram on
the vertical axis:

With G2antt1
 With .Chart
 .FirstVisibleDate = #1/1/2001#
 .HistogramVisible = True
 .HistogramHeight = 64
 .PaneWidth(0) = 78
 .HistogramView = 1300
 With .Bars.Item("Task")
 .HistogramPattern = exPatternBDiagonal
 .HistogramCriticalValue = 3
 .HistogramItems = -6
 .HistogramRulerLinesColor = RGB(1,0,0)
 End With
 End With
 .Columns.Add "Column"
 With .Items
 h = .AddItem("Project 1")
 .CellHasCheckBox(h,0) = True
 .CellState(h,0) = 1
 .AddBar .InsertItem(h,0,"Item 1"),"Task",#1/2/2001#,#1/4/2001#
 .AddBar .InsertItem(h,0,"Item 2"),"Task",#1/3/2001#,#1/5/2001#

 .ExpandItem(h) = True
 h = .AddItem("Project 2")
 .CellHasCheckBox(h,0) = True
 .CellState(h,0) = 1
 .AddBar .InsertItem(h,0,"Item 1"),"Task",#1/4/2001#,#1/7/2001#
 .AddBar .InsertItem(h,0,"Item 2"),"Task",#1/6/2001#,#1/8/2001#
 .ExpandItem(h) = True
 h = .AddItem("Project 3")
 .CellHasCheckBox(h,0) = True
 .CellState(h,0) = 1
 .AddBar .InsertItem(h,0,"Item 1"),"Task",#1/2/2001#,#1/4/2001#
 .AddBar .InsertItem(h,0,"Item 2"),"Task",#1/3/2001#,#1/5/2001#
 .ExpandItem(h) = True
 h = .AddItem("Project 4")
 .CellHasCheckBox(h,0) = True
 .CellState(h,0) = 1
 .AddBar .InsertItem(h,0,"Item 1"),"Task",#1/4/2001#,#1/7/2001#
 .AddBar .InsertItem(h,0,"Item 2"),"Task",#1/6/2001#,#1/8/2001#
 .ExpandItem(h) = True
 End With
End With

The following VB.NET sample specifies a fixed number of units being shown in the
histogram on the vertical axis:

Dim h
With AxG2antt1
 With .Chart
 .FirstVisibleDate = #1/1/2001#
 .HistogramVisible = True
 .HistogramHeight = 64
 .PaneWidth(0) = 78
 .HistogramView = 1300
 With .Bars.Item("Task")
 .HistogramPattern = EXG2ANTTLib.PatternEnum.exPatternBDiagonal
 .HistogramCriticalValue = 3
 .HistogramItems = -6
 .HistogramRulerLinesColor = 1

 End With
 End With
 .Columns.Add "Column"
 With .Items
 h = .AddItem("Project 1")
 .CellHasCheckBox(h,0) = True
 .CellState(h,0) = 1
 .AddBar .InsertItem(h,0,"Item 1"),"Task",#1/2/2001#,#1/4/2001#
 .AddBar .InsertItem(h,0,"Item 2"),"Task",#1/3/2001#,#1/5/2001#
 .ExpandItem(h) = True
 h = .AddItem("Project 2")
 .CellHasCheckBox(h,0) = True
 .CellState(h,0) = 1
 .AddBar .InsertItem(h,0,"Item 1"),"Task",#1/4/2001#,#1/7/2001#
 .AddBar .InsertItem(h,0,"Item 2"),"Task",#1/6/2001#,#1/8/2001#
 .ExpandItem(h) = True
 h = .AddItem("Project 3")
 .CellHasCheckBox(h,0) = True
 .CellState(h,0) = 1
 .AddBar .InsertItem(h,0,"Item 1"),"Task",#1/2/2001#,#1/4/2001#
 .AddBar .InsertItem(h,0,"Item 2"),"Task",#1/3/2001#,#1/5/2001#
 .ExpandItem(h) = True
 h = .AddItem("Project 4")
 .CellHasCheckBox(h,0) = True
 .CellState(h,0) = 1
 .AddBar .InsertItem(h,0,"Item 1"),"Task",#1/4/2001#,#1/7/2001#
 .AddBar .InsertItem(h,0,"Item 2"),"Task",#1/6/2001#,#1/8/2001#
 .ExpandItem(h) = True
 End With
End With

The following C++ sample specifies a fixed number of units being shown in the histogram on
the vertical axis:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutFirstVisibleDate("1/1/2001");
 var_Chart->PutHistogramVisible(VARIANT_TRUE);
 var_Chart->PutHistogramHeight(64);
 var_Chart->PutPaneWidth(0,78);
 var_Chart->PutHistogramView((EXG2ANTTLib::HistogramViewEnum)1300);
 EXG2ANTTLib::IBarPtr var_Bar = var_Chart->GetBars()->GetItem("Task");
 var_Bar->PutHistogramPattern(EXG2ANTTLib::exPatternBDiagonal);
 var_Bar->PutHistogramCriticalValue(3);
 var_Bar->PutHistogramItems(-6);
 var_Bar->PutHistogramRulerLinesColor(RGB(1,0,0));
spG2antt1->GetColumns()->Add(L"Column");
EXG2ANTTLib::IItemsPtr var_Items = spG2antt1->GetItems();
 long h = var_Items->AddItem("Project 1");
 var_Items->PutCellHasCheckBox(h,long(0),VARIANT_TRUE);
 var_Items->PutCellState(h,long(0),1);
 var_Items->AddBar(var_Items->InsertItem(h,long(0),"Item
1"),"Task","1/2/2001","1/4/2001",vtMissing,vtMissing);
 var_Items->AddBar(var_Items->InsertItem(h,long(0),"Item
2"),"Task","1/3/2001","1/5/2001",vtMissing,vtMissing);
 var_Items->PutExpandItem(h,VARIANT_TRUE);
 h = var_Items->AddItem("Project 2");
 var_Items->PutCellHasCheckBox(h,long(0),VARIANT_TRUE);
 var_Items->PutCellState(h,long(0),1);
 var_Items->AddBar(var_Items->InsertItem(h,long(0),"Item
1"),"Task","1/4/2001","1/7/2001",vtMissing,vtMissing);
 var_Items->AddBar(var_Items->InsertItem(h,long(0),"Item
2"),"Task","1/6/2001","1/8/2001",vtMissing,vtMissing);
 var_Items->PutExpandItem(h,VARIANT_TRUE);
 h = var_Items->AddItem("Project 3");
 var_Items->PutCellHasCheckBox(h,long(0),VARIANT_TRUE);
 var_Items->PutCellState(h,long(0),1);

 var_Items->AddBar(var_Items->InsertItem(h,long(0),"Item
1"),"Task","1/2/2001","1/4/2001",vtMissing,vtMissing);
 var_Items->AddBar(var_Items->InsertItem(h,long(0),"Item
2"),"Task","1/3/2001","1/5/2001",vtMissing,vtMissing);
 var_Items->PutExpandItem(h,VARIANT_TRUE);
 h = var_Items->AddItem("Project 4");
 var_Items->PutCellHasCheckBox(h,long(0),VARIANT_TRUE);
 var_Items->PutCellState(h,long(0),1);
 var_Items->AddBar(var_Items->InsertItem(h,long(0),"Item
1"),"Task","1/4/2001","1/7/2001",vtMissing,vtMissing);
 var_Items->AddBar(var_Items->InsertItem(h,long(0),"Item
2"),"Task","1/6/2001","1/8/2001",vtMissing,vtMissing);
 var_Items->PutExpandItem(h,VARIANT_TRUE);

The following C# sample specifies a fixed number of units being shown in the histogram on
the vertical axis:

EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;
 var_Chart.FirstVisibleDate = "1/1/2001";
 var_Chart.HistogramVisible = true;
 var_Chart.HistogramHeight = 64;
 var_Chart.set_PaneWidth(0 != 0,78);
 var_Chart.HistogramView = (EXG2ANTTLib.HistogramViewEnum)1300;
 EXG2ANTTLib.Bar var_Bar = var_Chart.Bars["Task"];
 var_Bar.HistogramPattern = EXG2ANTTLib.PatternEnum.exPatternBDiagonal;
 var_Bar.HistogramCriticalValue = 3;
 var_Bar.HistogramItems = -6;
 var_Bar.HistogramRulerLinesColor = 1;
axG2antt1.Columns.Add("Column");
EXG2ANTTLib.Items var_Items = axG2antt1.Items;
 int h = var_Items.AddItem("Project 1");
 var_Items.set_CellHasCheckBox(h,0,true);
 var_Items.set_CellState(h,0,1);
 var_Items.AddBar(var_Items.InsertItem(h,0,"Item
1"),"Task","1/2/2001","1/4/2001",null,null);
 var_Items.AddBar(var_Items.InsertItem(h,0,"Item
2"),"Task","1/3/2001","1/5/2001",null,null);
 var_Items.set_ExpandItem(h,true);

 h = var_Items.AddItem("Project 2");
 var_Items.set_CellHasCheckBox(h,0,true);
 var_Items.set_CellState(h,0,1);
 var_Items.AddBar(var_Items.InsertItem(h,0,"Item
1"),"Task","1/4/2001","1/7/2001",null,null);
 var_Items.AddBar(var_Items.InsertItem(h,0,"Item
2"),"Task","1/6/2001","1/8/2001",null,null);
 var_Items.set_ExpandItem(h,true);
 h = var_Items.AddItem("Project 3");
 var_Items.set_CellHasCheckBox(h,0,true);
 var_Items.set_CellState(h,0,1);
 var_Items.AddBar(var_Items.InsertItem(h,0,"Item
1"),"Task","1/2/2001","1/4/2001",null,null);
 var_Items.AddBar(var_Items.InsertItem(h,0,"Item
2"),"Task","1/3/2001","1/5/2001",null,null);
 var_Items.set_ExpandItem(h,true);
 h = var_Items.AddItem("Project 4");
 var_Items.set_CellHasCheckBox(h,0,true);
 var_Items.set_CellState(h,0,1);
 var_Items.AddBar(var_Items.InsertItem(h,0,"Item
1"),"Task","1/4/2001","1/7/2001",null,null);
 var_Items.AddBar(var_Items.InsertItem(h,0,"Item
2"),"Task","1/6/2001","1/8/2001",null,null);
 var_Items.set_ExpandItem(h,true);

The following VFP sample specifies a fixed number of units being shown in the histogram on
the vertical axis:

with thisform.G2antt1
 with .Chart
 .FirstVisibleDate = {^2001-1-1}
 .HistogramVisible = .T.
 .HistogramHeight = 64
 .PaneWidth(0) = 78
 .HistogramView = 1300
 with .Bars.Item("Task")
 .HistogramPattern = 6
 .HistogramCriticalValue = 3

 .HistogramItems = -6
 .HistogramRulerLinesColor = RGB(1,0,0)
 endwith
 endwith
 .Columns.Add("Column")
 with .Items
 h = .AddItem("Project 1")
 .DefaultItem = h
 .CellHasCheckBox(0,0) = .T.
 .DefaultItem = h
 .CellState(0,0) = 1
 .AddBar(.InsertItem(h,0,"Item 1"),"Task",{^2001-1-2},{^2001-1-4})
 .AddBar(.InsertItem(h,0,"Item 2"),"Task",{^2001-1-3},{^2001-1-5})
 .DefaultItem = h
 .ExpandItem(0) = .T.
 h = .AddItem("Project 2")
 .DefaultItem = h
 .CellHasCheckBox(0,0) = .T.
 .DefaultItem = h
 .CellState(0,0) = 1
 .AddBar(.InsertItem(h,0,"Item 1"),"Task",{^2001-1-4},{^2001-1-7})
 .AddBar(.InsertItem(h,0,"Item 2"),"Task",{^2001-1-6},{^2001-1-8})
 .DefaultItem = h
 .ExpandItem(0) = .T.
 h = .AddItem("Project 3")
 .DefaultItem = h
 .CellHasCheckBox(0,0) = .T.
 .DefaultItem = h
 .CellState(0,0) = 1
 .AddBar(.InsertItem(h,0,"Item 1"),"Task",{^2001-1-2},{^2001-1-4})
 .AddBar(.InsertItem(h,0,"Item 2"),"Task",{^2001-1-3},{^2001-1-5})
 .DefaultItem = h
 .ExpandItem(0) = .T.
 h = .AddItem("Project 4")
 .DefaultItem = h
 .CellHasCheckBox(0,0) = .T.
 .DefaultItem = h

 .CellState(0,0) = 1
 .AddBar(.InsertItem(h,0,"Item 1"),"Task",{^2001-1-4},{^2001-1-7})
 .AddBar(.InsertItem(h,0,"Item 2"),"Task",{^2001-1-6},{^2001-1-8})
 .DefaultItem = h
 .ExpandItem(0) = .T.
 endwith
endwith

The following Delphi sample specifies a fixed number of units being shown in the histogram
on the vertical axis:

with AxG2antt1 do
begin
 with Chart do
 begin
 FirstVisibleDate := '1/1/2001';
 HistogramVisible := True;
 HistogramHeight := 64;
 PaneWidth[0 <> 0] := 78;
 HistogramView := EXG2ANTTLib.HistogramViewEnum(1300);
 with Bars.Item['Task'] do
 begin
 HistogramPattern := EXG2ANTTLib.PatternEnum.exPatternBDiagonal;
 HistogramCriticalValue := 3;
 HistogramItems := -6;
 HistogramRulerLinesColor := 1;
 end;
 end;
 Columns.Add('Column');
 with Items do
 begin
 h := AddItem('Project 1');
 CellHasCheckBox[TObject(h),TObject(0)] := True;
 CellState[TObject(h),TObject(0)] := 1;
 AddBar(InsertItem(h,TObject(0),'Item 1'),'Task','1/2/2001','1/4/2001',Nil,Nil);
 AddBar(InsertItem(h,TObject(0),'Item 2'),'Task','1/3/2001','1/5/2001',Nil,Nil);
 ExpandItem[h] := True;
 h := AddItem('Project 2');

 CellHasCheckBox[TObject(h),TObject(0)] := True;
 CellState[TObject(h),TObject(0)] := 1;
 AddBar(InsertItem(h,TObject(0),'Item 1'),'Task','1/4/2001','1/7/2001',Nil,Nil);
 AddBar(InsertItem(h,TObject(0),'Item 2'),'Task','1/6/2001','1/8/2001',Nil,Nil);
 ExpandItem[h] := True;
 h := AddItem('Project 3');
 CellHasCheckBox[TObject(h),TObject(0)] := True;
 CellState[TObject(h),TObject(0)] := 1;
 AddBar(InsertItem(h,TObject(0),'Item 1'),'Task','1/2/2001','1/4/2001',Nil,Nil);
 AddBar(InsertItem(h,TObject(0),'Item 2'),'Task','1/3/2001','1/5/2001',Nil,Nil);
 ExpandItem[h] := True;
 h := AddItem('Project 4');
 CellHasCheckBox[TObject(h),TObject(0)] := True;
 CellState[TObject(h),TObject(0)] := 1;
 AddBar(InsertItem(h,TObject(0),'Item 1'),'Task','1/4/2001','1/7/2001',Nil,Nil);
 AddBar(InsertItem(h,TObject(0),'Item 2'),'Task','1/6/2001','1/8/2001',Nil,Nil);
 ExpandItem[h] := True;
 end;
end

property Bar.HistogramPattern as PatternEnum
Retrieves or sets a value that indicates the pattern to be used in the histogram.

Type Description

PatternEnum A PatternEnum expression that specifies the pattern to be
used to display the bar in the histogram

By default, the HistogramPattern property is exPatternEmpty. By default, no bar is
represented in the histogram. A bar is represented in the histogram only if HistogramPattern
or HistogramColor property is set. Use the HistogramColor property to define the color or
the EBN/skin file of the pattern to be displayed in the histogram. Use the
HistogramBackColor property to specify the histogram's background color. Use the
HistogramType property to specify the type of the graph to be displayed in the histogram
for specified bar. The AntiAliasing property specifies whether lines, curves or edges are
shown smoothly using the antialiasing rendering. The HistogramBorderColor property
specifies the color to show the border for values in the histogram. The ResizeUnitScale
property determines the refinement for the histogram part. For instance, if the chart
displays days, while the bars are represented up to hours, the ResizeUnitScale property on
exHour, will determine the histogram to show up to hours.

Please follow the steps in order to view your bars in the histogram.

1. Changes the HistogramVisible property on True (by default, it is False). After setting
the HistogramVisible property on True, the control shows a horizontal splitter in the
bottom side of the control.

2. Adjusts the height of the histogram view using the HistogramHeight property (by
default it is 0). After setting the HistogramHeight property on a value greater than 0,
the control shows a the histogram view in the bottom side of the control.

3. Changes the HistogramPattern or/and HistogramColor property, else no bars will be
shown in the histogram. The HistogramPattern/HistogramColor properties belong to a
Bar object. For instance the Chart.Bars("Task").HistogramPattern = exPatternDot,
specifies that the Task bars will be represented in the histogram using the exPatternDot
pattern ()

The followings are optional properties that you can set in order to customize your
histogram:

The HistogramType property indicates the type of the histogram being displayed for a
specified bar.
Use the HistogramView property to specify the items being represented in the
histogram view. By default, only visible items are displayed in the histogram. For
instance, using the HistogramView property you can select the items being represented
in the histogram

Use the HistogramBackColor property to specify the histogram's background color.

The following screen shot shows the bar's diagram if the HistogramPattern property is
exPatternBDiagonal. This histogram shows the diagram using a predefined patterns (value
should be greater than 1 and less then 255).

(HistogramPattern value from 1 to 255)

The following screen shot shows the bar's diagram if the HistogramColor property points an
EBN object (0x01000000, defines the EBN object being used to show the task bars). In
case the HistogramColor property points to an EBN/Skin object (the first 7 bites of the
color are used) the HistogramPattern property has no effect, so the EBN object is used to
show the diagram.

(HistogramColor defines the EBN/Skin object, HistogramPattern does not count)

The following screen shot shows the bar's diagram if the HistogramColor property points an
EBN object (0x01000000, defines the EBN object being used to show headers)

(HistogramColor defines the EBN/Skin file used, HistogramPattern does not count)

The following screen shot shows the bar's diagram if the HistogramPattern property is
exPolygonCurve + exPatternYard

(HistogramPattern value is 256 + value from (1 to 255))

The following screen shot shows the bar's diagram if the HistogramPattern property is
exPolygonCurve + exPatternEmpty, or simple exPolygonCurve

(HistogramPattern value is 256)

The following screen shot shows the bar's diagram if the HistogramPattern property is
exPolygonCurve + exPatternEmpty, or simple exPolygonCurve, the AntiAliasing
property is True, and the HistogramColor and HistogramBorderColor propertis have
different values.

(HistogramPattern value is 256, AntiAliasing = True, HistogramColor !=
HistogramBorderColor)

The following screen shot shows the bar's diagram if the HistogramPattern property is
exRectangularCurve + exPatternYard

(HistogramPattern value is 2048 + value from (1 to 255))

The following screen shot shows the bar's diagram if the HistogramPattern property is
exRectangularCurve + exPatternEmpty, or simple exRectangularCurve

(HistogramPattern value is 2048)

The following screen shot shows the bar's diagram if the HistogramPattern property is
exRectangularCurve + exPatternEmpty, or simple exRectangularCurve, the AntiAliasing
property is True, and the HistogramColor and HistogramBorderColor propertis have
different values.

(HistogramPattern value is 2048, AntiAliasing = True, HistogramColor !=
HistogramBorderColor)

The following screen shot shows the bar's diagram if the HistogramPattern property is
exBezierCurve + exPatternYard

(HistogramPattern value is 512 + value from (1 to 255))

The following screen shot shows the bar's diagram if the HistogramPattern property is
exBezierCurve + exPatternEmpty, or simple exBezierCurve

(HistogramPattern value is 512)

The following screen shot shows the bar's diagram if the HistogramPattern property is
exBezierCurve + exPatternEmpty, or simple exBezierCurve, the AntiAliasing property is
True, and the HistogramColor and HistogramBorderColor propertis have different values.

(HistogramPattern value is 512, AntiAliasing = True, HistogramColor !=
HistogramBorderColor)

The following screen shot shows the bar's diagram if the HistogramPattern property is
exRoundCurve + exPatternYard

(HistogramPattern value is 1024 + value from (1 to 255))

The following screen shot shows the bar's diagram if the HistogramPattern property is
exRoundCurve + exPatternEmpty, or simple exRoundCurve

(HistogramPattern value is 1024)

The following screen shot shows the bar's diagram if the HistogramPattern property is
exRoundCurve + exPatternEmpty, or simple exRoundCurve, the AntiAliasing property is
True, and the HistogramColor and HistogramBorderColor propertis have different values.

(HistogramPattern value is 1024, AntiAliasing = True, HistogramColor !=
HistogramBorderColor)

The following screen shot shows the bar's diagram if the HistogramPattern property is
exPatternShadow, the HistogramType property includes the exHistCumulative flag, and the
HistogramCumulativeOriginalColorBars property is False.

(HistogramPattern value is between 1 and 255 and HistogramType property includes the
exHistCumulative flag)

If the HistogramPattern property is a predefined value, the PatternEnum type specifies the
shape of the histogram as shown bellow (exPatternDot, exPatternBox and exPatternEmpty
):

If the HistogramPattern property is 256, the rectangular curves shows the overloads
and subloads of the bar in the specified range of data as follows:

If the HistogramPattern is 256 plus a predefined PatternEnum value, the histogram
shows like follows (in this case the HistogramPattern property is 256 +
exPatternVertical = 264):

If the HistogramPattern property is 512, the bezier curves shows the overloads and
subloads of the bar in the specified range of data as follows:

If the HistogramPattern property is 1024, the round curves shows the overloads and
subloads of the bar in the specified range of data as follows:

Bellow you can find how histogram is updated automatically as soon as the user moves or
resizes a bar:

Use the HistogramVisible property to show or hide the histogram. Use the HistogramHeight
property to specify at runtime the height of the histogram.

property Bar.HistogramRulerLinesColor as Color
Retrieves or sets a value that indicates the color to show the histogram's ruler lines.

Type Description

Color
A Color expression that specifies the color to show the
ruler. Use the value on 1, incase you actually need a black
ruler lines color.

By default, the HistogramRulerLinesColor property is 0, which means that it has no effect.
The left side of the histogram displays rulers based on the HistogramType property. If the
HistogramType property is exOverload, the ruler displays numbers, while if the
HistogramType property is exOverAllocation displays percents. The
HistogramGridLinesColor property to specify the color to show the grid lines in the right
side of the histogram, when the HistogramType property is exOverload. Use the
HistogramBoundsChanged event to notify your application when the left part of the
histogram is resized, so inside controls must be re-positioned. You can always use the
BeforeDrawPart/AfterDrawPart events to provide your custom drawing in the histogram.
The ShowHistogramValues property specifies the formula that returns the color to display
the selected values in the histogram for specified type of bar.

The left part of the histogram shows the rulers as in the following screen shot:

The left part of the histogram shows the rulers, while the right side of the histogram shows
the values as in the following screen shot:

property Bar.HistogramType as HistogramTypeEnum
Retrieves or sets a value that indicates the type of the histogram.

Type Description

HistogramTypeEnum A HistogramTypeEnum expression that specifies the type
of the histogram-graph to be shown for this bar.

By default, the HistogramType property is exHistOverload. Use the HistogramType property
to specify the histogram-graph to be displayed for a specified bar. A bar is represented in
the histogram only if HistogramPattern or HistogramColor property is set. Use the
HistogramColor property to define the color or the EBN/skin file of the pattern to be
displayed in the histogram. Use the HistogramCriticalValue property to specify a critical
value. The critical value is interpreted differently based on the HistogramType property. For
instance, if the HistogramType property is exHistOverload, the critical value represents the
count of cumulative bars since if the HistogramType property is exHistOverAllocation the
critical value represents a percent value. Use the HistogramCriticalColor property to specify
the color to display the critical values. Use HistogramRulerLinesColor property to specify
the color to show the ruler in the left part of the histogram. The ShowHistogramValues
property specifies the formula that returns the color to display the selected values in the
histogram for specified type of bar.

Currently the HistogramType property supports the following values:

1. exHistOverload the histogram-graph shows the count of task day by day or unit by
unit. The ItemBar(exBarEffort) specifies the number of units to count for the bar. For
instance, if the bars display activities the exBarEffort value can represent the number
of workers for each activity so the overload histogram displays the total number of
workers on the activity. Use the HistogramGridLinesColor specifies the color to show
the grid lines when the HistogramType property is exHistOverload. Use the
HistogramItems property to specify the number of items allocated for the current bar to
be shown in the histogram. The exHistOverload type can be combined with
exHistCumulative.

The following screen shot shows the exHistOverload histogram when exBarEffort
property is 1 (by default):

The following screen shot shows the exHistOverload histogram when exBarEffort
property is different for bars as seen in the columns section:

2. exHistOverAllocation the histogram shows the work-loads. The work-load for a task
is computed as ItemBar(exBarEffort) / length of the bar. The work-load for the task is
the work effort / task duration. (i.e. If item.exBarEffort = 1 and gantt bar length is 10
days, then the work-load = 0.1 or 10%). The histogram- graph shows the sum of the
work-loads (the work-load of each task item is added, unit by unit). The
exHistOverload type can be combined with exHistCumulative.

The following screen shot shows the exHistOverallocation histogram when exBarEffort
property is 1 (by default):

The following screen shot shows the exHistOverallocation histogram when exBarEffort
property is different for bars as seen in the columns section:

3. exHistCumulative the histogram shows the overloads or work-loads using cumulative
values and different colors . This option should be combined with exHistOverload to
show a cumulative overload histogram, or with the exHistOverAllocation to show a
cumulative work loads histogram. The HistogramCumulativeColors property defines the
number of colors being displayed in the cumulative histogram. The
HistogramCumulativeColor property specifies a cumulative color based on its index.

Use the HistogramCumulativeShowLegend property to specify the index of the column
being shown in the left side of the histogram to show the legend of the colors being
used for cumulative bars. The HistogramPattern property should not be a curve, in
order to show a cumulative histogram, in other words should be a predefined pattern.
You can change the original color of the bars that generates the cumulative histogram
using the HistogramCumulativeOriginalColorBars property. The following screen shot
shows the bars using the original color in the items that generates the histogram (when
HistogramCumulativeOriginalColorBars property is True, by default).

The following screen shot shows the exHistOverload + exHistCumulative histogram when
exBarEffort property is 1 (by default), and the HistogramCumulativeOriginalColorBars

property is False:

The following screen shot shows the exHistOverload + exHistCumulative histogram when
exBarEffort property is different, , and the HistogramCumulativeOriginalColorBars property

is False:

property Bar.Name as String
Retrieves the name of the bar.

Type Description
String A String expression that indicates the name of the Bar.

The Name property indicates the name of the bar. The Name property is read-only. Use the
Add or Copy method to add a new bar to the Bars collection, using a different name. Use
the AddBar method to add new bars to an item. Use the Shape, Pattern and Color
properties to define the appearance for the middle part of the bar. Use the StartShape and
StartColor properties to define the appearance for the starting part of the bar. Use the
EndShape and EndColor properties to define the appearance for the ending part of the bar.

property Bar.Overlaid(Type as OverlaidBarsTypeEnum) as Variant
Retrieves or sets a value that indicates options for the specified overlaid type.

Type Description
Type as
OverlaidBarsTypeEnum Specifies the Type of the overlaid being changed

Variant A Variant expression that specifies the option for the
current overlaid type.

Use the OverlaidType property to specify how the overlaid bars are displayed. Use the
Overlaid property to indicate the parameter for specified overlaid type as follows:

Overlaid(exOverlaidBarsOffset) (long expression) specifies the vertical offset, in
pixels, to display the overlaid bars. By default, the Overlaid(exOverlaidBarsOffset)
property is 3 pixels.

Overlaid(exOverlaidBarsIntersect) (string expression) specifies the name of the bar
to be displayed on the portion that laid over bars. By default, the
Overlaid(exOverlaidBarsIntersect) property is empty, so nothing is displayed if the
Overlaid is exOverlaidBarsIntersect. You MUST specify the name of the task to display
the portion that covers the bars if the Overlaid is exOverlaidBarsIntersect. For
instance, the following sample creates a copy of the task bar with a different color (
red) and display it when two or more tasks covers.

With .Chart.Bars.Copy("Task", "RTask")
 .Color = RGB(255, 0, 0)
End With

With .Chart.Bars("Task")
 .OverlaidType = exOverlaidBarsIntersect
 .Overlaid(exOverlaidBarsIntersect) = "RTask"
End With

Overlaid(exOverlaidBarsStack) (long expression) specifies the distance between

two bars that covers each other, in pixels. By default, the Overlaid(
exOverlaidBarsStack) property is 3 pixels. Use the exOverlaidBarsStack |
exOverlaidBarsStackAutoArrange flag to auto arrange the bars inside the item as they
best fit. If the exOverlaidBarsStack flag is set, the control resizes the item so all
bars fits entirely in the item, so we would recommend to set the
ScrollBySingleLine property on True, as items with different heights may be
displayed . The ItemHeight property specifies the height of the item. Use the
ItemMaxHeight property to limit the height of the item when multiple bars
covers each other.

Overlaid(exOverlaidBarsTransparent) (long expression) specifies the percent of
transparency to be applied to bars that covers other bars. By default, the
Overlaid(exOverlaidBarsTransparent) property is 50% (semi-transparent).

property Bar.OverlaidGroup as String
Specifies the list of bars beside the current bar that may cover each other.

Type Description

String A String expression that specifies the list of bars
separated by , character that may cover each other.

By default, the OverlaidGroup property is empty, so only bars of the same type, in the
same item are displayed using a different offset, transparency, when they cross each other.
Use the OverlaidGroup property to specify the list of bars that may cross each other and
display using different vertical offset, transparency and so on. The OverlaidType property to
specify how the bars that cover each other are displayed. Use the Overlaid property to
specify a different parameter for specified overlaid type. Use the OverlaidType and
Overlaid properties to display different the bars that laid over or cover other bars.

The following VB sample, creates two new type of bars RTask and GTask from Task bar,
and specify when they cross each other inside the item to be displayed using a different
offset:

With G2antt1
 .DefaultItemHeight = 22
 .Columns.Add "Task"
 With .Chart
 .ResizeUnitScale = exHour
 .PaneWidth(False) = 48
 .FirstVisibleDate = #1/1/2001#
 With .Bars
 .Copy("Task","RTask").Color = 255
 .Copy("Task","GTask").Color = 65280
 With .Item("Task")
 .OverlaidType = exOverlaidBarsOffset or exOverlaidBarsTransparent
 .Overlaid(exOverlaidBarsTransparent) = 70
 .OverlaidGroup = "RTask,GTask"
 End With
 End With
 End With
 With .Items
 h = .AddItem("Task 1")

 .AddBar h,"Task",#1/4/2001#,#1/8/2001#,"A1"
 .AddBar h,"GTask",#1/7/2001#,#1/12/2001#,"A2"
 .AddBar h,"RTask",#1/10/2001#,#1/15/2001#,"A3"
 End With
End With

The following VB.NET sample, creates two new type of bars RTask and GTask from Task
bar, and specify when they cross each other inside the item to be displayed using a
different offset:

Dim h
With AxG2antt1
 .DefaultItemHeight = 22
 .Columns.Add "Task"
 With .Chart
 .ResizeUnitScale = EXG2ANTTLib.UnitEnum.exHour
 .PaneWidth(False) = 48
 .FirstVisibleDate = #1/1/2001#
 With .Bars
 .Copy("Task","RTask").Color = 255
 .Copy("Task","GTask").Color = 65280
 With .Item("Task")
 .OverlaidType = EXG2ANTTLib.OverlaidBarsTypeEnum.exOverlaidBarsOffset or
EXG2ANTTLib.OverlaidBarsTypeEnum.exOverlaidBarsTransparent
 .Overlaid(EXG2ANTTLib.OverlaidBarsTypeEnum.exOverlaidBarsTransparent) = 70
 .OverlaidGroup = "RTask,GTask"
 End With
 End With
 End With
 With .Items
 h = .AddItem("Task 1")
 .AddBar h,"Task",#1/4/2001#,#1/8/2001#,"A1"
 .AddBar h,"GTask",#1/7/2001#,#1/12/2001#,"A2"
 .AddBar h,"RTask",#1/10/2001#,#1/15/2001#,"A3"
 End With
End With

The following C# sample, creates two new type of bars RTask and GTask from Task bar,

and specify when they cross each other inside the item to be displayed using a different
offset:

axG2antt1.DefaultItemHeight = 22;
axG2antt1.Columns.Add("Task");
EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;
 var_Chart.ResizeUnitScale = EXG2ANTTLib.UnitEnum.exHour;
 var_Chart.set_PaneWidth(false,48);
 var_Chart.FirstVisibleDate = "1/1/2001";
 EXG2ANTTLib.Bars var_Bars = var_Chart.Bars;
 var_Bars.Copy("Task","RTask").Color = 255;
 var_Bars.Copy("Task","GTask").Color = 65280;
 EXG2ANTTLib.Bar var_Bar = var_Bars["Task"];
 var_Bar.OverlaidType = (EXG2ANTTLib.OverlaidBarsTypeEnum)
(EXG2ANTTLib.OverlaidBarsTypeEnum.exOverlaidBarsOffset +
EXG2ANTTLib.OverlaidBarsTypeEnum.exOverlaidBarsTransparent);

var_Bar.set_Overlaid(EXG2ANTTLib.OverlaidBarsTypeEnum.exOverlaidBarsTransparent,70);
 var_Bar.OverlaidGroup = "RTask,GTask";
EXG2ANTTLib.Items var_Items = axG2antt1.Items;
 int h = var_Items.AddItem("Task 1");
 var_Items.AddBar(h,"Task","1/4/2001","1/8/2001","A1",null);
 var_Items.AddBar(h,"GTask","1/7/2001","1/12/2001","A2",null);
 var_Items.AddBar(h,"RTask","1/10/2001","1/15/2001","A3",null);

The following C++ sample, creates two new type of bars RTask and GTask from Task bar,
and specify when they cross each other inside the item to be displayed using a different
offset:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import "D:\\Exontrol\\ExG2antt\\project\\Debug\\ExG2antt.dll"
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();

spG2antt1->PutDefaultItemHeight(22);
spG2antt1->GetColumns()->Add(L"Task");
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutResizeUnitScale(EXG2ANTTLib::exHour);
 var_Chart->PutPaneWidth(VARIANT_FALSE,48);
 var_Chart->PutFirstVisibleDate("1/1/2001");
 EXG2ANTTLib::IBarsPtr var_Bars = var_Chart->GetBars();
 var_Bars->Copy(L"Task",L"RTask")->PutColor(255);
 var_Bars->Copy(L"Task",L"GTask")->PutColor(65280);
 EXG2ANTTLib::IBarPtr var_Bar = var_Bars->GetItem("Task");
 var_Bar->PutOverlaidType((EXG2ANTTLib::OverlaidBarsTypeEnum)
(EXG2ANTTLib::exOverlaidBarsOffset + EXG2ANTTLib::exOverlaidBarsTransparent));
 var_Bar->PutOverlaid(EXG2ANTTLib::exOverlaidBarsTransparent,long(70));
 var_Bar->PutOverlaidGroup(L"RTask,GTask");
EXG2ANTTLib::IItemsPtr var_Items = spG2antt1->GetItems();
 long h = var_Items->AddItem("Task 1");
 var_Items->AddBar(h,"Task","1/4/2001","1/8/2001","A1",vtMissing);
 var_Items->AddBar(h,"GTask","1/7/2001","1/12/2001","A2",vtMissing);
 var_Items->AddBar(h,"RTask","1/10/2001","1/15/2001","A3",vtMissing);

The following VFP sample, creates two new type of bars RTask and GTask from Task bar,
and specify when they cross each other inside the item to be displayed using a different
offset:

with thisform.G2antt1
 .DefaultItemHeight = 22
 .Columns.Add("Task")
 with .Chart
 .ResizeUnitScale = 65536
 .PaneWidth(.F.) = 48
 .FirstVisibleDate = {^2001-1-1}
 with .Bars
 .Copy("Task","RTask").Color = 255
 .Copy("Task","GTask").Color = 65280
 with .Item("Task")
 .OverlaidType = 257
 .Overlaid(256) = 70
 .OverlaidGroup = "RTask,GTask"

 endwith
 endwith
 endwith
 with .Items
 h = .AddItem("Task 1")
 .AddBar(h,"Task",{^2001-1-4},{^2001-1-8},"A1")
 .AddBar(h,"GTask",{^2001-1-7},{^2001-1-12},"A2")
 .AddBar(h,"RTask",{^2001-1-10},{^2001-1-15},"A3")
 endwith
endwith

property Bar.OverlaidType as OverlaidBarsTypeEnum
Specifies how the overlay bars are shown.

Type Description

OverlaidBarsTypeEnum A OverlaidBarsTypeEnum expression that specifies how
overlaid bars are shown.

By default, the OverlaidType property is exOverlaidBarsNone. By default (
exOverlaidBarsNone) the overlaid bars are not displayed, as shown in the second picture.
For instance, if the OverlaidType property is exOverlaidBarsOffset and two task bars are
cover each other, they get displayed using a different offset. The IntersectBars property
determines if two bars intersects if returns 0. The ItemBar(exBarIntersectWith) property
retrieves a collection of bars that interest with the current bar. Use the OverlaidOnMoving
property to prevent overlaying the bars while the user moves or resizes the bar at runtime.

Use the Overlaid... properties when multiple bars are displayed in the same item and you
want to distingue them when they covers each other. In order to get the overlay feature
runs please follow the steps:

Use the OverlaidType property to specify the type of overlaying when bars covers each
other. By default, no overlay support.
Use the Overlaid property to specify a different parameter for specified overlaid types.
For instance, you can specify the vertical offset or transparency being used to display
overlaid bars.
Use the OverlaidGroup property to specify a list of bars (separated by , character)
that may cover each other. By default, only bars of the same type in the same item,
that covers each other are displayed using different vertical offsets, transparency, and
so on. Instead, if the OverlaidGroup property contains another type of bars, they all
together may cover each other using different vertical offsets, transparency and so on.

The following picture shows the bars arranged as a stack, when multiple bars cover each
others bars: (OverlaidType = exOverlaidBarsStack Or exOverlaidBarsStackAutoArrange)

The following picture shows the bars using a different vertical offset and a different
transparency, when multiple bars cover others bars: (OverlaidType = exOverlaidBarsOffset

Or exOverlaidBarsTransparent)

By default, the following picture shows the bars at the same vertical offset, when multiple
bars covers others bars: (OverlaidType = exOverlaidBarsNone)

The OverlaidType displays the bars that covers each other as follow:

exOverlaidBarsOffset using different vertical offset. Use the
Overlaid(exOverlaidBarsOffset) property to specify the offset being applied when the
bars laid over. The bars gets arranged on maximum 3 layers, and the height of the item
is not changed.

exOverlaidBarsOffset or exOverlaidBarsTransparent using different vertical offset and
transparency. The bars gets arranged on maximum 3 layers, and the height of the item
is not changed.

exOverlaidBarsIntersect using a different bar for the portion that covers. Use the
Overlaid(exOverlaidBarsIntersect) property to specify the name of the bar that's
displayed in the portion that's covered by two or multiple bars. For instance, you can
add a copy of the current bar with a different color, and when two or multiple bars
cover each other, the portion that is laid over can be displayed using your clone bar
with a different color. The bars gets arranged on 1 layer only.

exOverlaidBarsStack arranges the bars as a stack as soon as they cover each other.
If this flag is set, the control resizes the item so all bars fits entirely in the item,
so we would recommend to set the ScrollBySingleLine property on True, as
items with different heights may be displayed . The ItemHeight property
specifies the height of the item. Use the ItemMaxHeight property to limit the
height of the item when multiple bars covers each other. The
Overlaid(exOverlaidBarsStack) specifies the distance in pixels between two bars that

covers each other. The Overlaid(exOverlaidBarsTransparent) specifies the percent of
transparency being applied to bars in the same item that are not moved or resized. The
bars may be arranged on multiple layers, and the height of the item is being changed.

exOverlaidBarsStack or exOverlaidBarsStackAutoArrange arranges the bars as a
stack, and auto arrange them to best fit in the item. The bars may be arranged on
multiple layers, and the height of the item is being changed.

property Bar.OverviewColor as Color
Retrieves or sets a value that indicates the color to show the bars of this type in the
control's overview panel.

Type Description

Color A Color expression that indicates the color to show the
bars of this type in the control's overview panel.

By default, the OverviewColor property is 0, which indicates that it has no effect. The
OverviewColor property indicates the color to show the bars of this type in the control's
overview panel. The OverviewColor property on -1, hides the overview-representation of
bars of this type (hides the bars in the overview).

The color to specify the bar in the overview area is determined as follows:

If ItemBar(exBarOverviewColor) property is not 0, the exBarOverviewColor indicates
the color to show the bar in the overview area, else
If OverviewColor property is not 0, the OverviewColor property indicates the color to
show the bar in the overview area, else
If the ItemBar(exBarColor) is not 0, the exBarColor indicates the color to show the bar
in the overview area, else
The Color property of the Bar indicates the color to show the bar in the overview part
of the control.

(The bar is represented into the control's overview only if its determined color is not -1)

The following screen shot shows the control's overview (while bar are displayed in blue, the
overview shows the bar in light-gray):

property Bar.Pattern as PatternEnum
Retrieves or sets a value that indicates the pattern being used to fill the bar.

Type Description

PatternEnum A PatternEnum expression that indicates the brush being
used to fill the bar.

Use the Pattern property to specify the brush to fill the bar. By default, the Pattern property
is exPatternSolid. Use the Color property to specify the color to fill the bar. Use the Shape
property to specify the height and the vertical alignment of the middle part of the bar. Use
the StartColor property to specify the color for the beginning part of the bar, if the
StartShape property is not exShapeIconEmpty. Use the EndColor property to specify the
color for the ending part of the bar, if the EndShape property is not exShapeIconEmpty. If
the Pattern property is exPatternBox, the StartColor and EndColor properties defines the
start and ending color to show a gradient bar. If available, the ItemBar(exBarPattern)
property may be used to specify a different pattern for a specified bar only.

The following VB sample creates a new bar called "Task2", that's similar with the "Task" bar
excepts that we change the pattern to fill the bar:

With G2antt1.Chart.Bars
 With .Copy("Task", "Task2")
 .Pattern = exPatternDot
 End With
End With

The following C++ sample creates a new bar called "Task2", that's similar with the "Task"
bar excepts that we change the pattern to fill the bar:

CBars bars = m_g2antt.GetChart().GetBars();
CBar bar = bars.Copy("Task", "Task2");
bar.SetPattern(2 /*exPatternDot*/);

The following VB.NET sample creates a new bar called "Task2", that's similar with the
"Task" bar excepts that we change the pattern to fill the bar:

With AxG2antt1.Chart.Bars
 With .Copy("Task", "Task2")
 .Pattern = EXG2ANTTLib.PatternEnum.exPatternDot
 End With
End With

The following C# sample creates a new bar called "Task2", that's similar with the "Task" bar
excepts that we change the pattern to fill the bar:

EXG2ANTTLib.Bar bar = axG2antt1.Chart.Bars.Copy("Task", "Task2");
bar.Pattern = EXG2ANTTLib.PatternEnum.exPatternDot;

The following VFP sample creates a new bar called "Task2", that's similar with the "Task"
bar excepts that we change the pattern to fill the bar:

with thisform.G2antt1.Chart.Bars
 with .Copy("Task", "Task2")
 .Pattern = 2
 endwith
endwith

property Bar.Shape as ShapeBarEnum
Retrieves or sets a value that indicates the shape of the bar.

Type Description

ShapeBarEnum A ShapeBarEnum expression that indicates the height and
the vertical alignment of the bar

Use the Shape property to specify the height and the vertical alignment of the middle part of
the bar. By default, the Shape property is exShapeSolid. Use the Pattern property to
specify the brush to fill the bar. Use the Color property to specify the color to fill the bar.
Use the StartColor property to specify the color for the beginning part of the bar, if the
StartShape property is not exShapeIconEmpty. Use the EndColor property to specify the
color for the ending part of the bar, if the EndShape property is not exShapeIconEmpty.

The following VB sample creates a new bar called "Task2", that's similar with the "Task" bar
excepts that we change the shape of the new bar bar:

With G2antt1.Chart.Bars
 With .Copy("Task", "Task2")
 .Shape = exShapeSolidCenter
 End With
End With

The following C++ sample creates a new bar called "Task2", that's similar with the "Task"
bar excepts that we change the shape of the new bar bar:

CBars bars = m_g2antt.GetChart().GetBars();
CBar bar = bars.Copy("Task", "Task2");
bar.SetShape(3 /*exShapeSolidCenter*/);

The following VB.NET sample creates a new bar called "Task2", that's similar with the
"Task" bar excepts that we change the shape of the new bar bar:

With AxG2antt1.Chart.Bars
 With .Copy("Task", "Task2")
 .Shape = EXG2ANTTLib.ShapeBarEnum.exShapeSolidCenter
 End With
End With

The following C# sample creates a new bar called "Task2", that's similar with the "Task" bar
excepts that we change the shape of the new bar bar:

EXG2ANTTLib.Bar bar = axG2antt1.Chart.Bars.Copy("Task", "Task2");
bar.Shape = EXG2ANTTLib.ShapeBarEnum.exShapeSolidCenter;

The following VFP sample creates a new bar called "Task2", that's similar with the "Task"
bar excepts that we change the shape of the new bar bar:

with thisform.G2antt1.Chart.Bars
 with .Copy("Task", "Task2")
 .Shape = 3
 endwith
endwith

property Bar.Shortcut as String
Specifies a value that indicates a shortcut for the current bar.

Type Description
String A String expression that indicates the shortcut of the bar

The Shortcut property adds a shortcut to this bar. Use the Add method to add new type of
bars to the chart. Use the Shortcut property to redefine a known bar. For instance, you can
define the bar "Task%Progress:Split", and rename it to "Task", and so all Task bars will be
divided by the nonworking area, and may display percent values, in other words, you
redefined the Task bars.

property Bar.ShowHistogramValues as String
Specifies the formula that returns the color to display the selected values in the histogram
for specified type of bar.

Type Description

String A String expression that specifies the color to display the
values in the histogram.

By default, the ShowHistogramValues property is empty. If the ShowHistogramValues
property is empty or not valid, the values are not shows in the histogram. The easiest way
to show the values in the histogram is just using ShowHistogramValues property on "1". The
values in the histogram show a % character if the HistogramType property is
exHistOverAllocation. The sum of the exBarEffort value of each bar indicates the value
being shown in the histogram. The value keyword in ShowHistogramValues property
indicates the value in the histogram. For instance, "value>5?255:0" displays values greater
than 5 with the color 255 (red in RGB format). The "16711680" specifies the color to be
shown the values in the histogram (blue in RGB format is RGB(0,0,255) in other words it is
16711680). The HistogramRulerLinesColor property indicates the color to show the rulers
in the left side of the histogram. The HistogramValueFromPoint property gets the value in
the histogram from the specified location.

The following screen shows values in a exHistOverLoad histogram (ShowHistogramValues
property is "value>100?255:1"):

The following screen shows values in a exHistOverAllocation histogram (
ShowHistogramValues property is "value>=5?16711680:255"):

The value keyword in ShowHistogramValues property indicates the value in the histogram

This property/method supports predefined constants and operators/functions as described
here.

property Bar.StartColor as Color
Returns or sets a value that indicates the color for the left side corner.

Type Description

Color A Color expression that indicates the color for the starting
part of the bar.

Use the StartColor property to specify the color to fill the start part of the bar, if the
StartShape property is not exShapeIconEmpty or Pattern is exPatternBox. Use the Color
property to specify the color to fill the middle part of the bar. Use the EndColor and
EndShape properties to define the appearance of the starting part of the bar. Use the
AddShapeCorner property to add custom icons to the bars. In this case, the icon is
processed before displaying based on the StartColor/ EndColor property. For instance, if
you add an black and white icon, and the StartColor/EndColor is red, the icon will be
painted in red. Instead, if the StartColor/EndColor property is -1 (0xFFFFFFFF, not white
which is 0x00FFFFFF), the icon is painted as it was added using the AddShapeCorner
without any image processing. If the Pattern property is exPatternBox, the StartColor and
EndColor properties defines the start and ending color to show a gradient bar.

The following VB sample changes the "Task" bar visual appearance using liner gradient with
margins as shown :

With G2antt1.Chart.Bars.Item("Task")
 .Color = vbWhite
 .Pattern = exPatternBox
 .StartShape = exShapeIconCircleDot
 .StartColor = vbRed
 .EndShape = exShapeIconCircleDot
 .EndColor = vbBlue
End With

The following VB sample changes the "Task" bar visual appearance using liner gradient with
solid border as shown :

With G2antt1.Chart.Bars.Item("Task")
 .Color = vbRed
 .Pattern = exPatternBox
 .StartColor = vbRed
 .EndColor = vbBlue
End With

The following VB sample defines a new bar that looks like this :

With G2antt1.Chart.Bars.Add("Task2")
 .Pattern = exPatternShadow
 .Color = RGB(0, 0, 255)
 .StartShape = exShapeIconCircleDot
 .StartColor = RGB(255, 0, 0)
End With

The following C++ sample defines a bar that looks like this above:

CBar bar = m_g2antt.GetChart().GetBars().Add("Task2");
bar.SetPattern(3 /*exPatternShadow*/);
bar.SetColor(RGB(0, 0, 255));
bar.SetStartShape(4 /* exShapeIconCircleDot*/);
bar.SetStartColor(RGB(255, 0, 0));

The following VB.NET sample defines a bar that looks like this above:

With AxG2antt1.Chart.Bars.Add("Task2")
 .Pattern = EXG2ANTTLib.PatternEnum.exPatternShadow
 .Color = RGB(0, 0, 255)
 .StartShape = EXG2ANTTLib.ShapeCornerEnum.exShapeIconCircleDot
 .StartColor = RGB(255, 0, 0)
End With

The following C# sample defines a bar that looks like this above:

With AxG2antt1.Chart.Bars.Add("Task2")
 .Pattern = EXG2ANTTLib.PatternEnum.exPatternShadow
 .Color = RGB(0, 0, 255)
 .StartShape = EXG2ANTTLib.ShapeCornerEnum.exShapeIconCircleDot
 .StartColor = RGB(255, 0, 0)
End With

The following VFP sample defines a bar that looks like this above:

with thisform.G2antt1.Chart.Bars.Add("Task2")
 .Pattern = 3 && exPatternShadow

 .Color = RGB(0, 0, 255)
 .StartShape = 4 && exShapeIconCircleDot
 .StartColor = RGB(255, 0, 0)
EndWith

In VB.NET or C# you require the following functions until the .NET framework will provide:

You can use the following VB.NET function:

 Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
 End Function

You can use the following C# function:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

property Bar.StartShape as ShapeCornerEnum
Retrieves or sets a value that indicates the shape of the left side corner.

Type Description

ShapeCornerEnum A ShapeCornerEnum expression that defines the shape of
the icon being used to draw the corner.

By default, the StartShape property is exShapeIconEmpty. If the StartShape property is
exShapeIconEmpty the bas has no starting part. Use the Color property to specify the color
to fill the middle part of the bar. Use the Pattern property to specify the brush being used to
fill the bar. Use the Shape property to specify the height and the vertical alignment of the
middle part of the bar. Use the AddShapeCorner method to add a custom icon to be used
as a starting or ending part of the bar. Use the Images or ReplaceIcon method to update
the list of control's icons.

The following VB sample adds a custom shape and defines a bar like this :

With G2antt1.Chart.Bars
 .AddShapeCorner 12345, 1
 With .Add("Task2")
 .Pattern = exPatternDot
 .Shape = exShapeThinDown
 .StartShape = 12345
 .StartColor = RGB(255, 0, 0)
 .Color = .StartColor
 End With
End With

The following C++ sample adds a custom shape and defines a bar like above:

CBars bars = m_g2antt.GetChart().GetBars();
bars.AddShapeCorner(COleVariant((long)12345), COleVariant((long)1));
CBar bar = bars.Add("Task2");
bar.SetPattern(2 /*exPatternDot*/);
bar.SetShape(20 /*exShapeThinDown*/);
bar.SetStartShape(12345);
bar.SetStartColor(RGB(255, 0, 0));
bar.SetColor(bar.GetStartColor());

The following VB.NET sample adds a custom shape and defines a bar like above:

With AxG2antt1.Chart.Bars
 .AddShapeCorner(12345, 1)
 With .Add("Task2")
 .Pattern = EXG2ANTTLib.PatternEnum.exPatternDot
 .Shape = EXG2ANTTLib.ShapeBarEnum.exShapeThinDown
 .StartShape = 12345
 .StartColor = RGB(255, 0, 0)
 .Color = .StartColor
 End With
End With

The following VB.NET sample adds a custom icon to the start of all Task bars:

With AxG2antt1.Chart.Bars
 .AddShapeCorner(12345, 1)
 .Item("Task").StartShape = 12345
 .Item("Task").StartColor = UInteger.MaxValue
End With

The following C# sample adds a custom shape and defines a bar like above:

axG2antt1.Chart.Bars.AddShapeCorner(12345, 1);
EXG2ANTTLib.Bar bar = axG2antt1.Chart.Bars.Add("Task2");
bar.Pattern = EXG2ANTTLib.PatternEnum.exPatternDot;
bar.Shape = EXG2ANTTLib.ShapeBarEnum.exShapeThinDown;
bar.StartShape = (EXG2ANTTLib.ShapeCornerEnum)12345;
bar.StartColor = ToUInt32(Color.FromArgb(255, 0, 0));
bar.Color = bar.StartColor;

The following C# sample adds a custom icon to the start of all Task bars:

EXG2ANTTLib.Bars bars = axG2antt1.Chart.Bars;
bars.AddShapeCorner(12345, 1);
bars["Task"].StartShape = EXG2ANTTLib.ShapeCornerEnum.exShapeIconEmpty + 12345;
bars["Task"].StartColor = 0xFFFFFFFF;

The following VFP sample adds a custom shape and defines a bar like above:

With thisform.G2antt1.Chart.Bars

 .AddShapeCorner(12345, 1)
 With .Add("Task2")
 .Pattern = 2 && exPatternDot
 .Shape = 20 && exShapeThinDown
 .StartShape = 12345
 .StartColor = RGB(255, 0, 0)
 .Color = .StartColor
 EndWith
EndWith

The following VB sample defines a new bar that looks like this :

With G2antt1.Chart.Bars.Add("Task2")
 .Pattern = exPatternShadow
 .Color = RGB(0, 0, 255)
 .StartShape = exShapeIconCircleDot
 .StartColor = RGB(255, 0, 0)
End With

The following C++ sample defines a bar that looks like this above:

CBar bar = m_g2antt.GetChart().GetBars().Add("Task2");
bar.SetPattern(3 /*exPatternShadow*/);
bar.SetColor(RGB(0, 0, 255));
bar.SetStartShape(4 /* exShapeIconCircleDot*/);
bar.SetStartColor(RGB(255, 0, 0));

The following VB.NET sample defines a bar that looks like this above:

With AxG2antt1.Chart.Bars.Add("Task2")
 .Pattern = EXG2ANTTLib.PatternEnum.exPatternShadow
 .Color = RGB(0, 0, 255)
 .StartShape = EXG2ANTTLib.ShapeCornerEnum.exShapeIconCircleDot
 .StartColor = RGB(255, 0, 0)
End With

The following C# sample defines a bar that looks like this above:

With AxG2antt1.Chart.Bars.Add("Task2")

 .Pattern = EXG2ANTTLib.PatternEnum.exPatternShadow
 .Color = RGB(0, 0, 255)
 .StartShape = EXG2ANTTLib.ShapeCornerEnum.exShapeIconCircleDot
 .StartColor = RGB(255, 0, 0)
End With

The following VFP sample defines a bar that looks like this above:

with thisform.G2antt1.Chart.Bars.Add("Task2")
 .Pattern = 3 && exPatternShadow
 .Color = RGB(0, 0, 255)
 .StartShape = 4 && exShapeIconCircleDot
 .StartColor = RGB(255, 0, 0)
EndWith

Bars object
The Bars holds a collection of Bar objects. A Bar object defines the look and feel for bars in
the chart's area. Use the Bars property to access the Bars collection. Use the Chart object
property to access the control's chart. Use the AddBar method to add a bar to an item. The
Bars collection holds a collection of predefined and custom bars. The Bars object supports
the following methods and properties:

Name Description

Add Adds a Bar object to the collection and returns a reference
to the newly created object.

AddShapeCorner Adds a custom shape corner.
Clear Removes all objects in a collection.

Copy Copies a Bar object and returns a reference to the newly
created object.

Count Returns the number of objects in a collection.
Item Returns a specific Column of the Columns collection.
Remove Removes a specific member from the Bars collection.
RemoveShapeCorner Removes a custom shape corner.

method Bars.Add (Name as String)
Adds a Bar object to the collection and returns a reference to the newly created object.

Type Description

Name as String
A String expression that indicates the name of the bar
being created. If the Name parameter includes the ":" or
"%"character, it has a special meaning described bellow.

Return Description
Bar A Bar object being inserted.

The Add method adds a new bar to the Bars collection. The look and feel of the newly
created bar could depend on the Name parameter like follows:

1. If the Name parameter doesn't include a : or % character the Add
method adds a regular bar.

2. If the Name parameter includes a % character, so the Name
parameter is like A%B, the Add method adds a new bar that's a combination of two
existing bars A and B so the first bar A is displayed on the full area of the bar, since
the second bar B uses the ItemBar(,,exBarPercent) value to determine the percent of
the area from the full bar to be painted. Use the
ItemBar(,,exBarShowPercentCaption)/ItemBar(,,exBarPercentCaptionFormat) to show
and format the percent value as text. Use the ItemBar(,,exBarCanResizePercent) to
disable resizing the percent at runtime. For instance, the Add("Task%Progress") adds
a combination of Task and Progress bars, so the Task shape is
displayed on the full bar, and the Progress shape is displayed only on the portion
determined by the Items.ItemBar(,,exBarPercent) value. The A and B could be any
known bar at the adding time. For instance, if you have added bars like "MyTask" and
"MySplit" you can define the bar "MyTask%MySplit", and so on. This option helps you
to display proportionally the second shape when the user resizes or moves the bar.

3. If the Name parameter includes a : character, so the Name parameter is
like A:B, the newly created bar indicates a combination of A and B bars, where A is
displayed in the working areas, since the B bar is displayed in non-working areas.
Use the NonworkingDays, NonworkingHours, ItemNonworkingUnits property to define
non-working days or hours. Use the AddNonworkingDate method to add custom dates
as being nonworking date. For instance, the Add("Task:Split") property adds a
combination of Task and Split bars, so the Task bar is
displayed in working area, and the Split bar is displayed in the non-working area. In
other words you have a Task bar that 's interrupted for each non-working unit. For
instance, "Task:Progress" adds a new bar that displays the Task shape in working
areas, and the Progress shape in non-working area. The A and B could be any known

bar at the adding time. For instance, if you have added bars like "MyTask" and
"MySplit" you can define the bar "MyTask:MySplit", and so on.

4. If the Name parameter includes % and : characters, so it's like
A%B:C it combines the cases 2 and 3.

5. OwnerDraw, defines an owner-draw bar. The BeforeDrawPart(exOwnerDrawBar)
event occurs just before drawing the owner-draw bar, while the
AfterDrawPart(exOwnerDrawBar) event notifies your application once the owner-draw
bar is drawn.

The Shortcut property adds a shortcut for the bar, so you can use short names when using
the AddBar method . Use the AddBar property to add a new bar to an item. Use the Shape,
Pattern and Color properties to define the appearance for the middle part of the bar. Use
the StartShape and StartColor properties to define the appearance for the starting part of
the bar. Use the EndShape and EndColor properties to define the appearance for the
ending part of the bar. The Name property indicates the name of the bar. Use the Copy
property to create a clone bar. Use the AllowCreateBar property to specify whether the
user can create new bars using the mouse. Use the Height property to specify the height
for the bar, if case.

By default, the Bars collection includes the following predefined bars:

"Deadline": (this bar can be moved, can't be resized)
"Project Summary": (use the DefineSummaryBars method to define bars
that belongs to a summary bar)
"Summary": (use the DefineSummaryBars method to define bars that
belongs to a summary bar)
"Milestone": (this bar can be moved, can't be resized)
"Progress":

"Split":
"Task":

The Color property of the Bar object specifies the color being used to paint the bar. This
property changes the colors for all bars with the same name. For instance, if you have 3
"Task" bars, and you are changing the color for the "Task" bar, the color is applied to all
"Task" bars in the chart. For instance, in order to provide "Task" bars with different colors,
you can use the Copy method to copy the Task bar to a new bar, and use the Color to
change the color of the bar. The following function generates a Task bar with specified
color:

Private Function AddTask(ByVal gantt As EXG2ANTTLibCtl.G2antt, ByVal clr As Long) As
String
 Dim sT As String
 sT = "Task:" & clr
 With gantt.Chart.Bars.Copy("Task", sT)
 .color = clr
 End With
 AddTask = sT
End Function

The following VB sample adds a custom shape and defines a bar like this :

With G2antt1.Chart.Bars
 .AddShapeCorner 12345, 1
 With .Add("Task2")
 .Pattern = exPatternDot
 .Shape = exShapeThinDown
 .StartShape = 12345
 .StartColor = RGB(255, 0, 0)
 .Color = .StartColor
 End With
End With

The following C++ sample adds a custom shape and defines a bar like above:

CBars bars = m_g2antt.GetChart().GetBars();
bars.AddShapeCorner(COleVariant((long)12345), COleVariant((long)1));
CBar bar = bars.Add("Task2");
bar.SetPattern(2 /*exPatternDot*/);

bar.SetShape(20 /*exShapeThinDown*/);
bar.SetStartShape(12345);
bar.SetStartColor(RGB(255, 0, 0));
bar.SetColor(bar.GetStartColor());

The following VB.NET sample adds a custom shape and defines a bar like above:

With AxG2antt1.Chart.Bars
 .AddShapeCorner(12345, 1)
 With .Add("Task2")
 .Pattern = EXG2ANTTLib.PatternEnum.exPatternDot
 .Shape = EXG2ANTTLib.ShapeBarEnum.exShapeThinDown
 .StartShape = 12345
 .StartColor = RGB(255, 0, 0)
 .Color = .StartColor
 End With
End With

The following C# sample adds a custom shape and defines a bar like above:

axG2antt1.Chart.Bars.AddShapeCorner(12345, 1);
EXG2ANTTLib.Bar bar = axG2antt1.Chart.Bars.Add("Task2");
bar.Pattern = EXG2ANTTLib.PatternEnum.exPatternDot;
bar.Shape = EXG2ANTTLib.ShapeBarEnum.exShapeThinDown;
bar.StartShape = (EXG2ANTTLib.ShapeCornerEnum)12345;
bar.StartColor = ToUInt32(Color.FromArgb(255, 0, 0));
bar.Color = bar.StartColor;

The following VFP sample adds a custom shape and defines a bar like above:

With thisform.G2antt1.Chart.Bars
 .AddShapeCorner(12345, 1)
 With .Add("Task2")
 .Pattern = 2 && exPatternDot
 .Shape = 20 && exShapeThinDown
 .StartShape = 12345
 .StartColor = RGB(255, 0, 0)
 .Color = .StartColor
 EndWith

EndWith

method Bars.AddShapeCorner (Key as Variant, Icon as Variant)
Adds a custom shape corner.

Type Description

Key as Variant A Long expression that indicates the key of the new icon
being added

Icon as Variant A long expression that indicates the handle of the icon
being inserted, or the index of the icon being added.

Use the AddShapeCorner method to define a corner from an icon. Use the StartShape and
EndShape properties to define the start and end parts of the bar using custom shapes. Use
the Images or ReplaceIcon method to update the list of control's icons. Use the
RemoveShapeCorner method to remove a custom shape. The control includes a list of
predefined shapes like shown in the ShapeCornerEnum type. The icon is processed
before displaying based on the StartColor/ EndColor property. For instance, if you
add an black and white icon, and the StartColor/EndColor is red, the icon will be
painted in red. Instead, if the StartColor/EndColor property is -1 (0xFFFFFFFF, not
white which is 0x00FFFFFF), the icon is painted as it was added using the
AddShapeCorner without any image processing. If the StartColor/EndColor property is
not -1, it indicates the color being applied to the icon.

The following VB sample adds a custom shape and defines a bar like this :

With .Chart.Bars
 .AddShapeCorner 12345, 1
 With .Add("Task2")
 .Pattern = exPatternDot
 .Shape = exShapeThinDown
 .EndShape = 12345
 .EndColor = RGB(255, 0, 0)
 .Color = .EndColor
 End With
 End With

The following C++ sample adds a custom shape and defines a bar like above:

CBars bars = m_g2antt.GetChart().GetBars();
bars.AddShapeCorner(COleVariant((long)12345), COleVariant((long)1));
CBar bar = bars.Add("Task2");
bar.SetPattern(2 /*exPatternDot*/);

bar.SetShape(20 /*exShapeThinDown*/);
bar.SetEndShape(12345);
bar.SetEndColor(RGB(255, 0, 0));
bar.SetColor(bar.GetEndColor());

The following VB.NET sample adds a custom shape and defines a bar like above:

With AxG2antt1.Chart.Bars
 .AddShapeCorner(12345, 1)
 With .Add("Task2")
 .Pattern = EXG2ANTTLib.PatternEnum.exPatternDot
 .Shape = EXG2ANTTLib.ShapeBarEnum.exShapeThinDown
 .EndShape = 12345
 .EndColor = RGB(255, 0, 0)
 .Color = .EndColor
 End With
End With

The following VB.NET sample adds a custom icon to the start of all Task bars:

With AxG2antt1.Chart.Bars
 .AddShapeCorner(12345, 1)
 .Item("Task").StartShape = 12345
 .Item("Task").StartColor = UInteger.MaxValue
End With

The following C# sample adds a custom shape and defines a bar like above:

axG2antt1.Chart.Bars.AddShapeCorner(12345, 1);
EXG2ANTTLib.Bar bar = axG2antt1.Chart.Bars.Add("Task2");
bar.Pattern = EXG2ANTTLib.PatternEnum.exPatternDot;
bar.Shape = EXG2ANTTLib.ShapeBarEnum.exShapeThinDown;
bar.EndShape = (EXG2ANTTLib.ShapeCornerEnum)12345;
bar.EndColor = ToUInt32(Color.FromArgb(255, 0, 0));
bar.Color = bar.EndColor;

The following C# sample adds a custom icon to the start of all Task bars:

EXG2ANTTLib.Bars bars = axG2antt1.Chart.Bars;

bars.AddShapeCorner(12345, 1);
bars["Task"].StartShape = EXG2ANTTLib.ShapeCornerEnum.exShapeIconEmpty + 12345;
bars["Task"].StartColor = 0xFFFFFFFF;

The following VFP sample adds a custom shape and defines a bar like above:

With thisform.G2antt1.Chart.Bars
 .AddShapeCorner(12345, 1)
 With .Add("Task2")
 .Pattern = 2 && exPatternDot
 .Shape = 20 && exShapeThinDown
 .EndShape = 12345
 .EndColor = RGB(255, 0, 0)
 .Color = .EndColor
 EndWith
EndWith

method Bars.Clear ()
Removes all objects in a collection.

Type Description

Use the Clear method to clear the Bars collection. Use the Remove method to remove a
bar from the Bars collection. Use the Add method to add new bars to the collection. Use
the ClearBars method to clear the bars from an item. Use the RemoveBar method to
remove a bar from an item. Use the Refresh method to refresh the control.

method Bars.Copy (Name as String, NewName as String)
Copies a Bar object and returns a reference to the newly created object.

Type Description

Name as String A String expression that indicates the name of the bar
being copied.

NewName as String A String expression that indicates the name of the new
bar.

Return Description
Bar A Bar object being created.

Use the Copy property create a clone for a specified bar. Use the Shape, Pattern and Color
properties to define the appearance for the middle part of the bar. Use the StartShape and
StartColor properties to define the appearance for the starting part of the bar. Use the
EndShape and EndColor properties to define the appearance for the ending part of the bar.

The following VB sample creates a new bar called "Task2", that's similar with the "Task" bar
excepts that we change the color to fill the bar:

With G2antt1.Chart.Bars
 With .Copy("Task", "Task2")
 .Color = RGB(255, 0, 0)
 End With
End With

The following C++ sample creates a new bar called "Task2", that's similar with the "Task"
bar excepts that we change the color to fill the bar:

CBars bars = m_g2antt.GetChart().GetBars();
CBar bar = bars.Copy("Task", "Task2");
bar.SetColor(RGB(255,0,0));

The following VB.NET sample creates a new bar called "Task2", that's similar with the
"Task" bar excepts that we change the color to fill the bar:

With AxG2antt1.Chart.Bars
 With .Copy("Task", "Task2")
 .Color = ToUInt32(Color.Red)
 End With

End With

The following C# sample creates a new bar called "Task2", that's similar with the "Task" bar
excepts that we change the color to fill the bar:

EXG2ANTTLib.Bar bar = axG2antt1.Chart.Bars.Copy("Task", "Task2");
bar.Color = ToUInt32(Color.Red);

The following VFP sample creates a new bar called "Task2", that's similar with the "Task"
bar excepts that we change the color to fill the bar:

with thisform.G2antt1.Chart.Bars
 with .Copy("Task", "Task2")
 .Color = RGB(255,0,0)
 endwith
endwith

In VB.NET or C# you require the following functions until the .NET framework will provide:

You can use the following VB.NET function:

 Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
 End Function

You can use the following C# function:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

property Bars.Count as Long
Returns the number of objects in a collection.

Type Description

Long A long expression that indicates the number of Bar objects
in the Bars collection.

The Count property counts the bars in the collection. Use the Item property to access a Bar
object in the Bars collection. Use the Remove method to remove a bar from the Bars
collection. Use the Clear method to clear the Bars collection. Use the Name property to
retrieve the name of the bar. Use the ItemBar(exBarsCount) property to retrieve the number
of bars in a specified item.

The following VB sample enumerates the Bar objects in the Bars collection (the order of
the elements is arbitrary):

With G2antt1.Chart
 Dim b As EXG2ANTTLibCtl.Bar
 For Each b In .Bars
 Debug.Print b.Name
 Next
End With

The following VB sample enumerates the Bar objects in the Bars collection (the list is
alphabetically sorted):

With G2antt1.Chart.Bars
 Dim i As Long
 For i = 0 To .Count - 1
 Debug.Print .Item(i).Name
 Next
End With

The following C++ sample enumerates the Bar objects in the Bars collection:

CBars bars = m_g2antt.GetChart().GetBars();
for (long i = 0; i < bars.GetCount(); i++)
 OutputDebugString(bars.GetItem(COleVariant(i)).GetName());

The following VB.NET sample enumerates the Bar objects in the Bars collection:

With AxG2antt1.Chart
 Dim b As EXG2ANTTLib.Bar
 For Each b In .Bars
 Debug.Write(b.Name)
 Next
End With

The following VB.NET sample enumerates the Bar objects in the Bars collection:

With AxG2antt1.Chart.Bars
 Dim i As Integer
 For i = 0 To .Count - 1
 Debug.Write(.Item(i).Name)
 Next
End With

The following C# sample enumerates the Bar objects in the Bars collection:

EXG2ANTTLib.Bars bars = axG2antt1.Chart.Bars;
for (int i = 0; i < bars.Count; i++)
 System.Diagnostics.Debug.Write(bars[i].Name);

The following VFP sample enumerates the Bar objects in the Bars collection:

local i
With thisform.G2antt1.Chart.Bars
 for i = 0 to .Count - 1
 wait window nowait .Item(i).Name
 next
EndWith

property Bars.Item (Name as Variant) as Bar
Returns a specific Column of the Columns collection.

Type Description

Name as Variant
A string expression that indicates the name of the bar
being accessed, a long expression that indicates the index
of the Bar being accessed

Bar A Bar object being accessed.

Use the Item property to access a Bar object in the Bars collection. The Count property
counts the bars in the collection. Use the Remove method to remove a bar from the Bars
collection. Use the Clear method to clear the Bars collection. Use the Name property to
retrieve the name of the bar. The Bars collection contains several predefined bars like
follows:

By default, the Bars collection includes the following predefined bars:

"Deadline":
"Project Summary":
"Summary":
"Milestone":
"Progress":
"Split":
"Task":

The following VB sample enumerates the Bar objects in the Bars collection (the order of
the elements is arbitrary):

With G2antt1.Chart
 Dim b As EXG2ANTTLibCtl.Bar
 For Each b In .Bars
 Debug.Print b.Name
 Next
End With

The following VB sample enumerates the Bar objects in the Bars collection (the list is
alphabetically sorted):

With G2antt1.Chart.Bars
 Dim i As Long
 For i = 0 To .Count - 1

 Debug.Print .Item(i).Name
 Next
End With

The following C++ sample enumerates the Bar objects in the Bars collection:

CBars bars = m_g2antt.GetChart().GetBars();
for (long i = 0; i < bars.GetCount(); i++)
 OutputDebugString(bars.GetItem(COleVariant(i)).GetName());

The following VB.NET sample enumerates the Bar objects in the Bars collection:

With AxG2antt1.Chart
 Dim b As EXG2ANTTLib.Bar
 For Each b In .Bars
 Debug.Write(b.Name)
 Next
End With

The following VB.NET sample enumerates the Bar objects in the Bars collection:

With AxG2antt1.Chart.Bars
 Dim i As Integer
 For i = 0 To .Count - 1
 Debug.Write(.Item(i).Name)
 Next
End With

The following C# sample enumerates the Bar objects in the Bars collection:

EXG2ANTTLib.Bars bars = axG2antt1.Chart.Bars;
for (int i = 0; i < bars.Count; i++)
 System.Diagnostics.Debug.Write(bars[i].Name);

The following VFP sample enumerates the Bar objects in the Bars collection:

local i
With thisform.G2antt1.Chart.Bars
 for i = 0 to .Count - 1
 wait window nowait .Item(i).Name

 next
EndWith

method Bars.Remove (Name as Variant)
Removes a specific member from the Bars collection.

Type Description

Name as Variant
A string expression that indicates the name of the bar
being removes, a long expression that indicates the index
of the Bar being removed

Use the Remove method to remove a bar from the Bars collection. Use the Add method to
add new bars to the collection. Use the Clear method to clear the bars collection. Use the
ClearBars method to clear the bars from an item. Use the RemoveBar method to remove a
bar from an item. Use the Refresh method to refresh the control.

method Bars.RemoveShapeCorner (Key as Variant)
Removes a custom shape corner.

Type Description

Key as Variant A long expression that indicates the key of the shape
being removed.

Use the RemoveShapeCorner property to remove a shape corner being added using the
AddShapeCorner method. Use the StartShape and EndShape properties to define the start
and end parts of the bar using custom shapes. Use the Images or ReplaceIcon method to
update the list of control's icons. The control includes a list of predefined shapes like shown
in the ShapeCornerEnum type.

Chart object
The Chart object contains all properties and methods related to the G2antt chart area. The
chart area displays the visible bars only. Use the Bars property to access the control's Bars
collection. Use the PaneWidth property to specify the width of the chart area. Use the
AddBar property to add new bars to an item. Use the LevelCount property to specify the
number of levels in the control's header.

The following screen shots show only the chart part of the control:

The Chart object supports the following properties and methods:

Name Description
AddNonworkingDate Adds a nonworking date.

AdjustLevelsToBase Specifies whether the levels are adjusted on the base
level.

AllowCreateBar Allows creating new bars using the mouse.

AllowInsideZoom Specifies whether the chart can magnify only parts of the
chart.

AllowLinkBars Specifies whether the user can link the bars using the
mouse.

AllowNonworkingBars
Specifies whether the chart treats bars with
exBarTreatAsNonworking as non-working parts of the
item.

AllowOverviewZoom Gets or sets a value that indicates whether the user can
zoom the chart at runtime.
Specifies whether the user can enlarge (zoom-in,zoom-

AllowResizeChart out) or resize the chart using the control's header, middle
mouse button.

AllowResizeInsideZoom Specifies whether the user can resize the inside zoom unit.
AllowSelectDate Specifies whether the user selects dates at runtime.

AllowSelectObjects Sets or gets a value that indicates whether the user can
select objects in the chart.

AllowSplitPane Specifies whether the chart panel supports splitting.
AllowUndoRedo Enables or disables the Undo/Redo feature.

AllowZoomOnFly Magnifies the bar from the cursor, when the user presses
the CTRL / SHIFT key combination.

AMPM Specifies the AM and PM indicators.

BackColor Retrieves or sets a value that indicates the chart's
background color.

BackColorLevelHeader Specifies the background color for the chart's levels.
BackColorZoomOnFly Specifies the background color for the zoom-on-fly panel.
BarFromPoint Retrieves the bar from point.
Bars Retrieves the Bars collection.
BarsAllowSizing Specifies whether bars can be resized at run-time.

CanRedo Retrieves a value that indicates whether the chart can
perform a Redo operation.

CanUndo Retrieves a value that indicates whether the chart can
perform an Undo operation.

ClearItemBackColor Clears the item's background color in the chart area.
ClearNonworkingDates Clears nonworking dates.

ColumnsFont Retrieves or sets the font to display the columns in the
chart section.

ColumnsFormatLevel Specifies the CRD format layout to display the columns in
the chart section.

ColumnsTransparent Specifies the percent of the transparency to display the
columns in the chart.

CondInsideZoom Specifies the formula that indicates the dates that can be
zoomed at runtime.

CountVisibleUnits Counts the number of units within the specified range.
DateFromPoint Retrieves the date from the cursor.

DateTickerLabel Retrieves or sets a value that indicates the format to
display the bar's start and end date while creating, moving
or resizing it.

DefaultInsideZoomFormat Retrieves the format of the inside zoom units.

DrawDateTicker
Retrieves or sets a value that indicates whether the
control draws a ticker around the current date while cursor
hovers the chart's client area.

DrawGridLines Retrieves or sets a value that indicates whether the grid
lines are visible or hidden.

DrawLevelSeparator Retrieves or sets a value that indicates whether lines
between levels are shown or hidden.

EndBlockUndoRedo
Ends recording the UI operations and adds the undo/redo
operations as a block, so they all can be restored at once,
if Undo method is performed.

EndPrintDate Retrieves or sets a value that indicates the printing end
date.

FirstVisibleDate Retrieves or sets a value that indicates the first visible
date.

FirstWeekDay Specifies the first day of the week.

ForeColor Retrieves or sets a value that indicates the chart's
foreground color.

ForeColorLevelHeader Specifies the foreground color for the chart's levels.
FormatDate Formats the date.

GridLineStyle Retrieves or sets a value that indicates style for the
gridlines being shown in the chart area.

GroupUndoRedoActions Groups the next to current Undo/Redo Actions in a single
block.

HistogramBackColor Specifies the background color of the chart's histogram.

HistogramHeaderVisible Specifies whether a copy of chart's header is displayed in
the bottom side of the histogram.

HistogramHeight Specifies whether the height of the chart's histogram.

HistogramUnitCount Specifies the time-scale count to determine the effort of
bars with variable-effort (effort of expression/string type)

HistogramUnitScale Specifies the time-scale unit to determine the effort of
bars with variable-effort (effort of expression/string type)
Gets the value in the histogram at specified date-time, for

HistogramValue giving type of bars or/and groups.

HistogramValueFromPoint Retrieves the value from the histogram at the cursor
position.

HistogramView Specifies the list of items being included in the histogram.

HistogramVisible Specifies whether the chart's histogram layout is visible or
hidden.

HistogramZOrder Specifies the z-order of the bars to be shown within the
chart's histogram.

InsideZoomOnDblClick
Gets or sets a value that indicates whether a portion of
the chart is magnified or zoomed when the user double
click a date.

InsideZooms Retrieves the collection of inside zoom dates.
IsDateVisible Specifies whether the date fits the control's chart area.
IsNonworkingDate Specifies whether giving date-time is a nonworking unit.

ItemBackColor Retrieves or sets a background color for a specific item, in
the chart area.

Label Retrieves or sets a value that indicates the predefined
format of the level's label for a specified unit.

LabelToolTip Retrieves or sets a value that indicates the predefined
format of the level's tooltip for a specified unit.

Level Retrieves the level based on its index.
LevelCount Specifies the number of levels in the control's header.
LevelFromPoint Retrieves the index of the level from the point.
LinkFromPoint Retrieves the link from the point.
LinksColor Specifies the color to draw the links between the bars.
LinksStyle Specifies the style to draw the links between the bars.

LinksWidth Specifies the width in pixels of the pen to draw the links
between the bars.

LocAMPM Retrieves the time marker such as AM or PM using the
current user regional and language settings.

LocFirstWeekDay Indicates the first day of the week, as specified in the
regional settings.

LocMonthNames
Retrieves the list of month names, as indicated in the
regional settings, separated by space.

LocWeekDays Retrieves the list of names for each week day, as
indicated in the regional settings, separated by space.

MarkNow Specifies the the current time to show in the chart.

MarkNowColor Specifies the background color or the visual appearance
of the object that indicates the current time in the chart.

MarkNowCount Specifies the number of time units to count while
highlighting the current time.

MarkNowDelay Specifies the delay to show the current time in the chart.

MarkNowTransparent Specifies the percent of the transparency to display the
object that marks the current time.

MarkNowUnit Retrieves or sets a value that indicates the base time unit
while highlighting the current time.

MarkNowWidth Specifies the width in pixels of the object that shows the
current time.

MarkSelectDateColor Retrieves or sets a value that indicates the color to mark
the selected date in the chart.

MarkTimeZone
Highlights a specified time zone from start to end with a
different background color, pattern, transparency, HTML
captions and so on.

MarkTodayColor Retrieves or sets a value that indicates the color to mark
today in the chart.

MaxUnitWidth Specifies the maximum value for Chart.UnitWidth property
while enlarge or zoom-in/zoom-out operation is performed.

MinUnitWidth Specifies the minimum value for Chart.UnitWidth property
while enlarge or zoom-in/zoom-out operation is performed.

MonthNames Retrieves or sets a value that indicates the list of month
names, separated by space.

NextDate Gets the next date based on the unit.

NonworkingDays Retrieves or sets a value that indicates the non-working
days, for each week day a bit.

NonworkingDaysColor Retrieves or sets a value that indicates the color to fill the
non-working days.

NonworkingDaysPattern Retrieves or sets a value that indicates the pattern being
used to fill non-working days.

NonworkingHours Retrieves or sets a value that indicates the non-working
hours, for each hour in a day a bit.

NonworkingHoursColor Retrieves or sets a value that indicates the color to fill the
non-working hours.

NonworkingHoursPattern Retrieves or sets a value that indicates the pattern being
used to fill non-working hours.

NoteFromPoint Retrieves the note from the point.
Notes Retrieves the Notes collection.

OverlaidOnMoving Specifies whether the overlaid bars are re-arranged while
the user moves or resizes at runtime a bar.

OverviewBackColor Specifies the background color of the chart's overview.
OverviewHeight Indicates the height of the chart's overview.

OverviewLevelLines Indicates the index of the level that displays the grid line in
the chart's overview.

OverviewSelBackColor Specifies the selection color of the chart's overview.

OverviewSelTransparent Specifies the percent of the transparency to display the
selection in the overview parts of the control.

OverviewShowMarkTimeZonesSpecifies whether the chart's overview shows the marked
time-zones.

OverviewShowSelectDates Specifies whether the chart's overview shows the selected
dates.

OverviewToolTip
Retrieves or sets a value that indicates the format of the
tooltip being shown while the cursor hovers the chart's
overview area.

OverviewVisible Specifies whether the chart's overview layout is visible or
hidden.

OverviewZoomCaption Specifies the captions for each zooming unit.

OverviewZoomUnit Indicates the width in pixels of the zooming unit in the
overview.

PaneWidth Specifies the width for the left or side pane.
Picture Retrieves or sets a graphic to be displayed in the chart.

PictureDisplay Retrieves or sets a value that indicates the way how the
graphic is displayed on the chart's background

Redo Redoes the next action in the chart's Redo queue.
RedoListAction Lists the Redo actions that can be performed in the chart.

RedoRemoveAction Removes the first redo actions that can be performed in
the chart.

RemoveNonworkingDate Removes a nonworking date.
RemoveSelection Removes the selected objects within the chart.

RemoveTimeZone Removes a time-zone being highlighted using the
MarkTimeZone method.

ResizeUnitCount Specifies the number of time units while resizing, moving
or creating bars by dragging.

ResizeUnitScale Retrieves or sets a value that indicates the base time unit
while resizing, moving or creating the bars by dragging.

ScrollBar Shows or hides the chart's horizontal scroll bar.
ScrollRange Specifies the range of dates to scroll within.
ScrollTo Scrolls the chart so the specified date is visible.

SelBackColor Retrieves or sets a value that indicates the selection
background color.

SelBarColor Retrieves or sets a value that indicates the color or EBN
object to display the selected bars.

SelectDate Selects or unselects a specific date in the chart.
SelectDates Indicates a collection of date-time units being selected.

SelectLevel Indicates the index of the level that highlights the selected
dates.

SelectOnClick Specifies whether an item gets selected once the user
clicks the chart area.

SelForeColor Retrieves or sets a value that indicates the selection
foreground color.

SelLinkColor
Specifies the color to show the selected link (or for
rectangular links an EBN object to highlights the link,
without changing the link's color).

ShowCollapsedBars Gets or sets a value that indicates whether the collapsed
items displays their child bars.

ShowEmptyBars Specifies whether empty bars are shown or hidden. An
empty bar has the start and end dates identical.

ShowEmptyBarsUnit Specifies the unit to be added to the end date, so empty
bars are shown.

ShowLinks
Retrieves or sets a value that indicates whether the links
between bars are visible or hidden.

ShowLinksColor Retrieves or sets a value that indicates the color to display

the links based on the user selection.

ShowLinksStyle Retrieves or sets a value that indicates the style to display
the links based on the user selection.

ShowLinksWidth Retrieves or sets a value that indicates the width to
display the links based on the user selection.

ShowNonworkingDates Shows or hides nonworking dates.
ShowNonworkingHours Shows or hides nonworking hours.

ShowNonworkingUnits Retrieves or sets a value that indicates whether the non-
working units are visible or hidden.

ShowNotes Specifies whether all notes or boxes are shown or hidden.

ShowTransparentBars Gets or sets a value that indicates percent of the
transparency to display the bars.

SplitPaneWidth Specifies the width of split panels, separated by comma.

StartBlockUndoRedo Starts recording the UI operations as a block of undo/redo
operations.

StartPrintDate Retrieves or sets a value that indicates the printing start
date.

TimeZoneFromPoint Retrieves the time-zone from the cursor.
TimeZoneInfo Retrieves information about the time-zone giving its key.

ToolTip Retrieves or sets a value that indicates the format of the
tooltip being shown while the user scrolls the chart.

Undo Performs the last Undo operation.
UndoListAction Lists the Undo actions that can be performed in the chart.

UndoRedoQueueLength Gets or sets the maximum number of Undo/Redo actions
that may be stored to the chart's queue.

UndoRemoveAction Removes the last the undo actions that can be performed
in the chart.

UnitScale Retrieves or sets a value that indicates the base unit being
displayed.

UnitWidth Specifies the width in pixels for the minimal unit.
UnitWidthNonworking Specifies the width in pixels for the minimal unit.

UnselectDates Unselects all dates in the chart.

UpdateOnMoving Specifies whether the control moves or resizes all related
bars or just the bar being moved or resized.

WeekDays Retrieves or sets a value that indicates the list of names
for each week day, separated by space.

WeekNumberAs Specifies the way the control displays the week number.
Zoom Sets or retrieves the magnification scale of the chart.

ZoomOnFlyCaption Specifies the caption to be shown in the zoom-on-fly
panel, when the cursor hovers a bar.

method Chart.AddNonworkingDate (Date as Variant)
Adds a nonworking date.

Type Description

Date as Variant

A Date expression that indicates the date being marked as
nonworking day or a string expression that specifies the
repetitive expression that defines the non-working days as
Easter, Christmas or Holydays. For instance the
"month(value)=7 or (month(value) = 12 and day(value)=25
)" indicates July and December 25th is a non-working
dates. The string version of the AddNonworkingDate
supports value formatting. The value keyword indicates
the date being queried. If the expression is not
syntactically correct the non-working date expression is
not added and so represented.

Use the AddNonworkingDate method to add custom dates as nonworking days. Use the
NonworkingDays property to mark days in a week as being as nonworking. Use the
ShowNonworkingDates property to show or hide the nonworking dates in the control's chart
area. Use the RemoveNonworkingDate method to remove a specified date from the
nonworking dates collection. The RemoveNonworkingDate method removes only a date
previously added using the AddNonworkingDate method. Use the ClearNonworkingDates
method to remove all nonworking dates. Use the NonworkingDaysPattern property to
specify the pattern being used to fill non-working days. The NonworkingDaysColor property
specifies the color being used to fill the non-working days. Use the DateChange event to
notify whether the user browses a new date in the chart area. Use the IsNonworkingDate
property to retrieve a value that indicates whether a date is marked as nonworking day. Use
the Add("A:B") to add a bar that displays the bar A in the working area, and B in non-
working areas. Use the ItemNonworkingUnits property to specify different non-working
zones for different items.

The control supports the following ways of specify the non-working parts for items:

NonworkingDays and NonworkingHours properties indicate the nonworking parts of the
chart being applied to all items with the exception of those that use the
ItemNonworkingUnits property.
AddNonworkingDate method adds custom dates as being nonworking date which is
applied to all items with the exception of those that use the ItemNonworkingUnits
property. You can use the AddNonworkingDate to add manually dates or a repetitive
expression that defines the non-working days as Easter, Christmas or Holydays.
ItemNonworkingUnits property defines the repetitive expression to specify the non-
working parts in the item.

https://exontrol.com/faq.jsp/all/#formatting

ItemBar(exBarTreatAsNonworking) indicates whether the bar defines actually the non-
working part of the item in addition to ItemNonworkingUnits property (which is required
also)

The following screen shot shows the chart with no custom non-working dates (just defined
by the NonworkingDays property as exSaturday and exSunday)

The following screen shot shows the chart with 3 custom non-working dates (
#12/22/2009#, #12/23/2009#, #12/24/2009#)

The following screen shot shows the chart with a repetitive formula defining the January the
1st and 6th as "month(value) = 1 and (day(value) in (1,6))"

2009

2008

The following screen shot shows the chart with a repetitive formula defining the year 2009
as being non-working and the April of 2010 using "year(value) = 2009 or (month(value) = 4
and year(value) = 2010)"

Here's few samples for repetitive expression:

"month(value) = 7" indicates the entire July month

"shortdateF(value) left 5 in
('01/01','01/06','04/25','05/01','06/02','08/15','11/01','12/08','12/25','12/26')" indicates
Jan 1, Jan 6, Apr 25, May 1, Jun 2, Aug 15, Nov 1, Dec 8, Dec 25 (Christmas), Dec
26.

"month(value) = 1 and (day(value) in (1,6))" indicates the Jan 1 and Jan 6.

"hour(value) in (12,13,14)" indicates the time between 12 and 14 as being non-working.

"not(month(value) in (3,4)) ? 0 : (floor(value)=floor(date(dateS('3/1/' + year(value)) +
((1:=(((255 - 11 * (year(value) mod 19)) - 21) mod 30) + 21) + (=:1 > 48 ? -1 : 0) + 6 -
((year(value) + int(year(value) / 4)) + =:1 + (=:1 > 48 ? -1 : 0) + 1) mod 7))))" indicates
the Easter day.

"not(month(value) in (3,4,5)) ? 0 : (floor(value)=(2:=floor(date(dateS('3/1/' +
year(value)) + ((1:=(((255 - 11 * (year(value) mod 19)) - 21) mod 30) + 21) + (=:1 > 48
? -1 : 0) + 6 - ((year(value) + int(year(value) / 4)) + =:1 + (=:1 > 48 ? -1 : 0) + 1) mod
7)))) or (floor(value)= =:2 + 1))" indicates the Easter Sunday and a day after

The expression supports predefined functions listed here. The value keyword in the
expression indicates the date value being queried.

The following samples handles the DateChange event to add a new hard-coded date. The
DateChange event notifies the application once the chart displays or changes its first visible
date. This version could be time consuming, but it can be improved. For instance, you can
add a member or a has table that changes / adds a new working date when the year is
changed so actually the action could be added, only when the chart displays a new year.

The following VB sample marks the 11th of each month as nonworking day (the code
enumerates the visible dates, and marks one by one, if case):

Private Sub G2antt1_DateChange()
 With G2antt1
 .BeginUpdate

https://exontrol.com/faq.jsp/all/#formatting

 With .Chart
 Dim d As Date
 d = .FirstVisibleDate
 Do While .IsDateVisible(d)
 If Day(d) = 11 Then
 If Not (.IsNonworkingDate(d)) Then
 .AddNonworkingDate d
 End If
 End If
 d = .NextDate(d, exDay, 1)
 Loop
 End With
 .EndUpdate
 End With
End Sub

The following VB.NET sample marks the 11th of each month as nonworking day:

Private Sub AxG2antt1_DateChange(ByVal sender As Object, ByVal e As System.EventArgs)
Handles AxG2antt1.DateChange
 With AxG2antt1
 .BeginUpdate()
 With .Chart
 Dim d As Date = .FirstVisibleDate
 Do While .IsDateVisible(d)
 If d.Day = 11 Then
 If Not (.IsNonworkingDate(d)) Then
 .AddNonworkingDate(d)
 End If
 End If
 d = .NextDate(d, EXG2ANTTLib.UnitEnum.exDay, 1)
 Loop
 End With
 .EndUpdate()
 End With
End Sub

The following C# sample marks the 11th of each month as nonworking day:

private void axG2antt1_DateChange(object sender, EventArgs e)
{
 axG2antt1.BeginUpdate();
 EXG2ANTTLib.Chart chart = axG2antt1.Chart;
 DateTime d = Convert.ToDateTime(chart.FirstVisibleDate);
 while (chart.get_IsDateVisible(d))
 {
 if (d.Day == 11)
 if (!chart.get_IsNonworkingDate(d))
 chart.AddNonworkingDate(d);
 d = chart.get_NextDate(d, EXG2ANTTLib.UnitEnum.exDay, 1);
 }
 axG2antt1.EndUpdate();
}
}

The following VFP sample marks the 11th of each month as nonworking day (DateChange
event):

*** ActiveX Control Event ***

With thisform.G2antt1
 .BeginUpdate
 With .Chart
 local d
 d = .FirstVisibleDate
 Do While .IsDateVisible(d)
 If Day(d) = 11 Then
 If Not (.IsNonworkingDate(d)) Then
 .AddNonworkingDate(d)
 EndIf
 EndIf
 d = .NextDate(d, 4096, 1)
 enddo
 EndWith
 .EndUpdate
EndWith

property Chart.AdjustLevelsToBase as Boolean
Specifies whether the levels are adjusted on the base level.

Type Description

Boolean A boolean expression that specifies whether the levels are
arranged based on the base level.

By default, the AdjustLevelsToBase property is False. Use the AdjustLevelsToBase property
on True, in case you are using a not-contiguous time scale, so you need to align the tick
lines from different levels. For instance, if the ShowNonworkingUnits property is False, the
AdjustLevelsToBase property is automatically set on True, so the time scale is aligned to
the base level. Use the DrawLevelSeperator property to draw horizontally lines between
levels inside the chart's header. The DrawTickLines / DrawTickLinesFrom property specify
whether the vertically lines between time-units are shown in the level.

property Chart.AllowCreateBar as CreateBarEnum
Allows creating new bars using the mouse.

Type Description

CreateBarEnum A CreateBarEnum expression that indicates whether the
user can create new bars using the mouse.

By default, the AllowCreateBar property is exCreateBarManual. Use the AllowCreateBar
property to disable creating new bars using the mouse. The control fires the CreateBar
event when the user releases the mouse in the chart area. The CreateBar event is fired
only if the AllowCreateBar property is not zero. The control prevents creating new bars
inside disable items, so you can not create new bars in disabled items. The EnableItem
property specifies whether an item is enabled or disabled. The ItemBar(,,exBarsCount)
property counts the number of bars in giving item

If the AllowCreateBar property is exCreateBarAuto or
exCreateBarAutoEndInclusive, the control automatically adds a new bar to the item,
with the key "newbar", of "Task" type, so it looks like this: . Use the ItemBar
property to change the key or the name or any other property of the newly created bar
whose exBarKey property is "newbar" and it's exBarName is "Task". In this case, if the
CreateBar event is not handled, the user can't add more than a single bar to the
selected item, as the "newbar" is not unique, instead, if you handle the CreateBar
event, and assign a different key for the newly created bar, several bars can be added
to the same item. If the user clicks the empty / non-items zone of the chart, the control
may fire the AddItem event for the newly added items so the newly bar will be shown
in the clicked area. In this case, the Item parameter indicates the handle of the item
that has been added at the last. In other words, the control automatically adds new
items and creates the newly bar on the last added item, if the Chart.AllowCreateBar
property is exCreateBarAuto.
If the AllowCreateBar property is exCreateBarManual or
exCreateBarManualEndInclusive, you need to handle the CreateBar event to add
new bars using the AddBar method. Samples, are shown bellow. If the Item parameter
of the CreateBar event is negative, its absolute value indicates the number of items to
be added from the last visible item, so it fits the clicked part of the chart. For instance,
CreateBar(-3,Start,End) indicates that a 3 more items should be added so it covers the
clicked zone.

If the AllowCreateBar property is exCreateBarAuto, the following samples change the key
and the type of the bar being displayed as soon as the CreateBar event is called:

The following VB6 sample changes the key of the newly created bar "newbar", and the
name of the bar being displayed as "Task" to "Progress":

Private Sub G2antt1_CreateBar(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal DateStart As
Date, ByVal DateEnd As Date)
 With G2antt1.Items
 .ItemBar(Item, "newbar", exBarName) = "Progress"
 .ItemBar(Item, "newbar", exBarKey) = DateStart
 End With
End Sub

The following VB6 sample prevents creating new tasks/bars on rows/items that already
contain bars:

Private Sub G2antt1_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Dim i, c As Long, hit As HitTestInfoEnum
 With G2antt1
 Dim nAllowCreateBar As CreateBarEnum
 nAllowCreateBar = exCreateBarAuto
 i = .ItemFromPoint(-1, -1, c, hit)
 If (i <> 0) Then
 If Not (0 = .Items.ItemBar(i, "<*>", exBarsCount)) Then
 nAllowCreateBar = exNoCreateBar
 End If
 End If
 .Chart.AllowCreateBar = nAllowCreateBar
 End With
End Sub

The following VB6 sample allows creating bars on leaf items only (items with no children)

Private Sub G2antt1_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Dim i, c As Long, hit As HitTestInfoEnum
 With G2antt1

 Dim nAllowCreateBar As CreateBarEnum
 nAllowCreateBar = exCreateBarAuto
 i = .ItemFromPoint(-1, -1, c, hit)
 If (i <> 0) Then
 If Not .Items.ChildCount(i) = 0 Then
 nAllowCreateBar = exNoCreateBar
 End If
 End If
 .Chart.AllowCreateBar = nAllowCreateBar
 End With
End Sub

The following VB6 sample disables or prevents creating bars inside specific items (items
with no parent):

Private Sub G2antt1_CreateBar(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal DateStart As
Date, ByVal DateEnd As Date)
 With G2antt1.Items
 If (.ItemParent(Item) = 0) Then
 .RemoveBar Item, "newbar"
 End If
 End With
End Sub

The following C# sample changes the key of the newly created bar "newbar", and the name
of the bar being displayed as "Task" to "Progress":

private void axG2antt1_CreateBar(object sender,
AxEXG2ANTTLib._IG2anttEvents_CreateBarEvent e)
{
 axG2antt1.Items.set_ItemBar(e.item, "newbar",
EXG2ANTTLib.ItemBarPropertyEnum.exBarName, "Progress");
 axG2antt1.Items.set_ItemBar(e.item, "newbar",
EXG2ANTTLib.ItemBarPropertyEnum.exBarKey, e.dateStart);
}

The following VB.NET sample changes the key of the newly created bar "newbar", and the
name of the bar being displayed as "Task" to "Progress":

Private Sub AxG2antt1_CreateBar(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_CreateBarEvent) Handles AxG2antt1.CreateBar
 With AxG2antt1.Items
 .ItemBar(e.item, "newbar", EXG2ANTTLib.ItemBarPropertyEnum.exBarName) =
"Progress"
 .ItemBar(e.item, "newbar", EXG2ANTTLib.ItemBarPropertyEnum.exBarKey) =
e.dateStart
 End With
End Sub

The following C++ sample changes the key of the newly created bar "newbar", and the
name of the bar being displayed as "Task" to "Progress":

void OnCreateBarG2antt1(long Item, DATE DateStart, DATE DateEnd)
{
 CItems items = m_g2antt.GetItems();
 items.SetItemBar(Item, COleVariant(_T("newbar")), 0 /*exBarName*/, COleVariant(
_T("Progress")));
 items.SetItemBar(Item, COleVariant(_T("newbar")), 9 /*exBarKey*/, COleVariant(
DateStart));
}

The following VFP sample changes the key of the newly created bar "newbar", and the
name of the bar being displayed as "Task" to "Progress":

*** ActiveX Control Event ***
LPARAMETERS item, datestart, dateend

with thisform.G2antt1.Items
 .DefaultItem = item
 thisform.G2antt1.Template = "Items.ItemBar(0,`newbar`,0) = `Progress`"
 thisform.G2antt1.Template = "Items.ItemBar(0,`newbar`,9) = `" + dtos(datestart) + "`"
endwith

The Template property helps you to call any of the control's property using x-script.

If the AllowCreateBar property is exCreateBarManual, the following samples adds a new
task bar, as soon as the CreateBar is called:

The following C# sample adds a new task, when the user releases the mouse:

private void axG2antt1_CreateBar(object sender,
AxEXG2ANTTLib._IG2anttEvents_CreateBarEvent e)
{
 Random randomKey = new Random();
 axG2antt1.BeginUpdate();
 axG2antt1.Items.AddBar(e.item, "Task", e.dateStart, e.dateEnd, randomKey.Next(), "");
 axG2antt1.EndUpdate();
}

The following C++ sample adds a new task, when the user releases the mouse:

void OnCreateBarG2antt1(long Item, DATE DateStart, DATE DateEnd)
{
 m_g2antt.BeginUpdate();
 CItems items = m_g2antt.GetItems();
 items.AddBar(Item, COleVariant("Task"), COleVariant(DateStart), COleVariant(DateEnd
), COleVariant((long)rand()), COleVariant(""));
 m_g2antt.EndUpdate();
}

The following VB sample adds a new task, when the user releases the mouse:

Private Sub G2antt1_CreateBar(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal DateStart As
Date, ByVal DateEnd As Date)
 With G2antt1
 .BeginUpdate
 With .Items
 .AddBar Item, "Task", DateStart, DateEnd, Rnd
 End With
 .EndUpdate
 End With
End Sub

The following VFP sample adds a new task, when the user releases the mouse:

*** ActiveX Control Event ***
LPARAMETERS item, datestart, dateend

with thisform.G2antt1
 .BeginUpdate
 with .Items
 .AddBar(item, "Task", datestart, dateend, RAND())
 endwith
 .EndUpdate
endwith

The following VB.NET sample adds a new task, when the user releases the mouse:

Private Sub AxG2antt1_CreateBar(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_CreateBarEvent) Handles AxG2antt1.CreateBar
 With AxG2antt1
 .BeginUpdate()
 With .Items
 .AddBar(e.item, "Task", e.dateStart, e.dateEnd, Rnd())
 End With
 .EndUpdate()
 End With
End Sub

property Chart.AllowInsideZoom as Boolean
Specifies whether the chart can magnify only parts of the chart.

Type Description

Boolean A Boolean expression that specifies whether the char may
display magnified only portions of the chart.

By default, the AllowInsideZoom property is False. The inside zoom feature allows
displaying portions of the chart with different time scale units. For instance, you can display
the bars on hours, while the chart still displays days. Once the AllowInsideZoom property is
True, the user can double clicks the chart's header, so this portion gets magnified. Also, at
runtime, the user can resize the time scale units, so the unit gets magnified. Each inside
zoom unit is fully customizable, so you can change the background color for the portion
being zoomed, draw the grid lines, specify a different format label to be displayed while the
unit gets zoomed, and so on. The DateFromPoint property retrieves the date from the
cursor based on the inside zoom unit also. Use the DefaultInsideZoomFormat property to
specify the format (as background color, grid lines, labels), for new inside zoom units. The
InsideZoomOnDblClick property specifies whether the date being double clicked gets
magnified. The AllowResizeInsideZoom property specifies whether the user may resize the
time units in the levels area, so they get magnified. The CondInsideZoom property specifies
a formula that determines the dates that can be magnified by double clicking or resizing.

Use the InsideZooms property to access the inside zoom units.

Beside inside zooming, your application can provide the following options to help user while
performing moving or resizing the bars at runtime:

grid lines, that can be shown only when moving or resizing, using the
ChartStartChanging and ChartEndChanging events, or all the time
select date, to specify the margins of the area you want to highlight
ticker, that shows the cursor's position in the chart, or while resizing, it shows exactly
the size and the position of the bar, including starting and ending date.
ability to specify a resizing/moving unit, different that the displayed one ie while the
chart displays days, you can specify the resizing unit on hours.

The following chart displays days:

The Jun 22, gets magnified to hours so it looks like follows (the first line displays the day,
while the second displays the hours, the rest of the chart displays days):

The chart displays weeks:

while the week 26 and 27 gets magnified to days it looks like follows (the first line displays
the week number, while the second line displays days, the rest of the chart displays weeks
):

The following animation shows resizing the bars, using the inside zoom feature:

property Chart.AllowLinkBars as Boolean
Specifies whether the user can link the bars using the mouse.

Type Description

Boolean A Boolean expression that indicates whether the user can
link two bars using the mouse.

By default, the AllowLinkBars property is True. The AllowLinkBars property specifies
whether the user can click a bar, and drag the link to a new bar. Use the ShowLink property
to show or hide the links in the chart area. If the ShowLink property is False, the
AllowLinkBars has no effect. Linking the bars using the mouse works like follows. The user
clicks the bar where the link wants to start, and while keeping the left mouse button, he
drags up or down the mouse, until the cursor us changed to a link cursor, and from there
the user can select a new bar to link to. Once that the user releases the mouse over a bar,
the control adds a new link between these two selected bars, if there were no link between
bars. Use the AddLink method to add links programmatically. The AddLink event is fired
when the control adds a new link between selected bars.

The red circle shows the link cursor and the dot rectangle around the bar that indicates the
selected bar to link to. Once that the user releases the mouse on the red circle, the
AddLink event is called to specify the key of the link being added. Use the Link property to
set or get the properties and options for the specified link.

The following screen shot shows the type of links you can display:

property Chart.AllowNonworkingBars as Boolean
Specifies whether the chart treats bars with exBarTreatAsNonworking as non-working parts
of the item.

Type Description

Boolean
A Boolean expression that specifies whether the bars with
exBarTreatAsNonworking set on True indicate non-working
parts of the items.

By default, the AllowNonworkingBars property is False. The chart supports bars that may
indicates non-working parts of the items where they are hosted. The AllowNonworkingBars
have effect only for bar with exBarTreatAsNonworking set on True hosted on an item with
the ItemNonworkingUnits property points to a not empty and valid expression. For instance,
if the bar with exBarTreatAsNonworking is hosted to an item that has ItemNonworkingUnits
property on empty (by default) it is treated as a normal bar. Use the
ShowNonworkingUnits property to hide the non-working units. Use the
ShowNonworkingDates property to specify whether the the days are shown or hidden while
the ShowNonworkingUnits property is False.

The control supports the following ways of specify the non-working parts for items:

NonworkingDays and NonworkingHours properties indicate the nonworking parts of the
chart being applied to all items with the exception of those that use the
ItemNonworkingUnits property.
AddNonworkingDate method adds custom dates as being nonworking date which is
applied to all items with the exception of those that use the ItemNonworkingUnits
property.
ItemNonworkingUnits property defines the repetitive expression to specify the non-
working parts in the item.
ItemBar(exBarTreatAsNonworking) indicates whether the bar defines actually the non-
working part of the item in addition to ItemNonworkingUnits property (which is required
also)

In conclusion, a bar is treated as a non-working part inside the item if:

AllowNonworkingBars property is True.
ItemNonworkingUnits property is not empty, and points to a valid expression. The
ItemNonworkingUnits property indicates a repetitive expression to determine the parts
of the item being non-working.
ItemBar(exBarTreatAsNonworking) is True.

The following screen shot shows a "holidays" bar that indicates the non-working parts of the
item where it is hosted:

In this sample you can notice that all bars preserves their length (working part), while the
"holidays" or any other bar bar is moving.

The following samples adds a bar to be treated as a nonworking part like a "holidays" bar:

VBA (MS Access, Excel...)

With G2antt1
 .BeginUpdate
 With .Chart
 .FirstVisibleDate = #1/1/2001#
 .LevelCount = 2
 .PaneWidth(False) = 48
 .AllowNonworkingBars = True
 0.Bars.Add("Task:Split").Shortcut = "Task"
 End With
 .Columns.Add "Tasks"
 With .Items
 h = .AddItem("Task 1")
 .ItemNonworkingUnits(h,False) = "weekday(value) in (0,6)"
 .AddBar h,"",#1/2/2001#,#1/5/2001#,"A","holyday"
 .ItemBar(h,"A",38) = True
 .AddBar h,"Task",#1/5/2001#,#1/12/2001#,"Z"
 .ItemBar(h,"Z",20) = True
 End With
 .EndUpdate
End With

VB6

With G2antt1
 .BeginUpdate
 With .Chart
 .FirstVisibleDate = #1/1/2001#
 .LevelCount = 2
 .PaneWidth(False) = 48
 .AllowNonworkingBars = True
 0.Bars.Add("Task:Split").Shortcut = "Task"
 End With
 .Columns.Add "Tasks"
 With .Items
 h = .AddItem("Task 1")
 .ItemNonworkingUnits(h,False) = "weekday(value) in (0,6)"
 .AddBar h,"",#1/2/2001#,#1/5/2001#,"A","holyday"
 .ItemBar(h,"A",exBarTreatAsNonworking) = True
 .AddBar h,"Task",#1/5/2001#,#1/12/2001#,"Z"
 .ItemBar(h,"Z",exBarKeepWorkingCount) = True
 End With
 .EndUpdate
End With

VB.NET

Dim h
With Exg2antt1
 .BeginUpdate()
 With .Chart
 .FirstVisibleDate = #1/1/2001#
 .LevelCount = 2
 .set_PaneWidth(False,48)
 .AllowNonworkingBars = True
 0.Bars.Add("Task:Split").Shortcut = "Task"
 End With
 .Columns.Add("Tasks")
 With .Items
 h = .AddItem("Task 1")
 .set_ItemNonworkingUnits(h,False,"weekday(value) in (0,6)")

 .AddBar(h,"",#1/2/2001#,#1/5/2001#,"A","holyday")

.set_ItemBar(h,"A",exontrol.EXG2ANTTLib.ItemBarPropertyEnum.exBarTreatAsNonworking,True)

 .AddBar(h,"Task",#1/5/2001#,#1/12/2001#,"Z")

.set_ItemBar(h,"Z",exontrol.EXG2ANTTLib.ItemBarPropertyEnum.exBarKeepWorkingCount,True)

 End With
 .EndUpdate()
End With

VB.NET for /COM

Dim h
With AxG2antt1
 .BeginUpdate()
 With .Chart
 .FirstVisibleDate = #1/1/2001#
 .LevelCount = 2
 .PaneWidth(False) = 48
 .AllowNonworkingBars = True
 0.Bars.Add("Task:Split").Shortcut = "Task"
 End With
 .Columns.Add("Tasks")
 With .Items
 h = .AddItem("Task 1")
 .ItemNonworkingUnits(h,False) = "weekday(value) in (0,6)"
 .AddBar(h,"",#1/2/2001#,#1/5/2001#,"A","holyday")
 .ItemBar(h,"A",EXG2ANTTLib.ItemBarPropertyEnum.exBarTreatAsNonworking) = True
 .AddBar(h,"Task",#1/5/2001#,#1/12/2001#,"Z")
 .ItemBar(h,"Z",EXG2ANTTLib.ItemBarPropertyEnum.exBarKeepWorkingCount) = True
 End With
 .EndUpdate()
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->BeginUpdate();
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutFirstVisibleDate("1/1/2001");
 var_Chart->PutLevelCount(2);
 var_Chart->PutPaneWidth(VARIANT_FALSE,48);
 var_Chart->PutAllowNonworkingBars(VARIANT_TRUE);
 0var_Chart->GetBars()->Add(L"Task:Split")->PutShortcut(L"Task");
spG2antt1->GetColumns()->Add(L"Tasks");
EXG2ANTTLib::IItemsPtr var_Items = spG2antt1->GetItems();
 long h = var_Items->AddItem("Task 1");
 var_Items->PutItemNonworkingUnits(h,VARIANT_FALSE,L"weekday(value) in (0,6)");
 var_Items->AddBar(h,"","1/2/2001","1/5/2001","A","holyday");
 var_Items->PutItemBar(h,"A",EXG2ANTTLib::exBarTreatAsNonworking,VARIANT_TRUE);
 var_Items->AddBar(h,"Task","1/5/2001","1/12/2001","Z",vtMissing);
 var_Items->PutItemBar(h,"Z",EXG2ANTTLib::exBarKeepWorkingCount,VARIANT_TRUE);
spG2antt1->EndUpdate();

C#

exg2antt1.BeginUpdate();
exontrol.EXG2ANTTLib.Chart var_Chart = exg2antt1.Chart;
 var_Chart.FirstVisibleDate = Convert.ToDateTime("1/1/2001");
 var_Chart.LevelCount = 2;
 var_Chart.set_PaneWidth(false,48);
 var_Chart.AllowNonworkingBars = true;
 0var_Chart.Bars.Add("Task:Split").Shortcut = "Task";
exg2antt1.Columns.Add("Tasks");
exontrol.EXG2ANTTLib.Items var_Items = exg2antt1.Items;

 int h = var_Items.AddItem("Task 1");
 var_Items.set_ItemNonworkingUnits(h,false,"weekday(value) in (0,6)");

var_Items.AddBar(h,"",Convert.ToDateTime("1/2/2001"),Convert.ToDateTime("1/5/2001"),"A"

var_Items.set_ItemBar(h,"A",exontrol.EXG2ANTTLib.ItemBarPropertyEnum.exBarTreatAsNonworking,true);

var_Items.AddBar(h,"Task",Convert.ToDateTime("1/5/2001"),Convert.ToDateTime("1/12/2001"

var_Items.set_ItemBar(h,"Z",exontrol.EXG2ANTTLib.ItemBarPropertyEnum.exBarKeepWorkingCount,true);

exg2antt1.EndUpdate();

C# for /COM

axG2antt1.BeginUpdate();
EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;
 var_Chart.FirstVisibleDate = Convert.ToDateTime("1/1/2001");
 var_Chart.LevelCount = 2;
 var_Chart.set_PaneWidth(false,48);
 var_Chart.AllowNonworkingBars = true;
 0var_Chart.Bars.Add("Task:Split").Shortcut = "Task";
axG2antt1.Columns.Add("Tasks");
EXG2ANTTLib.Items var_Items = axG2antt1.Items;
 int h = var_Items.AddItem("Task 1");
 var_Items.set_ItemNonworkingUnits(h,false,"weekday(value) in (0,6)");

var_Items.AddBar(h,"",Convert.ToDateTime("1/2/2001"),Convert.ToDateTime("1/5/2001"),"A"

var_Items.set_ItemBar(h,"A",EXG2ANTTLib.ItemBarPropertyEnum.exBarTreatAsNonworking,true);

var_Items.AddBar(h,"Task",Convert.ToDateTime("1/5/2001"),Convert.ToDateTime("1/12/2001"

var_Items.set_ItemBar(h,"Z",EXG2ANTTLib.ItemBarPropertyEnum.exBarKeepWorkingCount,true);

axG2antt1.EndUpdate();

Delphi

with AxG2antt1 do
begin
 BeginUpdate();
 with Chart do
 begin
 FirstVisibleDate := '1/1/2001';
 LevelCount := 2;
 PaneWidth[False] := 48;
 AllowNonworkingBars := True;
 0Bars.Add('Task:Split').Shortcut := 'Task';
 end;
 Columns.Add('Tasks');
 with Items do
 begin
 h := AddItem('Task 1');
 ItemNonworkingUnits[h,TObject(False)] := 'weekday(value) in (0,6)';
 AddBar(h,'','1/2/2001','1/5/2001','A','holyday');
 ItemBar[h,'A',EXG2ANTTLib.ItemBarPropertyEnum.exBarTreatAsNonworking] :=
TObject(True);
 AddBar(h,'Task','1/5/2001','1/12/2001','Z',Nil);
 ItemBar[h,'Z',EXG2ANTTLib.ItemBarPropertyEnum.exBarKeepWorkingCount] :=
TObject(True);
 end;
 EndUpdate();
end

VFP

with thisform.G2antt1
 .BeginUpdate

 with .Chart
 .FirstVisibleDate = {^2001-1-1}
 .LevelCount = 2
 .PaneWidth(.F.) = 48
 .AllowNonworkingBars = .T.
 0.Bars.Add("Task:Split").Shortcut = "Task"
 endwith
 .Columns.Add("Tasks")
 with .Items
 h = .AddItem("Task 1")
 .ItemNonworkingUnits(h,.F.) = "weekday(value) in (0,6)"
 .AddBar(h,"",{^2001-1-2},{^2001-1-5},"A","holyday")
 .ItemBar(h,"A",38) = .T.
 .AddBar(h,"Task",{^2001-1-5},{^2001-1-12},"Z")
 .ItemBar(h,"Z",20) = .T.
 endwith
 .EndUpdate
endwith

property Chart.AllowOverviewZoom as OverviewZoomEnum
Gets or sets a value that indicates whether the user can zoom and scale the chart at
runtime.

Type Description

OverviewZoomEnum An OverviewZoomEnum expression that specifies when
the control displays the zooming scale.

By default, the AllowOverviewZoom property is exZoomOnRClick. The zooming scale
displays the list of visible units. A visible unit is an unit whose Label property is not
empty. So, the Label property indicates the zooming units in the zoom scale. If you
plan to use zooming in your chart please review each Label and LabelToolTip
properties. Once the user selects a new time scale unit in the overview zoom area, the
control fires the OverviewZoom event.

If the AllowOverviewZoom property is exZoomOnRClick the zooming scale is shown
only if the user right clicks the overview area. The zooming scale stays visible while the
user keeps the right button down. Once the user releases the mouse over a new unit,
the chart gets scaled by that unit. During this, ESC key cancels the zooming operation
and restores the chart.
If the AllowOverviewZoom property is exAlwaysZoom the zooming scale is displayed in
the right side of the overview area. This way, the available (visible) units are always
displays on the right side of the overview area. Clicking any of these units makes the
control to scale the chart to specified unit. The OverviewZoomUnit property indicates
the width in pixels of the zooming unit.
If the AllowOverviewZoom property is exDisableZoom the user can't zoom or scale the
chart at runtime using the overview area.

The zooming scale may be displayed on the overview area only if:

AllowOverviewZoom property is not exDisableZoom
OverviewVisible property is True
OverviewHeight property is greater than 0
there are at least two visible units, that has the Label property not empty.

Use the OverviewVisible property to show or hide the control's overview area. The
OverviewZoomCaption property indicates the caption being displayed in each zooming unit.
The OverviewZoomUnit property indicates the width in pixels of the zooming unit. The
LabelToolTip retrieves or sets a value that indicates the predefined format of the level's
tooltip for a specified unit. Use the Zoom method to programmatically zoom and scale the
chart. Use the UnitScale property to change the unit of the lowest level.

The following picture shows the zooming scale on the overview area [exAlwaysZoom] (

you can click the 1, 7 or 31, and the chart is scaled to days, weeks or moths):

The following picture shows the control when the user right clicks the overview area (as
the chart displays weeks) [exZoomOnRClick]:

The following picture shows the control while the user drags the cursor to the Month while
keeping the right button (as the chart displays months):

property Chart.AllowResizeChart as ResizeChartEnum
Specifies whether the user can enlarge (zoom-in,zoom-out) or resize the chart using the
control's header, middle mouse button.

Type Description

ResizeChartEnum A ResizeChartEnum expression that indicates the way
user can resize or enlarge the control's chart.

By default, the AllowResizeChart property is exDisableResizeChart, so the user is not able
to perform any enlargement or zooming using the control's header or middle mouse button.
The AllowResizeChart property allows the user to resize or enlarge the chart at runtime.
The ChartStartChanging/ChartEndChaning events are fired to notify your application that the
user starts or ends resizing/enlarging the chart. Here's a short presentation of how the
resizing/enlarging could work. The user can resize the chart by drag and drop the left or
right resize-margins of the overview-selection, while the Background(exOverviewSelResize)
property is not zero.

When the user resizes or enlarges the chart at runtime, the following properties may be
changed:

UnitWidth, indicates the width of the base time-scale, in pixels. The MinUnitWidth
property indicates the minimum value for the UnitWidth property when
resizing/enlarging is performed. The MaxUnitWidth property indicates the maximum
value for the UnitWidth property when resizing/enlarging is performed.
UnitScale, indicates the time-scale unit for the chart. This property is changed ONLY if
the AllowResizeChart property includes the exAllowChangeUnitScale flag.
FirstVisibleDate, indicates the first visible date in the chart.

Here's some cases of the AllowResizeChart property values:

exAllowResizeChartHeader, the user can resize the chart, by increasing or
decreasing the chart's unit width by dragging the chart's header.
exAllowResizeChartHeader + exAllowChangeUnitScale, the user can zoom-in or
zoom-out the chart, and the UnitScale property is changed. For instance, if the control's
UnitWidth reaches the MinUnitWidth, the UnitScale property is changed to the next
time-unit available. If the UnitWidth reaches the MaxUnitWidth, the UnitScale property
is changed to the prev time-unit available.
exAllowResizeChartHeader + exAllowResizeChartMiddle +
exAllowChangeUnitScale, the user can zoom-in/zoom-out the chart using the control's
header as well as clicking the middle mouse button of the control.

In conclusion, if the AllowResizeChart property includes no exAllowChangeUnitScale flag,
the UnitScale property of the chart is not changed while resizing is performed, so actually

https://exontrol.com/content/products/exg2antt/demo-swf/exg2antt-resize.htm

only the UnitWidth and FirstVisibleDate may be changed. If the AllowResizeChart property
includes exAllowChangeUnitScale flag, all of the mentioned properties may be changed.
The Label property of the Chart indicates the available time-scale units when zoom-in zoom-
out is performed. For instance, if the Label(exHour) property is empty, the exHour time-
scale unit is not available, else If the Label(exHour) is not empty, the exHour time scale unit
is available. In other words, when zoom-in/zoom-out is performed the control's chart can be
zoomed to exHour only if the Chart.Label(exHour) property is not empty.

property Chart.AllowResizeInsideZoom as Boolean
Specifies whether the user can resize the inside zoom unit.

Type Description

Boolean A boolean expression that specifies whether the user can
magnify a time unit, by resizing it in the chart's base level.

By default, the AllowResizeInsideZoom property is True. If the AllowResizeInsideZoom
property is True, the resizing cursor is shown once it hovers the base level area in the chart
area. The inside zoom units are shown ONLY if the AllowInsideZoom property is True. The
inside zoom feature allows displaying portions of the chart with different time scale units.
For instance, you can display the bars on hours, while the chart still displays days. Use the
CondInsideZoom property to specify the dates that can be magnified by resizing the chart's
base level. Use the DefaultInsideZoomFormat property to specify the format of the dates
being magnified. The InsideZoomOnDblClick property specifies whether the user can
magnify dates by double clicking them in the chart's base level. The InsideZooms property
retrieves the collection of inside zoom units. The SplitBaseLevel property specifies whether
the base level is expanded once the chart displays inside zoom units.

The following animation shows resizing the bars, using the inside zoom feature:

property Chart.AllowSelectDate as SelectDateEnum
Specifies whether the user selects dates at runtime.

Type Description

SelectDateEnum
A SelectDateEnum expression that specifies whether the
user can select dates at runtime, by clicking the chart's
header.

By default, the AllowSelectDate property is True, which means that the user can select
dates by clicking the chart's header. If the chart displays the histogram, it can select new
dates by clicking the histogram. The selected dates are shown using the
MarkSelectDateColor property, and it is different than chart's background color, BackColor
property. The SelectedDates property can be used to retrieve all selected dates, or to
select a collection of dates. Use the SelectDate property to select dates programmatically,
no matter of AllowSelectDate property . The MarkTodayColor property specifies the color
to mark the today date. Use the LevelFromPoint property to get the index of the level from
the cursor. Use the DateFromPoint property to retrieve the date from the cursor. The
ChartEndChanging(exSelectDate) event notifies your application when the user selects a
new date by clicking the header of the chart. You can show the selected dates on the
overview-map part of the control by setting the OverviewShowSelectDates property on
True.

The following screen shot shows the selected dates (Dec 2 and Dec 4) being colored with
this EBN file:

The following VB sample shows how you can use skin / ebn files to display the selected
dates:

With G2antt1
 .BeginUpdate
 With .VisualAppearance
 .Add 1,"c:\exontrol\images\normal.ebn"
 End With
 With .Chart
 .FirstVisibleDate = #1/1/2008#

 .MarkTodayColor = .BackColor
 .LevelCount = 2
 .MarkSelectDateColor = 0x1000000
 .SelectLevel = 1
 .SelectDate(#1/3/2008#) = True
 .SelectDate(#1/4/2008#) = True
 End With
 .Columns.Add "Default"
 With .Items
 .AddBar .AddItem("Item 1"),"Task",#1/2/2008#,#1/6/2008#
 .AddBar .AddItem("Item 2"),"Task",#1/3/2008#,#1/7/2008#
 .AddBar .AddItem("Item 3"),"Task",#1/4/2008#,#1/8/2008#
 .AddBar .AddItem("Item 4"),"Task",#1/5/2008#,#1/9/2008#
 End With
 .EndUpdate
End With

The following VB.NET sample shows how you can use skin / ebn files to display the
selected dates:

With AxG2antt1
 .BeginUpdate
 With .VisualAppearance
 .Add 1,"c:\exontrol\images\normal.ebn"
 End With
 With .Chart
 .FirstVisibleDate = #1/1/2008#
 .MarkTodayColor = .BackColor
 .LevelCount = 2
 .MarkSelectDateColor = &H1000000
 .SelectLevel = 1
 .SelectDate(#1/3/2008#) = True
 .SelectDate(#1/4/2008#) = True
 End With
 .Columns.Add "Default"
 With .Items
 .AddBar .AddItem("Item 1"),"Task",#1/2/2008#,#1/6/2008#
 .AddBar .AddItem("Item 2"),"Task",#1/3/2008#,#1/7/2008#

 .AddBar .AddItem("Item 3"),"Task",#1/4/2008#,#1/8/2008#
 .AddBar .AddItem("Item 4"),"Task",#1/5/2008#,#1/9/2008#
 End With
 .EndUpdate
End With

The following C++ sample shows how you can use skin / ebn files to display the selected
dates:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->BeginUpdate();
EXG2ANTTLib::IAppearancePtr var_Appearance = spG2antt1->GetVisualAppearance();
 var_Appearance->Add(1,"c:\\exontrol\\images\\normal.ebn");
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutFirstVisibleDate("1/1/2008");
 var_Chart->PutMarkTodayColor(var_Chart->GetBackColor());
 var_Chart->PutLevelCount(2);
 var_Chart->PutMarkSelectDateColor(0x1000000);
 var_Chart->PutSelectLevel(1);
 var_Chart->PutSelectDate("1/3/2008",VARIANT_TRUE);
 var_Chart->PutSelectDate("1/4/2008",VARIANT_TRUE);
spG2antt1->GetColumns()->Add(L"Default");
EXG2ANTTLib::IItemsPtr var_Items = spG2antt1->GetItems();
 var_Items->AddBar(var_Items->AddItem("Item
1"),"Task","1/2/2008","1/6/2008",vtMissing,vtMissing);
 var_Items->AddBar(var_Items->AddItem("Item
2"),"Task","1/3/2008","1/7/2008",vtMissing,vtMissing);
 var_Items->AddBar(var_Items->AddItem("Item
3"),"Task","1/4/2008","1/8/2008",vtMissing,vtMissing);
 var_Items->AddBar(var_Items->AddItem("Item

4"),"Task","1/5/2008","1/9/2008",vtMissing,vtMissing);
spG2antt1->EndUpdate();

The following C# sample shows how you can use skin / ebn files to display the selected
dates:

axG2antt1.BeginUpdate();
EXG2ANTTLib.Appearance var_Appearance = axG2antt1.VisualAppearance;
 var_Appearance.Add(1,"c:\\exontrol\\images\\normal.ebn");
EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;
 var_Chart.FirstVisibleDate = "1/1/2008";
 var_Chart.MarkTodayColor = var_Chart.BackColor;
 var_Chart.LevelCount = 2;
 var_Chart.MarkSelectDateColor = 0x1000000;
 var_Chart.SelectLevel = 1;
 var_Chart.set_SelectDate("1/3/2008",true);
 var_Chart.set_SelectDate("1/4/2008",true);
axG2antt1.Columns.Add("Default");
EXG2ANTTLib.Items var_Items = axG2antt1.Items;
 var_Items.AddBar(var_Items.AddItem("Item 1"),"Task","1/2/2008","1/6/2008",null,null);
 var_Items.AddBar(var_Items.AddItem("Item 2"),"Task","1/3/2008","1/7/2008",null,null);
 var_Items.AddBar(var_Items.AddItem("Item 3"),"Task","1/4/2008","1/8/2008",null,null);
 var_Items.AddBar(var_Items.AddItem("Item 4"),"Task","1/5/2008","1/9/2008",null,null);
axG2antt1.EndUpdate();

The following VFP sample shows how you can use skin / ebn files to display the selected
dates:

with thisform.G2antt1
 .BeginUpdate
 with .VisualAppearance
 .Add(1,"c:\exontrol\images\normal.ebn")
 endwith
 with .Chart
 .FirstVisibleDate = {^2008-1-1}
 .MarkTodayColor = .BackColor
 .LevelCount = 2
 .MarkSelectDateColor = 0x1000000

 .SelectLevel = 1
 .SelectDate({^2008-1-3}) = .T.
 .SelectDate({^2008-1-4}) = .T.
 endwith
 .Columns.Add("Default")
 with .Items
 .AddBar(.AddItem("Item 1"),"Task",{^2008-1-2},{^2008-1-6})
 .AddBar(.AddItem("Item 2"),"Task",{^2008-1-3},{^2008-1-7})
 .AddBar(.AddItem("Item 3"),"Task",{^2008-1-4},{^2008-1-8})
 .AddBar(.AddItem("Item 4"),"Task",{^2008-1-5},{^2008-1-9})
 endwith
 .EndUpdate
endwith

property Chart.AllowSelectObjects as SelectObjectsEnum
Sets or gets a value that indicates whether the user can select objects in the chart.

Type Description

SelectObjectsEnum A combination of SelectObjectsEnum values that indicates
the objects to be selected in the chart.

By default, the AllowSelectObjects property is exSelectObjects. The AllowSelectObjects
property allows users to select at runtime the bars and links in the chart area. Use the
AllowSelectObjects property to disable selecting bars and links in the chart area using the
mouse. For instance, if the AllowSelectObjects property is

exNoSelectObjects, the selection of objects in the chart is disabled.
exSelectBarsOnly the user can select bars only.
exSelectLinksOnly the user can select links only.
exSelectObjects the user can select links and bars as well.

Also, if you want to enable selecting a single bar in your chart, the exSelectSingleObject
value should be added to one of these: exSelectBarsOnly, exSelectLinksOnly and
exSelectObjects. So, for instance, you need to select a single bar, the AllowSelectObjects
property should be exSelectBarsOnly Or exSelectSingleObject, and if you need to select
only a single link, the AllowSelectObjects property should be exSelectLinksOnly Or
exSelectSingleObject

The ChartSelectionChanged event is fired when the selection in the chart is changed. Use
the SelectedObject property to retrieve a collection of selected bars or/and links. You can
use the selection to move all selected objects as you would move them individually. The
user can select a bar or a link by clicking it. The user can use the CTRL key to select or
unselect the bar or the link from the cursor. Also, the user can right click the chart area, to
start selecting the bars and links that intersect the dragging rectangle. The SelBackColor
property specifies the color to draw the frame around the selected bar or link. Use the
ItemBar(exBarSelected) property to select or unselect programmatically a bar. Use the
Link(exLinkSelected) property to select or unselect programmatically a link. Use the
RemoveSelection property to remove objects in the chart's selection.

property Chart.AllowSplitPane as AllowSplitPaneEnum
Specifies whether the chart panel supports splitting.

Type Description

AllowSplitPaneEnum
An AllowSplitPaneEnum expression that specifies the
number of split panels, the user can divide the control's
chart.

By default, the AllowSplitPane property is exNoSplitPane, which specifies that user can't
split the control's chart. The AllowSplitPane property specifies whether the chart panel
supports splitting. Once the AllowSplitPane property is set, the user can click the lower-
right split bar, and drag to a new position to add a new split to the current chart. The
Background(exCSplitBar) property specifies the visual appearance of the chart's split bar.
The exDisableSplitPane flag of OnResizeControl property specifies whether the user can
drag the split bar at runtime. The SplitPaneWidth property specifies the width of split
panels, separated by comma. The ChartStartChanging(exSplitPaneChange) /
ChartEndChanging(exSplitPaneChange) events notify that the user splits/resizes the chart's
panel into multiple-views.

The following screen shot shows the control's split bar:

The following screen shot shows the chart divided in two parts:

The following screen shot shows the chart divided in three parts:

property Chart.AllowUndoRedo as Boolean
Enables or disables the Undo/Redo feature.

Type Description

Boolean A Boolean expression that specifies whether the
Undo/Redo operations are enabled or disabled.

By default, the AllowUndoRedo property is FalseThe Undo and Redo features let you
remove or repeat single or multiple actions, but all actions must be undone or redone in the
order you did or undid them ​ you can​t skip actions. For example, if you change the value of
three cells in an item and then decide you want to undo the first change you made, you
must undo all three changes. To undo an action you need to press Ctrl+Z, while for to redo
something you've undone, press Ctrl+Y. The CanUndo property retrieves a value that
indicates whether the chart may perform the last Undo operation. The CanRedo property
retrieves a value that specifies whether the chart can execute the next operation in the
chart's Redo queue. Call the Undo method to Undo the last chart operation. The Redo
redoes the next action in the chart's redo queue. The UndoRedoQueueLength property gets
or sets the maximum number of Undo/Redo actions that may be stored to the chart's
queue, or in other words how many operations the chart's Undo/Redo manager may store.

The records of the Undo/Redo queue may contain actions in the following format:

"AddBar;ITEMINDEX;KEY", indicates that a new bar has been created
"RemoveBar;ITEMINDEX;KEY", indicates that a bar has been removed
"MoveBar;ITEMINDEX;KEY", indicates that a bar has been moved or resized
"PercentChange;ITEMINDEX;KEY", indicates that the bar's percent has been
changed
"UpdateBar;ITEMINDEX;KEY", indicates that one or more properties of the bar has
been updated (ItemBar property, this operation can be added only using the
StartUpdateBar / EndUpdateBar methods)
"ParentChangeBar;ITEMINDEX;KEY", indicates that the bar's parent has been
changed
"GroupBars;ITEMINDEXA;KEYA;STARTA;ITEMINDEXB;KEYB;STARTB", specifies
that two bars has been grouped
"UngroupBars;ITEMINDEXA;KEYA;STARTA;ITEMINDEXB;KEYB;STARTB", specifies
that two bars has been ungrouped
"DefineSummaryBars;SUMMARYITEMINDEX;SUMMARYKEY;ITEMINDEX;KEY",
indicates that a bar has been defined as a child of a summary bar
"UndefineSummaryBars;SUMMARYITEMINDEX;SUMMARYKEY;ITEMINDEX;KEY",
indicates that a bar has been removed from the summary bar's children
"AddLink;KEY", indicates that a new link has been created
"RemoveLink;KEY", indicates that a link has been removed

"UpdateLink;KEY", specifies that one of more properties of the link has been updated
(Link property, this operation can be added only using the StartUpdateLink /
EndUpdateLink methods)

The records of the Undo/Redo queue may contain actions in the following format (available
starting from 23.0):

"AddItem;ITEMINDEX", indicates that a new item has been created
"RemoveItem;ITEMINDEX", indicates that an item has been removed
"ChangeItemPos;ITEMINDEX", indicates that an item changes its position or / and
parent
"ChangeCellValue;ITEMINDEX;CELLINDEX", indicates that the cell's value has been
changed
"ChangeCellState;ITEMINDEX;CELLINDEX", indicates that the cell's state has been
changed

Also, the Undo/Redo queue may include:

"StartBlock", specifies that a block of operations begins
"EndBlock", specifies that a block of operations ends

The ChartStartChanging(exUndo/exRedo) / ChartEndChanging(exUndo/exRedo) event
notifies your application whenever an Undo/Redo operation is performed. The
UndoListAction property lists the Undo actions that can be performed in the chart. The
RedoListAction property lists the Redo actions that can be performed in the chart. Use the
UndoRemoveAction method to remove the last actions from the undo queue. The
RedoRemoveAction method removes the first action to be performed if the Redo method is
invoked.

property Chart.AllowZoomOnFly as ZoomOnFlyEnum
Magnifies the bar from the cursor, when the user presses the CTRL / SHIFT key
combination.

Type Description

ZoomOnFlyEnum

A ZoomOnFlyEnum expression, or combination of the
giving flags, that specifies the way the Zoom-OnFly view is
displayed. For instance, if the AllowZoomOnFly is
exZoomOnFly, the Zoom-OnFly view is show once the
user presses the SHIFT + CTRL keys combination on the
chart.

By default, the AllowZoomOnFly property is 0, exNoZoomOnFly. In other words, the Zoom-
OnFly view is never displayed by default. The Zoom-OnFly view was provided to let you
magnify a portion of the chart without affecting the chart's scale. The Zoom-OnFly view
displays the item and its neighbors from the cursor, and additional information about the bar
from the cursor. The Zoom-OnFly scale is indicating by the chart's ResizeUnitScale
property. If the chart's ResizeUnitScale property is not specified, the Zoom-OnFly uses the
chart's UnitScale property to indicate the inside scale. The ZoomOnFlyCaption property
indicates the HTML caption to be displayed as addition information for the bar/task from the
cursor. The BackColorZoomOnFly property indicates the Zoom-OnFly's background color.
The Zoom-OnFly view is shown on the chart once the user presses the CTRL +/ SHIFT
keys and the the chart is active/focused. The Label property indicates the label to be shown
in the Zoom-OnFly view. Set the ZoomOnFlyCaption property on empty, to display no
addition information about the bar from the cursor. Use the SelectOnClick property to
prevent selecting a row / item when clicking the chart portion of the control.

The following screen shot shows the Zoom-OnFly view, after the user presses the CTRL +
SHIFT keys combination (You can notice that the inside scale displays hours, while the
master chart displays days):

The following screen shot shows the chart before pressing the CTRL + SHIFT keys (before

showing the Zoom-OnFly view):

This feature could be very useful:

if you require to display additional information about bars.
if you need to align different bars based on other bars
refines moving or sizing the bars based on another scale. For instance, if the main
chart displays days, you can have the Zoom-OnFly view displaying hours, so resizing is
very easily to be precise.

Click here to watch a movie on how you can resize or move bars if precision is required.

Here's a few samples on how to use the AllowZoomOnFly property:

= exZoomOnFly (24), the Zoom-OnFly view is shown if the cursor hovers any part of
the control's chart, and presses the CTRL + SHIFT combination. The view shows the
item from the cursor including the bar from the cursor.
= exZoomOnFly + exZoomOnFlyBarsOnly (56), the Zoom-OnFly view is shown if the
cursor hovers any BAR of the control's chart, and presses the CTRL + SHIFT
combination. The view shows the item from the cursor including the bar from the
cursor, and shows nothing if there is no bar at the cursor position.
= exZoomOnFlyShift + exZoomOnFly (25), same as the exZoomOnFly excepts that
the view can be shown if the SHIFT is pressed, not requiring pressing the CTRL +
SHIFT
= exZoomOnFlyCtrl + exZoomOnFly (26), same as the exZoomOnFly excepts that
the view can be shown if the CTRL is pressed, not requiring pressing the CTRL +
SHIFT
= exZoomOnFly + exZoomOnFlyIncludeNeighborItems (280), same as the
exZoomOnFly, excepts that the view displays the previously visible item, and the next
visible item, if they exists. Use this option to display more than one item in the view for
better alignment of the bars based on their neighbors.
= exZoomOnFly + exZoomOnFlyIncludeSelectedItems (792), same as
exZoomOnFly + exZoomOnFlyIncludeNeighborItems, excepts that the view displays
the previously selected item, and next selected item. Use this option to include the next
and previously selected items for a better comparing between selection and the item
from the cursor.

https://www.youtube.com/watch?v=Eo3T1M7byso

= exZoomOnFlyShift + exZoomOnFly + exZoomOnFlyIncludeSelectedItems (793),
same as exZoomOnFly + exZoomOnFlyIncludeSelectedItems, excepts that the view
can be shown if the SHIFT is pressed, not requiring pressing the CTRL + SHIFT
= exAllowInfoOnFly (16), the Zoom-OnFly view is shown if the cursor hovers any part
of the control's chart, and presses the CTRL + SHIFT combination. The view shows the
item from the cursor including the bar from the cursor. The view is closed as soon as
the cursor hovers another part, or if the user presses the mouse.
= exZoomOnFlyCtrl + exAllowInfoOnFly (18), same as exAllowInfoOnFly, excepts
that the view can be shown if the SHIFT is pressed, not requiring pressing the CTRL +
SHIFT
= exAllowRefineOnFly (8), the Zoom-OnFly view is shown only if the user clicks while
pressing the CTRL + SHIFT combination.

property Chart.AMPM as String
Specifies the AM and PM indicators.

Type Description

String A String expression that indicates the AM PM indicators,
separated by space.

By default, the AMPM property is "AM PM". The AMPM property specifies the indicators
being displayed when the Label or ToolTip property includes the <%AM/PM%> tag. Use the
UnitScale property to change the chart's time unit. Use the MonthNames property to specify
the name of the months being displayed in the chart's header. Use the WeekDays property
to specify the name for each day in a week. Use the UnitWidth property to specify the width
of the time unit

property Chart.BackColor as Color
Retrieves or sets a value that indicates the chart's background color.

Type Description

Color A Color expression that indicates the chart's background
color.

Use the BackColor property to specify the chart's background color. Use the ForeColor
property to specify the chart's foreground color. Use the BackColorLevelHeader property to
specify the background color of the chart's header. Use the ForeColorLevelHeader property
to specify the foreground color of the chart's header. Use the BackColor property to specify
the background color for a specified level. Use the ForeColor property to specify the
foreground color for a specified level. Use the ItemBackColor property to change the item's
background color. Use the NonworkingDaysColor property the color of the brush to fill the
nonworking days area. Use the Picture property to specify the picture being displayed on
the chart's area. The OverviewBackColor property specifies the background color of the
chart's overview. The HistogramBackColor property is changed to BackColor property as
soon as it is changed. Use the SelBackColor property to specify the background color for
selected items in the chart area.

The following VB sample changes the chart's background color:

With G2antt1.Chart
 .BackColor = RGB(&H80, &H80, &H80)
End With

The following C++ sample changes the chart's background color:

m_g2antt.GetChart().SetBackColor(RGB(0x80,0x80,0x80));

The following VB.NET sample changes the chart's background color:

With AxG2antt1.Chart
 .BackColor = ToUInt32(Color.FromArgb(&H80, &H80, &H80))
End With

where the ToUInt32 function converts a Color expression to an OLE_COLOR type:

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R

 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample changes the chart's background color:

axG2antt1.Chart.BackColor = ToUInt32(Color.FromArgb(0x80, 0x80, 0x80));

where the ToUInt32 function converts a Color expression to an OLE_COLOR type:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample changes the chart's background color:

With thisform.G2antt1.Chart
 .BackColor = RGB(128, 128, 128)
EndWith

property Chart.BackColorLevelHeader as Color
Specifies the background color for the chart's levels.

Type Description

Color

A Color expression that indicates the background color for
the chart's header. The last 7 bits in the high significant
byte of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

Use the BackColorLevelHeader property to specify the background color of the chart's
header. Use the ForeColorLevelHeader property to specify the foreground color of the
chart's header. Use the LevelCount property to specify the number of levels in the chart's
header. Use the Level property to access a level. Use the BackColor property to specify
the background color for a specified level. Use the ForeColor property to specify the
foreground color for a specified level. Use the BackColor property to specify the chart's
background color. Use the ForeColor property to specify the chart's foreground color. Use
the ItemBackColor property to change the item's background color. Use the
NonworkingDaysColor property the color of the brush to fill the nonworking days area. Use
the Picture property to specify the picture being displayed on the chart's area.

The following VB sample changes the chart's header background color:

With G2antt1.Chart
 .BackColorLevelHeader = RGB(&H80, &H80, &H80)
End With

The following C++ sample changes the chart's header background color:

m_g2antt.GetChart().SetBackColorLevelHeader(RGB(0x80,0x80,0x80));

The following VB.NET sample changes the chart's header background color:

With AxG2antt1.Chart
 .BackColorLevelHeader = ToUInt32(Color.FromArgb(&H80, &H80, &H80))
End With

where the ToUInt32 function converts a Color expression to an OLE_COLOR type:

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample changes the chart's header background color:

axG2antt1.Chart.BackColorLevelHeader = ToUInt32(Color.FromArgb(0x80, 0x80, 0x80));

where the ToUInt32 function converts a Color expression to an OLE_COLOR type:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample changes the chart's header background color:

With thisform.G2antt1.Chart
 .BackColorLevelHeader = RGB(128, 128, 128)
EndWith

property Chart.BackColorZoomOnFly as Color
Specifies the background color for the zoom-on-fly panel.

Type Description

Color A Color expression that specifies the background color for
the Zoom-OnFly view.

By default, the BackColorZoomOnFly property specifies the Zoom-OnFly's background
color. By default, the BackColorZoomOnFly property is white, (0xFFFFFF or
RGB(255,255,255)). Use the BackColorZoomOnFly property to specify a different
background color for the Zoom-OnFly panel. The BackColor property indicates the chart's
background color. The AllowZoomOnFly property specifies whether the user can display the
Zoom-OnFly panel, when the cursor hovers the chart part of the area, and the user presses
the CTRL + SHIFT keys combination. The ZoomOnFlyCaption property indicates the HTML
caption to be displayed as addition information for the bar/task from the cursor.

property Chart.BarFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Variant
Retrieves the bar from point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

Variant A VARIANT expression that indicates the key of the bar
from the cursor.

The BarFromPoint property gets the bar from point. If the X parameter is -1 and Y
parameter is -1 the BarFromPoint property determines the key of the bar from the
cursor. Use the ItemBar property to access properties of the bar from the point. The
DateFromPoint property retrieves the date from the cursor, only if the cursor hovers the
chart's area. Use the ItemFromPoint property to get the cell/item from the cursor. Use the
ColumnFromPoint property to retrieve the column from cursor. Use the LinkFromPoint
property to get the link from the point. Use the FormateDate property to format a date.
Use the DrawDateTicker property to draw a ticker as cursor hovers the chart's area. Use
the LevelFromPoint property to retrieve the index of the level from the cursor. The
ItemBar(exBarSelectable) property specifies whether a bar is selectable or not. The
BarFromPoint property can returns only selectable bars. By default, all bars are
selectable. The NoteFromPoint property retrieves the note/box from the cursor.

The following VB sample displays the handle of the item and the key of the bar from cursor:

Private Sub G2antt1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Dim h As HITEM, c As Long, hit As HitTestInfoEnum
 With G2antt1
 h = .ItemFromPoint(-1, -1, c, hit)
 If (h <> 0) Then
 Dim k As Variant
 k = .Chart.BarFromPoint(-1, -1)
 If Not IsEmpty(k) Then
 Debug.Print h & " " & k
 End If

 End If
 End With
End Sub

The following Access sample displays the handle of the item and the key of the bar from
cursor (please notice that the X and Y parameters of the MouseMove event are declared
as Long):

Private Sub G2antt1_MouseMove(ByVal Button As Integer, ByVal Shift As Integer, ByVal X
As Long, ByVal Y As Long)
 Dim h As HITEM, c As Long, hit As HitTestInfoEnum
 With G2antt1
 h = .ItemFromPoint(-1, -1, c, hit)
 If (h <> 0) Then
 Dim k As Variant
 k = .Chart.BarFromPoint(-1, -1)
 If Not IsEmpty(k) Then
 Debug.Print h & " " & k
 End If
 End If
 End With
End Sub

or:

Private Sub G2antt1_MouseMove(ByVal Button As Integer, ByVal Shift As Integer, ByVal X
As Long, ByVal Y As Long)
 Dim h As Long, c As Long, hit As Long
 With G2antt1
 h = .ItemFromPoint(-1, -1, c, hit)
 If (h <> 0) Then
 Dim k As Variant
 k = .Chart.BarFromPoint(-1, -1)
 If Not IsEmpty(k) Then
 MsgBox h & " " & k
 End If
 End If
 End With

End Sub

The second sample uses the Long type instead HITEM and HitTestInfoEnum which are
equivalents.

The following VB sample displays the key of the bar from the cursor:

Private Sub G2antt1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With G2antt1.Chart
 Debug.Print .BarFromPoint(-1, -1)
 End With
End Sub

The following VB sample displays the start data of the bar from the point:

Private Sub G2antt1_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With G2antt1
 Dim h As HITEM, c As Long, hit As HitTestInfoEnum
 h = .ItemFromPoint(-1, -1, c, hit)
 If Not (h = 0) Then
 Dim k As Variant
 k = .Chart.BarFromPoint(-1, -1)
 If Not IsEmpty(k) Then
 Debug.Print .Items.ItemBar(h, k, exBarStart)
 End If
 End If
 End With
End Sub

The following VB sample displays the keys of the bars from the cursor (in case several
bars covers each other):

Private Sub G2antt1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Dim h As HITEM, c As Long, hit As HitTestInfoEnum
 With G2antt1
 h = .ItemFromPoint(-1, -1, c, hit)

 If (h <> 0) Then
 Dim vKey As Variant, vKeys As New Collection

 vKey = .Chart.BarFromPoint(-1, -1)
 While (Not VarType(vKey) = vbEmpty)
 vKeys.Add vKey
 .Items.ItemBar(h, vKey, exBarSelectable) = False
 vKey = .Chart.BarFromPoint(-1, -1)
 Wend

 If (vKeys.Count > 0) Then
 Debug.Print "Bar(s) from the cursor: "
 Dim v As Variant
 For Each v In vKeys
 .Items.ItemBar(h, v, exBarSelectable) = True
 Debug.Print v
 Next
 Else
 Debug.Print "No bar at the cursor."
 End If

 Set vKeys = Nothing
 End If
 End With
End Sub

The following C++ sample displays the start data of the bar from the point:

#include "Items.h"
#include "Chart.h"

CString V2Date(VARIANT* pvtValue)
{
 COleVariant vtDate;
 vtDate.ChangeType(VT_BSTR, pvtValue);
 return V_BSTR(&vtDate);

}

void OnMouseDownG2antt1(short Button, short Shift, long X, long Y)
{
 long c = 0, hit = 0, h = m_g2antt.GetItemFromPoint(-1, -1, &c, &hit);
 if (h != 0)
 {
 COleVariant vtKey = m_g2antt.GetChart().GetBarFromPoint(-1, -1);
 if (V_VT(&vtKey) != VT_EMPTY)
 {
 COleVariant vtStart = m_g2antt.GetItems().GetItemBar(h, vtKey, 1 /*exBarStart*/);
 OutputDebugString(V2Date(&vtStart));
 }
 }
}

The following VB.NET sample displays the start data of the bar from the point:

Private Sub AxG2antt1_MouseDownEvent(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_MouseDownEvent) Handles
AxG2antt1.MouseDownEvent
 With AxG2antt1
 Dim c As Long, hit As EXG2ANTTLib.HitTestInfoEnum, h As Integer =
.get_ItemFromPoint(-1, -1, c, hit)
 If Not (h = 0) Then
 Dim k As Object
 k = .Chart.BarFromPoint(-1, -1)
 If Not k Is Nothing Then
 System.Diagnostics.Debug.WriteLine(.Items.ItemBar(h, k,
EXG2ANTTLib.ItemBarPropertyEnum.exBarStart))
 End If
 End If
 End With
End Sub

The following VB.NET /NET Assembly sample displays the bars from the point (in case
several bars covers each other):

Private Sub Exg2antt1_MouseMoveEvent(ByVal sender As System.Object, ByVal Button As
System.Int16, ByVal Shift As System.Int16, ByVal X As System.Int32, ByVal Y As
System.Int32) Handles Exg2antt1.MouseMoveEvent
 With Exg2antt1
 Dim h As Integer = .get_ItemFromPoint(-1, -1)
 If (h <> 0) Then
 Dim vKey As Object = Exg2antt1.Chart.get_BarFromPoint(-1, -1)
 Dim vKeys As List(Of Object) = New List(Of Object)

 While Not vKey Is Nothing
 vKeys.Add(vKey)
 .Items.set_BarSelectable(h, vKey, False)
 vKey = .Chart.get_BarFromPoint(-1, -1)
 End While

 System.Diagnostics.Debug.Print("Bars from point: " + vKeys.Count.ToString())
 Dim v As Object
 For Each v In vKeys
 System.Diagnostics.Debug.Print(v.ToString())
 Exg2antt1.Items.set_BarSelectable(h, v, True)
 Next
 End If
 End With
End Sub

The following C# sample displays the start data of the bar from the point:

private void axG2antt1_MouseDownEvent(object sender,
AxEXG2ANTTLib._IG2anttEvents_MouseDownEvent e)
{
 int c = 0;
 EXG2ANTTLib.HitTestInfoEnum hit = EXG2ANTTLib.HitTestInfoEnum.exHTCell;
 int h = axG2antt1.get_ItemFromPoint(-1, -1, out c, out hit);
 if (h != 0)
 {
 object k = axG2antt1.Chart.get_BarFromPoint(-1, -1);
 if (k != null)

 System.Diagnostics.Debug.WriteLine(axG2antt1.Items.get_ItemBar(h, k,
EXG2ANTTLib.ItemBarPropertyEnum.exBarStart));
 }
}

The following C# /NET Assembly sample displays the bars from the point (in case several
bars covers each other):

private void exg2antt1_MouseMoveEvent(object sender, short Button, short Shift, int X,
int Y)
{
 int h = exg2antt1.get_ItemFromPoint(-1, -1);
 if (h != 0)
 {
 object vKey = exg2antt1.Chart.get_BarFromPoint(-1, -1);
 List<object> vKeys = new List<object>();
 while (vKey != null)
 {
 vKeys.Add(vKey);
 exg2antt1.Items.set_BarSelectable(h, vKey, false);
 vKey = exg2antt1.Chart.get_BarFromPoint(-1, -1);
 }
 System.Diagnostics.Debug.Print("Bars from point: " + vKeys.Count.ToString());
 foreach (object v in vKeys)
 {
 System.Diagnostics.Debug.Print(v.ToString());
 exg2antt1.Items.set_BarSelectable(h, v, true);
 }
 }
}

The following VFP sample displays the start data of the bar from the point:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

With thisform.G2antt1
 local h, c, hit

 h = .ItemFromPoint(-1, -1, c, hit)
 If (h # 0) Then
 local k
 k = .Chart.BarFromPoint(-1, -1)
 If !Empty(k) Then
 ? .Items.ItemBar(h, k, 1)
 EndIf
 EndIf
EndWith

property Chart.Bars as Bars
Retrieves the Bars collection.

Type Description
Bars A Bars collection that holds Bar objects.

Use the Bars property to access the control's Bars collection. Use the Add or Copy
property to add new type of bars to the control. Use the AddBar method to add new bars
to an item. Use the Chart property to access the Chart object.

By default, the Bars collection includes the following predefined bars:

"Deadline":
"Project Summary":
"Summary":
"Milestone":
"Progress":
"Split":
"Task":

property Chart.BarsAllowSizing as Boolean
Specifies whether bars can be resized at run-time.

Type Description

Boolean A boolean expression that indicates whether the control
allows resizing or moving the bars in the chart area.

Use the BarsAllowSizing property to specify whether the control allows resizing or moving
the bars in the chart area. By default, the BarsAllowSizing property is True. Use the
ItemBar(,,exBarCanResize) property to specify whether the bar is resizable. By default, all
bars are resizable. The control displays a resizing cursor while the user hovers the mouse
over the bar. The user may start the resizing/moving the operation by clicking the bar and
moving it to a new position. The control is scrolled if required. The DateTickerLabel
property specifies the label (being displayed across the ticker) that shows the start and end
dates of the moved or resized bar.

property Chart.CanRedo as Boolean
Retrieves a value that indicates whether the chart can perform a Redo operation.

Type Description

Boolean A Boolean expression that specifies whether the chart can
perform the next action in the chart's Redo queue.

For instance, you can use the CanRedo property to update the Redo button in your toolbar,
so the user knows that Redo operations in the chart may be performed. The Redo redoes
the next action in the chart's redo queue. If the AllowUndoRedo property is True, the
CTRL+Y redoes the next action in the chart's Redo queue. The RedoListAction property
lists the Redo actions that can be performed in the chart.

property Chart.CanUndo as Boolean
Retrieves a value that indicates whether the chart can perform an Undo operation.

Type Description

Boolean A Boolean expression that specifies whether the chart can
perform the last Undo operation.

For instance, you can use the CanUndo property to update the Undo button in your toolbar,
so the user knows that Undo operations in the chart may be performed. Call the Undo
method to Undo the last chart operation. By default, the if the AllowUndoRedo property is
True, the CTRL+Z performs the last Undo operation. The CanRedo property retrieves a
value that specifies whether the chart can execute the next operation in the chart's Redo
queue. The Redo redoes the next action in the chart's redo queue. If the AllowUndoRedo
property is True, the CTRL+Y redoes the next action in the chart's Redo queue. The
UndoListAction property lists the Undo actions that can be performed in the chart. The
RedoListAction property lists the Redo actions that can be performed in the chart.

method Chart.ClearItemBackColor (Item as HITEM)
Clears the item's background color in the chart area.

Type Description
Item as HITEM A long expression that indicates the item's handle.

The ClearItemBackColor method clears the item's background color when ItemBackColor
property is used (chart part only). The ClearItemBackColor method clears the item's
background color when ItemBackColor property is used (items/columns part only).

method Chart.ClearNonworkingDates ()
Clears nonworking dates.

Type Description

Use the ClearNonworkingDates method to remove all nonworking dates. Use the
ShowNonworkingDates property to show or hide the nonworking dates. Use the
RemoveNonworkingDate method to unmark a specified nonworking date, being previously
added using the AddNonworkingDate method. Use the IsDateVisible property to specify
whether a date fits the chart's area. Use the IsNonworkingDate property to check whether
the date is already highlighted as nonworking day. The NonworkingDays property specifies
the days being marked as nonworking in a week. Use the NonworkingDaysPattern property
to specify the pattern being used to fill non-working days. The NonworkingDaysColor
property specifies the color being used to fill the non-working days.

property Chart.ColumnsFont as IFontDisp
Retrieves or sets the font to display the columns in the chart section.

Type Description

IFontDisp A Font object to be used when showing the
ColumnsFormatLevel property.

By default, the ColumnsFont property is empty, and so the control's Font is used to show
the columns in the chart section. Use the ColumnsFont property to use a different font when
showing the columns in the chart part of the control. Use the Def(exCellForeColor) property
to specify the column's foreground color, so in case you need to change the foreground
color of the columns. The ColumnsFormatLevel property may display any visible or hidden
column. The Visible property indicates whether a column is visible or hidden in the items
section. The ShowTransparentBars property to specify a transparency to displays all bars
in the chart. The ColumnsTransparent property specifies the percent of the transparency to
display the columns in the chart.

property Chart.ColumnsFormatLevel as String
Specifies the CRD format layout to display the columns in the chart section.

Type Description

String
A String expression that indicates the CRD format to
display the columns in the chart part of the control. You
can use the ExCRD tool to generate the CRD strings.

By default, the ColumnsFormatLevel property is empty, so no columns are displayed on the
chart. Use the ColumnsFormatLevel property to specify the columns to be displayed on the
chart's section. The ColumnsFormatLevel property may display any visible or hidden
column. For instance, the ColumnsFormatLevel = "0" displays the first column (the column
with the index 0), on the chart. The ColumnsFont property indicates the font to be used
when showing the columns on the chart part of the control. The ColumnsTransparent
property specifies the percent of the transparency to display the columns in the chart. The
Visible property indicates whether a column is visible or hidden in the items section. The
ShowTransparentBars property to specify a transparency to displays all bars in the chart.
The SelBackColor/SelForeColor property indicates whether the selected item is highlighted
in the chart section.

The columns section displays the expanding +/- buttons only if:

LinesAtRoot
HasButtons
Indent

are NOT set on 0. If any of these is 0, the expanding +/- buttons in the chart is not shown.

The following screen shot shows columns on the chart part of the control:

https://www.exontrol.com/excrd.jsp

Here's a few samples of using the CRD syntax:

"1:52", displays the column with the index 1 on a 52 pixels width.
"|,1:52", aligns the column with the index 1 on the right side of the chart
"1:52,\"\"[bg=255]:2", displays a red border to the right of the column with the index 1
"1[bg=255]:52", displays the column with the index 1 with different background color (
red for 255 or RGB(255,0,0))

property Chart.ColumnsTransparent as Long
Specifies the percent of the transparency to display the columns in the chart.

Type Description

Long

A Long expression, from 0 to 100, that indicates the
percent of transparency that's used to paint the columns in
the chart part of the control. 0 means opaque, 100 means
hidden, or 100% transparent. 50 means semi-transparent.

By default, the ColumnsTransparent property is 0. Use the ColumnsFormatLevel property to
specify the columns to be displayed on the chart's section. For instance, the
ColumnsFormatLevel = "0" displays the first column (the column with the index 0), on the
chart. The ColumnsFont property indicates the font to be used when showing the columns
on the chart part of the control. The ShowTransparentBars property to specify a
transparency to displays all bars in the chart. The ColumnsFormatLevel property may
display any visible or hidden column. The Visible property indicates whether a column is
visible or hidden in the items section.

The following screen shot shows the a check-box column in the right side of the chart, using
a semi-transparent color:

property Chart.CondInsideZoom as String
Specifies the formula that indicates the dates that can be zoomed at runtime.

Type Description

String

A String expression that defines the dates that can be
magnified by double clicking the base level, or resizing it. If
empty, the CondInsideZoom property has no effect. If not
empty and the expression is valid, it indicates the dates
that can be magnified. For instance, if the
ConsInsideZoom property is "month(value)= 5" specifies
that user can zoom only dates in May.

By default, the CondnsideZoom property is empty. If empty, the CondInsideZoom property
has no effect. If the CondInsideZoom property is not empty and valid, it indicates the dates
that can be magnified by double clicking the time unit in the base level, if the
InsideZoomOnDblClick property is True, or by resizing the time unit, if the
AllowResizeInsideZoom property is True. In other words, the CondInsideZoom property has
effect ONLY if the AllowResizeInsideZoom or InsideZoomOnDblClick properties. So, it has
no effect when adding the inside zoom units by code, using the Add method.

The expression may be a combination of variables, constants, strings, dates and operators,
and value. The value operator gives the date-time expression being checked. A string is
delimited by ", ` or ' characters, and inside they can have the starting character preceded
by \ character, ie "\"This is a quote\"". A date is delimited by # character, ie #1/31/2001
10:00# means the January 31th, 2001, 10:00 AM.

For instance, if the CondInsideZoom property is "weekday(value) = 0" means that you allow
zooming only for Sundays, or if it is "not(weekday(value) = 0 or weekday(value) = 6)" the
control allow zooming only for working dates, as Monday to Friday.

The value keyword in the CondInsideZoom property indicates the date-time expression
being checked.

This property/method supports predefined constants and operators/functions as described
here.

property Chart.CountVisibleUnits ([Start as Variant], [End as Variant]) as
Long
Counts the number of units within the specified range.

Type Description

Start as Variant A DATE expression that specifies the starting date, if
missing, the StartPrintDate value is used.

End as Variant A DATE expression that specifies the ending date, if
missing, the EndPrintDate value is used.

Long A long expression that specifies the number of units within
the specified range.

Use the CountVisibleUnits property to count the number of units within the specified range.
The UnitScale property indicates the time-unit scale being displayed by the chart's header.
Use the CountVisibleUnits property to count the number of units so the entire chart is
displayed on a specified size. Use the UnitWidth property specifies the width in pixels for
the minimal time-unit. Use the CountVisibleUnits property and the ClientWidth property of
the eXPrint component (Retrieves the width in pixels, of the drawing area of the printer
page) to specify that you need to display the chart on a single page. The StartPrintDate
and EndPrintDate property specifies range of dates within the chart is printed.

When computing the UnitWidth property for printing to a page (as shown in the following
sample), you can still use the Count property of the Level object to display more units
instead one.

The following VB sample changes the UnitWidth property of the eXG2ant's Chart object so,
the entire chart is printed to the page:

With Print1
 Dim l As Long
 With G2antt1.Chart
 l = .UnitWidth
 .UnitWidth = (Print1.ClientWidth - .PaneWidth(False)) / .CountVisibleUnits()
 End With
 Set .PrintExt = G2antt1.Object
 .Preview
 G2antt1.Chart.UnitWidth = l
End With

The sample has the disadvantage that once the user changes the Page's setup during

Previewing the code is not re-executed, so the chart is displayed as it is on the screen. In
order to update the UnitWidth property once the page's setup is changed, we need to
handle the Refreshing and Refresh events of the eXPrint component as shown in the
following VB sample:

Dim nUnitWidth As Long

Private Sub Print1_Refreshing()
 With G2antt1.Chart
 nUnitWidth = .UnitWidth
 .UnitWidth = (Print1.ClientWidth - .PaneWidth(False)) / .CountVisibleUnits()
 End With
End Sub

Private Sub Print1_Refresh()
 G2antt1.Chart.UnitWidth = nUnitWidth
End Sub

Private Sub Preview_Click()
 With Print1
 Set .PrintExt = G2antt1.Object
 .Preview
 End With
End Sub

The sample changes the UnitWidth property of the Chart during the Refreshing event, so
the chart fits to page, and restores the UnitWidth's value when the Refresh event is
invoked.

The following VB/NET sample changes the UnitWidth property so the chart fits to page:

Dim nUnitWidth As Long

Private Sub Exprint1_RefreshingEvent(ByVal sender As System.Object) Handles
Exprint1.RefreshingEvent
 With Exg2antt1.Chart
 nUnitWidth = .UnitWidth
 .UnitWidth = (Exprint1.ClientWidth - .get_PaneWidth(False)) / .CountVisibleUnits()
 End With

https://exontrol.com/content/products/exprint/help/_IExPrintEvents_Refreshing.htm
https://exontrol.com/content/products/exprint/help/_IExPrintEvents_Refresh.htm
https://exontrol.com/exprint.jsp

End Sub

Private Sub Exprint1_RefreshEvent(ByVal sender As System.Object) Handles
Exprint1.RefreshEvent
 Exg2antt1.Chart.UnitWidth = nUnitWidth
End Sub

Private Sub Preview_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Preview.Click
 Exprint1.PrintExt = Exg2antt1
 Exprint1.Preview()
End Sub

property Chart.DateFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Date
Retrieves the date from the cursor.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

Date A Date expression that indicates the date from the cursor
or 0 if no date found.

The DateFromPoint property gets the date from point. The DateFromPoint property
retrieves the date from the cursor, only if the cursor hovers the chart's area. Use the
ItemFromPoint property to get the cell/item from the cursor. Use the ColumnFromPoint
property to retrieve the column from cursor. Use the FormateDate property to format a
date. Use the DrawDateTicker property to draw a ticker as cursor hovers the chart's area.
Use the BarFromPoint property to get the bar from the point. Use the LinkFromPoint
property to get the link from the point. Use the LevelFromPoint property to retrieve the
index of the level from the cursor.

The DateFromPoint property retrieves the value based on the X and Y parameters as
follows:

if X = -1 and Y = -1, the DateFromPoint property retrieves the date from the
cursor, shortly the DateFromPoint(-1,-1) returns the date from the cursor
if X = 0 and Y = -1, the DateFromPoint property retrieves the first visible date in the
chart, the same as FirstVisibleDate property.
if X = 1 and Y = -1, the DateFromPoint property retrieves the last visible date in the
chart.

The following VB sample displays the date from the cursor:

Private Sub G2antt1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With G2antt1.Chart
 Dim d As Date
 d = .DateFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 Debug.Print .FormatDate(d, "<%m%>/<%d%>/<%yyyy%>")

 End With
End Sub

The following C++ sample displays the date from the point:

void OnMouseMoveG2antt1(short Button, short Shift, long X, long Y)
{
 CChart chart = m_g2antt.GetChart();
 DATE d = chart.GetDateFromPoint(X, Y);
 CString strFormat = chart.GetFormatDate(d, "<%m%>/<%d%>/<%yyyy%>");
 OutputDebugString(strFormat);
}

The following VB.NET sample displays the date from the point:

Private Sub AxG2antt1_MouseMoveEvent(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_MouseMoveEvent) Handles AxG2antt1.MouseMoveEvent
 With AxG2antt1.Chart
 Dim d As Date
 d = .DateFromPoint(e.x, e.y)
 Debug.Write(.FormatDate(d, "<%m%>/<%d%>/<%yyyy%>"))
 End With
End Sub

The following C# sample displays the date from the point:

private void axG2antt1_MouseMoveEvent(object sender,
AxEXG2ANTTLib._IG2anttEvents_MouseMoveEvent e)
{
 DateTime d = axG2antt1.Chart.get_DateFromPoint(e.x, e.y);
 System.Diagnostics.Debug.Write(axG2antt1.Chart.get_FormatDate(d, "
<%m%>/<%d%>/<%yyyy%>"));
}

The following VFP sample displays the date from the point:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.G2antt1.Chart
 d = .DateFromPoint(x,y)
 wait window nowait .FormatDate(d, "<%m%>/<%d%>/<%yyyy%>")
endwith

property Chart.DateTickerLabel as String
Retrieves or sets a value that indicates the format to display the bar's start and end date
while creating, moving or resizing it.

Type Description

String

A String expression that specifies the format of the label
being displayed while the item is moved or resized. It
supports HTML format, <%%> tags and <%=formula%>
expressions as explained below

By default, the DateTickerLabel property is empty. The DateTickerLabel property shows the
start and end date of the bar being created, moved or resized at runtime using the mouse.
Use the
 HTML tag to break the lines, in case you need to display the label using
multiple lines. The label always ensure that can be displayed in the chart's area.

The following screen shot shows the ticker and it's label that displays the start and and time
of the "moving" bar

For instance:

"<%mmm%> <%d%>
<%hh%>:<%nn%>", displays the month (three
letters) and the day in the first line, while the hour and minute on the second line
"<%=shortdate(value=end?value-1:value)%>", displays the end-margin with one day
before
"<%mmm%> <%d%><fgcolor 808080><%=value=end?` (`+(end - start) + `)`:``%>"
displays the month, the day and for the end-margin includes the number of days of the
bar being created, resized or moved
"<%=value=start?``:value%>" specifies that only end-margin of the bar is being shown

The DateTickerLabel supports <%=formula%> expressions, where formula. The formula
supports the following keywords:

value, specifies the date being displayed (could be the start or the end margin of the
bar, DATE type)
start, specifies the start-margin of the bar as DATE type. The start result is equivalent
of the ItemBar(exBarStart) property.

end, specifies the end-margin of the bar as DATE type. The end result is equivalent of
the ItemBar(exBarEnd) property.
wcount, returns the working-count between start and end margins, as a number (1
indicates one-day). The wcount result is equivalent of the
ItemBar(exBarWorkingCount) property. The NonworkingDays, NonworkingHours,
ItemNonworkingUnits properties define the non-working portion of the chart. The end -
start gets the duration (in days) of the task. The end - start -wcount gets the bar's
non-working length.

Also, the formula supports predefined constants and operators/functions as described here.

The DateTickerLabel supports the following built-in tags:

<%d%> - Day of the month in one or two numeric digits, as needed (1 to 31).
<%dd%> - Day of the month in two numeric digits (01 to 31).
<%d1%> - First letter of the weekday (S to S). (Use the WeekDays property to
specify the name of the days in the week)
<%loc_d1%> - Indicates day of week as a one-letter abbreviation using the current
user settings.
<%d2%> - First two letters of the weekday (Su to Sa). (Use the WeekDays property
to specify the name of the days in the week)
<%loc_d2%> - Indicates day of week as a two-letters abbreviation using the current
user settings.
<%d3%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week)
<%loc_d3%> equivalent with <%loc_ddd%>
<%ddd%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_ddd%> that indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%loc_ddd%> - Indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%dddd%> - Full name of the weekday (Sunday to Saturday). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_dddd%> that indicates day of week as its full name using the current user
regional and language settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
regional and language settings.
<%i%> - Displays the number instead the date. For instance, you can display numbers
as 1000, 1001, 1002, 1003, instead dates. (the valid range is from -647,434 to
2,958,465)
<%w%> - Day of the week (1 to 7).
<%ww%> - Week of the year (1 to 53).

<%m%> - Month of the year in one or two numeric digits, as needed (1 to 12).
<%mr%> - Month of the year in Roman numerals, as needed (I to XII).
<%mm%> - Month of the year in two numeric digits (01 to 12).
<%m1%> - First letter of the month (J to D). (Use the MonthNames property to
specify the name of the months in the year)
<%loc_m1%> - Indicates month as a one-letter abbreviation using the current user
settings.
<%m2%> - First two letters of the month (Ja to De). (Use the MonthNames property
to specify the name of the months in the year)
<%loc_m2%> - Indicates month as a two-letters abbreviation using the current user
settings.
<%m3%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year)
<%loc_m3%> - equivalent with <%loc_mmm%>
<%mmm%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year). You can use the
<%loc_mmm%> that indicates month as a three-letter abbreviation using the current
user regional and language settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
regional and language settings.
<%mmmm%> - Full name of the month (January to December). (Use the
MonthNames property to specify the name of the months in the year). You can use the
<%loc_mmmm%> that indicates month as its full name using the current user regional
and language settings.
<%loc_mmmm%> - Indicates month as its full name using the current user regional
and language settings.
<%q%> - Date displayed as the quarter of the year (1 to 4).
<%y%> - Number of the day of the year (1 to 366).
<%yy%> - Last two digits of the year (01 to 99).
<%yyyy%> - Full year (0100 to 9999).
<%hy%> - Date displayed as the half of the year (1 to 2).
<%loc_gg%> - Indicates period/era using the current user regional and language
settings.
<%loc_sdate%> - Indicates the date in the short format using the current user regional
and language settings.
<%loc_ldate%> - Indicates the date in the long format using the current user regional
and language settings.
<%loc_dsep%> - Indicates the date separator using the current user regional and
language settings (/).
<%h%> - Hour in one or two digits, as needed (0 to 23).
<%hh%> - Hour in two digits (00 to 23).
<%h12%> - Hour in 12-hour time format, in one or two digits - [0(12),11]

<%hh12%> - hour in 12-hour time format, in two digits - [00(12),11]
<%n%> - Minute in one or two digits, as needed (0 to 59).
<%nn%> - Minute in two digits (00 to 59).
<%s%> - Second in one or two digits, as needed (0 to 59).
<%ss%> - Second in two digits (00 to 59).
<%AM/PM%> - Twelve-hour clock with the uppercase letters "AM" or "PM", as
appropriate. (Use the AMPM property to specify the name of the AM and PM
indicators). You can use the <%loc_AM/PM%> that indicates the time marker such as
AM or PM using the current user regional and language settings. You can use
<%loc_A/P%> that indicates the one character time marker such as A or P using the
current user regional and language settings
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user regional and language settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user regional and language settings.
<%loc_time%> - Indicates the time using the current user regional and language
settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user regional and language settings.
<%loc_tsep%> - indicates the time separator using the current user regional and
language settings (:)
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed

The following tags are displayed based on the user's Regional and Language Options:

<%loc_sdate%> - Indicates the date in the short format using the current user
settings.
<%loc_ldate%> - Indicates the date in the long format using the current user settings.
<%loc_d1%> - Indicates day of week as a one-letter abbreviation using the current
user settings.
<%loc_d2%> - Indicates day of week as a two-letters abbreviation using the current
user settings.

<%loc_d3%> equivalent with <%loc_ddd%>
<%loc_ddd%> - Indicates day of week as a three-letters abbreviation using the
current user settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
settings.
<%loc_m1%> - Indicates month as a one-letter abbreviation using the current user
settings.
<%loc_m2%> - Indicates month as a two-letters abbreviation using the current user
settings.
<%loc_m3%> - equivalent with <%loc_mmm%>
<%loc_mmm%> - Indicates month as a three-letters abbreviation using the current
user settings.
<%loc_mmmm%> - Indicates month as its full name using the current user settings.
<%loc_gg%> - Indicates period/era using the current user settings.
<%loc_dsep%> - Indicates the date separator using the current user settings.
<%loc_time%> - Indicates the time using the current user settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user settings.
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user settings.
<%loc_tsep%> - Indicates the time separator using the current user settings.
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed

The DateTickerLabel property supports the following built-in HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a

about:blank

piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as <a
;exp=show lines>
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as <a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
 that displays show lines- in gray when the user clicks the + anchor. The
gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the <fgcolor 808080>show lines<a>-</fgcolor> The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, <solidline>Header</solidline>
Line1<r>
<a ;exp=show lines>+
Line2
Line3 shows the Header in underlined and
bold on the first line and Line1, Line2, Line3 on the rest. The show lines is shown
instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the bit draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, bit displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.

<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: Text with <off 6>subscript displays the text
such as: Text with subscript The Text with <off -6>superscript displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the <gra
FFFFFF;1;1>gradient-center</gra> generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the <out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out> generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the <sha>shadow</sha> generates the
following picture:

or <sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha> gets:

Your application can provide some options to help user while performing moving or resizing
at runtime as follow:

grid lines, that can be shown only when moving or resizing, using the
ChartStartChanging and ChartEndChanging events
select date, to specify the margins of the are you what to highlight
ticker, that shows the cursor's position in the chart, or while resizing, it shows the size
and the position of the bar
ability to specify a resizing/moving unit, different that the displayed one ie while the
chart displays days, you can specify the resizing unit on hours.
inside zoom, that can be used to magnify the portion of the chart being selected

*Added: The Chart.DateTickerLabel property property supports <%=formula%> expression
to customize the label to be shown for start and/or end margins of the bar being created,
moved or resized. The expression (after the = character) supports keywords such as
"value" that defines the DATE being displayed (could be start or end), "start" that defines
the start-margin of the bar as a DATE type and "end" that defines the end-margin of the bar

as a DATE type. For instance,

property Chart.DefaultInsideZoomFormat as InsideZoomFormat
Retrieves the format of the inside zoom units.

Type Description

InsideZoomFormat An InsideZoomFormat object that defines the look and feel
for newly added inside zoom units.

The DefaultInsideZoomFormat property defines the format of the inside zoom units. By
default, the inside zoom units displays hours. The DefaultInsideZoomFormat property is
applied to all inside zoom units, that has AllowCustomFormat property on False (by default
). The InsideLabel property defines the label of the units once they get magnified. The
control fires the InsideZoom event once the user magnifies a date. The inside zoom units
are displayed only if the AllowInsideZoom property is True (by default, the
AllowInsideZoom property is False).

The following VB sample shows how can I change the scale unit when doing inside zoom (
the chart displays weeks, and we want week days):

With G2antt1
 .BeginUpdate
 With .Chart
 .ShowNonworkingDates = False
 .PaneWidth(0) = 0
 .LevelCount = 2
 With .Level(0)
 .Label = "<%mmmm%>"
 .Unit = exMonth
 End With
 With .Level(1)
 .Label = "<%ww%>"
 .Unit = exWeek
 End With
 .FirstVisibleDate = #1/1/2008#
 .AllowInsideZoom = True
 With .DefaultInsideZoomFormat
 .OwnerLabel = "<%mmm%> Week: <%ww%>"
 .InsideLabel = "<%d1%>"
 .InsideUnit = exDay
 End With

 With .InsideZooms
 .SplitBaseLevel = False
 .Add #2/3/2008#
 End With
 End With
 .EndUpdate
End With

The following VB.NET sample shows how can I change the scale unit when doing inside
zoom (the chart displays weeks, and we want week days):

With AxG2antt1
 .BeginUpdate
 With .Chart
 .ShowNonworkingDates = False
 .PaneWidth(0) = 0
 .LevelCount = 2
 With .Level(0)
 .Label = "<%mmmm%>"
 .Unit = EXG2ANTTLib.UnitEnum.exMonth
 End With
 With .Level(1)
 .Label = "<%ww%>"
 .Unit = EXG2ANTTLib.UnitEnum.exWeek
 End With
 .FirstVisibleDate = #1/1/2008#
 .AllowInsideZoom = True
 With .DefaultInsideZoomFormat
 .OwnerLabel = "<%mmm%> Week: <%ww%>"
 .InsideLabel = "<%d1%>"
 .InsideUnit = EXG2ANTTLib.UnitEnum.exDay
 End With
 With .InsideZooms
 .SplitBaseLevel = False
 .Add #2/3/2008#
 End With
 End With
 .EndUpdate

End With

The following C++ sample shows how can I change the scale unit when doing inside zoom (
the chart displays weeks, and we want week days):

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->BeginUpdate();
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutShowNonworkingDates(VARIANT_FALSE);
 var_Chart->PutPaneWidth(0,0);
 var_Chart->PutLevelCount(2);
 EXG2ANTTLib::ILevelPtr var_Level = var_Chart->GetLevel(0);
 var_Level->PutLabel("<%mmmm%>");
 var_Level->PutUnit(EXG2ANTTLib::exMonth);
 EXG2ANTTLib::ILevelPtr var_Level1 = var_Chart->GetLevel(1);
 var_Level1->PutLabel("<%ww%>");
 var_Level1->PutUnit(EXG2ANTTLib::exWeek);
 var_Chart->PutFirstVisibleDate("1/1/2008");
 var_Chart->PutAllowInsideZoom(VARIANT_TRUE);
 EXG2ANTTLib::IInsideZoomFormatPtr var_InsideZoomFormat = var_Chart-
>GetDefaultInsideZoomFormat();
 var_InsideZoomFormat->PutOwnerLabel(L"<%mmm%> Week: <%ww%>");
 var_InsideZoomFormat->PutInsideLabel(L"<%d1%>");
 var_InsideZoomFormat->PutInsideUnit(EXG2ANTTLib::exDay);
 EXG2ANTTLib::IInsideZoomsPtr var_InsideZooms = var_Chart->GetInsideZooms();
 var_InsideZooms->PutSplitBaseLevel(VARIANT_FALSE);
 var_InsideZooms->Add("2/3/2008");
spG2antt1->EndUpdate();

The following C# sample shows how can I change the scale unit when doing inside zoom (

the chart displays weeks, and we want week days):

axG2antt1.BeginUpdate();
EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;
 var_Chart.ShowNonworkingDates = false;
 var_Chart.set_PaneWidth(0 != 0,0);
 var_Chart.LevelCount = 2;
 EXG2ANTTLib.Level var_Level = var_Chart.get_Level(0);
 var_Level.Label = "<%mmmm%>";
 var_Level.Unit = EXG2ANTTLib.UnitEnum.exMonth;
 EXG2ANTTLib.Level var_Level1 = var_Chart.get_Level(1);
 var_Level1.Label = "<%ww%>";
 var_Level1.Unit = EXG2ANTTLib.UnitEnum.exWeek;
 var_Chart.FirstVisibleDate = "1/1/2008";
 var_Chart.AllowInsideZoom = true;
 EXG2ANTTLib.InsideZoomFormat var_InsideZoomFormat =
var_Chart.DefaultInsideZoomFormat;
 var_InsideZoomFormat.OwnerLabel = "<%mmm%> Week: <%ww%>";
 var_InsideZoomFormat.InsideLabel = "<%d1%>";
 var_InsideZoomFormat.InsideUnit = EXG2ANTTLib.UnitEnum.exDay;
 EXG2ANTTLib.InsideZooms var_InsideZooms = var_Chart.InsideZooms;
 var_InsideZooms.SplitBaseLevel = false;
 var_InsideZooms.Add("2/3/2008");
axG2antt1.EndUpdate();

The following VFP sample shows how can I change the scale unit when doing inside zoom (
the chart displays weeks, and we want week days):

with thisform.G2antt1
 .BeginUpdate
 with .Chart
 .ShowNonworkingDates = .F.
 .PaneWidth(0) = 0
 .LevelCount = 2
 with .Level(0)
 .Label = "<%mmmm%>"
 .Unit = 16
 endwith

 with .Level(1)
 .Label = "<%ww%>"
 .Unit = 256
 endwith
 .FirstVisibleDate = {^2008-1-1}
 .AllowInsideZoom = .T.
 with .DefaultInsideZoomFormat
 .OwnerLabel = "<%mmm%> Week: <%ww%>"
 .InsideLabel = "<%d1%>"
 .InsideUnit = 4096
 endwith
 with .InsideZooms
 .SplitBaseLevel = .F.
 .Add({^2008-2-3})
 endwith
 endwith
 .EndUpdate
endwith

property Chart.DrawDateTicker as Boolean
Retrieves or sets a value that indicates whether the control draws a ticker around the
current date while cursor hovers the chart's client area.

Type Description

Boolean A Boolean expression that indicates whether the date
ticker is visible or hidden.

By default, the DrawDateTicker property is False. Use the DrawDateTicker property to
show or hide the ticker that shows up while the cursor hovers the chart's area. The ticker
indicates the size and position of the focused bar while it is resized or moved. The
DateTickerLabel property specifies the label (being displayed across the ticker) that shows
the start and end dates of the moved or resized bar. Use the DateFromPoint property to
retrieve the date from the cursor. Use the NonworkingDays property to specify the
nonworking days. Use the MarkTodayColor property to specify whether the today date is
marked. Use the DrawTickLines property to specify whether the grid lines between time
units in the level are visible or hidden. The DateTickerLabel property shows the start and
end date of the bar being moved or resized.

Your application can provide some options to help user while performing moving or resizing
the bars at runtime as follow:

grid lines, that can be shown only when moving or resizing, using the
ChartStartChanging and ChartEndChanging events
select date, to specify the margins of the area you want to highlight
ticker, that shows the cursor's position in the chart, or while resizing, it shows the size
and the position of the bar
ability to specify a resizing/moving unit, different that the displayed one ie while the
chart displays days, you can specify the resizing unit on hours.
inside zoom, that can be used to magnify the portion of the chart being selected

property Chart.DrawGridLines as GridLinesEnum
Retrieves or sets a value that indicates whether the grid lines are visible or hidden.

Type Description

GridLinesEnum A GridLinesEnum expression that indicates whether the
control draws the grid lines in the chart's area.

By default, the DrawGridLines property is exNoLines. Use the DrawGridLines property to
specify whether the control draws the grid lines in the chart's area. Use the GridLineStyle
property of the Level object to specify the style for vertical grid lines in the chart area. Use
the GridLineColor property to specify the color for grid lines. Use the DrawGridLines
property to specify whether the control draws the grid lines in the items area. Use the
DrawLevelSeperator property to draw lines between levels inside the chart's header. Use
the DrawTickLines property to specify whether the grid lines between time units in the level
are visible or hidden. Use the MarkTodayColor property to specify the color to mark the
today date. Use the DrawGridLines property to draw grid lines for a specified level. Use the
NonworkingDays property to specify the nonworking days. Use the NonworkingDaysPattern
property to specify the brush to fill the nonworking days area.

In conclusion, the following properties are related to the control's gridlines:

DrawGridLines specifies whether the gridlines are shown in the column/list part of the
control. The gridlines in the chart part of the control are handled by the
Chart.DrawGridLines property.
GridLineColor specifies the color to show the horizontal grid line, and vertical grid lines
for the columns/list part of the control. The color for vertical grid lines in the chart view
part is handled by the Level.GridLineColor property.
GridLineStyle specifies the style for horizontal grid lines and vertical grid lines in the
columns/list part of the control. The Level.GridLineStyle property specifies the style for
vertical grid lines in the chart area.
Chart.DrawGridLines (belongs to Chart object) indicates whether gridlines are shown in
the chart view.
Level.DrawGridLines (belongs to Level object) specifies whether the level shows
vertical gridlines in the chart part of the control.
Level.GridLineColor (belongs to Level object) indicates the color for vertical gridlines in
the chart view.
Level.GridLineStyle (belongs to Level object) specifies the style to show the vertical
gridlines in the chart part area of the control.

property Chart.DrawLevelSeparator as LevelLineEnum
Retrieves or sets a value that indicates whether lines between levels are shown or hidden.

Type Description

LevelLineEnum A LevelLineEnum value that specifies the type of line being
shown between levels.

By default, the DrawLevelSeparator property is exLevelDefaultLine (dotted line) Use the
DrawLevelSeperator property to draw lines between levels inside the chart's header. The
DrawTickLines / DrawTickLinesFrom property always draw the vertically lines in the level,
while the DrawLevelSeparator property draws the horizontally lines in the level. Use the
DrawTickLines property to specify whether the grid lines between time units in the level are
visible or hidden. Use the DrawGridLines property to specify whether the control draws the
grid lines in the chart's area. Use the GridLineColor property to specify the color for grid
lines. Use the DrawGridLines property to specify whether the control draws the grid lines in
the items area. Use the DrawGridLines property to draw grid lines for a specified level. Use
the NonworkingDays property to specify the nonworking days. Use the
NonworkingDaysPattern property to specify the brush to fill the nonworking days area. Use
the MarkTodayColor property to specify the color to mark the today date.

method Chart.EndBlockUndoRedo ()
Ends recording the UI operations and adds the undo/redo operations as a block, so they all
can be restored at once, if Undo method is performed.

Type Description

The StartBlockUndoRedo method starts recording the UI operations as a block on
undo/redo operations The method has effect only if the AllowUndoRedo property is True.
The EndBlockUndoRedo method collects all undo/redo operations since
StartBlockUndoRedo method was called and add them to the undo/redo queue as a block.
This way the next call on a Undo operation, the entire block is restored, so all UI operations
are restored. For instance, if you have a procedure that moves several bars, and want all of
them being grouped, you can use StartBlockUndoRedo to start recording the operations as
a block, and call the EndBlockUndoRedo when procedure ends, so next call of an undo
operation the bars are restored to their original position. The EndBlockUndoRedo method
must be called the same number of times as the StartBlockUndoRedo method was called.
For instance, if you have called the StartBlockUndoRedo twice the EndBlockUndoRedo
method must be called twice too, and the collected operations are added to the chart's
queue of undo/redo operations at the end.

property Chart.EndPrintDate as Variant
Retrieves or sets a value that indicates the printing end date.

Type Description

Variant

A DATE expression that specifies the ending date to print
the chart. The get method always retrieves a DATE
expression. When calling the set method of the
EndPrintDate property, it can be a string, a DATE or any
other expression that can be converted to a date.

The EndPrintDate property indicates the date the chart ends, when:

printing the control's content using the exprint component
coping the control's content using the CopyTo method (since 22.0.1.5)

By default, the EndPrintDate property computes the required end date so the entire chart is
displayed, if the EndPrintDate was not specified before. For instance, if you set the
EndPrintDate property on "Dec 31 2001", the EndPrintDate property retrieves the "Dec 31
2001" date and does not compute the required end date. If you have specified a value for
the EndPrintDate but you still need to get the required end date being computed, set the
EndPrintDate property on 0, and calling the next method get of EndPrintDate property
computes the required end date to print the chart. The StartPrintDate property indicates the
starting date to print the chart. Use the CountVisibleUnits property to count the number of
units within the specified range.

property Chart.FirstVisibleDate as Variant
Retrieves or sets a value that indicates the first visible date.

Type Description

Variant A Date expression that indicates the first visible date in the
chart.

The FirstVisibleDate property indicates the first visible date in the chart. The control fires
the DateChange event when the first visible date is changed. The DateFromPoint(1,-1)
returns the last visible date. Use the FormatDate property to format a date to a specified
format. Use the NextDate property to retrieve the next or previous date giving a specified
time unit. Use the ScrollTo method to ensure that a specified date fits the chart's client area.
Use the AddBar property to add new bars to an item. The DateFromPoint property gets the
date from the cursor. Use the FirstWeekDay property to specify the first day in the week.
Use the Zoom method to scale the chart to a specified interval of dates. The StartPrintDate
property indicates the starting date to print the chart.

The following VB sample displays the first visible date when the user changes the first
visible date:

Private Sub G2antt1_DateChange()
 With G2antt1.Chart
 Debug.Print FormatDateTime(.FirstVisibleDate)
 End With
End Sub

or you can use the FormatDate method like follows:

Private Sub G2antt1_DateChange()
 With G2antt1.Chart
 Debug.Print .FormatDate(.FirstVisibleDate, "<%yyyy%>-<%m%>-<%d%>")
 End With
End Sub

The following VB sample determines the last visible date:

Private Function LastVisibleDate(ByVal g As EXG2ANTTLibCtl.G2antt) As Date
 With G2antt1
 With .Chart
 Dim d As Date

 d = .FirstVisibleDate
 Do While .IsDateVisible(d)
 d = .NextDate(d, exDay, 1)
 Loop
 End With
 End With
 LastVisibleDate = d - 1
End Function

The following C++ sample displays the first visible date when the user changes the first
visible date:

#include "G2antt.h"
#include "Chart.h"

static DATE V2D(VARIANT* pvtDate)
{
 COleVariant vtDate;
 vtDate.ChangeType(VT_DATE, pvtDate);
 return V_DATE(&vtDate);
}

void OnDateChangeG2antt1()
{
 if (m_g2antt.GetControlUnknown())
 {
 CChart chart = m_g2antt.GetChart();
 TCHAR szDate[1024] = _T("");
 SYSTEMTIME stDate = {0};
 VariantTimeToSystemTime(V2D(&chart.GetFirstVisibleDate()), &stDate);
 GetDateFormat(LOCALE_SYSTEM_DEFAULT, LOCALE_USE_CP_ACP, &stDate, NULL,
szDate, 1024);
 OutputDebugString(szDate);
 }
}

The following VB.NET sample displays the first visible date when the user changes the first
visible date:

Private Sub AxG2antt1_DateChange(ByVal sender As Object, ByVal e As System.EventArgs)
Handles AxG2antt1.DateChange
 Debug.Write(AxG2antt1.Chart.FirstVisibleDate.ToString())
End Sub

The following C# sample displays the first visible date when the user changes the first
visible date:

private void axG2antt1_DateChange(object sender, EventArgs e)
{
 System.Diagnostics.Debug.Write(axG2antt1.Chart.FirstVisibleDate.ToString());
}

The following VFP sample displays the first visible date when the user changes the first
visible date:

*** ActiveX Control Event ***

with thisform.G2antt1.Chart
 wait window nowait .FormatDate(.FirstVisibleDate, "<%yyyy%>-<%m%>-<%d%>")
endwith

property Chart.FirstWeekDay as WeekDayEnum
Specifies the first day of the week.

Type Description

WeekDayEnum A WeekDayEnum expression that indicates the first day in
the week.

By default, the FirstWeekDay property is exSunday. Use the FirstWeekDay property to
specify the first day in the week. Use WeekDays property to specify the name of the days
in the week. Use the MonthNames property to specify the name of the months in the year.
Use the AMPM property to specify the name of the AM and PM indicators. The FormatDate
property formats a date. The NextDate property computes the next date based on the time
unit. Use the FirstVisibleDate property to specify the first visible date in the chart. Use the
MarkTodayColor property to specify the color to mark the today date area. The
WeekNumberAs property specifies the way the control displays the week number.

property Chart.ForeColor as Color
Retrieves or sets a value that indicates the chart's foreground color.

Type Description

Color A Color expression that indicates the chart's foreground
color.

Use the ForeColor property to specify the chart's foreground color. Use the BackColor
property to specify the chart's background color. Use the BackColorLevelHeader property
to specify the background color of the chart's header. Use the ForeColorLevelHeader
property to specify the foreground color of the chart's header. Use the BackColor property
to specify the background color for a specified level. Use the ForeColor property to specify
the foreground color for a specified level. Use the ItemBackColor property to change the
item's background color. Use the NonworkingDaysColor property the color of the brush to
fill the nonworking days area. Use the Picture property to specify the picture being
displayed on the chart's area. Use the SelForeColor property to change the foreground
color of selected items being displayed in the chart area.

The following VB sample changes the chart's foreground color:

With G2antt1.Chart
 .ForeColor = RGB(&H80, &H80, &H80)
End With

The following C++ sample changes the chart's foreground color:

m_g2antt.GetChart().SetForeColor(RGB(0x80,0x80,0x80));

The following VB.NET sample changes the chart's foreground color:

With AxG2antt1.Chart
 .ForeColor = ToUInt32(Color.FromArgb(&H80, &H80, &H80))
End With

where the ToUInt32 function converts a Color expression to an OLE_COLOR type:

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B

 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample changes the chart's foreground color:

axG2antt1.Chart.ForeColor = ToUInt32(Color.FromArgb(0x80, 0x80, 0x80));

where the ToUInt32 function converts a Color expression to an OLE_COLOR type:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample changes the chart's foreground color:

With thisform.G2antt1.Chart
 .ForeColor = RGB(128, 128, 128)
EndWith

property Chart.ForeColorLevelHeader as Color
Specifies the foreground color for the chart's levels.

Type Description

Color A Color expression that indicates the background color for
the chart's header.

Use the ForeColorLevelHeader property to specify the foreground color of the chart's
header. Use the BackColorLevelHeader property to specify the background color of the
chart's header. Use the LevelCount property to specify the number of levels in the chart's
header. Use the Level property to access a level. Use the BackColor property to specify
the background color for a specified level. Use the ForeColor property to specify the
foreground color for a specified level. Use the BackColor property to specify the chart's
background color. Use the ForeColor property to specify the chart's foreground color. Use
the ItemBackColor property to change the item's background color. Use the
NonworkingDaysColor property the color of the brush to fill the nonworking days area. Use
the Picture property to specify the picture being displayed on the chart's area.

The following VB sample changes the chart's header foreground color:

With G2antt1.Chart
 .ForeColorLevelHeader = RGB(&H80, &H80, &H80)
End With

The following C++ sample changes the chart's header foreground color:

m_g2antt.GetChart().SetForeColorLevelHeader(RGB(0x80,0x80,0x80));

The following VB.NET sample changes the chart's header foreground color:

With AxG2antt1.Chart
 .ForeColorLevelHeader = ToUInt32(Color.FromArgb(&H80, &H80, &H80))
End With

where the ToUInt32 function converts a Color expression to an OLE_COLOR type:

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B

 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample changes the chart's header foreground color:

axG2antt1.Chart.ForeColorLevelHeader = ToUInt32(Color.FromArgb(0x80, 0x80, 0x80));

where the ToUInt32 function converts a Color expression to an OLE_COLOR type:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample changes the chart's header foreground color:

With thisform.G2antt1.Chart
 .ForeColorLevelHeader = RGB(128, 128, 128)
EndWith

property Chart.FormatDate (Date as Date, Format as String) as String
Formats the date.

Type Description
Date as Date A Date expression being formatted
Format as String A String expression that indicates the format of date.
String A String expression that indicates the formatted date.

Use the FormatDate property to format a date. Use the NextDate property to increase or
decrease a date based on a time unit. Use the FirstVisibleDate property to retrieve the first
visible date. The DateFromPoint property gets the date from the cursor. Use the WeekDays
property to specify the name of the days in the week. Use the MonthNames property to
specify the name of the months in the year. Use the AMPM property to specify the name of
the AM and PM indicators.

The Format parameter may include the following built-in tags:

<%d%> - Day of the month in one or two numeric digits, as needed (1 to 31).
<%dd%> - Day of the month in two numeric digits (01 to 31).
<%d1%> - First letter of the weekday (S to S). (Use the WeekDays property to
specify the name of the days in the week)
<%loc_d1%> - Indicates day of week as a one-letter abbreviation using the current
user settings.
<%d2%> - First two letters of the weekday (Su to Sa). (Use the WeekDays property
to specify the name of the days in the week)
<%loc_d2%> - Indicates day of week as a two-letters abbreviation using the current
user settings.
<%d3%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week)
<%loc_d3%> equivalent with <%loc_ddd%>
<%ddd%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_ddd%> that indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%loc_ddd%> - Indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%dddd%> - Full name of the weekday (Sunday to Saturday). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_dddd%> that indicates day of week as its full name using the current user
regional and language settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user

regional and language settings.
<%i%> - Displays the number instead the date. For instance, you can display numbers
as 1000, 1001, 1002, 1003, instead dates. (the valid range is from -647,434 to
2,958,465)
<%w%> - Day of the week (1 to 7).
<%ww%> - Week of the year (1 to 53).
<%m%> - Month of the year in one or two numeric digits, as needed (1 to 12).
<%mr%> - Month of the year in Roman numerals, as needed (I to XII).
<%mm%> - Month of the year in two numeric digits (01 to 12).
<%m1%> - First letter of the month (J to D). (Use the MonthNames property to
specify the name of the months in the year)
<%loc_m1%> - Indicates month as a one-letter abbreviation using the current user
settings.
<%m2%> - First two letters of the month (Ja to De). (Use the MonthNames property
to specify the name of the months in the year)
<%loc_m2%> - Indicates month as a two-letters abbreviation using the current user
settings.
<%m3%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year)
<%loc_m3%> - equivalent with <%loc_mmm%>
<%mmm%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year). You can use the
<%loc_mmm%> that indicates month as a three-letter abbreviation using the current
user regional and language settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
regional and language settings.
<%mmmm%> - Full name of the month (January to December). (Use the
MonthNames property to specify the name of the months in the year). You can use the
<%loc_mmmm%> that indicates month as its full name using the current user regional
and language settings.
<%loc_mmmm%> - Indicates month as its full name using the current user regional
and language settings.
<%q%> - Date displayed as the quarter of the year (1 to 4).
<%y%> - Number of the day of the year (1 to 366).
<%yy%> - Last two digits of the year (01 to 99).
<%yyyy%> - Full year (0100 to 9999).
<%hy%> - Date displayed as the half of the year (1 to 2).
<%loc_gg%> - Indicates period/era using the current user regional and language
settings.
<%loc_sdate%> - Indicates the date in the short format using the current user regional
and language settings.
<%loc_ldate%> - Indicates the date in the long format using the current user regional

and language settings.
<%loc_dsep%> - Indicates the date separator using the current user regional and
language settings (/).
<%h%> - Hour in one or two digits, as needed (0 to 23).
<%hh%> - Hour in two digits (00 to 23).
<%h12%> - Hour in 12-hour time format, in one or two digits - [0(12),11]
<%hh12%> - hour in 12-hour time format, in two digits - [00(12),11]
<%n%> - Minute in one or two digits, as needed (0 to 59).
<%nn%> - Minute in two digits (00 to 59).
<%s%> - Second in one or two digits, as needed (0 to 59).
<%ss%> - Second in two digits (00 to 59).
<%AM/PM%> - Twelve-hour clock with the uppercase letters "AM" or "PM", as
appropriate. (Use the AMPM property to specify the name of the AM and PM
indicators). You can use the <%loc_AM/PM%> that indicates the time marker such as
AM or PM using the current user regional and language settings. You can use
<%loc_A/P%> that indicates the one character time marker such as A or P using the
current user regional and language settings
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user regional and language settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user regional and language settings.
<%loc_time%> - Indicates the time using the current user regional and language
settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user regional and language settings.
<%loc_tsep%> - indicates the time separator using the current user regional and
language settings (:).
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed

The following tags are displayed based on the user's Regional and Language Options:

<%loc_sdate%> - Indicates the date in the short format using the current user

settings.
<%loc_ldate%> - Indicates the date in the long format using the current user settings.
<%loc_d1%> - Indicates day of week as a one-letter abbreviation using the current
user settings.
<%loc_d2%> - Indicates day of week as a two-letters abbreviation using the current
user settings.
<%loc_d3%> equivalent with <%loc_ddd%>
<%loc_ddd%> - Indicates day of week as a three-letters abbreviation using the
current user settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
settings.
<%loc_m1%> - Indicates month as a one-letter abbreviation using the current user
settings.
<%loc_m2%> - Indicates month as a two-letters abbreviation using the current user
settings.
<%loc_m3%> - equivalent with <%loc_mmm%>
<%loc_mmm%> - Indicates month as a three-letters abbreviation using the current
user settings.
<%loc_mmmm%> - Indicates month as its full name using the current user settings.
<%loc_gg%> - Indicates period/era using the current user settings.
<%loc_dsep%> - Indicates the date separator using the current user settings.
<%loc_time%> - Indicates the time using the current user settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user settings.
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user settings.
<%loc_tsep%> - Indicates the time separator using the current user settings.
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed

The following VB sample displays the next day as "Tue, May 31, 2005":

With G2antt1.Chart
 Debug.Print .FormatDate(.NextDate(.FirstVisibleDate, exDay, 2), "<%ddd%>,
<%mmmm%> <%d%>, <%yyyy%>")
End With

The following C++ sample displays the next day as "Tue, May 31, 2005":

CChart chart = m_g2antt.GetChart();
DATE d = chart.GetNextDate(V2D(&chart.GetFirstVisibleDate()), 4096, COleVariant(
(long)1));
CString strFormat = chart.GetFormatDate(d, "<%ddd%>, <%mmmm%> <%d%>,
<%yyyy%>");
OutputDebugString(strFormat);

where the V2D function converts a Variant expression to a DATE expression:

static DATE V2D(VARIANT* pvtDate)
{
 COleVariant vtDate;
 vtDate.ChangeType(VT_DATE, pvtDate);
 return V_DATE(&vtDate);
}

The following VB.NET sample displays the next day as "Tue, May 31, 2005":

With AxG2antt1.Chart
 Debug.Write(.FormatDate(.NextDate(.FirstVisibleDate, EXG2ANTTLib.UnitEnum.exDay,
2), "<%ddd%>, <%mmmm%> <%d%>, <%yyyy%>"))
End With

The following C# sample displays the next day as "Tue, May 31, 2005":

DateTime d = Convert.ToDateTime(
axG2antt1.Chart.get_NextDate(Convert.ToDateTime(axG2antt1.Chart.FirstVisibleDate),
EXG2ANTTLib.UnitEnum.exDay, 1));
String strFormat = axG2antt1.Chart.get_FormatDate(d, "<%ddd%>, <%mmmm%>
<%d%>, <%yyyy%>");

System.Diagnostics.Debug.Write(strFormat);

The following VFP sample displays the next day as "Tue, May 31, 2005":

With thisform.G2antt1.Chart
 wait window nowait .FormatDate(.NextDate(.FirstVisibleDate, 4096, 2), "<%ddd%>,
<%mmmm%> <%d%>, <%yyyy%>")
EndWith

property Chart.GridLineStyle as GridLinesStyleEnum
Retrieves or sets a value that indicates style for the gridlines being shown in the chart area.

Type Description

GridLinesStyleEnum A GridLinesStyleEnum expression that indicates the style
to show the grid lines in the chart view part of the control.

By default, the GridLineStyle property is exGridLinesDot. The GridLineStyle property has
effect only if the chart's DrawGridLines property is not zero. Use the DrawGridLines
property of the Level object to show the vertical grid lines for the specified level. Use the
GridLineColor property of the Level object to specify the color for vertical grid lines in the
chart area. Use the GridLineStyle property of the Level object to specify the style for
vertical grid lines in the chart area. Use the GridLineColor property to specify the color for
grid lines. Use the DrawGridLines property to specify whether the control draws the grid
lines in the items area. Use the DrawLevelSeperator property to draw lines between levels
inside the chart's header. Use the DrawTickLines property to specify whether the grid lines
between time units in the level are visible or hidden. Use the MarkTodayColor property to
specify the color to mark the today date.

method Chart.GroupUndoRedoActions (Count as Long)
Groups the next to current Undo/Redo Actions in a single block.

Type Description

Count as Long
A Long expression that specifies the number of entries
being grouped in a single block of actions, in the
Undo/Redo queue.

A block may hold multiple Undo/Redo actions. Use the GroupUndoRedoActions method to
group two or more entries in the Undo/Redo queue in a single block, so when a next
Undo/Redo operation is performed, multiple actions may occur. For instance, moving
several bars in the same time (multiple bars selection) is already recorded as a single
block. Use the UndoRedoQueueLength property to specify the number of entries that
Undo/Redo queue may store.

A block starts with StartBlock and ends with EndBlock when listed by
UndoListAction/RedoListAction property as in the following sample:

StartBlock
MoveBar;1;E
MoveBar;2;E
MoveBar;3;
MoveBar;4;
EndBlock

property Chart.HistogramBackColor as Color
Specifies the background color of the chart's histogram.

Type Description

Color

A Color expression that defines the histogram's
background color. The last 7 bits in the high significant
byte of the color indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

By default, the HistogramBackColor is changed when the BackColor property is changed.
Use the HistogramVisible property to show or hide the histogram. Use the HistogramHeight
property to specify at runtime the height of the histogram. Use the HistogramPattern and
HistogramColor property to define the shape, the pattern, the color or the skinning object to
be used in defining your histogram for specifies type of bar. The control allows to show
workload and capacity by a histogram that automatically adapts to your current planning
situation. The histogram may show the overloads and subloads for visible bars, or for
selected bars. Over-loads and Sub-loads can be shown in several ways using curves,
patterns or colors in the same histogram. They are updated interactively, so as user moves
or resizes a bar, the histogram is updated automatically.

property Chart.HistogramHeaderVisible as Boolean
Specifies whether a copy of chart's header is displayed in the bottom side of the histogram.

Type Description

Boolean
A Boolean expression that specifies whether a mirror copy
of the chart's header is being shown in the bottom side of
the histogram.

By default, the HistogramHeaderVisible property is False. Use the HistogramHeight
property to specify the height in pixels of the histogram. Use the HeaderVisible property to
show or hide the control's header. The HistogramBackColor property specifies the
histogram's background color. Use the OnResizeControl property on exDisableHistogram
property to specify whether the user can resizes the histogram at runtime.

property Chart.HistogramHeight as Long
Specifies whether the height of the chart's histogram.

Type Description

Long A Long expression that specifies the height in pixels, of the
histogram.

By default, the HistogramHeight property is 0. Use the HistogramVisible property to show
or hide the histogram. The control allows to show workload and capacity by a histogram
that automatically adapts to your current planning situation. The histogram may show the
overloads and subloads for visible bars, or for selected bars. Over-loads and Sub-loads
can be shown in several ways using curves, patterns or colors in the same histogram. They
are updated interactively, so as user moves or resizes a bar, the histogram is updated
automatically. Use the HistogramBackColor property to specify the histogram's background
color. Use the HistogramPattern and HistogramColor property to define the shape, the
pattern, the color or the skinning object to be used in defining your histogram for specifies
type of bar. Use the OnResizeControl property on exDisableHistogram to prevent resizing
the histogram at runtime. The HistogramBoundsChanged event notifies your application
when the location and the size of the chart's histogram is changed, so you can use it to add
your legend for the histogram in a panel component.

property Chart.HistogramUnitCount as Long
Specifies the time-scale count to determine the effort of bars with variable-effort (effort of
expression/string type)

Type Description

Long
A long expression that specifies the count to determine the
effort of bars with variable-effort (effort of
expression/string type)

By default, the HistogramUnitCount property is equivalent with ResizeUnitCount property.
The HistogramUnitScale property defines the count to determine the effort of bars with
variable-effort (effort of expression/string type). The HistogramUnitScale /
HistogramUnitCount property have effect only for item-bars with ItemBar(exBarEffort)
property to refer an expression (defines an variable- effort). The value keyword indicates
the date-time being queried, the start and end keywords specify the starting and ending
points of the bar as indicated by exBarStart and exBarEnd fields in the ItemBar property.
For instance, the exBarEffort on "weekday(value) in (0,6) ? 0 : 2", means that that effort to
do the job is 2 for any day in the task, excepts the Sundays(0) and Saturdays(6) (weekend.

For instance, the "(hour(value) > 5 and hour(value) < 18) ? 2 : 0" indicates that the bar's
effort is 2 for any hour between 6AM and 18PM, and 0 for rest.

The following screen show shows the correct histogram (HistogramUnitScale property on
exHour):

property Chart.HistogramUnitScale as UnitEnum
Specifies the time-scale unit to determine the effort of bars with variable-effort (effort of
expression/string type)

Type Description

UnitEnum An UnitEnum expression that defines the effort of bars
with variable-effort (effort of expression/string type)

By default, the HistogramUnitScale property is equivalent with ResizeUnitScale property.
The HistogramUnitScale property defines the time-scale unit to determine the effort of bars
with variable-effort (effort of expression/string type). The HistogramUnitScale /
HistogramUnitCount property have effect only for item-bars with ItemBar(exBarEffort)
property to refer an expression (defines an variable-effort). The value keyword indicates
the date-time being queried, the start and end keywords specify the starting and ending
points of the bar as indicated by exBarStart and exBarEnd fields in the ItemBar property.
For instance, the exBarEffort on "weekday(value) in (0,6) ? 0 : 2", means that that effort to
do the job is 2 for any day in the task, excepts the Sundays(0) and Saturdays(6) (weekend.

For instance, the "(hour(value) > 5 and hour(value) < 18) ? 2 : 0" indicates that the bar's
effort is 2 for any hour between 6AM and 18PM, and 0 for rest.

The following screen show shows the correct histogram (HistogramUnitScale property on
exHour):

property Chart.HistogramValue (Date as Variant, [Name as Variant],
[Group as Variant]) as Double
Gets the value in the histogram at specified date-time, for giving type of bars or/and
groups.

Type Description

Date as Variant

A DATE expression that specifies the date-time being
queried for its value in the control's histogram, or a s
STRING expression such as "min" to get the minimum
value excepts 0 in the histogram, and "max" to get the
maximum value in the histogram. The min and max flags
determines the minimum and maximum values from the
displayed values not from the entire chart. The Date
parameter should be a value between first and last visible
date in the chart, else the HistogramValue property gets -1
result.

Name as Variant

A String expression that specifies the name (or a list of
names separated by comma(,) character) of the bar to
be queried for its value in the histogram. The Name
parameter has no effect, if the chart's histogram displays
a single type of the bar in the histogram. The BarName
parameter of the AddBar method or ItemBar(exBarName)
value specifies the name of displayed bar. If Name
parameter is missing or empty, all bars are queried. For
instance, if the histogram displays the curves for multiple
type of bars, the Name parameter indicates the name of
the bars to be queried separated by comma(,) character.
For instance, "Task,Summary" queries the values for Task
or Summary bars.

Group as Variant

A Long expression that specifies the index of the group of
bars in the histogram to be queried, or a String expression
that indicates the list of group(index) to be queried. The
Group parameter has no effect, if the chart's histogram
displays no groups in the histogram. Groups are usually
displayed when your data is shown as a tree. If missing or
empty, all groups are queried. For instance, "0,1" queries
the values for first and second group of bars.

Double

A DOUBLE expression that specifies the value of the
specified type/bar, group and date-time in the histogram.
The HistogramValue property returns -1 if any error

occurs. For instance, the histogram is not visible, a date-
time that's not visible in the control's client area, and so
on.

The HistogramValue property returns valid values while the control displays the control's
histogram. Currently, the HistogramValue property returns -1, if the chart displays no
histogram (HistogramVisible property is False, or HistogramHeight property is 0).

The following screen shot shows the histogram with a single task and with no grouping,
where Name or Group parameters has no effect:

The following screen shot shows the histogram with a single task but with grouping (3
groups, United Package, Speedy Express, Federal Shipping), where Name has no effect,
instead Group parameter could be 0, 1, 2 (empty or any combination of them)

The following screen shot shows the histogram for two tasks but with no grouping , where
Name could be specified , instead Group parameter has no effect:

The following screen shot shows the histogram for two tasks but with grouping , where
Name could be specified, and Group parameter could be 0, 1, 2 (empty or any
combination of them)

property Chart.HistogramValueFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Double
Retrieves the value from the histogram at the cursor position.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

Double A double expression that specifies the value in the
histogram from the specified position.

Use the HistogramValueFromPoint property to determine the value from the specified
position in the histogram. The HistogramValueFromPoint property works only if the
ShowHistogramValues property is a not-empty and a valid expression. If the returned value
is different than 0 you can use the ShowToolTip property to display your customized tooltip.
The DateFromPoint property determines the date expression from the point. The
HistogramVisible property specifies whether the chart shows the histogram for selected
bars. The ShowHistogramValues property specifies the formula that returns the color to
display the selected values in the histogram for specified type of bar.

The following screen shows shows a tooltip as the user moves the cursor over the chart's
histogram:

property Chart.HistogramView as HistogramViewEnum
Specifies the list of items being included in the histogram.

Type Description

HistogramViewEnum A HistogramView type that specifies the list of items being
displayed in the histogram.

By default, the HistogramView property is exHistogramVisibleItems, which makes the
control to display the histogram for visible items only. The HistogramView property specify
the items being represented in the histogram view. Use the HistogramVisible property to
show the histogram bar/view. Use the HistogramHeight property to specify at runtime the
height of the histogram bar being displayed on the bottom side of the control.

If the HistogramView property is:

exHistogramVisibleItems, the histogram includes only visible items. This can be
combined with exHistogramLeafItems, exHistogramRecLeafItems or
exHistogramNoGrouping. The Histogram is updated as soon as the control changes its
first visible item, in other words the control gets vertically scrolled.
exHistogramSelectedItems, The histogram is shown for the selected items only. Use
the SingleSel property to specify whether the control can select multiple items. Use the
SelectOnClick property to disable selecting new items when the user clicks the chart
area. This can be combined with exHistogramLeafItems, exHistogramRecLeafItems or
exHistogramNoGrouping. The Histogram is updated as soon as the selection is
changed.
exHistogramSelectedBars, The histogram is shown for the selected bars only. The
ItemBar(exBarSelected) property specifies whether a bar is selected or unselected.
The ChartSelectionChanged event notifies the application once a new bar is selected
or unselected. This can be combined with exHistogramLeafItems,
exHistogramRecLeafItems or exHistogramNoGrouping. The Histogram is updated as
soon as the selection in the chart is changed.
exHistogramCheckedItems, The histogram is shown for the checked items only. You
must combine this with exHistogramUnlockedItems, exHistogramLockedTopItems or
exHistogramLockedBottomItems. Also, this can be combined with
exHistogramLeafItems, exHistogramRecLeafItems or exHistogramNoGrouping. Use the
CellState property to specify the state of the cell. The histogram includes only items
that have the CellState property on 1 (locked and unlocked items). By default, the
check box should be on the first column (the column with the index 0). Use the high
word of the HistogramView property to specify a different column. For instance, if you
need to display the histogram based on the check boxes of the column index 5, the
HistogramView property should be 0x50000 + exHistogramCheckedItems +
exHistogramUnlockedItems. Another sample, if the HistogramView property is

exHistogramCheckedItems + exHistogramLockedBottomItems the histogram shows
only the checked items in the bottom locked area. The Histogram is updated as soon
as the user changes the state of the cell's check box
exHistogramUnlockedItems, The histogram is shown only for unlocked items. Use the
AddItem/InsertItem methods to add unlocked items. This option can be combined with
exHistogramCheckedItems, exHistogramLockedTopItems or
exHistogramLockedBottomItems. For instance, if the HistogramView property is
exHistogramUnlockedItems + exHistogramLockedTopItems the histogram shows all
the items in the unlocked plus the items in the top locked area.
exHistogramLockedTopItems, The histogram is shown only for locked items in the
top side of the control. Use the LockedItemCount property to specify how many items
are in the locked area. This option can be combined with exHistogramCheckedItems,
exHistogramUnlockedItems or exHistogramLockedBottomItems. For instance, if the
HistogramView property is exHistogramUnlockedItems + exHistogramLockedTopItems
the histogram shows all the items in the unlocked plus the items in the top locked
area.
exHistogramLockedBottomItems, The histogram is shown only for locked items in
the bottom side of the control. Use the LockedItemCount property to specify how many
items are in the locked area. This option can be combined with
exHistogramCheckedItems, exHistogramUnlockedItems or
exHistogramLockedTopItems. For instance, if the HistogramView property is
exHistogramUnlockedItems + exHistogramLockedBottomItems the histogram shows
all the items in the unlocked plus the items in the bottom locked area.
exHistogramAllItems, The histogram is shown for all items, locked and unlocked items
too. The exHistogramAllItems is a shortcut for the exHistogramUnlockedItems +
exHistogramLockedTopItems + exHistogramLockedBottomItems. This can be
combined with exHistogramLeafItems, exHistogramRecLeafItems or
exHistogramNoGrouping.
exHistogramLeafItems, The histogram shows the bars for leaf items, in other words,
the item itself if contains no child items, or all child items that contains no other child
items. Use this option to include in the histogram the bars in the child items too.
exHistogramRecLeafItems, The histogram shows all bars for all recursive leaf items,
so all child leaf items are displayed. Use this option to include in the histogram the bars
in all child items (recursively) too.
exHistogramNoGrouping, If present, the histogram shows all bars without grouping
based on the item's parent, and so all bars shares the same space for the histogram.
If missing, the bars included in the histogram are grouped based on their parents, and
each group has allocated a space in the histogram, so each group is shown
separately.

The following screen shot shows the items grouped by their parents (the
exHistogramNoGrouping option is not set)

The following screen shot shows the items grouped by their parents (the
exHistogramNoGrouping option is set)

Only the exHistogramVisibleItems and exHistogramSelectedItems shows the histogram by
grouping the items based on their common parent. The rest of options shows the histogram
in the same space, without grouping.

Please follow the steps in order to view your bars in the histogram.

1. Changes the HistogramVisible property on True (by default, it is False). After setting
the HistogramVisible property on True, the control shows a horizontal splitter in the
bottom side of the control.

2. Adjusts the height of the histogram view using the HistogramHeight property (by
default it is 0). After setting the HistogramHeight property on a value greater than 0,
the control shows a the histogram view in the bottom side of the control.

3. Changes the HistogramPattern or/and HistogramColor property, else no bars will be
shown in the histogram. The HistogramPattern/HistogramColor properties belong to a
Bar object. For instance the Chart.Bars("Task").HistogramPattern = exPatternDot,
specifies that the Task bars will be represented in the histogram using the exPatternDot
pattern ()

The followings are optional properties that you can set in order to customize your
histogram:

The HistogramType property indicates the type of the histogram being displayed for a
specified bar.
Use the HistogramView property to specify the items being represented in the
histogram view. By default, only visible items are displayed in the histogram. For
instance, using the HistogramView property you can select the items being represented
in the histogram
Use the HistogramBackColor property to specify the histogram's background color.

The following screen shot shows the histogram for all items (as they are all checked in the
first column):

The following screen shot shows the histogram for the last 2 items (Item 2, Item 3 as they
are checked):

The following VB sample shows the histogram for "Task" bars in the checked items:

With G2antt1
 .BeginUpdate
 With .Chart
 .FirstVisibleDate = #1/1/2001#
 .HistogramVisible = True
 .HistogramView = exHistogramCheckedItems
 .HistogramHeight = 32
 .Bars.Item("Task").HistogramPattern = exPatternBDiagonal
 End With
 .Columns.Add("Column").Def(exCellHasCheckBox) = True
 With .Items
 .AddBar .AddItem("Item 1"),"Task",#1/3/2001#,#1/5/2001#
 h = .AddItem("Item 2")
 .AddBar h,"Task",#1/4/2001#,#1/7/2001#
 .CellState(h,0) = 1
 h = .AddItem("Item 3")
 .AddBar h,"Task",#1/2/2001#,#1/5/2001#
 .CellState(h,0) = 1
 End With
 .EndUpdate
End With

The following VB.NET sample shows the histogram for "Task" bars in the checked items:

Dim h
With AxG2antt1
 .BeginUpdate
 With .Chart
 .FirstVisibleDate = #1/1/2001#

 .HistogramVisible = True
 .HistogramView = EXG2ANTTLib.HistogramViewEnum.exHistogramCheckedItems
 .HistogramHeight = 32
 .Bars.Item("Task").HistogramPattern = EXG2ANTTLib.PatternEnum.exPatternBDiagonal
 End With
 .Columns.Add("Column").Def(EXG2ANTTLib.DefColumnEnum.exCellHasCheckBox) =
True
 With .Items
 .AddBar .AddItem("Item 1"),"Task",#1/3/2001#,#1/5/2001#
 h = .AddItem("Item 2")
 .AddBar h,"Task",#1/4/2001#,#1/7/2001#
 .CellState(h,0) = 1
 h = .AddItem("Item 3")
 .AddBar h,"Task",#1/2/2001#,#1/5/2001#
 .CellState(h,0) = 1
 End With
 .EndUpdate
End With

The following C# sample shows the histogram for "Task" bars in the checked items:

axG2antt1.BeginUpdate();
EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;
 var_Chart.FirstVisibleDate = "1/1/2001";
 var_Chart.HistogramVisible = true;
 var_Chart.HistogramView =
EXG2ANTTLib.HistogramViewEnum.exHistogramCheckedItems;
 var_Chart.HistogramHeight = 32;
 var_Chart.Bars["Task"].HistogramPattern =
EXG2ANTTLib.PatternEnum.exPatternBDiagonal;
(axG2antt1.Columns.Add("Column") as
EXG2ANTTLib.Column).set_Def(EXG2ANTTLib.DefColumnEnum.exCellHasCheckBox,true);
EXG2ANTTLib.Items var_Items = axG2antt1.Items;
 var_Items.AddBar(var_Items.AddItem("Item 1"),"Task","1/3/2001","1/5/2001",null,null);
 int h = var_Items.AddItem("Item 2");
 var_Items.AddBar(h,"Task","1/4/2001","1/7/2001",null,null);
 var_Items.set_CellState(h,0,1);

 h = var_Items.AddItem("Item 3");
 var_Items.AddBar(h,"Task","1/2/2001","1/5/2001",null,null);
 var_Items.set_CellState(h,0,1);
axG2antt1.EndUpdate();

The following C++ sample shows the histogram for "Task" bars in the checked items:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import "D:\\Windows\\System32\\ExG2antt.dll"
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->BeginUpdate();
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutFirstVisibleDate("1/1/2001");
 var_Chart->PutHistogramVisible(VARIANT_TRUE);
 var_Chart->PutHistogramView(EXG2ANTTLib::exHistogramCheckedItems);
 var_Chart->PutHistogramHeight(32);
 var_Chart->GetBars()->GetItem("Task")-
>PutHistogramPattern(EXG2ANTTLib::exPatternBDiagonal);
((EXG2ANTTLib::IColumnPtr)(spG2antt1->GetColumns()->Add(L"Column")))-
>PutDef(EXG2ANTTLib::exCellHasCheckBox,VARIANT_TRUE);
EXG2ANTTLib::IItemsPtr var_Items = spG2antt1->GetItems();
 var_Items->AddBar(var_Items->AddItem("Item
1"),"Task","1/3/2001","1/5/2001",vtMissing,vtMissing);
 long h = var_Items->AddItem("Item 2");
 var_Items->AddBar(h,"Task","1/4/2001","1/7/2001",vtMissing,vtMissing);
 var_Items->PutCellState(h,long(0),1);
 h = var_Items->AddItem("Item 3");
 var_Items->AddBar(h,"Task","1/2/2001","1/5/2001",vtMissing,vtMissing);
 var_Items->PutCellState(h,long(0),1);
spG2antt1->EndUpdate();

The following VFP sample shows the histogram for "Task" bars in the checked items:

with thisform.G2antt1
 .BeginUpdate
 with .Chart
 .FirstVisibleDate = {^2001-1-1}
 .HistogramVisible = .T.
 .HistogramView = 4
 .HistogramHeight = 32
 .Bars.Item("Task").HistogramPattern = 6
 endwith
 .Columns.Add("Column").Def(0) = .T.
 with .Items
 .AddBar(.AddItem("Item 1"),"Task",{^2001-1-3},{^2001-1-5})
 h = .AddItem("Item 2")
 .AddBar(h,"Task",{^2001-1-4},{^2001-1-7})
 .CellState(h,0) = 1
 h = .AddItem("Item 3")
 .AddBar(h,"Task",{^2001-1-2},{^2001-1-5})
 .CellState(h,0) = 1
 endwith
 .EndUpdate
endwith

property Chart.HistogramVisible as Boolean
Specifies whether the chart's histogram layout is visible or hidden.

Type Description

Boolean

A Boolean expression that specifies whether the histogram
is visible or hidden. The True value indicates whether the
histogram is visible, The False value indicates whether the
histogram is hidden.

By default, the HistogramVisible property is False (hidden). The control allows showing
workload and capacity by a histogram that automatically adapts to your current planning
situation. The histogram may show the overloads, overallocations and subloads for visible
bars, or for selected bars. Over-loads and Sub-loads can be shown in several ways using
curves, patterns or colors in the same histogram. They are updated interactively, so as user
moves or resizes a bar, the histogram is updated automatically. Use the OnResizeControl
property on exDisableHistogram to prevent resizing the histogram at runtime. The
HistogramBoundsChanged event notifies your application when the location and the size of
the chart's histogram is changed, so you can use it to add your legend for the histogram in
a panel component. The HistogramHeaderVisible property to show the chart's header in
bottom part of the histogram. The ShowHistogramValues property specifies the formula that
returns the color to display the selected values in the histogram for specified type of bar.
The HistogramValueFromPoint property gets the value in the histogram from the specified
location.

The following screen shot shows the over-allocation histogram

The following screen shot shows the over-load histogram:

The following screen shot shows the cumulative histogram:

The following screen shot shows the cumulative histogram, including the values, and the
legend in the left side of the histogram:

Please follow the steps in order to view your bars in the histogram.

1. Changes the HistogramVisible property on True (by default, it is False). After setting
the HistogramVisible property on True, the control shows a horizontal splitter in the
bottom side of the control.

2. Adjusts the height of the histogram view using the HistogramHeight property (by
default it is 0). After setting the HistogramHeight property on a value greater than 0,
the control shows a the histogram view in the bottom side of the control.

3. Changes the HistogramPattern or/and HistogramColor property, else no bars will be
shown in the histogram. The HistogramPattern/HistogramColor properties belong to a
Bar object. For instance the Chart.Bars("Task").HistogramPattern = exPatternDot,
specifies that the Task bars will be represented in the histogram using the exPatternDot
pattern ()

The followings are optional properties that you can set in order to customize your
histogram:

The HistogramType property indicates the type of the histogram being displayed for a
specified bar.
Use the HistogramView property to specify the items being represented in the
histogram view. By default, only visible items are displayed in the histogram. For
instance, using the HistogramView property you can select the items being represented
in the histogram
Use the HistogramBackColor property to specify the histogram's background color.
Use the HistogramBoundsChanged event to resize the inside controls being displayed
in the histogram
Use the BeforeDrawPart/AfterDrawPart event to perform custom drawing over the
chart's histogram.

A bar is represented in the histogram only if HistogramPattern or HistogramColor
property is set. If any of these are not set, the bar will not be represented in the
histogram.

The following screen shot shows the exHistOverload histogram and how it is updated as
soon the bars are moved or resized:

The following screen shot shows the exHistOverAllocation histogram and how it is
updated as soon the bars are moved or resized:

Bellow you can view few screen shots of histograms being displayed in different ways,
using different color, patterns, curves or EBN skin files:

Use the Background(exSplitBar) property to define the shape and the color for horizontal
split bar, that may be used to resize the histogram at runtime.

property Chart.HistogramZOrder as String
Specifies the z-order of the bars to be shown within the chart's histogram.

Type Description

String
A string expression that defines the z-order of the bars to
be shown within the chart's histogram. The list can include
one or more names separated by the comma character

By default, the HistogramZOrder property is empty, which indicates that it has no effect.
The HistogramZOrder property defines the z-order of the bars to be shown within the
chart's histogram. The Name property defines the bar's name. For instance, let's say we
have defined the new type of bars A, and B so the HistogramZOrder: "A,B" shows as:

while HistogramZOrder on "B,A" shows as:

property Chart.InsideZoomOnDblClick as Boolean
Gets or sets a value that indicates whether a portion of the chart is magnified or zoomed
when the user double click a date.

Type Description

Boolean
A boolean expression that specifies whether the user can
magnify a time unit, by double clicking it in the chart's base
level.

By default, the InsideZoomOnDblClick property is True. The inside zoom units are shown
ONLY if the AllowInsideZoom property is True. The inside zoom feature allows displaying
portions of the chart with different time scale units. For instance, you can display the bars
on hours, while the chart still displays days. Use the CondInsideZoom property to specify
the dates that can be magnified by double clicking the chart's base level. Use the
DefaultInsideZoomFormat property to specify the format of the dates being magnified. The
AllowResizeInsideZoom property specifies whether the user can magnify dates by resizing
them in the chart's base level. The InsideZooms property retrieves the collection of inside
zoom units.

The following chart displays days:

The Jun 22, gets magnified (once it is double clicked) to hours so it looks like follows (the
first line displays the day, while the second displays the hours, the rest of the chart displays
days):

property Chart.InsideZooms as InsideZooms
Retrieves the collection of inside zoom dates.

Type Description

InsideZooms An InsideZooms object that holds a collection of the
InsideZoom objects.

The InsideZooms property retrieves the control's InsideZooms collection. Use the Add
method to add programmatically new inside zoom units. The Add method returns nothing, if
the AllowInsideZoom property is False (by default). The control fires the InsideZoom
event once a new inside zoom unit is added. The DefaultInsideZoomFormat retrieves an
InsideZoomFormat object that customizes the dates being magnified.

property Chart.IsDateVisible (Date as Variant) as Boolean
Specifies whether the date fits the control's chart area.

Type Description
Date as Variant A Date expression being queried

Boolean A Boolean expression that indicates whether the date fits
the chart's area.

The IsDateVisible property specifies whether a date is visible or hidden. Use the
FirstVisibleDate property to specify the first visible date in the chart's area. The
DateChange event notifies your application whether the chart changes it's first visible date,
or whether the user browses a new area in the chart.

The following VB sample enumerates all visible dates:

With G2antt1
 .BeginUpdate
 With .Chart
 Dim d As Date
 d = .FirstVisibleDate
 Do While .IsDateVisible(d)
 If Day(d) = 11 Then
 If Not (.IsNonworkingDate(d)) Then
 .AddNonworkingDate d
 End If
 End If
 d = .NextDate(d, exDay, 1)
 Loop
 End With
 .EndUpdate
End With

The following VB.NET sample enumerates all visible dates:

With AxG2antt1
 .BeginUpdate()
 With .Chart
 Dim d As Date
 d = .FirstVisibleDate

 Do While .IsDateVisible(d)
 If d.Day = 11 Then
 If Not (.IsNonworkingDate(d)) Then
 .AddNonworkingDate(d)
 End If
 End If
 d = .NextDate(d, EXG2ANTTLib.UnitEnum.exDay, 1)
 Loop
 End With
 .EndUpdate()
End With

The following C# sample enumerates all visible dates:

axG2antt1.BeginUpdate();
EXG2ANTTLib.Chart chart = axG2antt1.Chart;
DateTime d = Convert.ToDateTime(chart.FirstVisibleDate);
while (chart.get_IsDateVisible(d))
{
 if (d.Day == 11)
 if (!chart.get_IsNonworkingDate(d))
 chart.AddNonworkingDate(d);
 d = chart.get_NextDate(d, EXG2ANTTLib.UnitEnum.exDay, 1);
}
axG2antt1.EndUpdate();

The following VFP sample enumerates all visible dates:

With thisform.G2antt1
 .BeginUpdate
 With .Chart
 local d
 d = .FirstVisibleDate
 Do While .IsDateVisible(d)
 If Day(d) = 11 Then
 If Not (.IsNonworkingDate(d)) Then
 .AddNonworkingDate(d)
 EndIf

 EndIf
 d = .NextDate(d, 4096, 1)
 enddo
 EndWith
 .EndUpdate
EndWith

property Chart.IsNonworkingDate (Date as Variant, [Item as Variant]) as
Boolean
Specifies whether the date is a nonworking day.

Type Description
Date as Variant A Date expression that indicates the date being queried.

Item as Variant

A Long expression that indicates the handle of the item
where the date-time is queried. For instance, the
ItemNonWorkingUnits may specify a different non-working
part for a particular item. If Item parameter is missing or
0, the default non-working part is used to determine
whether specified date-time is a non-working or working
unit. If the Item parameter is valid and the item displays a
different non-working part using the ItemNonWorkingUnits
property, the IsNonworkingDate property queries the Date
using the item's non-working expression to determine
whether it is a non-working unit.

Boolean A boolean expression that specifies whether the date is
nonworking day.

The IsNonworkingDate property specifies whether the giving date-time is a non-working or
working unit in the chart. Use the ShowNonworkingUnits property to display or hide the non-
working units as hours or days in your chart. Use the UnitWidthNonworking property to
specify a different width for non-working units in the base level. Use the
ShowNonworkingDates property to specify whether the the days are shown or hidden while
the ShowNonworkingUnits property is False.

You can use the following functions to specify non-working parts in the chart:

The NonworkingDays property specifies the days being marked as nonworking in a
week. Use the AddNonworkingDate method to add custom dates as being nonworking
days. Use the NonworkingDaysPattern property to specify the pattern being used to fill
non-working days. The NonworkingDaysColor property specifies the color being used
to fill the non-working days. Use the ClearNonworkingDates method to remove all
nonworking dates. Use the IsDateVisible property to specify whether a date fits the
chart's area.
The NonworkingHours property indicates the non-working hours within a day. The non-
working hours are shown using the NonworkingHoursPattern and the
NonworkingHoursColor which defines the pattern and the color, when the base level of
the chart displays hours, if the ShowNonworkingUnits property is True (by default).
The ItemNonworkingUnits property specifies different non-working zones for different
items. If the Item parameter indicates a valid handle, the IsNonworkingDate property

queries the non-working expression for the item if the giving Date parameter is being
non-working or working unit.

You can use the following attributes for a bar (ItemBar property) to work with non-working
part of the bars:

exBarWorkingCount attribute specifies the working count in days for the giving bar. For
instance, if the exBarWorkingCount is 1 indicates a full day, or 24 working hours, while
if it is 1/24 it indicates one working hour.
exBarNonWorkingCount attributes specifies the working count in days for the giving
bar. For instance, if the exBarNonWorkingCount is 1 indicates a full day, or 24 non-
working hours, while if it is 1/24 it indicates one non-working hour.
exBarWorkingUnits attribute retrieves a safe array of pair (start-end) that indicates the
working parts of the bar. You can use the exBarWorkingUnitsAsString attribute to
display the working parts of the bar as a string. The /NET assembly provides the
public virtual DateTime[] get_BarWorkingUnits(int Item, object Key) method that
returns the array of 2 DateTime objects that specifies the working parts of the bar.
exBarWorkingUnitsAsString attribute retrieves the working part of the bar as a string, in
other words it is similar with the exBarWorkingUnits excepts that it returns a string that
shows the working parts of the bar.
exBarNonWorkingUnits attribute retrieves a safe array of pair (start-end) that indicates
the non-working parts of the bar. You can use the exBarNonWorkingUnitsAsString
attribute to display the non-working parts of the bar as a string. The /NET assembly
provides the public virtual DateTime[] get_BarNonWorkingUnits(int Item, object Key)
method that returns the array of 2 DateTime objects that specifies the working parts of
the bar.
exBarNonWorkingUnitsAsString attribute retrieves the non-working part of the bar as a
string, in other words it is similar with the exBarNonWorkingUnits excepts that it returns
a string that shows the non-working parts of the bar.

The following VB sample displays True if the cursor hovers a nonworking part, and False if
the cursor hovers a working part in the chart area of the control:

Private Sub G2antt1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With G2antt1
 Dim c As Long, hit As HitTestInfoEnum
 Debug.Print .Chart.IsNonworkingDate(.Chart.DateFromPoint(-1, -1),
.ItemFromPoint(-1, -1, c, hit))
 End With
End Sub

property Chart.ItemBackColor(Item as HITEM) as Color
Retrieves or sets a background color for a specific item, in the chart area.

Type Description
Item as HITEM A long expression that indicates the handle of the item.

Color

A color expression that indicates the item's background
color. The last 7 bits in the high significant byte of the color
to indicates the identifier of the skin being used. Use the
Add method to add new skins to the control. If you need
to remove the skin appearance from a part of the control
you need to reset the last 7 bits in the high significant byte
of the color being applied to the

By default, the ItemBackColor property is the same as Chart's BackColor property. The
ItemBackColor property specifies the background or the visual appearance for the item's
background on the chart area. The ItemBackColor property specifies the item's background
color for the list area (columns part of the control). The ClearItemBackColor method
clears the item's background on the chart part of the control.

The following screen shot shows the chart part when using the ItemBackColor property of
the Chart object:

The following samples changes the background color for the item in the chart part only.

VBA (MS Access, Excell...)

With G2antt1
 .Columns.Add "Default"
 With .Items
 h = .AddItem("Root")
 hC = .InsertItem(h,0,"Child 1")

 G2antt1.Chart.ItemBackColor(hC) = RGB(255,0,0)
 .InsertItem h,0,"Child 2"
 .ExpandItem(h) = True
 End With
End With

VB6

With G2antt1
 .Columns.Add "Default"
 With .Items
 h = .AddItem("Root")
 hC = .InsertItem(h,0,"Child 1")
 G2antt1.Chart.ItemBackColor(hC) = RGB(255,0,0)
 .InsertItem h,0,"Child 2"
 .ExpandItem(h) = True
 End With
End With

VB.NET

Dim h,hC
With Exg2antt1
 .Columns.Add("Default")
 With .Items
 h = .AddItem("Root")
 hC = .InsertItem(h,0,"Child 1")
 Exg2antt1.Chart.set_ItemBackColor(hC,Color.FromArgb(255,0,0))
 .InsertItem(h,0,"Child 2")
 .set_ExpandItem(h,True)
 End With
End With

VB.NET for /COM

Dim h,hC
With AxG2antt1
 .Columns.Add("Default")
 With .Items

 h = .AddItem("Root")
 hC = .InsertItem(h,0,"Child 1")
 AxG2antt1.Chart.ItemBackColor(hC) = RGB(255,0,0)
 .InsertItem(h,0,"Child 2")
 .ExpandItem(h) = True
 End With
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->GetColumns()->Add(L"Default");
EXG2ANTTLib::IItemsPtr var_Items = spG2antt1->GetItems();
 long h = var_Items->AddItem("Root");
 long hC = var_Items->InsertItem(h,long(0),"Child 1");
 spG2antt1->GetChart()->PutItemBackColor(hC,RGB(255,0,0));
 var_Items->InsertItem(h,long(0),"Child 2");
 var_Items->PutExpandItem(h,VARIANT_TRUE);

C#

exg2antt1.Columns.Add("Default");
exontrol.EXG2ANTTLib.Items var_Items = exg2antt1.Items;
 int h = var_Items.AddItem("Root");
 int hC = var_Items.InsertItem(h,0,"Child 1");
 exg2antt1.Chart.set_ItemBackColor(hC,Color.FromArgb(255,0,0));
 var_Items.InsertItem(h,0,"Child 2");
 var_Items.set_ExpandItem(h,true);

C# for /COM

axG2antt1.Columns.Add("Default");
EXG2ANTTLib.Items var_Items = axG2antt1.Items;
 int h = var_Items.AddItem("Root");
 int hC = var_Items.InsertItem(h,0,"Child 1");
 axG2antt1.Chart.set_ItemBackColor(hC,
(uint)ColorTranslator.ToWin32(Color.FromArgb(255,0,0)));
 var_Items.InsertItem(h,0,"Child 2");
 var_Items.set_ExpandItem(h,true);

Delphi 8 (.NET only)

with AxG2antt1 do
begin
 Columns.Add('Default');
 with Items do
 begin
 h := AddItem('Root');
 hC := InsertItem(h,TObject(0),'Child 1');
 AxG2antt1.Chart.ItemBackColor[hC] := $ff;
 InsertItem(h,TObject(0),'Child 2');
 ExpandItem[h] := True;
 end;
end

Delphi (standard)

with G2antt1 do
begin
 Columns.Add('Default');
 with Items do
 begin
 h := AddItem('Root');
 hC := InsertItem(h,OleVariant(0),'Child 1');
 G2antt1.Chart.ItemBackColor[hC] := $ff;
 InsertItem(h,OleVariant(0),'Child 2');
 ExpandItem[h] := True;
 end;
end

VFP

with thisform.G2antt1
 .Columns.Add("Default")
 with .Items
 h = .AddItem("Root")
 hC = .InsertItem(h,0,"Child 1")
 thisform.G2antt1.Chart.ItemBackColor(hC) = RGB(255,0,0)
 .InsertItem(h,0,"Child 2")
 .ExpandItem(h) = .T.
 endwith
endwith

property Chart.Label(Unit as UnitEnum) as String
Retrieves or sets a value that indicates the predefined format of the level's label for a
specified unit.

Type Description
Unit as UnitEnum An UnitEnum expression that indicates the time unit
String A String expression that includes the format of the label.

The Label property specifies a predefined label for a specified unit. Use the UnitScale
property to change the scale unit. The UnitScale property changes the Label, Unit and the
ToolTip for a level with predefined values defined by the Label and LabelToolTip properties.
Use the UnitWidth property to specify the width of the time unit. Use the Zoom method to
zoom the chart to a specified interval of dates. Use the Label property to assign a different
label for a specified level. Use the LabelToolTip property to specify the predefined type of
tooltip being displayed when the chart is zoomed. Use the ToolTip property to specify the
tooltip that shows up when the cursor hovers the level. Use the FormatDate property to
format a date. Use the MonthNames property to specify the name of the months in the
year. The WeekDays property retrieves or sets a value that indicates the list of names for
each week day, separated by space. If the Label property is empty, the unit is not
displayed in the zooming scale, if the AllowOverviewZoom property is not exDisableZoom.

The Label property supports alternative HTML labels being separated by "<|>" and values
for Count and Unit being separated by "<||>". By alternate HTML label we mean that you
can define a list of HTML labels that may be displayed in the chart's header based on the
space allocated for the time-unit. In other words, the control chooses automatically the
alternate HTML label to be displayed for best fitting in the portion of the chart where the
time-unit should be shown.

The Label property format is "ALT1[<|>ALT2<|>...[<||>COUNT[<||>UNIT]]]" where

ALT defines a HTML label
COUNT specifies the value for the Count property
UNIT field indicates the value for the Unit property
and the parts delimited by [] brackets may miss.

The Label property may change the Unit and the Count property. You can always use
a different Unit or Count by setting the property after setting the Label property.

The Label property supports the following built-in tags:

<%d%> - Day of the month in one or two numeric digits, as needed (1 to 31).
<%dd%> - Day of the month in two numeric digits (01 to 31).
<%d1%> - First letter of the weekday (S to S). (Use the WeekDays property to

specify the name of the days in the week)
<%loc_d1%> - Indicates day of week as a one-letter abbreviation using the current
user settings.
<%d2%> - First two letters of the weekday (Su to Sa). (Use the WeekDays property
to specify the name of the days in the week)
<%loc_d2%> - Indicates day of week as a two-letters abbreviation using the current
user settings.
<%d3%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week)
<%loc_d3%> equivalent with <%loc_ddd%>
<%ddd%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_ddd%> that indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%loc_ddd%> - Indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%dddd%> - Full name of the weekday (Sunday to Saturday). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_dddd%> that indicates day of week as its full name using the current user
regional and language settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
regional and language settings.
<%i%> - Displays the number instead the date. For instance, you can display numbers
as 1000, 1001, 1002, 1003, instead dates. (the valid range is from -647,434 to
2,958,465)
<%w%> - Day of the week (1 to 7).
<%ww%> - Week of the year (1 to 53).
<%m%> - Month of the year in one or two numeric digits, as needed (1 to 12).
<%mr%> - Month of the year in Roman numerals, as needed (I to XII).
<%mm%> - Month of the year in two numeric digits (01 to 12).
<%m1%> - First letter of the month (J to D). (Use the MonthNames property to
specify the name of the months in the year)
<%loc_m1%> - Indicates month as a one-letter abbreviation using the current user
settings.
<%m2%> - First two letters of the month (Ja to De). (Use the MonthNames property
to specify the name of the months in the year)
<%loc_m2%> - Indicates month as a two-letters abbreviation using the current user
settings.
<%m3%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year)
<%loc_m3%> - equivalent with <%loc_mmm%>
<%mmm%> - First three letters of the month (Jan to Dec). (Use the MonthNames

property to specify the name of the months in the year). You can use the
<%loc_mmm%> that indicates month as a three-letter abbreviation using the current
user regional and language settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
regional and language settings.
<%mmmm%> - Full name of the month (January to December). (Use the
MonthNames property to specify the name of the months in the year). You can use the
<%loc_mmmm%> that indicates month as its full name using the current user regional
and language settings.
<%loc_mmmm%> - Indicates month as its full name using the current user regional
and language settings.
<%q%> - Date displayed as the quarter of the year (1 to 4).
<%y%> - Number of the day of the year (1 to 366).
<%yy%> - Last two digits of the year (01 to 99).
<%yyyy%> - Full year (0100 to 9999).
<%hy%> - Date displayed as the half of the year (1 to 2).
<%loc_gg%> - Indicates period/era using the current user regional and language
settings.
<%loc_sdate%> - Indicates the date in the short format using the current user regional
and language settings.
<%loc_ldate%> - Indicates the date in the long format using the current user regional
and language settings.
<%loc_dsep%> - Indicates the date separator using the current user regional and
language settings (/).
<%h%> - Hour in one or two digits, as needed (0 to 23).
<%hh%> - Hour in two digits (00 to 23).
<%h12%> - Hour in 12-hour time format, in one or two digits - [0(12),11]
<%hh12%> - hour in 12-hour time format, in two digits - [00(12),11]
<%n%> - Minute in one or two digits, as needed (0 to 59).
<%nn%> - Minute in two digits (00 to 59).
<%s%> - Second in one or two digits, as needed (0 to 59).
<%ss%> - Second in two digits (00 to 59).
<%AM/PM%> - Twelve-hour clock with the uppercase letters "AM" or "PM", as
appropriate. (Use the AMPM property to specify the name of the AM and PM
indicators). You can use the <%loc_AM/PM%> that indicates the time marker such as
AM or PM using the current user regional and language settings. You can use
<%loc_A/P%> that indicates the one character time marker such as A or P using the
current user regional and language settings
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user regional and language settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user regional and language settings.

<%loc_time%> - Indicates the time using the current user regional and language
settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user regional and language settings.
<%loc_tsep%> - indicates the time separator using the current user regional and
language settings (:)
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed

The following tags are displayed based on the user's Regional and Language Options:

<%loc_sdate%> - Indicates the date in the short format using the current user
settings.
<%loc_ldate%> - Indicates the date in the long format using the current user settings.
<%loc_d1%> - Indicates day of week as a one-letter abbreviation using the current
user settings.
<%loc_d2%> - Indicates day of week as a two-letters abbreviation using the current
user settings.
<%loc_d3%> equivalent with <%loc_ddd%>
<%loc_ddd%> - Indicates day of week as a three-letters abbreviation using the
current user settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
settings.
<%loc_m1%> - Indicates month as a one-letter abbreviation using the current user
settings.
<%loc_m2%> - Indicates month as a two-letters abbreviation using the current user
settings.
<%loc_m3%> - equivalent with <%loc_mmm%>
<%loc_mmm%> - Indicates month as a three-letters abbreviation using the current
user settings.
<%loc_mmmm%> - Indicates month as its full name using the current user settings.
<%loc_gg%> - Indicates period/era using the current user settings.
<%loc_dsep%> - Indicates the date separator using the current user settings.

<%loc_time%> - Indicates the time using the current user settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user settings.
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user settings.
<%loc_tsep%> - Indicates the time separator using the current user settings.
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed

The Label property supports the following built-in HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+

about:blank

" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being

inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the

following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

The Label property may be a combination of any of these tags. For instance, the "
<%mmm%> <%d%>, '<%yy%>" displays a date like: "May 29,'05".

By default, the Label property is:

exYear: "<%yy%><|>'<%yy%><|><%yyyy%>"
exHalfYear: ""
exQuarterYear: ""
exMonth: "<|><%m1%><|><%m2%><|><%m3%><|><%mmmm%><|><%m3%>
'<%yy%><|><%mmmm%> <%yyyy%>"
exThirdMonth: ""
exWeek: "<|><%ww%><|><%m3%> <%d%>, '<%yy%><r><%ww%><|>
<%mmmm%> <%d%>, <%yyyy%><r><%ww%><||><||>256"
exDay: "<|><%d1%><|><%d2%><|><%d3%><|><%dddd%><|><%d3%>, <%m3%>
<%d%>, '<%yy%><|><%dddd%>, <%mmmm%> <%d%>, <%yyyy%><||><||>4096"
exHour: "<|><%hh%><|><%h%> <%AM/PM%><|><%d3%>, <%m3%> <%d%>,
'<%yy%> <%h%> <%AM/PM%><|><%dddd%>, <%mmmm%> <%d%>, <%yyyy%>
<%h%> <%AM/PM%><||><||>65536"
exMinute: "<|><%nn%><|><%h%>:<%nn%> <%AM/PM%><|><%d3%>, <%m3%>
<%d%>, '<%yy%> <%h%>:<%nn%> <%AM/PM%><|><%dddd%>, <%mmmm%>
<%d%>, <%yyyy%> <%h%>:<%nn%> <%AM/PM%>"
exSecond: "<|><%ss%><|><%nn%>:<%ss%><|><%h%>:<%nn%>:<%ss%>
<%AM/PM%><|><%d3%>, <%m3%> <%d%>, '<%yy%> <%h%>:<%nn%>:<%ss%>
<%AM/PM%><|><%dddd%>, <%mmmm%> <%d%>, <%yyyy%> <%h%>:<%nn%>:
<%ss%> <%AM/PM%>"

For instance the Label(exWeek) is "<|><%ww%><|><%m3%> <%d%>, '<%yy%><r>
<%ww%><|><%mmmm%> <%d%>, <%yyyy%><r><%ww%><||><||>256" which means
that if a level's unit is set on exWeek it may display one of the following alternate labels:

nothing, if the space is less than 6 pixels
 <%ww%> - week number
<%m3%> <%d%>, '<%yy%><r><%ww%> - month, day, year in short format where
the week begins, including the week number on the right

 <%mmmm%> <%d%>, <%yyyy%><r><%ww%> - month, day, year in long format
where the week begins, including the week number on the right

So actually, the control will choose any of these formats based on the UnitWidth, Font and
the layout of the levels.

property Chart.LabelToolTip(Unit as UnitEnum) as String
Retrieves or sets a value that indicates the predefined format of the level's tooltip for a
specified unit.

Type Description
Unit as UnitEnum An UnitEnum expression that indicates the time unit
String A String expression that includes the format of the tooltip.

The LabelToolTip property specifies a predefined tooltip for a specified unit. Use the ToolTip
property to specify the tooltip that shows up when the cursor hovers the level. The ToolTip
property retrieves or sets a value that indicates the format of the tooltip being shown while
the user scrolls the chart. Use the FormatDate property to format a date. Use the
MonthNames property to specify the name of the months in the year. The WeekDays
property retrieves or sets a value that indicates the list of names for each week day,
separated by space. Use the Zoom method to zoom the chart to a specified interval of
dates. Use the AMPM property to specify the name of the AM and PM indicators. The
Label property specifies a predefined label for a specified unit.

The LabelToolTip property supports the following built-in tags:

<%d%> - Day of the month in one or two numeric digits, as needed (1 to 31).
<%dd%> - Day of the month in two numeric digits (01 to 31).
<%d1%> - First letter of the weekday (S to S). (Use the WeekDays property to
specify the name of the days in the week)
<%loc_d1%> - Indicates day of week as a one-letter abbreviation using the current
user settings.
<%d2%> - First two letters of the weekday (Su to Sa). (Use the WeekDays property
to specify the name of the days in the week)
<%loc_d2%> - Indicates day of week as a two-letters abbreviation using the current
user settings.
<%d3%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week)
<%loc_d3%> equivalent with <%loc_ddd%>
<%ddd%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_ddd%> that indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%loc_ddd%> - Indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%dddd%> - Full name of the weekday (Sunday to Saturday). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_dddd%> that indicates day of week as its full name using the current user

regional and language settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
regional and language settings.
<%i%> - Displays the number instead the date. For instance, you can display numbers
as 1000, 1001, 1002, 1003, instead dates. (the valid range is from -647,434 to
2,958,465)
<%w%> - Day of the week (1 to 7).
<%ww%> - Week of the year (1 to 53).
<%m%> - Month of the year in one or two numeric digits, as needed (1 to 12).
<%mr%> - Month of the year in Roman numerals, as needed (I to XII).
<%mm%> - Month of the year in two numeric digits (01 to 12).
<%m1%> - First letter of the month (J to D). (Use the MonthNames property to
specify the name of the months in the year)
<%loc_m1%> - Indicates month as a one-letter abbreviation using the current user
settings.
<%m2%> - First two letters of the month (Ja to De). (Use the MonthNames property
to specify the name of the months in the year)
<%loc_m2%> - Indicates month as a two-letters abbreviation using the current user
settings.
<%m3%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year)
<%loc_m3%> - equivalent with <%loc_mmm%>
<%mmm%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year). You can use the
<%loc_mmm%> that indicates month as a three-letter abbreviation using the current
user regional and language settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
regional and language settings.
<%mmmm%> - Full name of the month (January to December). (Use the
MonthNames property to specify the name of the months in the year). You can use the
<%loc_mmmm%> that indicates month as its full name using the current user regional
and language settings.
<%loc_mmmm%> - Indicates month as its full name using the current user regional
and language settings.
<%q%> - Date displayed as the quarter of the year (1 to 4).
<%y%> - Number of the day of the year (1 to 366).
<%yy%> - Last two digits of the year (01 to 99).
<%yyyy%> - Full year (0100 to 9999).
<%hy%> - Date displayed as the half of the year (1 to 2).
<%loc_gg%> - Indicates period/era using the current user regional and language
settings.
<%loc_sdate%> - Indicates the date in the short format using the current user regional

and language settings.
<%loc_ldate%> - Indicates the date in the long format using the current user regional
and language settings.
<%loc_dsep%> - Indicates the date separator using the current user regional and
language settings (/).
<%h%> - Hour in one or two digits, as needed (0 to 23).
<%hh%> - Hour in two digits (00 to 23).
<%h12%> - Hour in 12-hour time format, in one or two digits - [0(12),11]
<%hh12%> - hour in 12-hour time format, in two digits - [00(12),11]
<%n%> - Minute in one or two digits, as needed (0 to 59).
<%nn%> - Minute in two digits (00 to 59).
<%s%> - Second in one or two digits, as needed (0 to 59).
<%ss%> - Second in two digits (00 to 59).
<%AM/PM%> - Twelve-hour clock with the uppercase letters "AM" or "PM", as
appropriate. (Use the AMPM property to specify the name of the AM and PM
indicators). You can use the <%loc_AM/PM%> that indicates the time marker such as
AM or PM using the current user regional and language settings. You can use
<%loc_A/P%> that indicates the one character time marker such as A or P using the
current user regional and language settings
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user regional and language settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user regional and language settings.
<%loc_time%> - Indicates the time using the current user regional and language
settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user regional and language settings.
<%loc_tsep%> - indicates the time separator using the current user regional and
language settings (:)
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed

The following tags are displayed based on the user's Regional and Language Options:

<%loc_sdate%> - Indicates the date in the short format using the current user
settings.
<%loc_ldate%> - Indicates the date in the long format using the current user settings.
<%loc_d1%> - Indicates day of week as a one-letter abbreviation using the current
user settings.
<%loc_d2%> - Indicates day of week as a two-letters abbreviation using the current
user settings.
<%loc_d3%> equivalent with <%loc_ddd%>
<%loc_ddd%> - Indicates day of week as a three-letters abbreviation using the
current user settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
settings.
<%loc_m1%> - Indicates month as a one-letter abbreviation using the current user
settings.
<%loc_m2%> - Indicates month as a two-letters abbreviation using the current user
settings.
<%loc_m3%> - equivalent with <%loc_mmm%>
<%loc_mmm%> - Indicates month as a three-letters abbreviation using the current
user settings.
<%loc_mmmm%> - Indicates month as its full name using the current user settings.
<%loc_gg%> - Indicates period/era using the current user settings.
<%loc_dsep%> - Indicates the date separator using the current user settings.
<%loc_time%> - Indicates the time using the current user settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user settings.
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user settings.
<%loc_tsep%> - Indicates the time separator using the current user settings
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed

The LabelToolTip property supports the following built-in HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.

about:blank

<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or

<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

By default, the LabelToolTip property is:

exYear: "<%yyyy%>"
exHalfYear: ""
exQuarterYear: ""
exMonth: "<%mmmm%>/ <%yyyy%>"
exThirdMonth: ""
exWeek: "<%mmmm%> <%d%>, <%yyyy%> <%ww%>"
exDay: "<%dddd%>, <%mmmm%> <%d%>, <%yyyy%>"
exHour: "<%dddd%>, <%mmmm%> <%d%>, <%yyyy%> <%h%> <%AM/PM%>"

exMinute: "<%dddd%>, <%mmmm%> <%d%>, <%yyyy%> <%h%>:<%nn%>
<%AM/PM%>"
exSecond: "<%dddd%>, <%mmmm%> <%d%>, <%yyyy%> <%h%>:<%nn%>:
<%ss%> <%AM/PM%>"

property Chart.Level (Index as Long) as Level
Retrieves the level based on its index.

Type Description

Index as Long A long expression that indicates the index of the level
being accessed.

Level A Level object being accessed.

The Level property retrieves the Level based on its index. Use the LevelCount property to
specify the number of levels being displayed in the chart's header. Use the HeaderVisible
property to hide the control's header bar. The control's header bar displays the levels in the
chart area too. If the control displays the header bar using multiple levels the HeaderHeight
property gets the height in pixels of a single level in the header bar. Use the LevelFromPoint
property to get the index of the level from the cursor.

The following VB sample enumerates the levels in the chart:

With G2antt1.Chart
 Dim i As Long
 For i = 0 To .LevelCount - 1
 With .Level(i)
 Debug.Print .Label
 End With
 Next
End With

The following C++ sample enumerates the levels in the chart:

CChart chart = m_g2antt.GetChart();
for (long i = 0; i < chart.GetLevelCount(); i++)
{
 CLevel level = chart.GetLevel(i);
 OutputDebugString(V2S(&level.GetLabel()));
}

where the V2S function converts a Variant expression to a string expression:

static CString V2S(VARIANT* pvtDate)
{
 COleVariant vtDate;

 vtDate.ChangeType(VT_BSTR, pvtDate);
 return V_BSTR(&vtDate);
}

The following VB.NET sample enumerates the levels in the chart:

With AxG2antt1.Chart
 Dim i As Long
 For i = 0 To .LevelCount - 1
 With .Level(i)
 Debug.Write(.Label())
 End With
 Next
End With

The following C# sample enumerates the levels in the chart:

for (int i = 0; i < axG2antt1.Chart.LevelCount; i++)
{
 EXG2ANTTLib.Level level = axG2antt1.Chart.get_Level(i);
 System.Diagnostics.Debug.Write(level.Label);
}

The following VFP sample enumerates the levels in the chart:

With thisform.G2antt1.Chart
 For i = 0 To .LevelCount - 1
 With .Level(i)
 wait window nowait .Label
 EndWith
 Next
EndWith

property Chart.LevelCount as Long
Specifies the number of levels in the control's header.

Type Description

Long A Long expression that indicates the number of levels
being displayed in the control's header.

By default, the control displays a single level. Use the LevelCount property to specify the
number of levels being displayed in the chart's header. Use the Level property to access the
level in the chart area. Use the Label property to specify the level's HTML label. Use the
Unit property to specify the time-scale unit for the chart's level. Use the HeaderVisible
property to show/extent/hide the control's header bar. The control's header bar displays the
levels in the chart area too. Use the Caption property to specify the column's caption being
displayed in the control's header bar. Use the BackColorLevelHeader property to specify
the background color of the chart's header. Use the ForeColorLevelHeader property to
specify the foreground color of the chart's header. If the control displays the header bar
using multiple levels the HeaderHeight property gets the height in pixels of a single level in
the header bar. Use the LevelKey property to specify the key of the column.

Newer versions support Regional and Language Options for tags such as:

<%loc_sdate%> - Indicates the date in the short format using the current user
settings.
<%loc_ldate%> - Indicates the date in the long format using the current user settings.
<%loc_d1%> - Indicates day of week as a one-letter abbreviation using the current
user settings.
<%loc_d2%> - Indicates day of week as a two-letters abbreviation using the current
user settings.
<%loc_d3%> equivalent with <%loc_ddd%>
<%loc_ddd%> - Indicates day of week as a three-letters abbreviation using the
current user settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
settings.
<%loc_m1%> - Indicates month as a one-letter abbreviation using the current user
settings.
<%loc_m2%> - Indicates month as a two-letters abbreviation using the current user
settings.
<%loc_m3%> - equivalent with <%loc_mmm%>
<%loc_mmm%> - Indicates month as a three-letters abbreviation using the current
user settings.
<%loc_mmmm%> - Indicates month as its full name using the current user settings.
<%loc_gg%> - Indicates period/era using the current user settings.

<%loc_dsep%> - Indicates the date separator using the current user settings.
<%loc_time%> - Indicates the time using the current user settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user settings.
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user settings.
<%loc_tsep%> - Indicates the time separator using the current user settings.

You can use these in methods as: Level.Label, Level.ToolTip, Chart.Label,
Chart.LabelToolTip, Chart.FormatDate, Chart.OverviewToolTip, Chart.ToolTip,
InsideZoomFormat.InsideLabel, InsideZoomFormat.OwnerLabel, Note.PartText and
Note.Text (where supported).

The following screen shot shows the chart's header for English (United States) format:

The following screen shot shows the chart's header for Nepali (Nepal) format:

The following screen shot shows the chart's header for German (Germany) format:

The following VBA sample shows how you can specify the levels using the user's Regional
and Language Options?

With G2antt1
 .BeginUpdate
 .Font.Name = "Arial Unicode MS"
 .HeaderHeight = 36
 With .Chart
 .FirstVisibleDate = #5/30/2010#
 .PaneWidth(False) = 0

 .FirstWeekDay = 1
 .UnitWidth = 36
 .LevelCount = 2
 With .Level(0)
 .Label = "<%loc_mmmm%> <%yyyy%>
<%loc_sdate%><r>
<%ww%> "
 .ToolTip = .Label
 .Unit = 256
 End With
 With .Level(1)
 .Label = "<%loc_ddd%>
<%d%>"
 .ToolTip = .Label
 End With
 .ToolTip = "<%loc_ldate%>"
 End With
 .EndUpdate
End With

The following VB6 sample shows how you can specify the levels using the user's Regional
and Language Options?

With G2antt1
 .BeginUpdate
 .Font.Name = "Arial Unicode MS"
 .HeaderHeight = 36
 With .Chart
 .FirstVisibleDate = #5/30/2010#
 .PaneWidth(False) = 0
 .FirstWeekDay = exMonday
 .UnitWidth = 36
 .LevelCount = 2
 With .Level(0)
 .Label = "<%loc_mmmm%> <%yyyy%>
<%loc_sdate%><r>
<%ww%> "
 .ToolTip = .Label
 .Unit = exWeek
 End With

 With .Level(1)
 .Label = "<%loc_ddd%>
<%d%>"
 .ToolTip = .Label
 End With
 .ToolTip = "<%loc_ldate%>"
 End With
 .EndUpdate
End With

The following VB.NET sample shows how you can specify the levels using the user's
Regional and Language Options?

With Exg2antt1
 .BeginUpdate()
 .Font.Name = "Arial Unicode MS"
 .HeaderHeight = 36
 With .Chart
 .FirstVisibleDate = #5/30/2010#
 .set_PaneWidth(False,0)
 .FirstWeekDay = exontrol.EXG2ANTTLib.WeekDayEnum.exMonday
 .UnitWidth = 36
 .LevelCount = 2
 With .get_Level(0)
 .Label = "<%loc_mmmm%> <%yyyy%>
<%loc_sdate%><r>
<%ww%> "
 .ToolTip = .Label
 .Unit = exontrol.EXG2ANTTLib.UnitEnum.exWeek
 End With
 With .get_Level(1)
 .Label = "<%loc_ddd%>
<%d%>"
 .ToolTip = .Label
 End With
 .ToolTip = "<%loc_ldate%>"
 End With
 .EndUpdate()
End With

The following VB.NET for /COM sample shows how you can specify the levels using the

user's Regional and Language Options?

With AxG2antt1
 .BeginUpdate()
 .Font.Name = "Arial Unicode MS"
 .HeaderHeight = 36
 With .Chart
 .FirstVisibleDate = #5/30/2010#
 .PaneWidth(False) = 0
 .FirstWeekDay = EXG2ANTTLib.WeekDayEnum.exMonday
 .UnitWidth = 36
 .LevelCount = 2
 With .Level(0)
 .Label = "<%loc_mmmm%> <%yyyy%>
<%loc_sdate%><r>
<%ww%> "
 .ToolTip = .Label
 .Unit = EXG2ANTTLib.UnitEnum.exWeek
 End With
 With .Level(1)
 .Label = "<%loc_ddd%>
<%d%>"
 .ToolTip = .Label
 End With
 .ToolTip = "<%loc_ldate%>"
 End With
 .EndUpdate()
End With

The following C++ sample shows how you can specify the levels using the user's Regional
and Language Options?

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-

>GetControlUnknown();
spG2antt1->BeginUpdate();
spG2antt1->GetFont()->PutName(L"Arial Unicode MS");
spG2antt1->PutHeaderHeight(36);
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutFirstVisibleDate("5/30/2010");
 var_Chart->PutPaneWidth(VARIANT_FALSE,0);
 var_Chart->PutFirstWeekDay(EXG2ANTTLib::exMonday);
 var_Chart->PutUnitWidth(36);
 var_Chart->PutLevelCount(2);
 EXG2ANTTLib::ILevelPtr var_Level = var_Chart->GetLevel(0);
 var_Level->PutLabel("<%loc_mmmm%> <%yyyy%>
<%loc_sdate%>
<r> <%ww%> ");
 var_Level->PutToolTip(var_Level->GetLabel());
 var_Level->PutUnit(EXG2ANTTLib::exWeek);
 EXG2ANTTLib::ILevelPtr var_Level1 = var_Chart->GetLevel(1);
 var_Level1->PutLabel("<%loc_ddd%>
<%d%>");
 var_Level1->PutToolTip(var_Level1->GetLabel());
 var_Chart->PutToolTip(L"<%loc_ldate%>");
spG2antt1->EndUpdate();

The following C# sample shows how you can specify the levels using the user's Regional
and Language Options?

exg2antt1.BeginUpdate();
exg2antt1.Font.Name = "Arial Unicode MS";
exg2antt1.HeaderHeight = 36;
exontrol.EXG2ANTTLib.Chart var_Chart = exg2antt1.Chart;
 var_Chart.FirstVisibleDate = Convert.ToDateTime("5/30/2010");
 var_Chart.set_PaneWidth(false,0);
 var_Chart.FirstWeekDay = exontrol.EXG2ANTTLib.WeekDayEnum.exMonday;
 var_Chart.UnitWidth = 36;
 var_Chart.LevelCount = 2;
 exontrol.EXG2ANTTLib.Level var_Level = var_Chart.get_Level(0);
 var_Level.Label = "<%loc_mmmm%> <%yyyy%>
<%loc_sdate%><r>
<%ww%> ";
 var_Level.ToolTip = var_Level.Label;

 var_Level.Unit = exontrol.EXG2ANTTLib.UnitEnum.exWeek;
 exontrol.EXG2ANTTLib.Level var_Level1 = var_Chart.get_Level(1);
 var_Level1.Label = "<%loc_ddd%>
<%d%>";
 var_Level1.ToolTip = var_Level1.Label;
 var_Chart.ToolTip = "<%loc_ldate%>";
exg2antt1.EndUpdate();

The following C# for /COM sample shows how you can specify the levels using the user's
Regional and Language Options?

axG2antt1.BeginUpdate();
axG2antt1.Font.Name = "Arial Unicode MS";
axG2antt1.HeaderHeight = 36;
EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;
 var_Chart.FirstVisibleDate = Convert.ToDateTime("5/30/2010");
 var_Chart.set_PaneWidth(false,0);
 var_Chart.FirstWeekDay = EXG2ANTTLib.WeekDayEnum.exMonday;
 var_Chart.UnitWidth = 36;
 var_Chart.LevelCount = 2;
 EXG2ANTTLib.Level var_Level = var_Chart.get_Level(0);
 var_Level.Label = "<%loc_mmmm%> <%yyyy%>
<%loc_sdate%><r>
<%ww%> ";
 var_Level.ToolTip = var_Level.Label;
 var_Level.Unit = EXG2ANTTLib.UnitEnum.exWeek;
 EXG2ANTTLib.Level var_Level1 = var_Chart.get_Level(1);
 var_Level1.Label = "<%loc_ddd%>
<%d%>";
 var_Level1.ToolTip = var_Level1.Label;
 var_Chart.ToolTip = "<%loc_ldate%>";
axG2antt1.EndUpdate();

The following VFP sample shows how you can specify the levels using the user's Regional
and Language Options?

with thisform.G2antt1
 .BeginUpdate
 .Font.Name = "Arial Unicode MS"
 .HeaderHeight = 36
 with .Chart

 .FirstVisibleDate = {^2010-5-30}
 .PaneWidth(.F.) = 0
 .FirstWeekDay = 1
 .UnitWidth = 36
 .LevelCount = 2
 with .Level(0)
 .Label = "<%loc_mmmm%> <%yyyy%>
<%loc_sdate%><r>
<%ww%> "
 .ToolTip = .Label
 .Unit = 256
 endwith
 with .Level(1)
 .Label = "<%loc_ddd%>
<%d%>"
 .ToolTip = .Label
 endwith
 .ToolTip = "<%loc_ldate%>"
 endwith
 .EndUpdate
endwith

The following Delphi sample shows how you can specify the levels using the user's
Regional and Language Options?

with AxG2antt1 do
begin
 BeginUpdate();
 Font.Name := 'Arial Unicode MS';
 HeaderHeight := 36;
 with Chart do
 begin
 FirstVisibleDate := '5/30/2010';
 PaneWidth[False] := 0;
 FirstWeekDay := EXG2ANTTLib.WeekDayEnum.exMonday;
 UnitWidth := 36;
 LevelCount := 2;
 with Level[0] do
 begin

 Label := '<%loc_mmmm%> <%yyyy%>
<%loc_sdate%><r>
<%ww%> ';
 ToolTip := Label;
 Unit := EXG2ANTTLib.UnitEnum.exWeek;
 end;
 with Level[1] do
 begin
 Label := '<%loc_ddd%>
<%d%>';
 ToolTip := Label;
 end;
 ToolTip := '<%loc_ldate%>';
 end;
 EndUpdate();
end

The first level displays the month, the year and the number of the week in the year , the
second level displays the name of the week day, and the third level displays the day of the
month. The LevelCount property specifies the number of levels being displayed, in our case
3.

The following Template shows how to display your header using three levels as arranged in
the picture above (just copy and paste the following script to Template page):

BeginUpdate()
Chart
{
 LevelCount = 3
 Level(0)
 {
 Label = "<%mmm%>, <%yyyy%> <r>Week: <%ww%>"
 Unit = 256 'exWeek
 }
 Level(1).Label = "<%d1%>"
 Level(2).Label = "<%d%>"
}
EndUpdate()

The following VB sample displays your header using 3 levels as shown above:

With G2antt1
 .BeginUpdate
 With .Chart
 .LevelCount = 3
 With .Level(0)
 .Label = "<%mmm%>, <%yyyy%> <r>Week: <%ww%>"
 .Unit = EXG2ANTTLibCtl.UnitEnum.exWeek
 End With
 .Level(1).Label = "<%d1%>"
 .Level(2).Label = "<%d%>"
 End With
 .EndUpdate
End With

 The following VFP sample displays your header using 3 levels:

with thisform.g2antt1
.BeginUpdate()
with .Chart
 .LevelCount = 3
 with .Level(0)
 .Label = "<%mmm%>, <%yyyy%> <r>Week: <%ww%>"
 .Unit = 256
 endwith
 .Level(1).Label = "<%d1%>"
 .Level(2).Label = "<%d%>"
endwith
.EndUpdate()
endwith

 The following VB.NET sample displays your header using 3 levels:

With AxG2antt1
 .BeginUpdate()
 With .Chart
 .LevelCount = 3

 With .Level(0)
 .Label = "<%mmm%>, <%yyyy%> <r>Week: <%ww%>"
 .Unit = EXG2ANTTLib.UnitEnum.exWeek
 End With
 .Level(1).Label = "<%d1%>"
 .Level(2).Label = "<%d%>"
 End With
 .EndUpdate()
End With

 The following C# sample displays your header using 3 levels:

axG2antt1.BeginUpdate();
EXG2ANTTLib.Chart chart = axG2antt1.Chart;
chart.LevelCount = 3;
chart.get_Level(0).Label = "<%mmm%>, <%yyyy%> <r>Week: <%ww%>";
chart.get_Level(0).Unit = EXG2ANTTLib.UnitEnum.exWeek;
chart.get_Level(1).Label = "<%d1%>";
chart.get_Level(2).Label = "<%d%>";
axG2antt1.EndUpdate();

 The following C++ sample displays your header using 3 levels:

m_g2antt.BeginUpdate();
CChart chart = m_g2antt.GetChart();
chart.SetLevelCount(3);
chart.GetLevel(0).SetLabel(COleVariant("<%mmm%>, <%yyyy%> <r>Week:
<%ww%>"));
chart.GetLevel(0).SetUnit(256);
chart.GetLevel(1).SetLabel(COleVariant("<%d1%>"));
chart.GetLevel(2).SetLabel(COleVariant("<%d%>"));
m_g2antt.EndUpdate();

The following VB sample enumerates the levels in the chart:

With G2antt1.Chart
 Dim i As Long
 For i = 0 To .LevelCount - 1
 With .Level(i)
 Debug.Print .Label
 End With
 Next
End With

The following C++ sample enumerates the levels in the chart:

CChart chart = m_g2antt.GetChart();
for (long i = 0; i < chart.GetLevelCount(); i++)
{
 CLevel level = chart.GetLevel(i);
 OutputDebugString(V2S(&level.GetLabel()));
}

where the V2S function converts a Variant expression to a string expression:

static CString V2S(VARIANT* pvtDate)
{
 COleVariant vtDate;
 vtDate.ChangeType(VT_BSTR, pvtDate);

 return V_BSTR(&vtDate);
}

The following VB.NET sample enumerates the levels in the chart:

With AxG2antt1.Chart
 Dim i As Long
 For i = 0 To .LevelCount - 1
 With .Level(i)
 Debug.Write(.Label())
 End With
 Next
End With

The following C# sample enumerates the levels in the chart:

for (int i = 0; i < axG2antt1.Chart.LevelCount; i++)
{
 EXG2ANTTLib.Level level = axG2antt1.Chart.get_Level(i);
 System.Diagnostics.Debug.Write(level.Label);
}

The following VFP sample enumerates the levels in the chart:

With thisform.G2antt1.Chart
 For i = 0 To .LevelCount - 1
 With .Level(i)
 wait window nowait .Label
 EndWith
 Next
EndWith

property Chart.LevelFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Long
Retrieves the index of the level from the point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

Long A long expression that indicates the index of the level from
the point, or -1 if the cursor is not in the chart's header.

The LevelFromPoint property gets the level from the point. Use the Level property to
access a Level object. The LevelCount property counts the number of the levels in the
chart's header. Use the ItemFromPoint property to get the cell/item from the cursor. Use
the ColumnFromPoint property to retrieve the column from cursor. Use the BarFromPoint
property to get the bar from the point. Use the LinkFromPoint property to get the link from
the point. If the X parameter is -1 and Y parameter is -1 the ItemFromPoint property
determines the handle of the item from the cursor.

The following VB sample displays the label of the level from the cursor:

Private Sub G2antt1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With G2antt1.Chart
 Dim d As Long
 d = .LevelFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If d >= 0 Then
 Debug.Print .Level(d).Label
 End If
 End With
End Sub

The following C++ sample displays the label of the level from the point:

void OnMouseMoveG2antt1(short Button, short Shift, long X, long Y)
{

 CChart chart = m_g2antt.GetChart();
 long d = chart.GetLevelFromPoint(X, Y);
 if (d >= 0)
 OutputDebugString(V2S(&chart.GetLevel(d).GetLabel()));
}

The following VB.NET sample displays the label of the level from the point:

Private Sub AxG2antt1_MouseMoveEvent(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_MouseMoveEvent) Handles AxG2antt1.MouseMoveEvent
 With AxG2antt1.Chart
 Dim d As Integer = .LevelFromPoint(e.x, e.y)
 If (d >= 0) Then
 Debug.Write(.Level(d).Label)
 End If
 End With
End Sub

The following C# sample displays the label of the level from the point:

private void axG2antt1_MouseMoveEvent(object sender,
AxEXG2ANTTLib._IG2anttEvents_MouseMoveEvent e)
{
 int d = axG2antt1.Chart.get_LevelFromPoint(e.x, e.y);
 if (d >=0)
 System.Diagnostics.Debug.Write(axG2antt1.Chart.get_Level(d).Label);
}

The following VFP sample displays the label of the level from the point:

*** ActiveX Control Event ***
*** ActiveX Control Event ***

LPARAMETERS button, shift, x, y

with thisform.G2antt1.Chart
 d = .LevelFromPoint(x,y)
 if (d>=0)
 wait window nowait .Level(d).Label

 endif
endwith

property Chart.LinkFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Variant
Retrieves the link from the point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

Variant A VARIANT expression that indicates the key of the link
from the cursor, or empty if no link at cursor.

The LinkFromPoint property gets the link from point. If the X parameter is -1 and Y
parameter is -1 the LinkFromPoint property determines the key of the link from the
cursor. Use the Link property to access properties of the link. Use the ItemFromPoint
property to get the cell/item from the cursor. Use the ColumnFromPoint property to retrieve
the column from cursor. Use the FormateDate property to format a date. Use the
DrawDateTicker property to draw a ticker as cursor hovers the chart's area. Use the
BarFromPoint property to get the bar from the point.

The following VB sample displays the key of the link from the cursor:

Private Sub G2antt1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With G2antt1.Chart
 Debug.Print .LinkFromPoint(-1, -1)
 End With
End Sub

property Chart.LinksColor as Color
Specifies the color to draw the links between the bars.

Type Description

Color A color expression that indicates the color to draw the
links between bars.

Use the LinksColor property to change the color of the links between bars. Use the AddLink
method to link two bars. Use the AddBar method to add a new bar to an item. Use the
AddItem method to add a new item. Use the Link(exLinkColor) property to change the color
for a specific link. Use the ShowLinks property to hide all links in the chart area. Use the
LinkStyle property to specify the style of the link between bars. Use the LinkWidth property
to specify the width in pixels, of the pen that draws the link. The ShowLinksColor property
specifies the color to display the links when link starts from selected bar, ends on selected
bar, or when it is not related to any of selected bars. The ShowLinksWidth property
specifies the width to show the links when the link starts from selected bar, ends on
selected bar, or when it is not related to any of selected bars. The ShowLinksStyle property
specifies the width to show the links when the link starts from selected bar, ends on
selected bar, or when it is not related to any of selected bars.

property Chart.LinksStyle as LinkStyleEnum
Specifies the style to draw the links between the bars.

Type Description

LinkStyleEnum A LinkStyleEnum expression that indicates the style of the
pen to draw the links between bars.

By default, the LinksStyle property is exLinkTDot. Use the ShowLinks property to hide all
links in the chart area. Use the LinksColor property to change the color of the links between
bars. Use the AddLink method to link two bars. Use the AddBar method to add a new bar
to an item. Use the AddItem method to add a new item. Use the Link(exLinkStyle) property
to change the style for a specific link. Use the LinkWidth property to specify the width in
pixels, of the pen that draws the link. The ShowLinksColor property specifies the color to
display the links when link starts from selected bar, ends on selected bar, or when it is not
related to any of selected bars. The ShowLinksWidth property specifies the width to show
the links when the link starts from selected bar, ends on selected bar, or when it is not
related to any of selected bars. The ShowLinksStyle property specifies the width to show
the links when the link starts from selected bar, ends on selected bar, or when it is not
related to any of selected bars.

property Chart.LinksWidth as Long
Specifies the width in pixels of the pen to draw the links between the bars.

Type Description

Long A long expression that indicates the width of the pen to
draw the links between bars.

By default, the LinksWidth property is 1 pixel. Use the ShowLinks property to hide all links in
the chart area. Use the LinksColor property to change the color of the links between bars.
Use the AddLink method to link two bars. Use the AddBar method to add a new bar to an
item. Use the AddItem method to add a new item. Use the Link(exLinkWidth) property to
change the width of the pen that draws a specific link. Use the LinkStyle property to specify
the style of the pen that draws the link. The ShowLinksColor property specifies the color to
display the links when link starts from selected bar, ends on selected bar, or when it is not
related to any of selected bars. The ShowLinksWidth property specifies the width to show
the links when the link starts from selected bar, ends on selected bar, or when it is not
related to any of selected bars. The ShowLinksStyle property specifies the width to show
the links when the link starts from selected bar, ends on selected bar, or when it is not
related to any of selected bars.

property Chart.LocAMPM as String
Retrieves the time marker such as AM or PM using the current user regional and language
settings.

Type Description

String
A String expression that indicates the time marker such as
AM or PM using the current user regional and language
settings.

The LocAMPM property gets the locale AM/PM indicators as indicated by current regional
settings. The <%AM/PM%> HTML tag indicates the twelve-hour clock with the uppercase
letters "AM" or "PM", as appropriate set by the AMPM property. The <%loc_AM/PM%>
HTML tag indicates the time marker such as AM or PM using the current user regional and
language settings (LocAMPM property). The LocFirstWeekDay property indicates the first
day of the week, using the current user regional and language settings. The
LocMonthNames property specifies the list of name of the months, using the current user
regional and language settings. The LocWeekDays property specifies the name of the days
in the week, using the current user regional and language settings.

property Chart.LocFirstWeekDay as WeekDayEnum
Indicates the first day of the week, as specified in the regional settings.

Type Description

WeekDayEnum A WeekDayEnum expression that specifies the first day of
the week, as specified in the regional settings.

The LocFirstWeekDay property indicates the first day of the week, using the current user
regional and language settings. The LocMonthNames property specifies the list of name of
the months, using the current user regional and language settings. The LocWeekDays
property specifies the name of the days in the week, using the current user regional and
language settings. The LocAMPM property gets the locale AM/PM indicators as indicated
by current regional settings.

property Chart.LocMonthNames as String
Retrieves the list of month names, as indicated in the regional settings, separated by
space.

Type Description

String
A String expression that indicates the name of the months
within the year, as indicated in the regional settings,
separated by space.

Use the LocMonthNames property to get the name of the months as indicated by current
regional settings. The <%m1%>, <%m2%>, <%m3%>, <%mmmm%> HTML tags
indicate the name of the month, as appropriate set by the MonthNames property. The
<%loc_m1%>, <%loc_m2%>, <%loc_m3%>, <%loc_mmmm%> HTML tags indicate the
month using the current user regional and language settings (LocMonthNames property).
The LocFirstWeekDay property indicates the first day of the week, as indicated in the
regional settings. The LocAMPM property specifies specifies the AM and PM indicators, as
indicated in the regional settings. The LocWeekDays property specifies the name of the
days in the week, as indicated in the regional settings.

property Chart.LocWeekDays as String
Retrieves the list of names for each week day, as indicated in the regional settings,
separated by space.

Type Description

String
A String expression that indicates the list of names for
each week day, as indicated in the regional settings,
separated by space.

The LocWeekDays property gets the locale list of names for each week day as indicated
by current regional settings. The <%d1%>, <%d2%>, <%d3%>, <%ddd%> or
<%dddd%> HTML tags indicates the week day, as appropriate set by the WeekDays
property. The <%loc_d1%>, <%loc_d2%>, <%loc_d3%>, <%loc_ddd%> or
<%loc_dddd%> HTML tags indicates the week day, as appropriate set by the WeekDays
property, using the current user regional and language settings (LocAMPM property). The
LocFirstWeekDay property indicates the first day of the week, using the current user
regional and language settings. The LocMonthNames property specifies the list of name of
the months, using the current user regional and language settings. The LocAMPM property
specifies the AM/PM time indicators, using the current user regional and language settings.

property Chart.MarkNow as Variant
Specifies the the current time to show in the chart.

Type Description

Variant
A DATE expression to specify the date-time to be
highlighted using the MarkNowColor property or empty if
using the current date-time.

By default, the MarkNow property is empty, which indicates that the MarkNowColor
property uses the current date-time to specify the date to be highlighted in the chart. The
get function of the MarkNow property returns the date-time to be highlighted in the chart.
You can use the MarkNow property to indicate a custom date to be shown instead the
current date-time. For instance, the MarkNow = #03/13/2012 11:55AM# indicates that the
MarkNowColor property marks the specified date instead the current date time. The
MarkNowDelay property can be used to display the date time with a specified delay. The
DateFromPoint property gets the date from the cursor position. The
MarkNow/MarkNowDelay property can be used to specify the current date-time or your
custom date time. When the MarkNow property is changed, the control fires the
DateTimeChanged event.

The following samples shows how you can show a vertical line when user clicks the chart
area.

VB6

Private Sub G2antt1_Click()
 With G2antt1
 With .Chart
 .MarkNowColor = RGB(255,0,0)
 .MarkNow = .DateFromPoint(-1,-1)
 End With
 End With
End Sub

With G2antt1
 With .Chart
 .FirstVisibleDate = #3/13/2012#
 .PaneWidth(False) = 0
 .LevelCount = 2
 .MarkNowColor = RGB(0,0,0)

 .MarkNowWidth = 3
 .UnitWidth = 32
 .ResizeUnitScale = exHour
 End With
End With

VB.NET

Private Sub Exg2antt1_Click(ByVal sender As System.Object) Handles Exg2antt1.Click
 With Exg2antt1
 With .Chart
 .MarkNowColor = Color.FromArgb(255,0,0)
 .MarkNow = .get_DateFromPoint(-1,-1)
 End With
 End With
End Sub

With Exg2antt1
 With .Chart
 .FirstVisibleDate = #3/13/2012#
 .set_PaneWidth(False,0)
 .LevelCount = 2
 .MarkNowColor = Color.FromArgb(0,0,0)
 .MarkNowWidth = 3
 .UnitWidth = 32
 .ResizeUnitScale = exontrol.EXG2ANTTLib.UnitEnum.exHour
 End With
End With

VB.NET for /COM

Private Sub AxG2antt1_ClickEvent(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles AxG2antt1.ClickEvent
 With AxG2antt1
 With .Chart
 .MarkNowColor = RGB(255,0,0)
 .MarkNow = .DateFromPoint(-1,-1)
 End With

 End With
End Sub

With AxG2antt1
 With .Chart
 .FirstVisibleDate = #3/13/2012#
 .PaneWidth(False) = 0
 .LevelCount = 2
 .MarkNowColor = RGB(0,0,0)
 .MarkNowWidth = 3
 .UnitWidth = 32
 .ResizeUnitScale = EXG2ANTTLib.UnitEnum.exHour
 End With
End With

C++

void OnClickG2antt1()
{
 EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown()
 EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart()
 var_Chart->PutMarkNowColor(RGB(255,0,0))
 var_Chart->PutMarkNow(var_Chart->GetDateFromPoint(-1,-1))
}

EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutFirstVisibleDate("3/13/2012");
 var_Chart->PutPaneWidth(VARIANT_FALSE,0);
 var_Chart->PutLevelCount(2);
 var_Chart->PutMarkNowColor(RGB(0,0,0));
 var_Chart->PutMarkNowWidth(3);
 var_Chart->PutUnitWidth(32);
 var_Chart->PutResizeUnitScale(EXG2ANTTLib::exHour);

C++ Builder

void __fastcall TForm1::G2antt1Click(TObject *Sender)
{
 Exg2anttlib_tlb::IChartPtr var_Chart = G2antt1->Chart
 var_Chart->MarkNowColor = RGB(255,0,0)
 var_Chart->set_MarkNow(TVariant(var_Chart->get_DateFromPoint(-1,-1)))
}

Exg2anttlib_tlb::IChartPtr var_Chart = G2antt1->Chart;
 var_Chart->set_FirstVisibleDate(TVariant(TDateTime(2012,3,13).operator double()));
 var_Chart->set_PaneWidth(false,0);
 var_Chart->LevelCount = 2;
 var_Chart->MarkNowColor = RGB(0,0,0);
 var_Chart->MarkNowWidth = 3;
 var_Chart->UnitWidth = 32;
 var_Chart->ResizeUnitScale = Exg2anttlib_tlb::UnitEnum::exHour;

C#

private void exg2antt1_Click(object sender)
{
 exontrol.EXG2ANTTLib.Chart var_Chart = exg2antt1.Chart
 var_Chart.MarkNowColor = Color.FromArgb(255,0,0)
 var_Chart.MarkNow = var_Chart.get_DateFromPoint(-1,-1)
}
//this.exg2antt1.Click += new
exontrol.EXG2ANTTLib.exg2antt.ClickEventHandler(this.exg2antt1_Click);

exontrol.EXG2ANTTLib.Chart var_Chart = exg2antt1.Chart;
 var_Chart.FirstVisibleDate = Convert.ToDateTime("3/13/2012");
 var_Chart.set_PaneWidth(false,0);
 var_Chart.LevelCount = 2;
 var_Chart.MarkNowColor = Color.FromArgb(0,0,0);
 var_Chart.MarkNowWidth = 3;
 var_Chart.UnitWidth = 32;
 var_Chart.ResizeUnitScale = exontrol.EXG2ANTTLib.UnitEnum.exHour;

JavaScript

<SCRIPT FOR="G2antt1" EVENT="Click()" LANGUAGE="JScript">
 var var_Chart = G2antt1.Chart
 var_Chart.MarkNowColor = 255
 var_Chart.MarkNow = var_Chart.DateFromPoint(-1,-1)
</SCRIPT>

<OBJECT classid="clsid:CD481F4D-2D25-4759-803F-752C568F53B7" id="G2antt1">
</OBJECT>

<SCRIPT LANGUAGE="JScript">
 var var_Chart = G2antt1.Chart
 var_Chart.FirstVisibleDate = "3/13/2012"
 var_Chart.PaneWidth(false) = 0
 var_Chart.LevelCount = 2
 var_Chart.MarkNowColor = 0
 var_Chart.MarkNowWidth = 3
 var_Chart.UnitWidth = 32
 var_Chart.ResizeUnitScale = 65536
</SCRIPT>

C# for /COM

private void axG2antt1_ClickEvent(object sender, EventArgs e)
{
 EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart
 var_Chart.MarkNowColor = (uint)ColorTranslator.ToWin32(Color.FromArgb(255,0,0))
 var_Chart.MarkNow = var_Chart.get_DateFromPoint(-1,-1)
}
//this.axG2antt1.ClickEvent += new EventHandler(this.axG2antt1_ClickEvent);

EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;
 var_Chart.FirstVisibleDate = Convert.ToDateTime("3/13/2012");
 var_Chart.set_PaneWidth(false,0);
 var_Chart.LevelCount = 2;
 var_Chart.MarkNowColor = (uint)ColorTranslator.ToWin32(Color.FromArgb(0,0,0));
 var_Chart.MarkNowWidth = 3;
 var_Chart.UnitWidth = 32;

 var_Chart.ResizeUnitScale = EXG2ANTTLib.UnitEnum.exHour;

X++ (Dynamics Ax 2009)

void onEvent_Click()
{
 COM com_Chart
 anytype var_Chart
 var_Chart = exg2antt1.Chart()
 com_Chart = var_Chart
 com_Chart.MarkNowColor(WinApi::RGB2int(255,0,0))
 com_Chart.MarkNow(com_Chart.DateFromPoint(-1,-1))
}

public void init()
{
 COM com_Chart

 anytype var_Chart

 super()

 var_Chart = exg2antt1.Chart()
 com_Chart = var_Chart
 com_Chart.FirstVisibleDate(COMVariant::createFromDate(str2Date("3/13/2012",213)))
 /*should be called during the form's activate method*/ com_Chart.PaneWidth(false,0);
 com_Chart.LevelCount(2)
 com_Chart.MarkNowColor(WinApi::RGB2int(0,0,0))
 com_Chart.MarkNowWidth(3)
 com_Chart.UnitWidth(32)
 com_Chart.ResizeUnitScale(65536/*exHour*/)

}

/*
public void activate(boolean _active)
{

 super(_active)

 exg2antt1.Chart().PaneWidth(false,0)

}
*/

VFP

*** Click event - Occurs when the user presses and then releases the left mouse button
over the tree control. ***
LPARAMETERS nop
 with thisform.G2antt1
 with .Chart
 .MarkNowColor = RGB(255,0,0)
 .MarkNow = .DateFromPoint(-1,-1)
 endwith
 endwith

with thisform.G2antt1
 with .Chart
 .FirstVisibleDate = {^2012-3-13}
 .PaneWidth(0) = 0
 .LevelCount = 2
 .MarkNowColor = RGB(0,0,0)
 .MarkNowWidth = 3
 .UnitWidth = 32
 .ResizeUnitScale = 65536
 endwith
endwith

dBASE Plus

/*
with (this.ACTIVEX1.nativeObject)
 Click = class::nativeObject_Click
endwith

*/
// Occurs when the user presses and then releases the left mouse button over the
tree control.
function nativeObject_Click()
 local oG2antt,var_Chart
 oG2antt = form.Activex1.nativeObject
 var_Chart = oG2antt.Chart
 var_Chart.MarkNowColor = 0xff
 var_Chart.MarkNow = var_Chart.DateFromPoint(-1,-1)
return

local oG2antt,var_Chart

oG2antt = form.Activex1.nativeObject
var_Chart = oG2antt.Chart
 var_Chart.FirstVisibleDate = "03/13/2012"
 // var_Chart.PaneWidth(false) = 0
 with (oG2antt)
 TemplateDef = [Dim var_Chart]
 TemplateDef = var_Chart
 Template = [var_Chart.PaneWidth(false) = 0]
 endwith
 var_Chart.LevelCount = 2
 var_Chart.MarkNowColor = 0x0
 var_Chart.MarkNowWidth = 3
 var_Chart.UnitWidth = 32
 var_Chart.ResizeUnitScale = 65536

XBasic (Alpha Five)

function Click as v ()
 Dim oG2antt as P
 Dim var_Chart as P
 oG2antt = topparent:CONTROL_ACTIVEX1.activex
 var_Chart = oG2antt.Chart
 var_Chart.MarkNowColor = 255
 var_Chart.MarkNow = var_Chart.DateFromPoint(-1,-1)

end function

Dim oG2antt as P
Dim var_Chart as P

oG2antt = topparent:CONTROL_ACTIVEX1.activex
var_Chart = oG2antt.Chart
 var_Chart.FirstVisibleDate = {03/13/2012}
 ' var_Chart.PaneWidth(.f.) = 0
 oG2antt.TemplateDef = "Dim var_Chart"
 oG2antt.TemplateDef = var_Chart
 oG2antt.Template = "var_Chart.PaneWidth(False) = 0"

 var_Chart.LevelCount = 2
 var_Chart.MarkNowColor = 0
 var_Chart.MarkNowWidth = 3
 var_Chart.UnitWidth = 32
 var_Chart.ResizeUnitScale = 65536

Delphi 8 (.NET only)

procedure TWinForm1.AxG2antt1_ClickEvent(sender: System.Object; e: System.EventArgs);
begin
 with AxG2antt1 do
 begin
 with Chart do
 begin
 MarkNowColor := $ff
 MarkNow := TObject(DateFromPoint[-1,-1])
 end
 end
end;

with AxG2antt1 do
begin
 with Chart do
 begin

 FirstVisibleDate := '3/13/2012';
 PaneWidth[False] := 0;
 LevelCount := 2;
 MarkNowColor := $0;
 MarkNowWidth := 3;
 UnitWidth := 32;
 ResizeUnitScale := EXG2ANTTLib.UnitEnum.exHour;
 end;
end

Delphi (standard)

procedure TForm1.G2antt1Click(ASender: TObject;);
begin
 with G2antt1 do
 begin
 with Chart do
 begin
 MarkNowColor := $ff
 MarkNow := OleVariant(DateFromPoint[-1,-1])
 end
 end
end;

with G2antt1 do
begin
 with Chart do
 begin
 FirstVisibleDate := '3/13/2012';
 PaneWidth[False] := 0;
 LevelCount := 2;
 MarkNowColor := $0;
 MarkNowWidth := 3;
 UnitWidth := 32;
 ResizeUnitScale := EXG2ANTTLib_TLB.exHour;
 end;
end

Visual Objects

METHOD OCX_Exontrol1Click() CLASS MainDialog
 local var_Chart as IChart
 var_Chart := oDCOCX_Exontrol1:Chart
 var_Chart:MarkNowColor := RGB(255,0,0)
 var_Chart:MarkNow := var_Chart:[DateFromPoint,-1,-1]
RETURN NIL

local var_Chart as IChart

var_Chart := oDCOCX_Exontrol1:Chart
 var_Chart:FirstVisibleDate := SToD("20120313")
 var_Chart:[PaneWidth,false] := 0
 var_Chart:LevelCount := 2
 var_Chart:MarkNowColor := RGB(0,0,0)
 var_Chart:MarkNowWidth := 3
 var_Chart:UnitWidth := 32
 var_Chart:ResizeUnitScale := exHour

PowerBuilder

/*begin event Click() - Occurs when the user presses and then releases the left mouse
button over the tree control.*/
/*
 OleObject oG2antt,var_Chart
 oG2antt = ole_1.Object
 var_Chart = oG2antt.Chart
 var_Chart.MarkNowColor = RGB(255,0,0)
 var_Chart.MarkNow = var_Chart.DateFromPoint(-1,-1)
*/
/*end event Click*/

OleObject oG2antt,var_Chart

oG2antt = ole_1.Object
var_Chart = oG2antt.Chart
 var_Chart.FirstVisibleDate = 2012-03-13

 var_Chart.PaneWidth(false,0)
 var_Chart.LevelCount = 2
 var_Chart.MarkNowColor = RGB(0,0,0)
 var_Chart.MarkNowWidth = 3
 var_Chart.UnitWidth = 32
 var_Chart.ResizeUnitScale = 65536

property Chart.MarkNowColor as Color
Specifies the background color or the visual appearance of the object that indicates the
current time in the chart.

Type Description

Color

A color expression that specifies the background color to
show the position of the current date-time. The last 7 bits
in the high significant byte of the color indicates the
identifier of the skin being used. Use the Add method to
add new skins to the control. If you need to remove the
skin appearance from a part of the control you need to
reset the last 7 bits in the high significant byte of the color
being applied to the background's part.

By default, the MarkNowColor property is 0. The control's chart shows the position of the
current date-time, only if the MarkNowColor property is not zero (0). Use the
MarkNowColor properties to show the current date-time in the control's chart. The
MarkNowUnit property specifies the unit of time to count for. For instance, you can show
the current date-time from current second, to next second, from minute to next minute, and
so on. Use the MarkNowCount property to specify the number of units of date-time to count
from. For instance, you can show the current date-time from 5 seconds to 5 seconds, and
so on. The MarkNowWidth property specifies the width in pixels of the vertical bar that
shows the current date-time. The MarkNowTransparent property specifies the percent of
transparency to show the vertical bar that indicates the current date-time. The
MarkTodayColor property highlights the current day only. The control fires the
DateTimeChanged event when the current date-time is changed. Use the SelectDate
property to select a date by clicking the chart's header. Use the MarkTimeZone method to
highlight different time-zones. You can use the MarkNow property to indicate a custom date
to be shown instead the current date-time. The MarkNowDelay property can be used to
display the date time with a specified delay.

This screen shot shows the vertical bar that indicates the current date-time. The bar is

automatically updated each second, unless the MarkNowUnit property is not changed to
exMinute, when the vertical bar is updated each minute.

property Chart.MarkNowCount as Long
Specifies the number of time units to count while highlighting the current time.

Type Description

Long
A long expression that specifies the width in pixels of the
vertical bar that shows the current date-time in the
control's chart.

By default, the MarkNowCount property is 1. The control's chart shows the position of the
current date-time, only if the MarkNowColor property is not zero (0). Use the
MarkNowCount property to specify the number of units of date-time to count from. For
instance, you can show the current date-time from 5 seconds to 5 seconds, and so on. The
MarkNowWidth property specifies the width in pixels of the vertical bar that shows the
current date-time. The MarkNowUnit property specifies the unit of time to count for. For
instance, you can show the current date-time from current second, to next second, from
minute to next minute, and so on. The MarkNowTransparent property specifies the percent
of transparency to show the vertical bar that indicates the current date-time. The
MarkTodayColor property highlights the current day only. The control fires the
DateTimeChanged event when the current date-time is changed.

property Chart.MarkNowDelay as Double
Specifies the delay to show the current time in the chart.

Type Description

Double

A numeric expression that indicates the delay to display
the date time when using the MarkNowColor property. The
negative value of the MarkNowDelay property is added to
the date-time to indicate the new time to be represented
on the chart instead. The value could be 1 which indicates
1 day, 1/24 which indicates 1 hour, and 1/24/60 indicates 1
minute, and so on

By default the MarkNowDelay property is 0, which indicates that the current date-time or
specified date-time (MarkNow property) is marked. For instance, if the MarkNowDelay
property is 1, the date time to be highlighted is the current date time minus 1 day. The 1/24
(0.04167) indicates 1 hour, and 1/24/60 (00069444) indicates 1 minute, and so on. You can
use the MarkNowDelay to specify a different point for your date time. You can use the
MarkNow property to indicate a custom date to be shown instead the current date-time.

The following VB sample specifies a new starting point for marking the date time:

Private Sub G2antt1_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With G2antt1.Chart
 Dim d As Double
 d = .DateFromPoint(-1, -1)
 If (d = 0) Then
 .MarkNowDelay = 0
 Else
 .MarkNowDelay = (.MarkNow + .MarkNowDelay) - d
 End If
 End With
End Sub

Once you click a date within the chart, the vertical line will be show at your clicked position,
and if the MarkNow property is Empty (by default), the counting will start from your clicked
position.

property Chart.MarkNowTransparent as Long
Specifies the percent of the transparency to display the object that marks the current time.

Type Description

Long

A long expression that specifies the percent of
transparency to show the vertical bar that indicates the
current date-time in the control's chart. 0 means opaque,
50 means semi-transparent, and 100 means transparent.

By default, the MarkNowTransparent property is 0. The control's chart shows the position
of the current date-time, only if the MarkNowColor property is not zero (0). The
MarkNowTransparent property specifies the percent of transparency to show the vertical
bar that indicates the current date-time. The MarkNowUnit property specifies the unit of
time to count for. For instance, you can show the current date-time from current second, to
next second, from minute to next minute, and so on. Use the MarkNowCount property to
specify the number of units of date-time to count from. For instance, you can show the
current date-time from 5 seconds to 5 seconds, and so on. The MarkNowWidth property
specifies the width in pixels of the vertical bar that shows the current date-time. The
MarkTodayColor property highlights the current day only. The control fires the
DateTimeChanged event when the current date-time is changed.

property Chart.MarkNowUnit as UnitEnum
Retrieves or sets a value that indicates the base time unit while highlighting the current time.

Type Description

UnitEnum A UnitEnum expression that specifies the date-time unit to
show the current date-time in the control's chart.

By default, the MarkNowUnit property is exSecond. The control's chart shows the position
of the current date-time, only if the MarkNowColor property is not zero (0). Use the
MarkNowColor properties to show the current date-time in the control's chart. Use the
MarkNowUnit property to specify the unit of time to count for. For instance, you can show
the current date-time from current second, to next second, from minute to next minute, and
so on. Use the MarkNowCount property to specify the number of units of date-time to count
from. For instance, you can show the current date-time from 5 seconds to 5 seconds, and
so on. The MarkNowWidth property specifies the width in pixels of the vertical bar that
shows the current date-time. The MarkNowTransparent property specifies the percent of
transparency to show the vertical bar that indicates the current date-time. The
MarkTodayColor property highlights the current day only. The control fires the
DateTimeChanged event when the current date-time is changed.

property Chart.MarkNowWidth as Long
Specifies the width in pixels of the object that shows the current time.

Type Description

Long

A long expression that specifies the width in pixels of the
vertical bar that shows the current date-time in the
control's chart. If the MarkNowWidth property is 0 or
negative, the control computes the required width so
current date-time is shown based on the MarkNowUnit and
MarkNowCount properties. For instance, in this case, if
your chart displays seconds, and the MarkNowCount
property is 2, the width of the vertical bar that shows the
current date-time is UnitWidth multiplied by 2 (the space
required in the control's chart to display 2 seconds) .

By default, the MarkNowWidth property is 1. The control's chart shows the position of the
current date-time, only if the MarkNowColor property is not zero (0). The MarkNowWidth
property specifies the width in pixels of the vertical bar that shows the current date-
time. The MarkNowUnit property specifies the unit of time to count for. For instance, you
can show the current date-time from current second, to next second, from minute to next
minute, and so on. Use the MarkNowCount property to specify the number of units of date-
time to count from. For instance, you can show the current date-time from 5 seconds to 5
seconds, and so on. The MarkNowTransparent property specifies the percent of
transparency to show the vertical bar that indicates the current date-time. The
MarkTodayColor property highlights the current day only. The control fires the
DateTimeChanged event when the current date-time is changed.

property Chart.MarkSelectDateColor as Color
Retrieves or sets a value that indicates the color to mark the selected date in the chart.

Type Description

Color

A Color expression that indicates the color being used to
highlight the selected dates. The last 7 bits in the high
significant byte of the color indicates the identifier of the
skin being used to display the selected dates. Use the Add
method to add new skins to the control.

The MarkSelectDateColor property specifies the color being used to highlight the selected
dates. The AllowSelectDate property specifies whether the user can select a date by
clicking the chart's header. The user can select dates by clicking the chart's header. You
can select multiple dates keeping the CTRL key and clicking a new date. Use the
SelectLevel property to specify the area being highlighted when a date is selected. Use the
SelectDate property to select dates programmatically. The SelectedDates property can be
used to retrieve all selected dates, or to select a collection of dates. By default, the
MarkSelectDateColor is blue (as your control panel indicates the color for the selected
items). The selected dates are not marked if the MarkSelectDateColor property has the
same value as BackColor property in the Chart object. The MarkTodayColor property
specifies the color to mark the today date. Use the LevelFromPoint property to get the
index of the level from the cursor. Use the DateFromPoint property to retrieve the date from
the cursor. The ChartEndChanging(exSelectDate) event notifies your application when the
user selects a new date by clicking the header of the chart.

The following screen shot shows the selected dates (Dec 2 and Dec 4) being colored with
the default format:

The following screen shot shows the selected dates (Dec 2 and Dec 4) being colored with
a solid color (2130771712, 0x7F00FF00):

The following screen shot shows the selected dates (Dec 2 and Dec 4) being colored with

this EBN file (16777216, 0x1000000):

The following screen show how a new date gets selected once the user clicks a date in the
chart's header:

Your application can provide some options to help user while performing moving or resizing
the bars at runtime as follow:

grid lines, that can be shown only when moving or resizing, using the
ChartStartChanging and ChartEndChanging events
select date, to specify the margins of the area you want to highlight
ticker, that shows the cursor's position in the chart, or while resizing, it shows the size
and the position of the bar
ability to specify a resizing/moving unit, different that the displayed one ie while the
chart displays days, you can specify the resizing unit on hours.
inside zoom, that can be used to magnify the portion of the chart being selected

The following VB sample shows how you can change the color for selected dates to be
solid:

With G2antt1
 .BeginUpdate
 With .Chart
 .FirstVisibleDate = #1/1/2008#
 .MarkTodayColor = .BackColor
 .LevelCount = 2
 .MarkSelectDateColor = &H7FFDF9F4 ' The color is actually FDF9F4 as
BBGGRR format
 .SelectLevel = 1
 .SelectDate(#1/2/2008#) = True

 .SelectDate(#1/3/2008#) = True
 End With
End With

The following VB.NET sample shows how you can change the color for selected dates to
be solid:

With AxG2antt1
 .BeginUpdate
 With .Chart
 .FirstVisibleDate = #1/1/2008#
 .MarkTodayColor = .BackColor
 .LevelCount = 2
 .MarkSelectDateColor = &H7FFDF9F4 ' The color is actually FDF9F4 as
BBGGRR format
 .SelectLevel = 1
 .SelectDate(#1/2/2008#) = True
 .SelectDate(#1/3/2008#) = True
 End With
End With

The following C++ sample shows how you can change the color for selected dates to be
solid:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->BeginUpdate();
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutFirstVisibleDate("1/1/2008");
 var_Chart->PutMarkTodayColor(var_Chart->GetBackColor());
 var_Chart->PutLevelCount(2);

 var_Chart->PutMarkSelectDateColor(0x7FFDF9F4); // The color is actually
FDF9F4 as BBGGRR format
 var_Chart->PutSelectLevel(1);
 var_Chart->PutSelectDate("1/2/2008",VARIANT_TRUE);
 var_Chart->PutSelectDate("1/3/2008",VARIANT_TRUE);

The following C# sample shows how you can change the color for selected dates to be
solid:

axG2antt1.BeginUpdate();
EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;
 var_Chart.FirstVisibleDate = "1/1/2008";
 var_Chart.MarkTodayColor = var_Chart.BackColor;
 var_Chart.LevelCount = 2;
 var_Chart.MarkSelectDateColor = 0x7FFDF9F4; // The color is actually FDF9F4
as BBGGRR format
 var_Chart.SelectLevel = 1;
 var_Chart.set_SelectDate("1/2/2008",true);
 var_Chart.set_SelectDate("1/3/2008",true);

The following VFP sample shows how you can change the color for selected dates to be
solid:

with thisform.G2antt1
 .BeginUpdate
 with .Chart
 .FirstVisibleDate = {^2008-1-1}
 .MarkTodayColor = .BackColor
 .LevelCount = 2
 .MarkSelectDateColor = 0x7FFDF9F4; // The color is actually FDF9F4 as
BBGGRR format
 .SelectLevel = 1
 .SelectDate({^2008-1-2}) = .T.
 .SelectDate({^2008-1-3}) = .T.
 endwith
endwith

method Chart.MarkTimeZone (Key as Variant, [Start as Variant], [End as
Variant], [Color as Variant], [Options as Variant])
Highlights a specified time zone from start to end with a different background color, pattern,
transparency, HTML captions and so on.

Type Description

Key as Variant

A String expression that specifies a key to identify the
zone. The String must be not empty, else the zone is not
highligted. If a zone with the same key is already added,
the current call changes not missing parameters.

Start as Variant A DATE expression that specifies the starting point for the
zone.

End as Variant A DATE expression that specifies the ending point for the
zone.

Color as Variant

A Color expression that specifies the date-time zone to be
highlighted. The last 7 bits in the high significant byte of
the color to indicates the identifier of the skin being used.
Use the Add method to add new skins to the control. If
you need to remove the skin appearance from a part of
the control you need to reset the last 7 bits in the high
significant byte of the color being applied to the
background's part.

Options as Variant A String expression that specifies options to mark the
zone, as explained bellow.

By default, the chart displays no date-time zones, unless you are calling the MarkTimeZone
method. A zone can be used to highlight a range of dates, specifying the start and end
zone. Use the RemoveTimeZone method to delete the time zone being added previously
using the MarkTimeZone method. The TimeZoneFromPoint property retrieves the key of the
time-zone from the cursor. The TimeZoneInfo property retrieves information about the time-
zone giving its key. The MarkTodayColor property specifies the color to mark the today
date. Use the SelectDate property to select a date by clicking the chart's header. Use the
MarkNowColor property to show a vertical bar that indicates the current date-time in the
control's chart, from seconds to seconds, minutes, and so on. The
OverviewShowMarkTimeZones property shows the marked time-zones on the control's
overview map.

A date-time zone can display a:

solid background color or using an EBN to display a skin object
pattern (by default, is exPatternSolid)

transparency (by default, it is 0 which means opaque while, 50 means semi-
transparent and 100 means transparent)

Also, a zone can display multiple HTML captions aligned to any corner of the zone. By
default, all HTML captions are aligned to the bottom center area.

The following screen shot shows two zones being marked :

The Options parameter contains a list of fields separated by ; character as following:

Transparency[:Width], indicating the transparency : fixed width zone. The transparency
is value from 0 to 100, (0 by default or missing - opaque, 50 - semi-transparent, 100 -
hidden or fully transparent). For instance,MarkTimeZone "Z1",#1/4/2010 10:00:00
AM#,#1/4/2010 10:00:00 AM#,RGB(255,0,0),"50:3;;zone" adds a red vertical line of 3-
pixels wide, with a semi-transparent color, that displays "zone" at Jan 4th, 2010, at
10:00 AM. If Width field is missing, the zone is delimited by the Start and End
parameters, with a visible width of minimum 1-pixel wide. If the Width field is specified,
it indicates the actually width of the zone which is displayed at (Start + End) / 2.
Pattern as described here, (1/exPatternSolid by default or missing - solid)
HTML caption to be displayed in the zone, that may contains HTML tags as listed here
on exHTML. The caption may include anchor elements that fires the AnchorClick event
when it is clicked.
Alignment of the HTML caption with the values listed here.

The list continues by pair of HTML/Alignment elements. For instance, the ";;Caption
1;1;Caption 2;17;Caption 3" specifies a three captions to be
shown in the zone. For instance, the "50;;text to be shown,1" indicates that the zone is
semi-transparent (5), displays a solid color (the pattern field is missing), and it displays
"text to be shown" in the upper-center position of the zone.

By default, the text of the mark-time zone is not displayed in the chart's histogram area (

HistogramVisible property), but you can provide multiple HTML caption to the histogram
panels, after a ";;;" sequence as in the following sample: "25;;9/19/1994;1;;;Value
<c>
20;33" and it should look like follows:

property Chart.MarkTodayColor as Color
Retrieves or sets a value that indicates the color to mark today in the chart.

Type Description

Color A Color expression that indicates the color being used to
mark the today date.

The MarkTodayColor property specifies the color to mark the today date. If the
MarkTodayColor property is the same as the BackColor property, the today date is not
marked. Use the NonworkingDays property to specify the nonworking days in a week. Use
the DrawTickLines property to specify whether the grid lines between time units in the level
are visible or hidden. Use the DrawGridLines property to specify whether the control draws
the grid lines in the chart's area. Use the GridLineColor property to specify the color for grid
lines. Use the DrawGridLines property to specify whether the control draws the grid lines in
the items area. Use the DrawGridLines property to draw grid lines for a specified level. Use
the MarkSelectDateColor property to highlight the selected dates. Use the SelectDate
property to select a date by clicking the chart's header. Use the MarkNowColor property to
show a vertical bar that indicates the current date-time in the control's chart, from seconds
to seconds, minutes, and so on. Use the MarkTimeZone method to highlight different time-
zones.

property Chart.MaxUnitWidth as Long
Specifies the maximum value for Chart.UnitWidth property while enlarge or zoom-in/zoom-
out operation is performed.

Type Description

Long
A long expression that indicates the maximum value in
pixels, for the Chart's UnitWidth property when resizing or
enlarging the chart is performed.

By default, the MaxUnitWidth property is 36 pixels. The MaxUnitWidth property has effect
only if the AllowResizeChart property is not-zero. The MaxUnitWidth property could be
negative, in this case, the UnitWidth property has no right margin. The MaxUnitWidth
property indicates the maximum value for the UnitWidth property when resizing/enlarging is
performed. The MinUnitWidth property indicates the minimum value for the UnitWidth
property when resizing/enlarging is performed. For instance, when zoom-in or zoom-out if
the chart's UnitWidth property reaches the MaxUnitWidth property the chart's UnitScale
property is changed to prev time-scale available (AllowResizeChart property includes the
exAllowChangeUnitScale).

property Chart.MinUnitWidth as Long
Specifies the minimum value for Chart.UnitWidth property while enlarge or zoom-in/zoom-
out operation is performed.

Type Description

Long
A long expression that indicates the minimum value in
pixels, for the Chart's UnitWidth property when resizing or
enlarging the chart is performed.

By default, the MinUnitWidth property is 12 pixels. The MinUnitWidth property has effect
only if the AllowResizeChart property is not-zero. The MinUnitWidth property should be
greater than 0. The MinUnitWidth property indicates the minimum value for the UnitWidth
property when resizing/enlarging is performed. The MaxUnitWidth property indicates the
maximum value for the UnitWidth property when resizing/enlarging is performed. For
instance, when zoom-in or zoom-out if the chart's UnitWidth property reaches the
MinUnitWidth property the chart's UnitScale property is changed to next time-scale available
(AllowResizeChart property includes the exAllowChangeUnitScale).

property Chart.MonthNames as String
Retrieves or sets a value that indicates the list of month names, separated by space.

Type Description

String A String expression that indicates the name of the months
in the year, separated by spaces.

By default, the MonthNames property is "January February March April May June July
August September October November December". The order of months is January,
February, and so on. Use the MonthNames property to specify the name of the months in
the year. The FormatDate property formats a date. Use the AMPM property to specify the
name of the AM and PM indicators. Use the Label property to specify the label being
displayed in the level. Use the Label property to specify the predefined format for a level
based on the unit time. Use the ToolTip property to specify the tool tip being displayed when
the cursor hovers the level. Use the FirstWeekDay property to specify the first day in the
week.

The MonthNames property specifies the name of the months in the year for the following
built-in tags:

<%m1%> - First letter of the month (J to D).
<%m2%> - First two letters of the month (Ja to De).
<%m3%> - First three letters of the month (Jan to Dec).
<%mmm%> - First three letters of the month (Jan to Dec).
<%mmmm%> - Full name of the month (January to December).

The following VB sample assigns Romanian name for months in the year:

With G2antt1.Chart
 .MonthNames = "Ianuarie Februarie Martie Aprilie Mai Iunie Iulie August Septembrie
Octombrie Noiembrie Decembrie"
End With

The following C++ sample assigns Romanian name for months in the year:

m_g2antt.GetChart().SetMonthNames("Ianuarie Februarie Martie Aprilie Mai Iunie Iulie
August Septembrie Octombrie Noiembrie Decembrie");

The following VB.NET sample assigns Romanian name for months in the year:

With AxG2antt1.Chart
 .MonthNames = "Ianuarie Februarie Martie Aprilie Mai Iunie Iulie August Septembrie

Octombrie Noiembrie Decembrie"
End With

The following C# sample assigns Romanian name for months in the year:

axG2antt1.Chart.MonthNames = "Ianuarie Februarie Martie Aprilie Mai Iunie Iulie August
Septembrie Octombrie Noiembrie Decembrie";

The following VFP sample assigns Romanian name for months in the year:

With thisform.G2antt1.Chart
 .MonthNames = "Ianuarie Februarie Martie Aprilie Mai Iunie Iulie August Septembrie
Octombrie Noiembrie Decembrie"
EndWith

property Chart.NextDate (Date as Date, Unit as UnitEnum, [Count as
Variant]) as Date
Gets the next date based on the unit.

Type Description
Date as Date A Date expression that indicates the start date.

Unit as UnitEnum An UnitEnum expression that indicates the time unit to
change the date.

Count as Variant A long expression that indicates the number of time units
Date A Date expression that indicates the result.

Use the NextDate property to retrieve the next or previous date giving a specified time unit.
The FirstVisibleDate property indicates the first visible date in the chart. Use the ScrollTo
method to ensure that a specified date fits the chart's client area. Use the FormatDate
property to format a date to a specified format.

The following VB sample displays the next day as "Tue, May 31, 2005":

With G2antt1.Chart
 Debug.Print .FormatDate(.NextDate(.FirstVisibleDate, exDay, 2), "<%ddd%>,
<%mmmm%> <%d%>, <%yyyy%>")
End With

The following C++ sample displays the next day as "Tue, May 31, 2005":

CChart chart = m_g2antt.GetChart();
DATE d = chart.GetNextDate(V2D(&chart.GetFirstVisibleDate()), 4096, COleVariant(
(long)1));
CString strFormat = chart.GetFormatDate(d, "<%ddd%>, <%mmmm%> <%d%>,
<%yyyy%>");
OutputDebugString(strFormat);

where the V2D function converts a Variant expression to a DATE expression:

static DATE V2D(VARIANT* pvtDate)
{
 COleVariant vtDate;
 vtDate.ChangeType(VT_DATE, pvtDate);
 return V_DATE(&vtDate);

}

The following VB.NET sample displays the next day as "Tue, May 31, 2005":

With AxG2antt1.Chart
 Debug.Write(.FormatDate(.NextDate(.FirstVisibleDate, EXG2ANTTLib.UnitEnum.exDay,
2), "<%ddd%>, <%mmmm%> <%d%>, <%yyyy%>"))
End With

The following C# sample displays the next day as "Tue, May 31, 2005":

DateTime d = Convert.ToDateTime(
axG2antt1.Chart.get_NextDate(Convert.ToDateTime(axG2antt1.Chart.FirstVisibleDate),
EXG2ANTTLib.UnitEnum.exDay, 1));
String strFormat = axG2antt1.Chart.get_FormatDate(d, "<%ddd%>, <%mmmm%>
<%d%>, <%yyyy%>");
System.Diagnostics.Debug.Write(strFormat);

The following VFP sample displays the next day as "Tue, May 31, 2005":

With thisform.G2antt1.Chart
 wait window nowait .FormatDate(.NextDate(.FirstVisibleDate, 4096, 2), "<%ddd%>,
<%mmmm%> <%d%>, <%yyyy%>")
EndWith

property Chart.NonworkingDays as Long
Retrieves or sets a value that indicates the non-working days, for each week day a bit.

Type Description

Long A long expression that indicates the non-working days in a
week.

By default, the NonworkingDays property is 65 (Saturday(s) and Sunday(s)). The non-
working days are shown using the NonworkingDaysPattern and the NonworkingDaysColor
which defines the pattern and the color, when the base level of the chart displays days, if
the ShowNonworkingUnits property is True (by default). Use the ShowNonworkingUnits
property to display or hide the non-working units as hours or days in your chart. Use the
NonworkingHours property to indicate non-working hours in a day. Use the
ItemNonworkingUnits property to specify different non-working zones for different items.
Use the UnitWidthNonworking property to specify a different width for non-working units in
the base level. Use the ShowNonworkingUnits property to hide the non-working units. The
IsNonworkingDate property indicates whether the giving date-time is a working or non-
working unit.

The control supports the following ways of specify the non-working parts for items:

NonworkingDays and NonworkingHours properties indicate the nonworking parts of the
chart being applied to all items with the exception of those that use the
ItemNonworkingUnits property.
AddNonworkingDate method adds custom dates as being nonworking date which is
applied to all items with the exception of those that use the ItemNonworkingUnits
property.
ItemNonworkingUnits property defines the repetitive expression to specify the non-
working parts in the item.
ItemBar(exBarTreatAsNonworking) indicates whether the bar defines actually the non-
working part of the item in addition to ItemNonworkingUnits property (which is required
also)

You can select the non-working week days in the following table (In Internet Explorer, you
have to allow running the script on this page).

Saturday Friday Thursday Wednesday Tuesday Monday Sunday
Value 64 32 16 8 4 2 1

Bit

Click the Bit row for non-working days and the value for property is: , (hexa), (octal),
(binary)

The last significant byte in the NonworkingDays expression has the following meaning:

where X could be 1 (nonworking day) or 0 (working day), Sa means Saturday, Fr means
Friday, and so on. For instance, the 65 value means Saturday and Sunday are non-working
days. Use the AddNonworkingDate method to add custom dates as being nonworking date.

Use the ShowNonworkingDates property to show or hide the nonworking dates in the
control's chart area. Use the NonworkingDaysPattern property to specify the pattern being
used to fill non-working days. The NonworkingDaysColor property specifies the color being
used to fill the non-working days. For instance, if the NonworkingDaysPattern is
exPatternEmpty the non-working days are not highlighted. Use the MarkTodayColor
property to specify the color to mark the today date. Use the DrawGridLines property to
specify whether the control draws the grid lines in the chart's area. Use the GridLineColor
property to specify the color for grid lines. Use the DrawGridLines property to specify
whether the control draws the grid lines in the items area. Use the DrawGridLines property
to draw grid lines for a specified level. Use the IsNonworkingDate property to retrieve a
value that indicates whether a date is marked as nonworking day. Use the Add("A:B") to
add a bar that displays the bar A in the working area, and B in non-working areas. Use the
ItemBar(exBarWorkingCount) property to specify the count of working units in the bar. Use
the ItemBar(exBarNonWorkingCount) property to specify the count of non-working units in
the bar. Use the ItemBar(exBarKeepWorkingCount) property to specify whether the
ItemBar(exBarWorkingCount) property is kept constant while user moves a bar at runtime.
Use ItemBar(exBarWorkingUnits) or ItemBar(exBarWorkingUnitsAsString) property to
retrieve the working parts of the bar. Use ItemBar(exBarNonWorkingUnits) or
ItemBar(exBarNonWorkingUnitsAsString) property to retrieve the non-working parts of the
bar.

The following VB sample retrieves the value to indicate Sunday and Monday as being non-
working days:

With G2antt1.Chart
 .NonworkingDays = 2 ^ (EXG2ANTTLibCtl.exSunday) Or 2 ^
(EXG2ANTTLibCtl.exMonday)
End With

The following C++ sample retrieves the value to indicate Sunday and Monday as being non-
working days:

m_g2antt.GetChart().SetNonworkingDays(1 << (EXG2ANTTLib::exSunday) | 1 << (
EXG2ANTTLib::exMonday));

where the #import <exg2antt.dll> must be called to insert definitions for types in the
control's type library.

The following VB.NET sample retrieves the value to indicate Sunday and Monday as being
non-working days:

With AxG2antt1.Chart
 .NonworkingDays = 2 ^ (EXG2ANTTLib.WeekDayEnum.exSunday) Or 2 ^
(EXG2ANTTLib.WeekDayEnum.exMonday)
End With

The following C# sample retrieves the value to indicate Sunday and Monday as being non-
working days:

axG2antt1.Chart.NonworkingDays = 1 <<
(Convert.ToInt32(EXG2ANTTLib.WeekDayEnum.exSunday)) | 1 <<
(Convert.ToInt32(EXG2ANTTLib.WeekDayEnum.exMonday));

The following VFP sample retrieves the value to indicate Sunday and Monday as being non-
working days:

with thisform.G2antt1.Chart
 .NonworkingDays = 2 ^ 0 + 2 ^ 1
endwith

property Chart.NonworkingDaysColor as Color
Retrieves or sets a value that indicates the color to fill the non-working days.

Type Description

Color A Color expression that indicates the color to fill the non-
working days.

Use the NonworkingDaysColor property to specify the color being used by the
NonworkingDaysPattern property. Use the NonworkingDays property to specify the
nonworking days in a week. Use the AddNonworkingDate method to add custom dates as
nonworking days. Use the NonworkingDaysPattern property to specify the pattern to fill the
non-working days. Use the ShowNonworkingDates property to show or hide the nonworking
dates in the control's chart area. For instance, if the NonworkingDaysPattern is
exPatternEmpty the non-working days are not highlighted.

The following VB sample marks Sunday and Monday days on red:

With G2antt1.Chart
 .NonworkingDays = 2 ^ (EXG2ANTTLibCtl.exSunday) Or 2 ^
(EXG2ANTTLibCtl.exMonday)
 .NonworkingDaysColor = RGB(255, 0, 0)
End With

The following C++ sample sample marks Sunday and Monday days on red:

m_g2antt.GetChart().SetNonworkingDays(1 << (EXG2ANTTLib::exSunday) | 1 << (
EXG2ANTTLib::exMonday));
m_g2antt.GetChart().SetNonworkingDaysColor(RGB(255,0,0,));

where the #import <exg2antt.dll> must be called to insert definitions for types in the
control's type library.

The following VB.NET sample marks Sunday and Monday days on red:

With AxG2antt1.Chart
 .NonworkingDays = 2 ^ (EXG2ANTTLib.WeekDayEnum.exSunday) Or 2 ^
(EXG2ANTTLib.WeekDayEnum.exMonday)
 .NonworkingDaysColor = ToUInt32(Color.Red)
End With

where the ToUInt32 function converts a Color expression to a OLE_DATE expression:

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample marks Sunday and Monday days on red:

axG2antt1.Chart.NonworkingDays = 1 <<
(Convert.ToInt32(EXG2ANTTLib.WeekDayEnum.exSunday)) | 1 <<
(Convert.ToInt32(EXG2ANTTLib.WeekDayEnum.exMonday));
axG2antt1.Chart.NonworkingDaysColor = ToUInt32(Color.Red);

where the ToUInt32 function converts a Color expression to a OLE_DATE expression:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample sample marks Sunday and Monday days on red:

with thisform.G2antt1.Chart
 .NonworkingDays = 2 ^ 0 + 2 ^ 1
 .NonworkingDaysColor = RGB(255,0,0)
endwith

property Chart.NonworkingDaysPattern as PatternEnum
Retrieves or sets a value that indicates the pattern being used to fill non-working days.

Type Description

PatternEnum A PatternEnum expression that indicates the pattern to fill
non working days.

Use the NonworkingDaysPattern property to specify the brush to fill the nonworking days
area. Use the NonworkingDays property to specify the nonworking days. Use the
AddNonworkingDate method to add custom dates as nonworking days. Use the
NonworkingDaysPattern property to specify the pattern to fill non-working days. By default,
the NonworkingDaysPattern property is exPatternDot. If the NonworkingDaysPattern
property is exPatternEmpty, the non-working days are not highlighted. The
NonworkingDaysColor property specifies the color being used to fill the non-working days.
Use the MarkTodayColor property to specify the color to mark the today date. Use the
DrawTickLines property to specify whether the grid lines between time units in the level are
visible or hidden. Use the DrawGridLines property to specify whether the control draws the
grid lines in the chart's area. Use the GridLineColor property to specify the color for grid
lines. Use the DrawGridLines property to specify whether the control draws the grid lines in
the items area. Use the DrawGridLines property to draw grid lines for a specified level.

property Chart.NonworkingHours as Long
Retrieves or sets a value that indicates the non-working hours, for each hour in a day a bit.

Type Description

Long A Long expression that indicates the non-working hours in
a day.

by default, the NonworkingHours property is 0, that indicates all hours in a day are working
hours. The non-working hours are shown using the NonworkingHoursPattern and the
NonworkingHoursColor which defines the pattern and the color, when the base level of the
chart displays hours, if the ShowNonworkingUnits property is True (by default). Use the
ShowNonworkingUnits property to show or hide the non-working units as hours or days in
your chart. Use the ItemNonworkingUnits property to specify different non-working zones
for different items. Use ItemBar(exBarWorkingUnits) or
ItemBar(exBarWorkingUnitsAsString) property to retrieve the working parts of the bar. Use
ItemBar(exBarNonWorkingUnits) or ItemBar(exBarNonWorkingUnitsAsString) property to
retrieve the non-working parts of the bar. Use the UnitWidthNonworking property to specify
a different width for non-working units in the base level. Use the ShowNonworkingUnits
property to hide the non-working units. The IsNonworkingDate property indicates whether
the giving date-time is a working or non-working unit. You can use the
ShowNonworkingHours property to show or hide the non-working hours while the
NonworkingHours property is set, UnitScale is exDay (and Level.Count property is 1),
exHour, exMinute and exSecond.

The control supports the following ways of specify the non-working parts for items:

NonworkingDays and NonworkingHours properties indicate the nonworking parts of the
chart being applied to all items with the exception of those that use the
ItemNonworkingUnits property.
AddNonworkingDate method adds custom dates as being nonworking date which is
applied to all items with the exception of those that use the ItemNonworkingUnits
property.
ItemNonworkingUnits property defines the repetitive expression to specify the non-
working parts in the item.
ItemBar(exBarTreatAsNonworking) indicates whether the bar defines actually the non-
working part of the item in addition to ItemNonworkingUnits property (which is required
also)

You can select the non-working hours in the following table (In Internet Explorer, you have
to allow running the script on this page).

24
Hour 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4

AM/PM 11PM 10PM 9PM 8PM 7PM 6PM 5PM 4PM 3PM 2PM 1PM 12AM 11AM 10AM 9AM 8AM 7AM 6AM 5AM 4AM

Value 8388608 4194304 2097152 1048576 524288 262144 131072 65536 32768 16384 8192 4096 2048 1024 512 256 128 64 32 16

Bit

Click the Bit row for non-working hours and the value for property is: , (hexa), (octal),
(binary)

Every bit from the less significant bit, in the NonworkingHours property specifies whether
the hour is a not-working or working hour. For instance, if you want to highlight that only
9AM is a not-working hour, you should set the 10th bit in the property on 1 (the hours
starts from 0 to 23), and so the value for the NonworkingHours property is 512 (which
binary representation is 1000000000). The hours in the property starts from 0AM for the
first less significant bit, 1AM for the second bit, like in the following table.

For instance, if you need the representation of non-working hours from 6PM to 8AM, you
need to set on 1 each representative bit in the NonworkingHours property, or to add
corresponding values in the last row in the table for each non-working hours, so in this case
the NonworkingHours property is 16253183 or in binary 111110000000000011111111. For
instance, if the NonworkingHours property is 0 or NonworkingHoursPattern is
exPatternEmpty the not-working hours are not highlighted. Use the NonworkingDays
property to specify non-working days. Use the Add("A:B") to add a bar that displays the bar
A in the working area, and B in non-working areas.

The following function gets the value for the Chart.NonworkingHours property, giving start
and end day shift hours:

Public Function getNonworkingHours(ByVal startTime As Date, ByVal endTime As
Date) As Long
 Dim nNonworkingHours As Long, d As Double, n As Long, i As Long, dHour As
Double, dSec As Double
 nNonworkingHours = 0
 dHour = 1 / 24
 dSec = dHour / 60 / 60
 d = 0
 n = 1
 For i = 1 To 24
 If (((d < startTime) And (Abs(d - startTime) > dSec)) Or ((d > endTime) And
(Abs(d - endTime) > dSec))) Then
 nNonworkingHours = nNonworkingHours + n

 End If
 n = n * 2
 d = d + dHour
 Next
 getNonworkingHours = nNonworkingHours
End Function

The getNonworkingHours function, takes the start / end time (values between 0 and 1),
and returns the value to specify for the Chart.NonworkingHours property. For instance, the
G2antt1.Chart.NonworkingHours = getNonworkingHours(#6:00:00 AM#, #6:00:00 PM#)
specifies working hours between 06:00 AM and 06:00 PM (inclusive).

property Chart.NonworkingHoursColor as Color
Retrieves or sets a value that indicates the color to fill the non-working hours.

Type Description

Color A Color expression that indicates the color to fill the non-
working hours.

Use the NonworkingHoursColor property to specify the color being used by the
NonworkingHoursPattern property. Use the NonworkingHours property to specify the
nonworking hours in a day. Use the NonworkingHoursPattern property to specify the pattern
to fill the non-working hours. For instance, if the NonworkingHours property is 0 or
NonworkingHoursPattern is exPatternEmpty the not-working hours are not highlighted.

property Chart.NonworkingHoursPattern as PatternEnum
Retrieves or sets a value that indicates the pattern being used to fill non-working hours.

Type Description

PatternEnum A PatternEnum expression that indicates the pattern to fill
non working hours in a day.

Use the NonworkingHoursPattern property to specify the brush to fill the nonworking hours
area. Use the NonworkingHoursColor property to specify the color being used by the
NonworkingHoursPattern property. Use the NonworkingHours property to specify the
nonworking hours in a day. For instance, if the NonworkingHours property is 0 or
NonworkingHoursPattern is exPatternEmpty the not-working hours are not highlighted.

property Chart.NoteFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Note
Retrieves the note from the point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

Note A Note object from the cursor. Nothing or Null object of no
note from the point.

The NoteFromPoint property retrieves the note from the cursor or specified point. If the X
parameter is -1 and Y parameter is -1 the NoteFromPoint property determines the
Note object from the cursor. Use the ItemFromPoint property to get the cell/item from the
cursor. Use the ColumnFromPoint property to retrieve the column from cursor. Use the
LevelFromPoint property to retrieve the index of the level from the cursor. The
DateFromPoint property determines the DATE from the cursor. Use the LinkFromPoint
property to get the link from the point. Use the BarFromPoint property to get the bar from
the point.

The following VB sample displays the ID of the Note from the cursor:

Private Sub G2antt1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With G2antt1.Chart
 Dim n As EXG2ANTTLibCtl.Note
 Set n = .NoteFromPoint(-1, -1)
 If (Not n Is Nothing) Then
 Debug.Print n.ID
 End If
 End With
End Sub

property Chart.Notes as Notes
Retrieves the Notes collection.

Type Description
Notes A Notes collection being accessed.

Use the Notes property to access the Notes collection of the Chart object. Use the Add
method to add new boxes/notes related to a BAR or to a DATE. The NoteFromPoint
property retrieves the note/box from the cursor. A note can be associated with a DATE in
the chart or can be associated to a BAR in the chart. A note is a box that moves together
with the related object. For instance, if a note is associated with the starting point of the bar
(start date), and the user resizes the bar in the left side (so it changes the starting point
of the bar), the related box/note is moved relatively too. The Notes object can be accessed
through the Notes property of the Chart object. A Note or a Box can display HTML captions,
images, icons, borders, links, and it is fully customizable. The note is composed by two
parts, the starting part and end part, that can be linked together. The start part is related to
the DATE or to the BAR, while the end part is related to the start part of the note, such us if
the start part is moved, the end part is relatively moved. The user can move the end part
around the start part, while the start part remains unchanged, or can move so the entire box
is moved relatively to the object (DATE or BAR). Use the Items.ItemBar(exBarCaption)
property to assign a HTML text, icons, pictures to a bar. Use the
Items.ItemBar(exBarExtraCaption) property to add or associate extra captions to a bar.

The following screen shot shows notes//boxes associated to bars:

property Chart.OverlaidOnMoving as Boolean
Specifies whether the overlaid bars are re-arranged while the user moves or resizes at
runtime a bar.

Type Description

Boolean
A boolean expression that specifies whether the overlaid
bars is applied while user moves or resizes a bar at
runtime.

By default, the OverlaidOnMoving property is True. The OverlaidType property specifies
whether the bars of the same type are re-arranged on the item. The performance of the
control could be improved while using the overlaid feature, using the OverlaidOnMoving
property on False. This property has effect only if the control display overlaying bars. The
IntersectBars property determines if two bars intersects if returns 0. The
ItemBar(exBarIntersectWith) property retrieves a collection of bars that interest with the
current bar.

property Chart.OverviewBackColor as Color
Specifies the background color of the chart's overview.

Type Description

Color A Color expression that indicates the background color of
the chart's overview.

Use the OverviewBackColor property to change the background color of the overview's
overview. The OverviewVisible property specifies whether the overview's overview layout is
visible or hidden. Use the BackColor property to change the background color for the chart
area. Use the OverviewSelBackColor property to change the visual appearance of the
selection in the overview area. The OverviewShowMarkTimeZones property shows the
marked time-zones on the control's overview map. The OverviewSelTransparent property
indicates the transparency to show the selection in the items or scale-zoom part of the
overview map.

The following VB sample changes the overview's background color:

With G2antt1.Chart
 .OverviewBackColor = RGB(&H80, &H80, &H80)
End With

The following C++ sample changes the overview's background color:

m_g2antt.GetChart().SetOverviewBackColor(RGB(0x80,0x80,0x80));

The following VB.NET sample changes the overview's background color:

With AxG2antt1.Chart
 .OverviewBackColor = ToUInt32(Color.FromArgb(&H80, &H80, &H80))
End With

where the ToUInt32 function converts a Color expression to an OLE_COLOR type:

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample changes the overview's background color:

axG2antt1.Chart.OverviewBackColor = ToUInt32(Color.FromArgb(0x80, 0x80, 0x80));

where the ToUInt32 function converts a Color expression to an OLE_COLOR type:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample changes the overview's background color:

With thisform.G2antt1.Chart
 .OverviewBackColor = RGB(128, 128, 128)
EndWith

property Chart.OverviewHeight as Long
Indicates the height of the chart's overview.

Type Description

Long A long expression that indicates the height of the chart's
overview area.

By default, the OverviewHeight property is 24 pixels. If the OverviewHeight property is 0, or
the OverviewVisible property is False, the chart's overview area is hidden. The
OverviewBackColor property specifies the background color for the overview area. Use the
OverviewSelBackColor property to change the visual appearance of the selection in the
overview area. The OverviewToolTip property specifies the format of the tooltip being
displayed when the cursor hovers the overview area. The OverviewLevelLines property
indicates the index of the level that displays the grid lines in the overview area.

property Chart.OverviewLevelLines as Long
Indicates the index of the level that displays the grid line in the chart's overview.

Type Description

Long A long expression that indicates the index of the level that
displays the grid lines in the chart's overview area.

By default, the OverviewLevelLines property is -1. If the OverviewLevelLines property is -1,
or indicates a non-existent level, no grid lines are shown in the chart's overview area. Use
the OverviewLevelLines property to show grid lines in the chart's overview area. The
OverviewVisible property shows or hides the chart's overview area. Use the Level property
to access a level using its index. The LevelCount property indicates the number of levels
being displayed in the control's header. Use the DrawGridLines property to specify the color
of the grid lines in the overview area.

property Chart.OverviewSelBackColor as Color
Specifies the selection color of the chart's overview.

Type Description

Color

A color expression that defines the selected items
background color. The last 7 bits in the high significant
byte of the color indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

Use the OverviewSelBackColor property specifies background color or the visual
appearance for the selection in the chart's overview. The user can resize the chart by drag
and drop the left or right resize-margins of the overview-selection, while the
Background(exOverviewSelResize) property is not zero. The AllowResizeChart property
specifies whether the user can enlarge (zoom-in,zoom-out) or resize the chart using the
control's header, middle mouse button. The OverviewBackColor property specifies the
background color for the overview area. The OverviewVisible property specifies whether
the chart's overview layout is visible or hidden. Use the OverviewHeight property to specify
the height in pixels, of the overview area. The OverviewToolTip property specifies the
format of the tooltip being displayed when the cursor hovers the overview area. The
OverviewLevelLines property indicates the index of the level that displays the grid lines in
the overview area. The OverviewSelTransparent property indicates the transparency to
show the selection in the items or scale-zoom part of the overview map. The
Background(exOverviewSelUnit) property specifies the background color / visual
appearance to display the selected unit within the control's overview.

property Chart.OverviewSelTransparent(Items as Boolean) as Long
Specifies the percent of the transparency to display the selection in the overview parts of
the control.

Type Description

Items as Boolean
A Boolean expression that specifies whether the
transparency for selection is changed in the items or
scale-zooming part.

Long

A long expression that indicates the transparency to show
the selection in the overview part of the control. The value
should be from 0 to 100, as 0 opaque, 50 - semi-
transparent , 100 fully transparent (not shown)

By default, the OverviewSelTransparent property is 0, which means that the selection is
opaque. The OverviewVisible property specifies whether the chart's overview map is visible
or hidden. Use the OverviewSelBackColor property to change the visual appearance of the
selection in the overview area. The OverviewBackColor property specifies the background
color for the overview area. The overview-map part can display the scale-zooming scale if
the AllowOverviewZoom property is not exDisableZoom.

The following screen shots shows the overview-map part of the control with different values
for the OverviewSelTransparent property:

OverviewSelTransparent(True) = 0, OverviewSelTransparent(False) = 0

OverviewSelTransparent(True) = 70, OverviewSelTransparent(False) = 0

OverviewSelTransparent(True) = 0, OverviewSelTransparent(False) = 70

property Chart.OverviewShowMarkTimeZones as Boolean
Specifies whether the chart's overview shows the marked time-zones.

Type Description

Boolean A Boolean expression that specifies whether the chart's
time- zones are shown in the control's overview part.

By default, the OverviewShowMarkTimeZones property is False. The OverviewVisible
property indicates whether the control's overview part is shown or hidden. The
MarkTimeZone method highlights different time-zones. Use the
OverviewShowMarkTimeZones property to show the marked time-zones on the control's
overview map. The color for the time-zone is being indicated by the Color parameter of the
MarkTimeZone method. The time-zone is being shown only if the start and end dates points
to a valid date, the Color is different then chart's background color (BackColor property),
and the pattern for the time-zone is not empty. If the time-zone displays HTML captions they
do not appear on the overview part of the control. A time-zone may be shown in the
overview part of the control only if the Color parameter is the same as BackColor property,
and the OverviewBackColor property is different than the chart's BackColor property.The
OverviewShowSelectDates property specifies whether the selected dates are shown in the
overview part of the control.

The following screen shot shows time-zones in the overview map:

property Chart.OverviewShowSelectDates as Boolean
Specifies whether the chart's overview shows the selected dates.

Type Description

Boolean
A Boolean expression that specifies whether the selected
dates in the chart are shown in the overview-map part of
the control.

By default, the OverviewShowSelectDates property is False. The
OverviewShowSelectDates property specifies whether the selected dates are shown in the
overview part of the control. The AllowSelectDate property indicates whether the user can
select dates on the chart by clicking the its header. The OverviewVisible property specifies
whether the chart's overview map is visible or hidden. Use the
OverviewShowMarkTimeZones property to specify whether zones marked by the
MarkTimeZone method are shown in the overview part of the control.

The following screen shot shows the selected April 2006 zone on the overview map:

property Chart.OverviewToolTip as String
Retrieves or sets a value that indicates the format of the tooltip being shown while the
cursor hovers the chart's overview area.

Type Description

String
A String expression that specifies the format of the tooltip
being displayed when the cursor hovers the chart's
overview area.

By default, the OverviewToolTip property is "<%ddd%> <%m%>/<%d%>/<%yyyy%> ".
The OverviewVisible property specifies whether the chart's overview layout is visible or
hidden. Use the OverviewHeight property to specify the height in pixels, of the overview
area. Use the ToolTip property to specify the format of the toolip being displayed when the
user scrolls the chart's content. The Tooltip(0, -5, , , , ,) event occurs once the overview's
tooltip (Chart.OverviewToolTip) is about to be shown (-5 if the mouse pointer hovers the
overview section of the chart)

The OverviewToolTip property supports the following built-in tags:

<%d%> - Day of the month in one or two numeric digits, as needed (1 to 31).
<%dd%> - Day of the month in two numeric digits (01 to 31).
<%d1%> - First letter of the weekday (S to S). (Use the WeekDays property to
specify the name of the days in the week)
<%loc_d1%> - Indicates day of week as a one-letter abbreviation using the current
user settings.
<%d2%> - First two letters of the weekday (Su to Sa). (Use the WeekDays property
to specify the name of the days in the week)
<%loc_d2%> - Indicates day of week as a two-letters abbreviation using the current
user settings.
<%d3%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week)
<%loc_d3%> equivalent with <%loc_ddd%>
<%ddd%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_ddd%> that indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%loc_ddd%> - Indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%dddd%> - Full name of the weekday (Sunday to Saturday). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_dddd%> that indicates day of week as its full name using the current user
regional and language settings.

<%loc_dddd%> - Indicates day of week as its full name using the current user
regional and language settings.
<%i%> - Displays the number instead the date. For instance, you can display numbers
as 1000, 1001, 1002, 1003, instead dates. (the valid range is from -647,434 to
2,958,465)
<%w%> - Day of the week (1 to 7).
<%ww%> - Week of the year (1 to 53).
<%m%> - Month of the year in one or two numeric digits, as needed (1 to 12).
<%mr%> - Month of the year in Roman numerals, as needed (I to XII).
<%mm%> - Month of the year in two numeric digits (01 to 12).
<%m1%> - First letter of the month (J to D). (Use the MonthNames property to
specify the name of the months in the year)
<%loc_m1%> - Indicates month as a one-letter abbreviation using the current user
settings.
<%m2%> - First two letters of the month (Ja to De). (Use the MonthNames property
to specify the name of the months in the year)
<%loc_m2%> - Indicates month as a two-letters abbreviation using the current user
settings.
<%m3%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year)
<%loc_m3%> - equivalent with <%loc_mmm%>
<%mmm%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year). You can use the
<%loc_mmm%> that indicates month as a three-letter abbreviation using the current
user regional and language settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
regional and language settings.
<%mmmm%> - Full name of the month (January to December). (Use the
MonthNames property to specify the name of the months in the year). You can use the
<%loc_mmmm%> that indicates month as its full name using the current user regional
and language settings.
<%loc_mmmm%> - Indicates month as its full name using the current user regional
and language settings.
<%q%> - Date displayed as the quarter of the year (1 to 4).
<%y%> - Number of the day of the year (1 to 366).
<%yy%> - Last two digits of the year (01 to 99).
<%yyyy%> - Full year (0100 to 9999).
<%hy%> - Date displayed as the half of the year (1 to 2).
<%loc_gg%> - Indicates period/era using the current user regional and language
settings.
<%loc_sdate%> - Indicates the date in the short format using the current user regional
and language settings.

<%loc_ldate%> - Indicates the date in the long format using the current user regional
and language settings.
<%loc_dsep%> - Indicates the date separator using the current user regional and
language settings (/).
<%h%> - Hour in one or two digits, as needed (0 to 23).
<%hh%> - Hour in two digits (00 to 23).
<%h12%> - Hour in 12-hour time format, in one or two digits - [0(12),11]
<%hh12%> - hour in 12-hour time format, in two digits - [00(12),11]
<%n%> - Minute in one or two digits, as needed (0 to 59).
<%nn%> - Minute in two digits (00 to 59).
<%s%> - Second in one or two digits, as needed (0 to 59).
<%ss%> - Second in two digits (00 to 59).
<%AM/PM%> - Twelve-hour clock with the uppercase letters "AM" or "PM", as
appropriate. (Use the AMPM property to specify the name of the AM and PM
indicators). You can use the <%loc_AM/PM%> that indicates the time marker such as
AM or PM using the current user regional and language settings. You can use
<%loc_A/P%> that indicates the one character time marker such as A or P using the
current user regional and language settings
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user regional and language settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user regional and language settings.
<%loc_time%> - Indicates the time using the current user regional and language
settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user regional and language settings.
<%loc_tsep%> - indicates the time separator using the current user regional and
language settings (:)
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed

The following tags are displayed based on the user's Regional and Language Options:

<%loc_sdate%> - Indicates the date in the short format using the current user
settings.
<%loc_ldate%> - Indicates the date in the long format using the current user settings.
<%loc_d1%> - Indicates day of week as a one-letter abbreviation using the current
user settings.
<%loc_d2%> - Indicates day of week as a two-letters abbreviation using the current
user settings.
<%loc_d3%> equivalent with <%loc_ddd%>
<%loc_ddd%> - Indicates day of week as a three-letters abbreviation using the
current user settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
settings.
<%loc_m1%> - Indicates month as a one-letter abbreviation using the current user
settings.
<%loc_m2%> - Indicates month as a two-letters abbreviation using the current user
settings.
<%loc_m3%> - equivalent with <%loc_mmm%>
<%loc_mmm%> - Indicates month as a three-letters abbreviation using the current
user settings.
<%loc_mmmm%> - Indicates month as its full name using the current user settings.
<%loc_gg%> - Indicates period/era using the current user settings.
<%loc_dsep%> - Indicates the date separator using the current user settings.
<%loc_time%> - Indicates the time using the current user settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user settings.
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user settings.
<%loc_tsep%> - Indicates the time separator using the current user settings
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed

property Chart.OverviewVisible as OverviewVisibleEnum
Specifies whether the chart's overview layout is visible or hidden.

Type Description

OverviewVisibleEnum An OverviewVisibleEnum expression that indicates
whether the chart's overview area is visible or hidden.

By default, the OverviewVisible property is exOverviewHidden (0), so the chart's overview
portion is not visible. The overview layout/map It is a view that is displayed at the top of the
control and shows the whole timeline, with all objects within its view (a high-level view). It
displays a 'select' box (the light blue box) that the user can drag to any location within the
overview and then that area of the chart is shown at normal scale within the chart view. Use
the OverviewHeight property to specify the height in pixels, of the overview area. The
OverviewBackColor property specifies the background color for the overview area. Use the
OverviewSelBackColor property to change the visual appearance of the selection in the
overview area. The OverviewToolTip property specifies the format of the tooltip being
displayed when the cursor hovers the overview area. The OverviewLevelLines property
indicates the index of the level that displays the grid lines in the overview area. If the Label
property is empty, the unit is not displayed in the zooming scale, if the AllowOverviewZoom
property is not exDisableZoom. The OverviewZoomCaption property indicates the caption
being displayed in each zooming unit. The OverviewShowMarkTimeZones property shows
the marked time-zones on the control's overview map.

The color to specify the bar in the overview area is determined as follows:

If ItemBar(exBarOverviewColor) property is not 0, the exBarOverviewColor indicates
the color to show the bar in the overview area, else
If OverviewColor property is not 0, the OverviewColor property indicates the color to
show the bar in the overview area, else
If the ItemBar(exBarColor) is not 0, the exBarColor indicates the color to show the bar
in the overview area, else
The Color property of the Bar indicates the color to show the bar in the overview part
of the control.

(The bar is represented into the control's overview only if its determined color is not -1)

The color to specify the time-zone in the overview area is indicates by the Color parameter
of the MarkTimeZone method. The MarkTimeZone method may be used to highlights
different parts of the chart by specifying the range of dates.

The following screen shot shows the overview part of the control (the top zone):

The following screen shot shows the overview part of the control (the red zone):

property Chart.OverviewZoomCaption as String
Specifies the captions for each zooming unit.

Type Description

String

A string expression that defines a list of captions (one for
each unit) being displayed in the zoom scale, separated
by | character. The list should contain a caption for each
unit, from the exYear to exSecond. For instance, if you
want to show nothing for exHalfYear zooming unit, the
OverviewZoomCaption should be: "Year||źYear...", and so
on

By default, the OverviewZoomCaption property is "Year|˝Year|
źYear|Month|Third|Week|Day|Hour|Min|Sec". The OverviewZoomCaption property
supports HTML tags, and so the zooming units may display icons or/and pictures using the
 tag. The OverviewZoomUnit property indicates the width in pixels of the zooming
unit. The zooming scale displays the list of visible units. A visible unit is an unit whose Label
property is not empty. So, the Label property indicates the zooming units in the zoom scale.
Use the OverviewVisible property to show or hide the control's overview area.

The following picture shows the zooming scale on the overview area [exAlwaysZoom] (
you can click the 1, 7 or 31, and the chart is scaled to days, weeks or moths):

The following picture shows the control when the user right clicks the overview area (as
the chart displays weeks) [exZoomOnRClick]:

For instance, in the OverviewZoomCaption property is "Year|˝Year|źYear|
3Month|Third|2Week|1Day|Hour|Min|Sec". The

Day, Month and Week units displays an icon too. Use the Images method to load a list of
icons to your control. Use the HTMLPicture property to use custom sized pictures to your
HTML captions.

property Chart.OverviewZoomUnit as Long
Indicates the width in pixels of the zooming unit in the overview.

Type Description

Long A long expression that indicates the width in pixels of the
zooming unit.

By default, the OverviewZoomUnit property is 42 pixels. The OverviewZoomUnit property
indicates the width in pixels of the zooming unit. Use the OverviewVisible property to show
or hide the control's overview area. Use the AllowOverviewZoom property to show or hide
the zooming scale on the overview area. The zooming scale displays the list of visible units.
A visible unit is an unit whose Label property is not empty. So, the Label property indicates
the zooming units in the zoom scale. The OverviewZoomCaption property indicates the
caption being displayed in each zooming unit. The LabelToolTip retrieves or sets a value that
indicates the predefined format of the level's tooltip for a specified unit.

The zooming scale may be displayed on the overview area only if:

AllowOverviewZoom property is not exDisableZoom
OverviewVisible property is True
OverviewHeight property is greater than 0
there are at least two visible units, that has the Label property not empty.

property Chart.PaneWidth(Right as Boolean) as Long
Specifies the width for the left or side pane.

Type Description

Right as Boolean A Boolean expression that indicates whether the left (
items area) or right (chart area) area is changed.

Long A Long expression that indicates the width of the pane.

Use the PaneWidth property to specify the width of the control (items area) or chart area.
Use the AddBar method to add bars to the item. The bars are always shown in the chart
area. Use the HeaderVisible property to show or hide the control's header. Use the
SortBarVisible property to specify whether the control's sort bar is visible or it is hidden.
Use the LevelCount property to specify the number of levels being displayed in the chart's
header. Use the Level property to access the level in the chart area. Use the BackColor
property to specify the items's background color. Use the ForeColor property to specify the
item's foreground color. Use the BackColor property to specify the chart's background
color. Use the ForeColor property to specify the chart's foreground color. The
HistogramBoundsChanged event notifies your application when the location and the size of
the chart's histogram is changed, so you can use it to add your legend for the histogram in
a panel component. Use the OnResizeControl(exResizeList) or
OnResizeControl(exResizeChart) property to specify whether the left or right part gets
resized when the control gets resized. The controls vertical splitter is hidden if the
OnControlResize property is exResizeChart + exDisableSplitter (129) and the
PaneWidth(False) property is 0.

Use the OnResizeControl property to allow:

resizing the list area when the control is resized (by default)
resizing the chart area when the control is resized.

You can also use the OnResizeControl property to prevent:

resizing the list/chart using the control's splitter.
resizing the chart's histogram.

The following VFP sample changes the width of the control's area:

with thisform.G2antt1.Chart
 .PaneWidth(0) = 256
endwith

The following VFP sample changes the width of the chart's area:

with thisform.G2antt1.Chart
 .PaneWidth(1) = 256
endwith

property Chart.Picture as IPictureDisp
Retrieves or sets a graphic to be displayed in the chart.

Type Description

IPictureDisp A Picture object that's displayed on the control's
background.

By default, the chart has no picture associated. The control uses the PictureDisplay
property to determine how the picture is displayed on the chart's background. Use the
PictureLevelHeader property to specify the picture on the control's levels header bar. Use
the CellPicture property to assign a picture to a cell. Use the BackColor property to specify
the control's background color. Use the Picture property to assign a picture on the control's
background.

property Chart.PictureDisplay as PictureDisplayEnum
Retrieves or sets a value that indicates the way how the graphic is displayed on the chart's
background

Type Description

PictureDisplayEnum A PictureDisplayEnum expression that indicates the way
how the picture is displayed in the chart's area.

By default, the PictureDisplay property is exTile. The PictureDisplay property specifies how
the Picture is displayed on the chart's background. If the chart has no picture associated
the PictureDisplay property has no effect. Use the CellPicture property to assign a picture
to a cell. Use the BackColor property to specify the control's background color. Use the
BackColor property to specify the chart's background color.

method Chart.Redo ()
Redoes the next action in the chart's Redo queue.

Type Description

Call the Redo method to Redo the last chart operation. The Redo method have effect only if
the AllowUndoRedo property is True. The CTRL+Y redoes the next action in the chart's
Redo queue, while the CTRL+Z performs the last undo operation. Call the Undo method to
Undo the last chart operation. The CanUndo property retrieves a value that indicates
whether the chart may perform the last Undo operation. The CanRedo property retrieves a
value that specifies whether the chart can execute the next operation in the chart's Redo
queue. The ChartStartChanging(exUndo/exRedo) / ChartEndChanging(exUndo/exRedo)
event notifies your application whenever an Undo/Redo operation is performed.

The records of the Undo/Redo queue may contain actions in the following format:

"AddBar;ITEMINDEX;KEY", indicates that a new bar has been created
"RemoveBar;ITEMINDEX;KEY", indicates that a bar has been removed
"MoveBar;ITEMINDEX;KEY", indicates that a bar has been moved or resized
"PercentChange;ITEMINDEX;KEY", indicates that the bar's percent has been
changed
"UpdateBar;ITEMINDEX;KEY", indicates that one or more properties of the bar has
been updated (ItemBar property, this operation can be added only using the
StartUpdateBar / EndUpdateBar methods)
"ParentChangeBar;ITEMINDEX;KEY", indicates that the bar's parent has been
changed
"GroupBars;ITEMINDEXA;KEYA;STARTA;ITEMINDEXB;KEYB;STARTB", specifies
that two bars has been grouped
"UngroupBars;ITEMINDEXA;KEYA;STARTA;ITEMINDEXB;KEYB;STARTB", specifies
that two bars has been ungrouped
"DefineSummaryBars;SUMMARYITEMINDEX;SUMMARYKEY;ITEMINDEX;KEY",
indicates that a bar has been defined as a child of a summary bar
"UndefineSummaryBars;SUMMARYITEMINDEX;SUMMARYKEY;ITEMINDEX;KEY",
indicates that a bar has been removed from the summary bar's children
"AddLink;KEY", indicates that a new link has been created
"RemoveLink;KEY", indicates that a link has been removed
"UpdateLink;KEY", specifies that one of more properties of the link has been updated
(Link property, this operation can be added only using the StartUpdateLink /
EndUpdateLink methods)

The records of the Undo/Redo queue may contain actions in the following format (available
starting from 23.0):

"AddItem;ITEMINDEX", indicates that a new item has been created
"RemoveItem;ITEMINDEX", indicates that an item has been removed
"ChangeItemPos;ITEMINDEX", indicates that an item changes its position or / and
parent
"ChangeCellValue;ITEMINDEX;CELLINDEX", indicates that the cell's value has been
changed
"ChangeCellState;ITEMINDEX;CELLINDEX", indicates that the cell's state has been
changed

Also, the Undo/Redo queue may include:

"StartBlock", specifies that a block of operations begins
"EndBlock", specifies that a block of operations ends

The RedoListAction property lists the Redo actions that can be performed in the chart. Use
the RedoRemoveAction method to remove the first action from the redo queue.

property Chart.RedoListAction ([Action as Variant], [Count as Variant])
as String
Lists the Redo actions that can be performed in the chart.

Type Description

Action as Variant

[optional] A long expression that specifies the action being
listed. If missing or -1, all actions are listed.

The Action parameter can be one of the following:

exChartUndoRedoAddBar(0) ~
"AddBar;ITEMINDEX;KEY", indicates that a new bar
has been created
exChartUndoRedoRemoveBar(1) ~
"RemoveBar;ITEMINDEX;KEY", indicates that a bar
has been removed
exChartUndoRedoMoveBar(2) ~
"MoveBar;ITEMINDEX;KEY", indicates that a bar
has been moved or resized
exChartUndoRedoPercentChange(3) ~
"PercentChange;ITEMINDEX;KEY", indicates that
the bar's percent has been changed
exChartUndoRedoUpdateBar(4) ~
"UpdateBar;ITEMINDEX;KEY", indicates that one or
more properties of the bar has been updated
(ItemBar property, this operation can be added only
using the StartUpdateBar / EndUpdateBar methods)
exChartUndoRedoParentChangeBar(5) ~
"ParentChangeBar;ITEMINDEX;KEY", indicates that
the bar's parent has been changed
exChartUndoRedoGroupBars(6) ~
"GroupBars;ITEMINDEXA;KEYA;STARTA;ITEMINDEXB;KEYB;STARTB",
specifies that two bars has been grouped
exChartUndoRedoUngroupBars(7) ~
"UngroupBars;ITEMINDEXA;KEYA;STARTA;ITEMINDEXB;KEYB;STARTB",
specifies that two bars has been ungrouped
exChartUndoRedoDefineSummaryBars(8) ~
"DefineSummaryBars;SUMMARYITEMINDEX;SUMMARYKEY;ITEMINDEX;KEY",
indicates that a bar has been defined as a child of a
summary bar
exChartUndoRedoUndefineSummaryBars(9) ~
"UndefineSummaryBars;SUMMARYITEMINDEX;SUMMARYKEY;ITEMINDEX;KEY",

indicates that a bar has been removed from the
summary bar's children
exChartUndoRedoAddLink(10) ~ "AddLink;KEY",
indicates that a new link has been created
exChartUndoRedoRemoveLink(11) ~
"RemoveLink;KEY", indicates that a link has been
removed
exChartUndoRedoUpdateLink(12) ~
"UpdateLink;KEY", specifies that one of more
properties of the link has been updated (Link
property, this operation can be added only using the
StartUpdateLink / EndUpdateLink methods)
exListUndoRedoAddItem(13) ~
"AddItem;ITEMINDEX", indicates that a new item has
been created
exListUndoRedoRemoveItem(14) ~
"RemoveItem;ITEMINDEX", indicates that an item
has been removed
exListUndoRedoChangeItemPos(15) ~
"ChangeItemPos;ITEMINDEX", indicates that an item
changes its position or / and parent
exListUndoRedoChangeCellValue(16) ~
"ChangeCellValue;ITEMINDEX;CELLINDEX",
indicates that the cell's value has been changed
exListUndoRedoChangeCellState(17) ~
"ChangeCellState;ITEMINDEX;CELLINDEX",
indicates that the cell's state has been changed

For instance, RedoListAction(0) shows only AddBar
actions in the redo stack.

Count as Variant

[optional] A long expression that indicates the number of
actions being listed. If missing or -1, all actions are listed.
For instance, RedoListAction(0,1) shows only the first
AddBar action being added to the redo stack.

String A String expression that lists the Redo actions that may be
performed.

The RedoListAction property lists the Redo actions that can be performed in the chart. The
ChartStartChanging(exUndo/exRedo) / ChartEndChanging(exUndo/exRedo) event notifies
your application whenever an Undo/Redo operation is performed. The UndoListAction
property lists the actions that the user may perform by doing Undo operations. The
CanRedo property specifies whether a redo operation can be performed if CTRL+Y key is

pressed. Use the RedoRemoveAction method to remove the first action from the redo
queue.

The records of the Undo/Redo queue may contain actions in the following format:

"AddBar;ITEMINDEX;KEY", indicates that a new bar has been created
"RemoveBar;ITEMINDEX;KEY", indicates that a bar has been removed
"MoveBar;ITEMINDEX;KEY", indicates that a bar has been moved or resized
"PercentChange;ITEMINDEX;KEY", indicates that the bar's percent has been
changed
"UpdateBar;ITEMINDEX;KEY", indicates that one or more properties of the bar has
been updated (ItemBar property, this operation can be added only using the
StartUpdateBar / EndUpdateBar methods)
"ParentChangeBar;ITEMINDEX;KEY", indicates that the bar's parent has been
changed
"GroupBars;ITEMINDEXA;KEYA;STARTA;ITEMINDEXB;KEYB;STARTB", specifies
that two bars has been grouped
"UngroupBars;ITEMINDEXA;KEYA;STARTA;ITEMINDEXB;KEYB;STARTB", specifies
that two bars has been ungrouped
"DefineSummaryBars;SUMMARYITEMINDEX;SUMMARYKEY;ITEMINDEX;KEY",
indicates that a bar has been defined as a child of a summary bar
"UndefineSummaryBars;SUMMARYITEMINDEX;SUMMARYKEY;ITEMINDEX;KEY",
indicates that a bar has been removed from the summary bar's children
"AddLink;KEY", indicates that a new link has been created
"RemoveLink;KEY", indicates that a link has been removed
"UpdateLink;KEY", specifies that one of more properties of the link has been updated
(Link property, this operation can be added only using the StartUpdateLink /
EndUpdateLink methods)

The records of the Undo/Redo queue may contain actions in the following format (available
starting from 23.0):

"AddItem;ITEMINDEX", indicates that a new item has been created
"RemoveItem;ITEMINDEX", indicates that an item has been removed
"ChangeItemPos;ITEMINDEX", indicates that an item changes its position or / and
parent
"ChangeCellValue;ITEMINDEX;CELLINDEX", indicates that the cell's value has been
changed
"ChangeCellState;ITEMINDEX;CELLINDEX", indicates that the cell's state has been
changed

Also, the Undo/Redo queue may include:

"StartBlock", specifies that a block of operations begins
"EndBlock", specifies that a block of operations ends

Each action is on a single line, and each field is separated by ; character. The lines are
separated by "\r\n" characters (vbCrLf in VB).

For instance,

An AddLink action in the Undo stack means that an Undo operation will perform a
RemoveLink action.
A RemoveLink action in the Undo stack means that an Undo operation will perform an
AddLink action.
An AddLink action in the Redo stack means that a Redo operation will perform an
AddLink action.
A RemoveLink action in the Redo stack means that a Redo operation will perform a
RemoveLink action.

Here's a sample format of the RedoListAction property may get:

AddBar;1;
AddBar;2;
DefineSummaryBars;1;;2;
AddBar;3;E
DefineSummaryBars;1;;3;E
AddLink;L1
GroupBars;2;;0;3;E;-1
GroupBars;2;;0;3;E;-1
AddBar;4;E
AddLink;L2
GroupBars;3;E;0;4;E;-1
GroupBars;3;E;0;4;E;-1
DefineSummaryBars;1;;4;E
AddBar;4;
AddBar;3;
DefineSummaryBars;4;;3;
AddBar;2;E
DefineSummaryBars;4;;2;E
AddBar;1;E
DefineSummaryBars;4;;1;E
MoveBar;1;

StartBlock
MoveBar;1;E
MoveBar;2;E
MoveBar;3;
MoveBar;4;
EndBlock

The following VB sample splits the RedoListAction value and adds each action to a listbox
control:

List1.Clear
Dim s() As String
s = Split(G2antt1.Chart.RedoListAction, vbCrLf)
For i = LBound(s) To UBound(s)
 List1.AddItem s(i)
Next

method Chart.RedoRemoveAction ([Action as Variant], [Count as
Variant])
Removes the last the redo actions that can be performed in the chart.

Type Description

Action as Variant

[optional] A long expression that specifies the action being
removed. If missing or -1, all actions are removed.

The Action parameter can be one of the following:

exChartUndoRedoAddBar(0) ~
"AddBar;ITEMINDEX;KEY", indicates that a new bar
has been created
exChartUndoRedoRemoveBar(1) ~
"RemoveBar;ITEMINDEX;KEY", indicates that a bar
has been removed
exChartUndoRedoMoveBar(2) ~
"MoveBar;ITEMINDEX;KEY", indicates that a bar
has been moved or resized
exChartUndoRedoPercentChange(3) ~
"PercentChange;ITEMINDEX;KEY", indicates that
the bar's percent has been changed
exChartUndoRedoUpdateBar(4) ~
"UpdateBar;ITEMINDEX;KEY", indicates that one or
more properties of the bar has been updated
(ItemBar property, this operation can be added only
using the StartUpdateBar / EndUpdateBar methods)
exChartUndoRedoParentChangeBar(5) ~
"ParentChangeBar;ITEMINDEX;KEY", indicates that
the bar's parent has been changed
exChartUndoRedoGroupBars(6) ~
"GroupBars;ITEMINDEXA;KEYA;STARTA;ITEMINDEXB;KEYB;STARTB",
specifies that two bars has been grouped
exChartUndoRedoUngroupBars(7) ~
"UngroupBars;ITEMINDEXA;KEYA;STARTA;ITEMINDEXB;KEYB;STARTB",
specifies that two bars has been ungrouped
exChartUndoRedoDefineSummaryBars(8) ~
"DefineSummaryBars;SUMMARYITEMINDEX;SUMMARYKEY;ITEMINDEX;KEY",
indicates that a bar has been defined as a child of a
summary bar
exChartUndoRedoUndefineSummaryBars(9) ~
"UndefineSummaryBars;SUMMARYITEMINDEX;SUMMARYKEY;ITEMINDEX;KEY",

indicates that a bar has been removed from the
summary bar's children
exChartUndoRedoAddLink(10) ~ "AddLink;KEY",
indicates that a new link has been created
exChartUndoRedoRemoveLink(11) ~
"RemoveLink;KEY", indicates that a link has been
removed
exChartUndoRedoUpdateLink(12) ~
"UpdateLink;KEY", specifies that one of more
properties of the link has been updated (Link
property, this operation can be added only using the
StartUpdateLink / EndUpdateLink methods)
exListUndoRedoAddItem(13) ~
"AddItem;ITEMINDEX", indicates that a new item has
been created
exListUndoRedoRemoveItem(14) ~
"RemoveItem;ITEMINDEX", indicates that an item
has been removed
exListUndoRedoChangeItemPos(15) ~
"ChangeItemPos;ITEMINDEX", indicates that an item
changes its position or / and parent
exListUndoRedoChangeCellValue(16) ~
"ChangeCellValue;ITEMINDEX;CELLINDEX",
indicates that the cell's value has been changed
exListUndoRedoChangeCellState(17) ~
"ChangeCellState;ITEMINDEX;CELLINDEX",
indicates that the cell's state has been changed

For instance, RedoListAction(0) removes only AddBar
actions in the redo stack.

Count as Variant

[optional] A long expression that indicates the number of
actions to be removed. If missing or -1, all actions are
removed. For instance, RedoListAction(0,1) removes only
the first AddBar action from the redo stack.

Use the RedoRemoveAction method to remove the first action from the redo queue. Use
the RedoRemoveAction() (with no parameters) to remove all redo actions. The
RedoListAction property retrieves the list of actions that an redo operation can perform.
The UndoRemoveAction method removes the last action to be performed if the Undo
method is invoked.

The records of the Undo/Redo queue may contain actions in the following format:

"AddBar;ITEMINDEX;KEY", indicates that a new bar has been created
"RemoveBar;ITEMINDEX;KEY", indicates that a bar has been removed
"MoveBar;ITEMINDEX;KEY", indicates that a bar has been moved or resized
"PercentChange;ITEMINDEX;KEY", indicates that the bar's percent has been
changed
"UpdateBar;ITEMINDEX;KEY", indicates that one or more properties of the bar has
been updated (ItemBar property, this operation can be added only using the
StartUpdateBar / EndUpdateBar methods)
"ParentChangeBar;ITEMINDEX;KEY", indicates that the bar's parent has been
changed
"GroupBars;ITEMINDEXA;KEYA;STARTA;ITEMINDEXB;KEYB;STARTB", specifies
that two bars has been grouped
"UngroupBars;ITEMINDEXA;KEYA;STARTA;ITEMINDEXB;KEYB;STARTB", specifies
that two bars has been ungrouped
"DefineSummaryBars;SUMMARYITEMINDEX;SUMMARYKEY;ITEMINDEX;KEY",
indicates that a bar has been defined as a child of a summary bar
"UndefineSummaryBars;SUMMARYITEMINDEX;SUMMARYKEY;ITEMINDEX;KEY",
indicates that a bar has been removed from the summary bar's children
"AddLink;KEY", indicates that a new link has been created
"RemoveLink;KEY", indicates that a link has been removed
"UpdateLink;KEY", specifies that one of more properties of the link has been updated
(Link property, this operation can be added only using the StartUpdateLink /
EndUpdateLink methods)

The records of the Undo/Redo queue may contain actions in the following format (available
starting from 23.0):

"AddItem;ITEMINDEX", indicates that a new item has been created
"RemoveItem;ITEMINDEX", indicates that an item has been removed
"ChangeItemPos;ITEMINDEX", indicates that an item changes its position or / and
parent
"ChangeCellValue;ITEMINDEX;CELLINDEX", indicates that the cell's value has been
changed
"ChangeCellState;ITEMINDEX;CELLINDEX", indicates that the cell's state has been
changed

Also, the Undo/Redo queue may include:

"StartBlock", specifies that a block of operations begins
"EndBlock", specifies that a block of operations ends

.

method Chart.RemoveNonworkingDate (Date as Variant)
Removes a nonworking date.

Type Description

Date as Variant

A Date or a string expression that indicates the
date/expression being unmarked as nonworking day,
exactly how it was previously added using the
AddNonworkingDate method.

Use the RemoveNonworkingDate method to unmark a specified nonworking date, being
previously added using the AddNonworkingDate method. Use the ClearNonworkingDates
method to remove all nonworking dates. Use the IsDateVisible property to specify whether
a date fits the chart's area. Use the IsNonworkingDate property to check whether the date
is already highlighted as nonworking day. The NonworkingDays property specifies the days
being marked as nonworking in a week. Use the NonworkingDaysPattern property to
specify the pattern being used to fill non-working days. The NonworkingDaysColor property
specifies the color being used to fill the non-working days.

method Chart.RemoveSelection ()
Removes the selected objects (bars or links) within the chart.

Type Description

Use the RemoveSelection method to remove the objects (bars, links) in the chart's
selection. For instance, call the RemoveSelection method when the user presses the Delete
key. The AllowSelectObjects property allows users to select at runtime the bars and links
in the chart area. Use the ItemBar(exBarSelected) property to select or unselect
programmatically a bar. Use the Link(exLinkSelected) property to select or unselect
programmatically a link. The RemoveSelection method calls the RemoveBar to remove a
bar from the selection, or RemoveLink method to remove a link from the selection. Call the
AllowSelectObjects property to empty the selection, as AllowSelectObjects =
AllowSelectObjects. The SelectedObjects property returns the bars/links selected in the
chart section of the control. The RemoveSelection method removes the selected items
(including the descendents). The RemoveSelection method removes the selected links/bars
from the chart if exists, else it removes the selected items (including the descendents).

The following VB sample removes the selected links only:

With G2antt1
 .BeginUpdate
 With .Items
 For Each l In .SelectedObjects(exSelectLinksOnly)
 G2antt1.Template = "Items.RemoveLink(" & l & ")"
 Next
 End With
 .EndUpdate
End With

The following VB sample removes the selected bars only:

With G2antt1
 .BeginUpdate
 With .Items
 For Each b In .SelectedObjects(exSelectBarsOnly)
 G2antt1.Template = "Items.RemoveBar(" & b & ")"
 Next
 End With
 .EndUpdate

End With

When a bar is removed, any link related to it will be removed.

method Chart.RemoveTimeZone (Key as Variant)
Removes a time-zone being highlighted using the MarkTimeZone method.

Type Description

Key as Variant

A String expression that specifies the key of the date-time
zone to be removed. The Key parameter of the supports a
pattern with wild characters as *,?,# or [], if the Key starts
with "<" and ends on ">" aka "<Z*>" which indicates all
date-time zones with the key Z or starts on Z. If the Key
parameter specifies a pattern, it removes all date-time
zones, with the key that matches the giving pattern.

A zone can be used to highlight a range of dates, specifying the start and end zone. Use the
RemoveTimeZone method to deletes the time zone being added previously using the
MarkTimeZone method. The TimeZoneFromPoint property retrieves the key of the time-
zone from the cursor. The TimeZoneInfo property retrieves information about the time-zone
giving its key. The MarkTodayColor property specifies the color to mark the today date. Use
the SelectDate property to select a date by clicking the chart's header. Use the
MarkNowColor property to show a vertical bar that indicates the current date-time in the
control's chart, from seconds to seconds, minutes, and so on. For instance, the
Chart.RemoveTimeZone("<*>") removes/clear all date-time zones.

property Chart.ResizeUnitCount as Long
Specifies the number of time units while resizing, moving or creating bars by dragging.

Type Description

Long A long expression that indicates the number of time units
while resizing, moving or creating bars by dragging.

Use the ResizeUnitScale and ResizeUnitCount properties to specify a different resizing
units. If these properties are not used, the UnitScale property indicates the resizing time
units. For instance, using the ResizeUnitScale and ResizeUnitCount properties you can let
the user resizing the bars up to hours even if the chart displays days. Use the
ResizeUnitScale and ResizeUnitCount properties to refine the way how the user resizes or
creates new bars.

property Chart.ResizeUnitScale as UnitEnum
Retrieves or sets a value that indicates the base time unit while resizing, moving or creating
the bars by dragging.

Type Description

UnitEnum A UnitEnum expression that specifies the base time unit
while resizing, moving or creating the bars by dragging.

Use the ResizeUnitScale and ResizeUnitCount properties to specify a different resizing
units. If these properties are not used, the UnitScale property indicates the resizing time
units. For instance, using the ResizeUnitScale and ResizeUnitCount properties you can let
the user resizing the bars up to hours even if the chart displays days. Use the
ResizeUnitScale and ResizeUnitCount properties to refine the way how the user resizes or
creates new bars. The InsideUnit property specifies the time scale unit being used to paint
the inside zoom units.

Your application can provide some options to help user while performing moving or resizing
the bars at runtime as follow:

grid lines, that can be shown only when moving or resizing, using the
ChartStartChanging and ChartEndChanging events
select date, to specify the margins of the area you want to highlight
ticker, that shows the cursor's position in the chart, or while resizing, it shows the size
and the position of the bar
ability to specify a resizing/moving unit, different that the displayed one ie while the
chart displays days, you can specify the resizing unit on hours.
inside zoom, that can be used to magnify the portion of the chart being selected

property Chart.ScrollBar as Boolean
Shows or hides the chart's horizontal scroll bar.

Type Description

Boolean A Boolean expression that indicates whether the horizontal
scroll bar is visible in the chart.

Use the ScrollBar property to show or hide the chart's scroll bar. The FirstVisibleDate
property indicates the first visible date. The ToolTip property indicates the tooltip being
shown when the user clicks the thumb of the chart's scrollbar. Use the FirstVisibleDate
property to indicate the first visible date when the chart contains no scroll bar. Use the
ScrollTo method to ensure that a date fits the chart's client area. Use the Zoom method to
zoom the chart to an interval of dates. Use the ScrollBars property.

property Chart.ScrollRange(Pos as ScrollRangeEnum) as Variant
Specifies the range of dates to scroll within.

Type Description

Pos as ScrollRangeEnum
A ScrollrangeEnum expression that indicates whether the
starting or ending position of the range is beging
requested or changed.

Variant A Variant expression that indicates the date or the time
when the range beings or ends.

By default, the ScrollRange(exStartDate) and ScrollRange(exEndDate) properties are
empty. The control scrolls the chart within specified range, only if the
ScrollRange(exStartDate) and ScrollRange(exEndDate) are not empty and indicates a valid
date-time value. If the ScrollRange(exStartDate) and ScrollRange(exEndDate) properties
indicates the same valid value, the ScrollRange limits the view to specified unit. For
instance, if both are set on #1/1/2001# the view is limited to full day, in case it is zoomed to
hours, minutes or seconds. The ScrollRange property rearranges the FirstVisibleDate
property, so it fits the range. The FirstVisibleDate indicates the first visible date or time in
the chart. Use the ScrollTo method to scroll to a specified date. For instance, let's say that
ScrollRange(exStartDate) is #5/1/2007#, ScrollRange(exEndDate) is #10/1/2007#, and the
FirstVisibleDate is #7/1/2007#. This would move the first visible day to July 1st, but also
move the horizontal scroll bar halfway across the chart. This way, it would be clear to
users where they are in relation to the full schedule. The DateChange event notifies
whether the first visible date is changed. Use the ScrollPartEnum property to disable
specified parts in the chart's scroll bar.

If you want to limit just a margin of the chart, you can handle the DateChange event to
specify the correct value for the FirstVisibleDate property of the Chart object like in the
following VB6 sample:

Private Function Max(a, b)
 If (a < b) Then
 Max = b
 Else
 Max = a
 End If
End Function

Private Sub G2antt1_DateChange()
 With G2antt1

 Dim dLimit As Date
 dLimit = #1/1/2010#
 .Chart.FirstVisibleDate = Max(dLimit, .Chart.FirstVisibleDate)
 .ScrollPartEnable(exHChartScroll, exLeftBPart) = .Chart.FirstVisibleDate > dLimit
 End With
End Sub

The sample limits the FirstVisibleDate property of the chart so it won't be less than January
1st of 2010, and disables the left scroll button in the chart if FirstVisibleDate property is at
limit.

The following VB sample disables the left and right scroll bar buttons, and specifies a range
of date to scroll within:

With G2antt1
 .Columns.Add "Task"
 With .Chart
 .LevelCount = 2
 .PaneWidth(0) = 56
 .ScrollRange(exStartDate) = "1/1/2001"
 .ScrollRange(exEndDate) = "1/31/2001"
 .FirstVisibleDate = "1/12/2001"
 End With
 With .Items
 h = .AddItem("Task 1")
 .AddBar h,"Task","1/15/2001","1/18/2001","K1"
 h = .AddItem("Task 1")
 .AddBar h,"Task","1/5/2001","1/11/2001","K1"
 End With
End With

The following VB.NET sample disables the left and right scroll bar buttons, and specifies a
range of date to scroll within:

Dim h
With AxG2antt1
 .Columns.Add "Task"
 With .Chart
 .LevelCount = 2

 .PaneWidth(0) = 56
 .ScrollRange(EXG2ANTTLib.ScrollRangeEnum.exStartDate) = "1/1/2001"
 .ScrollRange(EXG2ANTTLib.ScrollRangeEnum.exEndDate) = "1/31/2001"
 .FirstVisibleDate = "1/12/2001"
 End With
 With .Items
 h = .AddItem("Task 1")
 .AddBar h,"Task","1/15/2001","1/18/2001","K1"
 h = .AddItem("Task 1")
 .AddBar h,"Task","1/5/2001","1/11/2001","K1"
 End With
End With

The following C# sample disables the left and right scroll bar buttons, and specifies a range
of date to scroll within:

axG2antt1.Columns.Add("Task");
EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;
 var_Chart.LevelCount = 2;
 var_Chart.set_PaneWidth(0 != 0,56);
 var_Chart.set_ScrollRange(EXG2ANTTLib.ScrollRangeEnum.exStartDate,"1/1/2001");
 var_Chart.set_ScrollRange(EXG2ANTTLib.ScrollRangeEnum.exEndDate,"1/31/2001");
 var_Chart.FirstVisibleDate = "1/12/2001";
EXG2ANTTLib.Items var_Items = axG2antt1.Items;
 int h = var_Items.AddItem("Task 1");
 var_Items.AddBar(h,"Task","1/15/2001","1/18/2001","K1",null);
 h = var_Items.AddItem("Task 1");
 var_Items.AddBar(h,"Task","1/5/2001","1/11/2001","K1",null);

The following C++ sample disables the left and right scroll bar buttons, and specifies a
range of date to scroll within:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import "D:\\Exontrol\\ExG2antt\\project\\Debug\\ExG2antt.dll"
 using namespace EXG2ANTTLib;

*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->GetColumns()->Add(L"Task");
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutLevelCount(2);
 var_Chart->PutPaneWidth(0,56);
 var_Chart->PutScrollRange(EXG2ANTTLib::exStartDate,"1/1/2001");
 var_Chart->PutScrollRange(EXG2ANTTLib::exEndDate,"1/31/2001");
 var_Chart->PutFirstVisibleDate("1/12/2001");
EXG2ANTTLib::IItemsPtr var_Items = spG2antt1->GetItems();
 long h = var_Items->AddItem("Task 1");
 var_Items->AddBar(h,"Task","1/15/2001","1/18/2001","K1",vtMissing);
 h = var_Items->AddItem("Task 1");
 var_Items->AddBar(h,"Task","1/5/2001","1/11/2001","K1",vtMissing);

The following VFP sample disables the left and right scroll bar buttons, and specifies a
range of date to scroll within:

Dim h
With AxG2antt1
 .Columns.Add "Task"
 With .Chart
 .LevelCount = 2
 .PaneWidth(0) = 56
 .ScrollRange(EXG2ANTTLib.ScrollRangeEnum.exStartDate) = "1/1/2001"
 .ScrollRange(EXG2ANTTLib.ScrollRangeEnum.exEndDate) = "1/31/2001"
 .FirstVisibleDate = "1/12/2001"
 End With
 With .Items
 h = .AddItem("Task 1")
 .AddBar h,"Task","1/15/2001","1/18/2001","K1"
 h = .AddItem("Task 1")
 .AddBar h,"Task","1/5/2001","1/11/2001","K1"
 End With
End With

method Chart.ScrollTo (Date as Date, [Align as Variant])
Scrolls the chart so the specified date is visible.

Type Description

Date as Date A Date expression that indicates the date being ensured
that's visible.

Align as Variant An AlignmentEnum expression that indicates where the
date will be placed.

Use the ScrollTo method to ensure that specified date fits the chart's area. The
FirstVisibleDate property specifies the first visible date. The ScrollTo method fires the
DateChange event if the first visible date is changed. Use the Zoom method to zoom the
chart to a specified interval of dates. Use the PaneWidth property to specify the width of
the chart. Use the Scroll method to scroll vertically the control. Use the EnsureVisibleItem
method to ensure that a specified item fits the control's client area. Use the ScrollPos
property to get the control's scroll position. Use the EnsureVisibleColumn method to ensure
that a specified column fits the control's client area.

The following VB sample ensures that the "6/1/2005" is listed in the center of the chart:

With G2antt1.Chart
 .ScrollTo #6/1/2005#, AlignmentEnum.CenterAlignment
End With

The following C++ sample ensures that the "6/1/2005" is listed in the center of the chart:

COleDateTime date(2005, 6, 1, 0, 0, 0);
CChart chart = m_g2antt.GetChart();
chart.ScrollTo(date.m_dt, COleVariant((long)1));

The following VB.NET sample ensures that the "6/1/2005" is listed in the center of the chart:

With AxG2antt1.Chart
 .ScrollTo(DateTime.Parse("6/1/2005"), EXG2ANTTLib.AlignmentEnum.CenterAlignment)
End With

The following C# sample ensures that the "6/1/2005" is listed in the center of the chart:

axG2antt1.Chart.ScrollTo(DateTime.Parse("6/1/2005"),
EXG2ANTTLib.AlignmentEnum.CenterAlignment);

The following VFP sample ensures that the "6/1/2005" is listed in the center of the chart:

With thisform.G2antt1.Chart
 .ScrollTo("6/2/2005", 1)
EndWith

property Chart.SelBackColor as Color
Retrieves or sets a value that indicates the selection background color.

Type Description

Color

A color expression that indicates the background color to
display the selected items in the chart area. Use the Add
method to add new skins to the control. If you need to
remove the skin appearance from a part of the control you
need to reset the last 7 bits in the high significant byte of
the color being applied to the background's part.

By default, the SelBackColor property is the same as chart's background color that's
specified by BackColor property of the Chart object. In other words, by default, the chart
does not display a different background color for selected items in the chart area. The
SelBackColor property of the Chart object changes the background for the selected items
in the chart area. Use the SelBackColor property to change the selection background color
in the list area. Use the SelForeColor property to change the foreground color of the
selected items in the chart area. The SelBackColor property is applied ONLY if the
SelBackColor property is different that the BackColor property. Use the SelectOnClick
property to disable selecting new items when the user clicks the chart area. The
SelBarColor property specifies the color to highlight the selected bars.

property Chart.SelBarColor as Color
Retrieves or sets a value that indicates the color or EBN object to display the selected
bars.

Type Description

Color

A Color expression that specifies the color for selected
bars or the EBN object to show the selected bar. If a color
expression is used, the chart displays the bars using a
different color as it would be specify using the
ItemBar(exBarColor) property. If the color refers an EBN
object it is displayed over the selected bars. You can use
the CP option (COPY option) of the EBN objects to
enlarge the EBN object being displayed on the selected
bars. Use the Add method to add new EBN/skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

By default, the SelBarColor property is 0. If the SelBarColor property is 0, the default frame
is shown around the selected bars as shown in the following screen shot. Use the
SelBarColor property to specify a different color or EBN object to display the selected bars.
The SelForeColor property retrieves or sets a value that indicates the selection foreground
color. The SelLinkColor property specifies the color to show the selected link (or for
rectangular links an EBN object to highlights the link, without changing the link's color). The
SelBackColor property indicates the visual appearance for the item's background on the
chart area.

The following screen shot shows the selected bars (2 and 4) when SelBarColor property is
0 (by default)

The following screen shot shows the selected bars (2 and 4) when SelBarColor property is
RGB(255,0,0) (red)

The following screen shot shows the selected bars (2 and 4) when SelBarColor property is
0x5000000 and using this EBN file.

The following VB sample assign a different EBN object to display the selected bars:

With G2antt1
 .BeginUpdate
 With .VisualAppearance
 .Add 4, "select.ebn"
 .Add 5, "CP:4 -4 -3 3 2"
 End With
 .Chart.SelBarColor = &H5000000
 .EndUpdate
End With

property Chart.SelectDate(Date as Date) as Boolean
Selects or unselects a specific date in the chart.

Type Description
Date as Date A DATE expression that indicates the

Boolean A Boolean expression that specifies whether the Date is
selected or not.

Use the SelectDate property to select dates programmatically. The SelectedDates property
can be used to retrieve all selected dates, or to select a collection of dates. Use the
UnselectDates method to unselect all dates in the chart. Use the SelectDate property to
select or unselect a new date, or to find if a specified date is selected or it is not selected.
The user can select dates by clicking the chart's header. Use the SelectLevel property to
specify the area being highlighted when a date is selected. You can select multiple dates
keeping the CTRL key and clicking a new date. The MarkSelectDateColor property
specifies the color being used to highlight the selected dates. If the MarkSelectDateColor
property is identical with the BackColor property of the Chart object, the selected dates are
not shown. The ChartEndChanging(exSelectDate) event notifies your application when the
user selects a new date by clicking the header of the chart. Use the MarkTimeZone method
to highlight different time-zones.

In the following screen shot the red lines marks the selected dates (June 20 and June 28):

property Chart.SelectDates as Variant
Indicates a collection of date-time units being selected.

Type Description
Variant A Safe array that includes the dates being selected.

The SelectedDates property can be used to retrieve all selected dates, or to select a
collection of dates. The SelectDate property may be used to select or unselect a specified
date-time unit. Use the UnselectDates method to unselect all dates in the chart. The
ChartEndChanging(exSelectDate) event notifies your application when the user selects a
new date by clicking the header of the chart. Use the SelectLevel property to specify the
area being highlighted when a date is selected. You can select multiple dates keeping the
CTRL key and clicking a new date. The MarkSelectDateColor property specifies the color
being used to highlight the selected dates. If the MarkSelectDateColor property is identical
with the BackColor property of the Chart object, the selected dates are not shown. Use the
MarkTimeZone method to highlight different time-zones.

The following VB sample displays the selected dates:

Private Sub G2antt1_ChartEndChanging(ByVal Operation As
EXG2ANTTLibCtl.BarOperationEnum)
 If (Operation = exSelectDate) Then
 Debug.Print "Selected"
 For Each d In G2antt1.Chart.SelectDates
 Debug.Print d
 Next
 End If
End Sub

The following VB sample changes the collection of selected dates:

With G2antt1.Chart
 .SelectLevel = 1
 .SelectDates = Array(#6/22/2005#, #6/23/2005#)
End With

property Chart.SelectLevel as Long
Indicates the index of the level that highlights the selected dates.

Type Description

Long A long expression that indicates the index of the level
being selected.

Use the SelectLevel property to specify the area being highlighted when a date is selected.
For instance, if you click a date in the first level (in the chart's header), the chart displays
the selected date accordingly to the selected level. Use the SelectDate property to select
or unselect a new date, or to find if a specified date is selected or not. Use the
LevelFromPoint property to retrieve the index of the level from the cursor. You can select
multiple dates keeping the CTRL key and clicking a new date. The MarkSelectDateColor
property specifies the color being used to highlight the selected dates. If the
MarkSelectDateColor property is identical with the BackColor property of the Chart object,
the selected dates are not shown.

In the following screen shot the red lines marks the selected dates (June 20 and June 28,
as the user clicks the June 20, 28 dates in the second level (index 1) where the days are
displayed):

In the following screen shot the red lines marks the selected week (June 19 to June 26, as
the user clicks the June 19, `05 week in the first level (index 0) where weeks are
displayed):

property Chart.SelectOnClick as Boolean
Specifies whether an item gets selected once the user clicks the chart area.

Type Description

Boolean A Boolean expression that specifies whether the user
selects an item when a bar is clicked.

By default, the SelectOnClick property is True. By default, the item being clicked gets
selected no matter of what part of the control is clicked: list or chart area. Use the
SelectOnClick property to disable selecting new items when the user clicks the chart area.
The SingleSel property specifies whether the control supports multiple selection. For
instance, this property can be useful once you use the HistogramView property on
exHistogramSelectedItems (so the selected items are displayed in the histogram). User
may click the chart area, so new bars are created or creating new links, without changing
the selection and so the items being displayed in the histogram.

property Chart.SelForeColor as Color
Retrieves or sets a value that indicates the selection foreground color.

Type Description

Color A color expression that specifies the foreground color for
selected items that's displayed on the chart area.

By default, the SelForeColor property is the same as chart's foreground color that's
specified by ForeColor property of the Chart object. In other words, by default, the chart
does not display a different foreground color for selected items in the chart area. The
SelForeColor property of the Chart object changes the foreground for the selected items in
the chart area. Use the SelForeColor property to change the selection foreground color in
the list area. Use the SelBackColor property to change the background color of the
selected items in the chart area. The SelForeColor property is applied ONLY if the
SelForeColor property is different that the ForeColor property.

property Chart.SelLinkColor as Color
Specifies the color to show the selected link (or for rectangular links an EBN object to
highlights the link, without changing the link's color).

Type Description

Color

A Color expression that specifies the color for selected
bars or the EBN object to show the selected bar. If a color
expression is used, the chart displays the bars using a
different color as it would be specify using the
ItemBar(exBarColor) property. If the color refers an EBN
object it is displayed over the selected bars. You can use
the CP option (COPY option) of the EBN objects to
enlarge the EBN object being displayed on the selected
bars. Use the Add method to add new EBN/skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

By default, the SelLinkColor property is 0. Use the SelLinkColor property to specify a
different color or EBN object to display the selected links. The SelLinkColor property
specifies the color to show the selected link (or for rectangular links an EBN object to
highlights the link, without changing the link's color). The SelBarColor property retrieves or
sets a value that indicates the color or EBN object to display the selected bars.

The following screen shot shows how a selected rectangular-link is displayed by default:

The following screen shot shows how a selected rectangular-link is displayed with a
different color plus the default frame around:

The following screen shot shows how a selected rectangular-link is displayed with a
different (without the default frame):

The following screen shot shows how a selected rectangular-link is displayed with a frame (
EBN object):

property Chart.ShowCollapsedBars as Boolean
Gets or sets a value that indicates whether the collapsed items displays their child bars.

Type Description

Boolean A Boolean expression that specifies whether the child bars
are displayed in the parent item if it is collapsed.

By default, the ShowCollapsedBars property is False. By default, the child bars are not
shown in the parent item. Use the ShowCollapsedBars property to display child bars when
an item is collapsed. If the ShowCollapsedBars property is True, a collapsed item always
displays its child bars. Use the InsertItem method to insert a child items. Use the AddBar
method to add a new bar to the item. Currently, the control includes all child-bars (
recursively), while previously only the direct-child were included.

The following screen shot shows the bars as the items are not collapsed (
ShowCollapsedBars property is True) :

Once the Project 1 item gets collapsed we get (ShowCollapsedBars property is True) :

or both items collapsed we get (ShowCollapsedBars property is True) :

The following VB sample shows the child bars for collapsed items:

With G2antt1

 .BeginUpdate
 .LinesAtRoot = exLinesAtRoot
 .Columns.Add "Tasks"
 With .Chart
 .FirstVisibleDate = #9/20/2006#
 .ShowCollapsedBars = True
 .LevelCount = 2
 .PaneWidth(0) = 96
 End With
 With .Items
 h = .AddItem("Project 1")
 h1 = .InsertItem(h,0,"Task 1")
 .AddBar h1,"Task",#9/21/2006#,#9/23/2006#,"A"
 h2 = .InsertItem(h,0,"Task 2")
 .AddBar h2,"Task",#9/24/2006#,#9/26/2006#,"B"
 h3 = .InsertItem(h,0,"Task 3")
 .AddBar h3,"Task",#9/27/2006#,#9/29/2006#,"C"
 h = .AddItem("Project 2")
 h1 = .InsertItem(h,0,"Task 1")
 .AddBar h1,"Task",#9/21/2006#,#9/23/2006#,"A"
 h2 = .InsertItem(h,0,"Task 2")
 .AddBar h2,"Task",#9/24/2006#,#9/26/2006#,"B"
 h3 = .InsertItem(h,0,"Task 3")
 .AddBar h3,"Task",#9/27/2006#,#9/29/2006#,"C"
 .ExpandItem(h) = True
 End With
 .EndUpdate
End With

The following VB.NET sample shows the child bars for collapsed items:

Dim h,h1,h2,h3
With AxG2antt1
 .BeginUpdate
 .LinesAtRoot = EXG2ANTTLib.LinesAtRootEnum.exLinesAtRoot
 .Columns.Add "Tasks"
 With .Chart

 .FirstVisibleDate = #9/20/2006#
 .ShowCollapsedBars = True
 .LevelCount = 2
 .PaneWidth(0) = 96
 End With
 With .Items
 h = .AddItem("Project 1")
 h1 = .InsertItem(h,0,"Task 1")
 .AddBar h1,"Task",#9/21/2006#,#9/23/2006#,"A"
 h2 = .InsertItem(h,0,"Task 2")
 .AddBar h2,"Task",#9/24/2006#,#9/26/2006#,"B"
 h3 = .InsertItem(h,0,"Task 3")
 .AddBar h3,"Task",#9/27/2006#,#9/29/2006#,"C"
 h = .AddItem("Project 2")
 h1 = .InsertItem(h,0,"Task 1")
 .AddBar h1,"Task",#9/21/2006#,#9/23/2006#,"A"
 h2 = .InsertItem(h,0,"Task 2")
 .AddBar h2,"Task",#9/24/2006#,#9/26/2006#,"B"
 h3 = .InsertItem(h,0,"Task 3")
 .AddBar h3,"Task",#9/27/2006#,#9/29/2006#,"C"
 .ExpandItem(h) = True
 End With
 .EndUpdate
End With

The following C++ sample shows the child bars for collapsed items:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->BeginUpdate();

spG2antt1->PutLinesAtRoot(EXG2ANTTLib::exLinesAtRoot);
spG2antt1->GetColumns()->Add(L"Tasks");
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutFirstVisibleDate("9/20/2006");
 var_Chart->PutShowCollapsedBars(VARIANT_TRUE);
 var_Chart->PutLevelCount(2);
 var_Chart->PutPaneWidth(0,96);
EXG2ANTTLib::IItemsPtr var_Items = spG2antt1->GetItems();
 long h = var_Items->AddItem("Project 1");
 long h1 = var_Items->InsertItem(h,long(0),"Task 1");
 var_Items->AddBar(h1,"Task","9/21/2006","9/23/2006","A",vtMissing);
 long h2 = var_Items->InsertItem(h,long(0),"Task 2");
 var_Items->AddBar(h2,"Task","9/24/2006","9/26/2006","B",vtMissing);
 long h3 = var_Items->InsertItem(h,long(0),"Task 3");
 var_Items->AddBar(h3,"Task","9/27/2006","9/29/2006","C",vtMissing);
 h = var_Items->AddItem("Project 2");
 h1 = var_Items->InsertItem(h,long(0),"Task 1");
 var_Items->AddBar(h1,"Task","9/21/2006","9/23/2006","A",vtMissing);
 h2 = var_Items->InsertItem(h,long(0),"Task 2");
 var_Items->AddBar(h2,"Task","9/24/2006","9/26/2006","B",vtMissing);
 h3 = var_Items->InsertItem(h,long(0),"Task 3");
 var_Items->AddBar(h3,"Task","9/27/2006","9/29/2006","C",vtMissing);
 var_Items->PutExpandItem(h,VARIANT_TRUE);
spG2antt1->EndUpdate();

The following C# sample shows the child bars for collapsed items:

axG2antt1.BeginUpdate();
axG2antt1.LinesAtRoot = EXG2ANTTLib.LinesAtRootEnum.exLinesAtRoot;
axG2antt1.Columns.Add("Tasks");
EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;
 var_Chart.FirstVisibleDate = "9/20/2006";
 var_Chart.ShowCollapsedBars = true;
 var_Chart.LevelCount = 2;
 var_Chart.set_PaneWidth(0 != 0,96);
EXG2ANTTLib.Items var_Items = axG2antt1.Items;
 int h = var_Items.AddItem("Project 1");

 int h1 = var_Items.InsertItem(h,0,"Task 1");
 var_Items.AddBar(h1,"Task","9/21/2006","9/23/2006","A",null);
 int h2 = var_Items.InsertItem(h,0,"Task 2");
 var_Items.AddBar(h2,"Task","9/24/2006","9/26/2006","B",null);
 int h3 = var_Items.InsertItem(h,0,"Task 3");
 var_Items.AddBar(h3,"Task","9/27/2006","9/29/2006","C",null);
 h = var_Items.AddItem("Project 2");
 h1 = var_Items.InsertItem(h,0,"Task 1");
 var_Items.AddBar(h1,"Task","9/21/2006","9/23/2006","A",null);
 h2 = var_Items.InsertItem(h,0,"Task 2");
 var_Items.AddBar(h2,"Task","9/24/2006","9/26/2006","B",null);
 h3 = var_Items.InsertItem(h,0,"Task 3");
 var_Items.AddBar(h3,"Task","9/27/2006","9/29/2006","C",null);
 var_Items.set_ExpandItem(h,true);
axG2antt1.EndUpdate();

The following VFP sample shows the child bars for collapsed items:

with thisform.G2antt1
 .BeginUpdate
 .LinesAtRoot = -1
 .Columns.Add("Tasks")
 with .Chart
 .FirstVisibleDate = {^2006-9-20}
 .ShowCollapsedBars = .T.
 .LevelCount = 2
 .PaneWidth(0) = 96
 endwith
 with .Items
 h = .AddItem("Project 1")
 h1 = .InsertItem(h,0,"Task 1")
 .AddBar(h1,"Task",{^2006-9-21},{^2006-9-23},"A")
 h2 = .InsertItem(h,0,"Task 2")
 .AddBar(h2,"Task",{^2006-9-24},{^2006-9-26},"B")
 h3 = .InsertItem(h,0,"Task 3")
 .AddBar(h3,"Task",{^2006-9-27},{^2006-9-29},"C")
 h = .AddItem("Project 2")

 h1 = .InsertItem(h,0,"Task 1")
 .AddBar(h1,"Task",{^2006-9-21},{^2006-9-23},"A")
 h2 = .InsertItem(h,0,"Task 2")
 .AddBar(h2,"Task",{^2006-9-24},{^2006-9-26},"B")
 h3 = .InsertItem(h,0,"Task 3")
 .AddBar(h3,"Task",{^2006-9-27},{^2006-9-29},"C")
 .DefaultItem = h
 .ExpandItem(0) = .T.
 endwith
 .EndUpdate
endwith

The following Delphi sample shows the child bars for collapsed items:

with AxG2antt1 do
begin
 BeginUpdate();
 LinesAtRoot := EXG2ANTTLib.LinesAtRootEnum.exLinesAtRoot;
 Columns.Add('Tasks');
 with Chart do
 begin
 FirstVisibleDate := '9/20/2006';
 ShowCollapsedBars := True;
 LevelCount := 2;
 PaneWidth[0 <> 0] := 96;
 end;
 with Items do
 begin
 h := AddItem('Project 1');
 h1 := InsertItem(h,TObject(0),'Task 1');
 AddBar(h1,'Task','9/21/2006','9/23/2006','A',Nil);
 h2 := InsertItem(h,TObject(0),'Task 2');
 AddBar(h2,'Task','9/24/2006','9/26/2006','B',Nil);
 h3 := InsertItem(h,TObject(0),'Task 3');
 AddBar(h3,'Task','9/27/2006','9/29/2006','C',Nil);
 h := AddItem('Project 2');
 h1 := InsertItem(h,TObject(0),'Task 1');

 AddBar(h1,'Task','9/21/2006','9/23/2006','A',Nil);
 h2 := InsertItem(h,TObject(0),'Task 2');
 AddBar(h2,'Task','9/24/2006','9/26/2006','B',Nil);
 h3 := InsertItem(h,TObject(0),'Task 3');
 AddBar(h3,'Task','9/27/2006','9/29/2006','C',Nil);
 ExpandItem[h] := True;
 end;
 EndUpdate();
end

property Chart.ShowEmptyBars as Long
Specifies whether empty bars are shown or hidden.

Type Description

Long
A long expression that specifies the number of time units
being added to the end of each bar. An empty bar has the
start and end dates identical.

By default, the ShowEmptyBars property is 0. Use the ShowEmptyBars to show the bars,
even if the Start and End date are identical. In other words, if this property is 1, the bars
will be shown from the start date to end date plus 1 tim-unit, where the time unit is indicated
by the ShowEmptyBarsUnit property. For instance, if the ShowEmptyBars property is 1, a
task bar from 1/1/2001 to 1/2/2001 shows two days, else if the ShowEmptyBars property
is 0, the same task bar highlights only a single day.

Use the AddBar method to assign a bar to an item. Use the ItemBar(exBarStart) and
ItemBar(exBarEnd)/ItemBar(exBarEndInclusive) properties to specify the start and end
dates for a bar.

!We do not recommend using the ShowEmptyBars property on a non-zero value, if the
chart displays bars with ItemBar(exBarKeepWorkingCount) property on False (default). If
your chart displays bars with ItemBar(exBarKeepWorkingCount) property on True, you can
use the ItemBar(exBarEndInclusive) to display the end date to be last visible date of the
bar. In this case, for instance, a a task bar from 1/1/2001 to 1/3/2001 shows two days, the
exBarEnd displays 1/3/2001, while the exBarEndInclusive displays 1/2/2001.

The following samples show how to add bars with the same starting and ending point. This
is recommended for bars with NO exBarKeepWorkingCount. Here you will find the samples
for bars with exBarKeepWorkingCount property set.

VBA (MS Access, Excell...)

With G2antt1
 .BeginUpdate
 .MarkSearchColumn = False
 With .Columns
 .Add "Tasks"
 .Add("Start").Def(18) = 1
 .Add("End").Def(18) = 543
 End With
 With .Chart

 .FirstVisibleDate = #9/20/2006#
 .LevelCount = 2
 .PaneWidth(0) = 256
 .ShowEmptyBars = 1
 End With
 With .Items
 .AllowCellValueToItemBar = True
 h = .AddItem("Task 1")
 .AddBar h,"Task",#9/21/2006#,#9/21/2006#
 End With
 .EndUpdate
End With

VB6

With G2antt1
 .BeginUpdate
 .MarkSearchColumn = False
 With .Columns
 .Add "Tasks"
 .Add("Start").Def(exCellValueToItemBarProperty) = 1
 .Add("End").Def(exCellValueToItemBarProperty) = 543
 End With
 With .Chart
 .FirstVisibleDate = #9/20/2006#
 .LevelCount = 2
 .PaneWidth(0) = 256
 .ShowEmptyBars = 1
 End With
 With .Items
 .AllowCellValueToItemBar = True
 h = .AddItem("Task 1")
 .AddBar h,"Task",#9/21/2006#,#9/21/2006#
 End With
 .EndUpdate
End With

VB.NET

Dim h
With Exg2antt1
 .BeginUpdate()
 .MarkSearchColumn = False
 With .Columns
 .Add("Tasks")

.Add("Start").set_Def(exontrol.EXG2ANTTLib.DefColumnEnum.exCellValueToItemBarProperty,1)

.Add("End").set_Def(exontrol.EXG2ANTTLib.DefColumnEnum.exCellValueToItemBarProperty,543)

 End With
 With .Chart
 .FirstVisibleDate = #9/20/2006#
 .LevelCount = 2
 .set_PaneWidth(False,256)
 .ShowEmptyBars = 1
 End With
 With .Items
 .AllowCellValueToItemBar = True
 h = .AddItem("Task 1")
 .AddBar(h,"Task",#9/21/2006#,#9/21/2006#)
 End With
 .EndUpdate()
End With

VB.NET for /COM

Dim h
With AxG2antt1
 .BeginUpdate()
 .MarkSearchColumn = False
 With .Columns
 .Add("Tasks")

.Add("Start").Def(EXG2ANTTLib.DefColumnEnum.exCellValueToItemBarProperty)

= 1

.Add("End").Def(EXG2ANTTLib.DefColumnEnum.exCellValueToItemBarProperty)
= 543
 End With
 With .Chart
 .FirstVisibleDate = #9/20/2006#
 .LevelCount = 2
 .PaneWidth(False) = 256
 .ShowEmptyBars = 1
 End With
 With .Items
 .AllowCellValueToItemBar = True
 h = .AddItem("Task 1")
 .AddBar(h,"Task",#9/21/2006#,#9/21/2006#)
 End With
 .EndUpdate()
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control
Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->BeginUpdate();
spG2antt1->PutMarkSearchColumn(VARIANT_FALSE);
EXG2ANTTLib::IColumnsPtr var_Columns = spG2antt1->GetColumns();
 var_Columns->Add(L"Tasks");
 ((EXG2ANTTLib::IColumnPtr)(var_Columns->Add(L"Start")))-
>PutDef(EXG2ANTTLib::exCellValueToItemBarProperty,long(1));

 ((EXG2ANTTLib::IColumnPtr)(var_Columns->Add(L"End")))-
>PutDef(EXG2ANTTLib::exCellValueToItemBarProperty,long(543));
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutFirstVisibleDate("9/20/2006");
 var_Chart->PutLevelCount(2);
 var_Chart->PutPaneWidth(VARIANT_FALSE,256);
 var_Chart->PutShowEmptyBars(1);
EXG2ANTTLib::IItemsPtr var_Items = spG2antt1->GetItems();
 var_Items->PutAllowCellValueToItemBar(VARIANT_TRUE);
 long h = var_Items->AddItem("Task 1");
 var_Items->AddBar(h,"Task","9/21/2006","9/21/2006",vtMissing,vtMissing);
spG2antt1->EndUpdate();

C++ Builder

G2antt1->BeginUpdate();
G2antt1->MarkSearchColumn = false;
Exg2anttlib_tlb::IColumnsPtr var_Columns = G2antt1->Columns;
 var_Columns->Add(L"Tasks");
 var_Columns->Add(L"Start")-
>set_Def(Exg2anttlib_tlb::DefColumnEnum::exCellValueToItemBarProperty,TVariant(1));

 var_Columns->Add(L"End")-
>set_Def(Exg2anttlib_tlb::DefColumnEnum::exCellValueToItemBarProperty,TVariant(543));

Exg2anttlib_tlb::IChartPtr var_Chart = G2antt1->Chart;
 var_Chart->set_FirstVisibleDate(TVariant(TDateTime(2006,9,20).operator
double()));
 var_Chart->LevelCount = 2;
 var_Chart->set_PaneWidth(false,256);
 var_Chart->ShowEmptyBars = 1;
Exg2anttlib_tlb::IItemsPtr var_Items = G2antt1->Items;
 var_Items->AllowCellValueToItemBar = true;
 long h = var_Items->AddItem(TVariant("Task 1"));
 var_Items->AddBar(h,TVariant("Task"),TVariant(TDateTime(2006,9,21).operator
double()),TVariant(TDateTime(2006,9,21).operator

double()),TNoParam(),TNoParam());
G2antt1->EndUpdate();

C#

exg2antt1.BeginUpdate();
exg2antt1.MarkSearchColumn = false;
exontrol.EXG2ANTTLib.Columns var_Columns = exg2antt1.Columns;
 var_Columns.Add("Tasks");
 (var_Columns.Add("Start") as
exontrol.EXG2ANTTLib.Column).set_Def(exontrol.EXG2ANTTLib.DefColumnEnum.exCellValueToItemBarProperty,1);

 (var_Columns.Add("End") as
exontrol.EXG2ANTTLib.Column).set_Def(exontrol.EXG2ANTTLib.DefColumnEnum.exCellValueToItemBarProperty,543);

exontrol.EXG2ANTTLib.Chart var_Chart = exg2antt1.Chart;
 var_Chart.FirstVisibleDate =
Convert.ToDateTime("9/20/2006",System.Globalization.CultureInfo.GetCultureInfo("en-
US"));
 var_Chart.LevelCount = 2;
 var_Chart.set_PaneWidth(false,256);
 var_Chart.ShowEmptyBars = 1;
exontrol.EXG2ANTTLib.Items var_Items = exg2antt1.Items;
 var_Items.AllowCellValueToItemBar = true;
 int h = var_Items.AddItem("Task 1");

var_Items.AddBar(h,"Task",Convert.ToDateTime("9/21/2006",System.Globalization.CultureInfo.GetCultureInfo(
US")),Convert.ToDateTime("9/21/2006",System.Globalization.CultureInfo.GetCultureInfo(
US")),null,null);
exg2antt1.EndUpdate();

JavaScript

<OBJECT classid="clsid:CD481F4D-2D25-4759-803F-752C568F53B7"
id="G2antt1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 G2antt1.BeginUpdate();
 G2antt1.MarkSearchColumn = false;
 var var_Columns = G2antt1.Columns;
 var_Columns.Add("Tasks");
 var_Columns.Add("Start").Def(18) = 1;
 var_Columns.Add("End").Def(18) = 543;
 var var_Chart = G2antt1.Chart;
 var_Chart.FirstVisibleDate = "9/20/2006";
 var_Chart.LevelCount = 2;
 var_Chart.PaneWidth(0) = 256;
 var_Chart.ShowEmptyBars = 1;
 var var_Items = G2antt1.Items;
 var_Items.AllowCellValueToItemBar = true;
 var h = var_Items.AddItem("Task 1");
 var_Items.AddBar(h,"Task","9/21/2006","9/21/2006",null,null);
 G2antt1.EndUpdate();
</SCRIPT>

C# for /COM

axG2antt1.BeginUpdate();
axG2antt1.MarkSearchColumn = false;
EXG2ANTTLib.Columns var_Columns = axG2antt1.Columns;
 var_Columns.Add("Tasks");
 (var_Columns.Add("Start") as
EXG2ANTTLib.Column).set_Def(EXG2ANTTLib.DefColumnEnum.exCellValueToItemBarProperty,1);

 (var_Columns.Add("End") as
EXG2ANTTLib.Column).set_Def(EXG2ANTTLib.DefColumnEnum.exCellValueToItemBarProperty,543);

EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;
 var_Chart.FirstVisibleDate =
Convert.ToDateTime("9/20/2006",System.Globalization.CultureInfo.GetCultureInfo("en-
US"));
 var_Chart.LevelCount = 2;
 var_Chart.set_PaneWidth(false,256);

 var_Chart.ShowEmptyBars = 1;
EXG2ANTTLib.Items var_Items = axG2antt1.Items;
 var_Items.AllowCellValueToItemBar = true;
 int h = var_Items.AddItem("Task 1");

var_Items.AddBar(h,"Task",Convert.ToDateTime("9/21/2006",System.Globalization.CultureInfo.GetCultureInfo(
US")),Convert.ToDateTime("9/21/2006",System.Globalization.CultureInfo.GetCultureInfo(
US")),null,null);
axG2antt1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Chart,com_Columns,com_Items;
 anytype var_Chart,var_Columns,var_Items;
 int h;
 ;

 super();

 exg2antt1.BeginUpdate();
 exg2antt1.MarkSearchColumn(false);
 var_Columns = exg2antt1.Columns(); com_Columns = var_Columns;
 com_Columns.Add("Tasks");

COM::createFromVariant(com_Columns.Add("Start")).Def(18/*exCellValueToItemBarProperty*/

COM::createFromVariant(com_Columns.Add("End")).Def(18/*exCellValueToItemBarProperty*/

 var_Chart = exg2antt1.Chart(); com_Chart = var_Chart;

com_Chart.FirstVisibleDate(COMVariant::createFromDate(str2Date("9/20/2006",213)));

 com_Chart.LevelCount(2);

 /*should be called during the form's activate method*/
com_Chart.PaneWidth(0,256);
 com_Chart.ShowEmptyBars(1);
 var_Items = exg2antt1.Items(); com_Items = var_Items;
 com_Items.AllowCellValueToItemBar(true);
 h = com_Items.AddItem("Task 1");

com_Items.AddBar(h,"Task",COMVariant::createFromDate(str2Date("9/21/2006",213)),COMVariant::createFromDate(str2Date(

 exg2antt1.EndUpdate();
}

/*
public void activate(boolean _active)
{
 ;

 super(_active);

 exg2antt1.Chart().PaneWidth(0,256);
}
*/

Delphi 8 (.NET only)

with AxG2antt1 do
begin
 BeginUpdate();
 MarkSearchColumn := False;
 with Columns do
 begin
 Add('Tasks');
 (Add('Start') as
EXG2ANTTLib.Column).Def[EXG2ANTTLib.DefColumnEnum.exCellValueToItemBarProperty]
 := TObject(1);
 (Add('End') as
EXG2ANTTLib.Column).Def[EXG2ANTTLib.DefColumnEnum.exCellValueToItemBarProperty]

 := TObject(543);
 end;
 with Chart do
 begin
 FirstVisibleDate := '9/20/2006';
 LevelCount := 2;
 PaneWidth[False] := 256;
 ShowEmptyBars := 1;
 end;
 with Items do
 begin
 AllowCellValueToItemBar := True;
 h := AddItem('Task 1');
 AddBar(h,'Task','9/21/2006','9/21/2006',Nil,Nil);
 end;
 EndUpdate();
end

Delphi (standard)

with G2antt1 do
begin
 BeginUpdate();
 MarkSearchColumn := False;
 with Columns do
 begin
 Add('Tasks');
 (IUnknown(Add('Start')) as
EXG2ANTTLib_TLB.Column).Def[EXG2ANTTLib_TLB.exCellValueToItemBarProperty]
 := OleVariant(1);
 (IUnknown(Add('End')) as
EXG2ANTTLib_TLB.Column).Def[EXG2ANTTLib_TLB.exCellValueToItemBarProperty]
 := OleVariant(543);
 end;
 with Chart do
 begin
 FirstVisibleDate := '9/20/2006';

 LevelCount := 2;
 PaneWidth[False] := 256;
 ShowEmptyBars := 1;
 end;
 with Items do
 begin
 AllowCellValueToItemBar := True;
 h := AddItem('Task 1');
 AddBar(h,'Task','9/21/2006','9/21/2006',Null,Null);
 end;
 EndUpdate();
end

VFP

with thisform.G2antt1
 .BeginUpdate
 .MarkSearchColumn = .F.
 with .Columns
 .Add("Tasks")
 .Add("Start").Def(18) = 1
 .Add("End").Def(18) = 543
 endwith
 with .Chart
 .FirstVisibleDate = {^2006-9-20}
 .LevelCount = 2
 .PaneWidth(0) = 256
 .ShowEmptyBars = 1
 endwith
 with .Items
 .AllowCellValueToItemBar = .T.
 h = .AddItem("Task 1")
 .AddBar(h,"Task",{^2006-9-21},{^2006-9-21})
 endwith
 .EndUpdate
endwith

dBASE Plus

local h,oG2antt,var_Chart,var_Column,var_Column1,var_Columns,var_Items

oG2antt = form.Activex1.nativeObject
oG2antt.BeginUpdate()
oG2antt.MarkSearchColumn = false
var_Columns = oG2antt.Columns
 var_Columns.Add("Tasks")
 // var_Columns.Add("Start").Def(18) = 1
 var_Column = var_Columns.Add("Start")
 with (oG2antt)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(18) = 1]
 endwith
 // var_Columns.Add("End").Def(18) = 543
 var_Column1 = var_Columns.Add("End")
 with (oG2antt)
 TemplateDef = [Dim var_Column1]
 TemplateDef = var_Column1
 Template = [var_Column1.Def(18) = 543]
 endwith
var_Chart = oG2antt.Chart
 var_Chart.FirstVisibleDate = "09/20/2006"
 var_Chart.LevelCount = 2
 // var_Chart.PaneWidth(false) = 256
 with (oG2antt)
 TemplateDef = [Dim var_Chart]
 TemplateDef = var_Chart
 Template = [var_Chart.PaneWidth(false) = 256]
 endwith
 var_Chart.ShowEmptyBars = 1
var_Items = oG2antt.Items
 var_Items.AllowCellValueToItemBar = true
 h = var_Items.AddItem("Task 1")
 var_Items.AddBar(h,"Task","09/21/2006","09/21/2006")
oG2antt.EndUpdate()

XBasic (Alpha Five)

Dim h as N
Dim oG2antt as P
Dim var_Chart as P
Dim var_Column as P
Dim var_Column1 as P
Dim var_Columns as P
Dim var_Items as P

oG2antt = topparent:CONTROL_ACTIVEX1.activex
oG2antt.BeginUpdate()
oG2antt.MarkSearchColumn = .f.
var_Columns = oG2antt.Columns
 var_Columns.Add("Tasks")
 ' var_Columns.Add("Start").Def(18) = 1
 var_Column = var_Columns.Add("Start")
 oG2antt.TemplateDef = "Dim var_Column"
 oG2antt.TemplateDef = var_Column
 oG2antt.Template = "var_Column.Def(18) = 1"

 ' var_Columns.Add("End").Def(18) = 543
 var_Column1 = var_Columns.Add("End")
 oG2antt.TemplateDef = "Dim var_Column1"
 oG2antt.TemplateDef = var_Column1
 oG2antt.Template = "var_Column1.Def(18) = 543"

var_Chart = oG2antt.Chart
 var_Chart.FirstVisibleDate = {09/20/2006}
 var_Chart.LevelCount = 2
 ' var_Chart.PaneWidth(.f.) = 256
 oG2antt.TemplateDef = "Dim var_Chart"
 oG2antt.TemplateDef = var_Chart
 oG2antt.Template = "var_Chart.PaneWidth(False) = 256"

 var_Chart.ShowEmptyBars = 1
var_Items = oG2antt.Items

 var_Items.AllowCellValueToItemBar = .t.
 h = var_Items.AddItem("Task 1")
 var_Items.AddBar(h,"Task",{09/21/2006},{09/21/2006})
oG2antt.EndUpdate()

Visual Objects

local var_Chart as IChart
local var_Columns as IColumns
local var_Items as IItems
local h as USUAL

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:MarkSearchColumn := false
var_Columns := oDCOCX_Exontrol1:Columns
 var_Columns:Add("Tasks")
 IColumn{var_Columns:Add("Start")}:[Def,exCellValueToItemBarProperty] := 1
 IColumn{var_Columns:Add("End")}:[Def,exCellValueToItemBarProperty] := 543
var_Chart := oDCOCX_Exontrol1:Chart
 var_Chart:FirstVisibleDate := SToD("20060920")
 var_Chart:LevelCount := 2
 var_Chart:[PaneWidth,false] := 256
 var_Chart:ShowEmptyBars := 1
var_Items := oDCOCX_Exontrol1:Items
 var_Items:AllowCellValueToItemBar := true
 h := var_Items:AddItem("Task 1")
 var_Items:AddBar(h,"Task",SToD("20060921"),SToD("20060921"),nil,nil)
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oG2antt,var_Chart,var_Columns,var_Items
any h

oG2antt = ole_1.Object
oG2antt.BeginUpdate()

oG2antt.MarkSearchColumn = false
var_Columns = oG2antt.Columns
 var_Columns.Add("Tasks")
 var_Columns.Add("Start").Def(18,1)
 var_Columns.Add("End").Def(18,543)
var_Chart = oG2antt.Chart
 var_Chart.FirstVisibleDate = 2006-09-20
 var_Chart.LevelCount = 2
 var_Chart.PaneWidth(false,256)
 var_Chart.ShowEmptyBars = 1
var_Items = oG2antt.Items
 var_Items.AllowCellValueToItemBar = true
 h = var_Items.AddItem("Task 1")
 var_Items.AddBar(h,"Task",2006-09-21,2006-09-21)
oG2antt.EndUpdate()

The following samples show how to add bars with the same starting and ending point. This
is recommended for bars with exBarKeepWorkingCount property set.

VBA (MS Access, Excell...)

With G2antt1
 .BeginUpdate
 .MarkSearchColumn = False
 With .Columns
 .Add "Tasks"
 .Add("Start").Def(18) = 1
 .Add("End").Def(18) = 543
 End With
 With .Chart
 .FirstVisibleDate = #9/20/2006#
 .LevelCount = 2
 .PaneWidth(0) = 256
 .ShowEmptyBars = 0
 End With
 With .Items
 .AllowCellValueToItemBar = True
 h = .AddItem("Task 1")

 .AddBar h,"Task",#9/21/2006#,#9/21/2006#
 .ItemBar(h,"",543) = .ItemBar(h,"",1)
 .ItemBar(h,"",20) = True
 End With
 .EndUpdate
End With

VB6

With G2antt1
 .BeginUpdate
 .MarkSearchColumn = False
 With .Columns
 .Add "Tasks"
 .Add("Start").Def(exCellValueToItemBarProperty) = 1
 .Add("End").Def(exCellValueToItemBarProperty) = 543
 End With
 With .Chart
 .FirstVisibleDate = #9/20/2006#
 .LevelCount = 2
 .PaneWidth(0) = 256
 .ShowEmptyBars = 0
 End With
 With .Items
 .AllowCellValueToItemBar = True
 h = .AddItem("Task 1")
 .AddBar h,"Task",#9/21/2006#,#9/21/2006#
 .ItemBar(h,"",exBarEndInclusive) = .ItemBar(h,"",exBarStart)
 .ItemBar(h,"",exBarKeepWorkingCount) = True
 End With
 .EndUpdate
End With

VB.NET

Dim h
With Exg2antt1
 .BeginUpdate()

 .MarkSearchColumn = False
 With .Columns
 .Add("Tasks")

.Add("Start").set_Def(exontrol.EXG2ANTTLib.DefColumnEnum.exCellValueToItemBarProperty,1)

.Add("End").set_Def(exontrol.EXG2ANTTLib.DefColumnEnum.exCellValueToItemBarProperty,543)

 End With
 With .Chart
 .FirstVisibleDate = #9/20/2006#
 .LevelCount = 2
 .set_PaneWidth(False,256)
 .ShowEmptyBars = 0
 End With
 With .Items
 .AllowCellValueToItemBar = True
 h = .AddItem("Task 1")
 .AddBar(h,"Task",#9/21/2006#,#9/21/2006#)

.set_ItemBar(h,"",exontrol.EXG2ANTTLib.ItemBarPropertyEnum.exBarEndInclusive,.get_ItemBar

.set_ItemBar(h,"",exontrol.EXG2ANTTLib.ItemBarPropertyEnum.exBarKeepWorkingCount,True)

 End With
 .EndUpdate()
End With

VB.NET for /COM

Dim h
With AxG2antt1
 .BeginUpdate()
 .MarkSearchColumn = False
 With .Columns

 .Add("Tasks")

.Add("Start").Def(EXG2ANTTLib.DefColumnEnum.exCellValueToItemBarProperty)
= 1

.Add("End").Def(EXG2ANTTLib.DefColumnEnum.exCellValueToItemBarProperty)
= 543
 End With
 With .Chart
 .FirstVisibleDate = #9/20/2006#
 .LevelCount = 2
 .PaneWidth(False) = 256
 .ShowEmptyBars = 0
 End With
 With .Items
 .AllowCellValueToItemBar = True
 h = .AddItem("Task 1")
 .AddBar(h,"Task",#9/21/2006#,#9/21/2006#)
 .ItemBar(h,"",EXG2ANTTLib.ItemBarPropertyEnum.exBarEndInclusive) =
.ItemBar(h,"",EXG2ANTTLib.ItemBarPropertyEnum.exBarStart)

.ItemBar(h,"",EXG2ANTTLib.ItemBarPropertyEnum.exBarKeepWorkingCount) =
True
 End With
 .EndUpdate()
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control
Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/

EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->BeginUpdate();
spG2antt1->PutMarkSearchColumn(VARIANT_FALSE);
EXG2ANTTLib::IColumnsPtr var_Columns = spG2antt1->GetColumns();
 var_Columns->Add(L"Tasks");
 ((EXG2ANTTLib::IColumnPtr)(var_Columns->Add(L"Start")))-
>PutDef(EXG2ANTTLib::exCellValueToItemBarProperty,long(1));
 ((EXG2ANTTLib::IColumnPtr)(var_Columns->Add(L"End")))-
>PutDef(EXG2ANTTLib::exCellValueToItemBarProperty,long(543));
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutFirstVisibleDate("9/20/2006");
 var_Chart->PutLevelCount(2);
 var_Chart->PutPaneWidth(VARIANT_FALSE,256);
 var_Chart->PutShowEmptyBars(0);
EXG2ANTTLib::IItemsPtr var_Items = spG2antt1->GetItems();
 var_Items->PutAllowCellValueToItemBar(VARIANT_TRUE);
 long h = var_Items->AddItem("Task 1");
 var_Items->AddBar(h,"Task","9/21/2006","9/21/2006",vtMissing,vtMissing);
 var_Items->PutItemBar(h,"",EXG2ANTTLib::exBarEndInclusive,var_Items-
>GetItemBar(h,"",EXG2ANTTLib::exBarStart));
 var_Items-
>PutItemBar(h,"",EXG2ANTTLib::exBarKeepWorkingCount,VARIANT_TRUE);
spG2antt1->EndUpdate();

C++ Builder

G2antt1->BeginUpdate();
G2antt1->MarkSearchColumn = false;
Exg2anttlib_tlb::IColumnsPtr var_Columns = G2antt1->Columns;
 var_Columns->Add(L"Tasks");
 var_Columns->Add(L"Start")-
>set_Def(Exg2anttlib_tlb::DefColumnEnum::exCellValueToItemBarProperty,TVariant(1));

 var_Columns->Add(L"End")-
>set_Def(Exg2anttlib_tlb::DefColumnEnum::exCellValueToItemBarProperty,TVariant(543));

Exg2anttlib_tlb::IChartPtr var_Chart = G2antt1->Chart;
 var_Chart->set_FirstVisibleDate(TVariant(TDateTime(2006,9,20).operator
double()));
 var_Chart->LevelCount = 2;
 var_Chart->set_PaneWidth(false,256);
 var_Chart->ShowEmptyBars = 0;
Exg2anttlib_tlb::IItemsPtr var_Items = G2antt1->Items;
 var_Items->AllowCellValueToItemBar = true;
 long h = var_Items->AddItem(TVariant("Task 1"));
 var_Items->AddBar(h,TVariant("Task"),TVariant(TDateTime(2006,9,21).operator
double()),TVariant(TDateTime(2006,9,21).operator
double()),TNoParam(),TNoParam());
 var_Items-
>set_ItemBar(h,TVariant(""),Exg2anttlib_tlb::ItemBarPropertyEnum::exBarEndInclusive,TVariant(var_Items-
>get_ItemBar(h,TVariant(""),Exg2anttlib_tlb::ItemBarPropertyEnum::exBarStart)));
 var_Items-
>set_ItemBar(h,TVariant(""),Exg2anttlib_tlb::ItemBarPropertyEnum::exBarKeepWorkingCount,TVariant(true));

G2antt1->EndUpdate();

C#

exg2antt1.BeginUpdate();
exg2antt1.MarkSearchColumn = false;
exontrol.EXG2ANTTLib.Columns var_Columns = exg2antt1.Columns;
 var_Columns.Add("Tasks");
 (var_Columns.Add("Start") as
exontrol.EXG2ANTTLib.Column).set_Def(exontrol.EXG2ANTTLib.DefColumnEnum.exCellValueToItemBarProperty,1);

 (var_Columns.Add("End") as
exontrol.EXG2ANTTLib.Column).set_Def(exontrol.EXG2ANTTLib.DefColumnEnum.exCellValueToItemBarProperty,543);

exontrol.EXG2ANTTLib.Chart var_Chart = exg2antt1.Chart;
 var_Chart.FirstVisibleDate =
Convert.ToDateTime("9/20/2006",System.Globalization.CultureInfo.GetCultureInfo("en-

US"));
 var_Chart.LevelCount = 2;
 var_Chart.set_PaneWidth(false,256);
 var_Chart.ShowEmptyBars = 0;
exontrol.EXG2ANTTLib.Items var_Items = exg2antt1.Items;
 var_Items.AllowCellValueToItemBar = true;
 int h = var_Items.AddItem("Task 1");

var_Items.AddBar(h,"Task",Convert.ToDateTime("9/21/2006",System.Globalization.CultureInfo.GetCultureInfo(
US")),Convert.ToDateTime("9/21/2006",System.Globalization.CultureInfo.GetCultureInfo(
US")),null,null);

var_Items.set_ItemBar(h,"",exontrol.EXG2ANTTLib.ItemBarPropertyEnum.exBarEndInclusive,var_Items.

var_Items.set_ItemBar(h,"",exontrol.EXG2ANTTLib.ItemBarPropertyEnum.exBarKeepWorkingCount,true);

exg2antt1.EndUpdate();

JavaScript

<OBJECT classid="clsid:CD481F4D-2D25-4759-803F-752C568F53B7"
id="G2antt1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
 G2antt1.BeginUpdate();
 G2antt1.MarkSearchColumn = false;
 var var_Columns = G2antt1.Columns;
 var_Columns.Add("Tasks");
 var_Columns.Add("Start").Def(18) = 1;
 var_Columns.Add("End").Def(18) = 543;
 var var_Chart = G2antt1.Chart;
 var_Chart.FirstVisibleDate = "9/20/2006";
 var_Chart.LevelCount = 2;
 var_Chart.PaneWidth(0) = 256;
 var_Chart.ShowEmptyBars = 0;

 var var_Items = G2antt1.Items;
 var_Items.AllowCellValueToItemBar = true;
 var h = var_Items.AddItem("Task 1");
 var_Items.AddBar(h,"Task","9/21/2006","9/21/2006",null,null);
 var_Items.ItemBar(h,"",543) = var_Items.ItemBar(h,"",1);
 var_Items.ItemBar(h,"",20) = true;
 G2antt1.EndUpdate();
</SCRIPT>

C# for /COM

axG2antt1.BeginUpdate();
axG2antt1.MarkSearchColumn = false;
EXG2ANTTLib.Columns var_Columns = axG2antt1.Columns;
 var_Columns.Add("Tasks");
 (var_Columns.Add("Start") as
EXG2ANTTLib.Column).set_Def(EXG2ANTTLib.DefColumnEnum.exCellValueToItemBarProperty,1);

 (var_Columns.Add("End") as
EXG2ANTTLib.Column).set_Def(EXG2ANTTLib.DefColumnEnum.exCellValueToItemBarProperty,543);

EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;
 var_Chart.FirstVisibleDate =
Convert.ToDateTime("9/20/2006",System.Globalization.CultureInfo.GetCultureInfo("en-
US"));
 var_Chart.LevelCount = 2;
 var_Chart.set_PaneWidth(false,256);
 var_Chart.ShowEmptyBars = 0;
EXG2ANTTLib.Items var_Items = axG2antt1.Items;
 var_Items.AllowCellValueToItemBar = true;
 int h = var_Items.AddItem("Task 1");

var_Items.AddBar(h,"Task",Convert.ToDateTime("9/21/2006",System.Globalization.CultureInfo.GetCultureInfo(
US")),Convert.ToDateTime("9/21/2006",System.Globalization.CultureInfo.GetCultureInfo(
US")),null,null);

var_Items.set_ItemBar(h,"",EXG2ANTTLib.ItemBarPropertyEnum.exBarEndInclusive,var_Items.

var_Items.set_ItemBar(h,"",EXG2ANTTLib.ItemBarPropertyEnum.exBarKeepWorkingCount,true);

axG2antt1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Chart,com_Columns,com_Items;
 anytype var_Chart,var_Columns,var_Items;
 int h;
 ;

 super();

 exg2antt1.BeginUpdate();
 exg2antt1.MarkSearchColumn(false);
 var_Columns = exg2antt1.Columns(); com_Columns = var_Columns;
 com_Columns.Add("Tasks");

COM::createFromVariant(com_Columns.Add("Start")).Def(18/*exCellValueToItemBarProperty*/

COM::createFromVariant(com_Columns.Add("End")).Def(18/*exCellValueToItemBarProperty*/

 var_Chart = exg2antt1.Chart(); com_Chart = var_Chart;

com_Chart.FirstVisibleDate(COMVariant::createFromDate(str2Date("9/20/2006",213)));

 com_Chart.LevelCount(2);
 /*should be called during the form's activate method*/
com_Chart.PaneWidth(0,256);
 com_Chart.ShowEmptyBars(0);
 var_Items = exg2antt1.Items(); com_Items = var_Items;

 com_Items.AllowCellValueToItemBar(true);
 h = com_Items.AddItem("Task 1");

com_Items.AddBar(h,"Task",COMVariant::createFromDate(str2Date("9/21/2006",213)),COMVariant::createFromDate(str2Date(

com_Items.ItemBar(h,"",543/*exBarEndInclusive*/,com_Items.ItemBar(h,"",1/*exBarStart*/

com_Items.ItemBar(h,"",20/*exBarKeepWorkingCount*/,COMVariant::createFromBoolean(true));

 exg2antt1.EndUpdate();
}

/*
public void activate(boolean _active)
{
 ;

 super(_active);

 exg2antt1.Chart().PaneWidth(0,256);
}
*/

Delphi 8 (.NET only)

with AxG2antt1 do
begin
 BeginUpdate();
 MarkSearchColumn := False;
 with Columns do
 begin
 Add('Tasks');
 (Add('Start') as
EXG2ANTTLib.Column).Def[EXG2ANTTLib.DefColumnEnum.exCellValueToItemBarProperty]
 := TObject(1);

 (Add('End') as
EXG2ANTTLib.Column).Def[EXG2ANTTLib.DefColumnEnum.exCellValueToItemBarProperty]
 := TObject(543);
 end;
 with Chart do
 begin
 FirstVisibleDate := '9/20/2006';
 LevelCount := 2;
 PaneWidth[False] := 256;
 ShowEmptyBars := 0;
 end;
 with Items do
 begin
 AllowCellValueToItemBar := True;
 h := AddItem('Task 1');
 AddBar(h,'Task','9/21/2006','9/21/2006',Nil,Nil);
 ItemBar[h,'',EXG2ANTTLib.ItemBarPropertyEnum.exBarEndInclusive] :=
ItemBar[h,'',EXG2ANTTLib.ItemBarPropertyEnum.exBarStart];
 ItemBar[h,'',EXG2ANTTLib.ItemBarPropertyEnum.exBarKeepWorkingCount]
:= TObject(True);
 end;
 EndUpdate();
end

Delphi (standard)

with G2antt1 do
begin
 BeginUpdate();
 MarkSearchColumn := False;
 with Columns do
 begin
 Add('Tasks');
 (IUnknown(Add('Start')) as
EXG2ANTTLib_TLB.Column).Def[EXG2ANTTLib_TLB.exCellValueToItemBarProperty]
 := OleVariant(1);
 (IUnknown(Add('End')) as

EXG2ANTTLib_TLB.Column).Def[EXG2ANTTLib_TLB.exCellValueToItemBarProperty]
 := OleVariant(543);
 end;
 with Chart do
 begin
 FirstVisibleDate := '9/20/2006';
 LevelCount := 2;
 PaneWidth[False] := 256;
 ShowEmptyBars := 0;
 end;
 with Items do
 begin
 AllowCellValueToItemBar := True;
 h := AddItem('Task 1');
 AddBar(h,'Task','9/21/2006','9/21/2006',Null,Null);
 ItemBar[h,'',EXG2ANTTLib_TLB.exBarEndInclusive] :=
ItemBar[h,'',EXG2ANTTLib_TLB.exBarStart];
 ItemBar[h,'',EXG2ANTTLib_TLB.exBarKeepWorkingCount] :=
OleVariant(True);
 end;
 EndUpdate();
end

VFP

with thisform.G2antt1
 .BeginUpdate
 .MarkSearchColumn = .F.
 with .Columns
 .Add("Tasks")
 .Add("Start").Def(18) = 1
 .Add("End").Def(18) = 543
 endwith
 with .Chart
 .FirstVisibleDate = {^2006-9-20}
 .LevelCount = 2
 .PaneWidth(0) = 256

 .ShowEmptyBars = 0
 endwith
 with .Items
 .AllowCellValueToItemBar = .T.
 h = .AddItem("Task 1")
 .AddBar(h,"Task",{^2006-9-21},{^2006-9-21})
 .ItemBar(h,"",543) = .ItemBar(h,"",1)
 .ItemBar(h,"",20) = .T.
 endwith
 .EndUpdate
endwith

dBASE Plus

local h,oG2antt,var_Chart,var_Column,var_Column1,var_Columns,var_Items

oG2antt = form.Activex1.nativeObject
oG2antt.BeginUpdate()
oG2antt.MarkSearchColumn = false
var_Columns = oG2antt.Columns
 var_Columns.Add("Tasks")
 // var_Columns.Add("Start").Def(18) = 1
 var_Column = var_Columns.Add("Start")
 with (oG2antt)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(18) = 1]
 endwith
 // var_Columns.Add("End").Def(18) = 543
 var_Column1 = var_Columns.Add("End")
 with (oG2antt)
 TemplateDef = [Dim var_Column1]
 TemplateDef = var_Column1
 Template = [var_Column1.Def(18) = 543]
 endwith
var_Chart = oG2antt.Chart
 var_Chart.FirstVisibleDate = "09/20/2006"

 var_Chart.LevelCount = 2
 // var_Chart.PaneWidth(false) = 256
 with (oG2antt)
 TemplateDef = [Dim var_Chart]
 TemplateDef = var_Chart
 Template = [var_Chart.PaneWidth(false) = 256]
 endwith
 var_Chart.ShowEmptyBars = 0
var_Items = oG2antt.Items
 var_Items.AllowCellValueToItemBar = true
 h = var_Items.AddItem("Task 1")
 var_Items.AddBar(h,"Task","09/21/2006","09/21/2006")
 // var_Items.ItemBar(h,"",543) = var_Items.ItemBar(h,"",1)
 with (oG2antt)
 TemplateDef = [Dim var_Items,h]
 TemplateDef = var_Items
 TemplateDef = h
 Template = [var_Items.ItemBar(h,"",543) = var_Items.ItemBar(h,"",1)]
 endwith
 // var_Items.ItemBar(h,"",20) = true
 with (oG2antt)
 TemplateDef = [Dim var_Items,h]
 TemplateDef = var_Items
 TemplateDef = h
 Template = [var_Items.ItemBar(h,"",20) = true]
 endwith
oG2antt.EndUpdate()

XBasic (Alpha Five)

Dim h as N
Dim oG2antt as P
Dim var_Chart as P
Dim var_Column as P
Dim var_Column1 as P
Dim var_Columns as P

Dim var_Items as P

oG2antt = topparent:CONTROL_ACTIVEX1.activex
oG2antt.BeginUpdate()
oG2antt.MarkSearchColumn = .f.
var_Columns = oG2antt.Columns
 var_Columns.Add("Tasks")
 ' var_Columns.Add("Start").Def(18) = 1
 var_Column = var_Columns.Add("Start")
 oG2antt.TemplateDef = "Dim var_Column"
 oG2antt.TemplateDef = var_Column
 oG2antt.Template = "var_Column.Def(18) = 1"

 ' var_Columns.Add("End").Def(18) = 543
 var_Column1 = var_Columns.Add("End")
 oG2antt.TemplateDef = "Dim var_Column1"
 oG2antt.TemplateDef = var_Column1
 oG2antt.Template = "var_Column1.Def(18) = 543"

var_Chart = oG2antt.Chart
 var_Chart.FirstVisibleDate = {09/20/2006}
 var_Chart.LevelCount = 2
 ' var_Chart.PaneWidth(.f.) = 256
 oG2antt.TemplateDef = "Dim var_Chart"
 oG2antt.TemplateDef = var_Chart
 oG2antt.Template = "var_Chart.PaneWidth(False) = 256"

 var_Chart.ShowEmptyBars = 0
var_Items = oG2antt.Items
 var_Items.AllowCellValueToItemBar = .t.
 h = var_Items.AddItem("Task 1")
 var_Items.AddBar(h,"Task",{09/21/2006},{09/21/2006})
 ' var_Items.ItemBar(h,"",543) = var_Items.ItemBar(h,"",1)
 oG2antt.TemplateDef = "Dim var_Items,h"
 oG2antt.TemplateDef = var_Items
 oG2antt.TemplateDef = h
 oG2antt.Template = "var_Items.ItemBar(h,\"\",543) =

var_Items.ItemBar(h,\"\",1)"

 ' var_Items.ItemBar(h,"",20) = .t.
 oG2antt.TemplateDef = "Dim var_Items,h"
 oG2antt.TemplateDef = var_Items
 oG2antt.TemplateDef = h
 oG2antt.Template = "var_Items.ItemBar(h,\"\",20) = True"

oG2antt.EndUpdate()

Visual Objects

local var_Chart as IChart
local var_Columns as IColumns
local var_Items as IItems
local h as USUAL

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:MarkSearchColumn := false
var_Columns := oDCOCX_Exontrol1:Columns
 var_Columns:Add("Tasks")
 IColumn{var_Columns:Add("Start")}:[Def,exCellValueToItemBarProperty] := 1
 IColumn{var_Columns:Add("End")}:[Def,exCellValueToItemBarProperty] := 543
var_Chart := oDCOCX_Exontrol1:Chart
 var_Chart:FirstVisibleDate := SToD("20060920")
 var_Chart:LevelCount := 2
 var_Chart:[PaneWidth,false] := 256
 var_Chart:ShowEmptyBars := 0
var_Items := oDCOCX_Exontrol1:Items
 var_Items:AllowCellValueToItemBar := true
 h := var_Items:AddItem("Task 1")
 var_Items:AddBar(h,"Task",SToD("20060921"),SToD("20060921"),nil,nil)
 var_Items:[ItemBar,h,"",exBarEndInclusive] := var_Items:[ItemBar,h,"",exBarStart]
 var_Items:[ItemBar,h,"",exBarKeepWorkingCount] := true
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oG2antt,var_Chart,var_Columns,var_Items
any h

oG2antt = ole_1.Object
oG2antt.BeginUpdate()
oG2antt.MarkSearchColumn = false
var_Columns = oG2antt.Columns
 var_Columns.Add("Tasks")
 var_Columns.Add("Start").Def(18,1)
 var_Columns.Add("End").Def(18,543)
var_Chart = oG2antt.Chart
 var_Chart.FirstVisibleDate = 2006-09-20
 var_Chart.LevelCount = 2
 var_Chart.PaneWidth(false,256)
 var_Chart.ShowEmptyBars = 0
var_Items = oG2antt.Items
 var_Items.AllowCellValueToItemBar = true
 h = var_Items.AddItem("Task 1")
 var_Items.AddBar(h,"Task",2006-09-21,2006-09-21)
 var_Items.ItemBar(h,"",543,var_Items.ItemBar(h,"",1))
 var_Items.ItemBar(h,"",20,true)
oG2antt.EndUpdate()

property Chart.ShowEmptyBarsUnit as UnitEnum
Specifies the unit to be added to the end date, so empty bars are shown.

Type Description

UnitEnum
An UnitEnum expression that indicates the time unit being
added to each bar, when the ShowEmptyBars property is
not zero.

By default, the ShowEmptyBarsUnit property is exDay. This property has effect only, if the
ShowEmptyBars property is not zero. For instance, if your chart displays seconds, the
ShowEmptyBarsUnit property must be set on exSeconds, else else if the ShowEmptyBars
property is 1, the ending date for each bar is not show correctly, as 1 day is added to a
second. For instance, if the ShowEmptyBars property is 1 and ShowEmptyBarsUnit is
exDay, a task bar from 1/1/2001 to 1/2/2001 shows two days, else if the ShowEmptyBars
property is 0, the same task bar highlights only a single day. Use the AddBar method to
assign a bar to an item. Use the ItemBar(exBarStart) and ItemBar(exBarEnd) properties to
specify the start and end dates for a bar.

property Chart.ShowLinks as ShowExtendedLinksEnum
Retrieves or sets a value that indicates whether the links between bars are visible or
hidden.

Type Description

ShowExtendedLinksEnum A Boolean/ShowExtendedLinksEnum expression that
indicates whether the chart shows the lines between bars.

By default, the ShowLinks property is True. Use the ShowLinks property to hide all links
between bars. Use the Link(exLinkVisible) property to hide a specific link between two
bars. Use the LinkColor property to specify the color for all links in the chart area. Use the
LinkStyle property to specify the style for all links in the chart area. Use the LinkWidth
property to specify the width of the pen, in pixels, to draw the links between bars. Use the
AddLink method to link a bar with another. Use the Link(exLinkShowDir) property to hide the
arrow that indicates the direction of the link. Use the FirstLink and NextLink properties to
enumerate the links in the control. Use the AllowLinkBars property to specify whether the
user can link the bars using the mouse. The ShowLinksColor property specifies the color to
display the links when link starts from selected bar, ends on selected bar, or when it is not
related to any of selected bars. The ShowLinksWidth property specifies the width to show
the links when the link starts from selected bar, ends on selected bar, or when it is not
related to any of selected bars. The ShowLinksStyle property specifies the width to show
the links when the link starts from selected bar, ends on selected bar, or when it is not
related to any of selected bars.

The following screen shot shows the default links:

The following screen shot shows the extended links:

The extended links are shown when two or more links starts or ends on the same bar, so
they will be shown distinctly, rather than showing them one over another.

property Chart.ShowLinksColor(Links as ShowLinksEnum) as Color
Retrieves or sets a value that indicates the color to display the links based on the user
selection.

Type Description

Links as ShowLinksEnum A ShowLinksEnum expression that specifies the links color
being accessed.

Color A Color expression that specifies the color to display the
links.

By default the ShowLinksColor property is 0, which means that it has no effect. The
ShowLinksColor property specifies the color to display the links when link starts from
selected bar, ends on selected bar, or when it is not related to any of selected bars. The
ShowLinksWidth property specifies the width to show the links when the link starts from
selected bar, ends on selected bar, or when it is not related to any of selected bars. The
ShowLinksStyle property specifies the width to show the links when the link starts from
selected bar, ends on selected bar, or when it is not related to any of selected bars. You
can hide the links if the ShowLinksColor property is the same as the chart's
background color being specified by the BackColor property.

The ShowLinks property specifies whether the chart's links are visible or hidden. Use the
LinkColor property to specify the color for all links in the chart area. Use the LinkStyle
property to specify the style for all links in the chart area. Use the LinkWidth property to
specify the width of the pen, in pixels, to draw the links between bars. Use the AddLink
method to add programmatically a link a bar with another.

The following screen shows the links when no bar is selected:

The following screen shows the links when the bar 2 is selected:

The following VB sample makes the links that starts from selected bar being wider, while
the rest being transparent:

With G2antt1
 .BeginUpdate
 .Columns.Add "Tasks"
 With .Chart
 .FirstVisibleDate = #9/20/2006#
 .PaneWidth(0) = 64
 .ShowLinksWidth(exShowLinksStartFrom) = 2
 .ShowLinksStyle(exShowLinksStartFrom) = exLinkDot
 .ShowLinksColor(exShowLinksEndTo) = RGB(200,200,200)
 .ShowLinksColor(exShowUnselectedLinks) = RGB(200,200,200)
 End With
 With .Items
 h1 = .AddItem("Task 1")
 .AddBar h1,"Task",#9/21/2006#,#9/23/2006#
 h2 = .AddItem("Task 2")
 .AddBar h2,"Task",#9/25/2006#,#9/27/2006#
 .ItemBar(h2,"",exBarSelected) = True
 .AddLink "L1",h1,"",h2,""
 .Link("L1",exLinkText) = "L1"
 h3 = .AddItem("Task 3")
 .AddBar h3,"Task",#9/29/2006#,#10/2/2006#
 .AddLink "L2",h2,"",h3,""
 .Link("L2",exLinkText) = "L2"
 End With
 .EndUpdate
End With

The following VB.NET sample makes the links that starts from selected bar being wider,
while the rest being transparent:

Dim h1,h2,h3
With AxG2antt1
 .BeginUpdate
 .Columns.Add "Tasks"
 With .Chart
 .FirstVisibleDate = #9/20/2006#
 .PaneWidth(0) = 64
 .ShowLinksWidth(EXG2ANTTLib.ShowLinksEnum.exShowLinksStartFrom) = 2
 .ShowLinksStyle(EXG2ANTTLib.ShowLinksEnum.exShowLinksStartFrom) =
EXG2ANTTLib.LinkStyleEnum.exLinkDot
 .ShowLinksColor(EXG2ANTTLib.ShowLinksEnum.exShowLinksEndTo) = 13158600
 .ShowLinksColor(EXG2ANTTLib.ShowLinksEnum.exShowUnselectedLinks) =
13158600
 End With
 With .Items
 h1 = .AddItem("Task 1")
 .AddBar h1,"Task",#9/21/2006#,#9/23/2006#
 h2 = .AddItem("Task 2")
 .AddBar h2,"Task",#9/25/2006#,#9/27/2006#
 .ItemBar(h2,"",EXG2ANTTLib.ItemBarPropertyEnum.exBarSelected) = True
 .AddLink "L1",h1,"",h2,""
 .Link("L1",EXG2ANTTLib.LinkPropertyEnum.exLinkText) = "L1"
 h3 = .AddItem("Task 3")
 .AddBar h3,"Task",#9/29/2006#,#10/2/2006#
 .AddLink "L2",h2,"",h3,""
 .Link("L2",EXG2ANTTLib.LinkPropertyEnum.exLinkText) = "L2"
 End With
 .EndUpdate
End With

The following C++ sample makes the links that starts from selected bar being wider, while
the rest being transparent:

/*
 Copy and paste the following directives to your header file as

 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->BeginUpdate();
spG2antt1->GetColumns()->Add(L"Tasks");
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutFirstVisibleDate("9/20/2006");
 var_Chart->PutPaneWidth(0,64);
 var_Chart->PutShowLinksWidth(EXG2ANTTLib::exShowLinksStartFrom,2);
 var_Chart-
>PutShowLinksStyle(EXG2ANTTLib::exShowLinksStartFrom,EXG2ANTTLib::exLinkDot);
 var_Chart->PutShowLinksColor(EXG2ANTTLib::exShowLinksEndTo,RGB(200,200,200));
 var_Chart-
>PutShowLinksColor(EXG2ANTTLib::exShowUnselectedLinks,RGB(200,200,200));
EXG2ANTTLib::IItemsPtr var_Items = spG2antt1->GetItems();
 long h1 = var_Items->AddItem("Task 1");
 var_Items->AddBar(h1,"Task","9/21/2006","9/23/2006",vtMissing,vtMissing);
 long h2 = var_Items->AddItem("Task 2");
 var_Items->AddBar(h2,"Task","9/25/2006","9/27/2006",vtMissing,vtMissing);
 var_Items->PutItemBar(h2,"",EXG2ANTTLib::exBarSelected,VARIANT_TRUE);
 var_Items->AddLink("L1",h1,"",h2,"");
 var_Items->PutLink("L1",EXG2ANTTLib::exLinkText,"L1");
 long h3 = var_Items->AddItem("Task 3");
 var_Items->AddBar(h3,"Task","9/29/2006","10/2/2006",vtMissing,vtMissing);
 var_Items->AddLink("L2",h2,"",h3,"");
 var_Items->PutLink("L2",EXG2ANTTLib::exLinkText,"L2");
spG2antt1->EndUpdate();

The following C# sample makes the links that starts from selected bar being wider, while
the rest being transparent:

axG2antt1.BeginUpdate();
axG2antt1.Columns.Add("Tasks");
EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;

 var_Chart.FirstVisibleDate = "9/20/2006";
 var_Chart.set_PaneWidth(0 != 0,64);

var_Chart.set_ShowLinksWidth(EXG2ANTTLib.ShowLinksEnum.exShowLinksStartFrom,2);

var_Chart.set_ShowLinksStyle(EXG2ANTTLib.ShowLinksEnum.exShowLinksStartFrom,EXG2ANTTLib.LinkStyleEnum.exLinkDot);

var_Chart.set_ShowLinksColor(EXG2ANTTLib.ShowLinksEnum.exShowLinksEndTo,13158600);

var_Chart.set_ShowLinksColor(EXG2ANTTLib.ShowLinksEnum.exShowUnselectedLinks,13158600);

EXG2ANTTLib.Items var_Items = axG2antt1.Items;
 int h1 = var_Items.AddItem("Task 1");
 var_Items.AddBar(h1,"Task","9/21/2006","9/23/2006",null,null);
 int h2 = var_Items.AddItem("Task 2");
 var_Items.AddBar(h2,"Task","9/25/2006","9/27/2006",null,null);
 var_Items.set_ItemBar(h2,"",EXG2ANTTLib.ItemBarPropertyEnum.exBarSelected,true);
 var_Items.AddLink("L1",h1,"",h2,"");
 var_Items.set_Link("L1",EXG2ANTTLib.LinkPropertyEnum.exLinkText,"L1");
 int h3 = var_Items.AddItem("Task 3");
 var_Items.AddBar(h3,"Task","9/29/2006","10/2/2006",null,null);
 var_Items.AddLink("L2",h2,"",h3,"");
 var_Items.set_Link("L2",EXG2ANTTLib.LinkPropertyEnum.exLinkText,"L2");
axG2antt1.EndUpdate();

The following VFP sample makes the links that starts from selected bar being wider, while
the rest being transparent:

with thisform.G2antt1
 .BeginUpdate
 .Columns.Add("Tasks")
 with .Chart
 .FirstVisibleDate = {^2006-9-20}
 .PaneWidth(0) = 64
 .ShowLinksWidth(1) = 2
 .ShowLinksStyle(1) = 2

 .ShowLinksColor(2) = RGB(200,200,200)
 .ShowLinksColor(4) = RGB(200,200,200)
 endwith
 with .Items
 h1 = .AddItem("Task 1")
 .AddBar(h1,"Task",{^2006-9-21},{^2006-9-23})
 h2 = .AddItem("Task 2")
 .AddBar(h2,"Task",{^2006-9-25},{^2006-9-27})
 .DefaultItem = h2
 .ItemBar(0,"",257) = .T.
 .AddLink("L1",h1,"",h2,"")
 .Link("L1",12) = "L1"
 h3 = .AddItem("Task 3")
 .AddBar(h3,"Task",{^2006-9-29},{^2006-10-2})
 .AddLink("L2",h2,"",h3,"")
 .Link("L2",12) = "L2"
 endwith
 .EndUpdate
endwith

The following Delphi sample makes the links that starts from selected bar being wider, while
the rest being transparent:

with AxG2antt1 do
begin
 BeginUpdate();
 Columns.Add('Tasks');
 with Chart do
 begin
 FirstVisibleDate := '9/20/2006';
 PaneWidth[0 <> 0] := 64;
 ShowLinksWidth[EXG2ANTTLib.ShowLinksEnum.exShowLinksStartFrom] := 2;
 ShowLinksStyle[EXG2ANTTLib.ShowLinksEnum.exShowLinksStartFrom] :=
EXG2ANTTLib.LinkStyleEnum.exLinkDot;
 ShowLinksColor[EXG2ANTTLib.ShowLinksEnum.exShowLinksEndTo] := 13158600;
 ShowLinksColor[EXG2ANTTLib.ShowLinksEnum.exShowUnselectedLinks] :=
13158600;
 end;

 with Items do
 begin
 h1 := AddItem('Task 1');
 AddBar(h1,'Task','9/21/2006','9/23/2006',Nil,Nil);
 h2 := AddItem('Task 2');
 AddBar(h2,'Task','9/25/2006','9/27/2006',Nil,Nil);
 ItemBar[h2,'',EXG2ANTTLib.ItemBarPropertyEnum.exBarSelected] := TObject(True);
 AddLink('L1',h1,'',h2,'');
 Link['L1',EXG2ANTTLib.LinkPropertyEnum.exLinkText] := 'L1';
 h3 := AddItem('Task 3');
 AddBar(h3,'Task','9/29/2006','10/2/2006',Nil,Nil);
 AddLink('L2',h2,'',h3,'');
 Link['L2',EXG2ANTTLib.LinkPropertyEnum.exLinkText] := 'L2';
 end;
 EndUpdate();
end

property Chart.ShowLinksStyle(Links as ShowLinksEnum) as
LinkStyleEnum
Retrieves or sets a value that indicates the style to display the links based on the user
selection.

Type Description

Links as ShowLinksEnum A ShowLinksEnum expression that specifies the links style
being accessed.

LinkStyleEnum A LinkStyleEnum expression that specifies the link to
display the links.

By default the ShowLinksStyle property is 0, which means that it has no effect. The
ShowLinksStyle property specifies the width to show the links when the link starts from
selected bar, ends on selected bar, or when it is not related to any of selected bars. The
ShowLinksColor property specifies the color to display the links when link starts from
selected bar, ends on selected bar, or when it is not related to any of selected bars. The
ShowLinksWidth property specifies the width to show the links when the link starts from
selected bar, ends on selected bar, or when it is not related to any of selected bars. You
can hide the links if the ShowLinksColor property is the same as the chart's background
color being specified by the BackColor property.

The ShowLinks property specifies whether the chart's links are visible or hidden. Use the
LinkColor property to specify the color for all links in the chart area. Use the LinkStyle
property to specify the style for all links in the chart area. Use the LinkWidth property to
specify the width of the pen, in pixels, to draw the links between bars. Use the AddLink
method to add programmatically a link a bar with another.

The following screen shows the links when no bar is selected:

The following screen shows the links when the bar 2 is selected:

The following VB sample makes the links that starts from selected bar being wider, while
the rest being transparent:

With G2antt1
 .BeginUpdate
 .Columns.Add "Tasks"
 With .Chart
 .FirstVisibleDate = #9/20/2006#
 .PaneWidth(0) = 64
 .ShowLinksWidth(exShowLinksStartFrom) = 2
 .ShowLinksStyle(exShowLinksStartFrom) = exLinkDot
 .ShowLinksColor(exShowLinksEndTo) = RGB(200,200,200)
 .ShowLinksColor(exShowUnselectedLinks) = RGB(200,200,200)
 End With
 With .Items
 h1 = .AddItem("Task 1")
 .AddBar h1,"Task",#9/21/2006#,#9/23/2006#
 h2 = .AddItem("Task 2")
 .AddBar h2,"Task",#9/25/2006#,#9/27/2006#
 .ItemBar(h2,"",exBarSelected) = True
 .AddLink "L1",h1,"",h2,""
 .Link("L1",exLinkText) = "L1"
 h3 = .AddItem("Task 3")
 .AddBar h3,"Task",#9/29/2006#,#10/2/2006#
 .AddLink "L2",h2,"",h3,""
 .Link("L2",exLinkText) = "L2"
 End With
 .EndUpdate
End With

The following VB.NET sample makes the links that starts from selected bar being wider,
while the rest being transparent:

Dim h1,h2,h3
With AxG2antt1
 .BeginUpdate
 .Columns.Add "Tasks"
 With .Chart
 .FirstVisibleDate = #9/20/2006#
 .PaneWidth(0) = 64
 .ShowLinksWidth(EXG2ANTTLib.ShowLinksEnum.exShowLinksStartFrom) = 2
 .ShowLinksStyle(EXG2ANTTLib.ShowLinksEnum.exShowLinksStartFrom) =
EXG2ANTTLib.LinkStyleEnum.exLinkDot
 .ShowLinksColor(EXG2ANTTLib.ShowLinksEnum.exShowLinksEndTo) = 13158600
 .ShowLinksColor(EXG2ANTTLib.ShowLinksEnum.exShowUnselectedLinks) =
13158600
 End With
 With .Items
 h1 = .AddItem("Task 1")
 .AddBar h1,"Task",#9/21/2006#,#9/23/2006#
 h2 = .AddItem("Task 2")
 .AddBar h2,"Task",#9/25/2006#,#9/27/2006#
 .ItemBar(h2,"",EXG2ANTTLib.ItemBarPropertyEnum.exBarSelected) = True
 .AddLink "L1",h1,"",h2,""
 .Link("L1",EXG2ANTTLib.LinkPropertyEnum.exLinkText) = "L1"
 h3 = .AddItem("Task 3")
 .AddBar h3,"Task",#9/29/2006#,#10/2/2006#
 .AddLink "L2",h2,"",h3,""
 .Link("L2",EXG2ANTTLib.LinkPropertyEnum.exLinkText) = "L2"
 End With
 .EndUpdate
End With

The following C++ sample makes the links that starts from selected bar being wider, while
the rest being transparent:

/*
 Copy and paste the following directives to your header file as

 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->BeginUpdate();
spG2antt1->GetColumns()->Add(L"Tasks");
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutFirstVisibleDate("9/20/2006");
 var_Chart->PutPaneWidth(0,64);
 var_Chart->PutShowLinksWidth(EXG2ANTTLib::exShowLinksStartFrom,2);
 var_Chart-
>PutShowLinksStyle(EXG2ANTTLib::exShowLinksStartFrom,EXG2ANTTLib::exLinkDot);
 var_Chart->PutShowLinksColor(EXG2ANTTLib::exShowLinksEndTo,RGB(200,200,200));
 var_Chart-
>PutShowLinksColor(EXG2ANTTLib::exShowUnselectedLinks,RGB(200,200,200));
EXG2ANTTLib::IItemsPtr var_Items = spG2antt1->GetItems();
 long h1 = var_Items->AddItem("Task 1");
 var_Items->AddBar(h1,"Task","9/21/2006","9/23/2006",vtMissing,vtMissing);
 long h2 = var_Items->AddItem("Task 2");
 var_Items->AddBar(h2,"Task","9/25/2006","9/27/2006",vtMissing,vtMissing);
 var_Items->PutItemBar(h2,"",EXG2ANTTLib::exBarSelected,VARIANT_TRUE);
 var_Items->AddLink("L1",h1,"",h2,"");
 var_Items->PutLink("L1",EXG2ANTTLib::exLinkText,"L1");
 long h3 = var_Items->AddItem("Task 3");
 var_Items->AddBar(h3,"Task","9/29/2006","10/2/2006",vtMissing,vtMissing);
 var_Items->AddLink("L2",h2,"",h3,"");
 var_Items->PutLink("L2",EXG2ANTTLib::exLinkText,"L2");
spG2antt1->EndUpdate();

The following C# sample makes the links that starts from selected bar being wider, while
the rest being transparent:

axG2antt1.BeginUpdate();
axG2antt1.Columns.Add("Tasks");
EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;

 var_Chart.FirstVisibleDate = "9/20/2006";
 var_Chart.set_PaneWidth(0 != 0,64);

var_Chart.set_ShowLinksWidth(EXG2ANTTLib.ShowLinksEnum.exShowLinksStartFrom,2);

var_Chart.set_ShowLinksStyle(EXG2ANTTLib.ShowLinksEnum.exShowLinksStartFrom,EXG2ANTTLib.LinkStyleEnum.exLinkDot);

var_Chart.set_ShowLinksColor(EXG2ANTTLib.ShowLinksEnum.exShowLinksEndTo,13158600);

var_Chart.set_ShowLinksColor(EXG2ANTTLib.ShowLinksEnum.exShowUnselectedLinks,13158600);

EXG2ANTTLib.Items var_Items = axG2antt1.Items;
 int h1 = var_Items.AddItem("Task 1");
 var_Items.AddBar(h1,"Task","9/21/2006","9/23/2006",null,null);
 int h2 = var_Items.AddItem("Task 2");
 var_Items.AddBar(h2,"Task","9/25/2006","9/27/2006",null,null);
 var_Items.set_ItemBar(h2,"",EXG2ANTTLib.ItemBarPropertyEnum.exBarSelected,true);
 var_Items.AddLink("L1",h1,"",h2,"");
 var_Items.set_Link("L1",EXG2ANTTLib.LinkPropertyEnum.exLinkText,"L1");
 int h3 = var_Items.AddItem("Task 3");
 var_Items.AddBar(h3,"Task","9/29/2006","10/2/2006",null,null);
 var_Items.AddLink("L2",h2,"",h3,"");
 var_Items.set_Link("L2",EXG2ANTTLib.LinkPropertyEnum.exLinkText,"L2");
axG2antt1.EndUpdate();

The following VFP sample makes the links that starts from selected bar being wider, while
the rest being transparent:

with thisform.G2antt1
 .BeginUpdate
 .Columns.Add("Tasks")
 with .Chart
 .FirstVisibleDate = {^2006-9-20}
 .PaneWidth(0) = 64
 .ShowLinksWidth(1) = 2
 .ShowLinksStyle(1) = 2

 .ShowLinksColor(2) = RGB(200,200,200)
 .ShowLinksColor(4) = RGB(200,200,200)
 endwith
 with .Items
 h1 = .AddItem("Task 1")
 .AddBar(h1,"Task",{^2006-9-21},{^2006-9-23})
 h2 = .AddItem("Task 2")
 .AddBar(h2,"Task",{^2006-9-25},{^2006-9-27})
 .DefaultItem = h2
 .ItemBar(0,"",257) = .T.
 .AddLink("L1",h1,"",h2,"")
 .Link("L1",12) = "L1"
 h3 = .AddItem("Task 3")
 .AddBar(h3,"Task",{^2006-9-29},{^2006-10-2})
 .AddLink("L2",h2,"",h3,"")
 .Link("L2",12) = "L2"
 endwith
 .EndUpdate
endwith

The following Delphi sample makes the links that starts from selected bar being wider, while
the rest being transparent:

with AxG2antt1 do
begin
 BeginUpdate();
 Columns.Add('Tasks');
 with Chart do
 begin
 FirstVisibleDate := '9/20/2006';
 PaneWidth[0 <> 0] := 64;
 ShowLinksWidth[EXG2ANTTLib.ShowLinksEnum.exShowLinksStartFrom] := 2;
 ShowLinksStyle[EXG2ANTTLib.ShowLinksEnum.exShowLinksStartFrom] :=
EXG2ANTTLib.LinkStyleEnum.exLinkDot;
 ShowLinksColor[EXG2ANTTLib.ShowLinksEnum.exShowLinksEndTo] := 13158600;
 ShowLinksColor[EXG2ANTTLib.ShowLinksEnum.exShowUnselectedLinks] :=
13158600;
 end;

 with Items do
 begin
 h1 := AddItem('Task 1');
 AddBar(h1,'Task','9/21/2006','9/23/2006',Nil,Nil);
 h2 := AddItem('Task 2');
 AddBar(h2,'Task','9/25/2006','9/27/2006',Nil,Nil);
 ItemBar[h2,'',EXG2ANTTLib.ItemBarPropertyEnum.exBarSelected] := TObject(True);
 AddLink('L1',h1,'',h2,'');
 Link['L1',EXG2ANTTLib.LinkPropertyEnum.exLinkText] := 'L1';
 h3 := AddItem('Task 3');
 AddBar(h3,'Task','9/29/2006','10/2/2006',Nil,Nil);
 AddLink('L2',h2,'',h3,'');
 Link['L2',EXG2ANTTLib.LinkPropertyEnum.exLinkText] := 'L2';
 end;
 EndUpdate();
end

property Chart.ShowLinksWidth(Links as ShowLinksEnum) as Long
Retrieves or sets a value that indicates the width to display the links based on the user
selection.

Type Description

Links as ShowLinksEnum A ShowLinksEnum expression that specifies the links width
being accessed.

Long A Long expression that specifies the width to display the
links.

By default the ShowLinksWidth property is 0, which means that it has no effect. The
ShowLinksWidth property specifies the width to show the links when the link starts from
selected bar, ends on selected bar, or when it is not related to any of selected bars. The
ShowLinksStyle property specifies the width to show the links when the link starts from
selected bar, ends on selected bar, or when it is not related to any of selected bars. The
ShowLinksColor property specifies the color to display the links when link starts from
selected bar, ends on selected bar, or when it is not related to any of selected bars. You
can hide the links if the ShowLinksColor property is the same as the chart's background
color being specified by the BackColor property.

The ShowLinks property specifies whether the chart's links are visible or hidden. Use the
LinkColor property to specify the color for all links in the chart area. Use the LinkStyle
property to specify the style for all links in the chart area. Use the LinkWidth property to
specify the width of the pen, in pixels, to draw the links between bars. Use the AddLink
method to add programmatically a link a bar with another.

The following screen shows the links when no bar is selected:

The following screen shows the links when the bar 2 is selected:

The following VB sample makes the links that starts from selected bar being wider, while
the rest being transparent:

With G2antt1
 .BeginUpdate
 .Columns.Add "Tasks"
 With .Chart
 .FirstVisibleDate = #9/20/2006#
 .PaneWidth(0) = 64
 .ShowLinksWidth(exShowLinksStartFrom) = 2
 .ShowLinksStyle(exShowLinksStartFrom) = exLinkDot
 .ShowLinksColor(exShowLinksEndTo) = RGB(200,200,200)
 .ShowLinksColor(exShowUnselectedLinks) = RGB(200,200,200)
 End With
 With .Items
 h1 = .AddItem("Task 1")
 .AddBar h1,"Task",#9/21/2006#,#9/23/2006#
 h2 = .AddItem("Task 2")
 .AddBar h2,"Task",#9/25/2006#,#9/27/2006#
 .ItemBar(h2,"",exBarSelected) = True
 .AddLink "L1",h1,"",h2,""
 .Link("L1",exLinkText) = "L1"
 h3 = .AddItem("Task 3")
 .AddBar h3,"Task",#9/29/2006#,#10/2/2006#
 .AddLink "L2",h2,"",h3,""
 .Link("L2",exLinkText) = "L2"
 End With
 .EndUpdate
End With

The following VB.NET sample makes the links that starts from selected bar being wider,
while the rest being transparent:

Dim h1,h2,h3
With AxG2antt1
 .BeginUpdate
 .Columns.Add "Tasks"
 With .Chart
 .FirstVisibleDate = #9/20/2006#
 .PaneWidth(0) = 64
 .ShowLinksWidth(EXG2ANTTLib.ShowLinksEnum.exShowLinksStartFrom) = 2
 .ShowLinksStyle(EXG2ANTTLib.ShowLinksEnum.exShowLinksStartFrom) =
EXG2ANTTLib.LinkStyleEnum.exLinkDot
 .ShowLinksColor(EXG2ANTTLib.ShowLinksEnum.exShowLinksEndTo) = 13158600
 .ShowLinksColor(EXG2ANTTLib.ShowLinksEnum.exShowUnselectedLinks) =
13158600
 End With
 With .Items
 h1 = .AddItem("Task 1")
 .AddBar h1,"Task",#9/21/2006#,#9/23/2006#
 h2 = .AddItem("Task 2")
 .AddBar h2,"Task",#9/25/2006#,#9/27/2006#
 .ItemBar(h2,"",EXG2ANTTLib.ItemBarPropertyEnum.exBarSelected) = True
 .AddLink "L1",h1,"",h2,""
 .Link("L1",EXG2ANTTLib.LinkPropertyEnum.exLinkText) = "L1"
 h3 = .AddItem("Task 3")
 .AddBar h3,"Task",#9/29/2006#,#10/2/2006#
 .AddLink "L2",h2,"",h3,""
 .Link("L2",EXG2ANTTLib.LinkPropertyEnum.exLinkText) = "L2"
 End With
 .EndUpdate
End With

The following C++ sample makes the links that starts from selected bar being wider, while
the rest being transparent:

/*
 Copy and paste the following directives to your header file as

 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->BeginUpdate();
spG2antt1->GetColumns()->Add(L"Tasks");
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutFirstVisibleDate("9/20/2006");
 var_Chart->PutPaneWidth(0,64);
 var_Chart->PutShowLinksWidth(EXG2ANTTLib::exShowLinksStartFrom,2);
 var_Chart-
>PutShowLinksStyle(EXG2ANTTLib::exShowLinksStartFrom,EXG2ANTTLib::exLinkDot);
 var_Chart->PutShowLinksColor(EXG2ANTTLib::exShowLinksEndTo,RGB(200,200,200));
 var_Chart-
>PutShowLinksColor(EXG2ANTTLib::exShowUnselectedLinks,RGB(200,200,200));
EXG2ANTTLib::IItemsPtr var_Items = spG2antt1->GetItems();
 long h1 = var_Items->AddItem("Task 1");
 var_Items->AddBar(h1,"Task","9/21/2006","9/23/2006",vtMissing,vtMissing);
 long h2 = var_Items->AddItem("Task 2");
 var_Items->AddBar(h2,"Task","9/25/2006","9/27/2006",vtMissing,vtMissing);
 var_Items->PutItemBar(h2,"",EXG2ANTTLib::exBarSelected,VARIANT_TRUE);
 var_Items->AddLink("L1",h1,"",h2,"");
 var_Items->PutLink("L1",EXG2ANTTLib::exLinkText,"L1");
 long h3 = var_Items->AddItem("Task 3");
 var_Items->AddBar(h3,"Task","9/29/2006","10/2/2006",vtMissing,vtMissing);
 var_Items->AddLink("L2",h2,"",h3,"");
 var_Items->PutLink("L2",EXG2ANTTLib::exLinkText,"L2");
spG2antt1->EndUpdate();

The following C# sample makes the links that starts from selected bar being wider, while
the rest being transparent:

axG2antt1.BeginUpdate();
axG2antt1.Columns.Add("Tasks");
EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;

 var_Chart.FirstVisibleDate = "9/20/2006";
 var_Chart.set_PaneWidth(0 != 0,64);

var_Chart.set_ShowLinksWidth(EXG2ANTTLib.ShowLinksEnum.exShowLinksStartFrom,2);

var_Chart.set_ShowLinksStyle(EXG2ANTTLib.ShowLinksEnum.exShowLinksStartFrom,EXG2ANTTLib.LinkStyleEnum.exLinkDot);

var_Chart.set_ShowLinksColor(EXG2ANTTLib.ShowLinksEnum.exShowLinksEndTo,13158600);

var_Chart.set_ShowLinksColor(EXG2ANTTLib.ShowLinksEnum.exShowUnselectedLinks,13158600);

EXG2ANTTLib.Items var_Items = axG2antt1.Items;
 int h1 = var_Items.AddItem("Task 1");
 var_Items.AddBar(h1,"Task","9/21/2006","9/23/2006",null,null);
 int h2 = var_Items.AddItem("Task 2");
 var_Items.AddBar(h2,"Task","9/25/2006","9/27/2006",null,null);
 var_Items.set_ItemBar(h2,"",EXG2ANTTLib.ItemBarPropertyEnum.exBarSelected,true);
 var_Items.AddLink("L1",h1,"",h2,"");
 var_Items.set_Link("L1",EXG2ANTTLib.LinkPropertyEnum.exLinkText,"L1");
 int h3 = var_Items.AddItem("Task 3");
 var_Items.AddBar(h3,"Task","9/29/2006","10/2/2006",null,null);
 var_Items.AddLink("L2",h2,"",h3,"");
 var_Items.set_Link("L2",EXG2ANTTLib.LinkPropertyEnum.exLinkText,"L2");
axG2antt1.EndUpdate();

The following VFP sample makes the links that starts from selected bar being wider, while
the rest being transparent:

with thisform.G2antt1
 .BeginUpdate
 .Columns.Add("Tasks")
 with .Chart
 .FirstVisibleDate = {^2006-9-20}
 .PaneWidth(0) = 64
 .ShowLinksWidth(1) = 2
 .ShowLinksStyle(1) = 2

 .ShowLinksColor(2) = RGB(200,200,200)
 .ShowLinksColor(4) = RGB(200,200,200)
 endwith
 with .Items
 h1 = .AddItem("Task 1")
 .AddBar(h1,"Task",{^2006-9-21},{^2006-9-23})
 h2 = .AddItem("Task 2")
 .AddBar(h2,"Task",{^2006-9-25},{^2006-9-27})
 .DefaultItem = h2
 .ItemBar(0,"",257) = .T.
 .AddLink("L1",h1,"",h2,"")
 .Link("L1",12) = "L1"
 h3 = .AddItem("Task 3")
 .AddBar(h3,"Task",{^2006-9-29},{^2006-10-2})
 .AddLink("L2",h2,"",h3,"")
 .Link("L2",12) = "L2"
 endwith
 .EndUpdate
endwith

The following Delphi sample makes the links that starts from selected bar being wider, while
the rest being transparent:

with AxG2antt1 do
begin
 BeginUpdate();
 Columns.Add('Tasks');
 with Chart do
 begin
 FirstVisibleDate := '9/20/2006';
 PaneWidth[0 <> 0] := 64;
 ShowLinksWidth[EXG2ANTTLib.ShowLinksEnum.exShowLinksStartFrom] := 2;
 ShowLinksStyle[EXG2ANTTLib.ShowLinksEnum.exShowLinksStartFrom] :=
EXG2ANTTLib.LinkStyleEnum.exLinkDot;
 ShowLinksColor[EXG2ANTTLib.ShowLinksEnum.exShowLinksEndTo] := 13158600;
 ShowLinksColor[EXG2ANTTLib.ShowLinksEnum.exShowUnselectedLinks] :=
13158600;
 end;

 with Items do
 begin
 h1 := AddItem('Task 1');
 AddBar(h1,'Task','9/21/2006','9/23/2006',Nil,Nil);
 h2 := AddItem('Task 2');
 AddBar(h2,'Task','9/25/2006','9/27/2006',Nil,Nil);
 ItemBar[h2,'',EXG2ANTTLib.ItemBarPropertyEnum.exBarSelected] := TObject(True);
 AddLink('L1',h1,'',h2,'');
 Link['L1',EXG2ANTTLib.LinkPropertyEnum.exLinkText] := 'L1';
 h3 := AddItem('Task 3');
 AddBar(h3,'Task','9/29/2006','10/2/2006',Nil,Nil);
 AddLink('L2',h2,'',h3,'');
 Link['L2',EXG2ANTTLib.LinkPropertyEnum.exLinkText] := 'L2';
 end;
 EndUpdate();
end

property Chart.ShowNonworkingDates as Boolean
Shows or hides nonworking dates.

Type Description

Boolean A boolean expression that indicates whether the chart
marks the nonworking days.

Use the ShowNonworkingDates property to stop highlighting the nonworking dates. The
NonworkingDays property specifies the days being marked as nonworking in a week. Use
the AddNonworkingDate method to add custom dates as being nonworking days. Use the
IsNonworkingDate property to specify whether the date is a nonworking day. Use the
NonworkingDaysPattern property to specify the pattern being used to fill non-working days.
The NonworkingDaysColor property specifies the color being used to fill the non-working
days. Use the ClearNonworkingDates method to remove all nonworking dates. Use the
ItemNonworkingUnits property to specify different non-working zones for different items.
Use the UnitWidthNonworking property to specify a different width for non-working units in
the base level. The ShowNonworkingUnits property specifies whether the nonworking units
are shown or hidden. Use the FormatLabel property to specify the format of the chart's
level (header).

Generally, you can use the following functions to specify non-working parts in the chart:

The NonworkingDays property specifies the days being marked as nonworking in a
week. Use the AddNonworkingDate method to add custom dates as being nonworking
days. Use the NonworkingDaysPattern property to specify the pattern being used to fill
non-working days. The NonworkingDaysColor property specifies the color being used
to fill the non-working days. Use the ClearNonworkingDates method to remove all
nonworking dates. Use the IsDateVisible property to specify whether a date fits the
chart's area.
The NonworkingHours property indicates the non-working hours with in a day. The non-
working hours are shown using the NonworkingHoursPattern and the
NonworkingHoursColor which defines the pattern and the color, when the base level of
the chart displays hours, if the ShowNonworkingUnits property is True (by default).
The ItemNonworkingUnits property specifies different non-working zones for different
items. If the Item parameter indicates a valid handle, the IsNonworkingDate property
queries the non-working expression for the item if the giving Date parameter is being
non-working or working unit.

Generally, you can use the following attributes for a bar (ItemBar property) to work with
non-working part of the bars:

exBarWorkingCount attribute specifies the working count in days for the giving bar. For
instance, if the exBarWorkingCount is 1 indicates a full day, or 24 working hours, while

if it is 1/24 it indicates one working hour.
exBarNonWorkingCount attributes specifies the working count in days for the giving
bar. For instance, if the exBarNonWorkingCount is 1 indicates a full day, or 24 non-
working hours, while if it is 1/24 it indicates one non-working hour.
exBarWorkingUnits attribute retrieves a safe array of pair (start-end) that indicates the
working parts of the bar. You can use the exBarWorkingUnitsAsString attribute to
display the working parts of the bar as a string. The /NET assembly provides the
public virtual DateTime[] get_BarWorkingUnits(int Item, object Key) method that
returns the array of 2 DateTime objects that specifies the working parts of the bar.
exBarWorkingUnitsAsString attribute retrieves the working part of the bar as a string, in
other words it is similar with the exBarWorkingUnits excepts that it returns a string that
shows the working parts of the bar.
exBarNonWorkingUnits attribute retrieves a safe array of pair (start-end) that indicates
the non-working parts of the bar. You can use the exBarNonWorkingUnitsAsString
attribute to display the non-working parts of the bar as a string. The /NET assembly
provides the public virtual DateTime[] get_BarNonWorkingUnits(int Item, object Key)
method that returns the array of 2 DateTime objects that specifies the working parts of
the bar.
exBarNonWorkingUnitsAsString attribute retrieves the non-working part of the bar as a
string, in other words it is similar with the exBarNonWorkingUnits excepts that it returns
a string that shows the non-working parts of the bar.

The following screen shots shows the chart based on the value for the properties:

ShowNonworkingDates property indicates whether the non-working (weekend) days
are shown or hidden
ShowNonworkingUnits property indicates whether the charts lists the non-working units,
hours or days
UnitWidthNonworking property specifies the width for non-working units, hours or days

Use the AdjustLevelsToBase property to align the levels to base level. The chart's
NonworkingDays property is 65 (indicates that saturday and sunday are non-working days
) while the NonworkingHours property is 16761855 (indicates working hour from 10AM to 2
PM).

ShowNonworkingDates = True, UnitWidthNonworking = 0, ShowNonworkingUnits =
True (by default)

ShowNonworkingDates = False, UnitWidthNonworking = 0, ShowNonworkingUnits =
True

ShowNonworkingDates = True, UnitWidthNonworking = 2, ShowNonworkingUnits =
True

ShowNonworkingDates = True, UnitWidthNonworking = -18, ShowNonworkingUnits =
True

ShowNonworkingDates = False, UnitWidthNonworking = 2, ShowNonworkingUnits =
True

ShowNonworkingDates = False, UnitWidthNonworking = -18, ShowNonworkingUnits =
True

ShowNonworkingDates = True, UnitWidthNonworking = 0, ShowNonworkingUnits =
False

ShowNonworkingDates = True, UnitWidthNonworking = 2, ShowNonworkingUnits =
False

ShowNonworkingDates = True, UnitWidthNonworking = -18, ShowNonworkingUnits =
False

ShowNonworkingDates = False, UnitWidthNonworking = 0, ShowNonworkingUnits =
False

property Chart.ShowNonworkingHours as Boolean
Shows or hides nonworking hours.

Type Description

Boolean A boolean expression that indicates whether the chart
marks the nonworking hours.

The ShowNonworkingHours property specifies whether the non-working hours are shown on
the chart. While the Chart.ShowNonworkingHours property is True and
Chart.ShowNonworkingUnits property is True, the non-working hours are visible on the chart
only if the Chart.NonworkingHours property is set, Chart.UnitScale is exDay (and
Level.Count property is 1), exHour, exMinute and exSecond. The NonworkingHours
property indicates the non-working hours with in a day. The non-working hours are shown
using the NonworkingHoursPattern and the NonworkingHoursColor which defines the pattern
and the color, when the base level of the chart displays hours, if the ShowNonworkingUnits
property is True (by default).

The following screen shot shows the control's chart when ShowNonworkingHours and
ShowNonworkingUnits properties are False:

The following screen shot shows the control's chart when ShowNonworkingHours and
ShowNonworkingUnits properties are True (by default):

property Chart.ShowNonworkingUnits as Boolean
Retrieves or sets a value that indicates whether the non-working units are visible or hidden.

Type Description

Boolean A Boolean expression that specifies whether the non-
working units (hours or days) are visible or hidden.

By default, the ShowNonworkingUnits property is True. In other words, by default the
control displays the non-working units. Use the ShowNonworkingDates property to specify
whether the the days are shown or hidden while the ShowNonworkingUnits property is
False. Use the ShowNonworkingHours property to specify whether the the hours are shown
or hidden while the ShowNonworkingUnits property is False. Use the UnitWidthNonworking
property to specify a different width for non-working units in the base level. Use the
NonworkingHours property to specify the non-working hours in your chart. Use the
NonworkingDays property to specify the non-working days. Use the ShowNonworkingUnits
property to display ONLY working units. For instance, you can display for each day the
hours from 08:00 AM to 04:00PM, as the other hours (non working hours) are not
displayed in the chart. Use the FormatLabel property to specify the format of the chart's
level (header). The ItemNonworkingUnits property specifies different non-working zones
for different items. The ShowNonworkingUnits property has no effect if the
NonworkingHours and NonWorkingsDays properties are 0.

If ShowNonworkingUnits property is True the:

ShowNonworkingDates property specifies whether the non-working days pattern is
displayed or hidden
ShowNonworkingHours property specifies whether the non-working hours pattern is
displayed or hidden

If ShowNonworkingUnits property is False the:

ShowNonworkingDates property specifies whether the non-working days is
shown(visible) or hidden
ShowNonworkingHours property specifies whether the non-working hours is
shown(visible) or hidden

The following tables shows the control while ShowNonworkingUnits /
ShowNonworkingDates / ShowNonworkingHours properties have different values (x
indicate true):

ShowNonworkingUnits ShowNonworkingDates ShowNonworkingHours

x x x

x x

x x

x

x x

x

x

The following screen shot shows ONLY working hours from 08:00 AM to 12:00 PM (
ShowNonworkingUnits property is False) :

The following screen shot shows with a different pattern the non-working hours (
ShowNonworkingUnits property is True) :

1. The following screen shot shows the non-working units when the ShowNonworkingUnits
property is True and UnitWidthNonworking property is 0 (by default):

The days 30, 31, 6, 7, ... are shown using the same width, when the ChartWidthNonworking
property is 0

2. The following screen shot hides the non-working units when the ShowNonworkingUnits
property is False and ShowNonworkingDates property is False:

The days 30, 31, 6, 7, 13, 14, ... are not shown if the ShowNonworkingUnits property is
False.

3. The following screen shot shows the non-working units when the ShowNonworkingUnits
property is True and UnitWidthNonworking property is 12 (positive value):

The days 30, 31, 6, 7, 13, 14, ... are shown using the a different width, when the

ChartWidthNonworking property is positive.

4. The following screen shot shows the non-working units when the ShowNonworkingUnits
property is True and UnitWidthNonworking property is -12 (negative value):

The days 30, 31, 6, 7, 13, 14, ... are shown as a single non-working unit, when the
ChartWidthNonworking property is negative.

5. If the chart displays days and use the NonworkingHours property to specify the non-
working hours, but want to display the bars using the entire space of the day you need to
specify the ShowNonworkingUnits property on False, the Unit property on exHour, Count
property on 24 (so actually it you simulate an entire day)

By default a bar that starts on #1/4/2002 10:00# and ends on #1/4/2002 14:00# looks as
follows:

instead if the Unit property on exHour, Count property on 24 for the level that displays days
and specify the ShowNonworkingUnits property on False we get this:

property Chart.ShowNotes as Boolean
Specifies whether all notes or boxes are shown or hidden.

Type Description

Boolean
A Boolean expression that specifies whether the chart
shows or hides the notes associated with DATEs ot
BARs.

By default, the ShowNotes property is True. Use the ShowNotes property to show or hide
the notes in the chart area. The Clear method removes all notes in the control. Use the
Remove method to remove a specific Note in the collection. Use the Add method to add
new notes to the chart area. Use the NoteFromPoint property to access the note from the
cursor. Use the Visible property to show or hide a specific note, or use the PartVisible
property to specify whether the start or ending part of the note is visible or hidden. The
ShowLink property specifies whether the link between parts of the notes is visible or
hidden. The ClipTo property specifies the limits of the notes within the chart.

The following screen shot shows notes associated with a BAR:

property Chart.ShowTransparentBars as Long
Gets or sets a value that indicates percent of the transparency to display the bars.

Type Description

Long

A Long expression, from 0 to 100, that indicates the
percent of transparency that's used to paint the bars. 0
means opaque, 100 means hidden, or 100% transparent.
50 means semi-transparent.

By default, the ShowTransparentBars property is 0, which means that the bars are opaque.
Use the ShowTransparentBars property to draw all bars using a semi-transparent color.
Use the ShowTransparentBars property to draw the intersection of bars using a semi-
transparent color.

The following screen shot shows only few items that are shown using a semi-transparent
color (the bars in red). Use the ItemBar(exBarTransparent) property to specify the percent
of the transparency to display a specified bar. Use the ItemBar(exBarOffset) property to
specify the the vertical offset to show the bar.

The following screen shot shows two bars when the ShowTransparentBars property is 0:

The following screen shot shows two bars when the ShowTransparentBars property is 60,
which means 60% transparent:

property Chart.SplitPaneWidth as String
Specifies the width of split panels, separated by comma.

Type Description

String A String expression that specifies the width (in pixels) of
split panels, separated by comma.

By default, the SplitPaneWidth property is empty. The SplitPaneWidth property specifies
the width of split panels, separated by comma. The AllowSplitPane property specifies
whether the chart panel supports splitting. Once the AllowSplitPane property is set, the
user can click the lower-right split bar, and drag to a new position to add a new split to the
current chart. The Background(exCSplitBar) property specifies the visual appearance of the
chart's split bar. The exDisableSplitPane flag of OnResizeControl property specifies
whether the user can drag the split bar at runtime. The
ChartStartChanging(exSplitPaneChange) / ChartEndChanging(exSplitPaneChange) events
notify that the user splits/resizes the chart's panel into multiple-views.

method Chart.StartBlockUndoRedo ()
Starts recording the UI operations as a block of undo/redo operations.

Type Description

The StartBlockUndoRedo method starts recording the UI operations as a block on
undo/redo operations. The method has effect only if the AllowUndoRedo property is True.
The EndBlockUndoRedo method collects all undo/redo operations since
StartBlockUndoRedo method was called and add them to the undo/redo queue as a block.
This way the next call on a Undo operation, the entire block is restored, so all UI operations
are restored. For instance, if you have a procedure that moves several bars, and want all of
them being grouped, you can use StartBlockUndoRedo to start recording the operations as
a block, and call the EndBlockUndoRedo when procedure ends, so next call of an undo
operation the bars are restored to their original position. The EndBlockUndoRedo method
must be called the same number of times as the StartBlockUndoRedo method was called.
For instance, if you have called the StartBlockUndoRedo twice the EndBlockUndoRedo
method must be called twice too, and the collected operations are added to the chart's
queue of undo/redo operations at the end.

The chart fires the ChartStartChanging event when the user starts an UI operation, for
instance, moving a bar. The ChartEndChanging event notifies your application once the user
operation on the chart ends. By default, each undo/redo operation is added sequentially as
they occur. You can call the StartBlockUndoRedo method during the ChartStartChanging
event so all operations that are about to begin will be as a block when calling the
EndBlockUndoRedo during the ChartEndChanging event. For instance, if a bar is related to
multiple bars using grouping options, so if a bar is moved other bars must be moved, the
undo/redo operations are added sequentially as they appear. So calling the Undo action will
restore moving a bar once at the time. Using the StartBlockUndoRedo/EndBlockUndoRedo
methods you can control the block of undo/redo operations being grouped in a block, so
next time the Undo/Redo operation is performed, the entire block of operations is
performed or restored at once. For instance, the SchedulePDM method performs multiple
operations during bars, so all of them are grouped as a block.

For instance, we we have the following chart:

In this case the, the K1, K2 and K3 bars are grouped, so moving any bar will result in
moving relative bars.

The following screen shot shows the chart after moving the bar K3 to a new position as

well as a to a new parent,

so the undo/redo queue looks like:

StartBlock MoveBar;1;sum
MoveBar;2;K4
MoveBar;3;K3
EndBlock
ParentChangeBar;2;K3

In this case, we need to press twice the CTRL + Z to restore back the chart as it was
before moving the bar K3.

Instead if we are using the StartBlockUndoRedo and EndBlockUndoRedo methods as
follow:

Private Sub G2antt1_ChartStartChanging(ByVal Operation As
EXG2ANTTLibCtl.BarOperationEnum)
 G2antt1.Chart.StartBlockUndoRedo
End Sub

Private Sub G2antt1_ChartEndChanging(ByVal Operation As
EXG2ANTTLibCtl.BarOperationEnum)
 G2antt1.Chart.EndBlockUndoRedo
End Sub

We have the undo/redo queue as follows (if we perform the same operation):

StartBlock
MoveBar;1;sum
MoveBar;2;K4
MoveBar;3;K3
ParentChangeBar;2;K3
EndBlock

In this case, we need to press only once the CTRL + Z to restore back the chart as it was
before moving the bar K3.

property Chart.StartPrintDate as Variant
Retrieves or sets a value that indicates the printing start date.

Type Description

Variant

A DATE expression that specifies the ending date to print
the chart. The get method always retrieves a DATE
expression. When calling the set method of the
StartPrintDate property, it can be a string, a DATE or any
other expression that can be converted to a date.

The StartPrintDate property indicates the date the chart starts, when:

printing the control's content using the exprint component
coping the control's content using the CopyTo method (since 22.0.1.5)

By default, the StartPrintDate property computes the required start date so the entire chart
is displayed, if the StartPrintDate was not specified before. For instance, if you set the
StartPrintDate property on "Jan 1 2001", the StartPrintDate property returns the "Jan 1
2001" date and does not compute the required start date. If you have specified a value for
the StartPrintDate but you still need to get the required start date being computed, set the
StartPrintDate property on 0, and calling the next method get of StartPrintDate property
computes the required start date to print the chart. Use the EndPrintDate property to
specify the end date to print the chart. Use the CountVisibleUnits property to count the
number of units within the specified range. Use the FirstVisibleDate property to specify the
first visible date of the chart when displaying on the screen.

property Chart.TimeZoneFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Variant
Retrieves the time-zone from the cursor.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

Variant
A String expression that indicates the key of the date-time
zone from the cursor, or empty value if there is no date-
time zone.

The TimeZoneFromPoint property retrieves the key of the time-zone from the cursor. A
zone can be used to highlight a range of dates, specifying the start and end zone. The
TimeZoneInfo property retrieves information about the time-zone giving its key. The
DateFromPoint property gets the date from point. Use the MarkTimeZone method to
highlight different time-zones. Use the RemoveTimeZone method to delete the time zone
being added previously using the MarkTimeZone method. The MarkTodayColor property
specifies the color to mark the today date. Use the SelectDate property to select a date by
clicking the chart's header. Use the MarkNowColor property to show a vertical bar that
indicates the current date-time in the control's chart, from seconds to seconds, minutes,
and so on. If the X parameter is -1 and Y parameter is -1 the TimeZoneFromPoint
property determines the key of the date-time zone from the cursor.

property Chart.TimeZoneInfo (Key as Variant) as Variant
Retrieves information about the time-zone giving its key.

Type Description

Key as Variant A String expression that specifies the key of the date-time
zone to access the information

Variant
A safe array of 5 elements that indicates the Key, Start,
End, Color and Options parameters being using at the
time MarkTimeZone method is invoked.

The TimeZoneInfo property can be used to access the information about a date-time zone.
A zone can be used to highlight a range of dates, specifying the start and end zone. Use the
MarkTimeZone method to highlight different time-zones. Use the RemoveTimeZone method
to delete the time zone being added previously using the MarkTimeZone method. The
TimeZoneFromPoint property retrieves the key of the time-zone from the cursor.

The TimeZoneInfo property retrieves a vector of 5 fields as follows:

Key - A String expression that specifies a key to identify the zone.
Start - A DATE expression that specifies the starting point for the zone.
End - A DATE expression that specifies the ending point for the zone.
Color - A Color expression that specifies the date-time zone to be highlighted.
Options - A String expression that specifies options to mark the zone.

For instance, the following VB sample displays the stating point of the date-time zone from
the cursor:

Private Sub G2antt1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Dim k As Variant
 k = G2antt1.Chart.TimeZoneFromPoint(-1, -1)
 If (Not IsEmpty(k)) Then
 Debug.Print "Start at: " & G2antt1.Chart.TimeZoneInfo(k)(1)
 End If
End Sub

property Chart.ToolTip as String
Retrieves or sets a value that indicates the format of the tooltip being shown while the user
scrolls the chart.

Type Description
String A String expression that includes the format of the tooltip.

By default, the ToolTip property is " <%ddd%> <%m%>/<%d%>/<%yyyy%> ". The ToolTip
property specifies the tooltip that shows up when the user scrolls the chart. The Tooltip
message shows the value for the chart's FirstVisibleDate property. If the ToolTip property is
empty, the control doesn't show up the tooltip when the user scrolls the chart instead it
does directly the scrolling. The ToolTipDelay property specifies the time in ms that passes
before the ToolTip appears. The ToolTipPopDelay property specifies the period in ms of
time the ToolTip remains visible if the mouse pointer is stationary within a control. Use the
ToolTipWidth property to specify the width of the tooltip window. Use the FormatDate
property to format a date. Use the MonthNames property to specify the name of the
months in the year. The WeekDays property retrieves or sets a value that indicates the list
of names for each week day, separated by space. Use the Zoom method to zoom the chart
to a specified interval of dates. Use the AMPM property to specify the name of the AM and
PM indicators. The Label property specifies a predefined label for a specified unit. Use the
ScrollBar property to show or hide the chart's scroll bar. Use the ItemBar(exBarToolTip)
property to assign a tooltip to a bar. Use the OverviewToolTip property retrieves or sets a
value that indicates the format of the tooltip being shown while the cursor hovers the chart's
overview area.

The ToolTip property supports the following built-in tags:

<%d%> - Day of the month in one or two numeric digits, as needed (1 to 31).
<%dd%> - Day of the month in two numeric digits (01 to 31).
<%d1%> - First letter of the weekday (S to S). (Use the WeekDays property to
specify the name of the days in the week)
<%loc_d1%> - Indicates day of week as a one-letter abbreviation using the current
user settings.
<%d2%> - First two letters of the weekday (Su to Sa). (Use the WeekDays property
to specify the name of the days in the week)
<%loc_d2%> - Indicates day of week as a two-letters abbreviation using the current
user settings.
<%d3%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays

property to specify the name of the days in the week)
<%loc_d3%> equivalent with <%loc_ddd%>
<%ddd%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_ddd%> that indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%loc_ddd%> - Indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%dddd%> - Full name of the weekday (Sunday to Saturday). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_dddd%> that indicates day of week as its full name using the current user
regional and language settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
regional and language settings.
<%i%> - Displays the number instead the date. For instance, you can display numbers
as 1000, 1001, 1002, 1003, instead dates. (the valid range is from -647,434 to
2,958,465)
<%w%> - Day of the week (1 to 7).
<%ww%> - Week of the year (1 to 53).
<%m%> - Month of the year in one or two numeric digits, as needed (1 to 12).
<%mr%> - Month of the year in Roman numerals, as needed (I to XII).
<%mm%> - Month of the year in two numeric digits (01 to 12).
<%m1%> - First letter of the month (J to D). (Use the MonthNames property to
specify the name of the months in the year)
<%loc_m1%> - Indicates month as a one-letter abbreviation using the current user
settings.
<%m2%> - First two letters of the month (Ja to De). (Use the MonthNames property
to specify the name of the months in the year)
<%loc_m2%> - Indicates month as a two-letters abbreviation using the current user
settings.
<%m3%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year)
<%loc_m3%> - equivalent with <%loc_mmm%>
<%mmm%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year). You can use the
<%loc_mmm%> that indicates month as a three-letter abbreviation using the current
user regional and language settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
regional and language settings.
<%mmmm%> - Full name of the month (January to December). (Use the
MonthNames property to specify the name of the months in the year). You can use the
<%loc_mmmm%> that indicates month as its full name using the current user regional

and language settings.
<%loc_mmmm%> - Indicates month as its full name using the current user regional
and language settings.
<%q%> - Date displayed as the quarter of the year (1 to 4).
<%y%> - Number of the day of the year (1 to 366).
<%yy%> - Last two digits of the year (01 to 99).
<%yyyy%> - Full year (0100 to 9999).
<%hy%> - Date displayed as the half of the year (1 to 2).
<%loc_gg%> - Indicates period/era using the current user regional and language
settings.
<%loc_sdate%> - Indicates the date in the short format using the current user regional
and language settings.
<%loc_ldate%> - Indicates the date in the long format using the current user regional
and language settings.
<%loc_dsep%> - Indicates the date separator using the current user regional and
language settings (/).
<%h%> - Hour in one or two digits, as needed (0 to 23).
<%hh%> - Hour in two digits (00 to 23).
<%h12%> - Hour in 12-hour time format, in one or two digits - [0(12),11]
<%hh12%> - hour in 12-hour time format, in two digits - [00(12),11]
<%n%> - Minute in one or two digits, as needed (0 to 59).
<%nn%> - Minute in two digits (00 to 59).
<%s%> - Second in one or two digits, as needed (0 to 59).
<%ss%> - Second in two digits (00 to 59).
<%AM/PM%> - Twelve-hour clock with the uppercase letters "AM" or "PM", as
appropriate. (Use the AMPM property to specify the name of the AM and PM
indicators). You can use the <%loc_AM/PM%> that indicates the time marker such as
AM or PM using the current user regional and language settings. You can use
<%loc_A/P%> that indicates the one character time marker such as A or P using the
current user regional and language settings
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user regional and language settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user regional and language settings.
<%loc_time%> - Indicates the time using the current user regional and language
settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user regional and language settings.
<%loc_tsep%> - indicates the time separator using the current user regional and
language settings (:)
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.

<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed

The following tags are displayed based on the user's Regional and Language Options:

<%loc_sdate%> - Indicates the date in the short format using the current user
settings.
<%loc_ldate%> - Indicates the date in the long format using the current user settings.
<%loc_d1%> - Indicates day of week as a one-letter abbreviation using the current
user settings.
<%loc_d2%> - Indicates day of week as a two-letters abbreviation using the current
user settings.
<%loc_d3%> equivalent with <%loc_ddd%>
<%loc_ddd%> - Indicates day of week as a three-letters abbreviation using the
current user settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
settings.
<%loc_m1%> - Indicates month as a one-letter abbreviation using the current user
settings.
<%loc_m2%> - Indicates month as a two-letters abbreviation using the current user
settings.
<%loc_m3%> - equivalent with <%loc_mmm%>
<%loc_mmm%> - Indicates month as a three-letters abbreviation using the current
user settings.
<%loc_mmmm%> - Indicates month as its full name using the current user settings.
<%loc_gg%> - Indicates period/era using the current user settings.
<%loc_dsep%> - Indicates the date separator using the current user settings.
<%loc_time%> - Indicates the time using the current user settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user settings.
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user settings.
<%loc_tsep%> - Indicates the time separator using the current user settings

<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed

method Chart.Undo ()
Performs the last Undo operation.

Type Description

Call the Undo method to Undo the last chart operation. The Undo method have effect only if
the AllowUndoRedo property is True. The CTRL+Z performs the last undo operation, while
the CTRL+Y redoes the next action in the chart's Redo queue. The Redo redoes the next
action in the chart's redo queue. The CanUndo property retrieves a value that indicates
whether the chart may perform the last Undo operation. The CanRedo property retrieves a
value that specifies whether the chart can execute the next operation in the chart's Redo
queue. The ChartStartChanging(exUndo/exRedo) / ChartEndChanging(exUndo/exRedo)
event notifies your application whenever an Undo/Redo operation is performed.

The records of the Undo/Redo queue may contain actions in the following format:

"AddBar;ITEMINDEX;KEY", indicates that a new bar has been created
"RemoveBar;ITEMINDEX;KEY", indicates that a bar has been removed
"MoveBar;ITEMINDEX;KEY", indicates that a bar has been moved or resized
"PercentChange;ITEMINDEX;KEY", indicates that the bar's percent has been
changed
"UpdateBar;ITEMINDEX;KEY", indicates that one or more properties of the bar has
been updated (ItemBar property, this operation can be added only using the
StartUpdateBar / EndUpdateBar methods)
"ParentChangeBar;ITEMINDEX;KEY", indicates that the bar's parent has been
changed
"GroupBars;ITEMINDEXA;KEYA;STARTA;ITEMINDEXB;KEYB;STARTB", specifies
that two bars has been grouped
"UngroupBars;ITEMINDEXA;KEYA;STARTA;ITEMINDEXB;KEYB;STARTB", specifies
that two bars has been ungrouped
"DefineSummaryBars;SUMMARYITEMINDEX;SUMMARYKEY;ITEMINDEX;KEY",
indicates that a bar has been defined as a child of a summary bar
"UndefineSummaryBars;SUMMARYITEMINDEX;SUMMARYKEY;ITEMINDEX;KEY",
indicates that a bar has been removed from the summary bar's children
"AddLink;KEY", indicates that a new link has been created
"RemoveLink;KEY", indicates that a link has been removed
"UpdateLink;KEY", specifies that one of more properties of the link has been updated
(Link property, this operation can be added only using the StartUpdateLink /
EndUpdateLink methods)

The records of the Undo/Redo queue may contain actions in the following format (available
starting from 23.0):

"AddItem;ITEMINDEX", indicates that a new item has been created
"RemoveItem;ITEMINDEX", indicates that an item has been removed
"ChangeItemPos;ITEMINDEX", indicates that an item changes its position or / and
parent
"ChangeCellValue;ITEMINDEX;CELLINDEX", indicates that the cell's value has been
changed
"ChangeCellState;ITEMINDEX;CELLINDEX", indicates that the cell's state has been
changed

Also, the Undo/Redo queue may include:

"StartBlock", specifies that a block of operations begins
"EndBlock", specifies that a block of operations ends

The UndoListAction property lists the Undo actions that can be performed in the chart. Use
the UndoRemoveAction method to remove the last actions from the undo queue.

property Chart.UndoListAction ([Action as Variant], [Count as Variant])
as String
Lists the Undo actions that can be performed in the chart.

Type Description

Action as Variant

[optional] A long expression that specifies the action being
listed. If missing or -1, all actions are listed.

The Action parameter can be one of the following:

exChartUndoRedoAddBar(0) ~
"AddBar;ITEMINDEX;KEY", indicates that a new bar
has been created
exChartUndoRedoRemoveBar(1) ~
"RemoveBar;ITEMINDEX;KEY", indicates that a bar
has been removed
exChartUndoRedoMoveBar(2) ~
"MoveBar;ITEMINDEX;KEY", indicates that a bar
has been moved or resized
exChartUndoRedoPercentChange(3) ~
"PercentChange;ITEMINDEX;KEY", indicates that
the bar's percent has been changed
exChartUndoRedoUpdateBar(4) ~
"UpdateBar;ITEMINDEX;KEY", indicates that one or
more properties of the bar has been updated
(ItemBar property, this operation can be added only
using the StartUpdateBar / EndUpdateBar methods)
exChartUndoRedoParentChangeBar(5) ~
"ParentChangeBar;ITEMINDEX;KEY", indicates that
the bar's parent has been changed
exChartUndoRedoGroupBars(6) ~
"GroupBars;ITEMINDEXA;KEYA;STARTA;ITEMINDEXB;KEYB;STARTB",
specifies that two bars has been grouped
exChartUndoRedoUngroupBars(7) ~
"UngroupBars;ITEMINDEXA;KEYA;STARTA;ITEMINDEXB;KEYB;STARTB",
specifies that two bars has been ungrouped
exChartUndoRedoDefineSummaryBars(8) ~
"DefineSummaryBars;SUMMARYITEMINDEX;SUMMARYKEY;ITEMINDEX;KEY",
indicates that a bar has been defined as a child of a
summary bar
exChartUndoRedoUndefineSummaryBars(9) ~
"UndefineSummaryBars;SUMMARYITEMINDEX;SUMMARYKEY;ITEMINDEX;KEY",

indicates that a bar has been removed from the
summary bar's children
exChartUndoRedoAddLink(10) ~ "AddLink;KEY",
indicates that a new link has been created
exChartUndoRedoRemoveLink(11) ~
"RemoveLink;KEY", indicates that a link has been
removed
exChartUndoRedoUpdateLink(12) ~
"UpdateLink;KEY", specifies that one of more
properties of the link has been updated (Link
property, this operation can be added only using the
StartUpdateLink / EndUpdateLink methods)
exListUndoRedoAddItem(13) ~
"AddItem;ITEMINDEX", indicates that a new item has
been created
exListUndoRedoRemoveItem(14) ~
"RemoveItem;ITEMINDEX", indicates that an item
has been removed
exListUndoRedoChangeItemPos(15) ~
"ChangeItemPos;ITEMINDEX", indicates that an item
changes its position or / and parent
exListUndoRedoChangeCellValue(16) ~
"ChangeCellValue;ITEMINDEX;CELLINDEX",
indicates that the cell's value has been changed
exListUndoRedoChangeCellState(17) ~
"ChangeCellState;ITEMINDEX;CELLINDEX",
indicates that the cell's state has been changed

For instance, UndoListAction(0) shows only AddBar
actions in the undo stack.

Count as Variant

[optional] A long expression that indicates the number of
actions being listed. If missing or -1, all actions are listed.
For instance, UndoListAction(0,1) shows only the last
AddBar action being added to the undo stack

String A String expression that lists the Undo actions that may be
performed.

Use the UndoListAction property to show the list of actions that the user may perform by
doing Undo operations. The ChartStartChanging(exUndo/exRedo) /
ChartEndChanging(exUndo/exRedo) event notifies your application whenever an Undo/Redo
operation is performed. For instance, the ChartEndChanging(exUndoRedoUpdate) notifies
whether a new operation is added/removed from the undo/redo queue. Use the

UndoRemoveAction method to remove the last actions from the undo queue. The
RedoListAction property lists the Redo actions that can be performed in the chart. The
CanUndo property specifies whether an undo operation can be performed if CTRL+Z key is
pressed.

The records of the Undo/Redo queue may contain actions in the following format:

"AddBar;ITEMINDEX;KEY", indicates that a new bar has been created
"RemoveBar;ITEMINDEX;KEY", indicates that a bar has been removed
"MoveBar;ITEMINDEX;KEY", indicates that a bar has been moved or resized
"PercentChange;ITEMINDEX;KEY", indicates that the bar's percent has been
changed
"UpdateBar;ITEMINDEX;KEY", indicates that one or more properties of the bar has
been updated (ItemBar property, this operation can be added only using the
StartUpdateBar / EndUpdateBar methods)
"ParentChangeBar;ITEMINDEX;KEY", indicates that the bar's parent has been
changed
"GroupBars;ITEMINDEXA;KEYA;STARTA;ITEMINDEXB;KEYB;STARTB", specifies
that two bars has been grouped
"UngroupBars;ITEMINDEXA;KEYA;STARTA;ITEMINDEXB;KEYB;STARTB", specifies
that two bars has been ungrouped
"DefineSummaryBars;SUMMARYITEMINDEX;SUMMARYKEY;ITEMINDEX;KEY",
indicates that a bar has been defined as a child of a summary bar
"UndefineSummaryBars;SUMMARYITEMINDEX;SUMMARYKEY;ITEMINDEX;KEY",
indicates that a bar has been removed from the summary bar's children
"AddLink;KEY", indicates that a new link has been created
"RemoveLink;KEY", indicates that a link has been removed
"UpdateLink;KEY", specifies that one of more properties of the link has been updated
(Link property, this operation can be added only using the StartUpdateLink /
EndUpdateLink methods)

The records of the Undo/Redo queue may contain actions in the following format (available
starting from 23.0):

"AddItem;ITEMINDEX", indicates that a new item has been created
"RemoveItem;ITEMINDEX", indicates that an item has been removed
"ChangeItemPos;ITEMINDEX", indicates that an item changes its position or / and
parent
"ChangeCellValue;ITEMINDEX;CELLINDEX", indicates that the cell's value has been
changed
"ChangeCellState;ITEMINDEX;CELLINDEX", indicates that the cell's state has been
changed

Also, the Undo/Redo queue may include:

"StartBlock", specifies that a block of operations begins
"EndBlock", specifies that a block of operations ends

Each action is on a single line, and each field is separated by ; character. The lines are
separated by "\r\n" characters (vbCrLf in VB).

For instance,

An AddLink action in the Undo stack means that an Undo operation will perform a
RemoveLink action.
A RemoveLink action in the Undo stack means that an Undo operation will perform an
AddLink action.
An AddLink action in the Redo stack means that a Redo operation will perform an
AddLink action.
A RemoveLink action in the Redo stack means that a Redo operation will perform a
RemoveLink action.

Here's a sample format of the UndoListAction property may get:

StartBlock
 MoveBar;1;E
 MoveBar;2;E
 MoveBar;3;
 MoveBar;4;
EndBlock
MoveBar;1;
DefineSummaryBars;4;;1;E
AddBar;1;E
DefineSummaryBars;4;;2;E
AddBar;2;E
DefineSummaryBars;4;;3;
AddBar;3;
AddBar;4;
DefineSummaryBars;1;;4;E
GroupBars;3;E;0;4;E;-1
GroupBars;3;E;0;4;E;-1
AddLink;L2
AddBar;4;E
GroupBars;2;;0;3;E;-1

GroupBars;2;;0;3;E;-1
AddLink;L1
DefineSummaryBars;1;;3;E
AddBar;3;E
DefineSummaryBars;1;;2;
AddBar;2;
AddBar;1;

The following VB sample splits the UndoListAction value and adds each action to a listbox
control:

List1.Clear
Dim s() As String
s = Split(G2antt1.Chart.UndoListAction, vbCrLf)
For i = LBound(s) To UBound(s)
 List1.AddItem s(i)
Next

property Chart.UndoRedoQueueLength as Long
Gets or sets the maximum number of Undo/Redo actions that may be stored to the chart's
queue.

Type Description

Long
A Long expression that specifies the length of the
Undo/Redo queue. If -1, the queue is unlimited, 0 allows
no entries in the Undo/Redo queue.

By default, the UndoRedoQueueLength property is -1. Use the UndoRedoQueueLength
property to specify the number of entries that Undo/Redo queue may store. For instance, if
the UndoRedoQueueLength property is 1, the control retains only the last chart operation.
Changing the UndoRedoQueueLength property may change the current Undo/Redo queue
based on the new length. The length being specified, does not affect the blocks in the
queue. A block may hold multiple Undo/Redo actions. Use the GroupUndoRedoActions
method to group two or more entries in the Undo/Redo queue in a single block, so when a
next Undo/Redo operation is performed, multiple actions may occur. For instance, moving
several bars in the same time (multiple bars selection) is already recorded as a single
block.

method Chart.UndoRemoveAction ([Action as Variant], [Count as
Variant])
Removes the last the undo actions that can be performed in the chart.

Type Description

Action as Variant

[optional] A long expression that specifies the action being
removed. If missing or -1, all actions are removed from
the undo queue.

The Action parameter can be one of the following:

exChartUndoRedoAddBar(0) ~
"AddBar;ITEMINDEX;KEY", indicates that a new bar
has been created
exChartUndoRedoRemoveBar(1) ~
"RemoveBar;ITEMINDEX;KEY", indicates that a bar
has been removed
exChartUndoRedoMoveBar(2) ~
"MoveBar;ITEMINDEX;KEY", indicates that a bar
has been moved or resized
exChartUndoRedoPercentChange(3) ~
"PercentChange;ITEMINDEX;KEY", indicates that
the bar's percent has been changed
exChartUndoRedoUpdateBar(4) ~
"UpdateBar;ITEMINDEX;KEY", indicates that one or
more properties of the bar has been updated
(ItemBar property, this operation can be added only
using the StartUpdateBar / EndUpdateBar methods)
exChartUndoRedoParentChangeBar(5) ~
"ParentChangeBar;ITEMINDEX;KEY", indicates that
the bar's parent has been changed
exChartUndoRedoGroupBars(6) ~
"GroupBars;ITEMINDEXA;KEYA;STARTA;ITEMINDEXB;KEYB;STARTB",
specifies that two bars has been grouped
exChartUndoRedoUngroupBars(7) ~
"UngroupBars;ITEMINDEXA;KEYA;STARTA;ITEMINDEXB;KEYB;STARTB",
specifies that two bars has been ungrouped
exChartUndoRedoDefineSummaryBars(8) ~
"DefineSummaryBars;SUMMARYITEMINDEX;SUMMARYKEY;ITEMINDEX;KEY",
indicates that a bar has been defined as a child of a
summary bar
exChartUndoRedoUndefineSummaryBars(9) ~

"UndefineSummaryBars;SUMMARYITEMINDEX;SUMMARYKEY;ITEMINDEX;KEY",
indicates that a bar has been removed from the
summary bar's children
exChartUndoRedoAddLink(10) ~ "AddLink;KEY",
indicates that a new link has been created
exChartUndoRedoRemoveLink(11) ~
"RemoveLink;KEY", indicates that a link has been
removed
exChartUndoRedoUpdateLink(12) ~
"UpdateLink;KEY", specifies that one of more
properties of the link has been updated (Link
property, this operation can be added only using the
StartUpdateLink / EndUpdateLink methods)
exListUndoRedoAddItem(13) ~
"AddItem;ITEMINDEX", indicates that a new item has
been created
exListUndoRedoRemoveItem(14) ~
"RemoveItem;ITEMINDEX", indicates that an item
has been removed
exListUndoRedoChangeItemPos(15) ~
"ChangeItemPos;ITEMINDEX", indicates that an item
changes its position or / and parent
exListUndoRedoChangeCellValue(16) ~
"ChangeCellValue;ITEMINDEX;CELLINDEX",
indicates that the cell's value has been changed
exListUndoRedoChangeCellState(17) ~
"ChangeCellState;ITEMINDEX;CELLINDEX",
indicates that the cell's state has been changed

For instance, UndoRemoveAction(0) removes only AddBar
actions in the undo stack.

Count as Variant

[optional] A long expression that indicates the number of
actions to be removed. If missing or -1, all actions are
removed. For instance, UndoRemoveAction(0,1) removes
only the last AddBar action from the undo stack

Use the UndoRemoveAction method to remove the last action from the undo queue. Use the
UndoRemoveAction() (with no parameters) to remove all undo actions. The UndoListAction
property retrieves the list of actions that an undo operation can perform. The
RedoRemoveAction method removes the first action to be performed if the Redo method is
invoked. For instance, let's say that during the AddLink event, you decide that the link being
added should be removed, and so, you do not need to record the last RemoveLink action.

In other words, you need to call the UndoRemoveAction(exChartUndoRedoRemoveLink, 1)
removes the last RemoveLink action from the undo stack.

The records of the Undo/Redo queue may contain actions in the following format:

"AddBar;ITEMINDEX;KEY", indicates that a new bar has been created
"RemoveBar;ITEMINDEX;KEY", indicates that a bar has been removed
"MoveBar;ITEMINDEX;KEY", indicates that a bar has been moved or resized
"PercentChange;ITEMINDEX;KEY", indicates that the bar's percent has been
changed
"UpdateBar;ITEMINDEX;KEY", indicates that one or more properties of the bar has
been updated (ItemBar property, this operation can be added only using the
StartUpdateBar / EndUpdateBar methods)
"ParentChangeBar;ITEMINDEX;KEY", indicates that the bar's parent has been
changed
"GroupBars;ITEMINDEXA;KEYA;STARTA;ITEMINDEXB;KEYB;STARTB", specifies
that two bars has been grouped
"UngroupBars;ITEMINDEXA;KEYA;STARTA;ITEMINDEXB;KEYB;STARTB", specifies
that two bars has been ungrouped
"DefineSummaryBars;SUMMARYITEMINDEX;SUMMARYKEY;ITEMINDEX;KEY",
indicates that a bar has been defined as a child of a summary bar
"UndefineSummaryBars;SUMMARYITEMINDEX;SUMMARYKEY;ITEMINDEX;KEY",
indicates that a bar has been removed from the summary bar's children
"AddLink;KEY", indicates that a new link has been created
"RemoveLink;KEY", indicates that a link has been removed
"UpdateLink;KEY", specifies that one of more properties of the link has been updated
(Link property, this operation can be added only using the StartUpdateLink /
EndUpdateLink methods)

The records of the Undo/Redo queue may contain actions in the following format (available
starting from 23.0):

"AddItem;ITEMINDEX", indicates that a new item has been created
"RemoveItem;ITEMINDEX", indicates that an item has been removed
"ChangeItemPos;ITEMINDEX", indicates that an item changes its position or / and
parent
"ChangeCellValue;ITEMINDEX;CELLINDEX", indicates that the cell's value has been
changed
"ChangeCellState;ITEMINDEX;CELLINDEX", indicates that the cell's state has been
changed

Also, the Undo/Redo queue may include:

"StartBlock", specifies that a block of operations begins
"EndBlock", specifies that a block of operations ends

The following samples shows preventing adding the AddLink and RemoveLink undo
operations when AddLink event occurs.

VBA (MS Access, Excell...)

' AddLink event - Occurs when the user links two bars using the mouse.
Private Sub G2antt1_AddLink(ByVal LinkKey As String)
 With G2antt1
 .Items.RemoveLink LinkKey
 .Chart.UndoRemoveAction 7,1
 .Chart.UndoRemoveAction 8,1
 Debug.Print(.Chart.UndoListAction())
 End With
End Sub

' ChartEndChanging event - Occurs after the chart has been changed.
Private Sub G2antt1_ChartEndChanging(ByVal Operation As Long)
 With G2antt1
 Debug.Print(.Chart.UndoListAction())
 End With
End Sub

With G2antt1
 .BeginUpdate
 .Columns.Add "Tasks"
 With .Chart
 .AllowUndoRedo = True
 .FirstVisibleDate = #6/20/2005#
 .AllowLinkBars = True
 .LevelCount = 2
 .PaneWidth(0) = 48
 End With
 With .Items
 .AddBar .AddItem("Task 1"),"Task",#6/21/2005#,#6/25/2005#,""
 .AddBar .AddItem("Task 2"),"Task",#6/28/2005#,#7/2/2005#,""

 End With
 .EndUpdate
End With

VB6

' AddLink event - Occurs when the user links two bars using the mouse.
Private Sub G2antt1_AddLink(ByVal LinkKey As String)
 With G2antt1
 .Items.RemoveLink LinkKey
 .Chart.UndoRemoveAction 7,1
 .Chart.UndoRemoveAction 8,1
 Debug.Print(.Chart.UndoListAction())
 End With
End Sub

' ChartEndChanging event - Occurs after the chart has been changed.
Private Sub G2antt1_ChartEndChanging(ByVal Operation As
EXG2ANTTLibCtl.BarOperationEnum)
 With G2antt1
 Debug.Print(.Chart.UndoListAction())
 End With
End Sub

With G2antt1
 .BeginUpdate
 .Columns.Add "Tasks"
 With .Chart
 .AllowUndoRedo = True
 .FirstVisibleDate = #6/20/2005#
 .AllowLinkBars = True
 .LevelCount = 2
 .PaneWidth(0) = 48
 End With
 With .Items
 .AddBar .AddItem("Task 1"),"Task",#6/21/2005#,#6/25/2005#,""
 .AddBar .AddItem("Task 2"),"Task",#6/28/2005#,#7/2/2005#,""

 End With
 .EndUpdate
End With

VB.NET

' AddLink event - Occurs when the user links two bars using the mouse.
Private Sub Exg2antt1_AddLink(ByVal sender As System.Object,ByVal LinkKey As String)
Handles Exg2antt1.AddLink
 With Exg2antt1
 .Items.RemoveLink(LinkKey)
 .Chart.UndoRemoveAction(7,1)
 .Chart.UndoRemoveAction(8,1)
 Debug.Print(.Chart.get_UndoListAction())
 End With
End Sub

' ChartEndChanging event - Occurs after the chart has been changed.
Private Sub Exg2antt1_ChartEndChanging(ByVal sender As System.Object,ByVal Operation
As exontrol.EXG2ANTTLib.BarOperationEnum) Handles Exg2antt1.ChartEndChanging
 With Exg2antt1
 Debug.Print(.Chart.get_UndoListAction())
 End With
End Sub

With Exg2antt1
 .BeginUpdate()
 .Columns.Add("Tasks")
 With .Chart
 .AllowUndoRedo = True
 .FirstVisibleDate = #6/20/2005#
 .AllowLinkBars = True
 .LevelCount = 2
 .set_PaneWidth(False,48)
 End With
 With .Items
 .AddBar(.AddItem("Task 1"),"Task",#6/21/2005#,#6/25/2005#,"")

 .AddBar(.AddItem("Task 2"),"Task",#6/28/2005#,#7/2/2005#,"")
 End With
 .EndUpdate()
End With

VB.NET for /COM

' AddLink event - Occurs when the user links two bars using the mouse.
Private Sub AxG2antt1_AddLink(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_AddLinkEvent) Handles AxG2antt1.AddLink
 With AxG2antt1
 .Items.RemoveLink(e.linkKey)
 .Chart.UndoRemoveAction(7,1)
 .Chart.UndoRemoveAction(8,1)
 Debug.Print(.Chart.UndoListAction())
 End With
End Sub

' ChartEndChanging event - Occurs after the chart has been changed.
Private Sub AxG2antt1_ChartEndChanging(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_ChartEndChangingEvent) Handles
AxG2antt1.ChartEndChanging
 With AxG2antt1
 Debug.Print(.Chart.UndoListAction())
 End With
End Sub

With AxG2antt1
 .BeginUpdate()
 .Columns.Add("Tasks")
 With .Chart
 .AllowUndoRedo = True
 .FirstVisibleDate = #6/20/2005#
 .AllowLinkBars = True
 .LevelCount = 2
 .PaneWidth(False) = 48
 End With

 With .Items
 .AddBar(.AddItem("Task 1"),"Task",#6/21/2005#,#6/25/2005#,"")
 .AddBar(.AddItem("Task 2"),"Task",#6/28/2005#,#7/2/2005#,"")
 End With
 .EndUpdate()
End With

C++

// AddLink event - Occurs when the user links two bars using the mouse.
void OnAddLinkG2antt1(LPCTSTR LinkKey)
{
 /*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'
 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
 */
 EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
 spG2antt1->GetItems()->RemoveLink(LinkKey);
 spG2antt1->GetChart()->UndoRemoveAction(long(7),long(1));
 spG2antt1->GetChart()->UndoRemoveAction(long(8),long(1));
 OutputDebugStringW(spG2antt1->GetChart()-
>GetUndoListAction(vtMissing,vtMissing));
}

// ChartEndChanging event - Occurs after the chart has been changed.
void OnChartEndChangingG2antt1(long Operation)
{
 EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
 OutputDebugStringW(spG2antt1->GetChart()-
>GetUndoListAction(vtMissing,vtMissing));
}

EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-

>GetControlUnknown();
spG2antt1->BeginUpdate();
spG2antt1->GetColumns()->Add(L"Tasks");
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutAllowUndoRedo(VARIANT_TRUE);
 var_Chart->PutFirstVisibleDate("6/20/2005");
 var_Chart->PutAllowLinkBars(VARIANT_TRUE);
 var_Chart->PutLevelCount(2);
 var_Chart->PutPaneWidth(VARIANT_FALSE,48);
EXG2ANTTLib::IItemsPtr var_Items = spG2antt1->GetItems();
 var_Items->AddBar(var_Items->AddItem("Task
1"),"Task","6/21/2005","6/25/2005","",vtMissing);
 var_Items->AddBar(var_Items->AddItem("Task
2"),"Task","6/28/2005","7/2/2005","",vtMissing);
spG2antt1->EndUpdate();

C#

// AddLink event - Occurs when the user links two bars using the mouse.
private void exg2antt1_AddLink(object sender,string LinkKey)
{
 exg2antt1.Items.RemoveLink(LinkKey);
 exg2antt1.Chart.UndoRemoveAction(7,1);
 exg2antt1.Chart.UndoRemoveAction(8,1);
 System.Diagnostics.Debug.Print(exg2antt1.Chart.get_UndoListAction(null,null));
}
//this.exg2antt1.AddLink += new
exontrol.EXG2ANTTLib.exg2antt.AddLinkEventHandler(this.exg2antt1_AddLink);

// ChartEndChanging event - Occurs after the chart has been changed.
private void exg2antt1_ChartEndChanging(object
sender,exontrol.EXG2ANTTLib.BarOperationEnum Operation)
{
 System.Diagnostics.Debug.Print(exg2antt1.Chart.get_UndoListAction(null,null));
}
//this.exg2antt1.ChartEndChanging += new
exontrol.EXG2ANTTLib.exg2antt.ChartEndChangingEventHandler(this.exg2antt1_ChartEndChanging);

exg2antt1.BeginUpdate();
exg2antt1.Columns.Add("Tasks");
exontrol.EXG2ANTTLib.Chart var_Chart = exg2antt1.Chart;
 var_Chart.AllowUndoRedo = true;
 var_Chart.FirstVisibleDate = Convert.ToDateTime("6/20/2005");
 var_Chart.AllowLinkBars = true;
 var_Chart.LevelCount = 2;
 var_Chart.set_PaneWidth(false,48);
exontrol.EXG2ANTTLib.Items var_Items = exg2antt1.Items;
 var_Items.AddBar(var_Items.AddItem("Task
1"),"Task",Convert.ToDateTime("6/21/2005"),Convert.ToDateTime("6/25/2005"),"",null);
 var_Items.AddBar(var_Items.AddItem("Task
2"),"Task",Convert.ToDateTime("6/28/2005"),Convert.ToDateTime("7/2/2005"),"",null);
exg2antt1.EndUpdate();

C# for /COM

// AddLink event - Occurs when the user links two bars using the mouse.
private void axG2antt1_AddLink(object sender,
AxEXG2ANTTLib._IG2anttEvents_AddLinkEvent e)
{
 axG2antt1.Items.RemoveLink(e.linkKey);
 axG2antt1.Chart.UndoRemoveAction(7,1);
 axG2antt1.Chart.UndoRemoveAction(8,1);
 System.Diagnostics.Debug.Print(axG2antt1.Chart.get_UndoListAction(null,null));
}
//this.axG2antt1.AddLink += new
AxEXG2ANTTLib._IG2anttEvents_AddLinkEventHandler(this.axG2antt1_AddLink);

// ChartEndChanging event - Occurs after the chart has been changed.
private void axG2antt1_ChartEndChanging(object sender,
AxEXG2ANTTLib._IG2anttEvents_ChartEndChangingEvent e)
{
 System.Diagnostics.Debug.Print(axG2antt1.Chart.get_UndoListAction(null,null));
}

//this.axG2antt1.ChartEndChanging += new
AxEXG2ANTTLib._IG2anttEvents_ChartEndChangingEventHandler(this.axG2antt1_ChartEndChanging);

axG2antt1.BeginUpdate();
axG2antt1.Columns.Add("Tasks");
EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;
 var_Chart.AllowUndoRedo = true;
 var_Chart.FirstVisibleDate = Convert.ToDateTime("6/20/2005");
 var_Chart.AllowLinkBars = true;
 var_Chart.LevelCount = 2;
 var_Chart.set_PaneWidth(false,48);
EXG2ANTTLib.Items var_Items = axG2antt1.Items;
 var_Items.AddBar(var_Items.AddItem("Task
1"),"Task",Convert.ToDateTime("6/21/2005"),Convert.ToDateTime("6/25/2005"),"",null);
 var_Items.AddBar(var_Items.AddItem("Task
2"),"Task",Convert.ToDateTime("6/28/2005"),Convert.ToDateTime("7/2/2005"),"",null);
axG2antt1.EndUpdate();

Delphi 8 (.NET only)

// AddLink event - Occurs when the user links two bars using the mouse.
procedure TWinForm1.AxG2antt1_AddLink(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_AddLinkEvent);
begin
 with AxG2antt1 do
 begin
 Items.RemoveLink(TObject(e.linkKey));
 Chart.UndoRemoveAction(TObject(7),TObject(1));
 Chart.UndoRemoveAction(TObject(8),TObject(1));
 OutputDebugString(Chart.UndoListAction[Nil,Nil]);
 end
end;

// ChartEndChanging event - Occurs after the chart has been changed.
procedure TWinForm1.AxG2antt1_ChartEndChanging(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_ChartEndChangingEvent);

begin
 with AxG2antt1 do
 begin
 OutputDebugString(Chart.UndoListAction[Nil,Nil]);
 end
end;

with AxG2antt1 do
begin
 BeginUpdate();
 Columns.Add('Tasks');
 with Chart do
 begin
 AllowUndoRedo := True;
 FirstVisibleDate := '6/20/2005';
 AllowLinkBars := True;
 LevelCount := 2;
 PaneWidth[False] := 48;
 end;
 with Items do
 begin
 AddBar(AddItem('Task 1'),'Task','6/21/2005','6/25/2005','',Nil);
 AddBar(AddItem('Task 2'),'Task','6/28/2005','7/2/2005','',Nil);
 end;
 EndUpdate();
end

Delphi (standard)

// AddLink event - Occurs when the user links two bars using the mouse.
procedure TForm1.G2antt1AddLink(ASender: TObject; LinkKey : WideString);
begin
 with G2antt1 do
 begin
 Items.RemoveLink(OleVariant(LinkKey));
 Chart.UndoRemoveAction(OleVariant(7),OleVariant(1));
 Chart.UndoRemoveAction(OleVariant(8),OleVariant(1));

 OutputDebugString(Chart.UndoListAction[Null,Null]);
 end
end;

// ChartEndChanging event - Occurs after the chart has been changed.
procedure TForm1.G2antt1ChartEndChanging(ASender: TObject; Operation :
BarOperationEnum);
begin
 with G2antt1 do
 begin
 OutputDebugString(Chart.UndoListAction[Null,Null]);
 end
end;

with G2antt1 do
begin
 BeginUpdate();
 Columns.Add('Tasks');
 with Chart do
 begin
 AllowUndoRedo := True;
 FirstVisibleDate := '6/20/2005';
 AllowLinkBars := True;
 LevelCount := 2;
 PaneWidth[False] := 48;
 end;
 with Items do
 begin
 AddBar(AddItem('Task 1'),'Task','6/21/2005','6/25/2005','',Null);
 AddBar(AddItem('Task 2'),'Task','6/28/2005','7/2/2005','',Null);
 end;
 EndUpdate();
end

VFP

*** AddLink event - Occurs when the user links two bars using the mouse. ***

LPARAMETERS LinkKey
 with thisform.G2antt1
 .Items.RemoveLink(LinkKey)
 .Chart.UndoRemoveAction(7,1)
 .Chart.UndoRemoveAction(8,1)
 DEBUGOUT(.Chart.UndoListAction())
 endwith

*** ChartEndChanging event - Occurs after the chart has been changed. ***
LPARAMETERS Operation
 with thisform.G2antt1
 DEBUGOUT(.Chart.UndoListAction())
 endwith

with thisform.G2antt1
 .BeginUpdate
 .Columns.Add("Tasks")
 with .Chart
 .AllowUndoRedo = .T.
 .FirstVisibleDate = {^2005-6-20}
 .AllowLinkBars = .T.
 .LevelCount = 2
 .PaneWidth(0) = 48
 endwith
 with .Items
 .AddBar(.AddItem("Task 1"),"Task",{^2005-6-21},{^2005-6-25},"")
 .AddBar(.AddItem("Task 2"),"Task",{^2005-6-28},{^2005-7-2},"")
 endwith
 .EndUpdate
endwith

property Chart.UnitScale as UnitEnum
Retrieves or sets a value that indicates the base unit being displayed.

Type Description

UnitEnum A UnitEnum expression that indicates the minimum time
unit being displayed in the level.

Use the UnitScale property to change the scale unit. Use the UnitWidth property to specify
the width of the time unit. The UnitScale property changes the Label, Unit and the ToolTip
for a level with predefined values defined by the Label and LabelToolTip properties. Use the
Label property to specify predefined formats for time units. Use the Label property to
assign a different label for a specified level. Use the Unit property to specify the time unit
being displayed by the level. If the user changes the Label or Unit property for a level, it is
possible that UnitScale property to be changed. Use the Count property to increase the
number of units being displayed in the level. Use the Alignment property to align the label in
the level. Use the Zoom method to zoom the chart to a specified interval of dates. Use the
LevelCount property to specify the number of levels being displayed in the control's header.
Use the NextDate property to get the next date. Use the AllowOverviewZoom property to
specify whether the control displays the zooming scale on the overview area. Once the user
selects a new time scale unit in the overview zoom area, the control fires the
OverviewZoom event.

property Chart.UnitWidth as Long
Specifies the width in pixels for the minimal unit.

Type Description

Long A Long expression that indicates the width of the time unit,
in pixels.

Use the UnitWidth property to specify the width of the time unit. Use the UnitScale property
to change the scale unit. Use the PaneWidth property to specify the width of the chart area.
Use the Label property to specify the label being displayed in the level. Use the Zoom
method to zoom the chart to a specified interval of dates. Use the FirstVisibleDate property
to specify the first visible date in the chart. Use the ScrollTo property to ensure that a
specified date fits the chart's client area. Use the Alignment property to align the label in the
level. Use the Count property to increase the number of units being displayed in the level.
Use the UnitWidthNonworking property to specify a different width for non-working units in
the base level. Use the ShowNonworkingUnits property to hide the non-working units.

property Chart.UnitWidthNonworking as Long
Specifies the width in pixels for the minimal unit.

Type Description

Long
A long expression that specifies the width for non-working
units. The expression could be positive or negative as
explained bellow.

By default, the UnitWidthNonworking property is 0. Use the UnitWidthNonworking property
to reduce the amount to display non-working units in the chart. The UnitWidth property
specifies the width for the units in the base level. The UnitWidthNonworking property has no
effect if it is 0 (by default). Use the ShowNonworkingUnits/ShowNonworkingDates
property to hide the non-working units. Use the NonworkingHours property to specify the
non-working hours in your chart. Use the NonworkingDays property to specify the non-
working days. The FormatLevel property indicates the formula to display the HTML captions
in the levels of the chart. The Width property defines the width for a specified time-unit. The
UnitWidthNonworking property has no effect if the ShowNonworkingUnits and
ShowNonworkingDates properties are False. Use the FormatLabel property to specify the
format of the chart's level (header).

The UnitWidthNonworking property has effect only if:

is not zero.
the base level displays days or hours only, (UnitScale property is exDay or exHour, and
the Count property of the base level is 1)
ShowNonworkingUnits property is True (by default)
NonworkingHours property is not zero, if the base level displays hours
NonworkingDays property is not zero, if the base level displays days

The UnitWidthNonworking property specifies the width for non-working units being displayed
in the base level as follow:

1. if 0, it has no effect, so the UnitWidth property specifies the width for all units.
2. if positive, it indicates the width for non-working units.
3. if negative, it indicates that neighbor non-working units are shown as a single non-

working unit with a different width (absolute value)

1. The following screen shot shows the non-working units when the UnitWidthNonworking
property is 0 (by default):

The days 30, 31, 6, 7, ... are shown using the same width, when the UnitWidthNonworking
property is 0

2. The following screen shot shows the non-working units when the UnitWidthNonworking
property is 12 (positive value):

The days 30, 31, 6, 7, 13, 14, ... are shown using the a different width, when the
UnitWidthNonworking property is positive.

3. The following screen shot shows the non-working units when the UnitWidthNonworking
property is -12 (negative value):

The days 30, 31, 6, 7, 13, 14, ... are shown as a single non-working unit, when the
UnitWidthNonworking property is negative.

4. The following screen shot hides the non-working units when the ShowNonworkingUnits
property is False:

The days 30, 31, 6, 7, 13, 14, ... are not shown if the ShowNonworkingUnits property is
False.

method Chart.UnselectDates ()
Unselects all dates in the chart.

Type Description

Use the UnselectDates method to unselect all dates in the chart. Use the SelectDate
property to select or unselect a new date, or to find if a specified date is selected or it is
not selected. The SelectedDates property can be used to retrieve all selected dates, or to
select a collection of dates. Use the SelectLevel property to specify the area being
highlighted when a date is selected. The user can select dates by clicking the chart's
header. You can select multiple dates keeping the CTRL key and clicking a new date. The
MarkSelectDateColor property specifies the color being used to highlight the selected
dates. If the MarkSelectDateColor property is identical with the BackColor property of the
Chart object, the selected dates are not shown.

property Chart.UpdateOnMoving as Boolean
Specifies whether the control moves or resizes all related bars or just the bar being moved
or resized.

Type Description

Boolean
A Boolean expression that specifies whether the control
moves/resizes all related bars when the current bar is
moving or resizing.

By default, the UpdateOnMoving property is True. You can use this property on False, to
prevent moving/updating all related bars while moving/resizing the current bar. For instance,
if you are moving a summary bar, all related child bars are moved together, which could be
a time consuming, if having thousand of child bars. Using the UpdateOnMoving property on
False, the summary bar will be single moving, and once the user releases the mouse, all
related bars takes their new positions.

property Chart.WeekDays as String
Retrieves or sets a value that indicates the list of names for each week day, separated by
space.

Type Description

String A String expression that indicates the name of the days in
the week, separated by spaces.

By default, the WeekDays property is "Sunday Monday Tuesday Wednesday Thursday
Friday Saturday". The order of week days is Sunday, Monday, and so on. The FormatDate
property formats a date. Use the MonthNames property to specify the name of the months
in the year. Use the AMPM property to specify the name of the AM and PM indicators. Use
the Label property to specify the label being displayed in the level. Use the Label property
to specify the predefined format for a level based on the unit time. Use the ToolTip property
to specify the tool tip being displayed when the cursor hovers the level. Use the
FirstWeekDay property to specify the first day in the week.

The WeekDays property specifies the name of the days in the week for the following built-in
tags:

<%d1%> - First letter of the weekday (S to S).
<%d2%> - First two letters of the weekday (Su to Sa).
<%d3%> - First three letters of the weekday (Sun to Sat).
<%ddd%> - First three letters of the weekday (Sun to Sat).
<%dddd%> - Full name of the weekday (Sunday to Saturday).

The following VB sample assigns Romanian name for days in the week:

With G2antt1.Chart
 .WeekDays = "Duminica Luni Marti Miercuri Joi Vineri Simbata"
End With

The following C++ sample assigns Romanian name for days in the week:

m_g2antt.GetChart().SetWeekDays("Duminica Luni Marti Miercuri Joi Vineri Simbata");

The following VB.NET sample assigns Romanian name for days in the week:

With AxG2antt1.Chart
 .WeekDays = "Duminica Luni Marti Miercuri Joi Vineri Simbata"
End With

The following C# sample assigns Romanian name for days in the week:

axG2antt1.Chart.WeekDays = "Duminica Luni Marti Miercuri Joi Vineri Simbata";

The following VFP sample assigns Romanian name for days in the week:

With thisform.G2antt1.Chart
 .WeekDays = "Duminica Luni Marti Miercuri Joi Vineri Simbata"
EndWith

property Chart.WeekNumberAs as WeekNumberAsEnum
Specifies the way the control displays the week number.

Type Description

WeekNumberAsEnum A WeekNumberAsEnum expression that specifies the way
the control displays the week number.

By default, the WeekNumberAs property is exSimpleWeekNumber, which indicates the first
week starts on January 1st of a given year, week n+1 starts 7 days after week n. The
FirstWeekDay property specifies the first day of the week where the week begins. Use
WeekDays property to specify the name of the days in the week. Use the MonthNames
property to specify the name of the months in the year. Use the AMPM property to specify
the name of the AM and PM indicators. The FormatDate property formats a date. The
NextDate property computes the next date based on the time unit. Use the FirstVisibleDate
property to specify the first visible date in the chart.

The following screen shot shows the weeks as exISO8601WeekNumber (exDay scale):

The following screen shot shows the weeks as exISO8601WeekNumber (exWeek scale):

The following screen shot shows the weeks as exSimpleWeekNumber (exDay scale):

The following screen shot shows the weeks as exSimpleWeekNumber (exWeek scale):

method Chart.Zoom (StartDate as Date, EndDate as Date,
[ChangeUnitWidth as Variant])
Sets or retrieves the magnification scale of the chart.

Type Description
StartDate as Date A Date expression that indicates the start date.
EndDate as Date A Date expression that indicates the end date.

ChangeUnitWidth as Variant
A Boolean expression that indicates whether the Zoom
method may change the UnitWidth property., If missing,
the ChangeUnitWidth parameter is True.

The Zoom method zooms the chart to ensure that interval StartDate and EndDate fits the
chart's area. The Zoom method may change the Label, Unit, Count and the ToolTip
properties for all levels in the chart. If the ChangeUnitWidth parameter is True, the Zoom
method changes the UnitWidth property as necessary. Use the LevelCount property to
specify the number of levels in the chart. Use the Level property to access the level in the
chart area. Use the NextDate property to compute the next date based on a given unit. Use
the NonworkingDaysPattern property on hide the nonworking days. Once the user selects a
new time scale unit in the overview zoom area, the control fires the OverviewZoom event.

When zooming

the Label property takes a predefined value that's specified by the Label property of
the Chart object. This way you can use the Label property of the Chart object to define
the predefined formats for specified units. If the Label property for a specified unit is
empty, the unit is ignored when zooming.
the Unit property is changed accordingly with the Label property. For instance, if the
Label property is set to "<%d%>", the Unit property is automatically put on exDay.
the Count property is changed based on the available units (the Label property is not
empty) and how large the interval is.
the ToolTip property is set on a predefined value that's specified by the LabelToolTip
property, accordingly with the Unit property
If the ChangeUnitWidth parameter is True, the UnitWidth property is changed if
required. For instance, if we need to display a single week, that means that the
PaneWidth property is divided in 7 pieces, and so the UnitWidth property is the
PaneWidth / 7.

The following VB sample zooms the chart to display one week:

 With G2antt1.Chart
 .Label(exThirdMonth) = ""
 .Label(exDay) = "<%d%>/<%m%>"
 .Zoom .FirstVisibleDate, .NextDate(.FirstVisibleDate, exWeek), True
End With

The following C++ sample zooms the chart to display one week:

CChart chart = m_g2antt.GetChart();
chart.SetLabel(17 /*exThirdMonth*/, "");
chart.SetLabel(4096 /*exDay*/, "<%d%>/<%m%>");
chart.Zoom(V2D(&chart.GetFirstVisibleDate()), chart.GetNextDate(V2D(
&chart.GetFirstVisibleDate()), 256, COleVariant((long)1)), COleVariant((long)TRUE));

The following VB.NET sample zooms the chart to display one week:

With AxG2antt1.Chart
 .Label(EXG2ANTTLib.UnitEnum.exThirdMonth) = ""
 .Label(EXG2ANTTLib.UnitEnum.exDay) = "<%d%>/<%m%>"
 .Zoom(.FirstVisibleDate, .NextDate(.FirstVisibleDate, EXG2ANTTLib.UnitEnum.exWeek),
True)
End With

The following C# sample zooms the chart to display one week:

EXG2ANTTLib.Chart chart = axG2antt1.Chart;
chart.set_Label(EXG2ANTTLib.UnitEnum.exThirdMonth, "");
chart.set_Label(EXG2ANTTLib.UnitEnum.exDay, "<%d%>/<%m%>");
chart.Zoom(Convert.ToDateTime(chart.FirstVisibleDate),
chart.get_NextDate(Convert.ToDateTime(chart.FirstVisibleDate),
EXG2ANTTLib.UnitEnum.exWeek, 1), true);

The following VFP sample zooms the chart to display one week:

With thisform.G2antt1.Chart
 .Label(17) = "" && exThirdMonth
 .Label(4096) = "<%d%>/<%m%>" && exDay

 .Zoom(.FirstVisibleDate, .NextDate(.FirstVisibleDate, 256), .t.) && exWeek
EndWith

property Chart.ZoomOnFlyCaption as String
Specifies the caption to be shown in the zoom-on-fly panel, when the cursor hovers a bar.

Type Description

String

A String expression that may contain HTML tags and
expressions that indicates the additional information about
the bar from the cursor to be shown in the Zoom-OnFly
view.

By default, the ZoomOnFlyCaption property is "<c><%=%C0%>

Start:<%=%1%>
End:<%=%2%>
Duration:<%=
((1:=int(0:= (%513))) != 0 ? (=:1 + ' day(s)') : '') + (=:1 ? ' ' : '') + ((1:=int(0:=((=:0 - =:1 +
1/24/60/60/2)*24))) != 0 ? =:1 + ' hour(s)' : '') + (=:1 ? ' ' : '') + ((1:=round((=:0 - =:1)*60))
!= 0 ? =:1 + ' min(s)' : '')%>
Working:<%=((1:=int(0:= (%258))) != 0 ? (=:1 + '
day(s)') : '') + (=:1 ? ' ' : '') + ((1:=int(0:=((=:0 - =:1 + 1/24/60/60/2)*24))) != 0 ? =:1 + '
hour(s)' : '') + (=:1 ? ' ' : '') + ((1:=round((=:0 - =:1)*60)) != 0 ? =:1 + ' min(s)' : '')%>",
which specifies that the ZoomOnFly panel displays the start, end, duration and working time
of the item. Use the ZoomOnFlyCaption property to customize the additional information or
caption to be shown on the bottom part of the Zoom-OnFly view, like shown in the picture
bellow. The AllowZoomOnFly property specifies whether the user can display the Zoom-
OnFly panel, when the cursor hovers the chart part of the area, and the user presses the
CTRL + SHIFT keys combination.

The following screen shot shows the default caption in the Zoom-OnFly view:

By default, the caption of the Zoom-on-fly includes the following information:

the cell's caption on the first column (<%=%C0%>)
the starting point of the bar from the bar (<%=%1%>)
the ending point of the bar from the bar (<%=%2%>)
the duration or length of the bar as being the difference between start and ending point
of the bar (<%=round(%2-%1) + ' days'%>)
the working units as days (<%=%258%>)

Let's say that we have the Chart.ZoomOnFlyCaption on "
<c><%=%C0

+ ' / <fgcolor=00FF00>' + %3%></fgcolor>
<solidline><upline>
Start:<%=%1%>
End:<%=%2%>
Duration:
<%=round(%2-%1) + ' days'%>
Working:<%='' + int(%258) + ' days'
+ (0:=(%258 - int(%258)) ? (' <fgcolor=FF0000>' + round(24 * =:0) + ' hours') : '')
%>", so it includes the working time in hours, not only on days.

so the caption of the Zoom-on-fly includes the following information:

the cell's caption on the first column / the caption of the bar from the point (<%=%C0 +
' / <fgcolor=00FF00>' + %3%>)
the starting point of the bar from the bar (<%=%1%>)
the ending point of the bar from the bar (<%=%2%>)
the duration or length of the bar as being the difference between start and ending point
of the bar (<%=round(%2-%1) + ' days'%>)
the working units as days and hours. (<%='' + int(%258) + ' days' + (0:=
(%258 - int(%258)) ? (' <fgcolor=FF0000>' + round(24 * =:0) + ' hours') : '')
%>)

and the zoom on fly panel shows as following:

The ZoomOnFlyCaption property supports the following built-in HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

about:blank

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).

<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the

height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

The ZoomOnFlyCaption property supports expressions between <%= and %>, aka
<%=expression%>, where the expression can use predefined operators and functions like
explained bellow. Inside the expression, the the %0, %1, %2, %3, indicates the bar's
property. For instance, the <%=%0%> indicates the ItemBar(exBarName) or the type of
the bar such as "Task", "Split", ... , as the exBarName identifier is 0, or <%=%9%>
indicates the ItemBar(exBarKey) or the key of the bar (the Key parameter of the AddBar
method) , as the exBarKey identifier is 9. Also, the known variables are %C0, %C1, %C2,
... which indicates the values in the columns. For instance the expression <%=%9 + '/' +
%C0%>, displays the key of the bar, followed by '/' character, and next the value in the first
column (0 indicates the index of the column).

This property/method supports predefined constants and operators/functions as described
here.

Column object
The ExG2antt component supports multiple columns. The Columns object contains a
collection of Column objects. By default, the control doesn't add any default column, so the
user has to add at least one column, before inserting any new item and bars. The Column
object holds information about a control's column like: Alignment, Caption, Position and so
on.

The following screen shot shows the list part of the control, in other words, the part that
displays the columns of the control:

The Column object supports the following properties and methods:

Name Description
Alignment Specifies the column's alignment.

AllowDragging Retrieves or sets a value indicating whether the user will
be able to drag the column.

AllowGroupBy Specifies if the column can be grouped by.

AllowSizing
Retrieves or sets a value indicating whether the user will
be able to change the width of the visible columns by
dragging.

AllowSort Returns or sets a value that indicates whether the user
can sort the column by clicking the column's header.

AutoSearch Specifies the kind of searching while user types
characters within the columns.

AutoWidth Computes the column's width required to fit the entire
column's content.

Caption Retrieves or sets the text displayed to the column's
header.

ComputedField Retrieves or sets a value that indicates the formula of the
computed column.

CustomFilter Retrieves or sets a value that indicates the list of custom
filters.

Data Associates an extra data to the column.

Def Retrieves or sets a value that indicates the default value of
given properties for all cells in the same column.

DefaultSortOrder Specifies whether the default sort order is ascending or
descending.

DisplayExpandButton Shows or hides the expanding/collapsing button in the
column's header.

DisplayFilterButton Specifies whether the column's header displays the filter
button.

DisplayFilterDate Specifies whether the drop down filter window displays a
date selector to specify the interval dates to filter for.

DisplayFilterPattern Specifies whether the dropdown filterbar contains a
textbox for editing the filter as pattern.

DisplaySortIcon Retrieves or sets a value indicating whether the sort icon
is visible on column's header, while the column is sorted.

Editor Gets the column's editor object.

Enabled Returns or sets a value that determines whether a
column's header can respond to user-generated events.

ExpandColumns Specifies the list of columns to be shown when the current
column is expanded.

Expanded Expands or collapses the column.

Filter Specifies the column's filter when the filter type is exFilter,
exPattern, exDate or exNumeric.

FilterBarDropDownWidth Specifies the width of the drop down filter window
proportionally with the width of the column.

FilterList Specifies whether the drop down filter list includes visible
or all items.

FilterOnType Filters the column as user types characters in the drop
down filter window.

FilterType Specifies the column's filter type.

FireFormatColumn
Retrieves or sets a value that indicates whether the
control fires FormatColumn to format the value of a cell
hosted by column.

FormatColumn Specifies the format to display the cells in the column.

FormatLevel Retrieves or sets a value that indicates the layout of
columns being displayed in the column's header.

GroupByFormatCell Indicates the format of the cell to be displayed when the
column gets grouped by.

GroupByTotalField Indicates the aggregate formula to be displayed when the
column gets grouped by.

HeaderAlignment Specifies the alignment of the column's caption.

HeaderBold Retrieves or sets a value that indicates whether the
column's caption should appear in bold.

HeaderImage
Retrieves or sets a value indicating the index of an Image
in the Images collection, which is displayed to the column's
header.

HeaderImageAlignment Retrieves or sets the alignment of the image in the
column's header.

HeaderItalic Retrieves or sets a value that indicates whether the
column's caption should appear in italic.

HeaderStrikeOut Retrieves or sets a value that indicates whether the
column's caption should appear in strikeout.

HeaderUnderline Retrieves or sets a value that indicates whether the
column's caption should appear in underline.

HeaderVertical Specifies whether the column's header is vertically
displayed.

HTMLCaption Retrieves or sets the text in HTML format displayed in the
column's header.

Index Returns a value that represents the index of an object in a
collection.

Key Retrieves or sets a the column's key.

LevelKey Retrieves or sets a value that indicates the key of the
column's level.

MaxWidthAutoResize Retrieves or sets a value that indicates the maximum
column's width when the WidthAutoResize is True.

MinWidthAutoResize Retrieves or sets a value that indicates the minimum
column's width when the WidthAutoResize is True.

PartialCheck Specifies whether the column supports partial check
feature.
Retrieves or sets a value that indicates the position of the

Position column in the header bar area.

Selected Retrieves or sets a value that indicates whether the cell in
the column is selected.

ShowFilter Shows the column's filter window.
SortOrder Specifies the column's sort order.

SortPosition Returns or sets a value that indicates the position of the
column in the sorting columns collection.

SortType Returns or sets a value that indicates the way a control
sorts the values for a column.

ToolTip Specifies the column's tooltip description.

Visible Retrieves or sets a value indicating whether the column is
visible or hidden.

Width Retrieves or sets the column's width.

WidthAutoResize
Retrieves or sets a value that indicates whether the
column is automatically resized according to the width of
the contents within the column.

property Column.Alignment as AlignmentEnum

Retrieves or sets the alignment of the caption into the column's header.

Type Description

AlignmentEnum An AlignmentEnum expression that indicates the alignment
of the cells inside the column.

Use the Alignment property to change the column's alignment. Use the HeaderAlignment
property to align the column's caption inside the column's header. By default, all columns
are aligned to left. If the column displays the hierarchy lines, and if the Alignment property is
RightAlignment the hierarchy lines are painted from right to left side. Use the HasLines
property to display the control's hierarchy lines. Use the CellHAlignment property to align a
particular cell. The RightToLeft property flips the order of the control's elements from right
to left.

property Column.AllowDragging as Boolean

Retrieves or sets a value indicating whether the user will be able to drag the column.

Type Description

Boolean A boolean expression indicating whether the user will be
able to drag the column.

Use the AllowDragging property to forbid user to change the column's position by dragging.
If the AllowDragging is false, the column's position cannot be changed by dragging it to
another position. Use the AllowSort property to avoid sorting a column when the user clicks
the column's header. Use the AllowSizing property to allow user resizes a column at
runtime. The HeaderEnabled property enables or disables the control's header (including
the control's sort/groupby-bar). If the header is disabled, the user can't resize, sort or drag
and drop any column.

property Column.AllowGroupBy as Boolean
Specifies if the column can be grouped by.

Type Description

Boolean A Boolean expression that specifies whether the user can
drag and drop the column to be grouped by,

By default, the AllowGroupBy property is True. The AllowGroupBy property has effect only
if the control's AllowGroupBy property is True. Use the AllowGroupBy property on False, to
prevent a specific column to be sorted/grouped by. The same you can achieve if the
AllowSort property is False. The SortBarVisible property specifies whether the control's
sort bar is visible or hidden. If the control's sort bar is visible, the user can drag and drop
columns to it, so the column get sorted and items grouped. The Group/Ungroup method
groups or ungroup the control's list. For instance, you can remove the grouping items, by
calling the Ungroup method. The GroupByFormatCell property determines the format of the
cell to be displayed in the grouping item, when the column gets sorted.

property Column.AllowSizing as Boolean

Retrieves or sets a value indicating whether the user will be able to change the width of the
visible columns by dragging.

Type Description

Boolean
A boolean expression indicating whether the user will be
able to change the width of the visible columns by
dragging.

Use the AllowSizing property to fix the column's width. Use the ColumnAutoResize property
of the control to fit the columns to the control's client area. Use the AllowSort property to
avoid sorting a column when the user clicks the column's header. Use the AllowDragging
property to forbid user to change the column's position by dragging. Use the Width property
to specify the column's width.

property Column.AllowSort as Boolean
Returns or sets a value that indicates whether the user can sort the column by clicking the
column's header.

Type Description

Boolean A boolean expression that indicates whether the column
gets sorted when the user clicks the column's header.

Sorting by a single column in the control is a simple matter of clicking on the column head.
Sorting by multiple columns, however, is not so obvious. But it's actually quite easy. First,
sort by the first criterion, by clicking on the column head. Then hold the Shift key down as
you click on a second heading. Another option is dragging the column's header to the
control's sort bar. The SortBarVisible property shows the control's sort bar. Use the
AllowSort property to avoid sorting a column when the user clicks the column's header. Use
the SortOnClick property to specify the action that control executes when the user clicks
the column's head. The control fires the Sort event when the control sorts a column (the
user clicks the column's head) or when the sorting position is changed in the control's sort
bar. Use the AllowDragging property to specify whether the column's header can be
dragged. Use the DefaultSortOrder property to specify the column's default sort order,
when the user first clicks the column's header. The HeaderEnabled property enables or
disables the control's header (including the control's sort/groupby-bar). If the header is
disabled, the user can't resize, sort or drag and drop any column.

property Column.AutoSearch as AutoSearchEnum
Specifies the kind of searching while user types characters within the columns.

Type Description

AutoSearchEnum An AutoSearchEnum expression that defines the type of
incremental searching.

By default, the AutoSearch property is exStartWith. The AutoSearch property has effect
only if the AutoSearch property of the control is True. Use the AutoSearch property to
define a 'contains' incremental search. If the AutoSearch property is exContains, the control
searches for items that contains the typed characters. The searching column is defined by
the SearchColumnIndex property. Use the ExpandOnSearch property to expand items while
user types characters in the control.

property Column.AutoWidth as Long
Computes the column's width required to fit the entire column's content.

Type Description

Long A long expression that indicates the width of the column to
fit the entire column's content.

Use the AutoWidth property to arrange the columns to fit the entire control's content. The
AutoWidth property doesn't change the column's width. Use Width property to change the
column's width at runtime. Use the ColumnAutoResize property to specify whether the
control resizes all visible columns to fit the control's client area.

The following VB function resizes all columns:

Private Sub autoSize(ByVal t As EXG2ANTTLibCtl.G2antt)
 t.BeginUpdate
 Dim c As Column
 For Each c In t.Columns
 c.Width = c.AutoWidth
 Next
 t.EndUpdate
 t.Refresh
End Sub

The following C++ sample resizes all visible columns:

#include "Columns.h"
#include "Column.h"
void autoSize(CG2antt& g2antt)
{
 g2antt.BeginUpdate();
 CColumns columns = g2antt.GetColumns();
 for (long i = 0;i < columns.GetCount(); i++)
 {
 CColumn column = columns.GetItem(COleVariant(i));
 if (column.GetVisible())
 column.SetWidth(column.GetAutoWidth());
 }
 g2antt.EndUpdate();

}

The following VB.NET sample resizes all visible columns:

Private Sub autoSize(ByRef g2antt As AxEXG2ANTTLib.AxG2antt)
 g2antt.BeginUpdate()
 Dim i As Integer
 With g2antt.Columns
 For i = 0 To .Count - 1
 If .Item(i).Visible Then
 .Item(i).Width = .Item(i).AutoWidth
 End If
 Next
 End With
 g2antt.EndUpdate()
End Sub

The following C# sample resizes all visible columns:

private void autoSize(ref AxEXG2ANTTLib.AxG2antt g2antt)
{
 g2antt.BeginUpdate();
 for (int i = 0; i < g2antt.Columns.Count - 1; i++)
 if (g2antt.Columns[i].Visible)
 g2antt.Columns[i].Width = g2antt.Columns[i].AutoWidth;
 g2antt.EndUpdate();
}

The following VFP sample resizes all visible columns:

with thisform.G2antt1
 .BeginUpdate()
 for i = 0 to .Columns.Count - 1
 if (.Columns(i).Visible)
 .Columns(i).Width = .Columns(i).AutoWidth
 endif
 next
 .EndUpdate()
endwith

property Column.Caption as String

Retrieves or sets the text displayed to the column's header.

Type Description
String A string expression that indicates the column's caption.

Each property of Items object that has an argument ColIndex can use the column's caption
to identify a column. Adding two columns with the same caption is accepted and these are
differentiated by their indexes. Use the HTLMCaption property to display the column's
caption using HTML tags. To hide a column use the Visible property of the Column object.
The column's caption is displayed using the following font attributes: HeaderBold,
HeaderItalic, HeaderUnderline, HeaderStrikeout. Use the Add method to add new columns
and to specify their captions.

property Column.ComputedField as String
Retrieves or sets a value that indicates the formula of the computed column.

Type Description

String

A String expression that indicates the formula to compute
the field/cell. The formula is applied to all cells in the
column with the CellValueFormat property on exText (the
exText value is by default).

A computed field or cell displays the result of an arithmetic formula that may include
operators, variables and constants. By default, the ComputedField property is empty. If the
the ComputedField property is empty, the property have no effect. If the ComputedField
property is not empty, all cells in the column, that have the CellValueFormat property on
exText, uses the same formula to display their content. For instance, you can use the
CellValueFormat property on exHTML, for cells in the column, that need to display other
things than column's formula, or you can use the CellValueFormat property on
exComputedField, to change the formula for a particular cell. Use the FormatColumn
property to format the column.

Use the CellValueFormat property to change the type for a particular cell. Use the CellValue
property to specify the cell's content. For instance, if the CellValueFormat property is
exComputedField, the Caption property indicates the formula to compute the cell's content.

The Def(exCellValueFormat) property is changed to exComputedField, each time the
ComputeField property is changed to a not empty value. If the ComputedField property is
set to an empty string, the Def(exCellValueFormat) property is set to exText. Call the
Refresh method to force refreshing the control.

The expression may be a combination of variables, constants, strings, dates and
operators. A string is delimited by ", ` or ' characters, and inside they can have the starting
character preceded by \ character, ie "\"This is a quote\"". A date is delimited by #
character, ie #1/31/2001 10:00# means the January 31th, 2001, 10:00 AM.

The expression supports cell's identifiers as follows:

%0, %1, %2, ... specifies the value of the cell in the column with the index 0, 1 2, ...
The CellValue property specifies the cell's value. For instance, "%0 format ``" formats
the value on the cell with the index 0, using current regional setting, while "int(%1)"
converts the value of the column with the index 1, to integer.
%C0, %C1, %C2, ... specifies the caption of the cell, or the string the cell displays in
the column with the index 0, 1 2, ... The CellCaption property specifies the cell's
caption. The cell's value may be different than what the cell displays as a string. For
instance, let's say a cell display HTML format. The %0 returns the html format

including the HTML tags, while %C0 returns the cell's content as string without HTML
tags. For instance, "upper(%C1)" converts the caption of the cell with the index 1, to
upper case, while "%C0 left 2" returns the leftmost two characters on the cell with the
index 0.
%CD0, %CD1, %CD2, ... specifies the cell's extra data in the column with the index
0, 1 2, ... The CellData property associates any extra/user data to a cell. For instance,
"%CD0 = `your user data`" specifies all cells whose CellData property is `your user
data`, on the column with the index 0.
%CS0, %CS1, %CS2, ... specifies the cell's state in the column with the index 0, 1 2,
... The CellState property specifies the cell's state, and so it indicates whether the cell
is checked or un-checked. For instance, "%CS0" defines all checked items on the
column with the index 0, or "not %CS1" defines all un-checked items in the column
with the index 1.

This property/method supports predefined constants and operators/functions as described
here.

Samples:

1. "1", the cell displays 1
2. "%0 + %1", the cell displays the sum between cells in the first and second columns.
3. "%0 + %1 - %2", the cell displays the sum between cells in the first and second

columns minus the third column.
4. "(%0 + %1)*0.19", the cell displays the sum between cells in the first and second

columns multiplied with 0.19.
5. "(%0 + %1 + %2)/3", the cell displays the arithmetic average for the first three

columns.
6. "%0 + %1 < %2 + %3", displays 1 if the sum between cells in the first two columns is

less than the sum of third and forth columns.
7. "proper(%0)'" formats the cells by capitalizing first letter in each word
8. "currency(%1)'" displays the second column as currency using the format in the control

panel for money
9. "len(%0) ? currency(dbl(%0)) : ''" displays the currency only for not empty/blank

cells.
10. "int(date(%1)-date(%2)) + 'D ' + round(24*(date(%1)-date(%2) - floor(date(%1)-

date(%2)))) + 'H''" displays interval between two dates in days and hours, as xD yH
11. "2:=((1:=int(0:= date(%1)-date(%0))) = 0 ? '' : str(=:1) + ' day(s)') + (3:=round(24*

(=:0-floor(=:0))) ? (len(=:2) ? ' and ' : '') + =:3 + ' hour(s)' : '')" displays the interval
between two dates, as x day(s) [and y hour(s)], where the x indictaes the number of
days, and y the number of hours. The hour part is missing, if 0 hours is displayed, or
nothing is displayed if dates are identical.

property Column.CustomFilter as String
Retrieves or sets a value that indicates the list of custom filters.

Type Description
String A String expression that defines the list of custom filters.

By default, the CustomFilter property is empty. The CustomFilter property has effect only if
it is not empty, and the FilterType property is not exImage, exCheck or exNumeric. Use the
DisplayFilterPattern property to hide the text box to edit the pattern, in the drop down filter
window. The All predefined item and the list of custom filter is displayed in the drop down
filter window, if the CustomFilter property is not empty. The Blanks and NonBlanks
predefined items are not defined, when custom filter is displayed. Use the
Description(exFilterBarAll) property on empty string to hide the All predefined item, in the
drop down filter window. Use the DisplayFilterButton property to show the button on the
column's header to drop down the filter window. Use the Background property to define the
visual appearance for the drop down button.

The CustomFilter property defines the list of custom filters as pairs of (caption,pattern)
where the caption is displayed in the drop down filter window, and the pattern is get
selected when the user clicks the item in the drop down filter window (the FilterType
property is set on exPattern, and the Filter property defines the custom pattern being
selected). The caption and the pattern are separated by a "||" string (two vertical bars,
character 124). The pattern expression may contains multiple patterns separated by a
single "|" character (vertical bar, character 124). A pattern may contain the wild card
characters '?' for any single character, '*' for zero or more occurrences of any character, '#'
for any digit character. If any of the *, ?, # or | characters are preceded by a \ (escape
character) it masks the character itself. If the pattern is not present in the (caption,pattern)
pair, the caption is considered as being the pattern too. The pairs in the list of custom
patterns are separated by "|||" string (three vertical bars, character 124). So, the syntax
of the CustomFilter property should be of: CAPTION [|| PATTERN [| PATTERN]] [|||
CAPTION [|| PATTERN [| PATTERN]]].

For example, you may have a list of documents and instead of listing the name of each
document in the filter drop down list for the names column you may want to list the
following:

Excel Spreadsheets
Word Documents
Powerpoint Presentations
Text Documents

And define the filter patterns for each line above as follows:

*.xls
*.doc
*.pps
*.txt, *.log

and so the CustomFilter property should be "Excel Spreadsheets (*.xls)||*.xls|||Word
Documents||*.doc|||Powerpoint Presentations||*.pps|||Text Documents
(*.log,*.txt)||*.txt|*.log". The following screen shot shows this custom filter format:

The FilterBarPromptVisible property specifies whether the filter prompt is visible or hidden.
The filter prompt feature allows you to filter the items as you type while the filter bar is
visible on the bottom part of the list area. The Filter prompt feature allows at runtime
filtering data on hidden columns too.

property Column.Data as Variant
Associates an extra data to the column.

Type Description

Variant A Variant expression that indicates the column's extra
data.

Use the Data property to assign any extra data to a column. Use the CellData property to
assign an extra data to a cell. Use the ItemData property to assign an extra data to an
item. Use the SortUserData or SortUserDataString type to sort the column based on the
CellData value.

property Column.Def(Property as DefColumnEnum) as Variant
Retrieves or sets a value that indicates the default value of given properties for all cells in
the same column.

Type Description

Property as DefColumnEnum A DefColumnEnum expression that indicates the property
being changed.

Variant A Variant value that specifies the newly value.

Use the Def property to specify a common value for given properties for all cells in the
column. For instance, you can use the Def property to assign check boxes to all cells in the
column, without enumerating them.

The following VB sample assigns checkboxes for all cells in the first column:

G2antt1.Columns(0).Def(exCellHasCheckBox) = True

The following VB sample changes the background color for all cells in the first column:

G2antt1.Columns(0).Def(exCellBackColor) = RGB(240, 240, 240)

The following C++ sample assigns checkboxes for all cells in the first column:

COleVariant vtCheckBox(VARIANT_TRUE);
m_g2antt.GetColumns().GetItem(COleVariant((long) 0)).SetDef(/*exCellHasCheckBox*/
0, vtCheckBox);

The following C++ sample changes the background color for all cells in the first column:

COleVariant vtBackColor((long)RGB(240, 240, 240));
m_g2antt.GetColumns().GetItem(COleVariant((long) 0)).SetDef(/*exCellBackColor*/ 4,
vtBackColor);

The following VB.NET sample assigns checkboxes for all cells in the first column:

With AxG2antt1.Columns(0)
 .Def(EXG2ANTTLib.DefColumnEnum.exCellHasCheckBox) = True
End With

The following VB.NET sample changes the background color for all cells in the first column:

With AxG2antt1.Columns(0)
 .Def(EXG2ANTTLib.DefColumnEnum.exCellBackColor) = ToUInt32(Color.WhiteSmoke)
End With

where the ToUInt32 function converts a Color expression to OLE_COLOR,

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample assigns checkboxes for all cells in the first column:

axG2antt1.Columns[0].set_Def(EXG2ANTTLib.DefColumnEnum.exCellHasCheckBox, true);

The following C# sample changes the background color for all cells in the first column:

axG2antt1.Columns[0].set_Def(EXG2ANTTLib.DefColumnEnum.exCellBackColor,
ToUInt32(Color.WhiteSmoke));

where the ToUInt32 function converts a Color expression to OLE_COLOR,

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample assigns checkboxes for all cells in the first column:

with thisform.G2antt1.Columns(0)
 .Def(0) = .t.
endwith

The following VFP sample changes the background color for all cells in the first column:

with thisform.G2antt1.Columns(0)
 .Def(4) = RGB(240,240,240)
endwith

property Column.DefaultSortOrder as Boolean

Specifies whether the default sort order is ascending or descending.

Type Description

Boolean
A boolean expression that specifies whether the default
sort order is ascending or descending. True means
ascending, False means descending.

By default, the DefaultSortOrder property is False. Use the SortOnClick property to specify
the operation that control should execute when the user clicks the column's header. Use the
DefaultSortOrder to specify how the column is sorted at the first click on its header. Use the
SortOrder property to sort a column. Use the SingleSort property to allow sorting by
multiple columns.

property Column.DisplayExpandButton as Boolean
Shows or hides the expanding/collapsing button in the column's header.

Type Description

Boolean
A Boolean expression that specifies whether the +/-
expanding/collapsing button is shown in the column's
header.

By default, the DisplayExpandButton property is True. The DisplayExpandButton property
indicates whether the +/- expanding/collapsing button is shown in the column's header. Use
the Expanded property to programmatically expand/collapse the columns. For instance, the
Expanded property on False, collapse the column, while the Expanded property on True,
expands the columns indicated by the ExpandColumns property. The ExpandColumns
property specifies the columns to be shown/hidden when a column is expanded or
collapsed.

property Column.DisplayFilterButton as Boolean
Shows or hides the column's filter bar button.

Type Description

Boolean A boolean expression that indicates whether the column's
filter bar button is visible or hidden.

The column's filter button is displayed on the column's caption. The DisplayFilterPattern
property determines whether the column's filter window includes the pattern field. Use the
FilterOnType property to enable the Filter-On-Type feature, that allows you to filter the
control's data based on the characters you type.

Use the DisplayFilterDate property to include a date selector to the column's drop down
filter window. Use the FilterBarDropDownHeight to specify the height of the drop down filter
window. Use the FilterBarDropDownWidth property to specify the width of the drop down
filter window. Use the FilterBarHeight property to specify the height of the filter bar header.
Use the FilterList property to specify the list of items being included in the column's drop
down filter list. Use the FilterInclude property to specify whether the child items should be
included to the list when the user applies the filter. Use the FilterCriteria property to filter
items using the AND, OR and NOT operators. Use the CustomFilter property to define you
custom filters. Use the ShowFilter method to show programmatically the column's drop
down filter window.

The FilterBarPromptVisible property specifies whether the filter prompt is visible or hidden.
The filter prompt feature allows you to filter the items as you type while the filter bar is
visible on the bottom part of the list area. The Filter prompt feature allows at runtime
filtering data on hidden columns too.

property Column.DisplayFilterDate as Boolean
Specifies whether the drop down filter window displays a date selector to specify the
interval dates to filter for.

Type Description

Boolean
A boolean expression that indicates whether the drop
down filter window displays a date selector to filter items
into a given interval.

By default, the DisplayFilterDate property is False. Use the DisplayFilterDate property to
filter items that match a given interval of dates. Use the Description property to customize
the strings being displayed on the drop down filter window. If the Date field in the filter drop
down window is not empty, the FilterType property of the Column object is set on exDate,
and the Filter property of the Column object points to the interval of dates being used when
filtering. The FilterList property indicates the items to be include din the drop down filter's
list among other filtering options.

The "Date:" filed is shown if the DisplayFilterPattern property is True and the
DisplayFilterDate property is True. Use The FilterList property on exNoItems, so no
items from the column are being included in the filter's list.

The calendar control is shown if the DisplayFilterPattern property is False and the
DisplayFilterDate property is True. Use The FilterList property on exNoItems, so no
items from the column are being included in the filter's list.

No date or pattern field is shown if the DisplayFilterPattern property is False and the
DisplayFilterDate property is False.

The "Filter For:" filed is shown if the DisplayFilterPattern property is True and the
DisplayFilterDate property is False.

property Column.DisplayFilterPattern as Boolean
Specifies whether the dropdown filter bar contains a textbox for editing the filter as pattern.

Type Description

Boolean A boolean expression that indicates whether the pattern
field is visible or hidden.

By default, the DisplayFilterPattern property is True. The DisplayFilterPattern property
specifies whether the pattern or date field is shown in the drop down filter window. The
DisplayFilterDate property indicates whether the date or calendar control is shown in the
drop down filter window. The FilterList property indicates the items to be include din the
drop down filter's list among other filtering options.

No date or pattern field is shown if the DisplayFilterPattern property is False and the
DisplayFilterDate property is False.

The "Filter For:" filed is shown if the DisplayFilterPattern property is True and the
DisplayFilterDate property is False.

The "Date:" filed is shown if the DisplayFilterPattern property is True and the
DisplayFilterDate property is True. Use The FilterList property on exNoItems, so no
items from the column are being included in the filter's list.

The Calendar control is shown if the DisplayFilterPattern property is False and the
DisplayFilterDate property is True. Use The FilterList property on exNoItems, so no
items from the column are being included in the filter's list.

Use the DisplayFilterButton property to show the column's filter button. Use the
CustomFilter property to define you custom filters. The "Filter For" (pattern) field in the
drop down filter window is always shown if the FilterOnType property is True, no matter of
the DisplayFilterPattern property.

The drop down filter window displays the "Filter For" field if the DisplayFilterPattern
property is True, and the DisplayFilterDate property is False. If the drop down filter window
displays "Filter For" field, and user types the filter inside, the FilterType property of the
Column is set to exPattern, and Filter property of the Column object specifies the filter
being typed.

The FilterBarPromptVisible property specifies whether the filter prompt is visible or hidden.
The filter prompt feature allows you to filter the items as you type while the filter bar is
visible on the bottom part of the list area. The Filter prompt feature allows at runtime
filtering data on hidden columns too.

property Column.DisplaySortIcon as Boolean

Retrieves or sets a value indicating whether the sort icon is visible on column's header,
while the column is sorted.

Type Description

Boolean A boolean expression indicating whether the sort icon is
visible on column's header, while the column is sorted.

Use the DisplaySortIcon property to hide the sort icon. Use the SortChildren property of the
Items object to sort a column. Use the SortOrder property to sort a column. Use the
SingleSort property to allow multiple sort columns.

property Column.Editor as Editor
Gets the column's editor object.

Type Description
Editor An Editor object that is associated to the column.

Use the Editor object to assign the same type of editor to all cells in the column. The Editor
objects holds information about editing cells in the column. Use the EditType property to
specify the column's edit type. Use the CellEditor property to assign a particular editor to a
cell. Use the CellEditorVisible property to hide the cell's editor. Use the CellValue property
to assign a value to a cell.

The following VB sample assigns a date editor to the first column:

With G2antt1.Columns(0).Editor
 .EditType = DateType
End With

The following C++ sample assigns a date editor to the first column:

#include "Column.h"
#include "Columns.h"
CColumn column = m_g2antt.GetColumns().GetItem(COleVariant(long(0)));
CEditor editor = column.GetEditor();
editor.SetEditType(7/*DateType*/);

The following VB.NET sample assigns a date editor to the first column:

With AxG2antt1.Columns(0).Editor
 .EditType = EXG2ANTTLib.EditTypeEnum.DateType
End With

The following C# sample assigns a date editor to the first column:

EXG2ANTTLib.Editor editor = axG2antt1.Columns[0].Editor;
editor.EditType = EXG2ANTTLib.EditTypeEnum.DateType;

The following VFP sample assigns a date editor to the first column:

with thisform.G2antt1.Columns.Item(0).Editor

 .EditType = 7 && DateType
endwith

property Column.Enabled as Boolean

Returns or sets a value that determines whether a column's header can respond to user-
generated events.

Type Description

Boolean A boolean expression that determines whether a column's
header can respond to user-generated events.

If the Enabled property is False, then all cells in the column are disabled, no matter if the
CellEnabled property is True. Use the Enabled property to disable the control. The
HeaderEnabled property enables or disables the control's header (including the control's
sort/groupby-bar). If the header is disabled, the user can't resize, sort or drag and drop any
column.

property Column.ExpandColumns as String
Specifies the list of columns to be shown when the current column is expanded.

Type Description

String

A String expression that specifies the columns to be
expanded/collapsed by current column. The expression
contains the index of the columns to be shown or hidden,
separated by comma. The list can includes the index of
the current column, and so the column is always visible no
matter if the column is expanded or collapsed.

By default, the ExpandColumns property is "". The ExpandColumns property specifies the
columns to be shown/hidden when a column is expanded or collapsed. The ExpandColumns
property can include the index of the current column, which indicates that the column is
visible no matter if the column is expanded or collapsed. In other words, the
Expanded/ExpandColumns properties provides expandable header. The Index property
specifies the index of the column. The Expanded property specifies whether a column is
expanded or collapsed. The DisplayExpandButton property indicates whether the +/-
expanding/collapsing button is shown in the column's header. The HasButtons property
specifies how the +/- buttons are shown.

The following screen shot shows the control's header when all columns are collapsed:

The following screen shot shows the control's header with columns expanded/collapsed :

property Column.Expanded as Boolean
Expands or collapses the column.

Type Description

Boolean A Boolean expression that specifies whether the column is
expanded / collapsed.

By default, the Expanded property is True. Use the Expanded property to programmatically
expand/collapse the columns. For instance, the Expanded property on False, collapse the
column, while the Expanded property on True, expands the columns indicated by the
ExpandColumns property. The ExpandColumns property specifies the columns to be
shown/hidden when a column is expanded or collapsed. The DisplayExpandButton property
indicates whether the +/- expanding/collapsing button is shown in the column's header.

property Column.Filter as String
Specifies the column's filter when the filter type is exFilter, exPattern, exDate, exNumeric,
exCheck or exImage.

Type Description
String A string expression that specifies the column's filter.

If the FilterType property is exFilter the Filter property indicates the list of values being
included when filtering. The values are separated by '|' character. For instance if the
Filter property is "CellA|CellB" the control includes only the items that have captions
like: "CellA" or "CellB".

If the FilterType is exPattern the Filter property defines the list of patterns used in
filtering. The list of patterns is separated by the '|' character. A pattern filter may
contain the wild card characters like '?' for any single character, '*' for zero or more
occurrences of any character, '#' for any digit character. The '|' character separates
the options in the pattern. For instance: '1*|2*' specifies all items that start with '1' or
'2'.

If the FilterType property is exDate, the Filter property should be of "[dateFrom] to
[dateTo]" format, and it indicates that only items between a specified range of dates
will be included. If the dateFrom value is missing, the control includes only the items
before the dateTo date, if the dateTo value is missing, the control includes the items
after the dateFrom date. If both dates (dateFrom and dateTo) are present, the
control includes the items between this interval of dates. For instance, the "2/13/2004
to" includes all items after 2/13/2004 inclusive, or "2/13/2004 to Feb 14 2005" includes
all items between 2/13/2004 and 2/14/2004.

If the FilterType property is exNumeric, the Filter property may include operators like
<, <=, =, <>, >= or > and numbers to define rules to include numbers in the control's
list. The Filter property should be of the following format "operator number [operator
number ...]". For instance, the "> 10" indicates all numbers greater than 10. The "<>10
<> 20" filter indicates all numbers except 10 and 20. The "> 10 < 100" filter indicates
all numbers greater than 10 and less than 100. The ">= 10 <= 100 <> 50" filter
includes all numbers from 10 to 100 excepts 50. The "10" filter includes only 10 in the
list. The "=10 =20" includes no items in the list because after control filters only 10
items, the second rule specifies only 20, and so we have no items. The Filter property
may include unlimited rules. A rule is composed by an operator and a number. The
rules are separated by space characters. The CustomFilter property has no effect of
the FilterType property is exNumeric.

If the FilterType property is exCheck the Filter property may include "0" for unchecked

items, and "1" for checked items. The CellState property specifies the state of the
cell's checkbox. If the Filter property is empty, the filter is not applied to the column,
when ApplyFilter method is called. The CustomFilter property has no effect of the
FilterType property is exCheck.

If the FilterType property is exImage the Filter property indicates the list of icons (index
of the icon being displayed) being filtered. The values are separated by '|' character.
The CellImage property indicates the index of the icon being displayed in the cell. For
instance, the '1|2' indicates that the filter includes the cells that display first or the
second icon (with the index 1 or 2). The drop down filter window displays the (All)
item and the list of icons being displayed in the column. The CustomFilter property has
no effect of the FilterType property is exImage.

The Filter property has no effect if the FilterType property is one of the followings: exAll,
exBlanks and exNonBlanks

The ApplyFilter method should be called to update the control's content after changing the
Filter or FilterType property. The ClearFilter method clears the Filter and the FilterType
properties. Use the FilterCriteria property to filter items using the AND, OR and NOT
operators. Use the CustomFilter property to define you custom filters. Use the ShowFilter
method to show programmatically the column's drop down filter window.

The FilterBarPromptVisible property specifies whether the filter prompt is visible or hidden.
The filter prompt feature allows you to filter the items as you type while the filter bar is
visible on the bottom part of the list area. The Filter prompt feature allows at runtime
filtering data on hidden columns too.

property Column.FilterBarDropDownWidth as Double
Specifies the width of the drop down filter window proportionally with the width of the
column.

Type Description

Double

A double expression that indicates the width of the drop
down filter window proportionally with the width of the
column. If the FilterBarDropDownWidth expression is
negative, the absolute value indicates the width of the drop
down filter window in pixels. Else, the value indicates how
many times the width of the column is multiply to get the
width of the drop down filter window.

By default, the FilterBarDropDownWidth property is 1, and so, the width of the drop down
filter window coincides with the width of the column. Use the Width property to specify the
width of the column. Use FilterBarDropDownHeight property to specify the height of the
drop down filter window. Use the FilterBarHeight property to specify the height of the
control's filter bar. Use the DisplayFilterButton property to display a filter button to the
column's caption. Use the Description property to define predefined strings in the filter bar.
Use the FilterInclude property to specify whether the child items should be included to the
list when the user applies the filter. Use the ShowFilter method to show programmatically
the column's drop down filter window.

The following VB sample specifies that the width of the drop down filter window is double of
the column's width:

With G2antt1.Columns(0)
 .FilterBarDropDownWidth = 2
End With

The following VB sample specifies that the width of the drop down filter window is 150
pixels:

With G2antt1.Columns(0)
 .FilterBarDropDownWidth = -150
End With

property Column.FilterList as FilterListEnum
Specifies whether the drop down filter list includes visible or all items.

Type Description

FilterListEnum A FilterListEnum expression that indicates the items being
included in the drop down filter list.

By default, the FilterList property is exAllItems. Use the FilterList property to specify the
items being included in the column's drop down filter list. Use the DisplayFilterButton
property to display the column's filter bar button. The DisplayFilterDate property specifies
whether the drop down filter window displays a date selector to specify the interval dates to
filter for. Use the FilterCriteria property to filter items using the AND, OR and NOT
operators. Use the exSortItemsAsc flag to sort ascending the values in the drop down filter
list. For instance, the exAllItems OR exSortItemsAsc specifies that the drop down filter
window lists all items in ascending order. Add the exIncludeInnerCells flag if you require
adding the inner cells value to the drop down filter window.

property Column.FilterOnType as Boolean
Filters the column as user types characters in the drop down filter window.

Type Description

Boolean
A Boolean expression that specifies whether the column
gets filtered as the user types characters in the drop down
filter window.

By default, the FilterOnType property is False. The Filter-On-Type feature allows you to
filter the control's data based on the typed characters. Use the DisplayFilterButton property
to add a drop down filter button to the column's header. The Filter-On-Type feature works
like follows: User clicks the column's drop down filter button, so the drop down filter window
is shown. Use starts type characters, and the control filters the column based on the typed
characters as it includes all items that starts with typed characters, if the AutoSearch
property is exStartWith, or include in the filter list only the items that contains the typed
characters, if the AutoSearch property is exContains. Click the X button on the filterbar, and
so the control removes the filter, and so all data is displayed. Once, the FilterOnType
property is set on True, the column's FilterType property is changed to exPattern, and the
the Filter property indicates the typed string. Use the FilterCriteria property to specify the
expression being used to filter the control's data when multiple columns are implied in the
filter. Use the Description property to customize the text being displayed in the drop down
filter window. Use the FilterHeight property to specify the height of the control's filterbar
that's displayed on the bottom side of the control, once a filter is applied. The "Filter For"
(pattern) field in the drop down filter window is always shown if the FilterOnType property is
True, no matter of the DisplayFilterPattern property. The control fires the FilterChanging
event just before applying the filter, and FilterChange once the list gets filtered.

The following screen shot shows how the data gets filtered when the user types characters
in the Filter-On-Type columns:

Steps:

The user clicks the drop down filter window, in the column A
The "Filter For:" field is shown, and it waits for the user to start type characters.
As user types characters, the column gets filtered the items.

property Column.FilterType as FilterTypeEnum
Specifies the column's filter type.

Type Description

FilterTypeEnum A FilterTypeEnum expression that indicates the filter's
type.

The FilterType property defines the filter's type. By default, the FilterType is exAll. No filter
is applied if the FilterType is exAll. The Filter property defines the column's filter. Use the
DisplayFilterButton property to display the column's filter button. Use the FilterCriteria
property to filter items using the AND, OR and NOT operators.

The ApplyFilter method should be called to update the control's content after changing the
Filter or FilterType property. The ClearFilter method clears the Filter and the FilterType
properties.

The FilterBarPromptVisible property specifies whether the filter prompt is visible or hidden.
The filter prompt feature allows you to filter the items as you type while the filter bar is
visible on the bottom part of the list area. The Filter prompt feature allows at runtime
filtering data on hidden columns too.

property Column.FireFormatColumn as Boolean

Retrieves or sets a value that indicates whether the control fires FormatColumn to format
the caption of a cell hosted by column.

Type Description

Boolean
A boolean expression that indicates whether the control
fires the FireFormatColumn event for the cells in the
column.

By default, the FireFormatColumn property is False. The FormatColumn event is fired only
if the FireFormatColumn property of the Column object is True. The FormatColumn event
lets the user to provide the cell's caption before it is displayed on the control's list. For
instance, the FormatColumn event is useful when the column cells contains prices (numbers
), and you want to display that column formatted as currency, like $50 instead 50. Also, it is
useful to use the FormatColumn event when displaying computed cells. Newer versions of
the component provides the FormatColumn property that helps formatting a cell using the
several predefined functions without using the control's event FormatColumn.

The CellValue property of the cell is being shown as:

formatted using the FormatCell property, if it is valid
formatted using the FormatColumn property, if it is valid

In other words, all cells applies the format of the FormatColumn property, excepts the cells
with the FormatCell property being set. If the cell belongs to a column with the
FireFormatColumn property on True, the Value parameter of the FormatColumn event
shows the newly caption for the cell to be shown.

The FormatColumn event is fired before displaying a cell, so you can handle the
FormatColumn to display anything on the cell at runtime. This way you can display the row
position, you can display the value using the currency format, and so on. The
FireFormatColumn property allows the control to fire the FormatColumn event for the
column. The Position property specifies the position of the column.

If your chart does not display a tree or a hierarchy this property is ok to be used with
FormatColumn event to display the position

The following VB sample handles the FormatColumn event to display the row position:

Private Sub G2antt1_FormatColumn(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal
ColIndex As Long, Value As Variant)
 Value = G2antt1.Items.ItemPosition(Item)

End Sub

If your chart displays a tree or a hierarchy the position of the item must be determined
relative to the FirstVisibleItem as shown in the following VB sample:

Private Sub G2antt1_FormatColumn(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal
ColIndex As Long, Value As Variant)
 Value = G2antt1.ScrollPos(True) + RelPos(Item)
End Sub

Private Function RelPos(ByVal hVisible As Long) As Long
 With G2antt1.Items
 Dim h As Long, i As Long, n As Long
 i = 0
 n = .VisibleCount + 1
 h = .FirstVisibleItem
 While (i <= n) And h <> 0 And h <> hVisible
 i = i + 1
 h = .NextVisibleItem(h)
 Wend
 RelPos = i
 End With
End Function

property Column.FormatColumn as String
Specifies the format to display the cells in the column.

Type Description

String A string expression that defines the format to display the
cell, including HTML formatting, if the cell supports it.

By default, the FormatColumn property is empty. The cells in the column use the provided
format only if is valid (not empty, and syntactically correct), to display data in the column.
The FormatColumn property provides a format to display all cells in the column using a
predefined format. The expression may be a combination of variables, constants, strings,
dates and operators, and value. The value operator gives the value to be formatted. A
string is delimited by ", ` or ' characters, and inside they can have the starting character
preceded by \ character, ie "\"This is a quote\"". A date is delimited by # character, ie
#1/31/2001 10:00# means the January 31th, 2001, 10:00 AM. The cell's HTML format is
applied only if the CellValueFormat or Def(exCellValueFormat) is exHTML. If valid, the
FormatColumn is applied to all cells for which the CellCaptionFormat property is not
exComputedField. This way you can specify which cells use or not the FormatColumn
property. The FormatColumn and FormatCell properties support auto-numbering functions
like explained bellow The ComputedField property indicates the formula of the computed
column.

The CellValue property of the cell is being shown as:

formatted using the FormatCell property, if it is valid
formatted using the FormatColumn property, if it is valid

In other words, all cells applies the format of the FormatColumn property, excepts the cells
with the FormatCell property being set. If the cell belongs to a column with the
FireFormatColumn property on True, the Value parameter of the FormatColumn event
shows the newly caption for the cell to be shown.

For instance:

the "currency(value)" displays the column using the current format for the currency ie,
1000 gets displayed as $1,000.00
the "longdate(date(value))" converts the value to a date and gets the long format to
display the date in the column, ie #1/1/2001# displays instead Monday, January 01,
2001
the "'' + ((0:=proper(value)) left 1) + '' + (=:0 mid 2)" converts the name to
proper, so the first letter is capitalized, bolds the first character, and let unchanged the
rest, ie a "mihai filimon" gets displayed "Mihai Filimon".
the "len(value) ? ((0:=dbl(value)) < 10 ? '<fgcolor=808080>' : '') +

currency(=:0)" displays the cells that contains not empty daya, the value in currency
format, with a different font and color for values less than 10, and bolded for those that
are greater than 10, as can see in the following screen shot in the column (A+B+C):

The value keyword in the FormatColumn property indicates the value to be formatted.

The expression supports cell's identifiers as follows:

%0, %1, %2, ... specifies the value of the cell in the column with the index 0, 1 2, ...
The CellValue property specifies the cell's value. For instance, "%0 format ``" formats
the value on the cell with the index 0, using current regional setting, while "int(%1)"
converts the value of the column with the index 1, to integer.
%C0, %C1, %C2, ... specifies the caption of the cell, or the string the cell displays in
the column with the index 0, 1 2, ... The CellCaption property specifies the cell's
caption. The cell's value may be different than what the cell displays as a string. For
instance, let's say a cell display HTML format. The %0 returns the html format
including the HTML tags, while %C0 returns the cell's content as string without HTML
tags. For instance, "upper(%C1)" converts the caption of the cell with the index 1, to
upper case, while "%C0 left 2" returns the leftmost two characters on the cell with the
index 0.
%CD0, %CD1, %CD2, ... specifies the cell's extra data in the column with the index
0, 1 2, ... The CellData property associates any extra/user data to a cell. For instance,
"%CD0 = `your user data`" specifies all cells whose CellData property is `your user
data`, on the column with the index 0.
%CS0, %CS1, %CS2, ... specifies the cell's state in the column with the index 0, 1 2,
... The CellState property specifies the cell's state, and so it indicates whether the cell
is checked or un-checked. For instance, "%CS0" defines all checked items on the
column with the index 0, or "not %CS1" defines all un-checked items in the column
with the index 1.

The expression predefined operators for auto-numbering are:

number index 'format', indicates the index of the item. The first added item has the
index 0, the second added item has the index 1, and so on. The index of the item
remains the same even if the order of the items is changed by sorting. For instance, 1
index '' gets the index of the item starting from 1 while 100 index '' gets the index of the
item starting from 100. The number indicates the starting index, while the format is a

set of characters to be used for specifying the index. If the format is missing, the index
of the item is formatted as numbers. For instance: 1 index 'A-Z' gets the index as A, B,
C... Z, BA, BB, ... BZ, CA, The 1 index 'abc' gives the index as:
a,b,c,ba,bb,bc,ca,cb,cc,.... You can use other number formatting function to format the
returned value. For instance "1 index '' format '0||2|:'" gets the numbers grouped by 2
digits and separated by : character.

In the following screen shot the FormatColumn("Col 1") = "1 index ''"

In the following screen shot the FormatColumn("Col 1") = "1 index 'A-Z'"

number apos 'format' indicates the absolute position of the item. The first displayed
item has the absolute position 0 (scrolling position on top), the next visible item is 1,
and so on. The number indicates the starting position, while the format is a set of
characters to be used for specifying the position. For instance, 1 apos '' gets the
absolute position of the item starting from 1, while 100 apos '' gets the position of the
item starting from 100. If the format is missing, the absolute position of the item is
formatted as numbers.

In the following screen shot the FormatColumn("Col 1") = "1 apos ''"

In the following screen shot the FormatColumn("Col 1") = "1 apos 'A-Z'"

number pos 'format' indicates the relative position of the item. The relative position is
the position of the visible child item in the parent children collection. The number
indicates the starting position, while the format is a set of characters to be used for
specifying the position. For instance, 1 pos '' gets the relative position of the item
starting from 1, while 100 pos '' gets the relative position of the item starting from 100.
If the format is missing, the relative position of the item is formatted as numbers. The
difference between pos and opos can be seen while filtering the items in the control.
For instance, if no filter is applied to the control, the pos and opos gets the same
result. Instead, if the filter is applied, the opos gets the position of the item in the list
of unfiltered items, while the pos gets the position of the item in the filtered list.

In the following screen shot the FormatColumn("Col 2") = "'' + 1 pos '' + ' ' +
value"

In the following screen shot the FormatColumn("Col 2") = "'' + 1 pos 'A-Z' + ' '
+ value"

number opos 'format' indicates the relative old position of the item. The relative old
position is the position of the child item in the parent children collection. The number
indicates the starting position, while the format is a set of characters to be used for
specifying the position.For instance, 1 pos '' gets the relative position of the item
starting from 1, while 100 pos '' gets the relative position of the item starting from 100.
If the format is missing, the relative position of the item is formatted as numbers. The
difference between pos and opos can be seen while filtering the items in the control.
For instance, if no filter is applied to the control, the pos and opos gets the same
result. Instead, if the filter is applied, the opos gets the position of the item in the list
of unfiltered items, while the pos gets the position of the item in the filtered list.
number rpos 'format' indicates the relative recursive position of the item. The recursive
position indicates the position of the parent items too. The relative position is the
position of the visible child item in the parent children collection. The number indicates
the starting position, while the format is of the following type
"delimiter|format|format|...". If the format is missing, the delimiter is . character, and
the positions are formatted as numbers. The format is applied consecutively to each

parent item, from root to item itself.

In the following screen shot the FormatColumn("Col 1") = "1 rpos ''"

In the following screen shot the FormatColumn("Col 1") = "1 rpos ':|A-Z'"

In the following screen shot the FormatColumn("Col 1") = "1 rpos '.|A-Z|'"

In the following screen shot the FormatColumn("Col 1") = "1 apos ''" and
FormatColumn("Col 2") = "'' + 1 rpos '.|A-Z|' + ' ' +
value"

number rindex 'format', number rapos 'format' and number ropos 'format' are working
similar with number rpos 'format', excepts that they gives the index, absolute position,
or the old child position.

This property/method supports predefined constants and operators/functions as described
here.

The following VB sample shows how can I display the column using currency:

With G2antt1
 .Columns.Add("Currency").FormatColumn = "currency(dbl(value))"
 With .Items
 .AddItem "1.23"
 .AddItem "2.34"
 .AddItem "0"
 .AddItem 5
 .AddItem "10000.99"
 End With
End With

The following VB.NET sample shows how can I display the column using currency:

With AxG2antt1
 .Columns.Add("Currency").FormatColumn = "currency(dbl(value))"
 With .Items
 .AddItem "1.23"
 .AddItem "2.34"
 .AddItem "0"
 .AddItem 5
 .AddItem "10000.99"
 End With
End With

The following C++ sample shows how can I display the column using currency:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import "C:\\Windows\\System32\\ExG2antt.dll"
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
((EXG2ANTTLib::IColumnPtr)(spG2antt1->GetColumns()->Add(L"Currency")))-
>PutFormatColumn(L"currency(dbl(value))");
EXG2ANTTLib::IItemsPtr var_Items = spG2antt1->GetItems();

 var_Items->AddItem("1.23");
 var_Items->AddItem("2.34");
 var_Items->AddItem("0");
 var_Items->AddItem(long(5));
 var_Items->AddItem("10000.99");

The following C# sample shows how can I display the column using currency:

(axG2antt1.Columns.Add("Currency") as EXG2ANTTLib.Column).FormatColumn =
"currency(dbl(value))";
EXG2ANTTLib.Items var_Items = axG2antt1.Items;
 var_Items.AddItem("1.23");
 var_Items.AddItem("2.34");
 var_Items.AddItem("0");
 var_Items.AddItem(5);
 var_Items.AddItem("10000.99");

The following VFP sample shows how can I display the column using currency:

with thisform.G2antt1
 .Columns.Add("Currency").FormatColumn = "currency(dbl(value))"
 with .Items
 .AddItem("1.23")
 .AddItem("2.34")
 .AddItem("0")
 .AddItem(5)
 .AddItem("10000.99")
 endwith
endwith

property Column.FormatLevel as String
Retrieves or sets a value that indicates the layout of columns being displayed in the
column's header.

Type Description

String

A string expression that indicates a CRD string that
layouts the column's header. The Index elements in the
CRD strings indicates the index of the column being
displayed. The Caption elements in the CRD string support
built-in HTML format.

By default, the FormatLevel property is empty. The FormatLevel property indicates the
layout of the column in the control's header bar. Use the HeaderVisible property to show or
hide the control's header bar. Use the HeaderHeight property to specify the height of the
level in the control's header bar. Use the FormatLevel property to display multiple levels in
the column's header. Use the LevelKey property to display neighbor columns on multiple
levels. If the FormatLevel property is empty, the control displays the Caption or the
HTMLCaption of the column. If the FormatLevel property is not empty it indicates the layout
of the column being displayed. For instance, the FormatLevel = "1,2" indicates that the
column's header is horizontally divided such as the left part displays the caption of the first
column, and the right part displays the caption of the second column. Use the Visible
property to specify whether a column is visible or hidden. Use the Add method to add new
columns to the control. Use the DataSource property to bound the control to a recordset.
Use the Def(exCellFormatLevel) property to specify the layout for all cells in the same
column. Use the CellFormatLevel property to indicate the layout for a specific cell.

The following screen shot shows the control/list's header on 4 different levels, the same as
displayed in the chart's area:

The following VB sample arranges the columns as in the above screen shot (the sample
hides the columns and add instead two new columns { Personal Info, General Info }, where

the layout is displayed.

With G2antt1
 .BeginUpdate
 Dim c As EXG2ANTTLibCtl.Column
 For Each c In .Columns
 c.Visible = False
 Next
 With .Columns.Add("Personal Info")
 .AllowSort = False
 .AllowDragging = False
 .Width = 196
 .FormatLevel = "18;17/(14:54,(2/1/3))"
 End With
 With .Columns.Add("General Info")
 .AllowSort = False
 .AllowDragging = False
 .Width = 382
 .FormatLevel = "18;18/((7/18;4):128,((((12/10/11),(5/6/9)),15)))"
 End With
 .EndUpdate
End With

Before running the sample the control's header bar looks like follows:

After running the sample the control's header bar looks like follows:

The following C++ sample arranges the columns as in the above screen shot (the sample
hides the columns and add instead two new columns { Personal Info, General Info }, where
the layout is displayed.

m_g2antt.BeginUpdate();
CColumns cols = m_g2antt.GetColumns();
long nCount = cols.GetCount();

for (long i = 0; i < nCount; i++)
 cols.GetItem(COleVariant(i)).SetVisible(FALSE);

CColumn col1(V_DISPATCH(&cols.Add("Personal Info")));
col1.SetAllowSort(FALSE);
col1.SetAllowDragging(FALSE);
col1.SetWidth(196);
col1.SetFormatLevel("18;18/(15:54,(2/1/4))");
CColumn col2(V_DISPATCH(&cols.Add("General Info")));
col2.SetAllowSort(FALSE);
col2.SetAllowDragging(FALSE);
col2.SetWidth(512);
col2.SetFormatLevel("18;19/((8/18;5):128,((((13/11/12),(6/7/10)),16)))");
m_g2antt.EndUpdate();

The following VB.NET sample arranges the columns as in the above screen shot (the
sample hides the columns and add instead two new columns { Personal Info, General Info },
where the layout is displayed.

With AxG2antt1
 .BeginUpdate()
 Dim c As EXG2ANTTLib.Column
 For Each c In .Columns
 c.Visible = False
 Next
 With .Columns.Add("Personal Info")
 .AllowSort = False
 .AllowDragging = False
 .Width = 196
 .FormatLevel = "18;18/(15:54,(2/1/4))"
 .Def(EXG2ANTTLib.DefColumnEnum.exCellFormatLevel) = "15:54,(2/1/4)"
 End With
 With .Columns.Add("General Info")
 .AllowSort = False
 .AllowDragging = False
 .Width = 512
 .FormatLevel = "18;19/((8/18;5):128,((((13/11/12),(6/7/10)),16)))"
 .Def(EXG2ANTTLib.DefColumnEnum.exCellFormatLevel) = "(8/18;5):128,((((13/11/12),

(6/7/10)),16))"
 End With
 .EndUpdate()
End With

The following C# sample arranges the columns as in the above screen shot (the sample
hides the columns and add instead two new columns { Personal Info, General Info }, where
the layout is displayed.

axG2antt1.BeginUpdate();
foreach(EXG2ANTTLib.Column c in axG2antt1.Columns)
 c.Visible = false;
EXG2ANTTLib.Column c1 = axG2antt1.Columns.Add("Personal Info") as
EXG2ANTTLib.Column;
c1.AllowSort = false;
c1.AllowDragging = false;
c1.Width = 196;
c1.FormatLevel = "18;18/(15:54,(2/1/4))";
c1.set_Def(EXG2ANTTLib.DefColumnEnum.exCellFormatLevel,"15:54,(2/1/4)");

EXG2ANTTLib.Column c2 = axG2antt1.Columns.Add("General Info") as
EXG2ANTTLib.Column;
c2.AllowSort = false;
c2.AllowDragging = false;
c2.Width = 512;
c2.FormatLevel = "18;19/((8/18;5):128,((((13/11/12),(6/7/10)),16)))";
c2.set_Def(EXG2ANTTLib.DefColumnEnum.exCellFormatLevel,"(8/18;5):128,((((13/11/12),
(6/7/10)),16))");
axG2antt1.EndUpdate();

The following VFP sample arranges the columns as in the above screen shot (the sample
hides the columns and add instead two new columns { Personal Info, General Info }, where
the layout is displayed.

with thisform.G2antt1
 .BeginUpdate()
 with .Columns
 for i = 0 to .Count - 1
 .Item(i).Visible = .f.

 next
 with .Add("Personal Info")
 .AllowSort = .f.
 .AllowDragging = .f.
 .Width = 196
 .FormatLevel = "18;18/(15:54,(2/1/4))"
 .Def(32) = "15:54,(2/1/4)"
 endwith
 with .Add("General Info")
 .AllowSort = .f.
 .AllowDragging = .f.
 .Width = 512
 .FormatLevel = "18;19/((8/18;5):128,((((13/11/12),(6/7/10)),16)))"
 .Def(32) = "(8/18;5):128,((((13/11/12),(6/7/10)),16))"
 endwith
 endwith
 .EndUpdate()
endwith

property Column.GroupByFormatCell as String
Indicates the format of the cell to be displayed when the column gets grouped by.

Type Description

String A String expression that may specify HTML format,
<caption> and value keywords as explained bellow.

By default, the GroupByFormatCell property is "'<caption> (' + value + ')'", which
indicates that the grouping label is shown in bold, followed by the computed value of the
GroupByTotalField property. The GroupByFormatCell property determines the format of the
cell to be displayed in the grouping item, when the column gets sorted. The
GroupByTotalField property determines the formula to be applied to the column when it gets
grouped. When the control is performing a group-by operation, the
Items.FormatCell(Item,Items.GroupItem(Item)) property is set on GroupByFormatCell
property, where the Item is the handle of the item being added during grouping or the Item
parameter of the AddGroupItem event.

In conclusion,

the <caption> keyword in the GroupByFormatCell property is replaced with the
grouping label/value, and the result expression is passed to the FormatCell property.
the value keyword indicates the computed value of the GroupByTotalField property.

For instance:

the "'<caption> (' + currency(value) + ')'" displays the grouping label, and the
aggregate field as a currency, as specified in the regional settings.
the "'<caption> (' + currency(value) + `, inc. VAT ` + currency(1.19*value) +
')'" displays the grouping label, and the aggregate field, including a computed field (
VAT) as a currency, as specified in the regional settings.
the "'<caption> <fgcolor=808080>(Total ' + (value format ``) + ')
</fgcolor>'" displays the grouping label, and the aggregate field as a current
number format, as specified in the regional settings, with a different font and
foreground color.

The value keyword in the GroupByFormatCell property indicates the value to be formatted
(as a result of the GroupByTotalField property):

The expression supports cell's identifiers as follows:

%0, %1, %2, ... specifies the value of the cell in the column with the index 0, 1 2, ...
The CellValue property specifies the cell's value. For instance, "%0 format ``" formats
the value on the cell with the index 0, using current regional setting, while "int(%1)"

converts the value of the column with the index 1, to integer.
%C0, %C1, %C2, ... specifies the caption of the cell, or the string the cell displays in
the column with the index 0, 1 2, ... The CellCaption property specifies the cell's
caption. The cell's value may be different than what the cell displays as a string. For
instance, let's say a cell display HTML format. The %0 returns the html format
including the HTML tags, while %C0 returns the cell's content as string without HTML
tags. For instance, "upper(%C1)" converts the caption of the cell with the index 1, to
upper case, while "%C0 left 2" returns the leftmost two characters on the cell with the
index 0.
%CD0, %CD1, %CD2, ... specifies the cell's extra data in the column with the index
0, 1 2, ... The CellData property associates any extra/user data to a cell. For instance,
"%CD0 = `your user data`" specifies all cells whose CellData property is `your user
data`, on the column with the index 0.
%CS0, %CS1, %CS2, ... specifies the cell's state in the column with the index 0, 1 2,
... The CellState property specifies the cell's state, and so it indicates whether the cell
is checked or un-checked. For instance, "%CS0" defines all checked items on the
column with the index 0, or "not %CS1" defines all un-checked items in the column
with the index 1.

This property/method supports predefined constants and operators/functions as described
here.

property Column.GroupByTotalField as String
Indicates the aggregate formula to be displayed when the column gets grouped by.

Type Description

String A String expression that indicates the formula to be
displayed on the grouping caption.

By default, the GroupByTotalField property is "count(current,rec,1)", which count recursively
leaf items (implies recursively leaf items) of the grouping item. At runtime, the computed
value of this formula is replaced in the HTML format being specified by the
GroupByFormatCell property, for the value keyword. When the control is performing a
group-by operation, the Items.CellValue(Item,Items.GroupItem(Item)) property is set on
GroupByTotalField property, and the Items.CellValueFormat(Item,Items.GroupItem(Item))
is exHTML + exTotalField (5), where the Item is the handle of the item being added during
grouping or the Item parameter of the AddGroupItem event. The GroupByTotalField
property determines the formula to be applied to the column when it gets grouped. The
GroupByFormatCell property determines the format of the cell to be displayed in the
grouping item, when the column gets sorted.

For instance

"count(current,dir,1)" counts the number of child items (not implies recursively child
items).
"count(current,all,1)" counts the number of all child items (implies recursively child
items).
"sum(parent,dir,%1=0?0:1)" counts the not-zero values in the second column (%1)
"sum(parent,dir,%1 + %2)" indicates the sum of all cells in the second (%1) and third
(%2) column that are directly descendent from the parent item.
"sum(all,rec,%1 + %2)" sums all leaf cells in the second (%1) and third (%2) columns.

The syntax for the GroupByTotalField property property should be:
aggregate(list,direction,formula) where:

aggregate must be one of the following:

sum - calculates the sum of values.
min - retrieves the minimum value.
max - retrieves the maximum value.
count - counts the number of items.
avg - calculates the average of values.

list must be one of the following:

a long expression that specifies the index of the item being referred.
a predefined string expression as follows:

all - indicates all items, so the formula is being applied to all items. The direction
has no effect.
current - the current item.
parent - the parent item.
root - the root item.

direction must be one of the following:

dir - collects the direct descendents.
rec - collects the leaf descendents (leaf items). A leaf item is an item with no child
items.
all - collects all descendents.

Currently, the following items are excluded by aggregate functions:

not-sortable items. The SortableItem property specifies whether the item can be
sorted (a sortable item can change its position after sorting, while a not-sortable item
keeps its position after sorting.
not-selectable items. The SelectableItem property specifies whether the user can
selects/focus the specified item.
divider items. The ItemDivider property specifies whether the item displays a single
cell, instead displaying whole cells.

In conclusion, aggregate functions counts ONLY items that are:

sortable, SortableItem is True, by default.
selectable, SelectableItem is True, by default.
not divider, ItemDivider is -1, by default.

Shortly, by setting to a different value to any of these properties, makes the item to be
ignored by the aggregate functions.

For instance

count(current,dir,1) counts the number of child items (not implies recursively child items
).
count(current,all,1) counts the number of all child items (implies recursively child items
).
count(current,rec,1) counts the number of leaf items (implies recursively leaf items).
count(current,rec,1) counts the number of leaf items (a leaf item is an item with no
child items).
sum(parent,dir,%1=0?0:1) counts the not-zero values in the second column (%1)

sum(parent,dir,%1 + %2) indicates the sum of all cells in the second (%1) and third
(%2) column that are directly descendent from the parent item.
sum(all,rec,%1 + %2) sums all leaf cells in the second (%1) and third (%2) columns.

property Column.HeaderAlignment as AlignmentEnum
Specifies the alignment of the column's caption.

Type Description

AlignmentEnum An AlignmentEnum expression that specifies the alignment
of the column's caption.

Use the HeaderAlignment property to align the column's caption inside the column's header.
Use the Alignment property to align the cells into a column. Use the HeaderImageAlignment
property to align the column's icon inside the column's header. Use the CellHAlignment
property to align a cell. The RightToLeft property flips the order of the control's elements
from right to left.

property Column.HeaderBold as Boolean

Retrieves or sets a value that indicates whether the column's caption should appear in bold.

Type Description

Boolean A boolean expression that indicates whether the column's
caption should appear in bold.

The HeaderBold property specifies whether the column's caption should appear in bold. Use
the CellBold or ItemBold properties to specify whether the cell or item should appear in
bold. Use the HTMLCaption property to specify portions of the caption using different
colors, fonts. Use the HeaderItalic, HeaderUnderline or HeaderStrikeOut property to specify
different font attributes when displaying the column's caption.

property Column.HeaderImage as Long

Retrieves or sets a value indicating the index of an Image in the Images collection, which is
displayed to the column's header.

Type Description

Long

A long expression that indicates the index of image in the
column's header. The last 7 bits in the high significant byte
of the long expression indicates the identifier of the skin
being used to paint the object. Use the Add method to add
new skins to the control. If you need to remove the skin
appearance from a part of the control you need to reset
the last 7 bits in the high significant byte of the color being
applied to the part.

Use the HeaderImage property to assign an icon to the column's header. Use the
HeaderImageAlignment property to align the column's icon inside the column's header.

property Column.HeaderImageAlignment as AlignmentEnum
Retrieves or sets the alignment of the image into the column's header.

Type Description

AlignmentEnum An AlignmentEnum expression that indicates the alignment
of the image in the column's header.

By default, the image is left aligned. Use the HeaderImageAlignment property to aligns the
icon in the column's header. Use the HeaderImage property to attach an icon to the
column's header. The RightToLeft property flips the order of the control's elements from
right to left.

property Column.HeaderItalic as Boolean

Retrieves or sets the Italic property of the Font object that it is used to paint the column's
caption.

Type Description

Boolean A boolean expression that indicates whether the column's
caption should appear in italic.

Use the HeaderItalic property to specify whether the column's caption should appear in
italic. Use the CellItalic or ItemItalic properties to specify whether the the cell or the item
should appear in italic. Use the HeaderBold, HeaderUnderline or HeaderStrikeOut property
to specify different font attributes when displaying the column's caption.

property Column.HeaderStrikeOut as Boolean

Retrieves or sets a value that indicates whether the column's caption should appear in
strikeout.

Type Description

Boolean A boolean expression that indicates whether the column's
caption should appear in strikeout.

Use the HeaderStrikeOut property to specify whether the column's caption should appear in
strikeout. Use the CellStrikeOut or ItemStrikeOut properties to specify whether the cell or
the item should appear in strikeout. Use the HeaderItalic, HeaderUnderline or HeaderBold
property to specify different font attributes when displaying the column's caption.

property Column.HeaderUnderline as Boolean

Retrieves or sets a value that indicates whether the column's caption should appear in
underline.

Type Description

Boolean A boolean expression that indicates whether the column's
caption should appear in underline.

Use the HeaderUnderline property to specify whether the column's caption should appear in
underline. Use the CellUnderline or ItemUnderline properties to specify whether the cell or
the item should appear in underline. Use the HeaderItalic, HeaderBold or HeaderStrikeOut
property to specify different font attributes when displaying the column's caption.

property Column.HeaderVertical as Boolean
Specifies whether the column's header is vertically displayed.

Type Description

Boolean A boolean expression that indicates whether the column's
caption is vertically printed.

Use the HeaderVertical property to display vertically the column's caption. Use the
HeaderAlignment property to align the caption in the column's header. Use the Caption
property to assign a caption to a column. Use the HTMLCaption property to specify an
HTML caption to a column. Use the HeaderImage property to assign an icon to a column.

property Column.HTMLCaption as String
Retrieves or sets the text in HTML format displayed in the column's header.

Type Description

String A string expression that indicates the column's caption
using built-in HTML tags.

If the HTMLCaption property is empty, the Caption property is displayed in the column's
header. If the HTMLCaption property is not empty, the control uses it when displaying the
column's header. Use the HeaderHeight property to change the height of the control's
header bar. The list of built-in HTML tags supported are here.

property Column.Index as Long

Returns a value that represents the index of an object in a collection.

Type Description

Long A long expression that represents the index of an object in
a collection.

Use the Position property to change the column's position. The Columns collection is zero
based, so the Index property starts at 0. The last added column has the Index set to
Columns.Count - 1. When a column is removed from the collection, the control updates all
indexes. Use the Visible property to hide a column. Use the Columns property to access
column from it's index.

property Column.Key as String
Retrieves or sets the column's key.

Type Description
String A string expression that defines the column's key

The column's key defines a column when using the Item property. Use the Index or the Key
property to identify a column, when using the Columns property.

property Column.LevelKey as Variant
Retrieves or sets a value that indicates the key of the column's level.

Type Description

Variant A Variant expression that indicates the key of the column's
level.

By default, the LevelKey is empty. The control's header displays multiple levels if there are
two or more neighbor columns with the same non empty level key. The HeaderHeight
property specifies the height of one level when multiple levels header is on. Use the
BackColorLevelHeader property to specify the control's level header area. Use the
PictureLevelHeader property to assign a picture on the control's header. The
BackColorHeader property specifies the background color for column's captions. Use the
LevelCount property to specify the number of levels being displayed in the chart's header.

property Column.MaxWidthAutoResize as Long
Retrieves or sets a value that indicates the maximum column's width when the
WidthAutoResize is True.

Type Description

Long A long expression that indicates the maximum column's
width when the WidthAutoResize is True.

Use the MaxWidthAutoResize property to set the maximum column's width while the
WidthAutoResize property is True. If the MaxWidthAutoResize property is less than zero,
there is no maximum value for the column's width. By default, the MaxWidthAutoResize
property is -1. Use the ColumnAutoResize property to specify whether the control resizes
the visible columns so they fit the control's client area.

property Column.MinWidthAutoResize as Long
Retrieves or sets a value that indicates the minimum column's width when the
WidthAutoResize is True.

Type Description

Long A long expression that indicates the minimum column's
width when the WidthAutoResize is True.

Use the MinWidthAutoResize property to set the minimum column's width while the
WidthAutoResize property is True. Use the Width property to specify the column's width.
Use the ColumnAutoResize property to specify whether the control resizes the visible
columns so they fit the control's client area.

property Column.PartialCheck as Boolean

Specifies whether the column supports partial check feature.

Type Description

Boolean A boolean expression that indicates whether the control
supports the partial check feature,

The PartialCheck property specifies that the column supports partial check feature. By
default, the PartialCheck property is False. Use the CellHasCheckBox property to associate
a check box to a cell. Use the Def property to assign a cell box for the entire column. Use
the CellState property to determine the cell's state. If the PartialCheck property is True, the
CellState property has three states: 0 - Unchecked, 1 - Checked and 2 - Partial Checked.
Use the CheckImage property to define the icons for each state. The control supports
partial check feature for any column that your control contains. Use the Add method to add
new columns to the control.

property Column.Position as Long

Retrieves or sets a value that indicates the position of the column in the header bar area.

Type Description

Long A long expression that indicates the position of the column
in the header bar area.

The column's index is not the same with the column's position. The Index property of
Column cannot be changed by the user. Use the Position property to change the column's
position. The EnsureVisibleColumn method ensures that a given column fits the control's
client area. Use the SortPosition property to change the position of the column in the
control's sort bar. Use the Visible property to hide a column. Use the Width property to
specify the column's width. The RightToLeft property flips the order of the control's
elements from right to left.

property Column.Selected as Boolean
Retrieves or sets a value that indicates whether the cell in the column is selected.

Type Description

Boolean A boolean expression that specifies whether the cell in the
column is selected.

Use the Selected property to determine the cells being selected, when FullRowSelect
property is exRectSel. Use the SelectItem property to programmatically selects an item.
Use the SingleSel property to allow multiple items or cells in the selection. The control fires
the SelectionChanged event when user changes the selection.

The following VB sample copies the selected cells to the clipboard, if the FullRowSelect
property is exRectSel:

Private Sub G2antt1_SelectionChanged()
 Dim strData As String
 With G2antt1
 Dim i As Long, h As HITEM
 For i = 0 To .Items.SelectCount - 1
 h = .Items.SelectedItem(i)
 Dim c As Column
 For Each c In .Columns
 If (c.Selected) Then
 strData = strData + .Items.CellCaption(h, c.Index) + vbTab
 End If
 Next
 strData = strData + vbCrLf
 Next
 End With
 Clipboard.Clear
 Clipboard.SetText strData
End Sub

The following C++ sample copies the selected cells to the clipboard, if the FullRowSelect
property is exRectSel:

#include "Column.h"
#include "Columns.h"
#include "Items.h"
void OnSelectionChangedG2antt1()
{
 CString strData;
 CColumns cols = m_g2antt.GetColumns();
 CItems items = m_g2antt.GetItems();
 for (long i = 0; i < items.GetSelectCount(); i++)
 {
 COleVariant vtItem(items.GetSelectedItem(i));
 for (long j = 0; j < cols.GetCount(); j++)
 {
 COleVariant vtColumn(j);
 if (cols.GetItem(vtColumn).GetSelected())
 strData += items.GetCellCaption(vtItem, vtColumn) + "\t";
 }
 strData += "\r\n";
 }
 if (OpenClipboard())
 {
 EmptyClipboard();
 HGLOBAL hGlobal = GlobalAlloc(GMEM_MOVEABLE | GMEM_DDESHARE,
strData.GetLength());
 CopyMemory(GlobalLock(hGlobal), strData.operator LPCTSTR(),
strData.GetLength());
 GlobalUnlock(hGlobal);
 SetClipboardData(CF_TEXT, hGlobal);
 CloseClipboard();
 }
}

The following VB.NET sample copies the selected cells to the clipboard, if the
FullRowSelect property is exRectSel:

Private Sub AxG2antt1_SelectionChanged(ByVal sender As Object, ByVal e As
System.EventArgs) Handles AxG2antt1.SelectionChanged
 Dim strData As String = ""
 With AxG2antt1
 Dim i As Integer, h As Integer, j As Integer
 For i = 0 To .Items.SelectCount - 1
 h = .Items.SelectedItem(i)
 For j = 0 To .Columns.Count - 1
 Dim c As EXG2ANTTLib.Column = .Columns(j)
 If (c.Selected) Then
 strData = strData + .Items.CellCaption(h, c.Index) + vbTab
 End If
 Next
 strData = strData + vbCrLf
 Next
 End With
 Clipboard.Clear()
 Clipboard.SetText(strData)
End Sub

The following C# sample copies the selected cells to the clipboard, if the FullRowSelect
property is exRectSel:

private void axG2antt1_SelectionChanged(object sender, System.EventArgs e)
{
 string strData = "";
 for (int i = 0; i < axG2antt1.Items.SelectCount; i++)
 {
 for (int j = 0; j < axG2antt1.Columns.Count; j++)
 if (axG2antt1.Columns[j].Selected)
 {
 string cellData =
axG2antt1.Items.get_CellCaption(axG2antt1.Items.get_SelectedItem(i), j);
 strData += cellData + "\t";
 }
 strData += "\r\n";
 }

 Clipboard.Clear();
 Clipboard.SetText(strData);
}

The following VFP sample copies the selected cells to the clipboard, if the FullRowSelect
property is exRectSel (SelectionChanged event):

*** ActiveX Control Event ***

with thisform.G2antt1.Items
 local strData, i, j, cols
 strData = ""
 cols = thisform.G2antt1.Columns
 for i = 0 to .SelectCount - 1
 .DefaultItem = .SelectedItem(i)
 for j = 0 to cols.Count - 1
 if (cols.Item(j).Selected)
 strData = strData + .CellCaption(0,j) + chr(9)
 endif
 next
 strData = strData + chr(13) + chr(10)
 next
 _CLIPTEXT = strData
endwith

method Column.ShowFilter ([Options as Variant])
Shows the column's filter window.

Type Description

Options as Variant

A string expression that indicates the position (in screen
coordinates) and the size (in pixels) where the drop
down filter window is shown. The Options parameter is
composed like follows:

the first parameter indicates the X coordinate in
screen coordinate, -1 if the current cursor position is
used, or empty if the coordinate is ignored
the second parameter indicates the Y coordinate in
screen coordinate, -1 if the current cursor position is
used, or empty if the coordinate is ignored
the third parameter indicates the width in pixels of the
drop down window, or empty if the width is ignored
the forth parameter indicates the height in pixels of
the drop down window, or empty if the height is
ignored

By default, the drop down filter window is shown at its
default position bellow the column's header.

Use the ShowFilter method to show the column's drop down filter programmatically. By
default, the drop down filter window is shown only if the user clicks the filter button in the
column's header, if the DisplayFilterButton property is True. The drop down filter window if
the user selects a predefined filter, or enters a pattern to match. If the Options parameter
is missing, or all parameters inside the Options are missing, the size of the drop down filter
window is automatcially computed based on the FilterBarDropDownWidth property and
FilterBarDropDownHeight property. Use the ColumnFromPoint property to get the index of
the column from the point.

For instance, the following VB sample displays the column's drop down filter window when

the user right clicks the control:

Private Sub G2antt1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single)
 If (Button = 2) Then
 With G2antt1.Columns
 With .Item(G2antt1.ColumnFromPoint(-1, -1))
 .ShowFilter "-1,-1,200,200"
 End With
 End With
 End If
End Sub

The following VB.NET sample displays the column's drop down filter window when the user
right clicks the control:

Private Sub AxG2antt1_MouseUpEvent(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_MouseUpEvent) Handles AxG2antt1.MouseUpEvent
 If (e.button = 2) Then
 With AxG2antt1.Columns
 With .Item(AxG2antt1.get_ColumnFromPoint(-1, -1))
 .ShowFilter("-1,-1,200,200")
 End With
 End With
 End If
End Sub

The following C# sample displays the column's drop down filter window when the user right
clicks the control:

private void axG2antt1_MouseUpEvent(object sender,
AxEXG2ANTTLib._IG2anttEvents_MouseUpEvent e)
{
 if (e.button == 2)
 {
 EXG2ANTTLib.Column c = axG2antt1.Columns[axG2antt1.get_ColumnFromPoint(-1,
-1)];
 c.ShowFilter("-1,-1,200,200");
 }
}

The following C++ sample displays the column's drop down filter window when the user
right clicks the control:

void OnMouseUpG2antt1(short Button, short Shift, long X, long Y)
{
 m_g2antt.GetColumns().GetItem(COleVariant(m_g2antt.GetColumnFromPoint(-1, -1))
).ShowFilter(COleVariant("-1,-1,200,200"));
}

The following VFP sample displays the column's drop down filter window when the user
right clicks the control:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

if (button = 2) then
 With thisform.G2antt1.Columns
 With .Item(thisform.G2antt1.ColumnFromPoint(-1, -1))
 .ShowFilter("-1,-1,200,200")
 EndWith
 EndWith
endif

property Column.SortOrder as SortOrderEnum

Specifies the column's sort order.

Type Description

SortOrderEnum A SortOrderEnum expression that indicates the column's
sort order.

The SortOrder property determines the column's sort order. By default, the SortOrder
property is SortNone. Use the SortOrder property to sort a column at runtime. Use the
SortType property to determine the way how the column is sorted. Use the AllowSort
property to avoid sorting a column when the user clicks the column. Use the SingleSort
property to specify whether the control supports sorting by single or multiple columns. If the
control supports sorting by multiple columns, the SortOrder property adds or removes the
column to the sorting columns collection. For instance, if the SortOrder property is set to
SortAscending or SortDescending the column is added to the sorting columns collection. If
the SortOrder property is set to SortNone the control removes the column from its sorting
columns collection. The Sort event is fired when the user sorts a column. The SortPosition
property changes the position of the column in the control's sort bar. Use the
DefaultSortOrder property to specify the column's default sort order, when the user first
clicks the column's header.

The control automatically sorts a column when the user clicks the column's header, if the
SortOnClick property is exDefaultSort. If the SortOnClick property is exNoSort, the control
disables sorting the items when the user clicks the column's header. There are two methods
to get the items sorted like follows:

Using the SortOrder property of the Column object::

G2antt1.Columns(ColIndex).SortOrder = SortAscending

The SortOrder property adds the sorting icon to the column's header, if the
DisplaySortIcon property is True.

Using the SortChildren method of the Items collection. The SortChildren sorts the
items. The SortChildren method sorts the child items of the given parent item in the
control. SortChildren will not recourse through the tree, only the immediate children of
the item will be sorted. The following sample sort descending the list of root items on
the "Column 1"(if your control displays a list, all items are considered being root items
).

G2antt1.Items.SortChildren 0, "Column 1", False

property Column.SortPosition as Long
Returns or sets a value that indicates the position of the column in the sorting columns
collection.

Type Description

Long A long expression that indicates the position of the column
in the control's sort bar. The collection is 0 - based.

Use the SortPosition to change programmatically the position of the column in the control's
sort bar. Use the SingleSort property to allow sorting by multiple columns. Use the
SortBarVisible property to show the control's sort bar. Use the SortOrder property to add
columns to the control's sort bar. The control fires the Sort event when the user sorts a
column. Use the ItemBySortPosition property to get the columns being sorted in their order.
Use the AllowSort property to avoid sorting a column when the user clicks the column.

property Column.SortType as SortTypeEnum

Returns or sets a value that indicates the way a control sorts the values for a column.

Type Description

SortTypeEnum A SortTypeEnum expression that indicates the way a
control sorts the values for a column.

The SortType property specifies how the column gets sorted. By default, the column's
SortType is String. The CellValue property indicates the values being sorted. Use the
SortType property to specifies how the control will sort the column. Use the SortChildren
property of Items to do a sort based on a column. Use the SingleSort property to specify
whether the control supports sorting by single or multiple columns. The SortOrder property
determines the column's sort order. The Sort event is fired when the user sorts a column.
The SortPosition property changes the position of the column in the sorting columns
collection. The CellData property specifies the values being sorted, if the SortType property
is SortUserData, SortUserDataString.

property Column.ToolTip as String
Specifies the column's tooltip description.

Type Description

String A string expression that defines the column's tooltip. The
column's tooltip supports built-in HTML format

By default, the ToolTip property is "..." (three dots). Use the ToolTip property to assign a
tooltip to a column. If the ToolTip property is "...", the control displays the column's caption if
it doesn't fit the column's header. Use the Caption or HTMLCaption property to specify the
caption of the column. The column's tooltip shows up when the cursor hovers the column's
header. Use the CellToolTip property to assign a tooltip to a cell

property Column.Visible as Boolean

Retrieves or sets a value indicating whether the column is visible or hidden.

Type Description

Boolean A boolean expression indicating whether the column is
visible or hidden.

Use the Visible property to hide a column. Use the Width property to resize the column. The
ColumnAutoResize property specifies whether the visible columns fit the control's client
area. Use the Position property to specify the column's position. Use the HeaderVisible
property to show or hide the control's header bar. Use the ColumnFromPoint property to
get the column from point. Use the Remove method to remove a column.

property Column.Width as Long

Retrieves or sets the column's width.

Type Description

Long A long expression that indicates the column's width in
pixels.

The Width property specifies the column's width in pixels. Use the Visible property to hide a
column. Use the SortBarColumnWidth property to specify the column's head in the control's
sort bar. Use the ColumnAutoResize property to fit all visible columns in the control's client
area. Use the FilterBarDropDownWidth property to specify the width of the drop down filter
window.

The following VB sample shows how to set the width for all columns:

Private Sub G2antt1_AddColumn(ByVal Column As EXG2ANTTLibCtl.IColumn)
 Column.Width = 128
End Sub

The following VB.NET sample changes the column's width when a new column is added:

Private Sub AxG2antt1_AddColumn(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_AddColumnEvent) Handles AxG2antt1.AddColumn
 e.column.Width = 128
End Sub

The following C# sample changes the column's width when a new column is added:

private void axG2antt1_AddColumn(object sender,
AxEXG2ANTTLib._IG2anttEvents_AddColumnEvent e)
{
 e.column.Width = 128;
}

The following C++ sample changes the column's width when a new column is added:

#include "Column.h"
#include "Columns.h"
void OnAddColumnG2antt1(LPDISPATCH Column)
{

 CColumn column(Column);
 column.SetWidth(128);
}

The following VFP sample changes the column's width when a new column is added:

*** ActiveX Control Event ***
LPARAMETERS column

with column
 .Width = 128
endwith

property Column.WidthAutoResize as Boolean
Retrieves or sets a value that indicates whether the column is automatically resized
according to the width of the contents within the column.

Type Description

Boolean
A boolean expression that indicates whether the column is
automatically resized according to the width of the
contents within the column.

If the WidthAutoResize property is True, the column's width is resized after user expands,
or collapse the items. Also, the column's width is refreshed if the user adds new items to
the control. If the WidthAutoResize property is True, the column's width is not larger than
MaxWidthAutoResize value, and it is not less than MinWidthAutoResize value. You can use
the AutoWidth property to computes the column's width to fit its content. For instance, if you
have a control with one column, and this property True, you can simulate a simple tree,
because the control will automatically add a horizontal scroll bar when required. Use the
ColumnAutoResize property to specify whether the control resizes the visible columns so
they fit the control's client area.

Columns object
The ExG2antt control supports multiple columns. The Columns object contains a collection
of Column objects. Use the Columns property of the control to access the control columns.
By default, the control's columns collection is empty, so the user must add at least one
column, before adding new items and bars. Each item has a cell corresponding to each
column. The control's header displays the columns, while the chart's header displays the
time scale units. The Column object can be accessed at the adding time, or using the Item
or ItemBySortPosition property. Also, the control fires the AddColumn event is fired when a
new columns has been added to Columns collection.

The following screen shot shows the list part of the control, in other words, the part that
displays the columns of the control:

The Columns object supports the following method and properties:

Name Description

Add Adds a Column object to the collection and returns a
reference to the newly created object.

Clear Removes all objects in a collection.
Count Returns the number of objects in a collection.
Item Returns a specific Column of the Columns collection.
ItemBySortPosition Returns a Column object giving its sorting position.
Remove Removes a specific member from the Columns collection.

SortBarColumn Returns the Column from control's SortBar giving its
position.

SortBarColumnsCount Retrieves the count of Columns, in the control's SortBar

method Columns.Add (ColumnCaption as String)

Adds a Column object to the collection and returns a reference to the newly created object.

Type Description

ColumnCaption as String A string expression that indicates the caption for the
column being added

Return Description
Variant A Column object that indicates the newly added column.

By default, the control contains no columns. Before adding new items, you need to add
columns. Use the Add property to add new columns to the control. Use the
LoadXML/SaveXML methods to load/save the control's data from/to XML files. The control
fires the AddColumn event is fired when a new columns has been added to Columns
collection. Use the Caption property to change the column's caption. Use the HTLMCaption
property to display the column's caption using HTML tags. To hide a column use the Visible
property of the Column object. Use the AddItem, InsertItem, InsertControlItem, PutItems,
DataSource properties to add new items to the control. Use the BeginUpdate and
EndUpdate methods to maintain performance while adding new columns and items.

The following VB sample adds columns from a record set:

Set rs = CreateObject("ADODB.Recordset")
rs.Open "Orders", "Provider=Microsoft.Jet.OLEDB.3.51;Data Source= D:\Program
Files\Microsoft Visual Studio\VB98\NWIND.MDB", 3 ' Opens the table using static mode
G2antt1.BeginUpdate
' Add the columns
With G2antt1.Columns
For Each f In rs.Fields
 .Add f.Name
Next
End With
G2antt1.PutItems rs.getRows()
G2antt1.EndUpdate

The following VC sample adds a column:

#include "Columns.h"
#include "Column.h"
CColumns columns = m_g2antt.GetColumns();

CColumn column(V_DISPATCH(&columns.Add("Column 1")));
column.SetHeaderBold(TRUE);

The following VB.NET sample adds a column:

With AxG2antt1.Columns
 With .Add("Column 1")
 .HeaderBold = True
 End With
End With

The Add method returns a Column object in a VARIANT value, so you can use a code like
follows:

With AxG2antt1.Columns
 Dim c As EXG2ANTTLib.Column
 c = .Add("Column 1")
 With c
 .HeaderBold = True
 End With
End With

this way, you can have the properties of the column at design time when typing the '.'
character.

The following C# sample adds a column:

EXG2ANTTLib.Column column = axG2antt1.Columns.Add("Column 1") as
EXG2ANTTLib.Column;
column.HeaderBold = true;

The following VFP sample adds a column:

with thisform.G2antt1.Columns.Add("Column 1")
 .HeaderBold = .t.
endwith

method Columns.Clear ()

Removes all objects in a collection.

Type Description

Use the Remove method when you need to remove only a column. Use the Clear method to
remove all columns in the control. The Clear method removes all items, too. Use the
RemoveAllItems method to remove all items in the control.

property Columns.Count as Long

Returns the number of objects in a collection.

Type Description
Long Counts the Column object into the collection.

The Count property counts the columns in the collection. Use the Columns property to
access the control's Columns collection. Use the Item property to access a column by its
index or key. Use the Add method to add new columns to the control. Use the Remove
method to remove a column. Use the Clear method to clear the columns collection.

The following VB sample enumerates the columns in the control:

For Each c In G2antt1.Columns
 Debug.Print c.Caption
Next

The following VB sample enumerates the columns in the control:

For i = 0 To G2antt1.Columns.Count - 1
 Debug.Print G2antt1.Columns(i).Caption
Next

The following VC sample enumerates the columns in the control:

#include "Columns.h"
#include "Column.h"
CColumns columns = m_g2antt.GetColumns();
for (long i = 0; i < columns.GetCount(); i++)
{
 CColumn column = columns.GetItem(COleVariant(i));
 OutputDebugString(column.GetCaption());
}

The following VB.NET sample enumerates the columns in the control:

With AxG2antt1.Columns
 Dim i As Integer
 For i = 0 To .Count - 1

 Debug.WriteLine(.Item(i).Caption)
 Next
End With

The following C# sample enumerates the columns in the control:

EXG2ANTTLib.Columns columns =axG2antt1.Columns;
for (int i = 0; i < columns.Count; i++)
{
 EXG2ANTTLib.Column column = columns[i];
 System.Diagnostics.Debug.WriteLine(column.Caption);
}

The following VFP sample enumerates the columns in the control:

with thisform.G2antt1.Columns
 for i = 0 to .Count - 1
 wait window nowait .Item(i).Caption
 next
endwith

property Columns.Item (Index as Variant) as Column

Returns a specific Column of the Columns collection.

Type Description

Index as Variant
A long expression that indicates the column's index or a
string expression that indicates the column's key or the
column's caption.

Column A column object being returned.

Use the Item property to access to a specific column. The Count property counts the
columns in the control. Use the Columns property to access the control's Columns
collection.

The Item property is the default property of the Columns object so the following statements
are equivalents:

G2antt1.Columns.Item ("Freight")
G2antt1.Columns ("Freight")

The following VB sample enumerates the columns in the control:

For i = 0 To G2antt1.Columns.Count - 1
 Debug.Print G2antt1.Columns(i).Caption
Next

The following VC sample enumerates the columns in the control:

#include "Columns.h"
#include "Column.h"
CColumns columns = m_g2antt.GetColumns();
for (long i = 0; i < columns.GetCount(); i++)
{
 CColumn column = columns.GetItem(COleVariant(i));
 OutputDebugString(column.GetCaption());
}

The following VB.NET sample enumerates the columns in the control:

With AxG2antt1.Columns
 Dim i As Integer

 For i = 0 To .Count - 1
 Debug.WriteLine(.Item(i).Caption)
 Next
End With

The following C# sample enumerates the columns in the control:

EXG2ANTTLib.Columns columns =axG2antt1.Columns;
for (int i = 0; i < columns.Count; i++)
{
 EXG2ANTTLib.Column column = columns[i];
 System.Diagnostics.Debug.WriteLine(column.Caption);
}

The following VFP sample enumerates the columns in the control:

with thisform.G2antt1.Columns
 for i = 0 to .Count - 1
 wait window nowait .Item(i).Caption
 next
endwith

property Columns.ItemBySortPosition (Position as Variant) as Column
Returns a Column object giving its sorting position.

Type Description

Position as Variant A long expression that indicates the position of column
being requested.

Column A Column object being accessed.

Use the ItemBySortPosition property to get the list of sorted columns in their order. Use the
SortPosition property to specify the position of the column in the sorting columns collection.
Use the SingleSort property to specify whether the control supports sorting by single or
multiple columns. Use the SortOrder property to sort a column programmatically. The
control fires the Sort event when the user sorts a column.

The following VB sample displays the list of columns being sorted:

Dim s As String, i As Long, c As Column
i = 0
With G2antt1.Columns
 Set c = .ItemBySortPosition(i)
 While (Not c Is Nothing)
 s = s + """" & c.Caption & """ " & IIf(c.SortOrder = SortAscending, "A", "D") & " "
 i = i + 1
 Set c = .ItemBySortPosition(i)
 Wend
End With
s = "Sort: " & s
Debug.Print s

The following VC sample displays the list of columns being sorted:

CString strOutput;
CColumns columns = m_g2antt.GetColumns();
long i = 0;
CColumn column = columns.GetItemBySortPosition(COleVariant(i));
while (column.m_lpDispatch)
{
 strOutput += "\"" + column.GetCaption() + "\" " + (column.GetSortOrder() == 1 ? "A" :
"D") + " ";

 i++;
 column = columns.GetItemBySortPosition(COleVariant(i));
}
OutputDebugString(strOutput);

The following VB.NET sample displays the list of columns being sorted:

With AxG2antt1
 Dim s As String, i As Integer, c As EXG2ANTTLib.Column
 i = 0
 With AxG2antt1.Columns
 c = .ItemBySortPosition(i)
 While (Not c Is Nothing)
 s = s + """" & c.Caption & """ " & IIf(c.SortOrder =
EXG2ANTTLib.SortOrderEnum.SortAscending, "A", "D") & " "
 i = i + 1
 c = .ItemBySortPosition(i)
 End While
 End With
 s = "Sort: " & s
 Debug.WriteLine(s)
End With

The following C# sample displays the list of columns being sorted:

string strOutput = "";
int i = 0;
EXG2ANTTLib.Column column = axG2antt1.Columns.get_ItemBySortPosition(i);
while (column != null)
{
 strOutput += column.Caption + " " + (column.SortOrder ==
EXG2ANTTLib.SortOrderEnum.SortAscending ? "A" : "D") + " ";
 column = axG2antt1.Columns.get_ItemBySortPosition(++i);
}
Debug.WriteLine(strOutput);

The following VFP sample displays the list of columns being sorted (the code is listed in the
Sort event) :

local s, i, c
i = 0
s = ""
With thisform.G2antt1.Columns
 c = .ItemBySortPosition(i)
 do While (!isnull(c))
 with c
 s = s + "'" + .Caption
 s = s + "' " + IIf(.SortOrder = 1, "A", "D") + " "
 i = i + 1
 endwith
 c = .ItemBySortPosition(i)
 enddo
endwith
s = "Sort: " + s
wait window nowait s

method Columns.Remove (Index as Variant)

Removes a specific member from the Columns collection.

Type Description

Index as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption or the
column's key.

The Remove method removes a specific column in the Columns collection. Use Clear
method to remove all Column objects. The RemoveColumn event is fired when a column is
about to be removed. Use the Visible property to hide a column.

property Columns.SortBarColumn (Position as Variant) as Column
Returns the Column from control's SortBar giving its position.

Type Description

Position as Variant A long expression that specifies the position where the
column is requested

Column A Column object that specifies the sorted/grouped column
at giving position, or empty if no column is found.

The SortBarColumn / SortBarColumnsCount properties can be used to enumerate the
columns in the control's sort bar. Use the SortOrder property of the Column object on
SortAscending / SortDescending to add a column to the sort bar, on SortNone to remove
the column from the control's sort bar. Use the SortType property to determine the way
how the column is sorted. Use the AllowSort property to avoid sorting a column when the
user clicks the column. Use the SingleSort property to specify whether the control supports
sorting by single or multiple columns. For instance, the SortBarColumnsCount counts the
number of grouped columns, if the control's AllowGroupBy property is True.

property Columns.SortBarColumnsCount as Long
Retrieves the count of Columns, in the control's SortBar

Type Description

Long A long expression that specifies the number of columns
being shown in the control's sort bar.

By default, the SortBarColumnsCount property is 0. The SortBarColumnsCount property
counts the columns being shown in the sort bar. The SortBarColumn /
SortBarColumnsCount properties can be used to enumerate the columns in the control's
sort bar. Use the SortOrder property of the Column object on SortAscending /
SortDescending to add a column to the sort bar, on SortNone to remove the column from
the control's sort bar. Use the SortType property to determine the way how the column is
sorted. Use the AllowSort property to avoid sorting a column when the user clicks the
column. Use the SingleSort property to specify whether the control supports sorting by
single or multiple columns. For instance, the SortBarColumnsCount counts the number of
grouped columns, if the control's AllowGroupBy property is True.

ConditionalFormat object
The conditional formatting feature allows you to apply formats to a cell or range of cells,
bars, and have that formatting change depending on the value of the cell or the value of a
formula. Use the Add method to add new ConditionalFormat objects. Use the Item property
to access a ConditionalFormat object. The ConditionalFormat object supports the following
properties and method:

Name Description

ApplyTo Specifies whether the format is applied to items or
columns.

ApplyToBars
Specifies the list of bars that the current format is applied
to. The list includes the name of the bars separated by
comma character.

BackColor Retrieves or sets the background color for objects that
match the condition.

BarColor Specifies the color to be applied to bars if the conditional
expression is accomplished.

BarOverviewColor
Specifies the color to be applied to bars, in the overview
portion of the control, if the conditional expression is
accomplished.

Bold Bolds the objects that match the condition.

ChartBackColor
Specifies the color to be applied to item's background in
the chart section of the control, if the conditional
expression is accomplished.

ClearBackColor Clears the background color.
ClearBarColor Clears the bar's color.
ClearBarOverviewColor Clears the bar's overview color.

ClearChartBackColor Clears the item's background in the chart section of the
control.

ClearForeColor Clears the foreground color.
Enabled Specifies whether the condition is enabled or disabled.

Expression Indicates the expression being used in the conditional
format.

Font Retrieves or sets the font for objects that match the
criteria.
Retrieves or sets the foreground color for objects that

ForeColor match the condition.

Italic Specifies whether the objects that match the condition
should appear in italic.

Key Checks whether the expression is syntactically correct.

StrikeOut Specifies whether the objects that match the condition
should appear in strikeout.

Underline Underlines the objects that match the condition.
Valid Checks whether the expression is syntactically correct.

Verify Verifies the current conditional format if it is applied to the
giving item.

property ConditionalFormat.ApplyTo as FormatApplyToEnum
Specifies whether the format is applied to items or columns.

Type Description

FormatApplyToEnum

A FormatApplyToEnum expression that indicates whether
the format is applied to items or to columns. If the ApplyTo
property is less than zero, the format is applied to the
items.

By default, the format is applied to items. The ApplyTo property specifies whether the
format is applied to the items or to the columns. If the ApplyTo property is greater or equal
than zero the format is applied to the column with the index ApplyTo. For instance, if the
ApplyTo property is 0, the format is applied to the cells in the first column. If the ApplyTo
property is 1, the format is applied to the cells in the second column, if the ApplyTo property
is 2, the format is applied to the cells in the third column, and so on. If the ApplyTo property
is -1, the format is applied to items. The ApplyToBars property specifies the list of bars
that the current format is applied to.

The following screen shot shows a conditional expression applied to items:

The following screen shot shows a conditional expression applied to columns:

The following VB sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

With G2antt1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C++ sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

COleVariant vtEmpty;
CConditionalFormat cf = m_g2antt.GetConditionalFormats().Add("%1+%2<%0", vtEmpty
);
cf.SetBold(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

With AxG2antt1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C# sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

EXG2ANTTLib.ConditionalFormat cf =
axG2antt1.ConditionalFormats.Add("%1+%2<%0",null);

cf.Bold = true;
cf.ApplyTo = (EXG2ANTTLib.FormatApplyToEnum)1;

The following VFP sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

with thisform.G2antt1.ConditionalFormats.Add("%1+%2<%0")
 .Bold = .t.
 .ApplyTo = 1
endwith

property ConditionalFormat.ApplyToBars as String
Specifies the list of bars that the current format is applied to. The list includes the name of
the bars separated by comma character.

Type Description

String A String expression that indicates the list of bars that the
current format is applied to.

By default, the ApplyToBars property is empty, which means that the current format is not
applied to any bar. The list includes the name of the bars separated by comma character.
The Name property indicates the name of the bar. The ApplyTo property specifies whether
the format is applied to item or cell/column. For instance, if the ApplyToBars property is
"Task,Milestone", it indicates that the current format is applied to Task and Milestone bars
being displayed in the chart. The following properties of the ConditionalFormat object are
applied while the ApplyToBars property contains existing bars:

The BarColor property specifies the color to be applied to bars if the conditional
expression is accomplished.
The BarOverviewColor property specifies the color to be applied to bars, in the
overview portion of the control, if the conditional expression is accomplished.

The following screen shot shows different colors applied to different items, using the
ConditionalFormat feature:

The following samples show how you can change the bar's color based on its
length/duration:

VBA (MS Access, Excell...)

With G2antt1
 .BeginUpdate
 With .Columns
 .Add "Tasks"
 With .Add("Duration")
 .Def(18) = 513
 .Editor.EditType = 4
 End With
 End With
 .Items.AllowCellValueToItemBar = True
 With .Chart
 .FirstWeekDay = 1
 .LevelCount = 2
 .FirstVisibleDate = #6/6/2005#
 .PaneWidth(False) = 128
 End With
 With .ConditionalFormats.Add("%1 >= 4")
 .ApplyTo = 1 ' &H1
 .Bold = True
 .ApplyToBars = "Task"
 .BarColor = RGB(255,0,0)
 .ForeColor = .BarColor
 End With
 With .Items
 .AddBar .AddItem("Task"),"Task",#6/10/2005#,#6/13/2005#,""
 .AddBar .AddItem("Task"),"Task",#6/11/2005#,#6/16/2005#,""
 .AddBar .AddItem("Task"),"Task",#6/12/2005#,#6/15/2005#,""
 End With
 .EndUpdate
End With

VB6

With G2antt1
 .BeginUpdate
 With .Columns
 .Add "Tasks"
 With .Add("Duration")
 .Def(exCellValueToItemBarProperty) = 513
 .Editor.EditType = SpinType
 End With
 End With
 .Items.AllowCellValueToItemBar = True
 With .Chart
 .FirstWeekDay = exMonday
 .LevelCount = 2
 .FirstVisibleDate = #6/6/2005#
 .PaneWidth(False) = 128
 End With
 With .ConditionalFormats.Add("%1 >= 4")
 .ApplyTo = &H1
 .Bold = True
 .ApplyToBars = "Task"
 .BarColor = RGB(255,0,0)
 .ForeColor = .BarColor
 End With
 With .Items
 .AddBar .AddItem("Task"),"Task",#6/10/2005#,#6/13/2005#,""
 .AddBar .AddItem("Task"),"Task",#6/11/2005#,#6/16/2005#,""
 .AddBar .AddItem("Task"),"Task",#6/12/2005#,#6/15/2005#,""
 End With
 .EndUpdate
End With

VB.NET

With Exg2antt1
 .BeginUpdate()
 With .Columns
 .Add("Tasks")

 With .Add("Duration")

.set_Def(exontrol.EXG2ANTTLib.DefColumnEnum.exCellValueToItemBarProperty,513)
 .Editor.EditType = exontrol.EXG2ANTTLib.EditTypeEnum.SpinType
 End With
 End With
 .Items.AllowCellValueToItemBar = True
 With .Chart
 .FirstWeekDay = exontrol.EXG2ANTTLib.WeekDayEnum.exMonday
 .LevelCount = 2
 .FirstVisibleDate = #6/6/2005#
 .set_PaneWidth(False,128)
 End With
 With .ConditionalFormats.Add("%1 >= 4")
 .ApplyTo = &H1
 .Bold = True
 .ApplyToBars = "Task"
 .BarColor = Color.FromArgb(255,0,0)
 .ForeColor = .BarColor
 End With
 With .Items
 .AddBar(.AddItem("Task"),"Task",#6/10/2005#,#6/13/2005#,"")
 .AddBar(.AddItem("Task"),"Task",#6/11/2005#,#6/16/2005#,"")
 .AddBar(.AddItem("Task"),"Task",#6/12/2005#,#6/15/2005#,"")
 End With
 .EndUpdate()
End With

VB.NET for /COM

With AxG2antt1
 .BeginUpdate()
 With .Columns
 .Add("Tasks")
 With .Add("Duration")
 .Def(EXG2ANTTLib.DefColumnEnum.exCellValueToItemBarProperty) = 513
 .Editor.EditType = EXG2ANTTLib.EditTypeEnum.SpinType

 End With
 End With
 .Items.AllowCellValueToItemBar = True
 With .Chart
 .FirstWeekDay = EXG2ANTTLib.WeekDayEnum.exMonday
 .LevelCount = 2
 .FirstVisibleDate = #6/6/2005#
 .PaneWidth(False) = 128
 End With
 With .ConditionalFormats.Add("%1 >= 4")
 .ApplyTo = &H1
 .Bold = True
 .ApplyToBars = "Task"
 .BarColor = RGB(255,0,0)
 .ForeColor = .BarColor
 End With
 With .Items
 .AddBar(.AddItem("Task"),"Task",#6/10/2005#,#6/13/2005#,"")
 .AddBar(.AddItem("Task"),"Task",#6/11/2005#,#6/16/2005#,"")
 .AddBar(.AddItem("Task"),"Task",#6/12/2005#,#6/15/2005#,"")
 End With
 .EndUpdate()
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control
Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->BeginUpdate();

EXG2ANTTLib::IColumnsPtr var_Columns = spG2antt1->GetColumns();
 var_Columns->Add(L"Tasks");
 EXG2ANTTLib::IColumnPtr var_Column = ((EXG2ANTTLib::IColumnPtr)
(var_Columns->Add(L"Duration")));
 var_Column->PutDef(EXG2ANTTLib::exCellValueToItemBarProperty,long(513));
 var_Column->GetEditor()->PutEditType(EXG2ANTTLib::SpinType);
spG2antt1->GetItems()->PutAllowCellValueToItemBar(VARIANT_TRUE);
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutFirstWeekDay(EXG2ANTTLib::exMonday);
 var_Chart->PutLevelCount(2);
 var_Chart->PutFirstVisibleDate(COleDateTime(2005,6,6,0,00,00).operator DATE());
 var_Chart->PutPaneWidth(VARIANT_FALSE,128);
EXG2ANTTLib::IConditionalFormatPtr var_ConditionalFormat = spG2antt1-
>GetConditionalFormats()->Add(L"%1 >= 4",vtMissing);
 var_ConditionalFormat->PutApplyTo(EXG2ANTTLib::FormatApplyToEnum(0x1));
 var_ConditionalFormat->PutBold(VARIANT_TRUE);
 var_ConditionalFormat->PutApplyToBars(L"Task");
 var_ConditionalFormat->PutBarColor(RGB(255,0,0));
 var_ConditionalFormat->PutForeColor(var_ConditionalFormat->GetBarColor());
EXG2ANTTLib::IItemsPtr var_Items = spG2antt1->GetItems();
 var_Items->AddBar(var_Items-
>AddItem("Task"),"Task",COleDateTime(2005,6,10,0,00,00).operator
DATE(),COleDateTime(2005,6,13,0,00,00).operator DATE(),"",vtMissing);
 var_Items->AddBar(var_Items-
>AddItem("Task"),"Task",COleDateTime(2005,6,11,0,00,00).operator
DATE(),COleDateTime(2005,6,16,0,00,00).operator DATE(),"",vtMissing);
 var_Items->AddBar(var_Items-
>AddItem("Task"),"Task",COleDateTime(2005,6,12,0,00,00).operator
DATE(),COleDateTime(2005,6,15,0,00,00).operator DATE(),"",vtMissing);
spG2antt1->EndUpdate();

C++ Builder

G2antt1->BeginUpdate();
Exg2anttlib_tlb::IColumnsPtr var_Columns = G2antt1->Columns;
 var_Columns->Add(L"Tasks");

 Exg2anttlib_tlb::IColumnPtr var_Column = var_Columns->Add(L"Duration");
 var_Column-
>set_Def(Exg2anttlib_tlb::DefColumnEnum::exCellValueToItemBarProperty,TVariant(513));

 var_Column->Editor->EditType = Exg2anttlib_tlb::EditTypeEnum::SpinType;
G2antt1->Items->AllowCellValueToItemBar = true;
Exg2anttlib_tlb::IChartPtr var_Chart = G2antt1->Chart;
 var_Chart->FirstWeekDay = Exg2anttlib_tlb::WeekDayEnum::exMonday;
 var_Chart->LevelCount = 2;
 var_Chart->set_FirstVisibleDate(TVariant(TDateTime(2005,6,6).operator double()));
 var_Chart->set_PaneWidth(false,128);
Exg2anttlib_tlb::IConditionalFormatPtr var_ConditionalFormat = G2antt1-
>ConditionalFormats->Add(L"%1 >= 4",TNoParam());
 var_ConditionalFormat->ApplyTo = Exg2anttlib_tlb::FormatApplyToEnum(0x1);
 var_ConditionalFormat->Bold = true;
 var_ConditionalFormat->ApplyToBars = L"Task";
 var_ConditionalFormat->BarColor = RGB(255,0,0);
 var_ConditionalFormat->ForeColor = var_ConditionalFormat->BarColor;
Exg2anttlib_tlb::IItemsPtr var_Items = G2antt1->Items;
 var_Items->AddBar(var_Items-
>AddItem(TVariant("Task")),TVariant("Task"),TVariant(TDateTime(2005,6,10).operator
double()),TVariant(TDateTime(2005,6,13).operator double()),TVariant(""),TNoParam());
 var_Items->AddBar(var_Items-
>AddItem(TVariant("Task")),TVariant("Task"),TVariant(TDateTime(2005,6,11).operator
double()),TVariant(TDateTime(2005,6,16).operator double()),TVariant(""),TNoParam());
 var_Items->AddBar(var_Items-
>AddItem(TVariant("Task")),TVariant("Task"),TVariant(TDateTime(2005,6,12).operator
double()),TVariant(TDateTime(2005,6,15).operator double()),TVariant(""),TNoParam());
G2antt1->EndUpdate();

C#

exg2antt1.BeginUpdate();
exontrol.EXG2ANTTLib.Columns var_Columns = exg2antt1.Columns;
 var_Columns.Add("Tasks");
 exontrol.EXG2ANTTLib.Column var_Column = (var_Columns.Add("Duration") as

exontrol.EXG2ANTTLib.Column);

var_Column.set_Def(exontrol.EXG2ANTTLib.DefColumnEnum.exCellValueToItemBarProperty,513);

 var_Column.Editor.EditType = exontrol.EXG2ANTTLib.EditTypeEnum.SpinType;
exg2antt1.Items.AllowCellValueToItemBar = true;
exontrol.EXG2ANTTLib.Chart var_Chart = exg2antt1.Chart;
 var_Chart.FirstWeekDay = exontrol.EXG2ANTTLib.WeekDayEnum.exMonday;
 var_Chart.LevelCount = 2;
 var_Chart.FirstVisibleDate =
Convert.ToDateTime("6/6/2005",System.Globalization.CultureInfo.GetCultureInfo("en-
US"));
 var_Chart.set_PaneWidth(false,128);
exontrol.EXG2ANTTLib.ConditionalFormat var_ConditionalFormat =
exg2antt1.ConditionalFormats.Add("%1 >= 4",null);
 var_ConditionalFormat.ApplyTo =
(exontrol.EXG2ANTTLib.FormatApplyToEnum)0x1;
 var_ConditionalFormat.Bold = true;
 var_ConditionalFormat.ApplyToBars = "Task";
 var_ConditionalFormat.BarColor = Color.FromArgb(255,0,0);
 var_ConditionalFormat.ForeColor = var_ConditionalFormat.BarColor;
exontrol.EXG2ANTTLib.Items var_Items = exg2antt1.Items;

var_Items.AddBar(var_Items.AddItem("Task"),"Task",Convert.ToDateTime("6/10/2005",System.Globalization.CultureInfo.GetCultureInfo(
US")),Convert.ToDateTime("6/13/2005",System.Globalization.CultureInfo.GetCultureInfo("
US")),"",null);

var_Items.AddBar(var_Items.AddItem("Task"),"Task",Convert.ToDateTime("6/11/2005",System.Globalization.CultureInfo.GetCultureInfo(
US")),Convert.ToDateTime("6/16/2005",System.Globalization.CultureInfo.GetCultureInfo("
US")),"",null);

var_Items.AddBar(var_Items.AddItem("Task"),"Task",Convert.ToDateTime("6/12/2005",System.Globalization.CultureInfo.GetCultureInfo(
US")),Convert.ToDateTime("6/15/2005",System.Globalization.CultureInfo.GetCultureInfo("
US")),"",null);
exg2antt1.EndUpdate();

JScript/JavaScript

<BODY onload='Init()'>
<OBJECT CLASSID="clsid:CD481F4D-2D25-4759-803F-752C568F53B7"
id="G2antt1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 G2antt1.BeginUpdate();
 var var_Columns = G2antt1.Columns;
 var_Columns.Add("Tasks");
 var var_Column = var_Columns.Add("Duration");
 var_Column.Def(18) = 513;
 var_Column.Editor.EditType = 4;
 G2antt1.Items.AllowCellValueToItemBar = true;
 var var_Chart = G2antt1.Chart;
 var_Chart.FirstWeekDay = 1;
 var_Chart.LevelCount = 2;
 var_Chart.FirstVisibleDate = "6/6/2005";
 var_Chart.PaneWidth(false) = 128;
 var var_ConditionalFormat = G2antt1.ConditionalFormats.Add("%1 >= 4",null);
 var_ConditionalFormat.ApplyTo = 1;
 var_ConditionalFormat.Bold = true;
 var_ConditionalFormat.ApplyToBars = "Task";
 var_ConditionalFormat.BarColor = 255;
 var_ConditionalFormat.ForeColor = var_ConditionalFormat.BarColor;
 var var_Items = G2antt1.Items;

var_Items.AddBar(var_Items.AddItem("Task"),"Task","6/10/2005","6/13/2005","",null);

var_Items.AddBar(var_Items.AddItem("Task"),"Task","6/11/2005","6/16/2005","",null);

var_Items.AddBar(var_Items.AddItem("Task"),"Task","6/12/2005","6/15/2005","",null);
 G2antt1.EndUpdate();
}
</SCRIPT>

</BODY>

VBScript

<BODY onload='Init()'>
<OBJECT CLASSID="clsid:CD481F4D-2D25-4759-803F-752C568F53B7"
id="G2antt1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With G2antt1
 .BeginUpdate
 With .Columns
 .Add "Tasks"
 With .Add("Duration")
 .Def(18) = 513
 .Editor.EditType = 4
 End With
 End With
 .Items.AllowCellValueToItemBar = True
 With .Chart
 .FirstWeekDay = 1
 .LevelCount = 2
 .FirstVisibleDate = #6/6/2005#
 .PaneWidth(False) = 128
 End With
 With .ConditionalFormats.Add("%1 >= 4")
 .ApplyTo = 1 ' &H1
 .Bold = True
 .ApplyToBars = "Task"
 .BarColor = RGB(255,0,0)
 .ForeColor = .BarColor
 End With
 With .Items
 .AddBar .AddItem("Task"),"Task",#6/10/2005#,#6/13/2005#,""
 .AddBar .AddItem("Task"),"Task",#6/11/2005#,#6/16/2005#,""

 .AddBar .AddItem("Task"),"Task",#6/12/2005#,#6/15/2005#,""
 End With
 .EndUpdate
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

axG2antt1.BeginUpdate();
EXG2ANTTLib.Columns var_Columns = axG2antt1.Columns;
 var_Columns.Add("Tasks");
 EXG2ANTTLib.Column var_Column = (var_Columns.Add("Duration") as
EXG2ANTTLib.Column);

var_Column.set_Def(EXG2ANTTLib.DefColumnEnum.exCellValueToItemBarProperty,513);

 var_Column.Editor.EditType = EXG2ANTTLib.EditTypeEnum.SpinType;
axG2antt1.Items.AllowCellValueToItemBar = true;
EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;
 var_Chart.FirstWeekDay = EXG2ANTTLib.WeekDayEnum.exMonday;
 var_Chart.LevelCount = 2;
 var_Chart.FirstVisibleDate =
Convert.ToDateTime("6/6/2005",System.Globalization.CultureInfo.GetCultureInfo("en-
US"));
 var_Chart.set_PaneWidth(false,128);
EXG2ANTTLib.ConditionalFormat var_ConditionalFormat =
axG2antt1.ConditionalFormats.Add("%1 >= 4",null);
 var_ConditionalFormat.ApplyTo = (EXG2ANTTLib.FormatApplyToEnum)0x1;
 var_ConditionalFormat.Bold = true;
 var_ConditionalFormat.ApplyToBars = "Task";
 var_ConditionalFormat.BarColor =
(uint)ColorTranslator.ToWin32(Color.FromArgb(255,0,0));
 var_ConditionalFormat.ForeColor = var_ConditionalFormat.BarColor;
EXG2ANTTLib.Items var_Items = axG2antt1.Items;

var_Items.AddBar(var_Items.AddItem("Task"),"Task",Convert.ToDateTime("6/10/2005",System.Globalization.CultureInfo.GetCultureInfo(
US")),Convert.ToDateTime("6/13/2005",System.Globalization.CultureInfo.GetCultureInfo("
US")),"",null);

var_Items.AddBar(var_Items.AddItem("Task"),"Task",Convert.ToDateTime("6/11/2005",System.Globalization.CultureInfo.GetCultureInfo(
US")),Convert.ToDateTime("6/16/2005",System.Globalization.CultureInfo.GetCultureInfo("
US")),"",null);

var_Items.AddBar(var_Items.AddItem("Task"),"Task",Convert.ToDateTime("6/12/2005",System.Globalization.CultureInfo.GetCultureInfo(
US")),Convert.ToDateTime("6/15/2005",System.Globalization.CultureInfo.GetCultureInfo("
US")),"",null);
axG2antt1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{
 COM
com_Chart,com_Column,com_Columns,com_ConditionalFormat,com_Editor,com_Items;

 anytype
var_Chart,var_Column,var_Columns,var_ConditionalFormat,var_Editor,var_Items;
 ;

 super();

 exg2antt1.BeginUpdate();
 var_Columns = exg2antt1.Columns(); com_Columns = var_Columns;
 com_Columns.Add("Tasks");
 var_Column = COM::createFromVariant(com_Columns.Add("Duration"));
com_Column = var_Column;

com_Column.Def(18/*exCellValueToItemBarProperty*/,COMVariant::createFromInt(513));

 var_Editor = COM::createFromObject(com_Column.Editor()); com_Editor =

var_Editor;
 com_Editor.EditType(4/*SpinType*/);
 exg2antt1.Items().AllowCellValueToItemBar(true);
 var_Chart = exg2antt1.Chart(); com_Chart = var_Chart;
 com_Chart.FirstWeekDay(1/*exMonday*/);
 com_Chart.LevelCount(2);

com_Chart.FirstVisibleDate(COMVariant::createFromDate(str2Date("6/6/2005",213)));
 /*should be called during the form's activate method*/
com_Chart.PaneWidth(false,128);
 var_ConditionalFormat =
COM::createFromObject(exg2antt1.ConditionalFormats()).Add("%1 >= 4");
com_ConditionalFormat = var_ConditionalFormat;
 com_ConditionalFormat.ApplyTo(1);
 com_ConditionalFormat.Bold(true);
 com_ConditionalFormat.ApplyToBars("Task");
 com_ConditionalFormat.BarColor(WinApi::RGB2int(255,0,0));
 com_ConditionalFormat.ForeColor(com_ConditionalFormat.BarColor());
 var_Items = exg2antt1.Items(); com_Items = var_Items;

com_Items.AddBar(com_Items.AddItem("Task"),"Task",COMVariant::createFromDate(str2Date(

com_Items.AddBar(com_Items.AddItem("Task"),"Task",COMVariant::createFromDate(str2Date(

com_Items.AddBar(com_Items.AddItem("Task"),"Task",COMVariant::createFromDate(str2Date(

 exg2antt1.EndUpdate();
}

/*
public void activate(boolean _active)
{
 ;

 super(_active);

 exg2antt1.Chart().PaneWidth(false,128);
}
*/

Delphi 8 (.NET only)

with AxG2antt1 do
begin
 BeginUpdate();
 with Columns do
 begin
 Add('Tasks');
 with (Add('Duration') as EXG2ANTTLib.Column) do
 begin
 Def[EXG2ANTTLib.DefColumnEnum.exCellValueToItemBarProperty] :=
TObject(513);
 Editor.EditType := EXG2ANTTLib.EditTypeEnum.SpinType;
 end;
 end;
 Items.AllowCellValueToItemBar := True;
 with Chart do
 begin
 FirstWeekDay := EXG2ANTTLib.WeekDayEnum.exMonday;
 LevelCount := 2;
 FirstVisibleDate := '6/6/2005';
 PaneWidth[False] := 128;
 end;
 with ConditionalFormats.Add('%1 >= 4',Nil) do
 begin
 ApplyTo := EXG2ANTTLib.FormatApplyToEnum($1);
 Bold := True;
 ApplyToBars := 'Task';
 BarColor := $ff;
 ForeColor := BarColor;
 end;
 with Items do

 begin
 AddBar(AddItem('Task'),'Task','6/10/2005','6/13/2005','',Nil);
 AddBar(AddItem('Task'),'Task','6/11/2005','6/16/2005','',Nil);
 AddBar(AddItem('Task'),'Task','6/12/2005','6/15/2005','',Nil);
 end;
 EndUpdate();
end

Delphi (standard)

with G2antt1 do
begin
 BeginUpdate();
 with Columns do
 begin
 Add('Tasks');
 with (IUnknown(Add('Duration')) as EXG2ANTTLib_TLB.Column) do
 begin
 Def[EXG2ANTTLib_TLB.exCellValueToItemBarProperty] := OleVariant(513);
 Editor.EditType := EXG2ANTTLib_TLB.SpinType;
 end;
 end;
 Items.AllowCellValueToItemBar := True;
 with Chart do
 begin
 FirstWeekDay := EXG2ANTTLib_TLB.exMonday;
 LevelCount := 2;
 FirstVisibleDate := '6/6/2005';
 PaneWidth[False] := 128;
 end;
 with ConditionalFormats.Add('%1 >= 4',Null) do
 begin
 ApplyTo := EXG2ANTTLib_TLB.FormatApplyToEnum($1);
 Bold := True;
 ApplyToBars := 'Task';
 BarColor := $ff;
 ForeColor := BarColor;

 end;
 with Items do
 begin
 AddBar(AddItem('Task'),'Task','6/10/2005','6/13/2005','',Null);
 AddBar(AddItem('Task'),'Task','6/11/2005','6/16/2005','',Null);
 AddBar(AddItem('Task'),'Task','6/12/2005','6/15/2005','',Null);
 end;
 EndUpdate();
end

VFP

with thisform.G2antt1
 .BeginUpdate
 with .Columns
 .Add("Tasks")
 with .Add("Duration")
 .Def(18) = 513
 .Editor.EditType = 4
 endwith
 endwith
 .Items.AllowCellValueToItemBar = .T.
 with .Chart
 .FirstWeekDay = 1
 .LevelCount = 2
 .FirstVisibleDate = {^2005-6-6}
 .PaneWidth(0) = 128
 endwith
 with .ConditionalFormats.Add("%1 >= 4")
 .ApplyTo = 1 && 0x1
 .Bold = .T.
 .ApplyToBars = "Task"
 .BarColor = RGB(255,0,0)
 .ForeColor = .BarColor
 endwith
 with .Items
 .AddBar(.AddItem("Task"),"Task",{^2005-6-10},{^2005-6-13},"")

 .AddBar(.AddItem("Task"),"Task",{^2005-6-11},{^2005-6-16},"")
 .AddBar(.AddItem("Task"),"Task",{^2005-6-12},{^2005-6-15},"")
 endwith
 .EndUpdate
endwith

dBASE Plus

local oG2antt,var_Chart,var_Column,var_Columns,var_ConditionalFormat,var_Items

oG2antt = form.Activex1.nativeObject
oG2antt.BeginUpdate()
var_Columns = oG2antt.Columns
 var_Columns.Add("Tasks")
 var_Column = var_Columns.Add("Duration")
 // var_Column.Def(18) = 513
 with (oG2antt)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(18) = 513]
 endwith
 var_Column.Editor.EditType = 4
oG2antt.Items.AllowCellValueToItemBar = true
var_Chart = oG2antt.Chart
 var_Chart.FirstWeekDay = 1
 var_Chart.LevelCount = 2
 var_Chart.FirstVisibleDate = "06/06/2005"
 // var_Chart.PaneWidth(false) = 128
 with (oG2antt)
 TemplateDef = [Dim var_Chart]
 TemplateDef = var_Chart
 Template = [var_Chart.PaneWidth(false) = 128]
 endwith
var_ConditionalFormat = oG2antt.ConditionalFormats.Add("%1 >= 4")
 var_ConditionalFormat.ApplyTo = 1 /*0x1 | */
 var_ConditionalFormat.Bold = true
 var_ConditionalFormat.ApplyToBars = "Task"

 var_ConditionalFormat.BarColor = 0xff
 var_ConditionalFormat.ForeColor = var_ConditionalFormat.BarColor
var_Items = oG2antt.Items
 var_Items.AddBar(var_Items.AddItem("Task"),"Task","06/10/2005","06/13/2005","")
 var_Items.AddBar(var_Items.AddItem("Task"),"Task","06/11/2005","06/16/2005","")
 var_Items.AddBar(var_Items.AddItem("Task"),"Task","06/12/2005","06/15/2005","")
oG2antt.EndUpdate()

XBasic (Alpha Five)

Dim oG2antt as P
Dim var_Chart as P
Dim var_Column as P
Dim var_Columns as P
Dim var_ConditionalFormat as P
Dim var_Items as P

oG2antt = topparent:CONTROL_ACTIVEX1.activex
oG2antt.BeginUpdate()
var_Columns = oG2antt.Columns
 var_Columns.Add("Tasks")
 var_Column = var_Columns.Add("Duration")
 ' var_Column.Def(18) = 513
 oG2antt.TemplateDef = "Dim var_Column"
 oG2antt.TemplateDef = var_Column
 oG2antt.Template = "var_Column.Def(18) = 513"

 var_Column.Editor.EditType = 4
oG2antt.Items.AllowCellValueToItemBar = .t.
var_Chart = oG2antt.Chart
 var_Chart.FirstWeekDay = 1
 var_Chart.LevelCount = 2
 var_Chart.FirstVisibleDate = {06/06/2005}
 ' var_Chart.PaneWidth(.f.) = 128
 oG2antt.TemplateDef = "Dim var_Chart"
 oG2antt.TemplateDef = var_Chart

 oG2antt.Template = "var_Chart.PaneWidth(False) = 128"

var_ConditionalFormat = oG2antt.ConditionalFormats.Add("%1 >= 4")
 var_ConditionalFormat.ApplyTo = 1 '1 +
 var_ConditionalFormat.Bold = .t.
 var_ConditionalFormat.ApplyToBars = "Task"
 var_ConditionalFormat.BarColor = 255
 var_ConditionalFormat.ForeColor = var_ConditionalFormat.BarColor
var_Items = oG2antt.Items
 var_Items.AddBar(var_Items.AddItem("Task"),"Task",{06/10/2005},{06/13/2005},"")
 var_Items.AddBar(var_Items.AddItem("Task"),"Task",{06/11/2005},{06/16/2005},"")
 var_Items.AddBar(var_Items.AddItem("Task"),"Task",{06/12/2005},{06/15/2005},"")
oG2antt.EndUpdate()

Visual Objects

local var_Chart as IChart
local var_Column as IColumn
local var_Columns as IColumns
local var_ConditionalFormat as IConditionalFormat
local var_Items as IItems

oDCOCX_Exontrol1:BeginUpdate()
var_Columns := oDCOCX_Exontrol1:Columns
 var_Columns:Add("Tasks")
 var_Column := IColumn{var_Columns:Add("Duration")}
 var_Column:[Def,exCellValueToItemBarProperty] := 513
 var_Column:Editor:EditType := SpinType
oDCOCX_Exontrol1:Items:AllowCellValueToItemBar := true
var_Chart := oDCOCX_Exontrol1:Chart
 var_Chart:FirstWeekDay := exMonday
 var_Chart:LevelCount := 2
 var_Chart:FirstVisibleDate := SToD("20050606")
 var_Chart:[PaneWidth,false] := 128
var_ConditionalFormat := oDCOCX_Exontrol1:ConditionalFormats:Add("%1 >=
4",nil)

 var_ConditionalFormat:ApplyTo := 0x1 |
 var_ConditionalFormat:Bold := true
 var_ConditionalFormat:ApplyToBars := "Task"
 var_ConditionalFormat:BarColor := RGB(255,0,0)
 var_ConditionalFormat:ForeColor := var_ConditionalFormat:BarColor
var_Items := oDCOCX_Exontrol1:Items

var_Items:AddBar(var_Items:AddItem("Task"),"Task",SToD("20050610"),SToD("20050613"),"

var_Items:AddBar(var_Items:AddItem("Task"),"Task",SToD("20050611"),SToD("20050616"),"

var_Items:AddBar(var_Items:AddItem("Task"),"Task",SToD("20050612"),SToD("20050615"),"

oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject
oG2antt,var_Chart,var_Column,var_Columns,var_ConditionalFormat,var_Items

oG2antt = ole_1.Object
oG2antt.BeginUpdate()
var_Columns = oG2antt.Columns
 var_Columns.Add("Tasks")
 var_Column = var_Columns.Add("Duration")
 var_Column.Def(18,513)
 var_Column.Editor.EditType = 4
oG2antt.Items.AllowCellValueToItemBar = true
var_Chart = oG2antt.Chart
 var_Chart.FirstWeekDay = 1
 var_Chart.LevelCount = 2
 var_Chart.FirstVisibleDate = 2005-06-06
 var_Chart.PaneWidth(false,128)
var_ConditionalFormat = oG2antt.ConditionalFormats.Add("%1 >= 4")

 var_ConditionalFormat.ApplyTo = 1 /*1 /*0x1*/ | */
 var_ConditionalFormat.Bold = true
 var_ConditionalFormat.ApplyToBars = "Task"
 var_ConditionalFormat.BarColor = RGB(255,0,0)
 var_ConditionalFormat.ForeColor = var_ConditionalFormat.BarColor
var_Items = oG2antt.Items
 var_Items.AddBar(var_Items.AddItem("Task"),"Task",2005-06-10,2005-06-13,"")
 var_Items.AddBar(var_Items.AddItem("Task"),"Task",2005-06-11,2005-06-16,"")
 var_Items.AddBar(var_Items.AddItem("Task"),"Task",2005-06-12,2005-06-15,"")
oG2antt.EndUpdate()

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Send ComBeginUpdate
 Variant voColumns
 Get ComColumns to voColumns
 Handle hoColumns
 Get Create (RefClass(cComColumns)) to hoColumns
 Set pvComObject of hoColumns to voColumns
 Get ComAdd of hoColumns "Tasks" to Nothing
 Variant voColumn
 Get ComAdd of hoColumns "Duration" to voColumn
 Handle hoColumn
 Get Create (RefClass(cComColumn)) to hoColumn
 Set pvComObject of hoColumn to voColumn
 Set ComDef of hoColumn OLEexCellValueToItemBarProperty to 513
 Variant voEditor
 Get ComEditor of hoColumn to voEditor
 Handle hoEditor
 Get Create (RefClass(cComEditor)) to hoEditor
 Set pvComObject of hoEditor to voEditor
 Set ComEditType of hoEditor to OLESpinType
 Send Destroy to hoEditor
 Send Destroy to hoColumn

 Send Destroy to hoColumns
 Variant voItems
 Get ComItems to voItems
 Handle hoItems
 Get Create (RefClass(cComItems)) to hoItems
 Set pvComObject of hoItems to voItems
 Set ComAllowCellValueToItemBar of hoItems to True
 Send Destroy to hoItems
 Variant voChart
 Get ComChart to voChart
 Handle hoChart
 Get Create (RefClass(cComChart)) to hoChart
 Set pvComObject of hoChart to voChart
 Set ComFirstWeekDay of hoChart to OLEexMonday
 Set ComLevelCount of hoChart to 2
 Set ComFirstVisibleDate of hoChart to "6/6/2005"
 Set ComPaneWidth of hoChart False to 128
 Send Destroy to hoChart
 Variant voConditionalFormats
 Get ComConditionalFormats to voConditionalFormats
 Handle hoConditionalFormats
 Get Create (RefClass(cComConditionalFormats)) to hoConditionalFormats
 Set pvComObject of hoConditionalFormats to voConditionalFormats
 Variant voConditionalFormat
 Get ComAdd of hoConditionalFormats "%1 >= 4" Nothing to
voConditionalFormat
 Handle hoConditionalFormat
 Get Create (RefClass(cComConditionalFormat)) to hoConditionalFormat
 Set pvComObject of hoConditionalFormat to voConditionalFormat
 Set ComApplyTo of hoConditionalFormat to |CI$1
 Set ComBold of hoConditionalFormat to True
 Set ComApplyToBars of hoConditionalFormat to "Task"
 Set ComBarColor of hoConditionalFormat to (RGB(255,0,0))
 Set ComForeColor of hoConditionalFormat to
(ComBarColor(hoConditionalFormat))
 Send Destroy to hoConditionalFormat
 Send Destroy to hoConditionalFormats

 Variant voItems1
 Get ComItems to voItems1
 Handle hoItems1
 Get Create (RefClass(cComItems)) to hoItems1
 Set pvComObject of hoItems1 to voItems1
 Send ComAddBar of hoItems1 (ComAddItem(hoItems1,"Task")) "Task"
"6/10/2005" "6/13/2005" "" Nothing
 Send ComAddBar of hoItems1 (ComAddItem(hoItems1,"Task")) "Task"
"6/11/2005" "6/16/2005" "" Nothing
 Send ComAddBar of hoItems1 (ComAddItem(hoItems1,"Task")) "Task"
"6/12/2005" "6/15/2005" "" Nothing
 Send Destroy to hoItems1
 Send ComEndUpdate
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oG2antt
 LOCAL oChart
 LOCAL oColumn
 LOCAL oColumns
 LOCAL oConditionalFormat
 LOCAL oItems

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oG2antt := XbpActiveXControl():new(oForm:drawingArea)
 oG2antt:CLSID := "Exontrol.G2antt.1" /*{CD481F4D-2D25-4759-803F-

752C568F53B7}*/
 oG2antt:create(,, {10,60},{610,370})

 oG2antt:BeginUpdate()
 oColumns := oG2antt:Columns()
 oColumns:Add("Tasks")
 oColumn := oColumns:Add("Duration")
 oColumn:SetProperty("Def",18/*exCellValueToItemBarProperty*/,513)
 oColumn:Editor():EditType := 4/*SpinType*/
 oG2antt:Items():AllowCellValueToItemBar := .T.
 oChart := oG2antt:Chart()
 oChart:FirstWeekDay := 1/*exMonday*/
 oChart:LevelCount := 2
 oChart:FirstVisibleDate := "06/06/2005"
 oChart:SetProperty("PaneWidth",.F.,128)
 oConditionalFormat := oG2antt:ConditionalFormats():Add("%1 >= 4")
 oConditionalFormat:ApplyTo := 1/*0x1+*/
 oConditionalFormat:Bold := .T.
 oConditionalFormat:ApplyToBars := "Task"
 oConditionalFormat:SetProperty("BarColor",AutomationTranslateColor(
GraMakeRGBColor ({ 255,0,0 }) , .F.))
 oConditionalFormat:SetProperty("ForeColor",oConditionalFormat:BarColor())
 oItems := oG2antt:Items()
 oItems:AddBar(oItems:AddItem("Task"),"Task","06/10/2005","06/13/2005","")
 oItems:AddBar(oItems:AddItem("Task"),"Task","06/11/2005","06/16/2005","")
 oItems:AddBar(oItems:AddItem("Task"),"Task","06/12/2005","06/15/2005","")
 oG2antt:EndUpdate()

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property ConditionalFormat.BackColor as Color
Retrieves or sets the background color for objects that match the condition.

Type Description

Color

A color expression that indicates the background color for
the object that match the criteria. The last 7 bits in the high
significant byte of the color to indicates the identifier of the
skin being used. Use the Add method to add new skins to
the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits
in the high significant byte of the color being applied to the
background's part.

Use the BackColor property to change the background color for items or cells in the column
when a certain condition is met. The ChartBackColor property applies the specified
background-color (in the chart section) for items that verify the conditional expression. Use
the ForeColor property to specify the foreground color for objects that match the criteria.
Use the ClearBackColor method to remove the background color being set using previously
the BackColor property. If the BackColor property is not set, it retrieves 0. The ApplyTo
property specifies whether the ConditionalFormat object is applied to items or to cells in the
column.

The following screen shot shows the control when the BackColor property is set:

The following screen shot shows the control when the BackColor and ChartBackColor
properties are set:

property ConditionalFormat.BarColor as Color
Specifies the color to be applied to bars if the conditional expression is accomplished.

Type Description

Color

A color expression that indicates the color to show the bar
that matches the criteria. The last 7 bits in the high
significant byte of the color to indicates the identifier of the
skin being used. Use the Add method to add new skins to
the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits
in the high significant byte of the color being applied to the
background's part.

By default, the BarColor property is 0. The BarColor property has effect, if the ApplyToBars
property points to valid bars. The ApplyToBars property specifies the list of bars that the
current format is applied to. Use the ClearBarColor method to remove the color being set
using previously the BarColor property. If the BarColor property is not set, it retrieves 0.
The ItemBar(exBarColor) property specifies the color to show a particular bar. The
BarOverviewColor property specifies the color to be applied to bars, in the overview portion
of the control, if the conditional expression is accomplished. Use the BackColor property to
change the background color for items or cells in the column when a certain condition is
met. Use the ForeColor property to specify the foreground color for objects that match the
criteria.

The following screen shot shows the control when the BarColor property is set:

property ConditionalFormat.BarOverviewColor as Color
Specifies the color to be applied to bars, in the overview portion of the control, if the
conditional expression is accomplished.

Type Description

Color
A Color expression that specifies the color to be applied to
bars, in the overview portion of the control, if the
conditional expression is accomplished.

By default, the BarOverviewColor property is 0. The BarOverviewColor property has effect,
if the ApplyToBars property points to valid bars. The ApplyToBars property specifies the list
of bars that the current format is applied to. The OverviewVisible property shows or hides
the control's overview map. Use the ClearBarOverviewColor method to remove the color
being set using previously the BarOverviewColor property. If the BarColor property is not
set, it retrieves 0. The ItemBar(exBarOverviewColor) property specifies the color to show a
different color in the overview part of the control, for a particular bar.

The following screen shot shows the control when the BarColor and BarOverviewColor
properties are set:

property ConditionalFormat.Bold as Boolean
Bolds the objects that match the condition.

Type Description

Boolean A boolean expression that indicates whether the objects
should appear in bold.

The ApplyTo property specifies whether the ConditionalFormat object is applied to items or
to cells in the column.

The following screen shot shows the control when the Bold property is set:

The following VB sample bolds all cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

With G2antt1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C++ sample bolds all cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

COleVariant vtEmpty;
CConditionalFormat cf = m_g2antt.GetConditionalFormats().Add("%1+%2<%0", vtEmpty
);
cf.SetBold(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample bolds all cells in the second column (1), if the sum between

second and third column (2) is less than the value in the first column (0):

With AxG2antt1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C# sample bolds all cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

EXG2ANTTLib.ConditionalFormat cf =
axG2antt1.ConditionalFormats.Add("%1+%2<%0",null);
cf.Bold = true;
cf.ApplyTo = (EXG2ANTTLib.FormatApplyToEnum)1;

The following VFP sample bolds all cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

with thisform.G2antt1.ConditionalFormats.Add("%1+%2<%0")
 .Bold = .t.
 .ApplyTo = 1
endwith

property ConditionalFormat.ChartBackColor as Color
Specifies the color to be applied to item's background in the chart section of the control, if
the conditional expression is accomplished.

Type Description

Color

A color expression that indicates the color to show the bar
that matches the criteria. The last 7 bits in the high
significant byte of the color to indicates the identifier of the
skin being used. Use the Add method to add new skins to
the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits
in the high significant byte of the color being applied to the
background's part.

The ChartBackColor property applies the specified background-color (in the chart section)
for items that verify the conditional expression. The BackColor property retrieves or sets
the background color for objects that match the condition. The ChartChartBackColor
method clears the item's background in the chart section of the control. If the
ChartBackColor property is not set, it retrieves 0. The ApplyTo property specifies whether
the ConditionalFormat object is applied to items or to cells in the column.

The following screen shot shows the control when the ChartBackColor property is set:

The following screen shot shows the control when the BackColor and ChartBackColor
properties are set:

method ConditionalFormat.ClearBackColor ()
Clears the background color.

Type Description

Use the ClearBackColor method to remove the background color being set using previously
the BackColor property. If the BackColor property is not set, it retrieves 0.

method ConditionalFormat.ClearBarColor ()
Clears the bar's color.

Type Description

Use the ClearBarColor method to remove the color being set using previously the BarColor
property. If the BarColor property is not set, it retrieves 0.

method ConditionalFormat.ClearBarOverviewColor ()
Clears the bar's overview color.

Type Description

Use the ClearBarOverviewColor method to remove the color being set using previously the
BarOverviewColor property. If the BarOverviewColor property is not set, it retrieves 0.

method ConditionalFormat.ClearChartBackColor ()
Clears the item's background in the chart section of the control.

Type Description

You can use the ClearChartBackColor method to prevent changing the item's background
color on the chart panel of the control, if the conditional expression is applied to the item.
The ChartBackColor property specifies the color to be applied to item's background in the
chart section of the control, if the conditional expression is accomplished.

method ConditionalFormat.ClearForeColor ()
Clears the foreground color.

Type Description

Use the ClearBackColor method to remove the foreground color being set using previously
the ForeColor property. If the ForeColor property is not set, it retrieves 0.

property ConditionalFormat.Enabled as Boolean
Specifies whether the condition is enabled or disabled.

Type Description

Boolean A boolean expression that indicates whether the
expression is enabled or disabled.

By default, all expressions are enabled. A format is applied only if the expression is valid
and enabled. Use the Expression property to specify the format's formula. The Valid
property checks whether the formula is valid or not valid. Use the Enabled property to
disable applying the format for the moment. Use the Remove method to remove an
expression from ConditionalFormats collection.

property ConditionalFormat.Expression as String
Indicates the expression being used in the conditional format.

Type Description

String

A formal expression that indicates the formula being used
in formatting. For instance, "%0+%1>%2", highlights the
cells or the items, when the sum between first two
columns is greater than the value in the third column

The conditional formatting feature allows you to apply formats to a cell or range of cells,
and have that formatting change depending on the value of the cell or the value of a
formula. The Expression property specifies a formula that indicates the criteria to format the
items or the columns. Use the ApplyTo property to specify when the items or the columns
are formatted. Use the Add method to specify the expression at adding time. The
Expression property may include variables, constants, operators or () parenthesis. A
variable is defined as %n, where n is the index of the column (zero based). For instance,
the %0 indicates the first column, the %1, indicates the second column, and so on. A
constant is a float expression (for instance, 23.45). Use the Valid property checks whether
the expression is syntactically correct, and can be evaluated. If the expression contains a
variable that is not known, 0 value is used instead. For instance, if your control has 2
columns, and the expression looks like "%2 +%1 ", the %2 does not exist, 0 is used
instead. When the control contains two columns the known variables are %0 and %1.

The expression may be a combination of variables, constants, strings, dates and
operators. A string is delimited by ", ` or ' characters, and inside they can have the starting
character preceded by \ character, ie "\"This is a quote\"". A date is delimited by two #
characters, ie #1/31/2001 10:00# means the January 31th, 2001, 10:00 AM.

The expression supports cell's identifiers as follows:

%0, %1, %2, ... specifies the value of the cell in the column with the index 0, 1 2, ...
The CellValue property specifies the cell's value. For instance, "%0 format ``" formats
the value on the cell with the index 0, using current regional setting, while "int(%1)"
converts the value of the column with the index 1, to integer.
%C0, %C1, %C2, ... specifies the caption of the cell, or the string the cell displays in
the column with the index 0, 1 2, ... The CellCaption property specifies the cell's
caption. The cell's value may be different than what the cell displays as a string. For
instance, let's say a cell display HTML format. The %0 returns the html format
including the HTML tags, while %C0 returns the cell's content as string without HTML
tags. For instance, "upper(%C1)" converts the caption of the cell with the index 1, to
upper case, while "%C0 left 2" returns the leftmost two characters on the cell with the
index 0.

%CD0, %CD1, %CD2, ... specifies the cell's extra data in the column with the index
0, 1 2, ... The CellData property associates any extra/user data to a cell. For instance,
"%CD0 = `your user data`" specifies all cells whose CellData property is `your user
data`, on the column with the index 0.
%CS0, %CS1, %CS2, ... specifies the cell's state in the column with the index 0, 1 2,
... The CellState property specifies the cell's state, and so it indicates whether the cell
is checked or un-checked. For instance, "%CS0" defines all checked items on the
column with the index 0, or "not %CS1" defines all un-checked items in the column
with the index 1.

This property/method supports predefined constants and operators/functions as described
here.

Samples:

1. "1", highlights all cells or items. Use this form, when you need to highlight all cells or
items in the column or control.

2. "%0 >= 0", highlights the cells or items, when the cells in the first column have the value
greater or equal with zero

3. "%0 = 1 and %1 = 0", highlights the cells or items, when the cells in the first column
have the value equal with 0, and the cells in the second column have the value equal
with 0

4. "%0+%1>%2", highlights the cells or the items, when the sum between first two
columns is greater than the value in the third column

5. "%0+%1 > %2+%3", highlights the cells or items, when the sum between first two
columns is greater than the sum between third and forth column.

6. "%0+%1 >= 0 and (%2+%3)/2 < %4-5", highlights the cells or the items, when the sum
between first two columns is greater than 0 and the half of the sum between third and
forth columns is less than fifth column minus 5.

7. "%0 startwith 'A'" specifies the cells that starts with A
8. "%0 endwith 'Bc'" specifies the cells that ends with Bc
9. "%0 contains 'aBc'" specifies the cells that contains the aBc string

10. "lower(%0) contains 'abc'" specifies the cells that contains the abc, AbC, ABC, and
so on

11. "upper(%0)'" retrieves the uppercase string
12. "len(%0)>0'" specifies the not blanks cells
13. "len %0 = 0'" specifies the blanks cells

The conditional format feature may change the cells and items as follows:

Bold property. Bolds the cell or items
Italic property. Indicates whether the cells or items should appear in italic.
StrikeOut property. Indicates whether the cells or items should appear in strikeout.

Underline property. Underlines the cells or items
Font property. Changes the font for cells or items.
BackColor property. Changes the background color for cells or items, supports skins
as well.
ForeColor property. Changes the foreground color for cells or items.

The following VB samples bolds all items when the sum between first two columns is
greater than 0:

G2antt1.ConditionalFormats.Add("%0+%1>0").Bold = True

The following C++ sample bolds all items when the sum between first two columns is
greater than 0:

COleVariant vtEmpty;
m_g2antt.GetConditionalFormats().Add("%0+%1>0", vtEmpty).SetBold(TRUE);

The following VB.NET sample bolds all items when the sum between first two columns is
greater than 0:

AxG2antt1.ConditionalFormats.Add("%0+%1>0").Bold = True

The following C# sample bolds all items when the sum between first two columns is greater
than 0:

axG2antt1.ConditionalFormats.Add("%0+%1>0", null).Bold = true

The following VFP sample bolds all items when the sum between first two columns is
greater than 0:

thisform.G2antt1.ConditionalFormats.Add("%0+%1>0").Bold = .t.

property ConditionalFormat.Font as IFontDisp
Retrieves or sets the font for objects that match the criteria.

Type Description
IFontDisp A Font object that's applied to items or columns.

Use the Font property to change the font for items or columns that match the criteria. Use
the Font property only, if you need to change to a different font.

The following screen shot shows the control when the Font property is set:

You can change directly the font attributes, like follows:

Bold property. Bolds the cell or items
Italic property. Indicates whether the cells or items should appear in italic.
StrikeOut property. Indicates whether the cells or items should appear in strikeout.
Underline property. Underlines the cells or items

The following VB sample changes the font for ALL cells in the first column:

With G2antt1.ConditionalFormats.Add("1")
 .ApplyTo = 0
 Set .Font = New StdFont
 With .Font
 .Name = "Comic Sans MS"
 End With
End With

property ConditionalFormat.ForeColor as Color
Retrieves or sets the foreground color for objects that match the condition.

Type Description

Color A color expression that indicates the foreground color for
the object that match the criteria.

Use the ForeColor property to specify the foreground color for objects that match the
criteria. Use the BackColor property to change the background color for items or cells in the
column when a certain condition is met. Use the ClearForeColor method to remove the
foreground color being set using previously the ForeColor property. If the ForeColor
property is not set, it retrieves 0. The ApplyTo property specifies whether the
ConditionalFormat object is applied to items or to cells in the column.

The following screen shot shows the control when the ForeColor property is set:

property ConditionalFormat.Italic as Boolean
Specifies whether the objects that match the condition should appear in italic.

Type Description

Boolean A boolean expression that indicates whether the objects
should look in italic.

The ApplyTo property specifies whether the ConditionalFormat object is applied to items or
to cells in the column.

The following screen shot shows the control when the Italic property is set:

The following VB sample makes italic the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

With G2antt1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Italic = True
End With

The following C++ sample makes italic the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

COleVariant vtEmpty;
CConditionalFormat cf = m_g2antt.GetConditionalFormats().Add("%1+%2<%0", vtEmpty
);
cf.SetItalic(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample makes italic the cells in the second column (1), if the sum

between second and third column (2) is less than the value in the first column (0):

With AxG2antt1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Italic = True
End With

The following C# sample makes italic the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

EXG2ANTTLib.ConditionalFormat cf =
axG2antt1.ConditionalFormats.Add("%1+%2<%0",null);
cf.Italic = true;
cf.ApplyTo = (EXG2ANTTLib.FormatApplyToEnum)1;

The following VFP sample makes italic the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

with thisform.G2antt1.ConditionalFormats.Add("%1+%2<%0")
 .Italic = .t.
 .ApplyTo = 1
endwith

property ConditionalFormat.Key as Variant
Checks whether the expression is syntactically correct.

Type Description
Variant A String expression that indicates the key of the element

The Key property indicates the key of the element. Use the Add method to specify a key at
adding time. Use the Remove method to remove a formula giving its key.

property ConditionalFormat.StrikeOut as Boolean
Specifies whether the objects that match the condition should appear in strikeout.

Type Description

Boolean A Boolean expression that indicates whether the objects
should appear in strikeout.

The ApplyTo property specifies whether the ConditionalFormat object is applied to items or
to cells in the column.

The following screen shot shows the control when the StrikeOut property is set:

The following VB sample applies strikeout font attribute to cells in the second column (1),
if the sum between second and third column (2) is less than the value in the first column (
0):

With G2antt1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C++ sample applies strikeout font attribute to cells in the second column (1),
if the sum between second and third column (2) is less than the value in the first column (
0):

COleVariant vtEmpty;
CConditionalFormat cf = m_g2antt.GetConditionalFormats().Add("%1+%2<%0", vtEmpty
);
cf.SetBold(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample applies strikeout font attribute to cells in the second column (
1), if the sum between second and third column (2) is less than the value in the first
column (0):

With AxG2antt1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C# sample applies strikeout font attribute to cells in the second column (1), if
the sum between second and third column (2) is less than the value in the first column (0
):

EXG2ANTTLib.ConditionalFormat cf =
axG2antt1.ConditionalFormats.Add("%1+%2<%0",null);
cf.Bold = true;
cf.ApplyTo = (EXG2ANTTLib.FormatApplyToEnum)1;

The following VFP sample applies strikeout font attribute to cells in the second column (1),
if the sum between second and third column (2) is less than the value in the first column (
0):

with thisform.G2antt1.ConditionalFormats.Add("%1+%2<%0")
 .Bold = .t.
 .ApplyTo = 1
endwith

property ConditionalFormat.Underline as Boolean
Underlines the objects that match the condition.

Type Description

Boolean A boolean expression that indicates whether the objects
are underlined.

The ApplyTo property specifies whether the ConditionalFormat object is applied to items or
to cells in the column.

The following screen shot shows the control when the Underline property is set:

The following VB sample underlines the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

With G2antt1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Underline = True
End With

The following C++ sample underlines the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

COleVariant vtEmpty;
CConditionalFormat cf = m_g2antt.GetConditionalFormats().Add("%1+%2<%0", vtEmpty
);
cf.SetUnderline(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample underlines the cells in the second column (1), if the sum

between second and third column (2) is less than the value in the first column (0):

With AxG2antt1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Underline = True
End With

The following C# sample underlines the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

EXG2ANTTLib.ConditionalFormat cf =
axG2antt1.ConditionalFormats.Add("%1+%2<%0",null);
cf.Underline = true;
cf.ApplyTo = (EXG2ANTTLib.FormatApplyToEnum)1;

The following VFP sample underlines the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

with thisform.G2antt1.ConditionalFormats.Add("%1+%2<%0")
 .Underline = .t.
 .ApplyTo = 1
endwith

property ConditionalFormat.Valid as Boolean
Checks whether the expression is syntactically correct.

Type Description

Boolean A boolean expression that indicates whether the
Expression property is valid.

Use the Valid property to check whether the Expression formula is valid. The conditional
format is not applied to objects if expression is not valid, or the Enabled property is false.
An empty expression is not valid. Use the Enabled property to disable applying the format
to columns or items. Use the Remove method to remove an expression from
ConditionalFormats collection. The Verify property checks whether the current conditional
expression is applied to the giving item.

property ConditionalFormat.Verify (Item as HITEM) as Boolean
Verifies the current conditional format if it is applied to the giving item.

Type Description

Item as HITEM A Long expression that specifies whether the conditional
expression is applied.

Boolean A Boolean expression that specifies whether the current
conditional expression is applied to the giving item.

The Verify property checks whether the current conditional expression is applied to the
giving item. The Verify property returns True, if the conditional expression is valid, and the
condition is meet for the specified item. The Verify property returns False, if the conditional
expression is not valid or the conditional expression is not applied to the specified item. The
Valid property checks whether the Expression formula is valid.

ConditionalFormats object
The conditional formatting feature allows you to apply formats to a cell or range of cells,
and have that formatting change depending on the value of the cell or the value of a
formula. The ConditionalFormats collection holds a collection of ConditionalFormat objects.
Use the ConditionalFormats property to access the control's ConditionalFormats collection
.The ConditionalFormats collection supports the following properties and methods:

Name Description

Add Adds a new expression to the collection and returns a
reference to the newly created object.

Clear Removes all expressions in a collection.
Count Returns the number of objects in a collection.
Item Returns a specific expression.
Remove Removes a specific member from the collection.

method ConditionalFormats.Add (Expression as String, [Key as Variant])
Adds a new expression to the collection and returns a reference to the newly created
object.

Type Description

Expression as String

A formal expression that indicates the formula being used
when the format is applied. Please check the Expression
property that shows the syntax of the expression that may
be used. For instance, the "%0 >= 10 and %1 > 67.23"
means all cells in the first column with the value less or
equal than 10, and all cells in the second column with a
value greater than 67.23

Key as Variant

A string or long expression that indicates the key of the
expression being added. If the Key parameter is missing,
by default, the current index in the ConditionalFormats
collection is used.

Return Description

ConditionalFormat A ConditionalFormat object that indicates the newly format
being added.

The conditional formatting feature allows you to apply formats to a cell or range of cells,
and have that formatting change depending on the value of the cell or the value of a
formula. Use the Add method to format cells or items based on values. Use the Add method
to add new ConditionalFormat objects to the ConditionalFormats collection. By default, the
ConditionalFormats collection is empty. A ConditionalFormat object indicates a formula and
a format to apply to cells or items. The ApplyTo property specifies whether the
ConditionalFormat object is applied to items or to cells in the column. Use the Expression
property to retrieve or set the formula. Use the Key property to retrieve the key of the
object. Use the Refresh method to update the changes on the control's content.

The conditional format feature may change the cells and items as follows:

Bold property. Bolds the cell or items
Italic property. Indicates whether the cells or items should appear in italic.
StrikeOut property. Indicates whether the cells or items should appear in strikeout.
Underline property. Underlines the cells or items
Font property. Changes the font for cells or items.
BackColor property. Changes the background color for cells or items, supports skins
as well.
ForeColor property. Changes the foreground color for cells or items.

The following VB sample bolds all items when the sum between first two columns is greater
than 0:

G2antt1.ConditionalFormats.Add("%0+%1>0").Bold = True

The following VB sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

With G2antt1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C++ sample bolds all items when the sum between first two columns is
greater than 0:

COleVariant vtEmpty;
m_g2antt.GetConditionalFormats().Add("%0+%1>0", vtEmpty).SetBold(TRUE);

The following C++ sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

COleVariant vtEmpty;
CConditionalFormat cf = m_g2antt.GetConditionalFormats().Add("%1+%2<%0", vtEmpty
);
cf.SetBold(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample bolds all items when the sum between first two columns is
greater than 0:

AxG2antt1.ConditionalFormats.Add("%0+%1>0").Bold = True

The following VB.NET sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

With AxG2antt1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C# sample bolds all items when the sum between first two columns is greater
than 0:

axG2antt1.ConditionalFormats.Add("%0+%1>0", null).Bold = true

The following C# sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

EXG2ANTTLib.ConditionalFormat cf =
axG2antt1.ConditionalFormats.Add("%1+%2<%0",null);
cf.Bold = true;
cf.ApplyTo = (EXG2ANTTLib.FormatApplyToEnum)1;

The following VFP sample bolds all items when the sum between first two columns is
greater than 0:

thisform.G2antt1.ConditionalFormats.Add("%0+%1>0").Bold = .t.

The following VFP sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

with thisform.G2antt1.ConditionalFormats.Add("%1+%2<%0")
 .Bold = .t.
 .ApplyTo = 1
endwith

method ConditionalFormats.Clear ()
Removes all expressions in a collection.

Type Description

Use the Clear method to remove all objects in the collection. Use the Remove method to
remove a particular object from the collection. Use the Enabled property to disable a
conditional format.

property ConditionalFormats.Count as Long
Returns the number of objects in a collection.

Type Description

Long A long expression that counts the number of elements in
the collection.

Use the Item and Count property to enumerate the elements in the collection. Use the
Expression property to get the expression of the format.

The following VB sample enumerates all elements in the ConditionalFormats collection:

Dim c As ConditionalFormat
For Each c In G2antt1.ConditionalFormats
 Debug.Print c.Expression
Next

The following VB sample enumerates all elements in the ConditionalFormats collection:

Dim i As Integer
With G2antt1.ConditionalFormats
 For i = 0 To .Count - 1
 Debug.Print .Item(i).Expression
 Next
End With

The following C++ sample enumerates all elements in the ConditionalFormats collection:

for (long i = 0; i < m_g2antt.GetConditionalFormats().GetCount(); i++)
{
 CConditionalFormat cf = m_g2antt.GetConditionalFormats().GetItem(COleVariant(i));
 OutputDebugString(cf.GetExpression());
}

The following VB.NET sample enumerates all elements in the ConditionalFormats collection:

Dim c As EXG2ANTTLib.ConditionalFormat
For Each c In AxG2antt1.ConditionalFormats
 System.Diagnostics.Debug.Write(c.Expression)
Next

The following VB.NET sample enumerates all elements in the ConditionalFormats collection:

Dim i As Integer
With AxG2antt1.ConditionalFormats
 For i = 0 To .Count - 1
 System.Diagnostics.Debug.Write(.Item(i).Expression)
 Next
End With

The following C# sample enumerates all elements in the ConditionalFormats collection:

foreach (EXG2ANTTLib.ConditionalFormat c in axG2antt1.ConditionalFormats)
 System.Diagnostics.Debug.Write(c.Expression);

The following C# sample enumerates all elements in the ConditionalFormats collection:

for (int i = 0; i < axG2antt1.ConditionalFormats.Count; i++)
 System.Diagnostics.Debug.Write(axG2antt1.ConditionalFormats[i].Expression);

The following VFP sample enumerates all elements in the ConditionalFormats collection:

with thisform.G2antt1.ConditionalFormats
 for i = 0 to .Count - 1
 wait .Item(i).Expression
 next
endwith

property ConditionalFormats.Item (Key as Variant) as ConditionalFormat
Returns a specific expression.

Type Description

Key as Variant
A long expression that indicates the index of the element
being accessed, or a string expression that indicates the
key of the element being accessed.

ConditionalFormat A ConditionalFormat object being returned.

Use the Item and Count property to enumerate the elements in the collection. Use the
Expression property to get the expression of the format. Use the Key property to get the
key of the format.

The following VB sample enumerates all elements in the ConditionalFormats collection:

Dim c As ConditionalFormat
For Each c In G2antt1.ConditionalFormats
 Debug.Print c.Expression
Next

The following VB sample enumerates all elements in the ConditionalFormats collection:

Dim i As Integer
With G2antt1.ConditionalFormats
 For i = 0 To .Count - 1
 Debug.Print .Item(i).Expression
 Next
End With

The following C++ sample enumerates all elements in the ConditionalFormats collection:

for (long i = 0; i < m_g2antt.GetConditionalFormats().GetCount(); i++)
{
 CConditionalFormat cf = m_g2antt.GetConditionalFormats().GetItem(COleVariant(i));
 OutputDebugString(cf.GetExpression());
}

The following VB.NET sample enumerates all elements in the ConditionalFormats collection:

Dim c As EXG2ANTTLib.ConditionalFormat

For Each c In AxG2antt1.ConditionalFormats
 System.Diagnostics.Debug.Write(c.Expression)
Next

The following VB.NET sample enumerates all elements in the ConditionalFormats collection:

Dim i As Integer
With AxG2antt1.ConditionalFormats
 For i = 0 To .Count - 1
 System.Diagnostics.Debug.Write(.Item(i).Expression)
 Next
End With

The following C# sample enumerates all elements in the ConditionalFormats collection:

foreach (EXG2ANTTLib.ConditionalFormat c in axG2antt1.ConditionalFormats)
 System.Diagnostics.Debug.Write(c.Expression);

The following C# sample enumerates all elements in the ConditionalFormats collection:

for (int i = 0; i < axG2antt1.ConditionalFormats.Count; i++)
 System.Diagnostics.Debug.Write(axG2antt1.ConditionalFormats[i].Expression);

The following VFP sample enumerates all elements in the ConditionalFormats collection:

with thisform.G2antt1.ConditionalFormats
 for i = 0 to .Count - 1
 wait .Item(i).Expression
 next
endwith

method ConditionalFormats.Remove (Key as Variant)
Removes a specific member from the collection.

Type Description

Key as Variant A Long or String expression that indicates the key of the
element to be removed.

Use the Remove method to remove a particular object from the collection. Use the Enabled
property to disable a conditional format. Use the Clear method to remove all objects in the
collection.

Editor object
The Editor object holds information about an editor. A cell or a column may have assigned
an editor. Use the Editor property to access the column's editor. Use the CellEditor property
to access the cell's editor. The Editor object supports the following properties and methods

Name Description

AddButton Adds a new button to the editor with specified key and
aligns it to the left or right side of the editor.

AddItem Adds a new item to the editor's list.
Appearance Retrieves or sets the editor's appearance
ButtonWidth Specifies the width of the buttons in the editor.
ClearButtons Clears the buttons collection.
ClearItems Clears the items collection.
DropDown Displays the drop down list.

DropDownAlignment Retrieves or sets a value that indicates the item's
alignment in the editor's drop-down list.

DropDownAutoWidth
Retrieves or sets a value that indicates whether the
editor's drop-down window list is automatically computed
to fit the entire list.

DropDownMinWidth Specifies the minimum drop-down list width if the
DropDownAutoWidth is False.

DropDownRows Retrieves or sets a value that indicates the maximum
number of visible rows in the editor's drop- down list.

DropDownVisible Retrieves or sets a value that indicates whether the
editor's drop down button is visible or hidden.

EditType Retrieves or sets a value that indicates the type of the
contained editor.

ExpandAll Expands all items in the editor's list.
ExpandItem Expandes or collapses an item in the editor's list.
FindItem Finds an item given its value or caption.
InsertItem Inserts a child item to the editor's list.

ItemToolTip Gets or sets the text displayed when the mouse pointer
hovers over a predefined item.

Locked Determines whether the editor is locked or unlocked.
Retrieves or sets a value that indicates the mask used by

Mask the editor.

MaskChar Retrieves or sets a value that indicates the character used
for masking.

Numeric Specifies whether the editor enables numeric values only.
Option Specifies an option for the editor.

PartialCheck Retrieves or sets a value that indicates whether the
associated check box has two or three states.

PopupAppearance Retrieves or sets a value that indicates the drop-down
window's appearance.

RemoveButton Removes a button given its key.
RemoveItem Removes an item from the editor's predefined values list.
SortItems Sorts the list of items in the editor.

UserEditor Specifies the control's identifier and the control's runtime
license key when EditType is UserEditor.

UserEditorObject Gets the user editor object when EditType is UserEditor.

method Editor.AddButton (Key as Variant, [Image as Variant], [Align as
Variant], [ToolTip as Variant], [ToolTipTitle as Variant], [ShortcutKey as
Variant])
Adds a new button to the editor with the given Key and aligned to the left or to the right
side. You can specify the button's tooltip too.

Type Description

Key as Variant A Variant value that indicates the button's key. The
ButtonClick event passes this value to Key parameter

Image as Variant
A long expression that indicates the index of button's icon.
The index is valid for Images collection. By default the
button has no icon associated.

Align as Variant An AlignmentEnum expression that defines the button's
alignment.

ToolTip as Variant

A string expression that indicates the the button's tooltip
description. The tooltip shows up when cursor hovers the
button. The ToolTip parameter may include buitl-in HTML
tags.

ToolTipTitle as Variant A string expression that indicates the tooltip's title.

ShortcutKey as Variant

A short expression that indicates the shortcut key being
used to simulate clicking the button. The lower byte
indicates the code of the virtual key, and the higher byte
indicates the states for SHIFT, CTRL and ALT keys (last
insignificant bits in the higher byte). The ShortcutKey
expression could be 256 *((shift ? 1 : 0) + (ctrl ? 2 : 0)
+ (alt ? 4 : 0)) + vbKeyCode, For instance, a combination
like CTRL + F3 is 256 * 2 + vbKeyF3, SHIFT + CTRL + F2
is 256 *(1 + 2) + vbKeyF2, and SHIFT + CTRL + ALT + F5
is 256 * (1 + 2 + 4) + vbKeyF5.

Use the AddButton method to add multiple buttons to the editor. Make sure that you are
using unique keys for the buttons in the same editor, else the previous button is replaced.
The editor doesn't allow two buttons with the same key. Use the ButtonWidth property to
set the button's width. If the user clicks on one of the editor buttons, the ButtonClick event
is fired. Use CellHasButton property to display's the cell's caption as a button. Use the
RemoveButton method to remove a button that was previously added using the AddButton
method. Use the ClearButtons method to clear the entire collection of buttons added with
AddButton method. The control fires the ButtonClick event when the user clicks a button.

The following VB sample adds multiple buttons to the column's editor:

With G2antt1
 With .Columns.Add("Column 1")
 .HeaderBold = True
 .HeaderImage = 1
 With .Editor
 .EditType = DropDownListType
 .DropDownAutoWidth = False

 .AddItem 0, "CS is bad", 3
 .AddItem 1, "xTras is the worst", 3
 .AddItem 2, "Yes, I agree!", 3

 .ButtonWidth = 24
 .AddButton "Key1", 1, , "This is a bit of text that should appear while the cursor is
over the button", "Information"
 .AddButton "Key2", 2
 .AddButton "Key3", 3, AlignmentEnum.RightAlignment
 .AddButton "Key3", 4, AlignmentEnum.RightAlignment
 End With
 End With
End With

The following VB sample adds an editor to the first visible item with three buttons, each of
the button has a shortcut key to activate it using the keyboard:

With G2antt1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .ButtonWidth = 20
 .EditType = EditType

 .AddButton "A", 1, , "You can click the button <fgcolor=000080>'A'
</fgcolor> by pressing the F3 key.", , vbKeyF3
 .AddButton "B", 2, RightAlignment, "You can click the button <fgcolor=000080>
'B'</fgcolor> by pressing the CTRL + F3 key.", , vbKeyF3 + (256 * (2))
 .AddButton "C", 3, , "You can click the button <fgcolor=000080>'C'
</fgcolor> by pressing the CTRL + ALT + F3 key.", , vbKeyF3 + (256 * (2 + 4))
 End With
End With

The following C++ sample adds an EditType editor with a button to the first visible item:

#include "Items.h"
#include "Editor.h"
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
CItems items = m_g2antt.GetItems();
CEditor editor = items.GetCellEditor(COleVariant(items.GetFirstVisibleItem()),
COleVariant(long(0)));
editor.SetEditType(1 /*EditType*/);
editor.AddButton(COleVariant("A"), COleVariant("1"), vtMissing, vtMissing, vtMissing,
vtMissing);

The following VB.NET sample adds an EditType editor with a button to the first visible item:

With AxG2antt1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = EXG2ANTTLib.EditTypeEnum.EditType
 .AddButton("A", 1)
 End With
End With

The following C# sample adds an EditType editor with a button to the first visible item:

EXG2ANTTLib.Items items = axG2antt1.Items;

EXG2ANTTLib.Editor editor = items.get_CellEditor(items.FirstVisibleItem, 0);
editor.EditType = EXG2ANTTLib.EditTypeEnum.EditType;
editor.AddButton("A", 1, null, null, null, null);

The following VFP sample adds an EditType editor with a button to the first visible item:

with thisform.G2antt1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = 1 && EditType
 .AddButton("A", 1)
 EndWith
endwith

method Editor.AddItem (Value as Long, Caption as String, [Image as
Variant])
Adds a new item to editor's predefined list.

Type Description
Value as Long A long expression that defines an unique predefined value

Caption as String

A string expression that specifies the HTML caption
associated with the value. The format of the Caption
parameter is "key|captionŚcaptionŚ...Ścaption", which
indicates an item with the giving key / identifier, which
displays multiple captions.

The Caption allows using the following special characters:

| character (pipe, vertical bar, ALT + 126) defines the
key or identifier of the item to add. Currently, the key
is used by a DropDownListType editor to specify
string codes rather numeric values for the cell's value
(CellValue property)
Ś character (vertical broken bar, ALT + 221) defines
captions for multiple columns. The Ś character can be
escaped, so \Ś displays the Ś character (available for
DropDownType, DropDownListType and PickEditType
editors, 20.0+)

For instance:

 "New York City" defines the "New York City"
item
 "NYC|New York City" the "New York City"
item with the "NYC" as key or identifier
"NYC|New York CityŚ783.8 km˛Ś8.42 mil"
defines the "New York City" item with the "NYC" as
key or identifier and sub-captions 783.8 km˛ and 8.42
mil (in separated columns)
"New York CityŚ783.8 km˛Ś8.42 mil" defines
the "New York City" item and sub-captions 783.8 km˛
and 8.42 mil (in separated columns)

Image as Variant
A long expression that indicates the index of the item's
icon (1-based). Use the Images method to assign a list of
icons to the control.

Use the AddItem method to add new items to the editor's predefined list. Use the
InsertItem method to insert child items to the editor's predefined list. If the AddItem method
uses a Value already defined, the old item is replaced. The AddItem method has effect for
the following type of editors: DropDownType, DropDownListType, PickEditType, and
CheckListType. Check each EditType value for what Value argument should contain. Use
the RemoveItem method to remove a particular item from the predefined list. Use the
ClearItems method to clear the entire list of predefined values. Use the SortItems to sort
the items. Use the ItemToolTip property to assign a tooltip to a predefined item into a drop
down list. Use the Refresh method update immediately the cell's content when adding new
items to a drop down list editor. The Caption parameter supports HTML tags listed here
here.

The following VB sample adds items to a CheckListType editor:

With G2antt1
 With .Columns.Add("CheckList").Editor
 .EditType = CheckListType
 .AddItem &H1, "ReadOnly", 1
 .AddItem &H2, "Hidden", 2
 .AddItem &H4, "System", 3
 .AddItem &H10, "Directory", 4
 .AddItem &H20, "Archive", 5
 .AddItem &H80, "Normal", 7
 .AddItem &H100, "Temporary", 8
 End With
.Items.AddItem &H1 + &H2
End With

The following VB sample adds predefined values to drop down list editor:

With G2antt1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = DropDownListType
 .AddItem 0, "No border", 1
 .AddItem 1, "Single Border", 2
 .AddItem 2, "Double Border", 3
 End With
End With

The following C++ sample adds predefined values to drop down list editor:

With G2antt1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = DropDownListType
 .AddItem 0, "No border", 1
 .AddItem 1, "Single Border", 2
 .AddItem 2, "Double Border", 3
 End With
End With

The following VB.NET sample adds predefined values to drop down list editor:

With AxG2antt1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = EXG2ANTTLib.EditTypeEnum.DropDownListType
 .AddItem(0, "No border", 1)
 .AddItem(1, "Single Border", 2)
 .AddItem(2, "Double Border", 3)
 End With
End With

The following C# sample adds predefined values to drop down list editor:

EXG2ANTTLib.Items items = axG2antt1.Items;
EXG2ANTTLib.Editor editor = items.get_CellEditor(items.FirstVisibleItem, 0);
editor.EditType = EXG2ANTTLib.EditTypeEnum.DropDownListType ;
editor.AddItem(0, "No border", 1);
editor.AddItem(1, "Single border", 2);
editor.AddItem(2, "Double border", 3);

The following VFP sample adds predefined values to drop down list editor:

with thisform.G2antt1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = 3 && DropDownList
 .AddItem(0, "No border", 1)
 .AddItem(1, "Single Border", 2)
 .AddItem(2, "Double Border", 3)

 EndWith
endwith

property Editor.Appearance as InplaceAppearanceEnum
Retrieves or sets the control's appearance

Type Description

InplaceAppearanceEnum An InplaceAppearanceEnum expression that defines the
editor's appearance.

Use the Appearance property to change the editor's border style. Use the
PopupAppearance property to define the appearance for editor's drop-down window, if it
exists. By default, the editor's Appearance is NoApp.

property Editor.ButtonWidth as Long
Specifies the width of the buttons in the editor.

Type Description

Long A long expression that defines the width of the buttons in
the editor, added using the AddButton method.

Use the ButtonWidth property to increase or decrease the width of buttons in the editor.
The button's height is the same with the ItemHeight property. If the ButtonWidth property is
zero (0), the control hides the buttons. Use the DropDownVisible property to hide the
editor's drop down button.

method Editor.ClearButtons ()
Clears the buttons collection.

Type Description

Use the ClearButtons method to clear the list of buttons that were added using the
AddButton method. Use the RemoveButton method to remove a particular button, given its
key. Use the ButtonWidth property to hide all the buttons.

method Editor.ClearItems ()
Clears the items collection.

Type Description

The ClearItems method clears the predefined values that were added using the AddItem or
InsertItem method. Use the RemoveItem method to remove a predefined value. Use the
DropDownVisible property to hide the drop-down window.

method Editor.DropDown ()
Displays the drop down list.

Type Description

The DropDown method shows the drop down portion of the cell's editor. The DropDown
method has effect only if the editor has a drop down portion. The following editors have a
drop down portion: DropDownType, DropDownListType, CheckListType, DateType,
ColorType, FontType, PictureType, PickEditType, ColorListType, MemoDropDownType or
CalculatorType. Use the AddItem, InsertItem method to add predefined value. Use the
RemoveItem method to remove a predefined value. Use the DropDownVisible property to
hide the drop down button, if it exists.

The following VB sample shows the drop down portion of an editor as soon as a cell is
focused:

Private Sub G2antt1_FocusChanged()
 With G2antt1
 Dim i As Long
 i = .FocusColumnIndex
 With G2antt1.Items
 If (.CellEditorVisible(.FocusItem, i)) Then
 Dim e As EXG2ANTTLibCtl.Editor
 Set e = G2antt1.Columns(i).Editor
 If .HasCellEditor(.FocusItem, i) Then
 Set e = .CellEditor(.FocusItem, i)
 End If
 If Not e Is Nothing Then
 e.DropDown
 End If
 End If
 End With
 End With
End Sub

The following C++ sample shows the drop down portion of an editor as soon as a cell is
focused:

#include "Columns.h"

#include "Column.h"
#include "Editor.h"
#include "Items.h"
void OnFocusChangedG2antt1()
{
 if (IsWindow(m_g2antt.m_hWnd))
 {
 CItems items = m_g2antt.GetItems();
 COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
 COleVariant vtFocusCell(items.GetItemCell(items.GetFocusItem(),
COleVariant(m_g2antt.GetFocusColumnIndex())));
 if (m_g2antt.GetSelectColumnInner() > 0)
 vtFocusCell = items.GetInnerCell(vtMissing, vtFocusCell,
COleVariant(m_g2antt.GetSelectColumnInner()));
 if (items.GetCellEditorVisible(vtMissing, vtFocusCell))
 {
 CEditor editor;
 if (items.GetHasCellEditor(vtMissing, vtFocusCell))
 editor = items.GetCellEditor(vtMissing, vtFocusCell);
 else
 {
 CColumn column(m_g2antt.GetColumns().GetItem(COleVariant(
m_g2antt.GetFocusColumnIndex())));
 editor = column.GetEditor();
 }
 if (editor.m_lpDispatch != NULL)
 editor.DropDown();
 }
 }
}

The following VB.NET sample shows the drop down portion of an editor as soon as a cell is
focused:

Private Sub AxG2antt1_FocusChanged(ByVal sender As Object, ByVal e As
System.EventArgs) Handles AxG2antt1.FocusChanged
 With AxG2antt1.Items
 Dim focusCell As Object = .ItemCell(.FocusItem, AxG2antt1.FocusColumnIndex)

 If (AxG2antt1.SelectColumnInner > 0) Then
 focusCell = .InnerCell(Nothing, focusCell, AxG2antt1.SelectColumnInner)
 End If
 If (.CellEditorVisible(, focusCell)) Then
 Dim ed As EXG2ANTTLib.Editor =
AxG2antt1.Columns(AxG2antt1.FocusColumnIndex).Editor
 If (.HasCellEditor(, focusCell)) Then
 ed = .CellEditor(, focusCell)
 End If
 ed.DropDown()
 End If
 End With
End Sub

The following C# sample shows the drop down portion of an editor as soon as a cell is
focused:

private void axG2antt1_FocusChanged(object sender, EventArgs e)
{
 EXG2ANTTLib.Items items = axG2antt1.Items;
 object focusCell = items.get_ItemCell(items.FocusItem, axG2antt1.FocusColumnIndex);
 if (axG2antt1.SelectColumnInner > 0)
 focusCell = items.get_InnerCell(null, focusCell, axG2antt1.SelectColumnInner);
 if (items.get_CellEditorVisible(null, focusCell))
 {
 EXG2ANTTLib.Editor editor =
axG2antt1.Columns[axG2antt1.FocusColumnIndex].Editor;
 if (items.get_HasCellEditor(null, focusCell))
 editor = items.get_CellEditor(null, focusCell);
 if (editor != null)
 editor.DropDown();
 }
}

The following VFP sample shows the drop down portion of an editor as soon as a cell is
focused:

*** ActiveX Control Event ***

with thisform.G2antt1.Items
 local ed
 ed = thisform.G2antt1.Columns(thisform.G2antt1.FocusColumnIndex).Editor
 if (.HasCellEditor(.FocusItem, thisform.G2antt1.FocusColumnIndex))
 ed = .CellEditor(.FocusItem, thisform.G2antt1.FocusColumnIndex)
 endif
 ed.DropDown()
endwith

property Editor.DropDownAlignment as AlignmentEnum
Retrieves or sets a value that indicates the item's alignment in the editor's drop-down list.

Type Description

AlignmentEnum An AlignmentEnum expression that indicates the item's
alignment into the editor's drop-down list.

Use the DropDownAlignment property to align the items in the editor's drop-down list. Use
the Alignment property to align a column. Use the CellHAlignment property to align a cell.
The property has effect only for the drop down type editors.

The following VB sample aligns the predefined items to the right (the editor is assigned to
the column):

With G2antt1
 .TreeColumnIndex = -1
 With .Columns.Add("CheckList")
 .Alignment = RightAlignment
 With .Editor
 .EditType = CheckListType
 .DropDownAlignment = RightAlignment
 .AddItem &H1, "ReadOnly", 1
 .AddItem &H2, "Hidden", 2
 .AddItem &H4, "System", 3
 .AddItem &H10, "Directory", 4
 .AddItem &H20, "Archive", 5
 .AddItem &H80, "Normal", 7
 .AddItem &H100, "Temporary", 8
 End With
 End With
 .Items.AddItem &H1 + &H2
End With

In the above sample, the TreeColumnIndex is set to -1, because the Alignment property is
not applied for column that displays the hierarchy.

The following VB sample adds an editor that aligns its predefined items to the right:

With G2antt1.Items

 With .CellEditor(.FirstVisibleItem, 0)
 .DropDownAlignment = RightAlignment
 .EditType = DropDownListType
 .AddItem 0, "No border"
 .AddItem 1, "Single Border"
 .AddItem 2, "Double Border"
 End With
End With

The following C++ sample adds an editor that aligns its predefined items to the right:

#include "Items.h"
#include "Editor.h"
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
CItems items = m_g2antt.GetItems();
CEditor editor = items.GetCellEditor(COleVariant(items.GetFirstVisibleItem()),
COleVariant(long(0)));
editor.SetEditType(3 /*DropDownList*/);
editor.SetDropDownAlignment(2 /*RightAlignment*/);
editor.AddItem(0, "No border", vtMissing);
editor.AddItem(1, "Single border", vtMissing);
editor.AddItem(2, "Double border", vtMissing);

The following VB.NET sample adds an editor that aligns its predefined items to the right:

With AxG2antt1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .DropDownAlignment = EXG2ANTTLib.AlignmentEnum.RightAlignment
 .EditType = EXG2ANTTLib.EditTypeEnum.DropDownListType
 .AddItem(0, "No border")
 .AddItem(1, "Single Border")
 .AddItem(2, "Double Border")
 End With
End With

The following C# sample adds an editor that aligns its predefined items to the right:

EXG2ANTTLib.Items items = axG2antt1.Items;
EXG2ANTTLib.Editor editor = items.get_CellEditor(items.FirstVisibleItem, 0);

editor.EditType = EXG2ANTTLib.EditTypeEnum.DropDownListType ;
editor.DropDownAlignment = EXG2ANTTLib.AlignmentEnum.RightAlignment;
editor.AddItem(0, "No border", null);
editor.AddItem(1, "Single border", null);
editor.AddItem(2, "Double border", null);

The following VFP sample adds an editor that aligns its predefined items to the right:

with thisform.G2antt1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = 3 && DropDownList
 .DropDownAlignment = 2 && RightAlignment
 .AddItem(0, "No border")
 .AddItem(1, "Single Border")
 .AddItem(2, "Double Border")
 EndWith
endwith

property Editor.DropDownAutoWidth as DropDownWidthType
Retrieves or sets a value that indicates whether the editor's drop-down window list is
automatically computed to fit the entire list.

Type Description

DropDownWidthType
A DropDownWidthType expression that indicates whether
the editor's drop- down list width is automatically
computed to fit the entire list.

Use the DropDownAutoWidth property to specify when you let the control computes the
drop-down list width. The DropDownMinWidth property specifies the minimum width for the
drop down portion of the editor. By default, the DropDownAutoWidth property is
exDropDownAutoWidth. Use the DropDown method to programmatically show the drop
down portion of an editor. Use the DropDownRows property to specify the number of visible
rows in the drop down portion of the control.

property Editor.DropDownMinWidth as Long
Specifies the minimum drop-down list width if the DropDownAutoWidth is False.

Type Description

Long A long expression that specifies the minimum drop- down
list width if the DropDownAutoWidth is False

The DropDownMinWidth property has no effect if the DropDownAutoWidth property is True.
Use the DropDown method to programmatically show the drop down portion of an editor.
Use the DropDownRows property to specify the number of visible rows in the drop down
portion of the control.

property Editor.DropDownRows as Long
Retrieves or sets a value that indicates the maximum number of visible rows in the editor's
drop- down list.

Type Description

Long A long expression that indicates the maximum number of
visible rows in the editor's drop- down list.

Use the DropDownRows property to specify the maximum number of visible rows in the
editor's drop-down list. By default, the DropDownRows property is set to 7. The
DropDownRows property has effect for the following types: DropDownType,
DropDownListType, PickEditType, CheckListType and FontType. Use the AddItem method
to add predefined values to the drop down portion of the control.

property Editor.DropDownVisible as Boolean
Retrieves or sets a value that indicates whether the editor's drop down button is visible or
hidden.

Type Description

Boolean A boolean value that indicates whether the editor's drop
down button is visible or hidden.

Use the DropDownVisible property to hide the editor's drop-down button. Use the
ButtonWidth property to hide the editor buttons. Use the AddItem, InsertItem method to add
predefined values to the drop down list. Use the Refresh method update immediately the
cell's content when adding new items to a drop down list editor. If the drop down button is
hidden, the editor can't open its drop down portion if the user double clicks the editor, or
presses the F4 key.

The following VB sample to check whether the editor's drop down portion is visible:

Private Declare Function FindWindow Lib "user32" Alias "FindWindowA" (ByVal
lpClassName As String, ByVal lpWindowName As String) As Long

Private Function isDropped()
 ' Specifies whether the control's drop down portion is visible or not
 isDropped = Not FindWindow("HostPopupWindow", "") = 0
End Function

The following VB sample advance to the next line when the ENTER key is pressed, and
does the default action when an editor of drop down type is opened:

 Private Sub G2antt1_KeyDown(KeyCode As Integer, Shift As Integer)
 If (KeyCode = 13) Then
 If Not isDropped() Then
 KeyCode = vbKeyDown
 End If
 End If
End Sub

The following VB sample hides the drop down button:

With G2antt1.Items
 With .CellEditor(.FirstVisibleItem, 0)

 .EditType = EXG2ANTTLibCtl.DropDownListType
 .AddItem 0, "0 - No", 1
 .AddItem 1, "1 - Yes", 2
 .DropDownVisible = False
 End With
 .CellValue(.FirstVisibleItem, 0) = 1
 .CellValueFormat(.FirstVisibleItem, 0) = exHTML
End With

The following C++ sample hides the drop down button:

#include "Items.h"
#include "Editor.h"
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
CItems items = m_g2antt.GetItems();
COleVariant vtItem(items.GetFirstVisibleItem()), vtColumn(long(0));
CEditor editor = items.GetCellEditor(vtItem, vtColumn);
editor.SetEditType(3 /*DropDownListType*/);
editor.AddItem(0, "0 - No", vtMissing);
editor.AddItem(1, "1- Yes", vtMissing);
editor.SetDropDownVisible(FALSE);
items.SetCellValue(vtItem, vtColumn, COleVariant(long(1)));
items.SetCellValueFormat(vtItem, vtColumn, 1 /*exHTML*/);

The following VB.NET sample hides the drop down button:

With AxG2antt1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = EXG2ANTTLib.EditTypeEnum.DropDownListType
 .AddItem(0, "0 - No", 1)
 .AddItem(1, "1 - Yes", 2)
 .DropDownVisible = False
 End With
 .CellValue(.FirstVisibleItem, 0) = 1
 .CellValueFormat(.FirstVisibleItem, 0) = EXG2ANTTLib.ValueFormatEnum.exHTML
End With

The following C# sample hides the drop down button:

EXG2ANTTLib.Items items = axG2antt1.Items;
EXG2ANTTLib.Editor editor = items.get_CellEditor(items.FirstVisibleItem, 0);
editor.EditType = EXG2ANTTLib.EditTypeEnum.DropDownListType ;
editor.AddItem(0, "0 - No", 1);
editor.AddItem(1, "1 - Yes", 1);
editor.DropDownVisible = false;
items.set_CellValue(items.FirstVisibleItem, 0, 1);
items.set_CellValueFormat(items.FirstVisibleItem, 0,
EXG2ANTTLib.ValueFormatEnum.exHTML);

The following VFP sample hides the drop down button:

with thisform.G2antt1.Items
 .DefaultItem = .FirstVisibleItem
 With .CellEditor(0, 0)
 .EditType = 3 && DropDownListType
 .AddItem(0, "0 - No", 1)
 .AddItem(1, "1 - Yes", 2)
 .DropDownVisible = .f.
 EndWith
 .CellValue(0,0) = 1
 .CellValueFormat(0,0) = 1
endwith

property Editor.EditType as EditTypeEnum
Specifies the type of the column's editor.

Type Description

EditTypeEnum An EditTypeEnum expression that specifies the type of the
editor.

Use the EditType property to set the type of the editor. By default, the editor's type is
ReadOnly. If the control is bound to an ADO recordset the control looks for appropriate
editor for each field. Each column has its own editor, that means that all cells of the column
will use the column's editor when users edits a cell. The editor is visible only if the
CellEditorVisible property is True. If the EditType is UserEditorType the UserEditor
property should be called to initialize the user editor based on the ActiveX's identifier. Use
the CellEditor property to specify a particular editor for a specific cell. Use the Option
property to define options for a specific type of editor. Use the DefaultEditorOption property
to specify default option for the editors of a specified type. Use the Locked property to lock
an editor.

The following VB sample sets the column's editor to CheckListType:

Set c = .Columns.Add("Description")
With c.Editor
 .EditType = CheckListType
 .AddItem &H1000, "adFldCacheDeferred", 3
 .AddItem &H10, "adFldFixed", 3
 .AddItem &H40000, "adFldIsCollection", 3
 .AddItem &H20000, "adFldIsDefaultStream", 3
 .AddItem &H20, "adFldIsNullable", 3
 .AddItem &H10000, "adFldIsRowURL", 3
 .AddItem &H80, "adFldLong", 3
 .AddItem &H40, "adFldMayBeNull", 3
 .AddItem &H2, "adFldMayDefer", 3
 .AddItem &H4000, "adFldNegativeScale", 3
 .AddItem &H100, "adFldRowID", 3
 .AddItem &H200, "adFldRowVersion", 3
 .AddItem &H8, "adFldUnknownUpdatable", 3
 .AddItem &H4, "adFldUpdatable", 3
End With

In this case, the value of CellValue property for any cell in "Description" column should be
an OR combination of values added using AddItem, InsertItem methods.

The following VB sample adds an EditType editor to the first visible item:

With G2antt1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = EXG2ANTTLibCtl.EditType
 End With
End With

The following C++ sample adds an EditType editor to the first visible item:

#include "Items.h"
#include "Editor.h"
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
CItems items = m_g2antt.GetItems();
CEditor editor = items.GetCellEditor(COleVariant(items.GetFirstVisibleItem()),
COleVariant(long(0)));
editor.SetEditType(1 /*EditType*/);

The following VB.NET sample adds an EditType editor to the first visible item:

With AxG2antt1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = EXG2ANTTLib.EditTypeEnum.EditType
 End With
End With

The following C# sample adds an EditType editor to the first visible item:

EXG2ANTTLib.Items items = axG2antt1.Items;
EXG2ANTTLib.Editor editor = items.get_CellEditor(items.FirstVisibleItem, 0);
editor.EditType = EXG2ANTTLib.EditTypeEnum.EditType ;

The following VFP sample adds an EditType editor to the first visible item:

with thisform.G2antt1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = 1 && EdiType

 EndWith
endwith

method Editor.ExpandAll ()
Expands all items in the editor's list.

Type Description

By default, in your editor items that contain child items are collapsed. Use the ExpandAll
method to expand all items in the editor. Use the InsertItem method to insert child items.
Use the AddItem method to add predefined values to a drop down type editor. Use the
ExpandItem method to expand a predefined value. Call the ExpandAll method after inserting
the items. Use the SortItems method to sort the items in a drop down editor.

The following screen show shows a simple hierarchy into a built-in DropDownList editor:

property Editor.ExpandItem(Value as Variant) as Boolean
Expandes or collapses an item in the editor's list.

Type Description

Value as Variant
A long expression that indicates the value of the item being
expanded, a string expression that indicates the caption of
the item being expanded.

Boolean A boolean expression that indicates whether the item is
expanded or collapsed.

By default, the items in a drop down editor are collapsed. Use the ExpandItem to expand a
specified item. Use the ExpandAll method to expand all items in the editor. Use the
InsertItem method to insert a child item to your built-in editor. Use the AddItem method to
add new predefined values. Use the AddButton method to add a button to the editor. Use
the DropDownAutoWidth property on False, when inserting predefined values as child
items.

The following screen show shows a simple hierarchy into a built-in DropDownList editor:

The following VB sample adds a simple hierarchy to a DropDownList built-in editor:

Dim h1 As HITEM
With G2antt1
 .BeginUpdate
 .Images
("gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDh+Dw1bwuJh0Sf8txeHyFXx+Ryk9wsnxbAzUpycYxWNiWMyujleXjOm0+gjKA1gA1iA0Wf0mz2WY1WwjWywuvz2N1GzyO11ON3mXxe6xfFzvAwXI1UY3mh5292PJ1vMw3T7Hbo3T73L7nhl3f5/i8034Xn9Xr9nt91Cio+lXyjsfkMjAEkk/69Hg97UpSeZ3pSeBnpScAHwO/iMmBBaMQalJAQc10JvylUJkAD8Dh+lJ8Q4k5/D+zjygAgI")

 .Images
("gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwV/YGFAGFYGDxVbxGHw2NxuLyVKyGPy2JxsPiT/yedn+RjOVzGGzWlh2bz2pl+gjGsx2jxOaQGz1Gmzma1Wq2aAk+uzOn2wA3fC2nB3OSxvDjXJ2m/znD4Oa13Hxei4m85ek4Hb5+06Hc6nh1uX1+o7G18HT8XrjXR0/n8/G9nzl/uznq+n5mXy/X9/z/wBAKaIqHyVQKjqPpCkYAJIk8Gpu3EBJS06TnmziTnBC6NHAH6UmAB8PAGlJAQejMSJVESUxSjRAAOlJwRck58RAk5/Ro9pPwnDSMoCA=")

 .Images
("gBJJgBggAAkGAAQhIAf8Nf4hhkOiRCJo2AEXjAAi0XFEYIEYhUXAIAEEZi8hk0plUrlktl0vmExmUzmk1m03nE5nU7lqAnwAYFBnlDolFo1HpFJmkOAE+QFAoVBYFQqdKq1XrFZrU2plMp1UsFfr9Srdls1ntEzrsNiL/ps/sU/sleuVRoVpvF5vVDtduulPudswNuslju1VveJxWLk19ttvwFCpmDsGToVxp+MzWbs2Ov+Vtk/t8XymUx2c1GppOOw1Ty1T0WismmtlM1W33FEz+zw9hzOxzOetm54nFoe8qfIsGF3/B2vDjGi43T6k45XXy/Nnva6vd7007HJ7MX4Hk7nS7/p9Utskz8vr+Hxono+X1+33/HGig+lX8jiPJAjCRpGjLMpwph/D+lJ+A+lJ8AOlJ4QIjJwJUxECpnCaMgGlUOJMYAEwilR+BylJ/j3Ey3JMgIA=")

 .Images
("gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDjUPACAxGExVRwzAx0Sf4AxzAyWPxCAxeZouTyGdzmfx+cy+a0k5xuP0+Uw8ZzGVymc0uxmmcw2pjGt2G4x+y3ks2kO12ey2J3MY2G95GF4G/yO24u343D1vJ3m14HW5vX5eh7mv3fU2XMw+J0flxPY4PH8Gl0Xn7XZ+HjzGj23r5H09+d/Hx/f29b0OU+LQNU/0CwNA8EQSm6Kh8lUGo6j6QpGACSJPCqbsNBSVuAk5+Mik54B+lJwAfEYDxNFCTmBE8VAGlJgRdFsXxijRwRojJ4RujB8xKk8OI0gIA==")

 .Columns.Add "Column 1"
 .ColumnAutoResize = True
 .HeaderVisible = False
 With .Items
 h1 = .InsertItem(, , "Child 1") ' Inserts a child itme
 .CellValueFormat(h1, 0) = exHTML
 .CellHasCheckBox(h1, 0) = True ' Associates a check box to a cell
 .CellValue(h1, 0) = 3 ' Sets the cell's value
 .CellImage(h1, 0) = 1 ' Associates an image to a cell
 With .CellEditor(h1, 0)
 .EditType = DropDownListType
 .DropDownAutoWidth = False
 .AddItem 1, "CObject class", 1
 .AddItem 2, "CCmdTarget class", 2, 1
 .AddItem 3, "CWnd class", 3, 2
 .AddItem 6, "S y n c", 1, 1
 .AddItem 4, "Exceptions", 1
 .AddItem 7, "System Exceptions", 2, 4
 .AddItem 5, "File Services", 2
 .ExpandAll
 End With
 End With
 .EndUpdate
End With

The following VB samples adds a simple hierarchy to a PickEditType buil-in editor:

With G2antt1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = EXG2ANTTLibCtl.PickEditType
 .AddItem 0, "Organization"
 .InsertItem 1, "UN", , 0
 .InsertItem 2, "ONU", , 0
 .ExpandItem(0) = True

 End With
End With

The following C++ sample adds a simple hierarchy to a PickEditType built-in editor:

#include "Items.h"
#include "Editor.h"
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
CItems items = m_g2antt.GetItems();
CEditor editor = items.GetCellEditor(COleVariant(items.GetFirstVisibleItem()),
COleVariant(long(0)));
editor.SetEditType(14 /*PickEditType*/);
editor.AddItem(0, "Organization", vtMissing);
editor.InsertItem(1, "UN", vtMissing, COleVariant(long(0)));
editor.InsertItem(2, "ONU", vtMissing, COleVariant(long(0)));
editor.SetExpandItem(COleVariant(long(0)), TRUE);

The following VB.NET sample adds a simple hierarchy to a DropDownListType built-in
editor:

With AxG2antt1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = EXG2ANTTLib.EditTypeEnum.DropDownListType
 .AddItem(0, "Organization")
 .InsertItem(1, "UN", , 0)
 .InsertItem(2, "ONU", , 0)
 .ExpandItem(0) = True
 End With
End With

The following C# sample adds a simple hierarchy to a DropDownListType built-in editor:

EXG2ANTTLib.Items items = axG2antt1.Items;
EXG2ANTTLib.Editor editor = items.get_CellEditor(items.FirstVisibleItem, 0);
editor.EditType = EXG2ANTTLib.EditTypeEnum.DropDownListType;
editor.AddItem(0, "Organization", null);
editor.InsertItem(1, "UN",null, 0);
editor.InsertItem(2, "ONU",null, 0);
editor.set_ExpandItem(0, true);

The following VFP sample adds a simple hierarchy to a DropDownType built-in editor:

with thisform.G2antt1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = 14 && PickEdiType
 .AddItem(0, "Organization")
 .InsertItem(1, "UN", , 0)
 .InsertItem(2, "ONU", , 0)
 .ExpandItem(0) = .t.
 EndWith
endwith

property Editor.FindItem (Value as Variant) as Variant
Finds an item given its value or caption.

Type Description

Value as Variant

A long expression that indicates the value of the item being
searched, a string expression that indicates the caption of
the item being searched. If searching for a caption (string
parameter), it can starts with ">" character, and so the
searching is case-insensitive. By default the searching is
case-sensitive. For instance, FindItem("One") looks for the
exactly caption "One", while if using as FindItem(">One"),
it searches case-insensitive for the word "one".

Variant
A string expression that indicates the caption of the item, if
the Value is a long expression, a long expression that
indicates the item's value if Value is a string expression.

The FindItem property retrieves an empty (VT_EMPTY) value if no item was found. Use
the FindItem property to search the caption of the predefined value, in case the Value
parameter is a long expression, or look for the predefined value when the Value parameter
is a string expression. Use the AddItem method to add predefined values. Use the
InsertItem method to add predefined values as child items.

In case you are using Items. CellEditor, the following sample finds the caption of selected
value within a cell's editor. For instance, the NewValue can be the NewValue parameter of
the Change event:

With G2antt1
 With .Items
 If (.HasCellEditor(Item, ColIndex)) Then
 Debug.Print ("Caption: " & .CellEditor(Item, ColIndex).FindItem(NewValue))
 End If
 End With
End With

In case you are using Column.Editor, the following sample finds the caption of selected
value within a column's editor. For instance, the NewValue can be the NewValue parameter
of the Change event:

With G2antt1
 With .Columns

 Debug.Print ("Caption: " & .Item(ColIndex).Editor.FindItem(NewValue))
 End With
End With

method Editor.InsertItem (Value as Long, Caption as String, [Image as
Variant], [Parent as Variant])
Inserts a child item to the editor's list.

Type Description
Value as Long A long expression that defines an unique predefined value

Caption as String

A string expression that specifies the HTML caption
associated with the value. The format of the Caption
parameter is "key|captionŚcaptionŚ...Ścaption", which
indicates an item with the giving key / identifier, which
displays multiple captions.

The Caption allows using the following special characters:

| character (pipe, vertical bar, ALT + 126) defines the
key or identifier of the item to add. Currently, the key
is used by a DropDownListType editor to specify
string codes rather numeric values for the cell's value
(CellValue property)
Ś character (vertical broken bar, ALT + 221) defines
captions for multiple columns. The Ś character can be
escaped, so \Ś displays the Ś character. (available
for DropDownType, DropDownListType and
PickEditType editors, 20.0+)

For instance:

 "New York City" defines the "New York City"
item
 "NYC|New York City" the "New York City"
item with the "NYC" as key or identifier
"NYC|New York CityŚ783.8 km˛Ś8.42 mil"
defines the "New York City" item with the "NYC" as
key or identifier and sub-captions 783.8 km˛ and 8.42
mil (in separated columns)
"New York CityŚ783.8 km˛Ś8.42 mil" defines
the "New York City" item and sub-captions 783.8 km˛
and 8.42 mil (in separated columns)

Image as Variant
A long expression that indicates the index of the item's
icon (1-based). Use the Images method to assign a list of
icons to the control.

Parent as Variant A long expression that defines the value of the parent item.

Use the InsertItem to insert child items to the editor's predefined list. Use the AddItem
method to add new items to the editor's list. Use the ExpandItem property to expand an
item. Use the ExpandAll items to expand all items. Use the ItemTooltip property to assign a
tooltip to a predefined item into a drop down editor.

The following screen show shows a simple hierarchy into a built-in DropDownList editor:

The following VB sample adds a simple hierarchy to a DropDownList built-in editor:

Dim h1 As HITEM
With G2antt1
 .BeginUpdate
 .Images
("gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDh+Dw1bwuJh0Sf8txeHyFXx+Ryk9wsnxbAzUpycYxWNiWMyujleXjOm0+gjKA1gA1iA0Wf0mz2WY1WwjWywuvz2N1GzyO11ON3mXxe6xfFzvAwXI1UY3mh5292PJ1vMw3T7Hbo3T73L7nhl3f5/i8034Xn9Xr9nt91Cio+lXyjsfkMjAEkk/69Hg97UpSeZ3pSeBnpScAHwO/iMmBBaMQalJAQc10JvylUJkAD8Dh+lJ8Q4k5/D+zjygAgI")

 .Images
("gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwV/YGFAGFYGDxVbxGHw2NxuLyVKyGPy2JxsPiT/yedn+RjOVzGGzWlh2bz2pl+gjGsx2jxOaQGz1Gmzma1Wq2aAk+uzOn2wA3fC2nB3OSxvDjXJ2m/znD4Oa13Hxei4m85ek4Hb5+06Hc6nh1uX1+o7G18HT8XrjXR0/n8/G9nzl/uznq+n5mXy/X9/z/wBAKaIqHyVQKjqPpCkYAJIk8Gpu3EBJS06TnmziTnBC6NHAH6UmAB8PAGlJAQejMSJVESUxSjRAAOlJwRck58RAk5/Ro9pPwnDSMoCA=")

 .Images
("gBJJgBggAAkGAAQhIAf8Nf4hhkOiRCJo2AEXjAAi0XFEYIEYhUXAIAEEZi8hk0plUrlktl0vmExmUzmk1m03nE5nU7lqAnwAYFBnlDolFo1HpFJmkOAE+QFAoVBYFQqdKq1XrFZrU2plMp1UsFfr9Srdls1ntEzrsNiL/ps/sU/sleuVRoVpvF5vVDtduulPudswNuslju1VveJxWLk19ttvwFCpmDsGToVxp+MzWbs2Ov+Vtk/t8XymUx2c1GppOOw1Ty1T0WismmtlM1W33FEz+zw9hzOxzOetm54nFoe8qfIsGF3/B2vDjGi43T6k45XXy/Nnva6vd7007HJ7MX4Hk7nS7/p9Utskz8vr+Hxono+X1+33/HGig+lX8jiPJAjCRpGjLMpwph/D+lJ+A+lJ8AOlJ4QIjJwJUxECpnCaMgGlUOJMYAEwilR+BylJ/j3Ey3JMgIA=")

 .Images
("gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDjUPACAxGExVRwzAx0Sf4AxzAyWPxCAxeZouTyGdzmfx+cy+a0k5xuP0+Uw8ZzGVymc0uxmmcw2pjGt2G4x+y3ks2kO12ey2J3MY2G95GF4G/yO24u343D1vJ3m14HW5vX5eh7mv3fU2XMw+J0flxPY4PH8Gl0Xn7XZ+HjzGj23r5H09+d/Hx/f29b0OU+LQNU/0CwNA8EQSm6Kh8lUGo6j6QpGACSJPCqbsNBSVuAk5+Mik54B+lJwAfEYDxNFCTmBE8VAGlJgRdFsXxijRwRojJ4RujB8xKk8OI0gIA==")

 .Columns.Add "Column 1"
 .ColumnAutoResize = True
 .HeaderVisible = False
 With .Items
 h1 = .InsertItem(, , "Child 1") ' Inserts a child itme
 .CellValueFormat(h1, 0) = exHTML

 .CellHasCheckBox(h1, 0) = True ' Associates a check box to a cell
 .CellValue(h1, 0) = 3 ' Sets the cell's value
 .CellImage(h1, 0) = 1 ' Associates an image to a cell
 With .CellEditor(h1, 0)
 .EditType = DropDownListType
 .DropDownAutoWidth = False
 .AddItem 1, "CObject class", 1
 .InsertItem 2, "CCmdTarget class", 2, 1
 .InsertItem 3, "CWnd class", 3, 2
 .InsertItem 6, "S y n c", 1, 1
 .AddItem 4, "Exceptions", 1
 .InsertItem 7, "System Exceptions", 2, 4
 .AddItem 5, "File Services", 2
 .ExpandAll
 End With
 End With
 .EndUpdate
End With

The following VB samples adds a simple hierarchy to a PickEditType buil-in editor:

With G2antt1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = EXG2ANTTLibCtl.PickEditType
 .AddItem 0, "Organization"
 .InsertItem 1, "UN", , 0
 .InsertItem 2, "ONU", , 0
 .ExpandItem(0) = True
 End With
End With

The following C++ sample adds a simple hierarchy to a PickEditType built-in editor:

#include "Items.h"
#include "Editor.h"
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
CItems items = m_g2antt.GetItems();
CEditor editor = items.GetCellEditor(COleVariant(items.GetFirstVisibleItem()),

COleVariant(long(0)));
editor.SetEditType(14 /*PickEditType*/);
editor.AddItem(0, "Organization", vtMissing);
editor.InsertItem(1, "UN", vtMissing, COleVariant(long(0)));
editor.InsertItem(2, "ONU", vtMissing, COleVariant(long(0)));
editor.SetExpandItem(COleVariant(long(0)), TRUE);

The following VB.NET sample adds a simple hierarchy to a DropDownListType built-in
editor:

With AxG2antt1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = EXG2ANTTLib.EditTypeEnum.DropDownListType
 .AddItem(0, "Organization")
 .InsertItem(1, "UN", , 0)
 .InsertItem(2, "ONU", , 0)
 .ExpandItem(0) = True
 End With
End With

The following C# sample adds a simple hierarchy to a DropDownListType built-in editor:

EXG2ANTTLib.Items items = axG2antt1.Items;
EXG2ANTTLib.Editor editor = items.get_CellEditor(items.FirstVisibleItem, 0);
editor.EditType = EXG2ANTTLib.EditTypeEnum.DropDownListType;
editor.AddItem(0, "Organization", null);
editor.InsertItem(1, "UN",null, 0);
editor.InsertItem(2, "ONU",null, 0);
editor.set_ExpandItem(0, true);

The following VFP sample adds a simple hierarchy to a DropDownType built-in editor:

with thisform.G2antt1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = 14 && PickEdiType
 .AddItem(0, "Organization")
 .InsertItem(1, "UN", , 0)
 .InsertItem(2, "ONU", , 0)
 .ExpandItem(0) = .t.

 EndWith
endwith

property Editor.ItemToolTip(Value as Variant) as String
Gets or sets the text displayed when the mouse pointer hovers over a predefined item.

Type Description

Value as Variant

A long expression that indicates the value of the item
whose tooltip is accessed, a string expression that
indicates the caption of the item whose tooltip is
accessed.

String
A string expression that may include HTML tags, that
indicates the text being displayed when the mouse hovers
the item.

Use the ItemToolTip property to assign a tooltip for a drop down list value. Use the AddItem
or InsertItem methods to insert new items to the drop down predefined list. The ItemToolTip
property may include HTML tags that are listed here here.

The following VB sample adds a predefined value that displays a tooltip when the cursor
hovers the value in the drop down portion of the editor:

With G2antt1.Columns(0).Editor
 .EditType = DropDownListType
 .AddItem 1, "Root Item"
 .ItemToolTip(1) = "This is a bit of text that should appear when the cursor
hovers the item."
 .InsertItem 2, "Child Item", , 1
End With

The following C++ sample adds a predefined value that displays a tooltip when the cursor
hovers the value in the drop down portion of the editor:

#include "Items.h"
#include "Editor.h"
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
CItems items = m_g2antt.GetItems();
CEditor editor = items.GetCellEditor(COleVariant(items.GetFirstVisibleItem()),
COleVariant(long(0)));
editor.SetEditType(3 /*DropDownListType*/);
editor.AddItem(0, "tooltip", vtMissing);
editor.SetItemToolTip(COleVariant("tooltip"), "This is a bit of text that should appear

when cursor hovers the item.");

The following VB.NET sample adds a predefined value that displays a tooltip when the
cursor hovers the value in the drop down portion of the editor:

With AxG2antt1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = EXG2ANTTLib.EditTypeEnum.DropDownListType
 .AddItem(0, "tooltip")
 .ItemToolTip(0) = "This is a bit of text that should appear when cursor hovers the
item."
 End With
End With

The following C# sample adds a predefined value that displays a tooltip when the cursor
hovers the value in the drop down portion of the editor:

EXG2ANTTLib.Items items = axG2antt1.Items;
EXG2ANTTLib.Editor editor = items.get_CellEditor(items.FirstVisibleItem, 0);
editor.EditType = EXG2ANTTLib.EditTypeEnum.DropDownListType;
editor.AddItem(0, "tooltip", null);
editor.set_ItemToolTip(0, "This is a bit of text that should appear when cursor hovers the
item.");

The following VFP sample adds a predefined value that displays a tooltip when the cursor
hovers the value in the drop down portion of the editor:

with thisform.G2antt1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = 3 && DropDownListType
 .AddItem(0, "tooltip")
 .ItemToolTip(0) = "This is a bit of text that should appear when cursor hovers the
item."
 EndWith
endwith

property Editor.Locked as Boolean
Determines whether the editor is locked or unlocked.

Type Description

Boolean A boolean expression that indicates whether the editor is
locked or unlocked.

Use the Locked property to lock the editor. If the editor is locked, the user is not able to
change the control's content using the editor. Use the CellEditorVisible property to hide the
cell's editor. For instance, if the editor displays a drop down portion, even if locked, it is
visible, but the user can't select new items to change the cell's value. Use the ReadOnly
property to make the control read only. If the ReadOnly property is exLocked, all editors
are locked. If the editor is locked, the user still can use the editor's buttons. The control
fires the ButtonClick event when the user clicks a button. Use the
Option(exEditLockedBackColor) and Option(exEditLockedForeColor) property to specify
background and foreground colors while the edit control is locked.

property Editor.Mask as String
Retrieves or sets a value that indicates the mask used by the editor.

Type Description
String A string expression that defines the editor's mask.

Use the Mask property to filter characters during data input. Use the Mask property to
control the entry of many types of formatted information such as telephone numbers, social
security numbers, IP addresses, license keys etc. The Mask property has effect for the
following edit types: DropDownType, SpinType, DateType, MaskType, FontType,
PickEditType. The Numeric property specifies whether the editor enables numeric values
only. Use the MaskChar property to change the masking character. The Mask property is
composed by a combination of regular characters, literal escape characters, and
placeholders, masking characters. The Mask property can contain also alternative
characters, or range rules.

The following special characters are supported only in versions prior to version 12.1

Here's the list of all rules and masking characters:

(Digit), Masks a digit character. [0-9]
x (Hexa Lower), Masks a lower hexa character. [0-9],[a-f]
X (Hexa Upper), Masks a upper hexa character. [0-9],[A-F]
A (AlphaNumeric), Masks a letter or a digit. [0-9], [a-z], [A-Z]
? (Alphabetic), Masks a letter. [a-z],[A-Z]
< (Alphabetic Lower), Masks a lower letter. [a-z]
> (Alphabetic Upper), Masks an upper letter. [A-Z]
* (Any), Mask any combination of characters.
\ (Literal Escape), Displays any masking characters. The following combinations are
valid: \#,\x,\X,\A,\?,\<,\>,\\,\{,\[
{nMin,nMax} (Range), Masks a number in a range. The nMin and nMax values should
be numbers. For instance the mask {0,255} will mask any number between 0 and 255.
[...] (Alternative), Masks any characters that are contained by brackets []. For
instance, the [abcA-C] mask any character: a,b,c,A,B,C

The following VB sample adds a mask for IP addresses:

With G2antt1

 With .Columns.Add("Mask")
 With .Editor
 .EditType = EditTypeEnum.MaskType
 .Mask = "{0,255}\.{0,255}\.{0,255}\.{0,255}"
 End With
 End With
 .Items.AddItem "193.226.40.161"
End With

The following VB sample masks a phone number:

With G2antt1
 With .Columns.Add("Mask")
 With .Editor
 .EditType = EditTypeEnum.MaskType
 .Mask = "(XXX) - XXX XXXX"
 End With
 End With
 .Items.AddItem "(095) - 889 1234"
End With

The following C++ adds a mask editor to filter characters while entering a phone number:

#include "Items.h"
#include "Editor.h"
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
CItems items = m_grid.GetItems();
CEditor editor = items.GetCellEditor(COleVariant(items.GetFirstVisibleItem()),
COleVariant(long(0)));
editor.SetEditType(8 /*MaskType*/);
editor.SetMask("(###) ### - ####");

The following VB.NET adds a mask editor to filter characters while entering a phone
number:

With AxG2antt1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = EXGRIDLib.EditTypeEnum.MaskType
 .Mask = "(###) ### - ####"

 End With
End With

The following C# adds a mask editor to filter characters while entering a phone number:

EXGRIDLib.Items items = axG2antt1.Items;
EXGRIDLib.Editor editor = items.get_CellEditor(items.FirstVisibleItem, 0);
editor.EditType = EXGRIDLib.EditTypeEnum.MaskType;
editor.Mask = "(###) ### - ####";

The following VFP adds a mask editor to filter characters while entering a phone number:

with thisform.G2antt1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = 8 && MaskType
 .Mask = "(###) ### - ####"
 EndWith
endwith

Starting from the version 12.1, the Mask property is changed radically, to support more
special characters, validation, float numbers, and so on.

For instance, the following input-mask (ext-phone)

"!(999) 000 0000;1;;select=1,empty,overtype,warning=invalid character,invalid=The value
you entered isn't appropriate for the input mask '<%mask%>' specified for this
field."

indicates the following:

The pattern should contain 3 optional digits 999, and 7 required digits 000 0000,
aligned to the right, !.
The second part of the input mask indicates 1, which means that all literals are included
when the user leaves the field.
The entire field is selected when it receives the focus, select=1
The field supports empty value, so the user can leave the field with no content
The field enters in overtype mode, and insert-type mode is not allowed when user
pressed the Insert key
If the user enters any invalid character, a warning tooltip with the message "invalid
character" is displayed.
If the user tries to leave the field, while the field is not validated (all 7 required digits
completed), the invalid tooltip is shown with the message "The value you entered isn't

appropriate for the input mask '<%mask%>' specified for this field." The
<%mask%> is replaced with the first part of the input mask !(999) 000 0000

The four parts of an input mask, or the Mask property supports up to four parts, separated
by a semicolon (;). For instance, "`Time: `00:00:00;;0;overtype,warning=<fgcolor
FF0000>invalid character,beep", indicates the pattern "00:00" with the prefix Time:, the
masking character being the 0, instead _, the field enters in over-type mode, insert-type
mode is not allowed, and the field beeps and displays a tooltip in red with the message
invalid character when the user enters an invalid character.

Input masks are made up one mandatory part and three optional parts, and each part is
separated by a semicolon (;). If a part should use the semicolon (;) it must uses the \;
instead

The purpose of each part is as follows:

1. The first part (pattern) is mandatory. It includes the mask characters or string (series
of characters) along with placeholders and literal data such as, parentheses, periods,
and hyphens.

The following table lists the placeholder and literal characters for an input mask and
explains how it controls data entry:

#, a digit, +, - or space (entry not required).
0, a digit (0 through 9, entry required; plus [+] and minus [-] signs not allowed).
9, a digit or space (entry not required; plus and minus signs not allowed).
x, a lower case hexa character, [0-9],[a-f] (entry required)
X, an upper case hexa character, [0-9],[A-F] (entry required)
A, any letter, digit (entry required).
a, any letter, digit or space (entry optional).
L, any letter (entry require).
?, any letter or space (entry optional).
&, any character or a space (entry required).
C, any character or a space (entry optional).
>, any letter, converted to uppercase (entry required).
<, any letter, converted to lowercase (entry required).
*, any characters combinations
{ min,max } (Range), indicates a number range. The syntax {min,max} (Range),
masks a number in the giving range. The min and max values should be positive
integers. For instance the mask {0,255} masks any number between 0 and 255.
[...] (Alternative), masks any characters that are contained in the [] brackets. For

instance, the [abcdA-D] mask any character: a,b,c,d,A,B,C,D
\, indicates the escape character
ť, (ALT + 175) causes the characters that follow to be converted to uppercase,
until Ť(ALT + 174) is found.
Ť, (ALT + 174) causes the characters that follow to be converted to lowercase,
until ť(ALT + 175) is found.
!, causes the input mask to fill from right to left instead of from left to right.

Characters enclosed in double quotation ("" or ``) marks will be displayed literally. If
this part should display/use the semicolon (;) character is should be included between
double quotation ("" or ``) characters or as \; (escape).

2. The second part is optional and refers to the embedded mask characters and how they
are stored within the field. If the second part is set to 0 (default,
exClipModeLiteralsNone), all characters are stored with the data, and if it is set to 1
(exClipModeLiteralsInclude), the literals are stored, not including the
masking/placeholder characters, if 2 (exClipModeLiteralsExclude), just typed
characters are stored, if 3(exClipModeLiteralsEscape), optional, required, editable and
escaped entities are included. No double quoted text is included.

3. The third part of the input mask is also optional and indicates a single character or
space that is used as a placeholder. By default, the field uses the underscore (_). If
you want to use another character, enter it in the third part of your mask. Only the first
character is considered. If this part should display/use the semicolon (;) character is
should be \; (escape) (MaskChar property)

4. The forth part of the input, indicates a list of options that can be applied to input mask,
separated by comma(,) character.

The known options for the forth part are:

float, indicates that the field is edited as a decimal number, integer. The first part
of the input mask specifies the pattern to be used for grouping and decimal
separators, and - if negative numbers are supported. If the first part is empty, the
float is formatted as indicated by current regional settings. For instance,
"##;;;float" specifies a 2 digit number in float format. The grouping, decimal,
negative and digits options are valid if the float option is present.
grouping=value, Character used to separate groups of digits to the left of the
decimal. Valid only if float is present. For instance ";;;float,grouping=" indicates
that no grouping is applied to the decimal number (LOCALE_STHOUSAND)
decimal=value, Character used for the decimal separator. Valid only if float is

present. For instance ";;;float,grouping= ,decimal=\," indicates that the decimal
number uses the space for grouping digits to the left, while for decimal separator
the comma character is used (LOCALE_SDECIMAL)
negative=value, indicates whether the decimal number supports negative
numbers. The value should be 0 or 1. 1 means negative numbers are allowed.
Else 0 or missing, the negative numbers are not accepted. Valid only if float is
present.
digits=value, indicates the max number of fractional digits placed after the
decimal separator. Valid only if float is present. For instance, ";;;float,digits=4"
indicates a max 4 digits after decimal separator (LOCALE_IDIGITS)
password[=value], displays a black circle for any shown character. For instance,
";;;password", specifies that the field to be displayed as a password. If the value
parameter is present, the first character in the value indicates the password
character to be used. By default, the * password character is used for non-
TrueType fonts, else the black circle character is used. For instance,
";;;password=*", specifies that the field to be displayed as a password, and use
the * for password character. If the value parameter is missing, the default
password character is used.
right, aligns the characters to the right. For instance, "(999) 999-9999;;;right"
displays and masks a telephone number aligned to the right
readonly, the editor is locked, user can not update the content, the caret is
available, so user can copy the text, excepts the password fields.
inserttype, indicates that the field enters in insert-type mode, if this is the first
option found. If the forth part includes also the overtype option, it indicates that
the user can toggle the insert/over-type mode using the Insert key. For instance,
the "##:##;;0;inserttype,overtype", indicates that the field enter in insert-type
mode, and over-type mode is allowed. The "##:##;;0;inserttype", indicates that
the field enter in insert-type mode, and over-type mode is not allowed.
overtype, indicates that the field enters in over-type mode, if this is the first
option found. If the forth part includes also the inserttype option, it indicates that
the user can toggle the insert/over-type mode using the Insert key. For instance,
the "##:##;;0;overtype,inserttype", indicates that the field enter in over-type
mode, and insert-type mode is allowed. The "##:##;;0;overtype", indicates that
the field enter in over-type mode, and insert-type mode is not allowed.
nocontext, indicates that the field provides no context menu when user right
clicks the field. For instance, ";;;password,nocontext" displays a password field,
where the user can not invoke the default context menu, usually when a right
click occurs.
beep, indicates whether a beep is played once the user enters an invalid
character. For instance, "00:00;;;beep" plays a beep once the user types in
invalid character, in this case any character that's not a digit.

warning=value, indicates the html message to be shown when the user enters
an invalid character. For instance, "00:00:00;;;warning=invalid character"
displays a "invalid character" tooltip once the user types in invalid character, in
this case any character that's not a digit. The <%mask%> keyword in value,
substitute the current mask of the field, while the <%value%> keyword
substitutes the current value (including the literals). If this option should
display/use the semicolon (;) character is should be \; (escape)
invalid=value, indicates the html message to be displayed when the user enters
an inappropriate value for the field. If the value is missing or empty, the option
has no effect, so no validation is performed. If the value is a not-empty value, the
validation is performed. If the value is single space, no message is displayed
and the field is keep opened while the value is inappropriate. For instance, "!
(999) 000 0000;;;invalid=The value you entered isn't appropriate for the input
mask '<%mask%>' specified for this field." displays the "The value you
entered isn't appropriate for the input mask '...' specified for this field." tooltip
once the user leaves the field and it is not-valid (for instance, the field includes
entities required and uncompleted). The <%mask%> keyword in value,
substitute the current mask of the field, while the <%value%> keyword
substitutes the current value (including the literals). If this option should
display/use the semicolon (;) character is should be \; (escape). This option can
be combined with empty, validateas. The invalid option should be used, with the
CauseValidateValue property on True, so the user can not leaves the field while it
contains an invalid value.
validateas=value, specifies the additional validation is done for the current field.
If value is missing or 0 (exValidateAsNone), the option has no effect. The
validateas option has effect only if the invalid option specifies a not-empty value.
Currently, the value can be 1 (exValidateAsDate), which indicates that the field is
validated as a date. For instance, having the mask
"!00/00/0000;;0;empty,validateas=1,invalid=Invalid date!,warning=Invalid
character!,select=4,overtype", indicates that the field is validate as date (
validateas=1).
empty, indicates whether the field supports empty values. This option can be
used with invalid flag, which indicates that the user can leave the field if it is
empty. If empty flag is present, the field displays nothing if no entity is completed
(empty). Once the user starts typing characters the current mask is displayed.
For instance, having the mask "!(999) 000
0000;;;empty,select=4,overtype,invalid=invalid phone number,beep", it specifies
an empty or valid phone to be entered.
select=value, indicates what to select from the field when it got the focus. The
value could be 0 (nothing, exSelectNoGotFocus), 1 (select all,
exSelectAllGotFocus), 2 (select the first empty and editable entity of the field,

exSelectEditableGotFocus), 3 (moves the cursor to the beginning of the first
empty and editable entity of the field, exMoveEditableGotFocus), 4 (select the
first empty, required and editable entity of the field,
exSelectRequiredEditableGotFocus), 5 (moves the cursor to the beginning of
the first empty, required and editable entity of the field,
exMoveRequiredEditableGotFocus). For modes 2 and 4 the entire field is
selected if no matching entity is found. For instance, "`Time:`XX:XX;;;select=1"
indicates that the entire field (including the Time: prefix) is selected once it get
the focus. The "`Time:`XX:XX;;;select=3", moves the cursor to first X, if empty,
the second if empty, and so on
leading=value, specifies whether the spaces or masking/placeholder (0,9)
characters are replaced with giving value (0 if the value is missing). This option
has effect, only for DateType fields (Editor.EditType property is DateType), when
the field is entering in edit mode, or the user selects a new date from the drop
down calendar. For instance, "!99/99/9999;1;;empty,validateas=1,invalid=Invalid
date\, for the input mask
'<%mask%>'!,warning=Invalid
character!,select=4,overtype,leading", having the cell's value on #1/1/2001# it
displays 01/01/2001, instead 1/1/2001.

Experimental:
multiline, specifies that the field supports multiple lines.
rich, specifies that the field displays a rich type editor. By default, the standard edit
field is shown
disabled, shows as disabled the field.

property Editor.MaskChar as Long
Retrieves or sets a value that indicates the character used for masking.

Type Description

Long A long expression that indicates the ASCII code for the
masking character.

Use the MaskChar property to change the default masking character, which is '_'. The
MaskChar property has effect only if the Mask property is not empty, and the mask is
applicable to the editor's type.

property Editor.Numeric as NumericEnum
Specifies whether the editor enables numeric values only.

Type Description

NumericEnum A NumericEnum expression that indicates whether integer
or floating point numbers are allowed.

The Numeric property has effect only if the editor contains an edit box. Use the Numeric
property to add intelligent input filtering for integer, or floating points numbers. Use the
exSpinStep option to specify the proposed change when the user clicks a spin control, if the
cell's editor is of SpinType type. Use the exEditDecimaSymbol option to specify the symbol
being used by decimal value while editing a floating point number.

property Editor.Option(Name as EditorOptionEnum) as Variant
Specifies an option for the editor.

Type Description

Name as EditorOptionEnum An EditorOptionEnum expression that indicates the editor's
option being changed.

Variant A Variant expression that indicates the value for editor's
option

The Option property of Editor object provides the ability to add scroll bars to a memo editor
using the exMemoHScrollBar and exMemoVScrollBar options. Use the DefaultEditorOption
property to specify default option for the editors of a specified type.

For instance, the following VB sample adds both scroll bar to the editor of the first column:

With G2antt1.Columns(0).Editor
 .Option(exMemoAutoSize) = False ' Disables auto resizing when user
alters the text
 .Option(exMemoVScrollBar) = True ' Adds the vertical scroll bar
 .Option(exMemoHScrollBar) = True ' Adds the horizontal scroll bar
End With

The following VB sample adds a cell with a password editor:

With G2antt1.Items
 Dim h As HITEM
 h = .InsertItem(, , "password")
 With .CellEditor(h, 0)
 .EditType = EXG2ANTTLibCtl.EditType
 .Option(EXG2ANTTLibCtl.EditorOptionEnum.exEditPassword) = True
 End With
End With

The following VB sample indicates how to let user uses the left, right arrows, home and end
keys to move the cursor inside an editor that displays a caret, instead changing the focused
cell:

With G2antt1.Columns(ColIndex).Editor
 .Option(exLeftArrow) = exHandleEditor
 .Option(exRightArrow) = exHandleEditor

 .Option(exHomeKey) = exHandleEditor
 .Option(exEndKey) = exHandleEditor
End With

The following C++ sample adds a password editor:

#include "Items.h"
#include "Editor.h"
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
CItems items = m_g2antt.GetItems();
CEditor editor = items.GetCellEditor(COleVariant(items.GetFirstVisibleItem()),
COleVariant(long(0)));
editor.SetEditType(1 /*EditType*/);
editor.SetOption(18 /*exEditPassword*/, COleVariant(VARIANT_TRUE));

The following VB.NET sample adds a password editor:

With AxG2antt1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = EXG2ANTTLib.EditTypeEnum.EditType
 .Option(EXG2ANTTLib.EditorOptionEnum.exEditPassword) = True
 End With
End With

The following C# sample adds a password editor:

EXG2ANTTLib.Items items = axG2antt1.Items;
EXG2ANTTLib.Editor editor = items.get_CellEditor(items.FirstVisibleItem, 0);
editor.EditType = EXG2ANTTLib.EditTypeEnum.EditType;
editor.set_Option(EXG2ANTTLib.EditorOptionEnum.exEditPassword, true);

The following VFP sample adds a password editor:

with thisform.G2antt1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = 1 && EditType
 .Option(18) = .t. && exEditPassword
 EndWith
endwith

property Editor.PartialCheck as Boolean
Retrieves or sets a value that indicates whether the associated check box has two or three
states.

Type Description

Boolean A boolean expression that indicates whether the
associated check box has two or three states.

Use the PartialCheck property to allow three-states check boxes into the editor. Use the
CellHasCheckBox property to define a check box for the cell. Use the CellState property to
specify the cell's state. Use the PartialCheck property to allow partial check feature in a
column.

property Editor.PopupAppearance as InplaceAppearanceEnum
Retrieves or sets a value that controls the drop-down window's appearance.

Type Description

InplaceAppearanceEnum An InplaceAppearanceEnum expression that defines the
drop-down window's border style.

By default, the PopupAppearance property is ShadowApp. Use the PopupAppearance
property to change the drop-down window's border style. Use the Appearance property to
define the editor's appearance.

method Editor.RemoveButton (Key as Variant)
Removes a button given its key.

Type Description

Key as Variant
A Variant value that determines the button's key being
deleted. The Key should be the same as used in the
AddButton method.

Use the RemoveButton method to remove a button, given its key. Use the ButtonWidth
property to hide the editor buttons. Use the ClearButtons method to remove all buttons. Use
the DropDownVisible property to hide the drop down button. You can remove only buttons
added using the AddButton method.

method Editor.RemoveItem (Value as Long)
Removes an item from the editor's predefined values list.

Type Description

Value as Long
A long expression that indicates the index of the item being
removed, or a string expression that indicates the caption
of the item being removed.

Use the RemoveItem method to remove an item from the editor's predefined values list.
Use the ClearItems method to clear the entire list of editor items. Use the DropDownVisible
property to hide the drop down button. You can remove only items that were added using
AddItem or InsertItem method. Use the FindItem property to look for a predefined value in
the drop down list.

method Editor.SortItems ([Ascending as Variant], [Reserved as Variant])
Sorts the list of items in the editor.

Type Description

Ascending as Variant
A boolean expression that indicates the sort order of the
items. By default, is the Ascending parameter is True, if it
is missing.

Reserved as Variant Not used. For future use only.

Use the SortItems method to sort the items in a drop down editor. Use the ExpandAll
method to expand all items. Call the SortItems method after adding predefined values to the
drop down list. Use the AddItem or InsertItem method to add predefined values to the drop
down list. Use the SortOrder property to sort a column.

method Editor.UserEditor (ControlID as String, License as String)
Specifies the control's identifier and the control's runtime license key when EditType is
UserEditor.

Type Description

ControlID as String

A string expression that indicates the control's program
identifier. For instance, if you want to use a multiple
column combobox as an user editor, the control's identifier
could be: "Exontrol.ComboBox".

License as String
Optional. A string expression that indicates the runtime
license key in case is it required. It depends on what
control are you using.

The UserEditor property creates a new type of editor based on the ControlID parameter.
The EditType property has effect only if it is UserEditorType. Use the UserEditorObject
property to access the newly created object. The UserEditorObject property is nothing if
the control wasn't able to create the user editor based on the ControlID. Also, if the user
control requires a runtime license key, and the License parameter is empty or doesn't
match, the UserEditorObject property is nothing. The control fires the UserEditorOpen
event when a ActiveX editor is about to be shown. The control fires the UserEditorClose
event when the user editor is hidden. The control fires the UserEditorOleEvent event each
time when an user editor fires an event. The setup installs the VB\UserEditor, VC\User.Edit
sample that uses the Exontrol ExComboBox Component as a new editor.

The following VB sample adds a new column to an editor of of Exontrol.ComboBox type (
exComboBox component):

With G2antt1
 .BeginUpdate
 With .Columns
 With .Add("Column 0").Editor
 .EditType = EditTypeEnum.UserEditorType
 ' Creates an ExComboBox control, and gets the object created
 .UserEditor "Exontrol.ComboBox", ""
 If Not .UserEditorObject Is Nothing Then
 With .UserEditorObject ' Points to an ExComboBox control
 ' The ExComboBox object
 .BeginUpdate
 .EndUpdate
 End With

https://exontrol.com/excombobox.jsp

 End If
 End With
 End With
 .EndUpdate
End With

The following VB sample adds the Exontrol's eXMaskEdit Component to mask floating point
numbers with digit grouping:

With G2antt1.Items
 Dim h As HITEM
 h = .AddItem(100)
 With .CellEditor(h, 0)
 .EditType = UserEditorType
 .UserEditor "Exontrol.MaskEdit", ""
 With .UserEditorObject()
 .BackColor = vbWhite
 .MaskFloat = True
 .Mask = "-###.###.###,##"
 End With
 End With
End With

The following C++ sample adds the Exontrol's eXMaskEdit Component to mask floating
point numbers with digit grouping:

CItems items = m_g2antt.GetItems();
long hItem = items.AddItem(COleVariant((double)100));
CEditor editor = items.GetCellEditor(COleVariant(hItem), COleVariant(long(0)));
editor.SetEditType(16 /*UserEditorType*/);
editor.UserEditor("Exontrol.MaskEdit", "");
MaskEditLib::IMaskEditPtr spMaskEdit(editor.GetUserEditorObject());
if (spMaskEdit != NULL)
{
 spMaskEdit->put_MaskFloat(TRUE);
 spMaskEdit->put_Mask(L"-###.###.###,##");
 spMaskEdit->put_BackColor(RGB(255,255,255));
}

https://exontrol.com/exmaskedit.jsp

The sample requires calling the #import <maskedit.dll> to include the type library for the
eXMaskEdit component. The #import <maskedit.dll> defines the MaskEditLib namespace
used in the sample.

The following VB.NET sample adds the Exontrol's eXMaskEdit Component to mask floating
point numbers with digit grouping:

With AxG2antt1.Items
 Dim h As Integer = .AddItem(1000)
 With .CellEditor(h, 0)
 .EditType = EXG2ANTTLib.EditTypeEnum.UserEditorType
 .UserEditor("Exontrol.MaskEdit", "")
 With .UserEditorObject()
 .BackColor = ToUInt32(Color.White)
 .MaskFloat = True
 .Mask = "-###.###.###,##"
 End With
 End With
End With

where the ToUInt32 function converts a Color expression to an unsigned long expression
and may look like follows:

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample adds the Exontrol's eXMaskEdit Component to mask floating point
numbers with digit grouping:

EXG2ANTTLib.Items items = axG2antt1.Items;
int hItem = items.AddItem(100);
EXG2ANTTLib.Editor editor = items.get_CellEditor(hItem, 0);
editor.EditType = EXG2ANTTLib.EditTypeEnum.UserEditorType;
editor.UserEditor("Exontrol.MaskEdit", "");

MaskEditLib.MaskEdit maskEdit = editor.UserEditorObject as MaskEditLib.MaskEdit;
if (maskEdit != null)
{
 maskEdit.BackColor = ToUInt32(Color.White);
 maskEdit.MaskFloat = true;
 maskEdit.Mask = "-###.###.###,##";
}

where the MaskEditLib class is defined by adding a new reference to the ExMaskEdit
component to your project. The ToUInt32 function converts a Color expression to an
OLE_COLOR expression (unsigned long expression), and may look like follows:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample adds the Exontrol's eXMaskEdit Component to mask floating
point numbers with digit grouping:

With thisform.G2antt1.Items
 local h
 h = .AddItem(100)
 With .CellEditor(h, 0)
 .EditType = 16 && UserEditorType
 .UserEditor("Exontrol.MaskEdit", "")
 With .UserEditorObject()
 .BackColor = RGB(255,255,255)
 .MaskFloat = .t.
 .Mask = "-###.###.###,##"
 EndWith
 EndWith
EndWith

property Editor.UserEditorObject as Object
Gets the user editor object when EditType is UserEditorType.

Type Description
Object An ActiveX object being used as an user editor.

Use the UserEditorOpen property to access to the ActiveX user editor. Use the UserEditor
property to initialize the ActiveX user editor. The UserEditorObject property retrieves the
ActiveX control created when UserEditor method was invoked. The type of object returned
by the UserEditorObject depends on the ControlID parameter of the UserEditor method.
For instance, the type of the created object when UserEditor("Exontrol.ComboBox") is
used, is EXCOMBOBOXLibCtl.ComboBox. The UserEditorObject property gets nothing if
the UserEditor method fails. The control fires the UserEditorOpen event when an user
editor is about to be shown. The control fires the UserEditorClose event when the control
closes an user editor. The control fires the UserEditorOleEvent event each time when an
user editor fires an event.

The following VB sample initializes an user editor of EXCOMBOBOXLibCtl.ComboBox:

With G2antt1
 .BeginUpdate
 .DefaultItemHeight = 21
 .TreeColumnIndex = -1
 .ColumnAutoResize = True
 .MarkSearchColumn = False
 .FullRowSelect = False
 .DrawGridLines = exVLines
 With .Columns
 With .Add("Column 0").Editor
 .EditType = EditTypeEnum.UserEditorType
 ' Creates an ExComboBox control, and gets the object created
 .UserEditor "Exontrol.ComboBox", ""
 If Not .UserEditorObject Is Nothing Then
 With .UserEditorObject ' Points to an ExComboBox control
 ' Loads the ExComboBox object
 .BeginUpdate
 .LinesAtRoot = exGroupLinesAtRoot
 .ColumnAutoResize = True
 .IntegralHeight = True

 .HeaderVisible = False
 .AllowSizeGrip = True
 .MinHeightList = 100
 .AutoDropDown = True
 .HasButtons = exArrow
 .Indent = 18
 .MarkSearchColumn = False
 .BackColor = G2antt1.BackColor
 With .Columns
 With .Add("Column 0")
 End With
 With .Add("Column 1")
 .Position = 0
 .Width = 16
 End With
 End With
 With .Items
 Dim h1 As HITEM, h2 As HITEM, h12 As HITEM, i As Long
 For i = 1 To 3
 h1 = .AddItem("Group " & i)
 .CellValue(h1, 1) = i * 4 - 3
 h12 = .InsertItem(h1, , "Item 1")
 .CellValue(h12, 1) = i * 4 - 2
 h12 = .InsertItem(h1, , "Item 2")
 .CellValue(h12, 1) = i * 4 - 1
 h12 = .InsertItem(h1, , "Item 3")
 .CellValue(h12, 1) = i * 4
 .ExpandItem(h1) = True
 Next
 End With
 .EndUpdate
 End With
 Else
 MsgBox "YOU NEED TO HAVE INSTALLED THE EXCOMBOBOX CONTROL, else you will
not be able to see the UserEditor column"
 End If
End With

With .Add("Column 1")
 With .Editor
 .EditType = EditTypeEnum.DateType
 .AddItem 10, "Ten"
 .AddItem 20, "Twenty"
 End With
End With
End With
For i = 1 To 11
 With .Items
 Dim h As HITEM
 h = .AddItem(i)
 End With
Next
 .EndUpdate
End With

The following VB sample adds the Exontrol's eXMaskEdit Component to mask floating point
numbers with digit grouping:

With G2antt1.Items
 Dim h As HITEM
 h = .AddItem(100)
 With .CellEditor(h, 0)
 .EditType = UserEditorType
 .UserEditor "Exontrol.MaskEdit", ""
 With .UserEditorObject()
 .BackColor = vbWhite
 .MaskFloat = True
 .Mask = "-###.###.###,##"
 End With
 End With
End With

The following C++ sample adds the Exontrol's eXMaskEdit Component to mask floating
point numbers with digit grouping:

CItems items = m_g2antt.GetItems();

https://exontrol.com/exmaskedit.jsp

long hItem = items.AddItem(COleVariant((double)100));
CEditor editor = items.GetCellEditor(COleVariant(hItem), COleVariant(long(0)));
editor.SetEditType(16 /*UserEditorType*/);
editor.UserEditor("Exontrol.MaskEdit", "");
MaskEditLib::IMaskEditPtr spMaskEdit(editor.GetUserEditorObject());
if (spMaskEdit != NULL)
{
 spMaskEdit->put_MaskFloat(TRUE);
 spMaskEdit->put_Mask(L"-###.###.###,##");
 spMaskEdit->put_BackColor(RGB(255,255,255));
}

The sample requires calling the #import <maskedit.dll> to include the type library for the
eXMaskEdit component. The #import <maskedit.dll> defines the MaskEditLib namespace
used in the sample.

The following VB.NET sample adds the Exontrol's eXMaskEdit Component to mask floating
point numbers with digit grouping:

With AxG2antt1.Items
 Dim h As Integer = .AddItem(1000)
 With .CellEditor(h, 0)
 .EditType = EXG2ANTTLib.EditTypeEnum.UserEditorType
 .UserEditor("Exontrol.MaskEdit", "")
 With .UserEditorObject()
 .BackColor = ToUInt32(Color.White)
 .MaskFloat = True
 .Mask = "-###.###.###,##"
 End With
 End With
End With

where the ToUInt32 function converts a Color expression to an unsigned long expression
and may look like follows:

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G

 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample adds the Exontrol's eXMaskEdit Component to mask floating point
numbers with digit grouping:

EXG2ANTTLib.Items items = axG2antt1.Items;
int hItem = items.AddItem(100);
EXG2ANTTLib.Editor editor = items.get_CellEditor(hItem, 0);
editor.EditType = EXG2ANTTLib.EditTypeEnum.UserEditorType;
editor.UserEditor("Exontrol.MaskEdit", "");
MaskEditLib.MaskEdit maskEdit = editor.UserEditorObject as MaskEditLib.MaskEdit;
if (maskEdit != null)
{
 maskEdit.BackColor = ToUInt32(Color.White);
 maskEdit.MaskFloat = true;
 maskEdit.Mask = "-###.###.###,##";
}

where the MaskEditLib class is defined by adding a new reference to the ExMaskEdit
component to your project. The ToUInt32 function converts a Color expression to an
OLE_COLOR expression (unsigned long expression), and may look like follows:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample adds the Exontrol's eXMaskEdit Component to mask floating
point numbers with digit grouping:

With thisform.G2antt1.Items
 local h
 h = .AddItem(100)

 With .CellEditor(h, 0)
 .EditType = 16 && UserEditorType
 .UserEditor("Exontrol.MaskEdit", "")
 With .UserEditorObject()
 .BackColor = RGB(255,255,255)
 .MaskFloat = .t.
 .Mask = "-###.###.###,##"
 EndWith
 EndWith
EndWith

ExDataObject object
The OleDragDrop event notifies your application that the user drags some data on the
control. Defines the object that contains OLE drag and drop information. The ExDataObject
object supports the following method and properties:

Name Description
Clear Deletes the contents of the ExDataObject object.

Files
Returns an ExDataObjectFiles collection, which in turn
contains a list of all filenames used by an ExDataObject
object.

GetData Returns data from an ExDataObject object in the form of a
variant.

GetFormat Returns a value indicating whether an item in the
ExDataObject object matches a specified format.

SetData Inserts data into an ExDataObject object using the
specified data format.

method ExDataObject.Clear ()
Deletes the contents of the DataObject object.

Type Description

The Clear method can be called only for drag sources. The OleDragDrop event notifies
your application that the user drags some data on the control.

property ExDataObject.Files as ExDataObjectFiles
Returns a DataObjectFiles collection, which in turn contains a list of all filenames used by a
DataObject object.

Type Description

ExDataObjectFiles An ExDataObjectFiles object that contains a list of
filenames used in OLE drag and drop operations.

The Files property is valid only if the format of the clipboard data is exCFFiles. The
OleDragDrop event notifies your application that the user drags some data on the control.

method ExDataObject.GetData (Format as Integer)
Returns data from a DataObject object in the form of a variant.

Type Description

Format as Integer An exClipboardFormatEnum expression that defines the
data's format

Return Description

Variant A Variant value that contains the ExDataObject's data in
the given format

Use GetData property to retrieve the clipboard's data that has been dragged to the control.
It's possible for the GetData and SetData methods to use data formats other than
exClipboardFormatEnum , including user-defined formats registered with Windows via the
RegisterClipboardFormat() API function. The GetData method always returns data in a byte
array when it is in a format that it is not recognized. Use the Files property to retrieves the
filenames if the format of data is exCFFiles

method ExDataObject.GetFormat (Format as Integer)

Returns a value indicating whether the ExDataObject's data is of specified format.

Type Description

Format as Integer A constant or value that specifies a clipboard data format
like described in exClipboardFormatEnum enum.

Return Description

Boolean A boolean value that indicates whether the ExDataObject's
data is of specified format.

Use the GetFormat property to verify if the ExDataObject's data is of a specified clipboard
format. The GetFormat property retrieves True, if the ExDataObject's data format matches
the given data format.

method ExDataObject.SetData ([Value as Variant], [Format as Variant])

Inserts data into a ExDataObject object using the specified data format.

Type Description
Value as Variant A data that is going to be inserted to ExDataObject object.

Format as Variant A constant or value that specifies the data format, as
described in exClipboardFormatEnum enum

Use SetData property to insert data for OLE drag and drop operations. Use the Files
property is you are going to add new files to the clipboard data. The OleDragDrop event
notifies your application that the user drags some data on the control.

ExDataObjectFiles object
The ExDataObjectFiles contains a collection of filenames. The ExDataObjectFiles object is
used in OLE Drag and drop events. In order to get the list of files used in drag and drop
operations you have to use the Files property. The OleDragDrop event notifies your
application that the user drags some data on the control. The ExDataObjectFiles object
supports the following properties and methods:

Name Description
Add Adds a filename to the Files collection
Clear Removes all file names in the collection.
Count Returns the number of file names in the collection.
Item Returns an specific file name.
Remove Removes an specific file name.

method ExDataObjectFiles.Add (FileName as String)

Adds a filename to the Files collection

Type Description
FileName as String A string expression that indicates a filename.

Use Add method to add your files to ExDataObject object. The OleStartDrag event notifies
your application that the user starts dragging items.

method ExDataObjectFiles.Clear ()

Removes all file names in the collection.

Type Description

Use the Clear method to remove all filenames from the collection.

property ExDataObjectFiles.Count as Long

Returns the number of file names in the collection.

Type Description

Long A long value that indicates the count of elements into
collection.

You can use "for each" statements if you are going to enumerate the elements into
ExDataObjectFiles collection.

property ExDataObjectFiles.Item (Index as Long) as String

Returns a specific file name given its index.

Type Description
Index as Long A long expression that indicates the filename's index.
String A string value that indicates the filename.

method ExDataObjectFiles.Remove (Index as Long)

Removes a specific file name given its index into collection.

Type Description

Index as Long A long expression that indicates the index of filename into
collection.

Use Clear method to remove all filenames,.

G2antt object
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {CD481F4D-2D25-4759-803F-752C568F53B7}. The object's program identifier is: "Exontrol.G2antt". The
/COM object module is: "ExG2antt.dll"

The Exontrol's ExG2antt component is our approach to create timeline charts (also known
as Gantt charts). Gantt chart is a time-phased graphic display of activity durations.
Activities are listed with other tabular information on the left side with time intervals over the
bars. Activity durations are shown in the form of horizontal bars. The G2antt object
supports the following properties and methods:

Name Description

AllowChartScrollHeader Specifies whether the user can scroll the chart by clicking
the chart's header and move the cursor to a new position.

AllowChartScrollPage Specifies whether the chart's horizontal scroll bar includes
buttons to scroll the chart page by page.

AllowGroupBy Indicates whether the control supports Group-By view.

AllowSelectNothing Specifies whether the current selection is erased, once the
user clicks outside of the items section.

AnchorFromPoint Retrieves the identifier of the anchor from point.

AntiAliasing Specifies whether smoothing (antialiasing) is applied to
lines, curves, edges of the objects in the control.

Appearance Retrieves or sets the control's appearance.
ApplyFilter Applies the filter.
ASCIILower Specifies the set of lower characters.
ASCIIUpper Specifies the set of upper characters.

AttachTemplate Attaches a script to the current object, including the
events, from a string, file, a safe array of bytes.

AutoDrag Gets or sets a value that indicates the way the component
supports the AutoDrag feature.

AutoEdit Specifies whether the cell is edited once that it is focused.
AutoSearch Enables or disables the auto search feature.

BackColor Retrieves or sets a value that indicates the control's
background color.

BackColorAlternate
Specifies the background color used to display alternate
items in the control.

BackColorHeader Specifies the header's background color.
BackColorLevelHeader Specifies the multiple levels header's background color.

BackColorLock Retrieves or sets a value that indicates the control's
background color for the locked area.

BackColorSortBar Retrieves or sets a value that indicates the sort bar's
background color.

BackColorSortBarCaption Returns or sets a value that indicates the caption's
background color in the control's sort bar.

Background Returns or sets a value that indicates the background
color for parts in the control.

BeginUpdate
Maintains performance when items are added to the
control one at a time. This method prevents the control
from painting until the EndUpdate method is called.

BorderStyle Retrieves or sets the border style of the control.

CauseValidateValue
Returns or sets a value that determines whether the
ValidateValue event occurs before the user changes the
cell's value.

Chart Gets the chart object.

ChartOnLeft Specifies whether the chart area is displayed on the left or
right side of the component.

CheckImage Retrieves or sets a value that indicates the image used by
cells of checkbox type.

ClearFilter Clears the filter.

ColumnAutoResize
Returns or sets a value indicating whether the control will
automatically size its visible columns to fit on the control's
client width.

ColumnFromPoint Retrieves the column from point.
Columns Retrieves the control's column collection.

ColumnsAllowSizing Retrieves or sets a value that indicates whether a user
can resize columns at run-time.

ColumnsFloatBarSortOrder Specifies the sorting order for the columns being shown in
the control's columns floating panel.

ColumnsFloatBarVisible Retrieves or sets a value that indicates whether the the
columns float bar is visible or hidden.

ConditionalFormats Retrieves the conditional formatting collection.
Retrieves or sets a value indicating whether the control will

ContinueColumnScroll automatically scroll the visible columns by pixel or by
column width.

Copy Copies the control's content to the clipboard, in the EMF
format.

CopyTo Exports the control's view to an EMF file.

CountLockedColumns Retrieves or sets a value indicating the number of locked
columns. A locked column is not scrollable.

DataSource Retrieves or sets a value that indicates the data source for
object.

Debug Displays debug information.
DefaultEditorOption Specifies a default option for an editor.

DefaultItemHeight Retrieves or sets a value that indicates the default item
height.

Description Changes descriptions for control objects.

DetectAddNew Specifies whether the control detects when a new record
is added to the bounded recordset.

DetectDelete Specifies whether the control detects when a record is
deleted from the bounded recordset.

DiscardValidateValue Cancels the current validation process, and restores back
the modified cells.

DrawGridLines Retrieves or sets a value that indicates whether the grid
lines are visible or hidden.

DrawPartItem Indicates the handle of the item where the
BeforeDrawPart / AfterDrawPart event occurs.

DrawPartKey Specifies the key of the owner bar to be painted during
BeforeDrawPart / AfterDrawPart event.

Edit Edits the focused cell.
EditClose Closes the current editor.

Editing Specifies the window's handle of the built-in editor while
the control is running in edit mode.

EditingText Specifies the caption of the editor during editing.
Enabled Enables or disables the control.

EndUpdate Resumes painting the control after painting is suspended
by the BeginUpdate method.
Specifies whether the control ensures that the focused

EnsureOnSort item fits the control's client area, when the user sorts the
items.

EnsureVisibleColumn Scrolls the control's content to ensure that the column fits
the client area.

EventParam Retrieves or sets a value that indicates the current's event
parameter.

ExecuteTemplate Executes a template and returns the result.

ExpandOnDblClick Specifies whether the item is expanded or collapsed if the
user dbl clicks the item.

ExpandOnKeys
Specifies a value that indicates whether the control
expands or collapses a node when user presses arrow
keys.

ExpandOnSearch Expands items automatically while user types characters
to search for a specific item.

Export Exports the control's data to a CSV format.
FilterBarBackColor Specifies the background color of the control's filter bar.
FilterBarCaption Specifies the filter bar's caption.

FilterBarDropDownHeight Specifies the height of the drop down filter window
proportionally with the height of the control's list.

FilterBarFont Retrieves or sets the font for control's filter bar.
FilterBarForeColor Specifies the foreground color of the control's filter bar.

FilterBarHeight
Specifies the height of the control's filter bar. If the value is
less than 0, the filter bar is automatically resized to fit its
description.

FilterBarPrompt Specifies the caption to be displayed when the filter
pattern is missing.

FilterBarPromptColumns Specifies the list of columns to be used when filtering
using the prompt.

FilterBarPromptPattern Specifies the pattern for the filter prompt.
FilterBarPromptType Specifies the type of the filter prompt.
FilterBarPromptVisible Shows or hides the filter prompt.
FilterCriteria Retrieves or sets the filter criteria.

FilterInclude Specifies the items being included after the user applies
the filter.

FocusColumnIndex Specifies the index of focused column.

Font Retrieves or sets the control's font.

ForeColor Retrieves or sets a value that indicates the control's
foreground color.

ForeColorHeader Specifies the header's foreground color.

ForeColorLock Retrieves or sets a value that indicates the control's
foreground color for the locked area.

ForeColorSortBar Retrieves or sets a value that indicates the sort bar's
foreground color.

FormatABC Formats the A,B,C values based on the giving expression
and returns the result.

FormatAnchor Specifies the visual effect for anchor elements in HTML
captions.

FreezeEvents Prevents the control to fire any event.
FullRowSelect Enables full-row selection in the control.
GetItems Gets the collection of items into a safe array,
GridLineColor Specifies the grid line color.

GridLineStyle Specifies the style for gridlines in the list part of the
control.

Group Forces the control to do a regrouping of the columns.

HasButtons
Adds a button to the left side of each parent item. The
user can click the button to expand or collapse the child
items as an alternative to double-clicking the parent item.

HasButtonsCustom Specifies the index of icons for +/- signs when the
HasButtons property is exCustom.

HasLines
Enhances the graphic representation of a tree control's
hierarchy by drawing lines that link child items to their
corresponding parent item.

HeaderAppearance Retrieves or sets a value that indicates the header's
appearance.

HeaderEnabled Enables or disables the control's header.

HeaderHeight Retrieves or sets a value indicating the control's header
height.

HeaderSingleLine Specifies whether the control resizes the columns header
and wraps the captions in single or multiple lines.

HeaderVisible Retrieves or sets a value that indicates whether the

control's header is visible or hidden.

HideSelection Returns a value that determines whether selected item
appears highlighted when a control loses the focus.

HotBackColor Retrieves or sets a value that indicates the hot-tracking
background color.

HotForeColor Retrieves or sets a value that indicates the hot-tracking
foreground color.

HTMLPicture Adds or replaces a picture in HTML captions.
hWnd Retrieves the control's window handle.
HyperLinkColor Specifies the hyperlink color.

Images Sets at runtime the control's image list. The Handle should
be a handle to an Image List Control.

ImageSize Retrieves or sets the size of icons the control displays.

Indent Retrieves or sets the amount, in pixels, that child items are
indented relative to their parent items.

IsGrouping Indicates whether the control is grouping the items.
ItemFromPoint Retrieves the item from point.
Items Retrieves the control's item collection.

ItemsAllowSizing Retrieves or sets a value that indicates whether a user
can resize items at run-time.

Layout Saves or loads the control's layout, such as positions of
the columns, scroll position, filtering values.

LinesAtRoot Link items at the root of the hierarchy.

LoadXML Loads an XML document from the specified location, using
MSXML parser.

MarkSearchColumn Retrieves or sets a value that indicates whether the
searching column is marked or unmarked

MarkTooltipCells Retrieves or sets a value that indicates wheter the control
marks the cells that have tooltips.

MarkTooltipCellsImage Specifies a value that indicates the index of icon being
displayed in the cells that have tooltips.

OLEDrag Causes a component to initiate an OLE drag/drop
operation.

OLEDropMode Returns or sets how a target component handles drop
operations

OnResizeControl Specifies whether the list or the chart part is resized once
the control is resized.

Picture Retrieves or sets a graphic to be displayed in the control.

PictureDisplay Retrieves or sets a value that indicates the way how the
graphic is displayed on the control's background

PictureDisplayLevelHeader Retrieves or sets a value that indicates the way how the
graphic is displayed on the control's header background.

PictureLevelHeader Retrieves or sets a graphic to be displayed in the control's
header when multiple levels is on.

PutItems Adds an array of integer, long, date, string, double, float,
or variant arrays to the control.

PutRes
The PutRes method associates an eXG2antt (Source)
control with another eXG2antt (Target) control, using the
Items.ItemBar(exBarResources).

RadioImage Retrieves or sets a value that indicates the image used by
cells of radio type.

RClickSelect Retrieves or sets a value that indicates whether an item is
selected using right mouse button.

ReadOnly Retrieves or sets a value that indicates whether the
control is readonly.

Refresh Refreshes the control's content.

RemoveSelection
Removes the selected links/bars from the chart if exists,
else it removes the selected items (including the
descendents)

ReplaceIcon Adds a new icon, replaces an icon or clears the control's
image list.

ResHandle The ResHandle property indicates the handle to be used
for ResHandle parameter of the PutRes method.

RightToLeft Indicates whether the component should draw right-to-left
for RTL languages.

SaveXML Saves the control's content as XML document to the
specified location, using the MSXML parser.

Scroll Scrolls the control's content.

ScrollBars Returns or sets a value that determines whether the
control has horizontal and/or vertical scroll bars.

ScrollButtonHeight Specifies the height of the button in the vertical scrollbar.

ScrollButtonWidth Specifies the width of the button in the horizontal scrollbar.

ScrollBySingleLine

Retrieves or sets a value that indicates whether the
control scrolls the lines to the end. If you have at least a
cell that has SingleLine false, you have to check the
ScrollBySingleLine property..

ScrollFont Retrieves or sets the scrollbar's font.
ScrollHeight Specifies the height of the horizontal scrollbar.
ScrollOrderParts Specifies the order of the buttons in the scroll bar.

ScrollPartCaption Specifies the caption being displayed on the specified
scroll part.

ScrollPartCaptionAlignment Specifies the alignment of the caption in the part of the
scroll bar.

ScrollPartEnable Indicates whether the specified scroll part is enabled or
disabled.

ScrollPartVisible Indicates whether the specified scroll part is visible or
hidden.

ScrollPos Specifies the vertical/horizontal scroll position.
ScrollThumbSize Specifies the size of the thumb in the scrollbar.

ScrollToolTip Specifies the tooltip being shown when the user moves the
scroll box.

ScrollWidth Specifies the width of the vertical scrollbar.

SearchColumnIndex Retrieves or sets a value indicating the column's index that
is used for auto search feature.

SelBackColor Retrieves or sets a value that indicates the selection
background color.

SelBackMode Retrieves or sets a value that indicates whether the
selection is transparent or opaque.

SelectByDrag Specifies whether the user selects multiple items by
dragging.

SelectColumn
Specifies whether the user selects cells only in
SelectColumnIndex column, while FullRowSelect property
is False.

SelectColumnIndex
Retrieves or sets a value that indicates control column's
index where the user is able to select an item. It has effect
only for FullRowSelect = false.

SelectColumnInner Retrieves or sets a value that indicates the index of the
inner cell that's selected.

SelectOnRelease Indicates whether the selection occurs when the user
releases the mouse button.

SelForeColor Retrieves or sets a value that indicates the selection
foreground color.

ShowFocusRect Retrieves or sets a value indicating whether the control
draws a thin rectangle arround the focused item.

ShowImageList Specifies whether the control's image list window is visible
or hidden.

ShowLockedItems Retrieves or sets a value that indicates whether the
control displays the locked items.

ShowToolTip Shows the specified tooltip at given position.

SingleSel Retrieves or sets a value that indicates whether the
control supports single or multiple selection.

SingleSort Returns or sets a value that indicates whether the control
supports sorting by single or multiple columns.

SortBarCaption Specifies the caption being displayed on the control's sort
bar when the sort bar contains no columns.

SortBarColumnWidth Specifies the maximum width a column can be in the
control's sort bar.

SortBarHeight Retrieves or sets a value that indicates the height of the
control's sort bar.

SortBarVisible Retrieves or sets a value that indicates whether control's
sort bar is visible or hidden.

SortOnClick
Retrieves or sets a value that indicates whether the
control sorts automatically the data when the user click on
column's caption.

Statistics Gives statistics data of objects being hold by the control.
Template Specifies the control's template.

TemplateDef Defines inside variables for the next
Template/ExecuteTemplate call.

TemplatePut Defines inside variables for the next
Template/ExecuteTemplate call.

TooltipCellsColor Retrieves or sets a value that indicates the color used to
make the cells that have tooltips.

ToolTipDelay Specifies the time in ms that passes before the ToolTip
appears.

ToolTipFont Retrieves or sets the tooltip's font.
ToolTipMargin Defines the size of the control's tooltip margins.

ToolTipPopDelay Specifies the period in ms of time the ToolTip remains
visible if the mouse pointer is stationary within a control.

ToolTipWidth Specifies a value that indicates the width of the tooltip
window, in pixels.

TreeColumnIndex Retrieves or sets a value indicating the column's index
where the hierarchy will be displayed.

Ungroup Ungroups the columns, if they have been previously
grouped.

UseTabKey Specifies whether the TAB key is used to change the
searching column.

UseVisualTheme Specifies whether the control uses the current visual
theme to display certain UI parts.

Version Retrieves the control's version.
VisualAppearance Retrieves the control's appearance.
VisualDesign Invokes the control's VisualAppearance designer.
WordFromPoint Retrieves the word from the cursor.

property G2antt.AllowChartScrollHeader as Boolean
Specifies whether the user can scroll the chart by clicking the chart's header and move the
cursor to a new position.

Type Description

Boolean A boolean expression that specifies whether the user can
click and scroll the chart's header.

By default, the AllowChartScrollHeader property is True. In this case, if the user clicks the
chart's header and drag the mouse to a new position the chart gets scrolled. While scrolling
the hand cursor is being displayed. You are still able to scroll the control's chart using the
horizontal scroll bar in the chart area. Use the FirstVisibleDate property to display a
different date in the chart. If the user clicks and releases the mouse in the chart's header a
date gets selected so it gets marked using the MarkSelectDateColor property.

The following screen show how the charts gets scrolled once the user clicks and drags the
mouse on the chart's header (AllowChartScrollHeader property is True) :

The following screen show how a new date gets selected once the user clicks a date in the
chart's header:

property G2antt.AllowChartScrollPage as Boolean
Specifies whether the chart's horizontal scroll bar includes buttons to scroll the chart page
by page.

Type Description

Boolean
A Boolean expression that specifies whether the control
includes the exLeftB5Part and exRightB1Part buttons to
the chart's horizontal scroll bar.

By default AllowChartScrollPage property is False. Use the AllowChartScrollPage property
to add fast scroll to the chart's page. If the AllowChartScrollPage property is True, the
control automatically adds the exLeftB5Part and exRightB1Part buttons to the chart's
horizontal scroll bar. Once that the user clicks any of these buttons the chart is scrolled
page by page. Use the ScrollPartCaption property to specify the caption being displayed in
any part of the control's scrollbar. Use the HTML tag to include icons or custom size
pictures to your scroll buttons.

property G2antt.AllowGroupBy as Boolean
Indicates whether the control supports Group-By view.

Type Description

Boolean A Boolean expression that specifies whether the user can
group the items.

By default, the AllowGroupBy property is False. Set the AllowGroupBy property on True,
to allow the user to group the items by dragging the column's header to control's sort
bar. The SortBarVisible property specifies whether the control's sort bar is visible or hidden.
If the control's sort bar is visible, the user can drag and drop columns to it, so the column
get sorted and items grouped. The AddGroupItem event is fired when a new grouping items
is added to the control's list. You can use the AddGroupItem event, to add headers or
footers during grouping, customize the aggregate formula to be displayed on different
columns, while dropping a column to the sortbar. The Column.AllowGroupBy property may
be used to prevent grouping a specific column. The AllowSort property indicates whether
the user can sort a column by clicking the column's header. The IsGrouping property
specifies whether the control is grouping/ungrouping items. During grouping, the control
keeps the items indentation, in other words, a child item will be a child after or before
grouping. The LayoutChanged event is fired when the user changes the layout of the
control, including dragging a column to the sort bar. The SortBarColumnsCount property
indicates the number of the columns being grouped. The SortBarColumn property indicates
the column being sorted giving its position in the sort bar. The Group/Ungroup method
groups or ungroup the control's list. For instance, you can remove the grouping items, by
calling the Ungroup method. The GroupByFormatCell property determines the format of the
cell to be displayed in the grouping item, when the column gets sorted.

The following movies show how Group-By works:

 Group By support - the user can drag and drop one or more columns to the sort bar
or group-by bar so the columns get sorted and grouped accordingly.

 Keep Indent - You can keep the indentation of the sub-items/children, once the user
groups the rows.

 Header/Footer - Headers and footers support, to display aggregate functions like
sum, min, max, and so on.

 CRD support - Can be combined with the exCRD, so you can have the rows being
arranged the way you want.

In case you need more than a Group-By feature, you should check the Exontrol's eXPivot.
The Exontrol's eXPivot tool is our approach to provide data summarization, as a pivot

https://www.youtube.com/watch?v=wdQ8EwLZxCg
https://www.youtube.com/watch?v=nturzclaVvQ
https://www.youtube.com/watch?v=3BkPhhRwDFo
https://www.youtube.com/watch?v=d-Iki6B8ukY
https://www.exontrol.com/excrd.jsp
https://exontrol.com/expivot.jsp

table. A pivot-table can automatically sort, count, total or give the average of the data
stored in one table or spreadsheet. The user sets up and changes the summary's
structure by dragging and dropping fields graphically. The eXPivot component lets the
user changes its visual appearance using skins, each one providing an additional visual
experience that enhances viewing pleasure. Skins are relatively easy to build and put on
any part of the control.

The following screen shot shows the control after grouping:

The following screen shot shows the control before grouping:

The AllowGroupBy property/feature has no effect if:

SingleSort property is True.

property G2antt.AllowSelectNothing as Boolean
Specifies whether the current selection is erased, once the user clicks outside of the items
section.

Type Description

Boolean
A Boolean expression that specifies whether the current
selection is erased, once the user clicks outside of the
items section.

By default, the AllowSelectNothing property is False. The AllowSelectNothing property
specifies whether the current selection is erased, once the user clicks outside of the items
section. For instance, if the control's SingleSel property is True, and AllowSelectNothing
property is True, you can un-select the single-selected item if pressing the CTRL + Space,
or by CTRL + click.

property G2antt.AnchorFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as String
Retrieves the identifier of the anchor from point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

String
A String expression that specifies the identifier (id) of the
anchor element from the point, or empty string if there is
no anchor element at the cursor

Use the AnchorFromPoint property to determine the identifier of the anchor from the point.
Use the <a id;options> anchor elements to add hyperlinks to cell's caption. The control fires
the AnchorClick event when the user clicks an anchor element. Use the ShowToolTip
method to show the specified tooltip at given or cursor coordinates. The MouseMove event
is generated continually as the mouse pointer moves across the control.

The following VB sample displays (as tooltip) the identifier of the anchor element from the
cursor:

Private Sub G2antt1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With G2antt1
 .ShowToolTip .AnchorFromPoint(-1, -1)
 End With
End Sub

The following VB.NET sample displays (as tooltip) the identifier of the anchor element
from the cursor:

Private Sub AxG2antt1_MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_MouseMoveEvent) Handles AxG2antt1.MouseMoveEvent
 With AxG2antt1
 .ShowToolTip(.get_AnchorFromPoint(-1, -1))
 End With
End Sub

The following C# sample displays (as tooltip) the identifier of the anchor element from the
cursor:

private void axG2antt1_MouseMoveEvent(object sender,
AxEXG2ANTTLib._IG2anttEvents_MouseMoveEvent e)
{
 axG2antt1.ShowToolTip(axG2antt1.get_AnchorFromPoint(-1, -1));
}

The following C++ sample displays (as tooltip) the identifier of the anchor element from
the cursor:

void OnMouseMoveG2antt1(short Button, short Shift, long X, long Y)
{
 COleVariant vtEmpty; V_VT(&vtEmpty) = VT_ERROR;
 m_g2antt.ShowToolTip(m_g2antt.GetAnchorFromPoint(-1, -1), vtEmpty, vtEmpty,
vtEmpty);
}

The following VFP sample displays (as tooltip) the identifier of the anchor element from
the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform
 With .G2antt1
 .ShowToolTip(.AnchorFromPoint(-1, -1))
 EndWith
endwith

property G2antt.AntiAliasing as Boolean
Specifies whether smoothing (antialiasing) is applied to lines, curves, edges of the objects
in the control.

Type Description

Boolean
A Boolean expression that specifies whether the control
uses the antialiasing rendering to show the lines, curves or
edges.

By default, the AntiAliasing property is False. In other words, the AntiAliasing property
determines the rendering quality for different objects in the control. The most used object
where the antialiasing feature can be used is the chart's histogram where curves can be
shown smoothly. Use the HistogramVisible property to specifies whether the chart's
histogram is visible or hidden. Use the AllowLinkBars property to whether the user can link
bars at runtime.

The following figure illustrates the visual distortion that occurs when anti-aliasing is used.

The following figure illustrates the visual distortion that occurs when anti-aliasing is not used.

property G2antt.Appearance as AppearanceEnum

Retrieves or sets the control's appearance.

Type Description

AppearanceEnum

An AppearanceEnum expression that indicates the
control's appearance, or a color expression whose last 7
bits in the high significant byte of the value indicates the
index of the skin in the Appearance collection, being
displayed as control's borders. For instance, if the
Appearance = 0x1000000, indicates that the first skin
object in the Appearance collection defines the control's
border. The Client object in the skin, defines the
client area of the control. The list/hierarchy/chart,
scrollbars are always shown in the control's client
area. The skin may contain transparent objects, and
so you can define round corners. The normal.ebn file
contains such of objects. Use the eXButton's Skin
builder to view or change this file

Use the Appearance property to specify the control's border. Use the HeaderAppearance
property to change the control's header bar appearance. Use the Add method to add new
skins to the control. Use the BackColor property to specify the control's background color.
Use the Background(exToolTipAppearance) property indicates the visual appearance of the
borders of the tooltips.

The following VB sample changes the visual aspect of the borders of the control (please
check the above picture for round corners):

https://exontrol.com/exbutton.jsp

With G2antt1
 .BeginUpdate
 .VisualAppearance.Add &H16, "c:\temp\normal.ebn"
 .Appearance = &H16000000
 .BackColor = RGB(250, 250, 250)
 .EndUpdate
End With

The following VB.NET sample changes the visual aspect of the borders of the control:

With AxG2antt1
 .BeginUpdate()
 .VisualAppearance.Add(&H16, "c:\temp\normal.ebn")
 .Appearance = &H16000000
 .BackColor = Color.FromArgb(250, 250, 250)
 .EndUpdate()
End With

The following C# sample changes the visual aspect of the borders of the control:

axG2antt1.BeginUpdate();
axG2antt1.VisualAppearance.Add(0x16, "c:\\temp\\normal.ebn");
axG2antt1.Appearance = (EXG2ANTTLib.AppearanceEnum)0x16000000;
axG2antt1.BackColor = Color.FromArgb(250, 250, 250);
axG2antt1.EndUpdate();

The following C++ sample changes the visual aspect of the borders of the control:

m_g2antt.BeginUpdate();
m_g2antt.GetVisualAppearance().Add(0x16, COleVariant("c:\\temp\\normal.ebn"));
m_g2antt.SetAppearance(0x16000000);
m_g2antt.SetBackColor(RGB(250,250,250));
m_g2antt.EndUpdate();

The following VFP sample changes the visual aspect of the borders of the control:

with thisform.G2antt1
 .BeginUpdate
 .VisualAppearance.Add(0x16, "c:\temp\normal.ebn")

 .Appearance = 0x16000000
 .BackColor = RGB(250, 250, 250)
 .EndUpdate
endwith

method G2antt.ApplyFilter ()
Applies the filter.

Type Description

The ApplyFilter method updates the control's content once that user sets the filter using the
Filter and FilterType properties. Use the ClearFilter method to clear the control's filter. Use
the DisplayFilterButton property to show the filter drop down button in the column's caption.
Use the FilterInclude property to specify whether the child items should be included to the
list when the user applies the filter. Use the FilterCriteria property to filter items using the
AND, OR and NOT operators. Use the ShowFilter method to show programmatically the
column's drop down filter window. The VisibleItemCount property retrieves the number of
visible items in the list. The control fires the FilterChanging event just before applying the
filter, and FilterChange once the list gets filtered. The FilterBarPromptVisible property
specifies whether the filter prompt is visible or hidden. The filter prompt feature allows you
to filter the items as you type while the filter bar is visible on the bottom part of the list area.
The Filter prompt feature allows at runtime filtering data on hidden columns too.

property G2antt.ASCIILower as String
Specifies the set of lower characters.

Type Description

String A string expression that indicates the set of lower
characters used by auto search feature.

The ASCIILower and ASCIIUpper properties helps you to specify the set of characters that
are used by the auto search feature (incremental search). If you want to make the auto
search feature case sensitive you have to use ASCIIUpper = "" . By default, the
ASCIILower property is = "abcdefghijklmnopqrstuvwxyz�יגהאוחךכטןמלפצע�שבםףתס"

property G2antt.ASCIIUpper as String
Specifies the set of upper characters.

Type Description

String A string expression that indicates the set of upper
characters used by auto search feature.

The ASCIILower and ASCIIUpper properties helps you to specify the set of characters that
are used by the auto search (incremental search) feature. If you want to make the auto
search feature case sensitive you have to use ASCIIUpper = "" . By default, the
ASCIIUpper property is =
"ABCDEFGHIJKLMNOPQRSTUVWXYZÜÉÂÄŔĹÇĘËČĎÎĚÔÖŇŰŮÁÍÓÚŃ"

method G2antt.AttachTemplate (Template as Variant)
Attaches a script to the current object, including the events, from a string, file, a safe array
of bytes.

Type Description
Template as Variant A string expression that specifies the Template to execute.

The AttachTemplate/x-script code is a simple way of calling control/object's properties,
methods/events using strings. The AttachTemplate features allows you to attach a x-script
code to the component. The AttachTemplate method executes x-script code (including
events), from a string, file or a safe array of bytes. This feature allows you to run any x-
script code for any configuration of the component /COM, /NET or /WPF. Exontrol owns the
x-script implementation in its easiest form and it does not require any VB engine or
whatever to get executed. The x-script code can be converted to several programming
languages using the eXHelper tool.

The following sample opens the Windows Internet Explorer once the user clicks the control
(/COM version):

AttachTemplate("handle Click(){ CreateObject(`internetexplorer.application`){ Visible =
True; Navigate(`https://www.exontrol.com`) } } ")

This script is equivalent with the following VB code:

Private Sub G2antt1_Click()
 With CreateObject("internetexplorer.application")
 .Visible = True
 .Navigate ("https://www.exontrol.com")
 End With
End Sub

The AttachTemplate/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>
<lines> := <line>[<eol> <lines>] | <block>
<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]
<eol> := ";" | "\r\n"
<line> := <dim> | <createobject> | <call> | <set> | <comment> | <handle>[<eol>]{[<eol>]
<lines>[<eol>]}[<eol>]
<dim> := "DIM" <variables>
<variables> := <variable> [, <variables>]

<variable> := "ME" | <identifier>
<createobject> := "CREATEOBJECT(`"<type>"`)"
<call> := <variable> | <property> | <variable>"."<property> | <createobject>"."<property>
<property> := [<property>"."]<identifier>["("<parameters>")"]
<set> := <call> "=" <value>
<property> := <identifier> | <identifier>"("[<parameters>]")"
<parameters> := <value> [","<parameters>]
<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> | <call>
<boolean> := "TRUE" | "FALSE"
<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit16> := <digit10> | A | B | C | D | E | F
<integer> := <digit10>[<integer>]
<hexa> := <digit16>[<hexa>]
<color> := "RGB("<integer>","<integer>","<integer>")"
<date> := "#"<integer>"/"<integer>"/"<integer>" "[<integer>":"<integer>":"<integer>"]"#"
<string> := '"'<text>'"' | "`"<text>"`"
<comment> := "'"<text>
<handle> := "handle " <event>
<event> := <identifier>"("[<eparameters>]")"
<eparameters> := <eparameter> [","<eparameters>]
<parameters> := <identifier>

where:

<identifier> indicates an identifier of the variable, property, method or event, and should
start with a letter.
<type> indicates the type the CreateObject function creates, as a progID for /COM version
or the assembly-qualified name of the type to create for /NET or /WPF version
<text> any string of characters

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character.

The advantage of the AttachTemplate relative to Template / ExecuteTemplate is that the
AttachTemplate can add handlers to the control events.

property G2antt.AutoDrag as AutoDragEnum
Gets or sets a value that indicates the way the component supports the AutoDrag feature.

Type Description

AutoDragEnum
An AutoDragEnum expression that specifies what the
control does once the user clicks and start dragging an
item.

By default, the AutoDrag property is exAutoDragNone(0). The AutoDrag feature indicates
what the control does when the user clicks an item and starts dragging it. For instance,
using the AutoDrag feature you can automatically lets the user to drag and drop the data to
OLE compliant applications like Microsoft Word, Excel and so on. The SingleSel property
specifies whether the control supports single or multiple selection. The AutoDrag feature
adds automatically Drag and Drop, but you can still use the OLEDropMode property to
handle the OLE Drag and Drop event for your custom action. If you need moving a bar from
an item to another, you should use the Items.ItemBar(exBarCanMoveToAnother) property
on True. The AllowAutoDrag event notifies your application once the user drag and drop the
item to a new position.

The drag and drop operation starts:

once the user clicks and moves the cursor up or down, if the SingleSel property is
True.
once the user clicks, and waits for a short period of time, if SingleSel property is False
(multiple items in selection is allowed). In this case, you can drag and drop any item
that is not selected, or a contiguously selection

Once the drag and drop operation starts the mouse pointer is changed to MOVE cursor if
the operation is possible, else if the Drag and Drop operation fails or if it is not possible, the
mouse pointer is changed to NO cursor.

If using the AutoDrag property on:

exAutoDragPosition
exAutoDragPositionKeepIndent
exAutoDragPositionAny

the Drag and Drop starts only:

item from cursor is a selectable (SelectableItem property on True, default) and
sortable item (SortableItem property on True, default).
if multiple items are selected, the selection is contiguously.

Use the AutoDrag property to allow Drag and Drop operations like follows:

Ability to change the column or row position without having to manually add the OLE
drag and drop events
Ability to drag and drop the data as text, to your favorite Office applications, like
Word, Excel, or any other OLE-Automation compliant
Ability to drag and drop the data as it looks, to your favorite Office applications, like
Word, Excel, or any other OLE-Automation compliant
Ability to smoothly scroll the control's content moving the mouse cursor up or down
and more ...

https://www.youtube.com/watch?v=crG33cuKwC4
https://www.youtube.com/watch?v=4uA7ZI0W3Sk
https://www.youtube.com/watch?v=vunKapyV34g
https://www.youtube.com/watch?v=LIu7eo86GP8

property G2antt.AutoEdit as Boolean
Specifies whether the cell may be edited when it has the focus.

Type Description

Boolean A boolean expression that indicates whether the editing
operation starts once that a cell is focused.

Use the AutoEdit property to choose how the user edits the data. By default, the AutoEdit
property is True. Use the Edit method to start editing the focused cell. Use the EditType
property to define the column's editor. Use the ReadOnly property to make the control read
only. Use the FocusItem property to retrieve the focused item. Use the FocusColumnIndex
property to get the index of the column that's focused. Use the Editing property to check
whether the control is in edit mode, or to get the window's handle for the built-in editor
that's visible and focused.

The edit events are fired in the following order:

1. Edit event. Prevents editing cells, before showing the cell's editor.

2. EditOpen event. The edit operation started, the cell's editor is shown. The Editing
property gives the window's handle of the built-in editor being started.

3. Change event. The Change event is fired only if the user types ENTER key, or the user
selects a new value from a predefined data list.

4. EditClose event. The cell's editor is hidden and closed.

The following VB sample starts editing a cell when user presses the F4 key:

Private Sub G2antt1_KeyDown(KeyCode As Integer, Shift As Integer)
 ' Starts editing data when the user presses the F4 key
 With G2antt1
 If (Not .AutoEdit) Then
 If (KeyCode = vbKeyF4) Then .Edit
 End If
 End With
End Sub

The following C++ sample starts editing the focused cell when user presses the F4 key:

void OnKeyDownG2antt1(short FAR* KeyCode, short Shift)

{
 if (*KeyCode == VK_F4)
 {
 COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
 if (m_g2antt.GetEditing() == 0)
 m_g2antt.Edit(vtMissing);
 }
}

The following VB.NET sample starts editing the focused cell when user presses the F4 key:

Private Sub AxG2antt1_KeyDownEvent(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_KeyDownEvent) Handles AxG2antt1.KeyDownEvent
 If (Convert.ToUInt32(e.keyCode) = Convert.ToUInt32(Keys.F4)) Then
 AxG2antt1.Edit(Nothing)
 End If
End Sub

The following C# sample starts editing the focused cell when user presses the F4 key:

private void axG2antt1_KeyDownEvent(object sender,
AxEXG2ANTTLib._IG2anttEvents_KeyDownEvent e)
{
 if (Convert.ToUInt32(e.keyCode) == Convert.ToUInt32(Keys.F4))
 axG2antt1.Edit(null);
}

The following VFP sample starts editing the focused cell when user presses the F4 key:

private void axG2antt1_KeyDownEvent(object sender,
AxEXG2ANTTLib._IG2anttEvents_KeyDownEvent e)
{
 if (Convert.ToUInt32(e.keyCode) == Convert.ToUInt32(Keys.F4))
 axG2antt1.Edit(null);
}

property G2antt.AutoSearch as Boolean
Enables or disables the auto search feature.

Type Description

Boolean A boolean expression that indicates whether the auto
search feature is enabled or disabled.

By default, the AutoSearch property is True. The auto-search feature is is commonly known
as incremental search. An incremental search begins searching as soon as you type the
first character of the search string. As you type in the search string, the control selects the
item (and highlight the portion of the string that match where the string (as you have typed
it so far) would be found. The control supports 'starts with' or 'contains' incremental search
as described in the AutoSearch property of the Column object. Use the ExpandOnSearch
property to expand items while user types characters in the control. Use the
MarkSearchColumn property to specify whether the control draws a rectangle around the
searching column.

The control highlights the characters as the user types them:

property G2antt.BackColor as Color

Retrieves or sets a value that indicates the control's background color.

Type Description

Color A color expression that indicates the control's background
color.

The ExG2antt ActiveX Control can group the columns into two categories: locked and
unlocked. The Locked category contains all the columns that are fixed to the left area of the
client area. These columns cannot be scrolled horizontally. Use the CountLockedColumns to
specify the number of locked columns. The unlocked are contains the columns that can be
scrolled horizontally. To change the background color of the control's locked area use
BackColorLock property. Use the SelBackColor property to specify the background color
for selected items. Use the CellBackColor property to assign a different background color
for a specified cell. Use the ItemBackColor property to specify the item's background color.
Use the BackColorAlternate property to specify the background color used to display
alternate items in the control. Use the Picture property to assign a picture to the control's
background. Use the BackColor property to specify the chart's background color.

property G2antt.BackColorAlternate as Color
Specifies the background color used to display alternate items in the control.

Type Description

Color A color expression that indicates the alternate background
color.

By default, the control's BackColorAlternate property is zero. The control ignores the
BackColorAlternate property if it is 0 (zero). Use the BackColor property to specify the
control's background color. Use the SelBackColor property to specify the selection
background color.

property G2antt.BackColorHeader as Color
Specifies the header's background color.

Type Description

Color A color expression that indicates the background color for
the control's header.

Use the BackColorHeader and ForeColorHeader properties to customize the control's
header. Use the Def(exHeaderBackColor) property to change the background color or the
visual appearance for a particular column, in the header area. If the
Def(exHeaderForeColor) property is not zero, it defines the foreground color to paint the
column's caption in the header area. Use the HeaderVisible property to hide the control's
header. Use the BackColor property to specify the control's background color. Use the
BackColorLevelHeader property to specify the background color of the header when it
displays multiple levels. Use the BackColorSortBar property to specify the background color
of the control's sort bar.

The following VB sample changes the visual appearance for the control's header. Shortly,
we need to add a skin to the Appearance object using the Add method, and we need to set
the last 7 bits in the BackColorHeader property to indicates the index of the skin that we
want to use. The sample applies the " " to the control' header bar:

With G2antt1
 With .VisualAppearance
 .Add &H24, App.Path + "\header.ebn"
 End With
 .BackColorLevelHeader = RGB(255, 255, 255)
 .BackColorHeader = &H24000000
End With

The following C++ sample changes the visual aspect of the control' header bar:

#include "Appearance.h"
m_g2antt.GetVisualAppearance().Add(0x24,
COleVariant(_T("D:\\Temp\\ExG2antt.Help\\header.ebn")));
m_g2antt.SetBackColorHeader(0x24000000);

The following VB.NET sample changes the visual aspect of the control' header bar:

With AxG2antt1
 With .VisualAppearance
 .Add(&H24, "D:\Temp\ExG2antt.Help\header.ebn")
 End With
 .Template = "BackColorHeader = 603979776"
End With

The 603979776 value indicates the &H24000000 in hexadecimal.

The following C# sample changes the visual aspect of the control' header bar:

axG2antt1.VisualAppearance.Add(0x24, "D:\\Temp\\ExG2antt.Help\\header.ebn");
axG2antt1.Template = "BackColorHeader = 603979776";

The 603979776 value indicates the 0x24000000 in hexadecimal.

The following VFP sample changes the visual aspect of the control' header bar:

With thisform.G2antt1
 With .VisualAppearance
 .Add(36, "D:\Temp\ExG2antt.Help\header.ebn")
 EndWith
 .BackColorHeader = 603979776
EndWith

property G2antt.BackColorLevelHeader as Color
Specifies the multiple levels header's background color.

Type Description

Color A color expression that indicates the background color of
the control's header bar.

Use the BackColorHeader and ForeColorHeader properties to define colors used to paint
the control's header bar. Use the BackColorLevelHeader property to specify the
background color of the control's header bar when multiple levels are displayed. Use the
LevelKey property to display the control's header bar using multiple levels. If the control
displays the header bar using multiple levels the HeaderHeight property gets the height in
pixels of a single level in the header bar. The control's header displays multiple levels if
there are two or more neighbor columns with the same non empty level key.

property G2antt.BackColorLock as Color

Retrieves or sets a value that indicates the control's background color for the locked area.

Type Description

Color A boolean expression that indicates the control's
background color for the locked area.

The ExG2antt ActiveX Control can group the columns into two categories: locked and
unlocked. The Locked category contains all the columns that are fixed to the left area of the
client area. These columns cannot be scrolled horizontally. Use the CountLockedColumns to
specify the number of locked columns. The unlocked are contains the columns that can be
scrolled horizontally. To change the background color of the control's unlocked area use
BackColor property

property G2antt.BackColorSortBar as Color
Retrieves or sets a value that indicates the sort bar's background color.

Type Description

Color A color expression that indicates the background color of
the sort bar.

Use the BackColorSortBar property to specify the background color of the control's sort
bar. Use the SortBarVisible property to show the control's sort bar. Use the
BackColorSortBarCaption property to specify the background color of the caption of the
sort bar. The caption of the sort bar is visible, if there are no columns in the sort bar. Use
the SortBarCaption property to specify the caption of the sort bar. Use the
ForeColorSortBar property to specify the foreground color of the control's sort bar. Use the
BackColor property to specify the control's background color. Use the BackColorHeader
property to specify the background color of the control's header bar. Use the
BackColorLevelHeader property to specify the background color of the control's header bar
when multiple levels are displayed.

property G2antt.BackColorSortBarCaption as Color
Returns or sets a value that indicates the caption's background color in the control's sort
bar.

Type Description

Color A color expression that indicates the caption's background
color in the control's sort bar.

Use the SortBarCaption property to specify the caption of the sort bar, when the control's
sort bar contains no columns. Use the BackColorSortBar property to specify the
background color of the control's sort bar. Use the ForeColorSortBar property to specify
the foreground color of the caption in the control's sort bar.

property G2antt.Background(Part as BackgroundPartEnum) as Color
Returns or sets a value that indicates the background color for parts in the control.

Type Description
Part as
BackgroundPartEnum

A BackgroundPartEnum expression that indicates a part in
the control.

Color

A Color expression that indicates the background color for
a specified part. The last 7 bits in the high significant byte
of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

The Background property specifies a background color or a visual appearance for specific
parts in the control. If the Background property is 0, the control draws the part as default.
Use the Add method to add new skins to the control. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the BeginUpdate and EndUpdate methods to maintain performance while init the control.
Use the Refresh method to refresh the control.

The following VB sample changes the visual appearance for the "drop down" filter button.
The sample applies the skin " " to the "drop down" filter buttons:

With G2antt1
 With .VisualAppearance
 .Add &H1, App.Path + "\fbardd.ebn"
 End With
 .Background(exHeaderFilterBarButton) = &H1000000
End With

The following C++ sample changes the visual appearance for the "drop down" filter button:

#include "Appearance.h"
m_g2antt.GetVisualAppearance().Add(0x01,
COleVariant(_T("D:\\Temp\\ExG2antt.Help\\fbardd.ebn")));

m_g2antt.SetBackground(0 /*exHeaderFilterBarButton*/, 0x1000000);

The following VB.NET sample changes the visual appearance for the "drop down" filter
button:

With AxG2antt1
 With .VisualAppearance
 .Add(&H1, "D:\Temp\ExG2antt.Help\fbardd.ebn")
 End With
 .set_Background(EXG2ANTTLib.BackgroundPartEnum.exHeaderFilterBarButton,
&H1000000)
End With

The following C# sample changes the visual appearance for the "drop down" filter button:

axG2antt1.VisualAppearance.Add(0x1, "D:\\Temp\\ExG2antt.Help\\fbardd.ebn");
axG2antt1.set_Background(EXG2ANTTLib.BackgroundPartEnum.exHeaderFilterBarButton,
0x1000000);

The following VFP sample changes the visual appearance for the "drop down" filter button:

With thisform.G2antt1
 With .VisualAppearance
 .Add(1, "D:\Temp\ExG2antt.Help\fbardd.ebn")
 EndWith
 .Object.Background(0) = 16777216
EndWith

The 16777216 value is the 0x1000000 value in hexadecimal.

method G2antt.BeginUpdate ()

Maintains performance when items are added to the control one at a time.

Type Description

This method prevents the control from painting until the EndUpdate method is called. The
BeginUpdate and EndUpdate methods increases the speed of loading your items, by
preventing painting the control when it suffers any change. Once that BeginUpdate method
was called, you have to make sure that EndUpdate method will be called too. You can use
the FreezeEvents method to prevent the control to fire any event.

The following VB sample prevents painting the control while adding data from a database:

Set rs = CreateObject("ADODB.Recordset")
rs.Open "Orders", "Provider=Microsoft.Jet.OLEDB.3.51;Data Source= D:\Program
Files\Microsoft Visual Studio\VB98\NWIND.MDB", 3 ' Opens the table using static mode

G2antt1.BeginUpdate
For Each f In rs.Fields
 G2antt1.Columns.Add f.Name
Next
G2antt1.PutItems rs.GetRows()
G2antt1.EndUpdate

The following C++ sample prevents refreshing the control while adding columns and items
from an ADODB recordset:

#include "Items.h"
#include "Columns.h"
#include "Column.h"

#pragma warning(disable : 4146)
#import <msado15.dll> rename ("EOF", "adoEOF")
using namespace ADODB;

_RecordsetPtr spRecordset;
if (SUCCEEDED(spRecordset.CreateInstance("ADODB.Recordset")))
{
 // Builds the connection string.

 CString strTableName = "Employees", strConnection =
"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=";
 CString strPath = "D:\\Program Files\\Microsoft Visual Studio\\VB98\\NWIND.MDB";
 strConnection += strPath;
 try
 {
 // Loads the table
 if (SUCCEEDED(spRecordset->Open(_variant_t((LPCTSTR)strTableName),
_variant_t((LPCTSTR)strConnection), adOpenStatic, adLockPessimistic, NULL)))
 {
 m_g2antt.BeginUpdate();
 m_g2antt.SetColumnAutoResize(FALSE);
 CColumns columns = m_g2antt.GetColumns();
 long nCount = spRecordset->Fields->Count;
 if (nCount > 0)
 {
 // Adds the columns
 for (long i = 0 ; i < nCount; i++)
 columns.Add(spRecordset->Fields->Item[i]->Name);
 CItems items = m_g2antt.GetItems();
 // Adds the items
 while (!spRecordset->adoEOF)
 {
 long j = 0;
 _variant_t vtI(items.AddItem(spRecordset->Fields->Item[j]->Value));
 for (++j ; j < nCount; j++)
 items.SetCellValue(vtI, _variant_t(j), spRecordset->Fields->Item[j]->Value
);
 spRecordset->MoveNext();
 }
 }
 m_g2antt.EndUpdate();
 }
 }
 catch (_com_error& e)
 {
 AfxMessageBox(e.Description());

 }
}

The sample adds a column for each field in the recordset, and add a new items for each
record. You can use the DataSource property to bind a recordset to the control. The
#import statement imports definitions for ADODB type library, that's used to fill the control.

The following VB.NET sample prevents refreshing the control while adding columns and
items:

With AxG2antt1
 .BeginUpdate()
 With .Columns
 .Add("Column 1")
 .Add("Column 2")
 End With
 With .Items
 Dim iNewItem As Integer
 iNewItem = .AddItem("Item 1")
 .CellValue(iNewItem, 1) = "SubItem 1"
 iNewItem = .AddItem("Item 2")
 .CellValue(iNewItem, 1) = "SubItem 2"
 End With
 .EndUpdate()
End With

The following C# sample prevents refreshing the control while adding columns and items:

axG2antt1.BeginUpdate();
EXG2ANTTLib.Columns columns =axG2antt1.Columns;
columns.Add("Column 1");
columns.Add("Column 2");
EXG2ANTTLib.Items items = axG2antt1.Items;
int iNewItem = items.AddItem("Item 1");
items.set_CellValue(iNewItem, 1, "SubItem 1");
items.InsertItem(iNewItem, "", "Child 1");
iNewItem = items.AddItem("Item 2");
items.set_CellValue(iNewItem, 1, "SubItem 2");
axG2antt1.EndUpdate();

The following VFP sample prevents refreshing the control while adding new columns and
items:

thisform.G2antt1.BeginUpdate()
with thisform.G2antt1.Columns
 .Add("Column 1")
 .Add("Column 2")
endwith

with thisform.G2antt1.Items
 .DefaultItem = .AddItem("Item 1")
 .CellValue(0, 1) = "SubItem 1"
 .DefaultItem = .InsertItem(.DefaultItem,"","Child 1")
 .CellValue(0, 1) = "SubChild 1"
endwith
thisform.G2antt1.EndUpdate()

property G2antt.BorderStyle as Long

Retrieves or sets the border style of the control.

Type Description

Long A long expression that indicates the border style of the
control.

Only for internal use.

property G2antt.CauseValidateValue as ValidateValueType
Returns or sets a value that determines whether the ValidateValue event occurs before the
user changes the cell's value.

Type Description

ValidateValueType
A ValidateValueType expression that indicates whether the
ValidateValue event is fired when user leaves the focused
cell or focused item.

By default, the CauseValidateValue property is exNoValidate (False). The ValidateValue
event is fired only if the CauseValidateValue property is exValidateCell or exValidateItem,
once the user alters the focused cell and the user is trying to leave the focused cell or item.
Use the exValidateItem option to validate the item once a new item is focused, or use the
exValidateCell to validate the cell's value once the user leaves the focused cell. You can use
the ValidateValue event to prevent the user enters wrong values to the cells/items. In
conclusion, the user can focus a new cell (in the same item) while using validation, only if
the CauseValidateValue property is exValidateItem. Else, the user can not move the focus
to a new cell or items until the user validates the value (Cancel parameter of the
ValidateValue event is False). Call the DiscardValidateValue method to restore back the
values being changed during the validation.

The following VB sample displays a message box with Yes, No and Cancel buttons to
validate the changed value:

Private Sub G2antt1_ValidateValue(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal ColIndex
As Long, ByVal NewValue As Variant, Cancel As Boolean)
 Cancel = True
 Dim iResult As Long
 i = MsgBox("Validate G2ANTT1 :" & G2antt1.Items.CellCaption(Item, ColIndex) & " " &
NewValue, vbYesNoCancel)
 If (i = vbCancel) Then
 G2antt1.DiscardValidateValue
 Else
 Cancel = i = vbNo
 End If
End Sub

The ValidateValue event provides the Cancel parameter which can be used to validate the
value being changed. The sample calls the DiscardValidateValue method if user selects
Cancel, so the value are being restored. The validation is accepted once the user selects

the Yes button. If No, the validation continues, and if the control's AutoEdit property is True,
the control re-opens the editor for validation.

During the validation you may have the following order of the events:

Edit - prevent showing the editor for specified cell.
EditOpen - indicates that the editor for the focused cell is being opened.
EditClose - indicates that the editor for the focused cell is being closed.
ValidateValue - notifies your application that the value must be validated (Cancel
parameter on False)
Change - notifies the application once the user validates the newly value. In case the
control is bounded to a database, the change is performed to the database too.
Error - notifies the application for any error (for instance, if the change is not
supported by the database, the Error indicates the error being issued).

The ValidateValue event is not fired if the CellValue property is called during the event.

property G2antt.Chart as Chart
Gets the chart object.

Type Description
Chart A Chart object that indicates the control's chart area.

Use the Chart object to access all properties and methods related to the G2antt chart. Use
the Items property to access the items in the control. Use the Columns property to access
the control's Columns collection. Use the AddBar method to assign a bar to an item. Use
the LevelCount property to specify the number of levels being displayed in the chart's
header. Use the Level property to access the level in the chart area. Use the Bars property
to access the collection of control's bars. Use the HeaderVisible property to show or hide
the control's header. Use the SortBarVisible property to specify whether the control's sort
bar is visible or it is hidden. Use the PaneWidth property to specify the width of the control's
area or chart's area.

property G2antt.ChartOnLeft as Boolean
Specifies whether the chart area is displayed on the left or right side of the component.

Type Description

Boolean A booleane expression that specifies whether the chart is
displayed on left or right side of the control.

By default, the ChartOnLeft property is False, so the chart area is displayed on the right
side of the control. The RightToLeft property flips the order of the control's elements from
right to left. Use the PaneWidth property to specify the width of the panels. The
OnResizeControl property specifies which panel is getting resized when the control is
resized. Use the Chart property to access the chart's properties and methods.

property G2antt.CheckImage(State as CheckStateEnum) as Long
Retrieves or sets a value that indicates the image used by cells of checkbox type.

Type Description

State as CheckStateEnum
A CheckStateEnum expression that indicates the check's
state: 0 means unchecked, 1 means checked, and 2
means partial checked.

Long

A long expression that indicates the index of image used to
paint the cells of check box types. The last 7 bits in the
high significant byte of the long expression indicates the
identifier of the skin being used to paint the object. Use the
Add method to add new skins to the control. If you need
to remove the skin appearance from a part of the control
you need to reset the last 7 bits in the high significant byte
of the color being applied to the part.

Use CheckImage and RadioImage properties to define icons for radio and check box cells.
The CheckImage property defines the index of the icon being used by check boxes. Use the
CellHasCheckBox property to assign a checkbox to a cell. Use the CellHasRadioButton
property to assign a radio button to a cell. Use the CellImage or CellImages property to
assign one or multiple icons to a cell. Use the CellPicture property to assign a picture to a
cell. Use the CellStateChanged event to notify your application when the cell's state is
changed. Use the PartialCheck property to allow partial check feature within the column.

method G2antt.ClearFilter ()
Clears the filter.

Type Description

The method clears the Filter and FilterType properties for all columns in the control, excepts
for exNumeric and exCheck values where only the Filter property is set on empty. The
ApplyFilter method is automatically called when ClearFilter method is invoked. Use the
FilterBarHeight property to hide the control's filter bar. Use the FilterBarCaption property to
specify the caption in the control's filter bar. Use the Description property to change
predefined strings in the control's filter bar. Use the FilterCriteria property to filter items
using the AND, OR and NOT operators. Use the ShowFilter method to show
programmatically the column's drop down filter window. The control fires the FilterChanging
event just before applying the filter, and FilterChange once the list gets filtered.

property G2antt.ColumnAutoResize as Boolean

Returns or sets a value indicating whether the control will automatically size its visible
columns to fit on the control's client width.

Type Description

Boolean
A boolean expression indicating whether the control will
automatically size its visible columns to fit on the control's
client width.

By default, the ColumnAutoResize property is true. So, by default, the control displays no
horizontal scroll bar, no matter how many visible column are. Use the ColumnAutoResize
property to fit all your columns in the client area. If the ColumnAutoResize property is False,
and ScrollBars property is exBoth or exHorizontal the horizontal scroll bar is shown when
required. If the ScrollBars property is exDisableBoth or exDisableNoHorizontal the horizontal
scroll bar is always shown. Use the ScrollBars property to show, enable or disable the
control's scroll bars. Use the Width property to specify the column's width. Use the
SortBarColumnWidth property to specify the column's head in the control's sort bar. By
default, the ColumnAutoResize property is True.

property G2antt.ColumnFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Long
Retrieves the column from point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Long

A long expression that indicates the column's index, or -1 if
there is no column at the point. The property gets a
negative value less or equal with 256, if the point is in the
area between columns where the user can resize the
column.

Use the ColumnFromPoint property to access the column from the point specified by the
{X,Y} coordinates. The ColumnFromPoint property gets the index of the column when the
cursor hovers the control's header bar. The X and Y coordinates are expressed in client
coordinates, so a conversion must be done in case your coordinates are relative to the
screen or to other window. If the X parameter is -1 and Y parameter is -1 the
ColumnFromPoint property determines the index of the column from the cursor. Use
the ItemFromPoint property to retrieve the item from cursor. Use the DateFromPoint
property to specify the date from the cursor. The control fires the ColumnClick event when
user clicks a column. Use the SortOnClick property to specify the operation that control
odes when user clicks the control's header. Use the BarFromPoint property to get the bar
from the point. Use the LinkFromPoint property to get the link from the point. Use the
LevelFromPoint property to retrieve the index of the level from the cursor.

The following VB sample prints the caption of the column from the point:

Private Sub G2antt1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With G2antt1
 Dim c As Long
 c = .ColumnFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If (c >= 0) Then
 With .Columns(c)
 Debug.Print .Caption

 End With
 End If
 End With
End Sub

The following C++ sample prints the caption of the column from the point:

#include "Columns.h"
#include "Column.h"
void OnMouseMoveG2antt1(short Button, short Shift, long X, long Y)
{
 long nColIndex = m_g2antt.GetColumnFromPoint(X, Y);
 if (nColIndex >= 0)
 {
 CColumn column = m_g2antt.GetColumns().GetItem(COleVariant(nColIndex));
 OutputDebugString(column.GetCaption());
 }
}

The following VB.NET sample prints the caption of the column from the point:

Private Sub AxG2antt1_MouseMoveEvent(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_MouseMoveEvent) Handles AxG2antt1.MouseMoveEvent
 With AxG2antt1
 Dim i As Integer = .get_ColumnFromPoint(e.x, e.y)
 If (i >= 0) Then
 With .Columns(i)
 Debug.WriteLine(.Caption)
 End With
 End If
 End With
End Sub

The following C# sample prints the caption of the column from the point:

private void axG2antt1_MouseMoveEvent(object sender,
AxEXG2ANTTLib._IG2anttEvents_MouseMoveEvent e)
{
 int i = axG2antt1.get_ColumnFromPoint(e.x,e.y);

 if (i >= 0)
 System.Diagnostics.Debug.WriteLine(axG2antt1.Columns[i].Caption);
}

The following VFP sample prints the caption of the column from the point:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.G2antt1
 i = .ColumnFromPoint(x, y)
 if (i >= 0)
 wait window nowait .Columns(i).Caption
 endif
endwith

property G2antt.Columns as Columns

Retrieves the control's column collection.

Type Description

Columns A Columns object that holds the control's columns
collection.

Use the Columns property to access the Columns collection. Use the Columns collection to
add, remove or change columns. Use the Add method to add a new column to the control.
Use the Items property to access the control's items collection. Use the AddItem,
InsertItem, InsertControlItem or PutItems method to add new items to the control. Use the
DataSource property to add new columns and items to the control. Adding new items fails if
the control has no columns. Use the Chart object to access all properties and methods
related to the G2antt chart. Use the AddBar method to add bars to the item. Use the
PaneWidth property to specify the width of the chart. Use the LevelCount property to
specify the number of levels being displayed in the chart's header. Use the Level property to
access the level in the chart area.

property G2antt.ColumnsAllowSizing as Boolean
Retrieves or sets a value that indicates whether a user can resize columns at run-time.

Type Description

Boolean A Boolean expression that indicates whether a user can
resize columns at run-time.

By default, the ColumnsAllowSizing property is False. A column can be resized only if the
AllowSizing property is True. Use the DrawGridLines property to show or hide the control's
grid lines. Use the HeaderVisible property to show or hide the control's header bar. The
HeaderAppearance property specifies the appearance of the column in the control's header
bar.

property G2antt.ColumnsFloatBarSortOrder as SortOrderEnum
Specifies the sorting order for the columns being shown in the control's columns floating
panel.

Type Description

SortOrderEnum A SortOrderEnum expression that specifies how the
columns in the columns floating panel are displayed.

By default, the ColumnsFloatBarSortOrder property is SortNone. Use the
ColumnsFloatBarSortOrder property to sort the columns to be displayed in the columns
floating panel. The ColumnsFloatBarVisible property shows or hides the columns floating
panel.

property G2antt.ColumnsFloatBarVisible as
ColumnsFloatBarVisibleEnum
Retrieves or sets a value that indicates whether the the columns float bar is visible or
hidden.

Type Description

ColumnsFloatBarVisibleEnum
A ColumnsFloatBarVisibleEnum expression that specifies
whether the control's Columns float-bar is visible or
hidden.

The ColumnsFloatBarVisible property indicates whether the control displays a floating panel
that shows the hidden columns, so the user can drag and drop columns on order to show or
hide the columns from the control. Use the ColumnsFloatBarSortOrder property to sort the
columns to be displayed in the columns floating panel.

The floating panel displays the following columns:

hidden columns, so the Visible property is False.
drag able column, so the AllowDragging property is True.

In other words, the AllowDragging property may be used to choose if a hidden column is
displayed in the floating bar. The control fires the LayoutChanged event as soon as a new
column is drop on the control's header, sort or group-by bar. The
Description(exColumnsFloatBar) property indicates the text to be displayed on the caption
of the floating bar. The Background(exColumnsFloatAppearance) property specifies the
visual appearance of the floating panel's frame.

The following screen shot shows the control's Columns float bar:

The following movies show how ColumnsFloatBarVisible works:

 The ColumnsFloatBarVisible property is used to show or hide columns by drag and

https://www.youtube.com/watch?v=zU831iSGEqA

drop

 The movie shows how you can customize the visual appearance of the control's
Columns floating bar

https://www.youtube.com/watch?v=mhggutNHzuw

property G2antt.ConditionalFormats as ConditionalFormats
Retrieves the conditional formatting collection.

Type Description

ConditionalFormats A ConditionalFormats object that indicates the control's
ConditionalFormats collection.

The conditional formatting feature allows you to apply formats to a cell or range of cells,
and have that formatting change depending on the value of the cell or the value of a
formula. Use the Add method to format cells or items based on a formula. Use the Refresh
method to refresh the control, if a change occurs in the conditional format collection. Use
the CellValue property indicates the cell's caption or value.

The conditional format feature may change the cells and items as follows:

Bold property. Bolds the cell or items
Italic property. Indicates whether the cells or items should appear in italic.
StrikeOut property. Indicates whether the cells or items should appear in strikeout.
Underline property. Underlines the cells or items
Font property. Changes the font for cells or items.
BackColor property. Changes the background color for cells or items, supports skins
as well.
ForeColor property. Changes the foreground color for cells or items.

The conditional format feature may change the bars as follows:

The BarColor property specifies the color to be applied to bars if the conditional
expression is accomplished.
The BarOverviewColor property specifies the color to be applied to bars, in the
overview portion of the control, if the conditional expression is accomplished.

The ApplyTo property specifies whether the ConditionalFormat object is applied to items or
to a column. The ApplyToBars property specifies the list of bars that the current format is
applied to.

The following screen shot shows different colors applied to different items, using the
ConditionalFormat feature:

property G2antt.ContinueColumnScroll as Boolean

Retrieves or sets a value indicating whether the control will automatically scroll the visible
columns by pixel or by column width.

Type Description

Boolean
A boolean expression indicating whether the control will
automatically scroll the visible columns by pixel or by
column width.

By default, the columns are scrolled pixel by pixel. Use the ContinueColumnScroll to scroll
horizontally the control column by column. Use the EnsureVisibleColumn property to ensure
that a visible column fits the control's client area. Use the Visible property to hide a column.
The ScrollBySingleLine property retrieves or sets a value that indicates whether the control
scrolls the lines to the end, item by item. Use the ScrollBars property to hide the control's
scroll bars. Use the Scroll method to programmatically scroll the control's content.

method G2antt.Copy ()
Copies the control's content to the clipboard, in the EMF format.

Type Description

Use the Copy method to copy the control's content to the clipboard, in Enhanced Metafile
(EMF) format. The Enhanced Metafile format is a 32-bit format that can contain both vector
information and bitmap information. This format is an improvement over the Windows
Metafile Format and contains extended features, such as the following:

​ Built-in scaling information
​ Built-in descriptions that are saved with the file
​ Improvements in color palettes and device independence

The EMF format is an extensible format, which means that a programmer can modify the
original specification to add functionality or to meet specific needs. You can paste this
format to Microsoft Word, Excel, Front Page, Microsoft Image Composer and any
application that know to handle EMF formats.

The Copy method copies the control's header if it's visible, and all visible items. Use the
CopyTo method to copy the control's view to an PNG, BMP, GIF, TIF, JPEG, EMF file. The
items are not expanded, they are listed in the order as they are displayed on the screen.
Use the HeaderVisible property to show or hide the control's header. Use the ExpandItem
property to expand or collapse an item. The background of the copied control is
transparent.

The following VB sample saves the control's content to a EMF file, when user presses the
CTRL+C key:

Private Sub G2antt1_KeyDown(KeyCode As Integer, Shift As Integer)
 If (KeyCode = vbKeyC) And Shift = 2 Then
 Clipboard.Clear
 G2antt1.Copy
 SavePicture Clipboard.GetData(), App.Path & "\test.emf"
 End If
End Sub

Now, you can open your MS Windows Word application, and you can insert the file using
the Insert\Picture\From File menu, or by pressing the CTRL+V key to paste the clipboard.

The following C++ function saves the clipboard's data (EMF format) to a picture file:

BOOL saveEMFtoFile(LPCTSTR szFileName)
{
 BOOL bResult = FALSE;
 if (::OpenClipboard(NULL))
 {
 CComPtr spPicture;
 PICTDESC pictDesc = {0};
 pictDesc.cbSizeofstruct = sizeof(pictDesc);
 pictDesc.emf.hemf = (HENHMETAFILE)GetClipboardData(CF_ENHMETAFILE);
 pictDesc.picType = PICTYPE_ENHMETAFILE;
 if (SUCCEEDED(OleCreatePictureIndirect(&pictDesc;, IID_IPicture, FALSE,
(LPVOID*)&spPicture;)))
 {
 HGLOBAL hGlobal = NULL;
 CComPtr spStream;
 if (SUCCEEDED(CreateStreamOnHGlobal(hGlobal = GlobalAlloc(GPTR, 0), TRUE,
&spStream;)))
 {
 long dwSize = NULL;
 if (SUCCEEDED(spPicture->SaveAsFile(spStream, TRUE, &dwSize;)))
 {
 USES_CONVERSION;
 HANDLE hFile = CreateFile(szFileName, GENERIC_WRITE, NULL, NULL,
CREATE_ALWAYS, NULL, NULL);
 if (hFile != INVALID_HANDLE_VALUE)
 {
 LARGE_INTEGER l = {NULL};
 spStream->Seek(l, STREAM_SEEK_SET, NULL);
 long dwWritten = NULL;
 while (dwWritten < dwSize)
 {
 unsigned long dwRead = NULL;
 BYTE b[10240] = {0};
 spStream->Read(&b;, 10240, &dwRead;);
 DWORD dwBWritten = NULL;
 WriteFile(hFile, b, dwRead, &dwBWritten;, NULL);
 dwWritten += dwBWritten;

 }
 CloseHandle(hFile);
 bResult = TRUE;
 }
 }
 }
 }
 CloseClipboard();
 }
 return bResult;
}

The following VB.NET sample copies the control's content to the clipboard (open the
mspaint application and paste the clipboard, after running the following code):

Clipboard.Clear()
With AxG2antt1
 .Copy()
End With

The following C# sample copies the control's content to a file (open the mspaint application
and paste the clipboard, after running the following code):

Clipboard.Clear;
axG2antt1.Copy();

property G2antt.CopyTo (File as String) as Variant
Exports the control's view to an EMF file.

Type Description

File as String

A String expression that indicates the name of the file to
be saved. If present, the CopyTo property retrieves True,
if the operation succeeded, else False it is failed. If the
File parameter is missing or empty, the CopyTo property
retrieves an one dimension safe array of bytes that
contains the EMF content.

If the File parameter is not empty, the extension (
characters after last dot) determines the graphical/
format of the file to be saved as follows:

*.bmp *.dib *.rle, saves the control's content in BMP
format.
*.jpg *.jpe *.jpeg *.jfif, saves the control's content in
JPEG format.
*.gif, , saves the control's content in GIF format.
*.tif *.tiff, saves the control's content in TIFF format.
*.png, saves the control's content in PNG format.
*.pdf, saves the control's content to PDF format. The
File argument may carry up to 4 parameters
separated by the | character in the following order:
filename.pdf | paper size | margins | options. In
other words, you can specify the file name of the PDF
document, the paper size, the margins and options to
build the PDF document. By default, the paper size is
210 mm × 297 mm (A4 format) and the margins are
12.7 mm 12.7 mm 12.7 mm 12.7 mm. The units for
the paper size and margins can be pt for PostScript
Points, mm for Millimeters, cm for Centimeters, in
for Inches and px for pixels. If PostScript Points are
used if unit is missing. For instance, 8.27 in x 11.69 in,
indicates the size of the paper in inches. Currently, the
options can be single, which indicates that the
control's content is exported to a single PDF page.
For instance, the CopyTo("shot.pdf|33.11 in x 46.81
in|0 0 0 0|single") exports the control's content to an
A0 single PDF page, with no margins.
*.emf or any other extension determines the control to

save the control's content in EMF format.

For instance, the CopyTo("c:\temp\snapshot.png")
property saves the control's content in PNG format to
snapshot.png file.

Variant

A boolean expression that indicates whether the File was
successful saved, if the File parameter is not empty, or a
one dimension safe array of bytes, if the File parameter is
empty string.

The CopyTo method copies/exports the control's view to BMP, PNG, JPG, GIF, TIFF, PDF
or EMF graphical files, including no scroll bars. The StartPrintDate / EndPrintDate
properties define the margins of the chart to copy (must be set before calling the CopyTo
method) (starting from 22.0.1.5). Use the Copy method to copy the control's content to the
clipboard.

The BMP file format, also known as bitmap image file or device independent bitmap
(DIB) file format or simply a bitmap, is a raster graphics image file format used to
store bitmap digital images, independently of the display device (such as a graphics
adapter)
The JPEG file format (seen most often with the .jpg extension) is a commonly used
method of lossy compression for digital images, particularly for those images produced
by digital photography.
The GIF (Graphics Interchange Format) is a bitmap image format that was introduced
by CompuServe in 1987 and has since come into widespread usage on the World Wide
Web due to its wide support and portability.
The TIFF (Tagged Image File Format) is a computer file format for storing raster
graphics images, popular among graphic artists, the publishing industry, and both
amateur and professional photographers in general.
The PNG (Portable Network Graphics) is a raster graphics file format that supports
lossless data compression. PNG was created as an improved, non-patented
replacement for Graphics Interchange Format (GIF), and is the most used lossless
image compression format on the Internet
The PDF (Portable Document Format) is a file format used to present documents in a
manner independent of application software, hardware, and operating systems. Each
PDF file encapsulates a complete description of a fixed-layout flat document, including
the text, fonts, graphics, and other information needed to display it.
The EMF (Enhanced Metafile Format) is a 32-bit format that can contain both vector
information and bitmap information. This format is an improvement over the Windows
Metafile Format and contains extended features, such as the following

​ Built-in scaling information

​ Built-in descriptions that are saved with the file
​ Improvements in color palettes and device independence

The EMF format is an extensible format, which means that a programmer can modify
the original specification to add functionality or to meet specific needs. You can paste
this format to Microsoft Word, Excel, Front Page, Microsoft Image Composer and any
application that know to handle EMF formats.

The following VB sample saves the control's content to a EMF file:

If (Control.CopyTo("c:\temp\test.emf")) Then
 MsgBox "test.emf file created, open it using the mspaint editor."
End If

The following VB sample prints the EMF content (as bytes, File parameter is empty string
):

Dim i As Variant
For Each i In Control.CopyTo("")
 Debug.Print i
Next

property G2antt.CountLockedColumns as Long

Retrieves or sets a value indicating the number of locked columns. A locked column is not
scrollable.

Type Description

Long A long expression indicating the number of locked
columns.

The ExG2antt ActiveX Control can group the columns into two categories: locked and
unlocked. The Locked category contains all the columns that are fixed to the left area of the
client area. These columns cannot be scrolled horizontally. Use the CountLockedColumns to
specify the number of locked columns. The unlocked are contains the columns that can be
scrolled horizontally. Use the BackColorLock property to change the control's background
color for the locked area. Use the LockedItemCount property to add or remove items
locked (fixed) to the top or bottom side of the control.

property G2antt.DataSource as Object
Retrieves or sets a value that indicates the data source for object.

Type Description
Object An ADO or DAO Recordset object used to fill data from.

The /COM version provides ADO, ADODB and DAO database support. The DataSource
property takes a recordset and add a column for each field found, and add a new item for
each record in the recordset. Use the Visible property to hide a column. Use the CellValue
property to retrieves the value of the cell. Use the PutItems to load an array to the
control. Use the DetectAddNew property to allow adding new items to the control when the
user adds new records to the table that's linked with the control. Use the
ConditionalFormats method to apply formats to a cell or range of cells, and have that
formatting change depending on the value of the cell or the value of a formula. Use the
DefaultItemHeight property before setting a DataSource property to specify the

The /NET version provides the following methods for data binding:

DataSource, gets or sets the data source that the control is displaying data for. By
default, this property is empty object. The DataSource property can be: DataTable,
DataView, DataSet, DataViewManager, any component that implements the
IListSource interface, or any component that implements the IList interface.
DataMember, indicates a sub-list of the DataSource to show in the control. By default,
this property is "". For instance, if DataSource property is a DataSet, the DataMember
should indicates the name of the table to be loaded.
DataTaskStart, The DataTaskStart property gets or sets the specific field in the data
source to indicate the starting point of each added task. If missing or empty, no tasks
are loaded during binding. In other words, it indicates the field to use be used as the
starting point for each task in any record. This member is automatically filled with the
first DATE field from the DataSource, when it is set. This member is automatically filled
with the first DATE field from the data source (DataSource/DataMember).
DataTaskEnd, DataTaskEnd property gets or sets the specific field in the data source
to indicate the ending point of each added task. If missing or empty, no tasks are
loaded during binding. If the DataTaskEnd points to a DateTime object, it indicates the
ending date of the newly bar, else, it indicates the duration of the task to be added. If
the DataTaskEnd is equal with DataTaskBegin, a one-day task is added for each
record found, during binding. This member is automatically filled with the second DATE
field from the DataSource collection. This member can be of DATE type, which
indicates the exBarEnd property of any bar in the collection, or a DOUBLE, when it
indicates the length/duration of the bar to be added.

Using the data binding on /NET may change the following properties:

Items.AllowCellValueToItemBar on True
Column(Start).Def(exCellValueToItemBarProperty) on exBarStart
Column(End).Def(exCellValueToItemBarProperty) on exBarEnd, exBarStart or
exBarDuration (if DOUBLE field is found)

Click here to watch a movie on how to assign a data source to the control, in design
mode, for /NET assembly.

The following VB sample binds an ADO recordset to the ExG2antt/COM control:

Set rs = CreateObject("ADODB.Recordset")
rs.Open "Orders", "Provider=Microsoft.Jet.OLEDB.3.51;Data Source= D:\Program
Files\Microsoft Visual Studio\VB98\NWIND.MDB", 3 ' Opens the table using static mode

Set G2antt1.DataSource = rs

The DataSource clears the columns collection, and load the recordset to the control. Use
SetParent method to make your list a hierarchy.

The following C++ sample binds a table to the control:

#include "Items.h"
#include "Columns.h"
#include "Column.h"

#pragma warning(disable : 4146)
#import <msado15.dll> rename ("EOF", "adoEOF")
using namespace ADODB;

_RecordsetPtr spRecordset;
if (SUCCEEDED(spRecordset.CreateInstance("ADODB.Recordset")))
{
 // Builds the connection string.
 CString strTableName = "Employees", strConnection =
"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=";
 CString strPath = "D:\\Program Files\\Microsoft Visual Studio\\VB98\\NWIND.MDB";
 strConnection += strPath;
 try
 {
 // Loads the table

https://www.youtube.com/watch?v=2arnUlkpVhs

 if (SUCCEEDED(spRecordset->Open(_variant_t((LPCTSTR)strTableName),
_variant_t((LPCTSTR)strConnection), adOpenStatic, adLockPessimistic, NULL)))
 {
 m_g2antt.BeginUpdate();
 m_g2antt.SetColumnAutoResize(FALSE);
 m_g2antt.SetDataSource(spRecordset);
 m_g2antt.EndUpdate();
 }
 }
 catch (_com_error& e)
 {
 AfxMessageBox(e.Description());
 }
}

The #import statement imports definitions for ADODB type library, that's used to fill the
control.

The following C# sample binds at runtime a table to the /NET component, using the
DataSource property:

private DataTable GetTable()
{
 DataTable table = new DataTable();

 table.Columns.Add("Dosage", typeof(int));
 table.Columns.Add("Drug", typeof(String));
 table.Columns.Add("Patient", typeof(String));
 table.Columns.Add("DateIn", typeof(DateTime));
 table.Columns.Add("DateOut", typeof(DateTime));

 table.Rows.Add(25, "Indocin", "David", DateTime.Today, DateTime.Today.AddDays(2));
 table.Rows.Add(50, "Enebrel", "Sam", DateTime.Today.AddDays(2),
DateTime.Today.AddDays(4));
 table.Rows.Add(10, "Hydralazine", "Christoff", DateTime.Today.AddDays(4),
DateTime.Today.AddDays(8));
 table.Rows.Add(21, "Combivent", "Janet", DateTime.Today.AddDays(2),
DateTime.Today.AddDays(6));

 table.Rows.Add(100, "Dilantin", "Melanie", DateTime.Today.AddDays(1),
DateTime.Today.AddDays(3));

 return table;

}

private void Form1_Load(object sender, EventArgs e)
{
 Exgantt1.BeginUpdate();
 Exgantt1.DefaultItemHeight = 25;
 Exgantt1.DataSource = GetTable();
 Exgantt1.Chart.LevelCount = 2;
 Exgantt1.EndUpdate();
}

The following VB.NET sample binds at runtime a table to the /NET component, using the
DataSource property:

Function GetTable() As DataTable

 Dim table As DataTable = New DataTable()

 table.Columns.Add("Dosage", GetType(Long))
 table.Columns.Add("Drug", GetType(String))
 table.Columns.Add("Patient", GetType(String))
 table.Columns.Add("DateIn", GetType(DateTime))
 table.Columns.Add("DateOut", GetType(DateTime))

 table.Rows.Add(25, "Indocin", "David", DateTime.Today, DateTime.Today.AddDays(2))
 table.Rows.Add(50, "Enebrel", "Sam", DateTime.Today.AddDays(2),
DateTime.Today.AddDays(4))
 table.Rows.Add(10, "Hydralazine", "Christoff", DateTime.Today.AddDays(4),
DateTime.Today.AddDays(8))
 table.Rows.Add(21, "Combivent", "Janet", DateTime.Today.AddDays(2),
DateTime.Today.AddDays(6))
 table.Rows.Add(100, "Dilantin", "Melanie", DateTime.Today.AddDays(1),
DateTime.Today.AddDays(3))

 GetTable = table
End Function

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
 With Exgantt1
 .BeginUpdate()
 .DefaultItemHeight = 25
 .DataSource = GetTable()
 .Chart.LevelCount = 2
 .EndUpdate()
 End With
End Sub

property G2antt.Debug as Boolean
Displays debug information.

Type Description

Boolean A Boolean expression that specifies whether debug
information is displayed.

By default, the Debug property is False.

property G2antt.DefaultEditorOption(Name as EditorOptionEnum) as
Variant
Specifies a default option for an editor.

Type Description

Name as EditorOptionEnum Specifies the name of the editor whose option is being
changed.

Variant A Variant expression that indicates the newly value for the
option.

Use the DefaultEditorOption property to specify default option for the editors of a specified
type. The DefaultEditorOption property affects the editors that are created after the calling
the DefaultEditorOption method. The DefaultEditorOption property doesn't affect the editors
being already created. Use the Option property to change the option for a particular editor.
For instance, you can use the DefaultEditorOption property to localize the name of the
months for all date editors using the exDateMonths option.

property G2antt.DefaultItemHeight as Long

Retrieves or sets a value that indicates the default item height.

Type Description
Long A long expression indicates the default item height.

The DefaultItemHeight property specifies the height of the items. Changing the property
fails if the control contains already items. You can change the DefaultItemHeight property at
design time, or at runtime, before adding any new items to the Items collection. Use the
ItemHeight property to specify the height of a specified item. Use the ScrollBySingleLine
property when using the items with different heights. Use the CellSingleLine property to
specify whether the cell displays the caption using multiple lines. Use the ItemAllowSizing
property to specify whether the user can resize the item at runtime. Use the Height property
to specify the height for a bar.

property G2antt.Description(Type as DescriptionTypeEnum) as String
Changes descriptions for control objects.

Type Description
Type as
DescriptionTypeEnum

A DescriptionTypeEnum expression that indicates the part
being changed.

String A string value that indicates the part's description.

Use the Description property to customize the captions for control filter bar window. For
instance, the Description(exFilterAll) = "(Include All)" changes the "(All)" item description in
the filter bar window. Use the Description property to change the predefined strings in the
filter bar window.

property G2antt.DetectAddNew as Boolean
Specifies whether the control detects when a new record is added to the bounded record
set.

Type Description

Boolean
A boolean expression that indicates whether the control
detects when a new record is added to the bounded
recordset

By default, the DetectAddNew property is False. The DetectAddNew property detects
adding new records to a recordset (/COM). Use the DataSource property to bound the
control to a table. If the DetectAddNew property is True, and user adds a new record to the
bounded recordset, the control automatically adds a new item to the control. The
DetectAddNew property has effect only if the control is bounded to an ADO, ADODB
recordset, using the DataSource property.

Handling the AddNew method in the control, using the DAO recordset on MS Access

Insert a Button and the Control to a form, and name them as cmdAddNew and Grid1
Add the Form_Load event of the form with the following code:

Private Sub Form_Load()
 With G2antt1
 .BeginUpdate
 .DataSource = CurrentDb.OpenRecordset("Employees")
 .DetectAddNew = True
 .EndUpdate
 End With
End Sub

The code binds the control to a DAO recordset. Please notice, that the DetectAddNew
property is set after calling the DataSource method. Setting the DetectAddNew
property on True, makes the control associate new items with new records added
during the AddItem event as shown bellow.

Add the Click event of the cmdAddNew button with the following code

Private Sub cmdAddNew_Click()
 With G2antt1.Items
 .EnsureVisibleItem .AddItem

 End With
End Sub

The code adds a new item to the control and ensures that the new item fits the
control's client area. The Items.AddItem call makes the control to fire the AddItem
event, which will actually add the new record to the database, as in the following code

Add the AddItem event of the Control with the following code:

Private Sub G2antt1_AddItem(ByVal Item As Long)
 With G2antt1
 If .DetectAddNew Then
 With .DataSource
 .AddNew
 !Lastname = "new"
 !FirstName = "new"
 .Update
 End With
 End If
 End With
End Sub

The code adds a new record to the bounded recordset. Here you need to insert or
update the required fields so the new record is added to the DAO recordset. Once the
event is finished, the new item is associated with the new record in the database, so
from now on, any change to the item will be reflected in the recordset.

Handling the AddNew method in the control, using the ADO recordset in VB

Insert a Button and the Control to a form, and name them as cmdAddNew and Grid1
Add the Form_Load event of the form with the following code:

Private Sub Form_Load()
 With G2antt1
 Set rs = CreateObject("ADOR.Recordset")
 With rs
 .Open "Employees", "Provider=Microsoft.ACE.OLEDB.12.0;Data
Source=\sample.accdb", 3, 3
 End With
 .DataSource = rs

 .DetectAddNew = True
 End With
End Sub

The code binds the control to an ADO recordset.

Add the Click event of the cmdAddNew button with the following code

Private Sub cmdAddNew_Click()
 With G2antt1.DataSource
 .AddNew Array("FirstName", "LastName"), Array("new", "new")
 .Update
 End With
End Sub

The code adds a new record to the attached recordset, and the control will add a new
associated item, because the DetectAddNew method is True.

The AddItem event occurs if the AddNew (method of the ADO.RecordSet object) is
performed, if the control's DetectAddNew property is True. If using the CellValue properties
during the AddItem event, you must be sure that they are available, or they have the proper
values or expected values. For instance, let's say that we defined the AddItem event such
as:

Private Sub G2antt1_AddItem(ByVal Item As EXG2ANTTLibCtl.HITEM)
 With G2antt1.Items
 .AddBar Item, "Task", .CellValue(Item, 1), .CellValue(Item, 2)
 End With
End Sub

If using the r.AddNew method we MUST use the values to be added as parameters of the
AddNew method as in the following sample:

r.AddNew Array(0, 1, 2), Array("Task", #1/3/2001#, #1/4/2001#)

instead using the following code:

r.AddNew
 r(0) = "Task"
 r(1) = #1/1/2001#
 r(2) = #1/2/2001#

r.Update

which is wrong as the AddItem event is called when the r.AddNew method is performed,
and so during the AddItem event, the values for the cells are NOT yet available, as the r(0),
r(1), r(2) are filled later then r.AddNew call.

property G2antt.DetectDelete as Boolean
Specifies whether the control detects when a record is deleted from the bounded
recordset.

Type Description

Boolean
A boolean expression that indicates whether the control
detects when a record is deleted from the bounded
recordset.

By default, the DetectDelete property is False. The property has effect only if the
DataSource property points to an ADO recordset (/COM). If the DetectDelete property is
True, the control is notified when a record is deleted, and the associated item is removed
from the control's items collection.

Handling the Delete method in the control, using the DAO recordset on MS Access

Insert a Button and the Control to a form, and name them as cmdRemove and
G2antt1
Add the Form_Load event of the form with the following code:

Private Sub Form_Load()
 With G2antt1
 .BeginUpdate
 .DataSource = CurrentDb.OpenRecordset("Employees")
 .DetectDelete = True
 .EndUpdate
 End With
End Sub

The code binds the control to a DAO recordset. The DetectDelete property on True,
makes the control to move the current record on the item to be deleted, and to remove
any reference to the record to be deleted.

Add the Click event of the cmdRemove button with the following code

Private Sub cmdRemove_Click()
 With G2antt1.Items
 .RemoveItem .FocusItem
 End With
End Sub

The code removes the focused item. The Items.RemoveItem call makes the control to
fire the RemoveItem event, which will actually delete the associated record in the
database, as in the following code

Add the RemoveItem event of the Control with the following code:

Private Sub G2antt1_RemoveItem(ByVal Item As Long)
 With G2antt1
 If .DetectDelete Then
 With .DataSource
 .Delete
 End With
 End If
 End With
End Sub

The code deletes the current record.

Handling the Delete method in the control, using the ADO recordset in VB

Insert a Button and the Control to a form, and name them as cmdRemove and
G2antt1
Add the Form_Load event of the form with the following code:

Private Sub Form_Load()
 With G2antt1
 Set rs = CreateObject("ADOR.Recordset")
 With rs
 .Open "Employees", "Provider=Microsoft.ACE.OLEDB.12.0;Data
Source=\sample.accdb", 3, 3
 End With
 .DataSource = rs
 .DetectDelete = True
 End With
End Sub

The code binds the control to an ADO recordset.

Add the Click event of the cmdRemove button with the following code

Private Sub cmdRemove_Click()
 With G2antt1.DataSource
 .Delete
 End With
End Sub

The Delete method of the recordset removes the current record (select a new item to
the control, and the current record is changed), and due DetectDelete the associated
item is removed from the view.

method G2antt.DiscardValidateValue ()
Cancels the current validation process, and restores back the modified cells.

Type Description

The DiscardValidateValue method has effect only if the CauseValidateValue property is not
zero. The DiscardValidateValue method restores the values for modified cell during the
validation. For instance, pressing the Cancel button during the ValidateValue event can
restore the values for modified cells, using the DiscardValidateValue method. The
DiscardValidateValue automatically closes the current editor. The EditClose method can be
used to programmatically closes the focused editor.

property G2antt.DrawGridLines as GridLinesEnum

Retrieves or sets a value that indicates whether the grid lines are visible or hidden.

Type Description

GridLinesEnum A GridLinesEnum expression that indicates whether the
grid lines are visible or hidden.

Use the DrawGridLines property to add grid lines to the items list view. Use the
GridLineColor property to specify the color for grid lines. Use the LinesAtRoot property
specifies whether the control links the root items of the control. Use the HasLines property
to specify whether the control draws the link between child items to their corresponding
parent item. Use the DrawLevelSeperator property to draw lines between levels inside the
chart's header. Use the DrawTickLines property to specify whether the grid lines between
time units in the level are visible or hidden. Use the DrawGridLines property to specify
whether the control draws the grid lines in the chart's area. Use the ColumnsAllowSizing
property to allow resizing the columns, when the control's header bar is not visible.

The following screen shot shows the control using different style for gridlines:

In conclusion, the following properties are related to the control's gridlines:

DrawGridLines specifies whether the gridlines are shown in the column/list part of the
control. The gridlines in the chart part of the control are handled by the
Chart.DrawGridLines property.
GridLineColor specifies the color to show the horizontal grid line, and vertical grid lines
for the columns/list part of the control. The color for vertical grid lines in the chart view
part is handled by the Level.GridLineColor property.
GridLineStyle specifies the style for horizontal grid lines and vertical grid lines in the
columns/list part of the control. The Level.GridLineStyle property specifies the style for
vertical grid lines in the chart area.
Chart.DrawGridLines (belongs to Chart object) indicates whether gridlines are shown in
the chart view.
Level.DrawGridLines (belongs to Level object) specifies whether the level shows
vertical gridlines in the chart part of the control.
Level.GridLineColor (belongs to Level object) indicates the color for vertical gridlines in
the chart view.
Level.GridLineStyle (belongs to Level object) specifies the style to show the vertical

gridlines in the chart part area of the control.

property G2antt.DrawPartItem as HITEM
Indicates the handle of the item where the BeforeDrawPart / AfterDrawPart event occurs.

Type Description

HITEM A Long expression that specifies the handle of the item
that hosts the "OwnerDraw" bar.

By default, the DrawPartItem property returns 0. The DrawPartItem property is read-only.
The DrawPartItem property is valid during the BeforeDrawPart / AfterDrawPart event, while
the Part parameter is exOwnerDrawBar. The DrawPartKey property indicates the key of
the "OwnerDraw" being painted. Use the ItemBar property to access the properties of the
"OwnerDraw" bar. The CellValue property specifies the cell's value giving the handle of the
item and the index/key/name of the column.

property G2antt.DrawPartKey as Variant
Specifies the key of the owner bar to be painted during BeforeDrawPart / AfterDrawPart
event.

Type Description

Variant A VARIANT expression that specifies the key of the bar to
be painted.

By default, the DrawPartKey property returns empty value. The DrawPartKey property is
read-only. The DrawPartKey property is valid during the BeforeDrawPart / AfterDrawPart
event, while the Part parameter is exOwnerDrawBar. The DrawPartItem property indicates
the handle of the item that hosts the "OwnerDraw" being painted. Use the ItemBar property
to access the properties of the "OwnerDraw" bar. The CellValue property specifies the
cell's value giving the handle of the item and the index/key/name of the column.

method G2antt.Edit ([Options as Variant])
Edits the focused cell.

Type Description

Options as Variant

Optional. If missing, the control edits the focused cell. A
long expression that indicates the handle of a locked item.
Use the LockedItem property to retrieve the handle of a
locked/fixed item.

The Edit method starts editing the focused cell, if the cell has an editor assigned. Use the
Editor property of the Column object, or CellEditor property to assign an editor to a cell.
The focused cell is determined by the intersection of the focused item and the focused
column. Use the FocusItem property to get the handle of the focused item. Use the
FocusColumnIndex property to determine the index of the focused column. The control fires
the Edit event when the edit operation is about to start. The edit operation doesn't start if
the control's ReadOnly property is True, or if the cell's editor is hidden (CellEditorVisible
property is False). Use the Editing property to check whether the control is in edit mode, or
to get the window's handle for the built-in editor that's visible and focused. The EditClose
method closes the current editor. Use the ValidateValue event to validate the values that
user enters.

The edit events are fired in the following order:

1. Edit event. Prevents editing cells, before showing the cell's editor.

2. EditOpen event. The edit operation started, the cell's editor is shown. The Editing
property gives the window's handle of the built-in editor being started.

3. Change event. The Change event is fired only if the user types ENTER key, or the user
selects a new value from a predefined data list.

4. EditClose event. The cell's editor is hidden and closed.

If the Options parameter is missing, the control edits the focused cell. The FocusItem and
FocusColumnIndex properties indicates the focused cell. If the Options parameter is
present, the control edits the item that Options parameter indicates.

For instance, the following VB sample edits a locked item when the user clicks a cell:

Private Sub G2antt1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single)
 With G2antt1
 If Button = 1 Then

 Dim h As EXG2ANTTLibCtl.HITEM, c As Long, hit As
EXG2ANTTLibCtl.HitTestInfoEnum
 h = .ItemFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, c, hit)
 If Not h = 0 Then
 If (.Items.IsItemLocked(h)) Then
 .FocusColumnIndex = c
 .Edit h
 End If
 End If
 End If
 End With
End Sub

Call the DoEvents (Processes all Windows messages currently in the message queue)
method after Edit method to start immediately the edit operation.

The following C++ sample edits edits a locked item when the user clicks a cell:

void OnMouseUpG2antt1(short Button, short Shift, long X, long Y)
{
 CItems items = m_g2antt.GetItems();
 long c = 0, hit = 0, h = m_g2antt.GetItemFromPoint(X, Y, &c, &hit);
 if (h != 0)
 if (items.GetIsItemLocked(h))
 {
 m_g2antt.SetFocusColumnIndex(c);
 m_g2antt.Edit(COleVariant(h));
 }
}

The following VB.NET sample edits edits a locked item when the user clicks a cell:

Private Sub AxG2antt1_MouseUpEvent(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_MouseUpEvent) Handles AxG2antt1.MouseUpEvent
 With AxG2antt1
 Dim i As Integer, c As Integer, hit As EXG2ANTTLib.HitTestInfoEnum
 i = .get_ItemFromPoint(e.x, e.y, c, hit)
 If (Not (i = 0)) Then
 If (.Items.IsItemLocked(i)) Then

 .FocusColumnIndex = c
 .Edit(i)
 End If
 End If
 End With
End Sub

The following C# sample edits edits a locked item when the user clicks a cell:

private void axG2antt1_MouseUpEvent(object sender,
AxEXG2ANTTLib._IG2anttEvents_MouseUpEvent e)
{
 int c = 0;
 EXG2ANTTLib.HitTestInfoEnum hit;
 int i = axG2antt1.get_ItemFromPoint(e.x, e.y, out c, out hit);
 if (i != 0)
 {
 if (axG2antt1.Items.get_IsItemLocked(i))
 {
 axG2antt1.FocusColumnIndex = c;
 axG2antt1.Edit(i);
 }
 }
}

The following VFP sample edits edits a locked item when the user clicks a cell:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

local c, hit
c = 0
hit = 0
with thisform.G2antt1
 .Items.DefaultItem = .ItemFromPoint(x, y, @c, @hit)
 if (.Items.DefaultItem <> 0)
 if (.Items.IsItemLocked(0))
 .FocusColumnIndex = c

 .Object.Edit(.Items.DefaultItem)
 endif
 endif
endwith

method G2antt.EditClose ()
Closes the current editor.

Type Description

The EditClose method can be used to close programmatically the currently editor. The Edit
method starts editing the focused cell, if the cell has an editor assigned. Use the Editor
property of the Column object, or CellEditor property to assign an editor to a cell. The
focused cell is determined by the intersection of the focused item and the focused column.
Use the FocusItem property to get the handle of the focused item. Use the
FocusColumnIndex property to determine the index of the focused column.

property G2antt.Editing as Long
Specifies the window's handle of the built-in editor while the control is running in edit mode.

Type Description

Long
A long expression that indicates the window's handle for
the built-in editor that's focused while the control is running
in the edit mode.

Use the Editing property to check whether the control is in edit mode. Use the Editing
property to get the window's handle for the built-in editor while editing. Use the Edit method
to start editing the focused cell. Use the EditType property to define the column's editor.
Use the ReadOnly property to make the control read only. Call the EditClose method to
close the current editor. The EditingText property returns the caption being shown on the
editor while the control runs in edit mode. The Editing property returns a not-zero value only
if called during the EditOpen, Change or EditClose event.

The edit events are fired in the following order:

1. Edit event. Prevents editing cells, before showing the cell's editor.

2. EditOpen event. The edit operation started, the cell's editor is shown. The Editing
property gives the window's handle of the built-in editor being started.

3. Change event. The Change event is fired only if the user types ENTER key, or the user
selects a new value from a predefined data list.

4. EditClose event. The cell's editor is hidden and closed.

The following VB sample closes the current editor if the user presses the enter key:

Private Sub G2antt1_KeyDown(KeyCode As Integer, Shift As Integer)
 With G2antt1
 If Not (.Editing = 0) Then
 If (KeyCode = vbKeyReturn) Then
 .EditClose
 KeyCode = 0
 End If
 End If
 End With
End Sub

The following C++ sample closes the editor when user hits the enter key:

void OnKeyDownG2antt1(short FAR* KeyCode, short Shift)
{
 if (*KeyCode == VK_RETURN)
 if (m_g2antt.GetEditing() != 0)
 {
 m_g2antt.EditClose();
 *KeyCode = 0;
 }
}

The following C# sample closes the editor when user hits the enter key:

private void axG2antt1_KeyDownEvent(object sender,
AxEXG2ANTTLib._IG2anttEvents_KeyDownEvent e)
{
 if (Convert.ToUInt32(e.keyCode) == Convert.ToUInt32(Keys.Enter))
 if (axG2antt1.Editing != 0)
 {
 axG2antt1.EditClose();
 e.keyCode = 0;
 }
}

The following VB.NET sample closes the editor when user hits the enter key:

Private Sub AxG2antt1_KeyDownEvent(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_KeyDownEvent) Handles AxG2antt1.KeyDownEvent
 If (Convert.ToUInt32(e.keyCode) = Convert.ToUInt32(Keys.Enter)) Then
 With AxG2antt1
 If Not (.Editing = 0) Then
 .EditClose()
 e.keyCode = 0
 End If
 End With
 End If
End Sub

The following VFP sample closes the editor when user hits the enter key:

*** ActiveX Control Event ***
LPARAMETERS keycode, shift

if (keycode = 13) &&vkReturn
 with thisform.G2antt1.Object
 if (.Editing() != 0)
 .EditClose()
 keycode = 0
 endif
 endwith
endif

If your application still requires the string that user types into an text box inside the
exG2antt control. you can use the following VB trick:

Private Sub G2antt1_Change(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal ColIndex As
Long, NewValue As Variant)
 ' Finds the text inside the text box, in case that NewValue parameter is changed to a
valid data
 Debug.Print getWndText(getEditWnd(G2antt1))
End Sub

Private Function getEditWnd(ByVal g As EXG2ANTTLibCtl.G2antt) As Long
 Dim h As Long
 h = GetWindow(g.hwnd, GW_CHILD)
 While Not (h = 0)
 If (getWndClass(h) = "HolderBuiltIn") Then
 getEditWnd = GetWindow(h, GW_CHILD)
 Exit Function
 End If
 h = GetWindow(h, GW_HWNDNEXT)
 Wend
 getEditWnd = 0
End Function

Private Function getWndText(ByVal h As Long) As String

 Dim s As String
 s = Space(1024)
 GetWindowText h, s, 1024
 getWndText = To0(s)
End Function

Private Function getWndClass(ByVal h As Long) As String
 Dim s As String
 s = Space(1024)
 GetClassName h, s, 1024
 getWndClass = To0(s)
End Function

Private Function To0(ByVal s As String) As String
 To0 = Left$(s, InStr(s, Chr$(0)) - 1)
End Function

The sample requires the following API declarations:

Private Declare Function GetWindow Lib "user32" (ByVal hwnd As Long, ByVal wCmd As
Long) As Long
Private Declare Function GetWindowText Lib "user32" Alias "GetWindowTextA" (ByVal
hwnd As Long, ByVal lpString As String, ByVal cch As Long) As Long
Private Declare Function GetClassName Lib "user32" Alias "GetClassNameA" (ByVal hwnd
As Long, ByVal lpClassName As String, ByVal nMaxCount As Long) As Long
Private Const GW_CHILD = 5
Private Const GW_HWNDNEXT = 2

The following C++ sample displays a message box with the caption that user types inside
the text box of an editor:

HWND getEditWnd(HWND h)
{
 TCHAR szName[1024] = _T("");
 h = GetWindow(h, GW_CHILD);
 while (!(h == 0))
 {

 GetClassName(h, szName, 1024);
 if (_tcscmp(_T("HolderBuiltIn"), szName) == 0)
 return GetWindow(h, GW_CHILD);
 h = GetWindow(h, GW_HWNDNEXT);
 }
 return 0;
}

void OnChangeG2antt1(long Item, long ColIndex, VARIANT FAR* NewValue)
{
 HWND h = getEditWnd(m_g2antt.m_hWnd);
 if (h)
 {
 TCHAR szText[1024] = _T("");
 ::GetWindowText(h, szText, 1024);
 ::MessageBox(NULL, szText,NULL, NULL);
 }
}

property G2antt.EditingText as String
Specifies the caption of the editor during editing.

Type Description

String A String expression that specifies the caption of the field
during editing mode.

By default, the EditingText property is "". The EditingText property returns the caption being
shown on the editor while the control runs in edit mode. The control is in edit mode, if the
Editing property returns a not-zero value. The EditingText property has effect only if called
during the EditOpen, Change or EditClose event.

The edit events are fired in the following order:

1. Edit event. Prevents editing cells, before showing the cell's editor.

2. EditOpen event. The edit operation started, the cell's editor is shown. The Editing
property gives the window's handle of the built-in editor being started.

3. Change event. The Change event is fired only if the user types ENTER key, or the user
selects a new value from a predefined data list.

4. EditClose event. The cell's editor is hidden and closed.

property G2antt.Enabled as Boolean
Enables or disables the control.

Type Description

Boolean A boolean expression that indicates whether the control is
enabled or disabled.

Use the Enabled property to disable the control. Use the ForeColor property to change the
control's foreground color. Use the BackColor property to change the control's background
color. Use the EnableItem to disable an item. Use the CellEnabled property to disable a
cell. Use the Enabled property to disable a column. Use the SelectableItem property to
specify whether an user can select an item.

method G2antt.EndUpdate ()

Resumes painting the control after painting is suspended by the BeginUpdate method.

Type Description

The BeginUpdate and EndUpdate methods increases the speed of loading your items, by
preventing painting the control when it suffers any change. Once that BeginUpdate method
was called, you have to make sure that EndUpdate method will be called too. You can use
the FreezeEvents method to prevent the control to fire any event.

The following VB sample prevents painting the control while adding data from a database:

Set rs = CreateObject("ADODB.Recordset")
rs.Open "Orders", "Provider=Microsoft.Jet.OLEDB.3.51;Data Source= D:\Program
Files\Microsoft Visual Studio\VB98\NWIND.MDB", 3 ' Opens the table using static mode

G2antt1.BeginUpdate
For Each f In rs.Fields
 G2antt1.Columns.Add f.Name
Next
G2antt1.PutItems rs.GetRows()
G2antt1.EndUpdate

The following VC sample prevents refreshing the control while adding columns and items
from an ADODB recordset:

#include "Items.h"
#include "Columns.h"
#include "Column.h"

#pragma warning(disable : 4146)
#import <msado15.dll> rename ("EOF", "adoEOF")
using namespace ADODB;

_RecordsetPtr spRecordset;
if (SUCCEEDED(spRecordset.CreateInstance("ADODB.Recordset")))
{
 // Builds the connection string.
 CString strTableName = "Employees", strConnection =

"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=";
 CString strPath = "D:\\Program Files\\Microsoft Visual Studio\\VB98\\NWIND.MDB";
 strConnection += strPath;
 try
 {
 // Loads the table
 if (SUCCEEDED(spRecordset->Open(_variant_t((LPCTSTR)strTableName),
_variant_t((LPCTSTR)strConnection), adOpenStatic, adLockPessimistic, NULL)))
 {
 m_g2antt.BeginUpdate();
 m_g2antt.SetColumnAutoResize(FALSE);
 CColumns columns = m_g2antt.GetColumns();
 long nCount = spRecordset->Fields->Count;
 if (nCount > 0)
 {
 // Adds the columns
 for (long i = 0 ; i < nCount; i++)
 columns.Add(spRecordset->Fields->Item[i]->Name);
 CItems items = m_g2antt.GetItems();
 // Adds the items
 while (!spRecordset->adoEOF)
 {
 long j = 0;
 _variant_t vtI(items.AddItem(spRecordset->Fields->Item[j]->Value));
 for (++j ; j < nCount; j++)
 items.SetCellValue(vtI, _variant_t(j), spRecordset->Fields->Item[j]->Value
);
 spRecordset->MoveNext();
 }
 }
 m_g2antt.EndUpdate();
 }
 }
 catch (_com_error& e)
 {
 AfxMessageBox(e.Description());
 }

}

The sample adds a column for each field in the recordset, and add a new items for each
record. You can use the DataSource property to bind a recordset to the control. The
#import statement imports definitions for ADODB type library, that's used to fill the control.

The following VB.NET sample prevents refreshing the control while adding columns and
items:

With AxG2antt1
 .BeginUpdate()
 With .Columns
 .Add("Column 1")
 .Add("Column 2")
 End With
 With .Items
 Dim iNewItem As Integer
 iNewItem = .AddItem("Item 1")
 .CellValue(iNewItem, 1) = "SubItem 1"
 iNewItem = .AddItem("Item 2")
 .CellValue(iNewItem, 1) = "SubItem 2"
 End With
 .EndUpdate()
End With

The following C# sample prevents refreshing the control while adding columns and items:

axG2antt1.BeginUpdate();
EXG2ANTTLib.Columns columns =axG2antt1.Columns;
columns.Add("Column 1");
columns.Add("Column 2");
EXG2ANTTLib.Items items = axG2antt1.Items;
int iNewItem = items.AddItem("Item 1");
items.set_CellValue(iNewItem, 1, "SubItem 1");
items.InsertItem(iNewItem, "", "Child 1");
iNewItem = items.AddItem("Item 2");
items.set_CellValue(iNewItem, 1, "SubItem 2");
axG2antt1.EndUpdate();

The following VFP sample prevents refreshing the control while adding new columns and
items:

thisform.G2antt1.BeginUpdate()
with thisform.G2antt1.Columns
 .Add("Column 1")
 .Add("Column 2")
endwith

with thisform.G2antt1.Items
 .DefaultItem = .AddItem("Item 1")
 .CellValue(0, 1) = "SubItem 1"
 .DefaultItem = .InsertItem(.DefaultItem,"","Child 1")
 .CellValue(0, 1) = "SubChild 1"
endwith
thisform.G2antt1.EndUpdate()

property G2antt.EnsureOnSort as Boolean
Specifies whether the control ensures that the focused item fits the control's client area,
when the user sorts the items.

Type Description

Boolean
A boolean expression that indicates whether the control
ensures that the focused item fits the control's client area
after sorting the items.

By default, the EnsureOnSort property is True. If the EnsureOnSort property is True, the
control calls the EnsureVisibleItem method to ensure that the focused item (FocusItem
property) fits the control's client area, once items get sorted. Use the SortOrder property
to sort a column. The SortChildren method sorts child items of an item. The EnsureOnSort
property prevents scrolling of the control when child items are sorted.

method G2antt.EnsureVisibleColumn (Column as Variant)

Scrolls the control's content to ensure that the column fits the client area.

Type Description

Column as Variant
A long expression that indicates the index of the column, a
string expression that indicates the column's caption or the
column's key.

The EnsureVisibleColumn method ensures that the given column fits the control's client
area. The EnsureVisibleColumn method has no effect if the column is hidded. Use the
Visible property to show or hide a column. Use the Position property to change the column's
position. Use the EnsureVisibleItem method to ensure that an item fits the control's client
area. Use the ScrollBars property to hide the control's scroll bars. Use the Scroll method to
programmatically scroll the control's content.

property G2antt.EventParam(Parameter as Long) as Variant
Retrieves or sets a value that indicates the current's event parameter.

Type Description

Parameter as Long

A long expression that indicates the index of the parameter
being requested ie 0 means the first parameter, 1 means
the second, and so on. If -1 is used the EventParam
property retrieves the number of parameters. If -2, the
EventParam gives full information about the event, such as
name, identifier, and parameters. Accessing an not-
existing parameter produces an OLE error, such as invalid
pointer (E_POINTER)

Variant A VARIANT expression that specifies the parameter's
value.

The EventParam method is provided to allow changing the event's parameters passed by
reference, even if your environment does not support changing it (uniPaas 1.5 (formerly
known as eDeveloper), DBase, and so on). For instance, Unipaas event-handling logic
cannot update ActiveX control variables by updating the received arguments. The
EventParam(0) retrieves the value of the first parameter of the event, while the
EventParam(1) = 0, changes the value of the second parameter to 0 (the operation is
successfully, only if the parameter is passed by reference). The EventParam(-1) retrieves
the number of the parameters of the current event.

Let's take the event "event KeyDown (KeyCode as Integer, ByVal Shift as Integer)", where
the KeyCode parameter is passed by reference. For instance, put the KeyCode parameter
on 0, and the arrow keys are disabled while the control has the focus.

In most languages you will type something like:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 KeyCode = 0
End Sub

In case your environment does not support events with parameters by reference, you can
use a code like follows:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 Control1.EventParam(0) = 0
End Sub

In other words, the EventParam property provides the parameters of the current event for
reading or writing access, even if your environment does not allow changing parameters by
reference.

Calling the EventParam property outside of an event produces an OLE error, such as
pointer invalid, as its scope was designed to be used only during events.

method G2antt.ExecuteTemplate (Template as String)
Executes a template and returns the result.

Type Description
Template as String A Template string being executed
Return Description

Variant A Variant expression that indicates the result after
executing the Template.

Use the ExecuteTemplate property to returns the result of executing a template file. Use the
Template property to execute a template without returning any result. Use the
ExecuteTemplate property to execute code by passing instructions as a string (template
string).

For instance, the following sample retrieves the beginning date (as string) for the default
bar in the first visible item:

Debug.Print G2antt1.ExecuteTemplate("Items.ItemBar(FirstVisibleItem(),``,1)")

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template or x-script is composed by lines of instructions. Instructions are separated by

"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.

CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property G2antt.ExpandOnDblClick as Boolean
Specifies whether the item is expanded or collapsed if the user dbl clicks the item.

Type Description

Boolean A boolean expression that indicates whether an item is
expanded on dbl click.

Use the ExpandOnDblClick property to disable expanding or collapsing items when user dbl
clicks an item. By default, the ExpandOnDblClick property is True. Use the ExpandOnKeys
property to specify whether the control expands or collapses a node when user presses
arrow keys. The ExpandOnSearch property specifies whether the control expands nodes
when incremental searching is on (AutoSearch property is different than 0) and user types
characters when the control has the focus. The control fires the DblClick event when user
double clicks the control. Use the ExpandItem property to programmatically expand or
collapse an item.

property G2antt.ExpandOnKeys as Boolean
Specifies a value that indicates whether the control expands or collapses a node when user
presses arrow keys.

Type Description

Boolean
A boolean expression that indicates whether the control
expands or collapses a node when user presses arrow
keys.

Use the ExpandOnKeys property to specify whether the control expands or collapses a
node when user presses arrow keys. By default, the ExpandOnKeys property is True. Use
the ExpandOnDblClick property to specify whether the control expands or collapses a node
when user dbl clicks a node. The ExpandOnSearch property specifies whether the control
expands nodes when incremental searching is on (AutoSearch property is different than 0)
and user types characters when the control has the focus. If the ExpandOnKeys property is
False, the user can't expand or collapse the items using the + or - keys on the numeric
keypad. Use the ExpandItem property to programmatically expand or collapse an item.

The following VB sample expands or collapses the focused item if the user presses the + or
- keys on the numeric keypad, and ExpandOnKeys property is False:

Private Sub G2antt1_KeyDown(KeyCode As Integer, Shift As Integer)
 With G2antt1.Items
 If (KeyCode = vbKeyAdd) Then
 .ExpandItem(.FocusItem) = True
 End If
 If (KeyCode = vbKeySubtract) Then
 .ExpandItem(.FocusItem) = False
 End If
 End With
End Sub

The following C++ sample expands or collapses the focused item if the user presses the +
or - keys on the numeric keypad, and ExpandOnKeys property is False:

#include "Items.h"
void OnKeyDownG2antt1(short FAR* KeyCode, short Shift)
{
 CItems items = m_g2antt.GetItems();
 switch (*KeyCode)

 {
 case VK_ADD:
 case VK_SUBTRACT:
 {
 items.SetExpandItem(items.GetFocusItem(), *KeyCode == VK_ADD ? TRUE : FALSE
);
 break;
 }
 }
}

The following VB.NET sample expands or collapses the focused item if the user presses
the + or - keys on the numeric keypad, and ExpandOnKeys property is False:

Private Sub AxG2antt1_KeyDownEvent(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_KeyDownEvent) Handles AxG2antt1.KeyDownEvent
 Select Case (e.keyCode)
 Case Keys.Add
 With AxG2antt1.Items
 .ExpandItem(.FocusItem) = True
 End With
 Case Keys.Subtract
 With AxG2antt1.Items
 .ExpandItem(.FocusItem) = False
 End With
 End Select
End Sub

The following C# sample expands or collapses the focused item if the user presses the + or
- keys on the numeric keypad, and ExpandOnKeys property is False:

private void axG2antt1_KeyDownEvent(object sender,
AxEXG2ANTTLib._IG2anttEvents_KeyDownEvent e)
{
 if ((e.keyCode == Convert.ToInt16(Keys.Add)) || (e.keyCode ==
Convert.ToInt16(Keys.Subtract)))
 axG2antt1.Items.set_ExpandItem(axG2antt1.Items.FocusItem, e.keyCode ==
Convert.ToInt16(Keys.Add));

}

The following VFP sample expands or collapses the focused item if the user presses the +
or - keys on the numeric keypad, and ExpandOnKeys property is False:

*** ActiveX Control Event ***
LPARAMETERS keycode, shift

with thisform.G2antt1.Items
 if (keycode = 107)
 .DefaultItem = .FocusItem
 .ExpandItem(0) = .t.
 else
 if (keycode = 109)
 .ExpandItem(0) = .f.
 endif
 endif
endwith

property G2antt.ExpandOnSearch as Boolean
Expands items automatically while user types characters to search for a specific item.

Type Description

Boolean
A boolean expression that indicates whether the control
expands items while user types characters to search for
items.

Use the ExpandOnSearch property to expand items while user types characters to search
for items using incremental search feature. Use the AutoSearch property to enable or
disable incremental searching feature. Use the AutoSearch property of the Column object to
specify the type of incremental searching being used within the column. The
ExpandOnSearch property has no effect when the AutoSearch property is False. For
instance, if the ExpandOnSearch property is True, the control fires the BeforeExpandItem
event for items that have the ItemHasChildren property is True, when user types
characters.

method G2antt.Export ([Destination as Variant], [Options as Variant])
Exports the control's data to a CSV or HTML format.

Type Description

Destination as Variant

A String expression that specifies the file/format to be
created. The Destination parameter indicates the format
to be created as follows:

"array" indicates that the Export method returns the
control's data as a two-dimensional array
if "htm" or "html", the control returns the HTML format
(including CSS style)
Any file-name that ends on ".htm" or ".html" creates
the file with the HTML format inside
missing, empty, or any other case the Export exports
the control's data in CSV format.

No error occurs, if the Export method can not create the
file.

Options as Variant A String expression that specifies the options to be used
when exporting the control's data, as explained bellow.

Return Description

Variant

The result of the Export method is a:

two-dimensional array, if the Destination is "array".
For instance Export("array","vis") method exports the
control's data as it is displayed into a two-dimensional
array (zero-based). The result includes the columns
headers into the first line, while the rest of lines
contains the control's visible data. For instance,
Export("array", "vis")(1, 5) returns the value of the cell
on the second column and fifth row.
string, that indicates the format being exported. It
could be CSV or HTML format based on the
Destination parameter

The Export method can export the control's DATA to a CSV or HTML format. The Export
method can export a collection of columns from selected, visible, check or all items. By
default, the control export all items, unless there is no filter applied on the control, where
only visible items are exported. No visual appearance is saved in CSV format, instead the

HTML format includes the visual appearance in CSS style.

The following file samples, shows the format the Export method can export the control's
DATA:

CSV format
HTML format

Let's say we have the following control's DATA:

The following screen shot shows the control's DATA in CSV format:

The following screen shot shows the control's DATA in HTML format:

The Options parameter consists a list of fields separated by | character, in the following
order:

1. The first field could be all, vis, sel or chk, to export all, just visible, selected or
checked items. The all option is used, if the field is missing. The all option displays all
items, including the hidden or collapsed items. The vis option includes the visible items
only, not including the child items of a collapsed item, or not-visible items (item's height
is 0). The sel options lists the items being selected. The chk option lists all check and
visible items. If chk option is used, the first column in the columns list should indicate
the index of the column being queried for a check box state.

2. the second field indicates the column to be exported. All visible columns are exported,
if missing. The list of columns is separated by , character, and indicates the index of
the column to be shown on the exported data. The first column in the list indicates the
column being queried, if the option chk is used.

3. the third field indicates the character to separate the fields inside each exported line
[tab character-if missing]. This field is valid, only when exporting to a CSV format

4. the forth field could be ansi or unicode, which indicates the character-set to save the
control's content to Destination. For instance, Export(Destination,"|||unicode") saves
the control's content to destination in UNICODE format (two-bytes per character). By
default, the Export method creates an ANSI file (one-byte character)

The Destination parameter indicates the file to be created where exported date should be
saved. For instance, Export("c:\temp\export.html") exports the control's DATA to
export.html file in HTML format, or Export("","sel|0,1|;") returns the cells from columns 0, 1
from the selected items, to a CSV format using the ; character as a field separator.

The "CSV" refers to any file that:

CSV stands for Comma Separated Value
is plain text using a character set such as ASCII, Unicode,
consists of records (typically one record per line),
with the records divided into fields separated by delimiters (typically a single reserved
character such as tab, comma, or semicolon; sometimes the delimiter may include
optional spaces),
where every record has the same sequence of fields

The "HTML" refers to any file that:

HTML stands for HyperText Markup Language.
is plain text using a character set such as ASCII, Unicode
It's the way web pages are encoded to handle things like bold, italics and even color
text red.

You can use the Copy/CopyTo to export the control's view to
clipboard/EMF/BMP/JPG/PNG/GIF or PDF format.

property G2antt.FilterBarBackColor as Color
Specifies the background color of the control's filter bar.

Type Description

Color A color expression that defines the background color for
description of the control's filter.

Use the FilterBarForeColor and FilterBarBackColor properties to define the colors used to
paint the description for control's filter. Use the FilterBarHeight property to hide the control's
filter bar header. Use the BackColor property to specify the control's background color. Use
the BackColorLevelHeader property to specify the background color of the header when it
displays multiple levels. Use the BackColorSortBar property to specify the background color
of the control's sort bar.

property G2antt.FilterBarCaption as String
Specifies the filter bar's caption.

Type Description

String A string value that defines the expression to display the
control's filter bar.

By default, the FilterBarCaption property is empty. You can use the FilterBarCaption
property to define the way the filter bar's caption is being displayed. The FilterBarCaption is
displayed on the bottom side of the control where the control's filter bar is shown. While the
FilterBarCaption property is empty, the control automatically builds the caption to be
displayed on the filter bar from all columns that participates in the filter using its name and
values. For instance, if the control filters items based on the columns "EmployeeID" and
"ShipVia", the control's filter bar caption would appear such as "[EmployeeID] = '...' and
[ShipVia] = '...'". The FilterBarCaption property supports expressions as explained bellow.

For instance:

"no filter", shows no filter caption all the time

"" displays no filter bar, if no filter is applied, else it displays the current filter

"`<r>` + value", displays the current filter caption aligned to the right. You can include
the exFilterBarShowCloseOnRight flag into the FilterBarPromptVisible property to
display the close button aligned to the right

"value replace ` and ` with `<fgcolor=FF0000> and </fgcolor>`", replace the AND
keyword with a different foreground color

"value replace ` and ` with `<off 4> and </off>` replace `|` with ` <off 4>or</off> `
replace ` ` with ` `", replaces the AND and | values

"value replace `[` with `<bgcolor=000000><fgcolor=FFFFFF> ` replace `]` with `
</bgcolor></fgcolor>`", highlights the columns being filtered with a different
background/foreground colors.

"value + ` ` + available", displays the current filter, including all available columns to be
filtered

"allui" displays all available columns

"((allui + `<fgcolor=808080>` + (matchitemcount < 0 ? ((len(allui) ? `` : ``) + `<r>` +
abs(matchitemcount + 1) + ` result(s)`) : (`<r><fgcolor=808080>`+ itemcount + `
item(s)`))) replace `[` with `<bgcolor=000000><fgcolor=FFFFFF> ` replace
`]` with ` </bgcolor></fgcolor>` replace `[<s>` with `<bgcolor=C0C0C0>
<fgcolor=FFFFFF> ` replace `</s>]` with ` </bgcolor></fgcolor>`)" displays all
available columns to be filtered with different background/foreground colors including
the number of items/results

Use the FilterBarForeColor and FilterBarBackColor properties to define the colors used to
paint the description for control's filter. Use the FilterBarHeight property to specify the
height of the control's filter bar. Use the FilterBarFont property to specify the font for the
control's filter bar. Use the Description property to define predefined strings in the filter bar
caption. The VisibleItemCount property specifies the number of visible items in the list. The
MatchItemCount property returns the number of matching items. The FilterBarPromptVisible
property specifies whether how/where the control's filter/prompt is shown.

The FilterBarCaption method supports the following keywords, constants, operators and
functions:

value or current keyword returns the current filter as a string. At runtime the value
may return a string such as "[EmployeeID] = '4| 5| 6' and [ShipVia] =
1", so the control automatically applies HTML format, which you can
change it. For instance, "upper(value)" displays the caption in uppercase or "value
replace `` with `<fgcolor=808080>` replace `` with `</fgcolor>`" displays the
column's name with a different foreground color.
itemcount keyword returns the total number of items as indicated by ItemCount
property. At runtime the itemcount is a positive integer that indicates the count of all
items. For instance, "value + `<r><fgcolor=808080>Total: ` + itemcount" includes in the
filter bar the number of items aligned to the right.
visibleitemcount keyword returns the number of visible items as indicated by
VisibleItemCount property. At runtime, the visibleitemcount is a positive integer if no
filter is applied, and negative if a filter is applied. If positive, it indicates the number of
visible items. The visible items does not include child items of a collapsed item. If
negative, a filter is applied, and the absolute value minus one, indicates the number of
visible items after filter is applied. 0 indicates no visible items, while -1 indicates that a
filter is applied, but no item matches the filter criteria. For instance, "value + `<r>
<fgcolor=808080>` + (visibleitemcount < 0 ? (`Result: ` + (abs(visibleitemcount) - 1)
) : (`Visible: ` + visibleitemcount))" includes "Visible: " plus number of visible items, if
no filter is applied or "Result: " plus number of visible items, if filter is applied, aligned
to the right
matchitemcount keyword returns the number of items that match the filter as
indicated by MatchItemCount property. At runtime, the matchitemcount is a positive
integer if no filter is applied, and negative if a filter is applied. If positive, it indicates the
number of items within the control (ItemCount property). If negative, a filter is applied,
and the absolute value minus one, indicates the number of matching items after filter is
applied. A matching item includes its parent items, if the control's FilterInclude property
allows including child items. 0 indicates no visible items, while -1 indicates that a filter
is applied, but no item matches the filter criteria. For instance, "value + `<r>
<fgcolor=808080>` + (matchitemcount < 0 ? (`Result: ` + (abs(matchitemcount) - 1)

) : (`Visible: ` + matchitemcount))" includes "Visible: " plus number of visible items, if
no filter is applied or "Result: " plus number of macthing items, if filter is applied,
aligned to the right
leafitemcount keyword returns the number of leaf items. A leaf item is an item with no
child items. At runtime, the leafitemcount is a positive number that computes the
number of leaf items (expanded or collapsed). For instance, the "value + `<r>
<fgcolor=808080>` + leafitemcount" displays the number of leaf items aligned
to the right with a different font and foreground color.
promptpattern returns the pattern in the filter bar's prompt, as a string. The
FilterBarPromptPattern specifies the pattern for the filter prompt. The control's filter
bar prompt is visible, if the exFilterBarPromptVisible flag is included in the
FilterBarPromptVisible property.
available keyword returns the list of columns that are not currently part of the control's
filter, but are available to be filtered. A column is available to be filtered, if the
DisplayFilterButton property of the Column object, is True. At runtime, the available
keyword may return a string such as "<fgcolor=C0C0C0>[<s>OrderDate</s>]
<fgcolor> </fgcolor>[<s>RequiredDate</s>]<fgcolor> </fgcolor>
[<s>ShippedDate</s>]<fgcolor> </fgcolor>[<s>ShipCountry</s>]<fgcolor> </fgcolor>
[<s>Select</s>]</fgcolor>", so the control automatically applies HTML format, which
you can change it. For instance, "value + ` ` + available", displays the current filter,
including all available columns to be filtered. For instance, the "value + `<r>` + available
replace `C0C0C0` with `FF0000`" displays the available columns aligned to the right
with a different foreground color.
allui keyword returns the list of columns that are part of the current filter and available
columns to be filtered. A column is available to be filtered, if the DisplayFilterButton
property of the Column object, is True. At runtime, the allui keyword may return a string
such as "[EmployeeID] = '4| 5| 6'<fgcolor> </fgcolor><fgcolor=C0C0C0>
[<s>OrderDate</s>]</fgcolor><fgcolor> </fgcolor><fgcolor=C0C0C0>
[<s>RequiredDate</s>]</fgcolor><fgcolor> </fgcolor><fgcolor=C0C0C0>
[<s>ShippedDate</s>]</fgcolor><fgcolor> </fgcolor>[ShipVia] =
1<fgcolor> </fgcolor><fgcolor=C0C0C0>[<s>ShipCountry</s>]</fgcolor>
<fgcolor> </fgcolor><fgcolor=C0C0C0>[<s>Select</s>]</fgcolor>", so the control
automatically applies HTML format, which you can change it. For instance, "allui",
displays the current filter, including all available columns to be filtered. For instance, the
"((allui + `<fgcolor=808080>` + (matchitemcount < 0 ? ((len(allui) ? `` : ``) + `<r>` +
abs(matchitemcount + 1) + ` result(s)`) : (`<r><fgcolor=808080>`+ itemcount + `
item(s)`))) replace `[` with `<bgcolor=000000><fgcolor=FFFFFF> ` replace
`]` with ` </bgcolor></fgcolor>` replace `[<s>` with `<bgcolor=C0C0C0>
<fgcolor=FFFFFF> ` replace `</s>]` with ` </bgcolor></fgcolor>`)" displays all
available columns to be filtered with different background/foreground colors including
the number of items/results
all keyword returns the list of all columns (visible or hidden) no matter if the
DisplayFilterButton property is True or False. At runtime, the all keyword may return a

string such as "<fgcolor=C0C0C0>[<s>OrderID</s>]</fgcolor><fgcolor> </fgcolor>
[EmployeeID] = '4| 5| 6'<fgcolor> </fgcolor><fgcolor=C0C0C0>
[<s>OrderDate</s>]</fgcolor><fgcolor> </fgcolor><fgcolor=C0C0C0>
[<s>RequiredDate</s>]</fgcolor><fgcolor>", so the control automatically applies
HTML format, which you can change it. For instance, "all", displays the current filter,
including all other columns. For instance, the "((all + `<fgcolor=808080>` + (
matchitemcount < 0 ? ((len(allui) ? `` : ``) + `<r>` + abs(matchitemcount + 1) + `
result(s)`) : (`<r><fgcolor=808080>`+ itemcount + ` item(s)`))) replace `[` with
`<bgcolor=000000><fgcolor=FFFFFF> ` replace `]` with ` </bgcolor>
</fgcolor>` replace `[<s>` with `<bgcolor=C0C0C0><fgcolor=FFFFFF> ` replace
`</s>]` with ` </bgcolor></fgcolor>`)" displays all columns with different
background/foreground colors including the number of items/results

Also, the FilterBarCaption property supports predefined constants and operators/functions
as described here.

Also, the FilterBarCaption property supports HTML format as described here:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

about:blank

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.

& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property G2antt.FilterBarDropDownHeight as Double
Specifies the height of the drop down filter window proportionally with the height of the
control's list.

Type Description

Double
A double expression that indicates the height of the drop
down filter window. The meaning of the value is explained
bellow.

By default, the FilterBarDropDownHeight property is 0.5. It means, the height of the drop
down filter window is half of the height of the control's list. Use the
FilterBarDropDownHeight property to specify the height of the drop down window filter
window. Use the DisplayFilterButton property to display a filter button to the column's
caption. Use the FilterBarDropDownWidth property to specify the width of the drop down
filter window. Use the Description property to define predefined strings in the filter bar. Use
the FilterInclude property to specify whether the child items should be included to the list
when the user applies the filter. Use the ShowFilter method to show programmatically the
column's drop down filter window.

If the FilterBarDropDownHeight property is negative, the absolute value of the
FilterBarDropDownHeight property indicates the height of the drop down filter window in
pixels. In this case, the height of the drop down filter window is not proportionally with the
height of the control's list area. For instance, the following sample specifies the height of the
drop down filter window being 100 pixels:

With G2antt1
 .FilterBarDropDownHeight = -100
End With

If the FilterBarDropDownHeight property is greater than 0, it indicates the height of the drop
down filter window proportionally with the height of the control's height list. For instance, the
following sample specifies the height of the drop down filter window being the same with
the height of the control's list area:

With G2antt1
 .FilterBarDropDownHeight = 1
End With

The drop down filter window always include an item.

property G2antt.FilterBarFont as IFontDisp
Retrieves or sets the font for control's filter bar.

Type Description

IFontDisp A font object that indicates the font used to paint the
description for control's filter

Use the FilterBarFont property to specify the font for the control's filter bar object. Use the
Font property to set the control's font. Use the FilterBarHeight property to specify the height
of the filter bar. Use the FilterBarCaption property to define the control's filter bar caption.
Use the Refresh method to refresh the control.

property G2antt.FilterBarForeColor as Color
Specifies the foreground color of the control's filter bar.

Type Description

Color A color expression that defines the foreground color of the
description of the control's filter.

Use the FilterBarForeColor and FilterBarBackColor properties to define colors used to paint
the description of the control's filter. Use the FilterBarFont property to specify the filter bar's
font. Use the FilterBarCaption property to specify the caption of the control's filter bar.

property G2antt.FilterBarHeight as Long
Specifies the height of the control's filter bar. If the value is less than 0, the filter bar is
automatically resized to fit its description.

Type Description

Long A long expression that indicates the height of the filter bar
status.

The filter bar status defines the control's filter description. If the FilterBarHeight property is
less than 0 the control automatically updates the height of the filter's description to fit in the
control's client area. If the FilterBarHeight property is zero the filter's description is hidden.
If the FilterBarHeight property is grater than zero it defines the height in pixels of the filter's
description. Use the ClearFilter method to clear the control's filter. Use the FilterBarCaption
property to define the control's filter bar caption. Use the FilterBarFont property to specify
the font for the control's filter bar. Use the FilterBarDropDownWidth property to specify the
width of the drop down filter window. Use the FilterBarDropDownHeight to specify the
height of the drop down filter window. Use the ShowFilter method to show programmatically
the column's drop down filter window.

property G2antt.FilterBarPrompt as String
Specifies the caption to be displayed when the filter pattern is missing.

Type Description

String

A string expression that indicates the HTML caption being
displayed in the filter bar, when filter prompt pattern is
missing. The FilterBarPromptPattern property specifies
the pattern to filter the list using the filter prompt feature.

By default, the FilterBarPrompt property is "<i><fgcolor=808080>Start Filter...</fgcolor>
</i>". The FilterBarPromptPattern property specifies the pattern to filter the list using the
filter prompt feature. Changing the FilterBarPrompt property won't change the current filter.
The FilterBarPromptColumns property specifies the list of columns to be used when filtering
by prompt. The DisplayFilterButton property specifies whether the column's header displays
a filter button. The VisibleItemCount property retrieves the number of visible items in the list.
The control fires the FilterChanging event just before applying the filter, and FilterChange
once the list gets filtered. Use the FilterBarCaption property to change the caption in the
filter bar once a new filter is applied. The FilterBarFont property specifies the font to be
used in the filter bar. The FilterBarBackColor property specifies the background color or the
visual aspect of the control's filter bar. The FilterBarForeColor property specifies the
foreground color or the control's filter bar.

The FilterBarPrompt property supports HTML format as described here:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the

about:blank

anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part

of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the

color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

The FilterBarPrompt property has effect only if:

FilterBarPromptVisible property is True
FilterBarPromptPattern property is Empty.

property G2antt.FilterBarPromptColumns as Variant
Specifies the list of columns to be used when filtering using the prompt.

Type Description

Variant

A long expression that indicates the index of the column to
apply the filter prompt, a string expression that specifies
the list of columns (indexes) separated by comma to apply
the filter prompt, or a safe array of long expression that
specifies the indexes of the columns to apply the filter. The
filter prompt feature allows you to filter the items as you
type while the filter bar is visible on the bottom part of the
list area.

By default, the FilterBarPromptColumns property is -1. If the FilterBarPromptColumns
property is -1, the filter prompt is applied for all columns, visible or hidden. Use the
FilterBarPromptColumns property to specify the list of columns to apply the filter prompt
pattern. The FilterBarPromptVisible property specifies whether the filter prompt is visible or
hidden. Use the FilterBarPrompt property to specify the HTML caption being displayed in
the filter bar when the filter pattern is missing. The FilterBarPromptPattern property
specifies the pattern to filter the list. Changing the FilterBarPromptPattern property does
not require calling the ApplyFilter method to apply the new filter, only if filtering is required
right a way. The FilterBarPromptType property specifies the type of filtering when the user
edits the prompt in the filter bar.

property G2antt.FilterBarPromptPattern as String
Specifies the pattern for the filter prompt.

Type Description

String A string expression that specifies the pattern to filter the
list.

By default, the FilterBarPromptPattern property is empty. If the FilterBarPromptPattern
property is empty, the filter bar displays the FilterBarPrompt property, if the
FilterBarPromptVisible property is True. The FilterBarPromptPattern property indicates the
patter to filter the list. The pattern may include wild characters if the FilterBarPromptType
property is exFilterPromptPattern. The FilterBarPromptColumns specifies the list of columns
to be used when filtering. Changing the FilterBarPromptPattern property does not require
calling the ApplyFilter method to apply the new filter, only if filtering is required right a way.

property G2antt.FilterBarPromptType as FilterPromptEnum
Specifies the type of the filter prompt.

Type Description

FilterPromptEnum A FilterPromptEnum expression that specifies how the
items are being filtered.

By default, the FilterBarPromptType property is exFilterPromptContainsAll. The filter prompt
feature allows you to filter the items as you type while the filter bar is visible on the bottom
part of the list area. The Filter prompt feature allows at runtime filtering data on hidden
columns too. Use the FilterBarPromptVisible property to show the filter prompt. Use the
FilterBarPrompt property to specify the HTML caption being displayed in the filter bar when
the filter pattern is missing. The FilterBarPromptPattern property specifies the pattern to
filter the list. Changing the FilterBarPromptPattern property does not require calling the
ApplyFilter method to apply the new filter, only if filtering is required right a way. The
FilterBarPromptColumns property specifies the list of columns to be used when filtering by
prompt. The DisplayFilterButton property specifies whether the column's header displays a
filter button. The VisibleItemCount property retrieves the number of visible items in the list.
The control fires the FilterChanging event just before applying the filter, and FilterChange
once the list gets filtered. Use the FilterBarCaption property to change the caption in the
filter bar once a new filter is applied.

The FilterBarPromptType property supports the following values:

exFilterPromptContainsAll, The list includes the items that contains all specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptContainsAny, The list includes the items that contains any of specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptStartWith, The list includes the items that starts with any specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptEndWith, The list includes the items that ends with any specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptPattern, The filter indicates a pattern that may include wild characters
to be used to filter the items in the list. The FilterBarPromptPattern property may

include wild characters as follows:
'?' for any single character
'*' for zero or more occurrences of any character
'#' for any digit character
' ' space delimits the patterns inside the filter

property G2antt.FilterBarPromptVisible as FilterBarVisibleEnum
Shows or hides the control's filter bar including filter prompt.

Type Description

FilterBarVisibleEnum A FilterBarVisibleEnum expression that defines the way
the control's filter bar is shown.

By default, The FilterBarPromptVisible property is exFilterBarHidden. The filter prompt
feature allows you to filter the items as you type while the filter bar is visible on the bottom
part of the list area. The Filter prompt feature allows at runtime filtering data on hidden
columns too. Use the FilterBarPromptVisible property to show the filter prompt. Use the
FilterBarPrompt property to specify the HTML caption being displayed in the filter bar when
the filter pattern is missing. The FilterBarPromptPattern property specifies the pattern to
filter the list. Changing the FilterBarPromptPattern property does not require calling the
ApplyFilter method to apply the new filter, only if filtering is required right a way. The
FilterBarCaption property defines the caption to be displayed on the control's filter bar. The
FilterBarPromptType property specifies the type of filtering when the user edits the prompt
in the filter bar. The FilterBarPromptColumns property specifies the list of columns to be
used when filtering by prompt. The DisplayFilterButton property specifies whether the
column's header displays a filter button. The VisibleItemCount property retrieves the
number of visible items in the list. The control fires the FilterChanging event just before
applying the filter, and FilterChange once the list gets filtered.

The following screen show shows the filter prompt:

The following screen show shows the list once the user types "london":

property G2antt.FilterCriteria as String
Retrieves or sets the filter criteria.

Type Description
String A string expression that indicates the filter criteria.

By default, the FilterCriteria property is empty. Use the FilterCriteria property to specify
whether you need to filter items using OR, NOT operators between columns. If the
FilterCriteria property is empty, or not valid, the filter uses the AND operator between
columns. Use the FilterCriteria property to specify how the items are filtered.

The FilterCriteria property supports the following operators:

not operator (unary operator)
and operator (binary operator)
or operator (binary operator)

Use the (and) parenthesis to define the order execution in the clause, if case. The
operators are g2antted in their priority order. The % character precedes the index of the
column (zero based), and indicates the column. For instance, %0 or %1 means that OR
operator is used when both columns are used, and that means that you can filter for values
that are in a column or for values that are in the second columns. If a column is not
g2antted in the FilterCriteria property, and the user filters values by that column, the AND
operator is used by default. For instance, let's say that we have three columns, and
FilterCriteria property is "%0 or %1". If the user filter for all columns, the filter clause is
equivalent with (%0 or %1) and %2, and it means all that match the third column, and is in
the first or the second column.

Use the Filter and FilterType properties to define a filter for a column. The ApplyFilter
method should be called to update the control's content after changing the Filter or
FilterType property, in code! Use the DisplayFilterButton property to display a drop down
button to filter by a column.

property G2antt.FilterInclude as FilterIncludeEnum
Specifies the items being included after the user applies the filter.

Type Description

FilterIncludeEnum A FilterIncludeEnum expression that indicates the items
being included when the filter is applied.

By default, the FilterInclude property is exItemsWithoutChilds, which specifies that only
items (and parent-items) that match the filter are being displayed. Use the FilterInclude
property to specify whether the child- items should be displayed when the user applies the
filter. Use the Filter property and FilterType property to specify the column's filter. Use the
ApplyFilter to apply the filter at runtime. Use the ClearFilter method to clear the control's
filter. Use the FilterCriteria property to filter items using the AND, OR and NOT operators.
Use the FilterBarPromptVisible property to show the control's filter-prompt, that allows you
to filter items as you type.

The following table shows items to display, when filter for "A" items, using different values
for FilterInclude property:

no filter exItemsWithoutChilds
0

exItemsWithChilds
1

exRootsWithoutChilds
2

exRootsWithChilds
3

property G2antt.FocusColumnIndex as Long
Specifies the index of focused column.

Type Description

Long A long expression that indicates the index of the focused
column.

Use the FocusColumnIndex property to determine the focused column. Use the FocusItem
property to determine the focused item. Use the TreeColumnIndex property to set the
column that displays the hierarchy. Use the SearchColumnIndex property to set the index of
the searching column. The SelectColumnInner property indicates the index of an inner cell
that has the focus.

The control fires the FocusChanged event when the user changes:

the focused item
the focused column or an inner cell gets the focus.

property G2antt.Font as IFontDisp

Retrieves or sets the control's font.

Type Description
IFontDisp A Font object used to paint the items.

Use the Font property to change the control's font . Use the FilterBarFont property to
assign a different font for the control's filter bar. Use the Refresh method to refresh the
control. Use the BeginUpdate and EndUpdate method to maintain performance while adding
new columns or items.

The following VB sample assigns by code a new font to the control:

With G2antt1
 With .Font
 .Name = "Tahoma"
 End With
 .Refresh
End With

The following C++ sample assigns by code a new font to the control:

COleFont font = m_g2antt.GetFont();
font.SetName("Tahoma");
m_g2antt.Refresh();

the C++ sample requires definition of COleFont class (#include "Font.h")

The following VB.NET sample assigns by code a new font to the control:

With AxG2antt1
 Dim font As System.Drawing.Font = New System.Drawing.Font("Tahoma", 10,
FontStyle.Regular, GraphicsUnit.Point)
 .Font = font
 .CtlRefresh()
End With

The following C# sample assigns by code a new font to the control:

System.Drawing.Font font = new System.Drawing.Font("Tahoma", 10, FontStyle.Regular);

axG2antt1.Font = font;
axG2antt1.CtlRefresh();

The following VFP sample assigns by code a new font to the control:

with thisform.G2antt1.Object
 .Font.Name = "Tahoma"
 .Refresh()
endwith

The following Template sample assigns by code a new font to the control:

Font
{
 Name = "Tahoma"
}

property G2antt.ForeColor as Color

Retrieves or sets a value that indicates the control's foreground color.

Type Description

Color A color expression that indicates the control's foreground
color.

The ForeColor property changes the foreground color of the control's scrolled area. The
ExG2antt control can group the columns into two categories: locked and unlocked. The
Locked category contains all the columns that are fixed to the left area of the client area.
These columns cannot be scrolled horizontally. Use the CountLockedColumns to specify the
number of locked columns. The unlocked are contains the columns that can be scrolled
horizontally. To change the background color of the control's locked area use
BackColorLock property. Use the CellForeColor property to specify the cell's foreground
color. Use the ItemForeColor property to specify the item's foreground color.

property G2antt.ForeColorHeader as Color
Specifies the header's foreground color.

Type Description

Color A color expression that indicates the foreground color for
control's header.

Use the BackColorHeader and ForeColorHeader properties to customize the control's
header. If the Def(exHeaderForeColor) property is not zero, it defines the foreground color
to paint the column's caption in the header area. Use the Font property to change the
control's font. Use the Add method to add new columns to the control. Use the
HeaderVisible property to hide the control's header bar.

property G2antt.ForeColorLock as Color

Retrieves or sets a value that indicates the control's foreground color for the locked area.

Type Description

Color A color expression that indicates the control's foreground
color for the locked area.

The ExG2antt control can group the control columns into two categories: locked and
unlocked. The Locked category contains all the columns that are fixed to the left area of the
client area. These columns cannot be scrolled horizontally. Use the CountLockedColumns to
specify the number of locked columns. The unlocked are contains the columns that can be
scrolled horizontally. To change the background color of the control's locked area use
BackColorLock property.

property G2antt.ForeColorSortBar as Color
Retrieves or sets a value that indicates the sort bar's foreground color.

Type Description

Color A color expression that indicates the foreground color of
the control's sort bar.

Use the ForeColorSortBar property to specify the foreground color of the caption in the
control's sort bar. Use the SortBarVisible property to show the control's sort bar. Use the
SortBarCaption property to specify the caption of the sort bar, when the control's sort bar
contains no columns. Use the BackColorSortBar property to specify the background color
of the control's sort bar. Use the BackColorSortBarCaption property to specify the caption's
background color in the control's sort bar. Use the ForeColor property to specify the
control's foreground color. Use the ForeColorHeader property to specify the background
color of the control's header bar.

method G2antt.FormatABC (Expression as String, [A as Variant], [B as
Variant], [C as Variant])
Formats the A,B,C values based on the giving expression and returns the result.

Type Description
Expression as String A String that defines the expression to be evaluated.

A as Variant A VARIANT expression that indicates the value of the A
keyword.

B as Variant A VARIANT expression that indicates the value of the B
keyword.

C as Variant A VARIANT expression that indicates the value of the C
keyword.

Return Description

Variant A VARIANT expression that indicates the result of the
evaluation the G2antt.

The FormatABC method formats the A,B,C values based on the giving expression and
returns the result.

For instance:

"A + B + C", adds / concatenates the values of the A, B and C
"value MIN 0 MAX 99", limits the value between 0 and 99
"value format ``", formats the value with two decimals, according to the control's panel
setting
"date(`now`)" returns the current time as double

The FormatABC method supports the following keywords, constants, operators and
functions:

A or value keyword, indicates a variable A whose value is giving by the A parameter
B keyword, indicates a variable B whose value is giving by the B parameter
C keyword, indicates a variable C whose value is giving by the C parameter

This property/method supports predefined constants and operators/functions as described
here.

property G2antt.FormatAnchor(New as Boolean) as String
Specifies the visual effect for anchor elements in HTML captions.

Type Description

New as Boolean Boolean expression that indicates whether to specify the
anchors never clicked or anchors being clicked.

String A String expression that indicates the HTMLformat to
apply to anchor elements.

By default, the FormatAnchor(True) property is "<u><fgcolor=0000FF>#" that indicates
that the anchor elements (that were never clicked) are underlined and shown in light blue.
Also, the FormatAnchor(False) property is "<u><fgcolor=000080>#" that indicates that the
anchor elements are underlined and shown in dark blue. You can use the <a> anchor
elements to insert hyperlinks to cells, bars or links. Use the CellValue property to specify
the cell's caption. Use the ItemBar(,,exBarCaption) property to specify the bar's caption.
Use the Link(,exLinkText) property to specify a caption to be displayed on the link.

The visual effect is applied to the anchor elements, if the FormatAnchor property is not
empty. For instance, if you want to do not show with a new effect the clicked anchor
elements, you can use the FormatAnchor(False) = "", that means that the clicked or not-
clicked anchors are shown with the same effect that's specified by FormatAnchor(True). An
anchor is a piece of text or some other object (for example an image) which marks the
beginning and/or the end of a hypertext link. The <a> element is used to mark that piece of
text (or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick event to notify that the user clicks an anchor element. This
event is fired only if prior clicking the control it shows the hand cursor. The AnchorClick
event carries the identifier of the anchor, as well as application options that you can specify
in the anchor element. The hand cursor is shown when the user hovers the mouse on the
anchor elements.

method G2antt.FreezeEvents (Freeze as Boolean)
Prevents the control to fire any event.

Type Description

Freeze as Boolean A Boolean expression that specifies whether the control'
events are froze or unfroze

The FreezeEvents(True) method freezes the control's events until the FreezeEvents(False)
method is called. You can use the FreezeEvents method to improve performance of the
control while loading data into it. For instance, the Change event is fired anytime the cell's
value is changed (CellValue property), so during init time, you can call FreezeEvents(True)
before, and FreezeEvents(False) after initialization is done.

The following samples show how you can lock the events while adding columns, items to
the control:

' Change event - Occurs when the user changes the cell's content.
Private Sub G2antt1_Change(ByVal Item As EXG2ANTTLibCtl.HITEM,ByVal ColIndex As
Long,NewValue As Variant)
 With G2antt1
 Debug.Print("Change event")
 End With
End Sub

With G2antt1
 .FreezeEvents True
 .BeginUpdate
 With .Columns
 .Add("C1").Def(exCellHasCheckBox) = True
 .Add "C2"
 End With
 With .Items
 .CellValue(.AddItem("SubItem 1.1"),1) = "SubItem 1.2"
 .CellValue(.AddItem("SubItem 2.1"),1) = "SubItem 2.2"
 End With
 .EndUpdate
 .FreezeEvents False
End With

property G2antt.FullRowSelect as CellSelectEnum
Enables full-row selection in the control.

Type Description

CellSelectEnum A CellSelectEnum expression that indicates whether the
entire row is selected.

Use the FullRowSelect property to determine when the item or cell is selected. If the
FullRowSelect property is exColumnSel, the SelectColumnIndex property determines the
selected column. By default, the FullRowSelect property is exItemSel, and so the entire
item is selected. If the FullRowSelect property is exRectSel property, the user can selects a
range of cells by dragging. Use the Selected property to determine whether a cell is
selected, if the FullRowSelect property is exRectSel. Use the SingleSel property to allow
multiple items/cells in the selection. For instance, the FullRowSelect = True (boolean value
) is the same as FullRowSelect = exItemSel, and FullRowSelect = False is the same as
FullRowSelect = exColumnSel.

The following VB sample copies the selected cells to the clipboard, if the FullRowSelect
property is exRectSel:

Private Sub G2antt1_SelectionChanged()
 Dim strData As String
 With G2antt1
 Dim i As Long, h As HITEM
 For i = 0 To .Items.SelectCount - 1
 h = .Items.SelectedItem(i)
 Dim c As Column
 For Each c In .Columns
 If (c.Selected) Then
 strData = strData + .Items.CellCaption(h, c.Index) + vbTab
 End If
 Next
 strData = strData + vbCrLf
 Next
 End With
 Clipboard.Clear
 Clipboard.SetText strData
End Sub

The following C++ sample copies the selected cells to the clipboard, if the FullRowSelect
property is exRectSel:

#include "Column.h"
#include "Columns.h"
#include "Items.h"
void OnSelectionChangedG2antt1()
{
 CString strData;
 CColumns cols = m_g2antt.GetColumns();
 CItems items = m_g2antt.GetItems();
 for (long i = 0; i < items.GetSelectCount(); i++)
 {
 COleVariant vtItem(items.GetSelectedItem(i));
 for (long j = 0; j < cols.GetCount(); j++)
 {
 COleVariant vtColumn(j);
 if (cols.GetItem(vtColumn).GetSelected())
 strData += items.GetCellCaption(vtItem, vtColumn) + "\t";
 }
 strData += "\r\n";
 }
 if (OpenClipboard())
 {
 EmptyClipboard();
 HGLOBAL hGlobal = GlobalAlloc(GMEM_MOVEABLE | GMEM_DDESHARE,
strData.GetLength());
 CopyMemory(GlobalLock(hGlobal), strData.operator LPCTSTR(),
strData.GetLength());
 GlobalUnlock(hGlobal);
 SetClipboardData(CF_TEXT, hGlobal);
 CloseClipboard();
 }

}

The following VB.NET sample copies the selected cells to the clipboard, if the
FullRowSelect property is exRectSel:

Private Sub AxG2antt1_SelectionChanged(ByVal sender As Object, ByVal e As
System.EventArgs) Handles AxG2antt1.SelectionChanged
 Dim strData As String = ""
 With AxG2antt1
 Dim i As Integer, h As Integer, j As Integer
 For i = 0 To .Items.SelectCount - 1
 h = .Items.SelectedItem(i)
 For j = 0 To .Columns.Count - 1
 Dim c As EXG2ANTTLib.Column = .Columns(j)
 If (c.Selected) Then
 strData = strData + .Items.CellCaption(h, c.Index) + vbTab
 End If
 Next
 strData = strData + vbCrLf
 Next
 End With
 Clipboard.Clear()
 Clipboard.SetText(strData)
End Sub

The following C# sample copies the selected cells to the clipboard, if the FullRowSelect
property is exRectSel:

private void axG2antt1_SelectionChanged(object sender, System.EventArgs e)
{
 string strData = "";
 for (int i = 0; i < axG2antt1.Items.SelectCount; i++)
 {
 for (int j = 0; j < axG2antt1.Columns.Count; j++)
 if (axG2antt1.Columns[j].Selected)
 {
 string cellData =
axG2antt1.Items.get_CellCaption(axG2antt1.Items.get_SelectedItem(i), j);

 strData += cellData + "\t";
 }
 strData += "\r\n";
 }
 Clipboard.Clear();
 Clipboard.SetText(strData);
}

The following VFP sample copies the selected cells to the clipboard, if the FullRowSelect
property is exRectSel (SelectionChanged event):

*** ActiveX Control Event ***

with thisform.G2antt1.Items
 local strData, i, j, cols
 strData = ""
 cols = thisform.G2antt1.Columns
 for i = 0 to .SelectCount - 1
 .DefaultItem = .SelectedItem(i)
 for j = 0 to cols.Count - 1
 if (cols.Item(j).Selected)
 strData = strData + .CellCaption(0,j) + chr(9)
 endif
 next
 strData = strData + chr(13) + chr(10)
 next
 _CLIPTEXT = strData
endwith

method G2antt.GetItems (Options as Variant)
Gets the collection of items into a safe array,

Type Description

Options as Variant

Specifies a long expression as follows:

if 0, the result is a two-dimensional array with cell's
values. The list includes the collapsed items, and the
items are included as they are displayed (sorted,
filtered). This option exports the values of cells. This
option exports the values of the cells (CellValue
property).
if 1, the result the one-dimensional array of handles of
items in the control as they are displayed (sorted,
filtered). The list does not include the collapsed
items. For instance, the first element in the array
indicates the handle of the first item in the control,
which can be different that FirstVisibleItem result,
even if the control is vertically scrolled. This option
exports the handles of the items. For instance, you
can use the ItemToIndex property to get the index of
the item based on its handle.
else if other, and the number of columns is 1, the
result is a one-dimensional array that includes the
items and its child items as they are displayed (
sorted, filtered). In this case, the array may contains
other arrays that specifies the child items. The list
includes the collapsed items, and the items are
included as they are displayed (sorted, filtered). This
option exports the values of the cells (CellValue
property)

If missing, the Options parameter is 0. If the control
displays no items, the result is an empty object
(VT_EMPTY).

Return Description

Variant

A safe array that holds the items in the control. If the
control has a single column, the GetItems returns a single
dimension array (object[]), else The safe array being
returned has two dimensions (object[,]). The first

dimension holds the collection of columns, and the second
holds the cells.

The GetItems method gets a safe array that holds the items in the control. The GetItems
method gets the items as they are displayed, sorted and filtered. If the Options parameter
is 0, the GetItems method collect the child items as well, no matter if the parent item is
collapsed or expanded. Use the PutItems method to load an array to the control. The
method returns nothing if the control has no columns or items. Use the Items property to
access the items collection. You can use the GetItems(1) method to get the list of handles
for the items as they are displayed, sorted and filtered. The GetItems method returns an
empty expression (VT_EMPTY), if there is no items in the result.

/NET Assembly:

The following C# sample converts the returned value to a object[] when the control contains
a single column:

 object[] Items = (object[])exg2antt1.GetItems()

or when the control contains multiple columns, the syntax is as follows:

 object[,] Items = (object[,])exg2antt1.GetItems()

The following VB.NET sample converts the returned value to a Object() when the control
contains a single column:

 Dim Items As Object() = Exg2antt1.GetItems()

or when the control contains multiple columns, the syntax is as follows:

 Dim Items As Object(,) = Exg2antt1.GetItems()

/COM version:

The following VB sample gets the items from a control and put them to the second one:

With G2antt2
 .BeginUpdate
 .Columns.Clear
 Dim c As EXG2ANTTLibCtl.Column
 For Each c In G2antt1.Columns
 .Columns.Add c.Caption
 Next
 .PutItems G2antt1.GetItems

 .EndUpdate
End With

The following C++ sample gets the items from a control an put to the second one:

#include "Items.h"
#include "Columns.h"
#include "Column.h"
m_g2antt2.BeginUpdate();
 CColumns columns = m_g2antt.GetColumns(), columns2 = m_g2antt2.GetColumns();
 for (long i = 0; i < columns.GetCount(); i++)
 columns2.Add(columns.GetItem(COleVariant(i)).GetCaption());
 COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
 COleVariant vtItems = m_g2antt.GetItems(vtMissing);
 m_g2antt2.PutItems(&vtItems, vtMissing);
m_g2antt2.EndUpdate();

The following C# sample gets the items from a control and put them to a second one:

axG2antt2.BeginUpdate();
for (int i = 0; i < axG2antt1.Columns.Count; i++)
 axG2antt2.Columns.Add(axG2antt1.Columns[i].Caption);
object vtItems = axG2antt1.GetItems("");
axG2antt2.PutItems(ref vtItems);
axG2antt2.EndUpdate();

The following VB.NET sample gets the items from a control and put them to a second one:

With AxG2antt2
 .BeginUpdate()
 Dim j As Integer
 For j = 0 To AxG2antt1.Columns.Count - 1
 .Columns.Add(AxG2antt1.Columns(j).Caption)
 Next
 Dim vtItems As Object
 vtItems = AxG2antt1.GetItems("")
 .PutItems(vtItems)
 .EndUpdate()
End With

The following VFP sample gets the items from a control and put them to a second one:

local i
with thisform.G2antt2
 .BeginUpdate()
 for i = 0 to thisform.G2antt1.Columns.Count - 1
 .Columns.Add(thisform.G2antt1.Columns(i).Caption)
 next
 local array vtItems[1]
 vtItems = thisform.G2antt1.GetItems("")
 .PutItems(@vtItems)
 .EndUpdate()
endwith

property G2antt.GridLineColor as Color
Specifies the grid line color.

Type Description
Color A color expression that indicates the color of the grid lines.

Use the GridLineColor property to specify the color for grid lines. Use the DrawGridLines
property to show the grid lines in the items area. The GridLineStyle property to specify the
style for horizontal or/and vertical gridlines in the control. Use the DrawLevelSeperator
property to draw lines between levels inside the chart's header. Use the DrawTickLines
property to specify whether the grid lines between time units in the level are visible or
hidden. Use the DrawGridLines property to specify whether the control draws the grid lines
in the chart's area. Use the LinesAtRoot property specifies whether the control links the
root items of the control. Use the HasLines property to specify whether the control draws
the link between child items to their corresponding parent item.

property G2antt.GridLineStyle as GridLinesStyleEnum
Specifies the style for gridlines in the list part of the control.

Type Description

GridLinesStyleEnum A GridLinesStyleEnum expression that specifies the style
to show the control's horizontal or vertical lines.

By default, the GridLineStyle property is exGridLinesDot. The GridLineStyle property has
effect only if the DrawGridLines property is not zero. The GridLineStyle property can be
used to specify the style for horizontal or/and vertical grid lines. Use the GridLineColor
property to specify the color for grid lines. Use the LinesAtRoot property specifies whether
the control links the root items of the control. Use the HasLines property to specify whether
the control draws the link between child items to their corresponding parent item. The grid
lines are shown only in the columns part of the controls, if you require the grid lines in the
chart view use the DrawGridLines property of the Chart object.

The following VB sample shows dash style for horizontal gridlines, and solid style for
vertical grid lines:

GridLineStyle = GridLinesStyleEnum.exGridLinesHDash Or
GridLinesStyleEnum.exGridLinesVSolid

The following VB/NET sample shows dash style for horizontal gridlines, and solid style for
vertical grid lines:

GridLineStyle = exontrol.EXGANTTLib.GridLinesStyleEnum.exGridLinesHDash Or
exontrol.EXGANTTLib.GridLinesStyleEnum.exGridLinesVSolid

The following C# sample shows dash style for horizontal gridlines, and solid style for
vertical grid lines:

GridLineStyle = exontrol.EXGANTTLib.GridLinesStyleEnum.exGridLinesHDash |
exontrol.EXGANTTLib.GridLinesStyleEnum.exGridLinesVSolid;

The following Delphi sample shows dash style for horizontal gridlines, and solid style for
vertical grid lines:

GridLineStyle := Integer(EXGANTTLib.GridLinesStyleEnum.exGridLinesHDash) Or
Integer(EXGANTTLib.GridLinesStyleEnum.exGridLinesVSolid);

The following VFP sample shows dash style for horizontal gridlines, and solid style for
vertical grid lines:

GridLineStyle = 36

method G2antt.Group ()
Forces the control to do a regrouping of the columns.

Type Description

property G2antt.HasButtons as ExpandButtonEnum

Adds a button to the left side of each parent item.

Type Description

ExpandButtonEnum An ExpandButtonEnum expression that indicates whether
the left side button of each parent item is visible or hidden.

The HasButtons property has effect only if the data is displayed as a tree. Use the
InsertItem method to insert child items. The control displays a +/- button to parent items, if
the HasButtons property is not zero, the ItemChild property is not empty, or the
ItemHasChildren property is True. The user can click the +/- button to expand or collapse
the child items as an alternative to double-clicking the parent item, in case the
ExpandOnDblClick property is True. Use the ExpandItem property of Items object to
programmatically expand/collapse an item. The HasButtonsCustom property specifies the
index of icons being used for +/- signs on parent items, when HasButtons property is
exCustom.

The following VB sample changes the +/- button appearance:

With G2antt1
 .HasButtons = ExpandButtonEnum.exWPlus
End With

The following C++ sample changes the +/- button appearance:

m_g2antt.SetHasButtons(3 /*exWPlus*/);

The following VB.NET sample changes the +/- button appearance:

With AxG2antt1
 .HasButtons = EXG2ANTTLib.ExpandButtonEnum.exWPlus
End With

The following C# sample changes the +/- button appearance:

axG2antt1.HasButtons = EXG2ANTTLib.ExpandButtonEnum.exWPlus;

The following VFP sample changes the +/- button appearance:

with thisform.G2antt1
 .HasButtons = 3 && exWPlus

endwith

property G2antt.HasButtonsCustom(Expanded as Boolean) as Long
Specifies the index of icons for +/- signs when the HasButtons property is exCustom.

Type Description

Expanded as Boolean A boolean expression that indicates the sign being
changed.

Long

A long expression that indicates the icon being used for +/-
signs on the parent items. The last 7 bits in the high
significant byte of the long expression indicates the
identifier of the skin being used to paint the object. Use the
Add method to add new skins to the control. If you need
to remove the skin appearance from a part of the control
you need to reset the last 7 bits in the high significant byte
of the color being applied to the part.

Use the HasButtonsCustom property to assign custom icons to the +/- signs on the parent
items. The HasButtonsCustom property has effect only if the HasButtons property is
exCustom. Use the Images, ReplaceIcon methods to add new icons to the control, at
runtime.

The following VB sample specifies different (as in the screen shot) +/- signs for the
control:

With G2antt1
 .BeginUpdate
 .Images
"gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx2PyGRyWTymVy2XzGZzWbzmdz2f0Gh0WjwEWH0r08ekEikgAkso184iGkicPjcU2+zjW4jTnZ++jbv4Tvjbu4fF48adAv5fI4XO4ka4fRjO+4G73UZ3na7IAgI="

 .LinesAtRoot = exLinesAtRoot
 .HeaderVisible = False
 .HasButtons = exCustom
 .HasButtonsCustom(False) = 1
 .HasButtonsCustom(True) = 2
 .Columns.Add "Column 1"
 With .Items
 Dim h As HITEM
 h = .AddItem("Item 1")
 .InsertItem h, , "SubItem 1"

 .InsertItem h, , "SubItem 2"
 End With
 .EndUpdate
End With

The following C++ sample specifies different (as in the screen shot) +/- signs for the
control:

#include "Items.h"
#include "Columns.h"
#include "Column.h"
m_g2antt.BeginUpdate();
m_g2antt.Images(COleVariant(
"gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx2PyGRyWTymVy2XzGZzWbzmdz2f0Gh0WjwEWH0r08ekEikgAkso184iGkicPjcU2+zjW4jTnZ++jbv4Tvjbu4fF48adAv5fI4XO4ka4fRjO+4G73UZ3na7IAgI="
));
m_g2antt.SetLinesAtRoot(-1);
m_g2antt.SetHeaderVisible(FALSE);
m_g2antt.SetHasButtons(4 /*exCustom*/);
m_g2antt.SetHasButtonsCustom(FALSE, 1);
m_g2antt.SetHasButtonsCustom(TRUE, 2);
m_g2antt.GetColumns().Add("Column 1");
COleVariant vtMissing; V_VT(&vtMissing;) = VT_ERROR;
CItems items = m_g2antt.GetItems();
long h = items.AddItem(COleVariant("Item 1"));
items.InsertItem(h, vtMissing, COleVariant("SubItem 1"));
items.InsertItem(h, vtMissing, COleVariant("SubItem 2"));
m_g2antt.EndUpdate();

The following VB.NET sample specifies different (as in the screen shot) +/- signs for the
control:

With AxG2antt1
 .BeginUpdate()

.Images("gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx2PyGRyWTymVy2XzGZzWbzmdz2f0Gh0WjwEWH0r08ekEikgAkso184iGkicPjcU2+zjW4jTnZ++jbv4Tvjbu4fF48adAv5fI4XO4ka4fRjO+4G73UZ3na7IAgI=")

 .LinesAtRoot = EXG2ANTTLib.LinesAtRootEnum.exLinesAtRoot
 .HeaderVisible = False
 .HasButtons = EXG2ANTTLib.ExpandButtonEnum.exCustom
 .set_HasButtonsCustom(False, 1)
 .set_HasButtonsCustom(True, 2)
 .Columns.Add("Column 1")
 With .Items
 Dim h As Long
 h = .AddItem("Item 1")
 .InsertItem(h, , "SubItem 1")
 .InsertItem(h, , "SubItem 2")
 End With
 .EndUpdate()
End With

The following C# sample specifies different (as in the screen shot) +/- signs for the
control:

axG2antt1.BeginUpdate();
axG2antt1.Images("gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx2PyGRyWTymVy2XzGZzWbzmdz2f0Gh0WjwEWH0r08ekEikgAkso184iGkicPjcU2+zjW4jTnZ++jbv4Tvjbu4fF48adAv5fI4XO4ka4fRjO+4G73UZ3na7IAgI=");

axG2antt1.LinesAtRoot = EXG2ANTTLib.LinesAtRootEnum.exLinesAtRoot;
axG2antt1.HeaderVisible = false;
axG2antt1.HasButtons = EXG2ANTTLib.ExpandButtonEnum.exCustom;
axG2antt1.set_HasButtonsCustom(false, 1);
axG2antt1.set_HasButtonsCustom(true, 2);
axG2antt1.Columns.Add("Column 1");
int h = axG2antt1.Items.AddItem("Item 1");
axG2antt1.Items.InsertItem(h, "", "SubItem 1");
axG2antt1.Items.InsertItem(h, "", "SubItem 2");
axG2antt1.EndUpdate();

The following VFP sample specifies different (as in the screen shot) +/- signs for the
control:

with thisform.G2antt1
 .BeginUpdate()
 local s

 s =
"gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls"

 s = s +
"1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwmFw2HxGJxWLxmNx2PyGRyWTymVy2XzGZzWbzmdz2f0Gh0WjwEWH0r08ekEikgAkso184iGkicPjcU2+zjW4jTnZ++jbv4Tvjbu4fF48adAv5fI4XO4ka4fRjO+4G73UZ3na7IAgI="

 .Images(s)
 .LinesAtRoot = -1
 .HeaderVisible = .f.
 .HasButtons = 4 &&exCustom;
 local sT, sCR
 sCR = chr(13) + chr(10)
 sT = "HasButtonsCustom(True) = 2"+ sCR
 sT = sT + "HasButtonsCustom(False) = 1"+ sCR
 .Template = sT
 .Columns.Add("Column 1")
 With .Items
 local h
 h = .AddItem("Item 1")
 .InsertItem(h, , "SubItem 1")
 .InsertItem(h, , "SubItem 2")
 EndWith
 .EndUpdate()
endwith

property G2antt.HasLines as HierarchyLineEnum

Enhances the graphic representation of a tree control's hierarchy by drawing lines that link
child items to their corresponding parent item.

Type Description

HierarchyLineEnum An HierarchyLinesEnum expression that indicates whether
the control uses the lines to link the items of the hierarchy.

Use the HasLines property to hide the hierarchy lines. Use the LinesAtRoot property to
allow control displays a line that links that root items of the control. Use the InsertItem
method to insert new items to the control. Use HasButtons property to hide the buttons
displayed at the left of each parent item. Use the DrawGridLines property to display grid
lines. Use the InsertControlItem property to insert an ActiveX item.

property G2antt.HeaderAppearance as AppearanceEnum

Retrieves or sets a value that indicates the header's appearance.

Type Description

AppearanceEnum An AppearanceEnum expression that indicates the
header's appearance.

Use the HeaderAppearance property to change the appearance of the control's header bar.
Use the HeaderVisible property to hide the control's header bar. Use the Appearance
property to specify the control's appearance.

property G2antt.HeaderEnabled as Boolean
Enables or disables the control's header.

Type Description

Boolean A boolean expression that specifies whether the control's
header is enabled or disabled.

By default, the HeaderEnabled property is True. The HeaderEnabled property enables or
disables the control's header (including the control's sort/groupby-bar). If the header is
disabled, the user can't resize, sort or drag and drop any column. Also, if the header is
disabled, the control's sort/groupby-bar is disabled as well. The HeaderVisible property
shows or hides the control's header. The SortBarVisible property shows or hides the
control's sort/groupby-bar.

property G2antt.HeaderHeight as Long
Retrieves or sets a value indicating the control's header height.

Type Description

Long A long expression that indicates the height of the control's
header bar.

By default, the HeaderHeight property is 18 pixels. Use the HeaderHeight property to
change the height of the control's header bar. Use the HeaderVisible property to hide the
control's header bar. Use the LevelKey property to display the control's header bar using
multiple levels. If the control displays the header bar using multiple levels the HeaderHeight
property gets the height in pixels of a single level in the header bar. The control's header
displays multiple levels if there are two or more neighbor columns with the same non empty
level key. Use the HTMLCaption property to display multiple lines in the column's caption.
Use the Add method to add new columns to the control. Use the LevelKey property to
specify columns on the same level. Use the LevelCount property to specify the number of
levels being displayed in the chart's header. If the HeaderSingleLine property is False, the
HeaderHeight property specifies the maximum height of the control's header when the
user resizes the columns.

The following VB sample displays a header bar using multiple lines:

With G2antt1
 .BeginUpdate
 .HeaderHeight = 32
 With .Columns.Add("Column 1")
 .HTMLCaption = "Line1
Line2"
 End With
 With .Columns.Add("Column 2")
 .HTMLCaption = "Line1
Line2"
 End With
 .EndUpdate
End With

The following C++ sample displays a header bar using multiple lines:

#include "Columns.h"
#include "Column.h"
m_g2antt.BeginUpdate();
m_g2antt.SetHeaderHeight(32);

m_g2antt.SetHeaderVisible(TRUE);
CColumn column1(V_DISPATCH(&m_g2antt.GetColumns().Add("Column 1")));
 column1.SetHTMLCaption("Line1
Line2");
CColumn column2(V_DISPATCH(&m_g2antt.GetColumns().Add("Column 2")));
 column2.SetHTMLCaption("Line1
Line2");
m_g2antt.EndUpdate();

The following VB.NET sample displays a header bar using multiple lines:

With AxG2antt1
 .BeginUpdate()
 .HeaderVisible = True
 .HeaderHeight = 32
 With .Columns.Add("Column 1")
 .HTMLCaption = "Line1
Line2"
 End With
 With .Columns.Add("Column 2")
 .HTMLCaption = "Line1
Line2"
 End With
 .EndUpdate()
End With

The following C# sample displays a header bar using multiple lines:

axG2antt1.BeginUpdate();
axG2antt1.HeaderVisible = true;
axG2antt1.HeaderHeight = 32;
EXG2ANTTLib.Column column1 = axG2antt1.Columns.Add("Column 1") as
EXG2ANTTLib.Column ;
column1.HTMLCaption = "Line1
Line2";
EXG2ANTTLib.Column column2 = axG2antt1.Columns.Add("Column 2") as
EXG2ANTTLib.Column;
column2.HTMLCaption = "Line1
Line2";
axG2antt1.EndUpdate();

The following VFP sample displays a header bar using multiple lines:

with thisform.G2antt1
 .BeginUpdate()

 .HeaderVisible = .t.
 .HeaderHeight = 32
 with .Columns.Add("Column 1")
 .HTMLCaption = "Line1
Line2"
 endwith
 with .Columns.Add("Column 2")
 .HTMLCaption = "Line1
Line2"
 endwith
 .EndUpdate()
endwith

property G2antt.HeaderSingleLine as Boolean
Specifies whether the control resizes the columns header and wraps the captions in single
or multiple lines.

Type Description

Boolean A boolean expression that specifies whether the header
displays single or multiple lines.

By defauly, the HeaderSingleLine property is True. If the HeaderSingleLine property is False
the control breaks the column's caption as soon as the user resizes the column. In this
case the HeaderHeight property specifies the maximum height of the control's
header. The initial height is computed based on the control's Font property. The Caption
property specifies the caption of the column being displayed in the control's header. The
HTMLCaption property specifies the HTML caption of the column being displayed in the
column's header. Use the LevelKey property to display the control's header on multiple
levels.

The following screen show shows the control's header while it displays a multiple lines (
HeaderSingleLine = False):

The following screen shot shows the control's header on multiple levels using the LevelKey
property:

The following screen show shows the control's header while it displays a single line (
HeaderSingleLine = True):

property G2antt.HeaderVisible as HeaderVisibleEnum

Retrieves or sets a value that indicates whether the control's header is visible or hidden.

Type Description

HeaderVisibleEnum A HeaderVisibleEnum expression that specifies whether
the control's header bar is visible or hidden.

By default, the HeaderVisible property is exHeaderVisible (True). Use the HeaderVisible
property to hide the control's header bar. The control's header bar displays the levels in the
chart area too. Use the LevelCount property to specify the number of levels being displayed
in the chart's header. Use the Level property to access the level in the chart area. Use the
Caption property to specify the column's caption being displayed in the control's header bar.
Use the HeaderAppearance property to change the header bar's appearance. The
HeaderEnabled property enables or disables the control's header. Use the
BackColorHeader and ForeColorHeader properties to customize the control's header. Use
the BackColorLevelHeader property to specify the background color of the header when it
displays multiple levels. Use the HeaderHeight property to specify the height of the control's
header bar. Use the SortBarVisible property to specify whether the control's sort bar is
visible or it is hidden. Use the OverviewVisible property to show or hide the chart's overview
area. Use the ColumnsAllowSizing property to allow resizing the columns, when the
control's header bar is not visible. The HistogramHeaderVisible property to show the chart's
header in bottom part of the histogram.

property G2antt.HideSelection as Boolean
Returns a value that determines whether selected item appears highlighted when a control
loses the focus.

Type Description

Boolean A boolean expression that indicates whether the selected
item appears highlighted when a control loses the focus.

By default, the HideSelection property is False. You can use this property to indicate which
item is highlighted while another form or a dialog box has the focus. Use the SelForeColor
and SelBackColor property to customize the colors for the selected items in the control.
Use the SelectItem property to programmatically select an item. Use the SelectedItem and
SelectCount property to retrieve the list of selected items. Use the SelectableItem property
to specify whether an items can be selected.

property G2antt.HotBackColor as Color
Retrieves or sets a value that indicates the hot-tracking background color.

Type Description

Color

A color expression that indicates the background color for
item from the cursor (hovering the item). Use the Add
method to add new skins to the control. If you need to
remove the skin appearance from a part of the control you
need to reset the last 7 bits in the high significant byte of
the color being applied to the background's part.

By default, the HotBackColor property is 0, which means that the HotBackColor property
has no effect. Use the HotBackColor property on a non-zero value to highlight the item from
the cursor. The HotForeColor property specifies the foreground color to highlight the item
from the cursor. The ItemFromPoint property gets the item from the cursor. The
SelBackColor property specifies the selection background color. The SelBackMode
property specifies the way the selected items are shown in the control.

The following sample displays a different background color mouse passes over an item.

VBA

With G2antt1
 .BeginUpdate
 .Columns.Add "Def"
 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 With .Items
 .AddItem "Item A"
 .AddItem "Item B"
 .AddItem "Item C"
 End With
 .EndUpdate
End With

VB6

With G2antt1
 .BeginUpdate
 .Columns.Add "Def"

 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 With .Items
 .AddItem "Item A"
 .AddItem "Item B"
 .AddItem "Item C"
 End With
 .EndUpdate
End With

VB.NET

With Exg2antt1
 .BeginUpdate()
 .Columns.Add("Def")
 .HotBackColor = Color.FromArgb(0,0,128)
 .HotForeColor = Color.FromArgb(255,255,255)
 With .Items
 .AddItem("Item A")
 .AddItem("Item B")
 .AddItem("Item C")
 End With
 .EndUpdate()
End With

VB.NET for /COM

With AxG2antt1
 .BeginUpdate()
 .Columns.Add("Def")
 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 With .Items
 .AddItem("Item A")
 .AddItem("Item B")
 .AddItem("Item C")
 End With
 .EndUpdate()

End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->BeginUpdate();
spG2antt1->GetColumns()->Add(L"Def");
spG2antt1->PutHotBackColor(RGB(0,0,128));
spG2antt1->PutHotForeColor(RGB(255,255,255));
EXG2ANTTLib::IItemsPtr var_Items = spG2antt1->GetItems();
 var_Items->AddItem("Item A");
 var_Items->AddItem("Item B");
 var_Items->AddItem("Item C");
spG2antt1->EndUpdate();

C++ Builder

G2antt1->BeginUpdate();
G2antt1->Columns->Add(L"Def");
G2antt1->HotBackColor = RGB(0,0,128);
G2antt1->HotForeColor = RGB(255,255,255);
Exg2anttlib_tlb::IItemsPtr var_Items = G2antt1->Items;
 var_Items->AddItem(TVariant("Item A"));
 var_Items->AddItem(TVariant("Item B"));
 var_Items->AddItem(TVariant("Item C"));
G2antt1->EndUpdate();

C#

exg2antt1.BeginUpdate();

exg2antt1.Columns.Add("Def");
exg2antt1.HotBackColor = Color.FromArgb(0,0,128);
exg2antt1.HotForeColor = Color.FromArgb(255,255,255);
exontrol.EXG2ANTTLib.Items var_Items = exg2antt1.Items;
 var_Items.AddItem("Item A");
 var_Items.AddItem("Item B");
 var_Items.AddItem("Item C");
exg2antt1.EndUpdate();

JavaScript

<OBJECT classid="clsid:CD481F4D-2D25-4759-803F-752C568F53B7" id="G2antt1">
</OBJECT>

<SCRIPT LANGUAGE="JScript">
 G2antt1.BeginUpdate()

 G2antt1.Columns.Add("Def")

 G2antt1.HotBackColor = 8388608

 G2antt1.HotForeColor = 16777215

 var var_Items = G2antt1.Items

 var_Items.AddItem("Item A")

 var_Items.AddItem("Item B")

 var_Items.AddItem("Item C")

 G2antt1.EndUpdate()

</SCRIPT>

C# for /COM

axG2antt1.BeginUpdate();

axG2antt1.Columns.Add("Def");
axG2antt1.HotBackColor = Color.FromArgb(0,0,128);
axG2antt1.HotForeColor = Color.FromArgb(255,255,255);
EXG2ANTTLib.Items var_Items = axG2antt1.Items;
 var_Items.AddItem("Item A");
 var_Items.AddItem("Item B");
 var_Items.AddItem("Item C");
axG2antt1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Items

 anytype var_Items

 super()

 exg2antt1.BeginUpdate()

 exg2antt1.Columns().Add("Def")

 exg2antt1.HotBackColor(WinApi::RGB2int(0,0,128))

 exg2antt1.HotForeColor(WinApi::RGB2int(255,255,255))

 var_Items = exg2antt1.Items()
 com_Items = var_Items

 com_Items.AddItem("Item A")

 com_Items.AddItem("Item B")

 com_Items.AddItem("Item C")

 exg2antt1.EndUpdate()

}

VFP

with thisform.G2antt1
 .BeginUpdate
 .Columns.Add("Def")
 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 with .Items
 .AddItem("Item A")
 .AddItem("Item B")
 .AddItem("Item C")
 endwith
 .EndUpdate
endwith

dBASE Plus

local oG2antt,var_Items

oG2antt = form.Activex1.nativeObject
oG2antt.BeginUpdate()
oG2antt.Columns.Add("Def")
oG2antt.HotBackColor = 0x800000
oG2antt.HotForeColor = 0xffffff
var_Items = oG2antt.Items
 var_Items.AddItem("Item A")
 var_Items.AddItem("Item B")
 var_Items.AddItem("Item C")
oG2antt.EndUpdate()

XBasic (Alpha Five)

Dim oG2antt as P
Dim var_Items as P

oG2antt = topparent:CONTROL_ACTIVEX1.activex
oG2antt.BeginUpdate()
oG2antt.Columns.Add("Def")
oG2antt.HotBackColor = 8388608
oG2antt.HotForeColor = 16777215
var_Items = oG2antt.Items
 var_Items.AddItem("Item A")
 var_Items.AddItem("Item B")
 var_Items.AddItem("Item C")
oG2antt.EndUpdate()

Delphi 8 (.NET only)

with AxG2antt1 do
begin
 BeginUpdate();
 Columns.Add('Def');
 HotBackColor := Color.FromArgb(0,0,128);
 HotForeColor := Color.FromArgb(255,255,255);
 with Items do
 begin
 AddItem('Item A');
 AddItem('Item B');
 AddItem('Item C');
 end;
 EndUpdate();
end

Delphi (standard)

with G2antt1 do
begin
 BeginUpdate();
 Columns.Add('Def');
 HotBackColor := RGB(0,0,128);

 HotForeColor := RGB(255,255,255);
 with Items do
 begin
 AddItem('Item A');
 AddItem('Item B');
 AddItem('Item C');
 end;
 EndUpdate();
end

Visual Objects

local var_Items as IItems

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:Columns:Add("Def")
oDCOCX_Exontrol1:HotBackColor := RGB(0,0,128)
oDCOCX_Exontrol1:HotForeColor := RGB(255,255,255)
var_Items := oDCOCX_Exontrol1:Items
 var_Items:AddItem("Item A")
 var_Items:AddItem("Item B")
 var_Items:AddItem("Item C")
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oG2antt,var_Items

oG2antt = ole_1.Object
oG2antt.BeginUpdate()
oG2antt.Columns.Add("Def")
oG2antt.HotBackColor = RGB(0,0,128)
oG2antt.HotForeColor = RGB(255,255,255)
var_Items = oG2antt.Items
 var_Items.AddItem("Item A")
 var_Items.AddItem("Item B")
 var_Items.AddItem("Item C")
oG2antt.EndUpdate()

property G2antt.HotForeColor as Color
Retrieves or sets a value that indicates the hot-tracking foreground color.

Type Description

Color A color expression that indicates the foreground color for
item from the cursor (hovering the item).

By default, the HotForeColor property is 0, which means that the HotForeColor property
has no effect. Use the HotForeColor property on a non-zero value to highlight the item from
the cursor. The HotBackColor property specifies the background color to highlight the item
from the cursor. The ItemFromPoint property gets the item from the cursor. The
SelForeColor property specifies the selection foreground color.

The following sample displays a different background color mouse passes over an item.

VBA

With G2antt1
 .BeginUpdate
 .Columns.Add "Def"
 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 With .Items
 .AddItem "Item A"
 .AddItem "Item B"
 .AddItem "Item C"
 End With
 .EndUpdate
End With

VB6

With G2antt1
 .BeginUpdate
 .Columns.Add "Def"
 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 With .Items
 .AddItem "Item A"

 .AddItem "Item B"
 .AddItem "Item C"
 End With
 .EndUpdate
End With

VB.NET

With Exg2antt1
 .BeginUpdate()
 .Columns.Add("Def")
 .HotBackColor = Color.FromArgb(0,0,128)
 .HotForeColor = Color.FromArgb(255,255,255)
 With .Items
 .AddItem("Item A")
 .AddItem("Item B")
 .AddItem("Item C")
 End With
 .EndUpdate()
End With

VB.NET for /COM

With AxG2antt1
 .BeginUpdate()
 .Columns.Add("Def")
 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 With .Items
 .AddItem("Item A")
 .AddItem("Item B")
 .AddItem("Item C")
 End With
 .EndUpdate()
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->BeginUpdate();
spG2antt1->GetColumns()->Add(L"Def");
spG2antt1->PutHotBackColor(RGB(0,0,128));
spG2antt1->PutHotForeColor(RGB(255,255,255));
EXG2ANTTLib::IItemsPtr var_Items = spG2antt1->GetItems();
 var_Items->AddItem("Item A");
 var_Items->AddItem("Item B");
 var_Items->AddItem("Item C");
spG2antt1->EndUpdate();

C++ Builder

G2antt1->BeginUpdate();
G2antt1->Columns->Add(L"Def");
G2antt1->HotBackColor = RGB(0,0,128);
G2antt1->HotForeColor = RGB(255,255,255);
Exg2anttlib_tlb::IItemsPtr var_Items = G2antt1->Items;
 var_Items->AddItem(TVariant("Item A"));
 var_Items->AddItem(TVariant("Item B"));
 var_Items->AddItem(TVariant("Item C"));
G2antt1->EndUpdate();

C#

exg2antt1.BeginUpdate();
exg2antt1.Columns.Add("Def");
exg2antt1.HotBackColor = Color.FromArgb(0,0,128);
exg2antt1.HotForeColor = Color.FromArgb(255,255,255);
exontrol.EXG2ANTTLib.Items var_Items = exg2antt1.Items;

 var_Items.AddItem("Item A");
 var_Items.AddItem("Item B");
 var_Items.AddItem("Item C");
exg2antt1.EndUpdate();

JavaScript

<OBJECT classid="clsid:CD481F4D-2D25-4759-803F-752C568F53B7" id="G2antt1">
</OBJECT>

<SCRIPT LANGUAGE="JScript">
 G2antt1.BeginUpdate()

 G2antt1.Columns.Add("Def")

 G2antt1.HotBackColor = 8388608

 G2antt1.HotForeColor = 16777215

 var var_Items = G2antt1.Items

 var_Items.AddItem("Item A")

 var_Items.AddItem("Item B")

 var_Items.AddItem("Item C")

 G2antt1.EndUpdate()

</SCRIPT>

C# for /COM

axG2antt1.BeginUpdate();
axG2antt1.Columns.Add("Def");
axG2antt1.HotBackColor = Color.FromArgb(0,0,128);
axG2antt1.HotForeColor = Color.FromArgb(255,255,255);
EXG2ANTTLib.Items var_Items = axG2antt1.Items;

 var_Items.AddItem("Item A");
 var_Items.AddItem("Item B");
 var_Items.AddItem("Item C");
axG2antt1.EndUpdate();

X++ (Dynamics Ax 2009)

public void init()
{
 COM com_Items

 anytype var_Items

 super()

 exg2antt1.BeginUpdate()

 exg2antt1.Columns().Add("Def")

 exg2antt1.HotBackColor(WinApi::RGB2int(0,0,128))

 exg2antt1.HotForeColor(WinApi::RGB2int(255,255,255))

 var_Items = exg2antt1.Items()
 com_Items = var_Items

 com_Items.AddItem("Item A")

 com_Items.AddItem("Item B")

 com_Items.AddItem("Item C")

 exg2antt1.EndUpdate()

}

VFP

with thisform.G2antt1
 .BeginUpdate
 .Columns.Add("Def")
 .HotBackColor = RGB(0,0,128)
 .HotForeColor = RGB(255,255,255)
 with .Items
 .AddItem("Item A")
 .AddItem("Item B")
 .AddItem("Item C")
 endwith
 .EndUpdate
endwith

dBASE Plus

local oG2antt,var_Items

oG2antt = form.Activex1.nativeObject
oG2antt.BeginUpdate()
oG2antt.Columns.Add("Def")
oG2antt.HotBackColor = 0x800000
oG2antt.HotForeColor = 0xffffff
var_Items = oG2antt.Items
 var_Items.AddItem("Item A")
 var_Items.AddItem("Item B")
 var_Items.AddItem("Item C")
oG2antt.EndUpdate()

XBasic (Alpha Five)

Dim oG2antt as P
Dim var_Items as P

oG2antt = topparent:CONTROL_ACTIVEX1.activex
oG2antt.BeginUpdate()
oG2antt.Columns.Add("Def")
oG2antt.HotBackColor = 8388608
oG2antt.HotForeColor = 16777215
var_Items = oG2antt.Items
 var_Items.AddItem("Item A")
 var_Items.AddItem("Item B")
 var_Items.AddItem("Item C")
oG2antt.EndUpdate()

Delphi 8 (.NET only)

with AxG2antt1 do
begin
 BeginUpdate();
 Columns.Add('Def');
 HotBackColor := Color.FromArgb(0,0,128);
 HotForeColor := Color.FromArgb(255,255,255);
 with Items do
 begin
 AddItem('Item A');
 AddItem('Item B');
 AddItem('Item C');
 end;
 EndUpdate();
end

Delphi (standard)

with G2antt1 do
begin
 BeginUpdate();
 Columns.Add('Def');
 HotBackColor := RGB(0,0,128);
 HotForeColor := RGB(255,255,255);
 with Items do
 begin

 AddItem('Item A');
 AddItem('Item B');
 AddItem('Item C');
 end;
 EndUpdate();
end

Visual Objects

local var_Items as IItems

oDCOCX_Exontrol1:BeginUpdate()
oDCOCX_Exontrol1:Columns:Add("Def")
oDCOCX_Exontrol1:HotBackColor := RGB(0,0,128)
oDCOCX_Exontrol1:HotForeColor := RGB(255,255,255)
var_Items := oDCOCX_Exontrol1:Items
 var_Items:AddItem("Item A")
 var_Items:AddItem("Item B")
 var_Items:AddItem("Item C")
oDCOCX_Exontrol1:EndUpdate()

PowerBuilder

OleObject oG2antt,var_Items

oG2antt = ole_1.Object
oG2antt.BeginUpdate()
oG2antt.Columns.Add("Def")
oG2antt.HotBackColor = RGB(0,0,128)
oG2antt.HotForeColor = RGB(255,255,255)
var_Items = oG2antt.Items
 var_Items.AddItem("Item A")
 var_Items.AddItem("Item B")
 var_Items.AddItem("Item C")
oG2antt.EndUpdate()

property G2antt.HTMLPicture(Key as String) as Variant
Adds or replaces a picture in HTML captions.

Type Description

Key as String
A String expression that indicates the key of the picture
being added or replaced. If the Key property is Empty
string, the entire collection of pictures is cleared.

Variant

The HTMLPicture specifies the picture being associated to
a key. It can be one of the followings:

a string expression that indicates the path to the
picture file, being loaded.
a string expression that indicates the base64 encoded
string that holds a picture object, Use the eximages
tool to save your picture as base64 encoded format.
A Picture object that indicates the picture being added
or replaced. (A Picture object implements IPicture
interface),

If empty, the picture being associated to a key is removed.
If the key already exists the new picture is replaced. If the
key is not empty, and it doesn't not exist a new picture is
added

The HTMLPicture property handles a collection of custom size picture being displayed in the
HTML captions, using the tags. By default, the HTMLPicture collection is empty. Use
the HTMLPicture property to add new pictures to be used in HTML captions. For instance,
the HTMLPicture("pic1") = "c:\winnt\zapotec.bmp", loads the zapotec picture and
associates the pic1 key to it. Any "pic1" sequence in HTML captions, displays
the pic1 picture. On return, the HTMLPicture property retrieves a Picture object (this
implements the IPictureDisp interface).

The following sample shows how to put a custom size picture in the column's header:

<CONTROL>.HTMLPicture("pic1") = "c:/temp/editors.gif"
<CONTROL>.HTMLPicture("pic2") = "c:/temp/editpaste.gif"

<COLUMN1>.HTMLCaption = "A pic1"
<COLUMN2>.HTMLCaption = "B pic2"
<COLUMN3>.HTMLCaption = "A pic1 + B pic2"

https://exontrol.com/eximages.jsp

property G2antt.hWnd as Long

Retrieves the control's window handle.

Type Description

Long A long expression that indicates the control's window
handle.

Use the hWnd property to get the control's main window handle. Use the ItemWindowHost
property to get the handle of the container window that host an item's ActiveX Control. The
Microsoft Windows operating environment identifies each form and control in an application
by assigning it a handle, or hWnd. The hWnd property is used with Windows API calls.
Many Windows operating environment functions require the hWnd of the active window as
an argument.

property G2antt.HyperLinkColor as Color

Specifies the hyperlink color.

Type Description
Color A color expression that specifies the hyperlink color.

Use the HyperLinkColor property to specify the color used when the cursor is over the
hyperlink cells. A hyperlink cell has the CellHyperLink property true. The control fires the
HyperLinkClick property when user clicks a cell that has the CellHyperLink property on
True.

method G2antt.Images (Handle as Variant)

Sets the control's image list at runtime.

Type Description

Handle as Variant

The Handle parameter can be:

A string expression that specifies the ICO file to add.
The ICO file format is an image file format for
computer icons in Microsoft Windows. ICO files
contain one or more small images at multiple sizes
and color depths, such that they may be scaled
appropriately. For instance,
Images("c:\temp\copy.ico") method adds the sync.ico
file to the control's Images collection (string, loads the
icon using its path)
A string expression that indicates the BASE64
encoded string that holds the icons list. Use the
Exontrol's ExImages tool to save/load your icons as
BASE64 encoded format. In this case the string may
begin with "gBJJ..." (string, loads icons using base64
encoded string)
A reference to a Microsoft ImageList control
(mscomctl.ocx, MSComctlLib.ImageList type) that
holds the icons to add (object, loads icons from a
Microsoft ImageList control)
A reference to a Picture (IPictureDisp implementation)
that holds the icon to add. For instance, the VB's
LoadPicture (Function LoadPicture([FileName], [Size],
[ColorDepth], [X], [Y]) As IPictureDisp) or
LoadResPicture (Function LoadResPicture(id, restype
As Integer) As IPictureDisp) returns a picture object
(object, loads icon from a Picture object)
A long expression that identifies a handle to an Image
List Control (the Handle should be of HIMAGELIST
type). On 64-bit platforms, the Handle parameter
must be a Variant of LongLong / LONG_PTR data
type (signed 64-bit (8-byte) integers), saved under
llVal field, as VT_I8 type. The LONGLONG /
LONG_PTR is __int64, a 64-bit integer. For instance,
in C++ you can use as Images(COleVariant(
(LONG_PTR)hImageList)) or Images(COleVariant(
(LONGLONG)hImageList)), where hImageList is of

https://exontrol.com/eximages.jsp

HIMAGELIST type. The GetSafeHandle() method of
the CImageList gets the HIMAGELIST handle (long,
loads icon from HIMAGELIST type)

The user can add images at design time, by drag and drop files to combo's image holder.
The ImageSize property defines the size (width/height) of the icons within the control's
Images collection. Use the ReplaceIcon method to add, remove or clear icons in the
control's images collection. Use the CellImage, CellImages properties to assign icons to a
cell. Use the CellPicture property to assign a custom size picture to a cell. Use the
CheckImage or RadioImage property to specify a different look for checkboxes or radio
buttons in the cells.

The following VB sample adds the control's icons list from a BASE64 encoded string:

Dim s As String
With G2antt1
 .BeginUpdate
 s =
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBnqAQEZwmCxFhYGLib/xoAw9ZiFdxbAAGVxM5yOTzkPy+MzGRpmdx2kl2epGY1WgxmZl+Yyery2yyGHyeirGoo+03mM02Jzee029y2Ewum2+FnOTlGezHNx0b3/C3U258a4mP5HVvOw52s2fg2vH6ml8uf8OWmnMjXs9vRjXG8fa88068Z+/o/XJ8nm/zHrg4L/ti8TQts87svyljfuk+DlPfAbPPkicAJnCbsNbDDLO2xz5PlBi3O8x0EsZD7zuG8T1vrCD5uZE7zxM+CXQNB78RKw8RRbF8Rwyu0UPS/UYsfBSbw4lEJx3AEkwvGbxSY/clsPIT3L600pxhHECx6lsjLA7LbxZH7XJfK0Dwi/8iNPJMjSo0clvjMLuTHLkJTNCqVTSms2Tkq8jTzOcVP/BsePUocQLDQ9AJ3LtFUbR1HqaiwfJXSaPJAkSSAAkqUU2nE20gmp5oo6JwH+eZ31EjJwB+eBn1K/AHnBWIfvwAZwACYAHsMy9cIMyFeEBTrIADYKSWLX1ipLXxgJLYgDoyeDIA+cFngAfwAVWfFdIcAB8B+f1tn+YJ/D+f5"

 s = s + "Poyf5xoojKAg"
 .Images s

 .Columns.Add "Column 1"
 With .Items
 Dim h As HITEM
 h = .AddItem("Item 1")
 .CellImage(h, 0) = 1
 h = .AddItem("Item 2")
 .CellImages(h, 0) = "2,3"
 End With
 .EndUpdate
End With

If you run the sample you get:

The following VB sample loads images from a Microsoft Image List control:

G2antt1.Images ImageList1.hImageList

The following C++ sample loads icons from a BASE64 encoded string:

#include "Items.h"
#include "Columns.h"
#include "Column.h"
m_g2antt.BeginUpdate();
CString s =
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBnqAQEZwmCxFhYGLib";

s +=
"/xoAw9ZiFdxbAAGVxM5yOTzkPy+MzGRpmdx2kl2epGY1WgxmZl+Yyery2yyGHyeirGoo+03mM02Jzee029y2Ewum2+FnOTlGezHNx0b3/C3U258a4mP5HVvOw52s2fg2vH6ml8uf8OWmnMjXs9vRjXG8fa88068Z+/o/XJ8nm/zHrg4L/ti8TQts87svyljfuk+DlPfAbPPkicAJnCbs";

s +=
"NbDDLO2xz5PlBi3O8x0EsZD7zuG8T1vrCD5uZE7zxM+CXQNB78RKw8RRbF8Rwyu0UPS/UYsfBSbw4lEJx3AEkwvGbxSY/clsPIT3L600pxhHECx6lsjLA7LbxZH7XJfK0Dwi/8iNPJMjSo0clvjMLuTHLkJTNCqVTSms2Tkq8jTzOcVP/BsePUocQLDQ9AJ3LtFUbR1HqaiwfJXSaPJA";

s +=
"kSSAAkqUU2nE20gmp5oo6JwH+eZ31EjJwB+eBn1K/AHnBWIfvwAZwACYAHsMy9cIMyFeEBTrIADYKSWLX1ipLXxgJLYgDoyeDIA+cFngAfwAVWfFdIcAB8B+f1tn+YJ/D+f5Poyf5xoojKAg";

m_g2antt.Images(COleVariant(s));
m_g2antt.GetColumns().Add("Column 1");
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
CItems items = m_g2antt.GetItems();
long h = items.AddItem(COleVariant("Item 1"));
items.SetCellImage(COleVariant(h), COleVariant((long) 0), 1);
h = items.AddItem(COleVariant("Item 2"));
items.SetCellImages(COleVariant(h), COleVariant((long) 0), COleVariant("2,3"));
m_g2antt.EndUpdate();

The following C++ sample loads icons from a HIMAGELIST type:

SHFILEINFO sfi; ZeroMemory(&sfi, sizeof(sfi));
 HIMAGELIST hSysImageList = (HIMAGELIST)SHGetFileInfo(_T("C:\\"), 0, &sfi, sizeof
(SHFILEINFO), SHGFI_SMALLICON | SHGFI_SYSICONINDEX);
 m_g2antt.Images(_variant_t((long)hSysImageList));

The following VB.NET sample loads icons from a BASE64 encoded string:

Dim s As String
With AxG2antt1
 .BeginUpdate()
 s =
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBnqAQEZwmCxFhYGLib/xoAw9ZiFdxbAAGVxM5yOTzkPy+MzGRpmdx2kl2epGY1WgxmZl+Yyery2yyGHyeirGoo+03mM02Jzee029y2Ewum2+FnOTlGezHNx0b3/C3U258a4mP5HVvOw52s2fg2vH6ml8uf8OWmnMjXs9vRjXG8fa88068Z+/o/XJ8nm/zHrg4L/ti8TQts87svyljfuk+DlPfAbPPkicAJnCbsNbDDLO2xz5PlBi3O8x0EsZD7zuG8T1vrCD5uZE7zxM+CXQNB78RKw8RRbF8Rwyu0UPS/UYsfBSbw4lEJx3AEkwvGbxSY/clsPIT3L600pxhHECx6lsjLA7LbxZH7XJfK0Dwi/8iNPJMjSo0clvjMLuTHLkJTNCqVTSms2Tkq8jTzOcVP/BsePUocQLDQ9AJ3LtFUbR1HqaiwfJXSaPJAkSSAAkqUU2nE20gmp5oo6JwH+eZ31EjJwB+eBn1K/AHnBWIfvwAZwACYAHsMy9cIMyFeEBTrIADYKSWLX1ipLXxgJLYgDoyeDIA+cFngAfwAVWfFdIcAB8B+f1tn+YJ/D+f5"

 s = s + "Poyf5xoojKAg"
 .Images(s)

 .Columns.Add("Column 1")
 With .Items
 Dim h As Integer
 h = .AddItem("Item 1")
 .CellImage(h, 0) = 1
 h = .AddItem("Item 2")
 .CellImages(h, 0) = "2,3"
 End With
 .EndUpdate()
End With

The following C# sample loads icons from a BASE64 encoded string:

axG2antt1.BeginUpdate();
string s =
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBnqAQEZwmCxFhYGLib/xoAw9ZiFdxbAAGVxM5yOTzkPy+MzGRpmdx2kl2epGY1WgxmZl+Yyery2yyGHyeirGoo+03mM02Jzee029y2Ewum2+FnOTlGezHNx0b3/C3U258a4mP5HVvOw52s2fg2vH6ml8uf8OWmnMjXs9vRjXG8fa88068Z+/o/XJ8nm/zHrg4L/ti8TQts87svyljfuk+DlPfAbPPkicAJnCbsNbDDLO2xz5PlBi3O8x0EsZD7zuG8T1vrCD5uZE7zxM+CXQNB78RKw8RRbF8Rwyu0UPS/UYsfBSbw4lEJx3AEkwvGbxSY/clsPIT3L600pxhHECx6lsjLA7LbxZH7XJfK0Dwi/8iNPJMjSo0clvjMLuTHLkJTNCqVTSms2Tkq8jTzOcVP/BsePUocQLDQ9AJ3LtFUbR1HqaiwfJXSaPJAkSSAAkqUU2nE20gmp5oo6JwH+eZ31EjJwB+eBn1K/AHnBWIfvwAZwACYAHsMy9cIMyFeEBTrIADYKSWLX1ipLXxgJLYgDoyeDIA+cFngAfwAVWfFdIcAB8B+f1tn+YJ/D+f5";

s = s + "Poyf5xoojKAg";
axG2antt1.Images(s);
axG2antt1.Columns.Add("Column 1");
int h = axG2antt1.Items.AddItem("Item 1");
axG2antt1.Items.set_CellImage(h, 0, 1);
h = axG2antt1.Items.AddItem("Item 2");
axG2antt1.Items.set_CellImages(h, 0,"2,3");
axG2antt1.EndUpdate();

The following VFP sample loads icons from a BASE64 encoded string:

local s

With thisform.G2antt1
 .BeginUpdate()
 s =
"gBJJgBAIDAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrl"

 s = s +
"dr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBnqAQEZwmCxFhYGLib/xoAw9ZiFdxbAAGVxM5yOTzkPy+MzGRpmdx2kl2epGY1WgxmZl+Yyery2yyGHyeir"

 s = s +
"Goo+03mM02Jzee029y2Ewum2+FnOTlGezHNx0b3/C3U258a4mP5HVvOw52s2fg2vH6ml8uf8OWmnMjXs9vRjXG8fa88068Z+/o/XJ8nm/zHrg4L/ti8TQts87svyljfuk+DlPfAbPP"

 s = s +
"kicAJnCbsNbDDLO2xz5PlBi3O8x0EsZD7zuG8T1vrCD5uZE7zxM+CXQNB78RKw8RRbF8Rwyu0UPS/UYsfBSbw4lEJx3AEkwvGbxSY/clsPIT3L600pxhHECx6lsjLA7LbxZH7XJfK0D"

 s = s +
"wi/8iNPJMjSo0clvjMLuTHLkJTNCqVTSms2Tkq8jTzOcVP/BsePUocQLDQ9AJ3LtFUbR1HqaiwfJXSaPJAkSSAAkqUU2nE20gmp5oo6JwH+eZ31EjJwB+eBn1K/AHnBWIfvwAZwACYAHsMy9cIMyFeEBTrIADYKSWLX1ipLXxgJLYgDoyeDIA+cFngAfwAVWfFdIcAB8B+f1tn+YJ/D+f5"

 s = s + "Poyf5xoojKAg"
 .Images(s)

 .Columns.Add("Column 1")
 With .Items
 .DefaultItem = .AddItem("Item 1")
 .CellImage(0, 0) = 1
 .DefaultItem = .AddItem("Item 2")
 .CellImages(0, 0) = "2,3"
 EndWith
 .EndUpdate()
EndWith

property G2antt.ImageSize as Long
Retrieves or sets the size of icons the control displays.

Type Description

Long A long expression that defines the size of icons the control
displays.

By default, the ImageSize property is 16 (pixels). The ImageSize property specifies the size
of icons being loaded using the Images method. The control's Images collection is cleared if
the ImageSize property is changed, so it is recommended to set the ImageSize property
before calling the Images method. The ImageSize property defines the size (width/height)
of the icons within the control's Images collection. For instance, if the ICO file to load
includes different types the one closest with the size specified by ImageSize property is
loaded by Images method. The ImageSize property does NOT change the height for the
control's font.

The ImageSize property defines the size to display the following UI elements:

any icon that a cell or column displays (number ex-html tag, CellImage,
CellImages)
check-box or radio-buttons (CellHasCheckBox, CellHasRadioButton)
expand/collapse glyphs (HasButtons, HasButtonsCustom)
header's sorting or drop down-filter glyphs

property G2antt.Indent as Long

Retrieves or sets the amount, in pixels, that child items are indented relative to their parent
items.

Type Description

Long A long expression that indicates the amount, in pixels, that
child items are indented relative to their parent items.

If the Indent property is 0, the child items are not indented relative to their parent item. Use
HasLines and LinesAtRoot properties to show the hierarchy lines. Use the HasButtons
property to define the +/- signs appearance. Use the TreeColumnIndex property to define
the index of the column that displays the hierarchy. Use the InsertItem method to insert a
child item. Use the InsertControlItem property to insert an ActiveX item.

property G2antt.IsGrouping as Boolean
Indicates whether the control is grouping the items.

Type Description

Boolean A Boolean expression that specifies whether the control is
grouping or ungrouping the items.

The IsGrouping property determines whether the control is grouping/ungrouping the items.
The AllowGroupBy property specifies whether the control supports Group-By feature. For
instance, during grouping, the control may expand or collapse items, you can use the
IsGrouping property to determine if the BeforeExpandItem/AfterExpandItem events occur
due user interaction or control's grouping operation. The GroupItem property indicates the
index of the column being grouped for specified grouping item. The Group/Ungroup method
groups or ungroup the control's list. During execution any of these methods, the IsGrouping
property returns True. The LayoutChanged event is fired when the user changes the layout
of the control, including dragging a column to the sort bar. The SortBarColumnsCount
property indicates the number of the columns being grouped. The SortBarColumn property
indicates the column being sorted giving its position in the sort bar.

property G2antt.ItemFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS, ColIndex as Long, HitTestInfo as HitTestInfoEnum)
as HITEM

Retrieves the item from the cursor.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

ColIndex as Long
A long expression that indicates on return, the column
where the point belongs. If the return value is zero, the
ColIndex may indicate the handle of the cell (inner cell).

HitTestInfo as
HitTestInfoEnum

A HitTestInfoEnum expression that determines on return,
the position of the cursor within the cell.

HITEM A long expression that indicates the item's handle where
the point is.

Use the ItemFromPoint property to get the item from the point specified by the {X,Y}. The X
and Y coordinates are expressed in client coordinates, so a conversion must be done in
case your coordinates are relative to the screen or to other window.

The ItemFromPoint property returns:

the handle of the item from the current cursor position, if the X and Y parameters are
-1. The ItemFromPoint property returns 0, if not item is found.
the number of rows from current cursor position to the last visible item, if the X is 0
and Y parameter is -1. The ItemFromPoint property returns 0, if the cursor hovers any
item, else it returns a positive value, that indicate the number of items between the last
visible item and the current cursor position. For instance, you can use this option, to
add items to the cursor, once the user clicks the empty area of the items section of the
control.

Use the ColumnFromPoint property to retrieve the column from cursor. Use the
DateFromPoint property to specify the date from the cursor. Use the SelectableItem
property to specify the user can select an item. Use the BarFromPoint property to get the
bar from the point. Use the LinkFromPoint property to get the link from the point.

The following VB sample prints the cell's caption from the cursor (if the control contains no
inner cells. Use the SplitCell property to insert inner cells) :

Private Sub G2antt1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 On Error Resume Next
 ' Converts the container coordinates to client coordinates
 X = X / Screen.TwipsPerPixelX
 Y = Y / Screen.TwipsPerPixelY
 Dim h As HITEM
 Dim c As Long
 Dim hit As EXG2ANTTLibCtl.HitTestInfoEnum
 ' Gets the item from (X,Y)
 h = G2antt1.ItemFromPoint(X, Y, c, hit)
 If Not (h = 0) Then
 Debug.Print G2antt1.Items.CellValue(h, c) & " HT = " & hit
 End If
End Sub

The following VB sample displays the cell's caption from the cursor (if the control contains
inner cells):

Private Sub G2antt1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 On Error Resume Next
 ' Converts the container coordinates to client coordinates
 X = X / Screen.TwipsPerPixelX
 Y = Y / Screen.TwipsPerPixelY
 Dim h As HITEM
 Dim c As Long
 Dim hit As EXG2ANTTLibCtl.HitTestInfoEnum
 ' Gets the item from (X,Y)
 h = G2antt1.ItemFromPoint(X, Y, c, hit)
 If Not (h = 0) Or Not (c = 0) Then
 Debug.Print G2antt1.Items.CellValue(h, c) & " HT = " & hit
 End If
End Sub

The following VB sample displays the index of icon being clicked:

Private Sub G2antt1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single)
 Dim i As HITEM, h As HitTestInfoEnum, c As Long
 With G2antt1
 i = .ItemFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, c, h)
 End With
 If (i <> 0) or (c <> 0) Then
 If exHTCellIcon = (h And exHTCellIcon) Then
 Debug.Print "The index of icon being clicked is: " & (h And &HFFFF0000) / 65536
 End If
 End If
End Sub

The following C# sample displays the caption of the cell being double clicked (including the
inner cells):

 EXG2ANTTLib.HitTestInfoEnum hit;
 int c = 0, h = axG2antt1.get_ItemFromPoint(e.x, e.y, out c, out hit);
 if ((h != 0) || (c != 0))
 MessageBox.Show(axG2antt1.Items.get_CellValue(h, c).ToString());

The following VC sample displays the caption of the cell being clicked:

#include "Items.h"

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;

}

void OnMouseDownG2antt1(short Button, short Shift, long X, long Y)
{
 long c = 0, hit = 0, hItem = m_g2antt.GetItemFromPoint(X, Y, &c, &hit);
 if ((hItem != 0) || (c != 0))
 {
 CItems items = m_g2antt.GetItems();
 COleVariant vtItem(hItem), vtColumn(c);
 CString strCaption = V2S(&items.GetCellValue(vtItem, vtColumn)), strOutput;
 strOutput.Format("Cell: '%s', Hit = %08X\n", strCaption, hit);
 OutputDebugString(strOutput);
 }
}

The following VB.NET sample displays the caption from the cell being clicked:

Private Sub AxG2antt1_MouseDownEvent(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_MouseDownEvent) Handles
AxG2antt1.MouseDownEvent
 With AxG2antt1
 Dim i As Integer, c As Integer, hit As EXG2ANTTLib.HitTestInfoEnum
 i = .get_ItemFromPoint(e.x, e.y, c, hit)
 If (Not (i = 0) Or Not (c = 0)) Then
 Debug.WriteLine("Cell: " & .Items.CellValue(i, c) & " Hit: " & hit.ToString())
 End If
 End With
End Sub

The following C# sample displays the caption from the cell being clicked:

private void axG2antt1_MouseDownEvent(object sender,
AxEXG2ANTTLib._IG2anttEvents_MouseDownEvent e)
{
 int c = 0;
 EXG2ANTTLib.HitTestInfoEnum hit;
 int i = axG2antt1.get_ItemFromPoint(e.x, e.y, out c,out hit);
 if ((i != 0) || (c != 0))

 {
 string s = axG2antt1.Items.get_CellValue(i,c).ToString();
 s = "Cell: " + s + ", Hit: " + hit.ToString();
 System.Diagnostics.Debug.WriteLine(s);
 }
}

The following VFP sample displays the caption from the cell being clicked (the code should
be in the G2antt1.MouseDown event):

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

local c, hit
c = 0
hit = 0
with thisform.G2antt1
 .Items.DefaultItem = .ItemFromPoint(x, y, @c, @hit)
 if (.Items.DefaultItem <> 0) or (c <> 0)
 wait window nowait .Items.CellValue(0, c) + " " + Str(hit)
 endif
endwith

property G2antt.Items as Items

Retrieves the control's item collection.

Type Description
Items An Items object that holds the control's items collection.

Use the Items property to access the Items collection. Use the Items collection to add,
remove or change the control items. Use the GetItems method to get the items collection
into a safe array. Use the PutItems method to load items from a safe array. Use the
Columns property to access the control's Columns collection. Use the AddItem, InsertItem
or InsertControlItem method to add new items to the control. Use the DataSource to add
new columns and items to the control. Adding new items fails if the control has no columns.
Use the Chart object to access all properties and methods related to the G2antt chart. Use
the AddBar method to add bars to the item. The bars are always shown in the chart area.
Use the PaneWidth property to specify the width of the chart.

property G2antt.ItemsAllowSizing as ItemsAllowSizingEnum
Retrieves or sets a value that indicates whether a user can resize items at run-time.

Type Description

ItemsAllowSizingEnum
An ItemsAllowSizingEnum expression that specifies
whether the user can resize a single item at runtime, or all
items, at once.

By default, the ItemsAllowSizing property is exNoSizing. Use the ItemsAllowSizing property
to specify whether all items are resizable. Use the ItemAllowSizing property of the Items
object to specify only when few items are resizable or not. Use the ItemHeight property to
specify the height of the item. The CellSingleLine property specifies whether a cell displays
its caption using multiple lines. The DefaultItemHeight property specifies the default height
of the items. The DefaultItemHeight property affects only items that are going to be added.
It doesn't affect items already added.

property G2antt.Layout as String
Saves or loads the control's layout, such as positions of the columns, scroll position, filtering
values.

Type Description
String A String expression that specifies the control's layout.

You can use the Layout property to store the control's layout and to restore the layout later.
For instance, you can save the control's Layout property to a file when the application is
closing, and you can restore the control's layout when the application is loaded. The Layout
property saves almost all of the control's properties that user can change at runtime (like
changing the column's position by drag and drop). The Layout property does NOT save the
control's data, so the Layout property should be called once you loaded the data from your
database, xml or any other alternative. Once the data is loaded, you can call the Layout
property to restore the View as it was saved. Before closing the application, you can call
the Layout property and save the content to a file for reading next time the application is
opened.

The Layout property saves/loads the following information:

chart's FirstVisibleDate property, that indicates the first visible date in the chart section
chart's UnitScale property, that specifies the scale to display the chart
chart's UnitWidth property, that specifies the width of the time-unit to be displayed in
the chart.
panels width, through the PaneWidth property
columns size and position
current selection
scrolling position and size
expanded/collapsed items, if any
sorting columns
filtering options
SearchColumnIndex property, indicates the focusing column, or the column where the
user can use the control's incremental searching.
TreeColumnIndex property, which indicates the index of the column that displays the
hierarchy lines.

These properties are serialized to a string and encoded in BASE64 format.

The following movies show how Layout works:

 The Layout property is used to save and restore the control's view.

Generally, the Layout property can be used to save / load the control's layout (or as it is

https://www.youtube.com/watch?v=TbWWnDJlD9w

displayed). Thought, you can benefit of this property to sort the control using one or more
columns as follows:

multiplesort="";singlesort="", removes any previously sorting
multiplesort="C3:1", sorts ascending the column with the index 3 (and add it to the sort
bar if visible)
singlesort="C4:2", sorts descending the column with the index 4 (it is not added to sort
bar panel)
multiplesort="C3:1";singlesort="C4:2", sorts ascending the column with the index 3 (
and add it to the sort bar if visible), and sorts descending the column with the index 4.
In other words, it re-sort the control by columns 3 and 4.
multiplesort="C3:1 C5:2";singlesort="C4:2", sorts ascending the column with the index
3 (and add it to the sort bar if visible), sorts descending the column with the index 5 (
and add it to the sort bar if visible), and sorts descending the column with the index 4.
In other words, it re-sort the control by columns 3, 5 and 4.

The format of the Layout in non-encoded form is like follows:

c0.filtertype=0
c0.position=0
c0.select=0
c0.visible=1
c0.width=96
....
columns=13
collapse="0-3 5-63 80-81 83"
filterprompt=""
focus=8
focuscolumnindex=0
hasfilter=1
hscroll=0
multiplesort="C12:1 C2:2"
searchcolumnindex=3
select="39 2 13 8"
selectcolumnindex=0
singlesort="C5:2"
treecolumnindex=0
vscroll=12
vscrolloffset=0

property G2antt.LinesAtRoot as LinesAtRootEnum

Link items at the root of the hierarchy.

Type Description

LinesAtRootEnum A LinesAtRootEnum expression that indicates whether the
control link items at the root of the hierarchy.

The control paints the hierarchy lines to the right if the Column's Alignment property is
RightAlignment. The TreeColumnIndex property specifies the index of column where the
hierarchy lines are painted. Use the Indent property to increase or decrease the amount, in
pixels, that child items are indented relative to their parent items. Use the HasLines property
to enhances the graphic representation of a tree control's hierarchy by drawing lines that
link child items to their corresponding parent item. Use the InsertItem method to insert a
child item. Use the InsertControlItem property to insert an ActiveX item.

method G2antt.LoadXML (Source as Variant)
Loads an XML document from the specified location, using MSXML parser.

Type Description

Source as Variant

An indicator of the object that specifies the source for the
XML document. The object can represent a file name, a
URL, an IStream, a SAFEARRAY, or an
IXMLDOMDocument.

Return Description

Boolean
A boolean expression that specifies whether the XML
document is loaded without errors. If an error occurs, the
method retrieves a description of the error occurred.

The LoadXML method uses the MSXML (MSXML.DOMDocument, XML DOM Document)
parser to load XML documents, previously saved using the SaveXML method. The control is
emptied when the LoadXML method is called, and so the columns and items collection are
emptied before loading the XML document. The LoadXML method adds a new column for
each <column> tag found in the <columns> collection. Properties like Caption,
HTMLCaption, Image, Visible, LevelKey, DisplayFilterButton, DisplayFilterPattern,
FilterType, Width and Position are fetched for each column found in the XML document. The
control fires the AddColumn event for each found column. The <items> xml element
contains a collection of <item> objects. Each <item> object holds information about an item
in the control, including its cells, child items or bars. Each item contains a collection of
<cell> objects that defines the cell for each column. The <bars> element contains a
collection of <bar> each one is associated with the bars in the item. The Expanded attribute
specifies whether an item is expanded or collapsed, and it carries the value of the
ExpandItem property. The <chart> element contains data related to the chart data of the
control. For instance, it includes the collection of levels being displayed in the chart, the first
visible date, links and groups of bars. The <levels> element holds a collection of <level>
objects each one being associated with an level in the chart area. The <links> element
holds a collection of <link> objects each one indicating a link between two bars in the chart.
The <groups> element holds a collection of <group> objects that indicates the bars that
are grouped in the chart.

The XML format looks like follows:

- <Content Author Component Version ...>
 - <Chart FirstVisibleDate ...>
 - <Levels>
 <Level Label Unit Count />

 <Level Label Unit Count />
 ...
 </Levels>
 - <Links>
 <Link Key StartItem StartBar EndItem EndBar Visible StartPos EndPos Color Style
Width ShowDir Text ... />
 <Link Key StartItem StartBar EndItem EndBar Visible StartPos EndPos Color Style
Width ShowDir Text ... />
 ...
 </Links>
 - <Groups>
 <Group ItemA KeyA StartA ItemB KeyB StartB />
 <Group ItemA KeyA StartA ItemB KeyB StartB />
 ...
 </Groups>
 </Chart>
 - <Columns>
 <Column Caption Position Width HTMLCaption LevelKey DisplayFilterButton
DisplayFilterPatter FilterType ... />
 <Column Caption Position Width HTMLCaption LevelKey DisplayFilterButton
DisplayFilterPatter FilterType ... />
 ...
 </Columns>
 - <Items>
 - <Item Expanded ...>
 <Cell Value ValueFormat Images Image ... />
 <Cell Value ValueFormat Images Image ... />
 ...
 - <Bars>
 <Bar Name Start End Caption HAlignCaption VAlignCaption Key ... />
 <Bar Name Start End Caption HAlignCaption VAlignCaption Key ... />
 ...
 </Bars>
 - <Items>
 - <Item Expanded ...>
 - <Item Expanded ...>

 </Items>
 </Item>
 </Items>
 </Content>

property G2antt.MarkSearchColumn as Boolean

Retrieves or sets a value that indicates whether the searching column is marked or
unmarked

Type Description

Boolean A boolean expression that indicates whether the searching
column is marked or unmarked.

The control supports incremental search feature. The MarkSearchColumn property
specifies whether the control highlights the searching column. Use the SearchColumnIndex
property to specify the index of the searching column. The user can change the searching
column by pressing the TAB ort Shift + TAB key. Use the AutoSearch property to specify
whether the control enables the incremental searching feature. Use the AutoSearch
property to specify the type of incremental searching the control supports within the column.
Use the UseTabKey property to specify whether the control uses the TAB key.

property G2antt.MarkTooltipCells as Boolean
Retrieves or sets a value that indicates whether the control marks the cells that have tool
tips.

Type Description

Boolean A boolean expression that indicates whether the control
marks the cells that have tool tips.

By default, the MarkTooltipCells property is False. If the MarkTooltipCells property is True,
the control paints on the right side of the cell a sign that indicates that the cell has
associated a tool tip. Use the CellTooltip property to associate a tool tip to a cell. Use the
TooltipCellsColor property to change the color used to sign cells that have tool tips. Use the
MarkTooltipCellsImage property to assign a different look for signs to mark the cells that
have tooltips.

property G2antt.MarkTooltipCellsImage as Long
Specifies a value that indicates the index of icon being displayed in the cells that have
tooltips.

Type Description

Long A long expression that indicates the index of icon being
displayed when a cell has tooltip assigned.

By default, the MarkTooltipCellsImage property is 0. The MarkTooltipCellsImage property
has effect only if the MarkTooltipCells property is True. Use the Images method to assign
new icons to the control. By default, if the control can't find the icon specified by the
MarkTooltipCellsImage property, it paints the default sign to mark the cells that have the
tooltips.

The following screen shot shows how the control marks by default, the cells that have
tooltip:

The following screen shot shows how the control marks the cells that have tooltip, once that
MarkTooltipCellsImage property points to an icon in the Images collection:

method G2antt.OLEDrag ()
Causes a component to initiate an OLE drag/drop operation.

Type Description

Only for internal use.

property G2antt.OLEDropMode as exOLEDropModeEnum
Returns or sets how a target component handles drop operations

Type Description

exOLEDropModeEnum An exOLEDropModeEnum expression that indicates the
OLE Drag and Drop mode.

By default, the OLEDropMode property is exOLEDropNone. Use the AutoDrag property to
specify what the control does when the user clicks and drag the items.

Currently, the ExG2antt control supports only manual OLE Drag and Drop operation. Use
the Background(exDragDropBefore) property to specify the visual appearance for the
dragging items, before painting the items. Use the Background(exDragDropAfter) property
to specify the visual appearance for the dragging items, after painting the items. Use the
Background(exDragDropList) property to specify the graphic feedback for the item from the
cursor, while the OLE drag and drop operation is running. See the OLEStartDrag and
OLEDragDrop events for more details about implementing drag and drop operations into
the ExG2antt control.

In the /NET Assembly, you have to use the AllowDrop property as explained here:

https://www.exontrol.com/sg.jsp?content=support/faq/net/#dragdrop

https://exontrol.com/faq.jsp/net/#dragdrop

property G2antt.OnResizeControl as OnResizeControlEnum
Specifies whether the list or the chart part is resized once the control is resized.

Type Description

OnResizeControlEnum
An OnResizeControlEnum expression that specifies
whether the list or the chart part of the control is resized,
when the entire control is resized.

By default, the OnResizeControl property is exResizeList. In other words, the list part of the
control (the part that lists the columns) gets resized, and the chart are stay fixed. Use the
OnResizeControl to specify whether the chart area should be resized when the user resizes
the control (whenever the chart is anchored to a form). Use the PaneWidth property to
specify the width of the list or chart part of the control. The HistogramBoundsChanged
event notifies your application when the location and the size of the chart's histogram is
changed, so you can use it to add your legend for the histogram in a panel component. The
controls vertical splitter is hidden if the OnControlResize property is exResizeChart +
exDisableSplitter (129) and the PaneWidth(False) property is 0.

Use the OnResizeControl property to allow:

resizing the list area when the control is resized (by default)
resizing the chart area when the control is resized
displaying the resizing buttons on the vertical splitter to allow quickly hide/show the
items/chart area.
hiding the vertical splitter

You can also use the OnResizeControl property to prevent:

resizing the list/chart using the control's splitter.
resizing the chart's histogram.

The following VB sample shows how can I disable the control's splitter so the user can't
resize the chart area:

With G2antt1
 .OnResizeControl = exDisableSplitter
 .Chart.PaneWidth(1) = 60
End With

The following VB.NET sample shows how can I disable the control's splitter so the user
can't resize the chart area:

With AxG2antt1
 .OnResizeControl = EXG2ANTTLib.OnResizeControlEnum.exDisableSplitter
 .Chart.PaneWidth(1) = 60
End With

The following C++ sample shows how can I disable the control's splitter so the user can't
resize the chart area:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->PutOnResizeControl(EXG2ANTTLib::exDisableSplitter);
spG2antt1->GetChart()->PutPaneWidth(1,60);

The following C# sample shows how can I disable the control's splitter so the user can't
resize the chart area:

axG2antt1.OnResizeControl = EXG2ANTTLib.OnResizeControlEnum.exDisableSplitter;
axG2antt1.Chart.set_PaneWidth(1 != 0,60);

The following VFP sample shows how can I disable the control's splitter so the user can't
resize the chart area:

with thisform.G2antt1
 .OnResizeControl = 128
 .Chart.PaneWidth(1) = 60
endwith

property G2antt.Picture as IPictureDisp

Retrieves or sets a graphic to be displayed in the control.

Type Description

IPictureDisp A Picture object that's displayed on the control's
background.

By default, the control has no picture associated. The control uses the PictureDisplay
property to determine how the picture is displayed on the control's background. Use the
PictureLevelHeader property to specify the picture on the control's levels header bar. Use
the CellPicture property to assign a picture to a cell. Use the BackColor property to specify
the control's background color. Use the Picture property to assign a picture to the chart
area.

property G2antt.PictureDisplay as PictureDisplayEnum

Retrieves or sets a value that indicates the way how the graphic is displayed on the
control's background

Type Description

PictureDisplayEnum A PictureDisplayEnum expression that indicates the way
how the picture is displayed.

By default, the PictureDisplay property is exTile. The PictureDisplay property specifies how
the Picture is displayed on the control's background. If the control has no picture associated
the PictureDisplay property has no effect. Use the CellPicture property to assign a picture
to a cell. Use the BackColor property to specify the control's background color.

property G2antt.PictureDisplayLevelHeader as PictureDisplayEnum
Retrieves or sets a value that indicates the way how the graphic is displayed on the
control's header background.

Type Description

PictureDisplayEnum A PictureDisplayEnum expression that indicates the way
how the picture is displayed on the control's header.

Use the PictureDisplayLevelHeader property to arrange the picture on the control's multiple
levels header bar. Use the PictureLevelHeader property to load a picture on the control's
header bar when it displays multiple levels. The control's header bar displays multiple levels
if there are two or more neighbor columns with the same non empty level key. Use the
LevelKey property to specify the control's level key.

property G2antt.PictureLevelHeader as IPictureDisp
Retrieves or sets a graphic to be displayed in the control's header when multiple levels is
on.

Type Description

IPictureDisp A Picture object being displayed on the control's header
bar when multiple levels is on.

Use the PictureLevelHeader property to display a picture on the control's header bar when
it displays the columns using multiple levels. Use the PictureDisplayLevelHeader property to
arrange the picture on the control's multiple levels header bar. The control's header bar
displays multiple levels if there are two or more neighbor columns with the same non empty
level key. Use the LevelKey property to specify the control's level key. Use the Picture
property to display a picture on the control's list area. Use the BackColorLevelHeader
property to specify the background color for parts of the control's header bar that are not
occupied by column's headers.

method G2antt.PutItems (Items as Variant, [Parent as Variant])
Adds data to the control from a SafeArray containing numbers, strings, dates, or nested
SafeArrays of numbers, strings, and dates, positioning them as child items of the specified
parent item

Type Description

Items as Variant

An array that control uses to fill with. The array can be
one or two- dimensional. If the array is one-dimensional,
the control requires one column being added before calling
the PutItems method. If the Items parameter indicates a
two-dimensional array, the first dimension defines the
columns, while the second defines the number of items to
be loaded. For instance, a(2,100) means 2 columns and
100 items.

For instance:

PutItems Array("Item 1", "Item 2", "Item 3"), adds the
rows at the end of the list
PutItems Array("Root", Array("Child 1", "Child 2")),
adds data in a hierarchical structure, at the end of the
list
PutItems rs.GetRows(), appends data from a
recordset using the GetRows method of the
Recordset
PutItems rs.GetRows(10), inserts the first 10 records
from a Recordset using the GetRows method, at the
end of the list

where GetRows() method in ADO retrieves multiple
records from a Recordset object and stores them in a
two-dimensional array.

Indicates one of the following:

missing, empty or 0 {number}, specifies that the
data(Items) is being appended (added to the end of
the list)
a long expression, that specifies the handle of the
item where the array is being inserted
a string expression of of
"parent;IDColumn;ParentIDColumn" format, where,

Parent as Variant

'parent' denotes the handle of the item where the data
is being inserted, 'IDColumn' refers to the index of the
column containing row identifiers, and
'ParentIDColumn' indicates the index of the column
containing identifiers of parent rows. This way, you
can insert data hierarchically using parent-id
relationship. A parent-id relationship is a way of
organizing data in a hierarchical structure where each
element (or "child") is associated with a parent
element. Please be aware that the rows of the data
are inserted as they were provided by the Items
parameter. Therefore, it is important that the data
provided be sorted by the IDColumn so that the
parent row referred to by the ParentIDColumn value
is already present and can be used to insert the
current row as a child of it.

For instance:

PutItems Array("Item 1", "Item 2", "Item 3"),
Items.ItemByIndex(2), inserts the rows as children of
the item with index 2
PutItems Array("Root", Array("Child 1", "Child 2")),
Items.FirstVisibleItem, Inserts data as a hierarchical
structure, placing it as a child of the first visible item
PutItems rs.GetRows(), Items.ItemByIndex(0),
inserts the records from the recordset using the
GetRows method of the Recordset, placing them as
children of the item with index 0
PutItems rs.GetRows(), ";0;3", inserts the records
from the recordset using the GetRows method of the
Recordset, utilizing parent-child relationships. The first
column (index 0) contains the identifiers of the rows,
while the fourth column (index 3) contains the keys of
the parent rows.

where GetRows() method in ADO retrieves multiple
records from a Recordset object and stores them in a
two-dimensional array.

The PutItems method loads items from a safe array. The PutItems method may raise one
of the following exceptions:

The array dimension exceeds 2 (In simpler terms, a two-dimensional array (or 2D
array) is like a table with rows and columns. If an array exceeds 2 dimensions, it
means it has three or more dimensions, such as a 3D array (which can be thought of
as a collection of tables) or even higher dimensions) You need to provide a one-
dimensional or two-dimensional array
The number of columns does not match the array size (either the control has no
columns or the number of columns is too small). You need to add more columns (Add
property).
The element type of the array is not valid (the type of the array is either unknown or
not supported) You need to provide a valid type, which must be one of the following:
Variant, String, Integer, Long, Double, Float, or Date.

The PutItems method performs:

1. Insertion Order: The data is inserted into the system in the same order as it is
provided by the Items parameter. This means that the sequence of rows in the Items
parameter directly affects how the data is inserted.

2. Sorting Requirement: To ensure correct insertion, it's crucial that the data is sorted by
the IDColumn (when the Parent parameter is of "parent;IDColumn;ParentIDColumn"
format). This sorting ensures that parent rows are inserted before their corresponding
child rows.

3. Parent-Child Relationship: The sorting ensures that when a row refers to a parent
row using the ParentIDColumn value (when the Parent parameter is of
"parent;IDColumn;ParentIDColumn" format). The parent row is already present in the
control. This allows the current row to be inserted as a child of the parent row without
encountering errors or inconsistencies.

In essence, by sorting the data appropriately, you establish a clear hierarchy where parent
rows are inserted before child rows, maintaining the integrity of the parent-child
relationships within the dataset.

For instance, let's say we have the following data:

 EmployeeID EmployeeName DepartmentID ParentID
 1 John 101
 2 Alice 102 1
 3 Bob 101 1
 4 Sarah 102 1
 5 Emma 101 2
 6 Mike 102 2

Each row represents an employee.

EmployeeID uniquely identifies each employee (represents the column with the index 0)
EmployeeName denotes the name of the employee (represents the column with the
index 1)
DepartmentID indicates the department to which the employee belongs (represents the
column with the index 2)
ParentID establishes the relationship between employees (represents the column with
the index 3), where it references the EmployeeID of the parent employee. An empty
value indicates the absence of a parent, typically representing the head of the
department.

Having this data organized into a two-dimensional array, the statement PutItems d loads it
as a flat table:

whereas PutItems d, ";0;3" loads it as a tree structure:

where d is an array as defined next:

Dim d(3, 5) As Variant
d(0, 0) = "1": d(1, 0) = "John": d(2, 0) = "101": d(3, 0) = ""
d(0, 1) = "2": d(1, 1) = "Alice": d(2, 1) = "102": d(3, 1) = "1"
d(0, 2) = "3": d(1, 2) = "Bob": d(2, 2) = "101": d(3, 2) = "1"
d(0, 3) = "4": d(1, 3) = "Sarah": d(2, 3) = "102": d(3, 3) = "1"
d(0, 4) = "5": d(1, 4) = "Emma": d(2, 4) = "101": d(3, 4) = "2"
d(0, 5) = "6": d(1, 5) = "Mike": d(2, 5) = "102": d(3, 5) = "2"

Use the GetItems method to get a safe array with the items in the control. The PutItems
method fires AddItem event for each item added to Items collection. Use the Items property
to access the items collection. Use the ConditionalFormats method to apply formats to a
cell or range of cells, and have that formatting change depending on the value of the cell or

the value of a formula.

The following VB6 sample loads a flat array to a single column control (and shows as in the
following picture):

With G2antt1
 .BeginUpdate
 .Columns.Add "Column 1"
 .PutItems Array("Item 1", "Item 2", "Item 3")
 .EndUpdate
End With

or similar for /NET Assembly version:

 With Exg2antt1
 .BeginUpdate()
 .Columns.Add("Column 1")
 .PutItems(New String() {"Item 1", "Item 2", "Item 3"})
 .EndUpdate()
End With

The following VB6 sample loads a hierarchy to a single column control (and shows as in the
following picture):

With G2antt1
 .BeginUpdate
 .LinesAtRoot = exLinesAtRoot
 .Columns.Add ""
 .PutItems Array("Root 1", Array("Child 1.1", Array("Sub Child 1.1.1", "Sub Child 1.1.2"),
"Child 1.2"), "Root 2", Array("Child 2.1", "Child 2.2"))
 .EndUpdate
End With

or similar for /NET Assembly version:

With Exg2antt1
 .BeginUpdate()

 .LinesAtRoot = exontrol.EXG2ANTTLib.LinesAtRootEnum.exLinesAtRoot
 .Columns.Add("")
 .PutItems(New Object() {"Root 1", New Object() {"Child 1.1", New String() {"Sub Child
1.1.1", "Sub Child 1.1.2"}, "Child 1.2"}, "Root 2", New String() {"Child 2.1", "Child 2.2"}})
 .EndUpdate()
End With

The following VB6 sample loads a list of items, in a three columns control (as shown in the
following picture):

Dim v(2, 2) As String
v(0, 0) = "One": v(0, 1) = "Two": v(0, 2) = "Three"
v(1, 0) = "One": v(1, 1) = "Two": v(1, 2) = "Three"
v(2, 0) = "One": v(2, 1) = "Two": v(2, 2) = "Three"

With G2antt1
 .BeginUpdate
 .Columns.Add "Column 1"
 .Columns.Add "Column 2"
 .Columns.Add "Column 3"

 .PutItems v
 .EndUpdate
End With

The following VB6 sample loads a list of items, in a three columns control (as shown in the
following picture):

Dim v(2, 2) As String

v(0, 0) = "One": v(0, 1) = "Two": v(0, 2) = "Three"
v(1, 0) = "One": v(1, 1) = "Two": v(1, 2) = "Three"
v(2, 0) = "One": v(2, 1) = "Two": v(2, 2) = "Three"

With G2antt1
 .BeginUpdate
 .Columns.Add "Column 1"
 .Columns.Add "Column 2"
 .Columns.Add "Column 3"

 .Items.AddItem "Root"

 .PutItems v, .Items.FirstVisibleItem
 .EndUpdate
End With

The following VB sample loads the collection of records from an ADO recordset:

Dim rs As Object
Const dwProvider = "Microsoft.Jet.OLEDB.4.0" ' OLE Data provider
Const nCursorType = 3 ' adOpenStatic
Const nLockType = 3 ' adLockOptimistic
Const nOptions = 2 ' adCmdTable
Const strDatabase = "D:\Program Files\Microsoft Visual Studio\VB98\NWIND.MDB"

'Creates an recordset and opens the "Employees" table, from NWIND database
Set rs = CreateObject("ADODB.Recordset")
rs.Open "Employees", "Provider=" & dwProvider & ";Data Source= " & strDatabase,
nCursorType, nLockType, nOptions
With G2antt1
 .BeginUpdate

 .ColumnAutoResize = False

 .MarkSearchColumn = False
 .DrawG2anttLines = True
 ' Adds a column for each field found
 With .Columns
 Dim f As Object
 For Each f In rs.Fields
 .Add f.Name
 Next
 End With

 ' Loads the collection of records
 .PutItems rs.GetRows()

 'Changes the editor of the "Photo" column
 .Columns("Photo").Editor.EditType = PictureType
 .EndUpdate
End With

The following C++ sample loads records from an ADO recordset, using the PutItems
method:

#include "Items.h"
#include "Columns.h"
#include "Column.h"

#pragma warning(disable : 4146)
#import <msado15.dll> rename ("EOF", "adoEOF")
using namespace ADODB;

_RecordsetPtr spRecordset;
if (SUCCEEDED(spRecordset.CreateInstance("ADODB.Recordset")))
{
 // Builds the connection string.
 CString strTableName = "Employees", strConnection =
"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=";
 CString strPath = "D:\\Program Files\\Microsoft Visual Studio\\VB98\\NWIND.MDB";

 strConnection += strPath;
 try
 {
 // Loads the table
 if (SUCCEEDED(spRecordset->Open(_variant_t((LPCTSTR)strTableName),
_variant_t((LPCTSTR)strConnection), adOpenStatic, adLockPessimistic, NULL)))
 {
 m_g2antt.BeginUpdate();
 m_g2antt.SetColumnAutoResize(FALSE);
 CColumns columns = m_g2antt.GetColumns();
 for (long i = 0; i < spRecordset->Fields->Count; i++)
 columns.Add(spRecordset->Fields->GetItem(i)->Name);
 COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
 m_g2antt.PutItems(&spRecordset->GetRows(-1), vtMissing);
 m_g2antt.EndUpdate();
 }
 }
 catch (_com_error& e)
 {
 AfxMessageBox(e.Description());
 }
}

The sample uses the #import statement to import ADODB recordset's type library. The
sample enumerates the fields in the recordset and adds a new column for each field found.
Also, the sample uses the GetRows method of the ADODB recordset to retrieves multiple
records of a Recordset object into a safe array. Please consult the ADODB documentation
for the GetRows property specification.

method G2antt.PutRes (ResHandle as Long, Type as PutResEnum)
The PutRes method associates an eXG2antt (Source) control with another eXG2antt
(Target) control, using the Items.ItemBar(exBarResources).

Type Description

ResHandle as Long A Handle expression being returned by the ResHandle
property.

Type as PutResEnum
A PutResEnnum expression that indicates whether the
control loads or saves the bar's resources to or from
another control.

The eXG2antt component (Target) can display resources being used by another eXG2antt
component (Source). The PutRes method associates an eXG2antt (Source) control with
another eXG2antt (Target) control, using the Items.ItemBar(exBarResources). The Source
displays the bar and the resources to be used by each bar, while the Target shows the
Resources being used by each bar found in the Source. A resource is identified by a name
like R1, or a name followed by its usage in percent, like R1[20%], which indicates that the
bar uses the resource R1 on 20% of its full capacity.

In order to use the PutRes method the Source control must:

 specify the activity/bar's resources using the ItemBar(exBarResources) property

Bellow you can find:

How to display the resources from the Source to the Target control (exPutResLoad)
How to display a histogram of using resources in the Target control
How to update the Source from the Target once it has been updated (exPutResSave)

The following sample shows the bar's allocation of resources: (for instance the Task 1 uses
the R1, Task 2 uses the R1 and R2, while Task 3 uses R2 on 60% and R3 on 39%, and so
on)

(source, picture 1)

while the next picture shows the resource usage being taken from the first picture (for
instance, the R1 is being used by Task 1 and Task 2, R2 is used by Task 2, Task 3 on 60%
and Task 4, and so on) :

(target, picture 2)

The Source (picture 1) is the original control that displays your activities / bars. Use the
Source.PutRes(Target.ResHandle, exPutResSave) to update the bar's resources in a
Source control, from a Target control. IN a Source control, you can use the following
properties to specify the usage of resources.

exBarResources property (get/set) indicates the resources to be used by the current
bar in the Source, as a string expression. The exBarResources property is a string

expression that indicate the list of resources (including its usage, or 100% if missing).
The resources are separated by , (comma) character, while the usage is specified as
a double expression (using the . dot character as a decimal separator). For instance
the "Resource1,Resource2,Resource3" indicates that the bar uses the
Resource1,Resource2,Resource3, while "R1,R2[50%],R3[67.89%]" specifies that the
bar uses the R1 on 100%, R2 on 50% and R3 on 67.89%.

You can use the exBarCaption to display the bar's resources using the
<%=formula%> format, like in the following VB sample:

With G2antt1.Chart.Bars("Task")
 .Def(EXG2ANTTLibCtl.ItemBarPropertyEnum.exBarCaption) = "<%=%" &
EXG2ANTTLibCtl.ItemBarPropertyEnum.exBarResources & "%>"
 .Def(EXG2ANTTLibCtl.ItemBarPropertyEnum.exBarHAlignCaption) = 18
End With

In other words, the sample allows you to display the bar's exBarResources
property as shown bellow:

The set exBarResources property could be used in the following format based on
the first character as listed:

If the first character is +(plus), the rest of the expression indicates the
resources to be assigned to the current bar. For instance, if the current bar
has the exBarResources property as "R1,R2" , and we call set
exBarResources as "+R3", it means that the R3 is added to the bar's
resources, and so the new exBarResources property is "R1,R2,R3".
If the first character is -(minus), the rest of the expression indicates the
resources to be removed from the current bar. For instance, if the current bar
has the exBarResources property as "R1,R2" , and we call set
exBarResources as "-R2", it means that the R2 is removed from the bar's
resources, and so the new exBarResources property is "R1".
If no +,- character, the new expression replaces the exBarResources
property. For instance, if the current bar has the exBarResources property as
"R1,R2" , and we call set exBarResources as "R3,R4", it means that the new
exBarResources property is "R3,R4".

exBarResourceFormat property (get/set) indicates the format or the expression to be

used if you need to display the bar's resource in a different format, in Source, as a
string expression. The expression supports the name keyword which indicates the
name of the resource, and the percent keyword to get the usage percent a a double
expression between 0 and 1. The expression supports all predefined functions listed
here. Use the exBarResourcesFormat (NOT exBarResourceFormat, whith no s) to
get the HTML value of the formatted string using the bar's resources. For instance,
let's say we need to display the resource names in bold, and the usage percent in a
smaller font and a different foreground color, so the
Items.ItemBar(exBarResourceFormat) property could be "`` + name + `<fgcolor=404040>` + (percent = 1 ? `` : (round(100*percent) format ``) + `%`) +
`</fgcolor>`", and so the VB sample could show as:

With G2antt1.Chart.Bars("Task")
 .Def(exBarResourceFormat) = "`` + name + `
<fgcolor=404040>` + (percent = 1 ? `` : (round(100*percent) format ``) + `%`) +
`</fgcolor>`"
 .Def(EXG2ANTTLibCtl.ItemBarPropertyEnum.exBarCaption) = "<%=%" &
EXG2ANTTLibCtl.ItemBarPropertyEnum.exBarResourcesFormat & "%>"
 .Def(EXG2ANTTLibCtl.ItemBarPropertyEnum.exBarHAlignCaption) = 18
End With

In other words, the sample allows you to display the bar's exBarResources
property as shown bellow:

exBarResourcesFormat property (get only) returns formatted expression of the
exBarResources using the exBarResourceFormat (no s, so it is
exBarResourceFormat, not exBarResourcesFormat).
exBarResourcesNames property (get only) returns the name of each resource to be
used by the current bar, in the Source, as a string expression. This option returns no
percent or usage of any resource. For instance, if the exBarResources property is
"R3[67.89%],R4[23.23%]", the exBarResourcesNames property gets the "R3,R4".
exBarResourcesUsages property (get only) returns the usage (double expression
from 0 to 1) of each resource to be used by the current bar, in the Source, as a string
expression. This option returns no name any resource. For instance, if the
exBarResources property is "R3[67.89%],R4[23.23%]", the exBarResourcesUsages

https://exontrol.com/faq.jsp/all/#formatting

property gets the "0.6789,0.2323".

The Target (picture 2) is the control that displays the Resources column, where all
resources found are being added line by line, and its usage on items. Use the
Target.PutRes(Source.ResHandle, exPutResLoad) to update the Target control from a
Source control. IN a Target control, you can use the following properties to specify the
usage of resources.

exBarPercent property (get/set only) specifies the usage of the resource in the
current bar/activity. The following VB sample updates the exBarEffort (so the
histogram will be shown accordingly) once the user resizes a bar:

Private Sub G2antt1_BarResizing(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal
Key As Variant)
 With G2antt1.Items
 .ItemBar(Item, Key, EXG2ANTTLibCtl.ItemBarPropertyEnum.exBarEffort) =
.ItemBar(Item, Key, EXG2ANTTLibCtl.ItemBarPropertyEnum.exBarPercent)
 End With
End Sub

Now, let's display the Resources of the Source into the Target control (
Target.PutRes Source.ResHandle, exPutResLoad)

First step is specifying the ItemBar(exBarResources) property in the Source control. If the
Source control has no bars with the ItemBar(exBarResources) property, no resource will be
displayed in the target control.

The following sample adds a column and two activities/bars, with allocated resources:

With Source
 .BeginUpdate
 With .Chart
 .FirstVisibleDate = #1/1/2001#
 With .Bars("Task")
 .Def(exBarHAlignCaption) = 18
 .Def(exBarCaption) = "<%=%49%>"
 End With
 End With
 .Columns.Add "Tasks"
 Dim h As Long
 With .Items

 h = .AddItem("Task 1")
 .AddBar h, "Task", #1/6/2001#, #1/12/2001#, "K1"
 .ItemBar(h, "K1", exBarResources) = "R1,R2"
 h = .AddItem("Task 2")
 .AddBar h, "Task", #1/4/2001#, #1/14/2001#, "K2"
 .ItemBar(h, "K2", exBarResources) = "R2[75%],R3"
 End With
 .EndUpdate
End With

and the Source should show as:

The second step is calling the PutRes method as follows:

Target.PutRes Source.ResHandle, exPutResLoad

and the Target should show as:

The PutRes(exPutResLoad) method updates the Target as follows:

adds the "Resources" column (nothing happens if the PutRes method was already
called, or the Target control already contains a column with the Key "Resources")
adds a new item with the name of the resource for each resource found (
ItemBar(exBarResources)) in the Source control (R1, R2, ...)
adds a new bar for each activity/bar in the Source control, that uses the specified
resource, where the ItemBar(exBarPercent) and ItemBar(exBarEffort) properties
indicate the usage of the resource (double expression between 0 and 1). The
ItemBar(exBarEffort) property should be updated with the ItemBar(exBarPercent),
during the BarResizing event, in case you provide a histogram view for the Target

control, as explained bellow.

 As the Target control can display multiple activities/bars on the same row/item/resource we
should make a few adjustments on the Target control as:

With Target
 With .Chart
 .FirstVisibleDate = Source.Chart.FirstVisibleDate
 With .Bars.Add("Task%Progress")
 .OverlaidType = exOverlaidBarsStack Or exOverlaidBarsStackAutoArrange
 .Shortcut = "Task"
 End With
 End With
End With

The code, defines the "Task" bar to display "Progress", and to be stacked on the same row.
This code, should be called once, before calling the PutRes and so the Target should show
as:

Now, let's display the histogram of Resources usage in the Target control The Target
control represents a task into it's histogram only if:

Bar.HistogramPattern or Bar.HistogramColor is specified. By default, none of these
properties are set, so no bar is represented in the histogram

The control's histogram uses:

ItemBar(exBarEffort) property specifies the effort to execute an unit in the task. By
default, the ItemBar(exBarEffort) property is initialize with the ItemBar(exBarPercent) (
resource usage percent)

The first step is to change the Target's code initialization as follows:

With Target
 With .Chart

 .FirstVisibleDate = Source.Chart.FirstVisibleDate
 With .Bars.Add("Task%Progress")
 .OverlaidType = exOverlaidBarsStack Or exOverlaidBarsStackAutoArrange
 .Shortcut = "Task"
 .HistogramPattern = exPatternShadow
 .HistogramCriticalColor = .HistogramColor
 .ShowHistogramValues = "1"
 End With
 .HistogramVisible = True
 .HistogramView = exHistogramCheckedItems
 .HistogramHeight = 164
 End With
 With .Columns.Add("Names")
 .Key = "Resources"
 .Def(exCellHasCheckBox) = True
 End With
End With

The code does the following:

adds a column "Names", with the Key "Resources", that displays a check-box for each
item, so next PutRes call won't add a new column
change the bar's HistogramPattern so the "Task" will be displayed in the control's
histogram
display the control's histogram view

The second step is updating the exBarEffort with exBarPercent value, when the BarResizing
event occurs:

Private Sub Target_BarResizing(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal Key As
Variant)
 With Target.Items
 .ItemBar(Item, Key, exBarEffort) = .ItemBar(Item, Key, exBarPercent)
 End With
End Sub

The third step is calling the PutRes method as follows:

Target.PutRes Source.ResHandle, exPutResLoad

and the Target should show as:

Now, let's make the histogram displays cumulative-percents instead: So, the first step
is to change the Target's code initialization as follows:

With Target
 With .Chart
 .FirstVisibleDate = Source.Chart.FirstVisibleDate
 With .Bars.Add("Task%Progress")
 .OverlaidType = exOverlaidBarsStack Or exOverlaidBarsStackAutoArrange
 .Shortcut = "Task"
 .HistogramType = exHistOverAllocation Or exHistCumulative
 .HistogramCumulativeColor(1) = RGB(255, 255, 0)
 .HistogramColor = RGB(196, 196, 196)
 .HistogramPattern = exPatternShadow
 .ShowHistogramValues = "value > 100 ? 255 : 1"
 End With
 .HistogramVisible = True
 .HistogramView = exHistogramCheckedItems
 .HistogramHeight = 96
 End With
 With .Columns.Add("Names")
 .Key = "Resources"
 .Def(exCellHasCheckBox) = True
 End With
End With

The code does the following:

adds a column "Names", with the Key "Resources", that displays a check-box for each
item, so next PutRes call won't add a new column
change the bar's HistogramPattern so the "Task" will be displayed in the control's
histogram
display the control's histogram view

The second step is calling the PutRes method as follows:

Target.PutRes Source.ResHandle, exPutResLoad

The third step is updating the exBarEffort after PutRes call as follows:

With Target.Items
 Dim Item As Variant
 For Each Item In Target.Items
 Dim Key As Variant
 Key = .FirstItemBar(Item)
 While Not IsEmpty(Key)
 .ItemBar(Item, Key, exBarEffort) = .ItemBar(Item, Key, exBarPercent) *
.ItemBar(Item, Key, exBarDuration)
 Key = .NextItemBar(Item, Key)
 Wend
 Next
End With

The code enumerates all the bars in the Target control, and changes the exBarEffort
property to be exBarPecent of exBarDuration. This code is required as for
exHistOverAllocation type the work-load for a task is computed as ItemBar(exBarEffort) /
ItemBar(exBarDuration). The work-load for the task is the work effort / task duration. (i.e. If
item.exBarEffort = 1 and the bar's length is 10 days, then the work-load = 0.1 or 10%). We
also, should apply the change of exBarEffort when the BarResizing event, such as:

Private Sub Target_BarResizing(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal Key As
Variant)
 With Target.Items
 .ItemBar(Item, Key, exBarEffort) = .ItemBar(Item, Key, exBarPercent) *
.ItemBar(Item, Key, exBarDuration)
 End With

End Sub

and the Target should show as:

Now, let's update the Source control from the Target control (Source.PutRes
Target.ResHandle, exPutResSave): The following code should be called to synchronize
the Start/End/Resource-Usage from the Target to the Source

Source.PutRes Target.ResHandle, exPutResSave

The PutRes(exPutResSave) method updates the Source control as follows:

updates the activity/bar's Start / ItemBar(exBarStart) and End / ItemBar(exBarEnd)
date-time, in the Source control, according to its associated bar in the Target control
updates the ItemBar(exBarResources) property in the Source control, with the new
resource usage being indicated by ItemBar(exBarPercent) property in the Target
control.

property G2antt.RadioImage(Checked as Boolean) as Long
Retrieves or sets a value that indicates the image used by cells of radio type.

Type Description

Checked as Boolean A boolean expression that indicates the radio's state. True
means checked, and False means unchecked.

Long

A long expression that indicates the index of image used to
paint the radio button. The last 7 bits in the high significant
byte of the long expression indicates the identifier of the
skin being used to paint the object. Use the Add method to
add new skins to the control. If you need to remove the
skin appearance from a part of the control you need to
reset the last 7 bits in the high significant byte of the color
being applied to the part.

Use RadioImage and CheckImage properties to define the icons used for radio and check
box cells. The RadioImage property defines the index of the icon being used by radio
buttons. Use the CellHasRadioButton property to assign a radio button to a cell. Use the
CellHasCheckBox property to assign a checkbox to a cell. Use the CellImage or CellImages
property to assign one or multiple icons to a cell. Use the CellPicture property to assign a
picture to a cell. Use the CellStateChanged event to notify your application when the cell's
state is changed. Use the PartialCheck property to allow partial check feature within the
column. Use the Images method to insert icons at runtime. The following samples require a
control with icons, else nothing will be changed.

The following VB sample changes the default icon for the cells of radio type:

G2antt1.RadioImage(True) = 1 ' Sets the icon for cells of radio type that are
checked
G2antt1.RadioImage(False) = 2 ' Sets the icon for cells of radio type that are
unchecked

The G2antt1.RadioImage(True) = 0 makes the control to use the default icon for painting
cells of radio type that are checked.

The following C++ sample changes the default icon for the cells of radio type:

m_g2antt.SetRadioImage(TRUE, 1);
m_g2antt.SetRadioImage(FALSE, 2);

The following VB.NET sample changes the default icon for the cells of radio type:

With AxG2antt1
 .set_RadioImage(True, 1)
 .set_RadioImage(False, 2)
End With

The following C# sample changes the default icon for the cells of radio type:

axG2antt1.set_RadioImage(true, 1);
axG2antt1.set_RadioImage(false, 2);

The following VFP sample changes the default icon for the cells of radio type:

with thisform.G2antt1
 local sT, sCR
 sCR = chr(13) + chr(10)
 sT = "RadioImage(True) = 1"+ sCR
 sT = sT + "RadioImage(False) = 2"+ sCR
 .Template = sT
endwith

The VFP considers the RadioImage call as being a call for an array, so an error occurs if
the method is called directly, so we built a template string that we pass to the Template
property.

property G2antt.RClickSelect as Boolean

Retrieves or sets a value that indicates whether an item is selected using right mouse
button.

Type Description

Boolean A boolean expression that indicates whether an item is
selected using the right mouse button.

Use the RClickSelect property to allow users select items using the right click. By default,
the RClickSelect property is False. The control fires the SelectionChanged event when user
selects an item. Use the SelectItem property to select programmatically select an item. Use
the SelectCount property to get the number of selected items. Use the SelectedItem
property to get the selected item. Use the FocusItem property to get the focused item. Use
the ItemFromPoint property to retrieve an item from the point.

property G2antt.ReadOnly as ReadOnlyEnum
Retrieves or sets a value that indicates whether the control is read only.

Type Description

ReadOnlyEnum A ReadOnlyEnum expression that indicates whether the
control is read only.

The ReadOnly property makes the control read only. Use the Enabled property to disable
the control. Use the Locked property to lock an editor. If the control is read only, the Edit or
Change event is not fired. Use the CellEditorVisible property to hide the cell's editor. Use
the SelectableItem property to specify the user can select an item.

The ReadOnly property of the control mostly refers ot the List/Columns section of the
control, and it is not applied to the Chart section.

You can use the following properties to prevent changes in the Chart section.

AllowCreateBar property on False, prevents the user to create new bars in the chart
panel.
BarsAllowSizing property on False, prevents the user to move or resize any bar on the
chart.
AllowLinkBars property on False, prevents the user to link bars, at runtime

method G2antt.Refresh ()

Refreshes the control's content.

Type Description

The Refresh method forces repainting the control. Use the BeginUpdate and EndUpdate
methods to maintain the control's performance while adding multiple items or columns. Use
the hWnd property to get the handle of the control's window.

The following VB sample calls the Refresh method:

G2antt1.Refresh

The following C++ sample calls the Refresh method:

m_g2antt.Refresh();

The following VB.NET sample calls the Refresh method:

AxG2antt1.CtlRefresh()

In VB.NET the System.Windows.Forms.Control class has already a Refresh method, so the
CtlRefresh method should be called.

The following C# sample calls the Refresh method:

axG2antt1.CtlRefresh();

In C# the System.Windows.Forms.Control class has already a Refresh method, so the
CtlRefresh method should be called.

The following VFP sample calls the Refresh method:

thisform.G2antt1.Object.Refresh()

method G2antt.RemoveSelection ()
Removes the selected links/bars from the chart if exists, else it removes the selected items
(including the descendents)

Type Description

The RemoveSelection method removes the selected links/bars from the chart if exists, else
it removes the selected items (including the descendents). The UnselectAll method
unselects all items. The RemoveSelection method removes the selected items (including the
descendents). The RemoveSelection method removes the selected objects (bars or links)
within the chart.

method G2antt.ReplaceIcon ([Icon as Variant], [Index as Variant])

Adds a new icon, replaces an icon or clears the control's image list.

Type Description
Icon as Variant A long expression that indicates the icon's handle.

Index as Variant A long expression that indicates the index where icon is
inserted.

Return Description

Long A long expression that indicates the index of the icon in the
images collection

Use the ReplaceIcon property to add, remove or replace an icon in the control's images
collection. Also, the ReplaceIcon property can clear the images collection. Use the Images
method to attach a image list to the control. The ImageSize property defines the size
(width/height) of the icons within the control's Images collection.

The following VB sample adds a new icon to control's images list:

 i = ExG2antt1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle), i specifies the index
where the icon is added

The following VB sample replaces an icon into control's images list::

 i = ExG2antt1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle, 0), i is zero, so the
first icon is replaced.

The following VB sample removes an icon from control's images list:

 ExG2antt1.ReplaceIcon 0, i, i specifies the index of icon removed.

The following VB clears the control's icons collection:

 ExG2antt1.ReplaceIcon 0, -1

property G2antt.ResHandle as Long
The ResHandle property indicates the handle to be used for ResHandle parameter of the
PutRes method.

Type Description

Long A Long expression that indicates the unique resource
handle, when using the PutRes method.

The ResHandle property indicates the handle to be used for ResHandle parameter of the
PutRes method. The PutRes method associates an eXG2antt (Source) control with another
eXG2antt (Target) control, using the Items.ItemBar(exBarResources). The Source displays
the bar and the resources to be used by each bar, while the Target shows the Resources
being used by each bar found in the Source.

property G2antt.RightToLeft as Boolean
Indicates whether the component should draw right-to-left for RTL languages.

Type Description

Boolean A boolean expression that specifies whether the control is
drawn from right to left or from left to right.

By default, the RightToLeft property is False. The RightToLeft gets or sets a value indicating
whether control's elements are aligned to right or left. The RightTolLeft property affects all
columns, and future columns being added.

Changing the RightToLeft property on True does the following:

flips the panels, so the chart panel is displayed on the left side (ChartOnLeft property
)
displays the vertical scroll bar on the left side of the control (Scrollbars property)
flips the order of the columns (Position property)
change the column's alignment to right, if the column is not centered (Alignment
property, HeaderAlignment property, HeaderImageAlignment property)
reverse the order of the drawing parts in the cells (Def(exCellDrawPartsOrder)
property to "caption,picture,icons,icon,check")
aligns the locked columns to the right (CountLockedColumns property)
aligns the control's group-by bar / sort bar to the right (SortBarVisible property)
the control's filter bar/prompt/close is aligned to the right (FilterBarPromptVisible
property)

The following screen shot shows how the control looks if the RightToLeft property is True:

(By default) Changing the RightToLeft property on False does the following:

flips the panels, so the chart panel is displayed on the right side (ChartOnLeft property
)

displays the vertical scroll bar on the right side of the control (Scrollbars property)
flips the order of the columns (Position property)
change the column's alignment to left, if the column is not centered (Alignment
property, HeaderAlignment property, HeaderImageAlignment property)
reverse the order of the drawing parts in the cells (Def(exCellDrawPartsOrder)
property to "check,icon,icons,picture,caption")
aligns the locked columns to the left (CountLockedColumns property)
aligns the control's group-by bar / sort bar to the left (SortBarVisible property)
the control's filter bar/prompt/close is aligned to the left (FilterBarPromptVisible
property)

The following screen shot shows how the control looks if the RightToLeft property is False:

The following VB sample flips the order of the control's elements from right to left

With G2antt1
 .BeginUpdate
 .ScrollBars = exDisableBoth
 .LinesAtRoot = exLinesAtRoot
 With .Columns.Add("P1")
 .Def(exCellHasCheckBox) = True
 .PartialCheck = True
 End With
 With .Items
 h = .AddItem("Root")
 .InsertItem h,0,"Child 1"
 .InsertItem h,0,"Child 2"
 .ExpandItem(h) = True
 End With
 .RightToLeft = True

 .EndUpdate
End With

The following VB.NET sample flips the order of the control's elements from right to left

Dim h
With AxG2antt1
 .BeginUpdate
 .ScrollBars = EXG2ANTTLib.ScrollBarsEnum.exDisableBoth
 .LinesAtRoot = EXG2ANTTLib.LinesAtRootEnum.exLinesAtRoot
 With .Columns.Add("P1")
 .Def(EXG2ANTTLib.DefColumnEnum.exCellHasCheckBox) = True
 .PartialCheck = True
 End With
 With .Items
 h = .AddItem("Root")
 .InsertItem h,0,"Child 1"
 .InsertItem h,0,"Child 2"
 .ExpandItem(h) = True
 End With
 .RightToLeft = True
 .EndUpdate
End With

The following C++ sample flips the order of the control's elements from right to left

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->BeginUpdate();
spG2antt1->PutScrollBars(EXG2ANTTLib::exDisableBoth);
spG2antt1->PutLinesAtRoot(EXG2ANTTLib::exLinesAtRoot);

EXG2ANTTLib::IColumnPtr var_Column = ((EXG2ANTTLib::IColumnPtr)(spG2antt1-
>GetColumns()->Add(L"P1")));
 var_Column->PutDef(EXG2ANTTLib::exCellHasCheckBox,VARIANT_TRUE);
 var_Column->PutPartialCheck(VARIANT_TRUE);
EXG2ANTTLib::IItemsPtr var_Items = spG2antt1->GetItems();
 long h = var_Items->AddItem("Root");
 var_Items->InsertItem(h,long(0),"Child 1");
 var_Items->InsertItem(h,long(0),"Child 2");
 var_Items->PutExpandItem(h,VARIANT_TRUE);
spG2antt1->PutRightToLeft(VARIANT_TRUE);
spG2antt1->EndUpdate();

The following C# sample flips the order of the control's elements from right to left

axG2antt1.BeginUpdate();
axG2antt1.ScrollBars = EXG2ANTTLib.ScrollBarsEnum.exDisableBoth;
axG2antt1.LinesAtRoot = EXG2ANTTLib.LinesAtRootEnum.exLinesAtRoot;
EXG2ANTTLib.Column var_Column = (axG2antt1.Columns.Add("P1") as
EXG2ANTTLib.Column);
 var_Column.set_Def(EXG2ANTTLib.DefColumnEnum.exCellHasCheckBox,true);
 var_Column.PartialCheck = true;
EXG2ANTTLib.Items var_Items = axG2antt1.Items;
 int h = var_Items.AddItem("Root");
 var_Items.InsertItem(h,0,"Child 1");
 var_Items.InsertItem(h,0,"Child 2");
 var_Items.set_ExpandItem(h,true);
axG2antt1.RightToLeft = true;
axG2antt1.EndUpdate();

The following VFP sample flips the order of the control's elements from right to left

with thisform.G2antt1
 .BeginUpdate
 .ScrollBars = 15
 .LinesAtRoot = -1
 with .Columns.Add("P1")
 .Def(0) = .T.
 .PartialCheck = .T.

 endwith
 with .Items
 h = .AddItem("Root")
 .InsertItem(h,0,"Child 1")
 .InsertItem(h,0,"Child 2")
 .DefaultItem = h
 .ExpandItem(0) = .T.
 endwith
 .RightToLeft = .T.
 .EndUpdate
endwith

The following Delphi sample flips the order of the control's elements from right to left

with AxG2antt1 do
begin
 BeginUpdate();
 ScrollBars := EXG2ANTTLib.ScrollBarsEnum.exDisableBoth;
 LinesAtRoot := EXG2ANTTLib.LinesAtRootEnum.exLinesAtRoot;
 with (Columns.Add('P1') as EXG2ANTTLib.Column) do
 begin
 Def[EXG2ANTTLib.DefColumnEnum.exCellHasCheckBox] := TObject(True);
 PartialCheck := True;
 end;
 with Items do
 begin
 h := AddItem('Root');
 InsertItem(h,TObject(0),'Child 1');
 InsertItem(h,TObject(0),'Child 2');
 ExpandItem[h] := True;
 end;
 RightToLeft := True;
 EndUpdate();
end

method G2antt.SaveXML (Destination as Variant)
Saves the control's content as XML document to the specified location, using the MSXML
parser.

Type Description

Destination as Variant

This object can represent a file name, reference to a
string member, an XML document object, or a custom
object that supports persistence as follows:

String - Specifies the file name. Note that this must be
a file name, rather than a URL. The file is created if
necessary and the contents are entirely replaced with
the contents of the saved document. For example:

G2antt1.SaveXML("sample.xml")

Reference to a String member - Saves the control's
content to the string member. Note that the string
member must be empty, before calling the SaveXML
method. For example:

Dim s As String
G2antt1.SaveXML s

In VB.NET for /NET assembly, you should call such as
:

Dim s As String = String.Empty
Exg2antt1.SaveXML(s)

In C# for /NET assembly, you should call such as :

string s = string.Empty;
exg2antt1.SaveXML(ref s);

XML Document Object. For example:

Dim xmldoc as Object
Set xmldoc = CreateObject("MSXML.DOMDocument")
G2antt1.SaveXML(xmldoc)

Custom object supporting persistence - Any other
custom COM object that supports QueryInterface for
IStream, IPersistStream, or IPersistStreamInit can
also be provided here and the document will be saved
accordingly. In the IStream case, the IStream::Write

method will be called as it saves the document; in the
IPersistStream case, IPersistStream::Load will be
called with an IStream that supports the Read, Seek,
and Stat methods.

Return Description

Boolean A Boolen expression that specifies whether saving the
XML document was ok.

The SaveXML method uses the MSXML (MSXML.DOMDocument, XML DOM Document)
parser to save the control's data in XML documents. The LoadXML method loads XML
documents being created with SaveXML method. The SaveXML method saves each column
in <column> elements under the <columns> collection. Properties like Caption,
HTMLCaption, Image, Visible, LevelKey, DisplayFilterButton, DisplayFilterPattern,
FilterType, Width and Position are saved for each column in the control. The <items> xml
element saves a collection of <item> objects. Each <item> object holds information about
an item in the control, including its cells, child items or bars. Each item saves a collection of
<cell> objects that defines the cell for each column. The <bars> element saves a collection
of <bar> each one is associated with the bars in the item. The Expanded attribute specifies
whether an item is expanded or collapsed, and it carries the value of the ExpandItem
property. The <chart> element saves data related to the chart data of the control. For
instance, it includes the collection of levels being displayed in the chart, the first visible date,
links and groups of bars. The <levels> element holds a collection of <level> objects each
one being associated with an level in the chart area. The <links> element holds a collection
of <link> objects each one indicating a link between two bars in the chart. The <groups>
element holds a collection of <group> objects that indicates the bars that are grouped in
the chart.

The control saves the control's data in XML format like follows:

- <Content Author Component Version ...>
 - <Chart FirstVisibleDate ...>
 - <Levels>
 <Level Label Unit Count />
 <Level Label Unit Count />
 ...
 </Levels>
 - <Links>
 <Link Key StartItem StartBar EndItem EndBar Visible StartPos EndPos Color Style
Width ShowDir Text ... />

 <Link Key StartItem StartBar EndItem EndBar Visible StartPos EndPos Color Style
Width ShowDir Text ... />
 ...
 </Links>
 - <Groups>
 <Group ItemA KeyA StartA ItemB KeyB StartB />
 <Group ItemA KeyA StartA ItemB KeyB StartB />
 ...
 </Groups>
 </Chart>
 - <Columns>
 <Column Caption Position Width HTMLCaption LevelKey DisplayFilterButton
DisplayFilterPatter FilterType ... />
 <Column Caption Position Width HTMLCaption LevelKey DisplayFilterButton
DisplayFilterPatter FilterType ... />
 ...
 </Columns>
 - <Items>
 - <Item Expanded ...>
 <Cell Value ValueFormat Images Image ... />
 <Cell Value ValueFormat Images Image ... />
 ...
 - <Bars>
 <Bar Name Start End Caption HAlignCaption VAlignCaption Key ... />
 <Bar Name Start End Caption HAlignCaption VAlignCaption Key ... />
 ...
 </Bars>
 - <Items>
 - <Item Expanded ...>
 - <Item Expanded ...>

 </Items>
 </Item>
 </Items>
 </Content>

The following C# sample saves the control's data to testing.xml file:

object xml = "c:\\testing.xml";
axG2antt1.SaveXML(ref xml);

The following VB.NET sample saves the control's data to testing.xml file:

Dim xml As String = "testing.xml"
AxG2antt1.SaveXML(xml)

method G2antt.Scroll (Type as ScrollEnum, [ScrollTo as Variant])
Scrolls the control's content.

Type Description

Type as ScrollEnum A ScrollEnum expression that indicates type of scrolling
being performed.

ScrollTo as Variant

A long expression that indicates the position where the
control is scrolled when Type is exScrollVTo or
exScrollHTo. If the ScrollTo parameter is missing, 0 value
is used.

Use the Scroll method to scroll the control's content by code. Use the EnsureVisibleItem
method to ensure that a specified item fits the control's client area. Use the ScrollPos
property to get the control's scroll position. Use the EnsureVisibleColumn method to ensure
that a specified column fits the control's client area. If the Type parameter is exScrollLeft,
exScrollRight or exScrollHTo the Scroll method scrolls horizontally the control's content pixel
by pixel, if the ContinueColumnScroll property is False, else the Scroll method scrolls
horizontally the control's content column by column. Use the ScrollTo method to ensure that
a specified date fits the chart's client area. The FirstVisibleDate property specifies the first
visible date.

If the Scroll(exScrollVTo) does not work please check if the ScrollBars property includes
the exVScrollOnThumbRelease, and use a code like follows:

With G2antt1
 .ScrollBars = .ScrollBars And Not exVScrollOnThumbRelease
 .Scroll exScrollVTo, 10000
 .ScrollBars = .ScrollBars Or exVScrollOnThumbRelease
End With

The code removes temporary the exVScrollOnThumbRelease flag from the ScrollBars
property, performs the scrolling (jump to row 10000) , and restore back the
exVScrollOnThumbRelease flag.

The following VB sample scrolls the control's content to the first item (scrolls to the top):

G2antt1.Scroll exScrollVTo, 0

The following C++ sample scrolls the control's content to the top:

m_g2antt.Scroll(2 /*exScrollVTo*/, COleVariant((long)0));

The following C# sample scrolls the control's content to the top:

axG2antt1.Scroll(EXG2ANTTLib.ScrollEnum.exScrollVTo, 0);

The following VB.NET sample scrolls the control's content to the top:

AxG2antt1.Scroll(EXG2ANTTLib.ScrollEnum.exScrollVTo, 0)

The following VFP sample scrolls the control's content to the top:

with thisform.G2antt1
 .Scroll(2, 0) && exScrollVTo
endwith

property G2antt.ScrollBars as ScrollBarsEnum
Returns or sets a value that determines whether the control has horizontal and/or vertical
scroll bars.

Type Description

ScrollBarsEnum A ScrollBarsEnum expression that identifies which scroll
bars are visible.

Use the ScrollBars property to show, enable or disable the control's scroll bars. By default,
the ScrollBars property is exBoth, so both scroll bars are used if necessarily. For instance,
if the ScrollBars property is exNone the control displays no scroll bars. Use the ScrollPos
property to get the control's scroll position. Use the EnsureVisibleItem method to ensure
that an item fits the control's client area. Use the EnsureVisibleColumn method to ensure
that a specified column fits the control's client area. Use the Scroll method to scroll
programmatically the control. Use the ScrollOrderParts property to customize the order of
the buttons in the scroll bar. The RightToLeft property flips the order of the control's
elements from right to left. Use the FirstVisibleDate property to scroll the chart's date.

The following screen shots shows all 3 scrollbars that can be visible in the control:

The control provides up to 3 scroll bars. The vertical scroll bar is displayed on the right side
of the control (RightToLeft property is False) and it scrolls the items, rows (nodes). The
other 2 scroll bars are for scrolling the columns section and the chart area. The ScrollBar
property of the Chart object specifies whether the chart displays the horizontal scroll bar.

1. vertical scroll bar. Use the methods such us: Scroll, ScrollPos, EnsureVisibleItem to
scroll vertically the control (scroll vertically the rows, items or nodes). The vertical
scroll bar is displayed only if it required, if the ScrollBars property is exBoth or
exVertical. The vertical scroll bar is always visible if the ScrollBars property is
exDisableBoth or exDisableNoVertical.

2. horizontal scroll bar. Use the methods such us: Scroll, ScrollPos, EnsureVisibleColumn
to scroll horizontally the control (scrolls horizontally the columns section). The
horizontal scroll bar is displayed only if it required, if the ScrollBars property is exBoth
or exHorizontal. The horizontal scroll bar is always visible if the ScrollBars property is
exDisableBoth or exDisableNoHorizontal. The ColumnAutoResize property specifies
whether all visible columns fit the control's area (so no horizontal scroll bar is shown).

3. chart scroll bar. Use the methods such us: Chart.ScrollTo, FirstVisibleDate to browse
for a new date (scrolls horizontally the chart area, so a new range of dates are being
displayed)

If the Scroll(exScrollVTo) does not work please check if the ScrollBars property includes
the exVScrollOnThumbRelease, and use a code like follows:

With G2antt1
 .ScrollBars = .ScrollBars And Not exVScrollOnThumbRelease
 .Scroll exScrollVTo, 10000
 .ScrollBars = .ScrollBars Or exVScrollOnThumbRelease
End With

The code removes temporary the exVScrollOnThumbRelease flag from the ScrollBars
property, performs the scrolling (jump to row 10000) , and restore back the
exVScrollOnThumbRelease flag.

The following VB sample scrolls vertically the control to row 100:

G2antt1.Scroll exScrollVTo, 100

property G2antt.ScrollButtonHeight as Long
Specifies the height of the button in the vertical scrollbar.

Type Description

Long A long expression that defines the height of the button in
the vertical scroll bar.

By default, the ScrollButtonHeight property is -1. If the ScrollButtonHeight property is -1, the
control uses the default height (from the system) for the buttons in the vertical scroll bar.
Use the ScrollButtonWidth property to specify the width of the buttons in the horizontal
scroll bar. Use the ScrollWidth property to specify the width of the vertical scroll bar. Use
the ScrollBars property to specify which scroll bar is visible or hidden in the control. Use the
ScrollHeight property to specify the height of the horizontal scroll bar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollThumbSize property to define a fixed size for the scrollbar's thumb.

property G2antt.ScrollButtonWidth as Long
Specifies the width of the button in the horizontal scrollbar.

Type Description

Long A long expression that defines the width of the button in
the horizontal scroll bar.

By default, the ScrollButtonWidth property is -1. If the ScrollButtonWidth property is -1, the
control uses the default width (from the system) for the buttons in the horizontal scroll bar.
Use the ScrollButtonHeight property to specify the height of the buttons in the vertical scroll
bar. Use the ScrollWidth property to specify the width of the vertical scroll bar. Use the
ScrollBars property to specify which scroll bar is visible or hidden in the control. Use the
ScrollHeight property to specify the height of the horizontal scroll bar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollThumbSize property to define a fixed size for the scrollbar's thumb.

property G2antt.ScrollBySingleLine as Boolean

Retrieves or sets a value that indicates whether the control scrolls the lines to the end, item
by item.

Type Description

Boolean A boolean expression that indicates whether the control
scrolls the lines to the end, item by item.

By default, the ScrollBySingleLine property is False. We recommend to set the
ScrollBySingleLine property on True if you have one of the following:

If you have at least a cell that has CellSingleLine property on exCaptionWordWrap /
exCaptionBreakWrap / False, or a column with Def(exCellSingleLine) on
exCaptionWordWrap / exCaptionBreakWrap / False
If your control contains at least an item that hosts an ActiveX control. See
InsertControlItem property.
If the control displays items with different height. Use the ItemHeight property to
specify the item's height.
If the chart displays bars with the OverlaidType property on exOverlaidBarsStack.

In conclusion, If the ScrollBySingleLine property is

False, the first visible item can not be partially visible. The False value is recommended
when all items has the same height.
True, the first visible item can be partially visible, and clicking the up or down buttons
on the vertical scroll bar makes the control to scroll vertically pixel by pixel (The
DefaultItemHeight property indicates the number of pixels to scroll at once). You can
set the AutoDrag property on exAutoDragScroll, and so the user can scroll the control's
content by clicking the control and dragging the cursor up or down. The True value is
recommended when the control may display items of different sizes.

Click here to watch a movie on how Scroll Line by Line works.

Use the EnsureVisibleItem property to ensure that an item fits the control's client area. Use
the ScrollBars property to hide the control's scroll bars. Use the Scroll method to
programmatically scroll the control's content. Use the ItemsAllowSizing property to specify
whether all items are resizable or not. Use the ItemAllowSizing property to specify whether
the user can resize the item at runtime.

https://www.youtube.com/watch?v=Rst028aXBnU

property G2antt.ScrollFont (ScrollBar as ScrollBarEnum) as IFontDisp
Retrieves or sets the scrollbar's font.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical or
the horizontal scroll bar.

IFontDisp A Font object

Use the ScrollFont property to specify the font in the control's scroll bar. Use the
ScrolPartCaption property to specify the caption of the scroll's part. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar. By
default, when a part becomes visible, the ScrollPartEnable property is automatically called,
so the parts becomes enabled. Use the ScrollPartEnable property to specify enable or
disable parts in the control's scrollbar. Use the ScrollBars property to specify the visible
scrollbars in the control. Use the OffsetChanged event to notify your application that the
scroll position is changed. Use the OversizeChanged event to notify your application
whether the range for a specified scroll bar is changed. Use the ScrollPos property to
specify the position for the control's scroll bar. The control fires the ScrollButtonClick event
when the user clicks a part of the scroll bar.

property G2antt.ScrollHeight as Long
Specifies the height of the horizontal scrollbar.

Type Description

Long A long expression that defines the height of the horizontal
scroll bar.

By default, the ScrollHeight property is -1. If the ScrollHeight property is -1, the control uses
the default height of the horizontal scroll bar from the system. Use the ScrollHeight property
to specify the height of the horizontal scroll bar. Use the ScrollBars property to specify
which scroll bar is visible or hidden in the control. Use the ScrollButtonWidth property to
specify the width of the buttons in the horizontal scroll bar. Use the ScrollWidth property to
specify the width of the vertical scroll bar. Use the ScrollButtonHeight property to specify
the height of the buttons in the vertical scroll bar. Use the ScrollPartVisible property to
specify the visible parts in the control's scroll bar. Use the ScrollThumbSize property to
define a fixed size for the scrollbar's thumb.

property G2antt.ScrollOrderParts(ScrollBar as ScrollBarEnum) as String
Specifies the order of the buttons in the scroll bar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the order of buttons is displayed.

String

A String expression that indicates the order of the buttons
in the scroll bar. The list includes expressions like l, l1, ...,
l5, t, r, r1, ..., r6 separated by comma, each expression
indicating a part of the scroll bar, and its position indicating
the displaying order.

Use the ScrollOrderParts to customize the order of the buttons in the scroll bar. By default,
the ScrollOrderParts property is empty. If the ScrollOrderParts property is empty the
default order of the buttons in the scroll bar are displayed like follows:

so, the order of the parts is: l1, l2, l3, l4, l5, l, t, r, r1, r2, r3, r4, r5 and r6. Use the
ScrollPartVisible to specify whether a button in the scrollbar is visible or hidden. Use the
ScrollPartEnable property to enable or disable a button in the scroll bar. Use the
ScrollPartCaption property to assign a caption to a button in the scroll bar.

Use the ScrollOrderParts property to change the order of the buttons in the scroll bar. For
instance, "l,r,t,l1,r1" puts the left and right buttons to the left of the thumb area, and the l1
and r1 buttons right after the thumb area. If the parts are not specified in the
ScrollOrderParts property, automatically they are added to the end.

The list of supported literals in the ScrollOrderParts property is:

l for exLeftBPart, (<) The left or top button.
l1 for exLeftB1Part, (L1) The first additional button, in the left or top area.
l2 for exLeftB2Part, (L2) The second additional button, in the left or top area.
l3 for exLeftB3Part, (L3) The third additional button, in the left or top area.
l4 for exLeftB4Part, (L4) The forth additional button, in the left or top area.
l5 for exLeftB5Part, (L5) The fifth additional button, in the left or top area.
t for exLowerBackPart, exThumbPart and exUpperBackPart, The union between the
exLowerBackPart and the exUpperBackPart parts.
r for exRightBPart, (>) The right or down button.
r1 for exRightB1Part, (R1) The first additional button in the right or down side.

r2 for exRightB2Part, (R2) The second additional button in the right or down side.
r3 for exRightB3Part, (R3) The third additional button in the right or down side.
r4 for exRightB4Part, (R4) The forth additional button in the right or down side.
r5 for exRightB5Part, (R5) The fifth additional button in the right or down side.
r6 for exRightB6Part, (R6) The sixth additional button in the right or down side.

Any other literal between commas is ignored. If duplicate literals are found, the second is
ignored, and so on. For instance, "t,l,r" indicates that the left/top and right/bottom buttons
are displayed right/bottom after the thumb area.

property G2antt.ScrollPartCaption(ScrollBar as ScrollBarEnum, Part as
ScrollPartEnum) as String
Specifies the caption being displayed on the specified scroll part.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the caption is displayed.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll where the text is displayed

String A String expression that specifies the caption being
displayed on the part of the scroll bar.

Use the ScrolPartCaption property to specify the caption of the scroll's part. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar. By
default, when a part becomes visible, the ScrollPartEnable property is automatically called,
so the parts becomes enabled. Use the ScrollPartEnable property to specify enable or
disable parts in the control's scrollbar. Use the ScrollBars property to specify the visible
scrollbars in the control. Use the OffsetChanged event to notify your application that the
scroll position is changed. Use the OversizeChanged event to notify your application
whether the range for a specified scroll bar is changed. Use the ScrollPos property to
specify the position for the control's scroll bar. The control fires the ScrollButtonClick event
when the user clicks a part of the scroll bar. Use the ScrollFont property to specify the font
in the control's scroll bar. Use the ScrollOrderParts property to customize the order of the
buttons in the scroll bar. The ScrollPartCaptionAlignment property specifies the alignment of
the caption in the part of the scroll bar.

By default, the following parts are shown:

exLeftBPart (the left or up button of the control)
exLowerBackPart (the part between the left/up button and the thumb part of the
control)
exThumbPart (the thumb/scrollbox part)
exUpperBackPart (the part between the the thumb and the right/down button of the
control)
exRightBPart (the right or down button of the control)

The following VB sample adds up and down additional buttons to the control's vertical scroll

bar :

With G2antt1
 .BeginUpdate
 .ScrollBars = exDisableBoth
 .ScrollPartVisible(exVScroll, exLeftB1Part Or exRightB1Part) = True
 .ScrollPartCaption(exVScroll, exLeftB1Part) = "1"
 .ScrollPartCaption(exVScroll, exRightB1Part) = "2"
 .EndUpdate
End With

The following VB.NET sample adds up and down additional buttons to the control's vertical
scroll bar :

With AxG2antt1
 .BeginUpdate()
 .ScrollBars = EXG2ANTTLib.ScrollBarsEnum.exDisableBoth
 .set_ScrollPartVisible(EXG2ANTTLib.ScrollBarEnum.exVScroll,
EXG2ANTTLib.ScrollPartEnum.exLeftB1Part Or
EXG2ANTTLib.ScrollPartEnum.exRightB1Part, True)
 .set_ScrollPartCaption(EXG2ANTTLib.ScrollBarEnum.exVScroll,
EXG2ANTTLib.ScrollPartEnum.exLeftB1Part, "1")
 .set_ScrollPartCaption(EXG2ANTTLib.ScrollBarEnum.exVScroll,
EXG2ANTTLib.ScrollPartEnum.exRightB1Part, "2")
 .EndUpdate()
End With

The following C# sample adds up and down additional buttons to the control's vertical scroll
bar :

axG2antt1.BeginUpdate();
axG2antt1.ScrollBars = EXG2ANTTLib.ScrollBarsEnum.exDisableBoth;
axG2antt1.set_ScrollPartVisible(EXG2ANTTLib.ScrollBarEnum.exVScroll,
EXG2ANTTLib.ScrollPartEnum.exLeftB1Part | EXG2ANTTLib.ScrollPartEnum.exRightB1Part,
true);
axG2antt1.set_ScrollPartCaption(EXG2ANTTLib.ScrollBarEnum.exVScroll,
EXG2ANTTLib.ScrollPartEnum.exLeftB1Part , "1");
axG2antt1.set_ScrollPartCaption(EXG2ANTTLib.ScrollBarEnum.exVScroll,
EXG2ANTTLib.ScrollPartEnum.exRightB1Part, "2");

axG2antt1.EndUpdate();

The following C++ sample adds up and down additional buttons to the control's vertical
scroll bar :

m_g2antt.BeginUpdate();
m_g2antt.SetScrollBars(15 /*exDisableBoth*/);
m_g2antt.SetScrollPartVisible(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ | 32
/*exRightB1Part*/, TRUE);
m_g2antt.SetScrollPartCaption(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ , _T("
1"));
m_g2antt.SetScrollPartCaption(0 /*exVScroll*/, 32 /*exRightB1Part*/ , _T("
2"));
m_g2antt.EndUpdate();

The following VFP sample adds up and down additional buttons to the control's vertical
scroll bar :

With thisform.G2antt1
 .BeginUpdate
 .ScrollBars = 15
 .ScrollPartVisible(0, bitor(32768,32)) = .t.
 .ScrollPartCaption(0,32768) = "1"
 .ScrollPartCaption(0, 32) = "2"
 .EndUpdate
EndWith

*** ActiveX Control Event ***
LPARAMETERS scrollpart

wait window nowait ltrim(str(scrollpart))

property G2antt.ScrollPartCaptionAlignment(ScrollBar as
ScrollBarEnum, Part as ScrollPartEnum) as AlignmentEnum
Specifies the alignment of the caption in the part of the scroll bar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the caption is displayed.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll where the text is displayed

AlignmentEnum An AlignmentEnum expression that specifies the alignment
of the caption in the part of the scrollbar.

The ScrollPartCaptionAlignment property specifies the alignment of the caption in the part
of the scroll bar. By default, the caption is centered. Use the ScrolPartCaption property to
specify the caption being displayed on specified part of the scroll bar. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar.

The following VB sample displays "left" aligned to the left on the lower part of the control's
horizontal scroll bar, and "right" aligned to the right on the upper part of the control's
horizontal scroll bar:

With G2antt1
 .ScrollPartCaption(exHScroll,exLowerBackPart) = "left"
 .ScrollPartCaptionAlignment(exHScroll,exLowerBackPart) = LeftAlignment
 .ScrollPartCaption(exHScroll,exUpperBackPart) = "right"
 .ScrollPartCaptionAlignment(exHScroll,exUpperBackPart) = RightAlignment
 .ColumnAutoResize = False
 .Columns.Add 1
 .Columns.Add 2
 .Columns.Add 3
 .Columns.Add 4
End With

The following VB.NET sample displays "left" aligned to the left on the lower part of the
control's horizontal scroll bar, and "right" aligned to the right on the upper part of the
control's horizontal scroll bar:

With AxG2antt1

.set_ScrollPartCaption(EXG2ANTTLib.ScrollBarEnum.exHScroll,EXG2ANTTLib.ScrollPartEnum.exLowerBackPart,"left")

.set_ScrollPartCaptionAlignment(EXG2ANTTLib.ScrollBarEnum.exHScroll,EXG2ANTTLib.ScrollPartEnum.exLowerBackPart,EXG2ANTTLib.AlignmentEnum.LeftAlignment)

.set_ScrollPartCaption(EXG2ANTTLib.ScrollBarEnum.exHScroll,EXG2ANTTLib.ScrollPartEnum.exUpperBackPart,"right")

.set_ScrollPartCaptionAlignment(EXG2ANTTLib.ScrollBarEnum.exHScroll,EXG2ANTTLib.ScrollPartEnum.exUpperBackPart,EXG2ANTTLib.AlignmentEnum.RightAlignment)

 .ColumnAutoResize = False
 .Columns.Add 1
 .Columns.Add 2
 .Columns.Add 3
 .Columns.Add 4
End With

The following C# sample displays "left" aligned to the left on the lower part of the control's
horizontal scroll bar, and "right" aligned to the right on the upper part of the control's
horizontal scroll bar:

axG2antt1.set_ScrollPartCaption(EXG2ANTTLib.ScrollBarEnum.exHScroll,EXG2ANTTLib.ScrollPartEnum.exLowerBackPart,"left");

axG2antt1.set_ScrollPartCaptionAlignment(EXG2ANTTLib.ScrollBarEnum.exHScroll,EXG2ANTTLib.ScrollPartEnum.exLowerBackPart,EXG2ANTTLib.AlignmentEnum.LeftAlignment);

axG2antt1.set_ScrollPartCaption(EXG2ANTTLib.ScrollBarEnum.exHScroll,EXG2ANTTLib.ScrollPartEnum.exUpperBackPart,"right");

axG2antt1.set_ScrollPartCaptionAlignment(EXG2ANTTLib.ScrollBarEnum.exHScroll,EXG2ANTTLib.ScrollPartEnum.exUpperBackPart,EXG2ANTTLib.AlignmentEnum.RightAlignment);

axG2antt1.ColumnAutoResize = false;
axG2antt1.Columns.Add(1.ToString());
axG2antt1.Columns.Add(2.ToString());
axG2antt1.Columns.Add(3.ToString());
axG2antt1.Columns.Add(4.ToString());

The following C++ sample displays "left" aligned to the left on the lower part of the control's
horizontal scroll bar, and "right" aligned to the right on the upper part of the control's

horizontal scroll bar:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import "ExG2antt.dll"
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1-
>PutScrollPartCaption(EXG2ANTTLib::exHScroll,EXG2ANTTLib::exLowerBackPart,L"left");
spG2antt1-
>PutScrollPartCaptionAlignment(EXG2ANTTLib::exHScroll,EXG2ANTTLib::exLowerBackPart,EXG2ANTTLib::LeftAlignment);

spG2antt1-
>PutScrollPartCaption(EXG2ANTTLib::exHScroll,EXG2ANTTLib::exUpperBackPart,L"right");
spG2antt1-
>PutScrollPartCaptionAlignment(EXG2ANTTLib::exHScroll,EXG2ANTTLib::exUpperBackPart,EXG2ANTTLib::RightAlignment);

spG2antt1->PutColumnAutoResize(VARIANT_FALSE);
spG2antt1->GetColumns()->Add(L"1");
spG2antt1->GetColumns()->Add(L"2");
spG2antt1->GetColumns()->Add(L"3");
spG2antt1->GetColumns()->Add(L"4");

The following VFP sample displays "left" aligned to the left on the lower part of the control's
horizontal scroll bar, and "right" aligned to the right on the upper part of the control's
horizontal scroll bar:

with thisform.G2antt1
 .ScrollPartCaption(1,512) = "left"
 .ScrollPartCaptionAlignment(1,512) = 0
 .ScrollPartCaption(1,128) = "right"
 .ScrollPartCaptionAlignment(1,128) = 2
 .ColumnAutoResize = .F.
 .Columns.Add(1)

 .Columns.Add(2)
 .Columns.Add(3)
 .Columns.Add(4)
endwith

property G2antt.ScrollPartEnable(ScrollBar as ScrollBarEnum, Part as
ScrollPartEnum) as Boolean
Indicates whether the specified scroll part is enabled or disabled.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the part is enabled or disabled.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll bar being enabled or disabled.

Boolean A Boolean expression that specifies whether the
scrollbar's part is enabled or disabled.

By default, when a part becomes visible, the ScrollPartEnable property is automatically
called, so the parts becomes enabled. Use the ScrollPartVisible property to add or remove
buttons/parts in the control's scrollbar. Use the ScrollPartEnable property to specify enable
or disable parts in the control's scrollbar. Use the ScrollBars property to specify the visible
scrollbars in the control. Use the ScrolPartCaption property to specify the caption of the
scroll's part. Use the OffsetChanged event to notify your application that the scroll position
is changed. Use the OversizeChanged event to notify your application whether the range for
a specified scroll bar is changed. Use the ScrollPos property to specify the position for the
control's scroll bar. The control fires the ScrollButtonClick event when the user clicks a part
of the scroll bar. Use the ScrollOrderParts property to customize the order of the buttons in
the scroll bar.

property G2antt.ScrollPartVisible(ScrollBar as ScrollBarEnum, Part as
ScrollPartEnum) as Boolean
Indicates whether the specified scroll part is visible or hidden.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the part is visible or hidden.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll bar being visible

Boolean A Boolean expression that specifies whether the
scrollbar's part is visible or hidden.

Use the ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar.
By default, when a part becomes visible, the ScrollPartEnable property is automatically
called, so the parts becomes enabled. Use the ScrollPartEnable property to specify enable
or disable parts in the control's scrollbar. Use the ScrollBars property to specify the visible
scrollbars in the control. Use the ScrolPartCaption property to specify the caption of the
scroll's part. Use the OffsetChanged event to notify your application that the scroll position
is changed. Use the OversizeChanged event to notify your application whether the range for
a specified scroll bar is changed. Use the ScrollPos property to specify the position for the
control's scroll bar. The control fires the ScrollButtonClick event when the user clicks a part
of the scroll bar. Use the Background property to change the visual appearance for any part
in the control's scroll bar. Use the ScrollOrderParts property to customize the order of the
buttons in the scroll bar.

By default, the following parts are shown:

exLeftBPart (the left or up button of the control)
exLowerBackPart (the part between the left/up button and the thumb part of the
control)
exThumbPart (the thumb/scrollbox part)
exUpperBackPart (the part between the the thumb and the right/down button of the
control)
exRightBPart (the right or down button of the control)

The following VB sample adds up and down additional buttons to the control's vertical scroll
bar :

With G2antt1
 .BeginUpdate
 .ScrollBars = exDisableBoth
 .ScrollPartVisible(exVScroll, exLeftB1Part Or exRightB1Part) = True
 .ScrollPartCaption(exVScroll, exLeftB1Part) = "1"
 .ScrollPartCaption(exVScroll, exRightB1Part) = "2"
 .EndUpdate
End With

The following VB.NET sample adds up and down additional buttons to the control's vertical
scroll bar :

With AxG2antt1
 .BeginUpdate()
 .ScrollBars = EXG2ANTTLib.ScrollBarsEnum.exDisableBoth
 .set_ScrollPartVisible(EXG2ANTTLib.ScrollBarEnum.exVScroll,
EXG2ANTTLib.ScrollPartEnum.exLeftB1Part Or
EXG2ANTTLib.ScrollPartEnum.exRightB1Part, True)
 .set_ScrollPartCaption(EXG2ANTTLib.ScrollBarEnum.exVScroll,
EXG2ANTTLib.ScrollPartEnum.exLeftB1Part, "1")
 .set_ScrollPartCaption(EXG2ANTTLib.ScrollBarEnum.exVScroll,
EXG2ANTTLib.ScrollPartEnum.exRightB1Part, "2")

 .EndUpdate()
End With

The following C# sample adds up and down additional buttons to the control's vertical scroll
bar :

axG2antt1.BeginUpdate();
axG2antt1.ScrollBars = EXG2ANTTLib.ScrollBarsEnum.exDisableBoth;
axG2antt1.set_ScrollPartVisible(EXG2ANTTLib.ScrollBarEnum.exVScroll,
EXG2ANTTLib.ScrollPartEnum.exLeftB1Part | EXG2ANTTLib.ScrollPartEnum.exRightB1Part,
true);
axG2antt1.set_ScrollPartCaption(EXG2ANTTLib.ScrollBarEnum.exVScroll,
EXG2ANTTLib.ScrollPartEnum.exLeftB1Part , "1");
axG2antt1.set_ScrollPartCaption(EXG2ANTTLib.ScrollBarEnum.exVScroll,
EXG2ANTTLib.ScrollPartEnum.exRightB1Part, "2");
axG2antt1.EndUpdate();

The following C++ sample adds up and down additional buttons to the control's vertical
scroll bar :

m_g2antt.BeginUpdate();
m_g2antt.SetScrollBars(15 /*exDisableBoth*/);
m_g2antt.SetScrollPartVisible(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ | 32
/*exRightB1Part*/, TRUE);
m_g2antt.SetScrollPartCaption(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ , _T("
1"));
m_g2antt.SetScrollPartCaption(0 /*exVScroll*/, 32 /*exRightB1Part*/ , _T("
2"));
m_g2antt.EndUpdate();

The following VFP sample adds up and down additional buttons to the control's vertical
scroll bar :

With thisform.G2antt1
 .BeginUpdate
 .ScrollBars = 15
 .ScrollPartVisible(0, bitor(32768,32)) = .t.
 .ScrollPartCaption(0,32768) = "1"
 .ScrollPartCaption(0, 32) = "2"

 .EndUpdate
EndWith

*** ActiveX Control Event ***
LPARAMETERS scrollpart

wait window nowait ltrim(str(scrollpart))

property G2antt.ScrollPos(Vertical as Boolean) as Long
Specifies the vertical/horizontal scroll position.

Type Description

Vertical as Boolean
A boolean expression that specifies the scrollbar being
requested. True indicates the Vertical scroll bar, False
indicates the Horizontal scroll bar.

Long A long expression that defines the scroll bar position.

Use the ScrollPos property to change programmatically the position of the control's scroll
bar. Use the ScrollPos property to get the horizontal or vertical scroll position.Use the
ScrollBars property to define the control's scroll bars. Use the Scroll method to scroll
programmatically the control's content. The control fires the OffsetChanged event when the
control's scroll position is changed. Use the ScrollTo method to ensure that a specified date
fits the chart's client area. The FirstVisibleDate property specifies the first visible date.

The following VB sample scrolls to the row 10,000:

With G2antt1
 .ScrollPos(True) = 10000
End With

property G2antt.ScrollThumbSize(ScrollBar as ScrollBarEnum) as Long
Specifies the size of the thumb in the scrollbar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical or
the horizontal scroll bar.

Long A long expression that defines the size of the scrollbar's
thumb.

Use the ScrollThumbSize property to define a fixed size for the scrollbar's thumb. By
default, the ScrollThumbSize property is -1, that makes the control computes automatically
the size of the thumb based on the scrollbar's range. If case, use the fixed size for your
thumb when you change its visual appearance using the Background(exVSThumb) or
Background(exHSThumb) property. Use the ScrollWidth property to specify the width of the
vertical scroll bar. Use the ScrollButtonWidth property to specify the width of the buttons in
the horizontal scroll bar. Use the ScrollHeight property to specify the height of the horizontal
scroll bar. Use the ScrollButtonHeight property to specify the height of the buttons in the
vertical scroll bar. Use the ScrollPartVisible property to specify the visible parts in the
control's scroll bar.

property G2antt.ScrollToolTip(ScrollBar as ScrollBarEnum) as String
Specifies the tooltip being shown when the user moves the scroll box.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical
scroll bar or the horizontal scroll bar.

String A string expression being shown when the user clicks and
moves the scrollbar's thumb.

Use the ScrollToolTip property to specify whether the control displays a tooltip when the
user clicks and moves the scrollbar's thumb. By default, the ScrollToolTip property is empty.
If the ScrollToolTip property is empty, the tooltip is not shown when the user clicks and
moves the thumb of the scroll bar. The OffsetChanged event notifies your application that
the user changes the scroll position. Use the SortPartVisible property to specify the parts
being visible in the control's scroll bar. Use the ScrollBars property to specify the visible
scrollbars in the control.

The following VB sample displays a tooltip when the user clicks and moves the thumb in the
control's scroll bar:

Private Sub G2antt1_OffsetChanged(ByVal Horizontal As Boolean, ByVal NewVal As Long)
 If (Not Horizontal) Then
 G2antt1.ScrollToolTip(exVScroll) = "Record " & NewVal
 End If
End Sub

The following VB.NET sample displays a tooltip when the user clicks and moves the thumb
in the control's scroll bar:

Private Sub AxG2antt1_OffsetChanged(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_OffsetChangedEvent) Handles AxG2antt1.OffsetChanged
 If (Not e.horizontal) Then
 AxG2antt1.set_ScrollToolTip(EXG2ANTTLib.ScrollBarEnum.exVScroll, "Record " &
e.newVal.ToString())
 End If
End Sub

The following C++ sample displays a tooltip when the user clicks and moves the thumb in
the control's scroll bar:

void OnOffsetChangedG2antt1(BOOL Horizontal, long NewVal)
{
 if (!Horizontal)
 {
 CString strFormat;
 strFormat.Format(_T("%i"), NewVal);
 m_g2antt.SetScrollToolTip(0, strFormat);
 }
}

The following C# sample displays a tooltip when the user clicks and moves the thumb in the
control's scroll bar:

private void axG2antt1_OffsetChanged(object sender,
AxEXG2ANTTLib._IG2anttEvents_OffsetChangedEvent e)
{
 if (!e.horizontal)
 axG2antt1.set_ScrollToolTip(EXG2ANTTLib.ScrollBarEnum.exVScroll, "Record " +
e.newVal.ToString());
}

The following VFP sample displays a tooltip when the user clicks and moves the thumb in
the control's scroll bar:

*** ActiveX Control Event ***
LPARAMETERS horizontal, newval

If (1 # horizontal) Then
 thisform.G2antt1.ScrollToolTip(0) = "Record " + ltrim(str(newval))
EndIf

property G2antt.ScrollWidth as Long
Specifies the width of the vertical scrollbar.

Type Description

Long A long expression that defines the width of the vertical
scroll bar.

By default, the ScrollWidth property is -1. If the ScrollWidth property is -1, the control uses
the default width of the vertical scroll bar from the system. Use the ScrollWidth property to
specify the width of the vertical scroll bar. Use the ScrollBars property to specify which
scroll bar is visible or hidden in the control. Use the ScrollButtonWidth property to specify
the width of the buttons in the horizontal scroll bar. Use the ScrollHeight property to specify
the height of the horizontal scroll bar. Use the ScrollButtonHeight property to specify the
height of the buttons in the vertical scroll bar. Use the ScrollPartVisible property to specify
the visible parts in the control's scroll bar. Use the ScrollThumbSize property to define a
fixed size for the scrollbar's thumb.

property G2antt.SearchColumnIndex as Long

Retrieves or sets a value indicating the column's index that is used for auto search feature.

Type Description

Long A long expression indicating the column's index that is used
for auto search feature.

The SearchColumnIndex property indicates the index of the column being used by the
control's incremental search feature. The user changes the searching column if he presses
TAB or Shift + TAB. Use the UseTabKey property to specify whether the control uses the
TAB key. Use the AutoSearch property to specify whether the control enables the
incremental searching feature. Use the AutoSearch property to specify the type of
incremental searching the control supports within the column. Use the MarkSearchColumn
property to hide the rectangle around the searching column.

property G2antt.SelBackColor as Color
Retrieves or sets a value that indicates the selection background color.

Type Description

Color

A color expression that indicates the selection background
color. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

By default, the SelBackColor property applies the background color only to list area. Use
the Chart.SelBackColor property to specify the background color for selected items in the
chart area. Use the SelBackColor and SelForeColor properties to define the colors used for
selected items. The control highlights the selected items only if the SelBackColor and
BackColor properties have different values, and the SelForeColor and ForeColor properties
have different values. Use the SelectCount property to get the number of selected items.
Use the SelectedItem property to get the selected item. Use the SelectItem to select or
unselect a specified item. Use the FocusItem property to get the focused item. The control
fires the SelectionChanged event when user changes the selection. Use the SelectableItem
property to specify the user can select an item. The SelBarColor property specifies the
color to highlight the selected bars. The SelBackMode property specifies the way the
selected items are shown in the control.

For instance, the following VB sample changes the visual appearance for the selected item.
The SelBackColor property indicates the selection background color. Shortly, we need to
add a skin to the Appearance object using the Add method, and we need to set the last 7
bits in the SelBackColor property to indicates the index of the skin that we want to use. The
sample applies the " " to the selected item(s):

With G2antt1
 With .VisualAppearance
 .Add &H23, App.Path + "\selected.ebn"
 End With
 .SelForeColor = RGB(0, 0, 0)
 .SelBackColor = &H23000000
End With

The sample adds the skin with the index 35 (Hexa 23), and applies to the selected item
using the SelBackColor property.

The following C++ sample applies a new appearance to the selected item(s):

#include "Appearance.h"
m_g2antt.GetVisualAppearance().Add(0x23,
COleVariant(_T("D:\\Temp\\ExG2antt_Help\\selected.ebn")));
m_g2antt.SetSelBackColor(0x23000000);
m_g2antt.SetSelForeColor(0);

The following VB.NET sample applies a new appearance to the selected item(s):

With AxG2antt1
 With .VisualAppearance
 .Add(&H23, "D:\Temp\ExG2antt_Help\selected.ebn")
 End With
 .SelForeColor = Color.Black
 .Template = "SelBackColor = 587202560"
End With

The VB.NET sample uses the Template property to assign a new value to the SelBackColor
property. The 587202560 value represents &23000000 in hexadecimal.

The following C# sample applies a new appearance to the selected item(s):

axG2antt1.VisualAppearance.Add(0x23, "D:\\Temp\\ExG2antt_Help\\selected.ebn");
axG2antt1.Template = "SelBackColor = 587202560";

The following VFP sample applies a new appearance to the selected item(s):

With thisform.G2antt1
 With .VisualAppearance
 .Add(35, "D:\Temp\ExG2antt_Help\selected.ebn")
 EndWith
 .SelForeColor = RGB(0, 0, 0)
 .SelBackColor = .587202560
EndWith

The 587202560 value represents &23000000 in hexadecimal. The 32 value represents &23
in hexadecimal

property G2antt.SelBackMode as BackModeEnum

Retrieves or sets a value that indicates whether the selection is transparent or opaque.

Type Description

BackModeEnum A BackModeEnum expression that indicates whether the
selection is transparent or opaque.

By default, the SelBackMode property is exOpaque. Use the SelBackMode property to
specify how the selection is shown in the control. Use the SelBackMode property to specify
a specify a semi-transparent color so the selected rows do not lose the colors, pictures,
when they are selected. Use the SelBackColor property to specify the visual appearance or
the background color for selected items. Use the SelForeColor property to specify the
selection foreground color. The SingleSel property specifies whether the control supports
single or multiple selection. The control fires the SelectionChanged event when user selects
an item. Use the SelectedItem property to get the selected item. Use the SelectItem to
select or unselect a specified item. The FullRowSelect property specifies whether the full
item or a single cell is being selected.

The following screen shot shows the control when no items are selected:

The following screen shot shows the first three items selected, while the SelBackMode
property is exOpaque:

The following screen shot shows the first three items selected, while the SelBackMode
property is exOpaque, and FullRowSelect property is 0:

The following screen shot shows the first three items selected, while the SelBackMode
property is exTransparent:

The following screen shot shows the first three items selected, while the SelBackMode
property is exGrid:

property G2antt.SelectByDrag as Boolean
Specifies whether the user selects multiple items by dragging.

Type Description

Boolean A boolean expression that specifies whether the user may
select multiple items by drag and drop.

By default, SelectByDrag property is True. Use the SelectByDrag property to disable
selecting multiple items by dragging. The SelectByDrag property has effect only if the
control supports multiple selection. The SingleSel property controls the number of items that
the user may select. For instance, if the SingleSel property is True, the user can't select
multiple items, and so a single item may be selected at the time. If the SingleSel property is
False, the user can select multiple items using the mouse, keyboard or both. When the
SelectByDrag property is True, the user may click the non text area to start select items by
dragging. Use the SelectByDrag property on False when your control requires OLE drag
and drop operations, like when you select multiple items and drag them to a new position.
Use the OLEDropMode property to specify whether the OLE drag and drop operations
inside the control is allowed. For instance, if the SelectByDrag and OLEDropMode
properties are on, sometimes it is confused what control should do when user clicks and
start to select items. The AllowSelectNothing property specifies whether the current
selection is erased, once the user clicks outside of the items section. The SelectOnRelease
property indicates whether the selection occurs when the user releases the mouse button.

property G2antt.SelectColumn as Boolean

Specifies whether the user selects cells only in SelectColumnIndex column, while
FullRowSelect property is False.

Type Description

Boolean
A boolean expression that specifies whether the user
selects cells only in SelectColumnIndex column, while the
FullRowSelect property is False

By default, the SelectColumn property is False. The SelectColumn property has effect only
if the FullRowSelect is False. The control displays the selected cell in the
SelectColumnIndex column. The SelectColumnIndex property specifies the index of selected
column. Use the SelectableItem property to specify the user can select an item.

property G2antt.SelectColumnIndex as Long

Retrieves or sets a value that indicates the column's index where the user can select an
item by clicking.

Type Description

Long A long expression that indicates the column's index where
the user can select the item.

The property has effect only if the FullRowSelect property is False. Use the SelectedItem
property to determine the selected items. Use the SelectColumnInner property to get the
index of the inner cell that's selected or focused. Use the SplitCell property to split a
cell. Use the SelectableItem property to specify the user can select an item.

property G2antt.SelectColumnInner as Long
Retrieves or sets a value that indicates the index of the inner cell that's selected.

Type Description

Long A long expression that indicates the index of the inner cell
that's focused or selected.

Use the SelectColumnInner property to get the index of the inner cell that's selected or
focused. The SelectColumnInner property may be greater than zero, if the control contains
inner cells. The SplitCell method splits a cell in two cells. The newly created cell is called
inner cell. The FocusItem property indicates the focused item. The SelectColumnIndex
property determines the index of the column that's selected when FullRowSelect property is
False. Use the SelectableItem property to specify the user can select an item.

property G2antt.SelectOnRelease as Boolean
Indicates whether the selection occurs when the user releases the mouse button.

Type Description

Boolean A Boolean expression that indicates whether the selection
occurs when the user releases the mouse button.

By default, the SelectOnRelease property is False. By default, the selection occurs, as
soon as the user clicks an object. The SelectOnRelease property indicates whether the
selection occurs when the user releases the mouse button. The SelectOnRelease property
has no effect if the SingleSel property is False, and SelectByDrag property is True.

property G2antt.SelForeColor as Color
Retrieves or sets a value that indicates the selection foreground color.

Type Description

Color A color expression that indicates the selection foreground
color.

By default, the SelForeColor property is applied ONLY to selected items being displayed in
the list area. Use the SelForeColor property to change the foreground color of selected
items being displayed in the chart area. Use the SelForeColor and SelBackColor properties
to change the colors used for selected items. The control highlights the selected items only
if the SelBackColor and BackColor properties have different values, and the SelForeColor
and ForeColor properties have different values. Use the SelectCount property to get the
number of selected items. Use the SelectedItem property to get the selected item. Use the
SelectItem to select or unselect a specified item. Use the FocusItem property to get the
focused item. The control fires the SelectionChanged event when user changes the
selection. Use the SelectableItem property to specify the user can select an item. The
SelForeColor property is applied only if it is different that the control's foreground color. Use
the SelectOnClick property to disable selecting new items when the user clicks the chart
area. The SelBackMode property specifies the way the selected items are shown in the
control.

property G2antt.ShowFocusRect as Boolean
Retrieves or sets a value indicating whether the control draws a thin rectangle around the
focused item.

Type Description

Boolean A boolean expression that indicates whether the control
draws a thin rectangle around the focused item.

Use the ShowFocusRect property to hide the rectangle drawn around the focused item. The
FocusItem property specifies the handle of the focused item. If there is no focused item the
FocusItem property retrieves 0. At one moment, only one item can be focused. When the
selection is changed the focused item is changed too. Use the SelectCount property to get
the number of selected items. Use the SelectedItem property to get the selected item. Use
the SelectItem to select or unselect a specified item. If the control supports only single
selection, you can use the FocusItem property to get the selected/focused item because
they are always the same.

property G2antt.ShowImageList as Boolean

Specifies whether the control's image list window is visible or hidden.

Type Description

Boolean A boolean expression that specifies whether the control's
image list window is visible or hidden.

By default, the ShowImageList property is True. Use the ShowImageList property to hide
the control's images list window. The control's images list window is visible only at design
time. Use the Images method to associate an images list control to the control. Use the
RepaceIcon method to add, remove or clear icons in the control's images collection. Use
the CellImage, CellImages properties to assign icons to a cell. Use the CellPicture property
to assign a picture to a cell. Use the CheckImage or RadioImage property to specify a
different look for checkboxes or radio buttons in the cells.

property G2antt.ShowLockedItems as Boolean
Retrieves or sets a value that indicates whether the locked items are visible or hidden.

Type Description

Boolean A boolean expression that specifies whether the locked
items are shown or hidden.

A locked or fixed item is always displayed on the top or bottom side of the control no matter
if the control's list is scrolled up or down. Use the ShowLockedItems property to show or
hide the locked items. Use the LockedItemCount property to add or remove items
fixed/locked to the top or bottom side of the control. Use the LockedItem property to
access a locked item by its position. Use the CellValue property to specify the caption for a
cell.

method G2antt.ShowToolTip (ToolTip as String, [Title as Variant],
[Alignment as Variant], [X as Variant], [Y as Variant])
Shows the specified tooltip at given position.

Type Description

ToolTip as String

The ToolTip parameter can be any of the following:

NULL(BSTR) or "<null>"(string) to indicate that the
tooltip for the object being hovered is not changed
A String expression that indicates the description of
the tooltip, that supports built-in HTML format (adds,
replaces or changes the object's tooltip)

Title as Variant

The Title parameter can be any of the following:

missing (VT_EMPTY, VT_ERROR type) or "<null>"
(string) the title for the object being hovered is not
changed.
A String expression that indicates the title of the
tooltip (no built-in HTML format) (adds, replaces or
changes the object's title)

Alignment as Variant

A long expression that indicates the alignment of the tooltip
relative to the position of the cursor. If missing
(VT_EMPTY, VT_ERROR) the alignment of the tooltip for
the object being hovered is not changed.

The Alignment parameter can be one of the following:

0 - exTopLeft
1 - exTopRight
2 - exBottomLeft
3 - exBottomRight
0x10 - exCenter
0x11 - exCenterLeft
0x12 - exCenterRight
0x13 - exCenterTop
0x14 - exCenterBottom

By default, the tooltip is aligned relative to the top-left
corner (0 - exTopLeft).

X as Variant

Specifies the horizontal position to display the tooltip as
one of the following:

missing (VT_EMPTY, VT_ERROR type), indicates
that the tooltip is shown on its default position /
current cursor position (ignored)
-1, indicates the current horizontal position of the
cursor (current x-position)
a numeric expression that indicates the horizontal
screen position to show the tooltip (fixed screen x-
position)
a string expression that indicates the horizontal
displacement relative to default position to show the
tooltip (moved)

Y as Variant

Specifies the vertical position to display the tooltip as one
of the following:

missing (VT_EMPTY, VT_ERROR type), indicates
that the tooltip is shown on its default position /
current cursor position (ignored)
-1, indicates the current vertical position of the cursor
(current y-position)
a numeric expression that indicates the vertical screen
position to show the tooltip (fixed screen y-position)
a string expression that indicates the vertical
displacement relative to default position to show the
tooltip (displacement)

Use the ShowToolTip method to display a custom tooltip at specified position or to update
the object's tooltip, title or position. You can call the ShowToolTip method during the
MouseMove/ToolTip event. Use the ToolTipPopDelay property specifies the period in ms of
time the ToolTip remains visible if the mouse pointer is stationary within a control. The
ToolTipDelay property specifies the time in ms that passes before the ToolTip appears. Use
the ToolTipWidth property to specify the width of the tooltip window. Use the ToolTipFont
property to change the tooltip's font. Use the Background(exToolTipAppearance) property
indicates the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color. Use the
CellToolTip property to specify the cell's tooltip. Use the ItemBar(,,exBarToolTip) property to
specify a tooltip for a bar. Use the Link(,exLinkToolTip) property to specify the link's tooltip.

For instance:

ShowToolTip(`<null>`,`<null>`,,`+8`,`+8`), shows the tooltip of the object moved relative
to its default position
ShowToolTip(`<null>`,`new title`), adds, changes or replaces the title of the object's
tooltip
ShowToolTip(`new content`), adds, changes or replaces the object's tooltip
ShowToolTip(`new content`,`new title`), shows the tooltip and title at current position
ShowToolTip(`new content`,`new title`,,`+8`,`+8`), shows the tooltip and title moved
relative to the current position
ShowToolTip(`new content`,``,,128,128), displays the tooltip at a fixed position
ShowToolTip(``,``), hides the tooltip

The ToolTip parameter supports the built-in HTML format like follows:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show

about:blank

lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a

known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

The following VB sample displays (as tooltip) the identifier of the anchor element from the
cursor:

Private Sub G2antt1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With G2antt1
 .ShowToolTip .AnchorFromPoint(-1, -1)
 End With
End Sub

The following VB.NET sample displays (as tooltip) the identifier of the anchor element
from the cursor:

Private Sub AxG2antt1_MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_MouseMoveEvent) Handles AxG2antt1.MouseMoveEvent
 With AxG2antt1
 .ShowToolTip(.get_AnchorFromPoint(-1, -1))
 End With
End Sub

The following C# sample displays (as tooltip) the identifier of the anchor element from the
cursor:

private void axG2antt1_MouseMoveEvent(object sender,
AxEXG2ANTTLib._IG2anttEvents_MouseMoveEvent e)
{
 axG2antt1.ShowToolTip(axG2antt1.get_AnchorFromPoint(-1, -1));
}

The following C++ sample displays (as tooltip) the identifier of the anchor element from
the cursor:

void OnMouseMoveG2antt1(short Button, short Shift, long X, long Y)
{
 COleVariant vtEmpty; V_VT(&vtEmpty) = VT_ERROR;
 m_g2antt.ShowToolTip(m_g2antt.GetAnchorFromPoint(-1, -1), vtEmpty, vtEmpty,
vtEmpty);
}

The following VFP sample displays (as tooltip) the identifier of the anchor element from

the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform
 With .G2antt1
 .ShowToolTip(.AnchorFromPoint(-1, -1))
 EndWith
endwith

property G2antt.SingleSel as Boolean

Retrieves or sets a value that indicates whether the control supports single or multiple
selection.

Type Description

Boolean A boolean expression that indicates whether the control
supports single or multiple selection.

Use the SingleSel property to enable multiple selection. Use the SelectCount property to
get the number of selected items. Use the SelectedItem property to get the selected item.
Use the SelectItem to select or unselect a specified item. Use the FocusItem property to
get the focused item. If the control supports only single selection, you can use the
FocusItem property to get the selected/focused item because they are always the same.
The control fires the SelectionChanged event when user selects an item. Use the
SelForeColor and SelBackColor properties to specify colors for selected items. Use the
SelectableItem property to specify the user can select an item. The FullRowSelect property
specifies whether the selection spans the entire width of the control. Use the SelectAll
method to select all visible items. Use the SelectOnClick property to disable selecting new
items when the user clicks the chart area. The AllowSelectNothing property specifies
whether the current selection is erased, once the user clicks outside of the items section.
The SelectOnRelease property indicates whether the selection occurs when the user
releases the mouse button.

property G2antt.SingleSort as Boolean
Returns or sets a value that indicates whether the control supports sorting by single or
multiple columns.

Type Description

Boolean A boolean expression that indicates whether the control
supports sorting by single or multiple columns.

Use the SingleSort property to allow sorting by multiple columns. Sorting by a single column
in the control is a simple matter of clicking on the column head. Sorting by multiple columns,
however, is not so obvious. But it's actually quite easy. The user has two options to sort by
multiple columns:

First, sort by the first criterion, by clicking on the column head. Then hold the SHIFT
key down as you click on a second heading.
Click the column head and drag to the control's sort bar in the desired position.

By default, the SingleSort property is True, and so the user can have sorting by a single
column only. Use the SortBarVisible property to show the control's sort bar. The SingleSort
property is automatically set on False, if the SortBarVisible property is set to True. Use the
SortOnClick property to specify the action that control should execute when the user clicks
the control's header. Use the SortOrder property to sort a column programmatically. Use
the SortPosition property to specify the position of the column in the sorted columns list.
The control fires the Sort event when the user sorts a column. Use the ItemBySortPosition
property to get the columns being sorted in their order.

For instance, if the control contains multiple sorted columns, changing the SingleSort
property on True, erases all the columns in the sorting columns collection, and so no column
is sorted.

property G2antt.SortBarCaption as String
Specifies the caption being displayed on the control's sort bar when the sort bar contains no
columns.

Type Description

String A String expression that indicates the caption of the
control's sort bar.

The SortBarCaption property specifies the caption of the control's sort bar, when it contains
no sorted columns. Use the SortBarVisible property to show the control's sort bar. Use the
BackColorSortBar, BackColorSortBarCaption and ForeColorSortBar properties to specify
colors for the control's sort bar. Use the SortBarHeight property to specify the height of the
control's sort bar. Use the SortBarColumnWidth property to specify the width of the column
in the control's sort bar. By default, the SortBarCaption property is "Drag a column
header here to sort by that column.". Use the Font property to specify the control's font.
Use the ItemBySortPosition property to access the columns in the control's sort bar.

The SortBarCaption property may include built-in HTML tags like follows:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The

about:blank

Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously

loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property G2antt.SortBarColumnWidth as Long
Specifies the maximum width a column can be in the control's sort bar.

Type Description

Long

A long expression that indicates the width of the columns
in the control's sort bar. If the value is negative, all
columns in the sort bar are displayed with the same width
(the absolute value represents the width of the columns,
in pixels). If the value is positive, it indicates the maximum
width, so the width of the columns in the sort bar may
differ.

Use the SortBarColumnWidth property to specify the width of the column in the control's
sort bar. Use the SortBarVisible property to show the control's sort bar. Use the Width
property to specify the width of the column in the control's header bar. Use the
SortBarHeight property to specify the height of the control's sort bar. Use the
SortBarCaption property to specify the caption being displayed in the control's sort bar
when it contains no columns.

property G2antt.SortBarHeight as Long
Retrieves or sets a value that indicates the height of the control's sort bar.

Type Description

Long A long expression that indicates the height of the control's
sort bar, in pixels.

Use the SortBarHeight property to specify the height of the control's sort bar. Use the
SortBarVisible property to show the control's sort bar. By default, the SortBarHeight
property is 18 pixels. Use the HeaderHeight property to specify the height of the control's
header bar. Use the SortBarColumnWidth property to specify the width of the columns
being displayed in the control's sort bar. Use the BackColorSortBar,
BackColorSortBarCaption and ForeColorSortBar properties to specify colors for the
control's sort bar. Use the SortBarCaption property to specify the caption being displayed in
the control's sort bar when it contains no columns.

property G2antt.SortBarVisible as Boolean
Retrieves or sets a value that indicates whether control's sort bar is visible or hidden.

Type Description

Boolean A boolean expression that indicates whether the sort bar is
visible or hidden.

Use the SortBarVisible property to show the control's sort bar. By default, the
SortBarVisible property is False. Use the SingleSort property to specify whether the control
supports sorting by single or multiple columns. Sorting by a single column in the control is a
simple matter of clicking on the column head. Sorting by multiple columns, however, is not
so obvious. But it's actually quite easy. The user has two options to sort by multiple
columns:

First, sort by the first criterion, by clicking on the column head. Then hold the SHIFT
key down as you click on a second heading.
Click the column head and drag to the control's sort bar in the desired position.

The HeaderEnabled property enables or disables the control's header (including the
control's sort/groupby-bar)

The control's sort bar displays the SortBarCaption expression, when it contains no columns,
like follows (the "Drag a column header ..." area is the control's sort bar) :

The sort bar displays the list of columns being sorted in their order as follows:

The SortOrder property adds or removes programmatically columns in the control's sort
bar. Use the SortPosition property to specify the position of the column in the sorting
columns collection. Use the ItemBySortPosition property to access the columns being
sorted. Use the SortOnClick property to specify the action that control should execute when
user clicks the column's header. Use the AllowSort property to specify whether the user
sorts a column by clicking the column's header. The control fires the Sort event when the
user sorts a column. Use the Chart object to access all properties and methods related to
the G2antt chart. Use the OverviewVisible property to show or hide the chart's overview
area.

property G2antt.SortOnClick as SortOnClickEnum

Retrieves or sets a value that indicates whether the control sorts automatically the data
when the user click on column's caption.

Type Description

SortOnClickEnum
A SortOnClick expression that indicates whether the
control sorts automatically the data when the user click on
the column's header.

Use the SortOnClick property to disable sorting items when the user clicks on the column's
header. Use the SortBarVisible property to show the control's sort bar. Use the SingleSort
property to allow sorting by single or multiple columns. Use the AllowSort property to avoid
sorting a column when user clicks the column. Use the DefaultSortOrder property to specify
the column's default sort order, when the user first clicks the column's header.

There are two methods to get the items sorted like follows:

Using the SortOrder property of the Column object::

G2antt1.Columns(ColIndex).SortOrder = SortAscending

The SortOrder property adds the sorting icon to the column's header, if the
DisplaySortIcon property is True.

Using the SortChildren method of the Items collection. The SortChildren sorts the
items. The SortChildren method sorts the child items of the given parent item in the
control. SortChildren will not recourse through the tree, only the immediate children of
the item will be sorted. The following sample sorts descending the list of root items on
the "Column 1"(if your control displays a list, all items are considered being root items
).

G2antt1.Items.SortChildren 0, "Column 1", False

The control fires the Sort event when the control sorts a column (the user clicks the
column's head) or when the sorting position is changed in the control's sort bar. Use the
Sort event to sort the data when the SortOnClk property is exUserSort.

property G2antt.Statistics as String
Gives statistics data of objects being hold by the control.

Type Description

String A String expression that gives information about objects
being loaded into the control.

The Statistics property gives statistics data of objects being hold by the control. The
Statistics property gives a rough idea on how many columns, items, cell, bars, links, notes
and so on are loaded into the control. Also, the Statistics property gives percentage usage
of base-memory of different objects within the memory.

The following output shows how the Statistics looks like, on a 32-bits machine:

Cells: 1,817,609 x 69 = 125,415,021 (90.16%)
Link: 16,986 x 440 = 7,473,840 (5.37%)
Item-Bars: 16,987 x 250 = 4,246,750 (3.05%)
Item: 16,987 x 106 = 1,800,622 (1.29%)
Column: 107 x 1,104 = 118,128 (0.08%)
Control: 1 x 30,352 = 30,352 (0.02%)
Charts: 1 x 9,552 = 9,552 (0.01%)
Bar: 7 x 944 = 6,608 (0.00%)
Levels: 1 x 1,488 = 1,488 (0.00%)
Level: 2 x 712 = 1,424 (0.00%)
Items: 1 x 852 = 852 (0.00%)
InsideZooms: 1 x 424 = 424 (0.00%)
Links: 1 x 256 = 256 (0.00%)
Columns: 1 x 172 = 172 (0.00%)
Notes: 1 x 36 = 36 (0.00%)
Appearances: 1 x 28 = 28 (0.00%)
Bars: 1 x 28 = 28 (0.00%)
Appearance: 0 x 712 = 0 (0.00%)
CComVariant: 0 x 16 = 0 (0.00%)
Cells(Inner): 0 x 69 = 0 (0.00%)
Chart: 0 x 9,560 = 0 (0.00%)
CSmartVariant: 0 x 9 = 0 (0.00%)
InsideZoom: 0 x 96 = 0 (0.00%)
Note: 0 x 672 = 0 (0.00%)

The following output shows how the Statistics looks like, on a 64-bits machine:

Cells: 1,817,609 x 121 = 219,930,689 (91.62%)
Link: 16,986 x 632 = 10,735,152 (4.47%)
Item-Bars: 16,987 x 342 = 5,809,554 (2.42%)
Item: 16,987 x 194 = 3,295,478 (1.37%)
Column: 107 x 1,808 = 193,456 (0.08%)
Control: 1 x 49,336 = 49,336 (0.02%)
Charts: 1 x 15,240 = 15,240 (0.01%)
Bar: 7 x 1,560 = 10,920 (0.00%)
Handles: 236 x 12 = 2,832 (0.00%)
Level: 2 x 1,200 = 2,400 (0.00%)
Levels: 1 x 2,224 = 2,224 (0.00%)
Items: 1 x 1,640 = 1,640 (0.00%)
InsideZooms: 1 x 632 = 632 (0.00%)
Links: 1 x 408 = 408 (0.00%)
Columns: 1 x 320 = 320 (0.00%)
Notes: 1 x 64 = 64 (0.00%)
Appearances: 1 x 48 = 48 (0.00%)
Bars: 1 x 48 = 48 (0.00%)
Appearance: 0 x 1,168 = 0 (0.00%)
CComVariant: 0 x 24 = 0 (0.00%)
Cells(Inner): 0 x 121 = 0 (0.00%)
Chart: 0 x 15,248 = 0 (0.00%)
CSmartVariant: 0 x 9 = 0 (0.00%)
InsideZoom: 0 x 136 = 0 (0.00%)
Note: 0 x 984 = 0 (0.00%)

property G2antt.Template as String
Specifies the control's template.

Type Description
String A string expression that indicates the control's template.

The control's template uses the X-Script language to initialize the control's content. Use the
Template property page of the control to update the control's Template property. Use the
Template property to execute code by passing instructions as a string (template string).
Use the ExecuteTemplate property to execute a template script and gets the result.

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name

of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property G2antt.TemplateDef as Variant
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplateDef property / TemplatePut method has been added to allow programming
languages such as dBASE Plus to set control's properties with multiple parameters. It is
known that programming languages such as dBASE Plus or XBasic from AlphaFive, does
not support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef / TemplatePut method. The first call of the
TemplateDef should be a declaration such as "Dim a,b" which means the next 2 calls of the
TemplateDef defines the variables a and b. The next call should be Template or
ExecuteTemplate property which can use the variable a and b being defined previously.

So, calling the TemplateDef property should be as follows:

with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith

This sample allocates a variable var_Column, assigns the value to the variable (the second
call of the TemplateDef), and the Template call uses the var_Column variable (as an object
), to call its Def property with the parameter 4.

Let's say we need to define the background color for a specified column, so we need to call
the Def(exCellBackColor) property of the column, to define the color for all cells in the
column.

The following VB6 sample shows setting the Def property such as:

With Control
 .Columns.Add("Column 1").Def(exCellBackColor) = 255
 .Columns.Add "Column 2"
 .Items.AddItem 0
 .Items.AddItem 1

 .Items.AddItem 2
End With

In dBASE Plus, calling the Def(4) has no effect, instead using the TemplateDef helps you to
use properly the Def property as follows:

local Control,var_Column

Control = form.Activex1.nativeObject
// Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith
Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The equivalent sample for XBasic in A5, is as follows:

Dim Control as P
Dim var_Column as P

Control = topparent:CONTROL_ACTIVEX1.activex
' Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
Control.TemplateDef = "Dim var_Column"
Control.TemplateDef = var_Column
Control.Template = "var_Column.Def(4) = 255"

Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The samples just call the Column.Def(4) = Value, using the TemplateDef. The first call of
TemplateDef property is "Dim var_Column", which indicates that the next call of the
TemplateDef will defines the value of the variable var_Column, in other words, it defines the
object var_Column. The last call of the Template property uses the var_Column member to
use the x-script and so to set the Def property so a new color is being assigned to the
column.

The TemplateDef, TemplatePut, Template and ExecuteTemplate support x-script language (
Template script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please

make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

method G2antt.TemplatePut (NewVal as Variant)
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

NewVal as Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplatePut method / TemplateDef property has been added to allow programming
languages such as dBASE Plus to set control's properties with multiple parameters. It is
known that programming languages such as dBASE Plus or XBasic from AlphaFive, does
not support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef / TemplatePut method. The first call of the
TemplateDef should be a declaration such as "Dim a,b" which means the next 2 calls of the
TemplateDef defines the variables a and b. The next call should be Template or
ExecuteTemplate property which can use the variable a and b being defined previously.

The TemplateDef, TemplatePut, Template and ExecuteTemplate support x-script language (
Template script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the

Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property G2antt.TooltipCellsColor as Color
Retrieves or sets a value that indicates the color used to mark the cells that have tool tips.

Type Description

Color A color expression that specifies the color used to mark
the cells that have a tool tip associated.

The property has effect only if the MarkTooltipCells property is True. Use the CellToolTip
property to assign a tooltip to a cell. Use the ToolTipWidth property to specify the width of
the tooltip window. The control fires the ToolTip event when the column's tooltip is about to
be displayed.

property G2antt.ToolTipDelay as Long
Specifies the time in ms that passes before the ToolTip appears.

Type Description

Long A long expression that specifies the time in ms that passes
before the ToolTip appears.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. The
ToolTipPopDelay property specifies the period in ms of time the ToolTip remains visible if
the mouse pointer is stationary within a control. The ToolTipMargin property defines the size
of the control's tooltip margins. Use the ToolTipWidth property to specify the width of the
tooltip window. Use the ToolTipFont property to assign a font for the control's tooltip. Use
the Background(exToolTipAppearance) property indicates the visual appearance of the
borders of the tooltips. Use the Background(exToolTipBackColor) property indicates the
tooltip's background color. Use the Background(exToolTipForeColor) property indicates the
tooltip's foreground color. Use the CellToolTip property to specify the cell's tooltip. Use the
ItemBar(,,exBarToolTip) property to specify a tooltip for a bar. Use the Link(,exLinkToolTip)
property to specify the tooltip to be shown when the cursor hovers the link.

The following sample shows how you can temporarily/programmatically hide the control's
tooltip:

Public Sub hideToolTip(ByRef g As EXG2ANTTLib.G2antt)
 Dim nToolTipDelay As Long
 With g
 nToolTipDelay = .ToolTipDelay
 .ToolTipDelay = 0
 .ToolTipDelay = nToolTipDelay
 End With
End Sub

property G2antt.ToolTipFont as IFontDisp
Retrieves or sets the tooltip's font.

Type Description
IFontDisp A Font object being used to display the tooltip.

Use the ToolTipFont property to assign a font for the control's tooltip. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. Use the ToolTipWidth property to specify the width of the tooltip
window. The ToolTipDelay property specifies the time in ms that passes before the ToolTip
appears. Use the HTML element to assign a different font for portions of text inside
the tooltip. Use the Background(exToolTipAppearance) property indicates the visual
appearance of the borders of the tooltips. Use the Background(exToolTipBackColor)
property indicates the tooltip's background color. Use the Background(exToolTipForeColor)
property indicates the tooltip's foreground color. Use the ShowToolTip method to display a
custom tooltip. Use the CellToolTip property to specify the cell's tooltip. Use the
ItemBar(,,exBarToolTip) property to specify a tooltip for a bar. Use the Link(,exLinkToolTip)
property to specify the tooltip to be shown when the cursor hovers the link.

property G2antt.ToolTipMargin as String
Defines the size of the control's tooltip margins.

Type Description

String

A string expression that defines the horizontal and vertical
margins (separated by comma) of the control's tooltip as
one of the following formats:

"value", where value is a positive number, that
specifies the horizontal and vertical margins, such as
"4" equivalent of "4,4"
"value,", where value is a positive number, that
specifies the horizontal margin, such as "4," equivalent
of "4,0"
",value", where value is a positive number, that
specifies the vertical margin, such as ",4" equivalent
of "0,4"
"horizontal,vertical", where horizontal and vertical are
positive numbers, that specifies the horizontal and
vertical margins, such as "4,4"

By default, the size of the tooltip margin is "4" (horizontal and vertical). For instance,
ToolTipMargin = "8" changes the horizontal and vertical margins are set to 8 pixels.
ToolTipMargin = "8,4" changes the horizontal margin to 8 pixels and the vertical margin to 4
pixels. The ToolTipWidth property specifies a value that indicates the width of the tooltip
window, in pixels. Use the ShowToolTip method to display a custom tooltip. Use the
ToolTipFont property to assign a font for the control's tooltip. The ToolTipPopDelay property
specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. The ToolTipDelay property specifies the time in ms that passes
before the ToolTip appears.

property G2antt.ToolTipPopDelay as Long
Specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control.

Type Description

Long
A long expression that specifies the period in ms of time
the ToolTip remains visible if the mouse pointer is
stationary within a control.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. The
ToolTipDelay property specifies the time in ms that passes before the ToolTip appears. Use
the ToolTipWidth property to specify the width of the tooltip window. The ToolTipMargin
property defines the size of the control's tooltip margins. Use the ToolTipFont property to
assign a font for the control's tooltip. Use the Background(exToolTipAppearance) property
indicates the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color. Use the
ShowToolTip method to display a custom tooltip. Use the CellToolTip property to specify the
cell's tooltip. Use the ItemBar(,,exBarToolTip) property to specify a tooltip for a bar. Use the
Link(,exLinkToolTip) property to specify the tooltip to be shown when the cursor hovers the
link.

The following sample shows how you can temporarily/programmatically hide the control's
tooltip:

Public Sub hideToolTip(ByRef g As EXG2ANTTLib.G2antt)
 Dim nToolTipDelay As Long
 With g
 nToolTipDelay = .ToolTipDelay
 .ToolTipDelay = 0
 .ToolTipDelay = nToolTipDelay
 End With
End Sub

property G2antt.ToolTipWidth as Long
Specifies a value that indicates the width of the tooltip window, in pixels.

Type Description

Long A long expression that indicates the width of the tooltip
window.

Use the ToolTipWidth property to change the tooltip window width. The height of the tooltip
window is automatically computed based on tooltip's description. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. The ToolTipDelay property specifies the time in ms that passes
before the ToolTip appears. The ToolTipMargin property defines the size of the control's
tooltip margins. Use the Background(exToolTipAppearance) property indicates the visual
appearance of the borders of the tooltips. Use the Background(exToolTipBackColor)
property indicates the tooltip's background color. Use the Background(exToolTipForeColor)
property indicates the tooltip's foreground color. Use the ShowToolTip method to display a
custom tooltip. Use the ToolTipFont property to assign a font for the control's tooltip. Use
the CellToolTip property to specify the cell's tooltip. Use the ItemBar(,,exBarToolTip)
property to specify a tooltip for a bar. Use the Link(,exLinkToolTip) property to specify the
tooltip to be shown when the cursor hovers the links.

property G2antt.TreeColumnIndex as Long

Retrieves or sets a value indicating the column's index where the hierarchy will be
displayed.

Type Description

Long A long expression that indicates the index of the column
where the control's hierarchy is displayed.

Use the TreeColumnIndex property to change the column's index where the hierarchy lines
are painted. Use HasLines and LinesAtRoot properties to show the hierarchy lines. Use the
HasButtons property to define the +/- signs appearance. If the TreeColumnIndex property is
-1, the control doesn't paint the hierarchy. Use the Indent property to define the amount, in
pixels, that child items are indented relative to their parent items.

method G2antt.Ungroup ()
Ungroups the columns, if they have been previously grouped.

Type Description

property G2antt.UseTabKey as Boolean

Specifies whether the TAB key is used to change the searching column.

Type Description

Boolean A boolean expression that specifies whether the TAB key
is used to change the incremental searching column.

By default, the UseTabKey property is True. The UseTabKey property specifies whether the
control uses the TAB key to change the searching column. If the UseTabKey property is
False, the TAB key is used to navigate through the form's controls.

property G2antt.UseVisualTheme as UIVisualThemeEnum
Specifies whether the control uses the current visual theme to display certain UI parts.

Type Description

UIVisualThemeEnum
An UIVisualThemeEnum expression that specifies which UI
parts of the control are shown using the current visual
theme.

By default, the UseVisualTheme property is exDefaultVisualTheme, which means that all
known UI parts are shown as in the current theme. The UseVisualTheme property may
specify the UI parts that you need to enable or disable the current visual theme. The UI
Parts are like header, filterbar, check-boxes, buttons and so on. The UseVisualTheme
property has effect only a current theme is selected for your desktop. The UseVisualTheme
property. Use the Appearance property of the control to provide your own visual
appearance using the EBN files.

The following screen shot shows the control while the UseVisualTheme property is
exDefaultVisualTheme:

since the second screen shot shows the same data as the UseVisualTheme property is
exNoVisualTheme:

property G2antt.Version as String
Retrieves the control's version.

Type Description
String A string expression that indicates the control's version.

The version property specifies the control's version.

property G2antt.VisualAppearance as Appearance
Retrieves the control's appearance.

Type Description
Appearance An Appearance object that holds a collection of skins.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control. By using a
collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part.

The skin method may change the visual appearance for the following parts in the control:

levels on the chart area, BackColor property, BackColorLevelHeader property
bar's background, ItemBar(exBarBackColor) property
control's header bar, BackColorHeader property
control's filter bar, FilterBarBackColor property
control's sort bar, BackColorSort property
the caption of the control's sort bar, BackColorSortCaption property
selected item or cell, SelBackColor property
item, ItemBackColor property
cell, CellBackColor property

cell's button, "drop down" filter bar button, "close" filter bar button, and so on,
Background property
'focus' box in the chart's overview area, OverviewSelBackColor property.

property G2antt.VisualDesign as String
Invokes the control's VisualAppearance designer.

Type Description

String A String expression that encodes the control's Visual
Appearance.

By default, the VisualDesign property is "". The VisualDesign property helps you to define
fast and easy the control's visual appearance using the XP-Theme elements or EBN
objects. The VisualDesign property can be accessed on design mode, and it can be used to
design the visual appearance of different parts of the control by drag and drop XP or EBN
elements. The VisualAppearance designer returns an encoded string that can be used to
define different looks, just by calling the VisualDesign = encoded_string. If you require
removing the current visual appearance, you can call the VisualDesign on "" (empty string).
The VisualDesign property encodes EBN or XP-Theme nodes, using the Add method of the
Appearance collection being accessed through the VisualAppearance property.

For the /COM version, click the control in Design mode, select the Properties, and
choose the "Visual Design" page.
For the /NET version, select the VisualDesign property in the Properties browser, and
then click ... so the "Visual Design" page is displayed.
The /WPF version does not provide a VisualAppearance designer, instead you can use
the values being generated by the /COM or /NET to apply the same visual appearance.

Click here to watch a movie on how you define the control's visual appearance using
the XP-Theme
Click here to watch a movie on how you define the control's visual appearance using
the EBN files.

The left panel, should be user to add your EBN or XP-Theme elements. Once you add them
drag and drop the EBN or XP-Theme element from the left side to the part which visual
appearance you want to change.

The following picture shows the control's VisualDesign form (empty):

https://exontrol.com/ebn.jsp
https://www.youtube.com/watch?v=eFhIzjE52I8
https://www.youtube.com/watch?v=JqEUQRhKYWo

The following picture shows the control's VisualDesign form after applying some EBN
objects:

This layout generates the following code:

With Exg2antt1
 .VisualDesign =
"gBFLBWIgBAEHhEJAEGg7oB0HBSQAwABsIfj/jEJAcKhYEjgCAscA8ThQBA8cAgIjgDh8KBAPjgJCUcAIhmgij6AhKAf4CBMIhgACIgg7+jYAgRCJ1BjkHoIBctHnTACAxRDAMgBQKAAzQFAYaByHKGAAGEYRXgmFgAQhFcZQSKUOQTDKMIziYBYfgkMIgSbJUgDCAkRRdDSOYDmGQYDiCIoRShOMpTXJ8bRfGigIqMVI2PACQ5FRZOUByTRcUAFH6QAijOopViWGpHUZRETxCKQahLLivIhGUYKfgmY5lTzPdSUDL8RSUACmLglORLNi+M4zSBPUZTRLlZT7OK3IzECKxBpaF5YVhSN72eKFHzTAa1cDyCCcFpWV5aYjCNgLEAAo7hyM5YiyEQcAwawkACNZlG6OhLnUNwXFCDZegAGhtFQawZgyRxLioOBsg6UhvByMJvnOegrDcDg1jiWJuiAew9m4GhAAiBIUA0JgziGVJkGUGJIA2QB4BkCIblqDQNiEIoIE6IhKBiC4ODsfJGHoTJLmydx7H2fwvg+U5hnaeZ9n6P4PHwDQ8mYP5fmgAZ/gAYBIA4BoAiCCAWAmAZgigBQDCaThTn4EIEiEGD8AUYYIFIGoFmGOBmByBJQDIYJkD+YgohII4JGKCIeCqCYikiJgtgqYpohUAwlE4M5+DSDYjFiXg6g4Y5ImIPoOmOeJ2ECDdM16P5kGkIhHhIZJJC4ToSiUCQ2FGE5lCkJQDCOTgTn4WIWiWG"
 & _

"RuF6FxmAkchiheZg5gYZIW0yMhZhqD55jIboamcCY2HGG5nCmVh0h2ZYUAyCQ4Xqbh9h8J5qT0IJnnoFoCiGKBKB4fhAkgYx8n+IxonoOoQiSaQqFaEYlmkShihaJhpAQDICDeD56H7ioqCqFokimag6iaJoqiqCouiIQJHnMdJ/iwaw6kqNItmsapmjWLprgqco6i8axEAwfA3A+ewOkWMWliaSIymwew2kqM4sksPpGaMGwSlUP5tHsZpWjabYLHKWo3G4Cx+mKMQQDGWJbD+bhriKZ46G6S4um7rILjacY7m8K9tByTYjn6eI+i+G5un6PxwAucwCj+cA8AcBI+lAMZAlkP5wiwMwLkMcQMD8EpDjETBHBWRJxGwNQDBsTYDn8HJHjGXB/CKSByEzQhInIfIXCiR/YiiVw/nKbJDC+TBzEyTw2kyM4MlcOZNnOLJFAMGZyn0AJ/lCNBNAcRpQnQPoFwkRSjpC0G4LwgRKDnCCP8VA6g9CWFSKsdQ2hnCrFaOsDQ5haiuHUIgDIWg6gfH2B4ZYsg2DbCcNEWo7B9huGqLcNomw/DMECJYI4YR/i6HcPsWw8RejvC2O4eYvx3icAMP0YA72YBwDuB8fgPwJjEDiFwN4GVgh8EeB0ZIcgOCfAoIES4pxAj/GYPMPg1wcjPHmN0B4O2QAdBOEUaQ84PCGDyB8foX2oB1G6I8MI2R6j9FeGUbYdhOi/C4IETIBxQj/G8Pcfo9xAjhHwF4F4gxxj4E8EcR"
 & _

"o5B8MwE4HsD4/g/ijHQHoLwrxUjrH0H4Z4rR2h7A8N8UggRNBnGCP8eA/A/gXGSPMfg3wnjLkCB8M41R7D8g8LIPoHx/iflYH4b4zx4j9H8P8d49JnjjH+H4YgDA3gPlyAEMAPADCBAgC4AoQBsJ/HAGQCAgRoBGAIVUZAPxDj8AuIMGAYgGhBGwDkA44BuAhEGNARQEAhA4BoEAZ42R9CFCOOYCwQhMBaD6EgDIAQBEIKGQcLtHSkBYKUUwppTwiUiKmVUq5WStldK+MgNwMyyFmBiMQtRbC3FwLkXQuxeC9F8L8YAwRhDDCOGGGQWAOQCCKBGCgTgQgjAzEyHwawNwQCgCMNAagMACgNAaBcTwAASgwCSEABQXwQiBEEGMMAqROhCBeEYUQ0QRDRNybs3pvzgnDOKJ4aoYhqgpFKD4boSRSjSFKdMOgvgxAAF2NAMo8w8hVHsJkPwlwnigDCEoVAVhqgJDoC8Y4YAGBOBcC0OAlRphpHkAsMAAwEgDFUEAeA1hsVXAyIoRY2AWgXEWA0TQyQxDTHIOoXIcADBXBuHUSIZAThUE6Iwf4VxYDAHAC4GYuQag6GmFEVQ5g5DbESLQOYSwGjjEACwfQjQOBbD6FYXoawwg6GcCYHwqgECEEoA0EwMxQjUHIGUbwQBtDbHEkoY6TUngQE8BYXwEAMCLFQDkfYgRtD9GiPVNIvwPi/GuPceQ/xQBvGCMwPwHx4AcAWAIIA0AmARAKJ8d4xABD7A2OcaI/wE"
 & _

"DCDgJQFICxhDQGYBofYQYFCwD4J+XYQwIBECiCwJIExhhnCIDoNAnhzj8CyBcIosQ+BlAwMZVIOgygeUOHEDoRwYjcD6B4ZAERYAAH4BgM8jQRDIHkDQSIJRkhSDYISfQpxIj/BQMoOQlBUgrGUNIZgnh9gWGPGMFwyx5D0GCDEZgUwWC2DoBUc4eR/g0GaHMKg2QbjNGmIwZwVAOqHYEE4WYvB6g8GeJMHIQg7L1H6AMIAUAqAtASEMZg5BojUD+NEKgZQLhGGkBQPoJQZiSEPAsJQ0h6C1BiE0aYVB2DOCMJwc4/QghRCoDUDoTQpDVAmDkBgchPj1C6FsKwVRqiNDCFkZg4x8jGD+1EYobwuDXEqN0PoMxHgHAiP8MA2A7AVESGO3ITBnA5A4Acfr6gsi2D6KUNA2hJg4GsG8T49heizDZvQdouQ3jICUDUYocRuCXBaMYQIoAQFHKEUQAAwiGFJKWU0hJTxUkMpWVYrBWiuFeAwNwNgMKagjCCISnJbS3lxLmXUu7LxEDIDUCUSQyRxAjCiIQUQEwWCXCMIAKQKBuB2AODYSAwByASBSAACwXwWgWEaOcaAORCgGDOAQDQ0RxBDCyKQPwmgAAHGEGoGYqAmgpuqAAKo3x4h5AIjlHaPUfpBSGJAAIoRCAiDaKoGgNhCCKBUFcHQoAxAuGgKUKY4hqiqGkMYfgexgAUBgEQbgJgLgNEIMH3wBxdjyY4I8Qg1hID5B4D4K4LRLjDBCHMLA+huANC2"
 & _

"J8YQlwaBMCaCMd6hRnBpE+HoIwIQ9hdEKM8VYawoCcC8BUSYtxqBuDuFsOwTgLgLhZhAhxA4BdBWhqg0hDhjgog5A6gdA2AXAThAgshxB1ANAegZBrmTBrgxB7A5hMgvA/gjB8Bth4A0BFhOg/gQgsBihzg6h9GqBlBiAHhsg+A5h+AmBPgfgJAVh2hyh1wcgtBXg+AThvBWgGhIAEBwgAhOAYAVBaAqhggHhgD1gghDBOAOEshHA8BTgEhYBThmAWBWgJgIBkh3gGhbgiheAegCgMhYgGAbA9hchxh2AmBhBMg4glheBugMAYg0BYgLheBxgJhpA6hch4AggrBhBGAIhlg8gKhYhzh2A+BvAdBRBoB+gQhagmBFBXAghkgGBiBKBhhiBhh0hwgThLBpBEBbgUi5BWBGBfAbARhaBagShZBpBoB2BsBVgjBmBiNNBJBeA8gZhcBTgWBqBCOcCPCDqPgAAyufqSOguhCnCgAmOjE7KWOkqXumOnOoCyupOqC1urKeOsqfuuOvOwOxOyOzO0O1O2O3O4O5O6O7O8O9O+O/PAPBPCPDPEPFPGPHPIPJPKArvLPMPNPOEeEfEgEhEiPRvSvTvUvVvWvXvYvZvavbvcvdvevfvgvhvivjvkvlvmvnvovpvqgyBoB8PtPuPvPwPxPyPzP0P1ATBEBcv3v4v5v6v7v8v9v+v/wAwBwChrgLgPhVBhBxA8AKhPAbgbhNhKhyh5hdAthXBCgxADhqh0h5hdsHBjg"
 & _

"zhGhtoEB+AsArhnhLhehUB5BfA4BfARBPgWB9h3hhBZB/AvA+BzhkhLhCh7hPg8g1BfhzAKBgB/hbhHgdg8B/hGAGAVh8AqhdAVBcgDgChZgIA2AOgChIF+ARBjhbRZgWgDgZBoBYRdBbgoBNh0gHhXhEAlCQKPOeAXqROgKTCaCgALKVRsOkKXOlivhqAzAbuogwqcRxKdusKfOtgEOuuvuwuxuyuzu0u1gohYASATARAGBCBBBxh5hcgKAHAgAChLhlgihRhFACPVAcBMhggDBqBMBIBtA9geBPBCAQgagVL4gXgQACAhFtBJgMhoB1A5AZBGJ4BcAMgEBNgyBFhpvYBFBOhbA+AAAGK6Aag0Alh3B2B5BeAdBXgnBNhyh7E1BgAwA3owgqhwhyg7A+hwhNBMBah/Aag8hHhkAyA5AsgeBTAfgNBfhihagYBsAiBXA6r9ghBQB6AtAegTBLgmhThogzhoBchqBXAJB9hVAxhYBsAWACh1B0hABeBtg3AbB9hOhzB3g+hdBtB2AsAdBWADBGhEBhAvhWhrBFgPApBlhNhngtA5hdAegHBLgkgxhjgvh0B4AEAWgJgOhEBhgshWAKhvAPgPhFhkB/h6A9A+BPBfgbhFheBhh3AQB9g9ATApgOhFBWgqgVAfgPhXhnh3tsBfg4AFh9B+BfBTAVhxB2hdhDAwhKAyAKBygMghApAKASB4giAnhJhYBMgcB/hegIBaATAnBhACB6ANAoBggjAggCB3VrgI"
 & _

"hQH1hSgAgcAmghgIg2AugLBigiBqAnAzBiVdglA1ANAjBEgbAmAJMwA+gLgjgyBWA4A0BjBYgUhaA2BNBiBogXAlAjhCBOBLAkBJHqARgLBlAZBAgUAkBkhZAogUgRhNBpAVB/AgBmADgEheA3BkhYhsgWAnAJgCBaBmgLBmBpgiBqgaBkhZgIhdgYE+gCB0A5gOBTgQgTAkAIhpAsgSgTWSg2gAAlBkhiBQgSgehIhphghkgdAXhWASB0A7tXgwgNAiHphAgNAihJAaBegZgmApgqB2gcI5BiAugTAhhpADgyB0BhAYBmgOglgqhpAao/grgrAKg2gyA7AaA2AZgIApArgCANgfBqArhKh1gkBnhrgCgRgIBACuTWiDgYzYRozZCSigAMTbCqTcOlKYAMTeTfRvzgOqzhqeutBxRzzkx1TmR2znzozpzqzrzsztzuzvzwzxzyzzz0z1z2z3z4z5z6z7z8gDT9z+z/0AgIUB0C0D0EgxUF0G0H0I0J0K0L0M0N0O0P0Q0R0S0T0U0V0W0X0Y0Z0a0b0c0d0e0f0g0h0i0j0k0l0m0n0o0p0q0r0s0t0u0v0w0x0y0z000102030405060708090+0/1A1B1C1D1E1F1G1Hhkhzh51KBfBfB5gHhcBBh2h0BMgmA7AVBagqBUB9g/AfJnhzh3h+B+ggAHhMhFB7hdg3BwhMAygMgCgcgjGLBCgEgeAogJhyB2AQAnAhA4BUgfgFFFg0w1vfAchIAggdh"
 & _

"IAUgCA0AMhjA0ggWUgjh+GhBihI1yAKhiByBqAkV1gCAKAiV3141516g+Jmhj19V+V/AI2A2B2C2D2E2F2GhOBQgUglAZBOBQFpgZA2BKAlAkBzBaBFBfhIAZgEhhA3gNoTA7AlgJvigWgZhmhJgqBntSNTBNgYhNhZgEgBBgAnBjgYtEAJAyBAgOuwApA2gCAlBJA6AOgFghAoAJh0gOgegOBJhZB9BhZXA4htA7AIhSAkgHWghSAsgRgmBpg6Bqgcgnhp22AYI5BSAegSP+hmARgGNjh6g2gTgrgOhKhCgygrhrBDgxgjBhgYgCgSg6AghZh2ginQhaBGB+g6ApAYgEAECTiDiVCDiWgAGKgdAZAQaH6HgW6JAZaEgAaLaF6GgagQAWgaaOaPaQCf6ECEaMgoAdAbaP6U6QCAg"

End With

If running the empty control we get the following picture:

If running the control using the code being generated by the VisualAppearance designer we
get:

property G2antt.WordFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS, Highlight as Boolean, [Reserved as Variant]) as
String
Retrieves the word from the cursor.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Highlight as Boolean A Boolean expression that indicates whether the word
from the position is highlighted.

Reserved as Variant A long expression that specifies the part/parts of the
control to search for the word from the cursor.

String A String expression that indicates the word from the
cursor.

Use the WordFromPoint property to retrieve the word from the cursor. The X and Y
coordinates are expressed in client coordinates, so a conversion must be done in case your
coordinates are relative to the screen or to other window. If the X parameter is -1 and Y
parameter is -1 the WordFromPoint property determines the index word from the
cursor. By default, the WordFromPoint property looks for the words in the Items area but it
can search for words in any part of the control (Reserved parameter). Shortly, in the area
where the items are displayed. A word is being defined as the sequence of the characters
between two space/tab characters (empty characters). The word being returned does not
include any HTML tags, in case the cursor hovers an HTML text. Use the ItemFromPoint
property to get the item or cell from the cursor. Use the BarFromPoint property to get the
bar from the point. Use the LinkFromPoint property to get the link from the point. Use the
AnchorFromPoint property to determine the identifier of the anchor from the point. Use the
CellCaption property to retrieve the entire cell's caption. Use the CellValue property to
retrieve the cell's value. The ShowToolTip property shows programmatically your text as a
tooltip.

The following VB sample displays the word from the cursor:

Private Sub G2antt1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Debug.Print G2antt1.WordFromPoint(-1, -1)

End Sub

The following VB sample highlights the word from the cursor, as soon as the cursor hovers
a word:

Private Sub G2antt1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Debug.Print G2antt1.WordFromPoint(-1, -1, True)
End Sub

The following screen shot shows the "Team" word being highlighted when the cursor hovers
it:

As soon as the cursor hovers another word it gets highlighted. The highlighting is
temporary so as soon as the control is repainted the highlight is lost. For instance, you
resize a column, scroll, or select a new item.

The following VB sample highlight the word from the cursor, and displays a context menu (
eXPopupMenu) when the user right clicks the control:

Private Sub G2antt1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Debug.Print G2antt1.WordFromPoint(-1, -1, True)
End Sub

Private Sub G2antt1_RClick()
 Dim i As Long
 With PopupMenu1.Items
 .Clear
 .Add G2antt1.WordFromPoint(-1, -1, True)
 End With
 i = PopupMenu1.ShowAtCursor()

End Sub

Currently, the Reserved parameter could be a combination (bitwise OR) of any of the
following:

(1) - Items area (the area where the items are shown)

(2) - Header area (the area where the column's caption is displayed)

(4) - SortBar area (the part of the control that shows the sorting columns, if multiple
columns sorting is enabled)

(8) - FilterBar area (the part of the control that displays the filter bar)

(256) - Histogram area (the part of the control that displays the chart's histogram)

For instance, if the Reserved parameter is 1 + 2 (3), the WordFromPoint property retrieves
the word from Items or Header area as well. If missing the control looks for the word in the
Items section.

InsideZoom object
The InsideZoom object holds a unit being zoomed. The InsideZooms property retrieves the
collection of InsideZoom objects. The inside zoom feature allows displaying portions of the
chart with different time scale units. For instance, you can display the bars on hours, while
the chart still displays days. The chart may display any unit in a different format. The
InsideZoom objects get displayed ONLY of the AllowInsideZoom property is true.

The following screen shot shows the hours for Jun 22, while the rest of the chart displays
days:

The InsideZoom object supports the following properties and methods.

Name Description

AllowCustomFormat Gets or sets a value that indicates whether the time unit
displays a custom format or default format.

AllowInsideFormat Specifies whether the unit allows displaying the inside
format.

AllowResize Specifies whether the user can resize the date/time unit.
CustomFormat Gets the custom format of the time unit.
EndDate Returns the date where the zoom unit ends.
StartDate Returns the date where the zoom unit begins.
Width Specifies the width of the date/time in the chart.

property InsideZoom.AllowCustomFormat as Boolean
Gets or sets a value that indicates whether the time unit displays a custom format or default
format.

Type Description

Boolean
A Boolean expression that specifies whether the unit uses
the CustomFormat property to define a new visual
appearance for the unit.

By default, the AllowCustomFormat property is False. Use the AllowCustomFormat and
CustomFormat properties to define units with different appearances, including labels,
background or foreground colors, and so on. If the AllowCustomFormat property is false,
the inside zoom units use the DefaultInsideZoomFormat property to define the look and feel
of the inside units. If the AllowCustomFormat property, the CustomFormat property defines
a custom look and feel for the inside unit. The CustomFormat property retrieves nothing, if
the AllowCustomFormat property is False. Once the AllowCustomFormat property is
changed to True, it creates a new custom format object, that can be accessed later using
the CustomFormat property. The new custom object copies the attributes of the
DefaultInsideZoomFormat object.

The following screen shot shows the the units using the same format (June 23 and June 24
), AllowCustomFormat property is False:

The following screen shot shows the the units using the different formats (June 23 and
June 24), AllowCustomFormat property is True:

property InsideZoom.AllowInsideFormat as Boolean
Specifies whether the unit allows displaying the inside format.

Type Description

Boolean
A boolean expression that specifies whether the inside unit
displays the new time scale unit, and so the InsideLabel
property.

By default, the AllowInsideFormat property is True. If the AllowInsideFormat property is
True, the level displays the new units base on the properties as InsideLabel, InsideUnit and
InsideCount. If the AllowInsideFormat property is False, the unit does not display the new
time scale unit, instead it displays the label as indicated by OwnerLabel property. In other
words, you can use the AllowInsideFormat property on True, when you need to display a
new time scale unit, or on False, when actually you need to change the visual appearance
for specified unit. Use the SplitBaseLevel property to specify whether the base level is
divided in two lines, so the first displays the owner label, and the second line displays the
inside format. If the AllowInsideFormat property is False, the grid lines, the inside label, and
the tick lines are not shown.

The following screen shot shows the inside zoom unit with AllowInsideFormat property on
True:

The following screen shot shows the inside zoom unit with AllowInsideFormat property on
False:

The following VB sample shows how can I change the foreground color for a time unit:

With G2antt1

 .BeginUpdate
 With .Chart
 .LevelCount = 2
 .FirstVisibleDate = #1/1/2008#
 .AllowInsideZoom = True
 .AllowResizeInsideZoom = False
 .InsideZoomOnDblClick = False
 .DefaultInsideZoomFormat.ForeColor = 255
 With .InsideZooms
 .SplitBaseLevel = False
 .DefaultWidth = 18
 .Add(#1/4/2008#).AllowInsideFormat = False
 End With
 End With
 .EndUpdate
End With

The following VB.NET sample shows how can I change the foreground color for a time unit:

With AxG2antt1
 .BeginUpdate
 With .Chart
 .LevelCount = 2
 .FirstVisibleDate = #1/1/2008#
 .AllowInsideZoom = True
 .AllowResizeInsideZoom = False
 .InsideZoomOnDblClick = False
 .DefaultInsideZoomFormat.ForeColor = 255
 With .InsideZooms
 .SplitBaseLevel = False
 .DefaultWidth = 18
 .Add(#1/4/2008#).AllowInsideFormat = False
 End With
 End With
 .EndUpdate
End With

The following C++ sample shows how can I change the foreground color for a time unit:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->BeginUpdate();
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutLevelCount(2);
 var_Chart->PutFirstVisibleDate("1/1/2008");
 var_Chart->PutAllowInsideZoom(VARIANT_TRUE);
 var_Chart->PutAllowResizeInsideZoom(VARIANT_FALSE);
 var_Chart->PutInsideZoomOnDblClick(VARIANT_FALSE);
 var_Chart->GetDefaultInsideZoomFormat()->PutForeColor(255);
 EXG2ANTTLib::IInsideZoomsPtr var_InsideZooms = var_Chart->GetInsideZooms();
 var_InsideZooms->PutSplitBaseLevel(VARIANT_FALSE);
 var_InsideZooms->PutDefaultWidth(18);
 var_InsideZooms->Add("1/4/2008")->PutAllowInsideFormat(VARIANT_FALSE);
spG2antt1->EndUpdate();

The following C# sample shows how can I change the foreground color for a time unit:

axG2antt1.BeginUpdate();
EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;
 var_Chart.LevelCount = 2;
 var_Chart.FirstVisibleDate = "1/1/2008";
 var_Chart.AllowInsideZoom = true;
 var_Chart.AllowResizeInsideZoom = false;
 var_Chart.InsideZoomOnDblClick = false;
 var_Chart.DefaultInsideZoomFormat.ForeColor = 255;
 EXG2ANTTLib.InsideZooms var_InsideZooms = var_Chart.InsideZooms;
 var_InsideZooms.SplitBaseLevel = false;
 var_InsideZooms.DefaultWidth = 18;
 var_InsideZooms.Add("1/4/2008").AllowInsideFormat = false;

axG2antt1.EndUpdate();

The following VFP sample shows how can I change the foreground color for a time unit:

with thisform.G2antt1
 .BeginUpdate
 with .Chart
 .LevelCount = 2
 .FirstVisibleDate = {^2008-1-1}
 .AllowInsideZoom = .T.
 .AllowResizeInsideZoom = .F.
 .InsideZoomOnDblClick = .F.
 .DefaultInsideZoomFormat.ForeColor = 255
 with .InsideZooms
 .SplitBaseLevel = .F.
 .DefaultWidth = 18
 .Add({^2008-1-4}).AllowInsideFormat = .F.
 endwith
 endwith
 .EndUpdate
endwith

property InsideZoom.AllowResize as Boolean
Specifies whether the user can resize the date/time unit.

Type Description

Boolean A Boolean expression that specifies whether the unit may
be resized at runtime.

By default, the AllowResize property is True. If the AllowResize property is True, the
resizing cursor shows up when the cursor pointer hovers the unit in the base level. The
Width property specifies the width in pixels of the unit. You can use the CondInsideZoom
property to specify a formula to define the time units that may be resized if the
AllowResizeInsideZoom property is True.

property InsideZoom.CustomFormat as InsideZoomFormat
Gets the custom format of the time unit.

Type Description

InsideZoomFormat An InsideZoomFormat object that defines the custom
appearance for the unit.

By default, the CustomFormat property returns nothing, as the AllowCustomFormat
property is False by default. Once the AllowCustomFormat property is changed to True, it
creates a new custom format object, that can be accessed later using the CustomFormat
property. The new custom object copies the attributes of the DefaultInsideZoomFormat
object. Use the AllowCustomFormat and CustomFormat properties to define units with
different appearances, including labels, background or foreground colors, and so on. If the
AllowCustomFormat property is false, the inside zoom units use the
DefaultInsideZoomFormat property to define the look and feel of the inside units. If the
AllowCustomFormat property, the CustomFormat property defines a custom look and feel
for the inside unit. The CustomFormat property retrieves nothing, if the AllowCustomFormat
property is False.

The following screen shot shows the the units using the same format (June 23 and June 24
), AllowCustomFormat property is False:

The following screen shot shows the the units using the different formats (June 23 and
June 24), AllowCustomFormat property is True:

property InsideZoom.EndDate as Date
Returns the date where the zoom unit ends.

Type Description

Date A Date-Time expression that specifies the ending date of
the inside zoom unit.

By default, the EndDate is defined once the the Add method is called as being the end date
of the unit as indicated by the base level in the chart. For instance, if the chart displays
days, the StartDate indicate the date where the inside zoom unit start, and the EndDate
where the date ends, in other words the next day of starting date. If the chart displays
weeks, the start date indicates where the week beings, since the EndDate indicates the
end date on the week, in other words, where the next week begins. So, the EndDate
property indicates the ending date of inside zoom unit, as specified by the base level ate
the adding time. If the chart's time scale is changed, the StartDate and the EndDate of the
InsideZoom objects are not changed accordingly to the new base level.

property InsideZoom.StartDate as Date
Returns the date where the zoom unit begins.

Type Description

Date A Date-Time expression that specifies the starting date of
the inside zoom unit.

By default, the StartDate property indicates the date being used when the Add method is
called, or the same as DateTime parameter of the InsideZoom event. The EndDate
property indicates the ending date of the unit. If the chart's time scale is changed, the
StartDate and the EndDate of the InsideZoom objects are not changed accordingly to the
new base level.

property InsideZoom.Width as Long
Specifies the width of the date/time in the chart.

Type Description

Long A long expression that specifies the width in pixels, of the
date-time unit.

The Width property defines the width in pixels of the unit being shown in the levels area. By
default, the Width property is indicated by the DefaultWidth property (by default 128). Use
the Width property to specify the width of the unit in the level area. The AllowResize
property specifies whether the unit is resizable, ie the resizing cursor shows up when the
cursor hovers the unit. You can use Width property on 0 to hide a specified unit. Use the
CondInsideZoom property to specify a formula to define the time units that may be resized
if the AllowResizeInsideZoom property is True.

The following screen show displays two inside zoom units with different size (Week 26, and
Week 28):

The following VB sample shows how can I change the width for a specified date time unit:

With G2antt1
 .BeginUpdate
 With .Chart
 .LevelCount = 2
 .FirstVisibleDate = #1/1/2008#
 .AllowInsideZoom = True
 .AllowResizeInsideZoom = False
 .InsideZoomOnDblClick = False
 With .InsideZooms
 With .Add(#1/4/2008#)
 .Width = 32

 .AllowInsideFormat = False
 End With
 End With
 End With
 .EndUpdate
End With

The following VB.NET sample shows how can I change the width for a specified date time
unit:

With AxG2antt1
 .BeginUpdate
 With .Chart
 .LevelCount = 2
 .FirstVisibleDate = #1/1/2008#
 .AllowInsideZoom = True
 .AllowResizeInsideZoom = False
 .InsideZoomOnDblClick = False
 With .InsideZooms
 With .Add(#1/4/2008#)
 .Width = 32
 .AllowInsideFormat = False
 End With
 End With
 End With
 .EndUpdate
End With

The following C++ sample shows how can I change the width for a specified date time unit:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-

>GetControlUnknown();
spG2antt1->BeginUpdate();
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutLevelCount(2);
 var_Chart->PutFirstVisibleDate("1/1/2008");
 var_Chart->PutAllowInsideZoom(VARIANT_TRUE);
 var_Chart->PutAllowResizeInsideZoom(VARIANT_FALSE);
 var_Chart->PutInsideZoomOnDblClick(VARIANT_FALSE);
 EXG2ANTTLib::IInsideZoomsPtr var_InsideZooms = var_Chart->GetInsideZooms();
 EXG2ANTTLib::IInsideZoomPtr var_InsideZoom = var_InsideZooms-
>Add("1/4/2008");
 var_InsideZoom->PutWidth(32);
 var_InsideZoom->PutAllowInsideFormat(VARIANT_FALSE);
spG2antt1->EndUpdate();

The following C# sample shows how can I change the width for a specified date time unit:

axG2antt1.BeginUpdate();
EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;
 var_Chart.LevelCount = 2;
 var_Chart.FirstVisibleDate = "1/1/2008";
 var_Chart.AllowInsideZoom = true;
 var_Chart.AllowResizeInsideZoom = false;
 var_Chart.InsideZoomOnDblClick = false;
 EXG2ANTTLib.InsideZooms var_InsideZooms = var_Chart.InsideZooms;
 EXG2ANTTLib.InsideZoom var_InsideZoom = var_InsideZooms.Add("1/4/2008");
 var_InsideZoom.Width = 32;
 var_InsideZoom.AllowInsideFormat = false;
axG2antt1.EndUpdate();

The following VFP sample shows how can I change the width for a specified date time unit:

with thisform.G2antt1
 .BeginUpdate
 with .Chart
 .LevelCount = 2
 .FirstVisibleDate = {^2008-1-1}
 .AllowInsideZoom = .T.

 .AllowResizeInsideZoom = .F.
 .InsideZoomOnDblClick = .F.
 with .InsideZooms
 with .Add({^2008-1-4})
 .Width = 32
 .AllowInsideFormat = .F.
 endwith
 endwith
 endwith
 .EndUpdate
endwith

InsideZoomFormat object
The InsideZoomFormat object defines the look and feel for the inside zoom time scale units.
Use the AllowInsideZoom property to specify whether the chart supports inside zoom units.
The inside zoom feature allows displaying portions of the chart with different time scale
units. For instance, you can display the bars on hours, while the chart still displays days.

The following screen shot shows the inside zoom units for June 23, that displays the hours,
while the rest of the chart displays only days.

The InsideZoomFormat object supports the following properties and methods:

Name Description

BackColor Retrieves or sets a value that indicates the inside level's
background color.

BackColorChart Retrieves or sets a value that indicates the chart level's
background color.

DisplayOwnerLabel Specifies whether the owner's label is shown for a time
scale unit.

DrawGridLines Specifies whether the grid lines are shown or hidden.
DrawTickLines Specifies whether the tick lines are shown or hidden.

ForeColor Retrieves or sets a value that indicates the inside level's
foreground color.

GridLineColor Specifies the grid line color for the inside level.

GridLineStyle specifies the style for the vertical gridlines when a time
scale unit is being zoomed.

InsideCount Counts the units in the inside level.

InsideLabel Retrieves or sets a value that indicates the format of the
inside level's label.

InsideUnit Retrieves or sets a value that indicates the unit of the
inside level.

OwnerLabel Retrieves or sets a value that indicates the format of the
original level's label.

PatternChart Specifies the pattern to show on the chart.
PatternColorChart Specifies the color of the pattern to show on the chart.

property InsideZoomFormat.BackColor as Color
Retrieves or sets a value that indicates the inside level's background color.

Type Description

Color

A Color expression that specifies the background color for
the time unit, being displayed in the chart's header (only if
it is not 0). The last 7 bits in the high significant byte of
the color indicates the identifier of the skin being used to
paint the header. Use the Add method to add new skins to
the control.

By default, the BackColor property is 0. The property has no effect if it is 0. The BackColor
property controls the background of the time scale unit being shown in the chart's header.
Use the DrawTickLines property to specify whether the tick lines splits the time units in the
chart's header. The BackColorChart property specifies the background color for the time
scale unit being shown in the chart area (not in the header). Use the SplitBaseLevel
property specifies whether the chart's base level gets divided when inside zoom are shown.
The ForeColor property specifies the unit's foreground color. The PatternChartColor
property determines the color to be used for pattern.

Use the BackColor property to change the visual appearance for a time unit, in the chart's
header as in the following screen shot (in red):

 or when using a skin object the time-scale unit may show as follows:

The following VB sample shows how can I change the background color for a time unit:

With G2antt1
 .BeginUpdate

 With .Chart
 .LevelCount = 2
 .FirstVisibleDate = #1/1/2008#
 .AllowInsideZoom = True
 .AllowResizeInsideZoom = False
 .InsideZoomOnDblClick = False
 .DefaultInsideZoomFormat.BackColor = 255
 With .InsideZooms
 .SplitBaseLevel = False
 .DefaultWidth = 18
 .Add(#1/4/2008#).AllowInsideFormat = False
 End With
 End With
 .EndUpdate
End With

The following VB.NET sample shows how can I change the background color for a time
unit:

With AxG2antt1
 .BeginUpdate
 With .Chart
 .LevelCount = 2
 .FirstVisibleDate = #1/1/2008#
 .AllowInsideZoom = True
 .AllowResizeInsideZoom = False
 .InsideZoomOnDblClick = False
 .DefaultInsideZoomFormat.BackColor = 255
 With .InsideZooms
 .SplitBaseLevel = False
 .DefaultWidth = 18
 .Add(#1/4/2008#).AllowInsideFormat = False
 End With
 End With
 .EndUpdate
End With

The following C++ sample shows how can I change the background color for a time unit:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->BeginUpdate();
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutLevelCount(2);
 var_Chart->PutFirstVisibleDate("1/1/2008");
 var_Chart->PutAllowInsideZoom(VARIANT_TRUE);
 var_Chart->PutAllowResizeInsideZoom(VARIANT_FALSE);
 var_Chart->PutInsideZoomOnDblClick(VARIANT_FALSE);
 var_Chart->GetDefaultInsideZoomFormat()->PutBackColor(255);
 EXG2ANTTLib::IInsideZoomsPtr var_InsideZooms = var_Chart->GetInsideZooms();
 var_InsideZooms->PutSplitBaseLevel(VARIANT_FALSE);
 var_InsideZooms->PutDefaultWidth(18);
 var_InsideZooms->Add("1/4/2008")->PutAllowInsideFormat(VARIANT_FALSE);
spG2antt1->EndUpdate();

The following C# sample shows how can I change the background color for a time unit:

axG2antt1.BeginUpdate();
EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;
 var_Chart.LevelCount = 2;
 var_Chart.FirstVisibleDate = "1/1/2008";
 var_Chart.AllowInsideZoom = true;
 var_Chart.AllowResizeInsideZoom = false;
 var_Chart.InsideZoomOnDblClick = false;
 var_Chart.DefaultInsideZoomFormat.BackColor = 255;
 EXG2ANTTLib.InsideZooms var_InsideZooms = var_Chart.InsideZooms;
 var_InsideZooms.SplitBaseLevel = false;
 var_InsideZooms.DefaultWidth = 18;
 var_InsideZooms.Add("1/4/2008").AllowInsideFormat = false;

axG2antt1.EndUpdate();

The following VFP sample shows how can I change the background color for a time unit:

with thisform.G2antt1
 .BeginUpdate
 with .Chart
 .LevelCount = 2
 .FirstVisibleDate = {^2008-1-1}
 .AllowInsideZoom = .T.
 .AllowResizeInsideZoom = .F.
 .InsideZoomOnDblClick = .F.
 .DefaultInsideZoomFormat.BackColor = 255
 with .InsideZooms
 .SplitBaseLevel = .F.
 .DefaultWidth = 18
 .Add({^2008-1-4}).AllowInsideFormat = .F.
 endwith
 endwith
 .EndUpdate
endwith

property InsideZoomFormat.BackColorChart as Color
Retrieves or sets a value that indicates the chart level's background color.

Type Description

Color
A Color expression that specifies the background color for
the time unit, being displayed in the chart area (only if it is
not 0).

By default, the BackColorChart property is 0. The property has no effect if it is 0. The
BackColorChart property controls the background of the time scale unit being shown in the
chart. Use the DrawGridLines property to specify whether the grid lines are shown in the
time unit in the chart area. The BackColor property controls the background of the time
scale unit being shown in the chart's header. The PatternChart property specifies the
pattern to show on the chart.

Use the BackColorChart property to change the visual appearance for a time unit, in the
chart as in the following screen shot (in red):

The following VB sample shows how can I change the background color for a time unit, in
the chart area:

With G2antt1
 .BeginUpdate
 With .Chart
 .LevelCount = 2
 .FirstVisibleDate = #1/1/2008#
 .AllowInsideZoom = True
 .AllowResizeInsideZoom = False
 .InsideZoomOnDblClick = False
 .DefaultInsideZoomFormat.BackColorChart = 255
 With .InsideZooms
 .SplitBaseLevel = False

 .DefaultWidth = 18
 .Add(#1/4/2008#).AllowInsideFormat = False
 End With
 End With
 .EndUpdate
End With

The following VB.NET sample shows how can I change the background color for a time
unit, in the chart area:

With AxG2antt1
 .BeginUpdate
 With .Chart
 .LevelCount = 2
 .FirstVisibleDate = #1/1/2008#
 .AllowInsideZoom = True
 .AllowResizeInsideZoom = False
 .InsideZoomOnDblClick = False
 .DefaultInsideZoomFormat.BackColorChart = 255
 With .InsideZooms
 .SplitBaseLevel = False
 .DefaultWidth = 18
 .Add(#1/4/2008#).AllowInsideFormat = False
 End With
 End With
 .EndUpdate
End With

The following C++ sample shows how can I change the background color for a time unit, in
the chart area:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/

EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->BeginUpdate();
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutLevelCount(2);
 var_Chart->PutFirstVisibleDate("1/1/2008");
 var_Chart->PutAllowInsideZoom(VARIANT_TRUE);
 var_Chart->PutAllowResizeInsideZoom(VARIANT_FALSE);
 var_Chart->PutInsideZoomOnDblClick(VARIANT_FALSE);
 var_Chart->GetDefaultInsideZoomFormat()->PutBackColorChart(255);
 EXG2ANTTLib::IInsideZoomsPtr var_InsideZooms = var_Chart->GetInsideZooms();
 var_InsideZooms->PutSplitBaseLevel(VARIANT_FALSE);
 var_InsideZooms->PutDefaultWidth(18);
 var_InsideZooms->Add("1/4/2008")->PutAllowInsideFormat(VARIANT_FALSE);
spG2antt1->EndUpdate();

The following C# sample shows how can I change the background color for a time unit, in
the chart area:

axG2antt1.BeginUpdate();
EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;
 var_Chart.LevelCount = 2;
 var_Chart.FirstVisibleDate = "1/1/2008";
 var_Chart.AllowInsideZoom = true;
 var_Chart.AllowResizeInsideZoom = false;
 var_Chart.InsideZoomOnDblClick = false;
 var_Chart.DefaultInsideZoomFormat.BackColorChart = 255;
 EXG2ANTTLib.InsideZooms var_InsideZooms = var_Chart.InsideZooms;
 var_InsideZooms.SplitBaseLevel = false;
 var_InsideZooms.DefaultWidth = 18;
 var_InsideZooms.Add("1/4/2008").AllowInsideFormat = false;
axG2antt1.EndUpdate();

The following VFP sample shows how can I change the background color for a time unit, in
the chart area:

with thisform.G2antt1
 .BeginUpdate

 with .Chart
 .LevelCount = 2
 .FirstVisibleDate = {^2008-1-1}
 .AllowInsideZoom = .T.
 .AllowResizeInsideZoom = .F.
 .InsideZoomOnDblClick = .F.
 .DefaultInsideZoomFormat.BackColorChart = 255
 with .InsideZooms
 .SplitBaseLevel = .F.
 .DefaultWidth = 18
 .Add({^2008-1-4}).AllowInsideFormat = .F.
 endwith
 endwith
 .EndUpdate
endwith

property InsideZoomFormat.DisplayOwnerLabel as Boolean
Specifies whether the owner's label is shown for a time scale unit.

Type Description

Boolean A boolean expression that specifies whether the owner
level is being displayed.

By default, the DisplayOwneLevel property is True. The OwnerLabel property indicates the
label being displayed in the time unit, once it gets magnified. Use the AllowInsideFormat
property to avoid displaying the inside units, and so the inside labels. The InsideLabel
property defines the label for inside units being displayed. Use the SplitBaseLevel property
specifies whether the chart's base level gets divided when inside zoom are shown.

The following screen shot shows the unit with DisplayOwnerLabel property is True (The
Jun 24 is getting displayed on the first line, while the second line displays hours):

while the next screen shot shows the unit with DisplayOwnerLabel property is False (The
Jun 24 is not displayed, and actually only hours are displayed):

property InsideZoomFormat.DrawGridLines as Boolean
Specifies whether the grid lines are shown or hidden.

Type Description

Boolean
A boolean expression that specifies whether the inside
zoom unit displays grid lines. The grid lines are shown only
in the chart area.

By default, the DrawGridLines property is True. The grid lines are shown in the chart area
only, if the DrawGridLines property is True and the DrawGridLines property of the Chart
object is not exNoLines or exHLines. Use the DrawTickLines property to specify whether
the tick lines are shown in the unit's header. The GridLineStyle property specifies the style
to shown the vertical gridlines inside the time-scale unit. The GridLineColor property
specifies the color for grid lines being shown in the chart area for specified unit. The
BackColorChart property specifies the unit's background color being shown in the chart (
not in the header).

The following screen shot shows the grid lines in red:

property InsideZoomFormat.DrawTickLines as Boolean
Specifies whether the tick lines are shown or hidden.

Type Description

Boolean
A boolean expression that specifies whether the time unit
displays tick lines that splits the inside zoom units. The tick
lines are shown only in the chart's header.

By default, the DrawTickLines property is True. The tick lines are shown only in the header
area, not in the chat area. Use the DrawGridLines property to specify whether the grid lines
are shown in the time unit in the chart area. The BackColor property controls the
background of the time scale unit being shown in the chart's header.

property InsideZoomFormat.ForeColor as Color
Retrieves or sets a value that indicates the inside level's foreground color.

Type Description

Color A Color expression that specifies the unit's foreground
color, if it is not 0.

By default, the ForeColor property is 0. If not zero, the ForeColor property indicates the
unit's foreground color. You are still able to define colors for inside or owner levels using the
<fgcolor> HTML tag in OwnerLabel or InsideLabel properties. The BackColor property
controls the background of the time scale unit being shown in the chart's header. Use the
SplitBaseLevel property specifies whether the chart's base level gets divided when inside
zoom are shown.

 The following screen shot shows a unit using a different foreground color:

The following sample shows the inside and owner levels using different colors (<fgcolor>
HTML tag):

The following VB sample shows how can I change the foreground color for a time unit:

With G2antt1
 .BeginUpdate

 With .Chart
 .LevelCount = 2
 .FirstVisibleDate = #1/1/2008#
 .AllowInsideZoom = True
 .AllowResizeInsideZoom = False
 .InsideZoomOnDblClick = False
 .DefaultInsideZoomFormat.ForeColor = 255
 With .InsideZooms
 .SplitBaseLevel = False
 .DefaultWidth = 18
 .Add(#1/4/2008#).AllowInsideFormat = False
 End With
 End With
 .EndUpdate
End With

The following VB.NET sample shows how can I change the foreground color for a time unit:

With AxG2antt1
 .BeginUpdate
 With .Chart
 .LevelCount = 2
 .FirstVisibleDate = #1/1/2008#
 .AllowInsideZoom = True
 .AllowResizeInsideZoom = False
 .InsideZoomOnDblClick = False
 .DefaultInsideZoomFormat.ForeColor = 255
 With .InsideZooms
 .SplitBaseLevel = False
 .DefaultWidth = 18
 .Add(#1/4/2008#).AllowInsideFormat = False
 End With
 End With
 .EndUpdate
End With

The following C++ sample shows how can I change the foreground color for a time unit:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->BeginUpdate();
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutLevelCount(2);
 var_Chart->PutFirstVisibleDate("1/1/2008");
 var_Chart->PutAllowInsideZoom(VARIANT_TRUE);
 var_Chart->PutAllowResizeInsideZoom(VARIANT_FALSE);
 var_Chart->PutInsideZoomOnDblClick(VARIANT_FALSE);
 var_Chart->GetDefaultInsideZoomFormat()->PutForeColor(255);
 EXG2ANTTLib::IInsideZoomsPtr var_InsideZooms = var_Chart->GetInsideZooms();
 var_InsideZooms->PutSplitBaseLevel(VARIANT_FALSE);
 var_InsideZooms->PutDefaultWidth(18);
 var_InsideZooms->Add("1/4/2008")->PutAllowInsideFormat(VARIANT_FALSE);
spG2antt1->EndUpdate();

The following C# sample shows how can I change the foreground color for a time unit:

axG2antt1.BeginUpdate();
EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;
 var_Chart.LevelCount = 2;
 var_Chart.FirstVisibleDate = "1/1/2008";
 var_Chart.AllowInsideZoom = true;
 var_Chart.AllowResizeInsideZoom = false;
 var_Chart.InsideZoomOnDblClick = false;
 var_Chart.DefaultInsideZoomFormat.ForeColor = 255;
 EXG2ANTTLib.InsideZooms var_InsideZooms = var_Chart.InsideZooms;
 var_InsideZooms.SplitBaseLevel = false;
 var_InsideZooms.DefaultWidth = 18;
 var_InsideZooms.Add("1/4/2008").AllowInsideFormat = false;

axG2antt1.EndUpdate();

The following VFP sample shows how can I change the foreground color for a time unit:

with thisform.G2antt1
 .BeginUpdate
 with .Chart
 .LevelCount = 2
 .FirstVisibleDate = {^2008-1-1}
 .AllowInsideZoom = .T.
 .AllowResizeInsideZoom = .F.
 .InsideZoomOnDblClick = .F.
 .DefaultInsideZoomFormat.ForeColor = 255
 with .InsideZooms
 .SplitBaseLevel = .F.
 .DefaultWidth = 18
 .Add({^2008-1-4}).AllowInsideFormat = .F.
 endwith
 endwith
 .EndUpdate
endwith

property InsideZoomFormat.GridLineColor as Color
Specifies the grid line color for the inside level.

Type Description
Color A Color expression that defines the unit's grid lines color.

Use the DrawGridLines property to show or hide the unit's grid lines. The grid lines are
shown in the chart area only, if the DrawGridLines property is True and the DrawGridLines
property of the Chart object is not exNoLines or exHLines. The GridLineStyle property
specifies the style to shown the vertical gridlines inside the time-scale unit. The
BackColorChart property specifies the unit's background color being shown in the chart (
not in the header).

The following screen shot shows the grid lines in red:

property InsideZoomFormat.GridLineStyle as GridLinesStyleEnum
specifies the style for the vertical gridlines when a time scale unit is being zoomed.

Type Description

GridLinesStyleEnum A GridLinesStyleEnum expression that specifies the style
to show the chart's vertical gridlines.

By default, the GridLineStyle property is exGridLinesDot4. The GridLineStyle property
indicates the style of vertical gridlines being shown in the inside time-unit. The GridLineStyle
property has effect only DrawGridLines property is True. The GridLineColor property
specifies the color for grid lines being shown in the chart area for specified unit. The
BackColorChart property specifies the unit's background color being shown in the chart (
not in the header). The BackColor property controls the background of the time scale unit
being shown in the chart's header.

property InsideZoomFormat.InsideCount as Long
Counts the units in the inside level.

Type Description

Long A long expression that specifies the number on inside units
being displayed at one time.

By default, the InsideCount property is 1. The InsideUnit property specifies the time scale
unit being used to paint the inside zoom units. The InsideLabel property defines the label
being displayed in the unit's header. For instance, if the InsideUnit is exHour, and
InsideCount property is 1, the inside level displays if possible, the level from hour to hour. If
the InsideCount property 4, the level displays the level from 4 hours in 4 hours. The
InsideLabel and InsideUnit properties define also the resizing unit while the user creates,
moves or resizes a bar. Use the ResizeUnitScale and ResizeUnitCount properties to specify
the resizing unit in the chart.

The following screen shot shows the hours being displayed from 8 to 8 hours:

The following VB sample shows how can I zoom or magnify the selected date to display the
hours, from 8 to 8:

With G2antt1
 .BeginUpdate
 With .Chart
 .PaneWidth(0) = 0
 .LevelCount = 2
 .FirstVisibleDate = #1/1/2008#
 .AllowInsideZoom = True
 With .DefaultInsideZoomFormat
 .InsideLabel = "H: <%hh%>"
 .InsideUnit = exHour

 .InsideCount = 8
 End With
 With .InsideZooms
 .Add #1/4/2008#
 End With
 End With
 .EndUpdate
End With

The following VB.NET sample shows how can I zoom or magnify the selected date to
display the hours, from 8 to 8:

With AxG2antt1
 .BeginUpdate
 With .Chart
 .PaneWidth(0) = 0
 .LevelCount = 2
 .FirstVisibleDate = #1/1/2008#
 .AllowInsideZoom = True
 With .DefaultInsideZoomFormat
 .InsideLabel = "H: <%hh%>"
 .InsideUnit = EXG2ANTTLib.UnitEnum.exHour
 .InsideCount = 8
 End With
 With .InsideZooms
 .Add #1/4/2008#
 End With
 End With
 .EndUpdate
End With

The following C++ sample shows how can I zoom or magnify the selected date to display
the hours, from 8 to 8:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->BeginUpdate();
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutPaneWidth(0,0);
 var_Chart->PutLevelCount(2);
 var_Chart->PutFirstVisibleDate("1/1/2008");
 var_Chart->PutAllowInsideZoom(VARIANT_TRUE);
 EXG2ANTTLib::IInsideZoomFormatPtr var_InsideZoomFormat = var_Chart-
>GetDefaultInsideZoomFormat();
 var_InsideZoomFormat->PutInsideLabel(L"H: <%hh%>");
 var_InsideZoomFormat->PutInsideUnit(EXG2ANTTLib::exHour);
 var_InsideZoomFormat->PutInsideCount(8);
 EXG2ANTTLib::IInsideZoomsPtr var_InsideZooms = var_Chart->GetInsideZooms();
 var_InsideZooms->Add("1/4/2008");
spG2antt1->EndUpdate();

The following C# sample shows how can I zoom or magnify the selected date to display the
hours, from 8 to 8:

axG2antt1.BeginUpdate();
EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;
 var_Chart.set_PaneWidth(0 != 0,0);
 var_Chart.LevelCount = 2;
 var_Chart.FirstVisibleDate = "1/1/2008";
 var_Chart.AllowInsideZoom = true;
 EXG2ANTTLib.InsideZoomFormat var_InsideZoomFormat =
var_Chart.DefaultInsideZoomFormat;
 var_InsideZoomFormat.InsideLabel = "H: <%hh%>";
 var_InsideZoomFormat.InsideUnit = EXG2ANTTLib.UnitEnum.exHour;
 var_InsideZoomFormat.InsideCount = 8;
 EXG2ANTTLib.InsideZooms var_InsideZooms = var_Chart.InsideZooms;
 var_InsideZooms.Add("1/4/2008");
axG2antt1.EndUpdate();

The following VFP sample shows how can I zoom or magnify the selected date to display
the hours, from 8 to 8:

with thisform.G2antt1
 .BeginUpdate
 with .Chart
 .PaneWidth(0) = 0
 .LevelCount = 2
 .FirstVisibleDate = {^2008-1-1}
 .AllowInsideZoom = .T.
 with .DefaultInsideZoomFormat
 .InsideLabel = "H: <%hh%>"
 .InsideUnit = 65536
 .InsideCount = 8
 endwith
 with .InsideZooms
 .Add({^2008-1-4})
 endwith
 endwith
 .EndUpdate
endwith

property InsideZoomFormat.InsideLabel as String
Retrieves or sets a value that indicates the format of the inside level's label.

Type Description

String
A String expression that specifies the label being displayed
for inside zoom units. It supports built-in HTML format as
well.

By default, the InsideLabel property is "<%hh%>", that shows the hours in 2 digits. The
AllowInsideFormat property indicates whether the inside label is being displayed or not. The
InsideUnit property specifies the time scale unit being used to paint the inside zoom units.
The InsideCount property specifies the number on inside units being displayed at one time.
Even if the InsideLabel property is empty, the inside level may display the tick lines, or the
grid lines.

The following screen shows the inside units (hours) in bold (InsideLabel property is "
<%hh%>"):

The InsideLabel property supports the following:

<%d%> - Day of the month in one or two numeric digits, as needed (1 to 31).
<%dd%> - Day of the month in two numeric digits (01 to 31).
<%d1%> - First letter of the weekday (S to S). (Use the WeekDays property to
specify the name of the days in the week)
<%loc_d1%> - Indicates day of week as a one-letter abbreviation using the current
user settings.
<%d2%> - First two letters of the weekday (Su to Sa). (Use the WeekDays property
to specify the name of the days in the week)
<%loc_d2%> - Indicates day of week as a two-letters abbreviation using the current
user settings.
<%d3%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week)
<%loc_d3%> equivalent with <%loc_ddd%>
<%ddd%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week). You can use the

<%loc_ddd%> that indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%loc_ddd%> - Indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%dddd%> - Full name of the weekday (Sunday to Saturday). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_dddd%> that indicates day of week as its full name using the current user
regional and language settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
regional and language settings.
<%i%> - Displays the number instead the date. For instance, you can display numbers
as 1000, 1001, 1002, 1003, instead dates. (the valid range is from -647,434 to
2,958,465)
<%w%> - Day of the week (1 to 7).
<%ww%> - Week of the year (1 to 53).
<%m%> - Month of the year in one or two numeric digits, as needed (1 to 12).
<%mr%> - Month of the year in Roman numerals, as needed (I to XII).
<%mm%> - Month of the year in two numeric digits (01 to 12).
<%m1%> - First letter of the month (J to D). (Use the MonthNames property to
specify the name of the months in the year)
<%loc_m1%> - Indicates month as a one-letter abbreviation using the current user
settings.
<%m2%> - First two letters of the month (Ja to De). (Use the MonthNames property
to specify the name of the months in the year)
<%loc_m2%> - Indicates month as a two-letters abbreviation using the current user
settings.
<%m3%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year)
<%loc_m3%> - equivalent with <%loc_mmm%>
<%mmm%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year). You can use the
<%loc_mmm%> that indicates month as a three-letter abbreviation using the current
user regional and language settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
regional and language settings.
<%mmmm%> - Full name of the month (January to December). (Use the
MonthNames property to specify the name of the months in the year). You can use the
<%loc_mmmm%> that indicates month as its full name using the current user regional
and language settings.
<%loc_mmmm%> - Indicates month as its full name using the current user regional
and language settings.
<%q%> - Date displayed as the quarter of the year (1 to 4).

<%y%> - Number of the day of the year (1 to 366).
<%yy%> - Last two digits of the year (01 to 99).
<%yyyy%> - Full year (0100 to 9999).
<%hy%> - Date displayed as the half of the year (1 to 2).
<%loc_gg%> - Indicates period/era using the current user regional and language
settings.
<%loc_sdate%> - Indicates the date in the short format using the current user regional
and language settings.
<%loc_ldate%> - Indicates the date in the long format using the current user regional
and language settings.
<%loc_dsep%> - Indicates the date separator using the current user regional and
language settings (/).
<%h%> - Hour in one or two digits, as needed (0 to 23).
<%hh%> - Hour in two digits (00 to 23).
<%h12%> - Hour in 12-hour time format, in one or two digits - [0(12),11]
<%hh12%> - hour in 12-hour time format, in two digits - [00(12),11]
<%n%> - Minute in one or two digits, as needed (0 to 59).
<%nn%> - Minute in two digits (00 to 59).
<%s%> - Second in one or two digits, as needed (0 to 59).
<%ss%> - Second in two digits (00 to 59).
<%AM/PM%> - Twelve-hour clock with the uppercase letters "AM" or "PM", as
appropriate. (Use the AMPM property to specify the name of the AM and PM
indicators). You can use the <%loc_AM/PM%> that indicates the time marker such as
AM or PM using the current user regional and language settings. You can use
<%loc_A/P%> that indicates the one character time marker such as A or P using the
current user regional and language settings
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user regional and language settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user regional and language settings.
<%loc_time%> - Indicates the time using the current user regional and language
settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user regional and language settings.
<%loc_tsep%> - indicates the time separator using the current user regional and
language settings (:)
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"

pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed

The following tags are displayed based on the user's Regional and Language Options:

<%loc_sdate%> - Indicates the date in the short format using the current user
settings.
<%loc_ldate%> - Indicates the date in the long format using the current user settings.
<%loc_d1%> - Indicates day of week as a one-letter abbreviation using the current
user settings.
<%loc_d2%> - Indicates day of week as a two-letters abbreviation using the current
user settings.
<%loc_d3%> equivalent with <%loc_ddd%>
<%loc_ddd%> - Indicates day of week as a three-letters abbreviation using the
current user settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
settings.
<%loc_m1%> - Indicates month as a one-letter abbreviation using the current user
settings.
<%loc_m2%> - Indicates month as a two-letters abbreviation using the current user
settings.
<%loc_m3%> - equivalent with <%loc_mmm%>
<%loc_mmm%> - Indicates month as a three-letters abbreviation using the current
user settings.
<%loc_mmmm%> - Indicates month as its full name using the current user settings.
<%loc_gg%> - Indicates period/era using the current user settings.
<%loc_dsep%> - Indicates the date separator using the current user settings.
<%loc_time%> - Indicates the time using the current user settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user settings.
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user settings.
<%loc_tsep%> - Indicates the time separator using the current user settings
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.

<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed

The InsideLabel property supports:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or

about:blank

different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset

parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property InsideZoomFormat.InsideUnit as UnitEnum
Retrieves or sets a value that indicates the unit of the inside level.

Type Description

UnitEnum A UnitEnum expression that specifies the time scale unit
being used to display the inside units.

By default, the InsideUnit property is exHour. Use the InsideUnit property to change the
inside zoom scale once the user magnify a time in the chart's base level. The InsideCount
property specifies the number on inside units being displayed at one time. The InsideLabel
property defines the label being displayed in the unit's header. For instance, if the InsideUnit
is exHour, and InsideCount property is 1, the inside level displays if possible, the level from
hour to hour. If the InsideCount property 4, the level displays the level from 4 hours in 4
hours. The InsideLabel and InsideUnit properties define also the resizing unit while the user
creates, moves or resizes a bar. Use the ResizeUnitScale and ResizeUnitCount properties
to specify the resizing unit in the chart.

The following screen shot splits the time scale chart, and displays different sections using
different time scale units (the chart displays months, the January displays weeks, while the
March displays days):

The following screen shot shows the chart displays week numbers:

The following screen shot shows the week days once a week gets expanded/magnified (
the chart displays weeks):

The following VB sample shows how can I change the scale unit when doing inside zoom (
the chart displays weeks, and we want week days):

With G2antt1
 .BeginUpdate
 With .Chart
 .ShowNonworkingDates = False
 .PaneWidth(0) = 0
 .LevelCount = 2
 With .Level(0)
 .Label = "<%mmmm%>"
 .Unit = exMonth
 End With
 With .Level(1)
 .Label = "<%ww%>"
 .Unit = exWeek
 End With
 .FirstVisibleDate = #1/1/2008#
 .AllowInsideZoom = True
 With .DefaultInsideZoomFormat
 .OwnerLabel = "<%mmm%> Week: <%ww%>"
 .InsideLabel = "<%d1%>"
 .InsideUnit = exDay
 End With
 With .InsideZooms
 .SplitBaseLevel = False
 .Add #2/3/2008#
 End With
 End With
 .EndUpdate
End With

The following VB.NET sample shows how can I change the scale unit when doing inside
zoom (the chart displays weeks, and we want week days):

With AxG2antt1
 .BeginUpdate
 With .Chart
 .ShowNonworkingDates = False
 .PaneWidth(0) = 0
 .LevelCount = 2
 With .Level(0)
 .Label = "<%mmmm%>"
 .Unit = EXG2ANTTLib.UnitEnum.exMonth
 End With
 With .Level(1)
 .Label = "<%ww%>"
 .Unit = EXG2ANTTLib.UnitEnum.exWeek
 End With
 .FirstVisibleDate = #1/1/2008#
 .AllowInsideZoom = True
 With .DefaultInsideZoomFormat
 .OwnerLabel = "<%mmm%> Week: <%ww%>"
 .InsideLabel = "<%d1%>"
 .InsideUnit = EXG2ANTTLib.UnitEnum.exDay
 End With
 With .InsideZooms
 .SplitBaseLevel = False
 .Add #2/3/2008#
 End With
 End With
 .EndUpdate
End With

The following C++ sample shows how can I change the scale unit when doing inside zoom (
the chart displays weeks, and we want week days):

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->BeginUpdate();
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutShowNonworkingDates(VARIANT_FALSE);
 var_Chart->PutPaneWidth(0,0);
 var_Chart->PutLevelCount(2);
 EXG2ANTTLib::ILevelPtr var_Level = var_Chart->GetLevel(0);
 var_Level->PutLabel("<%mmmm%>");
 var_Level->PutUnit(EXG2ANTTLib::exMonth);
 EXG2ANTTLib::ILevelPtr var_Level1 = var_Chart->GetLevel(1);
 var_Level1->PutLabel("<%ww%>");
 var_Level1->PutUnit(EXG2ANTTLib::exWeek);
 var_Chart->PutFirstVisibleDate("1/1/2008");
 var_Chart->PutAllowInsideZoom(VARIANT_TRUE);
 EXG2ANTTLib::IInsideZoomFormatPtr var_InsideZoomFormat = var_Chart-
>GetDefaultInsideZoomFormat();
 var_InsideZoomFormat->PutOwnerLabel(L"<%mmm%> Week: <%ww%>");
 var_InsideZoomFormat->PutInsideLabel(L"<%d1%>");
 var_InsideZoomFormat->PutInsideUnit(EXG2ANTTLib::exDay);
 EXG2ANTTLib::IInsideZoomsPtr var_InsideZooms = var_Chart->GetInsideZooms();
 var_InsideZooms->PutSplitBaseLevel(VARIANT_FALSE);
 var_InsideZooms->Add("2/3/2008");
spG2antt1->EndUpdate();

The following C# sample shows how can I change the scale unit when doing inside zoom (
the chart displays weeks, and we want week days):

axG2antt1.BeginUpdate();
EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;
 var_Chart.ShowNonworkingDates = false;
 var_Chart.set_PaneWidth(0 != 0,0);
 var_Chart.LevelCount = 2;
 EXG2ANTTLib.Level var_Level = var_Chart.get_Level(0);

 var_Level.Label = "<%mmmm%>";
 var_Level.Unit = EXG2ANTTLib.UnitEnum.exMonth;
 EXG2ANTTLib.Level var_Level1 = var_Chart.get_Level(1);
 var_Level1.Label = "<%ww%>";
 var_Level1.Unit = EXG2ANTTLib.UnitEnum.exWeek;
 var_Chart.FirstVisibleDate = "1/1/2008";
 var_Chart.AllowInsideZoom = true;
 EXG2ANTTLib.InsideZoomFormat var_InsideZoomFormat =
var_Chart.DefaultInsideZoomFormat;
 var_InsideZoomFormat.OwnerLabel = "<%mmm%> Week: <%ww%>";
 var_InsideZoomFormat.InsideLabel = "<%d1%>";
 var_InsideZoomFormat.InsideUnit = EXG2ANTTLib.UnitEnum.exDay;
 EXG2ANTTLib.InsideZooms var_InsideZooms = var_Chart.InsideZooms;
 var_InsideZooms.SplitBaseLevel = false;
 var_InsideZooms.Add("2/3/2008");
axG2antt1.EndUpdate();

The following VFP sample shows how can I change the scale unit when doing inside zoom (
the chart displays weeks, and we want week days):

with thisform.G2antt1
 .BeginUpdate
 with .Chart
 .ShowNonworkingDates = .F.
 .PaneWidth(0) = 0
 .LevelCount = 2
 with .Level(0)
 .Label = "<%mmmm%>"
 .Unit = 16
 endwith
 with .Level(1)
 .Label = "<%ww%>"
 .Unit = 256
 endwith
 .FirstVisibleDate = {^2008-1-1}
 .AllowInsideZoom = .T.
 with .DefaultInsideZoomFormat
 .OwnerLabel = "<%mmm%> Week: <%ww%>"

 .InsideLabel = "<%d1%>"
 .InsideUnit = 4096
 endwith
 with .InsideZooms
 .SplitBaseLevel = .F.
 .Add({^2008-2-3})
 endwith
 endwith
 .EndUpdate
endwith

property InsideZoomFormat.OwnerLabel as String
Retrieves or sets a value that indicates the format of the original level's label.

Type Description

String
A String expression that specifies the label being displayed
by the original level. It supports built-in HTML format as
well.

By default, the OwnerLabel property is "", ie the Label property is used instead, so the
original format is used to paint the owner of the inside zoom level. The OwnerLabel
property indicates the label being displayed in the time unit, once it gets magnified. The
DisplayOwnerLabel property specifies whether the owner's label is shown for a time scale
unit. The InsideLabel property defines the label for inside units being displayed. Use the
SplitBaseLevel property specifies whether the chart's base level gets divided when inside
zoom are shown.

The following sample shows the owner level in bold and red color: (OwnerLevel property
is "<fgcolor=FF0000><%mmm%> <%d%></fgcolor>")

The OwnerLabel property supports the following:

<%d%> - Day of the month in one or two numeric digits, as needed (1 to 31).
<%dd%> - Day of the month in two numeric digits (01 to 31).
<%d1%> - First letter of the weekday (S to S). (Use the WeekDays property to
specify the name of the days in the week)
<%loc_d1%> - Indicates day of week as a one-letter abbreviation using the current
user settings.
<%d2%> - First two letters of the weekday (Su to Sa). (Use the WeekDays property
to specify the name of the days in the week)
<%loc_d2%> - Indicates day of week as a two-letters abbreviation using the current
user settings.
<%d3%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week)
<%loc_d3%> equivalent with <%loc_ddd%>
<%ddd%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays

property to specify the name of the days in the week). You can use the
<%loc_ddd%> that indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%loc_ddd%> - Indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%dddd%> - Full name of the weekday (Sunday to Saturday). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_dddd%> that indicates day of week as its full name using the current user
regional and language settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
regional and language settings.
<%i%> - Displays the number instead the date. For instance, you can display numbers
as 1000, 1001, 1002, 1003, instead dates. (the valid range is from -647,434 to
2,958,465)
<%w%> - Day of the week (1 to 7).
<%ww%> - Week of the year (1 to 53).
<%m%> - Month of the year in one or two numeric digits, as needed (1 to 12).
<%mr%> - Month of the year in Roman numerals, as needed (I to XII).
<%mm%> - Month of the year in two numeric digits (01 to 12).
<%m1%> - First letter of the month (J to D). (Use the MonthNames property to
specify the name of the months in the year)
<%loc_m1%> - Indicates month as a one-letter abbreviation using the current user
settings.
<%m2%> - First two letters of the month (Ja to De). (Use the MonthNames property
to specify the name of the months in the year)
<%loc_m2%> - Indicates month as a two-letters abbreviation using the current user
settings.
<%m3%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year)
<%loc_m3%> - equivalent with <%loc_mmm%>
<%mmm%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year). You can use the
<%loc_mmm%> that indicates month as a three-letter abbreviation using the current
user regional and language settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
regional and language settings.
<%mmmm%> - Full name of the month (January to December). (Use the
MonthNames property to specify the name of the months in the year). You can use the
<%loc_mmmm%> that indicates month as its full name using the current user regional
and language settings.
<%loc_mmmm%> - Indicates month as its full name using the current user regional
and language settings.

<%q%> - Date displayed as the quarter of the year (1 to 4).
<%y%> - Number of the day of the year (1 to 366).
<%yy%> - Last two digits of the year (01 to 99).
<%yyyy%> - Full year (0100 to 9999).
<%hy%> - Date displayed as the half of the year (1 to 2).
<%loc_gg%> - Indicates period/era using the current user regional and language
settings.
<%loc_sdate%> - Indicates the date in the short format using the current user regional
and language settings.
<%loc_ldate%> - Indicates the date in the long format using the current user regional
and language settings.
<%loc_dsep%> - Indicates the date separator using the current user regional and
language settings (/).
<%h%> - Hour in one or two digits, as needed (0 to 23).
<%hh%> - Hour in two digits (00 to 23).
<%h12%> - Hour in 12-hour time format, in one or two digits - [0(12),11]
<%hh12%> - hour in 12-hour time format, in two digits - [00(12),11]
<%n%> - Minute in one or two digits, as needed (0 to 59).
<%nn%> - Minute in two digits (00 to 59).
<%s%> - Second in one or two digits, as needed (0 to 59).
<%ss%> - Second in two digits (00 to 59).
<%AM/PM%> - Twelve-hour clock with the uppercase letters "AM" or "PM", as
appropriate. (Use the AMPM property to specify the name of the AM and PM
indicators). You can use the <%loc_AM/PM%> that indicates the time marker such as
AM or PM using the current user regional and language settings. You can use
<%loc_A/P%> that indicates the one character time marker such as A or P using the
current user regional and language settings
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user regional and language settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user regional and language settings.
<%loc_time%> - Indicates the time using the current user regional and language
settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user regional and language settings.
<%loc_tsep%> - indicates the time separator using the current user regional and
language settings (:)
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the

calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed

The following tags are displayed based on the user's Regional and Language Options:

<%loc_sdate%> - Indicates the date in the short format using the current user
settings.
<%loc_ldate%> - Indicates the date in the long format using the current user settings.
<%loc_d1%> - Indicates day of week as a one-letter abbreviation using the current
user settings.
<%loc_d2%> - Indicates day of week as a two-letters abbreviation using the current
user settings.
<%loc_d3%> equivalent with <%loc_ddd%>
<%loc_ddd%> - Indicates day of week as a three-letters abbreviation using the
current user settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
settings.
<%loc_m1%> - Indicates month as a one-letter abbreviation using the current user
settings.
<%loc_m2%> - Indicates month as a two-letters abbreviation using the current user
settings.
<%loc_m3%> - equivalent with <%loc_mmm%>
<%loc_mmm%> - Indicates month as a three-letters abbreviation using the current
user settings.
<%loc_mmmm%> - Indicates month as its full name using the current user settings.
<%loc_gg%> - Indicates period/era using the current user settings.
<%loc_dsep%> - Indicates the date separator using the current user settings.
<%loc_time%> - Indicates the time using the current user settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user settings.
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user settings.
<%loc_tsep%> - Indicates the time separator using the current user settings
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional

settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed

The OwnerLabel property supports:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

about:blank

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold

<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

The following VB sample shows how can I change the label for a specified unit:

With G2antt1
 .BeginUpdate
 With .Chart
 .PaneWidth(0) = 0
 .LevelCount = 2
 .FirstVisibleDate = #1/1/2008#
 .AllowInsideZoom = True
 .AllowResizeInsideZoom = False
 .InsideZoomOnDblClick = False
 .DefaultInsideZoomFormat.OwnerLabel = "<%d%> <%d2%>"
 With .InsideZooms
 .SplitBaseLevel = False
 .DefaultWidth = 32
 .Add(#1/4/2008#).AllowInsideFormat = False
 End With
 End With
 .EndUpdate
End With

The following VB.NET sample shows how can I change the label for a specified unit:

With AxG2antt1
 .BeginUpdate
 With .Chart
 .PaneWidth(0) = 0
 .LevelCount = 2
 .FirstVisibleDate = #1/1/2008#
 .AllowInsideZoom = True
 .AllowResizeInsideZoom = False
 .InsideZoomOnDblClick = False
 .DefaultInsideZoomFormat.OwnerLabel = "<%d%> <%d2%>"
 With .InsideZooms
 .SplitBaseLevel = False
 .DefaultWidth = 32
 .Add(#1/4/2008#).AllowInsideFormat = False
 End With

 End With
 .EndUpdate
End With

The following C++ sample shows how can I change the label for a specified unit:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->BeginUpdate();
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutPaneWidth(0,0);
 var_Chart->PutLevelCount(2);
 var_Chart->PutFirstVisibleDate("1/1/2008");
 var_Chart->PutAllowInsideZoom(VARIANT_TRUE);
 var_Chart->PutAllowResizeInsideZoom(VARIANT_FALSE);
 var_Chart->PutInsideZoomOnDblClick(VARIANT_FALSE);
 var_Chart->GetDefaultInsideZoomFormat()->PutOwnerLabel(L"<%d%>
<%d2%>");
 EXG2ANTTLib::IInsideZoomsPtr var_InsideZooms = var_Chart->GetInsideZooms();
 var_InsideZooms->PutSplitBaseLevel(VARIANT_FALSE);
 var_InsideZooms->PutDefaultWidth(32);
 var_InsideZooms->Add("1/4/2008")->PutAllowInsideFormat(VARIANT_FALSE);
spG2antt1->EndUpdate();

The following C# sample shows how can I change the label for a specified unit:

axG2antt1.BeginUpdate();
EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;
 var_Chart.set_PaneWidth(0 != 0,0);
 var_Chart.LevelCount = 2;
 var_Chart.FirstVisibleDate = "1/1/2008";

 var_Chart.AllowInsideZoom = true;
 var_Chart.AllowResizeInsideZoom = false;
 var_Chart.InsideZoomOnDblClick = false;
 var_Chart.DefaultInsideZoomFormat.OwnerLabel = "<%d%> <%d2%>";
 EXG2ANTTLib.InsideZooms var_InsideZooms = var_Chart.InsideZooms;
 var_InsideZooms.SplitBaseLevel = false;
 var_InsideZooms.DefaultWidth = 32;
 var_InsideZooms.Add("1/4/2008").AllowInsideFormat = false;
axG2antt1.EndUpdate();

The following VFP sample shows how can I change the label for a specified unit:

with thisform.G2antt1
 .BeginUpdate
 with .Chart
 .PaneWidth(0) = 0
 .LevelCount = 2
 .FirstVisibleDate = {^2008-1-1}
 .AllowInsideZoom = .T.
 .AllowResizeInsideZoom = .F.
 .InsideZoomOnDblClick = .F.
 .DefaultInsideZoomFormat.OwnerLabel = "<%d%> <%d2%>"
 with .InsideZooms
 .SplitBaseLevel = .F.
 .DefaultWidth = 32
 .Add({^2008-1-4}).AllowInsideFormat = .F.
 endwith
 endwith
 .EndUpdate
endwith

property InsideZoomFormat.PatternChart as PatternEnum
Specifies the pattern to show on the chart.

Type Description

PatternEnum A PatternEnum expression that specifies the pattern to
show on the specified time, on the chart area.

By default, the PatternChart property is exPatternEmpty. The PatternChartColor property
determines the color to be used for pattern. The BackColorChart property determines the
unit's background color. The BackColor property controls the background of the time scale
unit being shown in the chart's header.

The following VB sample changes the pattern for a specified unit, in the chart area:

With G2antt1
 .BeginUpdate
 With .Chart
 .PaneWidth(False) = 0
 .LevelCount = 2
 .FirstVisibleDate = #1/1/2008#
 .AllowInsideZoom = True
 .AllowResizeInsideZoom = False
 .InsideZoomOnDblClick = False
 With .DefaultInsideZoomFormat
 .PatternChart = exPatternBDiagonal
 .PatternColorChart = RGB(255,0,0)
 End With
 With .InsideZooms
 .SplitBaseLevel = False
 .DefaultWidth = 18
 .Add(#1/4/2008#).AllowInsideFormat = False
 End With
 End With
 .EndUpdate
End With

The following VB.NET sample changes the pattern for a specified unit, in the chart area:

With AxG2antt1

 .BeginUpdate
 With .Chart
 .PaneWidth(False) = 0
 .LevelCount = 2
 .FirstVisibleDate = #1/1/2008#
 .AllowInsideZoom = True
 .AllowResizeInsideZoom = False
 .InsideZoomOnDblClick = False
 With .DefaultInsideZoomFormat
 .PatternChart = EXG2ANTTLib.PatternEnum.exPatternBDiagonal
 .PatternColorChart = 255
 End With
 With .InsideZooms
 .SplitBaseLevel = False
 .DefaultWidth = 18
 .Add(#1/4/2008#).AllowInsideFormat = False
 End With
 End With
 .EndUpdate
End With

The following C++ sample changes the pattern for a specified unit, in the chart area:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->BeginUpdate();
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutPaneWidth(VARIANT_FALSE,0);
 var_Chart->PutLevelCount(2);
 var_Chart->PutFirstVisibleDate("1/1/2008");

 var_Chart->PutAllowInsideZoom(VARIANT_TRUE);
 var_Chart->PutAllowResizeInsideZoom(VARIANT_FALSE);
 var_Chart->PutInsideZoomOnDblClick(VARIANT_FALSE);
 EXG2ANTTLib::IInsideZoomFormatPtr var_InsideZoomFormat = var_Chart-
>GetDefaultInsideZoomFormat();
 var_InsideZoomFormat->PutPatternChart(EXG2ANTTLib::exPatternBDiagonal);
 var_InsideZoomFormat->PutPatternColorChart(RGB(255,0,0));
 EXG2ANTTLib::IInsideZoomsPtr var_InsideZooms = var_Chart->GetInsideZooms();
 var_InsideZooms->PutSplitBaseLevel(VARIANT_FALSE);
 var_InsideZooms->PutDefaultWidth(18);
 var_InsideZooms->Add("1/4/2008")->PutAllowInsideFormat(VARIANT_FALSE);
spG2antt1->EndUpdate();

The following C# sample changes the pattern for a specified unit, in the chart area:

axG2antt1.BeginUpdate();
EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;
 var_Chart.set_PaneWidth(false,0);
 var_Chart.LevelCount = 2;
 var_Chart.FirstVisibleDate = "1/1/2008";
 var_Chart.AllowInsideZoom = true;
 var_Chart.AllowResizeInsideZoom = false;
 var_Chart.InsideZoomOnDblClick = false;
 EXG2ANTTLib.InsideZoomFormat var_InsideZoomFormat =
var_Chart.DefaultInsideZoomFormat;
 var_InsideZoomFormat.PatternChart =
EXG2ANTTLib.PatternEnum.exPatternBDiagonal;
 var_InsideZoomFormat.PatternColorChart = 255;
 EXG2ANTTLib.InsideZooms var_InsideZooms = var_Chart.InsideZooms;
 var_InsideZooms.SplitBaseLevel = false;
 var_InsideZooms.DefaultWidth = 18;
 var_InsideZooms.Add("1/4/2008").AllowInsideFormat = false;
axG2antt1.EndUpdate();

The following VFP sample changes the pattern for a specified unit, in the chart area:

with thisform.G2antt1
 .BeginUpdate

 with .Chart
 .PaneWidth(.F.) = 0
 .LevelCount = 2
 .FirstVisibleDate = {^2008-1-1}
 .AllowInsideZoom = .T.
 .AllowResizeInsideZoom = .F.
 .InsideZoomOnDblClick = .F.
 with .DefaultInsideZoomFormat
 .PatternChart = 6
 .PatternColorChart = RGB(255,0,0)
 endwith
 with .InsideZooms
 .SplitBaseLevel = .F.
 .DefaultWidth = 18
 .Add({^2008-1-4}).AllowInsideFormat = .F.
 endwith
 endwith
 .EndUpdate
endwith

The following Delphi sample changes the pattern for a specified unit, in the chart area:

with AxG2antt1 do
begin
 BeginUpdate();
 with Chart do
 begin
 PaneWidth[False] := 0;
 LevelCount := 2;
 FirstVisibleDate := '1/1/2008';
 AllowInsideZoom := True;
 AllowResizeInsideZoom := False;
 InsideZoomOnDblClick := False;
 with DefaultInsideZoomFormat do
 begin
 PatternChart := EXG2ANTTLib.PatternEnum.exPatternBDiagonal;
 PatternColorChart := 255;

 end;
 with InsideZooms do
 begin
 SplitBaseLevel := False;
 DefaultWidth := 18;
 Add('1/4/2008').AllowInsideFormat := False;
 end;
 end;
 EndUpdate();
end

property InsideZoomFormat.PatternColorChart as Color
Specifies the color of the pattern to show on the chart.

Type Description

Color A Color expression that specifies the color to show the
pattern within the chart area.

By default, the PatternColorChart property is black (0). The PatternChart property specifies
the pattern to show on the chart. The BackColorChart property determines the unit's
background color. The BackColor property controls the background of the time scale unit
being shown in the chart's header.

The following VB sample changes the pattern for a specified unit, in the chart area:

With G2antt1
 .BeginUpdate
 With .Chart
 .PaneWidth(False) = 0
 .LevelCount = 2
 .FirstVisibleDate = #1/1/2008#
 .AllowInsideZoom = True
 .AllowResizeInsideZoom = False
 .InsideZoomOnDblClick = False
 With .DefaultInsideZoomFormat
 .PatternChart = exPatternBDiagonal
 .PatternColorChart = RGB(255,0,0)
 End With
 With .InsideZooms
 .SplitBaseLevel = False
 .DefaultWidth = 18
 .Add(#1/4/2008#).AllowInsideFormat = False
 End With
 End With
 .EndUpdate
End With

The following VB.NET sample changes the pattern for a specified unit, in the chart area:

With AxG2antt1

 .BeginUpdate
 With .Chart
 .PaneWidth(False) = 0
 .LevelCount = 2
 .FirstVisibleDate = #1/1/2008#
 .AllowInsideZoom = True
 .AllowResizeInsideZoom = False
 .InsideZoomOnDblClick = False
 With .DefaultInsideZoomFormat
 .PatternChart = EXG2ANTTLib.PatternEnum.exPatternBDiagonal
 .PatternColorChart = 255
 End With
 With .InsideZooms
 .SplitBaseLevel = False
 .DefaultWidth = 18
 .Add(#1/4/2008#).AllowInsideFormat = False
 End With
 End With
 .EndUpdate
End With

The following C++ sample changes the pattern for a specified unit, in the chart area:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->BeginUpdate();
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutPaneWidth(VARIANT_FALSE,0);
 var_Chart->PutLevelCount(2);
 var_Chart->PutFirstVisibleDate("1/1/2008");

 var_Chart->PutAllowInsideZoom(VARIANT_TRUE);
 var_Chart->PutAllowResizeInsideZoom(VARIANT_FALSE);
 var_Chart->PutInsideZoomOnDblClick(VARIANT_FALSE);
 EXG2ANTTLib::IInsideZoomFormatPtr var_InsideZoomFormat = var_Chart-
>GetDefaultInsideZoomFormat();
 var_InsideZoomFormat->PutPatternChart(EXG2ANTTLib::exPatternBDiagonal);
 var_InsideZoomFormat->PutPatternColorChart(RGB(255,0,0));
 EXG2ANTTLib::IInsideZoomsPtr var_InsideZooms = var_Chart->GetInsideZooms();
 var_InsideZooms->PutSplitBaseLevel(VARIANT_FALSE);
 var_InsideZooms->PutDefaultWidth(18);
 var_InsideZooms->Add("1/4/2008")->PutAllowInsideFormat(VARIANT_FALSE);
spG2antt1->EndUpdate();

The following C# sample changes the pattern for a specified unit, in the chart area:

axG2antt1.BeginUpdate();
EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;
 var_Chart.set_PaneWidth(false,0);
 var_Chart.LevelCount = 2;
 var_Chart.FirstVisibleDate = "1/1/2008";
 var_Chart.AllowInsideZoom = true;
 var_Chart.AllowResizeInsideZoom = false;
 var_Chart.InsideZoomOnDblClick = false;
 EXG2ANTTLib.InsideZoomFormat var_InsideZoomFormat =
var_Chart.DefaultInsideZoomFormat;
 var_InsideZoomFormat.PatternChart =
EXG2ANTTLib.PatternEnum.exPatternBDiagonal;
 var_InsideZoomFormat.PatternColorChart = 255;
 EXG2ANTTLib.InsideZooms var_InsideZooms = var_Chart.InsideZooms;
 var_InsideZooms.SplitBaseLevel = false;
 var_InsideZooms.DefaultWidth = 18;
 var_InsideZooms.Add("1/4/2008").AllowInsideFormat = false;
axG2antt1.EndUpdate();

The following VFP sample changes the pattern for a specified unit, in the chart area:

with thisform.G2antt1
 .BeginUpdate

 with .Chart
 .PaneWidth(.F.) = 0
 .LevelCount = 2
 .FirstVisibleDate = {^2008-1-1}
 .AllowInsideZoom = .T.
 .AllowResizeInsideZoom = .F.
 .InsideZoomOnDblClick = .F.
 with .DefaultInsideZoomFormat
 .PatternChart = 6
 .PatternColorChart = RGB(255,0,0)
 endwith
 with .InsideZooms
 .SplitBaseLevel = .F.
 .DefaultWidth = 18
 .Add({^2008-1-4}).AllowInsideFormat = .F.
 endwith
 endwith
 .EndUpdate
endwith

The following Delphi sample changes the pattern for a specified unit, in the chart area:

with AxG2antt1 do
begin
 BeginUpdate();
 with Chart do
 begin
 PaneWidth[False] := 0;
 LevelCount := 2;
 FirstVisibleDate := '1/1/2008';
 AllowInsideZoom := True;
 AllowResizeInsideZoom := False;
 InsideZoomOnDblClick := False;
 with DefaultInsideZoomFormat do
 begin
 PatternChart := EXG2ANTTLib.PatternEnum.exPatternBDiagonal;
 PatternColorChart := 255;

 end;
 with InsideZooms do
 begin
 SplitBaseLevel := False;
 DefaultWidth := 18;
 Add('1/4/2008').AllowInsideFormat := False;
 end;
 end;
 EndUpdate();
end

InsideZooms object
The InsideZooms holds a collection of InsideZoom objects. The InsideZooms property
retrieves the chart's collection of units being displayed in a different way, or getting zoomed
or magnified. The chart may display this kind of units only if the AllowInsideZoom property
is True. The InsideZoomFormat object defines the format of units being zoomed ie
background, foreground colors, grid lines, labels, and so on. The inside zoom feature
allows displaying portions of the chart with different time scale units. For instance, you can
display the bars on hours, while the chart still displays days. Once the AllowInsideZoom
property is True, the user can double clicks the chart's header, so this portion gets
magnified. Also, at runtime, the user can resize the time scale units, so the unit gets
magnified.

The following chart displays weeks, and the week 26 and 28 gets displayed in a different
way:

The InsideZooms object supports the following properties and methods:

Name Description

Add Adds a InsideZoom object to the collection and returns a
reference to the newly created object.

Clear Removes all objects in a collection.

Contains Returns the InsideZoom object that contains the specified
date-time.

Count Returns the number of objects in a collection.
DefaultWidth Specifies the default width in pixels for inside zoom units.

Item Returns a specific InsideZoom of the InsideZooms
collection.

Remove Removes a specific member from the InsideZooms
collection.
Gets or sets a value that indicates whether the chart's

SplitBaseLevel base level is splitted when inside zoom units are shown.

method InsideZooms.Add (DateTime as Variant)
Adds a InsideZoom object to the collection and returns a reference to the newly created
object.

Type Description
DateTime as Variant A Date expression being zoomed.
Return Description
InsideZoom An InsideZoom object being created.

The Add method magnifies a date, and retrieves the InsideZoom object that may be used to
customize the zoomed date. In other words, you can use the Add method to
programmatically zoom, magnify, or change the visual appearance for a specified time unit.
The control fires the InsideZoom event once a new date gets magnified. The Add method
retrieves nothing, if the AllowInsideZoom property is False. An inside zoom unit may display
a different label, background and so on. The DefaultInsideZoomFormat retrieves an
InsideZoomFormat object that customizes the dates being magnified. Use the Width
property to specify the width of the time scale unit being changed. Once a new date is
added to InsideZooms property, the DefaultWidth property specifies the default width being
used.

The following VB sample shows how can I change the background color for a time unit, in
the chart area:

With G2antt1
 .BeginUpdate
 With .Chart
 .LevelCount = 2
 .FirstVisibleDate = #1/1/2008#
 .AllowInsideZoom = True
 .AllowResizeInsideZoom = False
 .InsideZoomOnDblClick = False
 .DefaultInsideZoomFormat.BackColorChart = 255
 With .InsideZooms
 .SplitBaseLevel = False
 .DefaultWidth = 18
 .Add(#1/4/2008#).AllowInsideFormat = False
 End With
 End With
 .EndUpdate

End With

The following VB.NET sample shows how can I change the background color for a time
unit, in the chart area:

With AxG2antt1
 .BeginUpdate
 With .Chart
 .LevelCount = 2
 .FirstVisibleDate = #1/1/2008#
 .AllowInsideZoom = True
 .AllowResizeInsideZoom = False
 .InsideZoomOnDblClick = False
 .DefaultInsideZoomFormat.BackColorChart = 255
 With .InsideZooms
 .SplitBaseLevel = False
 .DefaultWidth = 18
 .Add(#1/4/2008#).AllowInsideFormat = False
 End With
 End With
 .EndUpdate
End With

The following C++ sample shows how can I change the background color for a time unit, in
the chart area:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->BeginUpdate();
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutLevelCount(2);

 var_Chart->PutFirstVisibleDate("1/1/2008");
 var_Chart->PutAllowInsideZoom(VARIANT_TRUE);
 var_Chart->PutAllowResizeInsideZoom(VARIANT_FALSE);
 var_Chart->PutInsideZoomOnDblClick(VARIANT_FALSE);
 var_Chart->GetDefaultInsideZoomFormat()->PutBackColorChart(255);
 EXG2ANTTLib::IInsideZoomsPtr var_InsideZooms = var_Chart->GetInsideZooms();
 var_InsideZooms->PutSplitBaseLevel(VARIANT_FALSE);
 var_InsideZooms->PutDefaultWidth(18);
 var_InsideZooms->Add("1/4/2008")->PutAllowInsideFormat(VARIANT_FALSE);
spG2antt1->EndUpdate();

The following C# sample shows how can I change the background color for a time unit, in
the chart area:

axG2antt1.BeginUpdate();
EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;
 var_Chart.LevelCount = 2;
 var_Chart.FirstVisibleDate = "1/1/2008";
 var_Chart.AllowInsideZoom = true;
 var_Chart.AllowResizeInsideZoom = false;
 var_Chart.InsideZoomOnDblClick = false;
 var_Chart.DefaultInsideZoomFormat.BackColorChart = 255;
 EXG2ANTTLib.InsideZooms var_InsideZooms = var_Chart.InsideZooms;
 var_InsideZooms.SplitBaseLevel = false;
 var_InsideZooms.DefaultWidth = 18;
 var_InsideZooms.Add("1/4/2008").AllowInsideFormat = false;
axG2antt1.EndUpdate();

The following VFP sample shows how can I change the background color for a time unit, in
the chart area:

with thisform.G2antt1
 .BeginUpdate
 with .Chart
 .LevelCount = 2
 .FirstVisibleDate = {^2008-1-1}
 .AllowInsideZoom = .T.
 .AllowResizeInsideZoom = .F.

 .InsideZoomOnDblClick = .F.
 .DefaultInsideZoomFormat.BackColorChart = 255
 with .InsideZooms
 .SplitBaseLevel = .F.
 .DefaultWidth = 18
 .Add({^2008-1-4}).AllowInsideFormat = .F.
 endwith
 endwith
 .EndUpdate
endwith

method InsideZooms.Clear ()
Removes all objects in a collection.

Type Description

The Clear method clears the inside zoom units. Use the AllowInsideZoom property to show
or hide the inside zoom units. Use the Remove method to remove a specific date from
InsideZooms collection. Use the Width property on 0, to hide a specified date. Use the
AllowResize property to specify whether the user can resize an inside zoom unit.

property InsideZooms.Contains (DateTime as Variant) as InsideZoom
Returns the InsideZoom object that contains the specified date-time.

Type Description

DateTime as Variant A Date-Time expression that specifies the inside zoom unit
being searched

InsideZoom An InsideZoom object being found, or nothing if the date-
time is not found

The Contains property returns the InsideZoom object that contains the specified date-time.
The Item property looks for the exact date-time, while the Contains search for the giving
date-time. The Count property specifies the number of inside zoom units. The InsideZooms
collection may be enumerated using for each statements.

The following sample shows the Contains implementation:

Private Function InsideZoomContains(ByVal g As EXG2ANTTLibCtl.G2antt, ByVal d As
Date) As EXG2ANTTLibCtl.InsideZoom
 Dim i As EXG2ANTTLibCtl.InsideZoom
 With g.Chart
 For Each i In .InsideZooms
 If (d >= i.StartDate) Then
 If (d < i.EndDate) Then
 Set InsideZoomContains = i
 Exit Function
 End If
 End If
 Next
 End With
 Set InsideZoomContains = Nothing
End Function

For instance, in the following screen shot, the August 24, 1994 is zoomed, and so the
InsideZoom object starts from #08/24/1994# (StartDate), and ends on #08/25/1994#
(EndDate)

In this case, the Item(#08/24/1994#) returns the InsideZoom object, while any other date
between start and end returns nothing. In case, you are using any mid-date, you have to
use the Contains property that searches for the specified date-time.

property InsideZooms.Count as Long
Returns the number of objects in a collection.

Type Description

Long A long expression that specifies the number of inside zoom
units.

The Count property specifies the number of inside zoom units. Use the Add method to add
new inside zoom units. Use the Item property to access an inside zoom unit. The
InsideZooms collection may be enumerated using for each statements.

property InsideZooms.DefaultWidth as Long
Specifies the default width in pixels for inside zoom units.

Type Description

Long A long expression that specifies the default width in pixels
for newly added inside zoom units.

By default, the DefaultWidth property is 128 pixels. Changing the DefaultWidth property has
no effect for already added inside zoom units. In this case, you can use the Width property
to change the width for units. Use the AllowResize property to specify whether a specified
unit is resizable. Use the CondInsideZoom property to specify a formula to define the time
units that may be resized if the AllowResizeInsideZoom property is True.

The following VB sample shows how can I change the label for a specified unit:

With G2antt1
 .BeginUpdate
 With .Chart
 .PaneWidth(0) = 0
 .LevelCount = 2
 .FirstVisibleDate = #1/1/2008#
 .AllowInsideZoom = True
 .AllowResizeInsideZoom = False
 .InsideZoomOnDblClick = False
 .DefaultInsideZoomFormat.OwnerLabel = "<%d%> <%d2%>"
 With .InsideZooms
 .SplitBaseLevel = False
 .DefaultWidth = 32
 .Add(#1/4/2008#).AllowInsideFormat = False
 End With
 End With
 .EndUpdate
End With

The following VB.NET sample shows how can I change the label for a specified unit:

With AxG2antt1
 .BeginUpdate
 With .Chart

 .PaneWidth(0) = 0
 .LevelCount = 2
 .FirstVisibleDate = #1/1/2008#
 .AllowInsideZoom = True
 .AllowResizeInsideZoom = False
 .InsideZoomOnDblClick = False
 .DefaultInsideZoomFormat.OwnerLabel = "<%d%> <%d2%>"
 With .InsideZooms
 .SplitBaseLevel = False
 .DefaultWidth = 32
 .Add(#1/4/2008#).AllowInsideFormat = False
 End With
 End With
 .EndUpdate
End With

The following C++ sample shows how can I change the label for a specified unit:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->BeginUpdate();
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutPaneWidth(0,0);
 var_Chart->PutLevelCount(2);
 var_Chart->PutFirstVisibleDate("1/1/2008");
 var_Chart->PutAllowInsideZoom(VARIANT_TRUE);
 var_Chart->PutAllowResizeInsideZoom(VARIANT_FALSE);
 var_Chart->PutInsideZoomOnDblClick(VARIANT_FALSE);
 var_Chart->GetDefaultInsideZoomFormat()->PutOwnerLabel(L"<%d%>
<%d2%>");

 EXG2ANTTLib::IInsideZoomsPtr var_InsideZooms = var_Chart->GetInsideZooms();
 var_InsideZooms->PutSplitBaseLevel(VARIANT_FALSE);
 var_InsideZooms->PutDefaultWidth(32);
 var_InsideZooms->Add("1/4/2008")->PutAllowInsideFormat(VARIANT_FALSE);
spG2antt1->EndUpdate();

The following C# sample shows how can I change the label for a specified unit:

axG2antt1.BeginUpdate();
EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;
 var_Chart.set_PaneWidth(0 != 0,0);
 var_Chart.LevelCount = 2;
 var_Chart.FirstVisibleDate = "1/1/2008";
 var_Chart.AllowInsideZoom = true;
 var_Chart.AllowResizeInsideZoom = false;
 var_Chart.InsideZoomOnDblClick = false;
 var_Chart.DefaultInsideZoomFormat.OwnerLabel = "<%d%> <%d2%>";
 EXG2ANTTLib.InsideZooms var_InsideZooms = var_Chart.InsideZooms;
 var_InsideZooms.SplitBaseLevel = false;
 var_InsideZooms.DefaultWidth = 32;
 var_InsideZooms.Add("1/4/2008").AllowInsideFormat = false;
axG2antt1.EndUpdate();

The following VFP sample shows how can I change the label for a specified unit:

with thisform.G2antt1
 .BeginUpdate
 with .Chart
 .PaneWidth(0) = 0
 .LevelCount = 2
 .FirstVisibleDate = {^2008-1-1}
 .AllowInsideZoom = .T.
 .AllowResizeInsideZoom = .F.
 .InsideZoomOnDblClick = .F.
 .DefaultInsideZoomFormat.OwnerLabel = "<%d%> <%d2%>"
 with .InsideZooms
 .SplitBaseLevel = .F.
 .DefaultWidth = 32

 .Add({^2008-1-4}).AllowInsideFormat = .F.
 endwith
 endwith
 .EndUpdate
endwith

property InsideZooms.Item (DateTime as Variant) as InsideZoom
Returns a specific InsideZoom of the InsideZooms collection.

Type Description

DateTime as Variant
A Date-Time expression that specifies the inside zoom unit
being requested, or a long expression that indicates the
index of the inside zoom object being requested

InsideZoom An InsideZoom object being requested

The Item property retrieves nothing, if the specified inside zoom unit does not exists. The
Item property looks for the exact date-time, while the Contains search for the giving date-
time. The Count property specifies the number of inside zoom units. The InsideZooms
collection may be enumerated using for each statements.

For instance, in the following screen shot, the August 24, 1994 is zoomed, and so the
InsideZoom object starts from #08/24/1994# (StartDate), and ends on #08/25/1994#
(EndDate)

In this case, the Item(#08/24/1994#) returns the InsideZoom object, while any other date
between start and end returns nothing. In case, you are using any mid-date, you have to
use the Contains property that searches for the specified date-time.

method InsideZooms.Remove (DateTime as Variant)
Removes a specific member from the InsideZooms collection.

Type Description

DateTime as Variant
A Date-Time expression that specifies the inside zoom unit
being deleted, or a long expression that indicates the index
of the inside zoom object being deleted

Use the Remove method to remove a specified inside zoom unit. Use the Item property to
check if a specified Date-Time is an inside zoom unit, or if the InsideZooms collection
contains it. Use the Clear method to clears the InsideZooms collection. Use the
AllowInsideZoom property to show or hide the inside zoom units. Use the Width property on
0, to hide a specified date. Use the AllowResize property to specify whether the user can
resize an inside zoom unit.

property InsideZooms.SplitBaseLevel as Boolean
Gets or sets a value that indicates whether the chart's base level is splitted when inside
zoom units are shown.

Type Description

Boolean
A Boolean expression that specifies whether the base
level of the chart is divided to display the inside zoom
units.

By default, the SplitBaseLevel property is True, which means that once the chart shows
inside zoom units, the base level is divided to display the owner and the inside levels. The
AllowInsideZoom property specifies whether the chart may display inside zoom units. Use
the AllowInsideFormat property to show the inside level. Use the DisplayOwnerLabel
property to specify whether the owner level is displayed or not.

The following screen shot shows levels if the SplitBaseLevel property is True (the base
level is shown in two lines):

The following screen shot shows levels if the SplitBaseLevel property is False (the base
level is shown in one line):

The following VB sample shows how can I change the background color for a time unit:

With G2antt1
 .BeginUpdate
 With .Chart
 .LevelCount = 2

 .FirstVisibleDate = #1/1/2008#
 .AllowInsideZoom = True
 .AllowResizeInsideZoom = False
 .InsideZoomOnDblClick = False
 .DefaultInsideZoomFormat.BackColor = 255
 With .InsideZooms
 .SplitBaseLevel = False
 .DefaultWidth = 18
 .Add(#1/4/2008#).AllowInsideFormat = False
 End With
 End With
 .EndUpdate
End With

The following VB.NET sample shows how can I change the background color for a time
unit:

With AxG2antt1
 .BeginUpdate
 With .Chart
 .LevelCount = 2
 .FirstVisibleDate = #1/1/2008#
 .AllowInsideZoom = True
 .AllowResizeInsideZoom = False
 .InsideZoomOnDblClick = False
 .DefaultInsideZoomFormat.BackColor = 255
 With .InsideZooms
 .SplitBaseLevel = False
 .DefaultWidth = 18
 .Add(#1/4/2008#).AllowInsideFormat = False
 End With
 End With
 .EndUpdate
End With

The following C++ sample shows how can I change the background color for a time unit:

/*

 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->BeginUpdate();
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutLevelCount(2);
 var_Chart->PutFirstVisibleDate("1/1/2008");
 var_Chart->PutAllowInsideZoom(VARIANT_TRUE);
 var_Chart->PutAllowResizeInsideZoom(VARIANT_FALSE);
 var_Chart->PutInsideZoomOnDblClick(VARIANT_FALSE);
 var_Chart->GetDefaultInsideZoomFormat()->PutBackColor(255);
 EXG2ANTTLib::IInsideZoomsPtr var_InsideZooms = var_Chart->GetInsideZooms();
 var_InsideZooms->PutSplitBaseLevel(VARIANT_FALSE);
 var_InsideZooms->PutDefaultWidth(18);
 var_InsideZooms->Add("1/4/2008")->PutAllowInsideFormat(VARIANT_FALSE);
spG2antt1->EndUpdate();

The following C# sample shows how can I change the background color for a time unit:

axG2antt1.BeginUpdate();
EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;
 var_Chart.LevelCount = 2;
 var_Chart.FirstVisibleDate = "1/1/2008";
 var_Chart.AllowInsideZoom = true;
 var_Chart.AllowResizeInsideZoom = false;
 var_Chart.InsideZoomOnDblClick = false;
 var_Chart.DefaultInsideZoomFormat.BackColor = 255;
 EXG2ANTTLib.InsideZooms var_InsideZooms = var_Chart.InsideZooms;
 var_InsideZooms.SplitBaseLevel = false;
 var_InsideZooms.DefaultWidth = 18;
 var_InsideZooms.Add("1/4/2008").AllowInsideFormat = false;
axG2antt1.EndUpdate();

The following VFP sample shows how can I change the background color for a time unit:

with thisform.G2antt1
 .BeginUpdate
 with .Chart
 .LevelCount = 2
 .FirstVisibleDate = {^2008-1-1}
 .AllowInsideZoom = .T.
 .AllowResizeInsideZoom = .F.
 .InsideZoomOnDblClick = .F.
 .DefaultInsideZoomFormat.BackColor = 255
 with .InsideZooms
 .SplitBaseLevel = .F.
 .DefaultWidth = 18
 .Add({^2008-1-4}).AllowInsideFormat = .F.
 endwith
 endwith
 .EndUpdate
endwith

Items object
The Items object contains a collection of items. Each item is identified by a handle HITEM.
The HITEM is of long type. Each item contains a collection of cells. The number of cells is
determined by the number of Column objects in the control. To access the Items collection
use Items property of the control. Using the Items collection you can add, remove or
change the control items. The Items collection can be organized as a hierarchy or as a
tabular data.

The following screen shot shows the items of the control:

The Items collection supports the following properties and methods:

Name Description

AcceptSetParent Retrieves a value indicating whether the SetParent method
can be accomplished..

AddBar Adds a bar to an item.

AddItem Adds a new item, and returns a handle to the newly
created item.

AddLink Links a bar to another.

AllowCellValueToItemBar Retrieves or sets a value that indicates whether the cells
display associated properties of the bars in the item.

CellBackColor Retrieves or sets the cell's background color.

CellBold Retrieves or sets a value that indicates whether the cell's
caption should appear in bold.

CellButtonAutoWidth Retrieves or sets a value indicating whether the cell's
button fits the cell's caption.

CellCaption Gets the cell's display value.

CellChecked Retrieves the cell's handle that is checked on a specific
radio group.

CellData Retrieves or sets the extra data for a specific cell.
CellEditor Creates and gets the cell's built-in editor.

CellEditorVisible Specifies whether column's editor is visible or hidden in the
cell.

CellEnabled Returns or sets a value that determines whether a cell can
respond to user-generated events.

CellFont Retrieves or sets the cell's font.
CellForeColor Retrieves or sets the cell's foreground color.
CellFormatLevel Specifies the arrangement of the fields inside the cell.

CellHAlignment Retrieves or sets a value that indicates the alignment of
the cell's caption.

CellHasButton Retrieves or sets a value indicating whether the cell has
associated a push button or not.

CellHasCheckBox Retrieves or sets a value indicating whether the cell has
associated a checkbox or not.

CellHasRadioButton Retrieves or sets a value indicating whether the cell has
associated a radio button or not.

CellHyperLink Specifies whether the cell's is highlighted when the cursor
mouse is over the cell.

CellImage Retrieves or sets an Image that is displayed on the cell's
area.

CellImages Specifies an additional list of icons shown in the cell.

CellItalic Retrieves or sets a value that indicates whether the cell's
caption should appear in italic.

CellItem Retrieves the handle of item that is the owner of a specific
cell.

CellMerge Retrieves or sets a value that indicates the index of the
cell that's merged to.

CellParent Retrieves the parent of an inner cell.

CellPicture Retrieves or sets a value that indicates the Picture object
displayed by the cell.
Retrieves or sets a value that indicates the height of the

CellPictureHeight cell's picture.

CellPictureWidth Retrieves or sets a value that indicates the width of the
cell's picture.

CellRadioGroup Retrieves or sets a value indicating the radio group where
the cell is contained.

CellSingleLine Retrieves or sets a value indicating whether the cell's
caption is painted using one or more lines.

CellState Retrieves or sets the cell's state. Has effect only for check
and radio cells.

CellStrikeOut Retrieves or sets a value that indicates whether the cell's
caption should appear in strikeout.

CellToolTip Retrieves or sets a text that is used to show the tooltip's
cell.

CellUnderline Retrieves or sets a value that indicates whether the cell's
caption should appear in underline.

CellVAlignment Retrieves or sets a value that indicates how the cell's
caption is vertically aligned.

CellValue Specifies the cell's value.
CellValueFormat Specifies how the cell's caption is displayed.

CellValueToItemBar Indicates whether the cell displays the specified property
of the bar.

CellWidth Retrieves or sets a value that indicates the width of the
inner cell.

ChildCount Retrieves the number of children items.
ClearBars Clears the bars from the item.
ClearCellBackColor Clears the cell's background color.
ClearCellForeColor Clears the cell's foreground color.
ClearCellHAlignment Clears the cell's alignment.
ClearItemBackColor Clears the item's background color.
ClearItemForeColor Clears the item's foreground color.
ClearLinks Clears all links in the chart.
ComputeValue Computes the value of a specified formula.
DefaultItem Retrieves or sets the default item.
DefineSummaryBars Defines the bars that belongs to a summary bar.

DefSchedulePDM Retrieves or sets an option for SchedulePDM method.

DeleteCellEditor Deletes the cell's built-in editor created by CellEditor
property.

EnableItem Returns or sets a value that determines whether a item
can respond to user-generated events.

EndBlockUndoRedo
Ends recording the UI operations and adds the undo/redo
operations as a block, so they all can be restored at once,
if Undo method is performed.

EndUpdateBar Adds programmatically updated properties of the bar to
undo/redo queue.

EndUpdateLink Adds programmatically updated properties of the link to
undo/redo queue.

EnsureVisibleBar Ensures that the given item-bar fits the chart's visible area.
EnsureVisibleItem Ensures that the given item fits the control's visible area

ExpandItem Expands, or collapses, the child items of the specified
item.

FindBar Finds the item that hosts the specified bar.

FindItem Finds an item, looking for Caption in ColIndex colum. The
searching starts at StartIndex item.

FindItemData Finds the item giving its data.

FindPath Finds the item, given its path. The control searches the
path on the SearchColumnIndex column.

FirstItemBar Gets the key of the first bar in the item.
FirstLink Gets the key of the first link.
FirstVisibleItem Retrieves the handle of the first visible item into control.
FocusItem Retrieves the handle of item that has the focus.
FormatCell Specifies the custom format to display the cell's content.

FullPath
Returns the fully qualified path of the referenced item in
the control. The caption is taken from the column
SearchColumnIndex.

GroupBars Groups two bars.

GroupItem Indicates a group item if positive, and the value specifies
the index of the column that has been grouped.

HasCellEditor Specifies whether a cell has a built-in editor.

InnerCell Retrieves the inner cell.

InsertControlItem Inserts a new item of ActiveX type, and returns a handle
to the newly created item.

InsertItem Inserts a new item, and returns a handle to the newly
created item.

IntersectBars Specifies whether two bars intersect if returns 0, if 1 A is
before B and -1 if A is after bar B.

IsItemLocked Returns a value that indicates whether the item is locked
or unlocked.

IsItemVisible Checks if the specific item is in the visible client area.

ItemAllowSizing Retrieves or sets a value that indicates whether a user
can resize the item at run-time.

ItemAppearance Specifies the item's appearance when the item hosts an
ActiveX control.

ItemBackColor Retrieves or sets a background color for a specific item.
ItemBar Gets or sets a bar property.
ItemBarEx Gets or sets the property's bar that matches the criteria.

ItemBold Retrieves or sets a value that indicates whether the item
should appear in bold.

ItemByIndex Retrieves the handle of the item given its index in Items
collection..

ItemCell Retrieves the cell's handle based on a specific column.
ItemChild Retrieves the child of a specified item.

ItemControlID Retrieves the item's control identifier that was used by
InsertControlItem.

ItemCount Retrieves the number of items.
ItemData Retrieves or sets the extra data for a specific item.

ItemDivider
Specifies whether the item acts like a divider item. The
value indicates the index of column used to define the
divider's title.

ItemDividerLine Defines the type of line in the divider item.
ItemDividerLineAlignment Specifies the alignment of the line in the divider item.
ItemFiltered Checks whether the item is included in the control's filter.
ItemFont Retrieves or sets the item's font.

ItemForeColor Retrieves or sets a foreground color for a specific item.

ItemHasChildren
Adds an expand button to left side of the item even if the
item has no child items.

ItemHeight Retrieves or sets the item's height.

ItemItalic Retrieves or sets a value that indicates whether the item
should appear in italic.

ItemMaxHeight Retrieves or sets a value that indicates the maximum
height when the item's height is variable.

ItemMinHeight Retrieves or sets a value that indicates the minimum height
when the item's height is sizing.

ItemNonworkingUnits Gets or sets a value that indicates the formula to specify
the use non-working units for the item.

ItemObject Retrieves the ActiveX object associated, if the item was
created using InsertControlItem method.

ItemParent Returns the handle of parent item.

ItemPosition Retrieves or sets a value that indicates the item's position
in the children list.

ItemStrikeOut Retrieves or sets a value that indicates whether the item
should appear in strikeout.

ItemToIndex Retrieves the index of item into Items collection given its
handle.

ItemUnderline Retrieves or sets a value that indicates whether the item
should appear in underline.

ItemWidth Retrieves or sets a value that indicates the item's width
while it contains an ActiveX control.

ItemWindowHost
Retrieves the window's handle that hosts an ActiveX
control when the item was created using
InsertControlItem.

ItemWindowHostCreateStyle Retrieves or sets a value that indicates a combination of
window styles used to create the ActiveX window host.

LastVisibleItem Retrieves the handle of the last visible item.
Link Gets or sets a property for a link.
LockedItem Retrieves the handle of the locked/fixed item.

LockedItemCount Specifies the number of items fixed on the top or bottom
side of the control.

MatchItemCount Retrieves the number of items that match the filter.
MergeCells Merges a list of cells.
NextItemBar Gets the key of the next bar in the item.

NextLink Gets the key of the next link.

NextSiblingItem Retrieves the next sibling of the item in the parent's child
list.

NextVisibleItem Retrieves the handle of next visible item.

PathSeparator Returns or sets the delimiter character used for the path
returned by the FullPath property.

PrevSiblingItem Retrieves the previous sibling of the item in the parent's
child list.

PrevVisibleItem Retrieves the handle of previous visible item.
RemoveAllItems Removes all items from the control.
RemoveBar Removes a bar from an item.
RemoveItem Removes a specific item.
RemoveLink Removes a link.
RemoveLinksOf Removes the links that goes or ends on the specified bar.
RemoveSelection Removes the selected items (including the descendents).
RootCount Retrieves the number of root objects into Items collection.

RootItem Retrieves the handle of the root item giving its index into
the root items collection.

SchedulePDM Schedules the chart using the Precedence Diagram
Method.

SelectableItem Specifies whether the user can select the item.
SelectAll Selects all items.

SelectCount Retrieves the handle of selected item giving its index in
selected items collection.

SelectedItem Retrieves the selected item's handle given its index in
selected items collection.

SelectedObjects Retrieves a collection of selected objects in the chart.
SelectItem Selects or unselects a specific item.
SelectPos Selects items by position.
SetParent Changes the parent of the given item.

SortableItem Specifies whether the item is sortable.

SortChildren
Sorts the child items of the given parent item in the
control. SortChildren will not recurse through the tree, only
the immediate children of Item will be sorted.

SplitCell Splits a cell, and returns the inner created cell.

StartBlockUndoRedo Starts recording the UI operations as a block of undo/redo
operations.

StartUpdateBar
Starts changing properties of the bar, so EndUpdateBar
method adds programmatically updated properties to
undo/redo queue.

StartUpdateLink
Starts changing properties of the link, so EndUpdateLink
method adds programmatically updated properties to
undo/redo queue.

UndefineSummaryBars Undefines the bars in a summary bar
UngroupBars Ungroups two bars.
UnmergeCells Unmerges a list of cells.
UnselectAll Unselects all items.
UnsplitCell Unsplits a cell.
VisibleCount Retrieves the number of visible items.
VisibleItemCount Retrieves the number of visible items.

property Items.AcceptSetParent (Item as HITEM, NewParent as HITEM) as
Boolean
Retrieves a value indicating whether the SetParent method can be accomplished.

Type Description

Item as HITEM A long expression that indicates the handle of the item
being moved.

NewParent as HITEM A long expression that indicates the handle of the parent
item where the item should be moved.

Boolean A boolean expression that indicates whether the item can
be child of the NewParent item.

Use this property to make sure that SetParent can be called. The AcceptSetParent
property checks if an item can be child of another item.

method Items.AddBar (Item as HITEM, BarName as Variant, DateStart as
Variant, DateEnd as Variant, [Key as Variant], [Text as Variant])
Adds a bar to an item.

Type Description

Item as HITEM

A long expression that indicates the the handle of the item
where the bar is inserted. Use the ItemBar(exBarParent)
property to access later the handle of the item that hosts
the bar.

BarName as Variant

A String expression that indicates the name of the bar
being inserted, or a long expression that indicates the
index of the bar being inserted. You can find a list of
predefined bars here. Use the ItemBar(exBarName)
property to access later the bar's name.

DateStart as Variant

A Date expression that indicates the date/time where the
bar starts, or a string expression that indicates the start
date and time. For instance, the "6/10/2003 10:13",
indicates the date and the time. Use the
ItemBar(exBarStart) property to access later the start
date of the bar.

DateEnd as Variant

A Date expression that indicates the date where the bar
ends, or a string expression that indicates the end date
and time. For instance, the "6/10/2003 10:13", indicates
the date and the time. Use the ItemBar(exBarEnd)
property to access later the end point of the bar.

Key as Variant

Optional. A String expression that indicates the key of the
bar being inserted. If missing, the Key parameter is empty.
If the Item has only a single Bar you can not use the Key
parameter, else an unique key should be used. Use the
ItemBar(exBarKey) property to access later the key of the
bar.

Text as Variant

Optional. A String expression that indicates the text being
displayed. The Text may include built-in HTML format. Use
the ItemBar(exBarCaption) property to access later the
caption of the bar. Use the
ItemBar(exBarHAlignCaption/exBarVAlignCaption) to
display and align the caption of the bar inside or outside of
the bar.

Use the AddBar method to add or move a bar to an item. The Key parameter indicates the

key of the bar being added or moved(replaced). If the item contains no bars with the giving
key, a new bar is added. If the bar already exists, the new coordinates are updated (the
bar is moved, so the new starting and ending points of the bar are indicated by DateStart
and DateEnd parameters). In other words, an item can not contain several bars with the
same key, or adding several bars require unique keys per item.

Use the ShowEmptyBars property to show the bars, even if the start and end dates are
identical. If you want to assign multiple bars to the same items, you have to use different
keys (Key parameter), else the default bar is overwritten. Use the Add method to add new
types of bars to the Bars collection. Use the AddLink method to link a bar with another. Use
the FirstVisibleDate property to specify the first visible date in the chart area. Use the Key
parameter to identify a bar inside an item. If the AddBar method is called multiple time with
the same item, the bar is moved. Use the ItemBar property to access a bar inside the item.
Use the RemoveBar method to remove a bar from an item. Use the ClearBars method to
remove all bars in the item. Use the PaneWidth property to specify the width of the chart.
Use the NonworkingDays property to specify the non-working days. Use the NextDate
property to compute the next or previous date based on a time unit. Use the
ItemBar(exBarToolTip) property to assign a tooltip to a bar. Use the ItemBar(exBarsCount)
property to count the number of bars inside in the specified item. Use the
ItemBar(exBarData) property to associate an extra data to a bar in the specified item . Use
the ItemBar(exBarBackColor) property to change the background or the visual appearance
for the portion delimited by the start and end points. Use the AllowCreateBar property to
specify whether the user can create new bars using the mouse. Use the GroupBars
method to group two or more bars, so when a bar in the group is moved or resized the
other bars in the group and related are resized or moved accordingly. The FindBar method
looks for the item that hosts a specified bar.

The Color property of the Bar object specifies the color being used to paint the bar. This
property changes the colors for all bars with the same name. For instance, if you have 3

"Task" bars, and you are changing the color for the "Task" bar, the color is applied to all
"Task" bars in the chart. For instance, in order to provide "Task" bars with different colors,
you can use the Copy method to copy the Task bar to a new bar, and use the Color to
change the color of the bar. The AllowCellValueToItemBar property allows the cells to
display properties of the bars.

The following function generates a Task bar with specified color:

Private Function AddTask(ByVal gantt As EXG2ANTTLibCtl.G2antt, ByVal clr As Long) As
String
 Dim sT As String
 sT = "Task:" & clr
 With gantt.Chart.Bars.Copy("Task", sT)
 .color = clr
 End With
 AddTask = sT
End Function

The function generates a new bar with the name "Task:color", where the color is the color
being used, and retrieves the name of the new bar being added. The Copy method
retrieves the bar being found with specified name, or creates a new bar if the name is not
found in the Bars collection, so AddTask function gets you the name of the bar you should
use to specify the color for the bar being added as in the following sample:

With G2antt1.Items
 Dim d As Date
 d = G2antt1.Chart.FirstVisibleDate
 .AddBar .FirstVisibleItem, AddTask(G2antt1, vbRed), d, d + 4, "Red"
End With

The following VB sample adds a "Milestone" bar and a text beside:

With G2antt1.Items
 h = .AddItem("new task")
 .AddBar h, "Milestone", "5/30/2005 10:00", "5/31/2005"
 .AddBar h, "", "5/31/2005", "6/10/2005", "beside", "<fgcolor=FF0000>item
</fgcolor> to change"
End With

or

With G2antt1.Items
 .AddBar .AddItem("new task"), "Milestone", "5/30/2005 10:00", "6/10/2005", , "
<fgcolor=FF0000>item</fgcolor> to change"
End With

The following VB sample adds an item with a single "Task" bar:

Dim h As HITEM, d As Date
With G2antt1.Items
 d = G2antt1.Chart.FirstVisibleDate
 h = .AddItem("new task")
 .AddBar h, "Task", G2antt1.Chart.NextDate(d, exDay, 2), G2antt1.Chart.NextDate(d,
exDay, 4)
End With

The following VB sample adds an item with three bars (two "Task" bars, and one "Split" bar
) that looks like):

Dim h As HITEM, d As Date
With G2antt1.Items
 d = G2antt1.Chart.FirstVisibleDate
 h = .AddItem("new task ")
 .AddBar h, "Task", d + 2, d + 4, "K1"
 .AddBar h, "Split", d + 4, d + 5, "K2"
 .AddBar h, "Task", d + 5, d + 9, "K3"
End With

The bar is composed by three parts: K1, K2 and K3.

The following C++ sample adds a "Milestone" bar and a text beside:

#include "Items.h"
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
CItems items = m_g2antt.GetItems();
long h = items.AddItem(COleVariant("new task"));
items.AddBar(h, COleVariant("Milestone"), COleVariant("5/30/2005 10:00"), COleVariant(
"5/31/2005"), vtMissing, vtMissing);
items.AddBar(h, COleVariant(""), COleVariant("5/31/2005"), COleVariant("6/10/2005"),
COleVariant(_T("just a key")), COleVariant("<fgcolor=FF0000>item</fgcolor>

to change"));

or

#include "Items.h"
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
CItems items = m_g2antt.GetItems();
long h = items.AddItem(COleVariant("new task"));
items.AddBar(h, COleVariant("Milestone"), COleVariant("5/30/2005 10:00"), COleVariant(
"6/10/2005"), vtMissing, COleVariant(" <fgcolor=FF0000>item</fgcolor> to
change"));

The following C++ sample adds an item with a single "Task" bar:

COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
CItems items = m_g2antt.GetItems();
CChart chart = m_g2antt.GetChart();
DATE d = V2D(&chart.GetFirstVisibleDate());
long h = items.AddItem(COleVariant("new task"));
items.AddBar(h, COleVariant("Task"), COleVariant((double)chart.GetNextDate(d, 4096,
COleVariant((long)2))), COleVariant((double)chart.GetNextDate(d, 4096,
COleVariant((long)4))), vtMissing , vtMissing);

The following C++ sample adds an item with three bars (two "Task" bars, and one "Split"
bar) that looks like above:

COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
CItems items = m_g2antt.GetItems();
DATE d = V2D(&m_g2antt.GetChart().GetFirstVisibleDate());
long h = items.AddItem(COleVariant("new task"));
items.AddBar(h, COleVariant("Task"), COleVariant(d + 2), COleVariant(d + 4),
COleVariant("K1"), vtMissing);
items.AddBar(h, COleVariant("Split"), COleVariant(d + 4), COleVariant(d + 5),
COleVariant("K2"), vtMissing);
items.AddBar(h, COleVariant("Task"), COleVariant(d + 5), COleVariant(d + 9),
COleVariant("K3"), vtMissing);

where the V2D function converts a Variant expression to a DATE expression and may look
like follows:

static DATE V2D(VARIANT* pvtDate)
{
 COleVariant vtDate;
 vtDate.ChangeType(VT_DATE, pvtDate);
 return V_DATE(&vtDate);
}

The following VB.NET sample adds a "Milestone" bar and a text beside:

With AxG2antt1.Items
 Dim h As Integer = .AddItem("new task")
 .AddBar(h, "Milestone", "5/30/2005 10:00", "5/31/2005")
 .AddBar(h, "", "5/31/2005", "6/10/2005", "beside", "<fgcolor=FF0000>item
</fgcolor> to change")
End With

or

With AxG2antt1.Items
 Dim h As Integer = .AddItem("new task")
 .AddBar(h, "Milestone", "5/30/2005 10:00", "6/10/2005", , " <fgcolor=FF0000>
item</fgcolor> to change")
End With

The following VB.NET sample adds an item with a single "Task" bar:

With AxG2antt1.Items
 Dim d As DateTime = AxG2antt1.Chart.FirstVisibleDate
 Dim h As Integer = .AddItem("new task")
 .AddBar(h, "Task", AxG2antt1.Chart.NextDate(d, EXG2ANTTLib.UnitEnum.exDay, 2),
AxG2antt1.Chart.NextDate(d, EXG2ANTTLib.UnitEnum.exDay, 4))
End With

The following VB.NET sample adds an item with three bars (two "Task" bars, and one
"Split" bar) that looks like above:

With AxG2antt1.Items
 Dim d As DateTime = AxG2antt1.Chart.FirstVisibleDate
 Dim h As Integer = .AddItem("new task ")

 .AddBar(h, "Task", d.AddDays(2), d.AddDays(4), "K1")
 .AddBar(h, "Split", d.AddDays(4), d.AddDays(5), "K2")
 .AddBar(h, "Task", d.AddDays(5), d.AddDays(9), "K3")
End With

The following C# sample adds a "Milestone" bar and a text beside:

EXG2ANTTLib.Items items = axG2antt1.Items;
int h = items.AddItem("new task");
items.AddBar(h, "Milestone", "5/30/2005 10:00", "5/31/2005", null, null);
items.AddBar(h, "", "5/31/2005", "6/10/2005", "just a new key", "<fgcolor=FF0000>
item</fgcolor> to change");

or

EXG2ANTTLib.Items items = axG2antt1.Items;
int h = items.AddItem("new task");
items.AddBar(h, "Milestone", "5/30/2005 10:00", "6/10/2005", null, " <fgcolor=FF0000>
item</fgcolor> to change");

The following C# sample adds an item with a single "Task" bar:

EXG2ANTTLib.Items items = axG2antt1.Items;
int h = items.AddItem("new task");
DateTime d = Convert.ToDateTime(axG2antt1.Chart.FirstVisibleDate);
items.AddBar(h, "Task", axG2antt1.Chart.get_NextDate(d, EXG2ANTTLib.UnitEnum.exDay,
2), axG2antt1.Chart.get_NextDate(d, EXG2ANTTLib.UnitEnum.exDay, 4), null, null);

The following C# sample adds an item with three bars (two "Task" bars, and one "Split" bar
) that looks like above:

EXG2ANTTLib.Items items = axG2antt1.Items;
int h = items.AddItem("new task");
DateTime d = Convert.ToDateTime(axG2antt1.Chart.FirstVisibleDate);
items.AddBar(h, "Task", d.AddDays(2), d.AddDays(4), "K1", null);
items.AddBar(h, "Split", d.AddDays(4), d.AddDays(5), "K2", null);
items.AddBar(h, "Task", d.AddDays(5), d.AddDays(9), "K3", null);

The following VFP sample adds an item with a single "Task" bar:

With thisform.G2antt1.Items
 d = thisform.G2antt1.Chart.FirstVisibleDate
 .DefaultItem = .AddItem("new task")
 .AddBar(0, "Task", thisform.G2antt1.Chart.NextDate(d,4096,2),
thisform.G2antt1.Chart.NextDate(d,4096,4))
EndWith

The following VFP sample adds an item with three bars (two "Task" bars, and one "Split"
bar) that looks like above:

With thisform.G2antt1.Items
 thisform.G2antt1.Chart.FirstVisibleDate = "5/29/2005"
 .DefaultItem = .AddItem("new task")
 .AddBar(0, "Task", "5/31/2005", "6/2/2005", "K1", "")
 .AddBar(0, "Split", "6/2/2005", "6/4/2005", "K2", "")
 .AddBar(0, "Task", "6/4/2005", "6/9/2005", "K3", "")
EndWith

method Items.AddItem ([Caption as Variant])

Adds a new item, and returns a handle to the newly created item.

Type Description

Caption as Variant

A string expression that indicates the cell's caption for the
first column. or a safe array that contains the captions for
each column. The Caption accepts HTML format, if the
CellValueFormat property is exHTML, or a formula if the
CellValueFormat property is exComputedField.

Return Description

HITEM A long expression that indicates the handle of the newly
created item.

Use the Add method to add new columns to the control. If the control contains no columns,
the AddItem method fails. Use the LoadXML/SaveXML methods to load/save the control's
data from/to XML files. Use the AddItem property to add new items to the control. Use the
AddBar method to add bars to the item. Use the AddLink method to link a bar with another.
The bars are always shown in the chart area. Use the PaneWidth property to specify the
width of the chart. Use InsertItem method to insert child items to the list. Use the
InsertControlItem property to insert and ActiveX control. Use the LockedItemCount property
to add or remove items locked to the top or bottom side of the control. Use the MergeCells
method to combine two or multiple cells in a single cell. Use the SplitCell property to split a
cell. Use the BeginUpdate and EndUpdate methods to maintain performance while adding
new columns and items. Use the ConditionalFormats method to apply formats to a cell or
range of cells, and have that formatting change depending on the value of the cell or the
value of a formula. Use the FormatColumn property to format the column.

The AddItem property adds a new item that has no parent. When a new item is added
(inserted) to the Items collection, the control fires the AddItem event. If the control contains
more than one column use the CellValue property to set the cell's caption. If there are no
columns AddItem method fails.

The following VB6 sample uses the VB Array function to add two items:

With G2antt1
 .BeginUpdate

 .Columns.Add "Column 1"
 .Columns.Add "Column 2"
 .Columns.Add "Column 3"

 With .Items
 .AddItem Array("Item 1.1", "Item 1.2", "Item 1.3")
 .AddItem Array("Item 2.1", "Item 2.2", "Item 2.3")
 End With

 .EndUpdate
End With

In VB/NET using the /NET assembly, the Array equivalent is New Object such as follows:

With G2antt1
 .BeginUpdate()

 .Columns.Add("Column 1")
 .Columns.Add("Column 2")
 .Columns.Add("Column 3")

 With .Items
 .AddItem(New Object() {"Item 1.1", "Item 1.2", "Item 1.3"})
 .AddItem(New Object() {"Item 2.1", "Item 2.2", "Item 2.3"})
 End With

 .EndUpdate()
End With

In C# using the /NET assembly, the Array equivalent is new object such as follows:

exg2antt1.BeginUpdate();

exg2antt1.Columns.Add("Column 1");
exg2antt1.Columns.Add("Column 2");
exg2antt1.Columns.Add("Column 3");

exg2antt1.Items.AddItem(new object[] { "Item 1.1", "Item 1.2", "Item 1.3" });
exg2antt1.Items.AddItem(new object[] { "Item 2.1", "Item 2.2", "Item 2.3" });

exg2antt1.EndUpdate();

Use the PutItems method to load an array, like in the following VB sample:

Set rs = CreateObject("ADODB.Recordset")
rs.Open "Orders", "Provider=Microsoft.Jet.OLEDB.3.51;Data Source= D:\Program
Files\Microsoft Visual Studio\VB98\NWIND.MDB", 3 ' Opens the table using static mode
G2antt1.BeginUpdate
' Add the columns
With G2antt1.Columns
For Each f In rs.Fields
 .Add f.Name
Next
End With
G2antt1.PutItems rs.getRows()
G2antt1.EndUpdate

The following C++ sample adds new items to the control:

#include "Items.h"
CItems items = m_g2antt.GetItems();
long iNewItem = items.AddItem(COleVariant("Item 1"));
items.SetCellValue(COleVariant(iNewItem), COleVariant((long)1), COleVariant("SubItem
1"));
iNewItem = items.AddItem(COleVariant("Item 2"));
items.SetCellValue(COleVariant(iNewItem), COleVariant((long)1), COleVariant("SubItem
2"));

The following VB.NET sample adds new items to the control:

With AxG2antt1.Items
 Dim iNewItem As Integer
 iNewItem = .AddItem("Item 1")
 .CellValue(iNewItem, 1) = "SubItem 1"
 iNewItem = .AddItem("Item 2")
 .CellValue(iNewItem, 1) = "SubItem 2"
End With

The following C# sample adds new items to the control:

EXG2ANTTLib.Items items = axG2antt1.Items;

int iNewItem = items.AddItem("Item 1");
items.set_CellValue(iNewItem, 1, "SubItem 1");
iNewItem = items.AddItem("Item 2");
items.set_CellValue(iNewItem, 1, "SubItem 2");

The following VFP sample adds new items to the control:

with thisform.G2antt1.Items
 .DefaultItem = .AddItem("Item 1")
 .CellValue(0, 1) = "SubItem 1"
endwith

method Items.AddLink (LinkKey as Variant, StartItem as HITEM,
StartBarKey as Variant, EndItem as HITEM, EndBarKey as Variant)
Links a bar to another.

Type Description

LinkKey as Variant A String expression that indicates the key of the link. This
value is used to identify the link.

StartItem as HITEM A HITEM expression that indicates the handle of the item
where the link starts.

StartBarKey as Variant A String expression that indicates the key of the bar in the
StartItem where the link starts.

EndItem as HITEM A HITEM expression that indicates the handle of the item
where the link ends.

EndBarKey as Variant A String expression that indicates the key of the bar in the
EndItem where the link ends.

Use the AddLink method to draw a line between two bars, or two create a link between two
bars. The AddLink method adds the link not matter of the ItemBar(exBarCanBeLinked),
ItemBar(exBarCanStartLink), ItemBar(exBarCanEndLink) properties. Use the Link(
exLinkGroupBars) to group two linked bars. Use the GroupBars method to group two bars
so you can move or resize together when a change occurs in the group. Use the
AllowLinkBars property to specify whether the user can link bars using the mouse. By
default, the bar is drawn from the right side of the starting bar, to the left side of the ending
bar. Use the Link(exLinkText) property to display a HTML text/icon or picture on the link.
Use the Link(exLinkStartPos) property to change where the link starts in the starting bar.
Use the Link(exLinkEndPos) property to change where the link starts in the starting bar.
Use the AddBar method to add new bars to an item. Use the Link property to change the
appearance of the line between bars. Use the ShowLinks property to hide all links in the
chart area. Use the ClearLinks method to clear the links collection. The AddLink method
fails, if the StartItem or EndItem item is not valid, or if the StartBarKey or EndBarKey bar
does not exist. Use the LinkColor property to change the color for all links between bars.
Use the Link(exLinkShowDir) property to hide the link's arrow. Use the RemoveLink method
to remove a specific link. Use the BeginUpdate and EndUpdate methods to maintain
performance while adding columns, items, bars or links. Use the FirstLink and NextLink
properties to enumerate the links in the control.

The following VB sample adds a link between two bars:

G2antt1.BeginUpdate
With G2antt1.Items
 Dim h1 As HITEM
 h1 = .AddItem("Item 1")
 .AddBar h1, "Task", G2antt1.Chart.FirstVisibleDate + 2, G2antt1.Chart.FirstVisibleDate +
4
 Dim h2 As HITEM
 h2 = .AddItem("Item 2")
 .AddBar h2, "Task", G2antt1.Chart.FirstVisibleDate + 1, G2antt1.Chart.FirstVisibleDate +
2, "A"
 .AddLink "Link11", h1, "", h2, "A"
End With
G2antt1.EndUpdate

The following C++ sample adds a link between two bars:

COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
m_g2antt.BeginUpdate();
CItems items = m_g2antt.GetItems();
CChart chart = m_g2antt.GetChart();
long h1 = items.AddItem(COleVariant("Item1"));
items.AddBar(h1, COleVariant("Task"), COleVariant(V_DATE(&chart.GetFirstVisibleDate())
+ 2), COleVariant(V_DATE(&chart.GetFirstVisibleDate()) + 4), vtMissing, vtMissing);
long h2 = items.AddItem(COleVariant("Item2"));
items.AddBar(h2, COleVariant("Task"), COleVariant(V_DATE(&chart.GetFirstVisibleDate())
+ 1), COleVariant(V_DATE(&chart.GetFirstVisibleDate()) + 2), COleVariant("JustAKey"),
vtMissing);
items.AddLink(COleVariant("Link1"), h1, vtMissing, h2, COleVariant("JustAKey"));
m_g2antt.EndUpdate();

The following VB.NET sample adds a link between two bars:

AxG2antt1.BeginUpdate()
Dim d As Date = AxG2antt1.Chart.FirstVisibleDate
With AxG2antt1.Items
 Dim h1 As Integer = .AddItem("Item 1")
 .AddBar(h1, "Task", d.AddDays(2), d.AddDays(4))
 Dim h2 As Integer = .AddItem("Item 2")
 .AddBar(h2, "Task", d.AddDays(1), d.AddDays(2), "A")
 .AddLink("Link11", h1, "", h2, "A")
End With
AxG2antt1.EndUpdate()

The following C# sample adds a link between two bars:

axG2antt1.BeginUpdate();
DateTime d = Convert.ToDateTime(axG2antt1.Chart.FirstVisibleDate);
EXG2ANTTLib.Items spItems = axG2antt1.Items;
int h1 = spItems.AddItem("Item 1");
spItems.AddBar(h1, "Task", d.AddDays(2), d.AddDays(4) , null, null);
int h2 = spItems.AddItem("Item 2");
spItems.AddBar(h2, "Task", d.AddDays(1), d.AddDays(2), "A", null);
spItems.AddLink("Link1", h1, null, h2, "A");
axG2antt1.EndUpdate();

The following VFP sample adds a link between two bars:

thisform.G2antt1.BeginUpdate
local d
d = thisform.G2antt1.Chart.FirstVisibleDate
With thisform.G2antt1.Items
 local h1
 .DefaultItem = .AddItem("Item 1")
 h1 = .DefaultItem
 .AddBar(0, "Task", thisform.G2antt1.Chart.NextDate(d,4096,2),
thisform.G2antt1.Chart.NextDate(d,4096,4))
 local h2
 .DefaultItem = .AddItem("Item 2")

 h2 = .DefaultItem
 .AddBar(0, "Task", thisform.G2antt1.Chart.NextDate(d,4096,1),
thisform.G2antt1.Chart.NextDate(d,4096,2), "A")
 .AddLink("Link11", h1, "", h2, "A")
EndWith
thisform.G2antt1.EndUpdate

property Items.AllowCellValueToItemBar as Boolean
Retrieves or sets a value that indicates whether the cells display associated properties of
the bars in the item.

Type Description

Boolean A Boolean expression that specifies whether the control
handles properties of the bars in the column's section.

By default, the AllowCellValueToItemBar property is False. In other words, if there is any
association between a cell and a property bar they do not have any effect, while the
AllowCellValueToItemBar property is False. The AllowCellValueToItemBar property allows
the cells to display properties of the bars, and the property of the bar to be specified by the
cell's value. For instance, you can use the CellValueToItemBar feature to display the start
and ending date of any bar in the item, for the entire column, or in any cell. The values in the
cells are automatically changed once the bar is resized or moved and reverse, if the cell's
value is changed the associated bar is moved or resized.

The following screen shot shows the association between ItemBar(exBarEffort) property of
the bar with the cell in last column, so changing it is automatically reflected in the chart's
histogram :

The cell's value can be associated with any property of the bar, using the:

Def(exCellValueToItemBarProperty/exCellValueToItemBarKey) property of the Column
object, that defines a relation/association between specified property bar and the cells
in the column. For instance, the .Def(exCellValueToItemBarProperty) = 1 indicates that
the column displays the property of the bar with the index 1, which is exBarStart or
.Def(exCellValueToItemBarProperty) = 543, displays the exBarEndInclusive property of
the bar.

CellValueToItemBar method of the Items object, that associates the cell's value with
any property of the bar in the item.

Once an association between a cell and a bar is made, the CellValue property and ItemBar
property returns the same result, or in other words, changing the cell's value will be
reflected in the bar's property, and back, so changing the bar's property will change the
cell's value.

The following VB sample display automatically the start and end dates of the bars in the
Start and End columns:

With G2antt1
 .BeginUpdate
 With .Columns
 .Add "Tasks"
 With .Add("Start")
 .Def(exCellValueToItemBarProperty) = 1
 .Editor.EditType = DateType
 End With
 With .Add("End")
 .Def(exCellValueToItemBarProperty) = 2
 .Editor.EditType = DateType
 End With
 End With
 With .Chart
 .FirstVisibleDate = #9/20/2006#
 .AllowLinkBars = True
 .AllowCreateBar = exNoCreateBar
 .LevelCount = 2
 .PaneWidth(0) = 196
 End With
 With .Items
 .AllowCellValueToItemBar = True
 .AddBar .AddItem("Task 1"),"Task",#9/21/2006#,#9/24/2006#
 .AddBar .AddItem("Task 2"),"Task",#9/22/2006#,#9/25/2006#
 .AddBar .AddItem("Task 3"),"Task",#9/23/2006#,#9/26/2006#
 End With
 .EndUpdate
End With

The following VB.NET sample display automatically the start and end dates of the bars in
the Start and End columns:

With AxG2antt1
 .BeginUpdate
 With .Columns
 .Add "Tasks"
 With .Add("Start")
 .Def(EXG2ANTTLib.DefColumnEnum.exCellValueToItemBarProperty) = 1
 .Editor.EditType = EXG2ANTTLib.EditTypeEnum.DateType
 End With
 With .Add("End")
 .Def(EXG2ANTTLib.DefColumnEnum.exCellValueToItemBarProperty) = 2
 .Editor.EditType = EXG2ANTTLib.EditTypeEnum.DateType
 End With
 End With
 With .Chart
 .FirstVisibleDate = #9/20/2006#
 .AllowLinkBars = True
 .AllowCreateBar = EXG2ANTTLib.CreateBarEnum.exNoCreateBar
 .LevelCount = 2
 .PaneWidth(0) = 196
 End With
 With .Items
 .AllowCellValueToItemBar = True
 .AddBar .AddItem("Task 1"),"Task",#9/21/2006#,#9/24/2006#
 .AddBar .AddItem("Task 2"),"Task",#9/22/2006#,#9/25/2006#
 .AddBar .AddItem("Task 3"),"Task",#9/23/2006#,#9/26/2006#
 End With
 .EndUpdate
End With

The following C++ sample display automatically the start and end dates of the bars in the
Start and End columns:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->BeginUpdate();
EXG2ANTTLib::IColumnsPtr var_Columns = spG2antt1->GetColumns();
 var_Columns->Add(L"Tasks");
 EXG2ANTTLib::IColumnPtr var_Column = ((EXG2ANTTLib::IColumnPtr)(var_Columns-
>Add(L"Start")));
 var_Column->PutDef(EXG2ANTTLib::exCellValueToItemBarProperty,long(1));
 var_Column->GetEditor()->PutEditType(EXG2ANTTLib::DateType);
 EXG2ANTTLib::IColumnPtr var_Column1 = ((EXG2ANTTLib::IColumnPtr)(var_Columns-
>Add(L"End")));
 var_Column1->PutDef(EXG2ANTTLib::exCellValueToItemBarProperty,long(2));
 var_Column1->GetEditor()->PutEditType(EXG2ANTTLib::DateType);
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutFirstVisibleDate("9/20/2006");
 var_Chart->PutAllowLinkBars(VARIANT_TRUE);
 var_Chart->PutAllowCreateBar(EXG2ANTTLib::exNoCreateBar);
 var_Chart->PutLevelCount(2);
 var_Chart->PutPaneWidth(0,196);
EXG2ANTTLib::IItemsPtr var_Items = spG2antt1->GetItems();
 var_Items->PutAllowCellValueToItemBar(VARIANT_TRUE);
 var_Items->AddBar(var_Items->AddItem("Task
1"),"Task","9/21/2006","9/24/2006",vtMissing,vtMissing);
 var_Items->AddBar(var_Items->AddItem("Task
2"),"Task","9/22/2006","9/25/2006",vtMissing,vtMissing);
 var_Items->AddBar(var_Items->AddItem("Task
3"),"Task","9/23/2006","9/26/2006",vtMissing,vtMissing);
spG2antt1->EndUpdate();

The following C# sample display automatically the start and end dates of the bars in the
Start and End columns:

axG2antt1.BeginUpdate();
EXG2ANTTLib.Columns var_Columns = axG2antt1.Columns;

 var_Columns.Add("Tasks");
 EXG2ANTTLib.Column var_Column = (var_Columns.Add("Start") as
EXG2ANTTLib.Column);

var_Column.set_Def(EXG2ANTTLib.DefColumnEnum.exCellValueToItemBarProperty,1);
 var_Column.Editor.EditType = EXG2ANTTLib.EditTypeEnum.DateType;
 EXG2ANTTLib.Column var_Column1 = (var_Columns.Add("End") as
EXG2ANTTLib.Column);

var_Column1.set_Def(EXG2ANTTLib.DefColumnEnum.exCellValueToItemBarProperty,2);
 var_Column1.Editor.EditType = EXG2ANTTLib.EditTypeEnum.DateType;
EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;
 var_Chart.FirstVisibleDate = "9/20/2006";
 var_Chart.AllowLinkBars = true;
 var_Chart.AllowCreateBar = EXG2ANTTLib.CreateBarEnum.exNoCreateBar;
 var_Chart.LevelCount = 2;
 var_Chart.set_PaneWidth(0 != 0,196);
EXG2ANTTLib.Items var_Items = axG2antt1.Items;
 var_Items.AllowCellValueToItemBar = true;
 var_Items.AddBar(var_Items.AddItem("Task 1"),"Task","9/21/2006","9/24/2006",null,null);
 var_Items.AddBar(var_Items.AddItem("Task 2"),"Task","9/22/2006","9/25/2006",null,null);
 var_Items.AddBar(var_Items.AddItem("Task 3"),"Task","9/23/2006","9/26/2006",null,null);
axG2antt1.EndUpdate();

The following VFP sample display automatically the start and end dates of the bars in the
Start and End columns:

with thisform.G2antt1
 .BeginUpdate
 with .Columns
 .Add("Tasks")
 with .Add("Start")
 .Def(18) = 1
 .Editor.EditType = 7
 endwith
 with .Add("End")
 .Def(18) = 2
 .Editor.EditType = 7

 endwith
 endwith
 with .Chart
 .FirstVisibleDate = {^2006-9-20}
 .AllowLinkBars = .T.
 .AllowCreateBar = 0
 .LevelCount = 2
 .PaneWidth(0) = 196
 endwith
 with .Items
 .AllowCellValueToItemBar = .T.
 .AddBar(.AddItem("Task 1"),"Task",{^2006-9-21},{^2006-9-24})
 .AddBar(.AddItem("Task 2"),"Task",{^2006-9-22},{^2006-9-25})
 .AddBar(.AddItem("Task 3"),"Task",{^2006-9-23},{^2006-9-26})
 endwith
 .EndUpdate
endwith

The following Delphi sample display automatically the start and end dates of the bars in the
Start and End columns:

with AxG2antt1 do
begin
 BeginUpdate();
 with Columns do
 begin
 Add('Tasks');
 with (Add('Start') as EXG2ANTTLib.Column) do
 begin
 Def[EXG2ANTTLib.DefColumnEnum.exCellValueToItemBarProperty] := TObject(1);
 Editor.EditType := EXG2ANTTLib.EditTypeEnum.DateType;
 end;
 with (Add('End') as EXG2ANTTLib.Column) do
 begin
 Def[EXG2ANTTLib.DefColumnEnum.exCellValueToItemBarProperty] := TObject(2);
 Editor.EditType := EXG2ANTTLib.EditTypeEnum.DateType;
 end;
 end;

 with Chart do
 begin
 FirstVisibleDate := '9/20/2006';
 AllowLinkBars := True;
 AllowCreateBar := EXG2ANTTLib.CreateBarEnum.exNoCreateBar;
 LevelCount := 2;
 PaneWidth[0 <> 0] := 196;
 end;
 with Items do
 begin
 AllowCellValueToItemBar := True;
 AddBar(AddItem('Task 1'),'Task','9/21/2006','9/24/2006',Nil,Nil);
 AddBar(AddItem('Task 2'),'Task','9/22/2006','9/25/2006',Nil,Nil);
 AddBar(AddItem('Task 3'),'Task','9/23/2006','9/26/2006',Nil,Nil);
 end;
 EndUpdate();
end

property Items.CellBackColor([Item as Variant], [ColIndex as Variant]) as
Color

Retrieves or sets the cell's background color.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Color

A color expression that indicates the cell's background
color. The last 7 bits in the high significant byte of the color
to indicates the identifier of the skin being used. Use the
Add method to add new skins to the control. If you need
to remove the skin appearance from a part of the control
you need to reset the last 7 bits in the high significant byte
of the color being applied to the background's part.

To change the background color for the entire item you can use ItemBackColor property.
Use the ClearCellBackColor method to clear the cell's background color. Use the BackColor
property to specify the control's background color. Use the CellForeColor property to
specify the cell's foreground color. Use the ItemForeColor property to specify the item's
foreground color. Use the Def(exCellBackColor) property to specify the background color
for all cells in the column. Use the ConditionalFormats method to apply formats to a cell or
range of cells, and have that formatting change depending on the value of the cell or the
value of a formula.

In VB.NET or C# you require the following functions until the .NET framework will support
them:

You can use the following VB.NET function:

 Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
 End Function

You can use the following C# function:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following C# sample changes the background color for the focused cell:

axG2antt1.Items.set_CellBackColor(axG2antt1.Items.FocusItem, 0, ToUInt32(Color.Red));

The following VB.NET sample changes the background color for the focused cell:

With AxG2antt1.Items
 .CellBackColor(.FocusItem, 0) = ToUInt32(Color.Red)
End With

The following C++ sample changes the background color for the focused cell:

#include "Items.h"
CItems items = m_g2antt.GetItems();
items.SetCellBackColor(COleVariant(items.GetFocusItem()), COleVariant((long)0),
RGB(255,0,0));

The following VFP sample changes the background color for the focused cell:

with thisform.G2antt1.Items
 .DefaultItem = .FocusItem
 .CellBackColor(0, 0) = RGB(255,0,0)
endwith

For instance, the following VB code changes background color of the left top cell of your
control: G2antt1.Items.CellBackColor(G2antt.Items(0), 0) = vbBlue

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell (see ItemCell property). Here's few hints

how to use properties with Item and ColIndex parameters:

G2antt1.Items.CellBold(, G2antt1.Items.ItemCell(G2antt1.Items(0), 0)) = True

G2antt1.Items.CellBold(G2antt1.Items(0), 0) = True

G2antt1.Items.CellBold(G2antt1.Items(0), "ColumnName") = True

property Items.CellBold([Item as Variant], [ColIndex as Variant]) as
Boolean

Retrieves or sets a value that indicates whether the cell's caption should appear in bold.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Boolean A boolean expression that indicates whether the cell
should appear in bold.

Use the CellBold property to bold a cell. Use the ItemBold property to specify whether the
item should appear in bold. Use the HeaderBold property of the Column object to bold the
column's caption. Use the CellItalic, CellUnderline or CellStrikeOut property to apply
different font attributes to the cell. Use the ItemItalic, ItemUnderline or ItemStrikeOut
property to apply different font attributes to the item. Use the CellValueFormat property to
specify an HTML caption. Use the ConditionalFormats method to apply formats to a cell or
range of cells, and have that formatting change depending on the value of the cell or the
value of a formula.

The following VB sample bolds the cells in the first column

Dim h As Variant
G2antt1.BeginUpdate
With G2antt1.Items
For Each h In G2antt1.Items
 .CellBold(h, 0) = True
Next
End With
G2antt1.EndUpdate

The following C++ sample bolds the focused cell:

#include "Items.h"
CItems items = m_g2antt.GetItems();
items.SetCellBold(COleVariant(items.GetFocusItem()), COleVariant((long)0), TRUE);

The following C# sample bolds the focused cell:

axG2antt1.Items.set_CellBold(axG2antt1.Items.FocusItem, 0, true);

The following VB.NET sample bolds the focused cell:

With AxG2antt1.Items
 .CellBold(.FocusItem, 0) = True
End With

The following VFP sample bolds the focused cell:

with thisform.G2antt1.Items
 .DefaultItem = .FocusItem
 .CellBold(0, 0) = .t.
endwith

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell (see ItemCell property). Here's few hints
how to use properties with Item and ColIndex parameters:

G2antt1.Items.CellBold(, G2antt1.Items.ItemCell(G2antt1.Items(0), 0)) = True

G2antt1.Items.CellBold(G2antt1.Items(0), 0) = True

G2antt1.Items.CellBold(G2antt1.Items(0), "ColumnName") = True

property Items.CellButtonAutoWidth([Item as Variant], [ColIndex as
Variant]) as Boolean

Retrieves or sets a value indicating whether the cell's button fits the cell's caption.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption or the
column's key.

Boolean A boolean expression indicating whether the cell's button
fits the cell's caption.

By default, the CellButtonAutoWidth property is False. The CellButtonAutoWidth property
has effect only if the CellHasButton property is true. Use the Def property to specify that all
buttons in the column fit to the cell's content. If the CellButtonAutoWidth property is False,
the width of the button is the same as the width of the column. If the CellButtonAutoWidth
property is True, the button area covers only the cell's caption. Use the CellValue property
to specify the button's caption. Use the CellValueFormat property to assign an HTML
caption to the button. The control fires the ButtonClick property when the user clicks a
button.

property Items.CellCaption ([Item as Variant], [ColIndex as Variant]) as
String
Gets the cell's display value.

Type Description

Item as Variant

A long expression that indicates the item's handle. During
the ValidateValue event, you can uses -1 instead Item, to
access to the modified value. In other words during
ValidateValue event, the Items.CellValue(Item,ColIndex)
and Items.CellCaption(Item,ColIndex) properties retrieve
the original value/caption of the cell while the
Items.CellValue(-1,ColIndex) and
Items.CellCaption(-1,ColIndex) gets the modified value of
the specified cell.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

String A string expression that indicates the cell's value as it is
displayed on the user interface.

The CellCaption property retrieves the cell's display value as it is displayed on the control's
user interface. If the cell has no editor associated (no editor was assigned to the column
and no editor was assigned to the cell), the CellCaption property gets the string
representation of the cell's value. Use the CellValue property to change the cell's value. For
instance, if a cell has a drop down list editor, the CellCaption property retrieves the caption
of the predefined values. Use the CellImage property to assign an icon to a cell. Use the
CellImages property to assign multiple icons to a cell. Use the CellPicture property to
assign a custom size picture to a cell. Use the HTML tag to insert icons inside the
cell's caption, if the CellValueFormat property is exHTML.

property Items.CellChecked (RadioGroup as Long) as HCELL

Retrieves the cell's handle that is checked on a specific radio group.

Type Description
RadioGroup as Long A long expression that indicates the radio group identifier.

HCELL

A long expression that identifies the handle of the cell
that's checked in the specified radio group. To retrieve the
handle of the owner item you have to use CellItem
property.

A radio group contains a set of cells of radio types. Use the CellHasRadioButton property to
set the cell of radio type. To change the state for a cell you can use the CellState property.
To add or remove a cell to a given radio group you have to use CellHasRadioButton
property. Use the CellRadioGroup property to add cells in the same radio group. The
control fires the CellStateChanged event when the check box or radio button state is
changed.

The following VB sample groups all cells on the first column into a radio group, and display
the cell's checked on the radio group when the state of a radio group is changed:

Private Sub G2antt1_AddItem(ByVal Item As EXG2ANTTLibCtl.HITEM)
 G2antt1.Items.CellHasRadioButton(Item, 0) = True
 G2antt1.Items.CellRadioGroup(Item, 0) = 1234 ' The 1234 is arbirary and it represents
the identifier for the radio group
End Sub

Private Sub G2antt1_CellStateChanged(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal
ColIndex As Long)
 Debug.Print "In the 1234 radio group the """ & G2antt1.Items.CellValue(,
G2antt1.Items.CellChecked(1234)) & """ is checked."
End Sub

The following C++ sample groups the radio cells on the first column, and displays the
caption of the checked radio cell:

#include "Items.h"
COleVariant vtColumn(long(0));
CItems items = m_g2antt.GetItems();
m_g2antt.BeginUpdate();

for (long i = 0; i < items.GetItemCount(); i++)
{
 COleVariant vtItem(items.GetItemByIndex(i));
 items.SetCellHasRadioButton(vtItem, vtColumn, TRUE);
 items.SetCellRadioGroup(vtItem, vtColumn, 1234);
}
m_g2antt.EndUpdate();

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnCellStateChangedG2antt1(long Item, long ColIndex)
{
 CItems items = m_g2antt.GetItems();
 long hCell = items.GetCellChecked(1234);
 COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
 OutputDebugString(V2S(&items.GetCellValue(vtMissing, COleVariant(hCell))));
}

The following VB.NET sample groups the radio cells on the first column, and displays the
caption of the checked radio cell:

With AxG2antt1
 .BeginUpdate()
 With .Items
 Dim k As Integer
 For k = 0 To .ItemCount - 1

 .CellHasRadioButton(.ItemByIndex(k), 0) = True
 .CellRadioGroup(.ItemByIndex(k), 0) = 1234
 Next
 End With
 .EndUpdate()
End With

Private Sub AxG2antt1_CellStateChanged(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_CellStateChangedEvent) Handles
AxG2antt1.CellStateChanged
 With AxG2antt1.Items
 Debug.WriteLine(.CellValue(, .CellChecked(1234)))
 End With
End Sub

The following C# sample groups the radio cells on the first column, and displays the caption
of the checked radio cell:

axG2antt1.BeginUpdate();
EXG2ANTTLib.Items items = axG2antt1.Items;
for (int i = 0; i < items.ItemCount; i++)
{
 items.set_CellHasRadioButton(items[i], 0, true);
 items.set_CellRadioGroup(items[i], 0, 1234);
}
axG2antt1.EndUpdate();

private void axG2antt1_CellStateChanged(object sender,
AxEXG2ANTTLib._IG2anttEvents_CellStateChangedEvent e)
{
 string strOutput = axG2antt1.Items.get_CellValue(0,
axG2antt1.Items.get_CellChecked(1234)).ToString();
 strOutput += " state = " + axG2antt1.Items.get_CellState(e.item, e.colIndex).ToString() ;
 System.Diagnostics.Debug.WriteLine(strOutput);
}

The following VFP sample groups the radio cells on the first column, and displays the
caption of the checked radio cell:

thisform.G2antt1.BeginUpdate()
with thisform.G2antt1.Items
 local i
 for i = 0 to .ItemCount - 1
 .DefaultItem = .ItemByIndex(i)
 .CellHasRadioButton(0,0) = .t.
 .CellRadioGroup(0,0) = 1234
 next
endwith
thisform.G2antt1.EndUpdate()

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell (see ItemCell property). Here's few hints
how to use properties with Item and ColIndex parameters:

G2antt1.Items.CellBold(, G2antt1.Items.ItemCell(G2antt1.Items(0), 0)) = True

G2antt1.Items.CellBold(G2antt1.Items(0), 0) = True

G2antt1.Items.CellBold(G2antt1.Items(0), "ColumnName") = True

property Items.CellData([Item as Variant], [ColIndex as Variant]) as
Variant

Retrieves or sets the extra data for a specific cell.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Variant A variant expression that indicates the cell's user data.

Use the CellData to associate an extra data to your cell. Use ItemData when you need to
associate an extra data with an item. The CellData value is not used by the control, it is only
for user use. Use the Data property to assign an extra data to a column. Use the
SortUserData or SortUserDataString type to sort the column based on the CellData value.
Use the CellValue property to specify the cell's caption.

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell (see ItemCell property). Here's few hints
how to use properties with Item and ColIndex parameters:

G2antt1.Items.CellBold(, G2antt1.Items.ItemCell(G2antt1.Items(0), 0)) = True

G2antt1.Items.CellBold(G2antt1.Items(0), 0) = True

G2antt1.Items.CellBold(G2antt1.Items(0), "ColumnName") = True

property Items.CellEditor ([Item as Variant], [ColIndex as Variant]) as
Editor
Creates an gets the cell's built-in editor.

Type Description
Item as Variant A long expression that indicates the item's handle

ColIndex as Variant
A long expression that indicates the column's index or the
cell's handle, a string expression that indicates the
column's caption or key.

Editor An Editor object being created or accessed

The CellEditor property gets you the custom cell editor if it exists, else it creates it. The
CellEditor property creates an empty editor if it wasn't created before, so please pay
attention when creating custom cell editors on the fly. You can use the HasCellEditor
property to check whether a cell has associated a custom editor (created using the
CellEditor property). You can have different type of editors in the same column using the
CellEditor property. The CellEditor property builds a new editor for a specific cell. By
default, the cell's editor is the default column's editor. Use the EditType property to specify
an editor for the column. Use the DeleteCellEditor method to clear a particular cell editor
created using the CellEditor property. Use the CellEditorVisible property to hide the cell's
editor. You can use the BeginUpdate, EndUpdate method to refresh the control.

The following VB sample assigns a date type editor to the first cell:

With G2antt1.Items
 Dim h As EXG2ANTTLibCtl.HITEM
 h = .ItemByIndex(0)
 If Not .HasCellEditor(h, 0) Then
 With .CellEditor(h, 0)
 .EditType = DateType
 End With
 End If
End With

The following VB sample assigns a spin type editor with min and max values:

With G2antt1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = SliderType

 .Option(exSliderWidth) = 0
 .Option(exSliderMin) = 5
 .Option(exSliderMax) = 10
 End With
End With

The following C++ sample assigns a date type editor to the first cell:

#include "Items.h"
#include "Editor.h"
void OnButton1()
{
 CItems items = m_g2antt.GetItems();
 COleVariant vtItem(items.GetItemByIndex(0)), vtColumn((long)0);
 if (!items.GetHasCellEditor(vtItem, vtColumn))
 {
 CEditor editor = items.GetCellEditor(vtItem, vtColumn);
 editor.SetEditType(7 /*DateType*/);
 }
}

The following C++ sample assigns a spin type editor with min and max values:

#include "Items.h"
#include "Editor.h"
CItems items = m_g2antt.GetItems();
CEditor editor = items.GetCellEditor(COleVariant(items.GetFirstVisibleItem()),
COleVariant(long(0)));
editor.SetEditType(20 /*SliderType*/);
editor.SetOption(41 /*exSliderWidth */, COleVariant(long(0)));
editor.SetOption(43 /*exSliderMin*/, COleVariant(long(5)));
editor.SetOption(44 /*exSliderMax*/, COleVariant(long(10)));

The following VB.NET sample assigns a date type editor to the first cell:

With AxG2antt1.Items
 Dim h As Integer = .ItemByIndex(0)
 If Not .HasCellEditor(h, 0) Then
 With .CellEditor(h, 0)

 .EditType = EXG2ANTTLib.EditTypeEnum.DateType
 End With
 End If
End With

The following VB.NET sample assigns a spin type editor with min and max values:

With AxG2antt1.Items
 With .CellEditor(.FirstVisibleItem, 0)
 .EditType = EXG2ANTTLib.EditTypeEnum.SliderType
 .Option(EXG2ANTTLib.EditorOptionEnum.exSliderWidth) = 0
 .Option(EXG2ANTTLib.EditorOptionEnum.exSliderMin) = 5
 .Option(EXG2ANTTLib.EditorOptionEnum.exSliderMax) = 10
 End With
End With

The following C# sample assigns a date type editor to the first cell:

int h = axG2antt1.Items[0];
if (!axG2antt1.Items.get_HasCellEditor(h, 0))
{
 EXG2ANTTLib.Editor editor = axG2antt1.Items.get_CellEditor(h, 0);
 if (editor != null)
 editor.EditType = EXG2ANTTLib.EditTypeEnum.DateType;
}

The following C# sample assigns a spin type editor with min and max values:

EXG2ANTTLib.Editor editor =
axG2antt1.Items.get_CellEditor(axG2antt1.Items.FirstVisibleItem, 0);
editor.EditType = EXG2ANTTLib.EditTypeEnum.SliderType;
editor.set_Option(EXG2ANTTLib.EditorOptionEnum.exSliderWidth, 0);
editor.set_Option(EXG2ANTTLib.EditorOptionEnum.exSliderMin, 5);
editor.set_Option(EXG2ANTTLib.EditorOptionEnum.exSliderMax, 10);

The following VFP sample assigns a date type editor to the first cell:

with thisform.G2antt1.Items
 thisform.G2antt1.BeginUpdate()

 .DefaultItem = .ItemByIndex(0)
 if (!.HasCellEditor(0, 0))
 .CellEditor(0, 0).EditType = 7
 endif
 thisform.G2antt1.EndUpdate()
endwith

The following VFP sample assigns a spin type editor with min and max values:

with thisform.G2antt1.Items
 with .CellEditor(.FirstVisibleItem, 0)
 .EditType = 20 && SliderType
 .Option(41) = 0 && exSliderWidth
 .Option(43) = 5 && exSliderMin
 .Option(44) = 10 && exSliderMax
 endwith
endwith

property Items.CellEditorVisible([Item as Variant], [ColIndex as Variant])
as EditorVisibleEnum
Specifies whether a column's editor is visible or hidden into the cell.

Type Description
Item as Variant A long expression that indicates the item's handle

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key

EditorVisibleEnum An EditorVisibleEnum expression that specifies whether
the cell's editor is visible or hidden

Use the CellEditorVisible property to hide the cell's editor. Use the Editor or CellEditor
property to assign an editor to the entire column or to a specific cell. Use the Locked
property to lock an editor. If the cell's editor is hidden, the cell displays the CellValue
property as a plain text, if the CellValueFormat property is exText, else if the
CellValueFormat property is exHTML the cell displays the CellValue using built-in HTML
format.

The following VB sample hides the editor for the focused cell:

With G2antt1.Items
 .CellEditorVisible(.FocusItem, G2antt1.FocusColumnIndex) = False
End With

The following C++ sample hides the editor for the focused cell:

#include "Items.h"
CItems items = m_g2antt.GetItems();
items.SetCellEditorVisible(COleVariant(items.GetFocusItem()), COleVariant(
m_g2antt.GetFocusColumnIndex()), FALSE);

The following VB.NET sample hides the editor for the focused cell:

With AxG2antt1.Items
 .CellEditorVisible(.FocusItem, AxG2antt1.FocusColumnIndex) = False
End With

The following C# sample hides the editor for the focused cell:

EXG2ANTTLib.Items items = axG2antt1.Items;
items.set_CellEditorVisible(items.FocusItem, axG2antt1.FocusColumnIndex, false);

The following VFP sample hides the editor for the focused cell:

with thisform.G2antt1.Items
 .DefaultItem = .FocusItem
 .CellEditorVisible(0, thisform.G2antt1.FocusColumnIndex) = .f.
endwith

property Items.CellEnabled([Item as Variant], [ColIndex as Variant]) as
Boolean

Returns or sets a value that determines whether a cell can respond to user-generated
events.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Boolean A boolean expression that indicates whether the cell is
enabled or disabled.

Use the CellEnabled property to disable a cell. A disabled cell looks grayed. Use the
EnableItem property to disable an item. Once that one cell is disabled it cannot be checked
or clicked. Use the SelectableItem property to specify the user can select an item. To
disable a column you can use Enabled property of the Column object.

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell (see ItemCell property). Here's few hints
how to use properties with Item and ColIndex parameters:

G2antt1.Items.CellBold(, G2antt1.Items.ItemCell(G2antt1.Items(0), 0)) = True

G2antt1.Items.CellBold(G2antt1.Items(0), 0) = True

G2antt1.Items.CellBold(G2antt1.Items(0), "ColumnName") = True

property Items.CellFont ([Item as Variant], [ColIndex as Variant]) as
IFontDisp
Retrieves or sets the cell's font.

Type Description

Item as Variant
A long expression that indicates the item's handle, or
optional if the cell's handle is passed to ColIndex
parameter

ColIndex as Variant
A long expression that indicates the column's index or
cell's handle, or a string expression that indicates the
column's caption.

IFontDisp A Font object that indicates the cell's font.

By default, the CellFont property is nothing. If the CellFont property is noting, the cell uses
the item's font. Use the CellFont and ItemFont properties to specify different fonts for cells
or items. Use the CellBold, CellItalic, CellUnderline, CellStrikeout, ItemBold, ItemUnderline,
ItemStrikeout, ItemItalic or CellValueFormat to specify different font attributes. Use the
Refresh method to refresh the control's content on the fly. Use the BeginUpdate and
EndUpdate methods if you are doing multiple changes, so no need for an update each time
a change is done. Use the ConditionalFormats method to apply formats to a cell or range of
cells, and have that formatting change depending on the value of the cell or the value of a
formula.

The following VB sample changes the font for the focused cell:

With G2antt1.Items
 .CellFont(.FocusItem, 0) = G2antt1.Font
 With .CellFont(.FocusItem, 0)
 .Name = "Comic Sans MS"
 .Size = 10
 .Bold = True
 End With
End With
G2antt1.Refresh

The following C++ sample changes the font for the focused cell:

#include "Items.h"
#include "Font.h"

CItems items = m_g2antt.GetItems();
COleVariant vtItem(items.GetFocusItem()), vtColumn((long)0);
items.SetCellFont(vtItem, vtColumn, m_g2antt.GetFont().m_lpDispatch);
COleFont font = items.GetCellFont(vtItem, vtColumn);
font.SetName("Comic Sans MS");
font.SetBold(TRUE);
m_g2antt.Refresh();

The following VB.NET sample changes the font for the focused cell:

With AxG2antt1.Items
 .CellFont(.FocusItem, 0) = IFDH.GetIFontDisp(AxG2antt1.Font)
 With .CellFont(.FocusItem, 0)
 .Name = "Comic Sans MS"
 .Bold = True
 End With
End With
AxG2antt1.CtlRefresh()

where the IFDH class is defined like follows:

Public Class IFDH
 Inherits System.Windows.Forms.AxHost

 Sub New()
 MyBase.New("")
 End Sub

 Public Shared Function GetIFontDisp(ByVal font As Font) As Object
 GetIFontDisp = AxHost.GetIFontFromFont(font)
 End Function

End Class

The following C# sample changes the font for the focused cell:

axG2antt1.Items.set_CellFont(axG2antt1.Items.FocusItem, 0, IFDH.GetIFontDisp(
axG2antt1.Font));
stdole.IFontDisp spFont = axG2antt1.Items.get_CellFont(axG2antt1.Items.FocusItem, 0);

spFont.Name = "Comic Sans MS";
spFont.Bold = true;
axG2antt1.CtlRefresh();

where the IFDH class is defined like follows:

internal class IFDH : System.Windows.Forms.AxHost
{
 public IFDH() : base("")
 {
 }

 public static stdole.IFontDisp GetIFontDisp(System.Drawing.Font font)
 {
 return System.Windows.Forms.AxHost.GetIFontFromFont(font) as stdole.IFontDisp;
 }
}

The following VFP sample changes the font for the focused cell:

with thisform.G2antt1.Items
 .DefaultItem = .FocusItem
 .CellFont(0,0) = thisform.G2antt1.Font
 with .CellFont(0,0)
 .Name = "Comic Sans MS"
 .Bold = .t.
 endwith
endwith
thisform.G2antt1.Object.Refresh()

property Items.CellForeColor([Item as Variant], [ColIndex as Variant]) as
Color

Retrieves or sets the cell's foreground color.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Color A color expression that indicates the cell's foreground
color.

The CellForeColor property identifies the cell's foreground color. Use the
ClearCellForeColor property to clear the cell's foreground color. Use the ItemForeColor
property to specify the the item's foreground color. Use the Def(exCellForeColor) property
to specify the foreground color for all cells in the column.

For instance, the following VB code changes the left top cell of your control:
G2antt1.Items.CellForeColor(G2antt1.Items(0), 0) = vbBlue

In VB.NET or C# you require the following functions until the .NET framework will provide:

You can use the following VB.NET function:

 Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
 End Function

You can use the following C# function:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;

 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following C# sample changes the foreground color for the focused cell:

axG2antt1.Items.set_CellForeColor(axG2antt1.Items.FocusItem, 0, ToUInt32(Color.Red));

The following VB.NET sample changes the foreground color for the focused cell:

With AxG2antt1.Items
 .CellForeColor(.FocusItem, 0) = ToUInt32(Color.Red)
End With

The following C++ sample changes the foreground color for the focused cell:

#include "Items.h"
CItems items = m_g2antt.GetItems();
items.SetCellForeColor(COleVariant(items.GetFocusItem()), COleVariant((long)0),
RGB(255,0,0));

The following VFP sample changes the foreground color for the focused cell:

with thisform.G2antt1.Items
 .DefaultItem = .FocusItem
 .CellForeColor(0, 0) = RGB(255,0,0)
endwith

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

G2antt1.Items.CellBold(, G2antt1.Items.ItemCell(G2antt1.Items(0), 0)) = True

G2antt1.Items.CellBold(G2antt1.Items(0), 0) = True

G2antt1.Items.CellBold(G2antt1.Items(0), "ColumnName") = True

property Items.CellFormatLevel([Item as Variant], [ColIndex as Variant])
as String
Specifies the arrangement of the fields inside the cell.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

String
A CRD string expression that indicates the layout of the
cell. The Index elements in the CRD string indicates the
index of the column being displayed.

By default, the CellFormatLevel property is empty. If the CellFormatLevel property is empty,
the cell displays it's caption. Use the CellValue property to assign a value to a cell. If the
CellFormatLevel property is not empty, it indicates the layout being displayed in the cell's
area. For instance, the CellFormatLevel = "1/2" indicates that the cell's area is vertically
divided such as the up part displays the caption of the cell in the first column, and the down
part displays the caption of the cell in the second column. The height of the item is NOT
changed, after calling the CellFormatLevel property. Use the ItemHeight property to specify
the height of the item. Use the DefaultItemHeight property to specify the default height of
the items before inserting them. Use the Def(exCellFormatLevel) property to specify the
layout for all cells in the same column. For instance, you can have a specify layout for some
cells using the Def(exCellFormatLevel) property (by default it is applied to all cells in the
column), and for other cells you can use the CellFormatLevel property to specify different
layouts, or to remove the default layout. Use the FormatLevel property to arrange the
columns in the control's header bar.

For instance, this layout [dgl=1]""[b=0]:4,(4;""[b=4]/0/4;""[b=1]),""[b=0]:4 adds a 4 pixels-
borders around any object its applies (in this case all columns), like in the following picture:

property Items.CellHAlignment ([Item as Variant], [ColIndex as Variant])
as AlignmentEnum
Retrieves or sets a value that indicates the alignment of the cell's caption.

Type Description
Item as Variant A long expression that indicates the handle of the item.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's key or the
column's caption.

AlignmentEnum An AlignmentEnum expression that indicates the alignment
of the cell's caption.

The CellHAlignment property aligns a particular cell. Use the Alignment property of the
Column object to align all the cells in the column. Use the CellVAlignment property to align
vertically the caption of the cell, when the item displays its content using multiple lines. Use
the ClearCellHAlignment method to clear the cell's alignment previously set by the
CellHAlignment property. If the CellHAlignment property is not set, the Alignment property of
the Column object indicates the cell's alignment. If the cell belongs to the column that
displays the hierarchy (TreeColumnIndex property), the cell can be aligned to the left or to
the right.

The following VB sample right aligns the focused cell:

With G2antt1.Items
 .CellHAlignment(.FocusItem, 0) = AlignmentEnum.RightAlignment
End With

The following C++ sample right aligns the focused cell:

#include "Items.h"
CItems items = m_g2antt.GetItems();
items.SetCellHAlignment(COleVariant(items.GetFocusItem()), COleVariant((long)0), 2
/*RightAlignment*/);

The following VB.NET sample right aligns the focused cell:

With AxG2antt1.Items
 .CellHAlignment(.FocusItem, 0) = EXG2ANTTLib.AlignmentEnum.RightAlignment
End With

The following C# sample right aligns the focused cell:

axG2antt1.Items.set_CellHAlignment(axG2antt1.Items.FocusItem, 0,
EXG2ANTTLib.AlignmentEnum.RightAlignment);

The following VFP sample right aligns the focused cell:

with thisform.G2antt1.Items
 .DefaultItem = .FocusItem
 .CellHAlignment(0,0) = 2 && RightAlignment
endwith

property Items.CellHasButton([Item as Variant], [ColIndex as Variant]) as
Boolean

Retrieves or sets a value indicating whether the cell has associated a push button or not.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Boolean A boolean expression that indicates whether the cell
contains a button.

The CellHasButton property specifies whether the cell display a button inside. When the
cell's button is clicked the control fires ButtonClick event. The caption of the push button is
specified by the CellValue property. Use the Def property to assign buttons for all cells in
the column. Use the Add method to add new skins to the control. Use the Background
property to specify a background color or a visual appearance for specific parts in the
control. See also: CellButtonAutoWidth property.

The following VB sample changes the appearance for buttons in the cells. The sample use
the skin " " when the button is up, and the skin " " when the button is down:

With G2antt1
 With .VisualAppearance
 .Add &H20, App.Path + "\buttonu.ebn"
 .Add &H21, App.Path + "\buttond.ebn"
 End With
 .Background(exCellButtonUp) = &H20000000
 .Background(exCellButtonDown) = &H21000000
End With

The following C++ sample changes the appearance for buttons in the cells:

#include "Appearance.h"
m_g2antt.GetVisualAppearance().Add(0x20,
COleVariant(_T("D:\\Temp\\ExG2antt.Help\\buttonu.ebn")));
m_g2antt.GetVisualAppearance().Add(0x21,
COleVariant(_T("D:\\Temp\\ExG2antt.Help\\buttond.ebn")));
m_g2antt.SetBackground(2 /*exCellButtonUp*/, 0x20000000);

m_g2antt.SetBackground(3 /*exCellButtonDown*/, 0x21000000);

The following VB.NET sample changes the appearance for buttons in the cells.

With AxG2antt1
 With .VisualAppearance
 .Add(&H20, "D:\Temp\ExG2antt.Help\buttonu.ebn")
 .Add(&H21, "D:\Temp\ExG2antt.Help\buttond.ebn")
 End With
 .set_Background(EXG2ANTTLib.BackgroundPartEnum.exCellButtonUp, &H20000000)
 .set_Background(EXG2ANTTLib.BackgroundPartEnum.exCellButtonDown, &H21000000)
End With

The following C# sample changes the appearance for buttons in the cells.

axG2antt1.VisualAppearance.Add(0x20, "D:\\Temp\\ExG2antt.Help\\buttonu.ebn");
axG2antt1.VisualAppearance.Add(0x21, "D:\\Temp\\ExG2antt.Help\\buttond.ebn");
axG2antt1.set_Background(EXG2ANTTLib.BackgroundPartEnum.exCellButtonUp,
0x20000000);
axG2antt1.set_Background(EXG2ANTTLib.BackgroundPartEnum.exCellButtonDown,
0x21000000);

The following VFP sample changes the appearance for buttons in the cells.

With thisform.G2antt1
 With .VisualAppearance
 .Add(32, "D:\Temp\ExG2antt.Help\buttonu.ebn")
 .Add(33, "D:\Temp\ExG2antt.Help\buttond.ebn")
 EndWith
 .Object.Background(2) = 536870912
 .Object.Background(3) = 553648128
endwith

the 536870912 indicates the 0x20000000 value in hexadecimal, and the 553648128
indicates the 0x21000000 value in hexadecimal

The following VB sample sets the cells of the first column to be of button type, and displays
a message if the button is clicked:

Private Sub G2antt1_AddItem(ByVal Item As EXG2ANTTLibCtl.HITEM)

 G2antt1.Items.CellHasButton(Item, 0) = True
End Sub

Private Sub G2antt1_ButtonClick(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal ColIndex As
Long)
 MsgBox "The cell of button type has been clicked"
End Sub

The following VB sample assigns a button to the focused cell:

With G2antt1.Items
 .CellHasButton(.FocusItem, 0) = True
End With

The following C++ sample assigns a button to the focused cell:

#include "Items.h"
CItems items = m_g2antt.GetItems();
items.SetCellHasButton(COleVariant(items.GetFocusItem()), COleVariant((long)0), TRUE
);

The following VB.NET sample assigns a button to the focused cell:

With AxG2antt1.Items
 .CellHasButton(.FocusItem, 0) = True
End With

The following C# sample assigns a button to the focused cell:

axG2antt1.Items.set_CellHasButton(axG2antt1.Items.FocusItem, 0, true);

The following VFP sample assigns a button to the focused cell:

with thisform.G2antt1.Items
 .DefaultItem = .FocusItem
 .CellHasButton(0,0) = .t.
endwith

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of

an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

G2antt1.Items.CellBold(, G2antt1.Items.ItemCell(G2antt1.Items(0), 0)) = True

G2antt1.Items.CellBold(G2antt1.Items(0), 0) = True

G2antt1.Items.CellBold(G2antt1.Items(0), "ColumnName") = True

property Items.CellHasCheckBox([Item as Variant], [ColIndex as Variant])
as Boolean

Retrieves or sets a value indicating whether the cell has associated a checkbox or not.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Boolean A boolean expression that indicates whether the cell
contains a check box button.

To change the state for a check cell you have to use CellState property. The cell cannot
display in the same time a radio and a check button. The control fires CellStateChanged
event when the cell's state has been changed. To set the cell of radio type you have call
CellHasRadioButton property. Use the Def property to assign check boxes for all cells in
the column. Use the CellImage property to add a single icon to a cell. Use the CellImages
property to assign multiple icons to a cell. Use the CellPicture property to load a custom
size picture to a cell. Use the PartialCheck property to allow partial check feature within the
column. Use the CheckImage property to change the check box appearance. Use the
FilterType property on exCheck to filter for checked or unchecked items. Use the
Def(exCellDrawPartsOrder) property to change the positions of drawing elements in the
cell.

The following sample enumerates the cells in the first column and assign a checkbox to all
of them:

Dim h As Variant
G2antt1.BeginUpdate
With G2antt1.Items
For Each h In G2antt1.Items
 .CellHasCheckBox(h, 0) = True
Next
End With
G2antt1.EndUpdate

The same thing we can do using the Def property like follows:

With G2antt1.Columns(0)
 .Def(exCellHasCheckBox) = True

End With

The following sample shows how how set the type of cells to radio type while adding new
items:

Private Sub G2antt1_AddItem(ByVal Item As EXG2ANTTLibCtl.HITEM)
 G2antt1.Items.CellHasCheckBox(Item, 0) = True
End Sub

The following sample shows how to use the CellStateChanged event to display a message
when a cell of radio or check type has changed its state:

Private Sub G2antt1_CellStateChanged(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal
ColIndex As Long)
 Debug.Print "The cell """ & G2antt1.Items.CellValue(Item, ColIndex) & """ has changed
its state. The new state is " & IIf(G2antt1.Items.CellState(Item, ColIndes) = 0, "Unchecked",
"Checked")
End Sub

The following VB sample adds a checkbox to the focused cell:

With G2antt1.Items
 .CellHasCheckBox(.FocusItem, 0) = True
End With

The following C++ sample adds a checkbox to the focused cell:

#include "Items.h"
CItems items = m_g2antt.GetItems();
items.SetCellHasCheckBox(COleVariant(items.GetFocusItem()), COleVariant((long)0),
TRUE);

The following C# sample adds a checkbox to the focused cell:

axG2antt1.Items.set_CellHasCheckBox(axG2antt1.Items.FocusItem, 0, true);

The following VB.NET sample adds a checkbox to the focused cell:

With AxG2antt1.Items
 .CellHasCheckBox(.FocusItem, 0) = True
End With

The following VFP sample adds a checkbox to the focused cell:

with thisform.G2antt1.Items
 .DefaultItem = .FocusItem
 .CellHasCheckBox(0,0) = .t.
endwith

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

G2antt1.Items.CellBold(, G2antt1.Items.ItemCell(G2antt1.Items(0), 0)) = True

G2antt1.Items.CellBold(G2antt1.Items(0), 0) = True

G2antt1.Items.CellBold(G2antt1.Items(0), "ColumnName") = True

property Items.CellHasRadioButton([Item as Variant], [ColIndex as
Variant]) as Boolean

Retrieves or sets a value indicating whether the cell has associated a radio button or not.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Boolean A boolean expression that indicates whether the cell
contains a radio button.

Retrieves or sets a value indicating whether the cell has associated a radio button or not. To
change the state for a radio cell you have to use CellState property. The cell cannot display
in the same time a radio and a check button. The control fires CellStateChanged event
when the cell's state has been changed. To set the cell of check type you have call
CellHasCheckBox property. To add or remove a cell to a given radio group you have to
use CellRadioGroup property. Use the Def property to assign radio buttons for all cells in
the column. Use the CellImage property to add a single icon to a cell. Use the CellImages
property to assign multiple icons to a cell. Use the CellPicture property to load a custom
size picture to a cell. Use the RadioImage property to change the radio button appearance.
Use the Def(exCellDrawPartsOrder) property to change the positions of drawing elements
in the cell.

The following VB sample sets the radio type for all cells in the first column, and group all of
them in the same radio group (1234):

Dim h As Variant
G2antt1.BeginUpdate
With G2antt1.Items
For Each h In G2antt1.Items
 .CellHasRadioButton(h, 0) = True
 .CellRadioGroup(h, 0) = 1234
Next
End With
G2antt1.EndUpdate

or

Private Sub G2antt1_AddItem(ByVal Item As EXG2ANTTLibCtl.HITEM)

 G2antt1.Items.CellHasRadioButton(Item, 0) = True
 G2antt1.Items.CellRadioGroup(Item, 0) = 1234
End Sub

To find out the radio cell that is checked in the radio group 1234 you have to call: MsgBox
G2antt1.Items.CellValue(, G2antt1.Items.CellChecked(1234))

The following sample group all cells of the first column into a radio group, and display the
cell's checked on the radio group when the state of a radio group has been changed:

Private Sub G2antt1_AddItem(ByVal Item As EXG2ANTTLibCtl.HITEM)
 G2antt1.Items.CellHasRadioButton(Item, 0) = True
 G2antt1.Items.CellRadioGroup(Item, 0) = 1234 ' The 1234 is arbirary and it represents
the identifier for the radio group
End Sub

Private Sub G2antt1_CellStateChanged(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal
ColIndex As Long)
 Debug.Print "In the 1234 radio group the """ & G2antt1.Items.CellValue(,
G2antt1.Items.CellChecked(1234)) & """ is checked."
End Sub

The following VB sample assigns a radio button to the focused cell:

With G2antt1.Items
 .CellHasRadioButton(.FocusItem, 0) = True
 .CellRadioGroup(.FocusItem, 0) = 1234
End With

The following C++ sample assigns a radio button to the focused cell:

#include "Items.h"
CItems items = m_g2antt.GetItems();
items.SetCellHasRadioButton(COleVariant(items.GetFocusItem()), COleVariant((long)0),
TRUE);
items.SetCellRadioGroup(COleVariant(items.GetFocusItem()), COleVariant((long)0),
1234);

The following VB.NET sample assigns a radio button to the focused cell:

With AxG2antt1.Items
 .CellHasRadioButton(.FocusItem, 0) = True
 .CellRadioGroup(.FocusItem, 0) = 1234
End With

The following C# sample assigns a radio button to the focused cell:

axG2antt1.Items.set_CellHasRadioButton(axG2antt1.Items.FocusItem, 0, true);
axG2antt1.Items.set_CellRadioGroup(axG2antt1.Items.FocusItem, 0, 1234);

The following VFP sample assigns a radio button to the focused cell:

with thisform.G2antt1.Items
 .DefaultItem = .FocusItem
 .CellHasRadioButton(0,0) = .t.
 .CellRadioGroup(0,0) = 1234
endwith

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

G2antt1.Items.CellBold(, G2antt1.Items.ItemCell(G2antt1.Items(0), 0)) = True

G2antt1.Items.CellBold(G2antt1.Items(0), 0) = True

G2antt1.Items.CellBold(G2antt1.Items(0), "ColumnName") = True

property Items.CellHyperLink ([Item as Variant], [ColIndex as Variant]) as
Boolean

Specifies whether the cell's is highlighted when the cursor mouse is over the cell.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant A long expression that indicates the column's index, or a
string expression that indicates the column's caption.

Boolean A boolean expression that indicates whether the cell is
highlighted when the cursor is over the cell.

Use the CellHyperLink property to add hyperlink cells to your list/tree. Use the
HyperLinkClick event to notify your application when a hyperlink cell is clicked. Use the
CellForeColor property to specify the cell's foreground color. Use the HyperLinkColor
property to specify the hyperlink color. Use the <a> anchor elements to insert hyperlinks to
any cell, bar or link.

property Items.CellImage ([Item as Variant], [ColIndex as Variant]) as
Long

Retrieves or sets an Image that is displayed on the cell's area.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Long

A long value that indicates the image index. The last 7 bits
in the high significant byte of the long expression indicates
the identifier of the skin being used to paint the object. Use
the Add method to add new skins to the control. If you
need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high
significant byte of the color being applied to the part.

Use the CellImage property to assign a single icon to a cell. Use the CellImages property to
assign multiple icons to a cell. Use the Images method to assign icons to the control at
runtime. You can add images at design time by dragging a file to image editor of the
control. The CellImage = 0 removes the cell's image. The collection of Images is 1 based.
The CellImageClick event occurs when the cell's image is clicked. Use the ItemFromPoint
property to retrieve the part of the control being clicked. Use the CellHasCheckBox property
to add a check box to a cell. Use the CellHasRadioButton property to assign a radio button
to a cell. Use the CellPicture property to load a custom size picture to a cell. Use the
HTML tag to insert icons inside the cell's caption, if the CellValueFormat property is
exHTML. Use the FilterType property on exImage to filter items by icons. Use the
Def(exCellDrawPartsOrder) property to change the positions of drawing elements in the
cell.

The following VB sample sets cell's image for the first column while new items are added (
to run the sample make sure that control's images collection is not empty):

Private Sub G2antt1_AddItem(ByVal Item As EXG2ANTTLibCtl.HITEM)
 G2antt1.Items.CellImage(Item, 0) = 1
End Sub

The following VB sample changes the cell's image when the user has clicked on the cell's
image (to run the following sample you have to add two images to the g2antt's images
collection.),

Private Sub G2antt1_AddItem(ByVal Item As EXG2ANTTLibCtl.HITEM)
 G2antt1.Items.CellImage(Item, 0) = 1
End Sub

Private Sub G2antt1_CellImageClick(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal ColIndex
As Long)
 G2antt1.Items.CellImage(Item, ColIndex) = G2antt1.Items.CellImage(Item, ColIndex)
Mod 2 + 1
End Sub

The following C++ sample displays the first icon in the focused cell:

#include "Items.h"
CItems items = m_g2antt.GetItems();
items.SetCellImage(COleVariant(items.GetFocusItem()), COleVariant((long)0), 1);

The following C# sample displays the first icon in the focused cell:

axG2antt1.Items.set_CellImage(axG2antt1.Items.FocusItem, 0, 1);

The following VB.NET sample displays the first icon in the focused cell:

With AxG2antt1.Items
 .CellImage(.FocusItem, 0) = 1
End With

The following VFP sample displays the first icon in the focused cell:

with thisform.G2antt1.Items
 .DefaultItem = .FocusItem
 .CellImage(0,0) = 1
endwith

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

G2antt1.Items.CellBold(, G2antt1.Items.ItemCell(G2antt1.Items(0), 0)) = True

G2antt1.Items.CellBold(G2antt1.Items(0), 0) = True

G2antt1.Items.CellBold(G2antt1.Items(0), "ColumnName") = True

property Items.CellImages ([Item as Variant], [ColIndex as Variant]) as
Variant
Specifies an additional list of icons shown in the cell.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Variant A string expression that indicates the list of icons shown in
the cell.

The CellImages property assigns multiple icons to a cell. The CellImage property assign a
single icon to the cell. Instead if multiple icons need to be assigned to a single cell you have
to use the CellImages property. The CellImages property takes a list of additional icons and
display them in the cell. The list is separated by ',' and should contain numbers that
represent indexes to Images list collection. Use the ItemFromPoint property to retrieve the
part of the control being clicked. Use the CellHasCheckBox property to add a check box to
a cell. Use the CellHasRadioButton property to assign a radio button to a cell. Use the
CellPicture property to load a custom size picture to a cell. Use the HTML tag to
insert icons inside the cell's caption, if the CellValueFormat property is exHTML. Use the
Def(exCellDrawPartsOrder) property to change the positions of drawing elements in the
cell.

The following VB sample assigns the first and third icon to the cell:

With G2antt1.Items
 .CellImages(.ItemByIndex(0), 1) = "1,3"
End With

The following VB sample displays the index of icon being clicked:

Private Sub G2antt1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single)
 Dim i As HITEM, h As HitTestInfoEnum, c As Long
 With G2antt1
 i = .ItemFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, c, h)
 End With
 If (i <> 0) Then
 If exHTCellIcon = (h And exHTCellIcon) Then
 Debug.Print "The index of icon being clicked is: " & (h And &HFFFF0000) / 65536

 End If
 End If
End Sub

The following C++ sample assigns the first and the third icon to the cell:

#include "Items.h"
CItems items = m_g2antt.GetItems();
items.SetCellImages(COleVariant(items.GetFocusItem()), COleVariant((long)0),
COleVariant("1,3"));

The following C++ sample displays the index of icon being clicked:

#include "Items.h"
void OnMouseUpG2antt1(short Button, short Shift, long X, long Y)
{
 CItems items = m_g2antt.GetItems();
 long c = 0, hit = 0, h = m_g2antt.GetItemFromPoint(X, Y, &c, &hit);
 if (h != 0)
 {
 if ((hit & 0x44 /*exHTCellIcon*/) == 0x44)
 {
 CString strFormat;
 strFormat.Format("The index of icon being clicked is: %i\n", (hit >> 16));
 OutputDebugString(strFormat);
 }
 }
}

The following VB.NET sample assigns the first and the third icon to the cell:

With AxG2antt1.Items
 .CellImages(.FocusItem, 0) = "1,3"
End With

The following VB.NET sample displays the index of icon being clicked:

Private Sub AxG2antt1_MouseUpEvent(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_MouseUpEvent) Handles AxG2antt1.MouseUpEvent

 With AxG2antt1
 Dim i As Integer, c As Integer, hit As EXG2ANTTLib.HitTestInfoEnum
 i = .get_ItemFromPoint(e.x, e.y, c, hit)
 If (Not (i = 0)) Then
 Debug.WriteLine("The index of icon being clicked is: " & (hit And &HFFFF0000) /
65536)
 End If
 End With
End Sub

The following C# sample assigns the first and the third icon to the cell:

axG2antt1.Items.set_CellImages(axG2antt1.Items.FocusItem, 0, "1,3");

The following C# sample displays the index of icon being clicked:

private void axG2antt1_MouseUpEvent(object sender,
AxEXG2ANTTLib._IG2anttEvents_MouseUpEvent e)
{
 int c = 0;
 EXG2ANTTLib.HitTestInfoEnum hit;
 int i = axG2antt1.get_ItemFromPoint(e.x, e.y, out c, out hit);
 if ((i != 0))
 {
 if ((Convert.ToUInt32(hit) &
Convert.ToUInt32(EXG2ANTTLib.HitTestInfoEnum.exHTCellIcon)) ==
Convert.ToUInt32(EXG2ANTTLib.HitTestInfoEnum.exHTCellIcon))
 {
 string s = axG2antt1.Items.get_CellValue(i, c).ToString();
 s = "Cell: " + s + ", Icon's Index: " + (Convert.ToUInt32(hit) >> 16).ToString();
 System.Diagnostics.Debug.WriteLine(s);
 }
 }
}

The following VFP sample assigns the first and the third icon to the cell:

with thisform.G2antt1.Items
 .DefaultItem = .FocusItem

 .CellImages(0,0) = "1,3"
endwith

The following VFP sample displays the index of icon being clicked:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

local c, hit
c = 0
hit = 0
with thisform.G2antt1
 .Items.DefaultItem = .ItemFromPoint(x, y, @c, @hit)
 if (.Items.DefaultItem <> 0)
 if (bitand(hit, 68)= 68)
 wait window nowait .Items.CellValue(0, c) + " " + Str(Int((hit - 68)/65536))
 endif
 endif
endwith

Add the code to the MouseUp, MouseMove or MouseDown event,

property Items.CellItalic([Item as Variant], [ColIndex as Variant]) as
Boolean

Retrieves or sets a value that indicates whether the cell's caption should appear in italic.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Boolean A boolean expression that indicates whether the cell
should appear in italic.

Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply different font
attributes to the item. Use the CellItalic, CellUnderline, CellBold or CellStrikeOut property to
apply different font attributes to the cell. Use the CellValueFormat property to specify an
HTML caption. Use the ConditionalFormats method to apply formats to a cell or range of
cells, and have that formatting change depending on the value of the cell or the value of a
formula.

The following VB sample makes italic the focused cell:

With G2antt1.Items
 .CellItalic(.FocusItem, 0) = True
End With

The following C++ sample makes italic the focused cell:

#include "Items.h"
CItems items = m_g2antt.GetItems();
items.SetCellItalic(COleVariant(items.GetFocusItem()), COleVariant((long)0), TRUE);

The following C# sample makes italic the focused cell:

axG2antt1.Items.set_CellItalic(axG2antt1.Items.FocusItem, 0, true);

The following VB.NET sample makes italic the focused cell:

With AxG2antt1.Items
 .CellItalic(.FocusItem, 0) = True
End With

The following VFP sample makes italic the focused cell:

with thisform.G2antt1.Items
 .DefaultItem = .FocusItem
 .CellItalic(0, 0) = .t.
endwith

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

G2antt1.Items.CellBold(, G2antt1.Items.ItemCell(G2antt1.Items(0), 0)) = True

G2antt1.Items.CellBold(G2antt1.Items(0), 0) = True

G2antt1.Items.CellBold(G2antt1.Items(0), "ColumnName") = True

property Items.CellItem (Cell as HCELL) as HITEM

Retrieves the handle of the item that is owner for a specfic cell.

Type Description
Cell as HCELL A long expression that indicates the handle of the cell.
HITEM A long expression that indicates the handle of the item.

Use the CellItem property to retrieve the item's handle. Use the ItemCell property to gets
the cell's handle given an item and a column. Most of the properties of the Items object that
have parameters [Item as Variant], [ColIndex as Variant], could use the handle of the cell to
identify the cell, instead the ColIndex parameter. For instance the following statements are
equivalents:

With G2antt1.Items
 .CellValue(.FocusItem, 0) = "this"
 .CellValue(, .ItemCell(.FocusItem, 0)) = "this"
End With

property Items.CellMerge([Item as Variant], [ColIndex as Variant]) as
Variant
Retrieves or sets a value that indicates the index of the cell that's merged to.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Variant
A long expression that indicates the index of the cell that's
merged with, a safe array that holds the indexes of the
cells being merged.

Use the CellMerge property to combine two or more cells in the same item in a single cell.
The data of the source cell is displayed in the new larger cell. All the other cells' data is not
lost. Use the ItemDivider property to display a single cell in the entire item (merging all cells
in the same item). Use the UnmergeCells method to unmerge the merged cells. Use the
CellMerge property to unmerge a single cell. Use the MergeCells method to combine one or
more cells in a single cell. Use the Add method to add new columns to the control. Use the
SplitCell property to split a cell.

You can merge the first three cells in the root item using any of the following methods:

 With G2antt1
 With .Items
 .CellMerge(.RootItem(0), 0) = Array(1, 2)
 End With
End With

With G2antt1

 .BeginUpdate
 With .Items
 Dim r As Long
 r = .RootItem(0)
 .CellMerge(r, 0) = 1
 .CellMerge(r, 0) = 2
 End With
 .EndUpdate
End With

With G2antt1
 .BeginUpdate
 With .Items
 Dim r As Long
 r = .RootItem(0)
 .MergeCells .ItemCell(r, 0), .ItemCell(r, 1)
 .MergeCells .ItemCell(r, 0), .ItemCell(r, 2)
 End With
 .EndUpdate
End With

With G2antt1
 With .Items
 Dim r As Long
 r = .RootItem(0)
 .MergeCells .ItemCell(r, 0), Array(.ItemCell(r, 1), .ItemCell(r, 2))
 End With
End With

With G2antt1
 With .Items
 Dim r As Long
 r = .RootItem(0)
 .MergeCells Array(.ItemCell(r, 0), .ItemCell(r, 1), .ItemCell(r, 2))
 End With
End With

The following sample shows few methods to unmerge cells:

With G2antt1
 With .Items
 .UnmergeCells .ItemCell(.RootItem(0), 0)
 End With
End With

With G2antt1
 With .Items
 Dim r As Long
 r = .RootItem(0)
 .UnmergeCells Array(.ItemCell(r, 0), .ItemCell(r, 1))
 End With
End With

With G2antt1
 .BeginUpdate
 With .Items
 .CellMerge(.RootItem(0), 0) = -1
 .CellMerge(.RootItem(0), 1) = -1
 .CellMerge(.RootItem(0), 2) = -1
 End With
 .EndUpdate
End With

The following VB sample merges the first three cells in the focused item:

With G2antt1.Items
 .CellMerge(.FocusItem, 0) = 1
 .CellMerge(.FocusItem, 0) = 2
End With

The following C++ sample merges the first three cells in the focused item:

#include "Items.h"
CItems items = m_g2antt.GetItems();
COleVariant vtItem(items.GetFocusItem()), vtColumn(long(0));
items.SetCellMerge(vtItem, vtColumn, COleVariant(long(1)));
items.SetCellMerge(vtItem, vtColumn, COleVariant(long(2)));

The following VB.NET sample merges the first three cells in the focused item:

With AxG2antt1.Items
 .CellMerge(.FocusItem, 0) = 1
 .CellMerge(.FocusItem, 0) = 2
End With

The following C# sample merges the first three cells in the focused item:

axG2antt1.Items.set_CellMerge(axG2antt1.Items.FocusItem, 0, 1);
axG2antt1.Items.set_CellMerge(axG2antt1.Items.FocusItem, 0, 2);

The following VFP sample merges the first three cells in the focused item:

with thisform.G2antt1.Items
 .DefaultItem = .FocusItem
 .CellMerge(0,0) = 1
 .CellMerge(0,0) = 2
endwith

In other words, the sample shows how to display the first cell using the space occupied by
three cells.

property Items.CellParent ([Item as Variant], [ColIndex as Variant]) as
Variant
Retrieves the parent of an inner cell.

Type Description

Item as Variant
A long expression that indicates the handle of the item
where the cell is, or 0. If the Item parameter is 0, the
ColIndex parameter must indicate the handle of the cell.

ColIndex as Variant

A long expression that indicates the index of the column
where a cell is divided, or a long expression that indicates
the handle of the cell being divided, if the Item parameter
is missing or it is zero.

Variant A long expression that indicates the handle of the parent
cell.

Use the CellParent property to get the parent of the inner cell. The SplitCell method splits a
cell in two cells (the newly created cell is called inner cell). Use the InnerCell property to
get the inner cell. Use the CellItem property to get the item that's the owner of the cell. The
CellParent property gets 0 if the cell is not an inner cell. The parent cell is always displayed
to the left side of the cell. The inner cell (InnerCell) is displayed to the right side of the cell.

The following VB sample determines whether the cell is a master cell or an inner cell:

Private Function isMaster(ByVal g As EXG2ANTTLibCtl.G2antt, ByVal h As
EXG2ANTTLibCtl.HITEM, ByVal c As Long) As Boolean
 With g.Items
 isMaster = .CellParent(h, c) = 0
 End With
End Function

The following VB sample determines the master cell (the cell from where the splitting starts
):

Private Function getMaster(ByVal g As EXG2ANTTLibCtl.G2antt, ByVal h As
EXG2ANTTLibCtl.HITEM, ByVal c As Long) As EXG2ANTTLibCtl.HCELL
 With g.Items
 Dim r As EXG2ANTTLibCtl.HCELL
 r = c
 If Not (h = 0) Then
 r = .ItemCell(h, c)

 End If
 While Not (.CellParent(, r) = 0)
 r = .CellParent(, r)
 Wend
 getMaster = r
 End With
End Function

The following C++ sample determines whether the cell is a master cell or an inner cell:

#include "Items.h"

static long V2I(VARIANT* pv, long nDefault = 0)
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return nDefault;

 COleVariant vt;
 vt.ChangeType(VT_I4, pv);
 return V_I4(&vt);
 }
 return nDefault;
}

BOOL isMaster(CG2antt g2antt, long hItem, long nColIndex)
{
 return V2I(&g2antt.GetItems().GetCellParent(COleVariant(hItem), COleVariant(
nColIndex))) == 0;
}

The following C++ sample determines the master cell (the cell from where the splitting
starts):

long getMaster(CG2antt g2antt, long hItem, long nColIndex)
{
 COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;

 CItems items = g2antt.GetItems();
 long r = nColIndex;
 if (hItem)
 r = items.GetItemCell(hItem, COleVariant(nColIndex));
 long r2 = 0;
 while (r2 = V2I(&items.GetCellParent(vtMissing, COleVariant(r))))
 r = r2;
 return r;
}

The following VB.NET sample determines whether the cell is a master cell or an inner cell:

Private Function isMaster(ByVal g As AxEXG2ANTTLib.AxG2antt, ByVal h As Long, ByVal c
As Long) As Boolean
 With g.Items
 isMaster = .CellParent(h, c) = 0
 End With
End Function

The following VB.NET sample determines the master cell (the cell from where the splitting
starts):

Shared Function getMaster(ByVal g As AxEXG2ANTTLib.AxG2antt, ByVal h As Integer, ByVal
c As Integer) As Integer
 With g.Items
 Dim r As Integer
 r = c
 If Not (h = 0) Then
 r = .ItemCell(h, c)
 End If
 While Not (.CellParent(, r) = 0)
 r = .CellParent(, r)
 End While
 getMaster = r
 End With
End Function

The following C# sample determines whether the cell is a master cell or an inner cell:

private bool isMaster(AxEXG2ANTTLib.AxG2antt g2antt, int h, int c)
{
 return Convert.ToInt32(g2antt.Items.get_CellParent(h, c)) != 0;
}

The following C# sample determines the master cell (the cell from where the splitting starts
):

private long getMaster(AxEXG2ANTTLib.AxG2antt g, int h, int c)
{
 int r = c, r2 = 0;
 if (h != 0)
 r = Convert.ToInt32(g.Items.get_ItemCell(h,c));
 r2 = Convert.ToInt32(g.Items.get_CellParent(null, r));
 while (r2 != 0)
 {
 r = r2;
 r2 = Convert.ToInt32(g.Items.get_CellParent(null, r));
 }
 return r;
}

property Items.CellPicture ([Item as Variant], [ColIndex as Variant]) as
Variant
Retrieves or sets a value that indicates the Picture object displayed by the cell.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Variant

A Picture object that indicates the cell's picture. (A Picture
object implements IPicture interface), a string expression
that indicates the base64 encoded string that holds a
picture object. Use the eximages tool to save your picture
as base64 encoded format.

The control can associate to a cell a check or radio button, an icon, multiple icons, a
picture and a caption. Use the CellPicture property to associate a picture to a cell. You can
use the CellPicture property when you want to display images with different widths into a
cell. Use the CellImage property to associate an icon from Images collection. Use the
CellImages property to assign multiple icons to a cell. Use the CellHasCheckBox property
to add a check box to a cell. Use the CellHasRadioButton property to assign a radio button
to a cell. Use the CellPictureWidth and CellPictureHeight properties to stretch the cell's
picture to a specified size. Use the Def(exCellDrawPartsOrder) property to change the
positions of drawing elements in the cell.

The following VB sample loads a picture from a file:

G2antt1.Items.CellPicture(h, 0) = LoadPicture("c:\winnt\logo.gif")

The following VB sample associates a picture to a cell by loading it from a base64 encoded
string:

Dim s As String
s =
"gBCJr+BAAg0HGwEgwog4jg4ig4BAEFg4AZEKisZjUbAAzg5mg6Zg7Mg7/g0ek8oGcgjsijskjsmAEsmcoM0sM0uM0wM0ylwATMoTMsTMuTMwTMymAAZkoZksZkuZkwZkymQAf8of8sf8uf8wf8mlEdskekEekUekkesUqGcet9nGdpGdrGdilkruE3js5vtrnstk9BltnosttdJl8npsvs9Rl9rqsxk9ZmNnrsxtdhmcfskg0FAzskkEmM02t810Fzmuku8znGn2Ggv030mBv0zwk50GHnOkxU7g07s1PmeQnekyeBmeWnugzM90mcn9p0UgkXZpmik2EoGpoPY1lBklB7tE2VD7F+oflwOHoGEovYw9F8uKo8Go9o41H7KpqAybFKAyykuwzKkvKzilrW7aQPK7aSJIkzGqY1Kmwe1imwk17jKY2SnwevynwkwLIKYwiowew6owkxUAKYxqpweyCpwkybJqYyyqwezKqwkzirrErDOu7IkJyIyysNSrLStYrMJteraDK2ti+K2kStwmwLMqwwiutKw6uwmxSvyoxqvtKyCvwmybOKwyywtKzKwwnN6OTxPM9T3Pk+z9P9AUDP5V0JQtDUPRFE0SAFFUbR1FAAa9JUnSlJlnSZo0xStJGtStI03UFJUvUdQmuVtKU/TdT1RSpoGvS5WVKa9U1lWdRVrTtWVBS9c1nWlI0vSlY09WVg18a9MgAEla0nWliUkABHjXYCDUzSVY2daFSoNaBHWnWZH1/blN1TY1"

s = s +
"XgBadlDXdYSXRb9wWBclK2taF1gAI5HiPaN8oPdlNWbaF23KAwyWkNYyXxg9p3WNYjU/c1bWgABZoMiQS4YR984YNdpEeMgA2bgVtVHil0DVdY1CPhON44IGOI1XVPCPjl14RlmZ3XmZH3aWdYW1VF3DWMuWXXlw15PhlI3pgGJEfpGiZZgw1kTe1s0+g2Dalhmh6Pjgg5zrVx5/iV74bjGN41k9pCNl6D1dilKWDrGZ6ftmcZyNYAhKAGl7HemgoNs415XjI1XLmNm3sEho2jwdw4zmd+2+aFjFZVJWYpndf3xSPG2/koSWXW+I7JURZmtzO+XPe1K9RZ+S9HS1PllWfB9FiHEWZVBZWzeXdU32Fa973/SW34lr0nV1meH4/heb5/mWL4no+fUAAICA"

With G2antt1

https://exontrol.com/eximages.jsp

 .BeginUpdate
 .Columns.Add "Column 1"
 With .Items
 Dim h As HITEM
 h = .AddItem("Item 1")
 .CellPicture(h, 0) = s
 .ItemHeight(h) = 24
 End With
 .EndUpdate
End With

The following C++ loads a picture from a file:

#include
BOOL LoadPicture(LPCTSTR szFileName, IPictureDisp** ppPictureDisp)
{
 BOOL bResult = FALSE;
 if (szFileName)
 {
 OFSTRUCT of;
 HANDLE hFile = NULL;;
#ifdef _UNICODE
 USES_CONVERSION;
 if ((hFile = (HANDLE)OpenFile(W2A(szFileName), &of;, OF_READ |
OF_SHARE_COMPAT)) != (HANDLE)HFILE_ERROR)
#else
 if ((hFile = (HANDLE)OpenFile(szFileName, &of;, OF_READ | OF_SHARE_COMPAT)) !=
(HANDLE)HFILE_ERROR)
#endif
 {
 *ppPictureDisp = NULL;
 DWORD dwHighWord = NULL, dwSizeLow = GetFileSize(hFile, &dwHighWord;);
 DWORD dwFileSize = dwSizeLow;
 HRESULT hResult = NULL;
 if (HGLOBAL hGlobal = GlobalAlloc(GMEM_MOVEABLE, dwFileSize))
 if (void* pvData = GlobalLock(hGlobal))
 {

 DWORD dwReadBytes = NULL;
 BOOL bRead = ReadFile(hFile, pvData, dwFileSize, &dwReadBytes;, NULL);
 GlobalUnlock(hGlobal);
 if (bRead)
 {
 CComPtr spStream;
 _ASSERTE(dwFileSize == dwReadBytes);
 if (SUCCEEDED(CreateStreamOnHGlobal(hGlobal, TRUE, &spStream;)))
 if (SUCCEEDED(hResult = OleLoadPicture(spStream, 0, FALSE,
IID_IPictureDisp, (void**)ppPictureDisp)))
 bResult = TRUE;
 }
 }
 CloseHandle(hFile);
 }
 }
 return bResult;
}

IPictureDisp* pPicture = NULL;
if (LoadPicture("c:\\winnt\\zapotec.bmp", &pPicture;))
{
 COleVariant vtPicture;
 V_VT(&vtPicture;) = VT_DISPATCH;
 pPicture->QueryInterface(IID_IDispatch, (LPVOID*)&V;_DISPATCH(&vtPicture;));
 CItems items = m_g2antt.GetItems();
 items.SetCellPicture(COleVariant(items.GetFocusItem()), COleVariant(long(0)), vtPicture
);
 pPicture->Release();
}

The following VB.NET sample loads a picture from a file:

With AxG2antt1.Items
 .CellPicture(.FocusItem, 0) =
IPDH.GetIPictureDisp(Image.FromFile("c:\winnt\zapotec.bmp"))
End With

where the IPDH class is defined like follows:

Public Class IPDH
 Inherits System.Windows.Forms.AxHost

 Sub New()
 MyBase.New("")
 End Sub

 Public Shared Function GetIPictureDisp(ByVal image As Image) As Object
 GetIPictureDisp = AxHost.GetIPictureDispFromPicture(image)
 End Function

End Class

The following C# sample loads a picture from a file:

axG2antt1.Items.set_CellPicture(axG2antt1.Items.FocusItem, 0,
IPDH.GetIPictureDisp(Image.FromFile("c:\\winnt\\zapotec.bmp")));

where the IPDH class is defined like follows:

internal class IPDH : System.Windows.Forms.AxHost
{
 public IPDH() : base("")
 {
 }

 public static object GetIPictureDisp(System.Drawing.Image image)
 {
 return System.Windows.Forms.AxHost.GetIPictureDispFromPicture(image);
 }
}

The following VFP sample loads a picture from a file:

with thisform.G2antt1.Items
 .DefaultItem = .FocusItem
 .CellPicture(0, 0) = LoadPicture("c:\winnt\zapotec.bmp")

endwith

property Items.CellPictureHeight ([Item as Variant], [ColIndex as Variant])
as Long
Retrieves or sets a value that indicates the height of the cell's picture.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Long A long expression that indicates the height of the cell's
picture, or -1, if the property is ignored.

By default, the CellPictureHeight property is -1. Use the CellPicture property to assign a
custom size picture to a cell. Use the CellPictureWidth property to specify the width of the
cell's picture. The CellPictureWidth and CellPictureHeight properties specifies the size of the
area where the cell's picture is stretched. If the CellPictureWidth and CellPictureHeight
properties are -1 (by default), the cell displays the full size picture. If the CellPictureHeight
property is greater than 0, it indicates the height of the area where the cell's picture is
stretched. Use the ItemHeight property to specify the height of the item. Use the CellImage
or CellImages property to assign one or more icons to the cell.

property Items.CellPictureWidth ([Item as Variant], [ColIndex as Variant])
as Long
Retrieves or sets a value that indicates the width of the cell's picture.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Long A long expression that indicates the width of the cell's
picture, or -1, if the property is ignored.

By default, the CellPictureWidth property is -1. Use the CellPicture property to assign a
custom size picture to a cell. Use the CellPictureHeight property to specify the height of the
cell's picture. The CellPictureWidth and CellPictureHeight properties specifies the size of the
area where the cell's picture is stretched. If the CellPictureWidth and CellPictureHeight
properties are -1 (by default), the cell displays the full size picture. If the CellPictureWidth
property is greater than 0, it indicates the width of the area where the cell's picture is
stretched. Use the CellImage or CellImages property to assign one or more icons to the
cell.

property Items.CellRadioGroup([Item as Variant], [ColIndex as Variant])
as Long

Retrieves or sets a value indicating the radio group where the cell is contained.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Long A long value that identifies the cell's radio group.

Use the CellRadioGroup property to add or remove a radio button from a group. In a radio
group only one radio button can be checked. A radio cell cannot be contained by two
different radio groups. Use the CellHasRadioButton property to add a radio button to a cell.
When the cell's state is changed the control fires the CellStateChanged event. The
CellState property specifies the cell's state. By default, when a cell of radio type is created
the radio cell is not grouped to any of existent radio groups.

The following VB sample sets the radio type for all cells in the first column, and group all of
them in the same radio group (1234):

Dim h As Variant
G2antt1.BeginUpdate
With G2antt1.Items
For Each h In G2antt1.Items
 .CellHasRadioButton(h, 0) = True
 .CellRadioGroup(h, 0) = 1234
Next
End With
G2antt1.EndUpdate

or

Private Sub G2antt1_AddItem(ByVal Item As EXG2ANTTLibCtl.HITEM)
 G2antt1.Items.CellHasRadioButton(Item, 0) = True
 G2antt1.Items.CellRadioGroup(Item, 0) = 1234
End Sub

To find out the radio cell that is checked in the radio group 1234 you have to call: MsgBox

G2antt1.Items.CellValue(, G2antt1.Items.CellChecked(1234))

The following sample group all cells of the first column into a radio group, and display the
cell's checked on the radio group when the state of a radio group has been changed:

Private Sub G2antt1_AddItem(ByVal Item As EXG2ANTTLibCtl.HITEM)
 G2antt1.Items.CellHasRadioButton(Item, 0) = True
 G2antt1.Items.CellRadioGroup(Item, 0) = 1234 ' The 1234 is arbirary and it represents
the identifier for the radio group
End Sub

Private Sub G2antt1_CellStateChanged(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal
ColIndex As Long)
 Debug.Print "In the 1234 radio group the """ & G2antt1.Items.CellValue(,
G2antt1.Items.CellChecked(1234)) & """ is checked."
End Sub

The following VB sample assigns a radio button to the focused cell:

With G2antt1.Items
 .CellHasRadioButton(.FocusItem, 0) = True
 .CellRadioGroup(.FocusItem, 0) = 1234
End With

The following C++ sample assigns a radio button to the focused cell:

#include "Items.h"
CItems items = m_g2antt.GetItems();
items.SetCellHasRadioButton(COleVariant(items.GetFocusItem()), COleVariant((long)0),
TRUE);
items.SetCellRadioGroup(COleVariant(items.GetFocusItem()), COleVariant((long)0),
1234);

The following VB.NET sample assigns a radio button to the focused cell:

With AxG2antt1.Items
 .CellHasRadioButton(.FocusItem, 0) = True
 .CellRadioGroup(.FocusItem, 0) = 1234
End With

The following C# sample assigns a radio button to the focused cell:

axG2antt1.Items.set_CellHasRadioButton(axG2antt1.Items.FocusItem, 0, true);
axG2antt1.Items.set_CellRadioGroup(axG2antt1.Items.FocusItem, 0, 1234);

The following VFP sample assigns a radio button to the focused cell:

with thisform.G2antt1.Items
 .DefaultItem = .FocusItem
 .CellHasRadioButton(0,0) = .t.
 .CellRadioGroup(0,0) = 1234
endwith

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

G2antt1.Items.CellBold(, G2antt1.Items.ItemCell(G2antt1.Items(0), 0)) = True

G2antt1.Items.CellBold(G2antt1.Items(0), 0) = True

G2antt1.Items.CellBold(G2antt1.Items(0), "ColumnName") = True

property Items.CellSingleLine([Item as Variant], [ColIndex as Variant]) as
CellSingleLineEnum

Retrieves or sets a value indicating whether the cell's caption is painted using one or more
lines.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

CellSingleLineEnum A CellSingleLineEnum expression that indicates whether
the cell displays its caption using one or more lines.

By default, the CellSingleLine property is exCaptionSingleLine / True, which indicates that
the cell's caption is displayed on a single line. Use the Def(exCellSingleLine) property to
specify that all cells in the column display their content using multiple lines. The control can
displays the cell's caption using more lines, if the CellSingleLine property is
exCaptionWordWrap or exCaptionBreakWrap. The CellSingleLine property wraps the cell's
caption so it fits in the cell's client area. If the text doesn't fit the cell's client area, the height
of the item is increased or decreased. When the CellSingleLine is exCaptionWordWrap /
exCaptionBreakWrap / False, the height of the item is computed based on each cell
caption. If the CellSingleLine property is exCaptionWordWrap / exCaptionBreakWrap /
False, changing the ItemHeight property has no effect. Use the ItemMaxHeight property to
specify the maximum height of the item when its height is variable. Use the CellVAlignment
property to align vertically a cell.

If using the CellSingleLine / Def(exCellSingleLine) property, we recommend to set the
ScrollBySingleLine property on True so all items can be scrolled.

The following VB sample displays the caption of the focused cell using multiple lines:

With G2antt1.Items
 .CellSingleLine(.FocusItem, 0) = True
End With

The following C++ sample displays the caption of the focused cell using multiple lines:

#include "Items.h"
CItems items = m_g2antt.GetItems();
items.SetCellSingleLine(COleVariant(items.GetFocusItem()), COleVariant(long(0)), FALSE
);

The following VB.NET sample displays the caption of the focused cell using multiple lines:

With AxG2antt1.Items
 .CellSingleLine(.FocusItem, 0) = False
End With

The following C# sample displays the caption of the focused cell using multiple lines:

axG2antt1.Items.set_CellSingleLine(axG2antt1.Items.FocusItem, 0, false);

The following VFP sample displays the caption of the focused cell using multiple lines:

with thisform.G2antt1.Items
 .DefaultItem = .FocusItem
 .CellSingleLine(0, 0) = .f.
endwith

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

G2antt1.Items.CellBold(, G2antt1.Items.ItemCell(G2antt1.Items(0), 0)) = True

G2antt1.Items.CellBold(G2antt1.Items(0), 0) = True

G2antt1.Items.CellBold(G2antt1.Items(0), "ColumnName") = True

property Items.CellState([Item as Variant], [ColIndex as Variant]) as Long

Retrieves or sets the cell's state. Has effect only for check and radio cells.

Type Description

Item as Variant A long expression that indicates the item's handle that
indicates the owner of the cell.

ColIndex as Variant
A long expression that identifies the column's index, or a
string expression that specifies the column's caption or the
column's key.

Long A long value that indicates the cell's state.

Use the CellState property to change the cell's state. The CellState property has effect only
for check and radio cells. Use the CellHasCheckBox property to assign a check box to a
cell. Use the CellHasRadioButton property to add a radio button to a cell. The control fires
the CellStateChanged event when user changes the cell's state. Use the PartialCheck
property to allow partial check feature within the column. Use the CheckImage property to
change the check box appearance. Use the RadioImage property to change the radio
button appearance. Use the FilterType property on exCheck to filter for checked or
unchecked items.

Once the user clicks a check-box, radio-button, the control fires the following events:

CellStateChanging event, where the NewState parameter indicates the new state of
the cell's checkbox / radio-button. You can change the NewState parameter during this
event. For instance, NewState = Items.CellState(Item,ColIndex) un-changes the cell's
state once the user tries to change it.

CellStateChanged event notifies your application that the cell's check-box or radio-
button has been changed. The CellState property determines the check-box/radio-
button state of the cell.

The following VB sample adds a check box that's checked to the focused cell:

With G2antt1.Items
 .CellHasCheckBox(.FocusItem, 0) = True
 .CellState(.FocusItem, 0) = 1
End With

The following C++ sample adds a check box that's checked to the focused cell:

#include "Items.h"

CItems items = m_g2antt.GetItems();
COleVariant vtItem(items.GetFocusItem()), vtColumn(long(0));
items.SetCellHasCheckBox(vtItem, vtColumn, TRUE);
items.SetCellState(vtItem, vtColumn, 1);

The following VB.NET sample adds a check box that's checked to the focused cell:

With AxG2antt1.Items
 .CellHasCheckBox(.FocusItem, 0) = True
 .CellState(.FocusItem, 0) = 1
End With

The following C# sample adds a check box that's checked to the focused cell:

axG2antt1.Items.set_CellHasCheckBox(axG2antt1.Items.FocusItem, 0, true);
axG2antt1.Items.set_CellState(axG2antt1.Items.FocusItem, 0, 1);

The following VFP sample adds a check box that's checked to the focused cell:

with thisform.G2antt1.Items
 .DefaultItem = .FocusItem
 .CellHasCheckBox(0, 0) = .t.
 .CellState(0,0) = 1
endwith

The following VB sample changes the state for a cell to checked state:
G2antt1.Items.CellState(G2antt1.Items(0), 0) = 1,

The following VB sample changes the state for a cell to to unchecked state:
G2antt1.Items.CellState(G2antt1.Items(0), 0) = 0,

The following VB sample changes the state for a cell to partial checked state:
G2antt1.Items.CellState(G2antt1.Items(0), 0) = 2

The following VB sample displays a message when a cell of radio or check type is changing
its state:

Private Sub G2antt1_AddItem(ByVal Item As EXG2ANTTLibCtl.HITEM)
 G2antt1.Items.CellHasCheckBox(Item, 0) = True
End Sub

Private Sub G2antt1_CellStateChanged(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal
ColIndex As Long)
 Debug.Print "The cell """ & G2antt1.Items.CellValue(Item, ColIndex) & """ has changed
its state. The new state is " & IIf(G2antt1.Items.CellState(Item, ColIndes) = 0, "Unchecked",
"Checked")
End Sub

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

G2antt1.Items.CellBold(, G2antt1.Items.ItemCell(G2antt1.Items(0), 0)) = True

G2antt1.Items.CellBold(G2antt1.Items(0), 0) = True

G2antt1.Items.CellBold(G2antt1.Items(0), "ColumnName") = True

property Items.CellStrikeOut([Item as Variant], [ColIndex as Variant]) as
Boolean

Retrieves or sets a value that indicates whether the cell's caption should appear in
strikeout.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Boolean A boolean expression that indicates whether the cell's
caption should appear in strikeout.

If the CellStrikeOut property is True, the cell's font is displayed with a horizontal line through
it. Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply different font
attributes to the item. Use the CellItalic, CellUnderline, CellBold or CellStrikeOut property to
apply different font attributes to the cell. Use the CellValueFormat property to specify an
HTML caption. Use the ConditionalFormats method to apply formats to a cell or range of
cells, and have that formatting change depending on the value of the cell or the value of a
formula.

The following VB sample draws a horizontal line through the caption of the cell that has the
focus:

With G2antt1.Items
 .CellStrikeOut(.FocusItem, 0) = True
End With

The following C++ sample draws a horizontal line through the caption of the cell that has the
focus:

#include "Items.h"
CItems items = m_g2antt.GetItems();
items.SetCellStrikeOut(COleVariant(items.GetFocusItem()), COleVariant((long)0), TRUE);

The following C# sample draws a horizontal line through the caption of the cell that has the
focus:

axG2antt1.Items.set_CellStrikeOut(axG2antt1.Items.FocusItem, 0, true);

The following VB.NET sample draws a horizontal line through the caption of the cell that has
the focus:

With AxG2antt1.Items
 .CellStrikeOut(.FocusItem, 0) = True
End With

The following VFP sample draws a horizontal line through the caption of the cell that has the
focus:

with thisform.G2antt1.Items
 .DefaultItem = .FocusItem
 .CellStrikeOut(0, 0) = .t.
endwith

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

G2antt1.Items.CellBold(, G2antt1.Items.ItemCell(G2antt1.Items(0), 0)) = True

G2antt1.Items.CellBold(G2antt1.Items(0), 0) = True

G2antt1.Items.CellBold(G2antt1.Items(0), "ColumnName") = True

property Items.CellToolTip([Item as Variant], [ColIndex as Variant]) as
String

Retrieves or sets a text that is used to show the tooltip's cell.

Type Description
Item as Variant A long expression that indicates the handle of the item.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

String A string expression that indicates the cell's tooltip.

By default, the CellToolTip property is "..." (three dots). If the CellToolTip property is "..." the
control displays the cell's caption if it doesn't fit the cell's client area. If the CellToolTip
property is different than "...", the control shows a tooltip that displays the CellToolTip
value. The control fires the ToolTip event when the column's tooltip is about to be
displayed. Use the ToolTipWidth property to specify the width of the tooltip window. The
ToolTipPopDelay property specifies the period in ms of time the ToolTip remains visible if
the mouse pointer is stationary within a control. The ToolTipDelay property specifies the
time in ms that passes before the ToolTip appears. Use the element to specify a
different font or size for the tooltip, or use the ToolTipFont property to specify a different
font or size for all tooltips in the control. Use the ItemBar(,,exBarToolTip) property to specify
a tooltip for a bar. Use the Link(,exLinkToolTip) property to specify the tooltip to be shown
when the cursor hovers the link.

The tooltip supports the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

about:blank

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to

your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb

represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

Note: The intersection of an item with a column defines a cell. Each cell is uniquely
represented by its handle. The cell's handle is of HCELL type, that's equivalent with a long
type. All properties of Items object that have two parameters Item and ColIndex, that refers
a cell.

property Items.CellUnderline([Item as Variant], [ColIndex as Variant]) as
Boolean

Retrieves or sets a value that indicates whether the cell's caption should appear in
underline.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Boolean A boolean expression that indicates whether the cell is
underlined.

Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply different font
attributes to the item. Use the CellItalic, CellUnderline, CellBold or CellStrikeOut property to
apply different font attributes to the cell. Use the CellValueFormat property to specify an
HTML caption. Use the ConditionalFormats method to apply formats to a cell or range of
cells, and have that formatting change depending on the value of the cell or the value of a
formula.

The following VB sample underlines the focused cell:

With G2antt1.Items
 .CellUnderline(.FocusItem, 0) = True
End With

The following C++ sample underlines the focused cell:

#include "Items.h"
CItems items = m_g2antt.GetItems();
items.SetCellUnderline(COleVariant(items.GetFocusItem()), COleVariant((long)0), TRUE);

The following C# sample underlines the focused cell:

axG2antt1.Items.set_CellUnderline(axG2antt1.Items.FocusItem, 0, true);

The following VB.NET sample underlines the focused cell:

With AxG2antt1.Items
 .CellUnderline(.FocusItem, 0) = True

End With

The following VFP sample underlines the focused cell:

with thisform.G2antt1.Items
 .DefaultItem = .FocusItem
 .CellUnderline(0, 0) = .t.
endwith

Note: A cell is the intersection of an item with a column. All properties that has an Item and
a ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

G2antt1.Items.CellBold(, G2antt1.Items.ItemCell(G2antt1.Items(0), 0)) = True

G2antt1.Items.CellBold(G2antt1.Items(0), 0) = True

G2antt1.Items.CellBold(G2antt1.Items(0), "ColumnName") = True

property Items.CellVAlignment ([Item as Variant], [ColIndex as Variant])
as VAlignmentEnum
Retrieves or sets a value that indicates how the cell's caption is vertically aligned.

Type Description
Item as Variant A long expression that identifies the item's handle

ColIndex as Variant
A long expression that indicates the column's index or the
cell's handle, a string expression that indicates the
column's caption.

VAlignmentEnum A VAlignmentEnum expression that indicates the cell's
vertically alignment.

Use the CellVAlignment property to specify the vertically alignment for the cell's caption.
Use the CellSingleLine property to specify whether a cell uses single or multiple lines. Use
the CellHAlignment property to align horizontally the cell. The +/- button is aligned
accordingly to the cell's caption. Use the Def(exCellVAlignment) property to specify the
same vertical alignment for the entire column.

The following VB sample aligns the focused cell to the bottom:

With G2antt1.Items
 .CellVAlignment(.FocusItem, 0) = VAlignmentEnum.BottomAlignment
End With

The following C++ sample right aligns the focused cell:

#include "Items.h"
CItems items = m_g2antt.GetItems();
items.SetCellVAlignment(COleVariant(items.GetFocusItem()), COleVariant((long)0), 2
/*BottomAlignment*/);

The following VB.NET sample right aligns the focused cell:

With AxG2antt1.Items
 .CellVAlignment(.FocusItem, 0) = EXG2ANTTLib.VAlignmentEnum.BottomAlignment

End With

The following C# sample right aligns the focused cell:

axG2antt1.Items.set_CellVAlignment(axG2antt1.Items.FocusItem, 0,
EXG2ANTTLib.VAlignmentEnum.BottomAlignment);

The following VFP sample right aligns the focused cell:

with thisform.G2antt1.Items
 .DefaultItem = .FocusItem
 .CellVAlignment(0,0) = 2 && BottomAlignment
endwith

property Items.CellValue([Item as Variant], [ColIndex as Variant]) as
Variant

Specifies the cell's value.

Type Description

Item as Variant

A long expression that indicates the item's handle. During
the ValidateValue event, you can uses -1 instead Item, to
access to the modified value. In other words during
ValidateValue event, the Items.CellValue(Item,ColIndex)
and Items.CellCaption(Item,ColIndex) properties retrieve
the original value/caption of the cell while the
Items.CellValue(-1,ColIndex) and
Items.CellCaption(-1,ColIndex) gets the modified value of
the specified cell.

ColIndex as Variant

A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key. If the Item
parameter is missing or it is zero (0), the ColIndex
parameter is the handle of the cell being accessed.

Variant
A variant expression that indicates the cell's value. The
cell's value supports built-in HTML format if the
CellValueFormat property is exHTML.

Use the CellValue property to specify the value for cells in the second, third columns and so
on. The Change event is called when the user changes the CellValue property. Use the
CellData property to associate an user data to a cell. The AddItem or InsertItem method
may specify the value for the first cell. Use the LockedItemCount property to lock or unlock
items to the top or bottom side of the control. Use the ItemCell property to get the cell's
handle based on the item and the column. Use the CellItem property to get the handle of
the item that's the owner of the cell. Use the SplitCell property to split a cell. If the
CauseValidateValue property is True, the control fires the ValidateValue property when the
user changes the CellValue property. Use the AddItem method to add new predefined
values to a drop down list editor. Use the CellEditor property to assign an editor to a single
cell. Use the Editor property to assign the same editor to all cells in the column. Use the
Add method to add new columns to the control. Use the HTML tag to insert icons
inside the cell's caption, if the CellValueFormat property is exHTML. Use the FormatColumn
property to format the column. The AllowCellValueToItemBar property allows the cells to
display properties of the bars.

The CellValue property indicates the formula being used to compute the field, if the
CellValueFormat property is exComputedField. The ComputedField property specifies the

formula to compute the entire column.

The cell shows its text based on the CellValueFormat property as follows:

exText, the CellValue indicates the text to be displayed without HTML formatting
exHTML, the CellValue indicates the text to be displayed with HTML formatting, such
as to bold a portion of text.
exComputedField, the CellValue property indicates a formula to display the cell's
content based on the values of any cell in the current item. For instance, the %1 + %2
+ %3 adds or concatenates the values from first 3 cells. The exComputedField can be
combined with exHTML that indicates that the computed field may display HTML
format. The ComputedField property specifies the formula to compute the entire
column.

The CellValue property of the cell is being shown as:

formatted using the FormatCell property, if it is valid
formatted using the FormatColumn property, if it is valid

In other words, all cells applies the format of the FormatColumn property, excepts the cells
with the FormatCell property being set. If the cell belongs to a column with the
FireFormatColumn property on True, the Value parameter of the FormatColumn event
shows the newly caption for the cell to be shown

The following VB sample displays an HTML cell on multiple lines:

With G2antt1.Items
 Dim h As HITEM
 h = .AddItem("Cell 1")
 .CellValue(h, 1) = "<r><dotline>HTML support
This is a bit of text
where built-in HTML support is enabled."
 .CellValueFormat(h, 1) = exHTML
 .CellSingleLine(h, 1) = False
 .CellEditorVisible(h, 1) = False
End With

The following C++ changes the value of the focused cell:

#include "Items.h"
CItems items = m_g2antt.GetItems();
COleVariant vtItem(items.GetFocusItem()), vtColumn(
long(m_g2antt.GetFocusColumnIndex()));

items.SetCellValue(vtItem, vtColumn, COleVariant("new value"));

The following VB.NET changes the value of the focused cell:

With AxG2antt1.Items
 .CellValue(.FocusItem, AxG2antt1.FocusColumnIndex) = "new value"
End With

The following C# changes the value of the focused cell:

axG2antt1.Items.set_CellValue(axG2antt1.Items.FocusItem, axG2antt1.FocusColumnIndex,
"new value");

The following VFP changes the value of the focused cell:

with thisform.G2antt1.Items
 .DefaultItem = .FocusItem
 .CellValue(0,thisform.G2antt1.FocusColumnIndex) = "new value"
endwith

You may include strings like [m˛], [mł], [180ş], źml, or ˝m˛, žmł, and so on. Copy the symbol
from this page, and paste to your cell.

Note: The intersection of an item with a column defines a cell. Each cell is uniquely
represented by its handle. The cell's handle is of HCELL type, that's equivalent with a long
type. All properties of Items object that have two parameters Item and ColIndex, refer a
cell.

The following lines are equivalents and each of them changes the bold font attribute of the
first cell on the first item.

With G2antt1
 .Items.CellBold(, .Items.ItemCell(.Items(0), 0)) = True
 .Items.CellBold(.Items(0), 0) = True
 .Items.CellBold(.Items(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0)) = True
 .Items.CellBold(.Items.ItemByIndex(0), 0) = True
 .Items.CellBold(.Items(0), G2antt1.Columns(0).Caption) = True
End With

property Items.CellValueFormat([Item as Variant], [ColIndex as Variant])
as ValueFormatEnum
Specifies how the cell's caption is displayed.

Type Description
Item as Variant A long expression that indicates the item's handle

ColIndex as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption or
column's key.

ValueFormatEnum A long expression that defines the way how the cell's value
is displayed

The component supports built-in HTML format. That means that you can use HTML tags
when displays the cell's value . By default, the CellValueFormat property is exText. If the
CellValueFormat is exText, the cell displays the CellValue property like it is. If the
CellValueFormat is exHTML, the cell displays the CellValue property using the HTML tags
specified in the ValueFormatEnum type. Use the Def property to specify whether all cells in
the column display HTML format. Use the CellVAlignment property to align vertically a cell.

The CellValue property of the cell is being shown as:

formatted using the FormatCell property, if it is valid
formatted using the FormatColumn property, if it is valid

In other words, all cells applies the format of the FormatColumn property, excepts the cells
with the FormatCell property being set. If the cell belongs to a column with the
FireFormatColumn property on True, the Value parameter of the FormatColumn event
shows the newly caption for the cell to be shown

method Items.CellValueToItemBar (Item as Variant, ColIndex as Variant,
PropertyBar as ItemBarPropertyEnum, [BarKey as Variant])
Indicates whether the cell displays the specified property of the bar.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant

A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key. If the Item
parameter is missing or it is zero (0), the ColIndex
parameter is the handle of the cell being accessed.

PropertyBar as
ItemBarPropertyEnum

An ItemBarPropertyEnum expression that specifies the
property of the bar being displayed. If -1, the cell has no
bar associated, or in other words removes the association
between a cell and a bar. Though, if the
CellValueToItemBar is not called, the
Def(exCellValueToItemBarProperty) property defines the
property of the bar being displayed, if it is greater than 0

BarKey as Variant

A VARIANT expression that specifies the key of the
associated bar. If the CellValueToItemBar is not called, the
Def(exCellValueToItemBarKey) property defines the key of
the associated bar

The CellValueToItemBar method can be used to associate particular cells with bars in the
items. The Def(exCellValueToItemBarProperty/exCellValueToItemBarKey) property of the
Column object defines a relation/association between specified property bar and the cells in
the column. Once an association between a cell and a bar is made, the CellValue property
and ItemBar property returns the same result, or in other words, changing the cell's value
will be reflected in the bar's property, and back, so changing the bar's property will change
the cell's value.

property Items.CellWidth([Item as Variant], [ColIndex as Variant]) as Long
Retrieves or sets a value that indicates the width of the inner cell.

Type Description

Item as Variant
A long expression that indicates the handle of the item
where the cell is, or 0. If the Item parameter is 0, the
ColIndex parameter must indicate the handle of the cell.

ColIndex as Variant

A long expression that indicates the index of the column
where a cell is divided, or a long expression that indicates
the handle of the cell being divided, if the Item parameter
is missing or it is zero.

Long A long expression that indicates the width of the cell.

The CellWidth property specifies the cell's width. The CellWidth property has effect only if
the cell contains inner cells. The SplitCell method splits a cell in two cells (the newly
created cell is called inner cell). Use the InnerCell property to get the inner cell. Use the
CellParent property to get the parent of the inner cell. Use the CellItem property to get the
item that's the owner of the cell. Use the BeginUpdate and EndUpdate methods to refresh
the cell's width when changing it on the fly.

The CellWidth property specifies the width of the cell, where the cell is divided in two or
multiple (inner) cells like follows:

if the CellWidth property is less than zero, the master cell calculates the width of the
inner cell, so all the inner cells with CellWidth less than zero have the same width in the
master cell.
if the CellWidth property is greater than zero, it indicates the width in pixels of the inner
cell.

By default, the CellWidth property is -1, and so when the user splits a cell the inner cell
takes the right half of the area occupied by the master cell.

The following VB sample splits the first visible cell in three cells:

With G2antt1
 .BeginUpdate
 .DrawGridLines = exAllLines

 With .Items
 Dim h As HITEM, f As HCELL
 h = .FirstVisibleItem
 f = .ItemCell(h, 0)
 f = .SplitCell(, f)
 .CellValue(, f) = "Split 1"
 f = .SplitCell(, f)
 .CellValue(, f) = "Split 2"
 End With
 .EndUpdate
End With

The following VB sample specifies that the inner cell should have 32 pixels:

With G2antt1
 .BeginUpdate
 .DrawGridLines = exAllLines
 With .Items
 Dim h As HITEM, f As HCELL
 h = .FirstVisibleItem
 f = .ItemCell(h, 0)
 f = .SplitCell(, f)
 .CellValue(, f) = "Split"
 .CellWidth(, f) = 32
 End With
 .EndUpdate
End With

The following VB sample adds an inner cell to the focused cell with 48 pixels width:

G2antt1.BeginUpdate
With G2antt1.Items
 Dim h As Long
 h = .SplitCell(.FocusItem, 0)
 .CellBackColor(, h) = vbBlack
 .CellForeColor(, h) = vbWhite
 .CellHAlignment(, h) = CenterAlignment
 .CellValue(, h) = "inner"

 .CellWidth(, h) = 48
End With
G2antt1.EndUpdate

The following C++ sample adds an inner cell to the focused cell with 48 pixels width:

#include "Items.h"
m_g2antt.BeginUpdate();
CItems items = m_g2antt.GetItems();
COleVariant vtItem(items.GetFocusItem()), vtColumn(long(0)), vtMissing; V_VT(
&vtMissing) = VT_ERROR;
COleVariant vtInner = items.GetSplitCell(vtItem, vtColumn);
items.SetCellWidth(vtMissing, vtInner, 48);
items.SetCellBackColor(vtMissing, vtInner, 0);
items.SetCellForeColor(vtMissing, vtInner, RGB(255,255,255));
items.SetCellValue(vtMissing, vtInner, COleVariant("inner"));
items.SetCellHAlignment(vtMissing, vtInner, 1);
m_g2antt.EndUpdate();

The following VB.NET sample adds an inner cell to the focused cell with 48 pixels width:

With AxG2antt1
 .BeginUpdate()
 With .Items
 Dim iInner As Integer
 iInner = .SplitCell(.FocusItem, 0)
 .CellValue(, iInner) = "inner"
 .CellHAlignment(, iInner) = EXG2ANTTLib.AlignmentEnum.CenterAlignment
 .CellWidth(, iInner) = 48
 .CellBackColor(, iInner) = 0
 .CellForeColor(, iInner) = ToUInt32(Color.White)
 End With
 .EndUpdate()
End With

The following C# sample adds an inner cell to the focused cell with 48 pixels width:

EXG2ANTTLib.Items items = axG2antt1.Items;
axG2antt1.BeginUpdate();

object iInner = items.get_SplitCell(axG2antt1.Items.FocusItem, 0);
items.set_CellValue(null, iInner, "inner");
items.set_CellHAlignment(null, iInner, EXG2ANTTLib.AlignmentEnum.CenterAlignment);
items.set_CellBackColor(null, iInner, ToUInt32(Color.Black));
items.set_CellForeColor(null, iInner, ToUInt32(Color.White));
items.set_CellWidth(null, iInner, 48);
axG2antt1.EndUpdate();

property Items.ChildCount (Item as HITEM) as Long

Retrieves the number of children items.

Type Description
Item as HITEM A long expression that indicates the item's handle.
Long A long value that indicates the number of child items.

Use the ChildCount property checks whether an item has child items. Use the ItemChild
property to get the first child item, if there is one, 0 else. Use the ItemHasChildren property
to specify whether the item should display a +/- sign even if it contains no child items.

method Items.ClearBars (Item as HITEM)
Clears the bars from the item.

Type Description

Item as HITEM

A long expression that indicates the the handle of the item
where the bars are removed. If the Item parameter is 0,
the ClearBars method removes all bars from all items. In
this case the DefaultItem property should be 0 (by default
), else it refers a single item being indicated by the
DefaultItem property.

Use the ClearBars method to remove all bars in the specified item. If the Item parameter is
not 0 (indicates a valid handle), the ClearBars removes only bars in the specified item. If
the Item parameter is 0, the ClearBars method removes all bars from all items, in other
words from the entire chart. Use the BeginUpdate / EndUpdate methods to refresh the
control's content after removing a bar or several bars.

Use the RemoveBar method to remove a bar from an item. Use the Remove method to
remove a type of bar from the Bars collection. Use the Add method to add new types of
bars to the Bars collection. Use the FirstVisibleDate property to specify the first visible date
in the chart area. Use the Key parameter to identify a bar inside an item. Use the ItemBar
property to access a bar inside the item. Use the PaneWidth property to specify the width
of the chart. Use the NonworkingDays property to specify the non-working days.

method Items.ClearCellBackColor ([Item as Variant], [ColIndex as
Variant])
Clears the cell's background color.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index or the
cell's handle, a string expression that indicates the
column's caption.

The ClearCellBackColor method clears the cell's background color when the CellBackColor
property is used. Use the BackColor property to specify the control's background color.

method Items.ClearCellForeColor ([Item as Variant], [ColIndex as
Variant])
Clears the cell's foreground color.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index or the
cell's handle, a string expression that indicates the
column's caption.

The ClearCellForeColor method clears the cell's foreground color when CellForeColor
property was used.

method Items.ClearCellHAlignment ([Item as Variant], [ColIndex as
Variant])
Clears the cell's alignment.

Type Description
Item as Variant A long expression that indicates the handle of the item.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's key or the
column's caption.

Use the ClearCellHAlignment method to clear the alignment of the cell's caption previously
set using the CellHAlignment property. If the CellHAlignment property is not called, the
Alignment property of the Column object specifies the alignment of the cell's caption.

method Items.ClearItemBackColor (Item as HITEM)
Clears the item's background color.

Type Description
Item as HITEM A long expression that indicates the item's handle.

The ClearItemBackColor method clears the item's background color when ItemBackColor
property is used (columns/items part only). The ClearItemBackColor method clears the
item's background color when ItemBackColor property is used (chart part only).

method Items.ClearItemForeColor (Item as HITEM)
Clears the item's foreground color.

Type Description
Item as HITEM A long expression that indicates the item's handle.

The ClearItemForeColor method clears the item's foreground color when ItemForeColor
property is used. Use the ForeColor property to change the control's foreground color.

method Items.ClearLinks ()
Clears all links in the chart.

Type Description

Use the ClearLinks method to remove all links in the control. Use the ShowLinks property to
hide all links in the control. Use the RemoveLink method to remove a specified link. Use the
AddLink method to add a link between two bars. Use the RemoveAllItems method to
remove all items in the control. Use the RemoveItem method to remove an item. The
RemoveItem method removes all links related to the item. Use the RemoveLinksOf method
to remove all links that start or end on the specified bar.

property Items.ComputeValue ([Expression as Variant], [Item as Variant],
[ColIndex as Variant], [ValueFormatType as Variant]) as Variant
Computes the value of a specified formula.

Type Description
Expression as Variant A string expression that specifies the formula to compute
Item as Variant A long expression that specifies the handle of the item.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's key or the
column's caption.

ValueFormatType as Variant

A ValueFormatType expression that indicates the type of
the formula being interpreted by the Expression
parameter. For instance, if the ValueFormatType
parameter is exTotalField, the Expression parameter
should inidcate a total formula of type
aggregate(list,direction,formula)

Variant A string expression that indicates the result.

The ComputeValue property gets the result of a a computed or total field. The Item and
ColIndex property refers the cells used as the source for the formula. Use the
ComputeValue property to get the result of a total field. For instance, for a total field, the
CellValue property indicates the formula, while the ComputeValue can be used to get the
result of the formula at runtime.

The ComputeValue method returns the:

value of the computed field, where the ValueFormatType is exComputedField, and the
Expression indicates the formula for the computed field.
value of the total field, where the ValueFormatType is exTotalField, and the Expression
indicates a string as: aggregate(list,direction,formula)
text with no HTML formatting, where the ValueFormatType is exHTML, and the
Expression indicates the string including the HTML format.

For instance, based on the ValueFormatType and Expression parameters the result could
be:

exComputedField, dbl(%0) + dbl(%1), the sum between first two cells in the item
referred by Item.
exTotalField, sum(current,dir,dbl(%0) + dbl(%1)), the total of first two columns, for all
direct child items of the item being referred by Item.
exHTML, bold, returns bold (returns the result with no HTML formatting). In

this case, the Item and ColIndex have no effect.

property Items.DefaultItem as HITEM

Retrieves or sets the default item's handle.

Type Description

HITEM
A long expression that indicates the handle of the item
that's used by all properties of the Items object, that have
a parameter Item.

The property is used in VFP implementation. The VFP fires "Invalid Subscript Range" error,
while it tries to process a number grater than 65000. Since, the HITEM is a long value that
most of the time exceeds 65000, the VFP users have to use this property, instead passing
directly the handles to properties.

The following sample shows to change the cell's image:

.Items.DefaultItem = .Items.AddItem("Item 1")

.Items.CellImage(0,1) = 2

In VFP the following sample fires: "Invalid Subscript Range":

i = .Items.AddItem("Item 1")
.Items.CellImage(i,1) = 2

because the i variable is grater than 65000, and the VFP thinks that the CellImage is an
array, but it is not. It is a property. Hope that future versions will correct this problem in VFP.

So, if you pass zero to a property that has a parameter titled Item, the control takes
instead the DefaultItem value.

Let's say that your code looks like follows:

LOCAL h
SCAN
 key="K"+ALLTRIM(STR(projekte.ID))
 WITH THISFORM.myplan.Items
 h = .AddItem(ALLTRIM(projekte.project_name))
 .AddBar(h,"Project Summary" , DTOT(projekte.sdate),DTOT(projekte.edate), _key, "")
 .ItemBar(h ,_key,3) = "my text"
 ENDWITH
ENDSCAN

The h variable indicates the handle of the newly created item. This value is always greater
than 65000, so the VFP environment always fires an error when compiling the AddBar and
ItemBar properties because it considers accessing an array, and its limit is 65000. Of
course this problem is related to VFP ignoring the fact that it is calling a property! not an
array, so our products provide a DefaultItem property that help VFP users to pass this
error. So, in VFP the above code should look like follows:

SCAN
 key="K"+ALLTRIM(STR(projekte.ID))
 WITH THISFORM.myplan.Items
 .DefaultItem = .AddItem(ALLTRIM(projekte.project_name))
 .AddBar(0,"Project Summary" , DTOT(projekte.sdate),DTOT(projekte.edate),_key, "")
 THISFORM.myplan.Template = "Items.ItemBar(0,`" + _key + "`,3) = `my text`"
 ENDWITH
ENDSCAN

The difference (marked in red) is that the first parameter for properties like AddBar and
ItemBar is 0, and before calling them the Items.DefaultItem property indicates the handle of
the item being accessed. How it works? The control uses the value of the Items.DefaultItem
property, when the first parameter of the ItemBar, AddBar and so on is 0. The AddItem
property saves before the handle of the newly created item to the DefaultItem property, and
so the VFP error is gone, and the code works like you expect.

method Items.DefineSummaryBars (SummaryItem as HITEM, SummaryKey
as Variant, ItemAdd as HITEM, KeyAdd as Variant)
Defines the bars that belongs to a summary bar.

Type Description

SummaryItem as HITEM A long expression that specifies the handle of the item that
displays the summary bar.

SummaryKey as Variant A VARIANT expression that indicates the key of the
summary bar

ItemAdd as HITEM

A long expression that specifies the item that holds the bar
being included in the summary bar. The ItemAdd
parameter could be

a valid handle, indicating the item itself
0 indicates all items
-1 indicates the direct descendents/children items of
the SummaryItem (child items of the SummaryItem)
-2 means leaf descendents/items of the
SummaryItem, where a leaf or terminal item is an
item with no child items
-3 means all descendents/children items of the
SummaryItem (recursively)

For instance,
DefineSummaryBars(SummaryItem,SummaryKey,-1,"
<K*>") defines the summary bar to include bars of
SummaryItem descendents, whose key starts with
character K, where the
DefineSummaryBars(SummaryItem,SummaryKey,0,"K")
defines the summary bar to include all bars with the key K
from the entire chart.

The 0, -1, -2 and -3 values are supported, starting from
the version 12.0

A VARIANT expression that indicates the key of the bar
being included in the summary bar. The KeyAdd
parameter supports pattern if specified such as "
<pattern>", where the pattern may contain wild card
characters such as '?' for any single character, '*' for zero
or more occurrences of any character, '#' for any digit

KeyAdd as Variant character. For instance, DefineSummaryBars(,,,"<K*>")
defines the summary bar to include bars whose key starts
with character K.

The "<pattern>" syntax is supported, starting from the
version 12.0

The DefineSummaryBars method defines bars being displayed under a summary bar. Once
a bar that's included in a summary bar is moved or resized, its summary bar is
automatically updated. Once a summary bar is moved all included bars are moved too. For
instance, if your chart displays a "Summary" or "Project Summary" predefined bar, you can
use the DefineSummaryBars method to define the bars included in the summary bar, so
they automatically update the summary bars when moving or resizing. The
DefineSummaryBars method defines a group of bars that belongs to another bar (called
summary bar), so the margins of the summary bars are min and max of the margins of
included bars. The margins of the bars are determined by ItemBar(exBarStart) and
ItemBar(exBarEnd). The UndefineSummaryBars method does the reverse operation, as it
removes a bar from a summary bar. Use the GroupBars method to group one or more
bars. The ItemBar(exSummaryBarBackColor) property specifies the background color for
the child bars in the summary bar portion.

For instance, in the following screen shot, the "< Project Summary >" is a summary bar for
"Team 1 Summary" and "Team 2 Summary". The "Team 1 Summary" is a summary bar for
all child bas being displayed under the Team 1 item. The "Team 2 Summary" is a summary
bar for all child bas being displayed under the Team 2 item. Once a bar is moved, the
owner summary bar is updated accordingly.

The following VB sample adds a "Summary" bar that includes 2 "Task" bars:

With G2antt1
 .BeginUpdate

 .Columns.Add "Tasks"
 With .Chart
 .FirstVisibleDate = #6/20/2005#
 .LevelCount = 2
 End With
 With .Items
 h = .AddItem("Project")
 .AddBar h,"Summary",#6/22/2005#,#6/23/2005 4:00:00 PM#
 h1 = .InsertItem(h,0,"Task 1")
 .AddBar h1,"Task",#6/21/2005 4:00:00 PM#,#6/23/2005#
 .ItemBar(h1,"",exBarHAlignCaption) = 18
 .DefineSummaryBars h,"",h1,""
 h2 = .InsertItem(h,0,"Task 2")
 .AddBar h2,"Task",#6/23/2005 8:00:00 AM#,#6/25/2005#
 .DefineSummaryBars h,"",h2,""
 .ExpandItem(h) = True
 End With
 .EndUpdate
End With

The following VB.NET sample adds a "Summary" bar that includes 2 "Task" bars:

Dim h,h1,h2
With AxG2antt1
 .BeginUpdate
 .Columns.Add "Tasks"
 With .Chart
 .FirstVisibleDate = #6/20/2005#
 .LevelCount = 2
 End With
 With .Items
 h = .AddItem("Project")
 .AddBar h,"Summary",#6/22/2005#,#6/23/2005 4:00:00 PM#
 h1 = .InsertItem(h,0,"Task 1")
 .AddBar h1,"Task",#6/21/2005 4:00:00 PM#,#6/23/2005#
 .ItemBar(h1,"",EXG2ANTTLib.ItemBarPropertyEnum.exBarHAlignCaption) = 18
 .DefineSummaryBars h,"",h1,""

 h2 = .InsertItem(h,0,"Task 2")
 .AddBar h2,"Task",#6/23/2005 8:00:00 AM#,#6/25/2005#
 .DefineSummaryBars h,"",h2,""
 .ExpandItem(h) = True
 End With
 .EndUpdate
End With

The following C# sample adds a "Summary" bar that includes 2 "Task" bars:

axG2antt1.BeginUpdate();
axG2antt1.Columns.Add("Tasks");
EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;
 var_Chart.FirstVisibleDate = "6/20/2005";
 var_Chart.LevelCount = 2;
EXG2ANTTLib.Items var_Items = axG2antt1.Items;
 int h = var_Items.AddItem("Project");
 var_Items.AddBar(h,"Summary","6/22/2005","6/23/2005 4:00:00 PM",null,null);
 int h1 = var_Items.InsertItem(h,0,"Task 1");
 var_Items.AddBar(h1,"Task","6/21/2005 4:00:00 PM","6/23/2005",null,null);

var_Items.set_ItemBar(h1,"",EXG2ANTTLib.ItemBarPropertyEnum.exBarHAlignCaption,18);
 var_Items.DefineSummaryBars(h,"",h1,"");
 int h2 = var_Items.InsertItem(h,0,"Task 2");
 var_Items.AddBar(h2,"Task","6/23/2005 8:00:00 AM","6/25/2005",null,null);
 var_Items.DefineSummaryBars(h,"",h2,"");
 var_Items.set_ExpandItem(h,true);
axG2antt1.EndUpdate();

The following C++ sample adds a "Summary" bar that includes 2 "Task" bars:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import "d:\\Exontrol\\ExG2antt\\project\\Demo\\ExG2antt.dll"
 using namespace EXG2ANTTLib;
*/

EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->BeginUpdate();
spG2antt1->GetColumns()->Add(L"Tasks");
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutFirstVisibleDate("6/20/2005");
 var_Chart->PutLevelCount(2);
EXG2ANTTLib::IItemsPtr var_Items = spG2antt1->GetItems();
 long h = var_Items->AddItem("Project");
 var_Items->AddBar(h,"Summary","6/22/2005","6/23/2005 4:00:00
PM",vtMissing,vtMissing);
 long h1 = var_Items->InsertItem(h,long(0),"Task 1");
 var_Items->AddBar(h1,"Task","6/21/2005 4:00:00
PM","6/23/2005",vtMissing,vtMissing);
 var_Items->PutItemBar(h1,"",EXG2ANTTLib::exBarHAlignCaption,long(18));
 var_Items->DefineSummaryBars(h,"",h1,"");
 long h2 = var_Items->InsertItem(h,long(0),"Task 2");
 var_Items->AddBar(h2,"Task","6/23/2005 8:00:00
AM","6/25/2005",vtMissing,vtMissing);
 var_Items->DefineSummaryBars(h,"",h2,"");
 var_Items->PutExpandItem(h,VARIANT_TRUE);
spG2antt1->EndUpdate();

The following VFP sample adds a "Summary" bar that includes 2 "Task" bars:

with thisform.G2antt1
 .BeginUpdate
 .Columns.Add("Tasks")
 with .Chart
 .FirstVisibleDate = {^2005-6-20}
 .LevelCount = 2
 endwith
 with .Items
 h = .AddItem("Project")
 .AddBar(h,"Summary",{^2005-6-22},{^2005-6-23 16:00:00})
 h1 = .InsertItem(h,0,"Task 1")
 .AddBar(h1,"Task",{^2005-6-21 16:00:00},{^2005-6-23})

 .ItemBar(h1,"",4) = 18
 .DefineSummaryBars(h,"",h1,"")
 h2 = .InsertItem(h,0,"Task 2")
 .AddBar(h2,"Task",{^2005-6-23 8:00:00},{^2005-6-25})
 .DefineSummaryBars(h,"",h2,"")
 .ExpandItem(h) = .T.
 endwith
 .EndUpdate
endwith

property Items.DefSchedulePDM(Option as DefSchedulePDMEnum) as
Variant
Retrieves or sets an option for SchedulePDM method.

Type Description
Option as
DefSchedulePDMEnum

A DefSchedulePDMEnum expression that indicates the
option to be changed.

Variant A Variant expression that indicates the value of the
SchedulePDM's option to be changed.

The Def SchedulePDM property defines options to be used by the SchedulePDM method. If
required any option to be used the DefSchedulePDM should be called before the
SchedulePDM method else it will have no effect. For instance, use the Def SchedulePDM
property to specify a start date for the project, so the SchedulePDM method will use it, to
arrange all bars so no bars will start before the specified date. The same if you require to
specify the end of the project.

For instance the following sample specifies the start of the project to be 1/8/2001,

With G2antt1
 With .Items
 .DefSchedulePDM(exPDMScheduleType) = 1
 .DefSchedulePDM(exPDMScheduleDate) = #1/8/2001#
 .SchedulePDM 0,"K1"
 End With
End With

and the following sample specifies the end of the project to be 1/8/2001

With G2antt1
 With .Items
 .DefSchedulePDM(exPDMScheduleType) = 2
 .DefSchedulePDM(exPDMScheduleDate) = #1/8/2001#
 .SchedulePDM 0,"K1"
 End With
End With

method Items.DeleteCellEditor ([Item as Variant], [ColIndex as Variant])
Deletes the cell's built-in editor created by CellEditor property.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, or
cell's handle, a string expression that indicates the
column's caption or key.

Use the DeleteCellEditor method to delete the editor created using the CellEditor property.
Use the CellEditorVisible property to hide or show the cell's editor. Use the HasCellEditor
property to check whether the cell contains an editor (being created using the CellEditor
property). The DeleteCellEditor method has no effect if the cell contains an editor assigned
using the the Editor property of the Column object, or the cell has no editor.

property Items.EnableItem(Item as HITEM) as Boolean

Returns or sets a value that determines whether a item can respond to user-generated
events.

Type Description

Item as HITEM A long expression that indicates the item's handle that is
enabled or disabled.

Boolean A boolean expression that indicates whether the item is
enabled or disabled.

Use the EnableItem property to disable an item. A disabled item looks grayed and it is
selectable. Use the SelectableItem property to specify the user can select an item. Once
that an item is disabled all the cells of the item are disabled, so CellEnabled property has
no effect. To disable a column you can use Enabled property of a Column object. The
control prevents creating new bars inside disable items, so you can not create new bars in
disabled items, if the AllowCreateBar property of the Chart is not 0. A disabled item looks
grayed, and shows as unselected.

method Items.EndBlockUndoRedo ()
Ends recording the UI operations and adds the undo/redo operations as a block, so they all
can be restored at once, if Undo method is performed.

Type Description

The StartBlockUndoRedo method starts recording the UI operations as a block on
undo/redo operations (equivalent of EndBlockUndoRedo method of the Chart object). The
method has effect only if the AllowUndoRedo property is True. The EndBlockUndoRedo
method collects all undo/redo operations since StartBlockUndoRedo method was called and
add them to the undo/redo queue as a block. This way the next call on a Undo operation,
the entire block is restored, so all UI operations are restored. For instance, if you have a
procedure that moves several bars, and want all of them being grouped, you can use
StartBlockUndoRedo to start recording the operations as a block, and call the
EndBlockUndoRedo when procedure ends, so next call of an undo operation the bars are
restored to their original position. The EndBlockUndoRedo method must be called the same
number of times as the StartBlockUndoRedo method was called. For instance, if you have
called the StartBlockUndoRedo twice the EndBlockUndoRedo method must be called twice
too, and the collected operations are added to the chart's queue of undo/redo operations at
the end.

method Items.EndUpdateBar (StartUpdateBar as Long)
Adds programmatically updated properties of the bar to undo/redo queue.

Type Description

StartUpdateBar as Long A long expression that specifies the handle being returned
by the StartUpdateBar property.

Use the StartUpdateBar and EndUpdateBar methods to add new entries in the chart's
undo/redo queue for properties of the bar being updated by code. The ItemBar property
accesses the properties of the bar. For instance, if your application provides UI dialogs or
forms that help users changing the properties of the selected bar such as color, text,
tooltips and so on, you can provide undo/redo operations for them by using the
StartUpdateBar and EndUpdateBar methods. Shortly, the StartUpdateBar method starts
recording the properties being changed until the EndUpdateBar method is called. The
EndUpdateBar method actually adds a new entry to the undo/redo queue based on the
changed properties. If there were no changes of the bar during the Star/End session, no
new entry is added. The EndUpdateBar method adds UpdateBar entries to the undo/redo
queue.

The AllowUndoRedo property specifies whether the chart supports undo/redo operations
for objects in the chart such as bars or links. The ChartStartChanging(exUndo/exRedo) /
ChartEndChanging(exUndo/exRedo) event notifies your application whenever an Undo/Redo
operation is performed. The UndoListAction property lists the Undo actions that can be
performed in the chart. The RedoListAction property lists the Redo actions that can be
performed in the chart.

The following VB sample adds a new entry "UpdateBar" in the chart's undo/redo queue for
changing the text of the bar (/COM version):

 With G2antt1.Items
 Dim hItem As Long
 hItem = .FocusItem
 Dim barKey As Variant
 barKey = .FirstItemBar(hItem)

 Dim iChangeBar As Long
 iChangeBar = .StartUpdateBar(hItem, barKey)
 .ItemBar(hItem, barKey, exBarCaption) = "new caption"
 .EndUpdateBar (iChangeBar)
End With

The following VB/NET sample adds a new entry "UpdateBar" in the chart's undo/redo queue
for changing the text of the bar (/NET Assembly version):

With Exg2antt1.Items
 Dim hItem As Long = .FocusItem
 Dim barKey As Object = .get_FirstItemBar(hItem)

 Dim iChangeBar As Long = .get_StartUpdateBar(hItem, barKey)
 .set_ItemBar(hItem, barKey, exontrol.EXG2ANTTLib.ItemBarPropertyEnum.exBarCaption,
"new caption")
 .EndUpdateBar(iChangeBar)
End With

These samples add new entries to undo/redo queue as : "UpdateBar;94980832;B1;3;;new
caption " which indicates , the handle of the items where the bar has been changed, the bar
of the key as being B1, the 3 indicates the exBarCaption predefined value, and so on. Once
the sample is called, the bar's caption is changed, and using the CTRL + Z, you can restore
back the old value, or pressing the CTRL + Y you can change back after restoring.

method Items.EndUpdateLink (StartUpdateLink as Long)
Adds programmatically updated properties of the link to undo/redo queue.

Type Description

StartUpdateLink as Long A long expression that indicates the handle being returned
by StartUpdateLink property.

Use the StartUpdateLink and EndUpdateLink methods to add new entries in the chart's
undo/redo queue for properties of the link being updated by code. The Link property
accesses the properties of the link. For instance, if your application provides UI dialogs or
forms that help users changing the properties of the selected link such as color, text,
tooltips and so on, you can provide undo/redo operations for them by using the
StartUpdateLink and EndUpdateLink methods. Shortly, the StartUpdateLink method starts
recording the properties being changed until the EndUpdateLink method is called. The
EndUpdateLink method actually adds a new entry to the undo/redo queue based on the
changed properties. If there were no changes of the link during the Star/End session, no
new entry is added. The EndUpdateLink method adds UpdateLink entries to the undo/redo
queue.

The AllowUndoRedo property specifies whether the chart supports undo/redo operations
for objects in the chart such as bars or links. The ChartStartChanging(exUndo/exRedo) /
ChartEndChanging(exUndo/exRedo) event notifies your application whenever an Undo/Redo
operation is performed. The UndoListAction property lists the Undo actions that can be
performed in the chart. The RedoListAction property lists the Redo actions that can be
performed in the chart.

The following VB sample adds a new entry "UpdateLink" in the chart's undo/redo queue for
changing the text being displayed on the link (/COM version):

With G2antt1.Items
 Dim linkKey As Variant
 linkKey = .FirstLink
 Dim iChangeLink As Long
 iChangeLink = .StartUpdateLink(linkKey)
 .Link(linkKey, exLinkText) = "new text"
 .EndUpdateLink (iChangeLink)
End With

The following VB/NET sample adds a new entry "UpdateLink" in the chart's undo/redo
queue for changing the text being displayed on the link (/NET Assembly version):

With Exg2antt1.Items
 Dim linkKey As Object = .get_FirstLink
 Dim iChangeLink As Long = .get_StartUpdateLink(linkKey)
 .set_Link(linkKey, exontrol.EXG2ANTTLib.LinkPropertyEnum.exLinkText, "new text")
 .EndUpdateLink(iChangeLink)
End With

These samples add new entries to undo/redo queue as : "UpdateLink;L1;12;;new text "
which indicates , the link as being L1, the 12 indicates the exLinkText predefined value, and
so on. Once the sample is called, the link's text is changed, and using the CTRL + Z, you
can restore back the old value, or pressing the CTRL + Y you can change back after
restoring.

method Items.EnsureVisibleBar (Item as HITEM, [Key as Variant])
Ensures that the given item-bar fits the chart's visible area.

Type Description

Item as HITEM

A long expression that indicates the the handle of the item
that hosts the bar. If the Item parameter is 0, it indicates
all bars. In this case the DefaultItem property should be
zero (by default), else it refers the item being indicated
by DefaultItem (/COM version only) property.

Key as Variant

A String expression that indicates the key of the bar being
ensured. If missing, the method ensures that the item fits
the control's visible area. The Key may include a pattern
with wild characters as *,?,# or [], if the Key starts with "
<" and ends on ">" aka "<K*>" which indicates all bars
with the key K or starts on K. The pattern may include a
space which divides multiple patterns for matching. For
instance "<A* *K>" indicates all keys that start on A and all
keys that end on K. The method ends once an item-bar is
found.

The EnsureVisibleBar method ensures that the given item-bar fits the chart's visible area.
The EnsureVisibleBar method expands the parent items if the bar is hosted by a collapsed
item. The EnsureVisibleItem method ensures that the item fits the control's visible area. Use
the EnsureVisibleColumn method to ensure that a specified column fits the control's client
area.

The Item and Key parameters can be one of the following:

EnsureVisibleBar(item), ensures that giving item
EnsureVisibleBar(item, key), ensures that the bar of specified key of giving item
EnsureVisibleBar(item, <pattern>), ensures that the first-bar of giving item whose
key matches the pattern (can use wild characters such as wild characters as *,?,# or
[])
EnsureVisibleBar(0, key), ensures that the first bar of specified key (looks through all
the items until one is found)
EnsureVisibleBar(0, <pattern>), ensures that the first-bar whose key matches the
pattern (can use wild characters such as wild characters as *,?,# or [], looks through
all the items until one is found)

fits the chart's visible area

method Items.EnsureVisibleItem (Item as HITEM)

Ensures the given item is in the visible client area.

Type Description

Item as HITEM A long expression that indicates the item's handle that fits
the client area.

The EnsureVisibleItem method ensures that the item fits the control's visible area. The
EnsureVisibleItem method scrolls the control's content until the item fits the control's visible
area. The EnsureVisibleItem method expands the parent items in case it is collapased. Use
the IsItemVisible to check if an item fits the control's client area. Use the Scroll method to
scroll programmatically the control. Use the EnsureVisibleColumn method to ensure that a
specified column fits the control's client area. The EnsureVisibleBar method ensures that
the given item-bar fits the chart's visible area.

The following VB sample ensures that first item is visible:

G2antt1.Items.EnsureVisibleItem G2antt1.Items(0)

The following C++ sample ensures that first item is visible:

#include "Items.h"
CItems items = m_g2antt.GetItems();
items.EnsureVisibleItem(items.GetItemByIndex(0));

The following C# sample ensures that first item is visible:

axG2antt1.Items.EnsureVisibleItem(axG2antt1.Items[0]);

The following VB.NET sample ensures that first item is visible:

AxG2antt1.Items.EnsureVisibleItem(AxG2antt1.Items.FocusItem);

The following VFP sample ensures that first item is visible:

with thisform.G2antt1.Items
 .EnsureVisibleItem(.ItemByIndex(0))
endwith

property Items.ExpandItem(Item as HITEM) as Boolean

Expands, or collapses, the child items of the specified item.

Type Description

Item as HITEM

A long expression that indicates the handle of the item
being expanded or collapsed. If the Item is 0, setting the
ExpandItem property expands or collapses all items. For
instance, the ExpandItem(0) = False, collapses all items,
while the ExpandItem(0) = True, expands all items.

Boolean A boolean expression that indicates whether the item is
expanded or collapsed.

Use ExpandItem property to programmatically expand or collapse an item. Use the
ExpandItem property to check whether an items is expanded or collapsed. Before
expanding/collapsing an item, the control fires the BeforeExpandItem event. Use the
BeforeExpandIvent to cancel expanding/collapsing of an item. After item was
expanded/collapsed the control fires the AfterExpandItem event. The following samples
shows how to expand the selected item:
G2antt1.Items.ExpandItem(G2antt1.Items.SelectedItem()) = True. The property has no
effect if the item has no child items. To check if the item has child items you can use
ChildCount property. Use the ItemHasChildren property to display a +/- expand sign to the
item even if it doesn't contain child items. The ExpandOnSearch property specifies whether
the control expands nodes when incremental searching is on (AutoSearch property is
different than 0) and user types characters when the control has the focus. Use the
ExpandOnKeys property to specify whether the user expands or collapses the focused
items using arrow keys. Use the InsertItem property to add child items.

The following VB sample programmatically expands the item when the user selects it :

Private Sub G2antt1_SelectionChanged()
 G2antt1.Items.ExpandItem(G2antt1.Items.SelectedItem()) = True
End Sub

The following VB sample expands programmatically the focused item:

With G2antt1.Items
 .ExpandItem(.FocusItem) = True
End With

The following C++ sample expands programmatically the focused item:

#include "Items.h"
CItems items = m_g2antt.GetItems();
items.SetExpandItem(items.GetFocusItem(), TRUE);

The following VB.NET sample expands programmatically the focused item:

AxG2antt1.Items.ExpandItem(AxG2antt1.Items.FocusItem) = True

The following C# sample expands programmatically the focused item:

axG2antt1.Items.set_ExpandItem(axG2antt1.Items.FocusItem, true);

The following VFP sample expands programmatically the focused item:

with thisform.G2antt1.Items
 .DefaultItem = .FocusItem
 .ExpandItem(0) = .t.
endwith

property Items.FindBar (BarKey as Variant, [StartIndex as Variant]) as
HITEM
Finds the item that hosts the specified bar.

Type Description

BarKey as Variant A Variant expression that holds the key of the bar to look
for.

StartIndex as Variant

A Long expression that could be one of the following:

0 or positive, specifies the index to start searching
from. If missing, 0 is used instead. The FindBar
method searches all unlocked items (not including the
locked items).
-1, searches for specified task into locked-top,
unlocked and locked-bottom items (all-items), and
returns the handle of the item that holds the specified
bar.
-2, searches for specified task into locked-top, and
locked-bottom items (locked-items), and returns the
handle of the item that holds the specified bar.
-3, searches for specified task into locked-top items,
and returns the handle of the item that holds the
specified bar.
-4 searches for specified task into locked-bottom
items, and returns the handle of the item that holds
the specified bar.

HITEM
A Long expression that specifies the handle of the item
that hosts the specified bar. If 0, the FindBar found no
item that hosts a bar with specified key.

The FindBar property looks for the item that hosts the specified bar. The FindBar property
returns 0 if no item has been found. The EnsureVisibleItem method ensures that an item fits
the control's client area, and so the chart is vertically scrolled until the specified item fits the
control's area. The ScrollTo method scrolls horizontally the chart until the specified date fits
the chart's client area. The ItemBar property accesses the properties of the specified bar.

The following VB sample ensures that specified bar fits the control's chart area (for the
/COM version):

Private Sub ensureVisibleBar(BarKey)
 With G2antt1

 .BeginUpdate
 With .Items
 Dim h As HITEM
 h = .FindBar(BarKey)
 If (h <> 0) Then
 .EnsureVisibleItem h
 G2antt1.Chart.ScrollTo .ItemBar(h, BarKey, exBarStart),
AlignmentEnum.CenterAlignment
 End If
 End With
 .EndUpdate
 End With
End Sub

The following VB/NET sample ensures that the specified bar fits the control's chart area (
the code is for the /NET Assembly version):

Private Sub ensureVisibleBar(ByVal BarKey)
 With Exg2antt1
 With .Items
 Dim h As Integer = .get_FindBar(BarKey)
 If (h <> 0) Then
 Exg2antt1.BeginUpdate()
 .EnsureVisibleItem(h)
 Exg2antt1.Chart.ScrollTo(.get_BarStart(h, BarKey),
exontrol.EXG2ANTTLib.AlignmentEnum.CenterAlignment)
 Exg2antt1.EndUpdate()
 End If
 End With
 End With
End Sub

The following C# sample ensures that the specified bar fits the control's chart area (the
code is for the /NET Assembly version):

private void ensureVisibleBar(object barKey)
{
 int h = exg2antt1.Items.get_FindBar(barKey);

 if (h != 0)
 {
 exg2antt1.BeginUpdate();
 exg2antt1.Items.EnsureVisibleItem(h);
 exg2antt1.Chart.ScrollTo(exg2antt1.Items.get_BarStart(h, barKey),
exontrol.EXG2ANTTLib.AlignmentEnum.CenterAlignment);
 exg2antt1.EndUpdate();
 }
}

property Items.FindItem (Value as Variant, [ColIndex as Variant],
[StartIndex as Variant]) as HITEM

Finds an item, looking for Caption in ColIndex colum. The searching starts at StartIndex
item.

Type Description

Value as Variant A Variant expression that indicates the caption that is
searched for.

ColIndex as Variant A string expression that indicates the column's caption, or
a long expression that indicates the column's index.

StartIndex as Variant A long value that indicates the index of item from where
the searching starts.

HITEM A long expression that indicates the item's handle that
matches the criteria.

Use the FindItem to search for an item. Finds a control's item that matches CellValue(Item,
ColIndex) = Caption. The StartIndex parameter indicates the index from where the
searching starts. If it is missing, the searching starts from the item with the 0 index. The
searching is case sensitive only if the ASCIIUpper property is empty. Use the AutoSearch
property to enable incremental search feature within the column. The FindBar method looks
for the item that hosts a specified bar.

The following VB sample selects the first item that matches "DUMON" on the first column:

G2antt1.Items.SelectItem(G2antt1.Items.FindItem("DUMON", 0)) = True

The following C++ sample finds and selects an item:

#include "Items.h"
CItems items = m_g2antt.GetItems();
COleVariant vtMissing;
long hFind = items.GetFindItem(COleVariant("King"), COleVariant("LastName"), vtMissing
);
if (hFind != NULL)
 items.SetSelectItem(hFind, TRUE);

The following C# sample finds and selects an item:

axG2antt1.Items.set_SelectItem(axG2antt1.Items.get_FindItem("Child 2", 0, 0), true);

The following VB.NET sample finds and selects an item:

With AxG2antt1.Items
 Dim iFind As Integer
 iFind = .FindItem("Child 2", 0)
 If Not (iFind = 0) Then
 .SelectItem(iFind) = True
 End If
End With

The following VFP sample finds and selects an item:

with thisform.G2antt1.Items
 .DefaultItem = .FindItem("Child 2",0)
 if (.DefaultItem <> 0)
 .SelectItem(0) = .t.
 endif
endwith

property Items.FindItemData (UserData as Variant, [StartIndex as
Variant]) as HITEM

Finds the item giving its data.

Type Description

UserData as Variant A Variant expression that indicates the value being
searched.

StartIndex as Variant A long expression that indicates the index of the item
where the searching starts.

HITEM A long expression that indicates the handle of the item
found.

Use the FindItemData property to search for an item giving its extra-data. Use the ItemData
property to associate an extra data to an item. Use the FindItem property to locate an item
given its caption. Use the FindPath property to search for an item given its path.

property Items.FindPath (Path as String) as HITEM

Finds an item given its path.

Type Description
Path as String A string expression that indicates the item's path.

HITEM A long expression that indicates the item's handle that
matches the criteria.

The FindPath property searches the item on the column SearchColumnIndex. Use the
FullPath property in order to get the item's path. Use the FindItem to search for an item.

The following VB sample selects the item based on its path:

G2antt1.Items.SelectItem(G2antt1.Items.FindPath("Files and Folders\Hidden Files and
Folders\Do not show hidden files and folder")) = True

The following C++ sample selects the item based on its path:

#include "Items.h"
CItems items = m_g2antt.GetItems();
COleVariant vtMissing;
long hFind = items.GetFindPath("Files and Folders\\Hidden Files and Folders\\Do not
show hidden files and folder");
if (hFind != NULL)
 items.SetSelectItem(hFind, TRUE);

The following VB.NET sample selects the item based on its path:

With AxG2antt1.Items
 Dim iFind As Integer
 iFind = .FindPath("Files and Folders\Hidden Files and Folders\Do not show hidden files
and folder")
 If Not (iFind = 0) Then
 .SelectItem(iFind) = True
 End If
End With

The following C# sample selects the item based on its path:

int iFind = axG2antt1.Items.get_FindPath("Files and Folders\\Hidden Files and
Folders\\Do not show hidden files and folder");
if (iFind != 0)
 axG2antt1.Items.set_SelectItem(iFind, true);

The following VFP sample selects the item based on its path:

with thisform.G2antt1.Items
 .DefaultItem = .FindPath("Files and Folders\Hidden Files and Folders\Do not show
hidden files and folder")
 if (.DefaultItem <> 0)
 .SelectItem(0) = .t.
 endif
endwith

property Items.FirstItemBar (Item as HITEM) as Variant
Gets the key of the first bar in the item.

Type Description

Item as HITEM A HITEM expression that indicates the handle of the item
where the bars are enumerated.

Variant A String expression that indicates the key of the first bar in
the item, or empty if the item contains no bar.

Use the FirstItemBar and NextItemBar methods to enumerate the bars inside the item. Use
the ItemBar property to access properties of the specified bar. Use the AddBar method to
add new bars to the item. Use the AddLink method to link a bar with another. Use the
AllowCreateBar method to create new bars using the mouse. Use the RemoveBar method
to remove a bar from an item. Use the ClearBars method to remove all bars in the item.

The following VB.NET sample enumerates all items and bars in the control (/NET or /WPF
version):

With Exg2antt1
 Dim i, h As Integer, key As Object
 For i = 0 To .Items.ItemCount - 1
 h = .Items(i)
 key = .Items.get_FirstItemBar(h)
 While TypeOf key Is String
 Debug.Print("Key = " & key & ", Item " & .Items.get_CellCaption(h, 0))
 key = CStr(.Items.get_NextItemBar(h, key))
 End While
 Next
End With

The following C# sample enumerates all items and bars in the control (/NET or /WPF
version):

for (int i = 0; i < exg2antt1.Items.ItemCount; i++)
{
 int h = exg2antt1.Items[i];
 object key = exg2antt1.Items.get_FirstItemBar(h);
 while (key != null)
 {

 System.Diagnostics.Debug.Print("Key = " + key + ", Item " +
exg2antt1.Items.get_CellCaption(h, 0));
 key = exg2antt1.Items.get_NextItemBar(h, key);
 }
}

The following VB sample enumerates the bars in the item (h indicates the handle of the
item):

With G2antt1
 If Not (h = 0) Then
 Dim k As Variant
 k = .Items.FirstItemBar(h)
 While Not IsEmpty(k)
 Debug.Print "Key = " & k
 k = .Items.NextItemBar(h, k)
 Wend
 End If
End With

The following C++ sample enumerates the bars in the item (h indicates the handle of the
item):

CItems items = m_g2antt.GetItems();
COleVariant vtBar = items.GetFirstItemBar(h) ;
while (V_VT(&vtBar) != VT_EMPTY)
{
 OutputDebugString(V2S(&vtBar));
 OutputDebugString("\n");
 vtBar = items.GetNextItemBar(h, vtBar);
}

where the V2S function converts a Variant expression to a string:

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)

 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

The following VB.NET sample enumerates the bars in the item (h indicates the handle of
the item):

With AxG2antt1
 If Not (h = 0) Then
 Dim k As Object
 k = .Items.FirstItemBar(h)
 While TypeOf k Is String
 System.Diagnostics.Debug.Print(k.ToString)
 k = .Items.NextItemBar(h, k)
 End While
 End If
End With

The following C# sample enumerates the bars in the item (h indicates the handle of the
item):

object k = axG2antt1.Items.get_FirstItemBar(h);
while (k != null)
{
 System.Diagnostics.Debug.Print(k.ToString());
 k = axG2antt1.Items.get_NextItemBar(h, k);
}

The following VFP sample enumerates the bars in the item (h indicates the handle of the
item):

With thisform.G2antt1
 If Not (h = 0) Then
 local k

 k = .Items.FirstItemBar(h)
 do While !empty(k)
 ?k
 k = .Items.NextItemBar(h, k)
 enddo
 Endif
EndWith

In VFP, please make sure that you are using non empty values for the keys. For instance, if
you are omitting the Key parameter of the AddBar method, an empty key is missing. If you
need to use the FirstItemBar and NextItemBar properties, you have to use non empty keys
for the bars.

property Items.FirstLink as Variant
Gets the key of the first link.

Type Description

Variant A string expression that indicates the key of the first link,
or empty, if there are no links.

Use the FirstLink and NextLink properties to enumerate the links in the control. The FirstLink
property retrieves an empty value, if there are no links in the control. Use the AddLink
property to link two bars. Use the ShowLinks property to show or hide the links. Use the
Link property to access a property of the link.

The following VB sample enumerates the links:

With G2antt1.Items
 Dim k As Variant
 k = .FirstLink()
 While Not IsEmpty(k)
 Debug.Print "LinkKey = " & k
 k = .NextLink(k)
 Wend
End With

The following C++ sample enumerates the links:

CItems items = m_g2antt.GetItems();
COleVariant vtLinkKey = items.GetFirstLink() ;
while (V_VT(&vtLinkKey) != VT_EMPTY)
{
 OutputDebugString(V2S(&vtLinkKey));
 OutputDebugString("\n");
 vtLinkKey = items.GetNextLink(vtLinkKey);
}

where the V2S function converts a Variant expression to a string:

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)

 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

The following VB.NET sample enumerates the links:

With AxG2antt1.Items
 Dim k As Object
 k = .FirstLink
 While (TypeOf k Is String)
 System.Diagnostics.Debug.Print(k.ToString)
 k = .NextLink(k)
 End While
End With

The following C# sample enumerates the links:

object k = axG2antt1.Items.FirstLink;
while (k != null)
{
 System.Diagnostics.Debug.Print(k.ToString());
 k = axG2antt1.Items.get_NextLink(k);
}

The following VFP sample enumerates the links:

With thisform.G2antt1.Items
 local k
 k = .FirstLink
 do While !empty(k)
 ?k
 k = .NextLink(k)

 enddo
endwith

property Items.FirstVisibleItem as HITEM

Retrieves the handle of the first visible item into control.

Type Description

HITEM A long expression that indicates the handle of the first
visible item.

Use the FirstVisibleItem, NextVisibleItem and IsItemVisible properties to get the items that
fit the client area. Use the NextVisibleItem property to get the next visible item. Use the
IsVisibleItem property to check whether an item fits the control's client area.

The following VB sample enumerates the items that fit the control's client area:

On Error Resume Next
Dim h As HITEM
Dim i As Long, j As Long, nCols As Long
nCols = G2antt1.Columns.Count
With G2antt1.Items
 h = .FirstVisibleItem
 While Not (h = 0) And .IsItemVisible(h)
 Dim s As String
 s = ""
 For j = 0 To nCols - 1
 s = s + .CellValue(h, j) + Chr(9)
 Next
 Debug.Print s
 h = .NextVisibleItem(h)
 Wend
End With

The FormatColumn event is fired before displaying a cell, so you can handle the
FormatColumn to display anything on the cell at runtime. This way you can display the row
position, you can display the value using the currency format, and so on. The
FireFormatColumn property allows the control to fire the FormatColumn event for the
column. The Position property specifies the position of the column.

If your chart does not display a tree or a hierarchy this property is ok to be used with
FormatColumn event to display the position

The following VB sample handles the FormatColumn event to display the row position:

Private Sub G2antt1_FormatColumn(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal
ColIndex As Long, Value As Variant)
 Value = G2antt1.Items.ItemPosition(Item)
End Sub

If your chart displays a tree or a hierarchy the position of the item must be determined
relative to the FirstVisibleItem as shown in the following VB sample:

Private Sub G2antt1_FormatColumn(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal
ColIndex As Long, Value As Variant)
 Value = G2antt1.ScrollPos(True) + RelPos(Item)
End Sub

Private Function RelPos(ByVal hVisible As Long) As Long
 With G2antt1.Items
 Dim h As Long, i As Long, n As Long
 i = 0
 n = .VisibleCount + 1
 h = .FirstVisibleItem
 While (i <= n) And h <> 0 And h <> hVisible
 i = i + 1
 h = .NextVisibleItem(h)
 Wend
 RelPos = i
 End With
End Function

The following C++ sample enumerates the items that fit the control's client area:

#include "Items.h"
CItems items = m_g2antt.GetItems();
long hItem = items.GetFirstVisibleItem();
while (hItem && items.GetIsItemVisible(hItem))
{
 OutputDebugString(V2S(&items.GetCellValue(COleVariant(hItem), COleVariant(
long(0)))));
 hItem = items.GetNextVisibleItem(hItem);
}

The following VB.NET sample enumerates the items that fit the control's client area:

With AxG2antt1.Items
 Dim hItem As Integer
 hItem = .FirstVisibleItem
 While Not (hItem = 0)
 If (.IsItemVisible(hItem)) Then
 Debug.Print(.CellValue(hItem, 0))
 hItem = .NextVisibleItem(hItem)
 Else
 Exit While
 End If
 End While
End With

The following C# sample enumerates the items that fit the control's client area:

EXG2ANTTLib.Items items = axG2antt1.Items;
int hItem = items.FirstVisibleItem;
while ((hItem != 0) && (items.get_IsItemVisible(hItem)))
{
 object strCaption = items.get_CellValue(hItem, 0);
 System.Diagnostics.Debug.WriteLine(strCaption != null ? strCaption.ToString() : "");
 hItem = items.get_NextVisibleItem(hItem);
}

The following VFP sample enumerates the items that fit the control's client area:

with thisform.G2antt1.Items
 .DefaultItem = .FirstVisibleItem
 do while ((.DefaultItem <> 0) and (.IsItemVisible(0)))
 wait window .CellValue(0, 0)
 .DefaultItem = .NextVisibleItem(0)
 enddo
endwith

property Items.FocusItem as HITEM

Retrieves the handle of item that has the focus.

Type Description

HITEM A long expression that indicates the handle of the focused
item.

The FocusItem property specifies the handle of the focused item. If there is no focused
item the FocusItem property retrieves 0. At one moment, only one item can be focused.
When the selection is changed the focused item is changed too. Use the SelectCount
property to get the number of selected items. Use the SelectedItem property to get the
selected item. Use the SelectItem to select or unselect a specified item. If the control
supports only single selection, you can use the FocusItem property to get the
selected/focused item because they are always the same. Use the ShowFocusRect
property to indicate whether the control draws a marking rectangle around the focused
item. You can change the focused item, by selecting a new item using the SelectItem
method. If the items is not selectable, it is not focusable as well. Use the SelectableItem
property to specify whether an item is selectable/focusable.

property Items.FormatCell([Item as Variant], [ColIndex as Variant]) as
String
Specifies the custom format to display the cell's content.

Type Description
Item as Variant A long expression that indicates the handle of the item.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's key or the
column's caption.

String
A string expression that indicates the format to be applied
on the cell's value, including HTML formatting, if the cell
supports it.

By default, the FormatCell property is empty. The format is being applied if valid (not
empty, and syntactically correct). The expression may be a combination of variables,
constants, strings, dates and operators, and value. The value operator gives the value to
be formatted. A string is delimited by ", ` or ' characters, and inside they can have the
starting character preceded by \ character, ie "\"This is a quote\"". A date is delimited by #
character, ie #1/31/2001 10:00# means the January 31th, 2001, 10:00 AM. The
FormatColumn property applies the predefined format for all cells in the columns. The
CellValue property indicates the cell's value.

The CellValue property of the cell is being shown as:

formatted using the FormatCell property, if it is valid
formatted using the FormatColumn property, if it is valid

In other words, all cells applies the format of the FormatColumn property, excepts the cells
with the FormatCell property being set. If the cell belongs to a column with the
FireFormatColumn property on True, the Value parameter of the FormatColumn event
shows the newly caption for the cell to be shown.

For instance:

the "currency(value)" displays the column using the current format for the currency ie,
1000 gets displayed as $1,000.00
the "longdate(date(value))" converts the value to a date and gets the long format to
display the date in the column, ie #1/1/2001# displays instead Monday, January 01,
2001
the "'' + ((0:=proper(value)) left 1) + '' + (=:0 mid 2)" converts the name to
proper, so the first letter is capitalized, bolds the first character, and let unchanged the
rest, ie a "mihai filimon" gets displayed "Mihai Filimon".

the "len(value) ? ((0:=dbl(value)) < 10 ? '<fgcolor=808080>' : '') +
currency(=:0)" displays the cells that contains not empty daya, the value in currency
format, with a different font and color for values less than 10, and bolded for those that
are greater than 10, as can see in the following screen shot in the column (A+B+C):

The value keyword in the FormatColumn property indicates the value to be formatted.

The expression supports cell's identifiers as follows:

%0, %1, %2, ... specifies the value of the cell in the column with the index 0, 1 2, ...
The CellValue property specifies the cell's value. For instance, "%0 format ``" formats
the value on the cell with the index 0, using current regional setting, while "int(%1)"
converts the value of the column with the index 1, to integer.
%C0, %C1, %C2, ... specifies the caption of the cell, or the string the cell displays in
the column with the index 0, 1 2, ... The CellCaption property specifies the cell's
caption. The cell's value may be different than what the cell displays as a string. For
instance, let's say a cell display HTML format. The %0 returns the html format
including the HTML tags, while %C0 returns the cell's content as string without HTML
tags. For instance, "upper(%C1)" converts the caption of the cell with the index 1, to
upper case, while "%C0 left 2" returns the leftmost two characters on the cell with the
index 0.
%CD0, %CD1, %CD2, ... specifies the cell's extra data in the column with the index
0, 1 2, ... The CellData property associates any extra/user data to a cell. For instance,
"%CD0 = `your user data`" specifies all cells whose CellData property is `your user
data`, on the column with the index 0.
%CS0, %CS1, %CS2, ... specifies the cell's state in the column with the index 0, 1 2,
... The CellState property specifies the cell's state, and so it indicates whether the cell
is checked or un-checked. For instance, "%CS0" defines all checked items on the
column with the index 0, or "not %CS1" defines all un-checked items in the column
with the index 1.

The expression supports auto-numbering predefined operators as follows:

number index 'format', indicates the index of the item. The first added item has the
index 0, the second added item has the index 1, and so on. The index of the item
remains the same even if the order of the items is changed by sorting. For instance, 1
index '' gets the index of the item starting from 1 while 100 index '' gets the index of the

item starting from 100. The number indicates the starting index, while the format is a
set of characters to be used for specifying the index. If the format is missing, the index
of the item is formatted as numbers. For instance: 1 index 'A-Z' gets the index as A, B,
C... Z, BA, BB, ... BZ, CA, The 1 index 'abc' gives the index as:
a,b,c,ba,bb,bc,ca,cb,cc,.... You can use other number formatting function to format the
returned value. For instance "1 index '' format '0||2|:'" gets the numbers grouped by 2
digits and separated by : character.

In the following screen shot the FormatColumn("Col 1") = "1 index ''"

In the following screen shot the FormatColumn("Col 1") = "1 index 'A-Z'"

number apos 'format' indicates the absolute position of the item. The first displayed
item has the absolute position 0 (scrolling position on top), the next visible item is 1,
and so on. The number indicates the starting position, while the format is a set of
characters to be used for specifying the position. For instance, 1 apos '' gets the
absolute position of the item starting from 1, while 100 apos '' gets the position of the
item starting from 100. If the format is missing, the absolute position of the item is
formatted as numbers.

In the following screen shot the FormatColumn("Col 1") = "1 apos ''"

In the following screen shot the FormatColumn("Col 1") = "1 apos 'A-Z'"

number pos 'format' indicates the relative position of the item. The relative position is
the position of the visible child item in the parent children collection. The number
indicates the starting position, while the format is a set of characters to be used for
specifying the position. For instance, 1 pos '' gets the relative position of the item
starting from 1, while 100 pos '' gets the relative position of the item starting from 100.
If the format is missing, the relative position of the item is formatted as numbers. The
difference between pos and opos can be seen while filtering the items in the control.
For instance, if no filter is applied to the control, the pos and opos gets the same
result. Instead, if the filter is applied, the opos gets the position of the item in the list
of unfiltered items, while the pos gets the position of the item in the filtered list.

In the following screen shot the FormatColumn("Col 2") = "'' + 1 pos '' + ' ' +
value"

In the following screen shot the FormatColumn("Col 2") = "'' + 1 pos 'A-Z' + ' '
+ value"

number opos 'format' indicates the relative old position of the item. The relative old
position is the position of the child item in the parent children collection. The number
indicates the starting position, while the format is a set of characters to be used for
specifying the position.For instance, 1 pos '' gets the relative position of the item
starting from 1, while 100 pos '' gets the relative position of the item starting from 100.
If the format is missing, the relative position of the item is formatted as numbers. The
difference between pos and opos can be seen while filtering the items in the control.
For instance, if no filter is applied to the control, the pos and opos gets the same
result. Instead, if the filter is applied, the opos gets the position of the item in the list
of unfiltered items, while the pos gets the position of the item in the filtered list.
number rpos 'format' indicates the relative recursive position of the item. The recursive
position indicates the position of the parent items too. The relative position is the
position of the visible child item in the parent children collection. The number indicates
the starting position, while the format is of the following type
"delimiter|format|format|...". If the format is missing, the delimiter is . character, and
the positions are formatted as numbers. The format is applied consecutively to each

parent item, from root to item itself.

In the following screen shot the FormatColumn("Col 1") = "1 rpos ''"

In the following screen shot the FormatColumn("Col 1") = "1 rpos ':|A-Z'"

In the following screen shot the FormatColumn("Col 1") = "1 rpos '.|A-Z|'"

In the following screen shot the FormatColumn("Col 1") = "1 apos ''" and
FormatColumn("Col 2") = "'' + 1 rpos '.|A-Z|' + ' ' +
value"

number rindex 'format', number rapos 'format' and number ropos 'format' are working
similar with number rpos 'format', excepts that they gives the index, absolute position,
or the old child position.

This property/method supports predefined constants and operators/functions as described
here.

property Items.FullPath (Item as HITEM) as String

Returns the fully qualified path of the referenced item in the ExG2antt control.

Type Description
Item as HITEM A long expression that indicates the handle of the item.
String A string expression that indicates the fully qualified path.

Use the FullPath property in order to get the fully qualified path of the referenced item. Use
PathSeparator to change the separator used by FullPath property. Use the FindPath
property to get the item's selected based on its path. The fully qualified path is the
concatenation of the text in the given cell's caption property on the column
SearchColumnIndex with the CellValue property values of all its ancestors.

method Items.GroupBars (ItemA as HITEM, KeyA as Variant, StartA as
Boolean, ItemB as HITEM, KeyB as Variant, StartB as Boolean,
[GroupBarsOptions as Variant], [Options as Variant])
Groups two bars.

Type Description

ItemA as HITEM A long expression that indicates the handle of the item that
contains the bar to group to.

KeyA as Variant
A long or string expression that specifies the key of the
bar to group to. The Key parameter of the AddBar
method specifies the key of the bar being added.

StartA as Boolean

A boolean expression that specifies whether the start or
the end of the bar is grouped with other bar. True
specifies that the start of the bar is grouped with other
bar. False indicates that the end of the bar is grouped with
other bar.

ItemB as HITEM A long expression that indicates the handle of the item that
contains the bar being grouped with.

KeyB as Variant A long or string expression that specifies the key of the
bar being grouped with.

StartB as Boolean

A boolean expression that specifies whether the start or
the end of the bar is grouped with other bar. True
specifies that the start of the bar is grouped with other
bar. False indicates that the end of the bar is grouped with
other bar.

GroupBarsOptions as
Variant

(exGroupBarsOptionNone, by default or if missing) A
GroupBarsOptionsEnum expression or a combination that
specifies the way the bars gets grouped together. For
instance, the exPreserveBarLength + exFlexibleInterval
specifies that the bars preserves their lengths, and the bar
B can be moved anywhere to the right of the bar A. If the
GroupBarsOptions is exGroupBarsNone the bars are
ungrouped.

Options as Variant

(empty, by default or if missing) A String expression that
specifies a list of double values, separated by ; character,
that specifies in this order: fixed interval ; maximum value
when interval is increased, minimum value when the
interval between bars is decreased. For instance, "2;4"
value specifies that the interval between two bars should

be 2 days and the interval can't be greater than 6 (2 + 4
). Use the exLimitIntervalMin, exLimitIntervalMax,
exLimitInterval or exFlexibleInterval for the
GroupBarsOptions parameter when specifying the range
of values that the interval between bars should be.

The GroupBars method groups two bars. In other words, you can associate a
starting/ending point of one bar with any other starting/ending point of the bar. For instance,
if you want to move both together you need to group the starting point of bar A with starting
point of bar B, and ending point of the bar A with ending point of the bar B. Use the
GroupBars method to handle or control the distance between 2 bars. For instance, if two
bars or more bars are grouped, when a bar in the group is resize or moved, the other bars
in the group are resized or moved accordingly. In the same manner, all other groups that
are related with one of the group being resized or moved, are changed as well. You can
group bars from different items. The GroupBars method may preserve the length of the
bars, restrict the interval between bars, and so on when a change occurs in the group. Use
the Link(exLinkGroupBars) to group two linked bars. For instance, the .Link(LinkKey,
exLinkGroupBars) = GroupBarsOptionsEnum.exPreserveBarLength +
GroupBarsOptionsEnum.exFlexibleInterval +
GroupBarsOptionsEnum.exIgnoreOriginalInterval is equivalent with .GroupBars
.Link(LinkKey, exLinkStartItem), .Link(LinkKey, exLinkStartBar), False, .Link(LinkKey,
exLinkEndItem), .Link(LinkKey, exLinkEndBar), True,
GroupBarsOptionsEnum.exPreserveBarLength +
GroupBarsOptionsEnum.exFlexibleInterval +
GroupBarsOptionsEnum.exIgnoreOriginalInterval.

The length of the bar and interval between two bars are defined as follows:

The length of the bar is the same as its duration, in other words it is the difference
between ending date of the bar and starting date of the bar.
The interval between bars is the same as the distance between the starting and
ending points of the grouping bars. For instance, if you have linked the end of the bar A
with the start of the bar B, the interval is defined as difference between the starting
date of the bar B and ending date of the bar A. In other sample, you may have linked
the start of the bar A with start of the bar B, in this case the interval is defined as being
the difference between the start of the bar A and starting date of the bar B, nothing
else.

If using the NonworkingDays property, the ItemBar(exBarKeepWorkingCount) property
indicates whether the working units of the bar is keep constant while moving/grouping. If the
GroupBarsOptions parameter includes the exLimitIntervalTreatAsWorking the interval
between bars is indicating the working days between days.

Samples:

GroupBars(h1,"",False, h2, "", True, 7,"2") ' exPreserveBarLength +
exIgnoreOriginalInterval, the distance between 2 bars is exactly 2 days.
GroupBars(h1,"",False, h2, "", True, 95,"2") ' exPreserveBarLength +
exIgnoreOriginalInterval + exLimitInterval + exLimitIntervalTreatAsWorking, the
distance between 2 bars is exactly 2 working days.
GroupBars(h1,"",False, h2, "", True, 15,"2") ' exPreserveBarLength +
exIgnoreOriginalInterval + exLimitIntervalMin, the distance between 2 bars can be 2
days or more.
GroupBars(h1,"",False, h2, "", True, 79,"2") ' exPreserveBarLength +
exIgnoreOriginalInterval + exLimitIntervalMin + exLimitIntervalTreatAsWorking, the
distance between 2 bars can be 2 working days or more.
GroupBars(h1,"",False, h2, "", True, 31,"0;0;2") ' exPreserveBarLength +
exIgnoreOriginalInterval + exLimitInterval, the distance between 2 bars can be 2 days
or less.
GroupBars(h1,"",False, h2, "", True, 95,"0;0;2") ' exPreserveBarLength +
exIgnoreOriginalInterval + exLimitInterval + exLimitIntervalTreatAsWorking, the
distance between 2 bars can be 2 working days or less.
GroupBars(h1,"",False, h2, "", True, 31,"0;1;7") ' exPreserveBarLength +
exIgnoreOriginalInterval + exLimitInterval, the distance between 2 bars can be between
1 and 7 days.
GroupBars(h1,"",False, h2, "", True, 95,"0;1;5") ' exPreserveBarLength +
exIgnoreOriginalInterval + exLimitInterval + exLimitIntervalTreatAsWorking, the
distance between 2 bars can be between 1 and 7 working days.

Use the AddLink method to add or draw a link between two bars. Use the
DefineSummaryBars method to define bars in a summary bar, so it gets updated as soon
as the child bars are moved or resized. Use the UngroupBars method to ungroup two bars
or all bars. The Items.ItemBar(exBarsGroup) property retrieves a collection of item,key that
defines the bars begin grouped with specified bar.

The following screen shots show the changes in a group of 3 bars (1, 2 and 3), when the
bar 2 (the arrow) is moved from Sep 26 to Sep 29, using different options for
GroupBarsOptions and Options parameters. Click on the picture and view the XML file that
was used to generate the picture. The Groups section stores the groups of bars. You can
use the LoadXML method to load the chart from these XML files. The XML file does not
load EBN files!

The following screen shot shows the chart before performing any change.

The following screen shot shows the chart after moving the bar 2, when the
GroupBarsOptions and Options parameters are missing (by default). You can
notice that the bar 1 and 3 are resized.

The following screen shot shows the chart after moving the bar 2, when the
GroupBarsOptions parameter is exPreserveBarLength. You can notice that all bars
are moved to preserve their lengths.

The following screen shot shows the chart after moving the bar 2, when the
GroupBarsOptions parameter is exPreserveBarLength + exFlexibleInterval. All
bars in the group preserves their lengths, and the bar 2 can be moved anywhere to
the right of the bar 1

The following screen shot shows the chart after moving the bar 2, when the
GroupBarsOptions parameter is exPreserveBarLength + exIgnoreOriginalInterval +

exLimitInterval, and the Options parameter is "0;1", which means the interval
between two bars may be between 0 and 1, with a starting fixed interval being 0.

By default, when grouping, the distance between the margin of the bars being grouped is
kept constant. For instance, if we group the end of the bar a with the start of the bar B, the
distance between end of the bar a and the start of the bar B is the same when moving or
resizing any of the bars A or B.

Let's stay that we have the following chart:

with the keys:

By default (no bars are grouped), if we move the bar 2, from Oct 19, to Oct 21 , we get
the following (the bar 1, 3, and M are not moved or resized):

If we group the bars as follows:

the end of the bar 2 with the start of the bar 1
the start of the bar 2 with the start of the bar 1

the end of the bar 3 with the end of the bar 1
the start of the bar 3 with the end of the bar 1
the start of the bar M with the start of the bar 2
the end of the bar M with the start of the bar 2

 , and we move the bar 2, from Oct 19, to Oct 24 we get the following:

we notice that the bar 2 and M are moved, and bar 1 is resized.

property Items.GroupItem (Item as HITEM) as Long
Indicates a group item if positive, and the value specifies the index of the column that has
been grouped.

Type Description

Item as HITEM A Long expression that specifies the handle of the item
being queried

Long
A Long expression that specifies index of the column being
grouped, or a negative value if the item is a regular item,
not a grouping item.

The GroupItem method determines the index of the column that indicates the column being
grouped. In other words, the CellCaption(Item,GroupItem(Item)) gets the default caption to
be displayed for the grouping item. The Ungroup method removes all grouping items. For
instance, when a column gets grouped by, the control sorts by that column, collects the
unique values being found, and add a new item for each value found, by adding the items of
the same value as children. The (AddGroupItem event is fired for each new item to be
inserted in the Items collection during the grouping.

The following samples show how to display the grouping items with a solid background
color, instead of a single line:

VBA

Private Sub G2antt1_AddGroupItem(ByVal Item As Long)
 With G2antt1
 With .Items
 .ItemDividerLine(Item) = 0
 .CellHAlignment(Item,.GroupItem(Item)) = 1
 .ItemBackColor(Item) = RGB(240,240,240)
 End With
 End With
End Sub

VB

Private Sub G2antt1_AddGroupItem(ByVal Item As EXG2ANTTLibCtl.HITEM)
 With G2antt1
 With .Items
 .ItemDividerLine(Item) = EmptyLine

 .CellHAlignment(Item,.GroupItem(Item)) = CenterAlignment
 .ItemBackColor(Item) = RGB(240,240,240)
 End With
 End With
End Sub

VB.NET

Private Sub Exg2antt1_AddGroupItem(ByVal sender As System.Object,ByVal Item As
Integer) Handles Exg2antt1.AddGroupItem
 With Exg2antt1
 With .Items
 .set_ItemDividerLine(Item,exontrol.EXG2ANTTLib.DividerLineEnum.EmptyLine)

.set_CellHAlignment(Item,.get_GroupItem(Item),exontrol.EXG2ANTTLib.AlignmentEnum.CenterAlignment)

 .set_ItemBackColor(Item,Color.FromArgb(240,240,240))
 End With
 End With
End Sub

C++

void OnAddGroupItemG2antt1(long Item)
{
 EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
 EXG2ANTTLib::IItemsPtr var_Items = spG2antt1->GetItems();
 var_Items->PutItemDividerLine(Item,EXG2ANTTLib::EmptyLine);
 var_Items->PutCellHAlignment(Item,var_Items-
>GetGroupItem(Item),EXG2ANTTLib::CenterAlignment);
 var_Items->PutItemBackColor(Item,RGB(240,240,240));
}

C++ Builder

void __fastcall TForm1::G2antt1AddGroupItem(TObject *Sender,Exg2anttlib_tlb::HITEM
Item)

{
 Exg2anttlib_tlb::IItemsPtr var_Items = G2antt1->Items;
 var_Items->set_ItemDividerLine(Item,Exg2anttlib_tlb::DividerLineEnum::EmptyLine);
 var_Items->set_CellHAlignment(TVariant(Item),TVariant(var_Items-
>get_GroupItem(Item)),Exg2anttlib_tlb::AlignmentEnum::CenterAlignment);
 var_Items->set_ItemBackColor(Item,RGB(240,240,240));
}

C#

private void exg2antt1_AddGroupItem(object sender,int Item)
{
 exontrol.EXG2ANTTLib.Items var_Items = exg2antt1.Items;

var_Items.set_ItemDividerLine(Item,exontrol.EXG2ANTTLib.DividerLineEnum.EmptyLine);

var_Items.set_CellHAlignment(Item,var_Items.get_GroupItem(Item),exontrol.EXG2ANTTLib.AlignmentEnum.CenterAlignment);

 var_Items.set_ItemBackColor(Item,Color.FromArgb(240,240,240));
}

JavaScript

<SCRIPT FOR="G2antt1" EVENT="AddGroupItem(Item)" LANGUAGE="JScript">
 var var_Items = G2antt1.Items;
 var_Items.ItemDividerLine(Item) = 0;
 var_Items.CellHAlignment(Item,var_Items.GroupItem(Item)) = 1;
 var_Items.ItemBackColor(Item) = 15790320;
</SCRIPT>

X++ (Dynamics Ax 2009)

void onEvent_AddGroupItem(int _Item)
{
 COM com_Items;
 anytype var_Items;
 ;
 var_Items = exg2antt1.Items(); com_Items = var_Items;

 com_Items.ItemDividerLine(_Item,0/*EmptyLine*/);

com_Items.CellHAlignment(_Item,com_Items.GroupItem(_Item),1/*CenterAlignment*/);
 com_Items.ItemBackColor(_Item,WinApi::RGB2int(240,240,240));
}

VFP

*** AddGroupItem event - Occurs after a new Group Item has been inserted to Items
collection. ***
LPARAMETERS Item
 with thisform.G2antt1
 with .Items
 .ItemDividerLine(Item) = 0
 .CellHAlignment(Item,.GroupItem(Item)) = 1
 .ItemBackColor(Item) = RGB(240,240,240)
 endwith
 endwith

with thisform.G2antt1
 .BeginUpdate
 .HasLines = 0
 .ColumnAutoResize = .F.
 rs = CreateObject("ADOR.Recordset")
 with rs
 var_s = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\Program
Files\Exontrol\ExG2antt\Sample\SAMPLE.MDB"
 .Open("Orders",var_s,3,3)
 endwith
 .DataSource = rs
 .SingleSort = .F.
 .SortBarVisible = .T.
 .AllowGroupBy = .T.
 .Columns.Item(1).SortOrder = .T. && .T.
 .EndUpdate
endwith

Delphi (standard)

procedure TForm1.G2antt1AddGroupItem(ASender: TObject; Item : HITEM);
begin
 with G2antt1 do
 begin
 with Items do
 begin
 ItemDividerLine[Item] := EXG2ANTTLib_TLB.EmptyLine;
 CellHAlignment[OleVariant(Item),OleVariant(GroupItem[Item])] :=
EXG2ANTTLib_TLB.CenterAlignment;
 ItemBackColor[Item] := $f0f0f0;
 end;
 end
end;

Visual Objects

METHOD OCX_Exontrol1AddGroupItem(Item) CLASS MainDialog
 // AddGroupItem event - Occurs after a new Group Item has been inserted to
Items collection.
 local var_Items as IItems
 var_Items := oDCOCX_Exontrol1:Items
 var_Items:[ItemDividerLine,Item] := EmptyLine
 var_Items:[CellHAlignment,Item,var_Items:[GroupItem,Item]] := CenterAlignment
 var_Items:[ItemBackColor,Item] := RGB(240,240,240)
RETURN NIL

property Items.HasCellEditor ([Item as Variant], [ColIndex as Variant]) as
Boolean
Specifies whether a cell has a built-in editor.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

Boolean A boolean expression that indicates whether the cell has a
built-in editor created using the CellEditor method.

Use the HasCellEditor property to check whether the cell has an individual editor being
added using the CellEditor method before. Use the HasCellEditor property to find if a cell
has a particular editor. The HasCellEditor property gets true only if the cell has its own
editor assigned, it never gets true, if the cell's column has an editor. Use the CellEditor
method to assign different editors in the same column. Use the Editor property to assign the
same editor for all cells in the column.

The following VB sample shows the drop down portion of the control when a cell is focused:

Private Sub G2antt1_FocusChanged()
 With G2antt1
 Dim i As Long
 i = .FocusColumnIndex
 With G2antt1.Items
 If (.CellEditorVisible(.FocusItem, i)) Then
 Dim e As EXG2ANTTLibCtl.Editor
 Set e = G2antt1.Columns(i).Editor
 If .HasCellEditor(.FocusItem, i) Then
 Set e = .CellEditor(.FocusItem, i)
 End If
 If Not e Is Nothing Then
 e.DropDown
 End If
 End If
 End With
 End With
End Sub

The following VB sample assigns a date type editor to the focused cell (the sample checks
first if the cell doesn't have already an editor):

With G2antt1.Items
 Dim h As EXG2ANTTLibCtl.HITEM
 h = .FocusItem
 If Not .HasCellEditor(h, G2antt1.FocusColumnIndex) Then
 With .CellEditor(h, G2antt1.FocusColumnIndex)
 .EditType = DateType
 End With
 End If
End With

The following C++ sample assigns a date type editor to the focused cell (the sample
checks first if the cell doesn't have already an editor):

#include "Items.h"
#include "Editor.h"
CItems items = m_g2antt.GetItems();
COleVariant vtItem(items.GetFocusItem()), vtColumn(
long(m_g2antt.GetFocusColumnIndex()));
if (!items.GetHasCellEditor(vtItem, vtColumn))
{
 CEditor editor = items.GetCellEditor(vtItem, vtColumn);
 editor.SetEditType(7 /*DateType*/);
}

The following VB.NET sample assigns a date type editor to the focused cell (the sample
checks first if the cell doesn't have already an editor):

With AxG2antt1.Items
 Dim hItem As Integer = .FocusItem
 If Not .HasCellEditor(hItem, AxG2antt1.FocusColumnIndex) Then
 With .CellEditor(hItem, AxG2antt1.FocusColumnIndex)
 .EditType = EXG2ANTTLib.EditTypeEnum.DateType
 End With
 End If
End With

The following C# sample assigns a date type editor to the focused cell (the sample checks
first if the cell doesn't have already an editor):

EXG2ANTTLib.Items items = axG2antt1.Items;
int hItem = items.FocusItem;
if (hItem != null)
 if (!items.get_HasCellEditor(hItem, axG2antt1.FocusColumnIndex))
 {
 EXG2ANTTLib.Editor editor = items.get_CellEditor(hItem,
axG2antt1.FocusColumnIndex);
 editor.EditType = EXG2ANTTLib.EditTypeEnum.DateType;
 }

The following VFP sample assigns a date type editor to the focused cell (the sample
checks first if the cell doesn't have already an editor):

with thisform.G2antt1.Items
 .DefaultItem = .FocusItem
 if (!.HasCellEditor(0, thisform.G2antt1.FocusColumnIndex))
 with .CellEditor(0, thisform.G2antt1.FocusColumnIndex)
 .EditType = 7 && DateType
 endwith
 endif
endwith

property Items.InnerCell ([Item as Variant], [ColIndex as Variant], [Index
as Variant]) as Variant
Retrieves the inner cell.

Type Description

Item as Variant
A long expression that indicates the handle of the item
where the cell is, or 0. If the Item parameter is 0, the
ColIndex parameter must indicate the handle of the cell.

ColIndex as Variant

A long expression that indicates the index of the column
where a cell is divided, or a long expression that indicates
the handle of the cell being divided, if the Item parameter
is missing or it is zero.

Index as Variant
A long expression that indicates the index of the inner
being requested. If the Index parameter is missing or it is
zero, the InnerCell property retrieves the master cell.

Variant A long expression that indicates the handle of the inner
cell.

Use the InnerCell property to get the inner cell. The InnerCell(, , 0) property always
retrieves the same cell. The InnerCell(, , 1) retrieves the first inner cell, and so on. The
InnerCells property always retrieves a non empty value. For instance, if a cell contains only
two splited cells, the InnerCell(, , 3), or InnerCell(, , 4), and so on, always retrieves the
last inner cell. The SplitCell method splits a cell in two cells (the newly created cell is called
inner cell). Use the CellParent property to get the parent of the inner cell. Use the CellItem
property to get the item that's the owner of the cell. Use the CellWidth property to specify
the width of the inner cell. Use the CellParent property to determine whether the cell is a
master cell or an inner cell. If the CellParent property gets 0, it means that the cell is
master, else it is inner.

The following VB sample specifies whether a cell contains inner cells (the function checks
whether a cell is splitted):

Private Function isSplit(ByVal g As EXG2ANTTLibCtl.G2antt, ByVal h As
EXG2ANTTLibCtl.HITEM, ByVal c As Long) As Boolean
 With g.Items
 isSplit = IIf(Not .InnerCell(h, c, 0) = .InnerCell(h, c, 1), True, False)
 End With
End Function

The following VB sample gets the master cell:

Private Function getMaster(ByVal g As EXG2ANTTLibCtl.G2antt, ByVal h As
EXG2ANTTLibCtl.HITEM, ByVal c As Long) As EXG2ANTTLibCtl.HCELL
 With g.Items
 Dim r As EXG2ANTTLibCtl.HCELL
 r = c
 If Not (h = 0) Then
 r = .ItemCell(h, c)
 End If
 While Not (.CellParent(, r) = 0)
 r = .CellParent(, r)
 Wend
 getMaster = r
 End With
End Function

The following VB sample counts the inner cells:

Private Function getInnerCount(ByVal g As EXG2ANTTLibCtl.G2antt, ByVal h As
EXG2ANTTLibCtl.HITEM, ByVal c As Long) As Long
 With g.Items
 Dim i As Long
 i = -1
 Do
 i = i + 1
 Loop While Not (.InnerCell(h, c, i) = .InnerCell(h, c, i + 1))
 getInnerCount = i
 End With
End Function

The following C++ sample specifies whether a cell contains inner cells (the function checks
whether a cell is splitted):

long V2I(VARIANT* pvtValue)
{
 COleVariant vtResult;
 vtResult.ChangeType(VT_I4, pvtValue);
 return V_I4(&vtResult);
}

BOOL isSplit(CG2antt& g2antt, long h, long c)
{
 CItems items = g2antt.GetItems();
 return V2I(&items.GetInnerCell(COleVariant(h), COleVariant(c), COleVariant((long)0)
)) != V2I(&items.GetInnerCell(COleVariant(h), COleVariant(c), COleVariant((long)1)));
}

The following C++ sample gets the master cell:

long getMaster(CG2antt& g2antt, long h, long c)
{
 COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
 CItems items = g2antt.GetItems();
 long r = c;
 if (h != 0)
 r = items.GetItemCell(h, COleVariant(c));
 while (V2I(&items.GetCellParent(vtMissing, COleVariant(r))) != 0)
 r = V2I(&items.GetCellParent(vtMissing, COleVariant(r)));
 return r;
}

The following C++ sample counts the inner cells:

long getInnerCount(CG2antt& g2antt, long h, long c)
{
 CItems items = g2antt.GetItems();
 COleVariant vtItem(h), vtColumn(c);
 long i = -1;
 do
 {
 i++;
 }
 while (V2I(&items.GetInnerCell(vtItem, vtColumn, COleVariant(i))) != V2I(
&items.GetInnerCell(vtItem, vtColumn, COleVariant((long)(i + 1)))));
 return i;
}

The following VB.NET sample splits the first visible cell in two cells:

With AxG2antt1.Items
 Dim i As Object
 i = .SplitCell(.FirstVisibleItem, 0)
 .CellValue(Nothing, i) = "inner cell"
End With

The following C# sample splits the first visible cell in two cells:

EXG2ANTTLib.Items items = axG2antt1.Items;
object i = items.get_SplitCell(items.FirstVisibleItem, 0);
items.set_CellValue(null, i, "inner cell");

The following VFP sample splits the first visible cell in two cells:

with thisform.G2antt1.Items
 local i
 i = .SplitCell(.FirstVisibleItem,0)
 local s, crlf
 crlf = chr(13) + chr(10)
 s = "Items" + crlf
 s = s + "{" + crlf
 s = s + "CellValue(," + str(i) + ") = " + chr(34) + "inner cell" + chr(34) + crlf
 s = s + "}"
 thisform.G2antt1.Template = s
endwith

method Items.InsertControlItem (Parent as HITEM, ControlID as String,
[License as Variant])

Inserts a new item of ActiveX type, and returns a handle to the newly created item.

Type Description

Parent as HITEM

A long expression that indicates the handle of the parent
item where the ActiveX will be inserted. If the argument is
missing then the InsertControlItem property inserts the
ActiveX control as a root item. If the Parent property is
referring a locked item (ItemLocked property), the
InsertControlItem property doesn't insert a new child
ActiveX, instead insert the ActiveX control to the locked
item that's specified by the Parent property.

ControlID as String
A string expression that can be formatted as follows: a
prog ID, a CLSID, a URL, a reference to an Active
document , a fragment of HTML.

License as Variant
A string expression that indicates the runtime license key,
if it is required. An empty string, if the control doesn't
require a runtime license key.

Return Description

HITEM A long expression that indicates the handle of the newly
created item.

The InsertControlItem property creates the specified ActiveX control and hosts to a new
child item of the control, while the InsertObjectItem property hosts the already created
object to a new child item of the control. An inner control sends notifications/events to
parent control through the ItemOleEvent event. Use the AddBar method to add bars to the
item. The bars are always shown in the chart area. Use the PaneWidth property to specify
the width of the chart.

The ControlID must be formatted in one of the following ways:

A ProgID such as "Exontrol.G2antt"
A CLSID such as "{8E27C92B-1264-101C-8A2F-040224009C02}"
A URL such as "https://www.exontrol.com"
A reference to an Active document such as "c:\temp\myfile.doc", or
"c:\temp\picture.gif"
A fragment of HTML such as "MSHTML:<HTML><BODY>This is a line of
text</BODY></HTML>"
A fragment of XML

In case the control you want to insert fails, you can add the "A2X:" prefix to the ControlID
such as:

A ProgID such as "A2X:Exontrol.Grid"
A CLSID such as "A2X:{8E27C92B-1264-101C-8A2F-040224009C02}"
A URL such as "A2X:https://www.exontrol.com"
A reference to an Active document such as "A2X:c:\temp\myfile.doc", or
"c:\temp\picture.gif"
A fragment of HTML such as "A2X:MSHTML:<HTML><BODY>This is a line of
text</BODY></HTML>"

The InsertControlItem property creates an ActiveX control that's hosted by the exGrid
control. The look and feel of the inner ActiveX control depends on the identifier you
are using, and the version of the library that implements the ActiveX control, so you
need to consult the documentation of the inner ActiveX control you are inserting
inside the exG2antt control.

Use the ItemHeight property to specify the height of the item when it contains an ActiveX
control. Use the ItemWidth property to specify the width of the ActiveX control, or the
position in the item where the ActiveX is displayed. Once that an item of ActiveX type has
been added you can get the OLE control created using the ItemObject property. To check if
an item contains an ActiveX control you can use ItemControlID property. To change the
height of an ActiveX item you have to use ItemHeight property. When the control contains at
least an item of ActiveX type, it is recommended to set ScrollBySingleLine property of
control to true. Events from contained components are fired through to your program using
the exact same model used in VB6 for components added at run time (See ItemOleEvent
event, OleEvent and OleEventParam). For instance, when an ActiveX control fires an
event, the control forwards that event to your container using ItemOleEvent event of the
exG2antt control. Use the BeginUpdate and EndUpdate methods to update the control's
content when adding ActiveX controls on the fly. Use the ItemControlID property to retrieve
the control's identifier.

The following VB sample adds the Exontrol's
ExCalendar Component:

With G2antt1
 .BeginUpdate
 .ScrollBySingleLine = True
 With G2antt1.Items
 Dim h As HITEM
 h = .InsertControlItem(,
"Exontrol.Calendar")

 .ItemHeight(h) = 182
 With .ItemObject(h)
 .Appearance = 0
 .BackColor = vbWhite
 .ForeColor = vbBlack
 .ShowTodayButton = False
 End With
 End With
 .EndUpdate
End With

The following C++ sample adds the Exontrol's ExOrgChart Component:

#include "Items.h"

#pragma warning(disable : 4146)
#import <ExOrgChart.dll>

CItems items = m_g2antt.GetItems();
m_g2antt.BeginUpdate();
m_g2antt.SetScrollBySingleLine(TRUE);
COleVariant vtMissing; V_VT(&vtMissing) =
VT_ERROR;
long h = items.InsertControlItem(0,
"Exontrol.ChartView", vtMissing);
items.SetItemHeight(h, 182);
EXORGCHARTLib::IChartViewPtr spChart(
items.GetItemObject(h));
if (spChart != NULL)
{
 spChart->BeginUpdate();
 spChart->BackColor = RGB(255,255,255);
 spChart->ForeColor = RGB(0,0,0);
 EXORGCHARTLib::INodesPtr spNodes =
spChart->Nodes;
 spNodes->Add("Child 1", "Root", "1",
vtMissing, vtMissing);

 spNodes->Add("SubChild 1", "1", vtMissing,
vtMissing, vtMissing);
 spNodes->Add("SubChild 2", "1", vtMissing,
vtMissing, vtMissing);
 spNodes->Add("Child 2", "Root", vtMissing,
vtMissing, vtMissing);
 spChart->EndUpdate();
}
m_g2antt.EndUpdate();

The sample uses the #import statement to include the ExOrgChart's Type Library. In this
sample, the ItemObject property retrieves an IChartView object. The path to the library
should be provided in case it is not located in your system folder.

The following C# sample adds the Exontrol's ExG2antt Component:

axG2antt1.BeginUpdate();
EXG2ANTTLib.Items items = axG2antt1.Items;
axG2antt1.ScrollBySingleLine = true;
int h = items.InsertControlItem(0, "Exontrol.G2antt","");
items.set_ItemHeight(h, 182);
object g2anttInside = items.get_ItemObject(h);
if (g2anttInside != null)
{
 EXG2ANTTLib.G2antt g2antt = g2anttInside as EXG2ANTTLib.G2antt;
 if (g2antt != null)
 {
 g2antt.BeginUpdate();
 g2antt.LinesAtRoot = EXG2ANTTLib.LinesAtRootEnum.exLinesAtRoot;
 g2antt.Columns.Add("Column 1");
 g2antt.Columns.Add("Column 2");
 g2antt.Columns.Add("Column 3");
 EXG2ANTTLib.Items itemsInside = g2antt.Items;
 int hInside = itemsInside.AddItem("Item 1");
 itemsInside.set_CellValue(hInside, 1, "SubItem 1");
 itemsInside.set_CellValue(hInside, 2, "SubItem 2");
 hInside = itemsInside.InsertItem(hInside, null, "Item 2");
 itemsInside.set_CellValue(hInside, 1, "SubItem 1");

 itemsInside.set_CellValue(hInside, 2, "SubItem 2");
 g2antt.EndUpdate();
 }
}
axG2antt1.EndUpdate();

The following VB.NET sample adds the Exontrol's ExOrgChart Component:

With AxG2antt1
 .BeginUpdate()
 .ScrollBySingleLine = True
 With .Items
 Dim hItem As Integer
 hItem = .InsertControlItem(, "Exontrol.ChartView")
 .ItemHeight(hItem) = 182
 With .ItemObject(hItem)
 .BackColor = ToUInt32(Color.White)
 .ForeColor = ToUInt32(Color.Black)
 With .Nodes
 .Add("Child 1", , "1")
 .Add("SubChild 1", "1")
 .Add("SubChild 2", "1")
 .Add("Child 2")
 End With
 End With
 End With
 .EndUpdate()
End With

The following VFP sample adds the Exontrol's ExGrid Component:

with thisform.G2antt1
 .BeginUpdate()
 .ScrollBySingleLine = .t.
 with .Items
 .DefaultItem = .InsertControlItem(0, "Exontrol.Grid")
 .ItemHeight(0) = 182
 with .ItemObject(0)

 .BeginUpdate()
 with .Columns
 with .Add("Column 1").Editor()
 .EditType = 1 && EditType editor
 endwith
 endwith
 with .Items
 .AddItem("Text 1")
 .AddItem("Text 2")
 .AddItem("Text 3")
 endwith
 .EndUpdate()
 endwith
 endwith
 .EndUpdate()
endwith

The following VB sample adds dynamically an ExG2antt ActiveX Control and a Microsoft
Calendar Control:

' Inserts a new ActiveX control of Exontrol.G2antt type
Dim hG2antt As HITEM
hG2antt = G2antt1.Items.InsertControlItem(G2antt1.Items(0), "Exontrol.G2antt",
runtimelicensekey)
' Sets the ActiveX control height
G2antt1.Items.ItemHeight(hG2antt) = 212
' Gets the ExG2antt control created. Since the ProgID used to create the item is
"Exontrol.G2antt"
' the object will be of EXG2ANTTLibCtl.G2antt type
Dim objG2antt As Object
Set objG2antt = G2antt1.Items.ItemObject(hG2antt)
objG2antt.Columns.Add "Column"
objG2antt.Items.AddItem "One"
objG2antt.Items.AddItem "Two"
objG2antt.Items.AddItem "Three"

' Inserts a new ActiveX control of MSCAL.Calendar type
Dim hCalc As HITEM

hCalc = objG2antt.Items.InsertControlItem(, "MSCal.Calendar")
Set objCalc = G2antt1.Items.ItemObject(hCalc)
objCalc.ShowTitle = False
objCalc.ShowDateSelectors = False

where the runtimelicensekey is the exG2antt's runtime license key. Please contact us to get
the exG2antt's runtime license key. Please notice that your development license key is not
equivalent with the generated runtime license key. Your order number is required, when
requesting the control's runtime license key. If you are using the DEMO version for testing
purpose, you don't need a runtime license key.

The following VB sample handles any event that a contained ActiveX fires:

Private Sub G2antt1_ItemOleEvent(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal Ev As
EXG2ANTTLibCtl.IOleEvent)
 On Error Resume Next
 Dim i As Long
 Debug.Print "The " & Ev.Name & " was fired. "
 If Not (Ev.CountParam = 0) Then
 Debug.Print "The event has the following parameters: "
 For i = 0 To Ev.CountParam - 1
 Debug.Print " - " & Ev(i).Name & " = " & Ev(i).Value
 Next
 End If
End Sub

Some of ActiveX controls requires additional window styles to be added to the conatiner
window. For instance, the Web Brower added by the G2antt1.Items.InsertControlItem(,
"https://www.exontrol.com") won't add scroll bars, so you have to do the following:

First thing is to declare the WS_HSCROLL and WS_VSCROLL constants at the top of your
module:

Private Const WS_VSCROLL = &H200000
Private Const WS_HSCROLL = &H100000

Then you need to to insert a Web control use the following lines:

Dim hWeb As HITEM
hWeb = G2antt1.Items.InsertControlItem(, "https://www.exontrol.com")

https://exontrol.com/sg.jsp?content=techsupport&order=XXXXXXX&product=ExG2antt

G2antt1.Items.ItemHeight(hWeb) = 196

Next step is adding the AddItem event handler:

Private Sub G2antt1_AddItem(ByVal Item As EXG2ANTTLibCtl.HITEM)
 If (G2antt1.Items.ItemControlID(Item) = "https://www.exontrol.com") Then
 ' Some of controls like the WEB control, requires some additional window styles (like
WS_HSCROLL and WS_VSCROLL window styles)
 ' for the window that host that WEB control, to allow scrolling the web page
 G2antt1.Items.ItemWindowHostCreateStyle(Item) =
G2antt1.Items.ItemWindowHostCreateStyle(Item) + WS_HSCROLL + WS_VSCROLL
 End If
End Sub

If somehow the InsertItemControl wasn't able to create your ActiveX on some Windows
platforms, and you don't know why, you can use the following

code to make sure that ActiveX control can be created properly by using (the sample is
trying to add a new Microsoft RichText ActivX control into your form):

Controls.Add "RICHTEXT.RichtextCtrl", "rich"

method Items.InsertItem ([Parent as HITEM], [UserData as Variant], [Value
as Variant])

Inserts a new item, and returns a handle to the newly created item.

Type Description

Parent as HITEM A long expression that indicates the item's handle that
indicates the parent item where the newly item is inserted

UserData as Variant A Variant expression that indicates the item's extra data.
Use the ItemData property to retrieve later this value.

Value as Variant

A Variant expression that indicates the cell's value on the
first column, or a safe array that holds values for each
column. The control displays the cell's value based on the
CellValueFormat specification.

Return Description
HITEM Retrieves the handle of the newly created item.

Use the InsertItem property to add a new child to an item. Use the LoadXML/SaveXML
methods to load/save the control's data from/to XML files. The InsertItem property fires the
AddItem event. You can use the InsertItem(,,"Root") or AddItem("Root") to add a root item.
An item that has no parent is a root item. To insert an ActiveX control, use the
InsertControlItem property of the Items property. Use the CellValue property to specify the
values for cells in the second, third columns, and so on. Use the CellValueFormat property
to specify whether the value contains HTML format. Use the LockedItemCount property to
lock or unlock items to the top or bottom side of the control. Use the MergeCells method to
combine one or more cells in a single cell. Use the SplitCell property to split a cell. If the
CauseValidateValue property is True, the control fires the ValidateValue property when the
user adds a new item. Use the ConditionalFormats method to apply formats to a cell or
range of cells, and have that formatting change depending on the value of the cell or the
value of a formula.

The following VB sample shows how to create a simple hierarchy (few items and one
column):

With G2antt1
 .BeginUpdate
 .ColumnAutoResize = True
 .LinesAtRoot = exLinesAtRoot
 .FullRowSelect = False
 .MarkSearchColumn = False

 .Columns.Add "Default"
 With .Items
 Dim h As HITEM, hx As HITEM
 h = .InsertItem(, , "Root")
 hx = .InsertItem(h, , "This is an item that should break the line")
 .CellSingleLine(hx, 0) = False
 h = .InsertItem(h, , "Child 2")
 .InsertItem h, , "SubChild 2.1"
 h = .InsertItem(h, , "SubChild 2.2")
 End With
 .EndUpdate
End With

The following VB sample insert items and multiple columns as well:

With G2antt1
 .BeginUpdate
 .HeaderVisible = True
 .ColumnAutoResize = True
 .LinesAtRoot = exLinesAtRoot
 .FullRowSelect = False
 .MarkSearchColumn = False
 .Columns.Add "Column 1"
 .Columns.Add "Column 2"
 With .Items
 Dim h As HITEM, hx As HITEM
 h = .InsertItem(, , "Root")
 hx = .InsertItem(h, , Array("This is an item that should break
the line", "Just another cell that holds some info"))
 .CellSingleLine(hx, 0) = False
 .CellSingleLine(hx, 1) = False
 h = .InsertItem(h, , "Child 2")
 .InsertItem h, , Array("SubChild 2.1", "SubItem 2.1")
 h = .InsertItem(h, , Array("SubChild 2.2", "SubItem 2.2"))
 End With
 .EndUpdate
End With

The following VB sample inserts a child item and expands the focused item:

With G2antt1.Items
 .InsertItem .FocusItem, , "new child"
 .ExpandItem(.FocusItem) = True
End With

The following C++ sample inserts a child item and expands the focused item:

#include "Items.h"
CItems items = m_g2antt.GetItems();
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
long h = items.InsertItem(items.GetFocusItem(), vtMissing, COleVariant("new child"));
items.SetExpandItem(items.GetFocusItem(), TRUE);

The following VB.NET sample inserts a child item and expands the focused item:

With AxG2antt1.Items
 Dim hItem As Integer = .InsertItem(.FocusItem, , "new child")
 .ExpandItem(.FocusItem) = True
End With

The following C# sample inserts a child item and expands the focused item:

int hItem = axG2antt1.Items.InsertItem(axG2antt1.Items.FocusItem, null, "new child");
axG2antt1.Items.set_ExpandItem(axG2antt1.Items.FocusItem, true);

The following VFP sample inserts a child item and expands the focused item:

with thisform.G2antt1.Items
 .DefaultItem = .InsertItem(.FocusItem, "", "new child")
 .DefaultItem = .FocusItem
 .ExpandItem(0) = .t.
endwith

property Items.IntersectBars (ItemA as HITEM, KeyA as Variant, ItemB as
HITEM, KeyB as Variant) as Long
Specifies whether two bars intersect if returns 0, if 1 A is before B and -1 if A is after bar B.

Type Description

ItemA as HITEM A Long expression that indicates the handle that hosts the
bar A.

KeyA as Variant A Variant expression that indicates the key of the bar A.

ItemB as HITEM A Long expression that indicates the handle that hosts the
bar B.

KeyB as Variant A Variant expression that indicates the key of the bar B.

Long

A long expression that specifies whether the bar A
intersects bar B, if 0, -1 if the bar A is before bar B, and 1
if the bar A is after bar B. Any other value being returned
indicates that the ItemA, KeyA, ItemB or KeyB are not
indicating a valid bar. For instance, if 2, the bar B does not
exists so even the ItemB is not valid, or the item does not
contain any bar with the key B

The IntersectBars property determines if two bars intersects as follows:

if returns 0, if the two bars intersects.
if returns -1, the bar being indicated by ItemA/KeyA is before the bar being indicated
by ItemB/KeyB
if returns 1, the bar being indicated by ItemA/KeyA is after the bar being indicated by
ItemB/KeyB

The ItemBar(exBarStart) and ItemBar(exBarEnd) properties indicates the starting and
ending point of the bar. The OverlaidType property indicates the way two bars get shown
when they cover each other, or get intersected. For instance, you can get the bars in the
item being stacked once they intersect, so the height of the item is automatically adjusted to
fit the stack, if the OverlaidType property is exOverlaidBarsOffset +
exOverlaidBarsStackAutoArrange. You can use the ItemBar(exBarIntersectWith),
ItemBar(exBarIntersectWithAsString) or ItemBar(exBarIntersectWithCount) property to
determine the bars that intersects with the current bar.

property Items.IsItemLocked (Item as HITEM) as Boolean
Returns a value that indicates whether the item is locked or unlocked.

Type Description
Item as HITEM A long expression that indicates the handle of the item.

Boolean A boolean expression that indicates whether the item is
locked or unlocked.

Use the IsItemLocked property to check whether an item is locked or unlocked. A locked
item is always displayed on the top or bottom side of the control no matter if the control's
list is scrolled up or down. Use the LockedItemCount property to add or remove items
fixed/locked to the top or bottom side of the control. Use the LockedItem property to
access a locked item by its position. Use the ShowLockedItems property to show or hide
the locked items.

The following VB sample prints the locked item from the cursor:

Private Sub G2antt1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 On Error Resume Next
 ' Converts the container coordinates to client coordinates
 X = X / Screen.TwipsPerPixelX
 Y = Y / Screen.TwipsPerPixelY
 Dim h As HITEM
 Dim c As Long
 Dim hit As EXG2ANTTLibCtl.HitTestInfoEnum
 ' Gets the item from (X,Y)
 With G2antt1
 h = .ItemFromPoint(X, Y, c, hit)
 If Not (h = 0) Then
 If (.Items.IsItemLocked(h)) Then
 Debug.Print .Items.CellValue(h, c)
 End If
 End If
 End With
End Sub

The following C++ sample prints the locked item from the cursor:

#include "Items.h"
void OnMouseMoveG2antt1(short Button, short Shift, long X, long Y)
{
 long c = 0, hit = 0, hItem = m_g2antt.GetItemFromPoint(X, Y, &c, &hit);
 if (hItem != 0)
 {
 CItems items = m_g2antt.GetItems();
 if (items.GetIsItemLocked(hItem))
 {
 COleVariant vtItem(hItem), vtColumn(c);
 CString strCaption = V2S(&items.GetCellValue(vtItem, vtColumn)), strOutput;
 strOutput.Format("Cell: '%s', Hit = %08X\n", strCaption, hit);
 OutputDebugString(strOutput);
 }
 }
}

The following VB.NET sample prints the locked item from the cursor:

Private Sub AxG2antt1_MouseMoveEvent(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_MouseMoveEvent) Handles AxG2antt1.MouseMoveEvent
 With AxG2antt1
 Dim i As Integer, c As Integer, hit As EXG2ANTTLib.HitTestInfoEnum
 i = .get_ItemFromPoint(e.x, e.y, c, hit)
 If Not (i = 0) Then
 With .Items
 If (.IsItemLocked(i)) Then
 Debug.WriteLine("Cell: " & .CellValue(i, c) & " Hit: " & hit.ToString())
 End If
 End With
 End If
 End With
End Sub

The following C# sample prints the locked item from the cursor:

private void axG2antt1_MouseMoveEvent(object sender,
AxEXG2ANTTLib._IG2anttEvents_MouseMoveEvent e)

{
 int c = 0;
 EXG2ANTTLib.HitTestInfoEnum hit;
 int i = axG2antt1.get_ItemFromPoint(e.x, e.y, out c, out hit);
 if (i != 0)
 if (axG2antt1.Items.get_IsItemLocked(i))
 {
 object cap = axG2antt1.Items.get_CellValue(i, c);
 string s = cap != null ? cap.ToString() : "";
 s = "Cell: " + s + ", Hit: " + hit.ToString();
 System.Diagnostics.Debug.WriteLine(s);
 }
}

The following VFP sample prints the locked item from the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

local c, hit
c = 0
hit = 0
with thisform.G2antt1
 .Items.DefaultItem = .ItemFromPoint(x, y, @c, @hit)
 with .Items
 if (.DefaultItem <> 0)
 if (.IsItemLocked(0))
 wait window nowait .CellValue(0, c) + " " + Str(hit)
 endif
 endif
 endwith
endwith

property Items.IsItemVisible (Item as HITEM) as Boolean

Checks if the specific item fits the control's client area.

Type Description

Item as HITEM A long expression that indicates the handle of the item that
fits the client area.

Boolean A boolean expression that indicates whether the item fits
the client area.

To make sure that an item fits the client area call EnsureVisibleItem method. Use the
FirstVisibleItem, NextVisibleItem and IsItemVisible properties to get the items that fit the
client area. Use the NextVisibleItem property to get the next visible item. Use the
IsVisibleItem property to check whether an item fits the control's client area.

The following VB sample enumerates the items that fit the control's client area:

On Error Resume Next
Dim h As HITEM
Dim i As Long, j As Long, nCols As Long
nCols = G2antt1.Columns.Count
With G2antt1.Items
 h = .FirstVisibleItem
 While Not (h = 0) And .IsItemVisible(h)
 Dim s As String
 s = ""
 For j = 0 To nCols - 1
 s = s + .CellValue(h, j) + Chr(9)
 Next
 Debug.Print s
 h = .NextVisibleItem(h)
 Wend
End With

The following C++ sample enumerates the items that fit the control's client area:

#include "Items.h"
CItems items = m_g2antt.GetItems();
long hItem = items.GetFirstVisibleItem();

while (hItem && items.GetIsItemVisible(hItem))
{
 OutputDebugString(V2S(&items.GetCellValue(COleVariant(hItem), COleVariant(
long(0)))));
 hItem = items.GetNextVisibleItem(hItem);
}

The following VB.NET sample enumerates the items that fit the control's client area:

With AxG2antt1.Items
 Dim hItem As Integer
 hItem = .FirstVisibleItem
 While Not (hItem = 0)
 If (.IsItemVisible(hItem)) Then
 Debug.Print(.CellValue(hItem, 0))
 hItem = .NextVisibleItem(hItem)
 Else
 Exit While
 End If
 End While
End With

The following C# sample enumerates the items that fit the control's client area:

EXG2ANTTLib.Items items = axG2antt1.Items;
int hItem = items.FirstVisibleItem;
while ((hItem != 0) && (items.get_IsItemVisible(hItem)))
{
 object strCaption = items.get_CellValue(hItem, 0);
 System.Diagnostics.Debug.WriteLine(strCaption != null ? strCaption.ToString() : "");
 hItem = items.get_NextVisibleItem(hItem);
}

The following VFP sample enumerates the items that fit the control's client area:

with thisform.G2antt1.Items
 .DefaultItem = .FirstVisibleItem
 do while ((.DefaultItem <> 0) and (.IsItemVisible(0)))
 wait window .CellValue(0, 0)

 .DefaultItem = .NextVisibleItem(0)
 enddo
endwith

property Items.ItemAllowSizing(Item as HITEM) as Boolean
Retrieves or sets a value that indicates whether a user can resize the item at run-time.

Type Description

Item as HITEM A HITEM expression that indicates the handle of the item
that can be resized.

Boolean A Boolean expression that specifies whether the user can
resize the item at run-time.

By default, the user can resize the item at run-time using mouse movements. Use the
ItemAllowSizing property to specify whether a user can resize the item at run-time. Use the
ItemsAllowSizing property to specify whether all items are resizable or not. Use the
ItemHeight property to specify the height of the item. An item is resizable if the
ItemAllowSizing property is True, or if the ItemsAllowSizing property is True (that means all
items are resizable), and the ItemAllowSizing property is not False. For instance, if your
application requires all items being resizable but only few of them being not resizable, you
can have the ItemsAllowSizing property on True, and for those items that are not resizable,
you can call the ItemAllowSizing property on False. The user can resize an item by moving
the mouse between two items, so the vertical split cursor shows up, click and drag the
mouse to the new position. Use the CellSingleLine property to specify whether the cell
displays its caption using multiple lines. The ScrollBySingleLine property is automatically set
on True, as soon as the user resizes an item.

property Items.ItemAppearance(Item as HITEM) as AppearanceEnum
Specifies the item's appearance when the item hosts an ActiveX control.

Type Description

Item as HITEM A long expression that indicates the handle of the item that
was previously created by InsertControlItem property.

AppearanceEnum An AppearanceEnum expression that indicates the item's
appearance.

Use the ItemAppearance property to specify the item's appearance if the item is of ActiveX
type. Use the InsertControlItem property to insert an ActiveX control inside. Use the
ItemObject property to access the object being created by the InsertControlItem property.
Use the ItemHeight property to specify the height of the item when containing an ActiveX
control.

property Items.ItemBackColor(Item as HITEM) as Color

Retrieves or sets a background color for a specific item.

Type Description
Item as HITEM A long expression that indicates the handle of the item.

Color

A color expression that indicates the item's background
color. The last 7 bits in the high significant byte of the color
to indicates the identifier of the skin being used. Use the
Add method to add new skins to the control. If you need
to remove the skin appearance from a part of the control
you need to reset the last 7 bits in the high significant byte
of the color being applied to the

The ItemBackColor property specifies the background or the visual appearance for the
item's background on the columns/item section. Use the CellBackColor property to change
the cell's background color. To change the background color of the entire control you can
call BackColor property of the control. Use the ClearItemBackColor property to clear the
item's background color, after setting using the ItemBackColor property. Use the
ConditionalFormats method to apply formats to a cell or range of cells, and have that
formatting change depending on the value of the cell or the value of a formula. The
ItemBackColor property of the Chart object specifies the item's background or visual
appearance for the chart area.

In VB.NET or C# you require the following functions until the .NET framework will provide:

You can use the following VB.NET function:

 Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
 End Function

You can use the following C# function:

private UInt32 ToUInt32(Color c)
{
 long i;

 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following C# sample changes the background color for the focused item:

axG2antt1.Items.set_ItemBackColor(axG2antt1.Items.FocusItem, ToUInt32(Color.Red));

The following VB.NET sample changes the background color for the focused item:

With AxG2antt1.Items
 .ItemBackColor(.FocusItem) = ToUInt32(Color.Red)
End With

The following C++ sample changes the background color for the focused item:

#include "Items.h"
CItems items = m_g2antt.GetItems();
items.SetItemBackColor(items.GetFocusItem(), RGB(255,0,0));

The following VFP sample changes the background color for the focused item:

with thisform.G2antt1.Items
 .DefaultItem = .FocusItem
 .ItemBackColor(0) = RGB(255,0,0)
endwith

Use the following VB sample changes the background color for the cells in the first column,
when adding new items:

Private Sub G2antt1_AddItem(ByVal Item As EXG2ANTTLibCtl.HITEM)
 G2antt1.Items.CellBackColor(Item, o) = vbBlue
End Sub

property Items.ItemBar(Item as HITEM, Key as Variant, Property as
ItemBarPropertyEnum) as Variant
Gets or sets a bar property.

Type Description

Item as HITEM

A long expression that indicates the the handle of the item
that hosts the bar. If the Item parameter is 0, it indicates
all bars. In this case the DefaultItem property should be
zero (by default), else it refers the item being indicated
by DefaultItem (/COM version only) property.

Key as Variant

A String expression that indicates the key of the bar being
accessed. If missing, the Key parameter is empty. If the
Item has only a single Bar you may not use the Key
parameter, else an unique key should be used to allow
multiple bars inside the item. The Key may include a
pattern with wild characters as *,?,# or [], if the Key starts
with "<" and ends on ">" aka "<K*>" which indicates all
bars with the key K or starts on K. The pattern may
include a space which divides multiple patterns for
matching. For instance "<A* *K>" indicates all keys that
start on A and all keys that end on K.

Property as
ItemBarPropertyEnum

An ItemBarPropertyEnum expression that indicates the
property being accessed

Variant A Variant expression that indicates the property's value.

Use the ItemBar property to access properties related to the bars being shown in the item.
Use the AddBar property to add new bars to the item. Use the FirstVisibleDate property to
specify the first visible date in the chart area. Use the RemoveBar method to remove a bar
from an item. Use the ClearBars method to remove all bars in the item. Use the Refresh
method to refresh the chart. For instance, you can use the ItemBar(,,exBarToolTip) property
to specify a tooltip for a bar, or ItemBar(,,exBarItemParent) property to move the bar from
an item to another item. The AllowCellValueToItemBar property allows the cells to display
properties of the bars. Use the SelectOnClick property to disable selecting new items when
the user clicks the chart area. The FindBar method looks for the item that hosts a specified
bar. You can use the Def property to define the default values for bar's ItemBar properties.
The ItemBarEx property gets or sets the property's bar that matches the criteria.

Based on the values of the Item and Key parameters the ItemBar property changes a
property for none, one or multiple bars as follows:

ItemBar(0,"<*>",Property) = Value changes the Property of all bars in the chart.

ItemBar(0,"<pattern>",Property) = Value changes the Property of all bars in the
chart that match a specified pattern using wild characters as *,?,# or [].
ItemBar(Item,"<*>",Property) = Value changes the Property of all bars in the item.
ItemBar(Item,"<pattern>",Property) = Value changes the Property of all bars in the
item that match a specified pattern using wild characters as *,?,# or []

The pattern may include the space character which indicates multiple patterns to be used
when matching. For instance "A* *K" indicates all keys that starts on A and all keys that
ends on K. If not using a pattern, the ItemBar changes the property for specified key in all
items if 0 is used for Item, or single Item if a valid handle is used on the Item parameter.

Here's few samples of using the set ItemBar property:

ItemBar(Item,"K1",Property) = Value changes the Property of the bar K1 from the
specified Item.
ItemBar(0,"K1",Property) = Value changes the Property of the bar K1 from the entire
chart.
ItemBar(0,"<A* K*>",Property) = Value changes the Property of all bars from the chart
with the Key A or K or starts with A or K.
ItemBar(0,"<*K>",Property) = Value changes the Property of all bars from the chart
with the Key K or ends on K.
ItemBar(Item,"<K*>",Property) = Value changes the Property of all bars from the
specified Item with the Key K or starts on K.
ItemBar(Item,"<K??>",Property) = Value changes the Property of all bars from the
specified Item with the Key of 3 characters and starts with K.

Currently, the single read-only property that supports pattern for the Key parameter is
exBarsCount, which counts the bars as follows:

ItemBar(0,"<*>",exBarsCount) counts all bars in the chart.
ItemBar(0,"<pattern>",exBarsCount) counts all bars in the chart that match a
specified pattern using wild characters as *,?,# or [].
ItemBar(Item,"<*>",exBarsCount) counts all bars in the giving Item.
ItemBar(Item,"<pattern>",exBarsCount) counts all bars in the item that match a
specified pattern using wild characters as *,?,# or [].

The pattern may include the space character which indicates multiple patterns to be used
when matching. For instance "A* *K" indicates all keys that start on A and all keys that end
on K. For any other property, the ItemBar property returns the bar's property for the first
matching bar.

Here's few samples of using the get ItemBar(exBarsCount) property:

ItemBar(Item,"K1",exBarsCount) gets the count of the bar K1 from the specified Item.
This could be 0, if K1 is not found or 1, if the K1 is found on the Item, as an item
could hold a single bar with the same Key.
ItemBar(0,"K1",exBarsCount) counts all bars K1 from the entire chart.
ItemBar(Item,"<*>",exBarsCount) counts all bars in the specified item.
ItemBar(Item,"",exBarsCount) is equivalent with ItemBar(Item,"<*>",exBarsCount).
ItemBar(0,"<*>",exBarsCount) counts all bars from the entire chart.
ItemBar(0,"",exBarsCount) is equivalent with ItemBar(0,"<*>",exBarsCount).
ItemBar(0,"<A* K*>",exBarsCount) gets the count of all bars from the chart with the
Key A or K or starts with A or K.
ItemBar(0,"<*K>",exBarsCount) gets the number of bars from the chart with the Key K
or ends on K.
ItemBar(Item,"<K*>",exBarsCount) counts all bars from the specified Item with the
Key K or starts on K.
ItemBar(Item,"<K??>",exBarsCount) counts all bars from the specified Item with the
Key of 3 characters and starts with K.

The /NET Assembly version defines get/set shortcut properties as follow (they start with
get_ or set_ keywords):

BarName : String, retrieves or sets a value that indicates the name of the bar
BarStart : DateTime, retrieves or sets a value that indicates the start of the bar
BarEnd : DateTime, retrieves or sets a value that indicates the end of the bar
BarCaption : String Retrieves or sets a value that indicates the caption being assigned
to the bar
BarHAlignCaption : AlignmentEnum, retrieves or sets a value that indicates the
horizontal alignment of the caption inside the bar
BarVAlignCaption : VAlignmentEnum, retrieves or sets a value that indicates the
vertical alignment of the caption inside the bar
BarToolTip : String, retrieves or sets a value that indicates the tooltip being shown
when the cursor hovers the bar
BarBackColor : Color, retrieves or sets a value that indicates the background color for
the area being occupied by the bar
BarForeColor : Color, retrieves or sets a value that indicates the foreground color for
the caption of the bar
BarKey : Object, specifies key of the bar
BarCanResize : Boolean, specifies whether the user can resize the bar
BarCanMove : Boolean, specifies whether the user can move the bar
BarPercent : Double, specifies the percent to display the progress on the bar
BarPercentCaptionFormat : String, specifies the HTML format to be displayed as
percent
BarShowPercentCaption : Boolean, specifies whether the percent is displayed as

caption on the bar
BarAlignPercentCaption : AlignmentEnum, specifies the alignment of the percent
caption on the bar
BarCanResizePercent : Boolean, specifies whether the user can resize the percent at
runtime
BarData : Object, associates an extra data to a bar
BarOffset : Integer, specifies the vertical offset where the bar is shown
BarTransparent : Integer, specifies the percent of the transparency to display the bar
BarKeepWorkingCount : Boolean, specifies a value that indicates whether the bar
keeps constant the working units while the user moves the bar to a new position
BarEffort : Double, Specifies the effort to execute an unit in the task
BarMinStart : Object/DateTime, specifies the minimum value for the starting date of
the bar
BarMaxStart : Object/DateTime, specifies the maximum value for the starting date of
the bar
BarMinEnd : Object/DateTime, specifies the minimum value for the ending date of the
bar
BarMaxEnd : Object/DateTime, specifies the maximum value for the ending date of the
bar
BarShowRange : PatternEnum, indicates whether the bar shows its range where it
can be moved or resized
BarShowRangeTransparent : Integer, specifies the percent of the transparency to
display the range of the bar
BarCanMoveToAnother : Boolean, specifies whether the bar can be moved to
another item
BarSelectable : Boolean, specifies whether the bar can be selected
BarsCount : Integer, retrieves a value that indicates the number of bars in the item
BarSelected : Boolean, specifies whether the bar is selected or unselected
BarCanBeLinked : Boolean, specifies whether the bar can participate to a link
BarCanStartLink : Boolean, specifies whether a link can start from specified bar
BarCanEndLink : Boolean, specifies whether a link can end to specified bar
BarWorkingCount : Integer, specifies the count of working units in the bar
BarNonWorkingCount : Integer, retrieves the count of non-working units in the bar
BarParent : HITEM, specifies the handle of the parent item that displays the bar
BarColor : Color, specifies the color for the bar. If used it replaces the bar's type
color, for current bar only.
BarDuration : Double, specifies the duration of the bar in days
BarMove : Double Moves the bar by specified amount of time
BarStartPrev : DateTime, retrieves the starting date of the bar before changing it
BarEndPrev : DateTime, retrieves the ending date of the bar before changing it
BarDurationPrev : Double, retrieves the duration or length of the bar before

For instance, You can use the get_BarColor property instead the get_ItemBar(exBarColor)
property.

For instance, the following VB/NET sample changes the bar's color:

With Exg2antt1.Items
 .set_BarColor(.FocusItem, .get_FirstItemBar(.FocusItem), Color.Red)
End With

The following VB sample changes the end date for the bar in the first visible item (in this
sample we consider that AddBar method was used with the Key parameter as being empty
) :

With G2antt1.Items
 .ItemBar(.FirstVisibleItem, "", exBarEnd) = "6/19/2005"
End With

The following C++ sample changes the end date for the bar in the first visible item:

CItems items = m_g2antt.GetItems();
items.SetItemBar(items.GetFirstVisibleItem(), COleVariant(""), 2 /*exBarEnd*/,
COleVariant("6/19/2005"));

The following VB.NET sample changes the end date for the bar in the first visible item:

With AxG2antt1.Items
 .ItemBar(.FirstVisibleItem, "", EXG2ANTTLib.ItemBarPropertyEnum.exBarEnd) =
"6/19/2005"
End With

The following C# sample changes the end date for the bar in the first visible item:

axG2antt1.Items.set_ItemBar(axG2antt1.Items.FirstVisibleItem, "",
EXG2ANTTLib.ItemBarPropertyEnum.exBarEnd, "6/19/2005");

The following VFP sample changes the end date for the bar in the first visible item:

with thisform.G2antt1.Items
 .DefaultItem = .FirstVisibleItem
 thisform.G2antt1.Template = "Items.ItemBar(0,`" + _key + "`,2) = `20/07/2005`"

endwith

where the _key is the key of the bar being resized.

The VFP sample uses the Template property in order to execute the ItemBar property, else
some version of VFP could fire "Function argument, value, type, or count is invalid". The
sample builds the script:

Items.ItemBar(0,_key,2) = `20/07/2005`

This way the ItemBar property for the default item is invoked.

property Items.ItemBarEx(Criteria as Variant, Property as
ItemBarPropertyEnum) as Variant
Gets or sets the property's bar that matches the criteria.

Type Description

Criteria as Variant

A String expression that defines the criteria / formula to
select/query the bars in the chart, or a Boolean expression
that specifies that all or none bars are selected to be
queried. For instance, "cellstate(0) = 1" queries all bars
hosted by items whose check-box in the column with the
index 0, are checked, or "itemisselected and itembar(0) =
`Task`" queries all Task bars from the selected items. The
Criteria parameter of the ItemBarEx property supports
predefined functions and keywords as defined bellow.

Property as
ItemBarPropertyEnum

A ItemBarPropertyEnum expression that defines the bar's
property to be queried. For instance, you can use
exBarsCount to query the number of bars that matches
the criteria.

Variant

For the get_ItemBarEx property, it indicates the value of
the bar's property being found (for instance, if the
Property is exBarsCount, the ItemBarEx property returns
a numeric value that specifies the number of bars that
matches the criteria). For set_ItemBarEx property it could
be a string expression that defines the formula to change
the bar's property, or any other value to assign to the bar's
property for all bars that matches the criteria. For
instance, "value + 1", indicates the previously value plus
one. The Value parameter of the ItemBarEx property
supports predefined functions and keywords as defined
bellow.

The ItemBarEx property is an extension of ItemBar property, that allows changing the
properties for a set of bars, using expressions. For instance, you want to select all bars
whose value on the Country column is France, or move all bars of type "Task", change the
color for all checked items, change the percent for selected bars, and so on.

Compared with ItemBar property that can access bars based on bar's Key only, the
ItemBarEx property can access bars based on any:

bar's property specified by the ItemBar property. For instance, "itembar(0) = `Task`"
specifies all Task bars (0 indicates the value of exBarName property), or
"itembar(257)" specifies all selected bars (257 defines the value of exBarSelected

property), or "itembar(0) = `Task`and itembar(257)" indicates all Task bars being
selected
caption, value or user-data associated with any cell in the Items section of the control.
For instance, "cellcaption(12) = `France`" queries all bars hosted by items that have
France on the column with the index 12.
check-box / radio-button state of any cell on any column. For instance, "cellstate(0) =
1" queries all bars hosted by checked-items in the column with the index 0.
item's extra user-data being defined by the ItemData property. For instance, "itemdata
= `the item data`" queries all bars hosted by items with the user data set on "the item
data".
item's selection state. For instance, "itemisselected" queries all bars hosted by
selected items
item's focusing state. For instance, "itemisfocused and itembar(0) = `Task`" queries all
Task bars hosted by focused item.
item's level, that defines how many parent items the item has. For instance
""not(itemlevel=0)"" queries all bars hosted on child items. A root item's level is 0, while
a child item has the level of its parent item plus one.

For instance:

ItemBarEx("itembar(0) = `Task`",exBarMove) = 1, moves one-day forward all Task
bars.
ItemBarEx("itembar(0) = `Task`",exBarMove) = -2, moves two-day backward all Task
bars.
ItemBarEx("itembar(0) = `Task`",exBarEnd) = "value + 2", resizes all Task bars (adds
a 2 days to ending-margin of each Task bar)
ItemBarEx(True,exBarTransparent) = "cellstate(0) = 1 ? 0 : 100" hides shows bars
being checked, and hides those are un-checked.
ItemBarEx("(itembar(0) = `Task`)",exBarMove) = "#8/3/2017# - itembar(1)" moves all
Task bars, so they all start at the same date-time #8/3/2017#
ItemBarEx("(itembar(0) = `Task`)",exBarMove) = "#8/14/2017# - itembar(2)" moves all
Task bars, so they all end at the same date-time #8/14/2017#
ItemBarEx("itemisselected and itembar(exBarName) like `Task*`",exBarPercent100) =
"value + 1", adds 1% (percent) to each "Task" bar found in the selected items.

The Criteria and Value parameters of the ItemBarEx property support the following pre-
defined functions:

cellcaption (unary operator) retrieves the value of the CellCaption property. The
single-parameter of the cellcaption operator must be of numeric type, specifying the
index of the column. For instance, "cellcaption(12) = `France`" defines all bars hosted
by items where France is found on the column with the index 12
celldata (unary operator) retrieves the value of the CellData property. The single-
parameter of the celldata operator must be of numeric type, specifying the index of the

column. For instance, "celldata(0) = `the cell data`" defines all bars hosted by items
whose cell's data is "the cell data" on the column with the index 0.
cellstate (unary operator) retrieves the value of the CellState property. The single-
parameter of the cellvalue operator must be of numeric type, specifying the index of
the column. For instance, "cellstate(0) = 1" queries all bars hosted by checked-items in
the column with the index 0.
cellvalue (unary operator) retrieves the value of the CellValue property. The single-
parameter of the cellvalue operator must be of numeric type, specifying the index of
the column. For instance, "cellvalue(1) = cellvalue(2)" defines all bars hosted by items
who have the same value on columns with the index 1 and 2.
itembar (unary operator) retrieves the value of the ItemBar property. The single-
parameter of the itembar operator must be of numeric type, specifying any value listed
on the ItemBarPropertyEnum type. For instance, "itembar(0) = `Task`" defines all Task
bars.

The Criteria and Value parameters of the ItemBarEx property support the following pre-
defined keywords:

itemdata keyword returns the item's user data. The ItemData property retrieves or
sets the extra data for a specific item. For instance, "itemdata = `the item data`"
queries all bars hosted by items with the user data set on "the item data".
itemisfocused keyword returns a boolean value that indicates whether the item is
focused. The FocusItem property returns the handle of the item that has the focus. At
any time, the control can have a single item with the focus, instead can have more
selected items. For instance, "itemisfocused and itembar(0) = `Task`" queries all Task
bars from the focused item.
itemisselected keyword returns a boolean value that specifies whether the item is
selected. The SelectItem property specifies whether the giving item is selected or
unselected. For instance, "itemisselected and itembar(0) = `Task`" queries all Task
bars from the selected items .
itemlevel keyword returns the item's level. This value is 0-based, which indicates the
root-items. A root item's level is 0, while a child item has the level of its parent item
plus one. For instance ""not(itemlevel=0)"" queries all bars hosted on child items.

Additionally, the Value parameter of the ItemBarEx property supports the following pre-
defined keywords:

value keyword returns the previously value of the ItemBar(Property) property. The
Property parameter defines the bar's property to be queried / changed. For instance,
"value + 1" increases the previously value by one-unit. Based on the type of the value,
the value could be added or concatenated. For instance, if the Property is
exBarCaption, the value + 1, actually appends 1 to the bar's caption.

For instance, the Criteria parameter could be:

True, queries all bars within the chart, or False which specifies no bars will be queried.
"itembar(0) = `Task`", queries all Task bars in the chart
"itembar(0) = `Task`and itembar(257)" indicates all Task bars being selected
"itembar(0) = `Task`and itemisselected" indicates all Task bars from selected items
"itemisselected" queries all bars hosted by selected items
"not(itemisselected) and itembar(0) = `Task`" queries all Task bars hosted by not-
selected item.
"cellcaption(12) = `France`" queries all bars hosted by items that have France on the
column with the index 12.
"cellstate(0) = 1" queries all bars hosted by checked-items in the column with the index
0.

The expression may be a combination of variables, constants, strings, dates and
operators. A string is delimited by ", ` or ' characters, and inside they can have the starting
character preceded by \ character, ie "\"This is a quote\"". A date is delimited by two #
characters, ie #1/31/2001 10:00# means the January 31th, 2001, 10:00 AM.

This property/method supports predefined constants and operators/functions as described
here.

property Items.ItemBold(Item as HITEM) as Boolean

Retrieves or sets a value that indicates whether the item should appear in bold.

Type Description
Item as HITEM A long expression that indicates the handle of the item.

Boolean A boolean expression that indicates whether the item
should appear in bold.

Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply different font
attributes to the item. Use the CellItalic, CellUnderline, CellBold or CellStrikeOut property to
apply different font attributes to the cell. Use the CellValueFormat property to specify an
HTML caption. Use the ConditionalFormats method to apply formats to a cell or range of
cells, and have that formatting change depending on the value of the cell or the value of a
formula.

The following VB sample bolds the selected item:

Dim hOldBold As HITEM

Private Sub G2antt1_SelectionChanged()
 If Not (hOldBold = 0) Then
 G2antt1.Items.ItemBold(hOldBold) = False
 End If
 hOldBold = G2antt1.Items.SelectedItem()
 G2antt1.Items.ItemBold(hOldBold) = True
End Sub

The following VB sample bolds the focused item:

With G2antt1.Items
 .ItemBold(.FocusItem) = True
End With

The following C++ sample bolds the focused item:

#include "Items.h"
CItems items = m_g2antt.GetItems();
items.SetItemBold(items.GetFocusItem() , TRUE);

The following C# sample bolds the focused item:

axG2antt1.Items.set_ItemBold(axG2antt1.Items.FocusItem, true);

The following VB.NET sample bolds the focused item:

With AxG2antt1.Items
 .ItemBold(.FocusItem) = True
End With

The following VFP sample bolds the focused item:

with thisform.G2antt1.Items
 .DefaultItem = .FocusItem
 .ItemBold(0) = .t.
endwith

property Items.ItemByIndex (Index as Long) as HITEM

Retrieves the handle of the item given its index in Items collection..

Type Description
Index as Long A long expression that indicates the index of the item.
HITEM A long expression that indicates the item's handle.

Use the ItemByIndex to get the index of an item. Use the ItemCount property to count the
items in the control. the Use the ItemPosition property to get the item's position. Use the
ItemToIndex property to get the index of giving item. For instance, The ItemByIndex
property is the default property for Items object, so the following statements are
equivalents: G2antt1.Items(0), G2antt1.Items.ItemByIndex(0).

The following VB sample enumerates all items in the control:

Dim i As Long, n As Long
With G2antt1.Items
 n = .ItemCount
 For i = 0 To n - 1
 Debug.Print .ItemByIndex(i)
 Next
End With

The following C++ sample enumerates all items in the control:

#include "Items.h"
CItems items = m_g2antt.GetItems();
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
for (long i = 0; i < items.GetItemCount(); i++)
{
 COleVariant vtItem(items.GetItemByIndex(i)), vtColumn(long(0));
 CString strCaption = V2S(&items.GetCellValue(vtItem, vtColumn)), strOutput;
 strOutput.Format("Cell: '%s'\n", strCaption);
 OutputDebugString(strOutput);
}

The following VB.NET sample enumerates all items in the control:

With AxG2antt1

 Dim i As Integer
 For i = 0 To .Items.ItemCount - 1
 Debug.Print(.Items.CellValue(.Items(i), 0))
 Next
End With

The following C# sample enumerates all items in the control:

EXG2ANTTLib.Items items = axG2antt1.Items;
for (int i = 0; i < items.ItemCount; i++)
{
 object caption = items.get_CellValue(items[i], 0);
 string strCaption = caption != null ? caption.ToString() : "";
 System.Diagnostics.Debug.WriteLine(strCaption);
}

The following VFP sample enumerates all items in the control:

with thisform.G2antt1.Items
 local i
 for i = 0 to .ItemCount - 1
 .DefaultItem = .ItemByIndex(i)
 wait window nowait .CellValue(0,0)
 next
endwith

property Items.ItemCell (Item as HITEM, ColIndex as Variant) as HCELL

Retrieves the cell's handle based on a specific column.

Type Description
Item as HITEM A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index or the
cell's handle, a string expression that indicates the
column's caption.

HCELL A long expression that indicates the handle of the cell.

A cell is the intersection of an item with a column. All properties that has an Item and a
ColIndex parameters are referring to a cell. The Item parameter represents the handle of
an item, and the ColIndex parameter indicates an index (a numerical value, see
Column.Index property) of a column , the column's caption (a string value, see
Column.Caption property), or a handle to a cell. Here's few hints how to use properties
with Item and ColIndex parameters:

G2antt1.Items.CellBold(, G2antt1.Items.ItemCell(G2antt1.Items(0), 0)) = True

G2antt1.Items.CellBold(G2antt1.Items(0), 0) = True

G2antt1.Items.CellBold(G2antt1.Items(0), "ColumnName") = True

property Items.ItemChild (Item as HITEM) as HITEM

Retrieves the first child item of a specified item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

HITEM A long expression that indicates the handle of the first child
item.

If the ItemChild property gets 0, the item has no child items. Use this property to get the
first child of an item. NextVisibleItem or NextSiblingItem to get the next visible, sibling
item. The control displays a +/- sign to parent items, if the HasButtons property is not zero,
the ItemChild property is not empty, or the ItemHasChildren property is True.

The following VB function recursively enumerates the item and all its child items:

Sub RecItem(ByVal c As EXG2ANTTLibCtl.G2antt, ByVal h As HITEM)
 If Not (h = 0) Then
 Dim hChild As HITEM
 With c.Items
 Debug.Print .CellValue(h, 0)
 hChild = .ItemChild(h)
 While Not (hChild = 0)
 RecItem c, hChild
 hChild = .NextSiblingItem(hChild)
 Wend
 End With
 End If
End Sub

The following C++ function recursively enumerates the item and all its child items:

void RecItem(CG2antt* pG2antt, long hItem)
{
 COleVariant vtColumn((long)0);
 if (hItem)
 {
 CItems items = pG2antt->GetItems();

 CString strCaption = V2S(&items.GetCellValue(COleVariant(hItem), vtColumn)),
strOutput;
 strOutput.Format("Cell: '%s'\n", strCaption);
 OutputDebugString(strOutput);

 long hChild = items.GetItemChild(hItem);
 while (hChild)
 {
 RecItem(pG2antt, hChild);
 hChild = items.GetNextSiblingItem(hChild);
 }
 }
}

The following VB.NET function recursively enumerates the item and all its child items:

Shared Sub RecItem(ByVal c As AxEXG2ANTTLib.AxG2antt, ByVal h As Integer)
 If Not (h = 0) Then
 Dim hChild As Integer
 With c.Items
 Debug.WriteLine(.CellValue(h, 0))
 hChild = .ItemChild(h)
 While Not (hChild = 0)
 RecItem(c, hChild)
 hChild = .NextSiblingItem(hChild)
 End While
 End With
 End If
End Sub

The following C# function recursively enumerates the item and all its child items:

internal void RecItem(AxEXG2ANTTLib.AxG2antt g2antt, int hItem)
{
 if (hItem != 0)
 {
 EXG2ANTTLib.Items items = g2antt.Items;
 object caption = items.get_CellValue(hItem, 0);

 System.Diagnostics.Debug.WriteLine(caption != null ? caption.ToString() : "");

 int hChild = items.get_ItemChild(hItem);
 while (hChild != 0)
 {
 RecItem(g2antt, hChild);
 hChild = items.get_NextSiblingItem(hChild);
 }
 }
}

The following VFP function recursively enumerates the item and all its child items (recitem
method):

LPARAMETERS h

with thisform.G2antt1
 If (h != 0) Then
 local hChild
 With .Items
 .DefaultItem = h
 wait window .CellValue(0, 0)
 hChild = .ItemChild(h)
 do While (hChild != 0)
 thisform.recitem(hChild)
 hChild = .NextSiblingItem(hChild)
 enddo
 EndWith
 EndIf
endwith

property Items.ItemControlID (Item as HITEM) as String

Retrieves the item's control identifier that was used by InsertControlItem property.

Type Description

Item as HITEM A long expression that indicates the item's handle that was
previously created by the InsertControlItem property.

String
A string expression that indicates the control identifier
used by InsertControlItem method to create an item that
hosts an ActiveX control.

The ItemControlID property retrieves the control identifier used by the InsertControlItem
property. If the item was created using AddItem or InsertItem properties the ItemControlID
property retrieves an empty string. For instance, the ItemControlID property can be used to
check if an item contains an ActiveX control or not.

property Items.ItemCount as Long

Retrieves the number of items.

Type Description

Long A long value that indicates the number of items into the
Items collection.

The ItemCount property counts the items in the control. Use the ItemByIndex property to
access an item giving its index. Use the VisibleItemCount property to specify the number of
visible items in the list. Use the ItemByIndex property to get the handle of the item giving its
index. Use ChildCount to get the number of child items giving an item. Use the ItemChild
property to get the first child item. Use the FirstVisibleItem property to get the first visible
item. Use the NextVisibleItem property to get the next visible item. The NextSiblingItem
property retrieves the next sibling of the item in the parent's child list. Use the ItemPosition
property to change the item's position. Use the AddItem, InsertItem, PutItems or
DataSource property to add new items to the control. Use ChildCount to get the number of
child items.

The following VB.NET sample enumerates all items and bars in the control (/NET or /WPF
version):

With Exg2antt1
 Dim i, h As Integer, key As Object
 For i = 0 To .Items.ItemCount - 1
 h = .Items(i)
 key = .Items.get_FirstItemBar(h)
 While TypeOf key Is String
 Debug.Print("Key = " & key & ", Item " & .Items.get_CellCaption(h, 0))
 key = CStr(.Items.get_NextItemBar(h, key))
 End While
 Next
End With

The following C# sample enumerates all items and bars in the control (/NET or /WPF
version):

for (int i = 0; i < exg2antt1.Items.ItemCount; i++)
{
 int h = exg2antt1.Items[i];
 object key = exg2antt1.Items.get_FirstItemBar(h);

 while (key != null)
 {
 System.Diagnostics.Debug.Print("Key = " + key + ", Item " +
exg2antt1.Items.get_CellCaption(h, 0));
 key = exg2antt1.Items.get_NextItemBar(h, key);
 }
}

The following VB sample enumerates all items in the control:

Dim i As Long, n As Long
With G2antt1.Items
 n = .ItemCount
 For i = 0 To n - 1
 Debug.Print .ItemByIndex(i)
 Next
End With

The following C++ sample enumerates all items in the control:

#include "Items.h"
CItems items = m_g2antt.GetItems();
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
for (long i = 0; i < items.GetItemCount(); i++)
{
 COleVariant vtItem(items.GetItemByIndex(i)), vtColumn(long(0));
 CString strCaption = V2S(&items.GetCellValue(vtItem, vtColumn)), strOutput;
 strOutput.Format("Cell: '%s'\n", strCaption);
 OutputDebugString(strOutput);
}

The following VB.NET sample enumerates all items in the control:

With AxG2antt1
 Dim i As Integer
 For i = 0 To .Items.ItemCount - 1
 Debug.Print(.Items.CellValue(.Items(i), 0))
 Next
End With

The following C# sample enumerates all items in the control:

EXG2ANTTLib.Items items = axG2antt1.Items;
for (int i = 0; i < items.ItemCount; i++)
{
 object caption = items.get_CellValue(items[i], 0);
 string strCaption = caption != null ? caption.ToString() : "";
 System.Diagnostics.Debug.WriteLine(strCaption);
}

The following VFP sample enumerates all items in the control:

with thisform.G2antt1.Items
 local i
 for i = 0 to .ItemCount - 1
 .DefaultItem = .ItemByIndex(i)
 wait window nowait .CellValue(0,0)
 next
endwith

property Items.ItemData(Item as HITEM) as Variant

Retrieves or sets the extra data for a specific item.

Type Description

Item as HITEM A long expression that indicates the item's handle that has
associated some extra data.

Variant A variant value that indicates the item's extra data.

Use the ItemData property to assign an extra value to an item. Use CellData property to
associate an extra data with a cell. The ItemData and CellData are of Variant type, so you
will be able to save here what ever you want: numbers, objects, strings, and so on. The
user data is only for user use. The control doesn't use this value. Use the Data property to
assign an extra data to a column. For instance, you can use the RemoveItem event to
release any extra data that is associated to the item.

property Items.ItemDivider(Item as HITEM) as Long
Specifies whether the item acts like a divider item. The value indicates the index of column
used to define the divider's title.

Type Description
Item as HITEM A long expression that indicates the item's handle.
Long A long expression that indicates the column's index.

A divider item uses the item's client area to display a single cell. The ItemDivider property
specifies the index of the cell being displayed. In other words, the divider item merges the
item cells into a single cell. Use the ItemDividerLine property to define the line that
underlines the divider item. Use the LockedItemCount property to lock items on the top or
bottom side of the control. Use the MergeCells method to combine two or multiple cells in a
single cell. Use the SelectableItem property to specify the user can select an item. A divider
item has sense for a control with multiple columns.

The following VB sample adds a divider item that's locked to the top side of the control (
Before running this sample please make sure that your control has columns):

With G2antt1
 .BeginUpdate
 .DrawGridLines = exNoLines
 With .Items
 .LockedItemCount(TopAlignment) = 1
 Dim h As HITEM
 h = .LockedItem(TopAlignment, 0)
 .ItemDivider(h) = 0
 .ItemHeight(h) = 22
 .CellValue(h, 0) = "Total:
$12.344.233"
 .CellValueFormat(h, 0) = exHTML
 .CellHAlignment(h, 0) = RightAlignment
 End With
 .EndUpdate
End With

The following C++ sample adds a divider item, that's not selectable too:

#include "Items.h"

CItems items = m_g2antt.GetItems();
long i = items.AddItem(COleVariant("divider item"));
items.SetItemDivider(i, 0);
items.SetSelectableItem(i, FALSE);

The following C# sample adds a divider item, that's not selectable too:

int i = axG2antt1.Items.AddItem("divider item");
axG2antt1.Items.set_ItemDivider(i, 0);
axG2antt1.Items.set_SelectableItem(i, false);

The following VB.NET sample adds a divider item, that's not selectable too:

With AxG2antt1.Items
 Dim i As Integer
 i = .AddItem("divider item")
 .ItemDivider(i) = 0
 .SelectableItem(i) = False
End With

The following VFP sample adds a divider item, that's not selectable too:

with thisform.G2antt1.Items
 .DefaultItem = .AddItem("divider item")
 .ItemDivider(0) = 0
 .SelectableItem(0) = .f.
endwith

property Items.ItemDividerLine(Item as HITEM) as DividerLineEnum
Defines the type of line in the divider item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

DividerLineEnum A DividerLineEnum expression that indicates the type of
the line in the divider item.

By default, the ItemDividerLine property is SingleLine. The ItemDividerLine property
specifies the type of line that underlines a divider item. Use the ItemDivider property to
define a divider item. Use the ItemDividerLine and ItemDividerAlignment properties to define
the style of the line into the divider item. Use the CellMerge property to merge two or more
cells.

property Items.ItemDividerLineAlignment(Item as HITEM) as
DividerAlignmentEnum
Specifies the alignment of the line in the divider item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

DividerAlignmentEnum A DividerAlignmentEnum expression that specifies the
line's alignment.

By default, the ItemDividerLineAlignment property is DividerBottom. The Use the
ItemDividerLine and ItemDividerLineAlignment properties to define the style of the line into a
divider item. Use the ItemDivider property to define a divider item.

property Items.ItemFiltered (Item as HITEM) as Boolean
Checks whether the item is included in the control's filter.

Type Description
Item as HITEM A long expression that indicates the handle of the item.

Boolean A boolean expression that indicates whether the item is
filtered.

Use the ItemFiltered property to check whether an item is included in the control's filter. Use
the FilterType property to specify the type of filter that's applied to a column. The
ApplyFilter method should be called to update the control's content after changing the Filter
or FilterType property. The ItemCount property counts the items in the control's list. Use the
ItemByIndex property to access an item giving its index.

The following VB sample enumerates all items that are not included in the list when a filter is
applied:

Dim i As Long
With G2antt1.Items
 For i = 0 To .ItemCount - 1
 Dim h As EXG2ANTTLibCtl.HITEM
 h = .ItemByIndex(i)
 If (Not .ItemFiltered(h)) Then
 Debug.Print .CellValue(h, 0)
 End If
 Next
End With

The following C++ sample enumerates all items that are not included in the list when a filter
is applied:

#include "Items.h"
CItems items = m_g2antt.GetItems();
for (long i = 0; i < items.GetItemCount(); i++)
{
 long hItem = items.GetItemByIndex(i);
 if (!items.GetItemFiltered(hItem))
 {
 COleVariant vtItem(hItem), vtColumn(long(0));

 CString strFormat;
 strFormat.Format("'%s' is not included\r\n", V2S(&items.GetCellValue(vtItem,
vtColumn)));
 OutputDebugString(strFormat);
 }
}

The following VB.NET sample enumerates all items that are not included in the list when a
filter is applied:

Private Sub AxG2antt1_ClickEvent(ByVal sender As Object, ByVal e As System.EventArgs)
Handles AxG2antt1.ClickEvent
 Dim i As Long
 With AxG2antt1.Items
 For i = 0 To .ItemCount - 1
 Dim h As Integer = .ItemByIndex(i)
 If (Not .ItemFiltered(h)) Then
 Dim cellValue As Object = .CellValue(h, 0)
 Dim strValue As String = ""
 If Not (cellValue Is Nothing) Then
 strValue = cellValue.ToString()
 End If
 Debug.WriteLine(strValue)
 End If
 Next
 End With
End Sub

The following C# sample enumerates all items that are not included in the list when a filter is
applied:

EXG2ANTTLib.Items items = axG2antt1.Items;
for (int i = 0; i < items.ItemCount; i++)
 if (!items.get_ItemFiltered(items[i]))
 {
 object cellValue = axG2antt1.Items.get_CellValue(i, 0);
 string strValue = cellValue != null ? cellValue.ToString() : "";
 System.Diagnostics.Debug.WriteLine(strValue);

 }

The following VFP sample enumerates all items that are not included in the list when a filter
is applied:

with thisform.G2antt1.Items
 local i
 For i = 0 To .ItemCount - 1
 local h
 h = .ItemByIndex(i)
 If (!.ItemFiltered(h)) Then
 wait window nowait .CellValue(h, 0)
 EndIf
 Next
endwith

property Items.ItemFont (Item as HITEM) as IFontDisp
Retrieves or sets the item's font.

Type Description
Item as HITEM A long expression that specifies the item's handle.
IFontDisp A Font object that specifies the item's font.

By default, the ItemFont property is nothing. If the ItemFont property is nothing, the item
uses the control's font. Use the ItemFont property to define a different font for the item. Use
the CellFont and ItemFont properties to specify different fonts for cells or items. Use the
CellBold, CellItalic, CellUnderline, CellStrikeout, ItemBold, ItemUnderline, ItemStrikeout,
ItemItalic or CellValueFormat to specify different font attributes. Use the ItemHeight
property to specify the height of the item. Use the Refresh method to refresh the control's
content on the fly. Use the BeginUpdate and EndUpdate methods if you are doing multiple
changes, so no need for an update each time a change is done.

The following VB sample changes the font for the focused item:

With G2antt1.Items
 .ItemFont(.FocusItem) = G2antt1.Font
 With .ItemFont(.FocusItem)
 .Name = "Comic Sans MS"
 .Bold = True
 End With
End With
G2antt1.Refresh

The following C++ sample changes the font for the focused item:

#include "Items.h"
#include "Font.h"
CItems items = m_g2antt.GetItems();
items.SetItemFont(items.GetFocusItem(), m_g2antt.GetFont().m_lpDispatch);
COleFont font = items.GetItemFont(items.GetFocusItem());
font.SetName("Comic Sans MS");
font.SetBold(TRUE);
m_g2antt.Refresh();

The following VB.NET sample changes the font for the focused item:

With AxG2antt1.Items
 .ItemFont(.FocusItem) = IFDH.GetIFontDisp(AxG2antt1.Font)
 With .ItemFont(.FocusItem)
 .Name = "Comic Sans MS"
 .Bold = True
 End With
End With
AxG2antt1.CtlRefresh()

where the IFDH class is defined like follows:

Public Class IFDH
 Inherits System.Windows.Forms.AxHost

 Sub New()
 MyBase.New("")
 End Sub

 Public Shared Function GetIFontDisp(ByVal font As Font) As Object
 GetIFontDisp = AxHost.GetIFontFromFont(font)
 End Function

End Class

The following C# sample changes the font for the focused item:

axG2antt1.Items.set_ItemFont(axG2antt1.Items.FocusItem, IFDH.GetIFontDisp(
axG2antt1.Font));
stdole.IFontDisp spFont = axG2antt1.Items.get_ItemFont(axG2antt1.Items.FocusItem);
spFont.Name = "Comic Sans MS";
spFont.Bold = true;
axG2antt1.CtlRefresh();

where the IFDH class is defined like follows:

internal class IFDH : System.Windows.Forms.AxHost
{
 public IFDH() : base("")

 {
 }

 public static stdole.IFontDisp GetIFontDisp(System.Drawing.Font font)
 {
 return System.Windows.Forms.AxHost.GetIFontFromFont(font) as stdole.IFontDisp;
 }
}

The following VFP sample changes the font for the focused item:

with thisform.G2antt1.Items
 .DefaultItem = .FocusItem
 .ItemFont(0) = thisform.G2antt1.Font
 with .ItemFont(0)
 .Name = "Comic Sans MS"
 .Bold = .t.
 endwith
endwith
thisform.G2antt1.Object.Refresh()

property Items.ItemForeColor(Item as HITEM) as Color

Retrieves or sets a foreground color for a specific item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Color A color expression that defines the item's foreground
color.

Use the CellForeColor property to change the item's foreground color. Use the ForeColor
property to change the control's foreground color. Use the ClearItemForeColor property to
clear the item's foreground color.

The following VB sample changes the foreground color for cells in the first column as user
add new items:

Private Sub G2antt1_AddItem(ByVal Item As EXG2ANTTLibCtl.HITEM)
 G2antt1.Items.CellForeColor(Item, o) = vbBlue
End Sub

In VB.NET or C# you require the following functions until the .NET framework will provide:

You can use the following VB.NET function:

 Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
 End Function

You can use the following C# function:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;

 return Convert.ToUInt32(i);
}

The following C# sample changes the foreground color of the focused item:

axG2antt1.Items.set_ItemForeColor(axG2antt1.Items.FocusItem, ToUInt32(Color.Red));

The following VB.NET sample changes the foreground color of the focused item:

With AxG2antt1.Items
 .ItemForeColor(.FocusItem) = ToUInt32(Color.Red)
End With

The following C++ sample changes the foreground color of the focused item:

#include "Items.h"
CItems items = m_g2antt.GetItems();
items.SetItemForeColor(items.GetFocusItem(), RGB(255,0,0));

The following VFP sample changes the foreground color of the focused item:

with thisform.G2antt1.Items
 .DefaultItem = .FocusItem
 .ItemForeColor(0) = RGB(255,0,0)
endwith

property Items.ItemHasChildren (Item as HITEM) as Boolean

Adds an expand button to left side of the item even if the item has no child items.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Boolean
A boolean expression that indicates whether the control
adds an expand button to the left side of the item even if
the item has no child items.

By default, the ItemHasChidren property is False. Use the ItemHasChildren property to
build a virtual tree. Use the BeforeExpandItem event to add new child items to the
expanded item. Use the ItemChild property to get the first child item, if exists. Use the
ItemChild or ChildCount property to determine whether an item contains child items. The
control displays a +/- sign to parent items, if the HasButtons property is not empty, the
ItemChild property is not empty, or the ItemHasChildren property is True. Use the
InsertItem method to insert a new child item. Use the CellData or ItemData property to
assign an extra value to a cell or to an item.

The following VB sample inserts a child item as soon as user expands an item (the sample
has effect only if your control contains items that have the ItemHasChildren property on
True):

Private Sub G2antt1_BeforeExpandItem(ByVal Item As EXG2ANTTLibCtl.HITEM, Cancel As
Variant)
 With G2antt1.Items
 If (.ItemHasChildren(Item)) Then
 If .ChildCount(Item) = 0 Then
 Dim h As Long
 h = .InsertItem(Item, , "new " & Item)
 End If
 End If
 End With
End Sub

The following VB.NET sample inserts a child item when the user expands an item that has
the ItemHasChildren property on True:

Private Sub AxG2antt1_BeforeExpandItem(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_BeforeExpandItemEvent) Handles

AxG2antt1.BeforeExpandItem
 With AxG2antt1.Items
 If (.ItemHasChildren(e.item)) Then
 If .ChildCount(e.item) = 0 Then
 Dim h As Long
 h = .InsertItem(e.item, , "new " & e.item.ToString())
 End If
 End If
 End With
End Sub

The following C# sample inserts a child item when the user expands an item that has the
ItemHasChildren property on True:

private void axG2antt1_BeforeExpandItem(object sender,
AxEXG2ANTTLib._IG2anttEvents_BeforeExpandItemEvent e)
{
 EXG2ANTTLib.Items items = axG2antt1.Items;
 if (items.get_ItemHasChildren(e.item))
 if (items.get_ChildCount(e.item) == 0)
 {
 items.InsertItem(e.item, null, "new " + e.item.ToString());
 }
}

The following C++ sample inserts a child item when the user expands an item that has the
ItemHasChildren property on True:

#include "Items.h"
void OnBeforeExpandItemG2antt1(long Item, VARIANT FAR* Cancel)
{
 CItems items = m_g2antt.GetItems();
 if (items.GetItemHasChildren(Item))
 if (items.GetChildCount(Item) == 0)
 {
 COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
 items.InsertItem(Item, vtMissing, COleVariant("new item"));
 }

}

The following VFP sample inserts a child item when the user expands an item that has the
ItemHasChildren property on True(BeforeExpandItem event):

*** ActiveX Control Event ***
LPARAMETERS item, cancel

with thisform.G2antt1.Items
 if (.ItemHasChildren(item))
 if (.ChildCount(item) = 0)
 .InsertItem(item,"","new " + trim(str(item)))
 endif
 endif
endwith

property Items.ItemHeight(Item as HITEM) as Long

Retrieves or sets the item's height.

Type Description

Item as HITEM

A long expression that indicates the item's handle. If the
Item is 0, setting the ItemHeight property changes the
height for all items. For instance, the ItemHeight(0) = 24,
changes the height for all items to be 24 pixels wide.

Long A long value that indicates the item's height in pixels.

To change the default height of the item before inserting items to collection you can call
DefaultItemHeight property of the control. The control supports items with different heights.
When an item hosts an ActiveX control (was previously created by the InsertControlItem
property), the ItemHeight property changes the height of contained ActiveX control. The
CellSingleLine property specifies whether a cell displays its caption using multiple lines. The
ItemHeight property has no effect, if the CellSingleLine property is False. If the
CellSingleLine property is False, you can specify the maximum height for the item using the
ItemMaxHeight property. Use the ScrollBySingleLine property when using items with
different heights. Use the ItemAllowSizing property to specify whether the user can resize
the item at runtime. Use the Height property to specify the height for a bar.

VBA Is it possible to change the height for all items at once?

With G2antt1
 .DefaultItemHeight = 12
 .Items.ItemHeight(0) = 12
End With

VB6 Is it possible to change the height for all items at once?

With G2antt1
 .DefaultItemHeight = 12
 .Items.ItemHeight(0) = 12
End With

VB.NET Is it possible to change the height for all items at once?

With Exg2antt1
 .DefaultItemHeight = 12
 .Items.set_ItemHeight(0,12)

End With

VB.NET for /COM Is it possible to change the height for all items at once?

With AxG2antt1
 .DefaultItemHeight = 12
 .Items.ItemHeight(0) = 12
End With

C++ Is it possible to change the height for all items at once?

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->PutDefaultItemHeight(12);
spG2antt1->GetItems()->PutItemHeight(0,12);

C++ Builder Is it possible to change the height for all items at once?

G2antt1->DefaultItemHeight = 12;
G2antt1->Items->set_ItemHeight(0,12);

C# Is it possible to change the height for all items at once?

exg2antt1.DefaultItemHeight = 12;
exg2antt1.Items.set_ItemHeight(0,12);

JavaScript Is it possible to change the height for all items at once?

<OBJECT classid="clsid:CD481F4D-2D25-4759-803F-752C568F53B7" id="G2antt1">
</OBJECT>

<SCRIPT LANGUAGE="JScript">

 G2antt1.DefaultItemHeight = 12

 G2antt1.Items.ItemHeight(0) = 12

</SCRIPT>

C# for /COM Is it possible to change the height for all items at once?

axG2antt1.DefaultItemHeight = 12;
axG2antt1.Items.set_ItemHeight(0,12);

X++ (Dynamics Ax 2009) Is it possible to change the height for all items at once?

public void init()
{
 super()

 exg2antt1.DefaultItemHeight(12)

 exg2antt1.Items().ItemHeight(0,12)

}

VFP Is it possible to change the height for all items at once?

with thisform.G2antt1
 .DefaultItemHeight = 12
 .Items.ItemHeight(0) = 12
endwith

dBASE Plus Is it possible to change the height for all items at once?

local oG2antt,var_Items

oG2antt = form.Activex1.nativeObject
oG2antt.DefaultItemHeight = 12
// oG2antt.Items.ItemHeight(0) = 12
var_Items = oG2antt.Items

with (oG2antt)
 TemplateDef = [Dim var_Items]
 TemplateDef = var_Items
 Template = [var_Items.ItemHeight(0) = 12]
endwith

XBasic (Alpha Five) Is it possible to change the height for all items at once?

Dim oG2antt as P
Dim var_Items as P

oG2antt = topparent:CONTROL_ACTIVEX1.activex
oG2antt.DefaultItemHeight = 12
' oG2antt.Items.ItemHeight(0) = 12
var_Items = oG2antt.Items
oG2antt.TemplateDef = "Dim var_Items"
oG2antt.TemplateDef = var_Items
oG2antt.Template = "var_Items.ItemHeight(0) = 12"

Delphi 8 (.NET only) Is it possible to change the height for all items at once?

with AxG2antt1 do
begin
 DefaultItemHeight := 12;
 Items.ItemHeight[0] := 12;
end

Delphi (standard) Is it possible to change the height for all items at once?

with G2antt1 do
begin
 DefaultItemHeight := 12;
 Items.ItemHeight[0] := 12;
end

Visual Objects Is it possible to change the height for all items at once?

oDCOCX_Exontrol1:DefaultItemHeight := 12

oDCOCX_Exontrol1:Items:[ItemHeight,0] := 12

PowerBuilder Is it possible to change the height for all items at once?

OleObject oG2antt

oG2antt = ole_1.Object
oG2antt.DefaultItemHeight = 12
oG2antt.Items.ItemHeight(0,12)

property Items.ItemItalic(Item as HITEM) as Boolean

Retrieves or sets a value that indicates whether the item should appear in italic.

Type Description

Item as HITEM A long expression that indicates the item's handle that
uses italic font attribute.

Boolean A boolean expression that indicates whether the item
should appear in italic.

Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply different font
attributes to the item. Use the CellItalic, CellUnderline, CellBold or CellStrikeOut property to
apply different font attributes to the cell. Use the CellValueFormat property to specify an
HTML caption. Use the ConditionalFormats method to apply formats to a cell or range of
cells, and have that formatting change depending on the value of the cell or the value of a
formula.

The following VB sample makes italic the selected item:

Private Sub G2antt1_SelectionChanged()
 If Not (h = 0) Then G2antt1.Items.ItemItalic(h) = False
 h = G2antt1.Items.SelectedItem()
 G2antt1.Items.ItemItalic(h) = True
End Sub

The following VB sample makes italic the focused item:

With G2antt1.Items
 .ItemItalic(.FocusItem) = True
End With

The following C++ sample makes italic the focused item:

#include "Items.h"
CItems items = m_g2antt.GetItems();
items.SetItemItalic(items.GetFocusItem() , TRUE);

The following C# sample makes italic the focused item:

axG2antt1.Items.set_ItemItalic(axG2antt1.Items.FocusItem, true);

The following VB.NET sample makes italic the focused item:

With AxG2antt1.Items
 .ItemItalic(.FocusItem) = True
End With

The following VFP sample makes italic the focused item:

with thisform.G2antt1.Items
 .DefaultItem = .FocusItem
 .ItemItalic(0) = .t.
endwith

property Items.ItemMaxHeight(Item as HITEM) as Long
Retrieves or sets a value that indicates the maximum height when the item's height is
variable.

Type Description

Item as HITEM

A long expression that indicates the handle of the item. If
the Item is 0, setting the ItemMaxHeight property changes
the maximum-height for all items. For instance, the
ItemMaxHeight(0) = 24, changes the maximum height for
all items to be 24 pixels wide.

Long A long value that indicates the maximum height when the
item's height is variable.

By default, the ItemMaxHeight property is -1. The ItemMaxHeight property has effect only if
it is greater than 0, and the item contains cells with CellSingleLine property on False. The
ItemMinHeight property specifies the minimal height of the item while resizing. The
CellSingleLine property specifies whether a cell displays its caption using multiple lines. The
ItemHeight property has no effect, if the CellSingleLine property is False. If the
CellSingleLine property is False, you can specify the maximum height for the item using the
ItemMaxHeight property. Use the ItemAllowSizing property to specify whether the user can
resize the item at runtime.

property Items.ItemMinHeight(Item as HITEM) as Long
Retrieves or sets a value that indicates the minimum height when the item's height is sizing.

Type Description

Item as HITEM

A long expression that indicates the handle of the item. If
the Item is 0, setting the ItemMinHeight property changes
the minimum-height for all items. For instance, the
ItemMinHeight(0) = 24, changes the minimum height for all
items to be 24 pixels wide.

Long A long value that indicates the minimum height when the
item's height is variable.

By default, the ItemMinHeight property is -1. The ItemMinHeight property has effect only if
the item contains cells with CellSingleLine property on False. The ItemMaxHeight property
specifies the maximum height of the item while resizing. The CellSingleLine property
specifies whether a cell displays its caption using multiple lines. The ItemHeight property
has no effect, if the CellSingleLine property is False. If the CellSingleLine property is False,
you can specify the minimum height for the item using the ItemMinHeight property. Use the
ItemAllowSizing property to specify whether the user can resize the item at runtime.

property Items.ItemNonworkingUnits(Item as HITEM, [InsideZoom as
Variant]) as String
Gets or sets a value that indicates the formula to specify the use non-working units for the
item.

Type Description

Item as HITEM A long expression that specifies handle of the item being
changed.

InsideZoom as Variant

A Boolean expression that specifies whether the format is
applied to normal view or when the item displays inside
zoom units. By default, it is False, so the format is applied
to all units, including the inside zoom units. If True, the
specified format is applied only to visible inside units in the
item. If False, the pattern and the color for non-working
days is applied, else if True, the pattern and the color for
non-working hours is applied.

String A String expression that specifies the formula to determine
the non-working area for the item.

By default, the ItemNonworkingUnits property is empty. The ItemNonworkingUnits property
specifies custom non-working units for specified items. If the ItemNonworkingUnits property
is not empty and invalid, the item provides no non-working units (all working units). If the
ItemNonworkingUnits property is empty the NonworkingDays and NonworkingHours
properties specify the default non-working area of the item.

The ItemNonworkingUnits property supports the following keywords:

value, indicates the date-time unit to check, as a DATE type

This property/method supports predefined constants and operators/functions as described
here.

For instance:

"0", all only working units, no not-working units
"month(value) = 1", all January is non-working
"weekday(value) = 0", all Sundays are non-working only

The control supports the following ways of specify the non-working parts for items:

NonworkingDays and NonworkingHours properties indicate the nonworking parts of the
chart being applied to all items with the exception of those that use the

ItemNonworkingUnits property.
AddNonworkingDate method adds custom dates as being nonworking date which is
applied to all items with the exception of those that use the ItemNonworkingUnits
property.
ItemNonworkingUnits property defines the repetitive expression to specify the non-
working parts in the item.
ItemBar(exBarTreatAsNonworking) indicates whether the bar defines actually the non-
working part of the item in addition to ItemNonworkingUnits property (which is required
also)

property Items.ItemObject (Item as HITEM) as Object

Retrieves the item's ActiveX object associated, if the item was previously created by
InsertControlItem property.

Type Description

Item as HITEM A long expression that indicates the handle of the item that
was previously created by InsertControlItem property.

Object An object that indicates the ActiveX hosted by the item.

Use the ItemObject to retrieve the ActiveX control created by the InsertControlItem method.
Use the ItemControlID property to retrieve the control's identifier. Use the ItemHeight
property to specify the item's height. If the item hosts an ActiveX control, the ItemHeight
property specifies the height of the ActiveX control also.

The following VB sample adds the Exontrol's ExCalendar Component:

With G2antt1
 .BeginUpdate
 .ScrollBySingleLine = True
 With G2antt1.Items
 Dim h As HITEM
 h = .InsertControlItem(,
"Exontrol.Calendar")
 .ItemHeight(h) = 182
 With .ItemObject(h)
 .Appearance = 0
 .BackColor = vbWhite
 .ForeColor = vbBlack
 .ShowTodayButton = False
 End With
 End With
 .EndUpdate
End With

The following C++ sample adds the Exontrol's ExOrgChart Component:

#include "Items.h"

#pragma warning(disable : 4146)
#import <ExOrgChart.dll>

CItems items = m_g2antt.GetItems();
m_g2antt.BeginUpdate();
m_g2antt.SetScrollBySingleLine(TRUE);
COleVariant vtMissing; V_VT(&vtMissing) =
VT_ERROR;
long h = items.InsertControlItem(0,
"Exontrol.ChartView", vtMissing);
items.SetItemHeight(h, 182);
EXORGCHARTLib::IChartViewPtr spChart(
items.GetItemObject(h));
if (spChart != NULL)
{
 spChart->BeginUpdate();
 spChart->BackColor = RGB(255,255,255);
 spChart->ForeColor = RGB(0,0,0);
 EXORGCHARTLib::INodesPtr spNodes =
spChart->Nodes;
 spNodes->Add("Child 1", "Root", "1",
vtMissing, vtMissing);
 spNodes->Add("SubChild 1", "1", vtMissing,
vtMissing, vtMissing);
 spNodes->Add("SubChild 2", "1", vtMissing,
vtMissing, vtMissing);
 spNodes->Add("Child 2", "Root", vtMissing,
vtMissing, vtMissing);
 spChart->EndUpdate();
}
m_g2antt.EndUpdate();

The sample uses the #import statement to include the ExOrgChart's Type Library. In this
sample, the ItemObject property retrieves an IChartView object. The path to the library
should be provided in case it is not located in your system folder.

The following C# sample adds the Exontrol's ExG2antt Component:

axG2antt1.BeginUpdate();
EXG2ANTTLib.Items items = axG2antt1.Items;
axG2antt1.ScrollBySingleLine = true;
int h = items.InsertControlItem(0, "Exontrol.G2antt","");
items.set_ItemHeight(h, 182);
object g2anttInside = items.get_ItemObject(h);
if (g2anttInside != null)
{
 EXG2ANTTLib.G2antt g2antt = g2anttInside as EXG2ANTTLib.G2antt;
 if (g2antt != null)
 {
 g2antt.BeginUpdate();
 g2antt.LinesAtRoot = EXG2ANTTLib.LinesAtRootEnum.exLinesAtRoot;
 g2antt.Columns.Add("Column 1");
 g2antt.Columns.Add("Column 2");
 g2antt.Columns.Add("Column 3");
 EXG2ANTTLib.Items itemsInside = g2antt.Items;
 int hInside = itemsInside.AddItem("Item 1");
 itemsInside.set_CellValue(hInside, 1, "SubItem 1");
 itemsInside.set_CellValue(hInside, 2, "SubItem 2");
 hInside = itemsInside.InsertItem(hInside, null, "Item 2");
 itemsInside.set_CellValue(hInside, 1, "SubItem 1");
 itemsInside.set_CellValue(hInside, 2, "SubItem 2");
 g2antt.EndUpdate();
 }
}
axG2antt1.EndUpdate();

The following VB.NET sample adds the Exontrol's ExOrgChart Component:

With AxG2antt1
 .BeginUpdate()
 .ScrollBySingleLine = True
 With .Items
 Dim hItem As Integer
 hItem = .InsertControlItem(, "Exontrol.ChartView")

 .ItemHeight(hItem) = 182
 With .ItemObject(hItem)
 .BackColor = ToUInt32(Color.White)
 .ForeColor = ToUInt32(Color.Black)
 With .Nodes
 .Add("Child 1", , "1")
 .Add("SubChild 1", "1")
 .Add("SubChild 2", "1")
 .Add("Child 2")
 End With
 End With
 End With
 .EndUpdate()
End With

The following VFP sample adds the Exontrol's ExGrid Component:

with thisform.G2antt1
 .BeginUpdate()
 .ScrollBySingleLine = .t.
 with .Items
 .DefaultItem = .InsertControlItem(0, "Exontrol.Grid")
 .ItemHeight(0) = 182
 with .ItemObject(0)
 .BeginUpdate()
 with .Columns
 with .Add("Column 1").Editor()
 .EditType = 1 && EditType editor
 endwith
 endwith
 with .Items
 .AddItem("Text 1")
 .AddItem("Text 2")
 .AddItem("Text 3")
 endwith
 .EndUpdate()
 endwith

 endwith
 .EndUpdate()
endwith

property Items.ItemParent (Item as HITEM) as HITEM

Returns the handle of the parent item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

HITEM A long expression that indicates the handle of the parent
item.

Use the ItemParent property to retrieve the parent item. Use the InsertItem property to
insert child items. Use the InsertControlItem property to insert ActiveX controls. The
SetParent method changes the item's parent at runtime. To verify if an item can be parent
for another item you can call AcceptSetParent property. If the item has no parent the
ItemParent property retrieves 0. If the ItemParent gets 0 for an item, than the item is called
root. The control is able to handle more root items. To get the collection of root items you
can use RootCount and RootItem properties. Use the ItemChild property to retrieve the first
child item.

property Items.ItemPosition(Item as HITEM) as Long
Retrieves or sets a value that indicates the item's position in the children list.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Long A long expression that indicates the item's position in the
children list.

The ItemPosition property gets the item's position in the children items list. You can use the
ItemPosition property to change the item's position after it been added to collection. When
the control sorts the tree, the item for each position can be changed, so you can use the
item's handle or item's index to identify an item. Use the SortChildren method to sort the
child items. Use the SortOrder property to sort a column. The FormatColumn event is fired
before displaying a cell, so you can handle the FormatColumn to display anything on the cell
at runtime. This way you can display the row position, you can display the value using the
currency format, and so on. The FireFormatColumn property allows the control to fire the
FormatColumn event for the column. The Position property specifies the position of the
column.

If your chart does not display a tree or a hierarchy this property is ok to be used with
FormatColumn event to display the position

The following VB sample handles the FormatColumn event to display the row position:

Private Sub G2antt1_FormatColumn(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal
ColIndex As Long, Value As Variant)
 Value = G2antt1.Items.ItemPosition(Item)
End Sub

If your chart displays a tree or a hierarchy the position of the item must be determined
relative to the FirstVisibleItem as shown in the following VB sample:

Private Sub G2antt1_FormatColumn(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal
ColIndex As Long, Value As Variant)
 Value = G2antt1.ScrollPos(True) + RelPos(Item)
End Sub

Private Function RelPos(ByVal hVisible As Long) As Long
 With G2antt1.Items
 Dim h As Long, i As Long, n As Long

 i = 0
 n = .VisibleCount + 1
 h = .FirstVisibleItem
 While (i <= n) And h <> 0 And h <> hVisible
 i = i + 1
 h = .NextVisibleItem(h)
 Wend
 RelPos = i
 End With
End Function

property Items.ItemStrikeOut(Item as HITEM) as Boolean

Retrieves or sets a value that indicates whether the item should appear in strikeout.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Boolean A boolean expression that indicates whether the item
should appear in strikeout.

If the ItemStrikeOut property is True, the cell's font is displayed with a horizontal line
through it. Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply
different font attributes to the item. Use the CellItalic, CellUnderline, CellBold or
CellStrikeOut property to apply different font attributes to the cell. Use the CellValueFormat
property to specify an HTML caption. Use the ConditionalFormats method to apply formats
to a cell or range of cells, and have that formatting change depending on the value of the
cell or the value of a formula.

The following VB sample draws a horizontal line through the selected item:

Private Sub G2antt1_SelectionChanged()
 If Not (h = 0) Then G2antt1.Items.ItemStrikeOut(h) = False
 h = G2antt1.Items.SelectedItem()
 G2antt1.Items.ItemStrikeOut(h) = True
End Sub

The following VB sample draws a horizontal line through the focused item:

With G2antt1.Items
 .ItemStrikeOut(.FocusItem) = True
End With

The following C++ sample draws a horizontal line through the focused item:

#include "Items.h"
CItems items = m_g2antt.GetItems();
items.SetItemStrikeOut(items.GetFocusItem() , TRUE);

The following C# sample draws a horizontal line through the focused item:

axG2antt1.Items.set_ItemStrikeOut(axG2antt1.Items.FocusItem, true);

The following VB.NET sample draws a horizontal line through the focused item:

With AxG2antt1.Items
 .ItemStrikeOut(.FocusItem) = True
End With

The following VFP sample draws a horizontal line through the focused item:

with thisform.G2antt1.Items
 .DefaultItem = .FocusItem
 .ItemStrikeOut(0) = .t.
endwith

property Items.ItemToIndex (Item as HITEM) as Long
Retrieves the index of item into Items collection given its handle.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Long A long expression that indicates the index of the item in
Items collection.

Use the ItemToIndex property to get the item's index in the Items collection. Use
ItemPosition property to change the item's position. Use the ItemByIndex property to get an
item giving its index. The ItemCount property counts the items in the control. The ChildCount
property counts the child items.

property Items.ItemUnderline(Item as HITEM) as Boolean

Retrieves or sets a value that indicates whether the item should appear in underline.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Boolean A boolean expression that indicates whether the item
should appear in underline.

Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply different font
attributes to the item. Use the CellItalic, CellUnderline, CellBold or CellStrikeOut property to
apply different font attributes to the cell. Use the CellValueFormat property to specify an
HTML caption. Use the ConditionalFormats method to apply formats to a cell or range of
cells, and have that formatting change depending on the value of the cell or the value of a
formula.

The following VB sample underlines the selected item:

Private Sub G2antt1_SelectionChanged()
 If Not (h = 0) Then G2antt1.Items.ItemUnderline(h) = False
 h = G2antt1.Items.SelectedItem()
 G2antt1.Items.ItemUnderline(h) = True
End Sub

The following VB sample underlines the focused item:

With G2antt1.Items
 .ItemUnderline(.FocusItem) = True
End With

The following C++ sample underlines the focused item:

#include "Items.h"
CItems items = m_g2antt.GetItems();
items.SetItemUnderline(items.GetFocusItem() , TRUE);

The following C# sample underlines the focused item:

axG2antt1.Items.set_ItemUnderline(axG2antt1.Items.FocusItem, true);

The following VB.NET sample underlines the focused item:

With AxG2antt1.Items
 .ItemUnderline(.FocusItem) = True
End With

The following VFP sample underlines the focused item:

with thisform.G2antt1.Items
 .DefaultItem = .FocusItem
 .ItemUnderline(0) = .t.
endwith

property Items.ItemWidth(Item as HITEM) as Long

Retrieves or sets a value that indicates the item's width while it contains an ActiveX control.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Long A long expression that indicates the item's width, when the
item contains an ActiveX control.

By default, the ItemWidth property is -1. If the ItemWidth property is -1, the control resizes
the ActiveX control to fit the control's client area. Use the ItemHeight property to specify the
item's height. The property has effect only if the item contains an ActiveX control. Use the
InsertControlItem property to insert ActiveX controls. Use the ItemObject property to
retrieve the ActiveX object that's hosted by an item. Use the CellWidth property to specify
the width of the cell, when it contains inner cells. Use the SplitCell property to split a cell.

The ItemWidth property is interpreted like follows:

If the ItemWidth property is greater than zero, the ItemWidth property indicates the
width in pixels of the ActiveX control. The TreeColumnIndex property indicates the
column where the ActiveX control is shown. For instance, ItemWidth = 64, indicates
that the width of the inside ActiveX control is 64 pixels.
If the ItemWidth property is zero, the ActiveX control uses the full item area to display
the inside ActiveX control.
If the ItemWidth property is -1, the TreeColumnIndex property indicates the column
where the ActiveX control is shown and the inside ActiveX control is shown to the end
of the control.
If the ItemWidth property is less than -32000, the formula -(ItemWidth+32000)
indicates the index of the column where the inside ActiveX is displayed. For instance,
-32000 indicates that the cell in the first column displays the inside ActiveX control,
-32001 indicates that the cell in the second column displays the inside ActiveX control,
-32002 indicates that the cell in the third column displays the inside ActiveX control, and
so on.
If the ItemWidth property is -InnerCell or ItemCell, the ItemWidth property indicates the
handle of the cell that shows the inside ActiveX. This option should be used when you
need to display the ActiveX control in an inner cell. Use the SplitCell property to create
inner cells, to divide a cell or to split a cell. For instance, .ItemWidth(.FirstVisibleItem)
= -.InnerCell(.FirstVisibleItem, 1, 1) indicates that the inside ActiveX control is shown in
the second inner cell in the second column, in the first visible item. Use the CellWidth
property to specify the width of the inner cell.

property Items.ItemWindowHost (Item as HITEM) as Long

Retrieves the window's handle that hosts an ActiveX control when the item was created
using InsertControlItem method.

Type Description

Item as HITEM A long expression that indicates the handle of the item that
was previously created by InsertControlItem method.

Long A long value that indicates the window handle that hosts
the item's ActiveX.

The ItemWindowHost property retrieves the handle of the window that's the container for
the item's ActiveX control. Use the InserControlItem method to insert an ActiveX control.
Use the ItemObject property to access the ActiveX properties and methods. Use the hWnd
property to get the handle of the control's window. The Microsoft Windows operating
environment identifies each form and control in an application by assigning it a handle, or
hWnd. The hWnd property is used with Windows API calls. Many Windows operating
environment functions require the hWnd of the active window as an argument.

property Items.ItemWindowHostCreateStyle(Item as HITEM) as Long

Retrieves or sets a value that indicates a combination of window styles used to create the
ActiveX window host.

Type Description

Item as HITEM A long expression that indicates the handle of the item that
was previously created by InsertControlItem method.

Long A long value that indicates the container window's style.

The ItemWindowHostCreateStyle property specifies the window styles of the ActiveX's
container window, when a new ActiveX control is inserted using the InsertControlItem
method. The ItemWindowHostCreateStyle property has no effect for non ActiveX items.
The ItemWindowHostCreateStyle property must be called during the AddItem event, like in
the following samples. Generally, the ItemWindowHostCreateStyle property is useful to
include WS_HSCROLL and WS_VSCROLL styles for a IWebBrowser control (WWW
browser control), to include scrollbars in the browsed web page.

Some of ActiveX controls requires additional window styles to be added to the container
window. For instance, the Web Brower added by the G2antt1.Items.InsertControlItem(,
"https://www.exontrol.com") won't add scroll bars, so you have to do the following:

First thing is to declare the WS_HSCROLL and WS_VSCROLL constants at the top of your
module:

Private Const WS_VSCROLL = &H200000
Private Const WS_HSCROLL = &H100000

Then you need to to insert a Web control use the following lines:

Dim hWeb As HITEM
hWeb = G2antt1.Items.InsertControlItem(, "https://www.exontrol.com")
G2antt1.Items.ItemHeight(hWeb) = 196

Next step is adding the AddItem event handler:

Private Sub G2antt1_AddItem(ByVal Item As EXG2ANTTLibCtl.HITEM)
 If (G2antt1.Items.ItemControlID(Item) = "https://www.exontrol.com") Then
 ' Some of controls like the WEB control, requires some additional window styles (like
WS_HSCROLL and WS_VSCROLL window styles)
 ' for the window that host that WEB control, to allow scrolling the web page

 G2antt1.Items.ItemWindowHostCreateStyle(Item) =
G2antt1.Items.ItemWindowHostCreateStyle(Item) + WS_HSCROLL + WS_VSCROLL
 End If
End Sub

property Items.LastVisibleItem ([Partially as Variant]) as HITEM

Retrieves the handle of the last visible item.

Type Description

Partially as Variant
A Boolean expression that indicates whether the item is
partially visible. By default, the Partially parameter is
False.

HITEM A long expression that indicates handle of the last visible
item.

To get the first visible item use FirstVisibleItem property. The LastVisibleItem property
retrieves the handle for the last visible item. Use the FirstVisibleItem, NextVisibleItem and
IsItemVisible properties to get the items that fit the client area. Use the NextVisibleItem
property to get the next visible item. Use the IsVisibleItem property to check whether an
item fits the control's client area.

The following VB sample enumerates the items that fit the control's client area:

On Error Resume Next
Dim h As HITEM
Dim i As Long, j As Long, nCols As Long
nCols = G2antt1.Columns.Count
With G2antt1.Items
 h = .FirstVisibleItem
 While Not (h = 0) And .IsItemVisible(h)
 Dim s As String
 s = ""
 For j = 0 To nCols - 1
 s = s + .CellValue(h, j) + Chr(9)
 Next
 Debug.Print s
 h = .NextVisibleItem(h)
 Wend
End With

The following C++ sample enumerates the items that fit the control's client area:

#include "Items.h"
CItems items = m_g2antt.GetItems();

long hItem = items.GetFirstVisibleItem();
while (hItem && items.GetIsItemVisible(hItem))
{
 OutputDebugString(V2S(&items.GetCellValue(COleVariant(hItem), COleVariant(
long(0)))));
 hItem = items.GetNextVisibleItem(hItem);
}

The following VB.NET sample enumerates the items that fit the control's client area:

With AxG2antt1.Items
 Dim hItem As Integer
 hItem = .FirstVisibleItem
 While Not (hItem = 0)
 If (.IsItemVisible(hItem)) Then
 Debug.Print(.CellValue(hItem, 0))
 hItem = .NextVisibleItem(hItem)
 Else
 Exit While
 End If
 End While
End With

The following C# sample enumerates the items that fit the control's client area:

EXG2ANTTLib.Items items = axG2antt1.Items;
int hItem = items.FirstVisibleItem;
while ((hItem != 0) && (items.get_IsItemVisible(hItem)))
{
 object strCaption = items.get_CellValue(hItem, 0);
 System.Diagnostics.Debug.WriteLine(strCaption != null ? strCaption.ToString() : "");
 hItem = items.get_NextVisibleItem(hItem);
}

The following VFP sample enumerates the items that fit the control's client area:

with thisform.G2antt1.Items
 .DefaultItem = .FirstVisibleItem
 do while ((.DefaultItem <> 0) and (.IsItemVisible(0)))

 wait window .CellValue(0, 0)
 .DefaultItem = .NextVisibleItem(0)
 enddo
endwith

property Items.Link(LinkKey as Variant, Property as LinkPropertyEnum)
as Variant
Gets or sets a property for a link.

Type Description

LinkKey as Variant

A String expression that indicates the key of the link being
accessed. The LinkKey may include a pattern with wild
characters as *,?,# or [], if the Key starts with "<" and
ends on ">" aka "<K*>" which indicates all links with the
key K or starts on K. The pattern may include a space
which divides multiple patterns for matching. For instance "
<A* *K>" indicates all keys that start on A and all keys that
end on K.

Property as
LinkPropertyEnum

A LinkPropertyEnum expression that specifies the option
being accessed.

Variant A Variant value that indicates the newly value for the
property.

Use the Link property to access different properties for a specified link. Use the AddLink
method to add a new link between two bars. For instance, the Link(exLinkShowDir)
property indicates whether the arrow of the link that specifies the direction, is shown or
hidden. Use the RemoveLink method to remove a specific link. Use the FirstLink and
NextLink properties to enumerate the links in the control. Use the BeginUpdate and
EndUpdate methods to maintain performance while adding columns, items, bars or links.
Use the HTMLPicture property to add custom size pictures. Use the LinkFromPoint property
to get the key of the link from the cursor. Use the Link(,exLinkToolTip) property to specify
the tooltip to be shown when the cursor hovers the link. Use the Link(exLinkGroupBars) to
group the linked bars. Use the SelectOnClick property to disable selecting new items when
the user clicks the chart area.

Based on the values of the Link Key parameter the Link property changes a property for
none, one or multiple links as follows:

Link("<*>",Property) = Value changes the Property of all links in the chart.
Link("<pattern>",Property) = Value changes the Property of all links in the chart that
match a specified pattern using wild characters as *,?,# or []

The pattern may include the space character which indicates multiple patterns to be
used when matching. For instance "A* *K" indicates all keys that starts on A and all
keys that ends on K. If not using a pattern, the Link changes the property for specified
key in the chart.

Currently, the single read-only property that supports pattern for the LinkKey parameter is
exLinksCount, which counts the links as follows:

Link("<*>",exLinksCount) counts all links in the chart.
Link(0,"<pattern>",exLinksCount) counts all links in the chart that match a specified
pattern using wild characters as *,?,# or []

The pattern may include the space character which indicates multiple patterns to be
used when matching. For instance "A* *K" indicates all keys that start on A and all keys
that end on K.

The /NET Assembly version defines get/set shortcut properties as follow (they start with
get_ or set_ keywords):

LinkStartItem : Integer, retrieves or sets a value that indicates the handle of the item
where the link start
LinkStartBar : Object, retrieves or sets a value that indicates the key of the bar where
the link starts
LinkEndItem : Integer, retrieves or sets a value that indicates the handle of the item
where the link ends
LinkEndBar : Object, retrieves or sets a value that indicates the key of the bar where
the link ends
LinkVisible : Boolean, specifies whether the link is visible or hidden
LinkUserData : Object, specifies an extra data associated with the link
LinkStartPos : AlignmentEnum, specifies the position where the link starts in the
source item
LinkEndPos : AlignmentEnum, specifies the position where the link ends in the target
item
LinkColor : Color, specifies the color to paint the link
LinkArrowColor : Color, specifies the color to paint the arrow of the link
LinkArrowColor32 : Color, specifies the color to paint the arrow of the link
LinkStyle : LinkStyleEnum, specifies the style to paint the link
LinkWidth : Integer, specifies the width in pixels of the link
LinkShowDir : Boolean, specifies whether the link shows the direction
LinkShowRound : Boolean, specifies whether the link is round or rectangular
LinkText : String, specifies the HTML text being displayed on the link
LinkToolTip : String, specifies the HTML text being shown when the cursor hovers the
link
LinkSelected : Boolean, specifies whether the link is selected or unselected
LinkGroupBars : GroupBarsOptionsEnum, groups or ungroups the bars being linked
with the specified options
LinksCount : Integer, specifies the number of the links within the chart

So instead using the get_Link or set_Link properties you can use these functions.

For instance, the following VB/NET sample changes the link's color:

With Exg2antt1.Items
 .set_LinkColor("L1", Color.Red)
End With

For instance, the following C# sample changes the link's color:

exg2antt1.Items.set_LinkColor("L1", Color.Red);

The following VB sample displays a text plus a picture on a link:

G2antt1.Items.Link("Link", exLinkText) = " excel

doc.xls"

property Items.LockedItem (Alignment as VAlignmentEnum, Index as
Long) as HITEM
Retrieves the handle of the locked item.

Type Description

Alignment as
VAlignmentEnum

A VAlignmentEnum expression that indicates whether the
locked item requested is on the top or bottom side of the
control.

Index as Long A long expression that indicates the position of item being
requested.

HITEM A long expression that indicates the handle of the locked
item

A locked or fixed item is always displayed on the top or bottom side of the control no matter
if the control's list is scrolled up or down. Use the LockedItem property to access a locked
item by its position. Use the LockedItemCount property to add or remove items fixed/locked
to the top or bottom side of the control. Use the ShowLockedItems property to show or
hide the locked items. Use the IsItemLocked property to check whether an item is locked or
unlocked. Use the CellValue property to specify the caption for a cell. Use the
InsertControlItem property to assign an ActiveX control to a locked item only

The following VB sample adds an item that's locked to the top side of the control:

With G2antt1
 Dim a As EXG2ANTTLibCtl.VAlignmentEnum
 a = EXG2ANTTLibCtl.VAlignmentEnum.TopAlignment
 .BeginUpdate
 With .Items
 .LockedItemCount(a) = 1
 Dim h As EXG2ANTTLibCtl.HITEM
 h = .LockedItem(a, 0)
 .CellValue(h, 0) = "locked item"
 .CellValueFormat(h, 0) = exHTML
 End With
 .EndUpdate
End With

The following C++ sample adds an item that's locked to the top side of the control:

#include "Items.h"
m_g2antt.BeginUpdate();
CItems items = m_g2antt.GetItems();
items.SetLockedItemCount(0 /*TopAlignment*/, 1);
long i = items.GetLockedItem(0 /*TopAlignment*/, 0);
COleVariant vtItem(i), vtColumn(long(0));
items.SetCellValue(vtItem, vtColumn, COleVariant("locked item"));
items.SetCellValueFormat(vtItem, vtColumn, 1/*exHTML*/);
m_g2antt.EndUpdate();

The following VB.NET sample adds an item that's locked to the top side of the control:

With AxG2antt1
 .BeginUpdate()
 With .Items
 .LockedItemCount(EXG2ANTTLib.VAlignmentEnum.TopAlignment) = 1
 Dim i As Integer
 i = .LockedItem(EXG2ANTTLib.VAlignmentEnum.TopAlignment, 0)
 .CellValue(i, 0) = "locked item"
 .CellValueFormat(i, 0) = EXG2ANTTLib.CaptionFormatEnum.exHTML
 End With
 .EndUpdate()
End With

The following C# sample adds an item that's locked to the top side of the control:

axG2antt1.BeginUpdate();
EXG2ANTTLib.Items items = axG2antt1.Items;
items.set_LockedItemCount(EXG2ANTTLib.VAlignmentEnum.TopAlignment, 1);
int i = items.get_LockedItem(EXG2ANTTLib.VAlignmentEnum.TopAlignment, 0);
items.set_CellValue(i, 0, "locked item");
items.set_CellValueFormat(i, 0, EXG2ANTTLib.CaptionFormatEnum.exHTML);
axG2antt1.EndUpdate();

The following VFP sample adds an item that's locked to the top side of the control:

with thisform.G2antt1
 .BeginUpdate()

 With .Items
 .LockedItemCount(0) = 1
 .DefaultItem = .LockedItem(0, 0)
 .CellValue(0, 0) = "locked item"
 .CellValueFormat(0, 0) = 1 && EXG2ANTTLib.CaptionFormatEnum.exHTML
 EndWith
 .EndUpdate()
endwith

property Items.LockedItemCount(Alignment as VAlignmentEnum) as
Long
Specifies the number of items fixed on the top or bottom side of the control.

Type Description
Alignment as
VAlignmentEnum

A VAlignmentEnum expression that specifies the top or
bottom side of the control.

Long A long expression that indicates the number of items
locked to the top or bottom side of the control.

A locked or fixed item is always displayed on the top or bottom side of the control no matter
if the control's list is scrolled up or down. Use the LockedItemCount property to add or
remove items fixed/locked to the top or bottom side of the control. Use the LockedItem
property to access a locked item by its position. Use the ShowLockedItems property to
show or hide the locked items. Use the CellValue property to specify the caption for a cell.
Use the CountLockedColumns property to lock or unlock columns in the control. Use the
ItemBackColor property to specify the item's background color. Use the ItemDivider
property to merge the cells. Use the MergeCells method to combine two or multiple cells in
a single cell.

The following VB sample adds two items that are locked to the top side of the control, and
one item that's locked to the bottom side of the control:

With G2antt1
 Dim h As EXG2ANTTLibCtl.HITEM
 Dim a As EXG2ANTTLibCtl.VAlignmentEnum
 a = EXG2ANTTLibCtl.VAlignmentEnum.TopAlignment
 .BeginUpdate
 With .Items
 .LockedItemCount(a) = 2

 For i = 0 To .LockedItemCount(a) - 1
 h = .LockedItem(a, i)
 .CellValue(h, 0) = "item locked to the top side of the control"
 .CellValueFormat(h, 0) = exHTML
 .ItemBackColor(h) = SystemColorConstants.vb3DFace
 .ItemForeColor(h) = SystemColorConstants.vbWindowText
 Next
 a = EXG2ANTTLibCtl.VAlignmentEnum.BottomAlignment
 .LockedItemCount(a) = 1
 h = .LockedItem(a, 0)
 .CellValue(h, 0) = "item locked to the bottom side of the control"
 .CellValueFormat(h, 0) = exHTML
 .ItemBackColor(h) = SystemColorConstants.vb3DFace
 End With
 .EndUpdate
End With

The following C++ sample adds an item that's locked to the top side of the control:

#include "Items.h"
m_g2antt.BeginUpdate();
CItems items = m_g2antt.GetItems();
items.SetLockedItemCount(0 /*TopAlignment*/, 1);
long i = items.GetLockedItem(0 /*TopAlignment*/, 0);
COleVariant vtItem(i), vtColumn(long(0));
items.SetCellValue(vtItem, vtColumn, COleVariant("locked item"));
items.SetCellValueFormat(vtItem, vtColumn, 1/*exHTML*/);
m_g2antt.EndUpdate();

The following VB.NET sample adds an item that's locked to the top side of the control:

With AxG2antt1
 .BeginUpdate()
 With .Items
 .LockedItemCount(EXG2ANTTLib.VAlignmentEnum.TopAlignment) = 1
 Dim i As Integer
 i = .LockedItem(EXG2ANTTLib.VAlignmentEnum.TopAlignment, 0)
 .CellValue(i, 0) = "locked item"

 .CellValueFormat(i, 0) = EXG2ANTTLib.CaptionFormatEnum.exHTML
 End With
 .EndUpdate()
End With

The following C# sample adds an item that's locked to the top side of the control:

axG2antt1.BeginUpdate();
EXG2ANTTLib.Items items = axG2antt1.Items;
items.set_LockedItemCount(EXG2ANTTLib.VAlignmentEnum.TopAlignment, 1);
int i = items.get_LockedItem(EXG2ANTTLib.VAlignmentEnum.TopAlignment, 0);
items.set_CellValue(i, 0, "locked item");
items.set_CellValueFormat(i, 0, EXG2ANTTLib.CaptionFormatEnum.exHTML);
axG2antt1.EndUpdate();

The following VFP sample adds an item that's locked to the top side of the control:

with thisform.G2antt1
 .BeginUpdate()
 With .Items
 .LockedItemCount(0) = 1
 .DefaultItem = .LockedItem(0, 0)
 .CellValue(0, 0) = "locked item"
 .CellValueFormat(0, 0) = 1 && EXG2ANTTLib.CaptionFormatEnum.exHTML
 EndWith
 .EndUpdate()
endwith

property Items.MatchItemCount as Long
Retrieves the number of items that match the filter.

Type Description

Long
A long expression that specifies the number of matching
items in the control. The value could be a positive value if
no filter is applied, or negative while filter is on.

The MatchItemCount property counts the number of items that matches the current filter
criteria. At runtime, the MatchItemCount property is a positive integer if no filter is applied,
and negative if a filter is applied. If positive, it indicates the number of items within the
control (ItemCount property). If negative, a filter is applied, and the absolute value minus
one, indicates the number of matching items after filter is applied. A matching item includes
its parent items, if the control's FilterInclude property allows including child items.

The MatchItemCount property returns a value as explained bellow:

0, the control displays/contains no items, and no filter is applied to any column
-1, the control displays no items, and there is a filter applied (no match found)
positive number, indicates the number of items within the control (ItemCount property)
negative number, the absolute value minus 1, indicates the number of items that
matches the current filter (match found)

method Items.MergeCells ([Cell1 as Variant], [Cell2 as Variant], [Options
as Variant])
Merges a list of cells.

Type Description

Cell1 as Variant

A long expression that indicates the handle of the cell
being merged, or a safe array that holds a collection of
handles for the cells being merged. Use the ItemCell
property to retrieves the handle of the cell. The first cell
(in the list, if exists) specifies the cell being displayed in
the new larger cell.

Cell2 as Variant

A long expression that indicates the handle of the cell
being merged, or a safe array that holds a collection of
handles for the cells being merged. Use the ItemCell
property to retrieves the handle of the cell. The first cell in
the list specifies the cell being displayed in the new larger
cell.

Options as Variant Reserved.

The MergeCells method combines two or more cells into one cell. The data in the first
specified cell is displayed in the new larger cell. All the other cells' data is not lost. Use the
CellMerge property to merge or unmerge a cell with another cell in the same item. Use the
ItemDivider property to display a single cell in the entire item (merging all cells in the item).
Use the UnmergeCells method to unmerge the merged cells. Use the CellValue property to
specify the cell's caption. Use the ItemCell property to retrieves the handle of the cell. Use
the BeginMethod and EndUpdate methods to maintain performance, when merging multiple
cells in the same time. The MergeCells methods creates a list of cells from Cell1 and Cell2
parameters that need to be merged, and the first cell in the list specifies the displayed cell
in the merged cell. Use the SplitCell property to split a cell. Use the SelectableItem property
to specify the user can select an item.

The following VB sample adds three columns, a root item and two child items:

With G2antt1
 .BeginUpdate
 .MarkSearchColumn = False
 .DrawGridLines = exAllLines
 .LinesAtRoot = exLinesAtRoot
 With .Columns.Add("Column 1")
 .Def(exCellValueFormat) = exHTML
 End With
 .Columns.Add "Column 2"
 .Columns.Add "Column 3"
 With .Items
 Dim h As Long
 h = .AddItem("Root. This is the root item")
 .InsertItem h, , Array("Child 1", "SubItem 2", "SubItem 3")
 .InsertItem h, , Array("Child 2", "SubItem 2", "SubItem 3")
 .ExpandItem(h) = True
 .SelectItem(h) = True
 End With
 .EndUpdate
End With

and it looks like follows (notice that the caption of the root item is truncated by the column
that belongs to):

If we are merging the first three cells in the root item we get:

You can merge the first three cells in the root item using any of the following methods:

 With G2antt1
 With .Items

 .CellMerge(.RootItem(0), 0) = Array(1, 2)
 End With
End With

With G2antt1
 .BeginUpdate
 With .Items
 Dim r As Long
 r = .RootItem(0)
 .CellMerge(r, 0) = 1
 .CellMerge(r, 0) = 2
 End With
 .EndUpdate
End With

With G2antt1
 .BeginUpdate
 With .Items
 Dim r As Long
 r = .RootItem(0)
 .MergeCells .ItemCell(r, 0), .ItemCell(r, 1)
 .MergeCells .ItemCell(r, 0), .ItemCell(r, 2)
 End With
 .EndUpdate
End With

With G2antt1
 With .Items
 Dim r As Long
 r = .RootItem(0)
 .MergeCells .ItemCell(r, 0), Array(.ItemCell(r, 1), .ItemCell(r, 2))
 End With
End With

With G2antt1
 With .Items
 Dim r As Long

 r = .RootItem(0)
 .MergeCells Array(.ItemCell(r, 0), .ItemCell(r, 1), .ItemCell(r, 2))
 End With
End With

The following VB sample merges the first three cells:

With G2antt1.Items
 .MergeCells .ItemCell(.FocusItem, 0), Array(.ItemCell(.FocusItem, 1), .ItemCell(.FocusItem,
2))
End With

The following C++ sample merges the first three cells:

#include "Items.h"
CItems items = m_g2antt.GetItems();
COleVariant vtFocusCell(items.GetItemCell(items.GetFocusItem(), COleVariant((long)0))),
vtMissing; V_VT(&vtMissing) = VT_ERROR;
items.MergeCells(vtFocusCell, COleVariant(items.GetItemCell(items.GetFocusItem(),
COleVariant((long)1))), vtMissing);
items.MergeCells(vtFocusCell, COleVariant(items.GetItemCell(items.GetFocusItem(),
COleVariant((long)2))), vtMissing);

The following VB.NET sample merges the first three cells:

With AxG2antt1.Items
 .MergeCells(.ItemCell(.FocusItem, 0), .ItemCell(.FocusItem, 1))
 .MergeCells(.ItemCell(.FocusItem, 0), .ItemCell(.FocusItem, 2))
End With

The following C# sample merges the first three cells:

EXG2ANTTLib.Items items = axG2antt1.Items;
items.MergeCells(items.get_ItemCell(items.FocusItem, 0), items.get_ItemCell(
items.FocusItem, 1),"");
items.MergeCells(items.get_ItemCell(items.FocusItem, 0),
items.get_ItemCell(items.FocusItem, 2),"");

The following VFP sample merges the first three cells:

with thisform.G2antt1.Items
 .MergeCells(.ItemCell(.FocusItem,0), .ItemCell(.FocusItem,1), "")
 .MergeCells(.ItemCell(.FocusItem,0), .ItemCell(.FocusItem,2), "")
endwith

Now, the question is what should I use in my program in order to merge some cells? For
instance, if you are using handle to cells (HCELL type), we would recommend using the
MergeCells method, else you could use as well the CellMerge property.

property Items.NextItemBar (Item as HITEM, Key as Variant) as Variant
Gets the key of the next bar in the item.

Type Description

Item as HITEM A HITEM expression that indicates the handle of the item
where the bars are enumerated.

Key as Variant A String expression that indicates the key of the bar.

Variant A String expression that indicates the key of the next bar
in the item, or empty if there is no next bar in the item

Use the FirstItemBar and NextItemBar methods to enumerate the bars inside the item. Use
the ItemBar property to access properties of the specified bar. Use the AddBar method to
add new bars to the item. Use the AddLink method to link a bar with another. Use the
AllowCreateBar method to create new bars using the mouse. Use the RemoveBar method
to remove a bar from an item. Use the ClearBars method to remove all bars in the item.
The FirstItemBar and NextItemBar methods enumerates bars in alphabetic order of the
keys.

The following VB.NET sample enumerates all items and bars in the control (/NET or /WPF
version):

With Exg2antt1
 Dim i, h As Integer, key As Object
 For i = 0 To .Items.ItemCount - 1
 h = .Items(i)
 key = .Items.get_FirstItemBar(h)
 While TypeOf key Is String
 Debug.Print("Key = " & key & ", Item " & .Items.get_CellCaption(h, 0))
 key = CStr(.Items.get_NextItemBar(h, key))
 End While
 Next
End With

The following C# sample enumerates all items and bars in the control (/NET or /WPF
version):

for (int i = 0; i < exg2antt1.Items.ItemCount; i++)
{
 int h = exg2antt1.Items[i];

 object key = exg2antt1.Items.get_FirstItemBar(h);
 while (key != null)
 {
 System.Diagnostics.Debug.Print("Key = " + key + ", Item " +
exg2antt1.Items.get_CellCaption(h, 0));
 key = exg2antt1.Items.get_NextItemBar(h, key);
 }
}

The following VB sample enumerates the bars in the item (h indicates the handle of the
item):

With G2antt1
 If Not (h = 0) Then
 Dim k As Variant
 k = .Items.FirstItemBar(h)
 While Not IsEmpty(k)
 Debug.Print "Key = " & k
 k = .Items.NextItemBar(h, k)
 Wend
 End If
End With

The following C++ sample enumerates the bars in the item (h indicates the handle of the
item):

CItems items = m_g2antt.GetItems();
COleVariant vtBar = items.GetFirstItemBar(h) ;
while (V_VT(&vtBar) != VT_EMPTY)
{
 OutputDebugString(V2S(&vtBar));
 OutputDebugString("\n");
 vtBar = items.GetNextItemBar(h, vtBar);
}

where the V2S function converts a Variant expression to a string:

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{

 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

The following VB.NET sample enumerates the bars in the item (h indicates the handle of
the item):

With AxG2antt1
 If Not (h = 0) Then
 Dim k As Object
 k = .Items.FirstItemBar(h)
 While TypeOf k Is String
 System.Diagnostics.Debug.Print(k.ToString)
 k = .Items.NextItemBar(h, k)
 End While
 End If
End With

The following C# sample enumerates the bars in the item (h indicates the handle of the
item):

object k = axG2antt1.Items.get_FirstItemBar(h);
while (k != null)
{
 System.Diagnostics.Debug.Print(k.ToString());
 k = axG2antt1.Items.get_NextItemBar(h, k);
}

The following VFP sample enumerates the bars in the item (h indicates the handle of the
item):

With thisform.G2antt1
 If Not (h = 0) Then
 local k
 k = .Items.FirstItemBar(h)
 do While !empty(k)
 ?k
 k = .Items.NextItemBar(h, k)
 enddo
 Endif
EndWith

In VFP, please make sure that you are using non empty values for the keys. For instance, if
you are omitting the Key parameter of the AddBar method, an empty key is missing. If you
need to use the FirstItemBar and NextItemBar properties, you have to use non empty keys
for the bars.

property Items.NextLink (LinkKey as Variant) as Variant
Gets the key of the next link.

Type Description

LinkKey as Variant A string expression that indicates the key of the previous
link

Variant A string expression that indicates the key of the next link,
or empty value if there is no next link.

Use the FirstLink and NextLink properties to enumerate the links in the control. The NextLink
property retrieves an empty value, if there is no next link in the control. Use the AddLink
property to link two bars. Use the ShowLinks property to show or hide the links. Use the
Link property to access a property of the link.

The following VB sample enumerates the links:

With G2antt1.Items
 Dim k As Variant
 k = .FirstLink()
 While Not IsEmpty(k)
 Debug.Print "LinkKey = " & k
 k = .NextLink(k)
 Wend
End With

The following C++ sample enumerates the links:

CItems items = m_g2antt.GetItems();
COleVariant vtLinkKey = items.GetFirstLink() ;
while (V_VT(&vtLinkKey) != VT_EMPTY)
{
 OutputDebugString(V2S(&vtLinkKey));
 OutputDebugString("\n");
 vtLinkKey = items.GetNextLink(vtLinkKey);
}

where the V2S function converts a Variant expression to a string:

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))

{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

The following VB.NET sample enumerates the links:

With AxG2antt1.Items
 Dim k As Object
 k = .FirstLink
 While (TypeOf k Is String)
 System.Diagnostics.Debug.Print(k.ToString)
 k = .NextLink(k)
 End While
End With

The following C# sample enumerates the links:

object k = axG2antt1.Items.FirstLink;
while (k != null)
{
 System.Diagnostics.Debug.Print(k.ToString());
 k = axG2antt1.Items.get_NextLink(k);
}

The following VFP sample enumerates the links:

With thisform.G2antt1.Items
 local k
 k = .FirstLink
 do While !empty(k)

 ?k
 k = .NextLink(k)
 enddo
endwith

property Items.NextSiblingItem (Item as HITEM) as HITEM

Retrieves the next sibling of the item in the parent's child list.

Type Description
Item as HITEM A long expression that indicates the item's handle.

HITEM A long expression that indicates the handle of the next
sibling item.

The NextSiblingItem property retrieves the next sibling of the item in the parent's child list.
Use ItemChild and NextSiblingItem properties to enumerate the collection of child items.

The following VB function recursively enumerates the item and all its child items:

Sub RecItem(ByVal c As EXG2ANTTLibCtl.G2antt, ByVal h As HITEM)
 If Not (h = 0) Then
 Dim hChild As HITEM
 With c.Items
 Debug.Print .CellValue(h, 0)
 hChild = .ItemChild(h)
 While Not (hChild = 0)
 RecItem c, hChild
 hChild = .NextSiblingItem(hChild)
 Wend
 End With
 End If
End Sub

The following C++ function recursively enumerates the item and all its child items:

void RecItem(CG2antt* pG2antt, long hItem)
{
 COleVariant vtColumn((long)0);
 if (hItem)
 {
 CItems items = pG2antt->GetItems();

 CString strCaption = V2S(&items.GetCellValue(COleVariant(hItem), vtColumn)),
strOutput;

 strOutput.Format("Cell: '%s'\n", strCaption);
 OutputDebugString(strOutput);

 long hChild = items.GetItemChild(hItem);
 while (hChild)
 {
 RecItem(pG2antt, hChild);
 hChild = items.GetNextSiblingItem(hChild);
 }
 }
}

The following VB.NET function recursively enumerates the item and all its child items:

Shared Sub RecItem(ByVal c As AxEXG2ANTTLib.AxG2antt, ByVal h As Integer)
 If Not (h = 0) Then
 Dim hChild As Integer
 With c.Items
 Debug.WriteLine(.CellValue(h, 0))
 hChild = .ItemChild(h)
 While Not (hChild = 0)
 RecItem(c, hChild)
 hChild = .NextSiblingItem(hChild)
 End While
 End With
 End If
End Sub

The following C# function recursively enumerates the item and all its child items:

internal void RecItem(AxEXG2ANTTLib.AxG2antt g2antt, int hItem)
{
 if (hItem != 0)
 {
 EXG2ANTTLib.Items items = g2antt.Items;
 object caption = items.get_CellValue(hItem, 0);
 System.Diagnostics.Debug.WriteLine(caption != null ? caption.ToString() : "");

 int hChild = items.get_ItemChild(hItem);
 while (hChild != 0)
 {
 RecItem(g2antt, hChild);
 hChild = items.get_NextSiblingItem(hChild);
 }
 }
}

The following VFP function recursively enumerates the item and all its child items (recitem
method):

LPARAMETERS h

with thisform.G2antt1
 If (h != 0) Then
 local hChild
 With .Items
 .DefaultItem = h
 wait window .CellValue(0, 0)
 hChild = .ItemChild(h)
 do While (hChild != 0)
 thisform.recitem(hChild)
 hChild = .NextSiblingItem(hChild)
 enddo
 EndWith
 EndIf
endwith

property Items.NextVisibleItem (Item as HITEM) as HITEM

Retrieves the handle of next visible item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

HITEM A long expression that indicates the handle of the next
visible item.

Use the NextVisibleItem property to access the visible items. The NextVisibleItem property
retrieves 0 if there are no more visible items. Use the IsItemVisible property to check
whether an item fits the control's client area. Use the FirstVisibleItem property to retrieve
the first visible item.

The following VB sample enumerates all visible items:

Private Sub VisItems(ByVal c As EXG2ANTTLibCtl.G2antt)
 Dim h As HITEM
 With c.Items
 h = .FirstVisibleItem
 While Not (h = 0)
 Debug.Print .CellValue(h, 0)
 h = .NextVisibleItem(h)
 Wend
 End With
End Sub

The FormatColumn event is fired before displaying a cell, so you can handle the
FormatColumn to display anything on the cell at runtime. This way you can display the row
position, you can display the value using the currency format, and so on. The
FireFormatColumn property allows the control to fire the FormatColumn event for the
column. The Position property specifies the position of the column.

If your chart does not display a tree or a hierarchy this property is ok to be used with
FormatColumn event to display the position

The following VB sample handles the FormatColumn event to display the row position:

Private Sub G2antt1_FormatColumn(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal
ColIndex As Long, Value As Variant)
 Value = G2antt1.Items.ItemPosition(Item)

End Sub

If your chart displays a tree or a hierarchy the position of the item must be determined
relative to the FirstVisibleItem as shown in the following VB sample:

Private Sub G2antt1_FormatColumn(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal
ColIndex As Long, Value As Variant)
 Value = G2antt1.ScrollPos(True) + RelPos(Item)
End Sub

Private Function RelPos(ByVal hVisible As Long) As Long
 With G2antt1.Items
 Dim h As Long, i As Long, n As Long
 i = 0
 n = .VisibleCount + 1
 h = .FirstVisibleItem
 While (i <= n) And h <> 0 And h <> hVisible
 i = i + 1
 h = .NextVisibleItem(h)
 Wend
 RelPos = i
 End With
End Function

The following C++ sample enumerates all visible items:

#include "Items.h"
CItems items = m_g2antt.GetItems();
long hItem = items.GetFirstVisibleItem();
while (hItem)
{
 OutputDebugString(V2S(&items.GetCellValue(COleVariant(hItem), COleVariant(
long(0)))));
 hItem = items.GetNextVisibleItem(hItem);
}

The following C# sample enumerates all visible items:

EXG2ANTTLib.Items items = axG2antt1.Items;

int hItem = items.FirstVisibleItem;
while (hItem != 0)
{
 object strCaption = items.get_CellValue(hItem, 0);
 System.Diagnostics.Debug.WriteLine(strCaption != null ? strCaption.ToString() : "");
 hItem = items.get_NextVisibleItem(hItem);
}

The following VB.NET sample enumerates all visible items:

With AxG2antt1.Items
 Dim hItem As Integer
 hItem = .FirstVisibleItem
 While Not (hItem = 0)
 Debug.Print(.CellValue(hItem, 0))
 hItem = .NextVisibleItem(hItem)
 End While
End With

The following VFP sample enumerates all visible items:

with thisform.G2antt1.Items
 .DefaultItem = .FirstVisibleItem
 do while (.DefaultItem <> 0)
 wait window .CellValue(0, 0)
 .DefaultItem = .NextVisibleItem(0)
 enddo
endwith

property Items.PathSeparator as String

Returns or sets the delimiter character used for the path returned by the FullPath and
FindPath properties.

Type Description

String
A string expression that indicates the delimiter character
used for the path returned by the FullPath and FindPath
properties.

By default the PathSeparator is "\". The PathSeparator property is used by properties like
FullPath and FindPath.

property Items.PrevSiblingItem (Item as HITEM) as HITEM

Retrieves the previous sibling of the item in the parent's child list.

Type Description
Item as HITEM A long expression that indicates the item's handle.

HITEM A long expression that indicates the handle of the previous
sibling item

The PrevSiblingItem retrieves 0 if there are no more previous sibling items. The
NextSiblingItem property retrieves the next sibling of the item in the parent's child list. Use
the FirstVisibleItem property to retrieve the first visible item. Use the ItemParent property to
retrieve the parent of the item.

property Items.PrevVisibleItem (Item as HITEM) as HITEM

Retrieves the handle of previous visible item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

HITEM A long expression that indicates the handle of the previous
visible item

The PrevVisibleItem property retrieves 0 if there are no previous visible items. The
NextVisibleItem property retrieves the next visible item. Use the FirstVisibleItem property to
retrieve the first visible item. Use the ItemParent property to retrieve the parent of the item.

method Items.RemoveAllItems ()

Removes all items from the control.

Type Description

Use the RemoveAllItems method to remove all items in the control. Use the Clear method to
remove all columns in the control. Use the RemoveItem method to remove a single item in
the control.

method Items.RemoveBar (Item as HITEM, [Key as Variant])
Removes a bar from an item.

Type Description

Item as HITEM

A long expression that indicates the the handle of the item
where the bar is removed. If the Item parameter is 0, the
RemoveBar method removes all bars with specified key
from all items. In this case the DefaultItem (/COM only)
property should be 0 (by default), else it refers a single
item being indicated by the DefaultItem property.

Key as Variant

A String expression that indicates the key of the bar to be
removed. If missing, the Key parameter is empty. The Key
may include a pattern with wild characters as *,?,# or [], if
the Key starts with "<" and ends on ">" aka "<K*>" which
indicates all bars with the key K or starts on K. The
pattern may include a space which divides multiple
patterns for matching. For instance "<A* *K>" indicates all
keys that start on A and all keys that end on K.

Use the RemoveBar method to remove a bar from an item. If the Item parameter is not 0 (
indicates a valid handle), the RemoveBar removes a single bar (if found, with the Key
being specified by the Key parameter). If the Item parameter is 0, the RemoveBar method
removes all bars with specified key from all items. Use the BeginUpdate / EndUpdate
methods to refresh the control's content after removing a bar or several bars. Use the
ClearBars method to remove all bars in the item.

Based on the values of Item and Key parameters the RemoveBar property remove none,
one or multiple bars as follow:

RemoveBar(0,"<*>") removes all bars in the chart
RemoveBar(0,"<pattern>") removes all bars in the chart that match a specified
pattern using wild characters as *,?,# or []
RemoveBar(Item,"<*>") removes all bars in the specified Item
RemoveBar(Item,"<pattern>") removes all bars from the giving Item that match a
specified pattern using wild characters as *,?,# or []

The pattern may include the space character which indicates multiple patterns to be used
when matching. For instance "A* *K" indicates all keys that start on A and all keys that end
on K.

Here's few samples of using the RemoveBar method:

RemoveBar(Item,"K1") removes the bar K1 from the specified Item
RemoveBar(0,"K1") removes the bar K1 from the entire chart
RemoveBar(0,"<A* K*>") removes all bars from the chart with the Key A or K or starts
with A or K
RemoveBar(0,"<*K>") removes all bars from the chart with the Key K or ends on K
RemoveBar(Item,"<K*>") removes all bars from the specified Item with the Key K or
starts on K
RemoveBar(Item,"<K??>") removes all bars from the specified Item with the Key of 3
characters and starts with K

Use the AddBar method to add new bars to the item. Use the Remove method to remove a
type of bar from the Bars collection. Use the Add method to add new types of bars to the
Bars collection. Use the FirstVisibleDate property to specify the first visible date in the chart
area. Use the Key parameter to identify a bar inside an item. Use the ItemBar property to
access a bar inside the item. Use the PaneWidth property to specify the width of the chart.
Use the NonworkingDays property to specify the non-working days. The RemoveBar
method removes the links related to bar. Use the RemoveSelection method to remove the
objects (bars, links) in the chart's selection. Use the ItemBar(exBarSelected) property to
select or unselect programmatically a bar.

Use the ItemBar(exBarItemParent) property to move a bar from an item to another item.
The ItemBar(exBarItemParent) property indicates the handle of the item that displays the
bar. For instance, a bar can be moved from an item to another, only if in the second item
there is no another bar with the same key (ItemBar(exBarKey) property), as an item can
contains two bars with the same key. The control fires the BarParentChange event just
before moving the bar to another item. Use this event to control the items where your bar
can be moved. A bar can be moved to another item, ONLY if the second item does not
contain a bar with the same key. The exBarKey property specifies the key of the bar.

method Items.RemoveItem (Item as HITEM)

Removes a specific item.

Type Description

Item as HITEM A long expression that indicates the handle of the item
being removed.

The RemoveItem method removes an item. The RemoveItem method does not remove the
item, if it contains child items. The following sample removes the first item:
G2antt1.Items.RemoveItem G2antt1.Items(0). Use the RemoveAllItems method to remove
all items in the control. Use the BeginUpdate and EndUpdate methods to maintain
performance while removing the items. The RemoveItem method can't remove an item
that's locked. Instead you can use the LockedItemCount property to add or remove locked
items. Use the IsItemLocked property to check whether an item is locked. The RemoveItem
method removes all bars and links related to the item. The RemoveSelection method
removes the selected items (including the descendents). The RemoveSelection method
removes the selected objects (bars or links) within the chart. The RemoveSelection method
removes the selected links/bars from the chart if exists, else it removes the selected items
(including the descendents).

The following VB sample removes recursively an item:

Private Sub RemoveItemRec(ByVal t As EXG2ANTTLibCtl.G2antt, ByVal h As HITEM)
 If Not h = 0 Then
 With t.Items
 t.BeginUpdate
 Dim hChild As HITEM
 hChild = .ItemChild(h)
 While (hChild <> 0)
 Dim hNext As HITEM
 hNext = .NextSiblingItem(hChild)
 RemoveItemRec t, hChild
 hChild = hNext
 Wend
 .RemoveItem h
 t.EndUpdate
 End With
 End If
End Sub

The following C++ sample removes recursively an item:

void RemoveItemRec(CG2antt* pG2antt, long hItem)
{
 if (hItem)
 {
 pG2antt->BeginUpdate();
 CItems items = pG2antt->GetItems();
 long hChild = items.GetItemChild(hItem);
 while (hChild)
 {
 long nNext = items.GetNextSiblingItem(hChild);
 RemoveItemRec(pG2antt, hChild);
 hChild = nNext;
 }
 items.RemoveItem(hItem);
 pG2antt->EndUpdate();
 }
}

The following VB.NET sample removes recursively an item:

Shared Sub RemoveItemRec(ByVal t As AxEXG2ANTTLib.AxG2antt, ByVal h As Integer)
 If Not h = 0 Then
 With t.Items
 t.BeginUpdate()
 Dim hChild As Integer = .ItemChild(h)
 While (hChild <> 0)
 Dim hNext As Integer = .NextSiblingItem(hChild)
 RemoveItemRec(t, hChild)
 hChild = hNext
 End While
 .RemoveItem(h)
 t.EndUpdate()
 End With
 End If
End Sub

The following C# sample removes recursively an item:

internal void RemoveItemRec(AxEXG2ANTTLib.AxG2antt g2antt, int hItem)
{
 if (hItem != 0)
 {
 EXG2ANTTLib.Items items = g2antt.Items;
 g2antt.BeginUpdate();
 int hChild = items.get_ItemChild(hItem);
 while (hChild != 0)
 {
 int hNext = items.get_NextSiblingItem(hChild);
 RemoveItemRec(g2antt, hChild);
 hChild = hNext;
 }
 items.RemoveItem(hItem);
 g2antt.EndUpdate();
 }
}

The following VFP sample removes recursively an item (removeitemrec method):

LPARAMETERS h

with thisform.G2antt1
 If (h != 0) Then
 .BeginUpdate()
 local hChild
 With .Items
 hChild = .ItemChild(h)
 do While (hChild != 0)
 local hNext
 hNext = .NextSiblingItem(hChild)
 thisform.removeitemrec(hChild)
 hChild = hNext
 enddo
 .RemoveItem(h)
 EndWith

 .EndUpdate()
 EndIf
endwith

method Items.RemoveLink (LinkKey as Variant)
Removes a link.

Type Description

LinkKey as Variant A String expression that indicates the key of the link being
removed.

Use the RemoveLink method to remove the specified link. Use the Link(exLinkVisible)
property to hide a specific link between two bars. Use the AddLink method to add a link
between two bars. Use the ClearLinks method to remove all links in the control. Use the
ShowLinks property to hide all links in the control. Use the RemoveItem method to remove
an item. The RemoveItem method removes all links related to the item. Use the
RemoveSelection method to remove the objects (bars, links) in the chart's selection. Use
the Link(exLinkSelected) property to select or unselect programmatically a link. Use the
Link(exLinkGroupBars) on exGroupBarsNone to ungroup the linked bars. Use the
UngroupBars method to ungroup one or two bars. Use the RemoveLinksOf method to
remove all links that start or end on the specified bar.

method Items.RemoveLinksOf (Item as HITEM, BarKey as Variant)
Removes the links that goes or ends on the specified bar.

Type Description

Item as HITEM A long expression that specifies the handle of the item that
hosts the bar whose links are being removed.

BarKey as Variant A VARIANT expression that specify the key of the bar in
the item whose links are removed.

The RemoveLinksOf method removes all links that start or end on the specified bar. If the
Item and BarKey does not indicate an existing bar the RemoveLinksOf method has no
effect. Use the RemoveLink method to remove the specified link. Use the
Link(exLinkGroupBars) on exGroupBarsNone to ungroup the linked bars. Use the
UngroupBars method to ungroup one or two bars. Use the ClearLinks method to remove all
links in the control. Use the ShowLinks property to hide all links in the control.

method Items.RemoveSelection ()
Removes the selected items (including the descendents).

Type Description

The RemoveSelection method removes the selected items (including the descendents). The
RemoveItem method removes a specific item (in case it includes no descendents). The
UnselectAll method unselects all items. The RemoveSelection method removes the selected
objects (bars or links) within the chart. The RemoveSelection method removes the selected
links/bars from the chart if exists, else it removes the selected items (including the
descendents)

property Items.RootCount as Long

Retrieves the number of root objects into Items collection.

Type Description

Long A long value that indicates the count of root items in the
Items collection.

A root item is an item that has no parent (ItemParent() = 0). Use the RootItem property of
the Items object to enumerates the root items. Use the AddItem to add root items to the
control. Use the InsertItem method to insert child items.

The following VB sample enumerates all root items:

Dim i As Long, n As Long
With G2antt1.Items
 n = .RootCount
 For i = 0 To n - 1
 Debug.Print .CellValue(.RootItem(i), 0)
 Next
End With

The following C++ sample enumerates all root items:

#include "Items.h"
CItems items = m_g2antt.GetItems();
for (long i = 0 ; i < items.GetRootCount(); i++)
{
 COleVariant vtItem(items.GetRootItem(i)), vtColumn(long(0));
 OutputDebugString(V2S(&items.GetCellValue(vtItem, vtColumn)));
}

The following VB.NET sample enumerates all root items:

With AxG2antt1.Items
 Dim i As Integer
 For i = 0 To .RootCount - 1
 Debug.Print(.CellValue(.RootItem(i), 0))
 Next
End With

The following C# sample enumerates all root items:

for (int i = 0; i < axG2antt1.Items.RootCount; i++)
{
 object strCaption = axG2antt1.Items.get_CellValue(axG2antt1.Items.get_RootItem(i), 0);
 System.Diagnostics.Debug.WriteLine(strCaption != null ? strCaption.ToString() : "");
}

The following VFP sample enumerates all root items:

with thisform.G2antt1.Items
 local i
 for i = 0 to .RootCount - 1
 .DefaultItem = .RootItem(i)
 wait window nowait .CellValue(0,0)
 next
endwith

property Items.RootItem ([Position as Long]) as HITEM

Retrieves the handle of the root item giving its index into the root items collection.

Type Description

Position as Long A long value that indicates the position of the root item
being accessed.

HITEM A long expression that indicates the handle of the root
item.

A root item is an item that has no parent (ItemParent() = 0). Use the RootCount property of
to count the root items. Use the AddItem to add root items to the control. Use the
InsertItem method to insert child items.

The following VB sample enumerates all root items:

Dim i As Long, n As Long
With G2antt1.Items
 n = .RootCount
 For i = 0 To n - 1
 Debug.Print .CellValue(.RootItem(i), 0)
 Next
End With

The following C++ sample enumerates all root items:

#include "Items.h"
CItems items = m_g2antt.GetItems();
for (long i = 0 ; i < items.GetRootCount(); i++)
{
 COleVariant vtItem(items.GetRootItem(i)), vtColumn(long(0));
 OutputDebugString(V2S(&items.GetCellValue(vtItem, vtColumn)));
}

The following VB.NET sample enumerates all root items:

With AxG2antt1.Items
 Dim i As Integer
 For i = 0 To .RootCount - 1
 Debug.Print(.CellValue(.RootItem(i), 0))

 Next
End With

The following C# sample enumerates all root items:

for (int i = 0; i < axG2antt1.Items.RootCount; i++)
{
 object strCaption = axG2antt1.Items.get_CellValue(axG2antt1.Items.get_RootItem(i), 0);
 System.Diagnostics.Debug.WriteLine(strCaption != null ? strCaption.ToString() : "");
}

The following VFP sample enumerates all root items:

with thisform.G2antt1.Items
 local i
 for i = 0 to .RootCount - 1
 .DefaultItem = .RootItem(i)
 wait window nowait .CellValue(0,0)
 next
endwith

method Items.SchedulePDM (Item as HITEM, Key as Variant)
Schedules the chart using the Precedence Diagram Method.

Type Description

Item as HITEM

A long expression that specifies the handle of the item
where the SchedulePDM starts, or 0, if the Key indicates
an unique key of the bar that starts scheduling the
SchedulePDM.

Key as Variant
A VARIANT expression that specifies the key of the bar
where the SchedulePDM begins. If the Item parameter is
0, the chart looks for the first bar with specified key.

Return Description

Long

A long expression that specifies whether the operation is
successful (0 or any positive value indicating a warning) or
failed (negative value). Possible values are

0, success

1, (warning) no bar provided to SchedulePDM method
2, (warning) single bar in SchedulePDM call
3, (warning) SchedulePDM method is called during
the BarResize event (possible a recursive call/stack
overflow)
4, (warning) no links between scheduled bars

-1, (error) possible cycling
-2, (error) can not move the base bar
-3, (error) scheduling the A and B bars fails
-4, (error) no IN bars
-5, (error) base bar is not initialized
-6, (error) source bar is not initialized (possible
cycling)
-7, (error) target bar is not initialized (possible
cycling)
-8, (error) no TRANSLATION bar
-9, (error) bar linked to itself. For instance, a bar
linked to its summary bar

The SchedulePDM method arranges the activities on the plan based on the links /
relationships / dependencies. The SchedulePDM calculates early and late dates, based on
bar's position, link types and link lag. The SchedulePDM starts from the giving bar, and

continue arranging related bars, unti all related bars are arranged. If a bar has no related
bars (no incoming or outgoing links) the procedure still looking for grouped or summary
bars, until it finds relative bars.

Tasks may have multiple predecessors or multiple successors. Before you begin
establishing dependencies, it​s important to understand that there are four types:

Finish to Start (FS), the predecessor ends before the successor can begin
Start to Start (SS), the predecessor begins before the successor can begin
Finish to Finish (FF), the predecessor ends before the successor can end
Start to Finish (SF), the predecessor begins before the successor can end

The following screen show shows the chart before calling the SchedulePDM on the Oplata
bar:

The following screen show shows the chart after calling the SchedulePDM on the Oplata
bar:

The SchedulePDM method handles the following bars:

simple bars
not-moveable, not resizable bars: exBarCanMove or exBarCanResize properties.
bars with margins: exBarMinStart, exBarMaxStart, exBarMinEnd, exBarMaxEnd
specifies the margins or the range for the bar.
working bars: activities that keep constant the working units during moving being
indicated by exBarKeepWorkingCount property

summary bars: DefineSummaryBars property defines a summary bar and child bars.

The type of the link (exLinkType) between two bars is:

FS (Finish-Start), if the exLinkStartPos is 2(Right) and exLinkEndPos is 0(Left) (by
default)
FF (Finish-Finish), if the exLinkStartPos is 2(Right) and exLinkEndPos is 2(Right)
SS (Start-Start), if the exLinkStartPos is 0(Left) and exLinkEndPos is 0(Left)
SF (Start-Finish), if the exLinkStartPos is 0(Left) and exLinkEndPos is 2(Right)

The following properties defines the lag of the link (indicates a delay between two
activities):

exLinkPDMWorkingDelay, specifies that the linked activities are delayed by specified
working-units
exLinkPDMDelay, specifies that the linked activities are delayed by specified units

The ChartStartChaning(exPDM) event is fired once the SchedulePDM method is called. The
ChartEndChaning(exPDM) event is fired once the SchedulePDM method is called. If
Undo/Redo is available, the entire operation is hold as a block, so the chart can be restored
by calling the Undo operation, or by pressing the CTRL + Z on chart. You can check the

ChartUndoListAction property to lists the actions being performed during the SchedulePDM
method. The DefSchedulePDM property defines options to be used by the SchedulePDM
method. If required any option to be used the DefSchedulePDM should be called before the
SchedulePDM method else it will have no effect. For instance, use the Def SchedulePDM
property to specify a start date for the project, so the SchedulePDM method will use it, to
arrange all bars so no bars will start before the specified date. The same if you require to
specify the end of the project. The SchedulePDM method invokes the BarResize event for
all affected bars.

The following screen shot shows the chart using different type of links before calling the
SchedulePDM:

The following screen shot shows the chart using different type of links after calling the
SchedulePDM:

and if we move the first bar and call again the SchedulePDM we get (the sample preserve
the working units for each bar):

The following screen shot shows the activities, when exLinkPDMWorkingDelay property is
set for links (SF has 1 working day, FS has 2 working days and the FF has 3 working days
delay) :

The following snippet of code, ensures that the SchedulePDM method is not called during
the BarResize event: (prevent recursive calls).

Dim iSchedulePDM As Long
Private Sub G2antt1_BarResize(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal Key As
Variant)
 Debug.Print "BarResize invoked"
 If (iSchedulePDM = 0) Then
 iSchedulePDM = iSchedulePDM + 1
 G2antt1.Items.SchedulePDM Item, Key
 iSchedulePDM = iSchedulePDM - 1
 End If
End Sub

The following approach, prevent recursive calls of SchedulePDM method during the
BarResize event:

iPDMRunning = 0

event ChartStartChaning(Operation)
 if (Operation == exPDM (12))
 iPDMRunning++

event ChartEndChaning(Operation)
 if (Operation == exPDM (12))
 iPDMRunning--

event BarResize(Item,Key)
 if (iPDMRunning == 0)
 Call SchedulePDM(Item,Key)

The following VB sample displays a message when the SchedulePDM starts and ends:

Private Sub G2antt1_ChartStartChanging(ByVal Operation As
EXG2ANTTLibCtl.BarOperationEnum)
 If (Operation = exPDM) Then
 Debug.Print "SchedulePDM starts"
 End If
End Sub

Private Sub G2antt1_ChartEndChanging(ByVal Operation As
EXG2ANTTLibCtl.BarOperationEnum)
 If (Operation = exPDM) Then
 Debug.Print "SchedulePDM ends"
 End If
End Sub

property Items.SelectableItem(Item as HITEM) as Boolean
Specifies whether the user can select the item.

Type Description

Item as HITEM A long expression that indicates the handle of the item
being selectable.

Boolean A boolean expression that specifies whether the item is
selectable.

By default, all items are selectable, excepts the locked items that are not selectable. A
selectable item is an item that user can select using the keys or the mouse. The
SelectableItem property specifies whether the user can select an item. The SelectableItem
property doesn't change the item's appearance. The LockedItemCount property specifies
the number of locked items to the top or bottom side of the control. Use the ItemDivider
property to define a divider item. Use the ItemForeColor property to specify the item's
foreground color. Use the ItemBackColor property to specify the item's background color.
Use the ItemFont, ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to assign a
different font to the item. Use the EnableItem property to disable an item. A disabled item
looks grayed, but it is selectable. For instance, the user can't change the check box state in
a disabled item. Use the SelectItem property to select an item. The ItemFromPoint property
gets the item from point. For instance, if the user clicks a non selectable item the
SelectionChanged event is not fired. A non selectable item is not focusable as well. It
means that if the incremental searching is on, the non selectable items are ignored. Use the
SelectCount property to get the number of selected items. Use the SelForeColor and
SelBackColor properties to customize the colors for selected items.

The following VB sample makes not selectable the first visible item:

With G2antt1.Items
 .SelectableItem(.FirstVisibleItem) = False
End With

The following C++ sample makes not selectable the first visible item:

#include "Items.h"
CItems items = m_g2antt.GetItems();
items.SetSelectableItem(items.GetFirstVisibleItem(), FALSE);

The following VB.NET sample makes not selectable the first visible item:

With AxG2antt1.Items
 .SelectableItem(.FirstVisibleItem) = False
End With

The following C# sample makes not selectable the first visible item:

axG2antt1.Items.set_SelectableItem(axG2antt1.Items.FirstVisibleItem, false);

The following VFP sample makes not selectable the first visible item:

with thisform.G2antt1.Items
 .DefaultItem = .FirstVisibleItem
 .SelectableItem(0) = .f.
endwith

method Items.SelectAll ()
Selects all items.

Type Description

Use the SelectAll method to select all visible items in the tree. The SelectAll method has
effect only if the SingleSel property is False, if the control supports multiple items selection.
Use the UnselectAll method to unselect all items in the list. Use the SelectItem property to
select or unselect a specified item. Use the SelectedItem property to retrieve a value that
indicates whether the item is selected or unselected. Use the SelectCount property to
retrieve the number of selected items

property Items.SelectCount as Long

Counts the number of items that are selected into control.

Type Description

Long A long expression that identifies the number of selected
items.

The SelectCount property counts the selected items in the control. The SelectCount
property gets 0, if no items are selected in the control. The ExG2antt control supports
multiple selection. Use the SingleSel property of the control to allow multiple selection. Use
the SelectedItem property to retrieve the handle of the selected item(s). The control fires
the SelectionChanged event when user changes the selection in the control. Use the
SelectItem property to select programmatically an item. Use the SelForeColor and
SelBackColor properties to specify colors for selected items. If the control supports only
single selection (SingleSel property is True), the FocusItem retrieves the selected item
too.

If the control's SingleSel is false, then the following statement retrieves the handle for the
selected item: G2antt1.Items.SelectedItem().

If the control supports multiple selection then the following VB sample shows how to
enumerate all selected items:

Dim h As HITEM
Dim i As Long, j As Long, nCols As Long, nSels As Long
nCols = G2antt1.Columns.Count
With G2antt1.Items
 nSels = .SelectCount
 For i = 0 To nSels - 1
 Dim s As String
 For j = 0 To nCols - 1
 s = s + .CellValue(.SelectedItem(i), j) + Chr(9)
 Next
 Debug.Print s
 Next
End With

The following VB sample unselects all items in the control:

With G2antt1

 .BeginUpdate
 With .Items
 While Not .SelectCount = 0
 .SelectItem(.SelectedItem(0)) = False
 Wend
 End With
 .EndUpdate
End With

The following C++ sample enumerates the selected items:

CItems items = m_g2antt.GetItems();
long n = items.GetSelectCount();
if (n != 0)
{
 for (long i = 0; i < n; i++)
 {
 long h = items.GetSelectedItem(i);
 COleVariant vtString;
 vtString.ChangeType(VT_BSTR, &items.GetCellValue(COleVariant(h), COleVariant(
(long)0)));
 CString str = V_BSTR(&vtString);
 MessageBox(str);
 }
}

The following C++ sample unselects all items in the control:

m_g2antt.BeginUpdate();
CItems items = m_g2antt.GetItems();
while (items.GetSelectCount())
 items.SetSelectItem(items.GetSelectedItem(0), FALSE);
m_g2antt.EndUpdate();

The following VB.NET sample enumerates the selected items:

With AxG2antt1.Items
 Dim nCols As Integer = AxG2antt1.Columns.Count, i As Integer
 For i = 0 To .SelectCount - 1

 Debug.Print(.CellValue(.SelectedItem(i), 0))
 Next
End With

The following VB.NET sample unselects all items in the control:

With AxG2antt1
 .BeginUpdate()
 With .Items
 While Not .SelectCount = 0
 .SelectItem(.SelectedItem(0)) = False
 End While
 End With
 .EndUpdate()
End With

The following C# sample enumerates the selected items:

for (int i = 0; i < axG2antt1.Items.SelectCount; i++)
{
 object strCaption = axG2antt1.Items.get_CellValue(axG2antt1.Items.get_SelectedItem(i),
0);
 System.Diagnostics.Debug.WriteLine(strCaption != null ? strCaption.ToString() : "");
}

The following C# sample unselects all items in the control:

axG2antt1.BeginUpdate();
EXG2ANTTLib.Items items = axG2antt1.Items;
while (items.SelectCount != 0)
 items.set_SelectItem(items.get_SelectedItem(0), false);
axG2antt1.EndUpdate();

The following VFP sample enumerates the selected items:

with thisform.G2antt1.Items
 local i
 for i = 0 to .SelectCount - 1
 .DefaultItem = .SelectedItem(i)

 wait window nowait .CellValue(0,0)
 next
endwith

The following VFP sample unselects all items in the control:

With thisform.G2antt1
 .BeginUpdate()
 with .Items
 do while (.SelectCount() # 0)
 .DefaultItem = .SelectedItem(0)
 .SelectItem(0) = .f.
 enddo
 endwith
 .EndUpdate()
EndWith

property Items.SelectedItem ([Index as Long]) as HITEM

Retrieves the selected item's handle given its index in selected items collection.

Type Description

Index as Long Identifies the index of the selected item into the selected
items collection.

HITEM A long expression that indicates the handle of the selected
item.

Use the SelectedItem property to get the handle of the selected item(s) in the control. Use
the SelectCount property to find out how many items are selected in the control. The control
fires the SelectionChanged event when user changes the selection in the control. Use the
SelectItem property to select programmatically an item. If the control supports only single
selection, you can use the FocusItem property to get the selected/focused item because
they are always the same. Use the SingleSel property to enable single or multiple
selection. Use the SelForeColor and SelBackColor properties to specify colors for selected
items.

The following sample shows hot to print the caption for the selected item: Debug.Print
G2antt1.Items.CellValue(G2antt1.Items.SelectedItem(0), 0).

The following sample applies an italic font attribute to the selected item:

Private Sub G2antt1_SelectionChanged()
 If Not (h = 0) Then G2antt1.Items.ItemItalic(h) = False
 h = G2antt1.Items.SelectedItem()
 G2antt1.Items.ItemItalic(h) = True
End Sub

The following VB sample enumerates the selected items:

Dim i As Long
With G2antt1.Items
 For i = 0 To .SelectCount - 1
 Debug.Print .CellValue(.SelectedItem(i), 0)
 Next
End With

The following VB sample unselects all items in the control:

With G2antt1
 .BeginUpdate
 With .Items
 While Not .SelectCount = 0
 .SelectItem(.SelectedItem(0)) = False
 Wend
 End With
 .EndUpdate
End With

The following VC sample displays the selected items:

#include "Items.h"

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

CItems items = m_g2antt.GetItems();
for (long i = 0; i < items.GetSelectCount(); i++)
{
 COleVariant vtItem(items.GetSelectedItem(i));
 CString strOutput;
 strOutput.Format("%s\n", V2S(&items.GetCellValue(vtItem, COleVariant((long)0))));
 OutputDebugString(strOutput);
}

The following C++ sample unselects all items in the control:

m_g2antt.BeginUpdate();
CItems items = m_g2antt.GetItems();
while (items.GetSelectCount())
 items.SetSelectItem(items.GetSelectedItem(0), FALSE);
m_g2antt.EndUpdate();

The following VB.NET sample displays the selected items:

With AxG2antt1.Items
 Dim i As Integer
 For i = 0 To .SelectCount - 1
 Debug.WriteLine(.CellValue(.SelectedItem(i), 0))
 Next
End With

The following VB.NET sample unselects all items in the control:

With AxG2antt1
 .BeginUpdate()
 With .Items
 While Not .SelectCount = 0
 .SelectItem(.SelectedItem(0)) = False
 End While
 End With
 .EndUpdate()
End With

The following C# sample displays the selected items:

for (int i = 0; i < axG2antt1.Items.SelectCount - 1; i++)
{
 object cell = axG2antt1.Items.get_CellValue(axG2antt1.Items.get_SelectedItem(i), 0);
 System.Diagnostics.Debug.WriteLine(cell != null ? cell.ToString() : "");
}

The following C# sample unselects all items in the control:

axG2antt1.BeginUpdate();
EXG2ANTTLib.Items items = axG2antt1.Items;

while (items.SelectCount != 0)
 items.set_SelectItem(items.get_SelectedItem(0), false);
axG2antt1.EndUpdate();

The following VFP sample displays the selected items:

with thisform.G2antt1.Items
 for i = 0 to .SelectCount - 1
 .DefaultItem = .SelectedItem(i)
 wait window nowait .CellValue(0, 0)
 next
endwith

The following VFP sample unselects all items in the control:

With thisform.G2antt1
 .BeginUpdate()
 with .Items
 do while (.SelectCount() # 0)
 .DefaultItem = .SelectedItem(0)
 .SelectItem(0) = .f.
 enddo
 endwith
 .EndUpdate()
EndWith

property Items.SelectedObjects (Objects as SelectObjectsEnum) as
Variant
Retrieves a collection of selected objects in the chart.

Type Description

Objects as
SelectObjectsEnum

A combination of SelectObjectsEnum values that indicates
the objects being returned. For instance, the
SelectedObject(exSelectBarsOnly) retrieves only selected
bars, or SelectedObject(exSelectBarsOnly Or
exObjectsJustAdded) retrieves only the bars that were
added to the selection since the selection was changed.

Variant

A Collection of strings, each string indicating the bars or
the links, or a String that indicates the first selected bar or
link, if the Objects parameter includes the
exSelectSingleObject. The bars are returned as
HANDLE,"KEY", since the link is returned as "KEY".
Shortly, the SelectedObjects property retrieves a string
that indicates the first selected bar or link, if the Objects
parameter includes the exSelectSingleObject value, else
it returns a collection of strings, that indicates the
selected bars or links in the chart

Use the SelectedObject property to retrieve a collection of selected bars or/and links. The
ChartSelectionChanged event notifies your application when the user select objects like
bars or links in the chart area. Use the AllowSelectObjects property to specify whether the
user can select bars or/and links at runtime, using the mouse. Use the
ItemBar(exBarSelected) property to select or unselect programmatically a bar. Use the
Link(exLinkSelected) property to select or unselect programmatically a link. Use the
RemoveSelection property to remove objects in the chart's selection. Use the
ExecuteTemplate property to execute and returns the result of a x-script for the /COM
version.

On the bottom of the page you can find samples for using the /NET Assembly or /WPF
component. The newer versions of the /NET, WPF version provides the get_SelectedBars
and get_SelectedLinks properties that returns a collection of selected bars and links,
beside the get_SelectedObjects property that may returns all objects being selected in the
Chart area.

In the /COM version let's say that you want to retrieve the name of the bars, in this case
you need to build the s-script "Items.ItemBar(<%BAR%>,0)" where the <%BAR%> should
be replaced with the strings in the collection being returned by the SelectedObjects
property, and 0 indicates the exBarName. Once you built this string, you just call the

ExecuteTemplate property and so the name of the bar is returned for each bar selected as
shown in the bellow samples. Instead, if links are returned, and you want to access a
property of the link, you need to build the x-script "Items.Link(<%LINK%>,12)" where it
gets the text being assigned to selected links, as 12 indicates the exLinkText.

The following VB sample displays the list of selected bars:

 Dim c As Variant
 For Each c In G2antt1.Items.SelectedObjects(exSelectBarsOnly)
 Debug.Print c
 Next

The following VB sample displays the name of the bars being selected:

 Dim c As Variant
 With G2antt1
 For Each c In .Items.SelectedObjects(exSelectBarsOnly)
 Debug.Print .ExecuteTemplate("Items.ItemBar(" & c & "," & exBarName & ")")
 Next
 End With

The following VB sample removes the selected links only:

With G2antt1
 .BeginUpdate
 With .Items
 For Each l In .SelectedObjects(exSelectLinksOnly)
 G2antt1.Template = "Items.RemoveLink(" & l & ")"
 Next
 End With
 .EndUpdate
End With

The following VB sample removes the selected bars only:

With G2antt1
 .BeginUpdate
 With .Items
 For Each b In .SelectedObjects(exSelectBarsOnly)
 G2antt1.Template = "Items.RemoveBar(" & b & ")"

 Next
 End With
 .EndUpdate
End With

When a bar is removed, any link related to it will be removed.

The following VB.NET sample displays the list of selected bars (applicable to COM
inserted to NET forms):

 Dim c As String
 For Each c In
AxG2antt1.Items.SelectedObjects(EXG2ANTTLib.SelectObjectsEnum.exSelectBarsOnly)
 Debug.Print(c)
 Next

The following VB.NET sample displays the name of the bars being selected (applicable to
COM inserted to NET forms):

 Dim c As String
 With AxG2antt1
 For Each c In
.Items.SelectedObjects(EXG2ANTTLib.SelectObjectsEnum.exSelectBarsOnly)
 Dim t As String = "Items.ItemBar(" + c + "," +
Int(EXG2ANTTLib.ItemBarPropertyEnum.exBarName).ToString() + ")"
 Debug.Print(.ExecuteTemplate(t))
 Next
 End With

The following C# sample displays the list of selected bars (applicable to COM inserted to
NET forms):

 foreach (string c in
axG2antt1.Items.get_SelectedObjects(EXG2ANTTLib.SelectObjectsEnum.exSelectBarsOnly)
as Array)
 {
 System.Diagnostics.Debug.WriteLine(c);
 }

The following C# sample displays the name of the bars being selected (applicable to NET

assemblies inserted to NET forms):

exontrol.EXG2ANTTLib.Items items = exg2antt1.Items;
foreach(string bar in
items.get_SelectedObjects(exontrol.EXG2ANTTLib.SelectObjectsEnum.exSelectBarsOnly)
as Array)
{
 string[] s = bar.Split(new Char[] {','});
 System.Diagnostics.Debug.Print(items.get_ItemBar(Int32.Parse(s[0]), s[1].Substring(0,
s[1].Length-2), exontrol.EXG2ANTTLib.ItemBarPropertyEnum.exBarName).ToString());
}

The following VB.NET sample displays the name of the bars being selected (applicable to
NET assemblies inserted to NET forms):

With Exg2antt1.Items
 Dim bar As String, s As String()
 For Each bar In
CType(.get_SelectedObjects(exontrol.EXG2ANTTLib.SelectObjectsEnum.exSelectBarsOnly),
Object())
 s = Split(bar, ",")
 Debug.Print(.get_ItemBar(CInt(s(0)), Mid(s(1), 2, Len(s(1)) - 2),
exontrol.EXG2ANTTLib.ItemBarPropertyEnum.exBarName).ToString())
 Next
End With

The following C++ sample displays the list of selected bars:

#include "Items.h"
{
 COleVariant vtSelected = m_g2antt.GetItems().GetSelectedObjects(1);
//exSelectBarsOnly
 if (V_VT(&vtSelected) & VT_ARRAY | VT_VARIANT)
 {
 SAFEARRAY* pArray = V_ARRAY(&vtSelected);
 void* pData = NULL;
 if (SUCCEEDED(SafeArrayAccessData(pArray, &pData)))
 {

 VARIANT* p = (VARIANT*)pData;
 for (long i = 0; i < (long)pArray->rgsabound[0].cElements ; i++, p++)
 OutputDebugString(V2S(p));
 SafeArrayUnaccessData(pArray);
 }
 }
}

The following C++ sample displays the name of the bars being selected:

#include "Items.h"
{
 COleVariant vtSelected = m_g2antt.GetItems().GetSelectedObjects(1
/*exSelectBarsOnly*/);
 if (V_VT(&vtSelected) & VT_ARRAY | VT_VARIANT)
 {
 SAFEARRAY* pArray = V_ARRAY(&vtSelected);
 void* pData = NULL;
 if (SUCCEEDED(SafeArrayAccessData(pArray, &pData)))
 {
 VARIANT* p = (VARIANT*)pData;
 for (long i = 0; i < (long)pArray->rgsabound[0].cElements ; i++, p++)
 {
 CString strT = "Items.ItemBar(" + V2S(p) + ",0)"; /*builds the
Items.ItemBar(Handle,Key,exBarName) template*/
 OutputDebugString(V2S(&m_g2antt.ExecuteTemplate(strT)));
 }
 SafeArrayUnaccessData(pArray);
 }
 }
}

where the V2S string may look like follows:

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {

 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

or

static string V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 CComVariant vt;
 if (SUCCEEDED(vt.ChangeType(VT_BSTR, pv)))
 {
 USES_CONVERSION;
 return OLE2T(V_BSTR(&vt));
 }
 }
 return szDefault;
}

The following VFP sample displays the list of selected bars:

local c
For Each c In thisform.G2antt1.Items.SelectedObjects(1)
 wait window c
Next

The following VFP sample displays the name of the bars being selected:

local c

For Each c In thisform.G2antt1.Items.SelectedObjects(1)
 local t
 t = "Items.ItemBar(" + c + ",0)"
 wait window thisform.G2antt1.ExecuteTemplate(t)
Next

In the /NET assembly you can use the Items.get_ItemBar or Items.set_ItemBar to access
properties of the bar giving its handle and key. The key of the bar is contained between "
characters so if you are using the ItemBar property make sure that you are removing the "
characters from start and end position. The get_SelectedObjects property retrieves an
array of string objects. If the string starts with the " character it means that it is a link, else
it is a bar. The name of the link is contained between " characters, while the bar information
contains the handle of the item and the key of the bar as (item,"key"), where the item is the
handle of the item, while the key is the key of the bar.

The following C# sample changes the color of the selected bar(s):

private void exg2antt1_ChartSelectionChanged(object sender)
{
 foreach (string o in
exg2antt1.Items.get_SelectedObjects(exontrol.EXG2ANTTLib.SelectObjectsEnum.exSelectBarsOnly)
 as Array)
 {
 String[] b = o.Split(",".ToCharArray());
 exg2antt1.Items.set_BarColor(int.Parse(b[0]), b[1].Substring(1,b[1].Length -2),
Color.Red);
 }
}

The following C# sample changes the color of the selected link(s):

private void exg2antt1_ChartSelectionChanged(object sender)
{
 foreach (string o in
exg2antt1.Items.get_SelectedObjects(exontrol.EXG2ANTTLib.SelectObjectsEnum.exSelectLinksOnly)
 as Array)
 {
 exg2antt1.Items.set_Link(o.Substring(1, o.Length - 2),
exontrol.EXG2ANTTLib.LinkPropertyEnum.exLinkColor,

ColorTranslator.ToWin32(Color.Red));
 }
}

The following VB.NET sample changes the color of the selected bar(s):

Private Sub Exg2antt1_ChartSelectionChanged(ByVal sender As System.Object) Handles
Exg2antt1.ChartSelectionChanged
 Dim o As String
 For Each o In
Exg2antt1.Items.get_SelectedObjects(exontrol.EXG2ANTTLib.SelectObjectsEnum.exSelectBarsOnly)

 Dim b As String() = o.Split(",".ToCharArray())
 Exg2antt1.Items.set_BarColor(CInt(b(0)), b(1).Substring(1, b(1).Length - 2), Color.Red)
 Next
End Sub

The following VB.NET sample changes the color of the selected link(s):

Private Sub Exg2antt1_ChartSelectionChanged(ByVal sender As System.Object) Handles
Exg2antt1.ChartSelectionChanged
 Dim o As String = ""
 For Each o In
Exg2antt1.Items.get_SelectedObjects(exontrol.EXG2ANTTLib.SelectObjectsEnum.exSelectLinksOnly)

 Exg2antt1.Items.set_Link(o.Substring(1, o.Length - 2),
exontrol.EXG2ANTTLib.LinkPropertyEnum.exLinkColor,
ColorTranslator.ToWin32(Color.Red))
 Next
End Sub

The newer versions of the /NET,WPF version provides the get_SelectedBars and
get_SelectedLinks properties that returns a collection of selected bars and links.

The following C# sample changes the color of the selected bar(s):

private void exg2antt1_ChartSelectionChanged(object sender)
{
 List<exontrol.EXG2ANTTLib.Items.SelectedBar> sBars =

exg2antt1.Items.get_SelectedBars();
 if (sBars != null)
 foreach (exontrol.EXG2ANTTLib.Items.SelectedBar bar in sBars)
 exg2antt1.Items.set_BarColor(bar.Item, bar.Key, Color.Red);
}

The following C# sample changes the color of the selected link(s):

private void exg2antt1_ChartSelectionChanged(object sender)
{
 List<string> sLinks = exg2antt1.Items.get_SelectedLinks();
 if (sLinks != null)
 foreach (string link in sLinks)
 exg2antt1.Items.set_Link(link,
exontrol.EXG2ANTTLib.LinkPropertyEnum.exLinkColor,
ColorTranslator.ToWin32(Color.Red));
}

The following VB.NET sample changes the color of the selected bar(s):

Private Sub Exg2antt1_ChartSelectionChanged(ByVal sender As System.Object) Handles
Exg2antt1.ChartSelectionChanged
 With Exg2antt1
 Dim sBars As List(Of exontrol.EXG2ANTTLib.Items.SelectedBar) =
.Items.get_SelectedBars()
 If Not (sBars Is Nothing) Then
 Dim bar As exontrol.EXG2ANTTLib.Items.SelectedBar
 For Each bar In sBars
 .Items.set_BarColor(bar.Item, bar.Key, Color.Red)
 Next
 End If
 End With
End Sub

The following VB.NET sample changes the color of the selected link(s):

Private Sub Exg2antt1_ChartSelectionChanged(ByVal sender As System.Object) Handles
Exg2antt1.ChartSelectionChanged
 With Exg2antt1

 Dim sLinks As List(Of String) = .Items.get_SelectedLinks()
 If Not (sLinks Is Nothing) Then
 Dim link As String
 For Each link In sLinks
 .Items.set_Link(link, exontrol.EXG2ANTTLib.LinkPropertyEnum.exLinkColor,
ColorTranslator.ToWin32(Color.Red))
 Next
 End If
 End With
End Sub

property Items.SelectItem(Item as HITEM) as Boolean

Selects or unselects a specific item.

Type Description

Item as HITEM A long expression that indicates the item's handle that is
selected or unselected.

Boolean
A boolean expression that indicates the item's state. True
if the item is selected, and False if the item is not
selected.

Use the SelectItem to select or unselect a specified item (that's selectable). Use the
SelectableItem property to specify the user can select an item. Use the SelectCount
property to get the number of selected items. Use the SelectedItem property to get the
selected item. Use the FocusItem property to get the focused item. If the control supports
only single selection, you can use the FocusItem property to get the selected/focused item
because they are always the same. The control fires the SelectionChanged event when
user selects an item. Use the SelForeColor and SelBackColor properties to specify colors
for selected items. Use the SingleSel property to allow multiple selection. Use the
SelectPos property to select an item giving its position. Use the EnsureVisibleItem property
to ensure that an item is visible. The AllowSelectObjects property allows users to select at
runtime the bars and links in the chart area. Use the ItemBar(exBarSelected) property to
select or unselect programmatically a bar. Use the Link(exLinkSelected) property to select
or unselect programmatically a link.

The following VB sample shows how to select the first created item:
G2antt1.Items.SelectItem(G2antt1.Items(0)) = True

The following VB sample selects the first visible item:

With G2antt1.Items
 .SelectItem(.FirstVisibleItem) = True
End With

The following VB sample enumerates the selected items:

Dim i As Long
With G2antt1.Items
 For i = 0 To .SelectCount - 1
 Debug.Print .CellValue(.SelectedItem(i), 0)
 Next

End With

The following C++ sample selects the first visible item:

#include "Items.h"
CItems items = m_g2antt.GetItems();
items.SetSelectItem(items.GetFirstVisibleItem(), TRUE);

The following C++ sample unselects all items in the control:

m_g2antt.BeginUpdate();
CItems items = m_g2antt.GetItems();
while (items.GetSelectCount())
 items.SetSelectItem(items.GetSelectedItem(0), FALSE);
m_g2antt.EndUpdate();

The following VB.NET sample selects the first visible item:

With AxG2antt1.Items
 .SelectItem(.FirstVisibleItem) = True
End With

The following VB.NET sample unselects all items in the control:

With AxG2antt1
 .BeginUpdate()
 With .Items
 While Not .SelectCount = 0
 .SelectItem(.SelectedItem(0)) = False
 End While
 End With
 .EndUpdate()
End With

The following C# sample selects the first visible item:

axG2antt1.Items.set_SelectItem(axG2antt1.Items.FirstVisibleItem, true);

The following C# sample unselects all items in the control:

axG2antt1.BeginUpdate();
EXG2ANTTLib.Items items = axG2antt1.Items;
while (items.SelectCount != 0)
 items.set_SelectItem(items.get_SelectedItem(0), false);
axG2antt1.EndUpdate();

The following VFP sample selects the first visible item:

with thisform.G2antt1.Items
 .DefaultItem = .FirstVisibleItem
 .SelectItem(0) = .t.
endwith

The following VFP sample unselects all items in the control:

With thisform.G2antt1
 .BeginUpdate()
 with .Items
 do while (.SelectCount() # 0)
 .DefaultItem = .SelectedItem(0)
 .SelectItem(0) = .f.
 enddo
 endwith
 .EndUpdate()
EndWith

property Items.SelectPos as Variant
Selects items by position.

Type Description

Variant
A long expression that indicates the position of item being
selected, or a safe array that holds a collection of position
of items being selected.

Use the SelectPos property to select items by position. Use the SelectItem property to
select an item giving its handle. The SelectPos property selects an item giving its general
position. The ItemPosition property gives the relative position, or the position of the item in
the child items collection. The AllowSelectObjects property allows users to select at runtime
the bars and links in the chart area. Use the ItemBar(exBarSelected) property to select or
unselect programmatically a bar. Use the Link(exLinkSelected) property to select or
unselect programmatically a link.

The following VB sample selects the first item in the control:

G2antt1.Items.SelectPos = 0

The following VB sample selects first two items:

G2antt1.Items.SelectPos = Array(0, 1)

The following C++ sample selects the first item in the control:

m_g2antt.GetItems().SetSelectPos(COleVariant(long(0)));

The following VB.NET sample selects the first item in the control:

With AxG2antt1.Items
 .SelectPos = 0
End With

The following C# sample selects the first item in the control:

axG2antt1.Items.SelectPos = 0;

The following VFP sample selects the first item in the control:

with thisform.G2antt1.Items
 .SelectPos = 0

endwith

method Items.SetParent (Item as HITEM, NewParent as HITEM)

Changes the parent of the given item.

Type Description

Item as HITEM A long expression that indicates the handle of the item
being moved.

NewParent as HITEM A long expression that indicates the handle of the new
parent item.

Use the SetParent property to change the parent item at runtime. Use the InsertItem
property to insert child items. Use the InsertControlItem property to insert ActiveX controls.
Use AcceptSetParent property to verify if the the parent of an item can be changed. The
following VB sample changes the parent item of the first item: G2antt1.Items.SetParent
G2antt1.Items(0), G2antt1.Items(1). Use the ItemParent property to retrieve the parent of
the item.

property Items.SortableItem(Item as HITEM) as Boolean
Specifies whether the item is sortable.

Type Description

Item as HITEM A long expression that indicates the handle of the item
being sortable.

Boolean A boolean expression that specifies whether the item is
sortable.

By default, all items are sortable. A sortable item can change its position after sorting. An
unsortable item keeps its position after user performs a sort operation. Thought, the
position of an unsortable item can be changed using the ItemPosition property. Use the
SortableItem to specify a group item, a total item or a separator item. An unsortable item is
not counted by a total field. The SortType property specifies the type of repositioning is
being applied on the column when a sort operation is performed. The SortOrder property
specifies whether the column is sorted ascendant or descendent. Use the SortChildren
method to sort the items. Use the AllowSort property to avoid sorting a column when the
user clicks the column. The ItemDivider property indicates whether the item displays a
single cell, instead showing all cells. The SelectableItem property specifies whether an item
can be selected.

The following screen shots shows the control when no column is sorted: (Group 1 and
Group 2 has the SortableItem property on False)

The following screen shots shows the control when the column A is being sorted: (Group 1
and Group 2 keeps their original position after sorting)

method Items.SortChildren (Item as HITEM, ColIndex as Variant,
Ascending as Boolean)

Sorts the child items of the given parent item in the control.

Type Description

Item as HITEM A long expression that indicates the item's handle that is
going to be sorted.

ColIndex as Variant
A long expression that indicates the column's index or the
cell's handle, a string expression that indicates the
column's caption.

Ascending as Boolean A boolean expression that defines the sort order.

The SortChildren will not recurse through the tree, only the immediate children of item will
be sorted. If your control acts like a simple list you can use the following line of code to sort
ascending the list by first column: G2antt1.Items.SortChildren 0, 0. To change the way how
a column is sorted use SortType property of Column object. The SortChildren property
doesn't display the sort icon on column's header. The control automatically sorts the
children items when user clicks on column's header, depending on the SortOnClick property.
The SortOrder property sorts the items and displays the sorting icon in the column's
header. Use the AllowSort property to avoid sorting a column when the user clicks the
column.

property Items.SplitCell ([Item as Variant], [ColIndex as Variant]) as
Variant
Splits a cell, and returns the inner created cell.

Type Description

Item as Variant

A long expression that indicates the handle of the item
where a cell is being divided, or 0. If the Item parameter is
0, the ColIndex parameter must indicate the handle of the
cell.

ColIndex as Variant

A long expression that indicates the index of the column
where a cell is divided, or a long expression that indicates
the handle of the cell being divided, if the Item parameter
is missing or it is zero.

Variant A long expression that indicates the handle of the cell
being created.

The SplitCell method splits a cell in two cells. The newly created cell is called inner cell. The
SplitCell method always returns the handle of the inner cell. If the cell is already divided
using the SplitCell method, it returns the handle of the inner cell without creating a new inner
cell. You can split an inner cell too, and so you can have a master cell divided in multiple
cells. Use the CellWidth property to specify the width of the inner cell. Use the CellValue
property to assign a caption to a cell. Use the InnerCell property to access an inner cell
giving its index. Use the CellParent property to get the parent of the inner cell. Use the
CellItem property to get the owner of the cell. Use the UnsplitCell method to remove the
inner cell if it exists. Use the MergeCells property to combine two or more cells in a single
cell. Use the SelectableItem property to specify the user can select an item. Include the
exIncludeInnerCells flag in the FilterList property and so the drop down filter window lists
the inner cells too.

("Merge" means multiple cells in a single cell, "Split" means multiple cells inside a single
cell)

The following VB sample splits a single cell in two cells (Before running the following
sample, please make sure that your control contains columns, and at least an item):

With G2antt1.Items
 Dim h As HITEM, f As HCELL
 h = .FirstVisibleItem
 f = .SplitCell(h, 0)
 .CellValue(, f) = "inner cell"
End With

The following C++ sample splits the first visible cell in two cells:

#include "Items.h"
CItems items = m_g2antt.GetItems();
COleVariant vtMissing; V_VT(&vtMissing) = VT_ERROR;
COleVariant vtSplit = items.GetSplitCell(COleVariant(items.GetFirstVisibleItem()),
COleVariant(long(0)));
items.SetCellValue(vtMissing, vtSplit, COleVariant("inner cell"));

The following VB.NET sample splits the first visible cell in two cells:

With AxG2antt1.Items
 Dim i As Object
 i = .SplitCell(.FirstVisibleItem, 0)
 .CellValue(Nothing, i) = "inner cell"
End With

The following C# sample splits the first visible cell in two cells:

EXG2ANTTLib.Items items = axG2antt1.Items;
object i = items.get_SplitCell(items.FirstVisibleItem, 0);
items.set_CellValue(null, i, "inner cell");

The following VFP sample splits the first visible cell in two cells:

with thisform.G2antt1.Items
 local i
 i = .SplitCell(.FirstVisibleItem,0)
 local s, crlf
 crlf = chr(13) + chr(10)

 s = "Items" + crlf
 s = s + "{" + crlf
 s = s + "CellValue(," + str(i) + ") = " + chr(34) + "inner cell" + chr(34) + crlf
 s = s + "}"
 thisform.G2antt1.Template = s
endwith

method Items.StartBlockUndoRedo ()
Starts recording the UI operations as a block of undo/redo operations.

Type Description

The StartBlockUndoRedo method starts recording the UI operations as a block on
undo/redo operations (equivalent of StartBlockUndoRedo method of the Chart object). The
method has effect only if the AllowUndoRedo property is True. The EndBlockUndoRedo
method collects all undo/redo operations since StartBlockUndoRedo method was called and
add them to the undo/redo queue as a block. This way the next call on a Undo operation,
the entire block is restored, so all UI operations are restored. For instance, if you have a
procedure that moves several bars, and want all of them being grouped, you can use
StartBlockUndoRedo to start recording the operations as a block, and call the
EndBlockUndoRedo when procedure ends, so next call of an undo operation the bars are
restored to their original position. The EndBlockUndoRedo method must be called the same
number of times as the StartBlockUndoRedo method was called. For instance, if you have
called the StartBlockUndoRedo twice the EndBlockUndoRedo method must be called twice
too, and the collected operations are added to the chart's queue of undo/redo operations at
the end.

The chart fires the ChartStartChanging event when the user starts an UI operation, for
instance, moving a bar. The ChartEndChanging event notifies your application once the user
operation on the chart ends. By default, each undo/redo operation is added sequentially as
they occur. You can call the StartBlockUndoRedo method during the ChartStartChanging
event so all operations that are about to begin will be as a block when calling the
EndBlockUndoRedo during the ChartEndChanging event. For instance, if a bar is related to
multiple bars using grouping options, so if a bar is moved other bars must be moved, the
undo/redo operations are added sequentially as they appear. So calling the Undo action will
restore moving a bar once at the time. Using the StartBlockUndoRedo/EndBlockUndoRedo
methods you can control the block of undo/redo operations being grouped in a block, so
next time the Undo/Redo operation is performed, the entire block of operations is
performed or restored at once. For instance, the SchedulePDM method performs multiple
operations during bars, so all of them are grouped as a block.

For instance, we we have the following chart:

In this case the, the K1, K2 and K3 bars are grouped, so moving any bar will result in
moving relative bars.

The following screen shot shows the chart after moving the bar K3 to a new position as
well as a to a new parent,

so the undo/redo queue looks like:

StartBlock MoveBar;1;sum
MoveBar;2;K4
MoveBar;3;K3
EndBlock
ParentChangeBar;2;K3

In this case, we need to press twice the CTRL + Z to restore back the chart as it was
before moving the bar K3.

Instead if we are using the StartBlockUndoRedo and EndBlockUndoRedo methods as
follow:

Private Sub G2antt1_ChartStartChanging(ByVal Operation As
EXG2ANTTLibCtl.BarOperationEnum)
 G2antt1.Chart.StartBlockUndoRedo
End Sub

Private Sub G2antt1_ChartEndChanging(ByVal Operation As
EXG2ANTTLibCtl.BarOperationEnum)
 G2antt1.Chart.EndBlockUndoRedo
End Sub

We have the undo/redo queue as follows (if we perform the same operation):

StartBlock
MoveBar;1;sum
MoveBar;2;K4
MoveBar;3;K3
ParentChangeBar;2;K3
EndBlock

In this case, we need to press only once the CTRL + Z to restore back the chart as it was

before moving the bar K3.

property Items.StartUpdateBar (Item as HITEM, BarKey as Variant) as
Long
Starts changing properties of the bar, so EndUpdateBar method adds programmatically
updated properties to undo/redo queue.

Type Description

Item as HITEM A long expression that specifies the handle of the item that
holds the bar to be updated.

BarKey as Variant
A VARIANT expression that holds the key of the bar being
updated. Use the AddBar method to add programmatically
bars.

Long

A Long expression that specifies the handle to be passed
to EndUpdateBar so the updated properties of the bar are
added to the Undo/Redo queue of the chart, so they can
be used in undo/redo operations.

Use the StartUpdateBar and EndUpdateBar methods to add new entries in the chart's
undo/redo queue for properties of the bar being updated by code. The ItemBar property
accesses the properties of the bar. For instance, if your application provides UI dialogs or
forms that help users changing the properties of the selected bar such as color, text,
tooltips and so on, you can provide undo/redo operations for them by using the
StartUpdateBar and EndUpdateBar methods. Shortly, the StartUpdateBar method starts
recording the properties being changed until the EndUpdateBar method is called. The
EndUpdateBar method actually adds a new entry to the undo/redo queue based on the
changed properties. If there were no changes of the bar during the Star/End session, no
new entry is added. The EndUpdateBar method adds UpdateBar entries to the undo/redo
queue.

The AllowUndoRedo property specifies whether the chart supports undo/redo operations
for objects in the chart such as bars or links. The ChartStartChanging(exUndo/exRedo) /
ChartEndChanging(exUndo/exRedo) event notifies your application whenever an Undo/Redo
operation is performed. The UndoListAction property lists the Undo actions that can be
performed in the chart. The RedoListAction property lists the Redo actions that can be
performed in the chart.

The following VB sample adds a new entry "UpdateBar" in the chart's undo/redo queue for
changing the text of the bar (/COM version):

 With G2antt1.Items
 Dim hItem As Long
 hItem = .FocusItem

 Dim barKey As Variant
 barKey = .FirstItemBar(hItem)

 Dim iChangeBar As Long
 iChangeBar = .StartUpdateBar(hItem, barKey)
 .ItemBar(hItem, barKey, exBarCaption) = "new caption"
 .EndUpdateBar (iChangeBar)
End With

The following VB/NET sample adds a new entry "UpdateBar" in the chart's undo/redo queue
for changing the text of the bar (/NET Assembly version):

With Exg2antt1.Items
 Dim hItem As Long = .FocusItem
 Dim barKey As Object = .get_FirstItemBar(hItem)

 Dim iChangeBar As Long = .get_StartUpdateBar(hItem, barKey)
 .set_ItemBar(hItem, barKey, exontrol.EXG2ANTTLib.ItemBarPropertyEnum.exBarCaption,
"new caption")
 .EndUpdateBar(iChangeBar)
End With

These samples add new entries to undo/redo queue as : "UpdateBar;94980832;B1;3;;new
caption " which indicates , the handle of the items where the bar has been changed, the bar
of the key as being B1, the 3 indicates the exBarCaption predefined value, and so on. Once
the sample is called, the bar's caption is changed, and using the CTRL + Z, you can restore
back the old value, or pressing the CTRL + Y you can change back after restoring.

property Items.StartUpdateLink (LinkKey as Variant) as Long
Starts changing properties of the link, so EndUpdateLink method adds programmatically
updated properties to undo/redo queue.

Type Description

LinkKey as Variant
A VARIANT expression that specifies the key of the link
being updated. Use the AddLink method to add
programmatically new links between bars.

Long

A Long expression that specifies the handle to be passed
to EndUpdateLink so the updated properties of the link are
added to the Undo/Redo queue of the chart, so they can
be used in undo/redo operations.

Use the StartUpdateLink and EndUpdateLink methods to add new entries in the chart's
undo/redo queue for properties of the link being updated by code. The Link property
accesses the properties of the link. For instance, if your application provides UI dialogs or
forms that help users changing the properties of the selected link such as color, text,
tooltips and so on, you can provide undo/redo operations for them by using the
StartUpdateLink and EndUpdateLink methods. Shortly, the StartUpdateLink method starts
recording the properties being changed until the EndUpdateLink method is called. The
EndUpdateLink method actually adds a new entry to the undo/redo queue based on the
changed properties. If there were no changes of the link during the Star/End session, no
new entry is added. The EndUpdateLink method adds UpdateLink entries to the undo/redo
queue.

The AllowUndoRedo property specifies whether the chart supports undo/redo operations
for objects in the chart such as bars or links. The ChartStartChanging(exUndo/exRedo) /
ChartEndChanging(exUndo/exRedo) event notifies your application whenever an Undo/Redo
operation is performed. The UndoListAction property lists the Undo actions that can be
performed in the chart. The RedoListAction property lists the Redo actions that can be
performed in the chart.

The following VB sample adds a new entry "UpdateLink" in the chart's undo/redo queue for
changing the text being displayed on the link (/COM version):

With G2antt1.Items
 Dim linkKey As Variant
 linkKey = .FirstLink
 Dim iChangeLink As Long
 iChangeLink = .StartUpdateLink(linkKey)
 .Link(linkKey, exLinkText) = "new text"

 .EndUpdateLink (iChangeLink)
End With

The following VB/NET sample adds a new entry "UpdateLink" in the chart's undo/redo
queue for changing the text being displayed on the link (/NET Assembly version):

With Exg2antt1.Items
 Dim linkKey As Object = .get_FirstLink
 Dim iChangeLink As Long = .get_StartUpdateLink(linkKey)
 .set_Link(linkKey, exontrol.EXG2ANTTLib.LinkPropertyEnum.exLinkText, "new text")
 .EndUpdateLink(iChangeLink)
End With

These samples add new entries to undo/redo queue as : "UpdateLink;L1;12;;new text "
which indicates , the link as being L1, the 12 indicates the exLinkText predefined value, and
so on. Once the sample is called, the link's text is changed, and using the CTRL + Z, you
can restore back the old value, or pressing the CTRL + Y you can change back after
restoring.

method Items.UndefineSummaryBars (SummaryItem as HITEM,
SummaryKey as Variant, ItemRemove as HITEM, KeyRemove as Variant)
Undefines the bars in a summary bar

Type Description

SummaryItem as HITEM A long expression that specifies the handle of the item that
displays the summary bar.

SummaryKey as Variant A VARIANT expression that indicates the key of the
summary bar.

ItemRemove as HITEM

A long expression that specifies the item that holds the bar
being removed from the summary bar. The ItemRemove
parameter could be

a valid handle, indicating the item itself
0 indicates all items
-1 indicates the direct descendents/children items of
the SummaryItem (child items of the SummaryItem)
-2 means leaf descendents/items of the
SummaryItem, where a leaf or terminal item is an
item with no child items
-3 means all descendents/children items of the
SummaryItem (recursively)

For instance,
UndefineSummaryBars(SummaryItem,SummaryKey,-1,"
<K*>") excludes the bar with the key starting with K from
direct descendents of the SummaryItem

The 0, -1, -2 and -3 values are supported, starting from
the version 12.0

KeyRemove as Variant

A VARIANT expression that indicates the key of the bar
being removed from the summary bar. The KeyRemove
parameter supports pattern if specified such as "
<pattern>", where the pattern may contain wild card
characters such as '?' for any single character, '*' for zero
or more occurrences of any character, '#' for any digit
character. For instance, UndefineSummaryBars(,,,"<K*>")
excludes the bars with the key that starts with K, from the
SummaryItem/SummaryKey bar

The "<pattern>" syntax is supported, starting from the
version 12.0

The UndefineSummaryBars method does the reverse operation of the DefineSummaryBars,
as it removes a bar from a summary bar. The DefineSummaryBars method defines bars
being displayed under a summary bar. Once a bar that's included in a summary bar is
moved or resized, its summary bar is automatically updated. Once a summary bar is moved
all included bars are moved too. For instance, if your chart displays a "Summary" or
"Project Summary" predefined bar, you can use the DefineSummaryBars method to define
the bars included in the summary bar, so they automatically update the summary bars when
moving or resizing. The DefineSummaryBars method defines a group of bars that belongs
to another bar (called summary bar), so the margins of the summary bars are min and
max of the margins of included bars. The margins of the bars are determined by
ItemBar(exBarStart) and ItemBar(exBarEnd).

method Items.UngroupBars (ItemA as HITEM, KeyA as Variant, ItemB as
HITEM, KeyB as Variant)
Ungroups two bars.

Type Description

ItemA as HITEM A long expression that indicates the handle of the item that
contains the bar to ungroup.

KeyA as Variant
A long or string expression that specifies the key of the
bar to ungroup. The Key parameter of the AddBar
method specifies the key of the bar being added.

ItemB as HITEM A long expression that indicates the handle of the item that
contains the bar being ungrouped.

KeyB as Variant
A long or string expression that specifies the key of the
bar being ungrouped. The Key parameter of the AddBar
method specifies the key of the bar being added.

The UngroupBars method ungroups two bars. Use the UngroupBars method to ungroup
bars being grouped using the GroupBars method. Use the Link(exLinkGroupBars) on
exGroupBarsNone to ungroup the linked bars.

The UngroupBars method works as follow:

If the ItemA and ItemB parameters are 0 all groups of bars are removed, so the chart
has no grouping bars.
If the ItemA and KeyA point to a valid bar, and ItemB parameter is 0, the bar A is
removed from all groups, in other words the bar A does not belong to any existing
group.
If the (ItemA and KeyA) and (ItemB and KeyB) point to valid bars, the bar A and bar
B are ungrouped.

Use the RemoveLink method to remove a specified link. Use the RemoveLinksOf method
to remove all links that start or end on the specified bar.

method Items.UnmergeCells ([Cell as Variant])
Unmerges a list of cells.

Type Description

Cell as Variant

A long expression that indicates the handle of the cell
being unmerged, or a safe array that holds a collection of
handles for the cells being unmerged. Use the ItemCell
property to retrieves the handle of the cell.

Use the UnmergeCells method to unmerge merged cells. Use the MergeCells method or
CellMerge property to combine (merge) two or more cells in a single one. The
UnmergeCells method unmerges all the cells that was merged. The CellMerge property
unmerges only a single cell. The rest of merged cells remains combined.

The following samples show few methods to unmerge cells:

With G2antt1
 With .Items
 .UnmergeCells .ItemCell(.RootItem(0), 0)
 End With
End With

With G2antt1
 With .Items
 Dim r As Long
 r = .RootItem(0)
 .UnmergeCells Array(.ItemCell(r, 0), .ItemCell(r, 1))
 End With
End With

With G2antt1
 .BeginUpdate
 With .Items
 .CellMerge(.RootItem(0), 0) = -1
 .CellMerge(.RootItem(0), 1) = -1
 .CellMerge(.RootItem(0), 2) = -1
 End With
 .EndUpdate
End With

method Items.UnselectAll ()
Unselects all items.

Type Description

Use the UnselectAll method to unselect all items in the list. The UnselectAll method has
effect only if the SingleSel property is False, if the control supports multiple items selection.
Use the SelectAll method to select all items in the list. Use the SelectItem property to select
or unselect a specified item. Use the SelectedItem property to retrieve a value that
indicates whether the item is selected or unselected. Use the SelectCount property to
retrieve the number of selected items

method Items.UnsplitCell ([Item as Variant], [ColIndex as Variant])
Unsplits a cell.

Type Description

Item as Variant
A long expression that indicates the handle of the item, or
0. If the Item parameter is 0, the ColIndex parameter must
indicate the handle of the cell.

ColIndex as Variant

A long expression that indicates the index of the column
where a cell is divided, or a long expression that indicates
the handle of the cell being divided, if the Item parameter
is missing or it is zero.

Use the UnsplitCells method to remove the inner cells. The SplitCell method splits a cell in
two cells, and retrieves the newly created cell. The UnsplitCell method has no effect if the
cell contains no inner cells. The UnplitCells method remove recursively all inner cells. For
instance, if a cell contains an inner cell, and this inner cell contains another inner cell, when
calling the UnplitCells method for the master cell, all inner cells inside of the cell will be
deleted. Use the CellParent property to get the parent of the inner cell. Use the CellItem
property to get the owner of the cell. Use the InnerCell property to access an inner cell
giving its index. Use the UnmergeCells method to unmerge merged cells. ("Merge" means
multiple cells in a single cell, "Split" means multiple cells inside a single).

property Items.VisibleCount as Long

Retrieves the number of visible items.

Type Description
Long Counts the visible items.

Use FirstVisibleItem and NextVisibleItem properties to determine the items that fit the client
area. Use the IsItemVisible property to check whether an item fits the control's client area.
Use the ItemCount property to count the items in the control. Use the ChildCount property
to count the child items. The ItemPosition property determines the position of the item in the
parent's child collection. The FormatColumn event is fired before displaying a cell, so you
can handle the FormatColumn to display anything on the cell at runtime. This way you can
display the row position, you can display the value using the currency format, and so on.
The FireFormatColumn property allows the control to fire the FormatColumn event for the
column. The Position property specifies the position of the column.

If your chart displays a tree or a hierarchy the position of the item must be determined
relative to the FirstVisibleItem as shown in the following VB sample:

Private Sub G2antt1_FormatColumn(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal
ColIndex As Long, Value As Variant)
 Value = G2antt1.ScrollPos(True) + RelPos(Item)
End Sub

Private Function RelPos(ByVal hVisible As Long) As Long
 With G2antt1.Items
 Dim h As Long, i As Long, n As Long
 i = 0
 n = .VisibleCount + 1
 h = .FirstVisibleItem
 While (i <= n) And h <> 0 And h <> hVisible
 i = i + 1
 h = .NextVisibleItem(h)
 Wend
 RelPos = i
 End With
End Function

property Items.VisibleItemCount as Long
Retrieves the number of visible items.

Type Description

Long
A long expression that specifies the number of visible
items in the control. The value could be a positive value if
no filter is applied, or negative while filter is on.

The VisibleItemCount property counts the number of visible items in the list. For instance,
you can use the VisibleItemCount property to get the number the control displays once the
user applies a filter.

The VisibleItemCount property returns a value as explained bellow:

0, the control displays/contains no items, and no filter is applied to any column
-1, the control displays no items, and there is a filter applied (no match found)
positive number, indicates the number of visible items, and the control has no filter
applied to any column
negative number, the absolute value munus 1, indicates the number of visible items,
and there is a filter applied (match found)

 The VisibleCount property retrieves the number of items being displayed in the control's
client area. Use FirstVisibleItem and NextVisibleItem properties to determine the items
being displayed in the control's client area. Use the IsItemVisible property to check whether
an item fits the control's client area. Use the ItemCount property to count the items in the
control. Use the ChildCount property to count the child items

Level object
The Level object describes a level in the chart. Use the Chart object to access the control's
Chart object. Use the Bars property to add new type of bars to the control. The levels are
displayed in the chart's header area. Use the Level property to access a Level object.

The following screen shot shows the chart's levels:

The Level property supports the following properties and methods:

Name Description
Alignment Specifies the label's alignment.
BackColor Specifies the level's background color.
Count Counts the units in the level.

DrawGridLines Specifies whether the grid lines are shown or hidden for
specified level.

DrawTickLines Specifies whether the tick lines are shown or hidden.

DrawTickLinesFrom Indicates whether the level shows tick lines from specified
level.

ForeColor Specifies the level's foreground color.
FormatLabel Formats the labels based on the specified formula.
GridLineColor Specifies the grid line color for the specified level.
GridLineStyle Specifies the style for the chart's vertical gridlines.

Label Retrieves or sets a value that indicates the format of the
level's label.

ReplaceLabel Specifies a HTML replacement for the given label.

ToolTip Specifies the format of the tooltip that's shown when the
cursor hovers the level.

Unit Retrieves or sets a value that indicates the unit of the
level.

property Level.Alignment as AlignmentEnum
Specifies the label's alignment.

Type Description

AlignmentEnum

An AlignmentEnum expression that indicates how the
level's label is aligned in the chart's header. The Alignment
property can combine the LeftAlignment, CenterAlignment
and RightAlignment with exHOutside (0x10,16) which
indicates that the label is always visible when user does
scrolling the chart. Also, the Alignment property supports
the exHNoClip (0x100, 256) which indicates that the labels
within the level are not-clipped to the time-unit. In other
words, it allows to prevent truncating the level's label when
the width of the time-scale is too small.

By default, the Alignment property is CenterAlignment. Use the Alignment property to align
labels in the chart's header. If the Alignment property includes the exHOutside, the label is
being visible while the time unit is visible. For instance, if the Alignment property is
CenterAlignment + exHOutside (17 = 1 + 16), the labels are always centered, and visible
while the time-unit is visible, so the label is still visible while the time unit is partially visible,
usually when the user does scroll left or right the chart. Use the Label property to specify
the label of the level. Use the ForeColor and BackColor properties to change the level's
appearance.

For instance the following screen shot shows the component if the Level.Alignment property
is 1 (CenterAlignment):

while the next screen shot shows the component if the Level.Alignment property is 17 (
CenterAlignment + exHOutside):

property Level.BackColor as Color
Specifies the level's background color.

Type Description

Color

A Color expression that indicates the level's background
color. The last 7 bits in the high significant byte of the color
to indicates the identifier of the skin being used. Use the
Add method to add new skins to the control. If you need
to remove the skin appearance from a part of the control
you need to reset the last 7 bits in the high significant byte
of the color being applied to the background's part.

Use the BackColor property to specify the background color for a specified level. Use the
ForeColor property to specify the foreground color for a specified level. Use the
BackColorLevelHeader property to specify the background color of the chart's header. Use
the ForeColorLevelHeader property to specify the foreground color of the chart's header.
Use the BackColor property to specify the chart's background color. Use the ForeColor
property to specify the chart's foreground color. Use the ItemBackColor property to change
the item's background color. Use the NonworkingDaysColor property the color of the brush
to fill the nonworking days area.

The following VB sample changes the appearance for the last level:

With G2antt1.Chart
 With .Level(.LevelCount - 1)
 .BackColor = SystemColorConstants.vbDesktop
 .ForeColor = RGB(255, 255, 255)

 End With
End With

The following C++ sample changes the appearance for the last level:

CLevel level = m_g2antt.GetChart().GetLevel(m_g2antt.GetChart().GetLevelCount()-1);
level.SetBackColor(0x80000000 | COLOR_DESKTOP);
level.SetForeColor(RGB(255,255,255));

The following VB.NET sample changes the appearance for the last level:

With AxG2antt1.Chart
 With .Level(.LevelCount - 1)
 .BackColor = ToUInt32(SystemColors.Desktop)
 .ForeColor = RGB(255, 255, 255)
 End With
End With

where the ToUInt32 function converts a Color expression to an OLE_COLOR type:

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample changes the appearance for the last level:

EXG2ANTTLib.Level level = axG2antt1.Chart.get_Level(axG2antt1.Chart.LevelCount - 1);
level.BackColor = ToUInt32(SystemColors.Desktop);
level.ForeColor = ToUInt32(Color.FromArgb(255,255,255));

where the ToUInt32 function converts a Color expression to an OLE_COLOR type:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;

 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample changes the appearance for the last level:

With thisform.G2antt1.Chart
 With .Level(.LevelCount - 1)
 .BackColor = 0x80000001
 .ForeColor = RGB(255, 255, 255)
 EndWith
EndWith

property Level.Count as Long
Counts the units in the level.

Type Description

Long A Long expression that indicates the number of units being
displayed in the same place in the level.

By default, the Count property is 1. The Count property specifies the number of units being
displayed in the level. The Label property may change the Unit and the Count
property. The Unit property specifies the unit being used to display labels in the level. Use
the Label property to assign a caption for the level. Use the NextDate property to get the
next date. Use the Zoom method to zoom the chart to a specified interval of dates. Use the
FormatDate property to format a date to a specified format. Use the CountVisibleUnits
property and the ClientWidth property of the eXPrint component to specify that you need to
display the chart on a single page. The StartPrintDate and EndPrintDate property specifies
range of dates within the chart is printed.

The following screen shot shows a header that displays the dates from 3 by 3 days :

property Level.DrawGridLines as Boolean
Specifies whether the grid lines are shown or hidden for specified level.

Type Description

Boolean
A Boolean expression that indicates whether the vertical
grid lines between time units in the level are visible or
hidden.

By default, the DrawGridLines property is False. Use the DrawGridLines property to
specify whether the control draws the grid lines in the chart's area. The GridLineStyle
property to specify the style for horizontal or/and vertical gridlines in the level view. Use the
GridLineColor property to specify the color for the vertical grid lines between time units.
The DrawGridLines property draws the vertical grid lines only if the DrawGridLines property
of the Chart object is exVLines, exRowLines or exAllLines. If the DrawGridLines property is
exNoLines, exHLines, the DrawGridLines property has no effect. Use the MarkTodayColor
property to specify the color to mark the today date. Use the NonworkingDays property to
specify the nonworking days. Use the NonworkingDaysPattern property to specify the brush
to fill the nonworking days area. Use the DrawTickLines property to specify whether the
grid lines between time units in the level are visible or hidden. The OverviewLevelLines
property indicates the index of the level that displays the grid line in the chart's overview.
Use the AdjustLevelsToBase property in case you are using a not-contiguous time scale, so
the tick lines are not properly arranged.

Your application can provide some options to help user while performing moving or resizing
the bars at runtime as follow:

grid lines, that can be shown only when moving or resizing, using the
ChartStartChanging and ChartEndChanging events
select date, to specify the margins of the area you want to highlight
ticker, that shows the cursor's position in the chart, or while resizing, it shows the size
and the position of the bar
ability to specify a resizing/moving unit, different that the displayed one ie while the
chart displays days, you can specify the resizing unit on hours.

inside zoom, that can be used to magnify the portion of the chart being selected

property Level.DrawTickLines as LevelLineEnum
Specifies whether the tick lines are shown or hidden.

Type Description

LevelLineEnum A LevelLineEnum expression that specifies the type of line
to divide the time units in the level.

By default, the DrawTickLines property is exLevelDefaultLine (dotted line). The
DrawTickLines / DrawTickLinesFrom property always draw the vertically lines in the level,
while the DrawLevelSeparator property draws the horizontally lines in the level. Use the
DrawTickLinesFrom method to show an alternative tick lines based on the time scale units
of the another level. Use the DrawGridLines property to specify whether the control draws
the grid lines in the chart's area. Use the GridLineColor property to specify the color for grid
lines. Use the DrawGridLines property to draw grid lines for a specified level. Use the
DrawLevelSeperator property to draw lines between levels inside the chart's header. Use
the MarkTodayColor property to specify the color to mark the today date. Use the
AdjustLevelsToBase property in case you are using a not-contiguous time scale, so the tick
lines are not properly arranged.

method Level.DrawTickLinesFrom (Level as Long, Type as
LevelLineEnum)
Indicates whether the level shows tick lines from specified level.

Type Description

Level as Long A long expression that specifies the index of the level that
specifies the new base scale unit to show the tick lines

Type as LevelLineEnum A LevelLineEnum expression that specifies the tick lines
being shown.

Use the DrawTickLinesFrom method to show the tick lines based on the scale of another
level. Use the DrawTickLinesFrom method when you need to display multiple tick lines
based on the different levels. The DrawTickLines property specifies the style of lines being
shown between time units of the level. The DrawTickLines / DrawTickLinesFrom property
always draw the vertically lines in the level, while the DrawLevelSeparator property draws
the horizontally lines in the level. Use the AdjustLevelsToBase property in case you are
using a not-contiguous time scale, so the tick lines are not properly arranged.

The following screen shot shows on the first level days being separated with
exLevelLowerHalf + exLevelSolidLine, while the second level displays hours
exLevelMiddleLine Or exLevelDotLine, and call the .DrawTickLinesFrom 0,
exLevelSolidLine, which means that the vertically solid lines from the second header are
actually dictated by the first level, while the rest of units displays exLevelMiddleLine Or
exLevelDotLine verticaly lines.

The following VB sample displays the tick lines from first level to second level:

With G2antt1
 .BeginUpdate
 With .Chart
 .DrawLevelSeparator = exLevelNoLine
 .UnitWidth = 24
 .FirstVisibleDate = #1/1/2001#
 .PaneWidth(0) = 0
 .LevelCount = 2
 With .Level(0)
 .Alignment = CenterAlignment
 .Label = "<%dddd%>"

 .DrawTickLines = 18
 End With
 With .Level(1)
 .Label = 65536
 .Count = 6
 .DrawTickLines = 66
 .DrawTickLinesFrom 0,exLevelSolidLine
 End With
 End With
 .EndUpdate
End With

The following VB.NET sample displays the tick lines from first level to second level:

With AxG2antt1
 .BeginUpdate
 With .Chart
 .DrawLevelSeparator = EXG2ANTTLib.LevelLineEnum.exLevelNoLine
 .UnitWidth = 24
 .FirstVisibleDate = #1/1/2001#
 .PaneWidth(0) = 0
 .LevelCount = 2
 With .Level(0)
 .Alignment = EXG2ANTTLib.AlignmentEnum.CenterAlignment
 .Label = "<%dddd%>"
 .DrawTickLines = 18
 End With
 With .Level(1)
 .Label = 65536
 .Count = 6
 .DrawTickLines = 66
 .DrawTickLinesFrom 0,EXG2ANTTLib.LevelLineEnum.exLevelSolidLine
 End With
 End With
 .EndUpdate
End With

The following C++ sample displays the tick lines from first level to second level:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->BeginUpdate();
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutDrawLevelSeparator(EXG2ANTTLib::exLevelNoLine);
 var_Chart->PutUnitWidth(24);
 var_Chart->PutFirstVisibleDate("1/1/2001");
 var_Chart->PutPaneWidth(0,0);
 var_Chart->PutLevelCount(2);
 EXG2ANTTLib::ILevelPtr var_Level = var_Chart->GetLevel(0);
 var_Level->PutAlignment(EXG2ANTTLib::CenterAlignment);
 var_Level->PutLabel("<%dddd%>");
 var_Level->PutDrawTickLines((EXG2ANTTLib::LevelLineEnum)18);
 EXG2ANTTLib::ILevelPtr var_Level1 = var_Chart->GetLevel(1);
 var_Level1->PutLabel(long(65536));
 var_Level1->PutCount(6);
 var_Level1->PutDrawTickLines((EXG2ANTTLib::LevelLineEnum)66);
 var_Level1->DrawTickLinesFrom(0,EXG2ANTTLib::exLevelSolidLine);
spG2antt1->EndUpdate();

The following C# sample displays the tick lines from first level to second level:

axG2antt1.BeginUpdate();
EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;
 var_Chart.DrawLevelSeparator = EXG2ANTTLib.LevelLineEnum.exLevelNoLine;
 var_Chart.UnitWidth = 24;
 var_Chart.FirstVisibleDate = "1/1/2001";
 var_Chart.set_PaneWidth(0 != 0,0);
 var_Chart.LevelCount = 2;
 EXG2ANTTLib.Level var_Level = var_Chart.get_Level(0);

 var_Level.Alignment = EXG2ANTTLib.AlignmentEnum.CenterAlignment;
 var_Level.Label = "<%dddd%>";
 var_Level.DrawTickLines = (EXG2ANTTLib.LevelLineEnum)18;
 EXG2ANTTLib.Level var_Level1 = var_Chart.get_Level(1);
 var_Level1.Label = 65536;
 var_Level1.Count = 6;
 var_Level1.DrawTickLines = (EXG2ANTTLib.LevelLineEnum)66;
 var_Level1.DrawTickLinesFrom(0,EXG2ANTTLib.LevelLineEnum.exLevelSolidLine);
axG2antt1.EndUpdate();

The following VFP sample displays the tick lines from first level to second level:

with thisform.G2antt1
 .BeginUpdate
 with .Chart
 .DrawLevelSeparator = 0
 .UnitWidth = 24
 .FirstVisibleDate = {^2001-1-1}
 .PaneWidth(0) = 0
 .LevelCount = 2
 with .Level(0)
 .Alignment = 1
 .Label = "<%dddd%>"
 .DrawTickLines = 18
 endwith
 with .Level(1)
 .Label = 65536
 .Count = 6
 .DrawTickLines = 66
 .DrawTickLinesFrom(0,2)
 endwith
 endwith
 .EndUpdate
endwith

The following Delphi sample displays the tick lines from first level to second level:

with AxG2antt1 do

begin
 BeginUpdate();
 with Chart do
 begin
 DrawLevelSeparator := EXG2ANTTLib.LevelLineEnum.exLevelNoLine;
 UnitWidth := 24;
 FirstVisibleDate := '1/1/2001';
 PaneWidth[0 <> 0] := 0;
 LevelCount := 2;
 with Level[0] do
 begin
 Alignment := EXG2ANTTLib.AlignmentEnum.CenterAlignment;
 Label := '<%dddd%>';
 DrawTickLines := EXG2ANTTLib.LevelLineEnum(18);
 end;
 with Level[1] do
 begin
 Label := TObject(65536);
 Count := 6;
 DrawTickLines := EXG2ANTTLib.LevelLineEnum(66);
 DrawTickLinesFrom(0,EXG2ANTTLib.LevelLineEnum.exLevelSolidLine);
 end;
 end;
 EndUpdate();
end

property Level.ForeColor as Color
Specifies the level's foreground color.

Type Description

Color A Color expression that indicates the level's foreground
color.

Use the ForeColor property to specify the foreground color for a specified level. Use the
BackColor property to specify the background color for a specified level. Use the
BackColorLevelHeader property to specify the background color of the chart's header. Use
the ForeColorLevelHeader property to specify the foreground color of the chart's header.
Use the BackColor property to specify the chart's background color. Use the ForeColor
property to specify the chart's foreground color. Use the ItemBackColor property to change
the item's background color. Use the NonworkingDaysColor property the color of the brush
to fill the nonworking days area.

The following VB sample changes the appearance for the last level:

With G2antt1.Chart
 With .Level(.LevelCount - 1)
 .BackColor = SystemColorConstants.vbDesktop
 .ForeColor = RGB(255, 255, 255)
 End With
End With

The following C++ sample changes the appearance for the last level:

CLevel level = m_g2antt.GetChart().GetLevel(m_g2antt.GetChart().GetLevelCount()-1);
level.SetBackColor(0x80000000 | COLOR_DESKTOP);
level.SetForeColor(RGB(255,255,255));

The following VB.NET sample changes the appearance for the last level:

With AxG2antt1.Chart
 With .Level(.LevelCount - 1)
 .BackColor = ToUInt32(SystemColors.Desktop)
 .ForeColor = RGB(255, 255, 255)
 End With
End With

where the ToUInt32 function converts a Color expression to an OLE_COLOR type:

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample changes the appearance for the last level:

EXG2ANTTLib.Level level = axG2antt1.Chart.get_Level(axG2antt1.Chart.LevelCount - 1);
level.BackColor = ToUInt32(SystemColors.Desktop);
level.ForeColor = ToUInt32(Color.FromArgb(255,255,255));

where the ToUInt32 function converts a Color expression to an OLE_COLOR type:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample changes the appearance for the last level:

With thisform.G2antt1.Chart
 With .Level(.LevelCount - 1)
 .BackColor = 0x80000001
 .ForeColor = RGB(255, 255, 255)
 EndWith
EndWith

property Level.FormatLabel as String
Formats the labels based on the specified formula.

Type Description

String A String expression that specifies the formula to format
the level.

By default, the FormatLabel property is Empty. The FormatLabel property has effect only if
it is valid and not empty. The Label property defines the label being shown in the chart. Use
the FormatLabel property to customize the labels being displayed in the chart's level. The
value keyword in the FormatLabel property specifies the label of the level as it is before
formatting (in string format). The dvalue keyword, indicates the date-time expression of
the element in the label being formatted. Also, you can use the ReplaceLabel property to
replace a specified label.

For instance, you can use the FormatLabel property to customize the labels and the
subdivisions in your chart as you can see in the following screen shot ("'Group
'+int(1 +dvalue/16)"):

If the Unit property is exDay for several levels (more than 1 level), you can display
your subdivisions using the Count property, based on 0, not based on the
FirstVisibleDate property. You can get this layout using the

Other sample would be, if you need to display the last Friday of each month using a
different color, so in this case you can use the FormatLevel property as "
(weekday(dvalue)=5 ? month(dvalue+7)!=month(dvalue) ? '<bgcolor=000000>
<fgcolor=FFFFFF>') + value" as in the following screen shot:

The screen shows in different colors the Jun 27 as being the last Friday of June, and
the Jul 25 as being the last Friday on July.

The following screen shot shows the week end days using a different foreground color
(FormatLabel property is "weekday(dvalue)=6 ? '<fgcolor=D0D0D0>Sa' : (
weekday(dvalue)=0 ? '<fgcolor=D0D0D0>Su' : value)")

The value keyword in the FormatLabel property specifies the label of the level as it is
before formatting (in string format). The dvalue keyword, indicates the date-time
expression of the element in the label being formatted.

This property/method supports predefined constants and operators/functions as described
here.

The following VB sample shows how you can highlight the last Friday for each month::

With G2antt1
 With .Chart
 .PaneWidth(0) = 0
 .FirstVisibleDate = #1/17/2008#
 .LevelCount = 2
 .Level(1).FormatLabel = "(weekday(dvalue)=5 ? month(dvalue+7)!=month(dvalue) ?
'<bgcolor=000000><fgcolor=FFFFFF>') +" & _
" value"
 End With
End With

The following VB sample shows how you can define your own labels and subdivisions:

With G2antt1
 .BeginUpdate
 With .Chart
 .ToolTip = ""
 .PaneWidth(0) = 0
 .ScrollRange(exStartDate) = 0
 .ScrollRange(exEndDate) = 110
 .FirstVisibleDate = 0
 .ShowNonworkingDates = False
 .MarkTodayColor = .BackColor
 .LevelCount = 3
 With .Level(0)
 .ToolTip = ""
 .Alignment = CenterAlignment

 .Unit = exDay
 .Count = 16
 .FormatLabel = "'Group '+int(1 +dvalue/16)"
 End With
 With .Level(1)
 .ToolTip = ""
 .Alignment = CenterAlignment
 .Unit = exDay
 .Count = 4
 .FormatLabel = " (abs(dvalue)/4) mod 4"
 .ReplaceLabel("0") = "Sub-Group 1"
 .ReplaceLabel("1") = "Sub-Group 2"
 .ReplaceLabel("2") = "Sub-Group 3"
 .ReplaceLabel("3") = "Sub-Group 4"
 End With
 With .Level(2)
 .ToolTip = ""
 .Unit = exDay
 .Count = 1
 .FormatLabel = "(abs(dvalue) mod 4)"
 .ReplaceLabel("0") = "A"
 .ReplaceLabel("1") = "B"
 .ReplaceLabel("2") = "C"
 .ReplaceLabel("3") = "D"
 End With
 End With
 .EndUpdate
End With

The following VB.NET sample shows how you can highlight the last Friday for each month::

With AxG2antt1
 With .Chart
 .PaneWidth(0) = 0
 .FirstVisibleDate = #1/17/2008#
 .LevelCount = 2
 .Level(1).FormatLabel = "(weekday(dvalue)=5 ? month(dvalue+7)!=month(dvalue) ?

'<bgcolor=000000><fgcolor=FFFFFF>') +" & _
" value"
 End With
End With

The following VB.NET sample shows how you can define your own labels and subdivisions:

With AxG2antt1
 .BeginUpdate
 With .Chart
 .ToolTip = ""
 .PaneWidth(0) = 0
 .ScrollRange(EXG2ANTTLib.ScrollRangeEnum.exStartDate) = 0
 .ScrollRange(EXG2ANTTLib.ScrollRangeEnum.exEndDate) = 110
 .FirstVisibleDate = 0
 .ShowNonworkingDates = False
 .MarkTodayColor = .BackColor
 .LevelCount = 3
 With .Level(0)
 .ToolTip = ""
 .Alignment = EXG2ANTTLib.AlignmentEnum.CenterAlignment
 .Unit = EXG2ANTTLib.UnitEnum.exDay
 .Count = 16
 .FormatLabel = "'Group '+int(1 +dvalue/16)"
 End With
 With .Level(1)
 .ToolTip = ""
 .Alignment = EXG2ANTTLib.AlignmentEnum.CenterAlignment
 .Unit = EXG2ANTTLib.UnitEnum.exDay
 .Count = 4
 .FormatLabel = " (abs(dvalue)/4) mod 4"
 .ReplaceLabel("0") = "Sub-Group 1"
 .ReplaceLabel("1") = "Sub-Group 2"
 .ReplaceLabel("2") = "Sub-Group 3"
 .ReplaceLabel("3") = "Sub-Group 4"
 End With
 With .Level(2)

 .ToolTip = ""
 .Unit = EXG2ANTTLib.UnitEnum.exDay
 .Count = 1
 .FormatLabel = "(abs(dvalue) mod 4)"
 .ReplaceLabel("0") = "A"
 .ReplaceLabel("1") = "B"
 .ReplaceLabel("2") = "C"
 .ReplaceLabel("3") = "D"
 End With
 End With
 .EndUpdate
End With

The following C++ sample shows how you can highlight the last Friday for each month::

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutPaneWidth(0,0);
 var_Chart->PutFirstVisibleDate("1/17/2008");
 var_Chart->PutLevelCount(2);
 var_Chart->GetLevel(1)->PutFormatLabel(_bstr_t("(weekday(dvalue)=5 ?
month(dvalue+7)!=month(dvalue) ? '<bgcolor=000000><fgcolor=FFFFFF>') +") +
" value");

The following C++ sample shows how you can define your own labels and subdivisions:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExG2antt 1.0 Control Library'

 #import <ExG2antt.dll>
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IG2anttPtr spG2antt1 = GetDlgItem(IDC_G2ANTT1)-
>GetControlUnknown();
spG2antt1->BeginUpdate();
EXG2ANTTLib::IChartPtr var_Chart = spG2antt1->GetChart();
 var_Chart->PutToolTip(L"");
 var_Chart->PutPaneWidth(0,0);
 var_Chart->PutScrollRange(EXG2ANTTLib::exStartDate,long(0));
 var_Chart->PutScrollRange(EXG2ANTTLib::exEndDate,long(110));
 var_Chart->PutFirstVisibleDate(long(0));
 var_Chart->PutShowNonworkingDates(VARIANT_FALSE);
 var_Chart->PutMarkTodayColor(var_Chart->GetBackColor());
 var_Chart->PutLevelCount(3);
 EXG2ANTTLib::ILevelPtr var_Level = var_Chart->GetLevel(0);
 var_Level->PutToolTip("");
 var_Level->PutAlignment(EXG2ANTTLib::CenterAlignment);
 var_Level->PutUnit(EXG2ANTTLib::exDay);
 var_Level->PutCount(16);
 var_Level->PutFormatLabel(L"'Group '+int(1 +dvalue/16)");
 EXG2ANTTLib::ILevelPtr var_Level1 = var_Chart->GetLevel(1);
 var_Level1->PutToolTip("");
 var_Level1->PutAlignment(EXG2ANTTLib::CenterAlignment);
 var_Level1->PutUnit(EXG2ANTTLib::exDay);
 var_Level1->PutCount(4);
 var_Level1->PutFormatLabel(L" (abs(dvalue)/4) mod 4");
 var_Level1->PutReplaceLabel(L"0",L"Sub-Group 1");
 var_Level1->PutReplaceLabel(L"1",L"Sub-Group 2");
 var_Level1->PutReplaceLabel(L"2",L"Sub-Group 3");
 var_Level1->PutReplaceLabel(L"3",L"Sub-Group 4");
 EXG2ANTTLib::ILevelPtr var_Level2 = var_Chart->GetLevel(2);
 var_Level2->PutToolTip("");
 var_Level2->PutUnit(EXG2ANTTLib::exDay);
 var_Level2->PutCount(1);
 var_Level2->PutFormatLabel(L"(abs(dvalue) mod 4)");
 var_Level2->PutReplaceLabel(L"0",L"A");

 var_Level2->PutReplaceLabel(L"1",L"B");
 var_Level2->PutReplaceLabel(L"2",L"C");
 var_Level2->PutReplaceLabel(L"3",L"D");
spG2antt1->EndUpdate();

The following C# sample shows how you can highlight the last Friday for each month::

EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;
 var_Chart.set_PaneWidth(0 != 0,0);
 var_Chart.FirstVisibleDate = "1/17/2008";
 var_Chart.LevelCount = 2;
 var_Chart.get_Level(1).FormatLabel = "(weekday(dvalue)=5 ?
month(dvalue+7)!=month(dvalue) ? '<bgcolor=000000><fgcolor=FFFFFF>') +" +
" value";

The following C# sample shows how you can define your own labels and subdivisions:

axG2antt1.BeginUpdate();
EXG2ANTTLib.Chart var_Chart = axG2antt1.Chart;
 var_Chart.ToolTip = "";
 var_Chart.set_PaneWidth(0 != 0,0);
 var_Chart.set_ScrollRange(EXG2ANTTLib.ScrollRangeEnum.exStartDate,0);
 var_Chart.set_ScrollRange(EXG2ANTTLib.ScrollRangeEnum.exEndDate,110);
 var_Chart.FirstVisibleDate = 0;
 var_Chart.ShowNonworkingDates = false;
 var_Chart.MarkTodayColor = var_Chart.BackColor;
 var_Chart.LevelCount = 3;
 EXG2ANTTLib.Level var_Level = var_Chart.get_Level(0);
 var_Level.ToolTip = "";
 var_Level.Alignment = EXG2ANTTLib.AlignmentEnum.CenterAlignment;
 var_Level.Unit = EXG2ANTTLib.UnitEnum.exDay;
 var_Level.Count = 16;
 var_Level.FormatLabel = "'Group '+int(1 +dvalue/16)";
 EXG2ANTTLib.Level var_Level1 = var_Chart.get_Level(1);
 var_Level1.ToolTip = "";
 var_Level1.Alignment = EXG2ANTTLib.AlignmentEnum.CenterAlignment;
 var_Level1.Unit = EXG2ANTTLib.UnitEnum.exDay;
 var_Level1.Count = 4;

 var_Level1.FormatLabel = " (abs(dvalue)/4) mod 4";
 var_Level1.set_ReplaceLabel("0","Sub-Group 1");
 var_Level1.set_ReplaceLabel("1","Sub-Group 2");
 var_Level1.set_ReplaceLabel("2","Sub-Group 3");
 var_Level1.set_ReplaceLabel("3","Sub-Group 4");
 EXG2ANTTLib.Level var_Level2 = var_Chart.get_Level(2);
 var_Level2.ToolTip = "";
 var_Level2.Unit = EXG2ANTTLib.UnitEnum.exDay;
 var_Level2.Count = 1;
 var_Level2.FormatLabel = "(abs(dvalue) mod 4)";
 var_Level2.set_ReplaceLabel("0","A");
 var_Level2.set_ReplaceLabel("1","B");
 var_Level2.set_ReplaceLabel("2","C");
 var_Level2.set_ReplaceLabel("3","D");
axG2antt1.EndUpdate();

The following VFP sample shows how you can highlight the last Friday for each month::

with thisform.G2antt1
 with .Chart
 .PaneWidth(0) = 0
 .FirstVisibleDate = {^2008-1-17}
 .LevelCount = 2
 var_s = "(weekday(dvalue)=5 ? month(dvalue+7)!=month(dvalue) ? '
<bgcolor=000000><fgcolor=FFFFFF>') + "
 var_s = var_s + "value"
 .Level(1).FormatLabel = var_s
 endwith
endwith

The following VFP sample shows how you can define your own labels and subdivisions:

with thisform.G2antt1
 .BeginUpdate
 with .Chart
 .ToolTip = ""
 .PaneWidth(0) = 0
 .ScrollRange(0) = 0

 .ScrollRange(1) = 110
 .FirstVisibleDate = 0
 .ShowNonworkingDates = .F.
 .MarkTodayColor = .BackColor
 .LevelCount = 3
 with .Level(0)
 .ToolTip = ""
 .Alignment = 1
 .Unit = 4096
 .Count = 16
 .FormatLabel = "'Group '+int(1 +dvalue/16)"
 endwith
 with .Level(1)
 .ToolTip = ""
 .Alignment = 1
 .Unit = 4096
 .Count = 4
 .FormatLabel = " (abs(dvalue)/4) mod 4"
 .ReplaceLabel("0") = "Sub-Group 1"
 .ReplaceLabel("1") = "Sub-Group 2"
 .ReplaceLabel("2") = "Sub-Group 3"
 .ReplaceLabel("3") = "Sub-Group 4"
 endwith
 with .Level(2)
 .ToolTip = ""
 .Unit = 4096
 .Count = 1
 .FormatLabel = "(abs(dvalue) mod 4)"
 .ReplaceLabel("0") = "A"
 .ReplaceLabel("1") = "B"
 .ReplaceLabel("2") = "C"
 .ReplaceLabel("3") = "D"
 endwith
 endwith
 .EndUpdate
endwith

property Level.GridLineColor as Color
Specifies the grid line color for the specified level.

Type Description

Color A Color expression that indicates the color of the vertical
grid lines in the chart area.

Use the GridLineColor property to specify the color for the vertical grid lines between time
units. Use the DrawGridLines property to specify whether the control draws the grid lines in
the chart's area. The DrawGridLines property draws the vertical grid lines only if the
DrawGridLines property of the Chart object is exVLines, exRowLines or exAllLines. If the
DrawGridLines property is exNoLines, exHLines, the DrawGridLines property has no effect.
Use the MarkTodayColor property to specify the color to mark the today date.

property Level.GridLineStyle as GridLinesStyleEnum
Specifies the style for the chart's vertical gridlines.

Type Description

GridLinesStyleEnum A GridLinesStyleEnum expression that specifies the style
to show the chart's vertical gridlines.

By default, the GridLineStyle property is exGridLinesDot. The GridLineStyle property has
effect only if the chart's DrawGridLines property is not zero and one of the level's
DrawGridLines property is True. Use the GridLineColor property to specify the color for
vertical grid lines. Use the DrawTickLines property to specify whether the grid lines
between time units in the level are visible or hidden

property Level.Label as Variant
Retrieves or sets a value that indicates the format of the level's label.

Type Description

Variant

A String expression that indicates the format of the level's
label, an UnitEnum expression that indicates the
predefined format being used. The Label property defines
predefined formats for labales.

The Label property defines the HTML labels being displayed on the chart's header. Use the
Alignment property to specify the label's alignment. Use the Alignment property on
exHOutside to prevent hiding the level's label while the user scrolls left or right the chart.
Use the ToolTip property to specify the tooltip being displayed when the cursor hovers the
level. Use the BackColor and ForeColor properties to change the level's appearance. The
WeekDays property retrieves or sets a value that indicates the list of names for each week
day, separated by space. Use the MonthNames property to specify the name of the months
in the year. The FormatDate property formats a date. Use the ReplaceLabel property to
customize the labels as adding icons/images/pictures or change the captions being
displayed by default in the chart's header. Valid date values range from January 1, 100 A.D.
(-647434) to December 31, 9999 A.D. (2958465). A date value of 0 represents December
30, 1899. Use the FormatLabel property to format the label giving a formula.

The Label property supports alternative HTML labels being separated by "<|>" and values
for Count and Unit being separated by "<||>". By alternate HTML label we mean that you
can define a list of HTML labels that may be displayed in the chart's header based on the
space allocated for the time-unit. In other words, the control chooses automatically the
alternate HTML label to be displayed for best fitting in the portion of the chart where the
time-unit should be shown.

The Label property format is "ALT1[<|>ALT2<|>...[<||>COUNT[<||>UNIT]]]" where

ALT defines a HTML label
COUNT specifies the value for the Count property
UNIT field indicates the value for the Unit property
and the parts delimited by [] brackets may miss.

The Label property may change the Unit and the Count property. You can always use
a different Unit or Count by setting the property after setting the Label property.

The following screen shots shows the chart's header using different values for UnitWidth
property.

The UnitWidth property is 6 pixels, so the base level displays nothing.

The UnitWidth property is 18 pixels, so the base level displays the first letter of the
weekday (S - S)

The UnitWidth property is 36 pixels, so the base level displays the first 3 letters of the
weekday (Sun - Sat)

For instance, Label = "<|><%d1%><|><%d2%><|><%d3%><|><%dddd%><|><%d3%>,
<%m3%> <%d%>, '<%yy%><|><%dddd%>, <%mmmm%> <%d%>, <%yyyy%>
<||>1<||>4096" indicates a list of 7 alternate HTML labels, the Count property set on 1 and
the Unit property set on exDay (4096).

So, the header of the level in the chart shows one of the following alternate HTML labels:

- displays nothing, if the space is less than 6 pixels.
<%d1%> - First letter of the weekday (S to S)
<%d2%> - First two letters of the weekday (Su to Sa)
<%d3%> - First three letters of the weekday (Sun to Sat)
<%dddd%> - Full name of the weekday (Sunday to Saturday)
<%d3%>, <%m3%> <%d%>, '<%yy%> -
<%dddd%>, <%mmmm%> <%d%>, <%yyyy%>

based on the space being allocated for the time unit. If the label is being shown on the base
level, the UnitWidth property defines the space for the time-unit, so the control chooses the
alternate HTML label which best fits the allocated space (width). The Font property
defines the font to show the chart's labels which is also used to get the best fit label to be
displayed. For any other level, the space is automatically calculated based on the base

level's width. In other words, when UnitWidth property is changed or the user rescale or
zoom the chart area, the chart's header displays alternate labels. If the Label property
defines no alternate labels, the single representation is shown no matter of the UnitWidth,
Font and other zooming settings.

The Label property may change the Unit property as in the following scenario. Let's say that
you need to display the weeks so you choose to have the week number "<%ww%>" or the
first day in the week in format "<%d3%>, <%m3%> <%d%>, '<%yy%>" so the Label
property should be "<%ww%><|><%d3%>, <%m3%> <%d%>, '<%yy%>". If you are using
this format, the Unit property will always be set on exDay, as in the second alternate label
the unit is day as the minimum scale unit being found is <%d3%> or <%d%> which
indicates days. In order to correct this, you should specify the Unit to be used for the
alternate labels as "<%ww%><|><%d3%>, <%m3%> <%d%>, '<%yy%><||><||>256".

For instance, if a level should display 15 to 15 minutes, you can do one of the following:

call the Label = "<%nn%>" and after call the Count = 15.
call the Label = "<%nn%><||>15", which means that the level displays minutes, and
the Count property is automatically set on 15.

Any of these statements can be used to let the level displays minutes from 15 to 15.

The Label property supports the following built-in tags:

<%d%> - Day of the month in one or two numeric digits, as needed (1 to 31).
<%dd%> - Day of the month in two numeric digits (01 to 31).
<%d1%> - First letter of the weekday (S to S). (Use the WeekDays property to
specify the name of the days in the week)
<%loc_d1%> - Indicates day of week as a one-letter abbreviation using the current
user settings.
<%d2%> - First two letters of the weekday (Su to Sa). (Use the WeekDays property
to specify the name of the days in the week)
<%loc_d2%> - Indicates day of week as a two-letters abbreviation using the current
user settings.
<%d3%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week)
<%loc_d3%> equivalent with <%loc_ddd%>
<%ddd%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_ddd%> that indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%loc_ddd%> - Indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.

<%dddd%> - Full name of the weekday (Sunday to Saturday). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_dddd%> that indicates day of week as its full name using the current user
regional and language settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
regional and language settings.
<%i%> - Displays the number instead the date. For instance, you can display numbers
as 1000, 1001, 1002, 1003, instead dates. (the valid range is from -647,434 to
2,958,465)
<%w%> - Day of the week (1 to 7).
<%ww%> - Week of the year (1 to 53).
<%m%> - Month of the year in one or two numeric digits, as needed (1 to 12).
<%mr%> - Month of the year in Roman numerals, as needed (I to XII).
<%mm%> - Month of the year in two numeric digits (01 to 12).
<%m1%> - First letter of the month (J to D). (Use the MonthNames property to
specify the name of the months in the year)
<%loc_m1%> - Indicates month as a one-letter abbreviation using the current user
settings.
<%m2%> - First two letters of the month (Ja to De). (Use the MonthNames property
to specify the name of the months in the year)
<%loc_m2%> - Indicates month as a two-letters abbreviation using the current user
settings.
<%m3%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year)
<%loc_m3%> - equivalent with <%loc_mmm%>
<%mmm%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year). You can use the
<%loc_mmm%> that indicates month as a three-letter abbreviation using the current
user regional and language settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
regional and language settings.
<%mmmm%> - Full name of the month (January to December). (Use the
MonthNames property to specify the name of the months in the year). You can use the
<%loc_mmmm%> that indicates month as its full name using the current user regional
and language settings.
<%loc_mmmm%> - Indicates month as its full name using the current user regional
and language settings.
<%q%> - Date displayed as the quarter of the year (1 to 4).
<%y%> - Number of the day of the year (1 to 366).
<%yy%> - Last two digits of the year (01 to 99).
<%yyyy%> - Full year (0100 to 9999).
<%hy%> - Date displayed as the half of the year (1 to 2).

<%loc_gg%> - Indicates period/era using the current user regional and language
settings.
<%loc_sdate%> - Indicates the date in the short format using the current user regional
and language settings.
<%loc_ldate%> - Indicates the date in the long format using the current user regional
and language settings.
<%loc_dsep%> - Indicates the date separator using the current user regional and
language settings (/).
<%h%> - Hour in one or two digits, as needed (0 to 23).
<%hh%> - Hour in two digits (00 to 23).
<%h12%> - Hour in 12-hour time format, in one or two digits - [0(12),11]
<%hh12%> - hour in 12-hour time format, in two digits - [00(12),11]
<%n%> - Minute in one or two digits, as needed (0 to 59).
<%nn%> - Minute in two digits (00 to 59).
<%s%> - Second in one or two digits, as needed (0 to 59).
<%ss%> - Second in two digits (00 to 59).
<%AM/PM%> - Twelve-hour clock with the uppercase letters "AM" or "PM", as
appropriate. (Use the AMPM property to specify the name of the AM and PM
indicators). You can use the <%loc_AM/PM%> that indicates the time marker such as
AM or PM using the current user regional and language settings. You can use
<%loc_A/P%> that indicates the one character time marker such as A or P using the
current user regional and language settings
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user regional and language settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user regional and language settings.
<%loc_time%> - Indicates the time using the current user regional and language
settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user regional and language settings.
<%loc_tsep%> - indicates the time separator using the current user regional and
language settings (:)
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,

for example, "13". No additional leading zeros are displayed

The following tags are displayed based on the user's Regional and Language Options:

<%loc_sdate%> - Indicates the date in the short format using the current user
settings.
<%loc_ldate%> - Indicates the date in the long format using the current user settings.
<%loc_d1%> - Indicates day of week as a one-letter abbreviation using the current
user settings.
<%loc_d2%> - Indicates day of week as a two-letters abbreviation using the current
user settings.
<%loc_d3%> equivalent with <%loc_ddd%>
<%loc_ddd%> - Indicates day of week as a three-letters abbreviation using the
current user settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
settings.
<%loc_m1%> - Indicates month as a one-letter abbreviation using the current user
settings.
<%loc_m2%> - Indicates month as a two-letters abbreviation using the current user
settings.
<%loc_m3%> - equivalent with <%loc_mmm%>
<%loc_mmm%> - Indicates month as a three-letters abbreviation using the current
user settings.
<%loc_mmmm%> - Indicates month as its full name using the current user settings.
<%loc_gg%> - Indicates period/era using the current user settings.
<%loc_dsep%> - Indicates the date separator using the current user settings.
<%loc_time%> - Indicates the time using the current user settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user settings.
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user settings.
<%loc_tsep%> - Indicates the time separator using the current user settings
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the

Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed

The Label property supports the following built-in HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.

about:blank

<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text

such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

The Label property may be a combination of any of these tags. For instance, the "
<%mmm%> <%d%>, '<%yy%>" displays a date like: "May 29,'05".

The first level displays the month, the year and the number of the week in the year , the
second level displays the name of the week day, and the third level displays the day of the
month. The LevelCount property specifies the number of levels being displayed, in our case
3.

The following Template shows how to display your header using three levels as arranged in
the picture above (just copy and paste the following script to Template page):

BeginUpdate()
Chart
{
 LevelCount = 3
 Level(0)
 {
 Label = "<%mmm%>, <%yyyy%> <r>Week: <%ww%>"
 Unit = 256 'exWeek
 }
 Level(1).Label = "<%d1%>"
 Level(2).Label = "<%d%>"
}
EndUpdate()

The following VB sample displays your header using 3 levels as shown above:

With G2antt1
 .BeginUpdate
 With .Chart
 .LevelCount = 3
 With .Level(0)
 .Label = "<%mmm%>, <%yyyy%> <r>Week: <%ww%>"
 .Unit = EXG2ANTTLibCtl.UnitEnum.exWeek
 End With
 .Level(1).Label = "<%d1%>"
 .Level(2).Label = "<%d%>"
 End With
 .EndUpdate
End With

 The following VFP sample displays your header using 3 levels:

with thisform.g2antt1
.BeginUpdate()
with .Chart
 .LevelCount = 3
 with .Level(0)
 .Label = "<%mmm%>, <%yyyy%> <r>Week: <%ww%>"
 .Unit = 256
 endwith
 .Level(1).Label = "<%d1%>"
 .Level(2).Label = "<%d%>"
endwith
.EndUpdate()
endwith

 The following VB.NET sample displays your header using 3 levels:

With AxG2antt1
 .BeginUpdate()
 With .Chart
 .LevelCount = 3
 With .Level(0)
 .Label = "<%mmm%>, <%yyyy%> <r>Week: <%ww%>"
 .Unit = EXG2ANTTLib.UnitEnum.exWeek
 End With
 .Level(1).Label = "<%d1%>"
 .Level(2).Label = "<%d%>"
 End With
 .EndUpdate()
End With

 The following C# sample displays your header using 3 levels:

axG2antt1.BeginUpdate();
EXG2ANTTLib.Chart chart = axG2antt1.Chart;
chart.LevelCount = 3;
chart.get_Level(0).Label = "<%mmm%>, <%yyyy%> <r>Week: <%ww%>";
chart.get_Level(0).Unit = EXG2ANTTLib.UnitEnum.exWeek;
chart.get_Level(1).Label = "<%d1%>";

chart.get_Level(2).Label = "<%d%>";
axG2antt1.EndUpdate();

 The following C++ sample displays your header using 3 levels:

m_g2antt.BeginUpdate();
CChart chart = m_g2antt.GetChart();
chart.SetLevelCount(3);
chart.GetLevel(0).SetLabel(COleVariant("<%mmm%>, <%yyyy%> <r>Week:
<%ww%>"));
chart.GetLevel(0).SetUnit(256);
chart.GetLevel(1).SetLabel(COleVariant("<%d1%>"));
chart.GetLevel(2).SetLabel(COleVariant("<%d%>"));
m_g2antt.EndUpdate();

property Level.ReplaceLabel(Label as String) as String
Specifies a HTML replacement for the given label.

Type Description

Label as String
A String expression that specifies the caption being
replaced. If empty, the set method removes all
replacements in the level.

String A String expression that specifies the new caption, that
can use built-n HTML tags as explained bellow.

By default, the Label property specifies the caption being displayed in the chart's header.
Use the ReplaceLabel property to customize your chart's header. The ReplaceLabel
property may be used to add icons or pictures (), or change the captions of the
levels in the chart's header. The ReplaceLabel property is a get/set property. When get
property is called, the ReplaceLabel(Label) property returns the replacement HTML string
for specified label. If the set property is called, the specified label is replaced with the
newly value, so the newly value is displayed instead. You can remove all replacement by
calling the set ReplaceLabel property with Label parameter as empty string. The Label
parameter never includes the HTML built tags. For instance, if your Label property is "
<%h%><%AM/PM%>", then the Label parameter should be: 12AM,1AM,2AM, and so on,
as they are displayed on the chart's header. Use the FormatLabel property to format the
label giving a formula.

The following screen shot shows the chart's header when no replacements are performed:

The following screen shot shows the chart's header when the hours were replaced with
icons:

The following screen shot shows the chart's header when the hours were replaced with

icons, excepts the 12:00 PM were replaced by Noon caption:

The ReplaceLabel property supports the following built-in HTML elements:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

about:blank

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold

<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Level.ToolTip as Variant
Specifies the format of the tooltip that's shown when the cursor hovers the level.

Type Description

Variant

A String expression that indicates the format of the tooltip,
or an UnitEnum expression that indicates the predefined
tooltip being used. The LabelToolTip property specifies a
predefined tooltip.

The ToolTip property specifies the tooltip being shown when the cursor hovers the level. The
ToolTipDelay property specifies the time in ms that passes before the ToolTip appears. The
ToolTipPopDelay property specifies the period in ms of time the ToolTip remains visible if
the mouse pointer is stationary within a control. Use the ToolTipWidth property to specify
the width of the tooltip window. The WeekDays property retrieves or sets a value that
indicates the list of names for each week day, separated by space. Use the MonthNames
property to specify the name of the months in the year. The UnitScale property changes the
Label, Unit and the ToolTip for a level with predefined values defined by the Label and
LabelToolTip properties. The Tooltip(0, -1, , , , ,) event occurs once the level's tooltip is
about to be shown (-1 if the mouse pointer hovers the levels of the chart).

The ToolTip property supports the following built-in tags:

<%d%> - Day of the month in one or two numeric digits, as needed (1 to 31).
<%dd%> - Day of the month in two numeric digits (01 to 31).
<%d1%> - First letter of the weekday (S to S). (Use the WeekDays property to
specify the name of the days in the week)
<%loc_d1%> - Indicates day of week as a one-letter abbreviation using the current
user settings.
<%d2%> - First two letters of the weekday (Su to Sa). (Use the WeekDays property
to specify the name of the days in the week)
<%loc_d2%> - Indicates day of week as a two-letters abbreviation using the current
user settings.
<%d3%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week)
<%loc_d3%> equivalent with <%loc_ddd%>
<%ddd%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_ddd%> that indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%loc_ddd%> - Indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%dddd%> - Full name of the weekday (Sunday to Saturday). (Use the WeekDays

property to specify the name of the days in the week). You can use the
<%loc_dddd%> that indicates day of week as its full name using the current user
regional and language settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
regional and language settings.
<%i%> - Displays the number instead the date. For instance, you can display numbers
as 1000, 1001, 1002, 1003, instead dates. (the valid range is from -647,434 to
2,958,465)
<%w%> - Day of the week (1 to 7).
<%ww%> - Week of the year (1 to 53).
<%m%> - Month of the year in one or two numeric digits, as needed (1 to 12).
<%mr%> - Month of the year in Roman numerals, as needed (I to XII).
<%mm%> - Month of the year in two numeric digits (01 to 12).
<%m1%> - First letter of the month (J to D). (Use the MonthNames property to
specify the name of the months in the year)
<%loc_m1%> - Indicates month as a one-letter abbreviation using the current user
settings.
<%m2%> - First two letters of the month (Ja to De). (Use the MonthNames property
to specify the name of the months in the year)
<%loc_m2%> - Indicates month as a two-letters abbreviation using the current user
settings.
<%m3%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year)
<%loc_m3%> - equivalent with <%loc_mmm%>
<%mmm%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year). You can use the
<%loc_mmm%> that indicates month as a three-letter abbreviation using the current
user regional and language settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
regional and language settings.
<%mmmm%> - Full name of the month (January to December). (Use the
MonthNames property to specify the name of the months in the year). You can use the
<%loc_mmmm%> that indicates month as its full name using the current user regional
and language settings.
<%loc_mmmm%> - Indicates month as its full name using the current user regional
and language settings.
<%q%> - Date displayed as the quarter of the year (1 to 4).
<%y%> - Number of the day of the year (1 to 366).
<%yy%> - Last two digits of the year (01 to 99).
<%yyyy%> - Full year (0100 to 9999).
<%hy%> - Date displayed as the half of the year (1 to 2).
<%loc_gg%> - Indicates period/era using the current user regional and language

settings.
<%loc_sdate%> - Indicates the date in the short format using the current user regional
and language settings.
<%loc_ldate%> - Indicates the date in the long format using the current user regional
and language settings.
<%loc_dsep%> - Indicates the date separator using the current user regional and
language settings (/).
<%h%> - Hour in one or two digits, as needed (0 to 23).
<%hh%> - Hour in two digits (00 to 23).
<%h12%> - Hour in 12-hour time format, in one or two digits - [0(12),11]
<%hh12%> - hour in 12-hour time format, in two digits - [00(12),11]
<%n%> - Minute in one or two digits, as needed (0 to 59).
<%nn%> - Minute in two digits (00 to 59).
<%s%> - Second in one or two digits, as needed (0 to 59).
<%ss%> - Second in two digits (00 to 59).
<%AM/PM%> - Twelve-hour clock with the uppercase letters "AM" or "PM", as
appropriate. (Use the AMPM property to specify the name of the AM and PM
indicators). You can use the <%loc_AM/PM%> that indicates the time marker such as
AM or PM using the current user regional and language settings. You can use
<%loc_A/P%> that indicates the one character time marker such as A or P using the
current user regional and language settings
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user regional and language settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user regional and language settings.
<%loc_time%> - Indicates the time using the current user regional and language
settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user regional and language settings.
<%loc_tsep%> - indicates the time separator using the current user regional and
language settings (:)
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed

The following tags are displayed based on the user's Regional and Language Options:

<%loc_sdate%> - Indicates the date in the short format using the current user
settings.
<%loc_ldate%> - Indicates the date in the long format using the current user settings.
<%loc_d1%> - Indicates day of week as a one-letter abbreviation using the current
user settings.
<%loc_d2%> - Indicates day of week as a two-letters abbreviation using the current
user settings.
<%loc_d3%> equivalent with <%loc_ddd%>
<%loc_ddd%> - Indicates day of week as a three-letters abbreviation using the
current user settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
settings.
<%loc_m1%> - Indicates month as a one-letter abbreviation using the current user
settings.
<%loc_m2%> - Indicates month as a two-letters abbreviation using the current user
settings.
<%loc_m3%> - equivalent with <%loc_mmm%>
<%loc_mmm%> - Indicates month as a three-letters abbreviation using the current
user settings.
<%loc_mmmm%> - Indicates month as its full name using the current user settings.
<%loc_gg%> - Indicates period/era using the current user settings.
<%loc_dsep%> - Indicates the date separator using the current user settings.
<%loc_time%> - Indicates the time using the current user settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user settings.
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user settings.
<%loc_tsep%> - Indicates the time separator using the current user settings
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,

for example, "13". No additional leading zeros are displayed

The ToolTip property supports the following built-in HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with

about:blank

a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Level.Unit as UnitEnum
Retrieves or sets a value that indicates the unit of the level.

Type Description
UnitEnum An UnitEnum expression that indicates the level's time unit.

The Unit property specifies the unit being used to display labels in the level. The Label
property may change the Unit and the Count property. You can always use a different
Unit or Count by setting the property after setting the Label property. Changing the Label
property may change the Unit property. For instance, if the user calls Label = "<%d%>", the
Unit property is automatically put on exDay. The UnitScale property indicates the minimum
time unit from all levels. The UnitScale property changes the Label, Unit and the ToolTip for
a level with predefined values defined by the Label and LabelToolTip properties. Use the
LevelCount property to specify the count of levels in the chart's header. Use the UnitWidth
property to specify the width of the time unit. Use the Count property to specify the number
of units being displayed in the same place. Use the NextDate property to get the next date.
Use the Zoom method to zoom the chart to a specified interval of dates.

The first level displays the month, the year and the number of the week in the year , the
second level displays the name of the week day, and the third level displays the day of the
month. The LevelCount property specifies the number of levels being displayed, in our case
3.

The following Template shows how to display your header using three levels as arranged in
the picture above (just copy and paste the following script to Template page):

BeginUpdate()
Chart
{
 LevelCount = 3
 Level(0)
 {
 Label = "<%mmm%>, <%yyyy%> <r>Week: <%ww%>"
 Unit = 256 'exWeek
 }
 Level(1).Label = "<%d1%>"
 Level(2).Label = "<%d%>"

}
EndUpdate()

The following VB sample displays your header using 3 levels as shown above:

With G2antt1
 .BeginUpdate
 With .Chart
 .LevelCount = 3
 With .Level(0)
 .Label = "<%mmm%>, <%yyyy%> <r>Week: <%ww%>"
 .Unit = EXG2ANTTLibCtl.UnitEnum.exWeek
 End With
 .Level(1).Label = "<%d1%>"
 .Level(2).Label = "<%d%>"
 End With
 .EndUpdate
End With

 The following VFP sample displays your header using 3 levels:

with thisform.g2antt1
.BeginUpdate()
with .Chart
 .LevelCount = 3
 with .Level(0)
 .Label = "<%mmm%>, <%yyyy%> <r>Week: <%ww%>"
 .Unit = 256
 endwith
 .Level(1).Label = "<%d1%>"
 .Level(2).Label = "<%d%>"
endwith
.EndUpdate()
endwith

 The following VB.NET sample displays your header using 3 levels:

With AxG2antt1
 .BeginUpdate()

 With .Chart
 .LevelCount = 3
 With .Level(0)
 .Label = "<%mmm%>, <%yyyy%> <r>Week: <%ww%>"
 .Unit = EXG2ANTTLib.UnitEnum.exWeek
 End With
 .Level(1).Label = "<%d1%>"
 .Level(2).Label = "<%d%>"
 End With
 .EndUpdate()
End With

 The following C# sample displays your header using 3 levels:

axG2antt1.BeginUpdate();
EXG2ANTTLib.Chart chart = axG2antt1.Chart;
chart.LevelCount = 3;
chart.get_Level(0).Label = "<%mmm%>, <%yyyy%> <r>Week: <%ww%>";
chart.get_Level(0).Unit = EXG2ANTTLib.UnitEnum.exWeek;
chart.get_Level(1).Label = "<%d1%>";
chart.get_Level(2).Label = "<%d%>";
axG2antt1.EndUpdate();

 The following C++ sample displays your header using 3 levels:

m_g2antt.BeginUpdate();
CChart chart = m_g2antt.GetChart();
chart.SetLevelCount(3);
chart.GetLevel(0).SetLabel(COleVariant("<%mmm%>, <%yyyy%> <r>Week:
<%ww%>"));
chart.GetLevel(0).SetUnit(256);
chart.GetLevel(1).SetLabel(COleVariant("<%d1%>"));
chart.GetLevel(2).SetLabel(COleVariant("<%d%>"));
m_g2antt.EndUpdate();

Note object
A Note object indicates a fully customizable box that can be associated or attached with a
DATE or a BAR in the chart area . Once a bar is associated with a DATE, the box is
moved accordingly with the DATE in the chart, and the same if the note is attached to a bar.
A Note can display HTML text, icons, pictures, borders, and so on. The Note can be
positioned anywhere in the chart area relative to the DATE or BAR. A note is composed by
two parts, the starting part and the ending part. Each part can display HTML text, icons,
pictures, and so on. The Notes property access the chart's Notes collection. Use the Add
method to add new notes in the chart. Use the exBarCaption to assign a caption to a bar,
use the exBarExtraCaption to associate extra captions to a bar.

The following screen shot shows a note/box associated with a DATE (03 October, 2006),
and 3 notes (Start, Finish and Halt)associated with the bar:

The Note object supports the following properties and methods:

Name Description
ClearPartBackColor Clears the background color for the part of the note.
ClearPartBorderColor Clears the border of the note.
Data Associates an user data to a note.
ID Specifies the identifier of the note.
Item Specifies the handle of the note's item.
Key Specifies the key of the note.
LinkColor Specifies the color of the link between parts of the note.
LinkStyle Specifies the style of the link between parts of the note.
LinkWidth Specifies the size of the link between parts of the note.

PartAlignment Specifies the horizontal alignment of text inside the note's
part.

PartBackColor Specifies the background color to show the part of the
note.

PartBorderColor Specifies the color to show the border.
PartBorderSize Specifies the size of the border for the note's part.
PartCanMove Specifies whether the user can move the part of the note.
PartFixedHeight Specifies whether the part has a fixed height.
PartFixedWidth Specifies whether the part has a fixed width.

PartForeColor Specifies the foreground color to show the part of the
note.

PartHOffset Specifies the horizontal offset to display the part of the
note.

PartShadow Specifies whether the part of the note shows a shadow
border.

PartText Specifies the HTML caption being shown in the part of the
note.

PartToolTip Specifies the HTML tooltip being shown when the cursor
hovers the the part of the note.

PartToolTipTitle Specifies the title tooltip being shown when the cursor
hovers the the part of the note.

PartTransparency Specifies the transparency to diaplay the part of the note.
PartVisible Specifies whether a part of the note is visible or hidden.
PartVOffset Specifies the vertical offset to display the part of the note.

RelativePosition Specifies the position of the note relative to associated
object.

ShowLink Retrieves or sets a value that indicates the link between
parts of the note.

Text Specifies the HTML caption being shown in the first visible
part of the note.

Visible Specifies whether the note is visible or hidden.

method Note.ClearPartBackColor (Part as NotePartEnum)
Clears the background color for the part of the note.

Type Description

Part as NotePartEnum A NotePartEnum expression that indicates whose part's
background is cleared.

By default, both parts use the default window background color (white). Use the
ClearPartBackColor method to erase the part's background color so you can put a
transparent picture using the tag in the PartText property. Use the PartBorderSize
property on 0, to hide the part's borders. Use the PartShadow property to hide the shadow
around the part. Use the ClearPartBackColor method to clear the part's background which
means that the part shows only the borders (PartBorderSize property is greater than 0),
shadows (PartShadow property is True) and the text of the part (PartText property), so
the part is shown with no erasing its background. The PartBackColor property specifies the
part's background color. Use the PartVisible property to show or hide the note's starting or
ending part. Use the PartTransparency property to specify the transparency to display the
part of the note. The PartForeColor property to specify the part's foreground color. Use the
<bgcolor> HTML tag in the PartText property to specify parts of the note's caption with
different background colors. The PartBorderColor property indicates the color to show the
part's frame.

The following sample shows notes with pictures (PartBorderSize = 0, PartShadow = False,
PartText = "p1") :

The following sample shows the note with the no PartBackColor property set (actually the
ClearPartBackColor method is called before) :

The following sample shows the note with the PartBackColor property set on red:

The following sample shows the note with the PartBackColor property set on red, semi-
transparent (PartTransparency property is 50):

The following VB sample assigns a note to the bar, by displaying a picture, when user right
clicks the bar:

Private Sub G2antt1_RClick()
 Dim h As Long, c As Long, hit As HitTestInfoEnum
 G2antt1.BeginUpdate
 With G2antt1
 h = .ItemFromPoint(-1, -1, c, hit)
 If (h <> 0) Then
 Dim k As Variant
 k = .Chart.BarFromPoint(-1, -1)
 If (Not IsEmpty(k)) Then
 With .Chart.Notes.Add(.Chart.Notes.Count, h, k, "p1")
 .ClearPartBackColor exNoteEnd
 .PartBorderSize(exNoteEnd) = 0
 .PartShadow(exNoteEnd) = False
 End With
 End If
 End If
 End With
 G2antt1.EndUpdate
End Sub

method Note.ClearPartBorderColor (Part as NotePartEnum)
Clears the border of the note.

Type Description

Part as NotePartEnum A NotePartEnum expression that specifies the part whose
border is cleared.

If the ClearPartBorderColor method is called, the part show no border, until the
PartBorderColor is set again. By default, the PartBorderSize property is 1, which means
that the part draws a frame of color being indicated by the PartBorderColor property. Use
the PartTransparency property to specify the transparency to display the part of the note.
The PartForeColor property to specify the part's foreground color. Use the <bgcolor>
HTML tag in the PartText property to specify parts of the note's caption with different
background colors. Use the The PartBackColor property to specify an EBN object to show
a different visual appearance for the part (borders and background).

property Note.Data as Variant
Associates an user data to a note.

Type Description

Variant A VARIANT expression that specifies any extra data
associated with the Note.

By default, the Data property is Empty. Use the Data property to associate any extra data
to the note. The Data property can store anything, from numbers, strings to objects. The ID
property indicates the identifier of the Note object.

property Note.ID as Variant
Specifies the identifier of the note.

Type Description

Variant
A VARIANT expression that specifies the identifier of the
note. Could be a number, a string, a date, an object, and
so on.

The ID property indicates the unique identifier to refer a note. Currently, this property is
read only, so use the ID parameter of the Add method to specify the identifier of the note.
The Data property can store anything, from numbers, strings to objects. Use the Item
property to access a note giving its identifier. The Count property indicates the number of
Note objects in the Notes collection.

The following VB sample prints the ID for each note in the control:

Dim n As EXG2ANTTLibCtl.Note
For Each n In G2antt1.Chart.Notes
 Debug.Print n.ID
Next

property Note.Item as Variant
Specifies the handle of the note's item.

Type Description

Variant A long expression that specifies the handle of the item that
hosts the note.

The Item property returns the same value as Add's Item parameter. The Add method adds
a note or a box associated with a DATE or a BAR in the chart. The Item property indicates
the handle of the item that hosts the note. Once an item is move to a different position, the
associated notes are moved too.

property Note.Key as Variant
Specifies the key of the note.

Type Description
Variant A VARIANT expression that specifies the key of the note.

The Key property returns the same value as the Add's Key parameter. The Key parameter
of the Add method specifies the object to relate the note. The Key could be one of the
following:

Key parameter is of Date type, it indicates the DATE in the chart to associate the note.
By default, the RelativePosition property is 0.5, which indicates the center of the unit
where the DATE is (0, means the start unit, while the 1 is the end of the unit, and so
on). The DateFromPoint property retrieves the date from the point. By default, If a
note is associated to a DATE, the RelativePostion property is 0.5, it displays only the
ending part of the note, and the ending part of the note is not movable.
Key parameter is not of Date type, it indicates the Key of the BAR to associate the
note (The Item and the Key indicates the bar to associate the note). By default, the
RelativePosition property is 0, which indicates the starting point of the bar (0, means
the starting point of the bar, while the 1 is the ending point of the bar, 0.5 indicates the
middle of the bar, and so on). The BarFromPoint property retrieves the key of the bar
from the cursor. By default, If a note is associated to a BAR, the RelativePostion
property is 0, it displays only the ending part of the note, and the ending part of the
note is not movable. Also, the direction from start to end part is visible.

By default, the starting part of the note is not visible, so only the ending part of the note is
visible.

property Note.LinkColor as Color
Specifies the color of the link between parts of the note.

Type Description

Color A Color expression that determines the color of the link
between parts of the note.

The LinkColor property specifies the color of the link between parts of the notes. The
ShowLink property specifies whether the note shows or hides the link between parts of the
notes. Use the PartVisible property to specify whether the start or ending part of the note is
visible or hidden. The LinkStyle property determines the style of the link between parts of
the note. while the LinkWidth property determines the width of the link between parts of the
notes.

The link between parts of the note is shown

if the ShowLink property includes the exNoteLinkVisible flag,
LinkWidth property is greater than 0,
the start and end part of the note do not intersect.

property Note.LinkStyle as LinkStyleEnum
Specifies the style of the link between parts of the note.

Type Description

LinkStyleEnum A LinkStyleEnum expression that specifies the style of the
link between parts of the note.

The LinkStyle property determines the style of the link between parts of the note. The
LinkColor property specifies the color of the link between parts of the notes. The ShowLink
property specifies whether the note shows or hides the link between parts of the notes. Use
the PartVisible property to specify whether the start or ending part of the note is visible or
hidden. The LinkWidth property determines the width of the link between parts of the notes.

The link between parts of the note is shown

if the ShowLink property includes the exNoteLinkVisible flag,
LinkWidth property is greater than 0,
the start and end part of the note do not intersect.

property Note.LinkWidth as Long
Specifies the size of the link between parts of the note.

Type Description

Long A long expression that specifies the size in pixels of the
link between parts of the note.

By default, the LinkWidth property is 1. The link is not shown if the LinkWidth property is 0.
The LinkWidth property determines the width of the link between parts of the notes. The
LinkStyle property determines the style of the link between parts of the note. The LinkColor
property specifies the color of the link between parts of the notes. The ShowLink property
specifies whether the note shows or hides the link between parts of the notes. Use the
PartVisible property to specify whether the start or ending part of the note is visible or
hidden.

The link between parts of the note is shown

if the ShowLink property includes the exNoteLinkVisible flag,
LinkWidth property is greater than 0,
the start and end part of the note do not intersect.

property Note.PartAlignment(Part as NotePartEnum) as AlignmentEnum
Specifies the horizontal alignment of text inside the note's part.

Type Description

Part as NotePartEnum A NotePartEnum expression that indicates the part to align
text on

AlignmentEnum An AlignmentEnum expression that specifies the text's
alignment.

By default the PartAlignment property is CenterAlignment, so the text is being centered in
the part. Use the Text or PartText property to specify the text to be displayed on the part of
the note. The PartFixedWidth property specifies the fixed width to display the part. The
PartFixedHeight property specifies the height to display the part of the note. If none of
these properties are set, the size of the part is automatically computed based on the part's
text.

The following screen shot shows the text being aligned to the left and to the right side of the
note:

property Note.PartBackColor(Part as NotePartEnum) as Color
Specifies the background color to show the part of the note.

Type Description

Part as NotePartEnum A NotePartEnum expression that indicates whose part's
background is changed.

Color

A Color expression that specifies the part's background
color. The last 7 bits in the high significant byte of the color
to indicates the identifier of the skin being used. Use the
Add method to add new skins to the control. If you need
to remove the skin appearance from a part of the control
you need to reset the last 7 bits in the high significant byte
of the color being applied to the background's part.

By default, both parts use the default window background color (white). The
PartBackColor property specifies the part's background color. Use the PartVisible property
to show or hide the note's starting or ending part. Use the ClearPartBackColor method to
clear the part's background which means that the part shows only the borders (
PartBorderSize property is greater than 0), shadows (PartShadow property is True) and
the text of the part (PartText property), so the part is shown with no erasing its
background. Use the PartTransparency property to specify the transparency to display the
part of the note. The PartForeColor property to specify the part's foreground color. Use the
<bgcolor> HTML tag in the PartText property to specify parts of the note's caption with
different background colors. The PartBorderColor property indicates the color to show the
part's frame.

The following sample shows the note with the PartBackColor property set on red:

The following sample shows the note with the PartBackColor property set on red, semi-
transparent (PartTransparency property is 50):

The following sample shows the note with the no PartBackColor property set (actually the
ClearPartBackColor method is called before) :

property Note.PartBorderColor(Part as NotePartEnum) as Color
Specifies the color to show the border.

Type Description

Part as NotePartEnum A NotePartEnum expression that indicates the part being
accessed.

Color A Color expression that specifies the color for the part's
border.

The PartBorderColor property indicates the color to show the part's frame. By default, the
PartBorderSize property is 1, which means that the part draws a frame of color being
indicated by the PartBorderColor property. Use the PartBorderSize property on 0, to hide
the part's borders. Use the ClearPartBackColor method to erase the part's background
color so you can put a transparent picture using the tag in the PartText property. Use
the PartShadow property to hide the shadow around the part. Use the ClearPartBackColor
method to clear the part's background which means that the part shows only the borders (
PartBorderSize property is greater than 0), shadows (PartShadow property is True) and
the text of the part (PartText property), so the part is shown with no erasing its
background. The PartBackColor property specifies the part's background color. Use the
PartVisible property to show or hide the note's starting or ending part. Use the
PartTransparency property to specify the transparency to display the part of the note. The
PartForeColor property to specify the part's foreground color. Use the <bgcolor> HTML tag
in the PartText property to specify parts of the note's caption with different background
colors. Use the The PartBackColor property to specify an EBN object to show a different
visual appearance for the part (borders and background).

property Note.PartBorderSize(Part as NotePartEnum) as Long
Specifies the size of the border for the note's part.

Type Description

Part as NotePartEnum A NotePartEnum expression that indicates whose part's
border is changed.

Long A Long expression that specifies the size of the frame
around the part.

By default, the PartBorderSize property is 1, which means that the part draws a frame of
color being indicated by the PartBorderColor property. Use the PartBorderSize property on
0, to hide the part's borders. Use the ClearPartBackColor method to erase the part's
background color so you can put a transparent picture using the tag in the PartText
property. Use the PartShadow property to hide the shadow around the part. Use the
ClearPartBackColor method to clear the part's background which means that the part
shows only the borders (PartBorderSize property is greater than 0), shadows (
PartShadow property is True) and the text of the part (PartText property), so the part is
shown with no erasing its background. The PartBackColor property specifies the part's
background color. Use the PartVisible property to show or hide the note's starting or ending
part. Use the PartTransparency property to specify the transparency to display the part of
the note. The PartForeColor property to specify the part's foreground color. Use the
<bgcolor> HTML tag in the PartText property to specify parts of the note's caption with
different background colors. The PartBorderColor property indicates the color to show the
part's frame.

The following sample shows notes with hyperlinks and pictures:

The following sample shows notes with pictures (PartBorderSize = 0, PartShadow = False,
PartText = "p1") :

The following sample shows the note with the no PartBackColor property set (actually the
ClearPartBackColor method is called before) :

The following sample shows the note with the PartBackColor property set on red:

The following sample shows the note with the PartBackColor property set on red, semi-
transparent (PartTransparency property is 50):

The following VB sample assigns a note to the bar, by displaying a picture, when user right
clicks the bar:

Private Sub G2antt1_RClick()
 Dim h As Long, c As Long, hit As HitTestInfoEnum
 G2antt1.BeginUpdate
 With G2antt1
 h = .ItemFromPoint(-1, -1, c, hit)
 If (h <> 0) Then
 Dim k As Variant
 k = .Chart.BarFromPoint(-1, -1)
 If (Not IsEmpty(k)) Then
 With .Chart.Notes.Add(.Chart.Notes.Count, h, k, "p1")
 .ClearPartBackColor exNoteEnd
 .PartBorderSize(exNoteEnd) = 0
 .PartShadow(exNoteEnd) = False
 End With
 End If
 End If
 End With
 G2antt1.EndUpdate
End Sub

property Note.PartCanMove(Part as NotePartEnum) as Boolean
Specifies whether the user can move the part of the note.

Type Description

Part as NotePartEnum A NotePartEnum expression that specifies the part to be
movable

Boolean A Boolean expression that specifies whether the part of
the note is movable or fixed.

By default, all parts of the note are fixed, in other words the PartCanMove property is
False. Once, the PartCanMove property is True, the shape of the cursor that hovers the
part is changed to indicate a movement, and so the user can click and drag the part to a
new position. Use the PartCanMove property to allow the user to move the note relative to
the DATE or BAR, or relative to the starting part of the note. For instance, if the user moves
the starting part of the note, the RelativePosition property is changed from 0 to 1, while if
the ending part of the note is moved, the PartHOffset / PartVOffset properties are
adjusted. Use the PartVisible property to show or hide the note's starting or ending part.

The movement of the parts can be:

PartCanMove(exNoteStart) = True, PartCanMove(exNoteEnd) = True, both parts are
moveable, so if the user moves the starting part of the note, the note is moved relative
to the object being related such as a DATE or a BAR (RelativePosition), while if the
user moves the ending part of the note, it is moved relative to the starting part of the
note (PartHOffset(exNoteEnd) / PartVOffset(exNoteEnd)).
PartCanMove(exNoteStart) = False, PartCanMove(exNoteEnd) = True, only the ending
part is movable, so the starting part of the note is fixed, while the user can move the
ending part of the note, relative to the starting part of the bar (
PartHOffset(exNoteEnd) / PartVOffset(exNoteEnd)).
PartCanMove(exNoteStart) = True, PartCanMove(exNoteEnd) = False, only the
starting part is movable, so the user moves the note relative to the related object DATE
or BAR, and it is valid for any part of the note (RelativePosition). For instance, even if
the cursor hovers the ending part of the note, the note is moved relative to the object
DATE or BAR.

 The RelativePosition property indicates a float value between 0 and 1 relative to the object
DATE or BAR associated with as follow:

if the note is associated with a DATE (the Key parameter of the Add method is of
DATE type), 0 indicates the starting of the unit where the DATE is, 1 indicates the
finish of the time unit where the DATE is, and 0.5 indicates the center of the unit.
if the note is associated with a BAR (the Key parameter of the Add method is of DATE

type), 0 indicates the starting point of the bar, 1 indicates the ending point of the bar,
0.5 indicates the middle of the bar.

The PartHOffset / PartVOffset properties indicate the horizontal / vertical offset as follow:

for exNoteStart, the PartHOffset / PartVOffset properties indicate the offset relative to
the point referred by the RelativePosition property.
for exNoteEnd, the PartHOffset / PartVOffset properties indicate the offset relative to
the exNoteStart

The moving cursor is shown on the movable part if:

the part is visible and it means the PartVisible property is True, and it is visible on the
screen (has the PartText not empty, or has the both PartFixedWidth / PartFixedHeight
properties not zero)
the exNoteStart is movable, and it means that the PartCanMove(exNoteStart) property
is True
the exNoteEnd is movable, and it means that the PartCanMove(exNoteStart) OR
PartCanMove(exNoteEnd) property is True.

The following screen shows shows how the notes can be moved by the user:

property Note.PartFixedHeight(Part as NotePartEnum) as Long
Specifies whether the part has a fixed height.

Type Description

Part as NotePartEnum A NotePartEnum expression that indicates the part to
specify the height

Long A Long expression that specifies the fixed height of the
part.

By default, the PartFixedHeight property is 0. The property has no effect if 0. The
PartFixedWidth / PartFixedHeight property is 0, the control computes the width / height of
the note, else it indicates the fixed width / height. The PartText property indicates the HTML
caption being shown in the note. If no text is assigned, use the PartFixedWidth /
PartFixedHeight properties to specify a blank frame. Use the The PartBackColor property
to specify an EBN object to show a different visual appearance for the part (borders and
background). The PartBorderColor property indicates the color to show the part's frame.
Use the PartBorderSize property on 0, to hide the part's borders. Use the
ClearPartBackColor method to erase the part's background color so you can put a
transparent picture using the tag in the PartText property. Use the PartShadow
property to hide the shadow around the part.

property Note.PartFixedWidth(Part as NotePartEnum) as Long
Specifies whether the part has a fixed width.

Type Description

Part as NotePartEnum A NotePartEnum expression that indicates the part to
specify the width

Long A Long expression that specifies the fixed width of the
part.

By default, the PartFixedWidth property is 0. The property has no effect if 0. The PartText
property indicates the HTML caption being shown in the note. If no text is assigned, use the
PartFixedWidth / PartFixedHeight properties to specify a blank frame. Use the The
PartBackColor property to specify an EBN object to show a different visual appearance for
the part (borders and background). The PartBorderColor property indicates the color to
show the part's frame. Use the PartBorderSize property on 0, to hide the part's borders.
Use the ClearPartBackColor method to erase the part's background color so you can put a
transparent picture using the tag in the PartText property. Use the PartShadow
property to hide the shadow around the part.

property Note.PartForeColor(Part as NotePartEnum) as Color
Specifies the foreground color to show the part of the note.

Type Description
Part as NotePartEnum A NotePartEnum expression that specifies the part.

Color A Color expression that specifies the part's foreground
color.

The PartForeColor property indicates the foreground color to display the PartText. Use the
<fgcolor> HTML tag in the PartText property to specify parts of the note's caption with
different foreground colors. Use the <bgcolor> HTML tag in the PartText property to specify
parts of the note's caption with different background colors. Use the The PartBackColor
property to specify an EBN / Solid Color object to show a different visual appearance for
the part (borders and/or background).

property Note.PartHOffset(Part as NotePartEnum) as Long
Specifies the horizontal offset to display the part of the note.

Type Description

Part as NotePartEnum A NotePartEnum expression that specifies the part to add
horizontal offset

Long A long expression that specifies the horizontal offset of the
part of the note.

The PartHOffset(exNoteStart) property indicates the horizontal offset relative to the point
being referred by the RelativePosition property. The PartHOffset(exNoteEnd) property
indicates the horizontal offset relative to the starting part of the note. The PartCanMove
property specifies whether the user can move at runtime the part of the note.

 The RelativePosition property indicates a float value between 0 and 1 relative to the object
DATE or BAR associated with as follow:

if the note is associated with a DATE (the Key parameter of the Add method is of
DATE type), 0 indicates the starting of the unit where the DATE is, 1 indicates the
finish of the time unit where the DATE is, and 0.5 indicates the center of the unit.
if the note is associated with a BAR (the Key parameter of the Add method is of DATE
type), 0 indicates the starting point of the bar, 1 indicates the ending point of the bar,
0.5 indicates the middle of the bar.

The PartHOffset / PartVOffset properties indicate the horizontal / vertical offset as follow:

for exNoteStart, the PartHOffset / PartVOffset properties indicate the offset relative to
the point referred by the RelativePosition property.
for exNoteEnd, the PartHOffset / PartVOffset properties indicate the offset relative to
the exNoteStart

The moving cursor is shown on the movable part if:

the part is visible and it means the PartVisible property is True, and it is visible on the
screen (has the PartText not empty, or has the both PartFixedWidth / PartFixedHeight
properties not zero)
the exNoteStart is movable, and it means that the PartCanMove(exNoteStart) property
is True
the exNoteEnd is movable, and it means that the PartCanMove(exNoteStart) OR
PartCanMove(exNoteEnd) property is True.

property Note.PartShadow(Part as NotePartEnum) as Boolean
Specifies whether the part of the note shows a shadow border.

Type Description

Part as NotePartEnum A NotePartEnum expression that indicates whose part's
shadow is changed.

Boolean A boolean expression that specifies whether the part
shows a shadow around.

By default, the PartShadow property is True. Use the PartShadow property to hide the
shadow around the part. By default, the PartBorderSize property is 1, which means that
the part draws a frame of color being indicated by the PartBorderColor property. Use the
PartBorderSize property on 0, to hide the part's borders. Use the ClearPartBackColor
method to erase the part's background color so you can put a transparent picture using the
 tag in the PartText property. Use the ClearPartBackColor method to clear the part's
background which means that the part shows only the borders (PartBorderSize property is
greater than 0), shadows (PartShadow property is True) and the text of the part (
PartText property), so the part is shown with no erasing its background. The
PartBackColor property specifies the part's background color. Use the PartVisible property
to show or hide the note's starting or ending part. Use the PartTransparency property to
specify the transparency to display the part of the note. The PartForeColor property to
specify the part's foreground color. Use the <bgcolor> HTML tag in the PartText property to
specify parts of the note's caption with different background colors. The PartBorderColor
property indicates the color to show the part's frame.

The following sample shows notes with pictures (PartBorderSize = 0, PartShadow = False,
PartText = "p1") :

The following sample shows the note with the no PartBackColor property set (actually the
ClearPartBackColor method is called before) :

The following sample shows the note with the PartBackColor property set on red:

The following sample shows the note with the PartBackColor property set on red, semi-
transparent (PartTransparency property is 50):

The following VB sample assigns a note to the bar, by displaying a picture, when user right
clicks the bar:

Private Sub G2antt1_RClick()
 Dim h As Long, c As Long, hit As HitTestInfoEnum
 G2antt1.BeginUpdate
 With G2antt1
 h = .ItemFromPoint(-1, -1, c, hit)
 If (h <> 0) Then
 Dim k As Variant
 k = .Chart.BarFromPoint(-1, -1)
 If (Not IsEmpty(k)) Then
 With .Chart.Notes.Add(.Chart.Notes.Count, h, k, "p1")
 .ClearPartBackColor exNoteEnd
 .PartBorderSize(exNoteEnd) = 0
 .PartShadow(exNoteEnd) = False
 End With
 End If
 End If
 End With
 G2antt1.EndUpdate
End Sub

property Note.PartText(Part as NotePartEnum) as String
Specifies the HTML caption being shown in the part of the note.

Type Description

Part as NotePartEnum A NotePartEnum expression that indicates the part to put
text on

String

A String expression that specifies the HTML text to be
displayed on the ending part of the note. The Text
parameter supports HTML tags as well as Chart Tags
such as <%dd%> that displays the day in 2 digits, and so
on like described bellow. Use the Images method to
specify a list of icons that can be displayed in the control
using the tag. Use the HTMLPicture property to
add custom- size pictures to be used in the HTML captions
using the tag.

By default, the PartText property is empty. Use the Text parameter of the Add method to
specify the text on the ending part on adding the note. If no text is assigned, use the
PartFixedWidth / PartFixedHeight properties to specify a blank frame. The PartForeColor
property to specify the part's foreground color. Use the <bgcolor> HTML tag in the PartText
property to specify parts of the note's caption with different background colors. Use the
<fgcolor> HTML tag in the PartText property to specify parts of the note's caption with
different foreground colors. The PartBorderColor property indicates the color to show the
part's frame. Use the The PartBackColor property to specify an EBN object to show a
different visual appearance for the part (borders and background). The PartAlignment
property specifies the text's alignment in the part of the note.

If you need to display a picture only, you need:

if require icons, use the Images method to specify a list of icons that can be displayed
in the control
if require custom size pictures, use the HTMLPicture property to add custom- size
pictures
set the PartVisible property to show or hide the note's starting or ending part.
use the ClearPartBackColor method to clear the part's background
set the PartBorderSize property on 0
set the PartShadow property on False

The PartText property supports the following:

<%d%> - Day of the month in one or two numeric digits, as needed (1 to 31).
<%dd%> - Day of the month in two numeric digits (01 to 31).
<%d1%> - First letter of the weekday (S to S). (Use the WeekDays property to
specify the name of the days in the week)
<%loc_d1%> - Indicates day of week as a one-letter abbreviation using the current
user settings.
<%d2%> - First two letters of the weekday (Su to Sa). (Use the WeekDays property
to specify the name of the days in the week)
<%loc_d2%> - Indicates day of week as a two-letters abbreviation using the current
user settings.
<%d3%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week)
<%loc_d3%> equivalent with <%loc_ddd%>
<%ddd%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_ddd%> that indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%loc_ddd%> - Indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%dddd%> - Full name of the weekday (Sunday to Saturday). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_dddd%> that indicates day of week as its full name using the current user
regional and language settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
regional and language settings.
<%i%> - Displays the number instead the date. For instance, you can display numbers
as 1000, 1001, 1002, 1003, instead dates. (the valid range is from -647,434 to
2,958,465)
<%w%> - Day of the week (1 to 7).
<%ww%> - Week of the year (1 to 53).
<%m%> - Month of the year in one or two numeric digits, as needed (1 to 12).
<%mr%> - Month of the year in Roman numerals, as needed (I to XII).
<%mm%> - Month of the year in two numeric digits (01 to 12).
<%m1%> - First letter of the month (J to D). (Use the MonthNames property to
specify the name of the months in the year)
<%loc_m1%> - Indicates month as a one-letter abbreviation using the current user
settings.
<%m2%> - First two letters of the month (Ja to De). (Use the MonthNames property
to specify the name of the months in the year)
<%loc_m2%> - Indicates month as a two-letters abbreviation using the current user
settings.
<%m3%> - First three letters of the month (Jan to Dec). (Use the MonthNames

property to specify the name of the months in the year)
<%loc_m3%> - equivalent with <%loc_mmm%>
<%mmm%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year). You can use the
<%loc_mmm%> that indicates month as a three-letter abbreviation using the current
user regional and language settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
regional and language settings.
<%mmmm%> - Full name of the month (January to December). (Use the
MonthNames property to specify the name of the months in the year). You can use the
<%loc_mmmm%> that indicates month as its full name using the current user regional
and language settings.
<%loc_mmmm%> - Indicates month as its full name using the current user regional
and language settings.
<%q%> - Date displayed as the quarter of the year (1 to 4).
<%y%> - Number of the day of the year (1 to 366).
<%yy%> - Last two digits of the year (01 to 99).
<%yyyy%> - Full year (0100 to 9999).
<%hy%> - Date displayed as the half of the year (1 to 2).
<%loc_gg%> - Indicates period/era using the current user regional and language
settings.
<%loc_sdate%> - Indicates the date in the short format using the current user regional
and language settings.
<%loc_ldate%> - Indicates the date in the long format using the current user regional
and language settings.
<%loc_dsep%> - Indicates the date separator using the current user regional and
language settings (/).
<%h%> - Hour in one or two digits, as needed (0 to 23).
<%hh%> - Hour in two digits (00 to 23).
<%h12%> - Hour in 12-hour time format, in one or two digits - [0(12),11]
<%hh12%> - hour in 12-hour time format, in two digits - [00(12),11]
<%n%> - Minute in one or two digits, as needed (0 to 59).
<%nn%> - Minute in two digits (00 to 59).
<%s%> - Second in one or two digits, as needed (0 to 59).
<%ss%> - Second in two digits (00 to 59).
<%AM/PM%> - Twelve-hour clock with the uppercase letters "AM" or "PM", as
appropriate. (Use the AMPM property to specify the name of the AM and PM
indicators). You can use the <%loc_AM/PM%> that indicates the time marker such as
AM or PM using the current user regional and language settings. You can use
<%loc_A/P%> that indicates the one character time marker such as A or P using the
current user regional and language settings
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current

user regional and language settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user regional and language settings.
<%loc_time%> - Indicates the time using the current user regional and language
settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user regional and language settings.
<%loc_tsep%> - indicates the time separator using the current user regional and
language settings (:)
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed

The following tags are displayed based on the user's Regional and Language Options:

<%loc_sdate%> - Indicates the date in the short format using the current user
settings.
<%loc_ldate%> - Indicates the date in the long format using the current user settings.
<%loc_d1%> - Indicates day of week as a one-letter abbreviation using the current
user settings.
<%loc_d2%> - Indicates day of week as a two-letters abbreviation using the current
user settings.
<%loc_d3%> equivalent with <%loc_ddd%>
<%loc_ddd%> - Indicates day of week as a three-letters abbreviation using the
current user settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
settings.
<%loc_m1%> - Indicates month as a one-letter abbreviation using the current user
settings.
<%loc_m2%> - Indicates month as a two-letters abbreviation using the current user
settings.
<%loc_m3%> - equivalent with <%loc_mmm%>
<%loc_mmm%> - Indicates month as a three-letters abbreviation using the current
user settings.
<%loc_mmmm%> - Indicates month as its full name using the current user settings.

<%loc_gg%> - Indicates period/era using the current user settings.
<%loc_dsep%> - Indicates the date separator using the current user settings.
<%loc_time%> - Indicates the time using the current user settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user settings.
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user settings.
<%loc_tsep%> - Indicates the time separator using the current user settings
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed

The PartText property supports the following built-in HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the

about:blank

anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part

of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the

color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Note.PartToolTip(Part as NotePartEnum) as String
Specifies the HTML tooltip being shown when the cursor hovers the the part of the note.

Type Description

Part as NotePartEnum A NotePartEnum expression that specifies the part with
the tooltip.

String A String expression that indicates the HTML text to be
displayed when the cursor hovers the part.

By default, the PartToolTip property is empty. The tooltip is shown if the cursor hovers the
part, if the PartToolTip or PartToolTipTitle property is not empty. Use the ToolTipWidth
property to specify the width of the tooltip window. The ToolTipPopDelay property specifies
the period in ms of time the ToolTip remains visible if the mouse pointer is stationary within a
control. The ToolTipDelay property specifies the time in ms that passes before the ToolTip
appears. Use the element to specify a different font or size for the tooltip, or use the
ToolTipFont property to specify a different font or size for all tooltips in the control. The
Tooltip(0, -4, , , , ,) event occurs once the note's tooltip (Note.PartToolTip) is about to be
shown (-4 if the mouse pointer hovers the notes of the chart).

The following screen shot shows the tooltip being shown when the cursor hovers the note:

The PartToolTip property supports the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once

about:blank

the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break

number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Note.PartToolTipTitle(Part as NotePartEnum) as String
Specifies the title tooltip being shown when the cursor hovers the the part of the note.

Type Description

Part as NotePartEnum A NotePartEnum expression that specifies the part with
the tooltip.

String A String expression that indicates the title to be shown for
the part's tooltip.

By default, the PartToolTipTitle property is empty. The tooltip is shown if the cursor hovers
the part, if the PartToolTip or PartToolTipTitle property is not empty. Use the ToolTipWidth
property to specify the width of the tooltip window. The ToolTipPopDelay property specifies
the period in ms of time the ToolTip remains visible if the mouse pointer is stationary within a
control. The ToolTipDelay property specifies the time in ms that passes before the ToolTip
appears. Use the element to specify a different font or size for the tooltip, or use the
ToolTipFont property to specify a different font or size for all tooltips in the control. The
Tooltip(0, -4, , , , ,) event occurs once the note's tooltip (Note.PartToolTip) is about to be
shown (-4 if the mouse pointer hovers the notes of the chart).

property Note.PartTransparency(Part as NotePartEnum) as Long
Specifies the transparency to diaplay the part of the note.

Type Description

Part as NotePartEnum A NotePartEnum expression that specifies the part to be
shown semi-transparent

Long

A Long expression between 0 and 100 which indicates the
percent of transparency to show the part. 0 means
opaque, 50 means semi-transparent, while 100 means
fully transparent.

By default, the PartTransparency property is 0. The PartBackColor property specifies the
part's background color. Use the PartVisible property to show or hide the note's starting or
ending part. Use the ClearPartBackColor method to clear the part's background which
means that the part shows only the borders (PartBorderSize property is greater than 0),
shadows (PartShadow property is True) and the text of the part (PartText property), so
the part is shown with no erasing its background. The PartForeColor property to specify the
part's foreground color. Use the <bgcolor> HTML tag in the PartText property to specify
parts of the note's caption with different background colors. Use the <fgcolor> HTML tag in
the PartText property to specify parts of the note's caption with different foreground colors.
The PartBorderColor property indicates the color to show the part's frame.

The following sample shows the note with the PartBackColor property set on red, semi-
transparent (PartTransparency property is 50):

property Note.PartVisible(Part as NotePartEnum) as Boolean
Specifies whether a part of the note is visible or hidden.

Type Description

Part as NotePartEnum A NotePartEnum expression that specifies the part being
visible or hidden.

Boolean A Boolean expression that specifies whether the indicated
part is visible or hidden.

By default, only the ending part of the note is visible. Use the PartVisible property to specify
whether the start or ending part of the note is visible or hidden. The PartText property
indicates the HTML caption to be displayed in the start or ending part of the note. The
ShowLink property specifies whether the link between parts of the notes is visible or
hidden. The PartFixedWidth property specifies whether the part is using fixed width or when
the width of the part is based on the part's caption. The PartFixedHeight property specifies
whether the part is using fixed height or when the height of the part is based on the part's
caption.

The following VB sample adds a note associated with the DATE being double clicked:

Private Sub G2antt1_DblClick(Shift As Integer, X As Single, Y As Single)
 With G2antt1
 .BeginUpdate
 Dim h As Long, c As Long, hit As HitTestInfoEnum
 h = G2antt1.ItemFromPoint(-1, -1, c, hit)
 If (h <> 0) Then
 Dim d As Date
 d = .Chart.DateFromPoint(-1, -1)
 If (d <> 0) Then
 With .Chart.Notes.Add(d, h, d, "")
 .PartVisible(exNoteEnd) = False
 .PartVisible(exNoteStart) = True
 .PartText(exNoteStart) = "<%dd%>
<%mm%>"
 .PartFixedWidth(exNoteStart) = G2antt1.Chart.UnitWidth
 .PartFixedHeight(exNoteStart) = 36
 .PartShadow(exNoteStart) = True
 End With
 End If
 End If

 .EndUpdate
 End With
End Sub

Use the Visible property to show or hide the entire note. Use the ShowNotes property to
show or hide the notes in the control. Use the Remove method to remove a note from the
Notes collection.

property Note.PartVOffset(Part as NotePartEnum) as Long
Specifies the vertical offset to display the part of the note.

Type Description

Part as NotePartEnum A NotePartEnum expression that specifies the part to add
vertical offset

Long A long expression that specifies the vertical offset of the
part of the note.

The PartVOffset(exNoteStart) property indicates the vertical offset relative to the point
being referred by the RelativePosition property. The PartVOffset(exNoteEnd) property
indicates the vertical offset relative to the starting part of the note. The PartCanMove
property specifies whether the user can move at runtime the part of the note.

 The RelativePosition property indicates a float value between 0 and 1 relative to the object
DATE or BAR associated with as follow:

if the note is associated with a DATE (the Key parameter of the Add method is of
DATE type), 0 indicates the starting of the unit where the DATE is, 1 indicates the
finish of the time unit where the DATE is, and 0.5 indicates the center of the unit.
if the note is associated with a BAR (the Key parameter of the Add method is of DATE
type), 0 indicates the starting point of the bar, 1 indicates the ending point of the bar,
0.5 indicates the middle of the bar.

The PartHOffset / PartVOffset properties indicate the horizontal / vertical offset as follow:

for exNoteStart, the PartHOffset / PartVOffset properties indicate the offset relative to
the point referred by the RelativePosition property.
for exNoteEnd, the PartHOffset / PartVOffset properties indicate the offset relative to
the exNoteStart

The moving cursor is shown on the movable part if:

the part is visible and it means the PartVisible property is True, and it is visible on the
screen (has the PartText not empty, or has the both PartFixedWidth / PartFixedHeight
properties not zero)
the exNoteStart is movable, and it means that the PartCanMove(exNoteStart) property
is True
the exNoteEnd is movable, and it means that the PartCanMove(exNoteStart) OR
PartCanMove(exNoteEnd) property is True.

property Note.RelativePosition as Variant
Specifies the position of the note relative to associated object.

Type Description

Variant
A numeric expression that specifies the relative position,
or a string expression that starts with "S" or "E" following
a numeric expression, as explained in the description.

By default, the RelativePosition property is 0.5 if a note is associated with a DATE, and 0, if
the note is associated with a BAR. The Key parameter of the Add method determines
whether the bar is associated with a DATE or with a BAR. The RelativePosition property
always specifies the position of the starting part of the note relative to the DATE or BAR
being associated. Use the PartHOffset / PartVOffset property to specify the horizontal /
vertical offset relative to the start or end part. The PartCanMove property specifies whether
the user can move at runtime the part of the note.

Using notes feature of the control you can associate notes or boxes to dates or bars as
follow:

associate a note or a box to a DATE in the chart control. The note is shown relative to
the date in the chart area, so once the chart is scrolled the note is moved or
repositioned accordingly to the date. The vertical position of the note is determined by
the item that hosts the note, and the PartVOffset property. The RelativePosition is a
number expression that determines whether the note is associated with the start of the
date, end of the date, or a percent.
associate a note or a box relative to a BAR in the chart control. The note is shown
relative to the bar in the chart area, so once the bar is moved or resized the note is
shown accordingly to the bar. The vertical position of the note is determined by the
item that hosts the note, and the PartVOffset property. In this case, the type of the
RelativePosition property determines how the note is related to the bar using the
following rules:

is a numeric expression, the RelativePosition determines the position to display the
note relative to the range of the bar, determined by the starting
/ItemBar(exBarStart)/ and ending /ItemBar(exBarEnd)/ point of the bar. For
instance, if the RelativePosition property is 0.5 the note is being displayed in the
middle of the bar, while if the RelativePosition property is 1, the note is positioned
at the end of the bar. If the user resizes the bar, its range is changed, so the note
is moved accordingly.
a string expression that starts with S or E being followed by numeric expression (
sample "E-1", "E-0.5", "S+2") it determines the note to be relative to the starting
point of the bar if starts with S, or relative to the end of the bar if it starts with E.
The numeric expression that follows to S or E determines the number of days to

be positioned the note. For instance, the "E-1", indicates that the note is
positioned one day before bar ends. If the user resizes the ending point of the bar,
the note will always be displayed one day before it ends, and so on. The "S+2" ,
indicates that the note will be displayed 2 days after bar starts, and if the user
resizes the bar, the note will always be displayed 2 days after the starting point of
the bar. The "E-0.5" indicates that the note will be displayed 12 hours (1/2 or 0.5
from a day) before bar ends.

If The RelativePosition property indicates a numeric value the note is displayed relative to
the DATE or BAR as follow:

if the note is associated with a DATE (the Key parameter of the Add method is of
DATE type), 0 indicates the starting of the unit where the DATE is, 1 indicates the
finish of the time unit where the DATE is, and 0.5 indicates the center of the unit.
if the note is associated with a BAR (the Key parameter of the Add method is of DATE
type), 0 indicates the starting point of the bar, 1 indicates the ending point of the bar,
0.5 indicates the middle of the bar.

If The RelativePosition property indicates a string expression that starts with S or E the
note is displayed relative to the BAR (ONLY) as follow:

starts with "S" it indicates that the note is related to starting point of the bar
/ItemBar(exBarStart)/, while the following number in the string expression determines
the number of days to display the note relative to the starting point of the bar. For
instance, the "S+3" indicates that the note is displayed 3 days later after the bar starts.
The note is moved automatically once the starting point of the bar is updated.
starts with "E" it indicates that the note is related to ending point of the bar
/ItemBar(exBarEnd)/, while the following number in the string expression determines
the number of days to display the note relative to the ending point of the bar. For
instance, the "E-1" indicates that the note is displayed 1 day before bar ends. The note
is moved automatically once the ending point of the bar is updated.

The PartHOffset / PartVOffset properties indicate the horizontal / vertical offset as follow:

for exNoteStart, the PartHOffset / PartVOffset properties indicate the offset relative to
the point referred by the RelativePosition property.
for exNoteEnd, the PartHOffset / PartVOffset properties indicate the offset relative to
the exNoteStart

The moving cursor is shown on the movable part if:

the part is visible and it means the PartVisible property is True, and it is visible on the
screen (has the PartText not empty, or has the both PartFixedWidth / PartFixedHeight
properties not zero)

the exNoteStart is movable, and it means that the PartCanMove(exNoteStart) property
is True
the exNoteEnd is movable, and it means that the PartCanMove(exNoteStart) OR
PartCanMove(exNoteEnd) property is True.

The following screen shows shows how the notes can be moved by the user:

property Note.ShowLink as NoteLinkTypeEnum
Retrieves or sets a value that indicates the link between parts of the note.

Type Description

NoteLinkTypeEnum

A NoteLinkTypeEnum combination that determines
whether the link is shown or hidden, whether the start to
end direction is shown, whether the end to start direction
is shown, and so on/

The ShowLink property specifies whether the note shows or hides the link between parts of
the notes. Use the PartVisible property to specify whether the start or ending part of the
note is visible or hidden. The LinkStyle property determines the style of the link between
parts of the note. The LinkColor property specifies the color of the link between parts of the
notes, while the LinkWidth property determines the width of the link between parts of the
notes.

The link between parts of the note is shown

if the ShowLink property includes the exNoteLinkVisible flag,
LinkWidth property is greater than 0,
the start and end part of the note do not intersect.

property Note.Text as String
Specifies the HTML caption being shown in the first visible part of the note.

Type Description

String

A String expression that specifies the HTML text to be
displayed on the ending part of the note. The Text
parameter supports HTML tags as well as Chart Tags
such as <%dd%> that displays the day in 2 digits, and so
on like described bellow. Use the Images method to
specify a list of icons that can be displayed in the control
using the tag. Use the HTMLPicture property to
add custom- size pictures to be used in the HTML captions
using the tag.

The Text property is just a shortcut function for PartText property. Use the Text parameter of
the Add method to specify the text on the ending part on adding the note. The Text property
specifies the PartText for exNoteStart part if visible, else it specifies the PartText for
exNoteEnd. The PartForeColor property to specify the part's foreground color. Use the
<bgcolor> HTML tag in the PartText property to specify parts of the note's caption with
different background colors. The PartAlignment property specifies the text's alignment in the
part of the note.

If you need to display a picture only, you need:

if require icons, use the Images method to specify a list of icons that can be displayed
in the control
if require custom size pictures, use the HTMLPicture property to add custom- size
pictures
set the PartVisible property to show or hide the note's starting or ending part.
use the ClearPartBackColor method to clear the part's background
set the PartBorderSize property is on 0
set the PartShadow property on False

The Text property supports the following:

<%d%> - Day of the month in one or two numeric digits, as needed (1 to 31).
<%dd%> - Day of the month in two numeric digits (01 to 31).
<%d1%> - First letter of the weekday (S to S). (Use the WeekDays property to
specify the name of the days in the week)
<%loc_d1%> - Indicates day of week as a one-letter abbreviation using the current
user settings.
<%d2%> - First two letters of the weekday (Su to Sa). (Use the WeekDays property
to specify the name of the days in the week)

<%loc_d2%> - Indicates day of week as a two-letters abbreviation using the current
user settings.
<%d3%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week)
<%loc_d3%> equivalent with <%loc_ddd%>
<%ddd%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_ddd%> that indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%loc_ddd%> - Indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%dddd%> - Full name of the weekday (Sunday to Saturday). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_dddd%> that indicates day of week as its full name using the current user
regional and language settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
regional and language settings.
<%i%> - Displays the number instead the date. For instance, you can display numbers
as 1000, 1001, 1002, 1003, instead dates. (the valid range is from -647,434 to
2,958,465)
<%w%> - Day of the week (1 to 7).
<%ww%> - Week of the year (1 to 53).
<%m%> - Month of the year in one or two numeric digits, as needed (1 to 12).
<%mr%> - Month of the year in Roman numerals, as needed (I to XII).
<%mm%> - Month of the year in two numeric digits (01 to 12).
<%m1%> - First letter of the month (J to D). (Use the MonthNames property to
specify the name of the months in the year)
<%loc_m1%> - Indicates month as a one-letter abbreviation using the current user
settings.
<%m2%> - First two letters of the month (Ja to De). (Use the MonthNames property
to specify the name of the months in the year)
<%loc_m2%> - Indicates month as a two-letters abbreviation using the current user
settings.
<%m3%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year)
<%loc_m3%> - equivalent with <%loc_mmm%>
<%mmm%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year). You can use the
<%loc_mmm%> that indicates month as a three-letter abbreviation using the current
user regional and language settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
regional and language settings.

<%mmmm%> - Full name of the month (January to December). (Use the
MonthNames property to specify the name of the months in the year). You can use the
<%loc_mmmm%> that indicates month as its full name using the current user regional
and language settings.
<%loc_mmmm%> - Indicates month as its full name using the current user regional
and language settings.
<%q%> - Date displayed as the quarter of the year (1 to 4).
<%y%> - Number of the day of the year (1 to 366).
<%yy%> - Last two digits of the year (01 to 99).
<%yyyy%> - Full year (0100 to 9999).
<%hy%> - Date displayed as the half of the year (1 to 2).
<%loc_gg%> - Indicates period/era using the current user regional and language
settings.
<%loc_sdate%> - Indicates the date in the short format using the current user regional
and language settings.
<%loc_ldate%> - Indicates the date in the long format using the current user regional
and language settings.
<%loc_dsep%> - Indicates the date separator using the current user regional and
language settings (/).
<%h%> - Hour in one or two digits, as needed (0 to 23).
<%hh%> - Hour in two digits (00 to 23).
<%h12%> - Hour in 12-hour time format, in one or two digits - [0(12),11]
<%hh12%> - hour in 12-hour time format, in two digits - [00(12),11]
<%n%> - Minute in one or two digits, as needed (0 to 59).
<%nn%> - Minute in two digits (00 to 59).
<%s%> - Second in one or two digits, as needed (0 to 59).
<%ss%> - Second in two digits (00 to 59).
<%AM/PM%> - Twelve-hour clock with the uppercase letters "AM" or "PM", as
appropriate. (Use the AMPM property to specify the name of the AM and PM
indicators). You can use the <%loc_AM/PM%> that indicates the time marker such as
AM or PM using the current user regional and language settings. You can use
<%loc_A/P%> that indicates the one character time marker such as A or P using the
current user regional and language settings
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user regional and language settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user regional and language settings.
<%loc_time%> - Indicates the time using the current user regional and language
settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user regional and language settings.
<%loc_tsep%> - indicates the time separator using the current user regional and

language settings (:)
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed

The following tags are displayed based on the user's Regional and Language Options:

<%loc_sdate%> - Indicates the date in the short format using the current user
settings.
<%loc_ldate%> - Indicates the date in the long format using the current user settings.
<%loc_d1%> - Indicates day of week as a one-letter abbreviation using the current
user settings.
<%loc_d2%> - Indicates day of week as a two-letters abbreviation using the current
user settings.
<%loc_d3%> equivalent with <%loc_ddd%>
<%loc_ddd%> - Indicates day of week as a three-letters abbreviation using the
current user settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
settings.
<%loc_m1%> - Indicates month as a one-letter abbreviation using the current user
settings.
<%loc_m2%> - Indicates month as a two-letters abbreviation using the current user
settings.
<%loc_m3%> - equivalent with <%loc_mmm%>
<%loc_mmm%> - Indicates month as a three-letters abbreviation using the current
user settings.
<%loc_mmmm%> - Indicates month as its full name using the current user settings.
<%loc_gg%> - Indicates period/era using the current user settings.
<%loc_dsep%> - Indicates the date separator using the current user settings.
<%loc_time%> - Indicates the time using the current user settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user settings.
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user settings.

<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user settings.
<%loc_tsep%> - Indicates the time separator using the current user settings
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed

The Text property supports the following built-in HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

about:blank

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.

& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Note.Visible as Boolean
Specifies whether the note is visible or hidden.

Type Description

Boolean A Boolean expression that specifies whether the Note is
visible or hidden.

By default, the Visible property is True. Use the Visible property to show or hide a specific
note. Use the PartVisible property to specify whether the start or ending part of the note is
visible or hidden. When adding new notes, only the ending part of the note is visible. The
ShowLink property specifies whether the link between parts of the notes is visible or
hidden. Use the ShowNotes property to show or hide the notes in the control. Use the
Remove method to remove a note from the Notes collection.

Notes object
(exn2tes) The Notes collection holds a collection of Note objects. A note can be associated
with a DATE in the chart or can be associated to a BAR in the chart. A note is a box that
moves together with the related object. For instance, if a note is associated with the
starting point of the bar (start date), and the user resizes the bar in the left side (so it
changes the starting point of the bar), the related box/note is moved relatively too. The
Notes object can be accessed through the Notes property of the Chart object. A Note or a
Box can display HTML captions, images, icons, borders, links, and it is fully customizable.
The note is composed by two parts, the starting part and end part, that can be linked
together. The start part is related to the DATE or to the BAR, while the end part is related
to the start part of the note, such us if the start part is moved, the end part is relatively
moved. The user can move the end part around the start part, while the start part remains
unchanged, or can move so the entire box is moved relatively to the object (DATE or BAR
). Use the Items.ItemBar(exBarCaption) property to assign a HTML text, icons, pictures to
a bar. Use the Items.ItemBar(exBarExtraCaption) property to add or associate extra
captions to a bar.

Using notes feature of the control you can associate notes or boxes to dates or bars as
follow:

associate a note or a box to a DATE in the chart control. The note is shown relative to
the date in the chart area, so once the chart is scrolled the note is moved or
repositioned accordingly to the date. The vertical position of the note is determined by
the item that hosts the note, and the PartVOffset property. The RelativePosition is a
number expression that determines whether the note is associated with the start of the
date, end of the date, or a percent.
associate a note or a box relative to a BAR in the chart control. The note is shown
relative to the bar in the chart area, so once the bar is moved or resized the note is
shown accordingly to the bar. The vertical position of the note is determined by the
item that hosts the note, and the PartVOffset property. In this case, the type of the
RelativePosition property determines how the note is related to the bar using the
following rules:

is a numeric expression, the RelativePosition determines the position to display the
note relative to the range of the bar, determined by the starting
/ItemBar(exBarStart)/ and ending /ItemBar(exBarEnd)/ point of the bar. For
instance, if the RelativePosition property is 0.5 the note is being displayed in the
middle of the bar, while if the RelativePosition property is 1, the note is positioned
at the end of the bar. If the user resizes the bar, its range is changed, so the note
is moved accordingly.
a string expression that starts with S or E being followed by numeric expression (
sample "E-1", "E-0.5", "S+2") it determines the note to be relative to the starting
point of the bar if starts with S, or relative to the end of the bar if it starts with E.

The numeric expression that follows to S or E determines the number of days to
be positioned the note. For instance, the "E-1", indicates that the note is
positioned one day before bar ends. If the user resizes the ending point of the bar,
the note will always be displayed one day before it ends, and so on. The "S+2" ,
indicates that the note will be displayed 2 days after bar starts, and if the user
resizes the bar, the note will always be displayed 2 days after the starting point of
the bar. The "E-0.5" indicates that the note will be displayed 12 hours (1/2 or 0.5
from a day) before bar ends.

The following animated screen shows some of capabilities for notes:

The following screen shot shows notes//boxes associated to bars:

The following screen shot shows notes//boxes associated to bars:

The Notes collection supports the following properties and methods:

Name Description

Add Adds a new note/box to the control and returns a
reference to the newly created object.

Clear Removes all notes in the control.
ClipTo Specifies the region of the chart to clip the notes.
Count Returns the number of objects in a collection.
Item Returns a specific note/box.
Remove Removes a specific note/box from the collection.

method Notes.Add (ID as Variant, Item as Variant, Key as Variant, Text as
String)
Adds a new note/box to the control and returns a reference to the newly created object.

Type Description

ID as Variant
An Unique identifier that specifies the ID of the note being
added. Use this identifier to access later the node or the
box.

Item as Variant
A long expression that specifies the handle of the item
where the note is assigned. The ItemFromPoint property
retrieves the handle of the item from the cursor.

Key as Variant

A VARIANT expression that specifies the object to relate
the note as follows:

Key parameter is of Date type, it indicates the DATE
in the chart to associate the note. By default, the
RelativePosition property is 0.5, which indicates the
center of the unit where the DATE is (0, means the
start unit, while the 1 is the end of the unit, and so on
). The DateFromPoint property retrieves the date
from the point. By default, If a note is associated to a
DATE, the RelativePostion property is 0.5, it displays
only the ending part of the note, and the ending part
of the note is not movable.
Key parameter is not of Date type, it indicates the
Key of the BAR to associate the note (The Item and
the Key indicates the bar to associate the note). By
default, the RelativePosition property is 0, which
indicates the starting point of the bar (0, means the
starting point of the bar, while the 1 is the ending point
of the bar, 0.5 indicates the middle of the bar, and so
on). The BarFromPoint property retrieves the key of
the bar from the cursor. By default, If a note is
associated to a BAR, the RelativePostion property is
0, it displays only the ending part of the note, and the
ending part of the note is not movable. Also, the
direction from start to end part is visible.

By default, the starting part of the note is not visible, so
only the ending part of the note is visible.

Text as String

A String expression that specifies the HTML text to be
displayed on the ending part of the note. The Text
parameter supports HTML tags as well as Chart Tags
such as <%dd%> that displays the day in 2 digits, and so
on like described bellow. Use the Images method to
specify a list of icons that can be displayed in the control
using the tag. Use the HTMLPicture property to
add custom- size pictures to be used in the HTML captions
using the tag.

Return Description

Note A Note object being created. Use the NoteFromPoint
property to access the Note from the cursor.

The Add method adds a note or a box associated with a DATE or a BAR in the chart. The
type of the Key parameter specifies when a DATE or a BAR is being associated with the
note. By default, the starting part of the note is not visible, so use the PartVisible property
to show or hide any part of the note. The PartCanMove property specifies whether the use
can move the part. The PartText property indicates the HTML text to display in the
part. The RelativePosition property always specifies the position of the starting part of the
note relative to the DATE or BAR being associated. Use the PartHOffset / PartVOffset
property to specify the horizontal / vertical offset relative to the start or end part. Use the
exBarCaption property to specify the caption for a bar. Use the exBarExtraCaption property
to assign more extra captions to a bar.

The Text parameter / PartText property supports the following:

<%d%> - Day of the month in one or two numeric digits, as needed (1 to 31).
<%dd%> - Day of the month in two numeric digits (01 to 31).
<%d1%> - First letter of the weekday (S to S). (Use the WeekDays property to
specify the name of the days in the week)
<%loc_d1%> - Indicates day of week as a one-letter abbreviation using the current
user settings.
<%d2%> - First two letters of the weekday (Su to Sa). (Use the WeekDays property
to specify the name of the days in the week)
<%loc_d2%> - Indicates day of week as a two-letters abbreviation using the current
user settings.
<%d3%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week)
<%loc_d3%> equivalent with <%loc_ddd%>
<%ddd%> - First three letters of the weekday (Sun to Sat). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_ddd%> that indicates the day of week as a three-letter abbreviation using the

current user regional and language settings.
<%loc_ddd%> - Indicates the day of week as a three-letter abbreviation using the
current user regional and language settings.
<%dddd%> - Full name of the weekday (Sunday to Saturday). (Use the WeekDays
property to specify the name of the days in the week). You can use the
<%loc_dddd%> that indicates day of week as its full name using the current user
regional and language settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
regional and language settings.
<%i%> - Displays the number instead the date. For instance, you can display numbers
as 1000, 1001, 1002, 1003, instead dates. (the valid range is from -647,434 to
2,958,465)
<%w%> - Day of the week (1 to 7).
<%ww%> - Week of the year (1 to 53).
<%m%> - Month of the year in one or two numeric digits, as needed (1 to 12).
<%mr%> - Month of the year in Roman numerals, as needed (I to XII).
<%mm%> - Month of the year in two numeric digits (01 to 12).
<%m1%> - First letter of the month (J to D). (Use the MonthNames property to
specify the name of the months in the year)
<%loc_m1%> - Indicates month as a one-letter abbreviation using the current user
settings.
<%m2%> - First two letters of the month (Ja to De). (Use the MonthNames property
to specify the name of the months in the year)
<%loc_m2%> - Indicates month as a two-letters abbreviation using the current user
settings.
<%m3%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year)
<%loc_m3%> - equivalent with <%loc_mmm%>
<%mmm%> - First three letters of the month (Jan to Dec). (Use the MonthNames
property to specify the name of the months in the year). You can use the
<%loc_mmm%> that indicates month as a three-letter abbreviation using the current
user regional and language settings.
<%loc_mmm%> - Indicates month as a three-letter abbreviation using the current user
regional and language settings.
<%mmmm%> - Full name of the month (January to December). (Use the
MonthNames property to specify the name of the months in the year). You can use the
<%loc_mmmm%> that indicates month as its full name using the current user regional
and language settings.
<%loc_mmmm%> - Indicates month as its full name using the current user regional
and language settings.
<%q%> - Date displayed as the quarter of the year (1 to 4).
<%y%> - Number of the day of the year (1 to 366).

<%yy%> - Last two digits of the year (01 to 99).
<%yyyy%> - Full year (0100 to 9999).
<%hy%> - Date displayed as the half of the year (1 to 2).
<%loc_gg%> - Indicates period/era using the current user regional and language
settings.
<%loc_sdate%> - Indicates the date in the short format using the current user regional
and language settings.
<%loc_ldate%> - Indicates the date in the long format using the current user regional
and language settings.
<%loc_dsep%> - Indicates the date separator using the current user regional and
language settings (/).
<%h%> - Hour in one or two digits, as needed (0 to 23).
<%hh%> - Hour in two digits (00 to 23).
<%h12%> - Hour in 12-hour time format, in one or two digits - [0(12),11]
<%hh12%> - hour in 12-hour time format, in two digits - [00(12),11]
<%n%> - Minute in one or two digits, as needed (0 to 59).
<%nn%> - Minute in two digits (00 to 59).
<%s%> - Second in one or two digits, as needed (0 to 59).
<%ss%> - Second in two digits (00 to 59).
<%AM/PM%> - Twelve-hour clock with the uppercase letters "AM" or "PM", as
appropriate. (Use the AMPM property to specify the name of the AM and PM
indicators). You can use the <%loc_AM/PM%> that indicates the time marker such as
AM or PM using the current user regional and language settings. You can use
<%loc_A/P%> that indicates the one character time marker such as A or P using the
current user regional and language settings
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user regional and language settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user regional and language settings.
<%loc_time%> - Indicates the time using the current user regional and language
settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user regional and language settings.
<%loc_tsep%> - indicates the time separator using the current user regional and
language settings (:)
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the
calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported

calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed

The following tags are displayed based on the user's Regional and Language Options:

<%loc_sdate%> - Indicates the date in the short format using the current user
settings.
<%loc_ldate%> - Indicates the date in the long format using the current user settings.
<%loc_d1%> - Indicates day of week as a one-letter abbreviation using the current
user settings.
<%loc_d2%> - Indicates day of week as a two-letters abbreviation using the current
user settings.
<%loc_d3%> equivalent with <%loc_ddd%>
<%loc_ddd%> - Indicates day of week as a three-letters abbreviation using the
current user settings.
<%loc_dddd%> - Indicates day of week as its full name using the current user
settings.
<%loc_m1%> - Indicates month as a one-letter abbreviation using the current user
settings.
<%loc_m2%> - Indicates month as a two-letters abbreviation using the current user
settings.
<%loc_m3%> - equivalent with <%loc_mmm%>
<%loc_mmm%> - Indicates month as a three-letters abbreviation using the current
user settings.
<%loc_mmmm%> - Indicates month as its full name using the current user settings.
<%loc_gg%> - Indicates period/era using the current user settings.
<%loc_dsep%> - Indicates the date separator using the current user settings.
<%loc_time%> - Indicates the time using the current user settings.
<%loc_time24%> - Indicates the time in 24 hours format without a time marker using
the current user settings.
<%loc_AM/PM%> - Indicates the time marker such as AM or PM using the current
user settings.
<%loc_A/P%> - Indicates the one character time marker such as A or P using the
current user settings.
<%loc_tsep%> - Indicates the time separator using the current user settings
<%loc_y%> - Represents the Year only by the last digit, using current regional
settings.
<%loc_yy%> - Represents the Year only by the last two digits, using current regional
settings. A leading zero is added for single-digit years.
<%loc_yyyy%> - Represents the Year by a full four or five digits, depending on the

calendar used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other supported
calendars. Calendars that have single-digit or two-digit years, such as for the
Japanese Emperor era, are represented differently. A single-digit year is represented
with a leading zero, for example, "03". A two-digit year is represented with two digits,
for example, "13". No additional leading zeros are displayed

The Text parameter / PartText property supports the following built-in HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show
lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using

about:blank

the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the

offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

The following VB sample adds a note associated with the DATE from the cursor, when the
user double clicks the chart area:

Private Sub G2antt1_DblClick(Shift As Integer, X As Single, Y As Single)
 With G2antt1
 .BeginUpdate
 Dim h As Long, c As Long, hit As HitTestInfoEnum
 h = G2antt1.ItemFromPoint(-1, -1, c, hit)
 If (h <> 0) Then
 Dim d As Date
 d = .Chart.DateFromPoint(-1, -1)
 If (d <> 0) Then
 .Chart.Notes.Add d, h, d, "<%dd%>/<%mm%>/<%yyyy%>"
 End If
 End If
 .EndUpdate
 End With
End Sub

The following VB sample adds a note associated with the BAR from the cursor, when the
user double clicks the chart area:

Private Sub G2antt1_DblClick(Shift As Integer, X As Single, Y As Single)
 With G2antt1
 .BeginUpdate
 Dim h As Long, c As Long, hit As HitTestInfoEnum
 h = G2antt1.ItemFromPoint(-1, -1, c, hit)
 If (h <> 0) Then
 Dim k As Variant
 k = .Chart.BarFromPoint(-1, -1)
 If (Not IsEmpty(k)) Then
 .Chart.Notes.Add k, h, k, "start"
 End If
 End If
 .EndUpdate
 End With
End Sub

method Notes.Clear ()
Removes all notes in the control.

Type Description

The Clear method removes all notes in the control. Use the Remove method to remove a
specific Note in the collection. Use the Add method to add new notes to the chart area. Use
the NoteFromPoint property to access the note from the cursor. Use the ShowNotes
property to show or hide the notes in the control. Use the Visible property to show or hide a
specific note, or use the PartVisible property to specify whether the start or ending part of
the note is visible or hidden.

property Notes.ClipTo as NotesClipToEnum
Specifies the region of the chart to clip the notes.

Type Description

NotesClipToEnum A NotesClipToEnum expression that specifies the chart's
Notes limits.

By default, the ClipTo property is exNotesClipNone, which indicates that no clipping is
performed when displaying the notes. For instance, you can clip the notes to the items
section (exNotesClipToItems), when smoothing scroll the control's content using the
AutoDrag property on exAutoDragScroll or ScrollBySingleLine property on False. The Add
method adds a new note to the chart associated to the bar/task or date. The ShowNotes
property indicates whether the chart displays or hides the notes. Use the Visible property to
show or hide a specific note, or use the PartVisible property to specify whether the start or
ending part of the note is visible or hidden.

property Notes.Count as Long
Returns the number of objects in a collection.

Type Description

Long A long expression that specifies the number of notes in the
collection.

The Count property counts the number of notes in the control. Use the Add method to add
new notes to the chart area. Use the Item property to access a specific member of the
notes collection. Use the Remove method to remove a specific Note in the collection. The
Clear method removes all notes in the control. Use the NoteFromPoint property to access
the note from the cursor.

The following VB sample prints the ID for each note in the control:

Dim n As EXG2ANTTLibCtl.Note
For Each n In G2antt1.Chart.Notes
 Debug.Print n.ID
Next

property Notes.Item (ID as Variant) as Note
Returns a specific expression.

Type Description

ID as Variant

A VARIANT expression that specifies the ID of the note
being requested. The ID parameter of the Add method
indicates the unique identifier of the note being added. If
the ID parameter is a long expression between 0 and
Count - 1, the Item property gets the Note by its index.

Note A Note object being accessed.

Use the Item property to access a specific member of the notes collection. The Count
property counts the number of notes in the control. Use the Add method to add new notes
to the chart area. Use the Remove method to remove a specific Note in the collection. The
Clear method removes all notes in the control. Use the NoteFromPoint property to access
the note from the cursor.

The following VB sample prints the ID for each note in the control:

Dim n As EXG2ANTTLibCtl.Note
For Each n In G2antt1.Chart.Notes
 Debug.Print n.ID
Next

method Notes.Remove (ID as Variant)
Removes a specific note/box from the collection.

Type Description

ID as Variant A VARIANT expression that specifies the identifier of the
Note to be removed.

Use the Remove method to remove a specific Note in the collection. Use the Add method to
add new notes to the chart area. The Clear method removes all notes in the control. Use
the ShowNotes property to show or hide the notes in the control. Use the Visible property
to show or hide a specific note, or use the PartVisible property to specify whether the start
or ending part of the note is visible or hidden. The ShowLink property specifies whether the
link between parts of the notes is visible or hidden. Use the NoteFromPoint property to
access the note from the cursor.

The following VB sample removes the note being double clicked:

Private Sub G2antt1_DblClick(Shift As Integer, X As Single, Y As Single)
 With G2antt1
 .BeginUpdate
 Dim n As EXG2ANTTLibCtl.Note
 Set n = .Chart.NoteFromPoint(-1, -1)
 If Not n Is Nothing Then
 .Chart.Notes.Remove n.ID
 End If
 .EndUpdate
 End With
End Sub

OleEvent object
The OleEvent object holds information about an event fired by an ActiveX control hosted by
in item that was created using the InsertControlItem method.

Name Description
CountParam Retrieves the count of the OLE event's arguments.

ID Retrieves a long expression that specifies the identifier of
the event.

Name Retrieves the original name of the fired event.

Param Retrieves an OleEventParam object given either the index
of the parameter, or its name.

ToString Retrieves information about the event.

property OleEvent.CountParam as Long

Retrieves the count of the OLE event's arguments.

Type Description
Long A long value that indicates the count of the arguments.

The following sample enumerates the arguments of an OLE event when ItemOLEEvent is
fired.

Private Sub G2antt1_ItemOleEvent(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal Ev As
EXG2ANTTLibCtl.IOleEvent)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VC sample displays the events that an ActiveX control is firing while it is
hosted by an item:

 #import <exg2antt.dll> rename("GetItems", "exGetItems")

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);

 }
 return szDefault;
}

void OnItemOleEventG2antt1(long Item, LPDISPATCH Ev)
{
 EXG2ANTTLib::IOleEventPtr spEvent(Ev);
 CString strOutput;
 strOutput.Format("Event's name: %s\n", spEvent->Name.operator const char *());
 OutputDebugString(strOutput);
 if (spEvent->CountParam == 0)
 OutputDebugString("The event has no parameters.");
 else
 {
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 EXG2ANTTLib::IOleEventParamPtr spParam = spEvent->GetParam(COleVariant(i));
 strOutput.Format("Name: %s, Value: %s\n", spParam->Name.operator const char *
(), V2S(&spParam->Value));
 OutputDebugString(strOutput);
 }
 }
 OutputDebugString("");
}

The #import clause is required to get the wrapper classes for IOleEvent and
IOleEventParam objects, that are not defined by the MFC class wizard. The same #import
statement defines the EXG2ANTTLib namespace that include all objects and types of the
control's TypeLibrary. In case your exg2antt.dll library is located to another place than the
system folder or well known path, the path to the library should be provided, in order to let
the VC finds the type library.

The following VB.NET sample displays the events that an ActiveX control is firing while it is
hosted by an item:

Private Sub AxG2antt1_ItemOleEvent(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_ItemOleEventEvent) Handles AxG2antt1.ItemOleEvent
 Debug.WriteLine("Event's name: " & e.ev.Name)
 Dim i As Long

 For i = 0 To e.ev.CountParam - 1
 Dim eP As EXG2ANTTLib.OleEventParam
 eP = e.ev(i)
 Debug.WriteLine("Name: " & e.ev.Name & " Value: " & eP.Value)
 Next
End Sub

The following C# sample displays the events that an ActiveX control is firing while it is
hosted by an item:

private void axG2antt1_ItemOleEvent(object sender,
AxEXG2ANTTLib._IG2anttEvents_ItemOleEventEvent e)
{
 System.Diagnostics.Debug.WriteLine("Event's name: " + e.ev.Name.ToString());
 for (int i= 0; i < e.ev.CountParam ; i++)
 {
 EXG2ANTTLib.IOleEventParam evP = e.ev[i];
 System.Diagnostics.Debug.WriteLine("Name: " + evP.Name.ToString() + ", Value: " +
evP.Value.ToString());
 }
}

The following VFP sample displays the events that an ActiveX control fires when it is hosted
by an item:

*** ActiveX Control Event ***
LPARAMETERS item, ev

local s
s = "Event's name: " + ev.Name
for i = 0 to ev.CountParam - 1
 s = s + "Name: " + ev.Param(i).Name + " ,Value: " + Str(ev.Param(i).Value)
endfor
wait window nowait s

property OleEvent.ID as Long
Retrieves a long expression that specifies the identifier of the event.

Type Description

Long A Long expression that defines the identifier of the OLE
event.

The identifier of the event could be used to identify a specified OLE event. Use the Name
property of the OLE Event to get the name of the OLE Event. Use the ToString property to
display information about an OLE event. The ToString property displays the idenfier of the
event after the name of the event in two [] brackets. For instance, the ToString property
gets the "KeyDown[-602](KeyCode/Short* = 9,Shift/Short = 0)" when TAB key is pressed,
so the identifier of the KeyDown event being fired by the inside User editor is -602. For
instance, tThe following VB sample closes the editor and focus a new column when user
presses the TAB key inside an User editor:

Private Sub G2antt1_UserEditorOleEvent(ByVal Object As Object, ByVal Ev As
EXG2ANTTLibCtl.IOleEvent, CloseEditor As Boolean, ByVal Item As
EXG2ANTTLibCtl.HITEM, ByVal ColIndex As Long)
 If (Ev.ID = -602) Then ' KeyDown
 Dim iKey As Long
 iKey = Ev(0).Value
 If iKey = vbKeyTab Then
 With G2antt1
 CloseEditor = True
 .FocusColumnIndex = .FocusColumnIndex + 1
 .SearchColumnIndex = .FocusColumnIndex
 End With
 End If
 End If

property OleEvent.Name as String

Retrieves the original name of the fired event.

Type Description
String A string expression that indicates the event's name.

Use the ID property to specify a specified even by its identifier. Use the ToString property to
display information about fired event such us name, parameters, types and values. Use the
CountParam property to count the parameters of an OLE event. Use the Param property
to get the event's parameter. Use the Value property to specify the value of the parameter.

The following VB sample enumerates the arguments of an OLE event when ItemOLEEvent
is fired.

Private Sub G2antt1_ItemOleEvent(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal Ev As
EXG2ANTTLibCtl.IOleEvent)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VC sample displays the events that an ActiveX control is firing while it is
hosted by an item:

 #import <exg2antt.dll> rename("GetItems", "exGetItems")

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnItemOleEventG2antt1(long Item, LPDISPATCH Ev)
{
 EXG2ANTTLib::IOleEventPtr spEvent(Ev);
 CString strOutput;
 strOutput.Format("Event's name: %s\n", spEvent->Name.operator const char *());
 OutputDebugString(strOutput);
 if (spEvent->CountParam == 0)
 OutputDebugString("The event has no parameters.");
 else
 {
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 EXG2ANTTLib::IOleEventParamPtr spParam = spEvent->GetParam(COleVariant(i));
 strOutput.Format("Name: %s, Value: %s\n", spParam->Name.operator const char *
(), V2S(&spParam->Value));
 OutputDebugString(strOutput);
 }
 }
 OutputDebugString("");
}

The #import clause is required to get the wrapper classes for IOleEvent and
IOleEventParam objects, that are not defined by the MFC class wizard. The same #import
statement defines the EXG2ANTTLib namespace that include all objects and types of the
control's TypeLibrary. In case your exg2antt.dll library is located to another place than the
system folder or well known path, the path to the library should be provided, in order to let
the VC finds the type library.

The following VB.NET sample displays the events that an ActiveX control is firing while it is
hosted by an item:

Private Sub AxG2antt1_ItemOleEvent(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_ItemOleEventEvent) Handles AxG2antt1.ItemOleEvent
 Debug.WriteLine("Event's name: " & e.ev.Name)
 Dim i As Long
 For i = 0 To e.ev.CountParam - 1
 Dim eP As EXG2ANTTLib.OleEventParam
 eP = e.ev(i)
 Debug.WriteLine("Name: " & e.ev.Name & " Value: " & eP.Value)
 Next
End Sub

The following C# sample displays the events that an ActiveX control is firing while it is
hosted by an item:

private void axG2antt1_ItemOleEvent(object sender,
AxEXG2ANTTLib._IG2anttEvents_ItemOleEventEvent e)
{
 System.Diagnostics.Debug.WriteLine("Event's name: " + e.ev.Name.ToString());
 for (int i= 0; i < e.ev.CountParam ; i++)
 {
 EXG2ANTTLib.IOleEventParam evP = e.ev[i];
 System.Diagnostics.Debug.WriteLine("Name: " + evP.Name.ToString() + ", Value: " +
evP.Value.ToString());
 }
}

The following VFP sample displays the events that an ActiveX control fires when it is hosted
by an item:

*** ActiveX Control Event ***
LPARAMETERS item, ev

local s
s = "Event's name: " + ev.Name
for i = 0 to ev.CountParam - 1
 s = s + "Name: " + ev.Param(i).Name + " ,Value: " + Str(ev.Param(i).Value)
endfor
wait window nowait s

property OleEvent.Param (Item as Variant) as OleEventParam

Retrieves an OleEventParam object given either the index of the parameter, or its name.

Type Description

Item as Variant A long expression that indicates the argument's index or a
string expression that indicates the argument's name.

OleEventParam An OleEventParam object that contains the name and the
value for the argument.

The following VB sample enumerates the arguments of an OLE event when ItemOLEEvent
is fired.

Private Sub G2antt1_ItemOleEvent(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal Ev As
EXG2ANTTLibCtl.IOleEvent)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VC sample displays the events that an ActiveX control is firing while it is
hosted by an item:

 #import <exg2antt.dll> rename("GetItems", "exGetItems")

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnItemOleEventG2antt1(long Item, LPDISPATCH Ev)
{
 EXG2ANTTLib::IOleEventPtr spEvent(Ev);
 CString strOutput;
 strOutput.Format("Event's name: %s\n", spEvent->Name.operator const char *());
 OutputDebugString(strOutput);
 if (spEvent->CountParam == 0)
 OutputDebugString("The event has no parameters.");
 else
 {
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 EXG2ANTTLib::IOleEventParamPtr spParam = spEvent->GetParam(COleVariant(i));
 strOutput.Format("Name: %s, Value: %s\n", spParam->Name.operator const char *
(), V2S(&spParam->Value));
 OutputDebugString(strOutput);
 }
 }
 OutputDebugString("");
}

The #import clause is required to get the wrapper classes for IOleEvent and
IOleEventParam objects, that are not defined by the MFC class wizard. The same #import
statement defines the EXG2ANTTLib namespace that include all objects and types of the
control's TypeLibrary. In case your exg2antt.dll library is located to another place than the
system folder or well known path, the path to the library should be provided, in order to let
the VC finds the type library.

The following VB.NET sample displays the events that an ActiveX control is firing while it is
hosted by an item:

Private Sub AxG2antt1_ItemOleEvent(ByVal sender As Object, ByVal e As

AxEXG2ANTTLib._IG2anttEvents_ItemOleEventEvent) Handles AxG2antt1.ItemOleEvent
 Debug.WriteLine("Event's name: " & e.ev.Name)
 Dim i As Long
 For i = 0 To e.ev.CountParam - 1
 Dim eP As EXG2ANTTLib.OleEventParam
 eP = e.ev(i)
 Debug.WriteLine("Name: " & e.ev.Name & " Value: " & eP.Value)
 Next
End Sub

The following C# sample displays the events that an ActiveX control is firing while it is
hosted by an item:

private void axG2antt1_ItemOleEvent(object sender,
AxEXG2ANTTLib._IG2anttEvents_ItemOleEventEvent e)
{
 System.Diagnostics.Debug.WriteLine("Event's name: " + e.ev.Name.ToString());
 for (int i= 0; i < e.ev.CountParam ; i++)
 {
 EXG2ANTTLib.IOleEventParam evP = e.ev[i];
 System.Diagnostics.Debug.WriteLine("Name: " + evP.Name.ToString() + ", Value: " +
evP.Value.ToString());
 }
}

The following VFP sample displays the events that an ActiveX control fires when it is hosted
by an item:

*** ActiveX Control Event ***
LPARAMETERS item, ev

local s
s = "Event's name: " + ev.Name
for i = 0 to ev.CountParam - 1
 s = s + "Name: " + ev.Param(i).Name + " ,Value: " + Str(ev.Param(i).Value)
endfor
wait window nowait s

property OleEvent.ToString as String
Retrieves information about the event.

Type Description

String

A String expression that shows information about an OLE
event. The ToString property gets the information as
follows: Name[ID] (Param/Type = Value, Param/Type =
Value, ...). For instance, "KeyDown[-602]
(KeyCode/Short* = 9,Shift/Short = 0)" indicates that the
KeyDown event is fired, with the identifier -602 with two
parameters KeyCode as a reference to a short type with
the value 8, and Shift parameter as Short type with the
value 0.

Use the ToString property to display information about fired event such us name,
parameters, types and values. Using the ToString property you can quickly identifies the
event that you should handle in your application. Use the ID property to specify a specified
even by its identifier. Use the Name property to get the name of the event. Use the Param
property to access a specified parameter using its index or its name.

Displaying ToString property during the OLE Event event may show data like follows:

MouseMove[-606](Button/Short = 0,Shift/Short = 0,X/Long = 46,Y/Long = 15)
MouseDown[-605](Button/Short = 1,Shift/Short = 0,X/Long = 46,Y/Long = 15)
KeyDown[-602](KeyCode/Short* = 83,Shift/Short = 0)
KeyPress[-603](KeyAscii/Short* = 115)
Change[2]()
KeyUp[-604](KeyCode/Short* = 83,Shift/Short = 0)
MouseUp[-607](Button/Short = 1,Shift/Short = 0,X/Long = 46,Y/Long = 15)
MouseMove[-606](Button/Short = 0,Shift/Short = 0,X/Long = 46,Y/Long = 15)

OleEventParam object
The OleEventParam holds the name and the value for an event's argument.

Name Description
Name Retrieves the name of the event's parameter.
Value Retrieves or sets the value of the event's parameter.

property OleEventParam.Name as String

Retrieves the name of the event's parameter.

Type Description

String A string expression that indicates the name of the event's
parameter.

The following sample enumerates the arguments of an OLE event when ItemOLEEvent is
fired.

Private Sub G2antt1_ItemOleEvent(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal Ev As
EXG2ANTTLibCtl.IOleEvent)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VC sample displays the events that an ActiveX control is firing while it is
hosted by an item:

 #import <exg2antt.dll> rename("GetItems", "exGetItems")

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);

 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnItemOleEventG2antt1(long Item, LPDISPATCH Ev)
{
 EXG2ANTTLib::IOleEventPtr spEvent(Ev);
 CString strOutput;
 strOutput.Format("Event's name: %s\n", spEvent->Name.operator const char *());
 OutputDebugString(strOutput);
 if (spEvent->CountParam == 0)
 OutputDebugString("The event has no parameters.");
 else
 {
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 EXG2ANTTLib::IOleEventParamPtr spParam = spEvent->GetParam(COleVariant(i));
 strOutput.Format("Name: %s, Value: %s\n", spParam->Name.operator const char *
(), V2S(&spParam->Value));
 OutputDebugString(strOutput);
 }
 }
 OutputDebugString("");
}

The #import clause is required to get the wrapper classes for IOleEvent and
IOleEventParam objects, that are not defined by the MFC class wizard. The same #import
statement defines the EXG2ANTTLib namespace that include all objects and types of the
control's TypeLibrary. In case your exg2antt.dll library is located to another place than the
system folder or well known path, the path to the library should be provided, in order to let
the VC finds the type library.

The following VB.NET sample displays the events that an ActiveX control is firing while it is
hosted by an item:

Private Sub AxG2antt1_ItemOleEvent(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_ItemOleEventEvent) Handles AxG2antt1.ItemOleEvent
 Debug.WriteLine("Event's name: " & e.ev.Name)

 Dim i As Long
 For i = 0 To e.ev.CountParam - 1
 Dim eP As EXG2ANTTLib.OleEventParam
 eP = e.ev(i)
 Debug.WriteLine("Name: " & e.ev.Name & " Value: " & eP.Value)
 Next
End Sub

The following C# sample displays the events that an ActiveX control is firing while it is
hosted by an item:

private void axG2antt1_ItemOleEvent(object sender,
AxEXG2ANTTLib._IG2anttEvents_ItemOleEventEvent e)
{
 System.Diagnostics.Debug.WriteLine("Event's name: " + e.ev.Name.ToString());
 for (int i= 0; i < e.ev.CountParam ; i++)
 {
 EXG2ANTTLib.IOleEventParam evP = e.ev[i];
 System.Diagnostics.Debug.WriteLine("Name: " + evP.Name.ToString() + ", Value: " +
evP.Value.ToString());
 }
}

The following VFP sample displays the events that an ActiveX control fires when it is hosted
by an item:

*** ActiveX Control Event ***
LPARAMETERS item, ev

local s
s = "Event's name: " + ev.Name
for i = 0 to ev.CountParam - 1
 s = s + "Name: " + ev.Param(i).Name + " ,Value: " + Str(ev.Param(i).Value)
endfor
wait window nowait s

property OleEventParam.Value as Variant

Retrieves or sets the value of the event's parameter.

Type Description

Variant A variant value that indicates the value of the event's
parameter.

The following sample enumerates the arguments of an OLE event when ItemOLEEvent is
fired.

Private Sub G2antt1_ItemOleEvent(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal Ev As
EXG2ANTTLibCtl.IOleEvent)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VC sample displays the events that an ActiveX control is firing while it is
hosted by an item:

 #import <exg2antt.dll> rename("GetItems", "exGetItems")

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);

 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnItemOleEventG2antt1(long Item, LPDISPATCH Ev)
{
 EXG2ANTTLib::IOleEventPtr spEvent(Ev);
 CString strOutput;
 strOutput.Format("Event's name: %s\n", spEvent->Name.operator const char *());
 OutputDebugString(strOutput);
 if (spEvent->CountParam == 0)
 OutputDebugString("The event has no parameters.");
 else
 {
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 EXG2ANTTLib::IOleEventParamPtr spParam = spEvent->GetParam(COleVariant(i));
 strOutput.Format("Name: %s, Value: %s\n", spParam->Name.operator const char *
(), V2S(&spParam->Value));
 OutputDebugString(strOutput);
 }
 }
 OutputDebugString("");
}

The #import clause is required to get the wrapper classes for IOleEvent and
IOleEventParam objects, that are not defined by the MFC class wizard. The same #import
statement defines the EXG2ANTTLib namespace that include all objects and types of the
control's TypeLibrary. In case your exg2antt.dll library is located to another place than the
system folder or well known path, the path to the library should be provided, in order to let
the VC finds the type library.

The following VB.NET sample displays the events that an ActiveX control is firing while it is
hosted by an item:

Private Sub AxG2antt1_ItemOleEvent(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_ItemOleEventEvent) Handles AxG2antt1.ItemOleEvent
 Debug.WriteLine("Event's name: " & e.ev.Name)

 Dim i As Long
 For i = 0 To e.ev.CountParam - 1
 Dim eP As EXG2ANTTLib.OleEventParam
 eP = e.ev(i)
 Debug.WriteLine("Name: " & e.ev.Name & " Value: " & eP.Value)
 Next
End Sub

The following C# sample displays the events that an ActiveX control is firing while it is
hosted by an item:

private void axG2antt1_ItemOleEvent(object sender,
AxEXG2ANTTLib._IG2anttEvents_ItemOleEventEvent e)
{
 System.Diagnostics.Debug.WriteLine("Event's name: " + e.ev.Name.ToString());
 for (int i= 0; i < e.ev.CountParam ; i++)
 {
 EXG2ANTTLib.IOleEventParam evP = e.ev[i];
 System.Diagnostics.Debug.WriteLine("Name: " + evP.Name.ToString() + ", Value: " +
evP.Value.ToString());
 }
}

The following VFP sample displays the events that an ActiveX control fires when it is hosted
by an item:

*** ActiveX Control Event ***
LPARAMETERS item, ev

local s
s = "Event's name: " + ev.Name
for i = 0 to ev.CountParam - 1
 s = s + "Name: " + ev.Param(i).Name + " ,Value: " + Str(ev.Param(i).Value)
endfor
wait window nowait s

ExG2antt events
The Exontrol's ExG2antt component supports the following events:

Name Description
AddColumn Fired after a new column has been added.

AddGroupItem Occurs after a new Group Item has been inserted to
Items collection.

AddItem Occurs after a new Item has been inserted to Items
collection.

AddLink Occurs when the user links two bars using the mouse.
AfterDrawPart Occurs right after drawing the part of the control.
AfterExpandItem Fired after an item is expanded (collapsed).

AllowAutoDrag Occurs when the user drags the item between InsertA and
InsertB as child of NewParent.

AllowLink Notifies at runtime when a link between two bars is
possible.

AnchorClick Occurs when an anchor element is clicked.

BarParentChange Occurs just before moving a bar from current item to
another item.

BarResize Occurs when a bar is moved or resized.
BarResizing Occurs when a bar is moving or resizing.
BeforeDrawPart Occurs just before drawing a part of the control.
BeforeExpandItem Fired before an item is about to be expanded (collapsed).
ButtonClick Occurs when user clicks on the cell's button.
CellImageClick Fired after the user clicks on the image's cell area.
CellStateChanged Fired after cell's state has been changed.
CellStateChanging Fired before cell's state is about to be changed.
Change Occurs when the user changes the cell's content.
ChartEndChanging Occurs after the chart has been changed.
ChartSelectionChanged Occurs when the user selects objects in the chart area.
ChartStartChanging Occurs when the chart is about to be changed.

Click Occurs when the user presses and then releases the left
mouse button over the tree control.

ColumnClick Fired after the user clicks on column's header.
CreateBar Fired when the user creates a new bar.
DateChange Occurs when the first visible date is changed.
DateTimeChanged Notifies your application that the current time is changed.

DblClick Occurs when the user dblclk the left mouse button over an
object.

Edit Occurs just before editing the focused cell.
EditClose Occurs when the edit operation ends.
EditOpen Occurs when the edit operation starts.
Error Fired when an internal error occurs.
Event Notifies the application once the control fires an event.
FilterChange Occurs when the filter was changed.
FilterChanging Notifies your application that the filter is about to change.
FocusChanged Occurs when a cell gets the focus.
FormatColumn Fired when a cell requires to format its caption.

HistogramBoundsChanged Occurs when the location and the size of the histogram is
changed.

HyperLinkClick Occurs when the user clicks on a hyperlink cell.

InsideZoom Notifies your application that a date is about to be
magnified.

ItemOleEvent Fired when an ActiveX control hosted by an item has fired
an event.

KeyDown Occurs when the user presses a key while an object has
the focus.

KeyPress Occurs when the user presses and releases an ANSI key.

KeyUp Occurs when the user releases a key while an object has
the focus.

LayoutChanged Occurs when column's position or column's size is
changed.

MouseDown Occurs when the user presses a mouse button.
MouseMove Occurs when the user moves the mouse.
MouseUp Occurs when the user releases a mouse button.
OffsetChanged Occurs when the scroll position has been changed.

OLECompleteDrag
Occurs when a source component is dropped onto a
target component, informing the source component that a
drag action was either performed or canceled

OLEDragDrop
Occurs when a source component is dropped onto a
target component when the source component determines
that a drop can occur.

OLEDragOver Occurs when one component is dragged over another.

OLEGiveFeedback Allows the drag source to specify the type of OLE drag-
and-drop operation and the visual feedback.

OLESetData
Occurs on a drag source when a drop target calls the
GetData method and there is no data in a specified format
in the OLE drag-and-drop DataObject.

OLEStartDrag Occurs when the OLEDrag method is called.

OversizeChanged Occurs when the right range of the scroll has been
changed.

OverviewZoom Occurs once the user selects a new time scale unit in the
overview zoom area.

RClick Fired when right mouse button is clicked
RemoveColumn Fired before deleting a Column.
RemoveItem Occurs before deleting an Item.
ScrollButtonClick Occurs when the user clicks a button in the scrollbar.
SelectionChanged Fired after a new item has been selected.
Sort Fired when the control sorts a column.
ToolTip Fired when the control prepares the object's tooltip.
UserEditorClose Fired the user editor is about to be opened.
UserEditorOleEvent Occurs when an user editor fires an event.
UserEditorOpen Occurs when an user editor is about to be opened.
ValidateValue Occurs before user changes the cell's value.

C#

VB

private void AddColumn(object sender,exontrol.EXG2ANTTLib.Column Column)
{
}

Private Sub AddColumn(ByVal sender As System.Object,ByVal Column As
exontrol.EXG2ANTTLib.Column) Handles AddColumn
End Sub

C#

C++

C++
Builder

Delphi

private void AddColumn(object sender,
AxEXG2ANTTLib._IG2anttEvents_AddColumnEvent e)
{
}

void OnAddColumn(LPDISPATCH Column)
{
}

void __fastcall AddColumn(TObject *Sender,Exg2anttlib_tlb::IColumn *Column)
{
}

procedure AddColumn(ASender: TObject; Column : IColumn);
begin
end;

event AddColumn (Column as Column)

Fired after a new column has been added.

Type Description
Column as Column A Column object that's added to the Columns collection.

The AddColumn event is fired after a new column has been inserted to Columns collection.
Use the AddColumn event to associate extra data to a new column. Use the Add method to
add new columns to Columns collection. Use the ColumnAutoSize property to fit all visible
columns in the control's client area.

Syntax for AddColumn event, /NET version, on:

Syntax for AddColumn event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure AddColumn(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_AddColumnEvent);
begin
end;

begin event AddColumn(oleobject Column)
end event AddColumn

Private Sub AddColumn(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_AddColumnEvent) Handles AddColumn
End Sub

Private Sub AddColumn(ByVal Column As EXG2ANTTLibCtl.IColumn)
End Sub

Private Sub AddColumn(ByVal Column As Object)
End Sub

LPARAMETERS Column

PROCEDURE OnAddColumn(oG2antt,Column)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="AddColumn(Column)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AddColumn(Column)
End Function
</SCRIPT>

Procedure OnComAddColumn Variant llColumn
 Forward Send OnComAddColumn llColumn
End_Procedure

Syntax for AddColumn event, /COM version (others), on:

Visual
Objects

X++

XBasic

dBASE

METHOD OCX_AddColumn(Column) CLASS MainDialog
RETURN NIL

void onEvent_AddColumn(COM _Column)
{
}

function AddColumn as v (Column as OLE::Exontrol.G2antt.1::IColumn)
end function

function nativeObject_AddColumn(Column)
return

The following VB sample shows how to set the width for all columns:

Private Sub G2antt1_AddColumn(ByVal Column As EXG2ANTTLibCtl.IColumn)
 Column.Width = 128
End Sub

The following VB.NET sample changes the column's width when a new column is added:

Private Sub AxG2antt1_AddColumn(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_AddColumnEvent) Handles AxG2antt1.AddColumn
 e.column.Width = 128
End Sub

The following C# sample changes the column's width when a new column is added:

private void axG2antt1_AddColumn(object sender,
AxEXG2ANTTLib._IG2anttEvents_AddColumnEvent e)
{
 e.column.Width = 128;
}

The following C++ sample changes the column's width when a new column is added:

#include "Column.h"

#include "Columns.h"
void OnAddColumnG2antt1(LPDISPATCH Column)
{
 CColumn column(Column);column.m_bAutoRelease = FALSE;
 column.SetWidth(128);
}

The following VFP sample changes the column's width when a new column is added:

*** ActiveX Control Event ***
LPARAMETERS column

with column
 .Width = 128
endwith

C#

VB

private void AddGroupItem(object sender,int Item)
{
}

Private Sub AddGroupItem(ByVal sender As System.Object,ByVal Item As Integer)
Handles AddGroupItem
End Sub

event AddGroupItem (Item as HITEM)
Occurs after a new Group Item has been inserted to Items collection.

Type Description

Item as HITEM A Long expression that indicates the handle of the
grouping items being inserted.

The AddGroupItem event is fired for each new item to be inserted in the Items collection
during the grouping. The GroupItem method determines the index of the column that
indicates the column being grouped. In other words, the CellCaption(Item,GroupItem(Item)
) gets the default caption to be displayed for the grouping item. The Ungroup method
removes all grouping items. For instance, when a column gets grouped by, the control sorts
by that column, collects the unique values being found, and add a new item for each value
found, by adding the items of the same value as children.

During the AddGroupItem event, you can use:

Items.CellValue(Item, Items.GroupItem(Item)) to update the cell's content or what the
grouping item is displaying
ItemDivider/ItemDividerLine/ItemDividerLineAlignment property to show the grouping
item as a divider or as a regular item
AddBar method to add a new bar to the grouping item
DefineSummaryBar method to define the bars belonging to a summary bar

Of course, these are just a few of properties you may use, you can use any property
related to the item/cell or bar and link.

The AddGroupItem event can be used in any of the followings:

customize the visual appearance for any grouping item,
adding new headers or footers for grouping items

Syntax for AddGroupItem event, /NET version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

private void AddGroupItem(object sender,
AxEXG2ANTTLib._IG2anttEvents_AddGroupItemEvent e)
{
}

void OnAddGroupItem(long Item)
{
}

void __fastcall AddGroupItem(TObject *Sender,Exg2anttlib_tlb::HITEM Item)
{
}

procedure AddGroupItem(ASender: TObject; Item : HITEM);
begin
end;

procedure AddGroupItem(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_AddGroupItemEvent);
begin
end;

begin event AddGroupItem(long Item)
end event AddGroupItem

Private Sub AddGroupItem(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_AddGroupItemEvent) Handles AddGroupItem
End Sub

Private Sub AddGroupItem(ByVal Item As EXG2ANTTLibCtl.HITEM)
End Sub

Private Sub AddGroupItem(ByVal Item As Long)
End Sub

LPARAMETERS Item

Syntax for AddGroupItem event, /COM version, on:

Xbas… PROCEDURE OnAddGroupItem(oG2antt,Item)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="AddGroupItem(Item)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AddGroupItem(Item)
End Function
</SCRIPT>

Procedure OnComAddGroupItem HITEM llItem
 Forward Send OnComAddGroupItem llItem
End_Procedure

METHOD OCX_AddGroupItem(Item) CLASS MainDialog
RETURN NIL

void onEvent_AddGroupItem(int _Item)
{
}

function AddGroupItem as v (Item as OLE::Exontrol.G2antt.1::HITEM)
end function

function nativeObject_AddGroupItem(Item)
return

Syntax for AddGroupItem event, /COM version (others), on:

C#

VB

private void AddItem(object sender,int Item)
{
}

Private Sub AddItem(ByVal sender As System.Object,ByVal Item As Integer)
Handles AddItem
End Sub

C#

C++

private void AddItem(object sender,
AxEXG2ANTTLib._IG2anttEvents_AddItemEvent e)
{
}

void OnAddItem(long Item)
{
}

event AddItem (Item as HITEM)

Occurs after a new Item has been inserted to Items collection.

Type Description

Item as HITEM A long expression that indicates the handle of the item
that's inserted to the Items collection.

The AddItem event notifies your application that a new items is inserted. Use the AddItem
and InsertItem methods to insert new items to Items collection. Use the InsertControlItem
method to add a new item that hosts an ActiveX control. Use the Add method to add new
columns to Columns Collection. Use the Def property to specify a common value for all cells
in the same column. Use the the AddBar method to add new bars to the newly added item.

If the control's DataSource property is set, the AddItem event occurs as soon as a new
record is loaded from the giving recrodset. Also, the AddItem event occurs if the AddNew (
method of the ADO.RecordSet object) is performed, if the control's DetectAddNew
property is True. If using the CellValue properties during the AddItem event, you must be
sure that they are available, or they have the proper values or expected values.

Syntax for AddItem event, /NET version, on:

Syntax for AddItem event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall AddItem(TObject *Sender,Exg2anttlib_tlb::HITEM Item)
{
}

procedure AddItem(ASender: TObject; Item : HITEM);
begin
end;

procedure AddItem(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_AddItemEvent);
begin
end;

begin event AddItem(long Item)
end event AddItem

Private Sub AddItem(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_AddItemEvent) Handles AddItem
End Sub

Private Sub AddItem(ByVal Item As EXG2ANTTLibCtl.HITEM)
End Sub

Private Sub AddItem(ByVal Item As Long)
End Sub

LPARAMETERS Item

PROCEDURE OnAddItem(oG2antt,Item)
RETURN

Java… <SCRIPT EVENT="AddItem(Item)" LANGUAGE="JScript">
</SCRIPT>

Syntax for AddItem event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function AddItem(Item)
End Function
</SCRIPT>

Procedure OnComAddItem HITEM llItem
 Forward Send OnComAddItem llItem
End_Procedure

METHOD OCX_AddItem(Item) CLASS MainDialog
RETURN NIL

void onEvent_AddItem(int _Item)
{
}

function AddItem as v (Item as OLE::Exontrol.G2antt.1::HITEM)
end function

function nativeObject_AddItem(Item)
return

For instance, let's say that we defined the AddItem event such as:

Private Sub G2antt1_AddItem(ByVal Item As EXG2ANTTLibCtl.HITEM)
 With G2antt1.Items
 .AddBar Item, "Task", .CellValue(Item, 1), .CellValue(Item, 2)
 End With
End Sub

If using the r.AddNew method we MUST use the values to be added as parameters of the
AddNew method as in the following sample:

r.AddNew Array(0, 1, 2), Array("Task", #1/3/2001#, #1/4/2001#)

instead using the following code:

r.AddNew
 r(0) = "Task"

 r(1) = #1/1/2001#
 r(2) = #1/2/2001#
r.Update

which is wrong as the AddItem event is called when the r.AddNew method is performed,
and so during the AddItem event, the values for the cells are NOT yet available, as the r(0),
r(1), r(2) are filled later then r.AddNew call.

The following VB sample shows how to change the item's foreground color:

Private Sub G2antt1_AddItem(ByVal Item As EXG2ANTTLibCtl.HITEM)
 G2antt1.Items.ItemForeColor(Item) = vbBlue
End Sub

The following VB sample changes the background color for all cells in the first column:

G2antt1.Columns(0).Def(exCellBackColor) = RGB(240, 240, 240)

The following C++ sample changes the item's foreground color when a new items is
inserted:

#include "Items.h"
void OnAddItemG2antt1(long Item)
{
 if (::IsWindow(m_g2antt.m_hWnd))
 {
 CItems items = m_g2antt.GetItems();
 items.SetItemForeColor(Item, RGB(0,0,255));
 }
}

The following C++ sample changes the background color for all cells in the first column:

COleVariant vtBackColor((long)RGB(240, 240, 240));
m_g2antt.GetColumns().GetItem(COleVariant((long) 0)).SetDef(/*exCellBackColor*/ 4,
vtBackColor);

The following VB.NET sample changes the item's foreground color when a new items is
inserted:

Shared Function ToUInt32(ByVal c As Color) As UInt32

 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

Private Sub AxG2antt1_AddItem(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_AddItemEvent) Handles AxG2antt1.AddItem
 AxG2antt1.Items.ItemForeColor(e.item) = ToUInt32(Color.Blue)
End Sub

The following VB.NET sample changes the background color for all cells in the first column:

With AxG2antt1.Columns(0)
 .Def(EXG2ANTTLib.DefColumnEnum.exCellBackColor) = ToUInt32(Color.WhiteSmoke)
End With

The following C# sample changes the item's foreground color when a new items is inserted:

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

private void axG2antt1_AddItem(object sender,
AxEXG2ANTTLib._IG2anttEvents_AddItemEvent e)
{
 axG2antt1.Items.set_ItemForeColor(e.item, ToUInt32(Color.Blue));
}

The following C# sample changes the background color for all cells in the first column:

axG2antt1.Columns[0].set_Def(EXG2ANTTLib.DefColumnEnum.exCellBackColor,
ToUInt32(Color.WhiteSmoke));

The following VFP sample changes the item's foreground color when a new items is
inserted:

*** ActiveX Control Event ***
LPARAMETERS item

with thisform.G2antt1.Items
 .DefaultItem = item
 .ItemForeColor(0) = RGB(0,0,255)
endwith

The following VFP sample changes the background color for all cells in the first column:

with thisform.G2antt1.Columns(0)
 .Def(4) = RGB(240,240,240)
endwith

For instance, the following VB sample loads an ADO recordset.

Dim rs As Object

Private Sub Form_Load()

 Set rs = CreateObject("ADODB.Recordset")
 rs.Open "Orders", "Provider=Microsoft.Jet.OLEDB.3.51;Data Source= D:\Program
Files\Microsoft Visual Studio\VB98\NWIND.MDB", 3 ' Opens the table using static mode

 G2antt1.BeginUpdate
 ' Add the columns
 With G2antt1.Columns
 For Each f In rs.Fields
 .Add f.Name
 Next
 End With

 ' Add the items
 With G2antt1.Items
 rs.MoveFirst

 While Not rs.EOF
 .InsertItem , rs.Bookmark
 rs.MoveNext
 Wend
End With

 G2antt1.EndUpdate
End Sub

Private Sub G2antt1_AddItem(ByVal Item As EXG2ANTTLibCtl.HITEM)
 Dim i As Integer
 Dim n As Integer
 n = G2antt1.Columns.Count
 With G2antt1.Items
 For i = 0 To n - 1
 .CellValue(Item, i) = rs(i).Value
 Next
 End With
End Sub

The following VB sample use the PutItems method to load items to the control:

Dim rs As Object

Private Sub Form_Load()

 Set rs = CreateObject("ADODB.Recordset")
 rs.Open "Orders", "Provider=Microsoft.Jet.OLEDB.3.51;Data Source= D:\Program
Files\Microsoft Visual Studio\VB98\NWIND.MDB", 3 ' Opens the table using static mode

 G2antt1.BeginUpdate
 ' Add the columns
 With G2antt1.Columns
 For Each f In rs.Fields
 .Add f.Name
 Next
 End With

 G2antt1.PutItems rs.getRows()

 G2antt1.EndUpdate
End Sub

event AddLink (LinkKey as String)
Occurs when the user links two bars using the mouse.

Type Description

LinkKey as String A String expression that indicates the key of the link being
added.

The AddLink event notifies your application that the user links two bars using the mouse.
The AllowLink event is called before adding the link, so you can prevent adding new links
between specified type of bars. The AddLink event occurs right after the control calls the
AddLink method that adds a link between the bars that the user selected. By default, the
control provides keys as "Link1", "Link2", ... You can use the Link(exLinkKey) property to
change the default key of the link. If the control supports Undo/Redo, you can use the
UndoRemoveAction method to remove a specific action from the undo queue. For instance,
if you do not need to record RemoveLink during the AddLink event, you can call after
RemoveLink the UndoRemoveAction(exChartUndoRedoRemoveLink,1) method to remove
the last exChartUndoRedoRemoveLink action from the Undo queue. Use the AddLink
method to add links programmatically. Use the Link property of the Items object to
access the properties and options of the link. Call the Link(exLinkGroupBars) to group
two linked bars. This way they move together when a bar is changed.

The AddLink event may occur only if the AllowLinkBars property is True. The LinkKey
parameter indicates the key of the newly added link. Use the RemoveLink method to
remove the link, if you don't need certain links to be added. The FirstLink property retrieves
the key of the first link in the chart. Use the NextLink property to retrieve the key of the next
link, in the chart. Use these properties to enumerate the link in the control. Use the
CellValue property to access the cell's value.

In the following screen shot shows the bars before linking and grouping:

In the following screen shot shows the bars after linking and grouping, as the bar 1 is linked
to bar 2, and bar 2 to 3.

C#

VB

private void AddLink(object sender,string LinkKey)
{
}

Private Sub AddLink(ByVal sender As System.Object,ByVal LinkKey As String)
Handles AddLink
End Sub

C#

C++

C++
Builder

Delphi

private void AddLink(object sender,
AxEXG2ANTTLib._IG2anttEvents_AddLinkEvent e)
{
}

void OnAddLink(LPCTSTR LinkKey)
{
}

void __fastcall AddLink(TObject *Sender,BSTR LinkKey)
{
}

procedure AddLink(ASender: TObject; LinkKey : WideString);
begin

In the following screen shot shows the bars once the bar 2 is moved to the right:

Syntax for AddLink event, /NET version, on:

Syntax for AddLink event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

procedure AddLink(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_AddLinkEvent);
begin
end;

begin event AddLink(string LinkKey)
end event AddLink

Private Sub AddLink(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_AddLinkEvent) Handles AddLink
End Sub

Private Sub AddLink(ByVal LinkKey As String)
End Sub

Private Sub AddLink(ByVal LinkKey As String)
End Sub

LPARAMETERS LinkKey

PROCEDURE OnAddLink(oG2antt,LinkKey)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="AddLink(LinkKey)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AddLink(LinkKey)
End Function
</SCRIPT>

Procedure OnComAddLink String llLinkKey
 Forward Send OnComAddLink llLinkKey

Syntax for AddLink event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_AddLink(LinkKey) CLASS MainDialog
RETURN NIL

void onEvent_AddLink(str _LinkKey)
{
}

function AddLink as v (LinkKey as C)
end function

function nativeObject_AddLink(LinkKey)
return

The following VB sample groups the linked bars:

Private Sub G2antt1_AddLink(ByVal LinkKey As String)
 With G2antt1.Items
 .Link(LinkKey, exLinkGroupBars) = GroupBarsOptionsEnum.exPreserveBarLength +
GroupBarsOptionsEnum.exFlexibleInterval +
GroupBarsOptionsEnum.exIgnoreOriginalInterval
 End With
End Sub

The following VB sample changes the style of the link if certain condition is met (in this
sample, the cell on the first column is called "Root"):

Private Sub G2antt1_AddLink(ByVal LinkKey As String)
 With G2antt1.Items
 If .CellValue(.Link(LinkKey, exLinkStartItem), 0) = "Root" Then
 .Link(LinkKey, exLinkStyle) = exLinkSolid
 .Link(LinkKey, exLinkWidth) = 2
 .Link(LinkKey, exLinkColor) = RGB(255, 0, 0)
 End If
 End With
End Sub

event AfterDrawPart (Part as DrawPartEnum, hDC as Long, X as Long, Y
as Long, Width as Long, Height as Long)
Occurs right after drawing the part of the control.

Type Description

Part as DrawPartEnum

A Part being painted. If the Part parameter is
exOwnerDrawBar, the DrawPartItem property specifies
the handle of the item that hosts the "OwnerDraw" bar,
while the DrawPartKey property specifies the key of the
bar to be painted. Use the Add or Copy method to add an
"OwnerDraw" bar

hDC as Long

A long expression that specifies the handle of the device
context where you can draw. The /NET or /WPF assembly
provides a System.Drawing.Graphics object instead hDC
parameter

X as Long

A long expression that specifies the left coordinate of the
rectangle where the paint should occur. The /NET or /WPF
assembly provides a System.Drawing.Rectangle instead
(X, Y, Width, Height).

Y as Long

A long expression that specifies the top coordinate of the
rectangle where the paint should occur. The /NET or /WPF
assembly provides a System.Drawing.Rectangle instead
(X, Y, Width, Height).

Width as Long

A long expression that specifies the width of the rectangle
where the paint should occur. The /NET or /WPF
assembly provides a System.Drawing.Rectangle instead
(X, Y, Width, Height).

Height as Long

A long expression that specifies the height of the rectangle
where the paint should occur. The /NET or /WPF
assembly provides a System.Drawing.Rectangle instead
(X, Y, Width, Height).

The BeforeDrawPart and AfterDrawPart events occur when different parts of the control
requires to be drawn. Use the BeforeDrawPart and AfterDrawPart events to add your
custom drawing to be shown in the component. Use the BeforeDrawPart event to perform
your own drawing before the default drawing, canceling the default drawing, or changing the
area being assigned to the part part when painting. Use the AfterDrawPart event to perform
your own drawing after default painting occurs. The /NET Assembly provides instead hDC
and (X,Y,Width,Height) parameters a Graphics object and a Rectangle object, the last
being passed by reference. Use the HistogramBoundsChanged event to notify your

C# private void AfterDrawPart(object sender,exontrol.EXG2ANTTLib.DrawPartEnum

application when the left part of the histogram is resized, so inside controls must be re-
positioned.

Currently, the control's owner-draw feature allows you to customize the visual-appearance
for bars/tasks or control's histogram part.

The control provides the following events:

BeforeDrawPart, occurs just before drawing a part of the control. For instance, you
need to customize the part's background
AfterDrawPart, occurs right after drawing the part of the control. For instance, you
need to customize the part's foreground

Shortly, you can customize the drawing of control's part before and after default-drawing.

For instance, let's say that you need to specify a different background color, for "task" bars,
while still keeping the bar's pattern color, which is specified by the bar's exBarColor
property. In order to perform owner-draw for bars you need:

defines a new type of bar called "OwnerDraw", which can be a new bar or a copy of
any existing bars (only bars of "OwnerDraw" type fires BeforeDrawPart and
AfterDrawPart events when they require to be painted)
overrides the BeforeDrawPart and / or AfterDrawPart events

During the BeforeDrawPart and AfterDrawPart events, while Part event parameter is
exOwnerDrawBar, the control's DrawPartItem and DrawPartKey provides the handle of the
item and the key of the bar being drawn. You can use the Items.ItemBar(DrawPartItem,
DrawPartKey, BarProperty) property to access any property related to the bar being
painted. In the same manner you can use the Items.CellValue/Items.CellCaption properties
to access any value/caption from the list/columns part of the control.

Syntax for AfterDrawPart event, /NET version, on:

VB

Part,int hDC,int X,int Y,int Width,int Height)
{
}

Private Sub AfterDrawPart(ByVal sender As System.Object,ByVal Part As
exontrol.EXG2ANTTLib.DrawPartEnum,ByVal hDC As Integer,ByVal X As
Integer,ByVal Y As Integer,ByVal Width As Integer,ByVal Height As Integer) Handles
AfterDrawPart
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

private void AfterDrawPart(object sender,
AxEXG2ANTTLib._IG2anttEvents_AfterDrawPartEvent e)
{
}

void OnAfterDrawPart(long Part,long hDC,long X,long Y,long Width,long Height)
{
}

void __fastcall AfterDrawPart(TObject *Sender,Exg2anttlib_tlb::DrawPartEnum
Part,long hDC,long X,long Y,long Width,long Height)
{
}

procedure AfterDrawPart(ASender: TObject; Part : DrawPartEnum;hDC : Integer;X :
Integer;Y : Integer;Width : Integer;Height : Integer);
begin
end;

procedure AfterDrawPart(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_AfterDrawPartEvent);
begin
end;

begin event AfterDrawPart(long Part,long hDC,long X,long Y,long Width,long
Height)

Syntax for AfterDrawPart event, /COM version, on:

VB.NET

VB6

VBA

VFP

Xbas…

end event AfterDrawPart

Private Sub AfterDrawPart(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_AfterDrawPartEvent) Handles AfterDrawPart
End Sub

Private Sub AfterDrawPart(ByVal Part As EXG2ANTTLibCtl.DrawPartEnum,ByVal
hDC As Long,ByVal X As Long,ByVal Y As Long,ByVal Width As Long,ByVal Height
As Long)
End Sub

Private Sub AfterDrawPart(ByVal Part As Long,ByVal hDC As Long,ByVal X As
Long,ByVal Y As Long,ByVal Width As Long,ByVal Height As Long)
End Sub

LPARAMETERS Part,hDC,X,Y,Width,Height

PROCEDURE OnAfterDrawPart(oG2antt,Part,hDC,X,Y,Width,Height)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="AfterDrawPart(Part,hDC,X,Y,Width,Height)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AfterDrawPart(Part,hDC,X,Y,Width,Height)
End Function
</SCRIPT>

Procedure OnComAfterDrawPart OLEDrawPartEnum llPart Integer llhDC Integer
llX Integer llY Integer llWidth Integer llHeight
 Forward Send OnComAfterDrawPart llPart llhDC llX llY llWidth llHeight
End_Procedure

Syntax for AfterDrawPart event, /COM version (others), on:

Visual
Objects

X++

XBasic

dBASE

METHOD OCX_AfterDrawPart(Part,hDC,X,Y,Width,Height) CLASS MainDialog
RETURN NIL

void onEvent_AfterDrawPart(int _Part,int _hDC,int _X,int _Y,int _Width,int _Height)
{
}

function AfterDrawPart as v (Part as OLE::Exontrol.G2antt.1::DrawPartEnum,hDC as
N,X as N,Y as N,Width as N,Height as N)
end function

function nativeObject_AfterDrawPart(Part,hDC,X,Y,Width,Height)
return

The following VB/NET sample (/NET Assembly) shows how you can divide a bar in three
colors with dynamic percentages (percentage of colors can be different for each bar):

Private Sub exg2antt1_AfterDrawPart(ByVal sender As Object, ByVal Part As
exontrol.EXG2ANTTLib.DrawPartEnum, ByVal G As System.Drawing.Graphics, ByVal Rect As
System.Drawing.Rectangle) Handles exg2antt1.AfterDrawPart
 Rect.Inflate(-1, -1)
 Dim left As Rectangle = New Rectangle(Rect.Location, Rect.Size), right As Rectangle =
New Rectangle(Rect.Location, Rect.Size)
 left.Width = left.Width / (2 + exg2antt1.DrawPartItem Mod 3)
 right.Width = left.Width / 2
 right.X = Rect.Right - right.Width
 Using fmt As StringFormat = New StringFormat(StringFormatFlags.NoClip Or
StringFormatFlags.NoWrap)
 fmt.Trimming = StringTrimming.None
 fmt.LineAlignment = StringAlignment.Center
 G.FillRectangle(Brushes.Yellow, left)
 G.DrawString(String.Format("{0:0}", 100 * (left.Width / CDbl(Rect.Width))) + "%",
exg2antt1.Font, Brushes.Black, left, fmt)
 G.FillRectangle(Brushes.Lime, right)
 G.DrawString(String.Format("{0:0}", 100 * (right.Width / CDbl(Rect.Width))) + "%",

exg2antt1.Font, Brushes.Black, right, fmt)
 End Using
End Sub

Prior to this code, you can call the following:

.Chart.Bars.Add("OwnerDraw").Color = Color.DodgerBlue

.Items.set_ItemBar(0, "<*>", exontrol.EXG2ANTTLib.ItemBarPropertyEnum.exBarName,
"OwnerDraw")

that adds the "OwnerDraw" type of bar, and converts all existing bars to "OwnerDraw" type

The following VB6 sample paints over the default-visual appearance of the bar:

Private Sub G2antt1_AfterDrawPart(ByVal Part As EXG2ANTTLibCtl.DrawPartEnum, ByVal
hdc As Long, ByVal x As Long, ByVal y As Long, ByVal Width As Long, ByVal Height As
Long)
 If (Part = exOwnerDrawBar) Then
 Dim nBkMode, nTextAlign, nColor, hBrush As Long
 Height = Height - 1
 hBrush = SelectObject(hdc, GetStockObject(4))
 Ellipse hdc, x + (Width - Height) / 2, y, x + (Width - Height) / 2 + Height, y + Height
 SelectObject hdc, hBrush
 nBkMode = SetBkMode(hdc, 1)
 nTextAlign = SetTextAlign(hdc, 6)
 nColor = SetTextColor(hdc, RGB(255, 255, 255))
 Dim s As String
 s = G2antt1.Items.CellCaption(G2antt1.DrawPartItem, 1)
 TextOut hdc, x + (Width) / 2 - 1, y + Height / 8, s, Len(s)
 SetTextAlign hdc, nTextAlign
 SetTextColor hdc, nColor
 SetBkMode hdc, nBkMode
 End If
End Sub

and previously you have to declare the API functions as:

Private Declare Function Ellipse Lib "gdi32" (ByVal hdc As Long, ByVal X1 As Long, ByVal Y1
As Long, ByVal X2 As Long, ByVal Y2 As Long) As Long

Private Declare Function SetBkMode Lib "gdi32" (ByVal hdc As Long, ByVal nBkMode As
Long) As Long
Private Declare Function SetTextAlign Lib "gdi32" (ByVal hdc As Long, ByVal wFlags As
Long) As Long
Private Declare Function TextOut Lib "gdi32" Alias "TextOutA" (ByVal hdc As Long, ByVal x
As Long, ByVal y As Long, ByVal lpString As String, ByVal nCount As Long) As Long
Private Declare Function SetTextColor Lib "gdi32" (ByVal hdc As Long, ByVal crColor As
Long) As Long
Private Declare Function SelectObject Lib "gdi32" (ByVal hdc As Long, ByVal hObject As
Long) As Long
Private Declare Function GetStockObject Lib "gdi32" (ByVal nIndex As Long) As Long

The following VB/NET sample (/NET Assembly) shows how you can paint over the default-
visual appearance of the bar:

Private Sub Exg2antt1_AfterDrawPart(ByVal sender As System.Object, ByVal Part As
exontrol.EXG2ANTTLib.DrawPartEnum, ByVal G As System.Drawing.Graphics, ByVal Rect As
System.Drawing.Rectangle) Handles Exg2antt1.AfterDrawPart
 If (Part = exontrol.EXG2ANTTLib.DrawPartEnum.exOwnerDrawBar) Then
 Dim rText As Rectangle = New Rectangle(Rect.Left + (Rect.Width - Rect.Height) / 2,
Rect.Top, Rect.Height, Rect.Height)
 G.FillEllipse(Brushes.Black, rText)
 If Not (Exg2antt1.DrawPartItem = 0) Then
 Dim s As String = Exg2antt1.Items.get_CellCaption(Exg2antt1.DrawPartItem, 1)
 G.DrawString(s, sfFont, Brushes.White, rText, sfCenter)
 End If
 End If
End Sub

The following C# sample (/NET Assembly) shows how you can paint over the default-visual
appearance of the bar:

private void Exg2antt1_AfterDrawPart(object sender,
exontrol.EXG2ANTTLib.DrawPartEnum Part, Graphics G, Rectangle Rect)
{
 if (Part == exontrol.EXG2ANTTLib.DrawPartEnum.exOwnerDrawBar)
 {
 Rectangle rText = new Rectangle(Rect.Left + (Rect.Width - Rect.Height) / 2, Rect.Top,

Rect.Height, Rect.Height);
 G.FillEllipse(Brushes.Black, rText);
 if (Exg2antt1.DrawPartItem != 0)
 {
 String s = Exg2antt1.Items.get_CellCaption(Exg2antt1.DrawPartItem, 1);
 G.DrawString(s, sfFont, Brushes.White, rText, sfCenter);
 }
 }
}

The following C++ sample shows how you can paint over the default-visual appearance of
the bar:

void CSchedulingDlg::AfterDrawPartG2antt1(long Part, long hDC, long X, long Y, long
Width, long Height)
{
 if (m_spG2antt != NULL)
 if (Part == 0)
 {
 HDC hDCDraw = (HDC)hDC;
 Height = Height - 1;
 HBRUSH hBrush = (HBRUSH)::SelectObject(hDCDraw, GetStockObject(4
/*BLACK_BRUSH*/));
 Ellipse(hDCDraw, X + (Width - Height)/2, Y, X + (Width - Height)/2 + Height, Y +
Height);
 ::SelectObject(hDCDraw, hBrush);
 int nBkMode = SetBkMode(hDCDraw, 1 /*TRANSPARENT*/);
 int nColor = SetTextColor(hDCDraw, RGB(255,255,255));
 int nTextAlign = SetTextAlign(hDCDraw, 6 /*TA_CENTER*/);
 CString s = m_spG2antt->Items->CellCaption[m_spG2antt->DrawPartItem, 1];
 TextOut(hDCDraw, X + (Width)/2 - 1, Y + Height/8, s, s.GetLength());
 SetTextAlign(hDCDraw, nTextAlign);
 SetTextColor(hDCDraw, nColor);
 SetBkMode(hDCDraw, nBkMode);
 }
}

C#

VB

private void AfterExpandItem(object sender,int Item)
{
}

Private Sub AfterExpandItem(ByVal sender As System.Object,ByVal Item As
Integer) Handles AfterExpandItem
End Sub

C#

C++

C++
Builder

Delphi

private void AfterExpandItem(object sender,
AxEXG2ANTTLib._IG2anttEvents_AfterExpandItemEvent e)
{
}

void OnAfterExpandItem(long Item)
{
}

void __fastcall AfterExpandItem(TObject *Sender,Exg2anttlib_tlb::HITEM Item)
{
}

procedure AfterExpandItem(ASender: TObject; Item : HITEM);

event AfterExpandItem (Item as HITEM)

Fired after an item is expanded (collapsed).

Type Description

Item as HITEM A long expression that indicates the item's handle that
indicates the item expanded or collapsed.

The AfterExapndItem event notifies your application that an item is collapsed or expanded.
Use the ExpandItem method to programmatically expand or collapse an item. The
ExpandItem property also specifies whether an item is expand or collapsed. The ItemChild
property retrieves the first child item. Use the BeforeExpandItem event to cancel expanding
or collapsing items.

Syntax for AfterExpandItem event, /NET version, on:

Syntax for AfterExpandItem event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin
end;

procedure AfterExpandItem(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_AfterExpandItemEvent);
begin
end;

begin event AfterExpandItem(long Item)
end event AfterExpandItem

Private Sub AfterExpandItem(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_AfterExpandItemEvent) Handles AfterExpandItem
End Sub

Private Sub AfterExpandItem(ByVal Item As EXG2ANTTLibCtl.HITEM)
End Sub

Private Sub AfterExpandItem(ByVal Item As Long)
End Sub

LPARAMETERS Item

PROCEDURE OnAfterExpandItem(oG2antt,Item)
RETURN

Java…

VBSc…

<SCRIPT EVENT="AfterExpandItem(Item)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AfterExpandItem(Item)
End Function
</SCRIPT>

Syntax for AfterExpandItem event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComAfterExpandItem HITEM llItem
 Forward Send OnComAfterExpandItem llItem
End_Procedure

METHOD OCX_AfterExpandItem(Item) CLASS MainDialog
RETURN NIL

void onEvent_AfterExpandItem(int _Item)
{
}

function AfterExpandItem as v (Item as OLE::Exontrol.G2antt.1::HITEM)
end function

function nativeObject_AfterExpandItem(Item)
return

The following VB sample prints the item's state when it is expanded or collapsed:

Private Sub G2antt1_AfterExpandItem(ByVal Item As EXG2ANTTLibCtl.HITEM)
 Debug.Print "The " & Item & " item was " & IIf(G2antt1.Items.ExpandItem(Item),
"expanded", "collapsed")
End Sub

The following C# sample prints the item's state when it is expanded or collapsed:

private void axG2antt1_AfterExpandItem(object sender,
AxEXG2ANTTLib._IG2anttEvents_AfterExpandItemEvent e)
{
 System.Diagnostics.Debug.WriteLine(axG2antt1.Items.get_ExpandItem(e.item) ?
"expanded" : "collapsed");
}

The following VB.NET sample prints the item's state when it is expanded or collapsed:

Private Sub AxG2antt1_AfterExpandItem(ByVal sender As Object, ByVal e As

AxEXG2ANTTLib._IG2anttEvents_AfterExpandItemEvent) Handles
AxG2antt1.AfterExpandItem
 Debug.WriteLine(IIf(AxG2antt1.Items.ExpandItem(e.item), "expanded", "collapsed"))
End Sub

The following C++ sample prints the item's state when it is expanded or collapsed:

void OnAfterExpandItemG2antt1(long Item)
{
 CItems items = m_g2antt.GetItems();
 CString strFormat;
 strFormat.Format("%s", items.GetExpandItem(Item) ? "expanded" : "collapsed");
 OutputDebugString(strFormat);
}

The following VFP sample sample prints the item's state when it is expanded or collapsed:

*** ActiveX Control Event ***
LPARAMETERS item

with thisform.G2antt1.Items
 if (.ExpandItem(item))
 wait window "expanded" nowait
 else
 wait window "collapsed" nowait
 endif
endwith

event AllowAutoDrag (Item as HITEM, NewParent as HITEM, InsertA as
HITEM, InsertB as HITEM, Cancel as Boolean)
Occurs when the user drags the item between InsertA and InsertB as child of NewParent.

Type Description

Item as HITEM A long expression that specifies the handle of the item
being dragged.

NewParent as HITEM

A long expression that specifies the handle of the newly
parent, to insert the dragging Item. If 0, it indicates root
items. The ItemParent property indicates the currently
parent of the item.

InsertA as HITEM
A long expression that specifies the handle of the item to
insert the dragging Item after. If 0, it indicates that no item
after.

InsertB as HITEM
A long expression that specifies the handle of the item to
insert the dragging Item before. If 0, it indicates that no
item before.

Cancel as Boolean A Boolean expression that specifies whether the operation
can continue (this parameter is by reference)

The AllowAutoDrag event occurs when the user drags the item between InsertA and InsertB
as child of NewParent, using the AutoDrag property. The AutoDrag feature indicates what
the control does when the user clicks an item and starts dragging it. For instance, using the
AutoDrag feature you can let the user arrange the items in the control, or can drop the
selection to a any OLE compliant applications like Microsoft Word, Excel and so on... The
AllowAutoDrag event may fire when the AutoDrag property is any of the following values:

exAutoDragPosition... (the item can be dragged from a position to another, but not
outside of its group)
exAutoDragPositionKeepIndent... (the item can be dragged to any position or to any
parent, while the dragging object keeps its indentation)
exAutoDragPositionAny... (the item can be dragged to any position or to any parent,
with no restriction)

You can use the AllowAutoDrag event to cancel or continue drag and drop operation using
the AutoDrag property.

The following screen shot shows the NewParent, InsertA and InsertB parameters, when
"Task 2" is dragging to a new position:

C#

VB

private void AllowAutoDrag(object sender,int Item,int NewParent,int
InsertA,int InsertB,ref bool Cancel)
{
}

Private Sub AllowAutoDrag(ByVal sender As System.Object,ByVal Item As
Integer,ByVal NewParent As Integer,ByVal InsertA As Integer,ByVal InsertB As

NewParent is "Group 1"
InsertA is "Task 1"
InsertB is "Task 3"

NewParent is "Task 1"
InsertA is 0
InsertB is 0

NewParent is 0
InsertA is "Group 2"
InsertB is 0

Syntax for AllowAutoDrag event, /NET version, on:

Integer,ByRef Cancel As Boolean) Handles AllowAutoDrag
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

private void AllowAutoDrag(object sender,
AxEXG2ANTTLib._IG2anttEvents_AllowAutoDragEvent e)
{
}

void OnAllowAutoDrag(long Item,long NewParent,long InsertA,long
InsertB,BOOL FAR* Cancel)
{
}

void __fastcall AllowAutoDrag(TObject *Sender,Exg2anttlib_tlb::HITEM
Item,Exg2anttlib_tlb::HITEM NewParent,Exg2anttlib_tlb::HITEM
InsertA,Exg2anttlib_tlb::HITEM InsertB,VARIANT_BOOL * Cancel)
{
}

procedure AllowAutoDrag(ASender: TObject; Item : HITEM;NewParent :
HITEM;InsertA : HITEM;InsertB : HITEM;var Cancel : WordBool);
begin
end;

procedure AllowAutoDrag(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_AllowAutoDragEvent);
begin
end;

begin event AllowAutoDrag(long Item,long NewParent,long InsertA,long
InsertB,boolean Cancel)

end event AllowAutoDrag

Private Sub AllowAutoDrag(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_AllowAutoDragEvent) Handles AllowAutoDrag

Syntax for AllowAutoDrag event, /COM version, on:

VB6

VBA

VFP

Xbas…

End Sub

Private Sub AllowAutoDrag(ByVal Item As EXG2ANTTLibCtl.HITEM,ByVal
NewParent As EXG2ANTTLibCtl.HITEM,ByVal InsertA As
EXG2ANTTLibCtl.HITEM,ByVal InsertB As EXG2ANTTLibCtl.HITEM,Cancel As
Boolean)
End Sub

Private Sub AllowAutoDrag(ByVal Item As Long,ByVal NewParent As Long,ByVal
InsertA As Long,ByVal InsertB As Long,Cancel As Boolean)
End Sub

LPARAMETERS Item,NewParent,InsertA,InsertB,Cancel

PROCEDURE OnAllowAutoDrag(oG2antt,Item,NewParent,InsertA,InsertB,Cancel)

RETURN

Java…

VBSc…

Visual
Data…

Visual
Objects

<SCRIPT EVENT="AllowAutoDrag(Item,NewParent,InsertA,InsertB,Cancel)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AllowAutoDrag(Item,NewParent,InsertA,InsertB,Cancel)
End Function
</SCRIPT>

Procedure OnComAllowAutoDrag HITEM llItem HITEM llNewParent HITEM
llInsertA HITEM llInsertB Boolean llCancel
 Forward Send OnComAllowAutoDrag llItem llNewParent llInsertA llInsertB
llCancel
End_Procedure

METHOD OCX_AllowAutoDrag(Item,NewParent,InsertA,InsertB,Cancel) CLASS
MainDialog

Syntax for AllowAutoDrag event, /COM version (others), on:

X++

XBasic

dBASE

RETURN NIL

void onEvent_AllowAutoDrag(int _Item,int _NewParent,int _InsertA,int
_InsertB,COMVariant /*bool*/ _Cancel)
{
}

function AllowAutoDrag as v (Item as OLE::Exontrol.G2antt.1::HITEM,NewParent
as OLE::Exontrol.G2antt.1::HITEM,InsertA as
OLE::Exontrol.G2antt.1::HITEM,InsertB as OLE::Exontrol.G2antt.1::HITEM,Cancel as
L)
end function

function nativeObject_AllowAutoDrag(Item,NewParent,InsertA,InsertB,Cancel)
return

The AllowDragDrop event triggers contiguously while the user drags / hovers the
focus/selection of items over the control. The GetAsyncKeyState API method can be used
to detect whether the mouse button has been released, and so the drop action occurs.

The following VB sample displays "Drag" while user dragging the items, and displays
"Drop", when drop operation starts.

Private Sub G2antt1_AllowAutoDrag(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal
NewParent As EXG2ANTTLibCtl.HITEM, ByVal InsertA As EXG2ANTTLibCtl.HITEM, ByVal
InsertB As EXG2ANTTLibCtl.HITEM, Cancel As Boolean)
 With G2antt1
 Debug.Print "Drag"
 If (GetAsyncKeyState(VK_LBUTTON) = 0) Then
 Debug.Print "Drop"
 End If
 End With
End Sub

where declarations for GetAsyncKeyState API used is:

Private Const VK_LBUTTON = &H1
Private Declare Function GetAsyncKeyState Lib "user32" (ByVal vKey As Long) As Integer

Once you run the code, you will notice that the AllowAutoDrag event "Drop" may be fired
multiple times, so we suggest to postpone any of your actions (like displaying a message
box), by posting a window message or use a timer event, to let the control handles /
completes the event as in the following sample:

Private Sub G2antt1_AllowAutoDrag(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal
NewParent As EXG2ANTTLibCtl.HITEM, ByVal InsertA As EXG2ANTTLibCtl.HITEM, ByVal
InsertB As EXG2ANTTLibCtl.HITEM, Cancel As Boolean)
 With G2antt1
 Debug.Print "Drag"
 If (GetAsyncKeyState(VK_LBUTTON) = 0) Then
 mctlTimerDrop.Enabled = True
 End If
 End With
End Sub

where mctlTimerDrop is defined as follows:

Dim WithEvents mctlTimerDrop As VB.Timer

Private Sub mctlTimerDrop_Timer()
 mctlTimerDrop.Enabled = False
 MsgBox "Drop."
End Sub

Private Sub Form_Load()
 Set mctlTimerDrop = Me.Controls.Add("VB.Timer", "DropTimer1")
 With mctlTimerDrop
 .Enabled = False
 .Interval = 100
 End With
End Sub

C# private void AllowLink(object sender,int StartItem,object StartBarKey,int
EndItem,object EndBarKey,ref object LinkKey,ref bool Cancel)
{

event AllowLink (StartItem as HITEM, StartBarKey as Variant, EndItem as
HITEM, EndBarKey as Variant, LinkKey as Variant, Cancel as Boolean)
Notifies at runtime when a link between two bars is possible.

Type Description

StartItem as HITEM A Long expression that specifies the handle of the item
that hosts the bar where the link starts.

StartBarKey as Variant A VARIANT expression that specifies the key of the bar
where the link starts.

EndItem as HITEM A Long expression that specifies the handle of the item
that hosts the bar where the link ends.

EndBarKey as Variant A VARIANT expression that specifies the key of the bar
where the link ends.

LinkKey as Variant
A String expression that specifies the next available key
for the link. Use the LinkKey parameter to change the
default key for the newly added link at runtime.

Cancel as Boolean

A Boolean expression that specifies whether the operation
can continue. By default, the Cancel parameter is False. If
The Cancel parameter is True, the specified two bars can
not be linked, so the link operation is cancelled.

The AllowLink event occurs when the user links two bars. You can disable or enable linking
two bars using the AllowLink event. For instance, you can call Cancel parameter on True,
anytime you need to cancel linking two specified bars.

At runtime, you can control linking two bars using one of the followings:

Handling the AllowLink event, and change the Cancel parameter whenever two bars
can't be linked.
Use the ItemBar(exBarCanBeLinked) property to specify whether a bar can participate
into a link.
Use the ItemBar(exBarCanStartLink) property to specify whether a link can start from
specified bar.
Use the ItemBar(exBarCanEndLink) property to specify whether a link can end to the
specified bar.

Syntax for AllowLink event, /NET version, on:

VB

}

Private Sub AllowLink(ByVal sender As System.Object,ByVal StartItem As
Integer,ByVal StartBarKey As Object,ByVal EndItem As Integer,ByVal EndBarKey As
Object,ByRef LinkKey As Object,ByRef Cancel As Boolean) Handles AllowLink
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

private void AllowLink(object sender,
AxEXG2ANTTLib._IG2anttEvents_AllowLinkEvent e)
{
}

void OnAllowLink(long StartItem,VARIANT StartBarKey,long EndItem,VARIANT
EndBarKey,VARIANT FAR* LinkKey,BOOL FAR* Cancel)
{
}

void __fastcall AllowLink(TObject *Sender,Exg2anttlib_tlb::HITEM StartItem,Variant
StartBarKey,Exg2anttlib_tlb::HITEM EndItem,Variant EndBarKey,Variant *
LinkKey,VARIANT_BOOL * Cancel)
{
}

procedure AllowLink(ASender: TObject; StartItem : HITEM;StartBarKey :
OleVariant;EndItem : HITEM;EndBarKey : OleVariant;var LinkKey : OleVariant;var
Cancel : WordBool);
begin
end;

procedure AllowLink(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_AllowLinkEvent);
begin
end;

begin event AllowLink(long StartItem,any StartBarKey,long EndItem,any
EndBarKey,any LinkKey,boolean Cancel)

Syntax for AllowLink event, /COM version, on:

VB.NET

VB6

VBA

VFP

Xbas…

end event AllowLink

Private Sub AllowLink(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_AllowLinkEvent) Handles AllowLink
End Sub

Private Sub AllowLink(ByVal StartItem As EXG2ANTTLibCtl.HITEM,ByVal
StartBarKey As Variant,ByVal EndItem As EXG2ANTTLibCtl.HITEM,ByVal EndBarKey
As Variant,LinkKey As Variant,Cancel As Boolean)
End Sub

Private Sub AllowLink(ByVal StartItem As Long,ByVal StartBarKey As Variant,ByVal
EndItem As Long,ByVal EndBarKey As Variant,LinkKey As Variant,Cancel As
Boolean)
End Sub

LPARAMETERS StartItem,StartBarKey,EndItem,EndBarKey,LinkKey,Cancel

PROCEDURE
OnAllowLink(oG2antt,StartItem,StartBarKey,EndItem,EndBarKey,LinkKey,Cancel)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT
EVENT="AllowLink(StartItem,StartBarKey,EndItem,EndBarKey,LinkKey,Cancel)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AllowLink(StartItem,StartBarKey,EndItem,EndBarKey,LinkKey,Cancel)
End Function
</SCRIPT>

Procedure OnComAllowLink HITEM llStartItem Variant llStartBarKey HITEM
llEndItem Variant llEndBarKey Variant llLinkKey Boolean llCancel
 Forward Send OnComAllowLink llStartItem llStartBarKey llEndItem llEndBarKey

Syntax for AllowLink event, /COM version (others), on:

Visual
Objects

X++

XBasic

dBASE

llLinkKey llCancel
End_Procedure

METHOD
OCX_AllowLink(StartItem,StartBarKey,EndItem,EndBarKey,LinkKey,Cancel) CLASS
MainDialog
RETURN NIL

void onEvent_AllowLink(int _StartItem,COMVariant _StartBarKey,int
_EndItem,COMVariant _EndBarKey,COMVariant /*variant*/ _LinkKey,COMVariant
/*bool*/ _Cancel)
{
}

function AllowLink as v (StartItem as OLE::Exontrol.G2antt.1::HITEM,StartBarKey as
A,EndItem as OLE::Exontrol.G2antt.1::HITEM,EndBarKey as A,LinkKey as A,Cancel as
L)
end function

function
nativeObject_AllowLink(StartItem,StartBarKey,EndItem,EndBarKey,LinkKey,Cancel)
return

The following VB sample disable linking bars to any "Summary" bars:

Private Sub G2antt1_AllowLink(ByVal StartItem As EXG2ANTTLibCtl.HITEM, ByVal
StartBarKey As Variant, ByVal EndItem As EXG2ANTTLibCtl.HITEM, ByVal EndBarKey As
Variant, LinkKey As Variant, Cancel As Boolean)
 With G2antt1.Items
 If (.ItemBar(StartItem, StartBarKey, exBarName) = "Summary") Then
 Cancel = True
 Else
 If (.ItemBar(EndItem, EndBarKey, exBarName) = "Summary") Then
 Cancel = True
 End If
 End If
 End With

End Sub

Use the AddLink method to create a link between two bars. Use the Link property to
access properties of a specified link. The Link(exLinksCount) property retrieves the number
of links within the chart.

C#

VB

private void AnchorClick(object sender,string AnchorID,string Options)
{
}

Private Sub AnchorClick(ByVal sender As System.Object,ByVal AnchorID As
String,ByVal Options As String) Handles AnchorClick
End Sub

C#

C++

private void AnchorClick(object sender,
AxEXG2ANTTLib._IG2anttEvents_AnchorClickEvent e)
{
}

void OnAnchorClick(LPCTSTR AnchorID,LPCTSTR Options)

event AnchorClick (AnchorID as String, Options as String)
Occurs when an anchor element is clicked.

Type Description

AnchorID as String A string expression that indicates the identifier of the
anchor.

Options as String A string expression that specifies options of the anchor
element.

The control fires the AnchorClick event to notify that the user clicks an anchor element. An
anchor is a piece of text or some other object (for example an image) which marks the
beginning and/or the end of a hypertext link. The <a> element is used to mark that piece of
text (or inline image), and to give its hypertextual relationship to other documents. The
AnchorClick event is fired only if prior clicking the control it shows the hand cursor. For
instance, if the cell is disabled, the hand cursor is not shown when hovers the anchor
element, and so the AnchorClick event is not fired. Use the FormatAnchor property to
specify the visual effect for anchor elements. For instance, if the user clicks the anchor
<a1>anchor, the control fires the AnchorClick event, where the AnchorID parameter is
1, and the Options parameter is empty. Also, if the user clicks the anchor <a
1;yourextradata>anchor, the AnchorID parameter of the AnchorClick event is 1, and
the Options parameter is "yourextradata".

Syntax for AnchorClick event, /NET version, on:

Syntax for AnchorClick event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

void __fastcall AnchorClick(TObject *Sender,BSTR AnchorID,BSTR Options)
{
}

procedure AnchorClick(ASender: TObject; AnchorID : WideString;Options :
WideString);
begin
end;

procedure AnchorClick(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_AnchorClickEvent);
begin
end;

begin event AnchorClick(string AnchorID,string Options)
end event AnchorClick

Private Sub AnchorClick(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_AnchorClickEvent) Handles AnchorClick
End Sub

Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

LPARAMETERS AnchorID,Options

PROCEDURE OnAnchorClick(oG2antt,AnchorID,Options)
RETURN

Syntax for AnchorClick event, /COM version (others), on:

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="AnchorClick(AnchorID,Options)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AnchorClick(AnchorID,Options)
End Function
</SCRIPT>

Procedure OnComAnchorClick String llAnchorID String llOptions
 Forward Send OnComAnchorClick llAnchorID llOptions
End_Procedure

METHOD OCX_AnchorClick(AnchorID,Options) CLASS MainDialog
RETURN NIL

void onEvent_AnchorClick(str _AnchorID,str _Options)
{
}

function AnchorClick as v (AnchorID as C,Options as C)
end function

function nativeObject_AnchorClick(AnchorID,Options)
return

event BarParentChange (Item as HITEM, Key as Variant, NewItem as
HITEM, Cancel as Boolean)
Occurs just before moving a bar from current item to another item.

Type Description

Item as HITEM A long expression that specifies the owner item (the
handle) that displays the bar being moved.

Key as Variant A string/variant expression that specifies the key of the bar
being moved.

NewItem as HITEM A long expression that specifies the handle of the item
where the bar is going to be moved.

Cancel as Boolean

A boolean expression that indicates where the bar can be
moved from Item to NewItem. By default, the Cancel
parameter is False, so the bar can be moved to any item
that does not contain another bar with the same key.
Handle the event, and change the Cancel parameter to
False, if you need to prevent moving a bar to NewItem
item.

The BarParentChange event notifies your application when a bar is about to be moved from
an item to another item. Use the BarParentChange event to control the items where the bar
can be moved through the items. The ItemBar(exBarCanMoveToAnother) property specifies
whether the user can drag and drop a bar from an item to another item. The
ItemBar(exBarCanMove) property specifies whether the user can moves the bar to a new
position inside the bar. The ItemBar(exBarParent) property specifies the handle of the item
that displays the bar. Use the ItemBar(exBarParent) property to change programmatically
the parent of the specified bar. The control fires the BarResize event when the bar is
resized or moved to a new position inside the item. The BarParentChange event is fired
during the drag and drop operation as soon as the user moves the bar's parent, but it is
fired also one more time once the user releases the left mouse button. You can use the
GetAsyncKeyState API function to determine whether the left mouse button is pressed or
released as in the following VB sample. The ChartEndChanging(exBarMoveBar) event
occurs once the user ends the UI operation like moving a bar.

The following screen shot shows few options to move, limit or resize bars:

https://exontrol.com/rfaq.jsp?product=exg2antt#barparent

The screen show was generate using the following x-script template (the visual
appearance code was excluded):

BeginUpdate

ScrollBySingleLine = True
DrawGridLines = -1
DefaultItemHeight = 19
GridLineColor = RGB(220, 220, 220)
Chart
{
 FirstVisibleDate = #1/1/2001#
 ScrollRange(0) = #12/28/2000#
 ScrollRange(1) = #1/12/2001#
 DrawDateTicker = False
 NonworkingDays = 0
 DrawGridLines = -1
 ResizeUnitScale = 65536 ' exHour
 AllowCreateBar = False
 PaneWidth(0) = 128
 LevelCount = 2
 Level(0).DrawGridLines = False
 AllowLinkBars = False
 Bars("Task").OverlaidType = 515 ' exOverlaidBarsStack +
exOverlaidBarsStackAutoArrange
}

Columns.Add("Info")
Items
{
 Dim h
 h = AddItem("Fixed bar")
 AddBar(h, "Task", #1/2/2001#, #1/5/2001#, "F")
 ItemBar(h,"F", 10) = False ' exBarCanResize
 ItemBar(h,"F", 11) = False ' exBarCanMove
 ItemBar(h,"F",6) = "This bar is fixed, so the uer can move or resize it" 'exBarToolTip
 h = AddItem("Moveable but not-resizable bar")
 AddBar(h, "Task", #1/3/2001#, #1/6/2001#, "F")
 ItemBar(h,"F",6) = "This bar is moveable inside the item, but the user can't resize it."
'exBarToolTip
 ItemBar(h,"F", 10) = False ' exBarCanResize
 h = AddItem("Resizable but not moveable bar")
 AddBar(h, "Task", #1/3/2001#, #1/6/2001#, "F")
 ItemBar(h,"F",6) = "This bar is resizable but the user can't move it." 'exBarToolTip
 ItemBar(h,"F", 11) = False ' exBarCanMove
 h = AddItem("Range Moveable bar")
 AddBar(h, "Task", #1/2/2001#, #1/6/2001#, "F")
 ItemBar(h,"F",6) = "This bar can be moved inside the displayed range." 'exBarToolTip
 ItemBar(h,"F",22) = #1/2/2001# ' exBarMinStart
 ItemBar(h,"F",25) = #1/8/2001# ' exBarMaxEnd
 ItemBar(h,"F",26) = 32 ' exBarShowRange
 ItemBar(h,"F",27) = 90 ' exBarShowRangeTransparent
 h = AddItem("Range Moveable Upper No Limit bar")
 AddBar(h, "Task", #1/3/2001#, #1/6/2001#, "F")
 ItemBar(h,"F",6) = "This bar can be moved inside the displayed range." 'exBarToolTip
 ItemBar(h,"F",22) = #1/2/2001# ' exBarMinStart
 ItemBar(h,"F",26) = 32 ' exBarShowRange
 ItemBar(h,"F",27) = 90 ' exBarShowRangeTransparent
 h = AddItem("Range Moveable Lower No Limit bar")
 AddBar(h, "Task", #1/3/2001#, #1/6/2001#, "F")
 ItemBar(h,"F",6) = "This bar can be moved inside the displayed range." 'exBarToolTip
 ItemBar(h,"F",25) = #1/8/2001# ' exBarMaxEnd
 ItemBar(h,"F",26) = 32 ' exBarShowRange
 ItemBar(h,"F",27) = 90 ' exBarShowRangeTransparent

C#

VB

private void BarParentChange(object sender,int Item,object Key,int NewItem,ref
bool Cancel)
{
}

Private Sub BarParentChange(ByVal sender As System.Object,ByVal Item As
Integer,ByVal Key As Object,ByVal NewItem As Integer,ByRef Cancel As Boolean)
Handles BarParentChange
End Sub

C# private void BarParentChange(object sender,
AxEXG2ANTTLib._IG2anttEvents_BarParentChangeEvent e)
{
}

 h = AddItem("Moveable bar inside the item")
 AddBar(h, "Task", #1/2/2001#, #1/6/2001#, "F")
 ItemBar(h,"F",6) = "This bar can be moved/resized anywhere inside the item."
'exBarToolTip
 h = AddItem("Moveable bar to other items too")
 AddBar(h, "Task", #1/2/2001#, #1/6/2001#, "FA")
 ItemBar(h,"FA",6) = "This bar can be moved to other items too. Click the bar and move
it to other items too." 'exBarToolTip
 ItemBar(h,"FA",3) = "free" 'exBarCaption
 ItemBar(h,"FA",4) = 18 'exBarHAlignCaption
 ItemBar(h,"FA",28) = True 'exBarCanMoveToAnother
 h = AddItem("Moveable inside item")
 AddBar(h, "Task", #1/3/2001#, #1/5/2001#, "F1")
 h = AddItem("Moveable inside item")
 AddBar(h, "Task", #1/3/2001#, #1/5/2001#, "F1")
 h = AddItem("Moveable inside item")
 AddBar(h, "Task", #1/3/2001#, #1/5/2001#, "F1")
}
EndUpdate()

Syntax for BarParentChange event, /NET version, on:

Syntax for BarParentChange event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

void OnBarParentChange(long Item,VARIANT Key,long NewItem,BOOL FAR*
Cancel)
{
}

void __fastcall BarParentChange(TObject *Sender,Exg2anttlib_tlb::HITEM
Item,Variant Key,Exg2anttlib_tlb::HITEM NewItem,VARIANT_BOOL * Cancel)
{
}

procedure BarParentChange(ASender: TObject; Item : HITEM;Key :
OleVariant;NewItem : HITEM;var Cancel : WordBool);
begin
end;

procedure BarParentChange(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_BarParentChangeEvent);
begin
end;

begin event BarParentChange(long Item,any Key,long NewItem,boolean Cancel)
end event BarParentChange

Private Sub BarParentChange(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_BarParentChangeEvent) Handles
BarParentChange
End Sub

Private Sub BarParentChange(ByVal Item As EXG2ANTTLibCtl.HITEM,ByVal Key As
Variant,ByVal NewItem As EXG2ANTTLibCtl.HITEM,Cancel As Boolean)
End Sub

Private Sub BarParentChange(ByVal Item As Long,ByVal Key As Variant,ByVal
NewItem As Long,Cancel As Boolean)
End Sub

LPARAMETERS Item,Key,NewItem,Cancel

Xbas… PROCEDURE OnBarParentChange(oG2antt,Item,Key,NewItem,Cancel)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="BarParentChange(Item,Key,NewItem,Cancel)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function BarParentChange(Item,Key,NewItem,Cancel)
End Function
</SCRIPT>

Procedure OnComBarParentChange HITEM llItem Variant llKey HITEM llNewItem
Boolean llCancel
 Forward Send OnComBarParentChange llItem llKey llNewItem llCancel
End_Procedure

METHOD OCX_BarParentChange(Item,Key,NewItem,Cancel) CLASS MainDialog
RETURN NIL

void onEvent_BarParentChange(int _Item,COMVariant _Key,int
_NewItem,COMVariant /*bool*/ _Cancel)
{
}

function BarParentChange as v (Item as OLE::Exontrol.G2antt.1::HITEM,Key as
A,NewItem as OLE::Exontrol.G2antt.1::HITEM,Cancel as L)
end function

function nativeObject_BarParentChange(Item,Key,NewItem,Cancel)
return

Syntax for BarParentChange event, /COM version (others), on:

The following VB/NET sample shows how to simulate a drop event, in other words how you
can get notification once the user drops a bar to another parent (the sample displays the
caption of the new parent, once the user drops the bar to a new parent):

Dim iMoving As Long = 0
Dim bMoving As Object = Nothing

Private Sub Exg2antt1_BarParentChange(ByVal sender As Object, ByVal Item As Integer,
ByVal Key As Object, ByVal NewItem As Integer, ByRef Cancel As Boolean) Handles
Exg2antt1.BarParentChange
 iMoving = NewItem
 bMoving = Key
End Sub

Private Sub Exg2antt1_ChartEndChanging(ByVal sender As System.Object, ByVal
Operation As exontrol.EXG2ANTTLib.BarOperationEnum) Handles
Exg2antt1.ChartEndChanging
 If (Operation = exontrol.EXG2ANTTLib.BarOperationEnum.exMoveBar) Then
 If (iMoving <> 0) Then
 If Not (bMoving Is Nothing) Then

MessageBox.Show(Exg2antt1.Items.get_CellCaption(Exg2antt1.Items.get_BarParent(iMoving,
 bMoving), 0)).ToString()
 End If
 End If
 iMoving = 0
 bMoving = Nothing
 End If
End Sub

The following VB sample prevents moving the bar to selectable items only (SelectableItem
property):

Private Sub G2antt1_BarParentChange(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal Key
As Variant, ByVal NewItem As EXG2ANTTLibCtl.HITEM, Cancel As Boolean)
 With G2antt1.Items
 Cancel = Not .SelectableItem(NewItem)
 End With
End Sub

The following VB.NET sample prevents moving the bar to selectable items only (
SelectableItem property):

Private Sub AxG2antt1_BarParentChange(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_BarParentChangeEvent) Handles
AxG2antt1.BarParentChange
 With AxG2antt1.Items
 e.cancel = Not .SelectableItem(e.newItem)
 End With
End Sub

The following C# sample prevents moving the bar to selectable items only (SelectableItem
property):

private void axG2antt1_BarParentChange(object sender,
AxEXG2ANTTLib._IG2anttEvents_BarParentChangeEvent e)
{
 e.cancel = !axG2antt1.Items.get_SelectableItem(e.newItem);
}

The following C++ sample prevents moving the bar to selectable items only (
SelectableItem property):

#include "Items.h"
void OnBarParentChangeG2antt1(long Item, const VARIANT FAR& Key, long NewItem,
BOOL FAR* Cancel)
{
 *Cancel = !m_g2antt.GetItems().GetSelectableItem(NewItem);
}

The following VFP sample prevents moving the bar to selectable items only (
SelectableItem property):

*** ActiveX Control Event ***
LPARAMETERS item, key, newitem, cancel

cancel = !thisform.G2antt1.Items.SelectableItem(newitem)

C#

VB

private void BarResize(object sender,int Item,object Key)
{
}

Private Sub BarResize(ByVal sender As System.Object,ByVal Item As Integer,ByVal
Key As Object) Handles BarResize
End Sub

C# private void BarResize(object sender,

event BarResize (Item as HITEM, Key as Variant)
Occurs when the bar is moved or resized.

Type Description

Item as HITEM A HITEM expression that indicates the handle of the item
where the bar is resized.

Key as Variant
A VARIANT expression that indicates the key of the bar
being resized. The Key parameter of the AddBar property
specifies the key of the bar being added.

The BarResize event notifies your application that the user resizes or moves a bar. The
BarResize event is fired when the user changes the percent value. Use the ItemBar
property to retrieve the exBarStart and exBarEnd properties of the bar being changed. The
exBarPercent value specifies the value of the percent. Use the CellValue property to change
the cell's value. The BarParentChange event notifies your application when a bar is about to
be moved from an item to another item. You can distingue moving or resizing a specified
bar by comparing the ItemBar(exBarDuration) and ItemBar(exBarDurationPrev) values. The
BarResizing event notifies the application once the bar is moving or resizing. Use the
ItemBar(exBarDuration) and ItemBar(exBarDurationPrev) properties to determine the
duration after resizing, and before the bar being resized, so you can determine whether the
user resizes or moves a bar. The ChartStartChaning(exMoveBar) event notifies the
application once the user starts moving a bar, while the ChartEndChaning(exMoveBar)
notifies the application once the user moved the bar. The
ChartStartChaning(exResizeStartBar) or ChartStartChaning(exResizeEndBar) event notifies
the application once the user starts resizing a bar, while the ChartEndChaning(
exResizeStartBar) or ChartEndChaning(exResizeEndBar) notifies the application once the
user resized the bar.

Syntax for BarResize event, /NET version, on:

Syntax for BarResize event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

AxEXG2ANTTLib._IG2anttEvents_BarResizeEvent e)
{
}

void OnBarResize(long Item,VARIANT Key)
{
}

void __fastcall BarResize(TObject *Sender,Exg2anttlib_tlb::HITEM Item,Variant Key)
{
}

procedure BarResize(ASender: TObject; Item : HITEM;Key : OleVariant);
begin
end;

procedure BarResize(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_BarResizeEvent);
begin
end;

begin event BarResize(long Item,any Key)
end event BarResize

Private Sub BarResize(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_BarResizeEvent) Handles BarResize
End Sub

Private Sub BarResize(ByVal Item As EXG2ANTTLibCtl.HITEM,ByVal Key As Variant)
End Sub

Private Sub BarResize(ByVal Item As Long,ByVal Key As Variant)
End Sub

LPARAMETERS Item,Key

PROCEDURE OnBarResize(oG2antt,Item,Key)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="BarResize(Item,Key)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function BarResize(Item,Key)
End Function
</SCRIPT>

Procedure OnComBarResize HITEM llItem Variant llKey
 Forward Send OnComBarResize llItem llKey
End_Procedure

METHOD OCX_BarResize(Item,Key) CLASS MainDialog
RETURN NIL

void onEvent_BarResize(int _Item,COMVariant _Key)
{
}

function BarResize as v (Item as OLE::Exontrol.G2antt.1::HITEM,Key as A)
end function

function nativeObject_BarResize(Item,Key)
return

Syntax for BarResize event, /COM version (others), on:

Calling SchedulePDM method invokes the BarResize event for all affected bars. In
conclusion, if using the SchedulePDM method during a BarResize event, you can use a
counter to prevent calling the SchedulePDM multiple times, like in the following sample VB:

Dim iSchedulePDM As Long
Private Sub G2antt1_BarResize(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal Key As
Variant)
 If (iSchedulePDM = 0) Then
 iSchedulePDM = iSchedulePDM + 1

 G2antt1.Items.SchedulePDM Item, Key
 iSchedulePDM = iSchedulePDM - 1
 End If
End Sub

The following VB sample displays the BarMove message once a a bar is moved (not
sizing):

Dim iMoving As Long

Private Sub Gantt1_BarResize(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal Key As
Variant)
 If Not (iMoving = 0) Then
 Debug.Print "BarMove"
 End If
End Sub

Private Sub Gantt1_ChartStartChanging(ByVal Operation As
EXG2ANTTLibCtl.BarOperationEnum)
 If (Operation = exMoveBar) Then
 iMoving = iMoving + 1
 End If
End Sub

Private Sub Gantt1_ChartEndChanging(ByVal Operation As
EXG2ANTTLibCtl.BarOperationEnum)
 If (Operation = exMoveBar) Then
 iMoving = iMoving - 1
 End If
End Sub

The following VB sample displays the operation performed as if it was a moving or a
resizing the bar:

Private Sub G2antt1_BarResize(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal Key As
Variant)
 With G2antt1.Items
 If .ItemBar(Item, Key, exBarDurationPrev) <> .ItemBar(Item, Key, exBarDuration) Then

 Debug.Print "The item has been resized."
 Else
 Debug.Print "The item has been moved."
 End If
 End With
End Sub

The following VB sample displays the new start and end data for the bar being moved or
resized:

Private Sub G2antt1_BarResize(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal Key As
Variant)
 With G2antt1.Items
 Debug.Print "NewStart: " & .ItemBar(Item, Key, exBarStart)
 Debug.Print "NewEnd: " & .ItemBar(Item, Key, exBarEnd)
 End With
End Sub

The following VB sample changes the background color of the bar being moved or
renamed:

Private Sub G2antt1_BarResize(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal Key As
Variant)
 G2antt1.BeginUpdate
 With G2antt1.Items
 .ItemBar(Item, Key, exBarBackColor) = RGB(255, 0, 0)
 End With
 G2antt1.EndUpdate
End Sub

The following C++ sample displays the new start and end data for the bar being moved or
resized:

void OnBarResizeG2antt1(long Item, const VARIANT FAR& Key)
{
 CItems items = m_g2antt.GetItems();
 COleVariant vtStartDate = items.GetItemBar(Item, Key, /*exBarStart*/1);
 COleVariant vtEndDate = items.GetItemBar(Item, Key, /*exBarEnd*/2);
 OutputDebugString("newStartDate: ");

 OutputDebugString(V2S(&vtStartDate));
 OutputDebugString("\n");
 OutputDebugString("newEndDate: ");
 OutputDebugString(V2S(&vtEndDate));
 OutputDebugString("\n");
}

The following VB.NET sample displays the new start and end data for the bar being moved
or resized:

Private Sub AxG2antt1_BarResize(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_BarResizeEvent) Handles AxG2antt1.BarResize
 With AxG2antt1.Items
 System.Diagnostics.Debug.Print("newStartDate: " + .ItemBar(e.item, e.key,
EXG2ANTTLib.ItemBarPropertyEnum.exBarStart))
 System.Diagnostics.Debug.Print("newEndDate: " + .ItemBar(e.item, e.key,
EXG2ANTTLib.ItemBarPropertyEnum.exBarEnd))
 End With
End Sub

The following C# sample displays the new start and end data for the bar being moved or
resized:

private void axG2antt1_BarResize(object sender,
AxEXG2ANTTLib._IG2anttEvents_BarResizeEvent e)
{
 System.Diagnostics.Debug.Print("newStartDate: " + axG2antt1.Items.get_ItemBar(e.item,
e.key, EXG2ANTTLib.ItemBarPropertyEnum.exBarStart).ToString());
 System.Diagnostics.Debug.Print("newStartDate: " + axG2antt1.Items.get_ItemBar(e.item,
e.key, EXG2ANTTLib.ItemBarPropertyEnum.exBarEnd).ToString());
}

The following VFP sample displays the new start and end data for the bar being moved or
resized:

*** ActiveX Control Event ***
LPARAMETERS item, key

with thisform.G2antt1.Items

 ? .ItemBar(item,key,1)
 ? .ItemBar(item,key,2)
endwith

C#

VB

private void BarResizing(object sender,int Item,object Key)
{
}

Private Sub BarResizing(ByVal sender As System.Object,ByVal Item As Integer,ByVal
Key As Object) Handles BarResizing
End Sub

C# private void BarResizing(object sender,
AxEXG2ANTTLib._IG2anttEvents_BarResizingEvent e)
{
}

event BarResizing (Item as HITEM, Key as Variant)
Occurs when a bar is moving or resizing.

Type Description

Item as HITEM A long expression that specifies the item that hosts the bar
being moved or resized.

Key as Variant A VARIANT expression that specifies the bar being moved
or resized.

The BarResizing event is fired continually while the bar is resizing or moving. The BarResize
event notifies the application once the bar is moved or resized. The
ChartStartChaning(exMoveBar) event notifies the application once the user starts moving a
bar, while the ChartEndChaning(exMoveBar) notifies the application once the user moved
the bar. The ChartStartChaning(exResizeStartBar) or ChartStartChaning(exResizeEndBar)
event notifies the application once the user starts resizing a bar, while the
ChartEndChaning(exResizeStartBar) or ChartEndChaning(exResizeEndBar) notifies the
application once the user resized the bar.

Use the ItemBar(exBarStart) and ItemBar(exBarEnd)/ItemBar(exBarEndInclusive)
properties to determine the start and end point of the bar being moved or resized. Use the
ItemBar(exBarDuration) and ItemBar(exBarDurationPrev) properties to determine the
duration after resizing, and before the bar being resized, so you can determine whether the
user resizes or moves a bar.

Syntax for BarResizing event, /NET version, on:

Syntax for BarResizing event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnBarResizing(long Item,VARIANT Key)
{
}

void __fastcall BarResizing(TObject *Sender,Exg2anttlib_tlb::HITEM Item,Variant
Key)
{
}

procedure BarResizing(ASender: TObject; Item : HITEM;Key : OleVariant);
begin
end;

procedure BarResizing(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_BarResizingEvent);
begin
end;

begin event BarResizing(long Item,any Key)
end event BarResizing

Private Sub BarResizing(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_BarResizingEvent) Handles BarResizing
End Sub

Private Sub BarResizing(ByVal Item As EXG2ANTTLibCtl.HITEM,ByVal Key As
Variant)
End Sub

Private Sub BarResizing(ByVal Item As Long,ByVal Key As Variant)
End Sub

LPARAMETERS Item,Key

PROCEDURE OnBarResizing(oG2antt,Item,Key)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="BarResizing(Item,Key)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function BarResizing(Item,Key)
End Function
</SCRIPT>

Procedure OnComBarResizing HITEM llItem Variant llKey
 Forward Send OnComBarResizing llItem llKey
End_Procedure

METHOD OCX_BarResizing(Item,Key) CLASS MainDialog
RETURN NIL

void onEvent_BarResizing(int _Item,COMVariant _Key)
{
}

function BarResizing as v (Item as OLE::Exontrol.G2antt.1::HITEM,Key as A)
end function

function nativeObject_BarResizing(Item,Key)
return

Syntax for BarResizing event, /COM version (others), on:

The following VB sample moves the bar in a second gantt control once the user resizes or
moves a bar in the first gantt control:

Private Sub G2antt1_BarResizing(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal Key As
Variant)
 With G2antt2
 .BeginUpdate
 .Items.AddBar .Items.ItemByIndex(G2antt1.Items.ItemToIndex(Item)),
G2antt1.Items.ItemBar(Item, Key, exBarName), G2antt1.Items.ItemBar(Item, Key,
exBarStart), G2antt1.Items.ItemBar(Item, Key, exBarEnd)

 .EndUpdate
 End With
End Sub

The sample uses the AddBar method instead ItemBar, so the start and end points of the
bar are updated once.

If using the SchedulePDM method during a BarResizing event, you can see the order of
the events in the following VB sample:

Private Sub G2antt1_BarResize(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal Key As
Variant)
 Debug.Print "BarResize invoked"
End Sub

Private Sub G2antt1_BarResizing(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal Key As
Variant)
 Debug.Print "BarResizing invoked"
 G2antt1.Items.SchedulePDM Item, Key
End Sub

Private Sub G2antt1_ChartStartChanging(ByVal Operation As
EXG2ANTTLibCtl.BarOperationEnum)
 If (Operation = exPDM) Then
 Debug.Print "SchedulePDM starts"
 End If
End Sub

Private Sub G2antt1_ChartEndChanging(ByVal Operation As
EXG2ANTTLibCtl.BarOperationEnum)
 If (Operation = exPDM) Then
 Debug.Print "SchedulePDM ends"
 End If
End Sub

The output shows as follows:

BarResizing invoked
SchedulePDM starts

 BarResize invoked
 BarResize invoked
SchedulePDM ends
BarResize invoked

event BeforeDrawPart (Part as DrawPartEnum, hDC as Long, X as Long,
Y as Long, Width as Long, Height as Long, Cancel as Boolean)
Occurs just before drawing a part of the control.

Type Description

Part as DrawPartEnum

A Part being painted. If the Part parameter is
exOwnerDrawBar, the DrawPartItem property specifies
the handle of the item that hosts the "OwnerDraw" bar,
while the DrawPartKey property specifies the key of the
bar to be painted. Use the Add or Copy method to add an
"OwnerDraw" bar

hDC as Long

A long expression that specifies the handle of the device
context where you can perform your own draw (available
for /COM only). The /NET or /WPF assembly provides a
System.Drawing.Graphics object instead hDC parameter

X as Long

(by reference) A long expression that specifies the left
coordinate of the rectangle where the paint should occur.
You can change the X parameter during the handler, to
define the new left coordinate for the default painting. The
/NET or /WPF assembly provides a
System.Drawing.Rectangle instead (X, Y, Width, Height).

Y as Long

(by reference) A long expression that specifies the top
coordinate of the rectangle where the paint should occur.
You can change the Y parameter during the handler, to
define the new top coordinate for the default painting. The
/NET or /WPF assembly provides a
System.Drawing.Rectangle instead (X, Y, Width, Height).

Width as Long

(by reference) A long expression that specifies the width
of the rectangle where the paint should occur. You can
change the Width parameter during the handler, to define
the new width for the default painting. The /NET or /WPF
assembly provides a System.Drawing.Rectangle instead
(X, Y, Width, Height).

Height as Long

(by reference) A long expression that specifies the height
of the rectangle where the paint should occur. You can
change the Height parameter during the handler, to
define the new width for the default painting. The /NET or
/WPF assembly provides a System.Drawing.Rectangle
instead (X, Y, Width, Height).

C#

VB

private void BeforeDrawPart(object sender,exontrol.EXG2ANTTLib.DrawPartEnum
Part,int hDC,ref int X,ref int Y,ref int Width,ref int Height,ref bool Cancel)
{
}

Private Sub BeforeDrawPart(ByVal sender As System.Object,ByVal Part As
exontrol.EXG2ANTTLib.DrawPartEnum,ByVal hDC As Integer,ByRef X As
Integer,ByRef Y As Integer,ByRef Width As Integer,ByRef Height As Integer,ByRef
Cancel As Boolean) Handles BeforeDrawPart
End Sub

C#

C++

C++
Builder

private void BeforeDrawPart(object sender,
AxEXG2ANTTLib._IG2anttEvents_BeforeDrawPartEvent e)
{
}

void OnBeforeDrawPart(long Part,long hDC,long FAR* X,long FAR* Y,long FAR*
Width,long FAR* Height,BOOL FAR* Cancel)
{
}

void __fastcall BeforeDrawPart(TObject *Sender,Exg2anttlib_tlb::DrawPartEnum

Cancel as Boolean (by reference) A Boolean expression that specifies
whether the default painting is canceled or not.

The BeforeDrawPart and AfterDrawPart events occur when different parts of the control
requires to be drawn. Use the BeforeDrawPart and AfterDrawPart events to add your
custom drawing to be shown in the component. Use the BeforeDrawPart event to perform
your own drawing before the default drawing, canceling the default drawing, or changing the
area being assigned to the part part when painting. Use the AfterDrawPart event to perform
your own drawing after default painting occurs. The /NET Assembly provides instead hDC
and (X,Y,Width,Height) parameters a Graphics object and a Rectangle object, the last
being passed by reference. Use the HistogramBoundsChanged event to notify your
application when the left part of the histogram is resized, so inside controls must be re-
positioned.

Syntax for BeforeDrawPart event, /NET version, on:

Syntax for BeforeDrawPart event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

Part,long hDC,long * X,long * Y,long * Width,long * Height,VARIANT_BOOL *
Cancel)
{
}

procedure BeforeDrawPart(ASender: TObject; Part : DrawPartEnum;hDC :
Integer;var X : Integer;var Y : Integer;var Width : Integer;var Height : Integer;var
Cancel : WordBool);
begin
end;

procedure BeforeDrawPart(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_BeforeDrawPartEvent);
begin
end;

begin event BeforeDrawPart(long Part,long hDC,long X,long Y,long Width,long
Height,boolean Cancel)
end event BeforeDrawPart

Private Sub BeforeDrawPart(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_BeforeDrawPartEvent) Handles BeforeDrawPart
End Sub

Private Sub BeforeDrawPart(ByVal Part As EXG2ANTTLibCtl.DrawPartEnum,ByVal
hDC As Long,X As Long,Y As Long,Width As Long,Height As Long,Cancel As
Boolean)
End Sub

Private Sub BeforeDrawPart(ByVal Part As Long,ByVal hDC As Long,X As Long,Y As
Long,Width As Long,Height As Long,Cancel As Boolean)
End Sub

LPARAMETERS Part,hDC,X,Y,Width,Height,Cancel

PROCEDURE OnBeforeDrawPart(oG2antt,Part,hDC,X,Y,Width,Height,Cancel)
RETURN

Java…

VBSc…

Visual
Data…

Visual
Objects

X++

XBasic

dBASE

<SCRIPT EVENT="BeforeDrawPart(Part,hDC,X,Y,Width,Height,Cancel)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function BeforeDrawPart(Part,hDC,X,Y,Width,Height,Cancel)
End Function
</SCRIPT>

Procedure OnComBeforeDrawPart OLEDrawPartEnum llPart Integer llhDC Integer
llX Integer llY Integer llWidth Integer llHeight Boolean llCancel
 Forward Send OnComBeforeDrawPart llPart llhDC llX llY llWidth llHeight
llCancel
End_Procedure

METHOD OCX_BeforeDrawPart(Part,hDC,X,Y,Width,Height,Cancel) CLASS
MainDialog
RETURN NIL

void onEvent_BeforeDrawPart(int _Part,int _hDC,COMVariant /*long*/
_X,COMVariant /*long*/ _Y,COMVariant /*long*/ _Width,COMVariant /*long*/
_Height,COMVariant /*bool*/ _Cancel)
{
}

function BeforeDrawPart as v (Part as OLE::Exontrol.G2antt.1::DrawPartEnum,hDC
as N,X as N,Y as N,Width as N,Height as N,Cancel as L)
end function

function nativeObject_BeforeDrawPart(Part,hDC,X,Y,Width,Height,Cancel)
return

Syntax for BeforeDrawPart event, /COM version (others), on:

The following VB sample changes the Y and the Height parameters, and paints the
"Histogram" text inside the histogram as shown bellow in the screen shot:

Private Type RECT
 Left As Long
 Top As Long
 Right As Long
 Bottom As Long
End Type
Private Const DT_SINGLELINE = &H20
Private Const DT_CENTER = &H1
Private Declare Function DrawText Lib "user32" Alias "DrawTextA" (ByVal hdc As Long,
ByVal lpStr As String, ByVal nCount As Long, lpRect As RECT, ByVal wFormat As Long) As
Long

Private Sub G2antt1_BeforeDrawPart(ByVal Part As EXG2ANTTLibCtl.DrawPartEnum, ByVal
hdc As Long, X As Long, Y As Long, Width As Long, Height As Long, Cancel As Boolean)
 If (Part = exDrawLeftHistogram) Or (Part = exDrawRightHistogram) Then

 Dim h As Long
 h = 16

 If ((Part = exDrawRightHistogram)) Then
 Dim r As RECT
 r.Left = X + 2
 r.Right = r.Left + Width - 4
 r.Top = Y + 1
 r.Bottom = r.Top + h - 2

 DrawText hdc, "Histogram", 9, r, DT_SINGLELINE + DT_CENTER
 End If

 Y = Y + h
 Height = Height - h
 End If
End Sub

C#

VB

private void BeforeExpandItem(object sender,int Item,ref object Cancel)
{
}

Private Sub BeforeExpandItem(ByVal sender As System.Object,ByVal Item As
Integer,ByRef Cancel As Object) Handles BeforeExpandItem
End Sub

C#

C++

C++
Builder

private void BeforeExpandItem(object sender,
AxEXG2ANTTLib._IG2anttEvents_BeforeExpandItemEvent e)
{
}

void OnBeforeExpandItem(long Item,VARIANT FAR* Cancel)
{
}

void __fastcall BeforeExpandItem(TObject *Sender,Exg2anttlib_tlb::HITEM

event BeforeExpandItem (Item as HITEM, Cancel as Variant)

Fired before an item is about to be expanded (collapsed).

Type Description

Item as HITEM A long expression that indicates the handle of the item
being expanded or collapsed.

Cancel as Variant A boolean expression that indicates whether the control
cancel expanding or collapsing the item.

The BeforeExpandItem event notifies your application that an item is about to be collapsed
or expanded. Use the BeforeExpandItem event to cancel expanding or collapsing items.
Use the BeforeExpandItem event to load new items when filling a virtual tree. The
AfterExpandItem event is fired after an item is expanded or collapsed. Use the ExpandItem
method to programmatically expand or collapse an item. Use the ExpandOnSearch property
to expand items while user types characters to search for items using incremental search
feature.

Syntax for BeforeExpandItem event, /NET version, on:

Syntax for BeforeExpandItem event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

Item,Variant * Cancel)
{
}

procedure BeforeExpandItem(ASender: TObject; Item : HITEM;var Cancel :
OleVariant);
begin
end;

procedure BeforeExpandItem(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_BeforeExpandItemEvent);
begin
end;

begin event BeforeExpandItem(long Item,any Cancel)
end event BeforeExpandItem

Private Sub BeforeExpandItem(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_BeforeExpandItemEvent) Handles
BeforeExpandItem
End Sub

Private Sub BeforeExpandItem(ByVal Item As EXG2ANTTLibCtl.HITEM,Cancel As
Variant)
End Sub

Private Sub BeforeExpandItem(ByVal Item As Long,Cancel As Variant)
End Sub

LPARAMETERS Item,Cancel

PROCEDURE OnBeforeExpandItem(oG2antt,Item,Cancel)
RETURN

Java… <SCRIPT EVENT="BeforeExpandItem(Item,Cancel)" LANGUAGE="JScript">
Syntax for BeforeExpandItem event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function BeforeExpandItem(Item,Cancel)
End Function
</SCRIPT>

Procedure OnComBeforeExpandItem HITEM llItem Variant llCancel
 Forward Send OnComBeforeExpandItem llItem llCancel
End_Procedure

METHOD OCX_BeforeExpandItem(Item,Cancel) CLASS MainDialog
RETURN NIL

void onEvent_BeforeExpandItem(int _Item,COMVariant /*variant*/ _Cancel)
{
}

function BeforeExpandItem as v (Item as OLE::Exontrol.G2antt.1::HITEM,Cancel as
A)
end function

function nativeObject_BeforeExpandItem(Item,Cancel)
return

The following VB sample cancels expanding or collapsing items:

Private Sub G2antt1_BeforeExpandItem(ByVal Item As EXG2ANTTLibCtl.HITEM, Cancel As
Variant)
 Cancel = True
End Sub

The following VB sample prints the item's state when it is expanded or collapsed:

Private Sub G2antt1_AfterExpandItem(ByVal Item As EXG2ANTTLibCtl.HITEM)
 Debug.Print "The " & Item & " item was " & IIf(G2antt1.Items.ExpandItem(Item),
"expanded", "collapsed")
End Sub

The following C# sample cancels expanding or collapsing items:

private void axG2antt1_BeforeExpandItem(object sender,
AxEXG2ANTTLib._IG2anttEvents_BeforeExpandItemEvent e)
{
 e.cancel = true;
}

The following VB.NET sample cancels expanding or collapsing items:

Private Sub AxG2antt1_BeforeExpandItem(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_BeforeExpandItemEvent) Handles
AxG2antt1.BeforeExpandItem
 e.cancel = True
End Sub

The following C++ sample cancels expanding or collapsing items:

void OnBeforeExpandItemG2antt1(long Item, VARIANT FAR* Cancel)
{
 V_VT(Cancel) = VT_BOOL;
 V_BOOL(Cancel) = VARIANT_TRUE;
}

The following VFP sample cancels expanding or collapsing items:

*** ActiveX Control Event ***
LPARAMETERS item, cancel

cancel = .t.

C#

VB

private void ButtonClick(object sender,int Item,int ColIndex,object Key)
{
}

Private Sub ButtonClick(ByVal sender As System.Object,ByVal Item As Integer,ByVal
ColIndex As Integer,ByVal Key As Object) Handles ButtonClick
End Sub

event ButtonClick (Item as HITEM, ColIndex as Long, Key as Variant)
Occurs when user clicks on the cell's button.

Type Description

Item as HITEM

A long expression that determines the item's handle. If the
Item parameter is 0, and the ColIndex property is different
than zero, the ColIndex indicates the handle of the cell
where the state is changed.

ColIndex as Long
A long expression that indicates the column's index, if the
Item parameter is not zero, a long expression that
indicates the handle of the cell if the Item parameter is 0.

Key as Variant
Specifies the button's key that's clicked. If the Key
parameter is empty, the user clicked the drop down button
of the editor.

Use the ButtonClick event to notify your application that a button is clicked. Use the
ColumnClick event to notify your application that the user clicks the column's header. Use
the CellImageClick event to notify your application that the user clicks an icon in the cell.
You can assign a button to a cell using any of the following ways:

The CellHasButton property specifies whether the cell displays a button. Use the
CellValue property indicates the button's caption. In this case the Key parameter is
empty.

The AddButton method adds a button to an editor. The Key parameter indicates the
key of the button being clicked. A drop down type editor like ButtonType,
DropDownType, DropDownListType, PickEditType, DateType, ColorType, FontType
and PictureType includes a drop down button. The Key parameter is empty, for a drop
down button.

Syntax for ButtonClick event, /NET version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

private void ButtonClick(object sender,
AxEXG2ANTTLib._IG2anttEvents_ButtonClickEvent e)
{
}

void OnButtonClick(long Item,long ColIndex,VARIANT Key)
{
}

void __fastcall ButtonClick(TObject *Sender,Exg2anttlib_tlb::HITEM Item,long
ColIndex,Variant Key)
{
}

procedure ButtonClick(ASender: TObject; Item : HITEM;ColIndex : Integer;Key :
OleVariant);
begin
end;

procedure ButtonClick(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_ButtonClickEvent);
begin
end;

begin event ButtonClick(long Item,long ColIndex,any Key)
end event ButtonClick

Private Sub ButtonClick(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_ButtonClickEvent) Handles ButtonClick
End Sub

Private Sub ButtonClick(ByVal Item As EXG2ANTTLibCtl.HITEM,ByVal ColIndex As
Long,ByVal Key As Variant)
End Sub

Private Sub ButtonClick(ByVal Item As Long,ByVal ColIndex As Long,ByVal Key As
Variant)

Syntax for ButtonClick event, /COM version, on:

VFP

Xbas…

End Sub

LPARAMETERS Item,ColIndex,Key

PROCEDURE OnButtonClick(oG2antt,Item,ColIndex,Key)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="ButtonClick(Item,ColIndex,Key)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ButtonClick(Item,ColIndex,Key)
End Function
</SCRIPT>

Procedure OnComButtonClick HITEM llItem Integer llColIndex Variant llKey
 Forward Send OnComButtonClick llItem llColIndex llKey
End_Procedure

METHOD OCX_ButtonClick(Item,ColIndex,Key) CLASS MainDialog
RETURN NIL

void onEvent_ButtonClick(int _Item,int _ColIndex,COMVariant _Key)
{
}

function ButtonClick as v (Item as OLE::Exontrol.G2antt.1::HITEM,ColIndex as N,Key
as A)
end function

function nativeObject_ButtonClick(Item,ColIndex,Key)
return

Syntax for ButtonClick event, /COM version (others), on:

The following VB sample displays the key of the button being clicked:

With G2antt1.Columns.Add("Editor").Editor
 .EditType = EditType
 .AddButton "Key1", 1
 .AddButton "Key2", 2, EXG2ANTTLibCtl.AlignmentEnum.RightAlignment, "This is a bit of
text that should be displayed when the cursor is over the button", "Some information"
 .AddButton "Key3", 3, EXG2ANTTLibCtl.AlignmentEnum.RightAlignment
End With

...

Private Sub G2antt1_ButtonClick(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal ColIndex As
Long, ByVal Key As Variant)
 ' Displays the button's key that was clicked
 Dim mes As String
 mes = "You have pressed the button"
 mes = mes + IIf(Len(Key) = 0, "", " '" & Key & "'")
 mes = mes + " of cell '" & G2antt1.Items.CellValue(Item) & "'."
 Debug.Print mes
End Sub

The following VB sample displays the caption of the cell where a button is clicked:

Private Sub G2antt1_ButtonClick(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal ColIndex As
Long, ByVal Key As Variant)
 With G2antt1.Items
 Debug.Print .CellValue(Item, ColIndex) & ", Key = '" & Key & "'"
 End With
End Sub

The following C++ sample displays the caption of the cell where a button is clicked:

#include "Items.h"
void OnButtonClickG2antt1(long Item, long ColIndex, const VARIANT FAR& Key)
{
 CItems items = m_g2antt.GetItems();
 CString strFormat;
 strFormat.Format("%s, Key = '%s'", items.GetCellValue(COleVariant(Item), COleVariant(
ColIndex)), V2S((LPVARIANT)&Key));

 OutputDebugString(strFormat);
}

where the V2S string may look like follows:

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

or

static string V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 CComVariant vt;
 if (SUCCEEDED(vt.ChangeType(VT_BSTR, pv)))
 {
 USES_CONVERSION;
 return OLE2T(V_BSTR(&vt));
 }
 }
 return szDefault;
}

if you are using STL.

The following VB.NET sample displays the caption of the cell where a button is clicked:

Private Sub AxG2antt1_ButtonClick(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_ButtonClickEvent) Handles AxG2antt1.ButtonClick
 With AxG2antt1.Items
 Dim strKey As String = ""
 If Not (e.key Is Nothing) Then
 strKey = e.key.ToString()
 End If
 Debug.Print(.CellValue(e.item, e.colIndex).ToString() + ", Key = " + strKey)
 End With
End Sub

The following C# sample displays the caption of the cell where a button is clicked:

private void axG2antt1_ButtonClick(object sender,
AxEXG2ANTTLib._IG2anttEvents_ButtonClickEvent e)
{
 string strKey = "";
 if (e.key != null)
 strKey = e.key.ToString();
 System.Diagnostics.Debug.WriteLine(axG2antt1.Items.get_CellValue(e.item, e.colIndex) +
", Key = " + strKey);
}

The following VFP sample displays the caption of the cell where a button is clicked:

*** ActiveX Control Event ***
LPARAMETERS item, colindex, key

with thisform.G2antt1.Items
 .DefaultItem = item
 wait window nowait .CellValue(0, colindex)
endwith

C#

VB

private void CellImageClick(object sender,int Item,int ColIndex)
{
}

Private Sub CellImageClick(ByVal sender As System.Object,ByVal Item As
Integer,ByVal ColIndex As Integer) Handles CellImageClick
End Sub

C#

C++

private void CellImageClick(object sender,
AxEXG2ANTTLib._IG2anttEvents_CellImageClickEvent e)
{
}

void OnCellImageClick(long Item,long ColIndex)
{
}

event CellImageClick (Item as HITEM, ColIndex as Long)

Occurs when the user clicks the cell's icon.

Type Description

Item as HITEM A long expression that indicates the handle of the item
where the user clicks the cell's icon.

ColIndex as Long

A long expression that indicates the index of the column
where the user clicks the cell's icon, or a long expression
that indicates the handle of the cell being clicked, if the
Item parameter is 0.

The CellImageClick event is fired when user clicks on the cell's image. Use the CellImage
property to assign an icon to a cell. Use the CellImages property to assign multiple icons to
a cell. Use the ItemFromPoint property to determine the index of the icon being clicked, in
case the cell displays multiple icons using the CellImages property. Use the
CellHasCheckBox or CellHasRadioButton property to assign a check box or a radio button
to a cell.

Syntax for CellImageClick event, /NET version, on:

Syntax for CellImageClick event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall CellImageClick(TObject *Sender,Exg2anttlib_tlb::HITEM Item,long ColIndex)
{
}

procedure CellImageClick(ASender: TObject; Item : HITEM;ColIndex : Integer);
begin
end;

procedure CellImageClick(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_CellImageClickEvent);
begin
end;

begin event CellImageClick(long Item,long ColIndex)
end event CellImageClick

Private Sub CellImageClick(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_CellImageClickEvent) Handles CellImageClick
End Sub

Private Sub CellImageClick(ByVal Item As EXG2ANTTLibCtl.HITEM,ByVal ColIndex
As Long)
End Sub

Private Sub CellImageClick(ByVal Item As Long,ByVal ColIndex As Long)
End Sub

LPARAMETERS Item,ColIndex

PROCEDURE OnCellImageClick(oG2antt,Item,ColIndex)
RETURN

Java… <SCRIPT EVENT="CellImageClick(Item,ColIndex)" LANGUAGE="JScript">
Syntax for CellImageClick event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function CellImageClick(Item,ColIndex)
End Function
</SCRIPT>

Procedure OnComCellImageClick HITEM llItem Integer llColIndex
 Forward Send OnComCellImageClick llItem llColIndex
End_Procedure

METHOD OCX_CellImageClick(Item,ColIndex) CLASS MainDialog
RETURN NIL

void onEvent_CellImageClick(int _Item,int _ColIndex)
{
}

function CellImageClick as v (Item as OLE::Exontrol.G2antt.1::HITEM,ColIndex as N)
end function

function nativeObject_CellImageClick(Item,ColIndex)
return

The following VB sample assigns an icon to each cell that's added, and changes the cell's
icon when the user clicks the icon:

Private Sub G2antt1_AddItem(ByVal Item As EXG2ANTTLibCtl.HITEM)
 G2antt1.Items.CellImage(Item, 0) = 1
End Sub

Private Sub G2antt1_CellImageClick(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal ColIndex
As Long)
 G2antt1.Items.CellImage(Item, ColIndex) = G2antt1.Items.CellImage(Item, ColIndex)
Mod 2 + 1
End Sub

The following VB sample displays the index of icon being clicked:

Private Sub G2antt1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single)
 Dim i As HITEM, h As HitTestInfoEnum, c As Long
 With G2antt1
 i = .ItemFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY, c, h)
 End With
 If (i <> 0) or (c <> 0) Then
 If exHTCellIcon = (h And exHTCellIcon) Then
 Debug.Print "The index of icon being clicked is: " & (h And &HFFFF0000) / 65536
 End If
 End If
End Sub

The following C++ sample changes the cell's icon being clicked:

#include "Items.h"
void OnCellImageClickG2antt1(long Item, long ColIndex)
{
 CItems items = m_g2antt.GetItems();
 COleVariant vtItem(Item), vtColumn(ColIndex);
 items.SetCellImage(vtItem , vtColumn , items.GetCellImage(vtItem, vtColumn) % 2 + 1
);
}

The following C# sample changes the cell's icon being clicked:

private void axG2antt1_CellImageClick(object sender,
AxEXG2ANTTLib._IG2anttEvents_CellImageClickEvent e)
{
 axG2antt1.Items.set_CellImage(e.item, e.colIndex, axG2antt1.Items.get_CellImage(
e.item, e.colIndex) % 2 + 1);
}

The following VB/NET sample changes the cell's icon being clicked:

Private Sub AxG2antt1_CellImageClick(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_CellImageClickEvent) Handles AxG2antt1.CellImageClick
 With AxG2antt1.Items
 .CellImage(e.item, e.colIndex) = .CellImage(e.item, e.colIndex) Mod 2 + 1

 End With
End Sub

The following VFP sample changes the cell's icon being clicked:

*** ActiveX Control Event ***
LPARAMETERS item, colindex

with thisform.G2antt1.Items
 .DefaultItem = item
 .CellImage(0,colindex) = .CellImage(0,colindex) + 1
endwith

event CellStateChanged (Item as HITEM, ColIndex as Long)

Fired after cell's state has been changed.

Type Description

Item as HITEM A long expression that indicates the handle of the item
where the cell's state is changed.

ColIndex as Long

A long expression that indicates the index of the column
where the cell's state is changed, or a long expression
that indicates the handle of the cell, if the Item parameter
is 0.

A cell that contains a radio button or a check box button fires the CellStateChanged event
when its state is changed. The control fires the CellStateChanging event just before cell's
state is about to be changed. Use the CellState property to change the cell's state. Use the
CellHasRadioButton or CellHasCheckBox property to enable radio or check box button into
a cell. Use the Def property to assign check-boxes / radio-buttons for all cells in the column.
Use the CellImage property to display an icon in the cell. Use the CellImages property to
display multiple icons in the same cell. Use the PartialCheck property to enable partial
check feature (check boxes with three states: partial, checked and unchecked). Use
the CellChecked property to determine the handle of the cell that's checked in a radio
group. Use the CellRadioGroup property to radio group cells.

Once the user clicks a check-box, radio-button, the control fires the following events:

CellStateChanging event, where the NewState parameter indicates the new state of
the cell's checkbox / radio-button. You can change the NewState parameter during this
event. For instance, NewState = Items.CellState(Item,ColIndex) un-changes the cell's
state once the user tries to change it.

CellStateChanged event notifies your application that the cell's check-box or radio-
button has been changed. The CellState property determines the check-box/radio-
button state of the cell.

Syntax for CellStateChanged event, /NET version, on:

C#

VB

private void CellStateChanged(object sender,int Item,int ColIndex)
{
}

Private Sub CellStateChanged(ByVal sender As System.Object,ByVal Item As
Integer,ByVal ColIndex As Integer) Handles CellStateChanged
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

private void CellStateChanged(object sender,
AxEXG2ANTTLib._IG2anttEvents_CellStateChangedEvent e)
{
}

void OnCellStateChanged(long Item,long ColIndex)
{
}

void __fastcall CellStateChanged(TObject *Sender,Exg2anttlib_tlb::HITEM Item,long
ColIndex)
{
}

procedure CellStateChanged(ASender: TObject; Item : HITEM;ColIndex : Integer);
begin
end;

procedure CellStateChanged(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_CellStateChangedEvent);
begin
end;

begin event CellStateChanged(long Item,long ColIndex)
end event CellStateChanged

Private Sub CellStateChanged(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_CellStateChangedEvent) Handles

Syntax for CellStateChanged event, /COM version, on:

VB6

VBA

VFP

Xbas…

CellStateChanged
End Sub

Private Sub CellStateChanged(ByVal Item As EXG2ANTTLibCtl.HITEM,ByVal
ColIndex As Long)
End Sub

Private Sub CellStateChanged(ByVal Item As Long,ByVal ColIndex As Long)
End Sub

LPARAMETERS Item,ColIndex

PROCEDURE OnCellStateChanged(oG2antt,Item,ColIndex)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

Visual
Objects

<SCRIPT EVENT="CellStateChanged(Item,ColIndex)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function CellStateChanged(Item,ColIndex)
End Function
</SCRIPT>

Procedure OnComCellStateChanged HITEM llItem Integer llColIndex
 Forward Send OnComCellStateChanged llItem llColIndex
End_Procedure

METHOD OCX_CellStateChanged(Item,ColIndex) CLASS MainDialog
RETURN NIL

void onEvent_CellStateChanged(int _Item,int _ColIndex)
{
}

function CellStateChanged as v (Item as OLE::Exontrol.G2antt.1::HITEM,ColIndex as

Syntax for CellStateChanged event, /COM version (others), on:

dBASE

N)
end function

function nativeObject_CellStateChanged(Item,ColIndex)
return

The following VB sample displays a message when the user clicks a check box or a radio
button:

Private Sub G2antt1_CellStateChanged(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal
ColIndex As Long)
 Debug.Print "The cell """ & G2antt1.Items.CellValue(Item, ColIndex) & """ has changed
its state. The new state is " & IIf(G2antt1.Items.CellState(Item, ColIndes) = 0, "Unchecked",
"Checked")
End Sub

The following VC sample displays the caption of the cell whose checkbox's state is
changed:

#include "Items.h"

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}
void OnCellStateChangedG2antt1(long Item, long ColIndex)
{
 CItems items = m_g2antt.GetItems();
 COleVariant vtItem(Item), vtColumn(ColIndex);

 CString strCellValue = V2S(&items.GetCellValue(vtItem, vtColumn));
 CString strOutput;
 strOutput.Format("'%s''s checkbox state is %i\r\n", strCellValue, items.GetCellState(
vtItem, vtColumn));
 OutputDebugString(strOutput);
}

The following VB.NET sample displays a message when the user clicks a check box or a
radio button:

Private Sub AxG2antt1_CellStateChanged(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_CellStateChangedEvent) Handles
AxG2antt1.CellStateChanged
 Debug.WriteLine("The cell """ & AxG2antt1.Items.CellValue(e.item, e.colIndex) & """ has
changed its state. The new state is " & IIf(AxG2antt1.Items.CellState(e.item, e.colIndex) = 0,
"Unchecked", "Checked"))
End Sub

The following C# sample outputs a message when the user clicks a check box or a radio
button:

private void axG2antt1_CellStateChanged(object sender,
AxEXG2ANTTLib._IG2anttEvents_CellStateChangedEvent e)
{
 string strOutput = axG2antt1.Items.get_CellValue(e.item, e.colIndex).ToString();
 strOutput += " state = " + axG2antt1.Items.get_CellState(e.item, e.colIndex).ToString() ;
 System.Diagnostics.Debug.WriteLine(strOutput);
}

The following VFP sample prints a message when the user clicks a check box or a radio
button:

*** ActiveX Control Event ***
LPARAMETERS item, colindex

local sOutput
sOutput = ""
with thisform.G2antt1.Items
 .DefaultItem = item

 sOutput = .CellValue(0, colindex)
 sOutput = sOutput + ", state = " + str(.CellState(0, colindex))
 wait window nowait sOutput
endwith

event CellStateChanging (Item as HITEM, ColIndex as Long, NewState as
Long)
Fired before cell's state is about to be changed.

Type Description

Item as HITEM A long expression that indicates the handle of the item
where the cell's state is about to be changed.

ColIndex as Long

A long expression that indicates the index of the column
where the cell's state is changed, or a long expression
that indicates the handle of the cell, if the Item parameter
is 0.

NewState as Long A long expression that specifies the new state of the cell (
0- unchecked, 1 - checked, 2 - partial checked)

The control fires the CellStateChanging event just before cell's state is about to be
changed. For instance, you can prevent changing the cell's state, by calling the NewState =
Items.CellState(Item,ColIndex). A cell that contains a radio button or a check box button
fires the CellStateChanged event when its state is changed. Use the CellState property to
change the cell's state. Use the CellHasRadioButton or CellHasCheckBox property to
enable radio or check box button into a cell. Use the Def property to assign check-boxes /
radio-buttons for all cells in the column. Use the CellImage property to display an icon in the
cell. Use the CellImages property to display multiple icons in the same cell. Use the
PartialCheck property to enable partial check feature (check boxes with three states:
partial, checked and unchecked). Use the CellChecked property to determine the handle of
the cell that's checked in a radio group. Use the CellRadioGroup property to radio group
cells. We would not recommend changing the CellState property during the
CellStateChanging event, to prevent recursive calls, instead you can change the NewState
parameter which is passed by reference.

Once the user clicks a check-box, radio-button, the control fires the following events:

CellStateChanging event, where the NewState parameter indicates the new state of
the cell's checkbox / radio-button.

C#

VB

private void CellStateChanging(object sender,int Item,int ColIndex,ref int
NewState)
{
}

Private Sub CellStateChanging(ByVal sender As System.Object,ByVal Item As
Integer,ByVal ColIndex As Integer,ByRef NewState As Integer) Handles
CellStateChanging
End Sub

C#

C++

private void CellStateChanging(object sender,
AxEXG2ANTTLib._IG2anttEvents_CellStateChangingEvent e)
{
}

void OnCellStateChanging(long Item,long ColIndex,long FAR* NewState)
{
}

CellStateChanged event notifies your application that the cell's check-box or radio-
button has been changed. The CellState property determines the check-box/radio-
button state of the cell.

For instance, the following VB sample prevents changing the cell's checkbox/radio-button,
when the control's ReadOnly property is set:

Private Sub G2antt1_CellStateChanging(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal
ColIndex As Long, NewState As Long)
 With G2antt1
 If (.ReadOnly) Then
 With .Items
 NewState = .CellState(Item, ColIndex)
 End With
 End If
 End With
End Sub

Syntax for CellStateChanging event, /NET version, on:

Syntax for CellStateChanging event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall CellStateChanging(TObject *Sender,Exg2anttlib_tlb::HITEM
Item,long ColIndex,long * NewState)
{
}

procedure CellStateChanging(ASender: TObject; Item : HITEM;ColIndex :
Integer;var NewState : Integer);
begin
end;

procedure CellStateChanging(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_CellStateChangingEvent);
begin
end;

begin event CellStateChanging(long Item,long ColIndex,long NewState)

end event CellStateChanging

Private Sub CellStateChanging(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_CellStateChangingEvent) Handles
CellStateChanging
End Sub

Private Sub CellStateChanging(ByVal Item As EXG2ANTTLibCtl.HITEM,ByVal
ColIndex As Long,NewState As Long)
End Sub

Private Sub CellStateChanging(ByVal Item As Long,ByVal ColIndex As
Long,NewState As Long)
End Sub

LPARAMETERS Item,ColIndex,NewState

PROCEDURE OnCellStateChanging(oG2antt,Item,ColIndex,NewState)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="CellStateChanging(Item,ColIndex,NewState)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function CellStateChanging(Item,ColIndex,NewState)
End Function
</SCRIPT>

Procedure OnComCellStateChanging HITEM llItem Integer llColIndex Integer
llNewState
 Forward Send OnComCellStateChanging llItem llColIndex llNewState
End_Procedure

METHOD OCX_CellStateChanging(Item,ColIndex,NewState) CLASS MainDialog
RETURN NIL

void onEvent_CellStateChanging(int _Item,int _ColIndex,COMVariant /*long*/
_NewState)
{
}

function CellStateChanging as v (Item as OLE::Exontrol.G2antt.1::HITEM,ColIndex
as N,NewState as N)
end function

function nativeObject_CellStateChanging(Item,ColIndex,NewState)
return

Syntax for CellStateChanging event, /COM version (others), on:

C#

VB

private void Change(object sender,int Item,int ColIndex,ref object NewValue)
{
}

Private Sub Change(ByVal sender As System.Object,ByVal Item As Integer,ByVal
ColIndex As Integer,ByRef NewValue As Object) Handles Change
End Sub

C#

C++

private void Change(object sender, AxEXG2ANTTLib._IG2anttEvents_ChangeEvent
e)
{
}

void OnChange(long Item,long ColIndex,VARIANT FAR* NewValue)
{
}

event Change (Item as HITEM, ColIndex as Long, NewValue as Variant)
Occurs when the user changes the cell's content.

Type Description

Item as HITEM

A long expression that determines the item's handle. If the
Item parameter is 0, and the ColIndex property is different
than zero, the ColIndex indicates the handle of the cell
where the state is changed.

ColIndex as Long
A long expression that indicates the column's index, if the
Item parameter is not zero, a long expression that
indicates the handle of the cell if the Item parameter is 0.

NewValue as Variant A Variant value that indicates the changed cell's value

The Change event notifies your application that the user changes the control's content. The
Change event is fired when the CellValue property is changed. During the Change event it is
possible to have recursive calls, if you are changing the CellValue property (only when you
assign a value to a cell, not when you are retrieving the cell's value).

Syntax for Change event, /NET version, on:

Syntax for Change event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall Change(TObject *Sender,Exg2anttlib_tlb::HITEM Item,long ColIndex,Variant
* NewValue)
{
}

procedure Change(ASender: TObject; Item : HITEM;ColIndex : Integer;var
NewValue : OleVariant);
begin
end;

procedure Change(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_ChangeEvent);
begin
end;

begin event Change(long Item,long ColIndex,any NewValue)
end event Change

Private Sub Change(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_ChangeEvent) Handles Change
End Sub

Private Sub Change(ByVal Item As EXG2ANTTLibCtl.HITEM,ByVal ColIndex As
Long,NewValue As Variant)
End Sub

Private Sub Change(ByVal Item As Long,ByVal ColIndex As Long,NewValue As
Variant)
End Sub

LPARAMETERS Item,ColIndex,NewValue

PROCEDURE OnChange(oG2antt,Item,ColIndex,NewValue)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="Change(Item,ColIndex,NewValue)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Change(Item,ColIndex,NewValue)
End Function
</SCRIPT>

Procedure OnComChange HITEM llItem Integer llColIndex Variant llNewValue
 Forward Send OnComChange llItem llColIndex llNewValue
End_Procedure

METHOD OCX_Change(Item,ColIndex,NewValue) CLASS MainDialog
RETURN NIL

void onEvent_Change(int _Item,int _ColIndex,COMVariant /*variant*/ _NewValue)
{
}

function Change as v (Item as OLE::Exontrol.G2antt.1::HITEM,ColIndex as
N,NewValue as A)
end function

function nativeObject_Change(Item,ColIndex,NewValue)
return

Syntax for Change event, /COM version (others), on:

If you are changing the other cell's value, during the Change event you have to add a C++
code like follows in order to avoid recursive calls:

static sg_ChangeCounter = 0;
void OnChangeG2antt1(long Item, long ColIndex, VARIANT FAR* NewValue)
{
 if (sg_ChangeCounter == 0)
 {
 sg_ChangeCounter++;

 m_Items.SetCellValue(COleVariant(Item), COleVariant((long)othercolumn),
*NewValue);
 sg_ChangeCounter--;
 }
}

or in VB you could have like this:

Private sg_ChangeCounter As Long
Private Sub G2antt1_Change(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal ColIndex As
Long, NewValue As Variant)
 If (sg_ChangeCounter = 0) Then
 sg_ChangeCounter = sg_ChangeCounter + 1
 G2antt1.Items.CellValue(Item, othercolumn) = NewValue
 sg_ChangeCounter = sg_ChangeCounter - 1
 End If
End Sub

Use the CellEditor or Editor property to assign an editor to a cell or to a column. Use the
Edit event to notify your application that the editing operation begins. The Change event
notifies that the editing focused cell ended. If the control is bounded to an ADO recordset
the Change event is automatically called when the user changes the focused cell, and it
updates the recordset too. The control fires the ValidateValue event before calling the
Change event, if the CauseValidateValue property is True. Please note that the Change
event is called also when loading, or adding new items , so you need to use an internal
counter (like explained bellow) to avoid calling the Change event during adding or loading
the items, if it is not case (increases the iChanging variable before loading items, and
decreases the iChanging member when adding items is done). Call the Refresh method,
when changing the value for a cell that has the CellSingleLine property on False.

The following VB sample displays the newly value of the focused cell:

Private Sub G2antt1_Change(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal ColIndex As
Long, NewValue As Variant)
 ' Displays the old/new cell's value
 Debug.Print "The current cell's value is '" & G2antt1.Items.CellValue(Item, ColIndex) &
"'."
 Debug.Print "The newly cell's value is '" & NewValue & "'."
End Sub

You can change the newly cell's value by changing the NewValue parameter of the Change
event. If you are changing the CellValue property during the Change event a recursive calls
occurs, so you need to protect recursive calls using an internal counter that's increased
when Change event starts, and decreased when the Change event ends like in the following
VB sample:

Private iChanging As Long

Private Sub G2antt1_Change(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal ColIndex As
Long, NewValue As Variant)
 If (iChanging = 0) Then
 iChanging = iChanging + 1
 ' here's safe to change the Items.CellValue property
 iChanging = iChanging - 1
 End If
End Sub

The following sample is the C++ equivalent:

long iChanging = 0;
void OnChangeG2antt1(long Item, long ColIndex, VARIANT FAR* NewValue)
{
 if (iChanging == 0)
 {
 iChanging++;
 // here's safe to call Items.CellValue property, to avoid recursive calls.
 iChanging--;
 }
}

The following C++ sample displays the newly value of the focused cell:

#include "Items.h"
void OnChangeG2antt1(long Item, long ColIndex, VARIANT FAR* NewValue)
{
 if (::IsWindow(m_g2antt.m_hWnd))
 {
 CItems items = m_g2antt.GetItems();
 COleVariant vtItem(Item), vtColumn(ColIndex);

 CString strFormat;
 strFormat.Format("'%s' = %s", V2S(&items.GetCellValue(vtItem, vtColumn)), V2S(
NewValue));
 OutputDebugString(strFormat);
 }
}

where the V2S function converts a VARIANT to a string value, and may look like follows:

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

The following VB.NET sample displays the newly value of the focused cell:

Private Sub AxG2antt1_Change(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_ChangeEvent) Handles AxG2antt1.Change
 With AxG2antt1.Items
 Debug.Print("Old Value: " & .CellValue(e.item, e.colIndex) & " New Value " &
e.newValue.ToString())
 End With
End Sub

The following C# sample displays the newly value of the focused cell:

private void axG2antt1_Change(object sender,
AxEXG2ANTTLib._IG2anttEvents_ChangeEvent e)
{
 System.Diagnostics.Debug.WriteLine("Old Value " +

axG2antt1.Items.get_CellValue(e.item, e.colIndex).ToString() + " New Value " +
e.newValue.ToString());
}

The following VFP sample displays the newly value of the focused cell:

*** ActiveX Control Event ***
LPARAMETERS item, colindex, newvalue

with thisform.G2antt1.Items
 .DefaultItem = item
 local oldvalue
 oldvalue = .CellValue(0,colindex)
 wait window nowait "Old Value " + str(oldvalue)
 wait window nowait "New Value " + str(newvalue)
endwith

C#

VB

private void ChartEndChanging(object
sender,exontrol.EXG2ANTTLib.BarOperationEnum Operation)
{
}

Private Sub ChartEndChanging(ByVal sender As System.Object,ByVal Operation As
exontrol.EXG2ANTTLib.BarOperationEnum) Handles ChartEndChanging
End Sub

C# private void ChartEndChanging(object sender,
AxEXG2ANTTLib._IG2anttEvents_ChartEndChangingEvent e)
{
}

event ChartEndChanging (Operation as BarOperationEnum)
Occurs when the chart is about to be changed.

Type Description
Operation as
BarOperationEnum

A BarOperationEnum expression that specifies the
operation that ends

The ChartEndChanging event notifies your application once the user ends resizing or moving
a bar at runtime using the mouse. The ChartStartChanging event occurs once the operation
beings. The ChartEndChaning event is fired in the following cases:

Move bars
Resizes the start of the bar.
Resizes the end of the bar.
Adds a new link.
Resizes the percent value of the bar.
Creates a new bar.
Resizes a time scale unit in the base level area.
Magnifies a time scale unit by double clicking the base level area.
The user selects or unselects a date.
The user moves the chart's vertical splitter.
The user moves the chart's horizontal splitter (histogram)
An Undo/Redo operation is performed.

Syntax for ChartEndChanging event, /NET version, on:

Syntax for ChartEndChanging event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnChartEndChanging(long Operation)
{
}

void __fastcall ChartEndChanging(TObject
*Sender,Exg2anttlib_tlb::BarOperationEnum Operation)
{
}

procedure ChartEndChanging(ASender: TObject; Operation : BarOperationEnum);
begin
end;

procedure ChartEndChanging(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_ChartEndChangingEvent);
begin
end;

begin event ChartEndChanging(long Operation)
end event ChartEndChanging

Private Sub ChartEndChanging(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_ChartEndChangingEvent) Handles
ChartEndChanging
End Sub

Private Sub ChartEndChanging(ByVal Operation As
EXG2ANTTLibCtl.BarOperationEnum)
End Sub

Private Sub ChartEndChanging(ByVal Operation As Long)
End Sub

LPARAMETERS Operation

PROCEDURE OnChartEndChanging(oG2antt,Operation)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="ChartEndChanging(Operation)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ChartEndChanging(Operation)
End Function
</SCRIPT>

Procedure OnComChartEndChanging OLEBarOperationEnum llOperation
 Forward Send OnComChartEndChanging llOperation
End_Procedure

METHOD OCX_ChartEndChanging(Operation) CLASS MainDialog
RETURN NIL

void onEvent_ChartEndChanging(int _Operation)
{
}

function ChartEndChanging as v (Operation as
OLE::Exontrol.G2antt.1::BarOperationEnum)
end function

function nativeObject_ChartEndChanging(Operation)
return

Syntax for ChartEndChanging event, /COM version (others), on:

For instance, you can use the ChartStartChanging event to shows the grid lines while
resizing, and use the ChartEndChaning to hide the grid lines.

Use the StartBlockUndoRedo / EndBlockUndoRedo methods to collect the user operations
as a block, so next time the Undo/Redo operation is performed, the entire block of
operations is performed or restored at once. For instance, if you have a bar related to
several other bars, and so moving a bar implies moving several other bars, each moving is
recorded as a single undo/redo operation, so the operations are restored once at the time.
Instead, if you use the StartBlockUndoRedo / EndBlockUndoRedo methods when your
operation starts / ends, the collection of operations is recorded as a block of instructions,

so the next time Undo operation is called the entire block is restored or performed at once.

C#

VB

private void ChartSelectionChanged(object sender)
{
}

Private Sub ChartSelectionChanged(ByVal sender As System.Object) Handles
ChartSelectionChanged
End Sub

C#

C++

C++
Builder

Delphi

private void ChartSelectionChanged(object sender, EventArgs e)
{
}

void OnChartSelectionChanged()
{
}

void __fastcall ChartSelectionChanged(TObject *Sender)
{
}

procedure ChartSelectionChanged(ASender: TObject;);
begin

event ChartSelectionChanged ()
Occurs when the user selects objects in the chart area.

Type Description

The ChartSelectionChanged event notifies your application when the user select objects like
bars or links in the chart area. Use the AllowSelectObjects property to specify whether the
user can select bars or/and links at runtime, using the mouse. Use the SelectedObject
property to retrieve a collection of selected bars or/and links. Use the
ItemBar(exBarSelected) property to select or unselect programmatically a bar. Use the
Link(exLinkSelected) property to select or unselect programmatically a link. Use the
RemoveSelection property to remove objects in the chart's selection. Use the
ExecuteTemplate property to execute and returns the result of a x-script.

Syntax for ChartSelectionChanged event, /NET version, on:

Syntax for ChartSelectionChanged event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

procedure ChartSelectionChanged(sender: System.Object; e: System.EventArgs);
begin
end;

begin event ChartSelectionChanged()
end event ChartSelectionChanged

Private Sub ChartSelectionChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ChartSelectionChanged
End Sub

Private Sub ChartSelectionChanged()
End Sub

Private Sub ChartSelectionChanged()
End Sub

LPARAMETERS nop

PROCEDURE OnChartSelectionChanged(oG2antt)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="ChartSelectionChanged()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ChartSelectionChanged()
End Function
</SCRIPT>

Procedure OnComChartSelectionChanged
 Forward Send OnComChartSelectionChanged
End_Procedure

Syntax for ChartSelectionChanged event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

METHOD OCX_ChartSelectionChanged() CLASS MainDialog
RETURN NIL

void onEvent_ChartSelectionChanged()
{
}

function ChartSelectionChanged as v ()
end function

function nativeObject_ChartSelectionChanged()
return

The following VB sample displays the list of selected bars:

Private Sub G2antt1_ChartSelectionChanged()
 Dim c As Variant
 For Each c In G2antt1.Items.SelectedObjects(exSelectBarsOnly)
 Debug.Print c
 Next
End Sub

The following VB sample displays only the bars being selected and un-selected since last
selection change event:

Private Sub G2antt1_ChartSelectionChanged()
 Dim c As Variant
 With G2antt1
 For Each c In .Items.SelectedObjects(exSelectBarsOnly Or exObjectsJustAdded)
 Debug.Print "Added " & .ExecuteTemplate("Items.ItemBar(" & c & "," & exBarName
& ")")
 Next
 For Each c In .Items.SelectedObjects(exSelectBarsOnly Or exObjectsJustRemoved)
 Debug.Print "Removed " & .ExecuteTemplate("Items.ItemBar(" & c & "," &
exBarName & ")")
 Next
 End With
End Sub

The following VB sample displays the name of the bars being selected:

Private Sub G2antt1_ChartSelectionChanged()
 Dim c As Variant
 With G2antt1
 For Each c In .Items.SelectedObjects(exSelectBarsOnly)
 Debug.Print .ExecuteTemplate("Items.ItemBar(" & c & "," & exBarName & ")")
 Next
 End With
End Sub

The following VB.NET sample displays the list of selected bars:

Private Sub AxG2antt1_ChartSelectionChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles AxG2antt1.ChartSelectionChanged
 Dim c As String
 For Each c In
AxG2antt1.Items.SelectedObjects(EXG2ANTTLib.SelectObjectsEnum.exSelectBarsOnly)
 Debug.Print(c)
 Next
End Sub

The following VB.NET sample displays only the bars being selected and un-selected since
last selection change event:

Private Sub AxG2antt1_ChartSelectionChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles AxG2antt1.ChartSelectionChanged
 Dim c As String
 With AxG2antt1
 For Each c In
.Items.SelectedObjects(EXG2ANTTLib.SelectObjectsEnum.exSelectBarsOnly Or
EXG2ANTTLib.SelectObjectsEnum.exObjectsJustAdded)
 Dim t As String = "Items.ItemBar(" + c + "," +
Int(EXG2ANTTLib.ItemBarPropertyEnum.exBarName).ToString() + ")"
 Debug.Print("Added: " + .ExecuteTemplate(t))
 Next
 For Each c In
.Items.SelectedObjects(EXG2ANTTLib.SelectObjectsEnum.exSelectBarsOnly Or

EXG2ANTTLib.SelectObjectsEnum.exObjectsJustRemoved)
 Dim t As String = "Items.ItemBar(" + c + "," +
Int(EXG2ANTTLib.ItemBarPropertyEnum.exBarName).ToString() + ")"
 Debug.Print("Removed: " + .ExecuteTemplate(t))
 Next
 End With
End Sub

The following VB.NET sample displays the name of the bars being selected:

Private Sub AxG2antt1_ChartSelectionChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles AxG2antt1.ChartSelectionChanged
 Dim c As String
 With AxG2antt1
 For Each c In
.Items.SelectedObjects(EXG2ANTTLib.SelectObjectsEnum.exSelectBarsOnly)
 Dim t As String = "Items.ItemBar(" + c + "," +
Int(EXG2ANTTLib.ItemBarPropertyEnum.exBarName).ToString() + ")"
 Debug.Print(.ExecuteTemplate(t))
 Next
 End With
End Sub

The following C# sample displays the list of selected bars:

private void axG2antt1_ChartSelectionChanged(object sender, EventArgs e)
{
 foreach (string c in
axG2antt1.Items.get_SelectedObjects(EXG2ANTTLib.SelectObjectsEnum.exSelectBarsOnly)
as Array)
 {
 System.Diagnostics.Debug.WriteLine(c);
 }
}

The following C# sample displays only the bars being selected and un-selected since last
selection change event:

private void axG2antt1_ChartSelectionChanged(object sender, EventArgs e)

{
 foreach (string c in
axG2antt1.Items.get_SelectedObjects(EXG2ANTTLib.SelectObjectsEnum.exSelectBarsOnly |
EXG2ANTTLib.SelectObjectsEnum.exObjectsJustAdded) as Array)
 {
 String t = "Items.ItemBar(" + c + "," +
((long)EXG2ANTTLib.ItemBarPropertyEnum.exBarName).ToString() + ")";
 System.Diagnostics.Debug.WriteLine("Added: " + axG2antt1.ExecuteTemplate(t));
 }
 foreach (string c in
axG2antt1.Items.get_SelectedObjects(EXG2ANTTLib.SelectObjectsEnum.exSelectBarsOnly |
EXG2ANTTLib.SelectObjectsEnum.exObjectsJustRemoved) as Array)
 {
 String t = "Items.ItemBar(" + c + "," +
((long)EXG2ANTTLib.ItemBarPropertyEnum.exBarName).ToString() + ")";
 System.Diagnostics.Debug.WriteLine("Removed: " + axG2antt1.ExecuteTemplate(t));
 }
}

The following C# sample displays the name of the bars being selected:

private void axG2antt1_ChartSelectionChanged(object sender, EventArgs e)
{
 foreach (string c in
axG2antt1.Items.get_SelectedObjects(EXG2ANTTLib.SelectObjectsEnum.exSelectBarsOnly)
as Array)
 {
 String t = "Items.ItemBar(" + c + "," +
((long)EXG2ANTTLib.ItemBarPropertyEnum.exBarName).ToString() + ")";
 System.Diagnostics.Debug.WriteLine(axG2antt1.ExecuteTemplate(t));
 }
}

The following C++ sample displays the list of selected bars:

#include "Items.h"
void OnChartSelectionChangedG2antt1()
{

 COleVariant vtSelected = m_g2antt.GetItems().GetSelectedObjects(1);
//exSelectBarsOnly
 if (V_VT(&vtSelected) & VT_ARRAY | VT_VARIANT)
 {
 SAFEARRAY* pArray = V_ARRAY(&vtSelected);
 void* pData = NULL;
 if (SUCCEEDED(SafeArrayAccessData(pArray, &pData)))
 {
 VARIANT* p = (VARIANT*)pData;
 for (long i = 0; i < (long)pArray->rgsabound[0].cElements ; i++, p++)
 OutputDebugString(V2S(p));
 SafeArrayUnaccessData(pArray);
 }
 }
}

The following C++ sample displays only the bars being selected and un-selected since last
selection change event:

void OnChartSelectionChangedG2antt1()
{
 COleVariant vtAdded = m_g2antt.GetItems().GetSelectedObjects(1
/*exSelectBarsOnly*/ | 0x20 /*exObjectsJustAdded*/);
 if (V_VT(&vtAdded) & VT_ARRAY | VT_VARIANT)
 {
 SAFEARRAY* pArray = V_ARRAY(&vtAdded);
 void* pData = NULL;
 if (SUCCEEDED(SafeArrayAccessData(pArray, &pData)))
 {
 VARIANT* p = (VARIANT*)pData;
 for (long i = 0; i < (long)pArray->rgsabound[0].cElements ; i++, p++)
 {
 CString strT = "Items.ItemBar(" + V2S(p) + ",0)"; /*builds the
Items.ItemBar(Handle,Key,exBarName) template*/
 OutputDebugString("Added: " + V2S(&m_g2antt.ExecuteTemplate(strT)) +
"\n");
 }
 SafeArrayUnaccessData(pArray);

 }
 }
 COleVariant vtRemoved = m_g2antt.GetItems().GetSelectedObjects(1
/*exSelectBarsOnly*/ | 0x40 /*exObjectsJustRemoved*/);
 if (V_VT(&vtRemoved) & VT_ARRAY | VT_VARIANT)
 {
 SAFEARRAY* pArray = V_ARRAY(&vtRemoved);
 void* pData = NULL;
 if (SUCCEEDED(SafeArrayAccessData(pArray, &pData)))
 {
 VARIANT* p = (VARIANT*)pData;
 for (long i = 0; i < (long)pArray->rgsabound[0].cElements ; i++, p++)
 {
 CString strT = "Items.ItemBar(" + V2S(p) + ",0)"; /*builds the
Items.ItemBar(Handle,Key,exBarName) template*/
 OutputDebugString("Removed: " + V2S(&m_g2antt.ExecuteTemplate(strT)) +
"\n");
 }
 SafeArrayUnaccessData(pArray);
 }
 }
}

The following C++ sample displays the name of the bars being selected:

#include "Items.h"
void OnChartSelectionChangedG2antt1()
{
 COleVariant vtSelected = m_g2antt.GetItems().GetSelectedObjects(1
/*exSelectBarsOnly*/);
 if (V_VT(&vtSelected) & VT_ARRAY | VT_VARIANT)
 {
 SAFEARRAY* pArray = V_ARRAY(&vtSelected);
 void* pData = NULL;
 if (SUCCEEDED(SafeArrayAccessData(pArray, &pData)))
 {
 VARIANT* p = (VARIANT*)pData;

 for (long i = 0; i < (long)pArray->rgsabound[0].cElements ; i++, p++)
 {
 CString strT = "Items.ItemBar(" + V2S(p) + ",0)"; /*builds the
Items.ItemBar(Handle,Key,exBarName) template*/
 OutputDebugString(V2S(&m_g2antt.ExecuteTemplate(strT)));
 }
 SafeArrayUnaccessData(pArray);
 }
 }
}

where the V2S string may look like follows:

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

or

static string V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 CComVariant vt;
 if (SUCCEEDED(vt.ChangeType(VT_BSTR, pv)))

 {
 USES_CONVERSION;
 return OLE2T(V_BSTR(&vt));
 }
 }
 return szDefault;
}

The following VFP sample displays the list of selected bars:

*** ActiveX Control Event ***

local c
For Each c In thisform.G2antt1.Items.SelectedObjects(1)
 wait window c
Next

The following VFP sample displays only the bars being selected and un-selected since last
selection change event:

*** ActiveX Control Event ***

local c
For Each c In thisform.G2antt1.Items.SelectedObjects(1 + 0x20)
 local t
 t = "Items.ItemBar(" + c + ",0)"
 wait window "Added: " + thisform.G2antt1.ExecuteTemplate(t)
Next
For Each c In thisform.G2antt1.Items.SelectedObjects(1 + 0x40)
 local t
 t = "Items.ItemBar(" + c + ",0)"
 wait window "Removed: " + thisform.G2antt1.ExecuteTemplate(t)
Next

The following VFP sample displays the name of the bars being selected:

*** ActiveX Control Event ***

local c

For Each c In thisform.G2antt1.Items.SelectedObjects(1)
 local t
 t = "Items.ItemBar(" + c + ",0)"
 wait window thisform.G2antt1.ExecuteTemplate(t)
Next

C#

VB

private void ChartStartChanging(object
sender,exontrol.EXG2ANTTLib.BarOperationEnum Operation)
{
}

Private Sub ChartStartChanging(ByVal sender As System.Object,ByVal Operation
As exontrol.EXG2ANTTLib.BarOperationEnum) Handles ChartStartChanging
End Sub

C# private void ChartStartChanging(object sender,
AxEXG2ANTTLib._IG2anttEvents_ChartStartChangingEvent e)
{
}

event ChartStartChanging (Operation as BarOperationEnum)
Occurs when the chart is about to be changed.

Type Description
Operation as
BarOperationEnum

A BarOperationEnum expression that specifies the
operation to start

The ChartStartChaning event notifies your application once the user starts resizing or
moving a bar at runtime using the mouse. The ChartEndChanging event occurs once the
operation ends. The ChartStartChaning event is fired in the following cases:

Move bars
Resizes the start of the bar.
Resizes the end of the bar.
Adds a new link.
Resizes the percent value of the bar.
Creates a new bar.
Resizes a time scale unit in the base level area.
Magnifies a time scale unit by double clicking the base level area.
The user selects or unselects a date.
The user moves the chart's vertical splitter.
The user moves the chart's horizontal splitter (histogram)
An Undo/Redo operation is performed.

Syntax for ChartStartChanging event, /NET version, on:

Syntax for ChartStartChanging event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnChartStartChanging(long Operation)
{
}

void __fastcall ChartStartChanging(TObject
*Sender,Exg2anttlib_tlb::BarOperationEnum Operation)
{
}

procedure ChartStartChanging(ASender: TObject; Operation :
BarOperationEnum);
begin
end;

procedure ChartStartChanging(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_ChartStartChangingEvent);
begin
end;

begin event ChartStartChanging(long Operation)
end event ChartStartChanging

Private Sub ChartStartChanging(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_ChartStartChangingEvent) Handles
ChartStartChanging
End Sub

Private Sub ChartStartChanging(ByVal Operation As
EXG2ANTTLibCtl.BarOperationEnum)
End Sub

Private Sub ChartStartChanging(ByVal Operation As Long)
End Sub

LPARAMETERS Operation

PROCEDURE OnChartStartChanging(oG2antt,Operation)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="ChartStartChanging(Operation)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ChartStartChanging(Operation)
End Function
</SCRIPT>

Procedure OnComChartStartChanging OLEBarOperationEnum llOperation
 Forward Send OnComChartStartChanging llOperation
End_Procedure

METHOD OCX_ChartStartChanging(Operation) CLASS MainDialog
RETURN NIL

void onEvent_ChartStartChanging(int _Operation)
{
}

function ChartStartChanging as v (Operation as
OLE::Exontrol.G2antt.1::BarOperationEnum)
end function

function nativeObject_ChartStartChanging(Operation)
return

Syntax for ChartStartChanging event, /COM version (others), on:

For instance, you can use the ChartStartChanging event to shows the grid lines while
resizing, and use the ChartEndChaning to hide the grid lines.

Use the StartBlockUndoRedo / EndBlockUndoRedo methods to collect the user operations
as a block, so next time the Undo/Redo operation is performed, the entire block of
operations is performed or restored at once. For instance, if you have a bar related to
several other bars, and so moving a bar implies moving several other bars, each moving is
recorded as a single undo/redo operation, so the operations are restored once at the time.

Instead, if you use the StartBlockUndoRedo / EndBlockUndoRedo methods when your
operation starts / ends, the collection of operations is recorded as a block of instructions,
so the next time Undo operation is called the entire block is restored or performed at once.

C#

VB

private void Click(object sender)
{
}

Private Sub Click(ByVal sender As System.Object) Handles Click
End Sub

C#

C++

C++
Builder

Delphi

private void ClickEvent(object sender, EventArgs e)
{
}

void OnClick()
{
}

void __fastcall Click(TObject *Sender)
{
}

procedure Click(ASender: TObject;);
begin
end;

event Click ()

Occurs when the user presses and then releases the left mouse button over the control.

Type Description

The Click event is fired when the user releases the left mouse button over the control. Use
a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers.

Syntax for Click event, /NET version, on:

Syntax for Click event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure ClickEvent(sender: System.Object; e: System.EventArgs);
begin
end;

begin event Click()
end event Click

Private Sub ClickEvent(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ClickEvent
End Sub

Private Sub Click()
End Sub

Private Sub Click()
End Sub

LPARAMETERS nop

PROCEDURE OnClick(oG2antt)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="Click()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Click()
End Function
</SCRIPT>

Procedure OnComClick
 Forward Send OnComClick

Syntax for Click event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_Click() CLASS MainDialog
RETURN NIL

void onEvent_Click()
{
}

function Click as v ()
end function

function nativeObject_Click()
return

C#

VB

private void ColumnClick(object sender,exontrol.EXG2ANTTLib.Column Column)
{
}

Private Sub ColumnClick(ByVal sender As System.Object,ByVal Column As
exontrol.EXG2ANTTLib.Column) Handles ColumnClick
End Sub

C#

C++

C++
Builder

private void ColumnClick(object sender,
AxEXG2ANTTLib._IG2anttEvents_ColumnClickEvent e)
{
}

void OnColumnClick(LPDISPATCH Column)
{
}

void __fastcall ColumnClick(TObject *Sender,Exg2anttlib_tlb::IColumn *Column)
{
}

event ColumnClick (Column as Column)

Fired after the user clicks on column's header.

Type Description
Column as Column A Column object that indicates clicked column.

The ColumnClick event is fired when the user clicks the column's header. By default, the
control sorts by the column when user clicks the column's header. Use the SortOnClick
property to specify the operation that control does when user clicks the column's caption.
Use the ColumnFromPoint property to access the column from point. Use the
ItemFromPoint property to access the item from point. The control fires Sort method when
the control sorts a column. Use the MouseDown or MouseUp event to notify the control
when the user clicks the control, including the columns.

Syntax for ColumnClick event, /NET version, on:

Syntax for ColumnClick event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure ColumnClick(ASender: TObject; Column : IColumn);
begin
end;

procedure ColumnClick(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_ColumnClickEvent);
begin
end;

begin event ColumnClick(oleobject Column)
end event ColumnClick

Private Sub ColumnClick(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_ColumnClickEvent) Handles ColumnClick
End Sub

Private Sub ColumnClick(ByVal Column As EXG2ANTTLibCtl.IColumn)
End Sub

Private Sub ColumnClick(ByVal Column As Object)
End Sub

LPARAMETERS Column

PROCEDURE OnColumnClick(oG2antt,Column)
RETURN

Java…

VBSc…

<SCRIPT EVENT="ColumnClick(Column)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ColumnClick(Column)
End Function
</SCRIPT>

Syntax for ColumnClick event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComColumnClick Variant llColumn
 Forward Send OnComColumnClick llColumn
End_Procedure

METHOD OCX_ColumnClick(Column) CLASS MainDialog
RETURN NIL

void onEvent_ColumnClick(COM _Column)
{
}

function ColumnClick as v (Column as OLE::Exontrol.G2antt.1::IColumn)
end function

function nativeObject_ColumnClick(Column)
return

The following VB sample displays the caption of the column being clicked:

Private Sub G2antt1_ColumnClick(ByVal Column As EXG2ANTTLibCtl.IColumn)
 Debug.Print Column.Caption
End Sub

The following C++ sample displays the caption of the column being clicked:

#include "Column.h"
void OnColumnClickG2antt1(LPDISPATCH Column)
{
 CColumn column(Column);
 column.m_bAutoRelease = FALSE;
 MessageBox(column.GetCaption());

}

The following VB.NET sample displays the caption of the column being clicked:

Private Sub AxG2antt1_ColumnClick(ByVal sender As Object, ByVal e As

AxEXG2ANTTLib._IG2anttEvents_ColumnClickEvent) Handles AxG2antt1.ColumnClick
 MessageBox.Show(e.column.Caption)
End Sub

The following C# sample displays the caption of the column being clicked:

private void axG2antt1_ColumnClick(object sender,
AxEXG2ANTTLib._IG2anttEvents_ColumnClickEvent e)
{
 MessageBox.Show(e.column.Caption);
}

The following VFP sample displays the caption of the column being clicked:

*** ActiveX Control Event ***
LPARAMETERS column

with column
 wait window nowait .Caption
endwith

event CreateBar (Item as HITEM, DateStart as Date, DateEnd as Date)
Fired when the user creates a new bar.

Type Description

Item as HITEM

A HITEM expression that indicates the handle of the item
where the bar is created. Newer versions of the
component, may pass the Item parameter as a negative
value, which indicates the number of new items you must
add in order to cover the clicked area, if the
AllowCreateBar property is exCreateBarManual.

DateStart as Date A DATE expression that indicates where the bar starts.
DateEnd as Date A DATE expression that indicates where the bar ends.

The CreateBar event is fired when the user releases the mouse in the chart area. The
CreateBar event is fired only if the AllowCreateBar property is not zero. By default, the
AllowCreateBar property is exCreateBarManual.

If the AllowCreateBar property is exCreateBarAuto, the control automatically adds a
new bar to the item, with the key "newbar", of "Task" type, so it looks like this:

. Use the ItemBar property to change the key or the name or any other
property of the newly created bar whose exBarKey property is "newbar" and it's
exBarName is "Task". In this case, if the CreateBar event is not handled, the user can't
add more than a single bar to the selected item, as the "newbar" is not unique, instead,
if you handle the CreateBar event, and assign a different key for the newly created bar,
several bars can be added to the same item. If the user clicks the empty / non-items
zone of the chart, the control may fire the AddItem event for the newly added items so
the newly bar will be shown in the clicked area. In this case, the Item parameter
indicates the handle of the item that has been added at the last. In other words, the
control automatically adds new items and creates the newly bar on the last added
item, if the Chart.AllowCreateBar property is exCreateBarAuto.
If the AllowCreateBar property is exCreateBarManual, you need to handle the
CreateBar event to add new bars using the AddBar method. Samples, are shown
bellow. If the Item parameter of the CreateBar event is negative, its absolute value
indicates the number of items to be added from the last visible item, so it fits the
clicked part of the chart. For instance, CreateBar(-3,Start,End) indicates that a 3 more
items should be added so it covers the clicked zone.

Click here to watch a movie on how you can create bars at runtime using the

https://www.youtube.com/watch?v=Jlg02xL8ZwY

C#

VB

private void CreateBar(object sender,int Item,DateTime DateStart,DateTime
DateEnd)
{
}

Private Sub CreateBar(ByVal sender As System.Object,ByVal Item As Integer,ByVal
DateStart As Date,ByVal DateEnd As Date) Handles CreateBar
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

private void CreateBar(object sender,
AxEXG2ANTTLib._IG2anttEvents_CreateBarEvent e)
{
}

void OnCreateBar(long Item,DATE DateStart,DATE DateEnd)
{
}

void __fastcall CreateBar(TObject *Sender,Exg2anttlib_tlb::HITEM Item,DATE
DateStart,DATE DateEnd)
{
}

procedure CreateBar(ASender: TObject; Item : HITEM;DateStart :
TDateTime;DateEnd : TDateTime);
begin
end;

procedure CreateBar(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_CreateBarEvent);
begin
end;

AllowCreateBar property and CreateBar event.

Syntax for CreateBar event, /NET version, on:

Syntax for CreateBar event, /COM version, on:

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin event CreateBar(long Item,datetime DateStart,datetime DateEnd)
end event CreateBar

Private Sub CreateBar(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_CreateBarEvent) Handles CreateBar
End Sub

Private Sub CreateBar(ByVal Item As EXG2ANTTLibCtl.HITEM,ByVal DateStart As
Date,ByVal DateEnd As Date)
End Sub

Private Sub CreateBar(ByVal Item As Long,ByVal DateStart As Date,ByVal DateEnd
As Date)
End Sub

LPARAMETERS Item,DateStart,DateEnd

PROCEDURE OnCreateBar(oG2antt,Item,DateStart,DateEnd)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="CreateBar(Item,DateStart,DateEnd)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function CreateBar(Item,DateStart,DateEnd)
End Function
</SCRIPT>

Procedure OnComCreateBar HITEM llItem DateTime llDateStart DateTime
llDateEnd
 Forward Send OnComCreateBar llItem llDateStart llDateEnd
End_Procedure

Syntax for CreateBar event, /COM version (others), on:

Visual
Objects

X++

XBasic

dBASE

METHOD OCX_CreateBar(Item,DateStart,DateEnd) CLASS MainDialog
RETURN NIL

void onEvent_CreateBar(int _Item,date _DateStart,date _DateEnd)
{
}

function CreateBar as v (Item as OLE::Exontrol.G2antt.1::HITEM,DateStart as
T,DateEnd as T)
end function

function nativeObject_CreateBar(Item,DateStart,DateEnd)
return

Newer versions of the component, allows you to use the CreateBar event when the user
starts creating the bar on an empty/non-items part of the chart. The Item parameter of the
event may be negative if the user used an empty part to create the bar. In this case, the
absolute value of the Item parameter indicates the number of items to be added to it covers
the clicked area like in the following VB sample:

Private Sub G2antt1_CreateBar(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal DateStart As
Date, ByVal DateEnd As Date)
 With G2antt1
 .BeginUpdate
 With .Items
 If (Item < 0) Then
 Dim h As HITEM
 For i = 1 To -Item
 h = .AddItem("")
 Next
 Item = h
 End If
 .AddBar Item, "Task", DateStart, DateEnd
 End With
 .EndUpdate
 End With

End Sub

The sample adds new items and a new bar when the AllowCreateBar property is
exCreateBarManual. If the user clicks an empty zone (Item < 0), the sample adds a
number of items as its absolute value indicates, and lastly the new bar is added to the last
or to the item from the cursor.

The similar sample in VB.NET could be such as:

Private Sub Exg2antt1_CreateBar(ByVal sender As System.Object, ByVal Item As
System.Int32, ByVal DateStart As System.DateTime, ByVal DateEnd As System.DateTime)
Handles Exg2antt1.CreateBar
 With Exg2antt1
 .BeginUpdate()
 With .Items
 If (Item < 0) Then
 Dim i, h As Integer
 For i = 1 To -Item
 h = .AddItem("Item " & .ItemCount + 1)
 Next
 Item = h
 End If
 .set_SelectItem(Item, True)
 iBars = iBars + 1
 Dim s As String
 s = "T" & iBars
 .AddBar(Item, "Task", DateStart, DateEnd, s)
 End With
 .EndUpdate()
 End With
End Sub

If the AllowCreateBar property is exCreateBarAuto, the following samples change the key
and the type of the bar being displayed as soon as the CreateBar event is called:

The following VB sample changes the key of the newly created bar "newbar", and the name
of the bar being displayed as "Task" to "Progress":

Private Sub G2antt1_CreateBar(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal DateStart As

Date, ByVal DateEnd As Date)
 With G2antt1.Items
 .ItemBar(Item, "newbar", exBarName) = "Progress"
 .ItemBar(Item, "newbar", exBarKey) = DateStart
 End With
End Sub

The following C# sample changes the key of the newly created bar "newbar", and the name
of the bar being displayed as "Task" to "Progress":

private void axG2antt1_CreateBar(object sender,
AxEXG2ANTTLib._IG2anttEvents_CreateBarEvent e)
{
 axG2antt1.Items.set_ItemBar(e.item, "newbar",
EXG2ANTTLib.ItemBarPropertyEnum.exBarName, "Progress");
 axG2antt1.Items.set_ItemBar(e.item, "newbar",
EXG2ANTTLib.ItemBarPropertyEnum.exBarKey, e.dateStart);
}

The following VB.NET sample changes the key of the newly created bar "newbar", and the
name of the bar being displayed as "Task" to "Progress":

Private Sub AxG2antt1_CreateBar(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_CreateBarEvent) Handles AxG2antt1.CreateBar
 With AxG2antt1.Items
 .ItemBar(e.item, "newbar", EXG2ANTTLib.ItemBarPropertyEnum.exBarName) =
"Progress"
 .ItemBar(e.item, "newbar", EXG2ANTTLib.ItemBarPropertyEnum.exBarKey) =
e.dateStart
 End With
End Sub

The following C++ sample changes the key of the newly created bar "newbar", and the
name of the bar being displayed as "Task" to "Progress":

void OnCreateBarG2antt1(long Item, DATE DateStart, DATE DateEnd)
{
 CItems items = m_g2antt.GetItems();
 items.SetItemBar(Item, COleVariant(_T("newbar")), 0 /*exBarName*/, COleVariant(

_T("Progress")));
 items.SetItemBar(Item, COleVariant(_T("newbar")), 9 /*exBarKey*/, COleVariant(
DateStart));
}

The following VFP sample changes the key of the newly created bar "newbar", and the
name of the bar being displayed as "Task" to "Progress":

*** ActiveX Control Event ***
LPARAMETERS item, datestart, dateend

with thisform.G2antt1.Items
 .DefaultItem = item
 thisform.G2antt1.Template = "Items.ItemBar(0,`newbar`,0) = `Progress`"
 thisform.G2antt1.Template = "Items.ItemBar(0,`newbar`,9) = `" + dtos(datestart) + "`"
endwith

The Template property helps you to call any of the control's property using x-script.

If the AllowCreateBar property is exCreateBarManual, the following samples adds a new
task bar, as soon as the CreateBar is called:

The following C# sample adds a new task, when the user releases the mouse:

private void axG2antt1_CreateBar(object sender,
AxEXG2ANTTLib._IG2anttEvents_CreateBarEvent e)
{
 Random randomKey = new Random();
 axG2antt1.BeginUpdate();
 axG2antt1.Items.AddBar(e.item, "Task", e.dateStart, e.dateEnd, randomKey.Next(), "");
 axG2antt1.EndUpdate();
}

The following C++ sample adds a new task, when the user releases the mouse:

void OnCreateBarG2antt1(long Item, DATE DateStart, DATE DateEnd)
{
 m_g2antt.BeginUpdate();
 CItems items = m_g2antt.GetItems();
 items.AddBar(Item, COleVariant("Task"), COleVariant(DateStart), COleVariant(DateEnd

), COleVariant((long)rand()), COleVariant(""));
 m_g2antt.EndUpdate();
}

The following VB sample adds a new task, when the user releases the mouse:

Private Sub G2antt1_CreateBar(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal DateStart As
Date, ByVal DateEnd As Date)
 With G2antt1
 .BeginUpdate
 With .Items
 .AddBar Item, "Task", DateStart, DateEnd, Rnd
 End With
 .EndUpdate
 End With
End Sub

The following VFP sample adds a new task, when the user releases the mouse:

*** ActiveX Control Event ***
LPARAMETERS item, datestart, dateend

with thisform.G2antt1
 .BeginUpdate
 with .Items
 .AddBar(item, "Task", datestart, dateend, RAND())
 endwith
 .EndUpdate
endwith

The following VB.NET sample adds a new task, when the user releases the mouse:

Private Sub AxG2antt1_CreateBar(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_CreateBarEvent) Handles AxG2antt1.CreateBar
 With AxG2antt1
 .BeginUpdate()
 With .Items
 .AddBar(e.item, "Task", e.dateStart, e.dateEnd, Rnd())
 End With

 .EndUpdate()
 End With
End Sub

C#

VB

private void DateChange(object sender)
{
}

Private Sub DateChange(ByVal sender As System.Object) Handles DateChange
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

private void DateChange(object sender, EventArgs e)
{
}

void OnDateChange()
{
}

void __fastcall DateChange(TObject *Sender)
{
}

procedure DateChange(ASender: TObject;);
begin
end;

procedure DateChange(sender: System.Object; e: System.EventArgs);
begin
end;

event DateChange ()
Occurs when the first visible date is changed.

Type Description

The DateChange event is fired when the first visible date is changed. Use the
FirstVisibleDate property to specify the first visible date. Use the ScrollTo method to ensure
that a specified date is visible. Use the FormatDate property to format a date to a specified
format.

Syntax for DateChange event, /NET version, on:

Syntax for DateChange event, /COM version, on:

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin event DateChange()
end event DateChange

Private Sub DateChange(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles DateChange
End Sub

Private Sub DateChange()
End Sub

Private Sub DateChange()
End Sub

LPARAMETERS nop

PROCEDURE OnDateChange(oG2antt)
RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="DateChange()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function DateChange()
End Function
</SCRIPT>

Procedure OnComDateChange
 Forward Send OnComDateChange
End_Procedure

METHOD OCX_DateChange() CLASS MainDialog
RETURN NIL

void onEvent_DateChange()
{

Syntax for DateChange event, /COM version (others), on:

XBasic

dBASE

}

function DateChange as v ()
end function

function nativeObject_DateChange()
return

The following VB sample displays the first visible date when the user changes the first
visible date:

Private Sub G2antt1_DateChange()
 With G2antt1.Chart
 Debug.Print FormatDateTime(.FirstVisibleDate)
 End With
End Sub

The following VB sample limits the scrolling area of the chart from 1/1/2005 to 31/12/2005:

Private Function LastVisibleDate(ByVal g As EXG2ANTTLibCtl.G2antt) As Date
 With G2antt1
 With .Chart
 Dim d As Date
 d = .FirstVisibleDate
 Do While .IsDateVisible(d)
 d = .NextDate(d, exDay, 1)
 Loop
 End With
 End With
 LastVisibleDate = d - 1
End Function

Private Sub G2antt1_DateChange()
 Dim dMin As Date, dMax As Date
 dMin = "1/1/2005"
 dMax = "31/12/2005"
 With G2antt1.Chart
 If .FirstVisibleDate < dMin Then

 .FirstVisibleDate = dMin
 End If
 If LastVisibleDate(G2antt1) > dMax Then
 .FirstVisibleDate = dMax - (LastVisibleDate(G2antt1) - .FirstVisibleDate) + 1
 End If
 End With
End Sub

or you can use the FormatDate method like follows:

Private Sub G2antt1_DateChange()
 With G2antt1.Chart
 Debug.Print .FormatDate(.FirstVisibleDate, "<%yyyy%>-<%m%>-<%d%>")
 End With
End Sub

The following C++ sample displays the first visible date when the user changes the first
visible date:

#include "G2antt.h"
#include "Chart.h"

static DATE V2D(VARIANT* pvtDate)
{
 COleVariant vtDate;
 vtDate.ChangeType(VT_DATE, pvtDate);
 return V_DATE(&vtDate);
}

void OnDateChangeG2antt1()
{
 if (m_g2antt.GetControlUnknown())
 {
 CChart chart = m_g2antt.GetChart();
 TCHAR szDate[1024] = _T("");
 SYSTEMTIME stDate = {0};
 VariantTimeToSystemTime(V2D(&chart.GetFirstVisibleDate()), &stDate);
 GetDateFormat(LOCALE_SYSTEM_DEFAULT, LOCALE_USE_CP_ACP, &stDate, NULL,

szDate, 1024);
 OutputDebugString(szDate);
 }
}

The following VB.NET sample displays the first visible date when the user changes the first
visible date:

Private Sub AxG2antt1_DateChange(ByVal sender As Object, ByVal e As System.EventArgs)
Handles AxG2antt1.DateChange
 Debug.Write(AxG2antt1.Chart.FirstVisibleDate.ToString())
End Sub

The following C# sample displays the first visible date when the user changes the first
visible date:

private void axG2antt1_DateChange(object sender, EventArgs e)
{
 System.Diagnostics.Debug.Write(axG2antt1.Chart.FirstVisibleDate.ToString());
}

The following VFP sample displays the first visible date when the user changes the first
visible date:

*** ActiveX Control Event ***

with thisform.G2antt1.Chart
 wait window nowait .FormatDate(.FirstVisibleDate, "<%yyyy%>-<%m%>-<%d%>")
endwith

C#

VB

private void DateTimeChanged(object sender,DateTime DateTime)
{
}

Private Sub DateTimeChanged(ByVal sender As System.Object,ByVal DateTime As
Date) Handles DateTimeChanged
End Sub

C#

C++

private void DateTimeChanged(object sender,
AxEXG2ANTTLib._IG2anttEvents_DateTimeChangedEvent e)
{
}

void OnDateTimeChanged(DATE DateTime)
{
}

event DateTimeChanged (DateTime as Date)
Notifies your application that the current time is changed.

Type Description

DateTime as Date A Date-Time expression that indicates the new current
time.

The DateTimeChanged event notifies your application when the current date-time is
changed. The DateTimeChanged event is fired ONLY if the MarkNowColor property is not
zero (0). Use the FirstVisibleDate property to specify the first visible Date-Time in the
control's chart. The MarkNowUnit property specifies the unit of time to count for. For
instance, you can show the current date-time from current second, to next second, from
minute to next minute, and so on. Use the MarkNowCount property to specify the number of
units of date-time to count from. For instance, you can show the current date-time from 5
seconds to 5 seconds, and so on. The MarkNowWidth property specifies the width in pixels
of the vertical bar that shows the current date-time. The MarkNowTransparent property
specifies the percent of transparency to show the vertical bar that indicates the current
date-time. The MarkNow/MarkNowDelay property can be used to specify the current date-
time or your custom date time.

Syntax for DateTimeChanged event, /NET version, on:

Syntax for DateTimeChanged event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall DateTimeChanged(TObject *Sender,DATE DateTime)
{
}

procedure DateTimeChanged(ASender: TObject; DateTime : TDateTime);
begin
end;

procedure DateTimeChanged(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_DateTimeChangedEvent);
begin
end;

begin event DateTimeChanged(datetime DateTime)
end event DateTimeChanged

Private Sub DateTimeChanged(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_DateTimeChangedEvent) Handles
DateTimeChanged
End Sub

Private Sub DateTimeChanged(ByVal DateTime As Date)
End Sub

Private Sub DateTimeChanged(ByVal DateTime As Date)
End Sub

LPARAMETERS DateTime

PROCEDURE OnDateTimeChanged(oG2antt,DateTime)
RETURN

Java… <SCRIPT EVENT="DateTimeChanged(DateTime)" LANGUAGE="JScript">
</SCRIPT>

Syntax for DateTimeChanged event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function DateTimeChanged(DateTime)
End Function
</SCRIPT>

Procedure OnComDateTimeChanged DateTime llDateTime
 Forward Send OnComDateTimeChanged llDateTime
End_Procedure

METHOD OCX_DateTimeChanged(DateTime) CLASS MainDialog
RETURN NIL

void onEvent_DateTimeChanged(date _DateTime)
{
}

function DateTimeChanged as v (DateTime as T)
end function

function nativeObject_DateTimeChanged(DateTime)
return

C#

VB

private void DblClick(object sender,short Shift,int X,int Y)
{
}

Private Sub DblClick(ByVal sender As System.Object,ByVal Shift As Short,ByVal X
As Integer,ByVal Y As Integer) Handles DblClick
End Sub

C# private void DblClick(object sender,
AxEXG2ANTTLib._IG2anttEvents_DblClickEvent e)
{
}

event DblClick (Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS)

Occurs when the user dblclk the left mouse button over an object.

Type Description

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates

The DblClick event is fired when user double clicks the control. Use the ItemFromPoint
method to determine the cell over the cursor. Use the ExpandOnDblClk property to specify
whether an item is expanded or collapsed when user double clicks it. Use the
ColumnFromPoint property to retrieve the column from cursor. Use the DateFromPoint
property to specify the date from the cursor. Use the BarFromPoint property to get the bar
from the point. Use the LinkFromPoint property to get the link from the point. Almost all
properties that get an object from point supports -1,-1 coordinate that specifies the current
cursor position, so no conversion is required for X and Y coordinates.

Syntax for DblClick event, /NET version, on:

Syntax for DblClick event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnDblClick(short Shift,long X,long Y)
{
}

void __fastcall DblClick(TObject *Sender,short Shift,int X,int Y)
{
}

procedure DblClick(ASender: TObject; Shift : Smallint;X : Integer;Y : Integer);
begin
end;

procedure DblClick(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_DblClickEvent);
begin
end;

begin event DblClick(integer Shift,long X,long Y)
end event DblClick

Private Sub DblClick(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_DblClickEvent) Handles DblClick
End Sub

Private Sub DblClick(Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub DblClick(ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long)
End Sub

LPARAMETERS Shift,X,Y

PROCEDURE OnDblClick(oG2antt,Shift,X,Y)
RETURN

Syntax for DblClick event, /COM version (others), on:

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="DblClick(Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function DblClick(Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComDblClick Short llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS
llY
 Forward Send OnComDblClick llShift llX llY
End_Procedure

METHOD OCX_DblClick(Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_DblClick(int _Shift,int _X,int _Y)
{
}

function DblClick as v (Shift as N,X as OLE::Exontrol.G2antt.1::OLE_XPOS_PIXELS,Y
as OLE::Exontrol.G2antt.1::OLE_YPOS_PIXELS)
end function

function nativeObject_DblClick(Shift,X,Y)
return

The following Access sample prints a message when an item has been double clicked:

Private Sub G2antt1_DblClick(ByVal Shift As Integer, ByVal X As Long, ByVal Y As Long)
 Dim h As HITEM
 Dim c As Long, hit As Long
 h = G2antt1.ItemFromPoint(-1, -1, c, hit)
 If Not (h = 0) Then
 MsgBox "The """ & G2antt1.Items.CellValue(h, c) & """ cell has been double clicked."
 End If

End Sub

The following VB sample prints a message when an item has been double clicked:

Private Sub G2antt1_DblClick(Shift As Integer, X As Single, Y As Single)
 ' Converts the container coordinates to client coordinates
 X = X / Screen.TwipsPerPixelX
 Y = Y / Screen.TwipsPerPixelY
 Dim h As HITEM
 Dim c As Long, hit as Long
 ' Gets the item from (X,Y)
 h = G2antt1.ItemFromPoint(X, Y, c, hit)
 If Not (h = 0) Then
 MsgBox "The " & h & " item has been double clicked."
 End If
End Sub

The following VB sample displays a message when a cell has been double clicked:

Private Sub G2antt1_DblClick(Shift As Integer, X As Single, Y As Single)
 ' Converts the container coordinates to client coordinates
 X = X / Screen.TwipsPerPixelX
 Y = Y / Screen.TwipsPerPixelY
 Dim h As HITEM
 Dim c As Long, hit as Long
 ' Gets the item from (X,Y)
 h = G2antt1.ItemFromPoint(X, Y, c, hit)
 If Not (h = 0) Then
 MsgBox "The """ & G2antt1.Items.CellValue(h, c) & """ cell has been double clicked."
 End If
End Sub

The following C++ sample displays the caption of the cell being double clicked (including
the inner cells):

#include "Items.h"

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{

 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnDblClickG2antt1(short Shift, long X, long Y)
{
 long c = NULL, hit = NULL;
 long h = m_g2antt.GetItemFromPoint(X, Y, &c, &hit);
 if ((h != 0) || (c != 0))
 {
 COleVariant vtItem(h), vtColumn(c);
 CString strCaption = V2S(&m_g2antt.GetItems().GetCellValue(vtItem, vtColumn));
 MessageBox(strCaption);
 }
}

The following VB.NET sample displays the caption of the cell being double clicked (
including the inner cells):

Private Sub AxG2antt1_DblClick(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_DblClickEvent) Handles AxG2antt1.DblClick
 Dim h As Integer, c As Integer, hit As EXG2ANTTLib.HitTestInfoEnum
 With AxG2antt1
 h = .get_ItemFromPoint(e.x, e.y, c, hit)
 If Not (h = 0) Or Not (c = 0) Then
 MessageBox.Show(.Items.CellValue(h, c))
 End If
 End With
End Sub

The following C# sample displays the caption of the cell being double clicked (including the
inner cells):

private void axG2antt1_DblClick(object sender,
AxEXG2ANTTLib._IG2anttEvents_DblClickEvent e)
{
 EXG2ANTTLib.HitTestInfoEnum hit;
 int c = 0, h = axG2antt1.get_ItemFromPoint(e.x, e.y, out c, out hit);
 if ((h != 0) || (c != 0))
 MessageBox.Show(axG2antt1.Items.get_CellValue(h, c).ToString());
}

The following VFP sample displays the caption of the cell being double clicked:

*** ActiveX Control Event ***
LPARAMETERS shift, x, y

local c, hit
c = 0
hit = 0

with thisform.G2antt1
 .Items.DefaultItem = .ItemFromPoint(x, y, @c, @hit)
 if (.Items.DefaultItem != 0)
 wait window nowait .Items.CellValue(0, c)
 endif
endwith

C#

VB

private void EditEvent(object sender,int Item,int ColIndex,ref bool Cancel)
{
}

Private Sub EditEvent(ByVal sender As System.Object,ByVal Item As Integer,ByVal
ColIndex As Integer,ByRef Cancel As Boolean) Handles EditEvent

event Edit (Item as HITEM, ColIndex as Long, Cancel as Boolean)
Occurs just before editing the focused cell.

Type Description

Item as HITEM

A long expression that determines the item's handle. If the
Item parameter is 0, and the ColIndex property is different
than zero, the ColIndex indicates the handle of the cell
where the state is changed.

ColIndex as Long
A long expression that indicates the column's index, if the
Item parameter is not zero, a long expression that
indicates the handle of the cell if the Item parameter is 0.

Cancel as Boolean A boolean expression that indicates whether the editing
operation is canceled.

The Edit event is fired when the edit operation is about to begin. Use the Edit event to
disable editing specific cells. The Edit event is not fired if the user changes
programmatically the CellValue property. Use the EditOpen event to notify your application
that editing the cell started. Use the EditClose event to notify your application that editing
the cell ended. Use the Change event to notify your application that user changes the cell's
value. Use the Edit method to edit a cell by code. Use the CellEditor or Editor property to
assign an editor to a cell or to a column.

The edit events are fired in the following order:

1. Edit event. Prevents editing cells, before showing the cell's editor.

2. EditOpen event. The edit operation started, the cell's editor is shown. The Editing
property gives the window's handle of the built-in editor being started.

3. Change event. The Change event is fired only if the user types ENTER key, or the user
selects a new value from a predefined data list.

4. EditClose event. The cell's editor is hidden and closed.

Syntax for Edit event, /NET version, on:

End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

private void EditEvent(object sender, AxEXG2ANTTLib._IG2anttEvents_EditEvent e)
{
}

void OnEdit(long Item,long ColIndex,BOOL FAR* Cancel)
{
}

void __fastcall Edit(TObject *Sender,Exg2anttlib_tlb::HITEM Item,long
ColIndex,VARIANT_BOOL * Cancel)
{
}

procedure Edit(ASender: TObject; Item : HITEM;ColIndex : Integer;var Cancel :
WordBool);
begin
end;

procedure EditEvent(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_EditEvent);
begin
end;

begin event Edit(long Item,long ColIndex,boolean Cancel)
end event Edit

Private Sub EditEvent(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_EditEvent) Handles EditEvent
End Sub

Private Sub Edit(ByVal Item As EXG2ANTTLibCtl.HITEM,ByVal ColIndex As
Long,Cancel As Boolean)
End Sub

Syntax for Edit event, /COM version, on:

VBA

VFP

Xbas…

Private Sub Edit(ByVal Item As Long,ByVal ColIndex As Long,Cancel As Boolean)
End Sub

LPARAMETERS Item,ColIndex,Cancel

PROCEDURE OnEdit(oG2antt,Item,ColIndex,Cancel)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="Edit(Item,ColIndex,Cancel)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Edit(Item,ColIndex,Cancel)
End Function
</SCRIPT>

Procedure OnComEdit HITEM llItem Integer llColIndex Boolean llCancel
 Forward Send OnComEdit llItem llColIndex llCancel
End_Procedure

METHOD OCX_Edit(Item,ColIndex,Cancel) CLASS MainDialog
RETURN NIL

void onEvent_Edit(int _Item,int _ColIndex,COMVariant /*bool*/ _Cancel)
{
}

function Edit as v (Item as OLE::Exontrol.G2antt.1::HITEM,ColIndex as N,Cancel as L)
end function

function nativeObject_Edit(Item,ColIndex,Cancel)
return

Syntax for Edit event, /COM version (others), on:

The following VB sample disables editing cells in the first column:

Private Sub G2antt1_Edit(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal ColIndex As Long,
Cancel As Boolean)
 ' Cancels editing first column
 Cancel = IIf(ColIndex = 0, True, False)
End Sub

The following VB sample changes the cell's value to a default value, if the user enters an
empty value:

Private Sub G2antt1_Edit(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal ColIndex As Long,
Cancel As Boolean)
 ' Sets the 'default' value for empty cell
 With G2antt1.Items
 If (Len(.CellValue(Item, ColIndex)) = 0) Then
 .CellValue(Item, ColIndex) = "default"
 End If
 End With
End Sub

The following C++ sample disables editing cells in the first column:

void OnEditG2antt1(long Item, long ColIndex, BOOL FAR* Cancel)
{
 if (ColIndex == 0)
 *Cancel = TRUE;
}

The following VB.NET sample disables editing cells in the first column:

Private Sub AxG2antt1_EditEvent(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_EditEvent) Handles AxG2antt1.EditEvent
 If (e.colIndex = 0) Then
 e.cancel = True
 End If
End Sub

The following C# sample disables editing cells in the first column:

private void axG2antt1_EditEvent(object sender,
AxEXG2ANTTLib._IG2anttEvents_EditEvent e)
{
 if (e.colIndex == 0)
 e.cancel = true;
}

The following VFP sample disables editing cells in the first column:

*** ActiveX Control Event ***
LPARAMETERS item, colindex, cancel

if (colindex = 0)
 cancel = .t.
endif

C#

VB

private void EditCloseEvent(object sender)
{
}

Private Sub EditCloseEvent(ByVal sender As System.Object) Handles
EditCloseEvent
End Sub

C# private void EditCloseEvent(object sender, EventArgs e)
{
}

event EditClose ()
Occurs when the edit operation ends.

Type Description

Use the EditClose event to notify your application that the editor is closed. The EditClose
event is fired when the focused cell ends editing. Use the FocusItem property to determine
the handle of the item where the edit operation ends. Use the FocusColumnIndex property
to determine the index of the column where the edit operation ends. The Editing specifies
the window's handle of the built-in editor while the control is running in edit mode. The
EditingText property returns the caption being shown on the editor while the control runs in
edit mode. Use the EditClose method to closes the current editor, by code. For instance,
the EditClose event is not fired when user hides the drop down portion of the editor. Use
the Edit event to prevent editing a cell.

The edit events are fired in the following order:

1. Edit event. Prevents editing cells, before showing the cell's editor.

2. EditOpen event. The edit operation started, the cell's editor is shown. The Editing
property gives the window's handle of the built-in editor being started.

3. Change event. The Change event is fired only if the user types ENTER key, or the user
selects a new value from a predefined data list.

4. EditClose event. The cell's editor is hidden and closed.

Syntax for EditClose event, /NET version, on:

Syntax for EditClose event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnEditClose()
{
}

void __fastcall EditClose(TObject *Sender)
{
}

procedure EditClose(ASender: TObject;);
begin
end;

procedure EditCloseEvent(sender: System.Object; e: System.EventArgs);
begin
end;

begin event EditClose()
end event EditClose

Private Sub EditCloseEvent(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles EditCloseEvent
End Sub

Private Sub EditClose()
End Sub

Private Sub EditClose()
End Sub

LPARAMETERS nop

PROCEDURE OnEditClose(oG2antt)
RETURN

Java… <SCRIPT EVENT="EditClose()" LANGUAGE="JScript">
Syntax for EditClose event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function EditClose()
End Function
</SCRIPT>

Procedure OnComEditClose
 Forward Send OnComEditClose
End_Procedure

METHOD OCX_EditClose() CLASS MainDialog
RETURN NIL

void onEvent_EditClose()
{
}

function EditClose as v ()
end function

function nativeObject_EditClose()
return

The following VB sample displays the window's handle of the built-in editor being closed:

Private Sub G2antt1_EditClose()
 Debug.Print "EditClose " & G2antt1.Editing
End Sub

The following VB sample displays the caption of the cell where the edit operation ends:

Private Sub G2antt1_EditClose()
 With G2antt1.Items
 Debug.Print "EditClose on '"; .CellCaption(.FocusItem, G2antt1.FocusColumnIndex) &
"'."
 End With
End Sub

The following C++ sample displays the handle of the built-in editor being closed:

#include "Items.h"
void OnEditCloseG2antt1()
{
 CItems items = m_g2antt.GetItems();
 COleVariant vtItem(items.GetFocusItem()), vtColumn(
m_g2antt.GetFocusColumnIndex());
 CString strFormat;
 strFormat.Format("'%s' %i", V2S(&items.GetCellValue(vtItem, vtColumn)),
m_g2antt.GetEditing());
 OutputDebugString(strFormat);
}

The following VB.NET sample displays the handle of the built-in editor being closed:

Private Sub AxG2antt1_EditCloseEvent(ByVal sender As Object, ByVal e As
System.EventArgs) Handles AxG2antt1.EditCloseEvent
 With AxG2antt1
 Debug.Print(.Items.CellValue(.Items.FocusItem, .FocusColumnIndex) & " " &
.Editing.ToString())
 End With
End Sub

The following C# sample displays the handle of the built-in editor being closed:

private void axG2antt1_EditCloseEvent(object sender, EventArgs e)
{
 object cellValue = axG2antt1.Items.get_CellValue(axG2antt1.Items.FocusItem,
axG2antt1.FocusColumnIndex);
 string strOutput = "'" + (cellValue != null ? cellValue.ToString() : "") + "' " +
axG2antt1.Editing.ToString();
 System.Diagnostics.Debug.WriteLine(strOutput);
}

The following VFP sample displays the handle of the built-in editor being closed:

*** ActiveX Control Event ***

with thisform.G2antt1.Items
 .DefaultItem = .FocusItem()
 wait window nowait str(.CellValue(0, thisform.G2antt1.FocusColumnIndex()))
 wait window nowait str(thisform.G2antt1.Editing())
endwith

C#

VB

private void EditOpen(object sender)
{
}

Private Sub EditOpen(ByVal sender As System.Object) Handles EditOpen
End Sub

C#

C++

private void EditOpen(object sender, EventArgs e)
{
}

void OnEditOpen()
{
}

event EditOpen ()
Occurs when the edit operation starts.

Type Description

Use the EditOpen event to notify your application that the cell's editor is shown and ready to
edit the cell. The Editing specifies the window's handle of the built-in editor while the control
is running in edit mode. The EditingText property returns the caption being shown on the
editor while the control runs in edit mode.

The edit events are fired in the following order:

1. Edit event. Prevents editing cells, before showing the cell's editor.

2. EditOpen event. The edit operation started, the cell's editor is shown. The Editing
property gives the window's handle of the built-in editor being started.

3. Change event. The Change event is fired only if the user types ENTER key, or the user
selects a new value from a predefined data list.

4. EditClose event. The cell's editor is hidden and closed.

Syntax for EditOpen event, /NET version, on:

Syntax for EditOpen event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall EditOpen(TObject *Sender)
{
}

procedure EditOpen(ASender: TObject;);
begin
end;

procedure EditOpen(sender: System.Object; e: System.EventArgs);
begin
end;

begin event EditOpen()
end event EditOpen

Private Sub EditOpen(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles EditOpen
End Sub

Private Sub EditOpen()
End Sub

Private Sub EditOpen()
End Sub

LPARAMETERS nop

PROCEDURE OnEditOpen(oG2antt)
RETURN

Java… <SCRIPT EVENT="EditOpen()" LANGUAGE="JScript">
</SCRIPT>

Syntax for EditOpen event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function EditOpen()
End Function
</SCRIPT>

Procedure OnComEditOpen
 Forward Send OnComEditOpen
End_Procedure

METHOD OCX_EditOpen() CLASS MainDialog
RETURN NIL

void onEvent_EditOpen()
{
}

function EditOpen as v ()
end function

function nativeObject_EditOpen()
return

C#

VB

private void Error(object sender,int Err,string Description)
{
}

Private Sub Error(ByVal sender As System.Object,ByVal Err As Integer,ByVal
Description As String) Handles Error
End Sub

C#

C++

C++
Builder

Delphi

private void Error(object sender, AxEXG2ANTTLib._IG2anttEvents_ErrorEvent e)
{
}

void OnError(long Error,LPCTSTR Description)
{
}

void __fastcall Error(TObject *Sender,long Error,BSTR Description)
{
}

procedure Error(ASender: TObject; Error : Integer;Description : WideString);
begin
end;

event Error (Error as Long, Description as String)
Fired when an internal error occurs.

Type Description
Error as Long A long expression that indicates the error number.
Description as String A string expression that describes the error.

The Error event is fired each time when an internal error occurs. The Error event is usually
fired when the control is bounded to an ADO Recordset. For instance, if the user changes a
field, the control tries to update the current record. If it fails, the Error event is fired. Use
the DataSource property to bind the control to a database.

Syntax for Error event, /NET version, on:

Syntax for Error event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure Error(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_ErrorEvent);
begin
end;

begin event Error(long Error,string Description)
end event Error

Private Sub Error(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_ErrorEvent) Handles Error
End Sub

Private Sub Error(ByVal Error As Long,ByVal Description As String)
End Sub

Private Sub Error(ByVal Error As Long,ByVal Description As String)
End Sub

LPARAMETERS Error,Description

PROCEDURE OnError(oG2antt,Error,Description)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="Error(Error,Description)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Error(Error,Description)
End Function
</SCRIPT>

Procedure OnComError Integer llError String llDescription
 Forward Send OnComError llError llDescription
End_Procedure

Syntax for Error event, /COM version (others), on:

Visual
Objects

X++

XBasic

dBASE

METHOD OCX_Error(Error,Description) CLASS MainDialog
RETURN NIL

void onEvent_Error(int _Error,str _Description)
{
}

function Error as v (Error as N,Description as C)
end function

function nativeObject_Error(Error,Description)
return

event Event (EventID as Long)
Notifies the application once the control fires an event.

Type Description

EventID as Long

A Long expression that specifies the identifier of the event.
Each internal event of the control has an unique identifier.
Use the EventParam(-2) to display entire information
about fired event (such as name, identifier, and properties
). The EventParam(-1) retrieves the number of parameters
of fired event

The Event notification occurs ANY time the control fires an event. For instance if a
BarResize event occurs, then a Event(120) occurs also, so the events inside the Event are
differentiated by its EventID. Print the EventParam(-2) during the Event notification, and you
get debugging information for the name, ID, and parameters of the fired event. So, back to
the BarResize which is defined as event BarResize (Item as HITEM, Key as Variant), it
means it has 2 parameters, Item and Key, so the EventParam(0) gets the Item parameter,
while the EventParam(1) gets the Key of the bar being resized, when the EventID is 120,
where 120 indicates the identifier of the BarResize event. The number of parameters
different from event to event. For instance, Click event has no parameter, which means
that the EventParam(-1) gets 0, and for BarResize gets the 2.

Click here to watch a movie on how you can use the eXHelper to get information about
the fired events using the Event handler. The Event notification is sent any time the control
fires a specified event. For instance, if the BarResize event occurs, the order of the events
are Event(120) and next BarResize. You can use any of these notifications based on your
requirements or limitations of the programming environment you are using.

This is useful for X++, which does not support event with parameters passed by
reference. Also, this could be useful for C++ Builder or Delphi, which does not handle
properly the events with parameters of VARIANT type.

In X++ the "Error executing code: FormActiveXControl (data source), method ... called with
invalid parameters" occurs when handling events that have parameters passed by
reference. Passed by reference, means that in the event handler, you can change the value
for that parameter, and so the control will takes the new value, and use it. The X++ is NOT
able to handle properly events with parameters by reference, so we have the solution.

The solution is using and handling the Event notification and EventParam method., instead
handling the event that gives the "invalid parameters" error executing code.

Let's assume that we need to handle the BarParentChange event to change the _Cancel
parameter from false to true, which fires the "Error executing code: FormActiveXControl

https://www.youtube.com/watch?v=SLSqFaC7GTE
https://exontrol.com/exhelper.jsp

(data source), method onEvent_BarParentChange called with invalid parameters." We need
to know the identifier of the BarParentChange event (each event has an unique identifier
and it is static, defined in the control's type library). If you are not familiar with what a type
library means just handle the Event of the control as follows:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 print exg2antt1.EventParam(-2).toString();
}

This code allows you to display the information for each event of the control being fired as
in the list bellow:

"MouseMove/-606(1 , 0 , 145 , 36)" VT_BSTR
"BarParentChange/125(192998632 , 'B' , 192999592 , =false)" VT_BSTR
"BeforeDrawPart/54(2 , -1962866148 , =0 , =0 , =0 , =0 , =false)" VT_BSTR
"AfterDrawPart/55(2 , -1962866148 , 0 , 0 , 0 , 0)" VT_BSTR
"MouseMove/-606(1 , 0 , 145 , 35)" VT_BSTR

Each line indicates an event, and the following information is provided: the name of the
event, its identifier, and the list of parameters being passed to the event. The parameters
that starts with = character, indicates a parameter by reference, in other words one that
can changed during the event handler.

Now, we can see that the identifier for the BarParentChange event is 125, so we need to
handle the Event event as:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 ;
 if (_EventID == 125) /*event BarParentChange (Item as HITEM, Key as Variant, NewItem
as HITEM, Cancel as Boolean) */
 exg2antt1.EventParam(3 /*Cancel*/, COMVariant::createFromBoolean(true));
}

The code checks if the BarParentChange (_EventID == 125) event is fired, and changes
the third parameter of the event to true. The definition for BarParentChange event can be
consulted in the control's documentation or in the ActiveX explorer. So, anytime you need to
access the original parameters for the event you should use the EventParam method that

C#

VB

private void Event(object sender,int EventID)
{
}

Private Sub Event(ByVal sender As System.Object,ByVal EventID As Integer)
Handles Event
End Sub

C#

C++

private void Event(object sender, AxEXG2ANTTLib._IG2anttEvents_EventEvent e)
{
}

void OnEvent(long EventID)
{
}

allows you to get or set a parameter. If the parameter is not passed by reference, you can
not change the parameter's value.

Now, let's add some code to see a complex sample, so let's say that we need to prevent
moving the bar from an item to any disabled item. So, we need to specify the Cancel
parameter as not Items.EnableItem(NewItem), in other words cancels if the new parent is
disabled. Shortly the code will be:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 ;
 if (_EventID == 125) /*event BarParentChange (Item as HITEM, Key as Variant, NewItem
as HITEM, Cancel as Boolean) */
 if (!exg2antt1.Items().EnableItem(exg2antt1.EventParam(2 /*NewItem*/)))
 exg2antt1.EventParam(3 /*Cancel*/, COMVariant::createFromBoolean(true));
}

In conclusion, anytime the X++ fires the "invalid parameters." while handling an event, you
can use and handle the Event notification and EventParam methods of the control

Syntax for Event event, /NET version, on:

Syntax for Event event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall Event(TObject *Sender,long EventID)
{
}

procedure Event(ASender: TObject; EventID : Integer);
begin
end;

procedure Event(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_EventEvent);
begin
end;

begin event Event(long EventID)
end event Event

Private Sub Event(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_EventEvent) Handles Event
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

LPARAMETERS EventID

PROCEDURE OnEvent(oG2antt,EventID)
RETURN

Java…

VBSc…

<SCRIPT EVENT="Event(EventID)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">

Syntax for Event event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Function Event(EventID)
End Function
</SCRIPT>

Procedure OnComEvent Integer llEventID
 Forward Send OnComEvent llEventID
End_Procedure

METHOD OCX_Event(EventID) CLASS MainDialog
RETURN NIL

void onEvent_Event(int _EventID)
{
}

function Event as v (EventID as N)
end function

function nativeObject_Event(EventID)
return

C#

VB

private void FilterChange(object sender)
{
}

Private Sub FilterChange(ByVal sender As System.Object) Handles FilterChange
End Sub

C#

C++

C++
Builder

Delphi

private void FilterChange(object sender, EventArgs e)
{
}

void OnFilterChange()
{
}

void __fastcall FilterChange(TObject *Sender)
{
}

procedure FilterChange(ASender: TObject;);
begin
end;

event FilterChange ()
Occurs when filter was changed.

Type Description

Use the FilterChange event to notify your application that the control's filter is changed. The
FilterChanging event occurs just before applying the filter. Use the Filter and FilterType
properties to retrieve the column's filter string, if case, and the column's filter type. The
ApplyFilter and ClearFilter methods fire the FilterChange event. Use the DisplayFilterButton
property to add a filter bar button to the column's caption. Use the FilterBarHeight property
to specify the height of the control's filter bar. Use the FilterBarFont property to specify the
font for the control's filter bar.

Syntax for FilterChange event, /NET version, on:

Syntax for FilterChange event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure FilterChange(sender: System.Object; e: System.EventArgs);
begin
end;

begin event FilterChange()
end event FilterChange

Private Sub FilterChange(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles FilterChange
End Sub

Private Sub FilterChange()
End Sub

Private Sub FilterChange()
End Sub

LPARAMETERS nop

PROCEDURE OnFilterChange(oG2antt)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="FilterChange()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function FilterChange()
End Function
</SCRIPT>

Procedure OnComFilterChange
 Forward Send OnComFilterChange

Syntax for FilterChange event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_FilterChange() CLASS MainDialog
RETURN NIL

void onEvent_FilterChange()
{
}

function FilterChange as v ()
end function

function nativeObject_FilterChange()
return

C#

VB

private void FilterChanging(object sender)
{
}

Private Sub FilterChanging(ByVal sender As System.Object) Handles
FilterChanging
End Sub

C#

C++

C++
Builder

Delphi

private void FilterChanging(object sender, EventArgs e)
{
}

void OnFilterChanging()
{
}

void __fastcall FilterChanging(TObject *Sender)
{
}

procedure FilterChanging(ASender: TObject;);
begin

event FilterChanging ()
Notifies your application that the filter is about to change.

Type Description

The FilterChanging event occurs just before applying the filter. The FilterChange event
occurs once the filter is applied, so the list gets filtered. Use the Filter and FilterType
properties to retrieve the column's filter string, if case, and the column's filter type. The
ApplyFilter and ClearFilter methods fire the FilterChange event. Use the DisplayFilterButton
property to add a filter bar button to the column's caption. Use the FilterBarHeight property
to specify the height of the control's filter bar. Use the FilterBarFont property to specify the
font for the control's filter bar. For instance, you can use the FilterChanging event to start a
timer, and count the time to get the filter applied, when the FilterChange event is fired.

Syntax for FilterChanging event, /NET version, on:

Syntax for FilterChanging event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

procedure FilterChanging(sender: System.Object; e: System.EventArgs);
begin
end;

begin event FilterChanging()
end event FilterChanging

Private Sub FilterChanging(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles FilterChanging
End Sub

Private Sub FilterChanging()
End Sub

Private Sub FilterChanging()
End Sub

LPARAMETERS nop

PROCEDURE OnFilterChanging(oG2antt)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="FilterChanging()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function FilterChanging()
End Function
</SCRIPT>

Procedure OnComFilterChanging
 Forward Send OnComFilterChanging
End_Procedure

Syntax for FilterChanging event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

METHOD OCX_FilterChanging() CLASS MainDialog
RETURN NIL

void onEvent_FilterChanging()
{
}

function FilterChanging as v ()
end function

function nativeObject_FilterChanging()
return

C#

VB

private void FocusChanged(object sender)
{
}

Private Sub FocusChanged(ByVal sender As System.Object) Handles
FocusChanged
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

private void FocusChanged(object sender, EventArgs e)
{
}

void OnFocusChanged()
{
}

void __fastcall FocusChanged(TObject *Sender)
{
}

procedure FocusChanged(ASender: TObject;);
begin
end;

procedure FocusChanged(sender: System.Object; e: System.EventArgs);
begin
end;

event FocusChanged ()
Occurs when a new cell is focused.

Type Description

The FocusChanged event occurs when a new cell is focused. The SelectionChanged event
notifies your application once a new item is selected/unselected.

Syntax for FocusChanged event, /NET version, on:

Syntax for FocusChanged event, /COM version, on:

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin event FocusChanged()
end event FocusChanged

Private Sub FocusChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles FocusChanged
End Sub

Private Sub FocusChanged()
End Sub

Private Sub FocusChanged()
End Sub

LPARAMETERS nop

PROCEDURE OnFocusChanged(oG2antt)
RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="FocusChanged()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function FocusChanged()
End Function
</SCRIPT>

Procedure OnComFocusChanged
 Forward Send OnComFocusChanged
End_Procedure

METHOD OCX_FocusChanged() CLASS MainDialog
RETURN NIL

void onEvent_FocusChanged()
{

Syntax for FocusChanged event, /COM version (others), on:

XBasic

dBASE

}

function FocusChanged as v ()
end function

function nativeObject_FocusChanged()
return

C#

VB

private void FormatColumn(object sender,int Item,int ColIndex,ref object Value)
{
}

Private Sub FormatColumn(ByVal sender As System.Object,ByVal Item As
Integer,ByVal ColIndex As Integer,ByRef Value As Object) Handles FormatColumn
End Sub

event FormatColumn (Item as HITEM, ColIndex as Long, Value as Variant)

Fired when a cell requires to format its caption.

Type Description

Item as HITEM A long expression that indicates the handle of the item
being formatted.

ColIndex as Long A long expression that indicates the index of the column
being formatted.

Value as Variant
A Variant value that indicates the value being displayed in
the cell. By default, the Value parameter is initialized with
the CellValue property.

Use the FormatColumn event to display a string different than the CellValue property. The
FormatColumn event is fired only if the FireFormatColumn property of the Column is True.
The FormatColumn event lets the user to provide the cell's caption before it is displayed on
the control's list. For instance, the FormatColumn event is useful when the column cells
contains prices(numbers), and you want to display that column formatted as currency, like
$50 instead 50. Also, you can use the FormatColumn event to display item's index in the
column, or to display the result of some operations based on the cells in the item (totals,
currency conversion and so on).

The CellValue property of the cell is being shown as:

formatted using the FormatCell property, if it is valid
formatted using the FormatColumn property, if it is valid

In other words, all cells applies the format of the FormatColumn property, excepts the cells
with the FormatCell property being set. If the cell belongs to a column with the
FireFormatColumn property on True, the Value parameter of the FormatColumn event
shows the newly caption for the cell to be shown.

Syntax for FormatColumn event, /NET version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

private void FormatColumn(object sender,
AxEXG2ANTTLib._IG2anttEvents_FormatColumnEvent e)
{
}

void OnFormatColumn(long Item,long ColIndex,VARIANT FAR* Value)
{
}

void __fastcall FormatColumn(TObject *Sender,Exg2anttlib_tlb::HITEM Item,long
ColIndex,Variant * Value)
{
}

procedure FormatColumn(ASender: TObject; Item : HITEM;ColIndex : Integer;var
Value : OleVariant);
begin
end;

procedure FormatColumn(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_FormatColumnEvent);
begin
end;

begin event FormatColumn(long Item,long ColIndex,any Value)
end event FormatColumn

Private Sub FormatColumn(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_FormatColumnEvent) Handles FormatColumn
End Sub

Private Sub FormatColumn(ByVal Item As EXG2ANTTLibCtl.HITEM,ByVal ColIndex
As Long,Value As Variant)
End Sub

Private Sub FormatColumn(ByVal Item As Long,ByVal ColIndex As Long,Value As

Syntax for FormatColumn event, /COM version, on:

VFP

Xbas…

Variant)
End Sub

LPARAMETERS Item,ColIndex,Value

PROCEDURE OnFormatColumn(oG2antt,Item,ColIndex,Value)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="FormatColumn(Item,ColIndex,Value)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function FormatColumn(Item,ColIndex,Value)
End Function
</SCRIPT>

Procedure OnComFormatColumn HITEM llItem Integer llColIndex Variant llValue
 Forward Send OnComFormatColumn llItem llColIndex llValue
End_Procedure

METHOD OCX_FormatColumn(Item,ColIndex,Value) CLASS MainDialog
RETURN NIL

void onEvent_FormatColumn(int _Item,int _ColIndex,COMVariant /*variant*/
_Value)
{
}

function FormatColumn as v (Item as OLE::Exontrol.G2antt.1::HITEM,ColIndex as
N,Value as A)
end function

function nativeObject_FormatColumn(Item,ColIndex,Value)
return

Syntax for FormatColumn event, /COM version (others), on:

The following VB samples use the FormatCurrency function, to display a number as a
currency. The FormatCurrency VB function returns an expression formatted as a currency
value using the currency symbol defined in the system control panel.

G2antt1.Columns("Freight").FireFormatColumn = True
G2antt1.Columns("Freight").HeaderBold = True
G2antt1.Columns("Freight").Alignment = RightAlignment

Private Sub G2antt1_FormatColumn(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal
ColIndex As Long, Value As Variant)

 Value = FormatCurrency(Value, 2) ' The FormatCurrency is a VB function

End Sub

if the sample looks like following:

G2antt1.Columns("Freight").FireFormatColumn = False
G2antt1.Columns("Freight").HeaderBold = True
G2antt1.Columns("Freight").Alignment = RightAlignment

For instance, you can use the FormatColumn event to display "Yes" or "No" caption
for a boolean column. The following VB sample shows how to do it:

Private Sub G2antt1_FormatColumn(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal
ColIndex As Long, Value As Variant)
 Value = IIf(Value < 50, "Yes", "No")
End Sub

The following VB sample displays the result of adding (concatenating) of two cells:

Private Sub G2antt1_FormatColumn(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal
ColIndex As Long, Value As Variant)
 With G2antt1.Items
 Value = .CellValue(Item, 0) + .CellValue(Item, 1)
 End With
End Sub

The FormatColumn event is fired before displaying a cell, so you can handle the
FormatColumn to display anything on the cell at runtime. This way you can display the row

position, you can display the value using the currency format, and so on. The
FireFormatColumn property allows the control to fire the FormatColumn event for the
column. The Position property specifies the position of the column.

If your chart does not display a tree or a hierarchy this property is ok to be used with
FormatColumn event to display the position

The following VB sample handles the FormatColumn event to display the row position:

Private Sub G2antt1_FormatColumn(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal
ColIndex As Long, Value As Variant)
 Value = G2antt1.Items.ItemPosition(Item)
End Sub

If your chart displays a tree or a hierarchy the position of the item must be determined
relative to the FirstVisibleItem as shown in the following VB sample:

Private Sub G2antt1_FormatColumn(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal
ColIndex As Long, Value As Variant)
 Value = G2antt1.ScrollPos(True) + RelPos(Item)
End Sub

Private Function RelPos(ByVal hVisible As Long) As Long
 With G2antt1.Items
 Dim h As Long, i As Long, n As Long
 i = 0
 n = .VisibleCount + 1
 h = .FirstVisibleItem
 While (i <= n) And h <> 0 And h <> hVisible
 i = i + 1
 h = .NextVisibleItem(h)
 Wend
 RelPos = i
 End With
End Function

The following C++ sample displays a date column using a format like "Saturday, January
31, 2004":

void OnFormatColumnG2antt1(long Item, long ColIndex, VARIANT FAR* Value)

{
 COleDateTime date(*Value);
 COleVariant vtNewValue(date.Format(_T("%A, %B %d, %Y")));
 VariantCopy(Value, vtNewValue);
}

The following VB.NET sample displays a date column using LongDate format:

Private Sub AxG2antt1_FormatColumn(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_FormatColumnEvent) Handles AxG2antt1.FormatColumn
 e.value = DateTime.Parse(e.value).ToLongDateString()
End Sub

The following C# sample displays a date column using LongDate format:

private void axG2antt1_FormatColumn(object sender,
AxEXG2ANTTLib._IG2anttEvents_FormatColumnEvent e)
{
 e.value = DateTime.Parse(e.value.ToString()).ToLongDateString();
}

The following VFP sample displays the item's index using the FormatColumn event:

*** ActiveX Control Event ***
LPARAMETERS item, colindex, value

with thisform.G2antt1.Items
 .DefaultItem = item
 value = .ItemToIndex(0)
endwith

before running the sample please make sure that the :

application.AutoYield = .f.

is called during the Form.Init event.

C#

VB

private void HistogramBoundsChanged(object sender,int X,int Y,int Width,int
Height)
{
}

Private Sub HistogramBoundsChanged(ByVal sender As System.Object,ByVal X As
Integer,ByVal Y As Integer,ByVal Width As Integer,ByVal Height As Integer) Handles
HistogramBoundsChanged
End Sub

event HistogramBoundsChanged (X as Long, Y as Long, Width as Long,
Height as Long)
Occurs when the location and the size of the histogram is changed.

Type Description

X as Long A Long expression that specifies the location of the chart's
histogram (client coordinate)

Y as Long A Long expression that specifies the location of the chart's
histogram (client coordinate)

Width as Long A Long expression that specifies the width of the chart's
histogram.

Height as Long A Long expression that specifies the height of the chart's
histogram.

The HistogramBoundsChanged event notifies your application when the bounds of the left
part of the chart's histogram is changed. The /NET assembly passes the bounds of the
chart's histogram as a Rectangle, instead passing all coordinates as X, Y, Width or Height.
The HistogramVisible property specifies whether the control displays the chart's histogram
in the bottom side. Changing the HistogramVisible property invokes the
HistogramBoundsChanged event with an empty rectangle, if the histogram is being hidden,
or the new position if the histogram is shown. For instance, you can hide or show the
histogram legend component, when the Width and Heigh parameters are not zero. Use the
HistogramBoundsChanged event to resize a component being displayed in the chart's
histogram. Use the BeforeDrawPart and AfterDrawPart events to add your custom drawing
to be shown in the component.

Syntax for HistogramBoundsChanged event, /NET version, on:

Syntax for HistogramBoundsChanged event, /COM version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

private void HistogramBoundsChanged(object sender,
AxEXG2ANTTLib._IG2anttEvents_HistogramBoundsChangedEvent e)
{
}

void OnHistogramBoundsChanged(long X,long Y,long Width,long Height)
{
}

void __fastcall HistogramBoundsChanged(TObject *Sender,long X,long Y,long
Width,long Height)
{
}

procedure HistogramBoundsChanged(ASender: TObject; X : Integer;Y :
Integer;Width : Integer;Height : Integer);
begin
end;

procedure HistogramBoundsChanged(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_HistogramBoundsChangedEvent);
begin
end;

begin event HistogramBoundsChanged(long X,long Y,long Width,long Height)
end event HistogramBoundsChanged

Private Sub HistogramBoundsChanged(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_HistogramBoundsChangedEvent) Handles
HistogramBoundsChanged
End Sub

Private Sub HistogramBoundsChanged(ByVal X As Long,ByVal Y As Long,ByVal
Width As Long,ByVal Height As Long)
End Sub

VBA

VFP

Xbas…

Private Sub HistogramBoundsChanged(ByVal X As Long,ByVal Y As Long,ByVal Width As
Long,ByVal Height As Long)
End Sub

LPARAMETERS X,Y,Width,Height

PROCEDURE OnHistogramBoundsChanged(oG2antt,X,Y,Width,Height)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

Visual
Objects

<SCRIPT EVENT="HistogramBoundsChanged(X,Y,Width,Height)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function HistogramBoundsChanged(X,Y,Width,Height)
End Function
</SCRIPT>

Procedure OnComHistogramBoundsChanged Integer llX Integer llY Integer
llWidth Integer llHeight
 Forward Send OnComHistogramBoundsChanged llX llY llWidth llHeight
End_Procedure

METHOD OCX_HistogramBoundsChanged(X,Y,Width,Height) CLASS MainDialog
RETURN NIL

void onEvent_HistogramBoundsChanged(int _X,int _Y,int _Width,int _Height)
{
}

function HistogramBoundsChanged as v (X as N,Y as N,Width as N,Height as N)
end function

Syntax for HistogramBoundsChanged event, /COM version (others), on:

dBASE

function nativeObject_HistogramBoundsChanged(X,Y,Width,Height)
return

For instance, you can use the Controls property of the /NET assembly to add new
components inside the control, and using the HistogramBoundsChanged event you can
control it so they will be displayed in the left part of the chart's histogram as show in the
following screen shot:

The "Allocation/Overload, Color" panel is being added as a Panel component that belongs
to the form, as shown in the following screen shot:

You can define your legend for the histogram by doing the following:

Add a Panel component to the form, in case you require multiple components being

displayed in the chart's histogram.

Add all components to the panel, that you might want to use in the histogram.

Call the exgantt1.Controls.Add method to add the newly panel/ component as being a
child of the control.

Handle the HistogramBoundsChanged event so you update the location and the size of
the panel, with the new coordinates as follows:

private void exg2antt1_HistogramBoundsChanged(object sender, Rectangle Bounds)
{
 panel1.Bounds = Bounds;
}

The events of the added panel/component can be handled in the usual manner, as they still
send events to the form, not to the exg2antt control.

A similar technique can be used for environment such as VB6/C++/eDeveloper/Clarion using
the SetParent and SetWindowPos API functions as follow:

Add a control or a collection of controls to the same form where the control is hosted.
In our sample we will add another g2antt control named G2antt2
Add API declarations as

Private Declare Function SetParent Lib "user32" (ByVal hWndChild As Long, ByVal
hWndNewParent As Long) As Long
Private Declare Function SetWindowPos Lib "user32" (ByVal hwnd As Long, ByVal
hWndInsertAfter As Long, ByVal x As Long, ByVal y As Long, ByVal cx As Long, ByVal cy
As Long, ByVal wFlags As Long) As Long
Private Const SWP_NOZORDER = &H4
Private Const SWP_SHOWWINDOW = &H40

Handle the HistogramBoundsChanged event and add the code

Private Sub G2antt1_HistogramBoundsChanged(ByVal x As Long, ByVal y As Long,
ByVal Width As Long, ByVal Height As Long)
On Error Resume Next
 With G2antt2
 Width = Width - 20
 SetWindowPos .hwnd, 0, x, y, Width, Height, SWP_NOZORDER Or

SWP_SHOWWINDOW
 .Left = x * Screen.TwipsPerPixelX
 .Top = y * Screen.TwipsPerPixelY
 .Width = Width * Screen.TwipsPerPixelX
 .Height = Height * Screen.TwipsPerPixelY
 End With
End Sub

Add the Form_load event as:

Private Sub Form_Load()
 With G2antt1
 .BeginUpdate
 SetParent G2antt2.hwnd, G2antt1.hwnd
 With .Chart
 .HistogramVisible = True
 .HistogramHeight = 134
 End With
 .EndUpdate
 End With
End Sub

The sample changes the parent of the g2antt control to be the g2antt1 control and
reposition the inside control. In the following screen shot the left side of the histogram is
another eXG2antt control with the template:

BeginUpdate()
BackColor = RGB(255,255,255)
Appearance = 0
ScrollBars = 0
HeaderVisible = False
OnResizeControl = 128
Columns.Add("Diagram")
{
 AllowSort = False
 AllowDragging = False
}
Chart

{
 PaneWidth(1) = 0
 ScrollBar = False
}
SelBackColor = BackColor
SelForeColor = ForeColor
ShowFocusRect = False
HasLines = 0
Items
{
 Dim h, h1,h2
 h = AddItem("Type")
 h1 = InsertItem(h,,"Overload")
 CellHasRadioButton(h1,0) = True
 CellState(h1,0) = 1
 CellRadioGroup(h1,0) = 1234
 h1 = InsertItem(h,,"Over-Allocation")
 CellHasRadioButton(h1,0) = True
 CellRadioGroup(h1,0) = 1234
 ExpandItem(h) = True
 h = AddItem("Cumulative")
 CellHasCheckBox(h,0) = 1
 h = AddItem("Curve")
 CellHasCheckBox(h,0) = 1
}
EndUpdate()

The following screen shot shows in red the inside eXG2antt control being placed in the left
part of the histogram.

C#

VB

private void HyperLinkClick(object sender,int Item,int ColIndex)
{
}

Private Sub HyperLinkClick(ByVal sender As System.Object,ByVal Item As
Integer,ByVal ColIndex As Integer) Handles HyperLinkClick
End Sub

C#

C++

C++
Builder

private void HyperLinkClick(object sender,
AxEXG2ANTTLib._IG2anttEvents_HyperLinkClickEvent e)
{
}

void OnHyperLinkClick(long Item,long ColIndex)
{
}

void __fastcall HyperLinkClick(TObject *Sender,Exg2anttlib_tlb::HITEM Item,long
ColIndex)
{

event HyperLinkClick (Item as HITEM, ColIndex as Long)

Occurs when the user clicks on a hyperlink cell.

Type Description
Item as HITEM A long expression that indicates the item's handle.
ColIndex as Long A long expression that indicates the column's index.

The HyperLinkClick event is fired when user clicks a hyperlink cell. A hyperlink cell has the
CellHyperLink property on True. The control changes the shape of the cursor when the
mouse hovers a hyper linkcell. Use the HyperLinkClick event to notify your application that
a hyperlink cell is clicked. Use the HyperLinkColor property to specify the hyperlink color.
The HyperLinkClick event is fired only if the user clicks a cell that has the CellHyperLink
property on True. Use the ItemFromPoint property to get an item or a cell from point. Use
the ColumnFromPoint property to get the column from point.

Syntax for HyperLinkClick event, /NET version, on:

Syntax for HyperLinkClick event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure HyperLinkClick(ASender: TObject; Item : HITEM;ColIndex : Integer);
begin
end;

procedure HyperLinkClick(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_HyperLinkClickEvent);
begin
end;

begin event HyperLinkClick(long Item,long ColIndex)
end event HyperLinkClick

Private Sub HyperLinkClick(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_HyperLinkClickEvent) Handles HyperLinkClick
End Sub

Private Sub HyperLinkClick(ByVal Item As EXG2ANTTLibCtl.HITEM,ByVal ColIndex
As Long)
End Sub

Private Sub HyperLinkClick(ByVal Item As Long,ByVal ColIndex As Long)
End Sub

LPARAMETERS Item,ColIndex

PROCEDURE OnHyperLinkClick(oG2antt,Item,ColIndex)
RETURN

Java…

VBSc…

<SCRIPT EVENT="HyperLinkClick(Item,ColIndex)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function HyperLinkClick(Item,ColIndex)

Syntax for HyperLinkClick event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

End Function
</SCRIPT>

Procedure OnComHyperLinkClick HITEM llItem Integer llColIndex
 Forward Send OnComHyperLinkClick llItem llColIndex
End_Procedure

METHOD OCX_HyperLinkClick(Item,ColIndex) CLASS MainDialog
RETURN NIL

void onEvent_HyperLinkClick(int _Item,int _ColIndex)
{
}

function HyperLinkClick as v (Item as OLE::Exontrol.G2antt.1::HITEM,ColIndex as N)
end function

function nativeObject_HyperLinkClick(Item,ColIndex)
return

The following VB sample displays the caption of the hyperlink cell that's been clicked:

Private Sub G2antt1_HyperLinkClick(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal ColIndex
As Long)
 Debug.Print G2antt1.Items.CellValue(Item, ColIndex)
End Sub

The following VC sample displays the caption of the hyperlink cell that's been clicked:

#include "Items.h"

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnHyperLinkClickG2antt1(long Item, long ColIndex)
{
 CItems items = m_g2antt.GetItems();
 COleVariant vtItem(Item), vtColumn(ColIndex);
 OutputDebugString(V2S(&items.GetCellValue(vtItem, vtColumn)));
}

The following VB.NET sample displays the caption of the hyperlink cell that's been clicked:

Private Sub AxG2antt1_HyperLinkClick(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_HyperLinkClickEvent) Handles AxG2antt1.HyperLinkClick
 With AxG2antt1.Items
 Debug.WriteLine(.CellValue(e.item, e.colIndex))
 End With
End Sub

The following C# sample displays the caption of the hyperlink cell that's been clicked:

private void axG2antt1_HyperLinkClick(object sender,
AxEXG2ANTTLib._IG2anttEvents_HyperLinkClickEvent e)
{
 System.Diagnostics.Debug.WriteLine(axG2antt1.Items.get_CellValue(e.item, e.colIndex)
);
}

The following VFP sample displays the caption of the hyperlink cell that's been clicked:

*** ActiveX Control Event ***
LPARAMETERS item, colindex

with thisform.G2antt1.Items
 .DefaultItem = item

 wait window nowait .CellValue(0, colindex)
endwith

C#

VB

private void InsideZoom(object sender,DateTime DateTime)
{
}

Private Sub InsideZoom(ByVal sender As System.Object,ByVal DateTime As Date)
Handles InsideZoom
End Sub

C#

C++

private void InsideZoom(object sender,
AxEXG2ANTTLib._IG2anttEvents_InsideZoomEvent e)
{
}

void OnInsideZoom(DATE DateTime)

event InsideZoom (DateTime as Date)
Notifies your application that a date is about to be magnified.

Type Description

DateTime as Date A Date-Time expression that indicates the date being
magnified.

The control InsideZoom event notifies your application once the user adds a new inside
zoom date. Use the InsideZoom event to customize the default format for inside zoom units.
The Item property of the InsideZooms collection retrieves the InsideZoom event being
added. The DefaultInsideZoomFormat property retrieves the InsideZoomFormat object to
customize the format of the time units being magnified. The DefaultInsideZoomFormat
object is applied to all new inside zoom units, unless they are using a custom format. Use
the CustomFormat property (if the AllowCustomFormat property is True) to access the
custom format. If your chart displays inside zoom in the same format, you can use the
DefaultInsideZoomFormat property to specify the format for all inside zoom units. If not,
you can use the CustomFormat property to customize each inside zoom unit. In other
words, the DefaultInsideZoomFormat is applied for all inside zoom units, that has the
AllowCustomFormat property on False (by default). The
ChartStartChanging(exBaseLevelDblClk) event notifies your application once the user
double clicks an unit in the chart's base level (the base level defines the time scale unit
being shown for the bars).

Syntax for InsideZoom event, /NET version, on:

Syntax for InsideZoom event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

void __fastcall InsideZoom(TObject *Sender,DATE DateTime)
{
}

procedure InsideZoom(ASender: TObject; DateTime : TDateTime);
begin
end;

procedure InsideZoom(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_InsideZoomEvent);
begin
end;

begin event InsideZoom(datetime DateTime)
end event InsideZoom

Private Sub InsideZoom(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_InsideZoomEvent) Handles InsideZoom
End Sub

Private Sub InsideZoom(ByVal DateTime As Date)
End Sub

Private Sub InsideZoom(ByVal DateTime As Date)
End Sub

LPARAMETERS DateTime

PROCEDURE OnInsideZoom(oG2antt,DateTime)
RETURN

Java… <SCRIPT EVENT="InsideZoom(DateTime)" LANGUAGE="JScript">
Syntax for InsideZoom event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function InsideZoom(DateTime)
End Function
</SCRIPT>

Procedure OnComInsideZoom DateTime llDateTime
 Forward Send OnComInsideZoom llDateTime
End_Procedure

METHOD OCX_InsideZoom(DateTime) CLASS MainDialog
RETURN NIL

void onEvent_InsideZoom(date _DateTime)
{
}

function InsideZoom as v (DateTime as T)
end function

function nativeObject_InsideZoom(DateTime)
return

C#

VB

private void ItemOleEvent(object sender,int Item,exontrol.EXG2ANTTLib.OleEvent
Ev)
{
}

Private Sub ItemOleEvent(ByVal sender As System.Object,ByVal Item As
Integer,ByVal Ev As exontrol.EXG2ANTTLib.OleEvent) Handles ItemOleEvent
End Sub

C#

C++

private void ItemOleEvent(object sender,
AxEXG2ANTTLib._IG2anttEvents_ItemOleEventEvent e)
{
}

void OnItemOleEvent(long Item,LPDISPATCH Ev)
{
}

event ItemOleEvent (Item as HITEM, Ev as OleEvent)

Fired when an ActiveX control hosted by an item has fired an event.

Type Description

Item as HITEM A long expression that indicates the handle of the item that
hosts an ActiveX control.

Ev as OleEvent An OleEvent object that contains information about the
fired event.

The Exontrol's ExG2antt control supports ActiveX hosting. The InsertItemControl method
inserts an item that hosts an ActiveX control. The ItemOleEvent event notifies your
application that a hosted ActiveX control fires an event. The ItemObject property gets the
ActiveX object hosted by an item that is inserted using the InsertControlItem method. The
ItemObject property gets nothing if the item doesn't host an ActiveX control, or if inserting
an ActiveX control failed).

Syntax for ItemOleEvent event, /NET version, on:

Syntax for ItemOleEvent event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall ItemOleEvent(TObject *Sender,Exg2anttlib_tlb::HITEM
Item,Exg2anttlib_tlb::IOleEvent *Ev)
{
}

procedure ItemOleEvent(ASender: TObject; Item : HITEM;Ev : IOleEvent);
begin
end;

procedure ItemOleEvent(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_ItemOleEventEvent);
begin
end;

begin event ItemOleEvent(long Item,oleobject Ev)
end event ItemOleEvent

Private Sub ItemOleEvent(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_ItemOleEventEvent) Handles ItemOleEvent
End Sub

Private Sub ItemOleEvent(ByVal Item As EXG2ANTTLibCtl.HITEM,ByVal Ev As
EXG2ANTTLibCtl.IOleEvent)
End Sub

Private Sub ItemOleEvent(ByVal Item As Long,ByVal Ev As Object)
End Sub

LPARAMETERS Item,Ev

PROCEDURE OnItemOleEvent(oG2antt,Item,Ev)
RETURN

Syntax for ItemOleEvent event, /COM version (others), on:

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="ItemOleEvent(Item,Ev)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ItemOleEvent(Item,Ev)
End Function
</SCRIPT>

Procedure OnComItemOleEvent HITEM llItem Variant llEv
 Forward Send OnComItemOleEvent llItem llEv
End_Procedure

METHOD OCX_ItemOleEvent(Item,Ev) CLASS MainDialog
RETURN NIL

void onEvent_ItemOleEvent(int _Item,COM _Ev)
{
}

function ItemOleEvent as v (Item as OLE::Exontrol.G2antt.1::HITEM,Ev as
OLE::Exontrol.G2antt.1::IOleEvent)
end function

function nativeObject_ItemOleEvent(Item,Ev)
return

The following VB sample adds an item that hosts the Microsoft Calendar Control and prints
each event fired by that ActiveX control:

G2antt1.Items.ItemHeight(G2antt1.Items.InsertControlItem(, "MSCal.Calendar")) = 256

Private Sub G2antt1_ItemOleEvent(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal Ev As
EXG2ANTTLibCtl.IOleEvent)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following VC sample displays the events that an ActiveX control is firing while it is
hosted by an item:

 #import <exg2antt.dll> rename("GetItems", "exGetItems")

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnItemOleEventG2antt1(long Item, LPDISPATCH Ev)
{
 EXG2ANTTLib::IOleEventPtr spEvent(Ev);
 CString strOutput;

 strOutput.Format("Event's name: %s\n", spEvent->Name.operator const char *());
 OutputDebugString(strOutput);
 if (spEvent->CountParam == 0)
 OutputDebugString("The event has no parameters.");
 else
 {
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 EXG2ANTTLib::IOleEventParamPtr spParam = spEvent->GetParam(COleVariant(i));
 strOutput.Format("Name: %s, Value: %s\n", spParam->Name.operator const char *
(), V2S(&spParam->Value));
 OutputDebugString(strOutput);
 }
 }
 OutputDebugString("");
}

The #import clause is required to get the wrapper classes for IOleEvent and
IOleEventParam objects, that are not defined by the MFC class wizard. The same #import
statement defines the EXG2ANTTLib namespace that include all objects and types of the
control's TypeLibrary. In case your exg2antt.dll library is located to another place than the
system folder or well known path, the path to the library should be provided, in order to let
the VC finds the type library.

The following VB.NET sample displays the events that an ActiveX control is firing while it is
hosted by an item:

Private Sub AxG2antt1_ItemOleEvent(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_ItemOleEventEvent) Handles AxG2antt1.ItemOleEvent
 Debug.WriteLine("Event's name: " & e.ev.Name)
 Dim i As Long
 For i = 0 To e.ev.CountParam - 1
 Dim eP As EXG2ANTTLib.OleEventParam
 eP = e.ev(i)
 Debug.WriteLine("Name: " & e.ev.Name & " Value: " & eP.Value)
 Next
End Sub

The following C# sample displays the events that an ActiveX control is firing while it is

hosted by an item:

private void axG2antt1_ItemOleEvent(object sender,
AxEXG2ANTTLib._IG2anttEvents_ItemOleEventEvent e)
{
 System.Diagnostics.Debug.WriteLine("Event's name: " + e.ev.Name.ToString());
 for (int i= 0; i < e.ev.CountParam ; i++)
 {
 EXG2ANTTLib.IOleEventParam evP = e.ev[i];
 System.Diagnostics.Debug.WriteLine("Name: " + evP.Name.ToString() + ", Value: " +
evP.Value.ToString());
 }
}

The following VFP sample displays the events that an ActiveX control fires when it is hosted
by an item:

*** ActiveX Control Event ***
LPARAMETERS item, ev

local s
s = "Event's name: " + ev.Name
for i = 0 to ev.CountParam - 1
 s = s + "Name: " + ev.Param(i).Name + " ,Value: " + Str(ev.Param(i).Value)
endfor
wait window nowait s

C#

VB

private void KeyDown(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyDown(ByVal sender As System.Object,ByRef KeyCode As
Short,ByVal Shift As Short) Handles KeyDown
End Sub

event KeyDown (KeyCode as Integer, Shift as Integer)

Occurs when the user presses a key while an object has the focus.

Type Description
KeyCode as Integer An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use KeyDown and KeyUp event procedures if you need to respond to both the pressing
and releasing of a key. Use the ExpandOnKeys property to specify whether the user
expands or collapses the focused items using arrow keys. You test for a condition by first
assigning each result to a temporary integer variable and then comparing shift to a bit
mask. Use the And operator with the shift argument to test whether the condition is greater
than 0, indicating that the modifier was pressed, as in this example:

ShiftDown = (Shift And 1) > 0
CtrlDown = (Shift And 2) > 0
AltDown = (Shift And 4) > 0
In a procedure, you can test for any combination of conditions, as in this example:
If AltDown And CtrlDown Then

Syntax for KeyDown event, /NET version, on:

Syntax for KeyDown event, /COM version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

private void KeyDownEvent(object sender,
AxEXG2ANTTLib._IG2anttEvents_KeyDownEvent e)
{
}

void OnKeyDown(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyDown(TObject *Sender,short * KeyCode,short Shift)
{
}

procedure KeyDown(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyDownEvent(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_KeyDownEvent);
begin
end;

begin event KeyDown(integer KeyCode,integer Shift)
end event KeyDown

Private Sub KeyDownEvent(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_KeyDownEvent) Handles KeyDownEvent
End Sub

Private Sub KeyDown(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyDown(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

Xbas… PROCEDURE OnKeyDown(oG2antt,KeyCode,Shift)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="KeyDown(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyDown(KeyCode,Shift)
End Function
</SCRIPT>

Procedure OnComKeyDown Short llKeyCode Short llShift
 Forward Send OnComKeyDown llKeyCode llShift
End_Procedure

METHOD OCX_KeyDown(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyDown(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyDown as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyDown(KeyCode,Shift)
return

Syntax for KeyDown event, /COM version (others), on:

C#

VB

private void KeyPress(object sender,ref short KeyAscii)
{
}

Private Sub KeyPress(ByVal sender As System.Object,ByRef KeyAscii As Short)
Handles KeyPress
End Sub

C#

C++

C++
Builder

private void KeyPressEvent(object sender,
AxEXG2ANTTLib._IG2anttEvents_KeyPressEvent e)
{
}

void OnKeyPress(short FAR* KeyAscii)
{
}

void __fastcall KeyPress(TObject *Sender,short * KeyAscii)
{
}

event KeyPress (KeyAscii as Integer)

Occurs when the user presses and releases an ANSI key.

Type Description
KeyAscii as Integer An integer that returns a standard numeric ANSI keycode.

The KeyPress event lets you immediately test keystrokes for validity or for formatting
characters as they are typed. Changing the value of the keyascii argument changes the
character displayed. Use KeyDown and KeyUp event procedures to handle any keystroke
not recognized by KeyPress, such as function keys, editing keys, navigation keys, and any
combinations of these with keyboard modifiers. Unlike the KeyDown and KeyUp events,
KeyPress does not indicate the physical state of the keyboard; instead, it passes a
character. KeyPress interprets the uppercase and lowercase of each character as
separate key codes and, therefore, as two separate characters.

Syntax for KeyPress event, /NET version, on:

Syntax for KeyPress event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure KeyPress(ASender: TObject; var KeyAscii : Smallint);
begin
end;

procedure KeyPressEvent(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_KeyPressEvent);
begin
end;

begin event KeyPress(integer KeyAscii)
end event KeyPress

Private Sub KeyPressEvent(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_KeyPressEvent) Handles KeyPressEvent
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

LPARAMETERS KeyAscii

PROCEDURE OnKeyPress(oG2antt,KeyAscii)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyPress(KeyAscii)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyPress(KeyAscii)
End Function
</SCRIPT>

Syntax for KeyPress event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComKeyPress Short llKeyAscii
 Forward Send OnComKeyPress llKeyAscii
End_Procedure

METHOD OCX_KeyPress(KeyAscii) CLASS MainDialog
RETURN NIL

void onEvent_KeyPress(COMVariant /*short*/ _KeyAscii)
{
}

function KeyPress as v (KeyAscii as N)
end function

function nativeObject_KeyPress(KeyAscii)
return

C#

VB

private void KeyUp(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyUp(ByVal sender As System.Object,ByRef KeyCode As Short,ByVal
Shift As Short) Handles KeyUp
End Sub

C#

C++

C++
Builder

private void KeyUpEvent(object sender,
AxEXG2ANTTLib._IG2anttEvents_KeyUpEvent e)
{
}

void OnKeyUp(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyUp(TObject *Sender,short * KeyCode,short Shift)

event KeyUp (KeyCode as Integer, Shift as Integer)

Occurs when the user releases a key while an object has the focus.

Type Description
KeyCode as Integer An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use the KeyUp event procedure to respond to the releasing of a key.

Syntax for KeyUp event, /NET version, on:

Syntax for KeyUp event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

procedure KeyUp(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyUpEvent(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_KeyUpEvent);
begin
end;

begin event KeyUp(integer KeyCode,integer Shift)
end event KeyUp

Private Sub KeyUpEvent(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_KeyUpEvent) Handles KeyUpEvent
End Sub

Private Sub KeyUp(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyUp(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyUp(oG2antt,KeyCode,Shift)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyUp(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyUp(KeyCode,Shift)

Syntax for KeyUp event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

End Function
</SCRIPT>

Procedure OnComKeyUp Short llKeyCode Short llShift
 Forward Send OnComKeyUp llKeyCode llShift
End_Procedure

METHOD OCX_KeyUp(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyUp(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyUp as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyUp(KeyCode,Shift)
return

C#

VB

private void LayoutChanged(object sender)
{
}

Private Sub LayoutChanged(ByVal sender As System.Object) Handles
LayoutChanged
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

private void LayoutChanged(object sender, EventArgs e)
{
}

void OnLayoutChanged()
{
}

void __fastcall LayoutChanged(TObject *Sender)
{
}

procedure LayoutChanged(ASender: TObject;);
begin
end;

procedure LayoutChanged(sender: System.Object; e: System.EventArgs);
begin

event LayoutChanged ()

Occurs when column's position or column's size is changed.

Type Description

The LayoutChanged event notifies your application once a column is resized or moved by
drag and drop. Also, the LayoutChanged event may be fired if the item's position is
changed by drag and drop using the AutoDrag property.

Syntax for LayoutChanged event, /NET version, on:

Syntax for LayoutChanged event, /COM version, on:

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

begin event LayoutChanged()
end event LayoutChanged

Private Sub LayoutChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles LayoutChanged
End Sub

Private Sub LayoutChanged()
End Sub

Private Sub LayoutChanged()
End Sub

LPARAMETERS nop

PROCEDURE OnLayoutChanged(oG2antt)
RETURN

Java…

VBSc…

Visual
Data…

Visual
Objects

<SCRIPT EVENT="LayoutChanged()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function LayoutChanged()
End Function
</SCRIPT>

Procedure OnComLayoutChanged
 Forward Send OnComLayoutChanged
End_Procedure

METHOD OCX_LayoutChanged() CLASS MainDialog
RETURN NIL

Syntax for LayoutChanged event, /COM version (others), on:

X++

XBasic

dBASE

void onEvent_LayoutChanged()
{
}

function LayoutChanged as v ()
end function

function nativeObject_LayoutChanged()
return

Since, the LayotChanged event may be fired on different scenarios, you can distingue the
action that previously occurs by storing the ItemFromPoint and/or ColumnFromPoint during
the MouseDown event like in the following VB sample:

Dim iItemFromPointMouseDown As Long
Dim iColumnFromPointMouseDown As Long

Private Sub Form_Load()
 iItemFromPointMouseDown = 0
 iColumnFromPointMouseDown = -1
End Sub

Private Sub G2antt1_LayoutChanged()
 If (iItemFromPointMouseDown <> 0) Then
 Debug.Print "Items section changed"
 Else
 If (iColumnFromPointMouseDown <> -1) Then
 Debug.Print "Columns section changed"
 Else
 Debug.Print "Others"
 End If
 End If
 iItemFromPointMouseDown = 0
 iColumnFromPointMouseDown = -1
End Sub

Private Sub G2antt1_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Dim c As Long, hit As HitTestInfoEnum
 With G2antt1
 iItemFromPointMouseDown = .ItemFromPoint(-1, -1, c, hit)
 iColumnFromPointMouseDown = .ColumnFromPoint(-1, -1)
 End With
End Sub

The sample displays:

"Columns section changed" if any change occurs in the Columns section, like moving a
column to a new position or resizing the column.

"Items section changed", if the user drags an item to a new position using the
AutoDrag property on exAutoDragPosition, exAutoDragPositionKeepIndent and
exAutoDragPositionAny

You can use the LayoutChanged event to save the columns position and size for future use.
Use the Width property to retrieve the column's width. Use the Position property to retrieve
the column's position. The Visible property specifies whether a column is shown or hidden.
Use the ColumnAutoResize property to specify whether the visible columns fit the control's
client area.

There are two options to avoid losing the columns proportions:

Avoiding resizing the control under a specified width, like in the sample:

Private Sub Form_Resize()
On Error Resume Next
 If ScaleWidth / Screen.TwipsPerPixelX > 64 Then
 With G2antt1
 .Left = 0
 .Top = 0
 .Width = ScaleWidth
 .Height = ScaleHeight
 End With
 End If
End Sub

Using the LayoutChanged event to store the columns proportions manually. The

following sample holds the columns proportions when LayoutChanged event is fired.
The sample ensures that the proportions are saved only when the user resizes on of
the control's columns, not when the user resizes the entire control. The proportions are
kept by the Data property of the Column object. The sample can be changed smoothly
by using a simple collection to hold the columns proportions instead using the Data
property of the Column object

Option Explicit
Dim nFit As Long
Private Declare Function PeekMessage Lib "user32" Alias "PeekMessageA"
(lpMsg As MSG, ByVal hwnd As Long, ByVal wMsgFilterMin As Long, ByVal
wMsgFilterMax As Long, ByVal wRemoveMsg As Long) As Long
Private Declare Function TranslateMessage Lib "user32" (lpMsg As MSG) As Long
Private Declare Function DispatchMessage Lib "user32" Alias
"DispatchMessageA" (lpMsg As MSG) As Long
Private Const PM_REMOVE = &H1
Private Type POINTAPI
 x As Long
 y As Long
End Type
Private Type MSG
 hwnd As Long
 message As Long
 wParam As Long
 lParam As Long
 time As Long
 pt As POINTAPI
End Type

Private Sub Form_Load()
 nFit = 0

 onG2anttResize G2antt1
End Sub

Private Sub Form_Resize()
On Error Resume Next
 nFit = nFit + 1

 With G2antt1
 .Left = 0
 .Top = 0
 .Width = ScaleWidth
 .Height = ScaleHeight
 End With
 fit G2antt1

 nFit = nFit - 1
End Sub

Private Sub G2antt1_LayoutChanged()
 If (nFit = 0) Then
 onG2anttResize G2antt1
 End If
End Sub

Private Sub fit(ByVal g As EXG2ANTTLibCtl.G2antt)
 nFit = nFit + 1
 With g
 If (.ColumnAutoResize) Then
 .BeginUpdate
 .ColumnAutoResize = False
 Dim c As EXG2ANTTLibCtl.Column
 For Each c In .Columns
 c.Width = c.Data
 Next
 .ColumnAutoResize = True
 .EndUpdate
 End If
 End With
 waitToProcessMessages
 nFit = nFit - 1
End Sub

Private Sub onG2anttResize(ByVal g As EXG2ANTTLibCtl.G2antt)
 Dim c As Object

 With g
 If (.ColumnAutoResize) Then
 For Each c In .Columns
 c.Data = c.Width
 Next
 End If
 End With
End Sub

Private Sub waitToProcessMessages()
 Dim m As MSG
 While PeekMessage(m, 0, 0, 0, PM_REMOVE)
 TranslateMessage m
 DispatchMessage m
 Wend
End Sub

C#

VB

private void MouseDownEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseDownEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseDownEvent

event MouseDown (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)

Occurs when the user presses a mouse button.

Type Description

Button as Integer
An integer that identifies the button that was pressed to
cause the event as as 1 for Left Mouse Button, 2 for Right
Mouse Button and 4 for Middle Mouse Button.

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. Use the ItemFromPoint property to get the item from point. Use the
ColumnFromPoint property to get the column from point. Use the DateFromPoint property
to specify the date from the cursor. Use the AnchorFromPoint property to retrieve the
identifier of the anchor element from the cursor. The AnchorClick event notifies your
application when the user clicks an anchor element. The NoteFromPoint property retrieves
the note/box from the cursor. Almost all properties that get an object from point supports
-1,-1 coordinate that specifies the current cursor position, so no conversion is required for
X and Y coordinates.

Syntax for MouseDown event, /NET version, on:

End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

private void MouseDownEvent(object sender,
AxEXG2ANTTLib._IG2anttEvents_MouseDownEvent e)
{
}

void OnMouseDown(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseDown(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseDown(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseDownEvent(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_MouseDownEvent);
begin
end;

begin event MouseDown(integer Button,integer Shift,long X,long Y)
end event MouseDown

Private Sub MouseDownEvent(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_MouseDownEvent) Handles MouseDownEvent
End Sub

Private Sub MouseDown(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseDown(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As

Syntax for MouseDown event, /COM version, on:

VFP

Xbas…

Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseDown(oG2antt,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseDown(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseDown(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseDown Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseDown llButton llShift llX llY
End_Procedure

METHOD OCX_MouseDown(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseDown(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseDown as v (Button as N,Shift as N,X as
OLE::Exontrol.G2antt.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.G2antt.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseDown(Button,Shift,X,Y)
return

Syntax for MouseDown event, /COM version (others), on:

The following Access sample prints the cell's caption that has been clicked:

Private Sub G2antt1_MouseDown(ByVal Button As Integer, ByVal Shift As Integer, ByVal X
As Long, ByVal Y As Long)
 Dim h As HITEM
 Dim c As Long, hit As Long
 h = G2antt1.ItemFromPoint(-1, -1, c, hit)
 If Not (h = 0) Then
 MsgBox "The """ & G2antt1.Items.CellValue(h, c) & """ cell has been double clicked."
 End If
End Sub

The following VB sample prints the cell's caption that has been clicked:

Private Sub G2antt1_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 ' Converts the container coordinates to client coordinates
 X = X / Screen.TwipsPerPixelX
 Y = Y / Screen.TwipsPerPixelY
 Dim h As HITEM
 Dim c As Long
 Dim hit As EXG2ANTTLibCtl.HitTestInfoEnum
 ' Gets the item from (X,Y)
 h = G2antt1.ItemFromPoint(X, Y, c, hit)
 If Not (h = 0) Then
 Debug.Print G2antt1.Items.CellValue(h, c) & " HT = " & hit
 End If
End Sub

If you need to add a context menu based on the item you can use the MouseUp event, like
in the following VB sample (the sample uses the Exontrol's ExPopupMenu Component):

Private Sub G2antt1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single)
 If (Button = 2) Then
 ' Converts the container coordinates to client coordinates
 X = X / Screen.TwipsPerPixelX
 Y = Y / Screen.TwipsPerPixelY

https://exontrol.com/expopupmenu.jsp

 Dim h As HITEM
 Dim c As Long, hit as Long
 ' Gets the item from (X,Y)
 h = G2antt1.ItemFromPoint(X, Y, c, hit)
 If Not (h = 0) Then
 Dim i As Long
 PopupMenu1.Items.Add G2antt1.Items.CellValue(h, c)
 i = PopupMenu1.ShowAtCursor
 End If
 End If
End Sub

The following VC sample displays the caption of the cell being clicked:

#include "Items.h"

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnMouseDownG2antt1(short Button, short Shift, long X, long Y)
{
 int c = 0, hit = 0, hItem = m_g2antt.GetItemFromPoint(X, Y, &c, &hit);
 if ((hItem != 0) || (c != 0))
 {
 CItems items = m_g2antt.GetItems();
 COleVariant vtItem(hItem), vtColumn(c);

 CString strCaption = V2S(&items.GetCellValue(vtItem, vtColumn)), strOutput;
 strOutput.Format("Cell: '%s', Hit = %08X\n", strCaption, hit);
 OutputDebugString(strOutput);
 }
}

The following VB.NET sample displays the caption from the cell being clicked:

Private Sub AxG2antt1_MouseDownEvent(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_MouseDownEvent) Handles
AxG2antt1.MouseDownEvent
 With AxG2antt1
 Dim i As Integer, c As Integer, hit As EXG2ANTTLib.HitTestInfoEnum
 i = .get_ItemFromPoint(e.x, e.y, c, hit)
 If (Not (i = 0) Or Not (c = 0)) Then
 Debug.WriteLine("Cell: " & .Items.CellValue(i, c) & " Hit: " & hit.ToString())
 End If
 End With
End Sub

The following C# sample displays the caption from the cell being clicked:

private void axG2antt1_MouseDownEvent(object sender,
AxEXG2ANTTLib._IG2anttEvents_MouseDownEvent e)
{
 int c = 0;
 EXG2ANTTLib.HitTestInfoEnum hit;
 int i = axG2antt1.get_ItemFromPoint(e.x, e.y, out c,out hit);
 if ((i != 0) || (c != 0))
 {
 string s = axG2antt1.Items.get_CellValue(i,c).ToString();
 s = "Cell: " + s + ", Hit: " + hit.ToString();
 System.Diagnostics.Debug.WriteLine(s);
 }
}

The following VFP sample displays the caption from the cell being clicked:

*** ActiveX Control Event ***

LPARAMETERS button, shift, x, y

local c, hit
c = 0
hit = 0
with thisform.G2antt1
 .Items.DefaultItem = .ItemFromPoint(x, y, @c, @hit)
 if (.Items.DefaultItem <> 0) or (c <> 0)
 wait window nowait .Items.CellValue(0, c) + " " + Str(hit)
 endif
endwith

The following VB sample displays the start data of the bar from the point:

Private Sub G2antt1_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With G2antt1
 Dim h As HITEM, c As Long, hit As HitTestInfoEnum
 h = .ItemFromPoint(-1, -1, c, hit)
 If Not (h = 0) Then
 Dim k As Variant
 k = .Chart.BarFromPoint(-1, -1)
 If Not IsEmpty(k) Then
 Debug.Print .Items.ItemBar(h, k, exBarStart)
 End If
 End If
 End With
End Sub

The following C++ sample displays the start data of the bar from the point:

#include "Items.h"
#include "Chart.h"

CString V2Date(VARIANT* pvtValue)
{
 COleVariant vtDate;
 vtDate.ChangeType(VT_BSTR, pvtValue);

 return V_BSTR(&vtDate);
}

void OnMouseDownG2antt1(short Button, short Shift, long X, long Y)
{
 long c = 0, hit = 0, h = m_g2antt.GetItemFromPoint(-1, -1, &c, &hit);
 if (h != 0)
 {
 COleVariant vtKey = m_g2antt.GetChart().GetBarFromPoint(-1, -1);
 if (V_VT(&vtKey) != VT_EMPTY)
 {
 COleVariant vtStart = m_g2antt.GetItems().GetItemBar(h, vtKey, 1 /*exBarStart*/);
 OutputDebugString(V2Date(&vtStart));
 }
 }
}

The following VB.NET sample displays the start data of the bar from the point:

Private Sub AxG2antt1_MouseDownEvent(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_MouseDownEvent) Handles
AxG2antt1.MouseDownEvent
 With AxG2antt1
 Dim c As Long, hit As EXG2ANTTLib.HitTestInfoEnum, h As Integer =
.get_ItemFromPoint(-1, -1, c, hit)
 If Not (h = 0) Then
 Dim k As Object
 k = .Chart.BarFromPoint(-1, -1)
 If Not k Is Nothing Then
 System.Diagnostics.Debug.WriteLine(.Items.ItemBar(h, k,
EXG2ANTTLib.ItemBarPropertyEnum.exBarStart))
 End If
 End If
 End With
End Sub

The following C# sample displays the start data of the bar from the point:

private void axG2antt1_MouseDownEvent(object sender,
AxEXG2ANTTLib._IG2anttEvents_MouseDownEvent e)
{
 int c = 0;
 EXG2ANTTLib.HitTestInfoEnum hit = EXG2ANTTLib.HitTestInfoEnum.exHTCell;
 int h = axG2antt1.get_ItemFromPoint(-1, -1, out c, out hit);
 if (h != 0)
 {
 object k = axG2antt1.Chart.get_BarFromPoint(-1, -1);
 if (k != null)
 System.Diagnostics.Debug.WriteLine(axG2antt1.Items.get_ItemBar(h, k,
EXG2ANTTLib.ItemBarPropertyEnum.exBarStart));
 }
}

The following VFP sample displays the start data of the bar from the point:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

With thisform.G2antt1
 local h, c, hit
 h = .ItemFromPoint(-1, -1, c, hit)
 If (h # 0) Then
 local k
 k = .Chart.BarFromPoint(-1, -1)
 If !Empty(k) Then
 ? .Items.ItemBar(h, k, 1)
 EndIf
 EndIf
EndWith

C# private void MouseMoveEvent(object sender,short Button,short Shift,int X,int Y)
{
}

event MouseMove (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)

Occurs when the user moves the mouse.

Type Description

Button as Integer
Gets which mouse button was pressed as 1 for Left
Mouse Button, 2 for Right Mouse Button and 4 for Middle
Mouse Button.

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

The MouseMove event is generated continually as the mouse pointer moves across objects.
Unless another object has captured the mouse, an object recognizes a MouseMove event
whenever the mouse position is within its borders. Use the ItemFromPoint property to get
the item from cursor. Use the ColumnFromPoint property to get the column from point. Use
the DateFromPoint property to specify the date from the cursor. Use the BarFromPoint
property to get the bar from the point. Use the LinkFromPoint property to get the link from
the point. Use the LevelFromPoint property to retrieve the index of the level from the cursor.
Use the AnchorFromPoint property to retrieve the identifier of the anchor element from the
cursor. The NoteFromPoint property retrieves the note/box from the cursor. The
TimeZoneFromPoint property retrieves the key of the time-zone from the cursor.

Almost all properties that get an object from point supports -1,-1 coordinate that specifies
the current cursor position, so no conversion is required for X and Y coordinates.

Use the DrawDateTicker property to draw a ticker as cursor hovers the chart's area. Use
the Background(exHoverColumn) property to change the visual appearance of the column's
header when the cursor hovers it.

Syntax for MouseMove event, /NET version, on:

VB

Private Sub MouseMoveEvent(ByVal sender As System.Object,ByVal Button As Short,ByVal
Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles MouseMoveEvent
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

private void MouseMoveEvent(object sender,
AxEXG2ANTTLib._IG2anttEvents_MouseMoveEvent e)
{
}

void OnMouseMove(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseMove(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseMove(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseMoveEvent(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_MouseMoveEvent);
begin
end;

begin event MouseMove(integer Button,integer Shift,long X,long Y)
end event MouseMove

Private Sub MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_MouseMoveEvent) Handles MouseMoveEvent
End Sub

Syntax for MouseMove event, /COM version, on:

VB6

VBA

VFP

Xbas…

Private Sub MouseMove(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseMove(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseMove(oG2antt,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

Visual
Objects

<SCRIPT EVENT="MouseMove(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseMove(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseMove Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseMove llButton llShift llX llY
End_Procedure

METHOD OCX_MouseMove(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseMove(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseMove as v (Button as N,Shift as N,X as
OLE::Exontrol.G2antt.1::OLE_XPOS_PIXELS,Y as

Syntax for MouseMove event, /COM version (others), on:

dBASE

OLE::Exontrol.G2antt.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseMove(Button,Shift,X,Y)
return

The following Access sample prints the cell's caption from the cursor:

Private Sub G2antt1_MouseMove(ByVal Button As Integer, ByVal Shift As Integer, ByVal X
As Long, ByVal Y As Long)
 Dim h As HITEM
 Dim c As Long, hit As Long
 h = G2antt1.ItemFromPoint(-1, -1, c, hit)
 If Not (h = 0) Then
 Debug.Print "The """ & G2antt1.Items.CellValue(h, c) & """ cell has been double
clicked."
 End If
End Sub

The following VB sample prints the cell's caption from the cursor (if the control contains no
inner cells. Use the SplitCell property to insert inner cells) :

Private Sub G2antt1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 On Error Resume Next
 ' Converts the container coordinates to client coordinates
 X = X / Screen.TwipsPerPixelX
 Y = Y / Screen.TwipsPerPixelY
 Dim h As HITEM
 Dim c As Long
 Dim hit As EXG2ANTTLibCtl.HitTestInfoEnum
 ' Gets the item from (X,Y)
 h = G2antt1.ItemFromPoint(X, Y, c, hit)
 If Not (h = 0) Then
 Debug.Print G2antt1.Items.CellValue(h, c) & " HT = " & hit
 End If
End Sub

The following VB sample displays the cell's caption from the cursor (if the control contains
inner cells):

Private Sub G2antt1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 On Error Resume Next
 ' Converts the container coordinates to client coordinates
 X = X / Screen.TwipsPerPixelX
 Y = Y / Screen.TwipsPerPixelY
 Dim h As HITEM
 Dim c As Long
 Dim hit As EXG2ANTTLibCtl.HitTestInfoEnum
 ' Gets the item from (X,Y)
 h = G2antt1.ItemFromPoint(X, Y, c, hit)
 If Not (h = 0) Or Not (c = 0) Then
 Debug.Print G2antt1.Items.CellValue(h, c) & " HT = " & hit
 End If
End Sub

The following VB sample displays the date from the cursor:

Private Sub G2antt1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 With G2antt1.Chart
 Dim d As Date
 d = .DateFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 Debug.Print .FormatDate(d, "<%m%>/<%d%>/<%yyyy%>")
 End With
End Sub

The following C++ sample displays the cell's from the point:

#include "Items.h"

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {

 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnMouseMoveG2antt1(short Button, short Shift, long X, long Y)
{
 long c = 0, hit = 0, hItem = m_g2antt.GetItemFromPoint(X, Y, &c, &hit);
 if ((hItem != 0) || (c != 0))
 {
 CItems items = m_g2antt.GetItems();
 COleVariant vtItem(hItem), vtColumn(c);
 CString strCaption = V2S(&items.GetCellValue(vtItem, vtColumn)), strOutput;
 strOutput.Format("Cell: '%s', Hit = %08X\n", strCaption, hit);
 OutputDebugString(strOutput);
 }
}

The following C++ sample displays the date from the point:

void OnMouseMoveG2antt1(short Button, short Shift, long X, long Y)
{
 CChart chart = m_g2antt.GetChart();
 DATE d = chart.GetDateFromPoint(X, Y);
 CString strFormat = chart.GetFormatDate(d, "<%m%>/<%d%>/<%yyyy%>");
 OutputDebugString(strFormat);
}

The following VB.NET sample displays the cell's from the point:

Private Sub AxG2antt1_MouseMoveEvent(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_MouseMoveEvent) Handles AxG2antt1.MouseMoveEvent
 With AxG2antt1

 Dim i As Integer, c As Integer, hit As EXG2ANTTLib.HitTestInfoEnum
 i = .get_ItemFromPoint(e.x, e.y, c, hit)
 If (Not (i = 0) Or Not (c = 0)) Then
 Debug.WriteLine("Cell: " & .Items.CellValue(i, c) & " Hit: " & hit.ToString())
 End If
 End With
End Sub

The following VB.NET sample displays the date from the point:

Private Sub AxG2antt1_MouseMoveEvent(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_MouseMoveEvent) Handles AxG2antt1.MouseMoveEvent
 With AxG2antt1.Chart
 Dim d As Date
 d = .DateFromPoint(e.x, e.y)
 Debug.Write(.FormatDate(d, "<%m%>/<%d%>/<%yyyy%>"))
 End With
End Sub

The following C# sample displays the cell's from the point:

private void axG2antt1_MouseMoveEvent(object sender,
AxEXG2ANTTLib._IG2anttEvents_MouseMoveEvent e)
{
 int c = 0;
 EXG2ANTTLib.HitTestInfoEnum hit;
 int i = axG2antt1.get_ItemFromPoint(e.x, e.y, out c,out hit);
 if ((i != 0) || (c != 0))
 {
 object cap = axG2antt1.Items.get_CellValue(i, c);
 string s = cap != null ? cap.ToString() : "";
 s = "Cell: " + s + ", Hit: " + hit.ToString();
 System.Diagnostics.Debug.WriteLine(s);
 }
}

The following C# sample displays the date from the point:

private void axG2antt1_MouseMoveEvent(object sender,

AxEXG2ANTTLib._IG2anttEvents_MouseMoveEvent e)
{
 DateTime d = axG2antt1.Chart.get_DateFromPoint(e.x, e.y);
 System.Diagnostics.Debug.Write(axG2antt1.Chart.get_FormatDate(d, "
<%m%>/<%d%>/<%yyyy%>"));
}

The following VFP sample displays the cell's from the point:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

local c, hit
c = 0
hit = 0
with thisform.G2antt1
 .Items.DefaultItem = .ItemFromPoint(x, y, @c, @hit)
 if (.Items.DefaultItem <> 0) or (c <> 0)
 wait window nowait .Items.CellValue(0, c) + " " + Str(hit)
 endif
endwith

The following VFP sample displays the date from the point:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.G2antt1.Chart
 d = .DateFromPoint(x,y)
 wait window nowait .FormatDate(d, "<%m%>/<%d%>/<%yyyy%>")
endwith

C#

VB

private void MouseUpEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseUpEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseUpEvent
End Sub

event MouseUp (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)

Occurs when the user releases a mouse button.

Type Description

Button as Integer
An integer that identifies the button that was pressed to
cause the event as as 1 for Left Mouse Button, 2 for Right
Mouse Button and 4 for Middle Mouse Button.

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. Use the ItemFromPoint property to get the item from point. Use the
ColumnFromPoint property to get the column from point. Use the DateFromPoint property
to specify the date from the cursor. The NoteFromPoint property retrieves the note/box
from the cursor. Use the AnchorFromPoint property to retrieve the identifier of the anchor
element from the cursor. Almost all properties that get an object from point supports -1,-1
coordinate that specifies the current cursor position, so no conversion is required for X
and Y coordinates.

Syntax for MouseUp event, /NET version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

private void MouseUpEvent(object sender,
AxEXG2ANTTLib._IG2anttEvents_MouseUpEvent e)
{
}

void OnMouseUp(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseUp(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseUp(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseUpEvent(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_MouseUpEvent);
begin
end;

begin event MouseUp(integer Button,integer Shift,long X,long Y)
end event MouseUp

Private Sub MouseUpEvent(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_MouseUpEvent) Handles MouseUpEvent
End Sub

Private Sub MouseUp(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseUp(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

Syntax for MouseUp event, /COM version, on:

VFP

Xbas…

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseUp(oG2antt,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseUp(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseUp(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseUp Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseUp llButton llShift llX llY
End_Procedure

METHOD OCX_MouseUp(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseUp(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseUp as v (Button as N,Shift as N,X as
OLE::Exontrol.G2antt.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.G2antt.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseUp(Button,Shift,X,Y)
return

Syntax for MouseUp event, /COM version (others), on:

The following Access sample prints the cell's caption where the mouse has been released:

Private Sub G2antt1_MouseUp(ByVal Button As Integer, ByVal Shift As Integer, ByVal X As
Long, ByVal Y As Long)
 Dim h As HITEM
 Dim c As Long, hit As Long
 h = G2antt1.ItemFromPoint(-1, -1, c, hit)
 If Not (h = 0) Then
 MsgBox "The """ & G2antt1.Items.CellValue(h, c) & """ cell has been double clicked."
 End If
End Sub

The following VB sample prints the cell's caption where the mouse has been released:

Private Sub G2antt1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single)
 ' Converts the container coordinates to client coordinates
 X = X / Screen.TwipsPerPixelX
 Y = Y / Screen.TwipsPerPixelY
 Dim h As HITEM
 Dim c As Long, hit as Long
 ' Gets the item from (X,Y)
 h = G2antt1.ItemFromPoint(X, Y, c, hit)
 If Not (h = 0) Then
 Debug.Print G2antt1.Items.CellValue(h, c)
 End If
End Sub

If you need to add a context menu based on the item you can use the MouseUp event, like
in the following VB sample (the sample uses the Exontrol's ExPopupMenu Component):

Private Sub G2antt1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single)
 If (Button = 2) Then
 ' Converts the container coordinates to client coordinates
 X = X / Screen.TwipsPerPixelX
 Y = Y / Screen.TwipsPerPixelY
 Dim h As HITEM
 Dim c As Long, hit as Long
 ' Gets the item from (X,Y)

https://exontrol.com/expopupmenu.jsp

 h = G2antt1.ItemFromPoint(X, Y, c, hit)
 If Not (h = 0) Then
 Dim i As Long
 PopupMenu1.Items.Add G2antt1.Items.CellValue(h, c)
 i = PopupMenu1.ShowAtCursor
 End If
 End If
End Sub

The following VC sample displays the caption of the cell where the mouse is released:

#include "Items.h"

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnMouseUpG2antt1(short Button, short Shift, long X, long Y)
{
 long c = 0, hit = 0, hItem = m_g2antt.GetItemFromPoint(X, Y, &c, &hit);
 if ((hItem != 0) || (c != 0))
 {
 CItems items = m_g2antt.GetItems();
 COleVariant vtItem(hItem), vtColumn(c);
 CString strCaption = V2S(&items.GetCellValue(vtItem, vtColumn)), strOutput;
 strOutput.Format("Cell: '%s', Hit = %08X\n", strCaption, hit);
 OutputDebugString(strOutput);

 }
}

The following VB.NET sample displays the caption of the cell where the mouse is released:

Private Sub AxG2antt1_MouseUpEvent(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_MouseUpEvent) Handles AxG2antt1.MouseUpEvent
 With AxG2antt1
 Dim i As Integer, c As Integer, hit As EXG2ANTTLib.HitTestInfoEnum
 i = .get_ItemFromPoint(e.x, e.y, c, hit)
 If (Not (i = 0) Or Not (c = 0)) Then
 Debug.WriteLine("Cell: " & .Items.CellValue(i, c) & " Hit: " & hit.ToString())
 End If
 End With
End Sub

The following C# sample displays the caption of the cell where the mouse is released:

private void axG2antt1_MouseUpEvent(object sender,
AxEXG2ANTTLib._IG2anttEvents_MouseUpEvent e)
{
 int c = 0;
 EXG2ANTTLib.HitTestInfoEnum hit;
 int i = axG2antt1.get_ItemFromPoint(e.x, e.y, out c,out hit);
 if ((i != 0) || (c != 0))
 {
 string s = axG2antt1.Items.get_CellValue(i,c).ToString();
 s = "Cell: " + s + ", Hit: " + hit.ToString();
 System.Diagnostics.Debug.WriteLine(s);
 }
}

The following VFP sample displays the caption of the cell where the mouse is released:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

local c, hit
c = 0

hit = 0
with thisform.G2antt1
 .Items.DefaultItem = .ItemFromPoint(x, y, @c, @hit)
 if (.Items.DefaultItem <> 0) or (c <> 0)
 wait window nowait .Items.CellValue(0, c) + " " + Str(hit)
 endif
endwith

C#

VB

private void OffsetChanged(object sender,bool Horizontal,int NewVal)
{
}

Private Sub OffsetChanged(ByVal sender As System.Object,ByVal Horizontal As
Boolean,ByVal NewVal As Integer) Handles OffsetChanged
End Sub

C#

C++

C++
Builder

private void OffsetChanged(object sender,
AxEXG2ANTTLib._IG2anttEvents_OffsetChangedEvent e)
{
}

void OnOffsetChanged(BOOL Horizontal,long NewVal)
{
}

void __fastcall OffsetChanged(TObject *Sender,VARIANT_BOOL Horizontal,long

event OffsetChanged (Horizontal as Boolean, NewVal as Long)

Occurs when the scroll position has been changed.

Type Description

Horizontal as Boolean A boolean expression that indicates whether the horizontal
scroll bar has changed.

NewVal as Long A long value that indicates the new scroll bar value in
pixels.

If the control has no scroll bars the OffsetChanged and OversizeChanged events are not
fired. Use the ScrollBars property of the control to determine which scroll bars are visible
within the control. The OffsetChanged event is not fired when the user scrolls the chart's
part of the control. In this case, the DateChange event is fired. The OffseyChanged event is
fired only when the user scrolls horizontally the columns section of the control, or when the
user scrolls vertically the items part of the control (including the chart part). The ScrollPos
property can be used to programmatically scroll the control's content at giving position.

Syntax for OffsetChanged event, /NET version, on:

Syntax for OffsetChanged event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

NewVal)
{
}

procedure OffsetChanged(ASender: TObject; Horizontal : WordBool;NewVal :
Integer);
begin
end;

procedure OffsetChanged(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_OffsetChangedEvent);
begin
end;

begin event OffsetChanged(boolean Horizontal,long NewVal)
end event OffsetChanged

Private Sub OffsetChanged(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_OffsetChangedEvent) Handles OffsetChanged
End Sub

Private Sub OffsetChanged(ByVal Horizontal As Boolean,ByVal NewVal As Long)
End Sub

Private Sub OffsetChanged(ByVal Horizontal As Boolean,ByVal NewVal As Long)
End Sub

LPARAMETERS Horizontal,NewVal

PROCEDURE OnOffsetChanged(oG2antt,Horizontal,NewVal)
RETURN

Java… <SCRIPT EVENT="OffsetChanged(Horizontal,NewVal)" LANGUAGE="JScript">
</SCRIPT>

Syntax for OffsetChanged event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function OffsetChanged(Horizontal,NewVal)
End Function
</SCRIPT>

Procedure OnComOffsetChanged Boolean llHorizontal Integer llNewVal
 Forward Send OnComOffsetChanged llHorizontal llNewVal
End_Procedure

METHOD OCX_OffsetChanged(Horizontal,NewVal) CLASS MainDialog
RETURN NIL

void onEvent_OffsetChanged(boolean _Horizontal,int _NewVal)
{
}

function OffsetChanged as v (Horizontal as L,NewVal as N)
end function

function nativeObject_OffsetChanged(Horizontal,NewVal)
return

The following VB sample displays the new scroll position when user scrolls horizontally the
control:

Private Sub G2antt1_OffsetChanged(ByVal Horizontal As Boolean, ByVal NewVal As Long)
 If (Horizontal) Then
 Debug.Print "The horizontal scroll bar has been moved to " & NewVal
 End If
End Sub

The following VC sample displays the new scroll position when the user scrolls vertically the
control:

void OnOffsetChangedG2antt1(BOOL Horizontal, long NewVal)
{
 if (!Horizontal)

 {
 CString strFormat;
 strFormat.Format("NewPos = %i\n", NewVal);
 OutputDebugString(strFormat);
 }
}

The following VB.NET sample displays the new scroll position when the user scrolls
vertically the control:

Private Sub AxG2antt1_OffsetChanged(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_OffsetChangedEvent) Handles AxG2antt1.OffsetChanged
 If (Not e.horizontal) Then
 Debug.WriteLine(e.newVal)
 End If
End Sub

The following C# sample displays the new scroll position when the user scrolls vertically the
control:

private void axG2antt1_OffsetChanged(object sender,
AxEXG2ANTTLib._IG2anttEvents_OffsetChangedEvent e)
{
 if (!e.horizontal)
 System.Diagnostics.Debug.WriteLine(e.newVal);
}

The following VFP sample displays the new scroll position when the user scrolls vertically
the control:

*** ActiveX Control Event ***
LPARAMETERS horizontal, newval

if (0 # horizontal)
 wait window nowait str(newval)
endif

C#

VB

// OLECompleteDrag event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

// OLECompleteDrag event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

C# private void OLECompleteDrag(object sender,

event OLECompleteDrag (Effect as Long)
Occurs when a source component is dropped onto a target component, informing the
source component that a drag action was either performed or canceled

Type Description

Effect as Long

A long set by the source object identifying the action that
has been performed, thus allowing the source to take
appropriate action if the component was moved (such as
the source deleting data if it is moved from one component
to another

The OLECompleteDrag event is the final event to be called in an OLE drag/drop operation.
This event informs the source component of the action that was performed when the object
was dropped onto the target component. The target sets this value through the effect
parameter of the OLEDragDrop event. Based on this, the source can then determine the
appropriate action it needs to take. For example, if the object was moved into the target
(exDropEffectMove), the source needs to delete the object from itself after the move. The
control supports only manual OLE drag and drop events. In order to enable OLE drag and
drop feature into control you have to set the OLEDropMode and OLEDrag properties.

The settings for Effect are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

Syntax for OLECompleteDrag event, /NET version, on:

Syntax for OLECompleteDrag event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

AxEXG2ANTTLib._IG2anttEvents_OLECompleteDragEvent e)
{
}

void OnOLECompleteDrag(long Effect)
{
}

void __fastcall OLECompleteDrag(TObject *Sender,long Effect)
{
}

procedure OLECompleteDrag(ASender: TObject; Effect : Integer);
begin
end;

procedure OLECompleteDrag(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_OLECompleteDragEvent);
begin
end;

begin event OLECompleteDrag(long Effect)
end event OLECompleteDrag

Private Sub OLECompleteDrag(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_OLECompleteDragEvent) Handles
OLECompleteDrag
End Sub

Private Sub OLECompleteDrag(ByVal Effect As Long)
End Sub

Private Sub OLECompleteDrag(ByVal Effect As Long)
End Sub

LPARAMETERS Effect

Xbas…

PROCEDURE OnOLECompleteDrag(oG2antt,Effect)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="OLECompleteDrag(Effect)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLECompleteDrag(Effect)
End Function
</SCRIPT>

Procedure OnComOLECompleteDrag Integer llEffect
 Forward Send OnComOLECompleteDrag llEffect
End_Procedure

METHOD OCX_OLECompleteDrag(Effect) CLASS MainDialog
RETURN NIL

// OLECompleteDrag event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

function OLECompleteDrag as v (Effect as N)
end function

function nativeObject_OLECompleteDrag(Effect)
return

Syntax for OLECompleteDrag event, /COM version (others), on:

event OLEDragDrop (Data as ExDataObject, Effect as Long, Button as
Integer, Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS)
Occurs when a source component is dropped onto a target component when the source
component determines that a drop can occur.

Type Description

Data as ExDataObject

An ExDataObject object containing formats that the source
will provide and, in addition, possibly the data for those
formats. If no data is contained in the ExDataObject, it is
provided when the control calls the GetData method. The
SetData and Clear methods cannot be used here.

Effect as Long

A Long set by the target component identifying the action
that has been performed (if any), thus allowing the source
to take appropriate action if the component was moved
(such as the source deleting the data). The possible
values are listed in Remarks.

Button as Integer

An integer which acts as a bit field corresponding to the
state of a mouse button when it is depressed. The left
button is bit 0, the right button is bit 1, and the middle
button is bit 2. These bits correspond to the values 1, 2,
and 4, respectively. It indicates the state of the mouse
buttons; some, all, or none of these three bits can be set,
indicating that some, all, or none of the buttons are
depressed.

Shift as Integer

An integer which acts as a bit field corresponding to the
state of the SHIFT, CTRL, and ALT keys when they are
depressed. The SHIFT key is bit 0, the CTRL key is bit 1,
and the ALT key is bit 2. These bits correspond to the
values 1, 2, and 4, respectively. The shift parameter
indicates the state of these keys; some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are depressed. For example, if both the CTRL and
ALT keys were depressed, the value of shift would be 6.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

C#

VB

// OLEDragDrop event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

// OLEDragDrop event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

C#

C++

private void OLEDragDrop(object sender,
AxEXG2ANTTLib._IG2anttEvents_OLEDragDropEvent e)
{
}

void OnOLEDragDrop(LPDISPATCH Data,long FAR* Effect,short Button,short
Shift,long X,long Y)
{
}

In the /NET Assembly, you have to use the DragDrop event as explained here:

https://www.exontrol.com/sg.jsp?content=support/faq/net/#dragdrop

The OLEDragDrop event is fired when the user has dropped files or clipboard information
into the control. Use the OLEDropMode property on exOLEDropManual to enable OLE
drop and drop support. Use the ItemFromPoint property to get the item from point. Use the
ColumnFromPoint property to get the column from point. Use the AddItem method to add a
new item to the control. Use the InsertItem method to insert a new child item. Use the
ItemPosition property to specify the item's position.

The settings for Effect are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

Syntax for OLEDragDrop event, /NET version, on:

Syntax for OLEDragDrop event, /COM version, on:

https://exontrol.com/faq.jsp/net/#dragdrop

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall OLEDragDrop(TObject *Sender,Exg2anttlib_tlb::IExDataObject *Data,long *
Effect,short Button,short Shift,int X,int Y)
{
}

procedure OLEDragDrop(ASender: TObject; Data : IExDataObject;var Effect :
Integer;Button : Smallint;Shift : Smallint;X : Integer;Y : Integer);
begin
end;

procedure OLEDragDrop(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_OLEDragDropEvent);
begin
end;

begin event OLEDragDrop(oleobject Data,long Effect,integer Button,integer
Shift,long X,long Y)
end event OLEDragDrop

Private Sub OLEDragDrop(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_OLEDragDropEvent) Handles OLEDragDrop
End Sub

Private Sub OLEDragDrop(ByVal Data As EXG2ANTTLibCtl.IExDataObject,Effect As
Long,ByVal Button As Integer,ByVal Shift As Integer,ByVal X As Single,ByVal Y As
Single)
End Sub

Private Sub OLEDragDrop(ByVal Data As Object,Effect As Long,ByVal Button As
Integer,ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long)
End Sub

LPARAMETERS Data,Effect,Button,Shift,X,Y

PROCEDURE OnOLEDragDrop(oG2antt,Data,Effect,Button,Shift,X,Y)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="OLEDragDrop(Data,Effect,Button,Shift,X,Y)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLEDragDrop(Data,Effect,Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComOLEDragDrop Variant llData Integer llEffect Short llButton
Short llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS llY
 Forward Send OnComOLEDragDrop llData llEffect llButton llShift llX llY
End_Procedure

METHOD OCX_OLEDragDrop(Data,Effect,Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

// OLEDragDrop event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

function OLEDragDrop as v (Data as OLE::Exontrol.G2antt.1::IExDataObject,Effect
as N,Button as N,Shift as N,X as OLE::Exontrol.G2antt.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.G2antt.1::OLE_YPOS_PIXELS)
end function

function nativeObject_OLEDragDrop(Data,Effect,Button,Shift,X,Y)
return

Syntax for OLEDragDrop event, /COM version (others), on:

The following VB sample adds a new item when the user drags a file (Open the Windows
Explorer, click and drag a file to the control) :

Private Sub G2antt1_OLEDragDrop(Index As Integer, ByVal Data As
EXG2ANTTLibCtl.IExDataObject, Effect As Long, ByVal Button As Integer, ByVal Shift As

Integer, ByVal X As Single, ByVal Y As Single)
 If Data.GetFormat(exCFFiles) Then
 Data.GetData (exCFFiles)
 Dim strFile As String
 strFile = Data.Files(0)
 'Adds a new item to the control
 G2antt1(Index).Visible = False
 With G2antt1(Index)
 .BeginUpdate
 Dim i As HITEM
 i = .Items.AddItem(strFile)
 .Items.EnsureVisibleItem i
 .EndUpdate
 End With
 G2antt1(Index).Visible = True
 End If
End Sub

The following VC sample inserts a child item for each file that user drags:

#import <exg2antt.dll> rename("GetItems", "exGetItems")

#include "Items.h"
void OnOLEDragDropG2antt1(LPDISPATCH Data, long FAR* Effect, short Button, short
Shift, long X, long Y)
{
 EXG2ANTTLib::IExDataObjectPtr spData(Data);
 if (spData != NULL)
 if (spData->GetFormat(EXG2ANTTLib::exCFFiles))
 {
 CItems items = m_g2antt.GetItems();
 // Gets the handle of the item where the files will be inserted
 long c = 0, h = 0, nParentItem = m_g2antt.GetItemFromPoint(X, Y, &c, &h);
 if (nParentItem == 0)
 if (c != 0)
 nParentItem = items.GetCellItem(c);
 EXG2ANTTLib::IExDataObjectFilesPtr spFiles(spData->Files);

 if (spFiles->Count > 0)
 {
 m_g2antt.BeginUpdate();
 COleVariant vtMissing; vtMissing.vt = VT_ERROR;
 for (long i = 0; i < spFiles->Count; i++)
 items.InsertItem(nParentItem, vtMissing, COleVariant(spFiles->GetItem(i
).operator const char *()));
 if (nParentItem)
 items.SetExpandItem(nParentItem, TRUE);
 m_g2antt.EndUpdate();
 }

 }
}

The #import statement imports definition for the ExDataObject and ExDataObjectFiles
objects. If the exg2antt.dll file is located in another folder than the system folder, the path to
the file must be specified. The sample gets the item where the files were dragged and
insert all files in that position, as child items, if case.

The following VB.NET sample inserts a child item for each file that user drags:

Private Sub AxG2antt1_OLEDragDrop(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_OLEDragDropEvent) Handles AxG2antt1.OLEDragDrop
 If e.data.GetFormat(EXG2ANTTLib.exClipboardFormatEnum.exCFFiles) Then
 If (e.data.Files.Count > 0) Then
 AxG2antt1.BeginUpdate()
 With AxG2antt1.Items
 Dim iParent As Integer, c As Integer, hit As EXG2ANTTLib.HitTestInfoEnum
 iParent = AxG2antt1.get_ItemFromPoint(e.x, e.y, c, hit)
 If iParent = 0 Then
 If Not c = 0 Then
 iParent = .CellItem(c)
 End If
 End If
 Dim i As Long
 For i = 0 To e.data.Files.Count - 1
 .InsertItem(iParent, , e.data.Files(i))

 Next
 If Not (iParent = 0) Then
 .ExpandItem(iParent) = True
 End If
 End With
 AxG2antt1.EndUpdate()
 End If
 End If
End Sub

The following C# sample inserts a child item for each file that user drags:

private void axG2antt1_OLEDragDrop(object sender,
AxEXG2ANTTLib._IG2anttEvents_OLEDragDropEvent e)
{
 if (e.data.GetFormat(
Convert.ToInt16(EXG2ANTTLib.exClipboardFormatEnum.exCFFiles)))
 if (e.data.Files.Count > 0)
 {
 EXG2ANTTLib.HitTestInfoEnum hit;
 int c = 0, iParent = axG2antt1.get_ItemFromPoint(e.x, e.y, out c, out hit);
 if (iParent == 0)
 if (c != 0)
 iParent = axG2antt1.Items.get_CellItem(c);

 axG2antt1.BeginUpdate();
 for (int i = 0; i < e.data.Files.Count; i++)
 axG2antt1.Items.InsertItem(iParent,"", e.data.Files[i].ToString());
 if (iParent != 0)
 axG2antt1.Items.set_ExpandItem(iParent, true);
 axG2antt1.EndUpdate();
 }
}

The following VFP sample inserts a child item for each file that user drags:

*** ActiveX Control Event ***
LPARAMETERS data, effect, button, shift, x, y

local c, hit, iParent
c = 0
hit = 0
if (data.GetFormat(15)) && exCFFiles
 if (data.Files.Count() > 0)
 with thisform.G2antt1.Items
 iParent = thisform.G2antt1.ItemFromPoint(x, y, @c, @hit)

 thisform.G2antt1.BeginUpdate()
 for i = 0 to data.files.Count() - 1
 .InsertItem(iParent, "", data.files(i))
 next
 if (iParent != 0)
 .DefaultItem = iParent
 .ExpandItem(0) = .t.
 endif
 thisform.G2antt1.EndUpdate()
 endwith
 endif
endif

event OLEDragOver (Data as ExDataObject, Effect as Long, Button as
Integer, Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS, State as Integer)
Occurs when one component is dragged over another.

Type Description

Data as ExDataObject

An ExDataObject object containing formats that the source
will provide and, in addition, possibly the data for those
formats. If no data is contained in the ExDataObject, it is
provided when the control calls the GetData method. The
SetData and Clear methods cannot be used here

Effect as Long

A Long set by the target component identifying the action
that has been performed (if any), thus allowing the source
to take appropriate action if the component was moved
(such as the source deleting the data). The possible
values are listed in Remarks.

Button as Integer

An integer which acts as a bit field corresponding to the
state of a mouse button when it is depressed. The left
button is bit 0, the right button is bit 1, and the middle
button is bit 2. These bits correspond to the values 1, 2,
and 4, respectively. It indicates the state of the mouse
buttons; some, all, or none of these three bits can be set,
indicating that some, all, or none of the buttons are
depressed.

Shift as Integer

An integer which acts as a bit field corresponding to the
state of the SHIFT, CTRL, and ALT keys when they are
depressed. The SHIFT key is bit 0, the CTRL key is bit 1,
and the ALT key is bit 2. These bits correspond to the
values 1, 2, and 4, respectively. The shift parameter
indicates the state of these keys; some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are depressed. For example, if both the CTRL and
ALT keys were depressed, the value of shift would be 6.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

C# // OLEDragOver event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

State as Integer An integer that corresponds to the transition state of the
control being dragged in relation to a target form or
control. The possible values are listed in Remarks.

The settings for effect are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

The settings for state are:

exOLEDragEnter (0), Source component is being dragged within the range of a target.
exOLEDragLeave (1), Source component is being dragged out of the range of a
target.
exOLEOLEDragOver (2), Source component has moved from one position in the target
to another.

Note If the state parameter is 1, indicating that the mouse pointer has left the target, then
the x and y parameters will contain zeros.
The source component should always mask values from the effect parameter to ensure
compatibility with future implementations of ActiveX components. As a precaution against
future problems, drag sources and drop targets should mask these values appropriately
before performing any comparisons.
For example, a source component should not compare an effect against, say,
exOLEDropEffectCopy, such as in this manner:

If Effect = exOLEDropEffectCopy...
Instead, the source component should mask for the value or values being sought, such as
this:
If Effect And exOLEDropEffectCopy = exOLEDropEffectCopy...
-or-
If (Effect And exOLEDropEffectCopy)...
This allows for the definition of new drop effects in future versions while preserving
backwards compatibility with your existing code.
The control supports only manual OLE drag and drop events.

Syntax for OLEDragOver event, /NET version, on:

VB // OLEDragOver event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

private void OLEDragOver(object sender,
AxEXG2ANTTLib._IG2anttEvents_OLEDragOverEvent e)
{
}

void OnOLEDragOver(LPDISPATCH Data,long FAR* Effect,short Button,short
Shift,long X,long Y,short State)
{
}

void __fastcall OLEDragOver(TObject *Sender,Exg2anttlib_tlb::IExDataObject
*Data,long * Effect,short Button,short Shift,int X,int Y,short State)
{
}

procedure OLEDragOver(ASender: TObject; Data : IExDataObject;var Effect :
Integer;Button : Smallint;Shift : Smallint;X : Integer;Y : Integer;State : Smallint);
begin
end;

procedure OLEDragOver(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_OLEDragOverEvent);
begin
end;

begin event OLEDragOver(oleobject Data,long Effect,integer Button,integer
Shift,long X,long Y,integer State)
end event OLEDragOver

Private Sub OLEDragOver(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_OLEDragOverEvent) Handles OLEDragOver
End Sub

Syntax for OLEDragOver event, /COM version, on:

VB6

VBA

VFP

Xbas…

Private Sub OLEDragOver(ByVal Data As EXG2ANTTLibCtl.IExDataObject,Effect As
Long,ByVal Button As Integer,ByVal Shift As Integer,ByVal X As Single,ByVal Y As
Single,ByVal State As Integer)
End Sub

Private Sub OLEDragOver(ByVal Data As Object,Effect As Long,ByVal Button As
Integer,ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long,ByVal State As
Integer)
End Sub

LPARAMETERS Data,Effect,Button,Shift,X,Y,State

PROCEDURE OnOLEDragOver(oG2antt,Data,Effect,Button,Shift,X,Y,State)
RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="OLEDragOver(Data,Effect,Button,Shift,X,Y,State)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLEDragOver(Data,Effect,Button,Shift,X,Y,State)
End Function
</SCRIPT>

Procedure OnComOLEDragOver Variant llData Integer llEffect Short llButton Short
llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS llY Short llState
 Forward Send OnComOLEDragOver llData llEffect llButton llShift llX llY llState
End_Procedure

METHOD OCX_OLEDragOver(Data,Effect,Button,Shift,X,Y,State) CLASS MainDialog
RETURN NIL

// OLEDragOver event is not supported. Use the DragEnter,DragLeave,DragOver,

Syntax for OLEDragOver event, /COM version (others), on:

XBasic

dBASE

DragDrop ... events.

function OLEDragOver as v (Data as OLE::Exontrol.G2antt.1::IExDataObject,Effect
as N,Button as N,Shift as N,X as OLE::Exontrol.G2antt.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.G2antt.1::OLE_YPOS_PIXELS,State as N)
end function

function nativeObject_OLEDragOver(Data,Effect,Button,Shift,X,Y,State)
return

event OLEGiveFeedback (Effect as Long, DefaultCursors as Boolean)
Allows the drag source to specify the type of OLE drag-and-drop operation and the visual
feedback.

Type Description

Effect as Long

A long integer set by the target component in the
OLEDragOver event specifying the action to be performed
if the user drops the selection on it. This allows the source
to take the appropriate action (such as giving visual
feedback). The possible values are listed in Remarks.

DefaultCursors as Boolean

Boolean value that determines whether to use the default
mouse cursor, or to use a user-defined mouse cursor.True
(default) = use default mouse cursor.False = do not use
default cursor. Mouse cursor must be set with the
MousePointer property of the Screen object.

The settings for Effect are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

If there is no code in the OLEGiveFeedback event, or if the defaultcursors parameter is set
to True, the mouse cursor will be set to the default cursor provided by the control. The
source component should always mask values from the effect parameter to ensure
compatibility with future implementations of ActiveX components. As a precaution against
future problems, drag sources and drop targets should mask these values appropriately
before performing any comparisons.

For example, a source component should not compare an effect against, say,
exOLEDropEffectCopy, such as in this manner:
If Effect = exOLEDropEffectCopy...
Instead, the source component should mask for the value or values being sought, such as
this:
If Effect And exOLEDropEffectCopy = exOLEDropEffectCopy...
-or-
If (Effect And exOLEDropEffectCopy)...
This allows for the definition of new drop effects in future versions while preserving
backwards compatibility with your existing code.

C#

VB

// OLEGiveFeedback event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

// OLEGiveFeedback event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

private void OLEGiveFeedback(object sender,
AxEXG2ANTTLib._IG2anttEvents_OLEGiveFeedbackEvent e)
{
}

void OnOLEGiveFeedback(long Effect,BOOL FAR* DefaultCursors)
{
}

void __fastcall OLEGiveFeedback(TObject *Sender,long Effect,VARIANT_BOOL *
DefaultCursors)
{
}

procedure OLEGiveFeedback(ASender: TObject; Effect : Integer;var DefaultCursors
: WordBool);
begin
end;

procedure OLEGiveFeedback(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_OLEGiveFeedbackEvent);
begin
end;

begin event OLEGiveFeedback(long Effect,boolean DefaultCursors)
end event OLEGiveFeedback

The control supports only manual OLE drag and drop events.

Syntax for OLEGiveFeedback event, /NET version, on:

Syntax for OLEGiveFeedback event, /COM version, on:

VB.NET

VB6

VBA

VFP

Xbas…

Private Sub OLEGiveFeedback(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_OLEGiveFeedbackEvent) Handles OLEGiveFeedback
End Sub

Private Sub OLEGiveFeedback(ByVal Effect As Long,DefaultCursors As Boolean)
End Sub

Private Sub OLEGiveFeedback(ByVal Effect As Long,DefaultCursors As Boolean)
End Sub

LPARAMETERS Effect,DefaultCursors

PROCEDURE OnOLEGiveFeedback(oG2antt,Effect,DefaultCursors)
RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="OLEGiveFeedback(Effect,DefaultCursors)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLEGiveFeedback(Effect,DefaultCursors)
End Function
</SCRIPT>

Procedure OnComOLEGiveFeedback Integer llEffect Boolean llDefaultCursors
 Forward Send OnComOLEGiveFeedback llEffect llDefaultCursors
End_Procedure

METHOD OCX_OLEGiveFeedback(Effect,DefaultCursors) CLASS MainDialog
RETURN NIL

// OLEGiveFeedback event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

Syntax for OLEGiveFeedback event, /COM version (others), on:

XBasic

dBASE

function OLEGiveFeedback as v (Effect as N,DefaultCursors as L)
end function

function nativeObject_OLEGiveFeedback(Effect,DefaultCursors)
return

C#

VB

// OLESetData event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

// OLESetData event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

C#

C++

C++
Builder

private void OLESetData(object sender,
AxEXG2ANTTLib._IG2anttEvents_OLESetDataEvent e)
{
}

void OnOLESetData(LPDISPATCH Data,short Format)
{
}

void __fastcall OLESetData(TObject *Sender,Exg2anttlib_tlb::IExDataObject
*Data,short Format)
{
}

event OLESetData (Data as ExDataObject, Format as Integer)
Occurs on a drag source when a drop target calls the GetData method and there is no data
in a specified format in the OLE drag-and-drop DataObject.

Type Description

Data as ExDataObject
An ExDataObject object in which to place the requested
data. The component calls the SetData method to load the
requested format.

Format as Integer

An integer specifying the format of the data that the target
component is requesting. The source component uses this
value to determine what to load into the ExDataObject
object.

The OLESetData is not currently supported.

Syntax for OLESetData event, /NET version, on:

Syntax for OLESetData event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure OLESetData(ASender: TObject; Data : IExDataObject;Format : Smallint);
begin
end;

procedure OLESetData(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_OLESetDataEvent);
begin
end;

begin event OLESetData(oleobject Data,integer Format)
end event OLESetData

Private Sub OLESetData(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_OLESetDataEvent) Handles OLESetData
End Sub

Private Sub OLESetData(ByVal Data As EXG2ANTTLibCtl.IExDataObject,ByVal
Format As Integer)
End Sub

Private Sub OLESetData(ByVal Data As Object,ByVal Format As Integer)
End Sub

LPARAMETERS Data,Format

PROCEDURE OnOLESetData(oG2antt,Data,Format)
RETURN

Java…

VBSc…

<SCRIPT EVENT="OLESetData(Data,Format)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLESetData(Data,Format)
End Function

Syntax for OLESetData event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComOLESetData Variant llData Short llFormat
 Forward Send OnComOLESetData llData llFormat
End_Procedure

METHOD OCX_OLESetData(Data,Format) CLASS MainDialog
RETURN NIL

// OLESetData event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

function OLESetData as v (Data as OLE::Exontrol.G2antt.1::IExDataObject,Format as
N)
end function

function nativeObject_OLESetData(Data,Format)
return

event OLEStartDrag (Data as ExDataObject, AllowedEffects as Long)
Occurs when the OLEDrag method is called.

Type Description

Data as ExDataObject

An ExDataObject object containing formats that the source
will provide and, optionally, the data for those formats. If
no data is contained in the ExDataObject, it is provided
when the control calls the GetData method. The
programmer should provide the values for this parameter
in this event. The SetData and Clear methods cannot be
used here.

AllowedEffects as Long

A long containing the effects that the source component
supports. The possible values are listed in Settings. The
programmer should provide the values for this parameter
in this event

In the /NET Assembly, you have to use the DragEnter event as explained here:

https://www.exontrol.com/sg.jsp?content=support/faq/net/#dragdrop

Use the Background(exDragDropBefore) property to specify the visual appearance for the
dragging items, before painting the items. Use the Background(exDragDropAfter) property
to specify the visual appearance for the dragging items, after painting the items. Use the
Background(exDragDropList) property to specify the graphic feedback for the item from the
cursor, while the OLE drag and drop operation is running. Use the AutoDrag property to
specify what the control does when the user clicks and drag the items.

The settings for AllowEffects are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

The source component should logically Or together the supported values and places the
result in the AllowedEffects parameter. The target component can use this value to
determine the appropriate action (and what the appropriate user feedback should be). You
may wish to defer putting data into the ExDataObject object until the target component
requests it. This allows the source component to save time. If the user does not load any
formats into the ExDataObject, then the drag/drop operation is canceled. Use exCFFiles

https://exontrol.com/faq.jsp/net/#dragdrop

C#

VB

// OLEStartDrag event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

// OLEStartDrag event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

C#

C++

C++
Builder

Delphi

private void OLEStartDrag(object sender,
AxEXG2ANTTLib._IG2anttEvents_OLEStartDragEvent e)
{
}

void OnOLEStartDrag(LPDISPATCH Data,long FAR* AllowedEffects)
{
}

void __fastcall OLEStartDrag(TObject *Sender,Exg2anttlib_tlb::IExDataObject
*Data,long * AllowedEffects)
{
}

procedure OLEStartDrag(ASender: TObject; Data : IExDataObject;var
AllowedEffects : Integer);
begin

and Files property to add files to the drag and drop data object.

The idea of drag and drop in exG2antt control is the same as in other controls. To start
accepting drag and drop sources the exG2antt control should have the OLEDropMode to
exOLEDropManual. Once that is is set, the exG2antt starts accepting any drag and drop
sources.

The first step is if you want to be able to drag items from your exG2antt control to other
controls the idea is to handle the OLE_StartDrag event. The event passes an object
ExDataObject (Data) as argument. The Data and AllowedEffects can be changed only in
the OLEStartDrag event. The OLE_StartDrag event is fired when user is about to drag
items from the control. The AllowedEffect parameter and SetData property must be set
to continue drag and drop operation, as in the following samples:

Syntax for OLEStartDrag event, /NET version, on:

Syntax for OLEStartDrag event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

procedure OLEStartDrag(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_OLEStartDragEvent);
begin
end;

begin event OLEStartDrag(oleobject Data,long AllowedEffects)
end event OLEStartDrag

Private Sub OLEStartDrag(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_OLEStartDragEvent) Handles OLEStartDrag
End Sub

Private Sub OLEStartDrag(ByVal Data As
EXG2ANTTLibCtl.IExDataObject,AllowedEffects As Long)
End Sub

Private Sub OLEStartDrag(ByVal Data As Object,AllowedEffects As Long)
End Sub

LPARAMETERS Data,AllowedEffects

PROCEDURE OnOLEStartDrag(oG2antt,Data,AllowedEffects)
RETURN

Java…

VBSc…

<SCRIPT EVENT="OLEStartDrag(Data,AllowedEffects)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLEStartDrag(Data,AllowedEffects)
End Function
</SCRIPT>

Syntax for OLEStartDrag event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComOLEStartDrag Variant llData Integer llAllowedEffects
 Forward Send OnComOLEStartDrag llData llAllowedEffects
End_Procedure

METHOD OCX_OLEStartDrag(Data,AllowedEffects) CLASS MainDialog
RETURN NIL

// OLEStartDrag event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

function OLEStartDrag as v (Data as
OLE::Exontrol.G2antt.1::IExDataObject,AllowedEffects as N)
end function

function nativeObject_OLEStartDrag(Data,AllowedEffects)
return

The following VB sample drags data from a control to another, by registering a new
clipboard format:

Private Sub G2antt1_OLEStartDrag(Index As Integer, ByVal Data As
EXG2ANTTLibCtl.IExDataObject, AllowedEffects As Long)

 ' We are going to add two clipboard formats: text and "EXG2ANTT" clipboard format.
 ' We need to use RegisterClipboardFormat API function in order to register our
 ' clipboard format. One cliboard format is enough, but the sample shows
 ' how to filter in OLEDragDrop event the other clipboard formats

 ' Builds a string that contains each cell's caption on a new line
 Dim n As Long
 Dim s As String
 With G2antt1(Index)
 s = Index & vbCrLf ' Saves the source
 For n = 0 To .Columns.Count - 1
 s = s & .Items.CellValue(.Items.SelectedItem(0), n) & vbCrLf

 Next
 End With

 AllowedEffects = 0
 ' Checks whether the selected item has a parent
 If (G2antt1(Index).Items.ItemParent(G2antt1(Index).Items.SelectedItem(0)) <> 0) Then
 AllowedEffects = 1
 End If
 ' Sets the text clipboard format
 Data.SetData s, exCFText

 ' Builds an array of bytes, and copy there all characters in the s string.
 ' Passes the array to the SetData method.
 ReDim v(Len(s)) As Byte
 For n = 0 To Len(s) - 1
 v(n) = Asc(Mid(s, n + 1, 1))
 Next
 Data.SetData v, RegisterClipboardFormat("EXG2ANTT")

End Sub

The code fills data for two types of clipboard formats: text (CF_TEXT) and "EXG2ANTT"
registered clipboard format. The registered clipboard format must be an array of bytes. As
you can see we have used the RegisterClipboardFormat API function, and it should be
declared like:

Private Declare Function RegisterClipboardFormat Lib "user32" Alias
"RegisterClipboardFormatA" (ByVal lpString As String) As Integer

The second step is accepting OLE drag and drop source objects. That means, if you would
like to let your control accept drag and drop objects, you have to handle the OLEDragDrop
event. It gets as argument an object Data that stores the drag and drop information. The
next sample shows how handle the OLEDragDrop event:

Private Sub G2antt1_OLEDragDrop(Index As Integer, ByVal Data As
EXG2ANTTLibCtl.IExDataObject, Effect As Long, ByVal Button As Integer, ByVal Shift As
Integer, ByVal X As Single, ByVal Y As Single)
 ' Checks whether the clipboard format is our. Since we have registered the clipboard in
the

 ' OLEStartData format we now its format, so we can handle this type of clip formats.
 If (Data.GetFormat(RegisterClipboardFormat("EXG2ANTT"))) Then
 ' Builds the saved string from the array passed
 Dim s As String
 Dim v() As Byte
 Dim n As Integer
 v = Data.GetData(RegisterClipboardFormat("EXG2ANTT"))
 For n = LBound(v) To UBound(v)
 s = s + Chr(v(n))
 Next
 Debug.Print s

 'Adds a new item to the control, and sets the cells captions like we saved, line by line
 G2antt1(Index).Visible = False
 With G2antt1(Index)
 .BeginUpdate
 Dim i As HITEM
 Dim item As String
 Dim nCur As Long
 i = .Items.AddItem()
 nCur = InStr(1, s, vbCrLf) + Len(vbCrLf) ' Jumps the source
 For n = 0 To .Columns.Count - 1
 Dim nnCur As Long
 nnCur = InStr(nCur, s, vbCrLf)
 .Items.CellValue(i, n) = Mid(s, nCur, nnCur - nCur)
 nCur = nnCur + Len(vbCrLf)
 Next
 .Items.CellImage(i, "EmployeeID") = Int(.Items.CellValue(i, "EmployeeID"))
 .Items.SetParent i, h(Index, Int(.Items.CellValue(i, "EmployeeID")) - 1)
 .Items.EnsureVisibleItem i
 .EndUpdate
 End With
 G2antt1(Index).Visible = True
 End If
End Sub

The following VC sample copies the selected items to the clipboard, as soon as the user

starts dragging the items:

#import <exg2antt.dll> rename("GetItems", "exGetItems")

#include "Items.h"
#include "Columns.h"

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnOLEStartDragG2antt1(LPDISPATCH Data, long FAR* AllowedEffects)
{
 CItems items = m_g2antt.GetItems();
 long nCount = items.GetSelectCount(), nColumnCount =
m_g2antt.GetColumns().GetCount();
 if (nCount > 0)
 {
 *AllowedEffects = /*exOLEDropEffectCopy */ 1;
 EXG2ANTTLib::IExDataObjectPtr spData(Data);
 if (spData !=NULL)
 {
 CString strData;
 for (long i = 0; i < nCount; i++)
 {
 COleVariant vtItem(items.GetSelectedItem(i));
 for (long j = 0; j < nColumnCount; j++)

 strData += V2S(&items.GetCellValue(vtItem, COleVariant(j))) + "\t";
 }
 strData += "\r\n";
 spData->SetData(COleVariant(strData), COleVariant(
(long)EXG2ANTTLib::exCFText));
 }
 }
}

The sample saves data as CF_TEXT format (EXG2ANTTLib::exCFText). The data is a
text, where each item is separated by "\r\n" (new line), and each cell is separated by "\t" (
TAB charcater). Of course, data can be saved as you want. The sample only gives an idea
of what and how it could be done. The sample uses the #import statement to import the
control's type library, including definitions for ExDataObject and ExDataObjectFiles that are
required to fill data to be dragged. If your exg2antt.dll file is located in another place than
your system folder, the path to the exg2antt.dll file needs to be specified, else compiler
errors occur.

The following VB.NET sample copies the selected items to the clipboard, as soon as the
user starts dragging the items:

Private Sub AxG2antt1_OLEStartDrag(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_OLEStartDragEvent) Handles AxG2antt1.OLEStartDrag
 With AxG2antt1.Items
 If (.SelectCount > 0) Then
 e.allowedEffects = 1 'exOLEDropEffectCopy
 Dim i As Integer, j As Integer, strData As String, nColumnCount As Long =
AxG2antt1.Columns.Count
 For i = 0 To .SelectCount - 1
 For j = 0 To nColumnCount - 1
 strData = strData + .CellValue(.SelectedItem(i), j) + Chr(Keys.Tab)
 Next
 Next
 strData = strData + vbCrLf
 e.data.SetData(strData, EXG2ANTTLib.exClipboardFormatEnum.exCFText)
 End If
 End With
End Sub

The following C# sample copies the selected items to the clipboard, as soon as the user
starts dragging the items:

private void axG2antt1_OLEStartDrag(object sender,
AxEXG2ANTTLib._IG2anttEvents_OLEStartDragEvent e)
{
 int nCount = axG2antt1.Items.SelectCount;
 if (nCount > 0)
 {
 int nColumnCount = axG2antt1.Columns.Count;
 e.allowedEffects = /*exOLEDropEffectCopy*/ 1;
 string strData = "";
 for (int i =0 ; i < nCount; i++)
 {
 for (int j = 0; j < nColumnCount; j++)
 {
 object strCell =
axG2antt1.Items.get_CellValue(axG2antt1.Items.get_SelectedItem(i), j);
 strData += (strCell != null ? strCell.ToString() : "") + "\t";
 }
 strData += "\r\n";
 }
 e.data.SetData(strData, EXG2ANTTLib.exClipboardFormatEnum.exCFText);
 }
}

The following VFP sample copies the selected items to the clipboard, as soon as the user
starts dragging the items:

*** ActiveX Control Event ***
LPARAMETERS data, allowedeffects

local sData, nColumnCount, i, j
with thisform.G2antt1.Items
 if (.SelectCount() > 0)
 allowedeffects = 1 && exOLEDropEffectCopy
 sData = ""
 nColumnCount = thisform.G2antt1.Columns.Count

 for i = 0 to .SelectCount - 1
 for j = 0 to nColumnCount
 sData = sData + .CellValue(.SelectedItem(i), j) + chr(9)
 next
 sData = sData + chr(10)+ chr(13)
 next
 data.SetData(sData, 1) && exCFText
 endif
endwith

C#

VB

private void OversizeChanged(object sender,bool Horizontal,int NewVal)
{
}

Private Sub OversizeChanged(ByVal sender As System.Object,ByVal Horizontal As
Boolean,ByVal NewVal As Integer) Handles OversizeChanged
End Sub

C#

C++

C++
Builder

private void OversizeChanged(object sender,
AxEXG2ANTTLib._IG2anttEvents_OversizeChangedEvent e)
{
}

void OnOversizeChanged(BOOL Horizontal,long NewVal)
{
}

void __fastcall OversizeChanged(TObject *Sender,VARIANT_BOOL Horizontal,long
NewVal)
{
}

event OversizeChanged (Horizontal as Boolean, NewVal as Long)

Occurs when the right range of the scroll has been changed.

Type Description

Horizontal as Boolean A boolean expression that indicates whether the horizontal
scroll bar has changed.

NewVal as Long A long value that indicates the new scroll bar value.

If the control has no scroll bars the OffsetChanged and OversizeChanged events are not
fired. When the scroll bar range is changed the OversizeChanged event is fired. Use the
ScrollBars property of the control to determine which scroll bars are visible within the
control. The control fires the LayoutChanged event when the user resizes a column, or
change its position.

Syntax for OversizeChanged event, /NET version, on:

Syntax for OversizeChanged event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure OversizeChanged(ASender: TObject; Horizontal : WordBool;NewVal :
Integer);
begin
end;

procedure OversizeChanged(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_OversizeChangedEvent);
begin
end;

begin event OversizeChanged(boolean Horizontal,long NewVal)
end event OversizeChanged

Private Sub OversizeChanged(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_OversizeChangedEvent) Handles
OversizeChanged
End Sub

Private Sub OversizeChanged(ByVal Horizontal As Boolean,ByVal NewVal As Long)
End Sub

Private Sub OversizeChanged(ByVal Horizontal As Boolean,ByVal NewVal As Long)
End Sub

LPARAMETERS Horizontal,NewVal

PROCEDURE OnOversizeChanged(oG2antt,Horizontal,NewVal)
RETURN

Java…

VBSc…

<SCRIPT EVENT="OversizeChanged(Horizontal,NewVal)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OversizeChanged(Horizontal,NewVal)
End Function

Syntax for OversizeChanged event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComOversizeChanged Boolean llHorizontal Integer llNewVal
 Forward Send OnComOversizeChanged llHorizontal llNewVal
End_Procedure

METHOD OCX_OversizeChanged(Horizontal,NewVal) CLASS MainDialog
RETURN NIL

void onEvent_OversizeChanged(boolean _Horizontal,int _NewVal)
{
}

function OversizeChanged as v (Horizontal as L,NewVal as N)
end function

function nativeObject_OversizeChanged(Horizontal,NewVal)
return

C#

VB

private void OverviewZoom(object sender)
{
}

Private Sub OverviewZoom(ByVal sender As System.Object) Handles
OverviewZoom
End Sub

C#

C++

private void OverviewZoom(object sender, EventArgs e)
{
}

void OnOverviewZoom()
{
}

event OverviewZoom ()
Occurs once the user selects a new time scale unit in the overview zoom area.

Type Description

The OverviewZoom event notifies your application once the user clicks or select a new
time-scale in the overview-zoom area. The UnitScale property specifies the new selected
time scale. Use the UnitWidth property to specify the width of the units in the chart area.
Use the OverviewVisible property to show the control's overview area. Use the
AllowOverviewZoom property to specify how the zoom scale is displayed on the control's
overview area.

The following screen shot shows the zoom area in the control's overview area (in the top-
right corner):

Syntax for OverviewZoom event, /NET version, on:

Syntax for OverviewZoom event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall OverviewZoom(TObject *Sender)
{
}

procedure OverviewZoom(ASender: TObject;);
begin
end;

procedure OverviewZoom(sender: System.Object; e: System.EventArgs);
begin
end;

begin event OverviewZoom()
end event OverviewZoom

Private Sub OverviewZoom(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles OverviewZoom
End Sub

Private Sub OverviewZoom()
End Sub

Private Sub OverviewZoom()
End Sub

LPARAMETERS nop

PROCEDURE OnOverviewZoom(oG2antt)
RETURN

Java… <SCRIPT EVENT="OverviewZoom()" LANGUAGE="JScript">
</SCRIPT>

Syntax for OverviewZoom event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function OverviewZoom()
End Function
</SCRIPT>

Procedure OnComOverviewZoom
 Forward Send OnComOverviewZoom
End_Procedure

METHOD OCX_OverviewZoom() CLASS MainDialog
RETURN NIL

void onEvent_OverviewZoom()
{
}

function OverviewZoom as v ()
end function

function nativeObject_OverviewZoom()
return

C#

VB

private void RClick(object sender)
{
}

Private Sub RClick(ByVal sender As System.Object) Handles RClick
End Sub

C#

C++

C++
Builder

Delphi

private void RClick(object sender, EventArgs e)
{
}

void OnRClick()
{
}

void __fastcall RClick(TObject *Sender)
{
}

procedure RClick(ASender: TObject;);
begin

event RClick ()

Fired when right mouse button is clicked.

Type Description

Use the RClick event to add your context menu. The RClick event notifies your application
when the user right clicks the control. Use the Click event to notify your application that the
user clicks the control (using the left mouse button). Use the MouseDown or MouseUp
event if you require the cursor position during the RClick event. Use the RClickSelect
property to specify whether the user can select items by right clicking the mouse. Use the
ItemFromPoint property to get the item from point. Use the ColumnFromPoint property to
get the column from point. Use the AllowOverviewZoom property to specify whether the
control displays the zooming scale on the overview area, when the user right clicks the
overview area.

Syntax for RClick event, /NET version, on:

Syntax for RClick event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

procedure RClick(sender: System.Object; e: System.EventArgs);
begin
end;

begin event RClick()
end event RClick

Private Sub RClick(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles RClick
End Sub

Private Sub RClick()
End Sub

Private Sub RClick()
End Sub

LPARAMETERS nop

PROCEDURE OnRClick(oG2antt)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="RClick()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function RClick()
End Function
</SCRIPT>

Procedure OnComRClick
 Forward Send OnComRClick
End_Procedure

Syntax for RClick event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

METHOD OCX_RClick() CLASS MainDialog
RETURN NIL

void onEvent_RClick()
{
}

function RClick as v ()
end function

function nativeObject_RClick()
return

The following VB sample use Exontrol's ExPopupMenu Component to display a context
menu when user has clicked the right mouse button in the control's client area:

Private Sub G2antt1_RClick()
 Dim i As Long
 i = PopupMenu1.ShowAtCursor
End Sub

If you need to add a context menu based on the item you can use the MouseUp event, like
in the following VB sample:

Private Sub G2antt1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single)
 If (Button = 2) Then
 ' Converts the container coordinates to client coordinates
 X = X / Screen.TwipsPerPixelX
 Y = Y / Screen.TwipsPerPixelY
 Dim h As HITEM
 Dim c As Long, hit as Long
 ' Gets the item from (X,Y)
 h = G2antt1.ItemFromPoint(X, Y, c, hit)
 If Not (h = 0) Then
 Dim i As Long
 PopupMenu1.Items.Add G2antt1.Items.CellValue(h, c)
 i = PopupMenu1.ShowAtCursor
 End If

https://exontrol.com/expopupmenu.jsp

 End If
End Sub

The following VC sample displays the caption of the cell where the mouse is released:

#include "Items.h"

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnMouseUpG2antt1(short Button, short Shift, long X, long Y)
{
 long c = 0, hit = 0, hItem = m_g2antt.GetItemFromPoint(X, Y, &c, &hit);
 if ((hItem != 0) || (c != 0))
 {
 CItems items = m_g2antt.GetItems();
 COleVariant vtItem(hItem), vtColumn(c);
 CString strCaption = V2S(&items.GetCellValue(vtItem, vtColumn)), strOutput;
 strOutput.Format("Cell: '%s', Hit = %08X\n", strCaption, hit);
 OutputDebugString(strOutput);
 }
}

The following VB.NET sample displays the caption of the cell where the mouse is released:

Private Sub AxG2antt1_MouseUpEvent(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_MouseUpEvent) Handles AxG2antt1.MouseUpEvent

 With AxG2antt1
 Dim i As Integer, c As Integer, hit As EXG2ANTTLib.HitTestInfoEnum
 i = .get_ItemFromPoint(e.x, e.y, c, hit)
 If (Not (i = 0) Or Not (c = 0)) Then
 Debug.WriteLine("Cell: " & .Items.CellValue(i, c) & " Hit: " & hit.ToString())
 End If
 End With
End Sub

The following C# sample displays the caption of the cell where the mouse is released:

private void axG2antt1_MouseUpEvent(object sender,
AxEXG2ANTTLib._IG2anttEvents_MouseUpEvent e)
{
 int c = 0;
 EXG2ANTTLib.HitTestInfoEnum hit;
 int i = axG2antt1.get_ItemFromPoint(e.x, e.y, out c,out hit);
 if ((i != 0) || (c != 0))
 {
 string s = axG2antt1.Items.get_CellValue(i,c).ToString();
 s = "Cell: " + s + ", Hit: " + hit.ToString();
 System.Diagnostics.Debug.WriteLine(s);
 }
}

The following VFP sample displays the caption of the cell where the mouse is released:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

local c, hit
c = 0
hit = 0
with thisform.G2antt1
 .Items.DefaultItem = .ItemFromPoint(x, y, @c, @hit)
 if (.Items.DefaultItem <> 0) or (c <> 0)
 wait window nowait .Items.CellValue(0, c) + " " + Str(hit)
 endif

endwith

C#

VB

private void RemoveColumn(object sender,exontrol.EXG2ANTTLib.Column
Column)
{
}

Private Sub RemoveColumn(ByVal sender As System.Object,ByVal Column As
exontrol.EXG2ANTTLib.Column) Handles RemoveColumn
End Sub

C#

C++

C++
Builder

private void RemoveColumn(object sender,
AxEXG2ANTTLib._IG2anttEvents_RemoveColumnEvent e)
{
}

void OnRemoveColumn(LPDISPATCH Column)
{
}

void __fastcall RemoveColumn(TObject *Sender,Exg2anttlib_tlb::IColumn *Column)
{
}

event RemoveColumn (Column as Column)

Fired before deleting a column.

Type Description
Column as Column A Column object being removed.

The RemoveColumn event is invoked when the control is about to remove a column. Use the
RemoveColumn event to release any extra data associated to the column. Use the Remove
method to remove a specific column from Columns collection. Use the Clear method to
clear the columns collection. Use the RemoveItem method to remove an item. Use the
RemoveAllItems method to remove all items. Use the CellData property to assign an extra
data to a cell. Use the ItemData property to assign an extra data to an item. Use the Data
property to assign an extra data to a column.

Syntax for RemoveColumn event, /NET version, on:

Syntax for RemoveColumn event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure RemoveColumn(ASender: TObject; Column : IColumn);
begin
end;

procedure RemoveColumn(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_RemoveColumnEvent);
begin
end;

begin event RemoveColumn(oleobject Column)
end event RemoveColumn

Private Sub RemoveColumn(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_RemoveColumnEvent) Handles RemoveColumn
End Sub

Private Sub RemoveColumn(ByVal Column As EXG2ANTTLibCtl.IColumn)
End Sub

Private Sub RemoveColumn(ByVal Column As Object)
End Sub

LPARAMETERS Column

PROCEDURE OnRemoveColumn(oG2antt,Column)
RETURN

Java…

VBSc…

<SCRIPT EVENT="RemoveColumn(Column)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function RemoveColumn(Column)
End Function
</SCRIPT>

Syntax for RemoveColumn event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComRemoveColumn Variant llColumn
 Forward Send OnComRemoveColumn llColumn
End_Procedure

METHOD OCX_RemoveColumn(Column) CLASS MainDialog
RETURN NIL

void onEvent_RemoveColumn(COM _Column)
{
}

function RemoveColumn as v (Column as OLE::Exontrol.G2antt.1::IColumn)
end function

function nativeObject_RemoveColumn(Column)
return

C#

VB

private void RemoveItem(object sender,int Item)
{
}

Private Sub RemoveItem(ByVal sender As System.Object,ByVal Item As Integer)
Handles RemoveItem
End Sub

C#

C++

C++
Builder

private void RemoveItem(object sender,
AxEXG2ANTTLib._IG2anttEvents_RemoveItemEvent e)
{
}

void OnRemoveItem(long Item)
{
}

void __fastcall RemoveItem(TObject *Sender,Exg2anttlib_tlb::HITEM Item)
{
}

event RemoveItem (Item as HITEM)

Occurs before removing an Item.

Type Description

Item as HITEM A long expression that indicates the handle of the item
being removed.

Use the RemoveItem to release any extra data that you might have used. The control fires
the RemoveItem event before removing the item. Use the RemoveItem method to remove
an item from Items collection. Use the RemoveAllItems method to clear the items collection.
Use the Remove method to remove a column. Use the Clear method to clear the columns
collection. Use the CellData property to assign an extra data to a cell. Use the ItemData
property to assign an extra data to an item. Use the Data property to assign an extra data
to a column.

Syntax for RemoveItem event, /NET version, on:

Syntax for RemoveItem event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure RemoveItem(ASender: TObject; Item : HITEM);
begin
end;

procedure RemoveItem(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_RemoveItemEvent);
begin
end;

begin event RemoveItem(long Item)
end event RemoveItem

Private Sub RemoveItem(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_RemoveItemEvent) Handles RemoveItem
End Sub

Private Sub RemoveItem(ByVal Item As EXG2ANTTLibCtl.HITEM)
End Sub

Private Sub RemoveItem(ByVal Item As Long)
End Sub

LPARAMETERS Item

PROCEDURE OnRemoveItem(oG2antt,Item)
RETURN

Java…

VBSc…

<SCRIPT EVENT="RemoveItem(Item)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function RemoveItem(Item)
End Function
</SCRIPT>

Syntax for RemoveItem event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComRemoveItem HITEM llItem
 Forward Send OnComRemoveItem llItem
End_Procedure

METHOD OCX_RemoveItem(Item) CLASS MainDialog
RETURN NIL

void onEvent_RemoveItem(int _Item)
{
}

function RemoveItem as v (Item as OLE::Exontrol.G2antt.1::HITEM)
end function

function nativeObject_RemoveItem(Item)
return

C#

VB

private void ScrollButtonClick(object
sender,exontrol.EXG2ANTTLib.ScrollBarEnum
ScrollBar,exontrol.EXG2ANTTLib.ScrollPartEnum ScrollPart)
{
}

Private Sub ScrollButtonClick(ByVal sender As System.Object,ByVal ScrollBar As
exontrol.EXG2ANTTLib.ScrollBarEnum,ByVal ScrollPart As
exontrol.EXG2ANTTLib.ScrollPartEnum) Handles ScrollButtonClick
End Sub

C# private void ScrollButtonClick(object sender,
AxEXG2ANTTLib._IG2anttEvents_ScrollButtonClickEvent e)
{

event ScrollButtonClick (ScrollBar as ScrollBarEnum, ScrollPart as
ScrollPartEnum)
Occurs when the user clicks a button in the scrollbar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that specifies the scroll bar
being clicked.

ScrollPart as ScrollPartEnum A ScrollPartEnum expression that indicates the part of the
scroll being clicked.

Use the ScrollButtonClick event to notify your application that the user clicks a button in the
control's scrollbar. The ScrollButtonClick event is fired when the user clicks and releases
the mouse over an enabled part of the scroll bar. Use the ScrollBars property to specify the
visible scrollbars in the control. Use the ScrollPartVisible property to add or remove
buttons/parts in the control's scrollbar. Use the ScrollPartEnable property to specify enable
or disable parts in the control's scrollbar. Use the ScrolPartCaption property to specify the
caption of the scroll's part. Use the OffsetChanged event to notify your application that the
scroll position is changed. Use the OversizeChanged event to notify your application
whether the range for a specified scroll bar is changed. Use the ScrollPos property to
specify the position for the control's scroll bar. Use the Background property to change the
visual appearance for any part in the control's scroll bar.

Syntax for ScrollButtonClick event, /NET version, on:

Syntax for ScrollButtonClick event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

}

void OnScrollButtonClick(long ScrollBar,long ScrollPart)
{
}

void __fastcall ScrollButtonClick(TObject *Sender,Exg2anttlib_tlb::ScrollBarEnum
ScrollBar,Exg2anttlib_tlb::ScrollPartEnum ScrollPart)
{
}

procedure ScrollButtonClick(ASender: TObject; ScrollBar :
ScrollBarEnum;ScrollPart : ScrollPartEnum);
begin
end;

procedure ScrollButtonClick(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_ScrollButtonClickEvent);
begin
end;

begin event ScrollButtonClick(long ScrollBar,long ScrollPart)
end event ScrollButtonClick

Private Sub ScrollButtonClick(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_ScrollButtonClickEvent) Handles
ScrollButtonClick
End Sub

Private Sub ScrollButtonClick(ByVal ScrollBar As
EXG2ANTTLibCtl.ScrollBarEnum,ByVal ScrollPart As
EXG2ANTTLibCtl.ScrollPartEnum)
End Sub

Private Sub ScrollButtonClick(ByVal ScrollBar As Long,ByVal ScrollPart As Long)
End Sub

LPARAMETERS ScrollBar,ScrollPart

Xbas… PROCEDURE OnScrollButtonClick(oG2antt,ScrollBar,ScrollPart)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="ScrollButtonClick(ScrollBar,ScrollPart)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ScrollButtonClick(ScrollBar,ScrollPart)
End Function
</SCRIPT>

Procedure OnComScrollButtonClick OLEScrollBarEnum llScrollBar
OLEScrollPartEnum llScrollPart
 Forward Send OnComScrollButtonClick llScrollBar llScrollPart
End_Procedure

METHOD OCX_ScrollButtonClick(ScrollBar,ScrollPart) CLASS MainDialog
RETURN NIL

void onEvent_ScrollButtonClick(int _ScrollBar,int _ScrollPart)
{
}

function ScrollButtonClick as v (ScrollBar as
OLE::Exontrol.G2antt.1::ScrollBarEnum,ScrollPart as
OLE::Exontrol.G2antt.1::ScrollPartEnum)
end function

function nativeObject_ScrollButtonClick(ScrollBar,ScrollPart)
return

Syntax for ScrollButtonClick event, /COM version (others), on:

The following VB sample displays the identifier of the scroll's button being clicked:

With G2antt1
 .BeginUpdate
 .ScrollBars = exDisableBoth
 .ScrollPartVisible(exVScroll, exLeftB1Part Or exRightB1Part) = True
 .ScrollPartCaption(exVScroll, exLeftB1Part) = "1"
 .ScrollPartCaption(exVScroll, exRightB1Part) = "2"
 .EndUpdate
End With

Private Sub G2antt1_ScrollButtonClick(ByVal ScrollPart As
EXG2ANTTLibCtl.ScrollPartEnum)
 MsgBox (ScrollPart)
End Sub

The following VB.NET sample displays the identifier of the scroll's button being clicked:

With AxG2antt1
 .BeginUpdate()
 .ScrollBars = EXG2ANTTLib.ScrollBarsEnum.exDisableBoth
 .set_ScrollPartVisible(EXG2ANTTLib.ScrollBarEnum.exVScroll,
EXG2ANTTLib.ScrollPartEnum.exLeftB1Part Or
EXG2ANTTLib.ScrollPartEnum.exRightB1Part, True)
 .set_ScrollPartCaption(EXG2ANTTLib.ScrollBarEnum.exVScroll,
EXG2ANTTLib.ScrollPartEnum.exLeftB1Part, "1")
 .set_ScrollPartCaption(EXG2ANTTLib.ScrollBarEnum.exVScroll,
EXG2ANTTLib.ScrollPartEnum.exRightB1Part, "2")
 .EndUpdate()
End With

Private Sub AxG2antt1_ScrollButtonClick(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_ScrollButtonClickEvent) Handles
AxG2antt1.ScrollButtonClick
 MessageBox.Show(e.scrollPart.ToString())
End Sub

The following C# sample displays the identifier of the scroll's button being clicked:

axG2antt1.BeginUpdate();

axG2antt1.ScrollBars = EXG2ANTTLib.ScrollBarsEnum.exDisableBoth;
axG2antt1.set_ScrollPartVisible(EXG2ANTTLib.ScrollBarEnum.exVScroll,
EXG2ANTTLib.ScrollPartEnum.exLeftB1Part | EXG2ANTTLib.ScrollPartEnum.exRightB1Part,
true);
axG2antt1.set_ScrollPartCaption(EXG2ANTTLib.ScrollBarEnum.exVScroll,
EXG2ANTTLib.ScrollPartEnum.exLeftB1Part , "1");
axG2antt1.set_ScrollPartCaption(EXG2ANTTLib.ScrollBarEnum.exVScroll,
EXG2ANTTLib.ScrollPartEnum.exRightB1Part, "2");
axG2antt1.EndUpdate();

private void axG2antt1_ScrollButtonClick(object sender,
AxEXG2ANTTLib._IG2anttEvents_ScrollButtonClickEvent e)
{
 MessageBox.Show(e.scrollPart.ToString());
}

The following C++ sample displays the identifier of the scroll's button being clicked:

m_g2antt.BeginUpdate();
m_g2antt.SetScrollBars(15 /*exDisableBoth*/);
m_g2antt.SetScrollPartVisible(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ | 32
/*exRightB1Part*/, TRUE);
m_g2antt.SetScrollPartCaption(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ , _T("
1"));
m_g2antt.SetScrollPartCaption(0 /*exVScroll*/, 32 /*exRightB1Part*/ , _T("
2"));
m_g2antt.EndUpdate();

void OnScrollButtonClickG2antt1(long ScrollPart)
{
 CString strFormat;
 strFormat.Format(_T("%i"), ScrollPart);
 MessageBox(strFormat);
}

The following VFP sample displays the identifier of the scroll's button being clicked:

With thisform.G2antt1

 .BeginUpdate
 .ScrollBars = 15
 .ScrollPartVisible(0, bitor(32768,32)) = .t.
 .ScrollPartCaption(0,32768) = "1"
 .ScrollPartCaption(0, 32) = "2"
 .EndUpdate
EndWith

*** ActiveX Control Event ***
LPARAMETERS scrollpart

wait window nowait ltrim(str(scrollpart))

C#

VB

private void SelectionChanged(object sender)
{
}

Private Sub SelectionChanged(ByVal sender As System.Object) Handles
SelectionChanged
End Sub

C#

C++

private void SelectionChanged(object sender, EventArgs e)
{
}

void OnSelectionChanged()
{
}

event SelectionChanged ()

Fired after a new item has been selected.

Type Description

Use the SelectionChanged event to notify your application that the user selects an item
(that's selectable). Use the SelectableItem property to specify the user can select an item.
The control supports single or multiple selection as well. When an item is selected or
unselected the control fires the SelectionChanged event. Use the SingleSel property to
specify if your control supports single or multiple selection. Use the SelectCount property to
get the number of selected items. Use the SelectedItem property to get the selected item.
Use the SelectItem to select or unselect a specified item. Use the FocusItem property to
get the focused item. If the control supports only single selection, you can use the
FocusItem property to get the selected/focused item because they are always the same.
Use the SelForeColor and SelBackColor properties to specify colors for selected items.
The AllowSelectObjects property allows users to select at runtime the bars and links in the
chart area. Use the ItemBar(exBarSelected) property to select or unselect
programmatically a bar. Use the Link(exLinkSelected) property to select or unselect
programmatically a link. Use the SelectOnClick property to disable selecting new items
when the user clicks the chart area.

Syntax for SelectionChanged event, /NET version, on:

Syntax for SelectionChanged event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall SelectionChanged(TObject *Sender)
{
}

procedure SelectionChanged(ASender: TObject;);
begin
end;

procedure SelectionChanged(sender: System.Object; e: System.EventArgs);
begin
end;

begin event SelectionChanged()
end event SelectionChanged

Private Sub SelectionChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles SelectionChanged
End Sub

Private Sub SelectionChanged()
End Sub

Private Sub SelectionChanged()
End Sub

LPARAMETERS nop

PROCEDURE OnSelectionChanged(oG2antt)
RETURN

Java…

VBSc…

<SCRIPT EVENT="SelectionChanged()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function SelectionChanged()

Syntax for SelectionChanged event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

End Function
</SCRIPT>

Procedure OnComSelectionChanged
 Forward Send OnComSelectionChanged
End_Procedure

METHOD OCX_SelectionChanged() CLASS MainDialog
RETURN NIL

void onEvent_SelectionChanged()
{
}

function SelectionChanged as v ()
end function

function nativeObject_SelectionChanged()
return

The following VB sample displays the selected items:

Private Sub G2antt1_SelectionChanged()
 On Error Resume Next
 Dim h As HITEM
 Dim i As Long, j As Long, nCols As Long, nSels As Long
 nCols = G2antt1.Columns.Count
 With G2antt1.Items
 nSels = .SelectCount
 For i = 0 To nSels - 1
 Dim s As String
 For j = 0 To nCols - 1
 s = s + .CellValue(.SelectedItem(i), j) + Chr(9)
 Next
 Debug.Print s
 Next
 End With

End Sub

The following VB sample expands programmatically items when the selection is changed:

Private Sub G2antt1_SelectionChanged()
 G2antt1.Items.ExpandItem(G2antt1.Items.SelectedItem()) = True
End Sub

The following VB sample displays the selected items:

Private Sub G2antt1_SelectionChanged()
 Dim i As Long
 With G2antt1.Items
 For i = 0 To .SelectCount - 1
 Debug.Print .CellValue(.SelectedItem(i), 0)
 Next
 End With
End Sub

The following VC sample displays the selected items:

#include "Items.h"

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

void OnSelectionChangedG2antt1()
{

 CItems items = m_g2antt.GetItems();
 for (long i = 0; i < items.GetSelectCount(); i++)
 {
 COleVariant vtItem(items.GetSelectedItem(i));
 CString strOutput;
 strOutput.Format("%s\n", V2S(&items.GetCellValue(vtItem, COleVariant((long)0)))
);
 OutputDebugString(strOutput);
 }
}

The following VB.NET sample displays the selected items:

Private Sub AxG2antt1_SelectionChanged(ByVal sender As Object, ByVal e As
System.EventArgs) Handles AxG2antt1.SelectionChanged
 With AxG2antt1.Items
 Dim i As Integer
 For i = 0 To .SelectCount - 1
 Debug.WriteLine(.CellValue(.SelectedItem(i), 0))
 Next
 End With
End Sub

The following C# sample displays the selected items:

private void axG2antt1_SelectionChanged(object sender, System.EventArgs e)
{
 for (int i = 0; i < axG2antt1.Items.SelectCount - 1; i++)
 {
 object cell = axG2antt1.Items.get_CellValue(axG2antt1.Items.get_SelectedItem(i), 0);
 System.Diagnostics.Debug.WriteLine(cell != null ? cell.ToString() : "");
 }
}

The following VFP sample displays the selected items:

*** ActiveX Control Event ***

with thisform.G2antt1.Items

 for i = 0 to .SelectCount - 1
 .DefaultItem = .SelectedItem(i)
 wait window nowait .CellValue(0, 0)
 next
endwith

C#

VB

private void Sort(object sender)
{
}

Private Sub Sort(ByVal sender As System.Object) Handles Sort
End Sub

C#

C++

C++
Builder

Delphi

private void Sort(object sender, EventArgs e)
{
}

void OnSort()
{
}

void __fastcall Sort(TObject *Sender)
{
}

procedure Sort(ASender: TObject;);
begin

event Sort ()
Occurs when the control sorts a column.

Type Description

The control fires the Sort event when the control sorts a column (the user clicks the
column's head) or when the sorting position is changed in the control's sort bar. Use the
SortOnClick property to specify the action that control executes when the user clicks the
column's head. Use the SortBarVisible property to show the control's sort bar. Use the
SortOrder property to sorts a column at runtime. Use the SortPosition property to
determine the position of the column in the sorting columns collection. Use the
ItemBySortPosition property to access a column giving its position in the sorting columns
collection. Use the Sort event to sort the data when the SortOnClk property is exUserSort.
Use the SingleSort property to allow sorting by single or multiple columns.

Syntax for Sort event, /NET version, on:

Syntax for Sort event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

procedure Sort(sender: System.Object; e: System.EventArgs);
begin
end;

begin event Sort()
end event Sort

Private Sub Sort(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Sort
End Sub

Private Sub Sort()
End Sub

Private Sub Sort()
End Sub

LPARAMETERS nop

PROCEDURE OnSort(oG2antt)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="Sort()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Sort()
End Function
</SCRIPT>

Procedure OnComSort
 Forward Send OnComSort
End_Procedure

Syntax for Sort event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

METHOD OCX_Sort() CLASS MainDialog
RETURN NIL

void onEvent_Sort()
{
}

function Sort as v ()
end function

function nativeObject_Sort()
return

The following VB sample displays the list of columns being sorted:

Private Sub G2antt1_Sort()
 Dim s As String, i As Long, c As Column
 i = 0
 With G2antt1.Columns
 Set c = .ItemBySortPosition(i)
 While (Not c Is Nothing)
 s = s + """" & c.Caption & """ " & IIf(c.SortOrder = SortAscending, "A", "D") & " "
 i = i + 1
 Set c = .ItemBySortPosition(i)
 Wend
 End With
 s = "Sort: " & s
 Debug.Print s
End Sub

The following VC sample displays the list of columns being sorted:

void OnSortG2antt1()
{
 CString strOutput;
 CColumns columns = m_g2antt.GetColumns();
 long i = 0;
 CColumn column = columns.GetItemBySortPosition(COleVariant(i));

 while (column.m_lpDispatch)
 {
 strOutput += "\"" + column.GetCaption() + "\" " + (column.GetSortOrder() == 1 ?
"A" : "D") + " ";
 i++;
 column = columns.GetItemBySortPosition(COleVariant(i));
 }
 OutputDebugString(strOutput);
}

The following VB.NET sample displays the list of columns being sorted:

Private Sub AxG2antt1_Sort(ByVal sender As Object, ByVal e As System.EventArgs) Handles
AxG2antt1.Sort
 With AxG2antt1
 Dim s As String, i As Integer, c As EXG2ANTTLib.Column
 i = 0
 With AxG2antt1.Columns
 c = .ItemBySortPosition(i)
 While (Not c Is Nothing)
 s = s + """" & c.Caption & """ " & IIf(c.SortOrder =
EXG2ANTTLib.SortOrderEnum.SortAscending, "A", "D") & " "
 i = i + 1
 c = .ItemBySortPosition(i)
 End While
 End With
 s = "Sort: " & s
 Debug.WriteLine(s)
 End With
End Sub

The following C# sample displays the list of columns being sorted:

private void axG2antt1_Sort(object sender, System.EventArgs e)
{
 string strOutput = "";
 int i = 0;
 EXG2ANTTLib.Column column = axG2antt1.Columns.get_ItemBySortPosition(i);

 while (column != null)
 {
 strOutput += column.Caption + " " + (column.SortOrder ==
EXG2ANTTLib.SortOrderEnum.SortAscending ? "A" : "D") + " ";
 column = axG2antt1.Columns.get_ItemBySortPosition(++i);
 }
 Debug.WriteLine(strOutput);
}

The following VFP sample displays the list of columns being sorted (the code is listed in the
Sort event) :

local s, i, c
i = 0
s = ""
With thisform.G2antt1.Columns
 c = .ItemBySortPosition(i)
 do While (!isnull(c))
 with c
 s = s + "'" + .Caption
 s = s + "' " + IIf(.SortOrder = 1, "A", "D") + " "
 i = i + 1
 endwith
 c = .ItemBySortPosition(i)
 enddo
endwith
s = "Sort: " + s
wait window nowait s

event ToolTip (Item as HITEM, ColIndex as Long, Visible as Boolean, X as
Long, Y as Long, CX as Long, CY as Long)
Fired when the control prepares the object's tooltip.

Type Description

Item as HITEM A long expression that indicates the item's handle or 0 if
the cursor is not over the cell.

ColIndex as Long

A long expression that indicates the column's index. If
positive (including 0) it indicates the index of the column. If
negative it indicates one of the following:

-1, if the mouse pointer hovers the levels of the chart
(Level.ToolTip property)
-2, if the mouse pointer hovers the bars of the chart
(ItemBarPropertyEnum,exBarToolTip property)
-3, if the mouse pointer hovers the links of the chart
(LinkPropertyEnum,exLinkToolTip property)
-4, if the mouse pointer hovers the notes of the chart
(Note.ToolTip property)
-5, if the mouse pointer hovers the overview section
of the chart (Chart.OverviewToolTip property)

Visible as Boolean A boolean expression that indicates whether the object's
tooltip is visible.

X as Long
A long expression that indicates the left location of the
tooltip window. The x values is always expressed in
screen coordinates.

Y as Long
A long expression that indicates the top location of the
tooltip window. The y values is always expressed in
screen coordinates.

CX as Long A long expression that indicates the width of the tooltip
window.

CY as Long A long expression that indicates the height of the tooltip
window.

The ToolTip event notifies your application that the control prepares the tooltip for a cell or
column. Use the ToolTip event to change the default position of the tooltip window. Use the
CellToolTip property to specify the cell's tooltip. Use the Tooltip property to assign a tooltip
to a column. Use the ToolTipWidth property to specify the width of the tooltip window.

C#

VB

private void ToolTip(object sender,int Item,int ColIndex,ref bool Visible,ref int X,ref
int Y,int CX,int CY)
{
}

Private Sub ToolTip(ByVal sender As System.Object,ByVal Item As Integer,ByVal
ColIndex As Integer,ByRef Visible As Boolean,ByRef X As Integer,ByRef Y As
Integer,ByVal CX As Integer,ByVal CY As Integer) Handles ToolTip
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

private void ToolTip(object sender, AxEXG2ANTTLib._IG2anttEvents_ToolTipEvent
e)
{
}

void OnToolTip(long Item,long ColIndex,BOOL FAR* Visible,long FAR* X,long FAR*
Y,long CX,long CY)
{
}

void __fastcall ToolTip(TObject *Sender,Exg2anttlib_tlb::HITEM Item,long
ColIndex,VARIANT_BOOL * Visible,long * X,long * Y,long CX,long CY)
{
}

procedure ToolTip(ASender: TObject; Item : HITEM;ColIndex : Integer;var Visible :
WordBool;var X : Integer;var Y : Integer;CX : Integer;CY : Integer);
begin
end;

procedure ToolTip(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_ToolTipEvent);
begin
end;

Syntax for ToolTip event, /NET version, on:

Syntax for ToolTip event, /COM version, on:

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin event ToolTip(long Item,long ColIndex,boolean Visible,long X,long Y,long
CX,long CY)
end event ToolTip

Private Sub ToolTip(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_ToolTipEvent) Handles ToolTip
End Sub

Private Sub ToolTip(ByVal Item As EXG2ANTTLibCtl.HITEM,ByVal ColIndex As
Long,Visible As Boolean,X As Long,Y As Long,ByVal CX As Long,ByVal CY As Long)
End Sub

Private Sub ToolTip(ByVal Item As Long,ByVal ColIndex As Long,Visible As
Boolean,X As Long,Y As Long,ByVal CX As Long,ByVal CY As Long)
End Sub

LPARAMETERS Item,ColIndex,Visible,X,Y,CX,CY

PROCEDURE OnToolTip(oG2antt,Item,ColIndex,Visible,X,Y,CX,CY)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="ToolTip(Item,ColIndex,Visible,X,Y,CX,CY)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ToolTip(Item,ColIndex,Visible,X,Y,CX,CY)
End Function
</SCRIPT>

Procedure OnComToolTip HITEM llItem Integer llColIndex Boolean llVisible Integer
llX Integer llY Integer llCX Integer llCY
 Forward Send OnComToolTip llItem llColIndex llVisible llX llY llCX llCY
End_Procedure

Syntax for ToolTip event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

METHOD OCX_ToolTip(Item,ColIndex,Visible,X,Y,CX,CY) CLASS MainDialog
RETURN NIL

void onEvent_ToolTip(int _Item,int _ColIndex,COMVariant /*bool*/
_Visible,COMVariant /*long*/ _X,COMVariant /*long*/ _Y,int _CX,int _CY)
{
}

function ToolTip as v (Item as OLE::Exontrol.G2antt.1::HITEM,ColIndex as N,Visible
as L,X as N,Y as N,CX as N,CY as N)
end function

function nativeObject_ToolTip(Item,ColIndex,Visible,X,Y,CX,CY)
return

C#

VB

private void UserEditorClose(object sender,object Obj,int Item,int ColIndex)
{
}

Private Sub UserEditorClose(ByVal sender As System.Object,ByVal Obj As
Object,ByVal Item As Integer,ByVal ColIndex As Integer) Handles UserEditorClose
End Sub

C#

C++

private void UserEditorClose(object sender,
AxEXG2ANTTLib._IG2anttEvents_UserEditorCloseEvent e)
{
}

void OnUserEditorClose(LPDISPATCH Object,long Item,long ColIndex)
{
}

event UserEditorClose (Object as Object, Item as HITEM, ColIndex as
Long)
Fired the user editor is about to be opened.

Type Description
Object as Object An object created by UserEditor property.

Item as HITEM

A long expression that determines the item's handle. If the
Item parameter is 0, and the ColIndex property is different
than zero, the ColIndex indicates the handle of the cell
where the state is changed.

ColIndex as Long
A long expression that indicates the column's index, if the
Item parameter is not zero, a long expression that
indicates the handle of the cell if the Item parameter is 0.

Use the UserEditorClose event to notify your application when the user editor is hidden. Use
the UserEditorClose event to update the cell's value when user editor is hidden. The control
fires UserEditorOleEvent event each time when a an user editor object fires an event.

Syntax for UserEditorClose event, /NET version, on:

Syntax for UserEditorClose event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall UserEditorClose(TObject *Sender,IDispatch *Object,Exg2anttlib_tlb::HITEM
Item,long ColIndex)
{
}

procedure UserEditorClose(ASender: TObject; Object : IDispatch;Item :
HITEM;ColIndex : Integer);
begin
end;

procedure UserEditorClose(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_UserEditorCloseEvent);
begin
end;

begin event UserEditorClose(oleobject Object,long Item,long ColIndex)
end event UserEditorClose

Private Sub UserEditorClose(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_UserEditorCloseEvent) Handles UserEditorClose
End Sub

Private Sub UserEditorClose(ByVal Object As Object,ByVal Item As
EXG2ANTTLibCtl.HITEM,ByVal ColIndex As Long)
End Sub

Private Sub UserEditorClose(ByVal Object As Object,ByVal Item As Long,ByVal
ColIndex As Long)
End Sub

LPARAMETERS Object,Item,ColIndex

PROCEDURE OnUserEditorClose(oG2antt,Object,Item,ColIndex)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="UserEditorClose(Object,Item,ColIndex)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function UserEditorClose(Object,Item,ColIndex)
End Function
</SCRIPT>

Procedure OnComUserEditorClose Variant llObject HITEM llItem Integer llColIndex
 Forward Send OnComUserEditorClose llObject llItem llColIndex
End_Procedure

METHOD OCX_UserEditorClose(Object,Item,ColIndex) CLASS MainDialog
RETURN NIL

void onEvent_UserEditorClose(COM _Object,int _Item,int _ColIndex)
{
}

function UserEditorClose as v (Object as P,Item as
OLE::Exontrol.G2antt.1::HITEM,ColIndex as N)
end function

function nativeObject_UserEditorClose(Object,Item,ColIndex)
return

Syntax for UserEditorClose event, /COM version (others), on:

The following VB sample updates the cell's value when the user editor is hidden (the
sample handles the event for an exMaskEdit inside):

Private Sub G2antt1_UserEditorClose(ByVal Object As Object, ByVal Item As
EXG2ANTTLibCtl.HITEM, ByVal ColIndex As Long)
 With G2antt1.Items
 .CellValue(Item, ColIndex) = Object.Text
 End With
End Sub

The following C++ sample updates the cell's value when the user editor is hidden (the
sample handles the event for an exMaskEdit inside):

#import <maskedit.dll>

#include "Items.h"

void OnUserEditorCloseG2antt1(LPDISPATCH Object, long Item, long ColIndex)
{
 MaskEditLib::IMaskEditPtr spMaskEdit(Object);
 if (spMaskEdit != NULL)
 {
 COleVariant vtNewValue(spMaskEdit->GetText());
 m_g2antt.GetItems().SetCellValue(COleVariant(Item), COleVariant(ColIndex),
vtNewValue);
 }
}

where the #import <maskedit.dll> defines the type library of the exMaskEdit component, in
the MaskEditLib namespace. The V2S function converts a VARIANT value to a string value
and may look like follows:

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

The following VB.NET sample updates the cell's value when the user editor is hidden (the
sample handles the event for an exMaskEdit inside):

Private Sub AxG2antt1_UserEditorClose(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_UserEditorCloseEvent) Handles
AxG2antt1.UserEditorClose
 With AxG2antt1.Items
 .CellValue(e.item, e.colIndex) = e.object.Text
 End With
End Sub

The following C# sample updates the cell's value when the user editor is hidden (the
sample handles the event for an exMaskEdit inside):

private void axG2antt1_UserEditorClose(object sender,
AxEXG2ANTTLib._IG2anttEvents_UserEditorCloseEvent e)
{
 MaskEditLib.MaskEdit maskEdit = e.@object as MaskEditLib.MaskEdit;
 if (maskEdit != null)
 axG2antt1.Items.set_CellValue(e.item, e.colIndex, maskEdit.Text);
}

where the MaskEditLib class is defined by adding a new reference to the ExMaskEdit
component to your project.

The following VFP sample updates the cell's value when the user editor is hidden (the
sample handles the event for an exMaskEdit inside):

*** ActiveX Control Event ***
LPARAMETERS object, item, colindex

with thisform.G2antt1.Items
 .DefaultItem = item
 .CellValue(0, colindex) = object.Text()
endwith

C#

VB

private void UserEditorOleEvent(object sender,object
Obj,exontrol.EXG2ANTTLib.OleEvent Ev,ref bool CloseEditor,int Item,int ColIndex)
{
}

Private Sub UserEditorOleEvent(ByVal sender As System.Object,ByVal Obj As
Object,ByVal Ev As exontrol.EXG2ANTTLib.OleEvent,ByRef CloseEditor As
Boolean,ByVal Item As Integer,ByVal ColIndex As Integer) Handles
UserEditorOleEvent
End Sub

C# private void UserEditorOleEvent(object sender,

event UserEditorOleEvent (Object as Object, Ev as OleEvent,
CloseEditor as Boolean, Item as HITEM, ColIndex as Long)
Occurs when an user editor fires an event.

Type Description
Object as Object An object created by the UserEditor property.
Ev as OleEvent An OleEvent object that holds information about the event

CloseEditor as Boolean A boolean expression that indicates whether the control
should close the user editor.

Item as HITEM

A long expression that determines the item's handle. If the
Item parameter is 0, and the ColIndex property is different
than zero, the ColIndex indicates the handle of the cell
where the state is changed.

ColIndex as Long
A long expression that indicates the column's index, if the
Item parameter is not zero, a long expression that
indicates the handle of the cell if the Item parameter is 0.

The UserEditorOleEvent is fired every time when an user editor object fires an event. The
information about fired event is stored in the Ev parameter. The CloseEditor parameter is
useful to inform the control when the editor should be hidden, on certain events. The control
fires the UserEditorOpen event when a ActiveX editor is about to be shown. The control
fires the UserEditorClose event when the user editor is hidden.

Syntax for UserEditorOleEvent event, /NET version, on:

Syntax for UserEditorOleEvent event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

AxEXG2ANTTLib._IG2anttEvents_UserEditorOleEventEvent e)
{
}

void OnUserEditorOleEvent(LPDISPATCH Object,LPDISPATCH Ev,BOOL FAR*
CloseEditor,long Item,long ColIndex)
{
}

void __fastcall UserEditorOleEvent(TObject *Sender,IDispatch
*Object,Exg2anttlib_tlb::IOleEvent *Ev,VARIANT_BOOL *
CloseEditor,Exg2anttlib_tlb::HITEM Item,long ColIndex)
{
}

procedure UserEditorOleEvent(ASender: TObject; Object : IDispatch;Ev :
IOleEvent;var CloseEditor : WordBool;Item : HITEM;ColIndex : Integer);
begin
end;

procedure UserEditorOleEvent(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_UserEditorOleEventEvent);
begin
end;

begin event UserEditorOleEvent(oleobject Object,oleobject Ev,boolean
CloseEditor,long Item,long ColIndex)
end event UserEditorOleEvent

Private Sub UserEditorOleEvent(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_UserEditorOleEventEvent) Handles
UserEditorOleEvent
End Sub

Private Sub UserEditorOleEvent(ByVal Object As Object,ByVal Ev As
EXG2ANTTLibCtl.IOleEvent,CloseEditor As Boolean,ByVal Item As
EXG2ANTTLibCtl.HITEM,ByVal ColIndex As Long)
End Sub

VBA

VFP

Xbas…

Private Sub UserEditorOleEvent(ByVal Object As Object,ByVal Ev As
Object,CloseEditor As Boolean,ByVal Item As Long,ByVal ColIndex As Long)
End Sub

LPARAMETERS Object,Ev,CloseEditor,Item,ColIndex

PROCEDURE OnUserEditorOleEvent(oG2antt,Object,Ev,CloseEditor,Item,ColIndex)
RETURN

Java…

VBSc…

Visual
Data…

Visual
Objects

X++

XBasic

<SCRIPT EVENT="UserEditorOleEvent(Object,Ev,CloseEditor,Item,ColIndex)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function UserEditorOleEvent(Object,Ev,CloseEditor,Item,ColIndex)
End Function
</SCRIPT>

Procedure OnComUserEditorOleEvent Variant llObject Variant llEv Boolean
llCloseEditor HITEM llItem Integer llColIndex
 Forward Send OnComUserEditorOleEvent llObject llEv llCloseEditor llItem
llColIndex
End_Procedure

METHOD OCX_UserEditorOleEvent(Object,Ev,CloseEditor,Item,ColIndex) CLASS
MainDialog
RETURN NIL

void onEvent_UserEditorOleEvent(COM _Object,COM _Ev,COMVariant /*bool*/
_CloseEditor,int _Item,int _ColIndex)
{
}

function UserEditorOleEvent as v (Object as P,Ev as
OLE::Exontrol.G2antt.1::IOleEvent,CloseEditor as L,Item as

Syntax for UserEditorOleEvent event, /COM version (others), on:

dBASE

OLE::Exontrol.G2antt.1::HITEM,ColIndex as N)
end function

function nativeObject_UserEditorOleEvent(Object,Ev,CloseEditor,Item,ColIndex)
return

The following VB sample closes the editor and focus a new column when the user presses
the TAB key:

Private Sub Grid1_UserEditorOleEvent(ByVal Object As Object, ByVal Ev As
EXGRIDLibCtl.IOleEvent, CloseEditor As Boolean, ByVal Item As EXGRIDLibCtl.HITEM, ByVal
ColIndex As Long)
 If (Ev.Name = "KeyDown") Then
 Dim iKey As Long
 iKey = Ev(0).Value
 If iKey = vbKeyTab Then
 With Grid1
 CloseEditor = True
 .FocusColumnIndex = .FocusColumnIndex + 1
 .SearchColumnIndex = .FocusColumnIndex
 End With
 End If
 End If
End Sub

The following VB sample closes the Exontrol.ComboBox user editor when the user selects
a new value, or when it presses the Escape key. Also the sample changes the value of the
cell in the control:

Private Sub G2antt1_UserEditorOleEvent(ByVal Object As Object, ByVal Ev As
EXG2ANTTLibCtl.IOleEvent, CloseEditor As Boolean, ByVal Item As
EXG2ANTTLibCtl.HITEM, ByVal ColIndex As Long)
 ' Closes the Exontrol.ComboBox when user changes the value in the control
 If nEvents = 0 Then
 If (Ev.Name = "Change") Then
 With G2antt1
 .BeginUpdate
 With .Items

 .CellValue(Item, ColIndex) = Object.Select(1)
 .CellValueFormat(Item, ColIndex) = exHTML
 .CellValue(Item, ColIndex) = .CellValue(Item, ColIndex) + " <fgcolor=FF0000>
[changed]</fgcolor>"
 End With
 .EndUpdate
 End With
 CloseEditor = True
 End If

 If (Ev.Name = "KeyPress") Then
 Dim l As Long
 l = Ev(0).Value
 If l = vbKeyEscape Then
 CloseEditor = True
 End If
 End If
 End If
End Sub

The following VB sample displays the event and its parameters when an user editor object
fires an event:

Private Sub G2antt1_UserEditorOleEvent(ByVal Object As Object, ByVal Ev As
EXG2ANTTLibCtl.IOleEvent, CloseEditor As Boolean, ByVal Item As
EXG2ANTTLibCtl.HITEM, ByVal ColIndex As Long)
 Debug.Print "Event name:" & Ev.Name
 If (Ev.CountParam = 0) Then
 Debug.Print "The event has no arguments."
 Else
 Debug.Print "The event has the following arguments:"
 Dim i As Long
 For i = 0 To Ev.CountParam - 1
 Debug.Print Ev(i).Name; " = " & Ev(i).Value
 Next
 End If
End Sub

The following C++ sample displays the event and its parameters when an user editor object
fires an event:

#import <exg2antt.dll> rename("GetItems", "exGetItems")

void OnUserEditorOleEventG2antt1(LPDISPATCH Object, LPDISPATCH Ev, BOOL FAR*
CloseEditor, long Item, long ColIndex)
{
 EXG2ANTTLib::IOleEventPtr spEvent(Ev);
 CString strOutput;
 strOutput.Format("Event's name: %s\n", spEvent->Name.operator const char *());
 OutputDebugString(strOutput);
 if (spEvent->CountParam == 0)
 OutputDebugString("The event has no parameters.");
 else
 {
 for (long i = 0; i < spEvent->CountParam; i++)
 {
 EXG2ANTTLib::IOleEventParamPtr spParam = spEvent->GetParam(COleVariant(i));
 strOutput.Format("Name: %s, Value: %s\n", spParam->Name.operator const char *
(), V2S(&spParam->Value));
 OutputDebugString(strOutput);
 }
 }
 OutputDebugString("");
}

where the #import<g2antt.dll> defines the EXG2ANTTLib namespace that exports
definitions for the OleEvent and OleEventParam objects. The V2S function converts a
VARIANT value to a string value and may look like follows:

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

The following VB.NET sample displays the event and its parameters when an user editor
object fires an event:

Private Sub AxG2antt1_UserEditorOleEvent(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_UserEditorOleEventEvent) Handles
AxG2antt1.UserEditorOleEvent
 Debug.WriteLine("Event's name: " & e.ev.Name)
 Dim i As Long
 For i = 0 To e.ev.CountParam - 1
 Dim eP As EXG2ANTTLib.OleEventParam
 eP = e.ev(i)
 Debug.WriteLine("Name: " & e.ev.Name & " Value: " & eP.Value)
 Next
End Sub

The following C# sample displays the event and its parameters when an user editor object
fires an event:

private void axG2antt1_UserEditorOleEvent(object sender,
AxEXG2ANTTLib._IG2anttEvents_UserEditorOleEventEvent e)
{
 System.Diagnostics.Debug.WriteLine("Event's name: " + e.ev.Name.ToString());
 for (int i = 0; i < e.ev.CountParam; i++)
 {
 EXG2ANTTLib.IOleEventParam evP = e.ev[i];
 System.Diagnostics.Debug.WriteLine("Name: " + evP.Name.ToString() + ", Value: " +
evP.Value.ToString());
 }
}

The following VFP sample displays the event and its parameters when an user editor object
fires an event:

*** ActiveX Control Event ***
LPARAMETERS object, ev, closeeditor, item, colindex

local s
s = "Event's name: " + ev.Name
for i = 0 to ev.CountParam - 1
 s = s + "Name: " + ev.Param(i).Name + " ,Value: " + Str(ev.Param(i).Value)
endfor
wait window nowait s

C#

VB

private void UserEditorOpen(object sender,object Obj,int Item,int ColIndex)
{
}

Private Sub UserEditorOpen(ByVal sender As System.Object,ByVal Obj As
Object,ByVal Item As Integer,ByVal ColIndex As Integer) Handles UserEditorOpen
End Sub

C# private void UserEditorOpen(object sender,
AxEXG2ANTTLib._IG2anttEvents_UserEditorOpenEvent e)
{
}

event UserEditorOpen (Object as Object, Item as HITEM, ColIndex as
Long)
Occurs when an user editor is about to be opened.

Type Description
Object as Object An object created by UserEditor property

Item as HITEM

A long expression that determines the item's handle. If the
Item parameter is 0, and the ColIndex property is different
than zero, the ColIndex indicates the handle of the cell
where the state is changed.

ColIndex as Long
A long expression that indicates the column's index, if the
Item parameter is not zero, a long expression that
indicates the handle of the cell if the Item parameter is 0.

The control supports custom ActiveX editors support. The control fires the UserEditorOpen
event when an user editor is shown. Use the UserEditorOpen event to initialize the user
editor when it is shown. For instance, if you have a custom maskedit control you can
initialize the mask and the value based on the cell's value property. Use the CellValue
property to access the cell's value. The control fires the UserEditorOleEvent event each
time when an user editor fires an event. The control fires the UserEditorClose event when
an user editor is hidden.

Syntax for UserEditorOpen event, /NET version, on:

Syntax for UserEditorOpen event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

void OnUserEditorOpen(LPDISPATCH Object,long Item,long ColIndex)
{
}

void __fastcall UserEditorOpen(TObject *Sender,IDispatch
*Object,Exg2anttlib_tlb::HITEM Item,long ColIndex)
{
}

procedure UserEditorOpen(ASender: TObject; Object : IDispatch;Item :
HITEM;ColIndex : Integer);
begin
end;

procedure UserEditorOpen(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_UserEditorOpenEvent);
begin
end;

begin event UserEditorOpen(oleobject Object,long Item,long ColIndex)
end event UserEditorOpen

Private Sub UserEditorOpen(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_UserEditorOpenEvent) Handles UserEditorOpen
End Sub

Private Sub UserEditorOpen(ByVal Object As Object,ByVal Item As
EXG2ANTTLibCtl.HITEM,ByVal ColIndex As Long)
End Sub

Private Sub UserEditorOpen(ByVal Object As Object,ByVal Item As Long,ByVal
ColIndex As Long)
End Sub

LPARAMETERS Object,Item,ColIndex

Xbas… PROCEDURE OnUserEditorOpen(oG2antt,Object,Item,ColIndex)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="UserEditorOpen(Object,Item,ColIndex)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function UserEditorOpen(Object,Item,ColIndex)
End Function
</SCRIPT>

Procedure OnComUserEditorOpen Variant llObject HITEM llItem Integer llColIndex
 Forward Send OnComUserEditorOpen llObject llItem llColIndex
End_Procedure

METHOD OCX_UserEditorOpen(Object,Item,ColIndex) CLASS MainDialog
RETURN NIL

void onEvent_UserEditorOpen(COM _Object,int _Item,int _ColIndex)
{
}

function UserEditorOpen as v (Object as P,Item as
OLE::Exontrol.G2antt.1::HITEM,ColIndex as N)
end function

function nativeObject_UserEditorOpen(Object,Item,ColIndex)
return

Syntax for UserEditorOpen event, /COM version (others), on:

The following VB sample selects an item into an user editor of
EXCOMBOBOXLibCtl.ComboBox type (the sample uses the Exontrol's ExComboBox
Component):

Private Sub G2antt1_UserEditorOpen(ByVal Object As Object, ByVal Item As
EXG2ANTTLibCtl.HITEM, ByVal ColIndex As Long)
 On Error Resume Next

https://exontrol.com/excombobox.jsp

 nEvents = nEvents + 1
 'Selects the value in the combo box
 With Object ' Points to an EXCOMBOBOXLibCtl.ComboBox object
 Dim sID As String
 sID = G2antt1.Items.CellValue(Item, ColIndex)
 If (G2antt1.Items.CellValueFormat(Item, ColIndex) = exHTML) Then
 sID = Mid(sID, 1, InStr(1, sID, " ", vbTextCompare) - 1)
 End If
 .Select(1) = sID
 If .Items.SelectCount > 0 Then
 .Items.EnsureVisibleItem .Items.SelectedItem(0)
 End If
 End With
 nEvents = nEvents - 1
End Sub

The following samples use the Exontrol's ExMaskEdit Component to mask floating point
numbers using digit grouping.

The following VB sample initializes the mask's value when user editor is shown (the sample
calls the Text property of the exMaskEdit component):

Private Sub G2antt1_UserEditorOpen(ByVal Object As Object, ByVal Item As
EXG2ANTTLibCtl.HITEM, ByVal ColIndex As Long)
 With G2antt1.Items
 Object.Text = .CellValue(Item, ColIndex)
 End With
End Sub

The following C++ sample initializes the mask's value when user editor is shown:

#import <maskedit.dll>

#include "Items.h"

void OnUserEditorOpenG2antt1(LPDISPATCH Object, long Item, long ColIndex)
{
 MaskEditLib::IMaskEditPtr spMaskEdit(Object);
 if (spMaskEdit != NULL)

https://exontrol.com/exmaskedit.jsp
https://exontrol.com/content/products/exmaskedit/help/MaskEdit_MaskFloat.htm
https://exontrol.com/content/products/exmaskedit/help/MaskEdit_Text.htm

 {
 CString strValue = V2S(&m_g2antt.GetItems().GetCellValue(COleVariant(Item),
COleVariant(ColIndex)));
 spMaskEdit->PutText(strValue.AllocSysString());
 }
}

where the #import <maskedit.dll> defines the type library of the exMaskEdit component, in
the MaskEditLib namespace. The V2S function converts a VARIANT value to a string value
and may look like follows:

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

The following VB.NET sample initializes the mask's value when user editor is shown:

Private Sub AxG2antt1_UserEditorOpen(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_UserEditorOpenEvent) Handles
AxG2antt1.UserEditorOpen
 With AxG2antt1.Items
 e.object.Text = .CellValue(e.item, e.colIndex)
 End With
End Sub

The following C# sample initializes the mask's value when user editor is shown:

private void axG2antt1_UserEditorOpen(object sender,
AxEXG2ANTTLib._IG2anttEvents_UserEditorOpenEvent e)

{
 MaskEditLib.MaskEdit maskEdit = e.@object as MaskEditLib.MaskEdit;
 if (maskEdit != null)
 {
 object cellValue = axG2antt1.Items.get_CellValue(e.item, e.colIndex);
 maskEdit.Text = (cellValue != null ? cellValue.ToString() : "");
 }
}

where the MaskEditLib class is defined by adding a new reference to the ExMaskEdit
component to your project.

The following VFP sample initializes the mask's value when user editor is shown:

*** ActiveX Control Event ***
LPARAMETERS object, item, colindex

with thisform.G2antt1.Items
 .DefaultItem = item
 object.Text = .CellValue(0, colindex)
endwith

event ValidateValue (Item as HITEM, ColIndex as Long, NewValue as
Variant, Cancel as Boolean)
Occurs before user changes the cell's value.

Type Description

Item as HITEM

A long expression that determines the item's handle. If the
Item parameter is 0, and the ColIndex property is different
than zero, the ColIndex indicates the handle of the cell
where the change occurs.

ColIndex as Long
A long expression that indicates the column's index, if the
Item parameter is not zero, a long expression that
indicates the handle of the cell if the Item parameter is 0.

NewValue as Variant A Variant value that indicates the value being validated.

Cancel as Boolean

A boolean expression that indicates whether the value is
valid or not. By default, the Cancel parameter is False,
and so the NewValue parameter is valid. If the Cancel
parameter is set on True, the control considers the
NewValue being a non valid value, so the Change event is
not fired.

The ValidateValue event notifies your application that the user is about to change the cell's
value using the control's UI. Use the ValidateValue event to prevent users enter wrong
values to the cells. The ValidateValue event is fired only if the CauseValidateValue property
is not zero and the user alters the focused value. The validation can be done per cell or per
item, in other words, the validation can be made if the user leaves the focused cell, or
focused item. If the Cancel parameter is True, the user can't move the focus to a new
cell/item, until the Cancel parameter is False. If the Cancel parameter is False the control
fires the Change event to notify your application that the cell's value is changed. Use the
Edit method to programmatically edit the focused cell. Call the DiscardValidateValue method
to restore back the values being changed during the validation.

During ValidateValue event, the Items.CellValue(Item,ColIndex) and
Items.CellCaption(Item,ColIndex) properties retrieve the original value/caption of the cell.
You can access the modified value for any cell in the validating item using the
Items.CellValue(-1,ColIndex) and Items.CellCaption(-1,ColIndex), or uses the -1 identifier
for the Item parameter of the Items.CellValue and Items.CellCaption properties.

During the validation you may have the following order of the events:

Edit - prevent showing the editor for specified cell.
EditOpen - indicates that the editor for the focused cell is being opened.

C#

VB

private void ValidateValue(object sender,int Item,int ColIndex,object NewValue,ref
bool Cancel)
{
}

Private Sub ValidateValue(ByVal sender As System.Object,ByVal Item As
Integer,ByVal ColIndex As Integer,ByVal NewValue As Object,ByRef Cancel As
Boolean) Handles ValidateValue
End Sub

C#

C++

C++
Builder

Delphi

private void ValidateValue(object sender,
AxEXG2ANTTLib._IG2anttEvents_ValidateValueEvent e)
{
}

void OnValidateValue(long Item,long ColIndex,VARIANT NewValue,BOOL FAR*
Cancel)
{
}

void __fastcall ValidateValue(TObject *Sender,Exg2anttlib_tlb::HITEM Item,long
ColIndex,Variant NewValue,VARIANT_BOOL * Cancel)
{
}

procedure ValidateValue(ASender: TObject; Item : HITEM;ColIndex :

EditClose - indicates that the editor for the focused cell is being closed.
ValidateValue - notifies your application that the value must be validated (Cancel
parameter on False)
Change - notifies the application once the user validates the newly value. In case the
control is bounded to a database, the change is performed to the database too.
Error - notifies the application for any error (for instance, if the change is not
supported by the database, the Error indicates the error being issued).

The ValidateValue event is not fired if the CellValue property is called during the event.

Syntax for ValidateValue event, /NET version, on:

Syntax for ValidateValue event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

Integer;NewValue : OleVariant;var Cancel : WordBool);
begin
end;

procedure ValidateValue(sender: System.Object; e:
AxEXG2ANTTLib._IG2anttEvents_ValidateValueEvent);
begin
end;

begin event ValidateValue(long Item,long ColIndex,any NewValue,boolean Cancel)
end event ValidateValue

Private Sub ValidateValue(ByVal sender As System.Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_ValidateValueEvent) Handles ValidateValue
End Sub

Private Sub ValidateValue(ByVal Item As EXG2ANTTLibCtl.HITEM,ByVal ColIndex As
Long,ByVal NewValue As Variant,Cancel As Boolean)
End Sub

Private Sub ValidateValue(ByVal Item As Long,ByVal ColIndex As Long,ByVal
NewValue As Variant,Cancel As Boolean)
End Sub

LPARAMETERS Item,ColIndex,NewValue,Cancel

PROCEDURE OnValidateValue(oG2antt,Item,ColIndex,NewValue,Cancel)
RETURN

Java…

VBSc…

<SCRIPT EVENT="ValidateValue(Item,ColIndex,NewValue,Cancel)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ValidateValue(Item,ColIndex,NewValue,Cancel)

Syntax for ValidateValue event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

End Function
</SCRIPT>

Procedure OnComValidateValue HITEM llItem Integer llColIndex Variant
llNewValue Boolean llCancel
 Forward Send OnComValidateValue llItem llColIndex llNewValue llCancel
End_Procedure

METHOD OCX_ValidateValue(Item,ColIndex,NewValue,Cancel) CLASS MainDialog
RETURN NIL

void onEvent_ValidateValue(int _Item,int _ColIndex,COMVariant
_NewValue,COMVariant /*bool*/ _Cancel)
{
}

function ValidateValue as v (Item as OLE::Exontrol.G2antt.1::HITEM,ColIndex as
N,NewValue as A,Cancel as L)
end function

function nativeObject_ValidateValue(Item,ColIndex,NewValue,Cancel)
return

The following VB sample asks the user to validate the value for each cell that's edited:

Private Sub G2antt_ValidateValue(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal ColIndex As
Long, ByVal NewValue As Variant, Cancel As Boolean)
 Cancel = True ' Causes all cells to be invalid
 If MsgBox("The ValidateValue event just occurs. Do the change with this value '" &
NewValue & "'?", vbYesNo) = vbYes Then
 Cancel = False ' Only cells where user selects the Yes button, are valid
 End If
 G2antt.Edit ' Continue editing a cell.
End Sub

The following C++ sample asks the user to validate the value for each cell that's edited:

CString V2S(const VARIANT* pvtValue)

{
 COleVariant vt;
 vt.ChangeType(VT_BSTR, (LPVARIANT)pvtValue);
 return V_BSTR(&vt);
}

void OnValidateValueG2antt1(long Item, long ColIndex, const VARIANT FAR& NewValue,
BOOL FAR* Cancel)
{
 *Cancel = TRUE; // Causes all cells to be invalid
 if (MessageBox("The ValidateValue event just occurs. Do the change with this value '" +
V2S(&NewValue) + "'?", "Information", MB_YESNO) == IDYES)
 *Cancel = FALSE; // Only cells where user selects the Yes button, are valid
 COleVariant vtOptional; V_VT(&vtOptional) = VT_ERROR;
 m_g2antt.Edit(vtOptional); // Continue editing a cell.
}

The following C++ sample asks the user to enter a value greater than 10 on the first
column, if the value is less than 10:

Private Sub G2antt_ValidateValue(ByVal Item As EXG2ANTTLibCtl.HITEM, ByVal ColIndex As
Long, ByVal NewValue As Variant, Cancel As Boolean)
 If (ColIndex = 0) Then
 If (NewValue < 10) Then
 MsgBox "Enter a value greater than 10."
 Cancel = True ' Cancels only the cells with the value less than 10.
 G2antt.Edit ' Continue editing a cell.
 End If
 End If
End Sub

The following VB.NET sample asks the user to validate the values on the first column:

Private Sub AxG2antt1_ValidateValue(ByVal sender As Object, ByVal e As
AxEXG2ANTTLib._IG2anttEvents_ValidateValueEvent) Handles AxG2antt1.ValidateValue
 If (e.colIndex = 0) Then
 e.cancel = True
 Dim strMessage As String = "The ValidateValue event just occurs. Do the change with

this value '" & e.newValue.ToString() & "'?"
 If (MessageBox.Show(strMessage, "Question", MessageBoxButtons.YesNoCancel,
MessageBoxIcon.Question) = Windows.Forms.DialogResult.Yes) Then
 e.cancel = False
 End If
 End If
End Sub

The following C# sample asks the user to validate the values on the first column:

private void axG2antt1_ValidateValue(object sender,
AxEXG2ANTTLib._IG2anttEvents_ValidateValueEvent e)
{
 if (e.colIndex == 0)
 {
 e.cancel = true;
 string strMessage = "The ValidateValue event just occurs. Do the change with this
value '" + e.newValue.ToString() + "'?";
 if (MessageBox.Show(strMessage, "Question", MessageBoxButtons.YesNoCancel,
MessageBoxIcon.Question) == DialogResult.Yes)
 e.cancel = false;
 }
}

The following VFP sample asks the user to validate the values on the first column:

*** ActiveX Control Event ***
LPARAMETERS item, colindex, newvalue, cancel

with thisform.G2antt1.Items
 if (colindex = 0)
 cancel = .t.
 local strMessage
 strMessage = "The ValidateValue event just occurs. Do the change with this value '" +
newvalue + "'?"
 if (MessageBox(strMessage, 3) = 6)
 cancel = .f.
 endif

 endif
endwith

Expressions

An expression is a string which defines a formula or criteria, that's evaluated at runtime. The
expression may be a combination of variables, constants, strings, dates and
operators/functions. For instance 1000 format `` gets 1,000.00 for US format, while
1.000,00 is displayed for German format.

The Exontrol's eXPression component is a syntax-editor that helps you to define, view, edit
and evaluate expressions. Using the eXPression component you can easily view or check if
the expression you have used is syntactically correct, and you can evaluate what is the
result you get giving different values to be tested. The Exontrol's eXPression component
can be used as an user-editor, to configure your applications.

Usage examples:

100 + 200, adds two numbers and returns 300
"100" + 200, concatenates the strings, and returns "100200"
currency(1000) displays the value in currency format based on the current regional
setting, such as "$1,000.00" for US format.
1000 format `` gets 1,000.00 for English format, while 1.000,00 is displayed for
German format
1000 format `2|.|3|,` always gets 1,000.00 no matter of settings in the control panel.
date(value) format `MMM d, yyyy` , returns the date such as Sep 2, 2023, for English
format
upper("string") converts the giving string in uppercase letters, such as "STRING"
date(dateS('3/1/' + year(9:=#1/1/2018#)) + ((1:=(((255 - 11 * (year(=:9) mod 19)) - 21)
mod 30) + 21) + (=:1 > 48 ? -1 : 0) + 6 - ((year(=:9) + int(year(=:9) / 4)) + =:1 + (=:1
> 48 ? -1 : 0) + 1) mod 7)) returns the date the Easter Sunday will fall, for year 2018.
In this case the expression returns #4/1/2018#. If #1/1/2018# is replaced with
#1/1/2019#, the expression returns #4/21/2019#.

Listed bellow are all predefined constants, operators and functions the general-expression
supports:

The constants can be represented as:

numbers in decimal format (where dot character specifies the decimal separator).
For instance: -1, 100, 20.45, .99 and so on
numbers in hexa-decimal format (preceded by 0x or 0X sequence), uses sixteen
distinct symbols, most often the symbols 0-9 to represent values zero to nine, and A,
B, C, D, E, F (or alternatively a, b, c, d, e, f) to represent values ten to fifteen.
Hexadecimal numerals are widely used by computer system designers and

https://exontrol.com/expression.jsp

programmers. As each hexadecimal digit represents four binary digits (bits), it allows a
more human-friendly representation of binary-coded values. For instance, 0xFF,
0x00FF00, and so so.
date-time in format #mm/dd/yyyy hh:mm:ss#, For instance, #1/31/2001 10:00#
means the January 31th, 2001, 10:00 AM
string, if it starts / ends with any of the ' or ` or " characters. If you require the starting
character inside the string, it should be escaped (preceded by a \ character). For
instance, `Mihai`, "Filimon", 'has', "\"a quote\"", and so on

The predefined constants are:

bias (BIAS constant), defines the difference, in minutes, between Coordinated
Universal Time (UTC) and local time. For example, Middle European Time (MET,
GMT+01:00) has a time zone bias of "-60" because it is one hour ahead of UTC.
Pacific Standard Time (PST, GMT-08:00) has a time zone bias of "+480" because it is
eight hours behind UTC. For instance, date(value - bias/24/60) converts the UTC time
to local time, or date(date('now') + bias/24/60) converts the current local time to UTC
time. For instance, "date(value - bias/24/60)" converts the value date-time from UTC to
local time, while "date(value + bias/24/60)" converts the local-time to UTC time.
dpi (DPI constant), specifies the current DPI setting. and it indicates the minimum
value between dpix and dpiy constants. For instance, if current DPI setting is 100%,
the dpi constant returns 1, if 150% it returns 1.5, and so on. For instance, the
expression value * dpi returns the value if the DPI setting is 100%, or value * 1.5 in
case, the DPI setting is 150%
dpix (DPIX constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpix constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpix returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%
dpiy (DPIY constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpiy constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpiy returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported binary range operators, all these with the same priority 5, are :

a MIN b (min operator), indicates the minimum value, so a MIN b returns the value of
a, if it is less than b, else it returns b. For instance, the expression value MIN 10
returns always a value greater than 10.
a MAX b (max operator), indicates the maximum value, so a MAX b returns the value
of a, if it is greater than b, else it returns b. For instance, the expression value MAX
100 returns always a value less than 100.

The supported binary operators, all these with the same priority 0, are :

:= (Store operator), stores the result of expression to variable. The syntax for :=
operator is

variable := expression

where variable is a integer between 0 and 9. You can use the =: operator to restore
any stored variable (please make the difference between := and =:). For instance,
(0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and prints zero
if it is 0, else the converted number. Please pay attention that the := and =: are two
distinct operators, the first for storing the result into a variable, while the second for
restoring the variable

=: (Restore operator), restores the giving variable (previously saved using the store
operator). The syntax for =: operator is

=: variable

where variable is a integer between 0 and 9. You can use the := operator to store the
value of any expression (please make the difference between := and =:). For
instance, (0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and
prints zero if it is 0, else the converted number. Please pay attention that the := and =:
are two distinct operators, the first for storing the result into a variable, while the
second for restoring the variable

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for ? operator is

expression ? true_part : false_part

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the %0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found') returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

expression array (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D') is equivalent with month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D').

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

expression in (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the value in (11,22,33,44,13) is equivalent with
(expression = 11) or (expression = 22) or (expression = 33) or (expression = 44) or
(expression = 13). The in operator is not a time consuming as the equivalent or version
is, so when you have large number of constant elements it is recommended using the

in operator. Shortly, if the collection of elements has 1000 elements the in operator
could take up to 8 operations in order to find if an element fits the set, else if the or
statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

expression switch (default,c1,c2,c3,...,cn)

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the %0 switch ('not found',1,4,7,9,11) gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

expression case ([default : default_expression ;] c1 : expression1 ; c2 : expression2 ; c3 :
expression3 ;....)

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1) indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8) statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,

04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions. Obviously, the priority of the operations inside the expression is
determined by () parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. The type operator may return
any of the following: 0 - empty (not initialized), 1 - null, 2 - short, 3 - long, 4 - float, 5 -
double, 6 - currency, 7 - date, 8 - string, 9 - object, 10 - error, 11 - boolean, 12 -
variant, 13 - any, 14 - decimal, 16 - char, 17 - byte, 18 - unsigned short, 19 - unsigned
long, 20 - long on 64 bits, 21 - unsigned long on 64 bites. For instance type(%1) = 8
specifies the cells (on the column with the index 1) that contains string values.
str (unary operator) converts the expression to a string. The str operator converts the
expression to a string. For instance, the str(-12.54) returns the string "-12.54".
dbl (unary operator) converts the expression to a number. The dbl operator converts
the expression to a number. For instance, the dbl("12.54") returns 12.54
date (unary operator) converts the expression to a date, based on your regional
settings. For instance, the date(``) gets the current date (no time included), the
date(`now`) gets the current date-time, while the date("01/01/2001") returns
#1/1/2001#
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS. For instance, the dateS("01/01/2001 14:00:00") returns
#1/1/2001 14:00:00#
hex (unary operator) converts the giving string from hexa-representation to a numeric
value, or converts the giving numeric value to hexa-representation as string. For
instance, hex(`FF`) returns 255, while the hex(255) or hex(0xFF) returns the `FF`
string. The hex(hex(`FFFFFFFF`)) always returns `FFFFFFFF` string, as the second
hex call converts the giving string to a number, and the first hex call converts the
returned number to string representation (hexa-representation).

The bitwise operators for numbers are:

a bitand b (binary operator) computes the AND operation on bits of a and b, and
returns the unsigned value. For instance, 0x01001000 bitand 0x10111000 returns
0x00001000.
a bitor b (binary operator) computes the OR operation on bits of a and b, and returns
the unsigned value. For instance, 0x01001000 bitor 0x10111000 returns 0x11111000.
a bitxor b (binary operator) computes the XOR (exclusive-OR) operation on bits of a
and b, and returns the unsigned value. For instance, 0x01110010 bitxor 0x10101010
returns 0x11011000.

a bitshift (b) (binary operator) shifts every bit of a value to the left if b is negative, or
to the right if b is positive, for b times, and returns the unsigned value. For instance,
128 bitshift 1 returns 64 (dividing by 2) or 128 bitshift (-1) returns 256 (multiplying by
2)
bitnot (unary operator) flips every bit of x, and returns the unsigned value. For
instance, bitnot(0x00FF0000) returns 0xFF00FFFF.

The operators for numbers are:

int (unary operator) retrieves the integer part of the number. For instance, the
int(12.54) returns 12
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2. For
instance, the round(12.54) returns 13
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument. For instance, the floor(12.54) returns 12
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2.
For instance, the abs(-12.54) returns 12.54
sin (unary operator) returns the sine of an angle of x radians. For instance, the
sin(3.14) returns 0.001593.
cos (unary operator) returns the cosine of an angle of x radians. For instance, the
cos(3.14) returns -0.999999.
asin (unary operator) returns the principal value of the arc sine of x, expressed in
radians. For instance, the 2*asin(1) returns the value of PI.
acos (unary operator) returns the principal value of the arc cosine of x, expressed in
radians. For instance, the 2*acos(0) returns the value of PI
sqrt (unary operator) returns the square root of x. For instance, the sqrt(81) returns 9.
currency (unary operator) formats the giving number as a currency string, as indicated
by the control panel. For instance, currency(value) displays the value using the current
format for the currency ie, 1000 gets displayed as $1,000.00, for US format.
value format 'flags' (binary operator) formats a numeric value with specified flags. The
format method formats numeric or date expressions (depends on the type of the value,
explained at operators for dates). If flags is empty, the number is displayed as shown
in the field "Number" in the "Regional and Language Options" from the Control Panel.
For instance the "1000 format ''" displays 1,000.00 for English format, while 1.000,00
is displayed for German format. "1000 format '2|.|3|,'" will always displays 1,000.00 no
matter of the settings in your control panel. If formatting the number fails for some
invalid parameter, the value is displayed with no formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with
the following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the

field "No. of digits after decimal" from "Regional and Language Options" is
using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left
of the decimal separator. Values in the range 0 through 9 and 32 are valid.
The most significant grouping digit indicates the number of digits in the least
significant group immediately to the left of the decimal separator. Each
subsequent grouping digit indicates the next significant group of digits to the
left of the previous group. If the last value supplied is not 0, the remaining
groups repeat the last group. Typical examples of settings for this member
are: 0 to group digits as in 123456789.00; 3 to group digits as in
123,456,789.00; and 32 to group digits as in 12,34,56,789.00. If the flag is
missing, the field "Digit grouping" from "Regional and Language Options"
indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the
field "Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing,
the field "Negative number format" from "Regional and Language Options" is
using. The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If
the flag is missing, the field "Display leading zeros" from "Regional and
Language Options" is using. The valid values are 0, 1

 The operators for strings are:

len (unary operator) retrieves the number of characters in the string. For instance, the
len("Mihai") returns 5.
lower (unary operator) returns a string expression in lowercase letters. For instance,
the lower("MIHAI") returns "mihai"
upper (unary operator) returns a string expression in uppercase letters. For instance,
the upper("mihai") returns "MIHAI"
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names. For instance, the proper("mihai") returns "Mihai"
ltrim (unary operator) removes spaces on the left side of a string. For instance, the
ltrim(" mihai") returns "mihai"
rtrim (unary operator) removes spaces on the right side of a string. For instance, the
rtrim("mihai ") returns "mihai"

trim (unary operator) removes spaces on both sides of a string. For instance, the
trim(" mihai ") returns "mihai"
reverse (unary operator) reverses the order of the characters in the string a. For
instance, the reverse("Mihai") returns "iahiM"
a startwith b (binary operator) specifies whether a string starts with specified string (
0 if not found, -1 if found). For instance "Mihai" startwith "Mi" returns -1
a endwith b (binary operator) specifies whether a string ends with specified string (0
if not found, -1 if found). For instance "Mihai" endwith "ai" returns -1
a contains b (binary operator) specifies whether a string contains another specified
string (0 if not found, -1 if found). For instance "Mihai" contains "ha" returns -1
a left b (binary operator) retrieves the left part of the string. For instance "Mihai" left 2
returns "Mi".
a right b (binary operator) retrieves the right part of the string. For instance "Mihai"
right 2 returns "ai"
a lfind b (binary operator) The a lfind b (binary operator) searches the first occurrence
of the string b within string a, and returns -1 if not found, or the position of the result (
zero-index). For instance "ABCABC" lfind "C" returns 2
a rfind b (binary operator) The a rfind b (binary operator) searches the last
occurrence of the string b within string a, and returns -1 if not found, or the position of
the result (zero-index). For instance "ABCABC" rfind "C" returns 5.
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on). For instance "Mihai" mid 2 returns "ihai"
a count b (binary operator) retrieves the number of occurrences of the b in a. For
instance "Mihai" count "i" returns 2.
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result. For instance, the "Mihai" replace "i" with "" returns "Mha" string, as it replaces
all "i" with nothing.
a split b (binary operator) splits the a using the separator b, and returns an array. For
instance, the weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' ' gets the
weekday as string. This operator can be used with the array.
a like b (binary operator) compares the string a against the pattern b. The pattern b
may contain wild-characters such as *, ?, # or [] and can have multiple patterns
separated by space character. In order to have the space, or any other wild-character
inside the pattern, it has to be escaped, or in other words it should be preceded by a \
character. For instance value like `F*e` matches all strings that start with F and ends
on e, or value like `a* b*` indicates any strings that start with a or b character.
a lpad b (binary operator) pads the value of a to the left with b padding pattern. For
instance, 12 lpad "0000" generates the string "0012".
a rpad b (binary operator) pads the value of a to the right with b padding pattern. For
instance, 12 lpad "____" generates the string "12__".
a concat b (binary operator) concatenates the a (as string) for b times. For instance,
"x" concat 5, generates the string "xxxxx".

The operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel. For instance, the time(#1/1/2001 13:00#) returns "1:00:00 PM"
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance, the timeF(#1/1/2001 13:00#) returns "13:00:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel. For instance, the shortdate(#1/1/2001
13:00#) returns "1/1/2001"
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance, the shortdateF(#1/1/2001 13:00#) returns
"01/01/2001"
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format. For instance, the dateF(#01/01/2001 14:00:00#)
returns #01/01/2001 14:00:00#
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel. For instance, the longdate(#1/1/2001 13:00#)
returns "Monday, January 01, 2001"
year (unary operator) retrieves the year of the date (100,...,9999). For instance, the
year(#12/31/1971 13:14:15#) returns 1971
month (unary operator) retrieves the month of the date (1, 2,...,12). For instance, the
month(#12/31/1971 13:14:15#) returns 12.
day (unary operator) retrieves the day of the date (1, 2,...,31). For instance, the
day(#12/31/1971 13:14:15#) returns 31
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365). For instance, the yearday(#12/31/1971 13:14:15#) returns
365
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday). For instance, the weekday(#12/31/1971 13:14:15#) returns
5.
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23). For instance, the
hour(#12/31/1971 13:14:15#) returns 13
min (unary operator) retrieves the minute of the date (0, 1, ..., 59). For instance, the
min(#12/31/1971 13:14:15#) returns 14
sec (unary operator) retrieves the second of the date (0, 1, ..., 59). For instance, the
sec(#12/31/1971 13:14:15#) returns 15
value format 'flags' (binary operator) formats a date expression with specified flags.
The format method formats numeric (depends on the type of the value, explained at
operators for numbers) or date expressions. If not supported, the value is formatted as
a number (the date format is supported by newer version only). The flags specifies the
format picture string that is used to form the date. Possible values for the format
picture string are defined below. For instance, the date(value) format `MMM d, yyyy`

returns "Sep 2, 2023"

The following table defines the format types used to represent days:

d, day of the month as digits without leading zeros for single-digit days (8)
dd, day of the month as digits with leading zeros for single-digit days (08)
ddd, abbreviated day of the week as specified by the current locale ("Mon" in
English)
dddd, day of the week as specified by the current locale ("Monday" in
English)

The following table defines the format types used to represent months:

M, month as digits without leading zeros for single-digit months (4)
MM, month as digits with leading zeros for single-digit months (04)
MMM, abbreviated month as specified by the current locale ("Nov" in English)
MMMM, month as specified by the current locale ("November" for English)

The following table defines the format types used to represent years:

y, year represented only by the last digit (3)
yy, year represented only by the last two digits. A leading zero is added for
single-digit years (03)
yyy, year represented by a full four or five digits, depending on the calendar
used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other
supported calendars. Calendars that have single-digit or two-digit years, such
as for the Japanese Emperor era, are represented differently. A single-digit
year is represented with a leading zero, for example, "03". A two-digit year is
represented with two digits, for example, "13". No additional leading zeros are
displayed.
yyyy, behaves identically to "yyyy"

The expression supports also immediate if (similar with iif in visual basic, or ? : in C++) ie
cond ? value_true : value_false, which means that once that cond is true the value_true is
used, else the value_false is used. Also, it supports variables, up to 10 from 0 to 9. For
instance, 0:="Abc" means that in the variable 0 is "Abc", and =:0 means retrieves the value
of the variable 0. For instance, the len(%0) ? (0:=(%1+%2) ? currency(=:0) else ``) : ``
gets the sum between second and third column in currency format if it is not zero, and only
if the first column is not empty. As you can see you can use the variables to avoid
computing several times the same thing (in this case the sum %1 and %2 .

OrderID EmployeeID OrderDate RequiredDate ShippedDate ShipVia FreightShipName
102485 8/4/1994 9/1/1994 8/16/1994 3 32.38 Vins et alcools Chevalier
102496 8/5/1994 9/16/1994 8/10/1994 1 11.61 Toms Spezialitäten
102504 8/8/1994 9/5/1994 8/12/1994 2 65.83 Hanari Carnes
102513 8/8/1994 9/5/1994 8/15/1994 1 41.34 Victuailles en stock
102524 8/9/1994 9/6/1994 8/11/1994 2 51.3 Supręmes délices
102533 8/10/1994 8/24/1994 8/16/1994 2 58.17 Hanari Carnes
102545 8/11/1994 9/8/1994 8/23/1994 2 22.98 Chop-suey Chinese
102559 8/12/1994 9/9/1994 8/15/1994 3 148.33 Richter Supermarkt
102563 8/15/1994 9/12/1994 8/17/1994 2 13.97 Wellington Importadora
102574 8/16/1994 9/13/1994 8/22/1994 3 81.91 HILARIÓN-Abastos
102581 8/17/1994 9/14/1994 8/23/1994 1 140.51 Ernst Handel
102594 8/18/1994 9/15/1994 8/25/1994 3 3.25 Centro comercial Moctezuma
102604 8/19/1994 9/16/1994 8/29/1994 1 55.09 Ottilies Käseladen
102614 8/19/1994 9/16/1994 8/30/1994 2 3.05 Que Delícia
102628 8/22/1994 9/19/1994 8/25/1994 3 48.29 Rattlesnake Canyon Grocery
102639 8/23/1994 9/20/1994 8/31/1994 3 146.06 Ernst Handel
102646 8/24/1994 9/21/1994 9/23/1994 3 3.67 Folk och fä HB
102652 8/25/1994 9/22/1994 9/12/1994 1 55.28 Blondel pčre et fils
102663 8/26/1994 10/7/1994 8/31/1994 3 25.73 Wartian Herkku
102674 8/29/1994 9/26/1994 9/6/1994 1 208.58 Frankenversand
102688 8/30/1994 9/27/1994 9/2/1994 3 66.29 GROSELLA-Restaurante
102695 8/31/1994 9/14/1994 9/9/1994 1 4.56 White Clover Markets
102701 9/1/1994 9/29/1994 9/2/1994 1 136.54 Wartian Herkku
102716 9/1/1994 9/29/1994 9/30/1994 2 4.54 Split Rail Beer & Ale
102726 9/2/1994 9/30/1994 9/6/1994 2 98.03 Rattlesnake Canyon Grocery
102733 9/5/1994 10/3/1994 9/12/1994 3 76.07 QUICK-Stop
102746 9/6/1994 10/4/1994 9/16/1994 1 6.01 Vins et alcools Chevalier
102751 9/7/1994 10/5/1994 9/9/1994 1 26.93 Magazzini Alimentari Riuniti
102768 9/8/1994 9/22/1994 9/14/1994 3 13.84 Tortuga Restaurante
102772 9/9/1994 10/7/1994 9/13/1994 3 125.77 Morgenstern Gesundkost
102788 9/12/1994 10/10/1994 9/16/1994 2 92.69 Berglunds snabbköp
102798 9/13/1994 10/11/1994 9/16/1994 2 25.83 Lehmanns Marktstand
102802 9/14/1994 10/12/1994 10/13/1994 1 8.98 Berglunds snabbköp
102814 9/14/1994 9/28/1994 9/21/1994 1 2.94 Romero y tomillo
102824 9/15/1994 10/13/1994 9/21/1994 1 12.69 Romero y tomillo
102833 9/16/1994 10/14/1994 9/23/1994 3 84.81 LILA-Supermercado
102844 9/19/1994 10/17/1994 9/27/1994 1 76.56 Lehmanns Marktstand
102851 9/20/1994 10/18/1994 9/26/1994 2 76.83 QUICK-Stop
102868 9/21/1994 10/19/1994 9/30/1994 3 229.24 QUICK-Stop

102878 9/22/1994 10/20/1994 9/28/1994 3 12.76 Ricardo Adocicados
102884 9/23/1994 10/21/1994 10/4/1994 1 7.45 Reggiani Caseifici
102897 9/26/1994 10/24/1994 9/28/1994 3 22.77 B's Beverages
102908 9/27/1994 10/25/1994 10/4/1994 1 79.7 Comércio Mineiro
102916 9/27/1994 10/25/1994 10/5/1994 2 6.4 Que Delícia
102921 9/28/1994 10/26/1994 10/3/1994 2 1.35 Tradiçăo Hipermercados
102931 9/29/1994 10/27/1994 10/12/1994 3 21.18 Tortuga Restaurante
102944 9/30/1994 10/28/1994 10/6/1994 2 147.26 Rattlesnake Canyon Grocery
102952 10/3/1994 10/31/1994 10/11/1994 2 1.15 Vins et alcools Chevalier
102966 10/4/1994 11/1/1994 10/12/1994 1 0.12 LILA-Supermercado
102975 10/5/1994 11/16/1994 10/11/1994 2 5.74 Blondel pčre et fils
102986 10/6/1994 11/3/1994 10/12/1994 2 168.22 Hungry Owl All-Night Grocers
102994 10/7/1994 11/4/1994 10/14/1994 2 29.76 Ricardo Adocicados
103002 10/10/199411/7/1994 10/19/1994 2 17.68 Magazzini Alimentari Riuniti
103018 10/10/199411/7/1994 10/18/1994 2 45.08 Die Wandernde Kuh
103024 10/11/1994 11/8/1994 11/9/1994 2 6.27 Supręmes délices
103037 10/12/199411/9/1994 10/19/1994 2 107.83 Godos Cocina Típica
103041 10/13/199411/10/1994 10/18/1994 2 63.79 Tortuga Restaurante
103058 10/14/199411/11/1994 11/9/1994 3 257.62 Old World Delicatessen
103061 10/17/199411/14/1994 10/24/1994 3 7.56 Romero y tomillo
103072 10/18/199411/15/1994 10/26/1994 2 0.56 Lonesome Pine Restaurant
103087 10/19/199411/16/1994 10/25/1994 3 1.61 Ana Trujillo Emparedados y helados
103093 10/20/199411/17/1994 11/23/1994 1 47.3 Hungry Owl All-Night Grocers

103108 10/21/199411/18/1994 10/28/1994 2 17.52 The Big Cheese

10311 1 10/21/199411/4/1994 10/27/1994 3 24.69 Du monde entier

	Information
	How to get support?
	How to start?
	Appearance
	Add method
	Clear method
	Remove method
	RenderType property

	Bar
	Color property
	Def property
	EndColor property
	EndShape property
	FormatHistogramValues property
	Height property
	HistogramBorderColor property
	HistogramBorderSize property
	HistogramColor property
	HistogramCriticalColor property
	HistogramCriticalValue property
	HistogramCumulativeColor property
	HistogramCumulativeColors property
	HistogramCumulativeOriginalColorBars property
	HistogramCumulativeShowLegend property
	HistogramGridLinesColor property
	HistogramItems property
	HistogramPattern property
	HistogramRulerLinesColor property
	HistogramType property
	Name property (readonly)
	Overlaid property
	OverlaidGroup property
	OverlaidType property
	OverviewColor property
	Pattern property
	Shape property
	Shortcut property
	ShowHistogramValues property
	StartColor property
	StartShape property

	Bars
	Add method
	AddShapeCorner method
	Clear method
	Copy method
	Count property (readonly)
	Item property (readonly)
	Remove method
	RemoveShapeCorner method

	Chart
	AddNonworkingDate method
	AdjustLevelsToBase property
	AllowCreateBar property
	AllowInsideZoom property
	AllowLinkBars property
	AllowNonworkingBars property
	AllowOverviewZoom property
	AllowResizeChart property
	AllowResizeInsideZoom property
	AllowSelectDate property
	AllowSelectObjects property
	AllowSplitPane property
	AllowUndoRedo property
	AllowZoomOnFly property
	AMPM property
	BackColor property
	BackColorLevelHeader property
	BackColorZoomOnFly property
	BarFromPoint property (readonly)
	Bars property (readonly)
	BarsAllowSizing property
	CanRedo property (readonly)
	CanUndo property (readonly)
	ClearItemBackColor method
	ClearNonworkingDates method
	ColumnsFont property
	ColumnsFormatLevel property
	ColumnsTransparent property
	CondInsideZoom property
	CountVisibleUnits property (readonly)
	DateFromPoint property (readonly)
	DateTickerLabel property
	DefaultInsideZoomFormat property (readonly)
	DrawDateTicker property
	DrawGridLines property
	DrawLevelSeparator property
	EndBlockUndoRedo method
	EndPrintDate property
	FirstVisibleDate property
	FirstWeekDay property
	ForeColor property
	ForeColorLevelHeader property
	FormatDate property (readonly)
	GridLineStyle property
	GroupUndoRedoActions method
	HistogramBackColor property
	HistogramHeaderVisible property
	HistogramHeight property
	HistogramUnitCount property
	HistogramUnitScale property
	HistogramValue property (readonly)
	HistogramValueFromPoint property (readonly)
	HistogramView property
	HistogramVisible property
	HistogramZOrder property
	InsideZoomOnDblClick property
	InsideZooms property (readonly)
	IsDateVisible property (readonly)
	IsNonworkingDate property (readonly)
	ItemBackColor property
	Label property
	LabelToolTip property
	Level property (readonly)
	LevelCount property
	LevelFromPoint property (readonly)
	LinkFromPoint property (readonly)
	LinksColor property
	LinksStyle property
	LinksWidth property
	LocAMPM property (readonly)
	LocFirstWeekDay property (readonly)
	LocMonthNames property (readonly)
	LocWeekDays property (readonly)
	MarkNow property
	MarkNowColor property
	MarkNowCount property
	MarkNowDelay property
	MarkNowTransparent property
	MarkNowUnit property
	MarkNowWidth property
	MarkSelectDateColor property
	MarkTimeZone method
	MarkTodayColor property
	MaxUnitWidth property
	MinUnitWidth property
	MonthNames property
	NextDate property (readonly)
	NonworkingDays property
	NonworkingDaysColor property
	NonworkingDaysPattern property
	NonworkingHours property
	NonworkingHoursColor property
	NonworkingHoursPattern property
	NoteFromPoint property (readonly)
	Notes property (readonly)
	OverlaidOnMoving property
	OverviewBackColor property
	OverviewHeight property
	OverviewLevelLines property
	OverviewSelBackColor property
	OverviewSelTransparent property
	OverviewShowMarkTimeZones property
	OverviewShowSelectDates property
	OverviewToolTip property
	OverviewVisible property
	OverviewZoomCaption property
	OverviewZoomUnit property
	PaneWidth property
	Picture property
	PictureDisplay property
	Redo method
	RedoListAction property (readonly)
	RedoRemoveAction method
	RemoveNonworkingDate method
	RemoveSelection method
	RemoveTimeZone method
	ResizeUnitCount property
	ResizeUnitScale property
	ScrollBar property
	ScrollRange property
	ScrollTo method
	SelBackColor property
	SelBarColor property
	SelectDate property
	SelectDates property
	SelectLevel property
	SelectOnClick property
	SelForeColor property
	SelLinkColor property
	ShowCollapsedBars property
	ShowEmptyBars property
	ShowEmptyBarsUnit property
	ShowLinks property
	ShowLinksColor property
	ShowLinksStyle property
	ShowLinksWidth property
	ShowNonworkingDates property
	ShowNonworkingHours property
	ShowNonworkingUnits property
	ShowNotes property
	ShowTransparentBars property
	SplitPaneWidth property
	StartBlockUndoRedo method
	StartPrintDate property
	TimeZoneFromPoint property (readonly)
	TimeZoneInfo property (readonly)
	ToolTip property
	Undo method
	UndoListAction property (readonly)
	UndoRedoQueueLength property
	UndoRemoveAction method
	UnitScale property
	UnitWidth property
	UnitWidthNonworking property
	UnselectDates method
	UpdateOnMoving property
	WeekDays property
	WeekNumberAs property
	Zoom method
	ZoomOnFlyCaption property

	Column
	Alignment property
	AllowDragging property
	AllowGroupBy property
	AllowSizing property
	AllowSort property
	AutoSearch property
	AutoWidth property (readonly)
	Caption property
	ComputedField property
	CustomFilter property
	Data property
	Def property
	DefaultSortOrder property
	DisplayExpandButton property
	DisplayFilterButton property
	DisplayFilterDate property
	DisplayFilterPattern property
	DisplaySortIcon property
	Editor property (readonly)
	Enabled property
	ExpandColumns property
	Expanded property
	Filter property
	FilterBarDropDownWidth property
	FilterList property
	FilterOnType property
	FilterType property
	FireFormatColumn property
	FormatColumn property
	FormatLevel property
	GroupByFormatCell property
	GroupByTotalField property
	HeaderAlignment property
	HeaderBold property
	HeaderImage property
	HeaderImageAlignment property
	HeaderItalic property
	HeaderStrikeOut property
	HeaderUnderline property
	HeaderVertical property
	HTMLCaption property
	Index property (readonly)
	Key property
	LevelKey property
	MaxWidthAutoResize property
	MinWidthAutoResize property
	PartialCheck property
	Position property
	Selected property
	ShowFilter method
	SortOrder property
	SortPosition property
	SortType property
	ToolTip property
	Visible property
	Width property
	WidthAutoResize property

	Columns
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	ItemBySortPosition property (readonly)
	Remove method
	SortBarColumn property (readonly)
	SortBarColumnsCount property (readonly)

	ConditionalFormat
	ApplyTo property
	ApplyToBars property
	BackColor property
	BarColor property
	BarOverviewColor property
	Bold property
	ChartBackColor property
	ClearBackColor method
	ClearBarColor method
	ClearBarOverviewColor method
	ClearChartBackColor method
	ClearForeColor method
	Enabled property
	Expression property
	Font property
	ForeColor property
	Italic property
	Key property (readonly)
	StrikeOut property
	Underline property
	Valid property (readonly)
	Verify property (readonly)

	ConditionalFormats
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	Remove method

	Editor
	AddButton method
	AddItem method
	Appearance property
	ButtonWidth property
	ClearButtons method
	ClearItems method
	DropDown method
	DropDownAlignment property
	DropDownAutoWidth property
	DropDownMinWidth property
	DropDownRows property
	DropDownVisible property
	EditType property
	ExpandAll method
	ExpandItem property
	FindItem property (readonly)
	InsertItem method
	ItemToolTip property
	Locked property
	Mask property
	MaskChar property
	Numeric property
	Option property
	PartialCheck property
	PopupAppearance property
	RemoveButton method
	RemoveItem method
	SortItems method
	UserEditor method
	UserEditorObject property (readonly)

	ExDataObject
	Clear method
	Files property (readonly)
	GetData method
	GetFormat method
	SetData method

	ExDataObjectFiles
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	Remove method

	G2antt
	AllowChartScrollHeader property
	AllowChartScrollPage property
	AllowGroupBy property
	AllowSelectNothing property
	AnchorFromPoint property (readonly)
	AntiAliasing property
	Appearance property
	ApplyFilter method
	ASCIILower property
	ASCIIUpper property
	AttachTemplate method
	AutoDrag property
	AutoEdit property
	AutoSearch property
	BackColor property
	BackColorAlternate property
	BackColorHeader property
	BackColorLevelHeader property
	BackColorLock property
	BackColorSortBar property
	BackColorSortBarCaption property
	Background property
	BeginUpdate method
	BorderStyle property
	CauseValidateValue property
	Chart property (readonly)
	ChartOnLeft property
	CheckImage property
	ClearFilter method
	ColumnAutoResize property
	ColumnFromPoint property (readonly)
	Columns property (readonly)
	ColumnsAllowSizing property
	ColumnsFloatBarSortOrder property
	ColumnsFloatBarVisible property
	ConditionalFormats property (readonly)
	ContinueColumnScroll property
	Copy method
	CopyTo property (readonly)
	CountLockedColumns property
	DataSource property
	Debug property
	DefaultEditorOption property
	DefaultItemHeight property
	Description property
	DetectAddNew property
	DetectDelete property
	DiscardValidateValue method
	DrawGridLines property
	DrawPartItem property (readonly)
	DrawPartKey property (readonly)
	Edit method
	EditClose method
	Editing property (readonly)
	EditingText property (readonly)
	Enabled property
	EndUpdate method
	EnsureOnSort property
	EnsureVisibleColumn method
	EventParam property
	ExecuteTemplate method
	ExpandOnDblClick property
	ExpandOnKeys property
	ExpandOnSearch property
	Export method
	FilterBarBackColor property
	FilterBarCaption property
	FilterBarDropDownHeight property
	FilterBarFont property
	FilterBarForeColor property
	FilterBarHeight property
	FilterBarPrompt property
	FilterBarPromptColumns property
	FilterBarPromptPattern property
	FilterBarPromptType property
	FilterBarPromptVisible property
	FilterCriteria property
	FilterInclude property
	FocusColumnIndex property
	Font property
	ForeColor property
	ForeColorHeader property
	ForeColorLock property
	ForeColorSortBar property
	FormatABC method
	FormatAnchor property
	FreezeEvents method
	FullRowSelect property
	GetItems method
	GridLineColor property
	GridLineStyle property
	Group method
	HasButtons property
	HasButtonsCustom property
	HasLines property
	HeaderAppearance property
	HeaderEnabled property
	HeaderHeight property
	HeaderSingleLine property
	HeaderVisible property
	HideSelection property
	HotBackColor property
	HotForeColor property
	HTMLPicture property
	hWnd property (readonly)
	HyperLinkColor property
	Images method
	ImageSize property
	Indent property
	IsGrouping property (readonly)
	ItemFromPoint property (readonly)
	Items property (readonly)
	ItemsAllowSizing property
	Layout property
	LinesAtRoot property
	LoadXML method
	MarkSearchColumn property
	MarkTooltipCells property
	MarkTooltipCellsImage property
	OLEDrag method
	OLEDropMode property
	OnResizeControl property
	Picture property
	PictureDisplay property
	PictureDisplayLevelHeader property
	PictureLevelHeader property
	PutItems method
	PutRes method
	RadioImage property
	RClickSelect property
	ReadOnly property
	Refresh method
	RemoveSelection method
	ReplaceIcon method
	ResHandle property (readonly)
	RightToLeft property
	SaveXML method
	Scroll method
	ScrollBars property
	ScrollButtonHeight property
	ScrollButtonWidth property
	ScrollBySingleLine property
	ScrollFont property
	ScrollHeight property
	ScrollOrderParts property
	ScrollPartCaption property
	ScrollPartCaptionAlignment property
	ScrollPartEnable property
	ScrollPartVisible property
	ScrollPos property
	ScrollThumbSize property
	ScrollToolTip property
	ScrollWidth property
	SearchColumnIndex property
	SelBackColor property
	SelBackMode property
	SelectByDrag property
	SelectColumn property
	SelectColumnIndex property
	SelectColumnInner property
	SelectOnRelease property
	SelForeColor property
	ShowFocusRect property
	ShowImageList property
	ShowLockedItems property
	ShowToolTip method
	SingleSel property
	SingleSort property
	SortBarCaption property
	SortBarColumnWidth property
	SortBarHeight property
	SortBarVisible property
	SortOnClick property
	Statistics property (readonly)
	Template property
	TemplateDef property
	TemplatePut method
	TooltipCellsColor property
	ToolTipDelay property
	ToolTipFont property
	ToolTipMargin property
	ToolTipPopDelay property
	ToolTipWidth property
	TreeColumnIndex property
	Ungroup method
	UseTabKey property
	UseVisualTheme property
	Version property
	VisualAppearance property (readonly)
	VisualDesign property
	WordFromPoint property (readonly)

	InsideZoom
	AllowCustomFormat property
	AllowInsideFormat property
	AllowResize property
	CustomFormat property (readonly)
	EndDate property (readonly)
	StartDate property (readonly)
	Width property

	InsideZoomFormat
	BackColor property
	BackColorChart property
	DisplayOwnerLabel property
	DrawGridLines property
	DrawTickLines property
	ForeColor property
	GridLineColor property
	GridLineStyle property
	InsideCount property
	InsideLabel property
	InsideUnit property
	OwnerLabel property
	PatternChart property
	PatternColorChart property

	InsideZooms
	Add method
	Clear method
	Contains property (readonly)
	Count property (readonly)
	DefaultWidth property
	Item property (readonly)
	Remove method
	SplitBaseLevel property

	Items
	AcceptSetParent property (readonly)
	AddBar method
	AddItem method
	AddLink method
	AllowCellValueToItemBar property
	CellBackColor property
	CellBold property
	CellButtonAutoWidth property
	CellCaption property (readonly)
	CellChecked property (readonly)
	CellData property
	CellEditor property (readonly)
	CellEditorVisible property
	CellEnabled property
	CellFont property
	CellForeColor property
	CellFormatLevel property
	CellHAlignment property
	CellHasButton property
	CellHasCheckBox property
	CellHasRadioButton property
	CellHyperLink property
	CellImage property
	CellImages property
	CellItalic property
	CellItem property (readonly)
	CellMerge property
	CellParent property (readonly)
	CellPicture property
	CellPictureHeight property
	CellPictureWidth property
	CellRadioGroup property
	CellSingleLine property
	CellState property
	CellStrikeOut property
	CellToolTip property
	CellUnderline property
	CellVAlignment property
	CellValue property
	CellValueFormat property
	CellValueToItemBar method
	CellWidth property
	ChildCount property (readonly)
	ClearBars method
	ClearCellBackColor method
	ClearCellForeColor method
	ClearCellHAlignment method
	ClearItemBackColor method
	ClearItemForeColor method
	ClearLinks method
	ComputeValue property (readonly)
	DefaultItem property
	DefineSummaryBars method
	DefSchedulePDM property
	DeleteCellEditor method
	EnableItem property
	EndBlockUndoRedo method
	EndUpdateBar method
	EndUpdateLink method
	EnsureVisibleBar method
	EnsureVisibleItem method
	ExpandItem property
	FindBar property (readonly)
	FindItem property (readonly)
	FindItemData property (readonly)
	FindPath property (readonly)
	FirstItemBar property (readonly)
	FirstLink property (readonly)
	FirstVisibleItem property (readonly)
	FocusItem property (readonly)
	FormatCell property
	FullPath property (readonly)
	GroupBars method
	GroupItem property (readonly)
	HasCellEditor property (readonly)
	InnerCell property (readonly)
	InsertControlItem method
	InsertItem method
	IntersectBars property (readonly)
	IsItemLocked property (readonly)
	IsItemVisible property (readonly)
	ItemAllowSizing property
	ItemAppearance property
	ItemBackColor property
	ItemBar property
	ItemBarEx property
	ItemBold property
	ItemByIndex property (readonly)
	ItemCell property (readonly)
	ItemChild property (readonly)
	ItemControlID property (readonly)
	ItemCount property (readonly)
	ItemData property
	ItemDivider property
	ItemDividerLine property
	ItemDividerLineAlignment property
	ItemFiltered property (readonly)
	ItemFont property
	ItemForeColor property
	ItemHasChildren property
	ItemHeight property
	ItemItalic property
	ItemMaxHeight property
	ItemMinHeight property
	ItemNonworkingUnits property
	ItemObject property (readonly)
	ItemParent property (readonly)
	ItemPosition property
	ItemStrikeOut property
	ItemToIndex property (readonly)
	ItemUnderline property
	ItemWidth property
	ItemWindowHost property (readonly)
	ItemWindowHostCreateStyle property
	LastVisibleItem property (readonly)
	Link property
	LockedItem property (readonly)
	LockedItemCount property
	MatchItemCount property (readonly)
	MergeCells method
	NextItemBar property (readonly)
	NextLink property (readonly)
	NextSiblingItem property (readonly)
	NextVisibleItem property (readonly)
	PathSeparator property
	PrevSiblingItem property (readonly)
	PrevVisibleItem property (readonly)
	RemoveAllItems method
	RemoveBar method
	RemoveItem method
	RemoveLink method
	RemoveLinksOf method
	RemoveSelection method
	RootCount property (readonly)
	RootItem property (readonly)
	SchedulePDM method
	SelectableItem property
	SelectAll method
	SelectCount property (readonly)
	SelectedItem property (readonly)
	SelectedObjects property (readonly)
	SelectItem property
	SelectPos property
	SetParent method
	SortableItem property
	SortChildren method
	SplitCell property (readonly)
	StartBlockUndoRedo method
	StartUpdateBar property (readonly)
	StartUpdateLink property (readonly)
	UndefineSummaryBars method
	UngroupBars method
	UnmergeCells method
	UnselectAll method
	UnsplitCell method
	VisibleCount property (readonly)
	VisibleItemCount property (readonly)

	Level
	Alignment property
	BackColor property
	Count property
	DrawGridLines property
	DrawTickLines property
	DrawTickLinesFrom method
	ForeColor property
	FormatLabel property
	GridLineColor property
	GridLineStyle property
	Label property
	ReplaceLabel property
	ToolTip property
	Unit property

	Note
	ClearPartBackColor method
	ClearPartBorderColor method
	Data property
	ID property (readonly)
	Item property (readonly)
	Key property (readonly)
	LinkColor property
	LinkStyle property
	LinkWidth property
	PartAlignment property
	PartBackColor property
	PartBorderColor property
	PartBorderSize property
	PartCanMove property
	PartFixedHeight property
	PartFixedWidth property
	PartForeColor property
	PartHOffset property
	PartShadow property
	PartText property
	PartToolTip property
	PartToolTipTitle property
	PartTransparency property
	PartVisible property
	PartVOffset property
	RelativePosition property
	ShowLink property
	Text property
	Visible property

	Notes
	Add method
	Clear method
	ClipTo property
	Count property (readonly)
	Item property (readonly)
	Remove method

	OleEvent
	CountParam property (readonly)
	ID property (readonly)
	Name property (readonly)
	Param property (readonly)
	ToString property (readonly)

	OleEventParam
	Name property (readonly)
	Value property

	ExG2antt events
	AddColumn event
	AddGroupItem event
	AddItem event
	AddLink event
	AfterDrawPart event
	AfterExpandItem event
	AllowAutoDrag event
	AllowLink event
	AnchorClick event
	BarParentChange event
	BarResize event
	BarResizing event
	BeforeDrawPart event
	BeforeExpandItem event
	ButtonClick event
	CellImageClick event
	CellStateChanged event
	CellStateChanging event
	Change event
	ChartEndChanging event
	ChartSelectionChanged event
	ChartStartChanging event
	Click event
	ColumnClick event
	CreateBar event
	DateChange event
	DateTimeChanged event
	DblClick event
	Edit event
	EditClose event
	EditOpen event
	Error event
	Event event
	FilterChange event
	FilterChanging event
	FocusChanged event
	FormatColumn event
	HistogramBoundsChanged event
	HyperLinkClick event
	InsideZoom event
	ItemOleEvent event
	KeyDown event
	KeyPress event
	KeyUp event
	LayoutChanged event
	MouseDown event
	MouseMove event
	MouseUp event
	OffsetChanged event
	OLECompleteDrag event
	OLEDragDrop event
	OLEDragOver event
	OLEGiveFeedback event
	OLESetData event
	OLEStartDrag event
	OversizeChanged event
	OverviewZoom event
	RClick event
	RemoveColumn event
	RemoveItem event
	ScrollButtonClick event
	SelectionChanged event
	Sort event
	ToolTip event
	UserEditorClose event
	UserEditorOleEvent event
	UserEditorOpen event
	ValidateValue event

