
 ExFolderView

Exontrol's new eXFolderView component provides a folder list view which is identical to the
left side of your Windows Explorer. Using eXFolderView you can easily present a list of
folders to your users. There are a number of properties which can be used to enable
special features such as checkboxes, buttons, and lines between folders. eXFolderView
can be used in conjunction with Exontrol's eXShellView to create applications which have
complete - or limited - explorer capabilities. Also, the eXFolderView provides a complete list
of events, giving you complete control over what happens as the user selects and clicks on
folders. And eXFolderView provides a Folders collection containing Folder objects which
provide useful information such as PathName, ShareName, and DisplayName.

note The eXShellView and eXFolderVew controls adds Windows-Explorer functionality (
with the same look and behavior as your Explorer) to your forms. The main difference
between eXFileView and eXShellView or eXFolderView, is that eXFileView can customize
groups of files or folders with specified colors, fonts or icons, and the eXShellView and
eXFolderVew uses the Windows system to create the views, and so the look and behavior
is exactly like you would run your Windows Explorer in your form.

Ž ExFolderView is a trademark of Exontrol. All Rights Reserved.

https://exontrol.com/exshellview.jsp
https://exontrol.com/exfileview.jsp

How to get support?

To keep your business applications running, you need support you can count on.

Here are few hints what to do when you're stuck on your programming:

Check out the samples - they are here to provide some quick info on how things should
be done
Check out the how-to questions using the eXHelper tool
Check out the help - includes documentation for each method, property or event
Check out if you have the latest version, and if you don't have it send an update
request here.
Submit your problem(question) here.

Don't forget that you can contact our development team if you have ideas or requests for
new components, by sending us an e-mail at support@exontrol.com (please include the
name of the product in the subject, ex: exgrid) . We're sure our team of developers will try
to find a way to make you happy - and us too, since we helped.

Regards,
Exontrol Development Team

https://www.exontrol.com

https://exontrol.com/exhelper.jsp
https://exontrol.com/update.jsp
https://exontrol.com/techsupport.jsp
https://www.exontrol.com

constants AppearanceEnum
Specifies the control's appearance. Use the Appearance property to specify the control's
appearance.

Name Value Description
None2 0 No border
Flat 1 Flat border
Sunken 2 Sunken border
Raised 3 Raised border
Etched 4 Etched border
Bump 5 Bump border

constants AttributesEnum
The AttributesEnum type indicates attributes for a folder. The Attribute property indicates
the folder's attribute.

Name Value Description
CanCopy 1 The specified file objects or folders can be copied
CanMove 2 The specified file objects or folders can be moved

CanLink 4 It is possible to create shortcuts for the specified
file objects or folders

CanRename 16 The specified file objects or folders can be renamed
CanDelete 32 The specified file objects or folders can be deleted

HasPropSheet 64 The specified file objects or folders have property
sheets

DropTarget 256 The specified file objects or folders are drop
targets

Shortcut 65536 The specified file objects are shortcuts.
Share 131072The specified folders are shared.
ReadOnly 262144The specified file objects or folders are read-only
Hidden 524288The specified file objects are hidden
HasSubfolder -2147483648The specified folders have subfolders

IsFileSysAncestor 268435456The specified folders contain one or more file
system folders

IsFolder 536870912The specified items are folders

IsFileSystem 1073741824The specified folders or file objects are part of the
file system

Validate 16777216Validate cached information

Removable 33554432The specified file objects or folders are on
removable media

IsCompressed 67108864The specified items are compressed
IsBrowsable 134217728The specified items can be browsed in place
NonEnumerated 1048576The items are nonenumerated items
NewContent 2097152The objects contain new content

constants AttributesMask
The AttributesMask type specifies different masks for attributes of the folder. The Attributes
property retrieves groups of attributes based on the giving mask.

Name Value Description
AllAttributes -1 All flags
CapabilityAttributes 375 This flag is a mask for the capability flags
DisplayAttributes 983040This flag is a mask for the display attributes
ContentsAttributes -2147483648This flag is a mask for the contents attributes
MiscellaneousAttributes -1048576This flag is a mask for the Miscellaneous attributes

constants BordersEnum
Specifies the control's border. The BorderStyle property indicates the control's border.

Name Value Description
None 0 No border
FixedSingle 1 Single-line border

constants ScrollBarsEnum
The ScrollBars type indicates the type of scrollbars that the control may display when
required. The Scrollbars property specifies whether the control should add horizontal or
vertical scroll bars when they required.

Name Value Description
ScrollNone 0 No scroll bars are shown
Horizontal 1 Only horizontal scroll bars are shown
Vertical 2 Only vertical scroll bars are shown
Both 3 Both horizontal and vertical scroll bars are shown.

constants SpecialFolderPathEnum
Indicates special folders.

Name Value Description

Desktop 0 Windows Desktop virtual folder that is the root of
the namespace.

Internet 1 Virtual folder representing the Internet

Programs 2
File system directory that contains the user's
program groups (which are also file system
directories).

ControlPanel 3 Virtual folder containing icons for the Control Panel
applications

Printers 4 Virtual folder containing installed printers

Personal 5 File system directory that serves as a common
repository for documents.

Favorites 6 File system directory that serves as a common
repository for the user's favorite items.

Startup 7

File system directory that corresponds to the user's
Startup program group. The system starts these
programs whenever any user logs onto Windows
NT or starts Windows 95.

Recent 8 File system directory that contains the user's most
recently used documents.

SendTo 9 File system directory that contains Send To menu
items.

Recycled 10 Virtual folder containing the objects in the user's
Recycle Bin

StartMenu 11 File system directory containing Start menu items.

DesktopDir 16

File system directory used to physically store file
objects on the desktop (not to be confused with the
desktop folder itself). A common path is
C:WINNTProfilesusernameDesktop

MyComputer 17

My Computer virtual folder containing everything on
the local computer: storage devices, printers, and
Control Panel. The folder may also contain mapped
network drives
Network Neighborhood virtual folder representing

Network 18 the top level of the network hierarchy

NetHood 19
File system directory containing objects that appear
in the network neighborhood. A common path is
C:WINNTProfilesusername etHood

Fonts 20 Virtual folder containing fonts.

Templates 21 File system directory that serves as a common
repository for document templates

CommonStartMenu 22

File system directory that contains the programs
and folders that appear on the Start menu for all
users. A common path is C:WINNTProfilesll
UsersStart Menu. Valid only for Windows NTŽ
systems

CommonPrograms 23

File system directory that contains the directories
for the common program groups that appear on the
Start menu for all users. A common path is
c:WINNTProfilesll UsersStart MenuPrograms. Valid
only for Windows NTŽ systems

CommonStartup 24

File system directory that contains the programs
that appear in the Startup folder for all users. A
common path is C:WINNTProfilesll UsersStart
MenuProgramsStartup. Valid only for Windows NTŽ
systems

CommonDesktopDir 25

File system directory that contains files and folders
that appear on the desktop for all users. A common
path is C:WINNTProfilesll UsersDesktop. Valid only
for Windows NTŽ systems

AppData 26
File system directory that serves as a common
repository for application-specific data. A common
path is C:WINNTProfilesusernamepplication Data

PrintHood 27
File system directory that serves as a common
repository for printer links. A common path is
C:WINNTProfilesusernamePrintHood

AltStartup 29 File system directory that corresponds to the user's
nonlocalized Startup program group

CommonAltStartup 30
File system directory that corresponds to the
nonlocalized Startup program group for all users.
Valid only for Windows NTŽ systems
File system directory that serves as a common

CommonFavorites 31 repository for all users' favorite items. Valid only for
Windows NTŽ systems

InternetCache 32

File system directory that serves as a common
repository for temporary Internet files. A common
path is C:WINNTProfilesusername emporary
Internet Files

Cookies 33
File system directory that serves as a common
repository for Internet cookies. A common path is
C:WINNTProfilesusernameCookies

History 34 File system directory that serves as a common
repository for Internet history items

ExFolderCombo object
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {8AE82D12-B7B7-45E4-A795-76F7E7189F62}. The object's program identifier is:
"Exontrol.FolderCombo". The /COM object module is: "ExFolderView.dll"

The ExFolderCombo control acts like a drop down combo box control, and it contains shell
folders. By default the ExFolderCombo control contains the following folders: Desktop, My
Computer, Drives and Network. The ExFolderCombo control is intended to be used with
the ExFolderView or ExShellView controls. When it is used this way, the control displays the
selected folder or the browsed folder in the caption. When dropped, the control displays a
tree that contains the parent folders of the selected (browsed) one. To select a new folder
in the ExFolderCombo control the user has to invoke the OpenedFolder. The property takes
an ID, a path, or a reference to an Object that has a property called ID (for instance a
Folder object of ExFolderView control, or a Folder object of ExShellView control).

Name Description

Enabled Retrieves or sets a value indicating whether the control
can respond to user-generated events.

EventParam Retrieves or sets a value that indicates the current's event
parameter.

Font Determines the Font object associated to the control
hwnd Retrieves the window's handle.

OpenedFolder Retrieves or sets an object that indicates the current
opened folder.

SmallIcons Retrieves or sets a value that indicates whether the
control displays small icons or large icons.

Version Retrieves the version of the control.

property ExFolderCombo.Enabled as Boolean
Retrieves or sets a value indicating whether the control can respond to user-generated
events.

Type Description

Boolean A boolean expression that indicates whether the controls is
enabled or disabled.

If set to True, the ExFolderCombo control will act normally. If this property is set to False,
the ExFolderCombo control will not react to user input (mouse, keyboard, etc.).

property ExFolderCombo.EventParam(Parameter as Long) as Variant
Retrieves or sets a value that indicates the current's event parameter.

Type Description

Parameter as Long

A long expression that indicates the index of the parameter
being requested ie 0 means the first parameter, 1 means
the second, and so on. If -1 is used the EventParam
property retrieves the number of parameters. Accessing
an not-existing parameter produces an OLE error, such as
invalid pointer (E_POINTER)

Variant A VARIANT expression that specifies the parameter's
value.

The EventParam method is provided to allow changing the event's parameters passed by
reference, even if your environment does not support changing it (uniPaas 1.5 (formerly
known as eDeveloper), DBase, and so on). For instance, Unipaas event-handling logic
cannot update ActiveX control variables by updating the received arguments. The
EventParam(0) retrieves the value of the first parameter of the event, while the
EventParam(1) = 0, changes the value of the second parameter to 0 (the operation is
successfully, only if the parameter is passed by reference). The EventParam(-1) retrieves
the number of the parameters of the current event.

Let's take the event "event KeyDown (KeyCode as Integer, ByVal Shift as Integer)", where
the KeyCode parameter is passed by reference. For instance, put the KeyCode parameter
on 0, and the arrow keys are disabled while the control has the focus.

In most languages you will type something like:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 KeyCode = 0
End Sub

In case your environment does not support events with parameters by reference, you can
use a code like follows:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 Control1.EventParam(0) = 0
End Sub

In other words, the EventParam property provides the parameters of the current event for
reading or writing access, even if your environment does not allow changing parameters by

reference.

Calling the EventParam property outside of an event produces an OLE error, such as
pointer invalid, as its scope was designed to be used only during events.

property ExFolderCombo.Font as IFontDisp
Determines the Font object associated to the control

Type Description
IFontDisp A Font object to be used in the combo box.

The Font property specifies the font to display folders in the combobox.

property ExFolderCombo.hwnd as Long
Retrieves the control's window handle.

Type Description

Long A long expression that indicates the control's window
handle.

The Microsoft Windows operating environment identifies each form and control in an
application by assigning it a handle, or hWnd. The hWnd property is used with Windows API
calls. Many Windows operating environment functions require the hWnd of the active
window as an argument.

property ExFolderCombo.OpenedFolder as Variant
Retrieves or sets an object that indicates the current opened folder.

Type Description

Variant A variant expression that specifies a folder (either a path
name or a value from an ID property).

Retrieves or sets the new opened folder. The property accepts a path or an ID value. For
instance, the following sample shows how to set the opened folder to C:\Temp:

ExFolderCombo1.OpenedFolder = "C:\Temp"

The following VB sample shows how to link a the drop down control with a EXFolderView
control:

Private Sub ExFolderCombo1_NewFolderOpened()
 ExFolderView1.SelectedFolder = ExFolderCombo1.OpenedFolder
End Sub

The following C# sample shows how to link a the drop down control with a EXFolderView
control:

private void axExFolderCombo1_NewFolderOpened(object sender, EventArgs e)
{
 axExFolderView1.SelectedFolder = axExFolderCombo1.OpenedFolder;
}

The following VB.NET sample shows how to link a the drop down control with a
EXFolderView control:

Private Sub AxExFolderCombo1_NewFolderOpened(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles AxExFolderCombo1.NewFolderOpened
 AxExFolderView1.SelectedFolder = AxExFolderCombo1.OpenedFolder
End Sub

The following VC sample shows how to link a the drop down control with a EXFolderView
control:

void OnNewFolderOpenedFoldercombo1()
{

 if (IsWindow(m_folderCombo.m_hWnd) && IsWindow(m_folderView.m_hWnd))
 m_folderView.SetSelectedFolder(m_folderCombo.GetOpenedFolder());
}

The following VFP sample shows how to link a the drop down control with a EXFolderView
control:

thisform.ExFolderView1.SelectedFolder = thisform.ExFolderCombo1.OpenedFolder

property ExFolderCombo.SmallIcons as Boolean
Retrieves or sets a value that indicates whether the control displays small icons or large
icons.

Type Description

Boolean A Boolean expression that specifies whether the control
displays small icons or large icons.

By default, the SmallIcons property is True, which indicates that the control display small-
icons (16x16 icon-size). The SmallIcons property specifies whether the control displays
small or large icons. The SmallIcons property On True, determines the control to display
large-icons (32x32 icon-size).

property ExFolderCombo.Version as String
Retrieves the version of the control.

Type Description
String A string expression that indicates the control's version.

The version property specifies the control's version.

ExFolderView object
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {10670A99-FCCC-415C-8127-176332842618}. The object's program identifier is: "Exontrol.FolderView".
The /COM object module is: "ExFolderView.dll"

Exontrol's new ExFolderView component provides a folder list view which is identical to the
left side of your Windows Explorer. Using ExFolderView you can easily present a list of
folders to your users. There are a number of properties which can be used to enable
special features such as checkboxes, buttons, and lines between folders. ExFolderView can
be used in conjunction with Exontrol's eXShellView to create applications which have
complete - or limited - explorer capabilities. Also, the ExFolderView provides a complete list
of events, giving you complete control over what happens as the user selects and clicks on
folders. And ExFolderView provides a Folders collection containing Folder objects which
provide useful information such as PathName, ShareName, and DisplayName. The control
supports the following properties and methods:

Name Description
AllowDropFiles Indicates if the control accepts dropping files.

Appearance Returns or sets a value that determines the appearance of
the object.

AttachTemplate Attaches a script to the current object, including the
events, from a string, file, a safe array of bytes.

AutoUpdate
Retrieves or sets a value indicating whether the control
refreshes its content when a shell object was changed,
moved, or renamed.

BackColor Specifies the control's background color.
BorderStyle Retrieves or sets the border style of the control.

CanRename Retrieves or sets a value indicating whether the control
add Rename context menu.

DisplayShareName Indicating whether the control displays the share folder
name.

DropFilesCount Retrieves the count of dropped files.
DropFilesPathName Retrieves the dropped files given an index,

Enabled Returns or sets a value that determines whether a control
can respond to user-generated events.

EnableShellMenu Enables or disables the control's context menu.

EnsureVisible Ensures a specified ExShellFolder object , path or special
folder is visible.

EventParam Retrieves or sets a value that indicates the current's event
parameter.

ExecuteTemplate Executes a template and returns the result.

ExploreFromHere Retrieves or sets a path that indicates the root folder used
to display the hierarchy.

FirstVisibleFolder Retrieves or sets the first visible folder.
FolderFromPoint Retrieves the ExShellFolder object from the point.
FoldersCheck Gets a collection of folders being checked.
Font Determines the Font object associated to the control
ForeColor Specifies the control's foreground color.
HasButtons Adds a (+/-) button to the left side of each parent item

HasCheckBoxes Retrieves or sets a value indicating whether the folder has
associated a checkbox.

HasLines
Enhances the graphic representation of a tree control's
hierarchy by drawing lines that link child items to their
corresponding parent item.

HasLinesAtRoot Link items at the root of the hierarchy.

HiddenFolders Retrieves or sets a value indicating whether the control
displays the hidden folders.

HideSelection Returns a value that determines whether selected item
appears highlighted when a control loses the focus.

HorizontalHeight Retrieves the width of the height scroll bar.
HorizontalOffset Indicates the horizontal scroll position.
HorizontalOversize Indicates the horizontal oversize value.
hwnd Retrieves the window's handle.
IconsVisible Determines if the control displays the icons.

IncludeAttributeMask Retrieves or sets a value that determines the attribute
mask used to enumerate the objects.

IncludeFolder
Retrieves or sets a value indicating whether the control
fires IncludeFolder event before inserting folders to the
tree.

ItemHeight Gets or sets the height to display the folders/files of the
control.

MouseIcon This property identifies mouse icon when MousePointer is
Custom.

MousePointer
Returns or sets a value indicating the type of mouse
pointer displayed when the mouse is over a particular part
of an object at run time.

OverlayIcons Retrieves or sets a value indicating whether the control
displays the overlay icons.

PartialCheck Retrieves or sets a value indicating whether the control
accepts partial-check feature.

Refresh Refreshes the control.

Scrollbars Returns value indicating whether an object has horizontal
or vertical scroll bars

SelectedFolder Retrieves or sets the selected folder.

ShellFolder Constructs a ExShellFolder object given a path or a
special folder constant.

SmallIcons Retrieves or sets a value that indicates whether the
control displays small icons or large icons.

SpecialFolderPath Gets a path given a special folder constant.
Template Specifies the control's template.

TemplateDef Defines inside variables for the next
Template/ExecuteTemplate call.

TemplatePut Defines inside variables for the next
Template/ExecuteTemplate call.

Version Retrieves the version of the control.
VerticalOffset Indicates the vertical scroll position.
VerticalOversize Indicates the vertical oversize value.
VerticalWidth Retrieves the width of the vertical scroll bar.
VisibleCount Counts the visible folders.

property ExFolderView.AllowDropFiles as Boolean
Indicates if the control accepts dropping files.

Type Description

Boolean A boolean expression that specifies whether the control
accepts dragged files/folders from other applications.

By default, the AllowDropFiles property is False. The AllowDropFiles property determines
whether or not the control will accept files dragged-and-dropped from another application
(such as Explorer). The DropFiles event notifies your application that the user just dragged
some folders on your control. Use the DropFilesCount property to count the files being
dropped. Use the DropFilesPathName property to retrieve the path of the dropping folder.

property ExFolderView.Appearance as AppearanceEnum
Returns or sets a value that determines the appearance of the object.

Type Description

AppearanceEnum An AppearanceEnum expression that specifies the
control's appearance.

Use the Appearance property to change the control's appearance. Use the BorderStyle
property to specify the control's borders.

method ExFolderView.AttachTemplate (Template as Variant)
Attaches a script to the current object, including the events, from a string, file, a safe array
of bytes.

Type Description
Template as Variant A string expression that specifies the Template to execute.

The AttachTemplate/x-script code is a simple way of calling control/object's properties,
methods/events using strings. The AttachTemplate features allows you to attach a x-script
code to the component. The AttachTemplate method executes x-script code (including
events), from a string, file or a safe array of bytes. This feature allows you to run any x-
script code for any configuration of the component /COM, /NET or /WPF. Exontrol owns the
x-script implementation in its easiest form and it does not require any VB engine or
whatever to get executed. The x-script code can be converted to several programming
languages using the eXHelper tool.

The following sample opens the Windows Internet Explorer once the user clicks the control
(/COM version):

AttachTemplate("handle Click(){ CreateObject(`internetexplorer.application`){ Visible =
True; Navigate(`https://www.exontrol.com`) } } ")

This script is equivalent with the following VB code:

Private Sub ExFolderView1_Click()
 With CreateObject("internetexplorer.application")
 .Visible = True
 .Navigate ("https://www.exontrol.com")
 End With
End Sub

The AttachTemplate/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>
<lines> := <line>[<eol> <lines>] | <block>
<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]
<eol> := ";" | "\r\n"
<line> := <dim> | <createobject> | <call> | <set> | <comment> | <handle>[<eol>]{[<eol>]
<lines>[<eol>]}[<eol>]
<dim> := "DIM" <variables>
<variables> := <variable> [, <variables>]

<variable> := "ME" | <identifier>
<createobject> := "CREATEOBJECT(`"<type>"`)"
<call> := <variable> | <property> | <variable>"."<property> | <createobject>"."<property>
<property> := [<property>"."]<identifier>["("<parameters>")"]
<set> := <call> "=" <value>
<property> := <identifier> | <identifier>"("[<parameters>]")"
<parameters> := <value> [","<parameters>]
<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> | <call>
<boolean> := "TRUE" | "FALSE"
<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit16> := <digit10> | A | B | C | D | E | F
<integer> := <digit10>[<integer>]
<hexa> := <digit16>[<hexa>]
<color> := "RGB("<integer>","<integer>","<integer>")"
<date> := "#"<integer>"/"<integer>"/"<integer>" "[<integer>":"<integer>":"<integer>"]"#"
<string> := '"'<text>'"' | "`"<text>"`"
<comment> := "'"<text>
<handle> := "handle " <event>
<event> := <identifier>"("[<eparameters>]")"
<eparameters> := <eparameter> [","<eparameters>]
<parameters> := <identifier>

where:

<identifier> indicates an identifier of the variable, property, method or event, and should
start with a letter.
<type> indicates the type the CreateObject function creates, as a progID for /COM version
or the assembly-qualified name of the type to create for /NET or /WPF version
<text> any string of characters

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character.

The advantage of the AttachTemplate relative to Template / ExecuteTemplate is that the
AttachTemplate can add handlers to the control events.

property ExFolderView.AutoUpdate as Boolean
Retrieves or sets a value indicating whether the control refreshes its content when a shell
object was changed, moved, or renamed.

Type Description

Boolean
A Boolean expression that specifies whether the control
gets automatically updated once a folder is changed,
renamed or moved.

the control receives notification messages each time the directory structure is changed, and
so can update its list, if this property is True. If the structure is changed, the control updates
itself accordingly. For example, if a user starts Explorer and renames a directory, and this
property is set to True, change will take effect also in the control. If set to False, the control
is not changed until the user manually forces refreshing the control. The control fires the
FolderUpdate event when the control requires refreshing based on change notification on
directory structure.

property ExFolderView.BackColor as Color
Specifies the control's background color.

Type Description

Color A Color expression that specifies the control's background
color.

The BackColor property specifies the control's background color. Use the ForeColor
property to change the control's foreground color.

property ExFolderView.BorderStyle as BordersEnum
Retrieves or sets the border style of the control.

Type Description

BordersEnum A BordersEnum expression that indicates the control's
border.

Use the BorderStyle property to specify the control's borders. Use the Appearance
property to change the control's appearance.

property ExFolderView.CanRename as Boolean
Retrieves or sets a value indicating whether the control add Rename context menu.

Type Description

Boolean A Boolen expression that specifies whether the control
allows renaming the folders.

By default, the CanRename property is False. If the CanRename property is True, for
folders or files that support renaming, the control inserts into its context menu a new menu
item Rename. If the user selects it, the control will display an edit control where he will be
able to change the name of the folder or file. Use the EnableShellMenu property to disable
control's context menu, when the user right clicks a folder. Use the QueryContextMenu
event to add new items to the folder's context menu. Use the InvokeRename method to
rename a folder at run-time.

property ExFolderView.DisplayShareName as Boolean
Indicating whether the control displays the share folder name.

Type Description

Boolean A Boolen expression that specifies whether the control
displays the folder's share name.

Setting this property to True will cause the control to display share-names for all folders
that are shared. If property is set to False, shared names are not shown, but folder is
displayed anyway with it's real name. For example, let's suppose that we a have folder
"C:\Documents and Settings\Administrator\My Documents" and it is shared with name
"docs". If DisplayShareName property is set to True, the control will display text "My
Documents [docs]" when this folder is listed.

property ExFolderView.DropFilesCount as Long
Retrieves the count of dropped files.

Type Description
Long A long expression that counts the files being droped.

Use the DropFilesCount property to count the files being dropped. Use the
DropFilesPathName property to retrieve the path of the dropping folder. The control fires
the DropFiles event to notify your application that some files were dropped. The
AllowDropFiles property determines whether or not the control will accept files dragged-
and-dropped from another application (such as Explorer).

Here is a VB sample that lists the files dragged in the Immediate debugger window.

Private Sub ExFolderView1_DropFiles(ByVal ExShellFolder As
EXFOLDERVIEWLibCtl.IExShellFolder, ByVal Effect As Long)
 Dim I As Long
 For I = 0 To FolderView1.DropFilesCount - 1
 Debug.Print FolderView1.DropFilesPathName(I)
 Next I
 If (Effect & 1) = 1 Then
 Debug.Print "Copied to " & Folder.PathName
 Else
 Debug.Print "Moved to " & Folder.PathName
 End If
End Sub

property ExFolderView.DropFilesPathName (Index as Long) as String
Retrieves the dropped files given an index,

Type Description

Index as Long A Long expression that indicates the index of the folder
being requested

String A String expression that indicates the path being
requested

Use the DropFilesPathName property to retrieve the path of the dropping folder. Use the
DropFilesCount property to count the files being dropped. The control fires the DropFiles
event to notify your application that some files were dropped. The AllowDropFiles property
determines whether or not the control will accept files dragged-and-dropped from another
application (such as Explorer).

Here is a VB sample that lists the files dragged in the Immediate debugger window.

Private Sub ExFolderView1_DropFiles(ByVal ExShellFolder As
EXFOLDERVIEWLibCtl.IExShellFolder, ByVal Effect As Long)
 Dim I As Long
 For I = 0 To FolderView1.DropFilesCount - 1
 Debug.Print FolderView1.DropFilesPathName(I)
 Next I
 If (Effect & 1) = 1 Then
 Debug.Print "Copied to " & Folder.PathName
 Else
 Debug.Print "Moved to " & Folder.PathName
 End If
End Sub

property ExFolderView.Enabled as Boolean
Returns or sets a value that determines whether a control can respond to user-generated
events.

Type Description

Boolean A boolean expression that specifies whether the control is
enabled or disabled.

By default, the Enabled property is True. The Enabled property enables or disables the
control.

property ExFolderView.EnableShellMenu as Boolean
Enables or disables the control's context menu.

Type Description

Boolean A Boolean expression that indicates whether the control
provides a drop down context menu.

The control provides a drop down context menu, if the EnableShellMenu property is True.
Right clicking on a folder results in showing the folder's context menu. If some item from this
menu is selected, the control fires a pair of events to notify your application about this
event. Before the menu item is executed, BeforeShellMenuCommand event is fired. After
the menu item is executed, the AfterShellMenuCommand event is fired. Please note that
Windows OS is a multitasking environment. That means that execution of menu item does
not mean that this event is fired after the executed program (or command) has finished.
Rather, immediately after execution of the menu item this event is fired. Use the
QueryContextMenu event to add new items to the folder's context menu. The CanRename
property retrieves or sets a value indicating whether the control add Rename context menu.

method ExFolderView.EnsureVisible (Folder as Variant)
Ensures a specified ExShellFolder object , path or special folder is visible.

Type Description

Folder as Variant
A String expression that indicates a path, an ExShellFolder
object, a long expression that indicates a special folder,
being ensured that it fits the control's client area.

Use this method to make a folder visible. The Folder parameter can be any path, special
folder, ExShellFolder or IShellFolder. Calling this method will, if necessary, open all parent
folders until referred folder is shown.

property ExFolderView.EventParam(Parameter as Long) as Variant
Retrieves or sets a value that indicates the current's event parameter.

Type Description

Parameter as Long

A long expression that indicates the index of the parameter
being requested ie 0 means the first parameter, 1 means
the second, and so on. If -1 is used the EventParam
property retrieves the number of parameters. Accessing
an not-existing parameter produces an OLE error, such as
invalid pointer (E_POINTER)

Variant A VARIANT expression that specifies the parameter's
value.

The EventParam method is provided to allow changing the event's parameters passed by
reference, even if your environment does not support changing it (uniPaas 1.5 (formerly
known as eDeveloper), DBase, and so on). For instance, Unipaas event-handling logic
cannot update ActiveX control variables by updating the received arguments. The
EventParam(0) retrieves the value of the first parameter of the event, while the
EventParam(1) = 0, changes the value of the second parameter to 0 (the operation is
successfully, only if the parameter is passed by reference). The EventParam(-1) retrieves
the number of the parameters of the current event.

Let's take the event "event KeyDown (KeyCode as Integer, ByVal Shift as Integer)", where
the KeyCode parameter is passed by reference. For instance, put the KeyCode parameter
on 0, and the arrow keys are disabled while the control has the focus.

In most languages you will type something like:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 KeyCode = 0
End Sub

In case your environment does not support events with parameters by reference, you can
use a code like follows:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 Control1.EventParam(0) = 0
End Sub

In other words, the EventParam property provides the parameters of the current event for
reading or writing access, even if your environment does not allow changing parameters by

reference.

Calling the EventParam property outside of an event produces an OLE error, such as
pointer invalid, as its scope was designed to be used only during events.

method ExFolderView.ExecuteTemplate (Template as String)
Executes a template and returns the result.

Type Description
Template as String A Template string being executed
Return Description

Variant A Variant expression that indicates the result after
executing the Template.

Use the ExecuteTemplate property to returns the result of executing a template file. Use the
Template property to execute a template without returning any result. Use the
ExecuteTemplate property to execute code by passing instructions as a string (template
string). For instance, you can use the EXPRINT.PrintExt =
CONTROL.ExecuteTemplate("me") to print the control's content.

For instance, the following sample retrieves the the handle of the first visible item:

Debug.Print ExFolderView1.ExecuteTemplate("Items.FirstVisibleItem()")

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by

"\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property ExFolderView.ExploreFromHere as String
Retrieves or sets a path that indicates the root folder used to display the hierarchy.

Type Description

String

A string expression that specifies the root folder for this
control. If the ExploreFromHere property ends with
"|reset" the control does not restore previously selected /
expanded items. For instance, ExploreFromHere = "|reset"
loads again the desktop, without selecting or expanding
the previously selected / expanded items. The "reset"
options must be after a "|" (pipe-character)

This property determines the root folder for the control. By default, if left empty, exploration
starts at the desktop. Otherwise, the root folder is the path specified here.

property ExFolderView.FirstVisibleFolder as ExShellFolder
Retrieves or sets the first visible folder.

Type Description

ExShellFolder A Folder object that indicates the first visible folder in the
control's list.

Property returns a Folder object that is currently positioned as upper-most visible folder.
This may not be 'Desktop', or any root folder you selected. The value of this property
depends upon what is currently shown inside the control. If the user moves scroll bars this
value changes. Setting this value to some other folder will cause the control to open all
parent folders of the folder, and position the folder to be the upper-most visible folder.
However, there might be also folders above the referenced folder, they will become non-
visible. However, moving scroll bars could make them visible. Use the ShellFolder property
to create an ExShellFolder object based on the path.

As example, this code would set "C:\WINNT" as the most upper visible folder:

Private Sub Form_Load()
 ExFolderView1.FirstVisibleFolder = FolderView1.ShellFolder("C:\WINNT")
End Sub

property ExFolderView.FolderFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as ExShellFolder
Retrieves the ExShellFolder object from the point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

ExShellFolder A Folder from the cursor.

Use the FolderFromPoint property to get the item from the point specified by the {X,Y}. The
X and Y coordinates are expressed in client coordinates, so a conversion must be done in
case your coordinates are relative to the screen or to other window. If the X parameter is
-1 and Y parameter is -1 the ItemFromPoint property determines the handle of the
folder from the cursor. This property is used to determine what folder is displayed at
given coordinates. If given coordinates are pointing to background and not particular folder,
'Nothing' is returned. Note that Visual Basic all coordinates represents in 'twips', and the
control accepts coordinates in 'pixels'. Therefore, all twips coordinates should be scaled to
pixels when calling this method. ScaleX and ScaleY methods will do the job for you.

Below example displays the folder from the cursor:

Private Sub ExFolderView1_MouseMove(ByVal Button As Integer, ByVal Shift As Integer,
ByVal X As Single, ByVal Y As Single)
 With ExFolderView1
 Dim f As EXFOLDERVIEWLibCtl.ExShellFolder
 Set f = .FolderFromPoint(-1, -1)
 If Not (f Is Nothing) Then
 Debug.Print f.DisplayName
 End If
 End With
End Sub

property ExFolderView.FoldersCheck as ExShellFolders
Gets a collection of folders being checked.

Type Description

ExShellFolders An ExShellFolders object that indicates a collection of
checked folders.

If HasCheckBoxes property is set to True, each displayed folder has it's own check box.
The AfterCheck event notifies your application whether a folder is checked or unchecked.
Use the PartialCheck property to enable partial check feature. This property is used to find
the folders that are currently checked.

property ExFolderView.Font as IFontDisp
Determines the Font object associated to the control

Type Description
IFontDisp A Font object being used to display the control's hierarchy.

Use the Font property to change the control's font. The BackColor property specifies the
control's background color. Use the ForeColor property to change the control's foreground
color.

property ExFolderView.ForeColor as Color
Specifies the control's foreground color.

Type Description

Color A Color expression that specifies the control's foreground
color.

Use the ForeColor property to change the control's foreground color. The BackColor
property specifies the control's background color. Use the Font property to specify the
control's font.

property ExFolderView.HasButtons as Boolean
Adds a (+/-) button to the left side of each parent item

Type Description

Boolean A boolean expression that determine if (+/-) buttons are
displayed for each folder.

If this property is set to True, for each folder that has subfolders a boxed '+' sign is
showed, representing a button. Clicking on that button, folder gets expanded. Even if this
property is set to False, and buttons are not shown, the user is still able to expand folders,
using the keyboard, or by double clicking the folder.

property ExFolderView.HasCheckBoxes as Boolean
Retrieves or sets a value indicating whether the folder has associated a checkbox.

Type Description

Boolean A boolen expression that specifies whether the control
displays a check box for each folder.

Setting the HasCheckBoxes property to True causes the control to show a check-box for
each displayed folder. User can check or uncheck those check-boxes at run time. The
AfterCheck event notifies your application whether a folder is checked or unchecked. Use
the PartialCheck property to enable partial check feature. This way, if a folder is checked,
it's parent folder is partial checked, if it contains un-checked folders, or full checked, if all
child folders are checked. Use the FoldersCheck property to get the collection of checked
folders, at run-time.

property ExFolderView.HasLines as Boolean
Enhances the graphic representation of a tree control's hierarchy by drawing lines that link
child items to their corresponding parent item.

Type Description

Boolean A boolean expression that determine if lines are shown in
control.

Setting this property to True, line will be drawn that connected related folders (for example,
parent and child folders). It is used to graphically show directory structure. Setting this
property to False, lines are not shown.

property ExFolderView.HasLinesAtRoot as Boolean
Link items at the root of the hierarchy.

Type Description

Boolean A boolean expression that determine if line is drawn
between root foders and left edge of the control.

If this property is set to True, line is drawn between each root folder, and left edge of
FolderView/X. Please note that the 'root' folder doesn't necessary need to be '\' folder. It
might be 'My Computer', 'Destkop', etc. depending on the FirstVisibleFolder property

property ExFolderView.HiddenFolders as Boolean
Retrieves or sets a value indicating whether the control displays the hidden folders.

Type Description

Boolean A boolean expression that determine if folders marked
'hidden' are shown.

Use this property to specify if folders that have attribute 'hidden' are shown or not. Usually,
Windows operating system sets on some special folder this attribute (Recycle Bin is a good
example). If this property is set to False, such folders are not shown.

property ExFolderView.HideSelection as Boolean
Returns a value that determines whether selected item appears highlighted when a control
loses the focus.

Type Description

Boolean
A Boolean expression that indicates whether the control
shows or hides the selection while the control loses the
focus.

Use the HideSelection property to specify whether the control should display the selected
folder in the control, even if it loses the focus.

property ExFolderView.HorizontalHeight as Long
Retrieves the width of the height scroll bar.

Type Description

Long A long expression that indicates the height of the control's
horizontal scroll bar, if present.

This property returns the horizontal scroll bar's height. The HorisontalOffset property
specifies the horizontal scroll position. The HorisontalOversize property specifies the
maximum value for the horizontal scroll's position. Use the Scrollbars property to specify
whether the control should add horizontal or vertical scroll bars when they required.

property ExFolderView.HorizontalOffset as Long
Indicates the horizontal scroll position.

Type Description

Long A long expression that specifies the position of the
horizontal scroll bar.

The HorisontalOffset property specifies the horizontal scroll position. The HorizontalHeight
property returns the horizontal scroll bar's height. The HorisontalOversize property specifies
the maximum value for the horizontal scroll's position. Use the Scrollbars property to specify
whether the control should add horizontal or vertical scroll bars when they required.

property ExFolderView.HorizontalOversize as Long
Indicates the horizontal oversize value.

Type Description

Long A long expression that specifies the maximum position for
the control's horizontal scroll bar

The HorisontalOversize property specifies the maximum value for the horizontal scroll's
position. The HorizontalOffset property specifies the horizontal scroll position. The
HorizontalHeight property returns the horizontal scroll bar's height. Use the Scrollbars
property to specify whether the control should add horizontal or vertical scroll bars when
they required.

property ExFolderView.hwnd as Long
Retrieves the window's handle.

Type Description

Long A long expression that indicates the control's window
handle.

The Microsoft Windows operating environment identifies each form and control in an
application by assigning it a handle, or hWnd. The hWnd property is used with Windows API
calls. Many Windows operating environment functions require the hWnd of the active
window as an argument.

property ExFolderView.IconsVisible as Boolean
Determines if the control displays the icons.

Type Description

Boolean A Boolean expression that specifies whether the control
displays the associated icons for each folder.

By default, the IconsVisible property is True, and so associated icons are displayed for
each folder. Setting this property to 'False' will cause the control not to show icons left to
folder names. Setting the OverlayIcons property to True causes the control to display
Overlay-ed icons. The SmallIcons property specifies whether the control displays small or
large icons.

property ExFolderView.IncludeAttributeMask as Long
Retrieves or sets a value that determines the attribute mask used to enumerate the objects.

Type Description
Long A long expression that specifies a mask to use

Setting the IncludeAttributeMask property determines the type of Folders that control
displays. This can be quite selective. The value should be a combination of Folder item
attribute values. A complete list of these values is found in the AttributesEnum type. Use the
IncludeFolder property to customize the list of folders being displayed in the control.

Example, selecting folders with new items:

ExFolderView1.IncludeAttributeMask = NewContent Or IsFolder Or IsFileSystem

property ExFolderView.IncludeFolder as Boolean
Retrieves or sets a value indicating whether the control fires IncludeFolder event before
inserting folders to the tree.

Type Description

Boolean
A Boolean expression that specifies whether the control
fires the IncludeFolder event to customize the list of
folders being displayed.

By default, the IncludeFolder property is False. The IncludeFolder event notifies your
application that a new folder is included in the control's list. Setting the IncludeAttributeMask
property determines the type of Folders that control displays

property ExFolderView.ItemHeight as Long
Gets or sets the height to display the folders/files of the control.

Type Description
Long A long expression that specifies the height of the item.

By default, the ItemHeiht property is 20. Use the ItemHeight property to change the the
height to display the folders/files of the control.

property ExFolderView.MouseIcon as IPictureDisp
This property identifies mouse icon when MousePointer is Custom.

Type Description

IPictureDisp A Picture object that indicates the cursor being displayed
when the MousePointer property is custom.

Use the MouseIcon property to specify a custom cursor when the cursor hovers the control.
Use the MousePointer property to specify a predefined cursor to be displayed while cursor
hovers the control.

property ExFolderView.MousePointer as Long
Returns or sets a value indicating the type of mouse pointer displayed when the mouse is
over a particular part of an object at run time.

Type Description
Long A long expression that indicates a predefined cursor.

Use the MousePointer property to specify a predefined cursor to be displayed while cursor
hovers the control. Use the MouseIcon property to specify a custom cursor when the cursor
hovers the control.

Following are the constants for mouse pointers:

Value Description
0 (Default) Shape determined by the object
1 Arrow
2 Cross (cross-hair pointer)
3 I Beam
4 Icon (small square within a square)
5 Size (four-pointed arrow pointing north, south, east, and west)
6 Size NE SW (double arrow pointing northeast and southwest)
7 Size N S (double arrow pointing north and south)
8 Size NW, SE
9 Size E W (double arrow pointing east and west)
10 Up Arrow
11 Hourglass (wait)
12 No Drop
13 Arrow and hourglass
14 Arrow and question mark
15 Size all
16 Hand
99 Custom icon specified by the MouseIcon property.

property ExFolderView.OverlayIcons as Boolean
Retrieves or sets a value indicating whether the control displays the overlay icons.

Type Description

Boolean A boolean expression that specifies if Overlay-ed icons
are shown (True), or not (False).

Overlay-ed icons are ones that are drawn over an existing icon. Windows uses Overlay-ed
icons to notify the user that some item has special function or attribute. For example,
shortcut icons have a small arrow in lower-left corner, shared folders have a hand that
shows that folder is shared, etc. Setting the OverlayIcons property to True causes the
control to display Overlay-ed icons. If this property is set to False, only original icons will be
shown, without any Overlay-ed on it. Use the IconsVisible property to hide the associated
icons for each folder. The SmallIcons property specifies whether the control displays small
or large icons.

property ExFolderView.PartialCheck as Boolean
Retrieves or sets a value indicating whether the control accepts partial-check feature.

Type Description

Boolean
A boolean expression that specifies whether the control
partial check feature, and so, a check box can have three
states: partial, checked or unchecked.

Use the PartialCheck property to enable partial check feature. This way, if a folder is
checked, it's parent folder is partial checked, if it contains un-checked folders, or full
checked, if all child folders are checked. Use the FoldersCheck property to get the
collection of checked folders, at run-time. Setting the HasCheckBoxes property to True
causes the control to show a check-box for each displayed folder. User can check or
uncheck those check-boxes at run time. The AfterCheck event notifies your application
whether a folder is checked or unchecked.

method ExFolderView.Refresh ()
Refreshes the control.

Type Description

Calling Refresh method causes the control to repaint itself immediately. This method is
useful when, for example, AutoUpdate property is set to False, and the current folder
structure may have been changed. By default, the Refresh method is called when the user
presses the F5 key.

property ExFolderView.Scrollbars as ScrollBarsEnum
Returns value indicating whether an object has horizontal or vertical scroll bars

Type Description

ScrollBarsEnum
A ScrollBarsEnum expression that specifies whether the
control adds horizontal and vertical scroll bars when they
required.

Use the Scrollbars property to specify whether the control should add horizontal or vertical
scroll bars when they required. The HorisontalOversize property specifies the maximum
value for the horizontal scroll's position. The HorizontalOffset property specifies the
horizontal scroll position. The HorizontalHeight property returns the horizontal scroll bar's
height. The VerticalOversize property specifies the maximum value for the vertical scroll's
position. The VerticalWidth property returns the vertical scroll bar's width. The
VerticalOffset property specifies the vertical scroll position.

property ExFolderView.SelectedFolder as Variant
Retrieves or sets the selected folder.

Type Description
Variant A Folder object that indicates the control's selected folder.

Use the SelectedFolder property to specify a new selected folder. Use the ShellFolder or
SpecialFolderPath property to build an ExShellFolder object.

The following VB sample shows how to link a the drop down control with a EXFolderView
control:

Private Sub ExFolderCombo1_NewFolderOpened()
 ExFolderView1.SelectedFolder = ExFolderCombo1.OpenedFolder
End Sub

The following C# sample shows how to link a the drop down control with a EXFolderView
control:

private void axExFolderCombo1_NewFolderOpened(object sender, EventArgs e)
{
 axExFolderView1.SelectedFolder = axExFolderCombo1.OpenedFolder;
}

The following VB.NET sample shows how to link a the drop down control with a
EXFolderView control:

Private Sub AxExFolderCombo1_NewFolderOpened(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles AxExFolderCombo1.NewFolderOpened
 AxExFolderView1.SelectedFolder = AxExFolderCombo1.OpenedFolder
End Sub

The following VC sample shows how to link a the drop down control with a EXFolderView
control:

void OnNewFolderOpenedFoldercombo1()
{
 if (IsWindow(m_folderCombo.m_hWnd) && IsWindow(m_folderView.m_hWnd))
 m_folderView.SetSelectedFolder(m_folderCombo.GetOpenedFolder());
}

The following VFP sample shows how to link a the drop down control with a EXFolderView
control:

thisform.ExFolderView1.SelectedFolder = thisform.ExFolderCombo1.OpenedFolder

property ExFolderView.ShellFolder (Path as Variant) as ExShellFolder
Constructs a ExShellFolder object given a path or a special folder contant.

Type Description
Path as Variant A String expression that indicates the folder's path

ExShellFolder An ExShellFolder object being built based on the folder's
path.

Supplying a folder's path name, such as "c:\windows" as the index argument Path will return
the corresponding Folder object.

property ExFolderView.SmallIcons as Boolean
Retrieves or sets a value that indicates whether the control displays small icons or large
icons.

Type Description

Boolean A Boolean expression that specifies whether the control
displays small icons or large icons.

By default, the SmallIcons property is True, which indicates that the control display small-
icons (16x16 icon-size). The SmallIcons property specifies whether the control displays
small or large icons. The SmallIcons property On True, determines the control to display
large-icons (32x32 icon-size). The IconsVisible property shows or hides the icons within the
control. The OverlayIcons property shows or hides Overlay-ed icons.

property ExFolderView.SpecialFolderPath (specialFolder as
SpecialFolderPathEnum) as String
Gets a path given a special folder constant.

Type Description
specialFolder as
SpecialFolderPathEnum

Constant value that specifies folder whose path is to be
retrieved.

String A String expression that retrieves the special folder path.

Windows has some folders that are marked as shell, or special. "Recycle bin" is one of
them, "My Computer" also, etc. This property will return complete path to any of such
folders, depending on value below. Please note that these folders don't necessarily need to
be placed on the same place on every computer. Depending on installation, the drive
Windows is located on, or user changes, these folders can be stored anywhere on disk.
Because of this it's is advised to use this property to retrieve path to such folders, just to be
sure that you are referring to same folder, no matter where your program will be used. Use
the ShellFolder property to convert a path to an EnShellFolder object.

property ExFolderView.Template as String
Specifies the control's template.

Type Description
String A string expression that defines the control's template

The control's template uses the X-Script language to initialize the control's content. Use the
Template property page of the control to update the control's Template property. Use the
Template property to execute code by passing instructions as a string (template string).
Use the ToTemplate property to generate the control's content to template format. Use the
ExecuteTemplate property to get the result of executing a template script.

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name

of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier. For instance, the following
code creates an ADOR.Recordset and pass it to the control using the DataSource
property:

The following sample loads the Orders table:

Dim rs
ColumnAutoResize = False
rs = CreateObject("ADOR.Recordset")
{
Open("Orders","Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\Program
Files\Exontrol\ExExFolderView\Sample\SAMPLE.MDB", 3, 3)
}
DataSource = rs

property ExFolderView.TemplateDef as Variant
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplateDef property has been added to allow programming languages such as
dBASE Plus to set control's properties with multiple parameters. It is known that
programming languages such as dBASE Plus or XBasic from AlphaFive, does not
support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef method. The first call of the TemplateDef
should be a declaration such as "Dim a,b" which means the next 2 calls of the TemplateDef
defines the variables a and b. The next call should be Template or ExecuteTemplate
property which can use the variable a and b being defined previously.

So, calling the TemplateDef property should be as follows:

with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith

This sample allocates a variable var_Column, assigns the value to the variable (the second
call of the TemplateDef), and the Template call uses the var_Column variable (as an object
), to call its Def property with the parameter 4.

Let's say we need to define the background color for a specified column, so we need to call
the Def(exCellBackColor) property of the column, to define the color for all cells in the
column.

The following VB6 sample shows setting the Def property such as:

With Control
 .Columns.Add("Column 1").Def(exCellBackColor) = 255
 .Columns.Add "Column 2"
 .Items.AddItem 0
 .Items.AddItem 1

 .Items.AddItem 2
End With

In dBASE Plus, calling the Def(4) has no effect, instead using the TemplateDef helps you to
use properly the Def property as follows:

local Control,var_Column

Control = form.Activex1.nativeObject
// Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith
Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The equivalent sample for XBasic in A5, is as follows:

Dim Control as P
Dim var_Column as P

Control = topparent:CONTROL_ACTIVEX1.activex
' Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
Control.TemplateDef = "Dim var_Column"
Control.TemplateDef = var_Column
Control.Template = "var_Column.Def(4) = 255"

Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The samples just call the Column.Def(4) = Value, using the TemplateDef. The first call of
TemplateDef property is "Dim var_Column", which indicates that the next call of the
TemplateDef will defines the value of the variable var_Column, in other words, it defines the
object var_Column. The last call of the Template property uses the var_Column member to
use the x-script and so to set the Def property so a new color is being assigned to the
column.

The TemplateDef, Template and ExecuteTemplate support x-script language (Template
script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please

make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

method ExFolderView.TemplatePut (NewVal as Variant)
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

NewVal as Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplatePut method / TemplateDef property has been added to allow programming
languages such as dBASE Plus to set control's properties with multiple parameters. It is
known that programming languages such as dBASE Plus or XBasic from AlphaFive, does
not support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef / TemplatePut method. The first call of the
TemplateDef should be a declaration such as "Dim a,b" which means the next 2 calls of the
TemplateDef defines the variables a and b. The next call should be Template or
ExecuteTemplate property which can use the variable a and b being defined previously.

The TemplateDef, TemplatePut, Template and ExecuteTemplate support x-script language (
Template script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the

Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property ExFolderView.Version as String
Retrieves the version of the control.

Type Description
String A string expression that indicates the control's version.

The version property specifies the control's version.

property ExFolderView.VerticalOffset as Long
Indicates the vertical scroll position.

Type Description

Long A long expression that specifies the position of the vertical
scroll bar.

The VerticalOffset property specifies the vertical scroll position. The VerticalHeight property
returns the vertical scroll bar's width. The VerticalOversize property specifies the maximum
value for the vertical scroll's position. Use the Scrollbars property to specify whether the
control should add vertical or vertical scroll bars when they required.

property ExFolderView.VerticalOversize as Long
Indicates the vertical oversize value.

Type Description

Long A long expression that indicates the maximum position for
the control's vertical scroll bar.

The VerticalOversize property specifies the maximum value for the vertical scroll's position.
The VerticalWidth property returns the vertical scroll bar's width. The VerticalOffset
property specifies the vertical scroll position. Use the Scrollbars property to specify whether
the control should add vertical or vertical scroll bars when they required.

property ExFolderView.VerticalWidth as Long
Retrieves the width of the vertical scroll bar.

Type Description

Long A long expression that indicates the width of the control's
vertical scroll bar, in pixels.

The VerticalWidth property returns the vertical scroll bar's width. The VerticalOffset
property specifies the vertical scroll position. The VerticalOversize property specifies the
maximum value for the vertical scroll's position. Use the Scrollbars property to specify
whether the control should add vertical or vertical scroll bars when they required.

property ExFolderView.VisibleCount as Long
Counts the visible folders.

Type Description

Long A long expression that specifies the number of folders
being displayed in the control's client area.

This property will return the exact number of currently folders which are currently visible
within the control's borders

ExShellFolder object
The ExShellFolder object supports the following properties and methods:

Name Description
Attribute Asks for a specific attribute.
Attributes Retrieves the attributes of the source.
Check Checks if the folder checked or unchecked.
DisplayName Retrieves the name displayed in the tree for the source.
Expanded Specifies whether the folder is expanded or collapsed.
FolderPath Retrieves the folder path, using the API SHGetFolderPath.

Folders Retrieves a ExShellFolder object collection representing
the subfolders of source.

Handle Retrieves the handle of the source.

ID Retrieves the ExShellFolder's ITEMIDLIST as an safe
array.

InvokeCommand Invokes a specified command from the object's context
menu.

InvokeRename Performs the rename operation

Loaded Retrieves a value that indicates whether the control has
loaded the child folders of the source.

Name Retrieves the name of the source.
Parent Retrieves the parent folder of the source.
PartialCheck Checks if the source is partial-checked or not.
PathName Retrieves the path of the source.
ShareName Retrieves the share folder name.
UserData Associates an extra data.

property ExShellFolder.Attribute (Attribute as AttributesEnum) as
Boolean
Asks for a specific attribute.

Type Description
Attribute as AttributesEnum An Attribute value being requested

Boolean A Boolean expression that indicates whether the folder has
the specified attribute

This property specifies the custom flags for a folder object.Not all visible objects inside
FolderView/X are the same. The differences are shown in the table below. Use this
property to determine if the current Folder Object is a short-cut, is visible, etc.

property ExShellFolder.Attributes (Mask as AttributesMask) as Long
Retrieves the attributes of the source.

Type Description

Mask as AttributesMask A long expression that indicates the mask of the attributes
being requested.

Long A long expression that indicates the group of attributes
being requested.

This property returns one or more of an object's attributes. Depending on the attribute
types we're interested in, use a value from the AttributesMask table. The return value will
be a combination of all the object's attributes.

property ExShellFolder.Check as Boolean
Checks if the folder checked or unchecked.

Type Description

Boolean A boolean expression that indicates whether the folder is
check or unchecked.

The Check property determines whether the folder is checked or unchecked. Use the
PartialCheck property to determine whether the folder is partially checked. Use the
HasCheckBoxes property to assign a check box to each folder in the control's list. Use the
PartialCheck property to enable partial check feature. This way, if a folder is checked, it's
parent folder is partial checked, if it contains un-checked folders, or full checked, if all child
folders are checked.

property ExShellFolder.DisplayName as String
Retrieves the name displayed in the tree for the source.

Type Description

String A String expression that indicates the name of the folder
being displayed in the control's list.

Retrieves or sets the display name of the current folder. This is the same as when the
control uses in drawing the associated item.

property ExShellFolder.Expanded as Boolean
Specifies whether the folder is expanded or collapsed.

Type Description

Boolean A Boolean expression that indicates whether the folder is
expanded or collapsed.

Use the Expanded property to specify whether a folder is expanded or collapsed.

property ExShellFolder.FolderPath as String
Retrieves the folder path, using the API SHGetFolderPath.

Type Description
String A string expression that specifies the path of the folder.

This property returns the path associated with this folder. To do so, the component uses the
ID property to retrieve the path from the file system.

property ExShellFolder.Folders as Variant
Retrieves a ExShellFolder object collection representing the subfolders of source.

Type Description

Variant An ExShellFolders object that indicates the collection of
sub-folders.

Folders mirror the structure of folders as seen in the Windows Explorer. Some folders may
contain other folders. The ExShellFolders provides access to contained folders. If a given
folder has no subfolder then SomeFolder.Folders.Count will be zero.

property ExShellFolder.Handle as LONG_PTR
Retrieves the handle of the source.

Type Description
LONG_PTR A Handle expression.

Retrieves the handle of the Folder which uniquely identifies it in the control's list. This is
different from the ID property.

property ExShellFolder.ID as Variant
Retrieves the ExShellFolder's ITEMIDLIST as an safe array.

Type Description

Variant A Variant expression that indicates the identifier of the
folder.

Windows owns the ITEMIDLIST structure. Use this property when you want to link
ExShellView or ExFolderCombo controls with ExFolderView control. For instance the
following sample shows how to link a ExFolderCombo control with a ExFolderView control:

Private Sub FolderComboX1_NewFolderOpened()
 ExFolderView1.SelectedFolder = ExFolderComboX1.OpenedFolder
End Sub

Private Sub ExFolderCombo1_NewFolderOpened()
 ExFolderComboX1.OpenedFolder = NewFolder.ID
End Sub

This property is read-only and only available at run-time

method ExShellFolder.InvokeCommand (CommandName as String)
Invokes a specified command from the object's context menu.

Type Description

CommandName as String A String expression that indicates the name of the
command being executed.

The InvokeCommand method executes a command from the folder's context menu. Use the
InvokeRename method to rename a folder at runtime. Use the SelectedFolder property to
get the selected folder in the control.

The following VB sample displays the object's Properties dialog, when the user presses the
F2 key:

Private Sub ExFolderView1_KeyDown(KeyCode As Integer, Shift As Integer)
 If (KeyCode = vbKeyF2) Then
 ExFolderView1.SelectedFolder.InvokeCommand ("Properties")
 End If
End Sub

method ExShellFolder.InvokeRename ()
Performs the rename operation

Type Description

Call the InvokeRename method to call renaming an folder or a file, at run-time. The
CanRename property should be set on True, before performing the InvokeRename method,
else it has no effect. Use the SelectedFolder property to get the selected folder in the
control. The rename operation starts only if the selected shell object supports renaming.
For instance, if you try to rename the My Computer folder, it is not allowed, since it doesn't
support renaming. The control is focused, when InvokeRename method is called. Use the
InvokeCommand method to execute a command from the object's context menu.

The following VB sample starts renaming the selected folder, when the user presses the F2
key:

Private Sub ExFolderView1_KeyDown(KeyCode As Integer, Shift As Integer)
 If (KeyCode = vbKeyF2) Then
 ExFolderView1.SelectedFolder.InvokeRename
 End If
End Sub

property ExShellFolder.Loaded as Boolean
Retrieves a value that indicates whether the control has loaded the child folders of the
source.

Type Description

Boolean A boolean expression that indicates whether the control
has loaded the child folders of the source.

The Loaded property returns true, if the child folders of the source are loaded.

property ExShellFolder.Name as String
Retrieves the name of the source.

Type Description
String A String expression that indicates the name of the folder.

This is the name of the Folder. The DisplayName and Name could be different. An example
is when you have a Folder which stores link to the C:. The DisplayName is the label of the
disk plus (C:), and the Name of it is C:

property ExShellFolder.Parent as ExShellFolder
Retrieves the parent folder of the source.

Type Description

ExShellFolder An ExShellFolder object that specifies the parent folder of
the current folder.

The Parent property retrieves the parent folder of the source.

property ExShellFolder.PartialCheck as Boolean
Checks if the source is partial-checked or not.

Type Description

Boolean A boolean expression that indicates whether the folder is
partially checked.

Use the PartialCheck property to determine whether the folder is partially checked. The
Check property determines whether the folder is checked or unchecked. Use the
HasCheckBoxes property to assign a check box to each folder in the control's list. Use the
PartialCheck property to enable partial check feature. This way, if a folder is checked, it's
parent folder is partial checked, if it contains un-checked folders, or full checked, if all child
folders are checked.

property ExShellFolder.PathName as String
Retrieves the path of the source.

Type Description
String A String expression that specifies the path to the name

The PathName property returns the name of full path.

property ExShellFolder.ShareName as String
Retrieves the share folder name.

Type Description

String A String expression that indicates the name of the shared
folder.

This read-only property returns the share name of the current folder (as defined in Windows
networking). If the folder is not shared, ShareName returns an empty string.

property ExShellFolder.UserData as Variant
Associates an extra data.

Type Description

Variant A VARIANT expression that's associated with the current
folder.

The UserData property associates an extra data.

ExShellFolders object
The ExShellFolders collection holds a collection of ExShellFolder objects. The Folders or
FoldersCheck property retrieves a collection of ExShellFolder objects. The ExShellFolders
property supports the following methods and properties.

Name Description
Add Not implemented, read-only collection
Count Returns the number of folders
Item Returns a folder object
Remove Read-only collection, method not implemented
RemoveAll Removes all folders from the collection.

method ExShellFolders.Add (Position as Long)
Not implemented, read-only collection

Type Description

Position as Long A long expression that indicates the position where the
object is inserted.

Return Description
Object An reference to an Object,

property ExShellFolders.Count as Long
Returns the number of folders

Type Description

Long A Long expression that indicates the number of elements
in the collection.

Read only property providing the number of folders in a in a given folder collection. Use the
Item property to access an element in the collection giving its index.

property ExShellFolders.Item (ID as Variant) as ExShellFolder
Returns a folder object

Type Description
ID as Variant A long expression
ExShellFolder An ExShellFolder object being requested.

Individual folders in a Folder collection are accessed by ordinal, the index parameter. Index
must always be an integer type, such as Int or Long.

method ExShellFolders.Remove (Item as Variant)
Read-only collection, method not implemented

Type Description

Item as Variant A Long expression that specifies the index of the folder
being removed from the collection.

Currently, the Remove method is only for internal use.

method ExShellFolders.RemoveAll ()
Removes all folders from the collection.

Type Description

ExFolderCombo events
The FolderCombo component supports the following events:

Name Description
NewFolderOpened Occurs when a new folder is opened.

event NewFolderOpened ()
Occurs when a new folder is opened.

Type Description

Fired when a new folder is opened by the user. The newly opened folder is found in the
OpenedFolder property. The SelectedFolder property indicates the selected folder in the
ExFolderView control. The ShellFolder property retrieves the shell folder based on the
folder's identifier.

The following VB sample shows how to link a the drop down control with a EXFolderView
control:

Private Sub ExFolderCombo1_NewFolderOpened()
 ExFolderView1.SelectedFolder = ExFolderCombo1.OpenedFolder
End Sub

The following VB sample displays the path of the newly selected folder:

Private Sub ExFolderCombo1_NewFolderOpened()
 Debug.Print ExFolderView1.ShellFolder(ExFolderCombo1.OpenedFolder).PathName
End Sub

The following C# sample shows how to link a the drop down control with a EXFolderView
control:

private void axExFolderCombo1_NewFolderOpened(object sender, EventArgs e)
{
 axExFolderView1.SelectedFolder = axExFolderCombo1.OpenedFolder;
}

The following VB.NET sample shows how to link a the drop down control with a
EXFolderView control:

Private Sub AxExFolderCombo1_NewFolderOpened(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles AxExFolderCombo1.NewFolderOpened
 AxExFolderView1.SelectedFolder = AxExFolderCombo1.OpenedFolder
End Sub

The following VC sample shows how to link a the drop down control with a EXFolderView
control:

void OnNewFolderOpenedFoldercombo1()
{
 if (IsWindow(m_folderCombo.m_hWnd) && IsWindow(m_folderView.m_hWnd))
 m_folderView.SetSelectedFolder(m_folderCombo.GetOpenedFolder());
}

The following VFP sample shows how to link a the drop down control with a EXFolderView
control:

thisform.ExFolderView1.SelectedFolder = thisform.ExFolderCombo1.OpenedFolder

ExFolderView events
The control supports the following events:

Name Description
AfterCheck Fired after the user checks a folder.
AfterCollapse Fired after folder has collapsed.
AfterExpand Fired after a folder has expanded.
AfterSelChanged Fired after selection has changed.

AfterShellMenuCommand Fired after the control executes the selected menu item
from the folder's context menu list.

BeforeCollapse Fired before a folder is about to collapse.
BeforeExpand Fired before folder is about to be expanded.
BeforeSelChanged Fired before a folder is selected.
BeforeShellMenuCommand Fired before a context-menu item is executed.

Click Occurs when the user presses and then releases the left
mouse button over the control.

DblClick Occurs when the user dblclk the left mouse button over an
object.

DropFiles The user drags a collection of files over the control.
DropQueryEffect Fired while the user is dragging a folder.
Event Notifies the application once the control fires an event.

FolderUpdate This is fired when one of the logical drive was change the
state.

IncludeFolder Occurs when the user includes folders to the control.

KeyDown Occurs when the user presses a key while an object has
the focus.

KeyPress Occurs when the user presses and releases an ANSI key.

KeyUp Occurs when the user releases a key while an object has
the focus.

MouseDown Fired when the user release one of the buttons mouse.

MouseMove Fired when the user move the mouse over the
ExFolderView control.

MouseUp Fired when user release the mouse over the ExFolderView
control.

QueryContextMenu Fired when the context menu is about to be active.

C#

VB

private void AfterCheck(object sender,exontrol.EXFOLDERVIEWLib.ExShellFolder
Folder)
{
}

Private Sub AfterCheck(ByVal sender As System.Object,ByVal Folder As
exontrol.EXFOLDERVIEWLib.ExShellFolder) Handles AfterCheck
End Sub

C#

C++

C++
Builder

private void AfterCheck(object sender,
AxEXFOLDERVIEWLib._IExFolderViewEvents_AfterCheckEvent e)
{
}

void OnAfterCheck(LPDISPATCH Folder)
{
}

void __fastcall AfterCheck(TObject *Sender,Exfolderviewlib_tlb::IExShellFolder
*Folder)
{
}

event AfterCheck (Folder as ExShellFolder)
Fired after the user checks a folder.

Type Description
Folder as ExShellFolder An object reference to the Folder being checked.

The AfterCheck event notifies your application when a folder is checked or unchecked. Even
if the folder was partially checked this event is fired. Use the HasCheckBoxes property to
display a checkbox for each folder. Use the PartialCheck property to enable partial check
feature. This way, if a folder is checked, it's parent folder is partial checked, if it contains
un-checked folders, or full checked, if all child folders are checked. Use the FoldersCheck
property to get the collection of checked folders, at run-time.

Syntax for AfterCheck event, /NET version, on:

Syntax for AfterCheck event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure AfterCheck(ASender: TObject; Folder : IExShellFolder);
begin
end;

procedure AfterCheck(sender: System.Object; e:
AxEXFOLDERVIEWLib._IExFolderViewEvents_AfterCheckEvent);
begin
end;

begin event AfterCheck(oleobject Folder)
end event AfterCheck

Private Sub AfterCheck(ByVal sender As System.Object, ByVal e As
AxEXFOLDERVIEWLib._IExFolderViewEvents_AfterCheckEvent) Handles AfterCheck
End Sub

Private Sub AfterCheck(ByVal Folder As EXFOLDERVIEWLibCtl.IExShellFolder)
End Sub

Private Sub AfterCheck(ByVal Folder As Object)
End Sub

LPARAMETERS Folder

PROCEDURE OnAfterCheck(oExFolderView,Folder)
RETURN

Java…

VBSc…

<SCRIPT EVENT="AfterCheck(Folder)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AfterCheck(Folder)
End Function
</SCRIPT>

Syntax for AfterCheck event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComAfterCheck Variant llFolder
 Forward Send OnComAfterCheck llFolder
End_Procedure

METHOD OCX_AfterCheck(Folder) CLASS MainDialog
RETURN NIL

void onEvent_AfterCheck(COM _Folder)
{
}

function AfterCheck as v (Folder as OLE::Exontrol.FolderView.1::IExShellFolder)
end function

function nativeObject_AfterCheck(Folder)
return

C#

VB

private void AfterCollapse(object
sender,exontrol.EXFOLDERVIEWLib.ExShellFolder SelFolder)
{
}

Private Sub AfterCollapse(ByVal sender As System.Object,ByVal SelFolder As
exontrol.EXFOLDERVIEWLib.ExShellFolder) Handles AfterCollapse
End Sub

C#

C++

C++
Builder

private void AfterCollapse(object sender,
AxEXFOLDERVIEWLib._IExFolderViewEvents_AfterCollapseEvent e)
{
}

void OnAfterCollapse(LPDISPATCH SelFolder)
{
}

void __fastcall AfterCollapse(TObject *Sender,Exfolderviewlib_tlb::IExShellFolder
*SelFolder)
{
}

event AfterCollapse (SelFolder as ExShellFolder)
Fired after folder has collapsed.

Type Description
SelFolder as ExShellFolder A Folder being collapsed.

When user double clicks on a folder, or on a '+' button next to a folder, it expands. Or, if it
was already expanded, it collapses. When a folder collapses, two events are fired.
BeforeCollapse is fired before ExFolderView changes its structure, so additional functions
can be executed. The AfterCollapse event is fired after the structure has changed. Usually,
expanding and collapsing folders will result in more or fewer folders visible after this event,
so if some additional code is required it should be put inside this event.

Syntax for AfterCollapse event, /NET version, on:

Syntax for AfterCollapse event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure AfterCollapse(ASender: TObject; SelFolder : IExShellFolder);
begin
end;

procedure AfterCollapse(sender: System.Object; e:
AxEXFOLDERVIEWLib._IExFolderViewEvents_AfterCollapseEvent);
begin
end;

begin event AfterCollapse(oleobject SelFolder)
end event AfterCollapse

Private Sub AfterCollapse(ByVal sender As System.Object, ByVal e As
AxEXFOLDERVIEWLib._IExFolderViewEvents_AfterCollapseEvent) Handles
AfterCollapse
End Sub

Private Sub AfterCollapse(ByVal SelFolder As EXFOLDERVIEWLibCtl.IExShellFolder)
End Sub

Private Sub AfterCollapse(ByVal SelFolder As Object)
End Sub

LPARAMETERS SelFolder

PROCEDURE OnAfterCollapse(oExFolderView,SelFolder)
RETURN

Java…

VBSc…

<SCRIPT EVENT="AfterCollapse(SelFolder)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AfterCollapse(SelFolder)
End Function
</SCRIPT>

Syntax for AfterCollapse event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComAfterCollapse Variant llSelFolder
 Forward Send OnComAfterCollapse llSelFolder
End_Procedure

METHOD OCX_AfterCollapse(SelFolder) CLASS MainDialog
RETURN NIL

void onEvent_AfterCollapse(COM _SelFolder)
{
}

function AfterCollapse as v (SelFolder as
OLE::Exontrol.FolderView.1::IExShellFolder)
end function

function nativeObject_AfterCollapse(SelFolder)
return

C#

VB

private void AfterExpand(object sender,exontrol.EXFOLDERVIEWLib.ExShellFolder
SelFolder)
{
}

Private Sub AfterExpand(ByVal sender As System.Object,ByVal SelFolder As
exontrol.EXFOLDERVIEWLib.ExShellFolder) Handles AfterExpand
End Sub

C#

C++

C++
Builder

private void AfterExpand(object sender,
AxEXFOLDERVIEWLib._IExFolderViewEvents_AfterExpandEvent e)
{
}

void OnAfterExpand(LPDISPATCH SelFolder)
{
}

void __fastcall AfterExpand(TObject *Sender,Exfolderviewlib_tlb::IExShellFolder
*SelFolder)
{
}

event AfterExpand (SelFolder as ExShellFolder)
Fired after a folder has expanded.

Type Description
SelFolder as ExShellFolder A Folder object being expanded.

When user double clicks on a folder, or on a 'plus' button next to a folder, it expands. If it
was already expanded, it collapses. When a folder expands, two events are fired. The
BeforeExpand is fired before ExFolderView changes its structure, so additional functions
can be executed. The AfterExpand event is fired after the structure has changed. Usually,
expanding and collapsing folders will result in more or fewer folders visible after this event,
so if some additional code is required it should be put inside this event body.

Syntax for AfterExpand event, /NET version, on:

Syntax for AfterExpand event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure AfterExpand(ASender: TObject; SelFolder : IExShellFolder);
begin
end;

procedure AfterExpand(sender: System.Object; e:
AxEXFOLDERVIEWLib._IExFolderViewEvents_AfterExpandEvent);
begin
end;

begin event AfterExpand(oleobject SelFolder)
end event AfterExpand

Private Sub AfterExpand(ByVal sender As System.Object, ByVal e As
AxEXFOLDERVIEWLib._IExFolderViewEvents_AfterExpandEvent) Handles
AfterExpand
End Sub

Private Sub AfterExpand(ByVal SelFolder As EXFOLDERVIEWLibCtl.IExShellFolder)
End Sub

Private Sub AfterExpand(ByVal SelFolder As Object)
End Sub

LPARAMETERS SelFolder

PROCEDURE OnAfterExpand(oExFolderView,SelFolder)
RETURN

Java…

VBSc…

<SCRIPT EVENT="AfterExpand(SelFolder)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AfterExpand(SelFolder)
End Function
</SCRIPT>

Syntax for AfterExpand event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComAfterExpand Variant llSelFolder
 Forward Send OnComAfterExpand llSelFolder
End_Procedure

METHOD OCX_AfterExpand(SelFolder) CLASS MainDialog
RETURN NIL

void onEvent_AfterExpand(COM _SelFolder)
{
}

function AfterExpand as v (SelFolder as OLE::Exontrol.FolderView.1::IExShellFolder)
end function

function nativeObject_AfterExpand(SelFolder)
return

C#

VB

private void AfterSelChanged(object
sender,exontrol.EXFOLDERVIEWLib.ExShellFolder
OldFolder,exontrol.EXFOLDERVIEWLib.ExShellFolder NewFolder)
{
}

Private Sub AfterSelChanged(ByVal sender As System.Object,ByVal OldFolder As
exontrol.EXFOLDERVIEWLib.ExShellFolder,ByVal NewFolder As
exontrol.EXFOLDERVIEWLib.ExShellFolder) Handles AfterSelChanged
End Sub

C#

C++

private void AfterSelChanged(object sender,
AxEXFOLDERVIEWLib._IExFolderViewEvents_AfterSelChangedEvent e)
{
}

void OnAfterSelChanged(LPDISPATCH OldFolder,LPDISPATCH NewFolder)
{
}

event AfterSelChanged (OldFolder as ExShellFolder, NewFolder as
ExShellFolder)
Fired after selection has changed.

Type Description
OldFolder as ExShellFolder A Folder object being unselected.
NewFolder as ExShellFolder A Folder object being selected.

During run-time user clicks inside ExFolderView borders will result in a change to the
current selection. There is always at least one folder selected. By clicking on some other
folder, selection changes to newly clicked folder. After that happens, this event is fired.
Note that this event does not occur if some change happens to currently selected folder
(like its name, for instance), but only when some other folder is selected. The
SelectedFolder property indicates the selected folder, at runtime. The control fires the
BeforeSelChanged event to notify the control that the selection is about to be changed.

Syntax for AfterSelChanged event, /NET version, on:

Syntax for AfterSelChanged event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall AfterSelChanged(TObject
*Sender,Exfolderviewlib_tlb::IExShellFolder
*OldFolder,Exfolderviewlib_tlb::IExShellFolder *NewFolder)
{
}

procedure AfterSelChanged(ASender: TObject; OldFolder :
IExShellFolder;NewFolder : IExShellFolder);
begin
end;

procedure AfterSelChanged(sender: System.Object; e:
AxEXFOLDERVIEWLib._IExFolderViewEvents_AfterSelChangedEvent);
begin
end;

begin event AfterSelChanged(oleobject OldFolder,oleobject NewFolder)
end event AfterSelChanged

Private Sub AfterSelChanged(ByVal sender As System.Object, ByVal e As
AxEXFOLDERVIEWLib._IExFolderViewEvents_AfterSelChangedEvent) Handles
AfterSelChanged
End Sub

Private Sub AfterSelChanged(ByVal OldFolder As
EXFOLDERVIEWLibCtl.IExShellFolder,ByVal NewFolder As
EXFOLDERVIEWLibCtl.IExShellFolder)
End Sub

Private Sub AfterSelChanged(ByVal OldFolder As Object,ByVal NewFolder As
Object)
End Sub

LPARAMETERS OldFolder,NewFolder

PROCEDURE OnAfterSelChanged(oExFolderView,OldFolder,NewFolder)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="AfterSelChanged(OldFolder,NewFolder)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AfterSelChanged(OldFolder,NewFolder)
End Function
</SCRIPT>

Procedure OnComAfterSelChanged Variant llOldFolder Variant llNewFolder
 Forward Send OnComAfterSelChanged llOldFolder llNewFolder
End_Procedure

METHOD OCX_AfterSelChanged(OldFolder,NewFolder) CLASS MainDialog
RETURN NIL

void onEvent_AfterSelChanged(COM _OldFolder,COM _NewFolder)
{
}

function AfterSelChanged as v (OldFolder as
OLE::Exontrol.FolderView.1::IExShellFolder,NewFolder as
OLE::Exontrol.FolderView.1::IExShellFolder)
end function

function nativeObject_AfterSelChanged(OldFolder,NewFolder)
return

Syntax for AfterSelChanged event, /COM version (others), on:

The following VB sample changes the drop down opened folder when the user changes the
selection in the ExFolderView control:

Private Sub ExFolderView1_AfterSelChanged(ByVal OldFolder As
EXFOLDERVIEWLibCtl.IExShellFolder, ByVal NewFolder As
EXFOLDERVIEWLibCtl.IExShellFolder)
 ExFolderCombo1.OpenedFolder = ExFolderView1.SelectedFolder

End Sub

 The following VB.NET sample changes the drop down opened folder when the user
changes the selection in the ExFolderView control:

Private Sub AxExFolderView1_AfterSelChanged(ByVal sender As System.Object, ByVal e As
AxEXFOLDERVIEWLib._IExFolderViewEvents_AfterSelChangedEvent) Handles
AxExFolderView1.AfterSelChanged
 AxExFolderCombo1.OpenedFolder = AxExFolderView1.SelectedFolder
End Sub

The following VC sample changes the drop down opened folder when the user changes the
selection in the ExFolderView control:

void OnAfterSelChangedFolderview1(LPDISPATCH OldFolder, LPDISPATCH NewFolder)
{
 if (IsWindow(m_folderCombo.m_hWnd) && IsWindow(m_folderView.m_hWnd))
 m_folderCombo.SetOpenedFolder(m_folderView.GetSelectedFolder());
}

The following C# sample changes the drop down opened folder when the user changes the
selection in the ExFolderView control:

private void axExFolderView1_AfterSelChanged(object sender,
AxEXFOLDERVIEWLib._IExFolderViewEvents_AfterSelChangedEvent e)
{
 axExFolderCombo1.OpenedFolder = axExFolderView1.SelectedFolder;
}

The following VFP sample changes the drop down opened folder when the user changes
the selection in the ExFolderView control:

*** ActiveX Control Event ***
LPARAMETERS oldfolder, newfolder

thisform.ExFolderCombo1.OpenedFolder = thisform.ExFolderView1.SelectedFolder

C#

VB

private void AfterShellMenuCommand(object sender)
{
}

Private Sub AfterShellMenuCommand(ByVal sender As System.Object) Handles
AfterShellMenuCommand
End Sub

C#

C++

C++
Builder

Delphi

private void AfterShellMenuCommand(object sender, EventArgs e)
{
}

void OnAfterShellMenuCommand()
{
}

void __fastcall AfterShellMenuCommand(TObject *Sender)
{
}

procedure AfterShellMenuCommand(ASender: TObject;);
begin

event AfterShellMenuCommand ()
Fired after the control executes the selected menu item from the folder's context menu list.

Type Description

Right clicking on a folder results in showing the folder's context menu. If some item from this
menu is selected, the control fires a pair of events to notify your application about this
event. Before the menu item is executed, BeforeShellMenuCommand event is fired. After
the menu item is executed, this event is fired. Please note that Windows OS is a
multitasking environment. That means that execution of menu item does not mean that this
event is fired after the executed program (or command) has finished. Rather, immediately
after execution of the menu item this event is fired. The control provides a drop down
context menu, if the EnableShellMenu property is True.

Syntax for AfterShellMenuCommand event, /NET version, on:

Syntax for AfterShellMenuCommand event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

procedure AfterShellMenuCommand(sender: System.Object; e: System.EventArgs);
begin
end;

begin event AfterShellMenuCommand()
end event AfterShellMenuCommand

Private Sub AfterShellMenuCommand(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles AfterShellMenuCommand
End Sub

Private Sub AfterShellMenuCommand()
End Sub

Private Sub AfterShellMenuCommand()
End Sub

LPARAMETERS nop

PROCEDURE OnAfterShellMenuCommand(oExFolderView)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="AfterShellMenuCommand()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AfterShellMenuCommand()
End Function
</SCRIPT>

Procedure OnComAfterShellMenuCommand
 Forward Send OnComAfterShellMenuCommand
End_Procedure

Syntax for AfterShellMenuCommand event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

METHOD OCX_AfterShellMenuCommand() CLASS MainDialog
RETURN NIL

void onEvent_AfterShellMenuCommand()
{
}

function AfterShellMenuCommand as v ()
end function

function nativeObject_AfterShellMenuCommand()
return

C#

VB

private void BeforeCollapse(object
sender,exontrol.EXFOLDERVIEWLib.ExShellFolder SelFolder,ref bool Cancel)
{
}

Private Sub BeforeCollapse(ByVal sender As System.Object,ByVal SelFolder As
exontrol.EXFOLDERVIEWLib.ExShellFolder,ByRef Cancel As Boolean) Handles
BeforeCollapse
End Sub

C#

C++

private void BeforeCollapse(object sender,
AxEXFOLDERVIEWLib._IExFolderViewEvents_BeforeCollapseEvent e)
{
}

void OnBeforeCollapse(LPDISPATCH SelFolder,BOOL FAR* Cancel)
{
}

event BeforeCollapse (SelFolder as ExShellFolder, ByRef Cancel as
Boolean)
Fired before a folder is about to collapse.

Type Description
SelFolder as ExShellFolder A Folder being collapsed

Cancel as Boolean (By Reference) A Boolen expression that indicates
whether the operation is canceled or not.

When the user double clicks on a folder, or on a 'plus' button next to folder, it expands. If it
was already expanded, it collapses. When the folder collapses, two events are fired.
BeforeCollapse is fired before ExFolderView changes its structure, so some additional
functions can be executed. The AfterCollapse event is fired after the structure has
changed. Usually, expanding and collapsing folders will result in more or fewer folders being
visible after this event, so if some additional code is required it should be put inside this
event body.

Syntax for BeforeCollapse event, /NET version, on:

Syntax for BeforeCollapse event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall BeforeCollapse(TObject *Sender,Exfolderviewlib_tlb::IExShellFolder
*SelFolder,VARIANT_BOOL * Cancel)
{
}

procedure BeforeCollapse(ASender: TObject; SelFolder : IExShellFolder;var Cancel :
WordBool);
begin
end;

procedure BeforeCollapse(sender: System.Object; e:
AxEXFOLDERVIEWLib._IExFolderViewEvents_BeforeCollapseEvent);
begin
end;

begin event BeforeCollapse(oleobject SelFolder,boolean Cancel)
end event BeforeCollapse

Private Sub BeforeCollapse(ByVal sender As System.Object, ByVal e As
AxEXFOLDERVIEWLib._IExFolderViewEvents_BeforeCollapseEvent) Handles
BeforeCollapse
End Sub

Private Sub BeforeCollapse(ByVal SelFolder As
EXFOLDERVIEWLibCtl.IExShellFolder,Cancel As Boolean)
End Sub

Private Sub BeforeCollapse(ByVal SelFolder As Object,Cancel As Boolean)
End Sub

LPARAMETERS SelFolder,Cancel

PROCEDURE OnBeforeCollapse(oExFolderView,SelFolder,Cancel)
RETURN

Syntax for BeforeCollapse event, /COM version (others), on:

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="BeforeCollapse(SelFolder,Cancel)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function BeforeCollapse(SelFolder,Cancel)
End Function
</SCRIPT>

Procedure OnComBeforeCollapse Variant llSelFolder Boolean llCancel
 Forward Send OnComBeforeCollapse llSelFolder llCancel
End_Procedure

METHOD OCX_BeforeCollapse(SelFolder,Cancel) CLASS MainDialog
RETURN NIL

void onEvent_BeforeCollapse(COM _SelFolder,COMVariant /*bool*/ _Cancel)
{
}

function BeforeCollapse as v (SelFolder as
OLE::Exontrol.FolderView.1::IExShellFolder,Cancel as L)
end function

function nativeObject_BeforeCollapse(SelFolder,Cancel)
return

C#

VB

private void BeforeExpand(object
sender,exontrol.EXFOLDERVIEWLib.ExShellFolder SelFolder,ref bool Cancel)
{
}

Private Sub BeforeExpand(ByVal sender As System.Object,ByVal SelFolder As
exontrol.EXFOLDERVIEWLib.ExShellFolder,ByRef Cancel As Boolean) Handles
BeforeExpand
End Sub

C#

C++

private void BeforeExpand(object sender,
AxEXFOLDERVIEWLib._IExFolderViewEvents_BeforeExpandEvent e)
{
}

void OnBeforeExpand(LPDISPATCH SelFolder,BOOL FAR* Cancel)
{
}

event BeforeExpand (SelFolder as ExShellFolder, ByRef Cancel as
Boolean)
Fired before folder is about to be expanded.

Type Description
SelFolder as ExShellFolder A Folder being expanded.

Cancel as Boolean (By Reference) A Boolean expression that indicates
whether the operation is executed or canceled.

When the user double clicks on a folder, or on a 'plus' button next to folder, it expands. If it
was already expanded, it collapses. When a folder expands, two events are fired. The
BeforeExpand is fired before ExFolderView changes its structure, so additional functions
can be executed. The AfterExpand event is fired after the structure has changed. Usually,
expanding and collapsing folders will result in more or less folders visible after this event, so
if additional code is required it should be put inside this event body.

Syntax for BeforeExpand event, /NET version, on:

Syntax for BeforeExpand event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall BeforeExpand(TObject *Sender,Exfolderviewlib_tlb::IExShellFolder
*SelFolder,VARIANT_BOOL * Cancel)
{
}

procedure BeforeExpand(ASender: TObject; SelFolder : IExShellFolder;var Cancel :
WordBool);
begin
end;

procedure BeforeExpand(sender: System.Object; e:
AxEXFOLDERVIEWLib._IExFolderViewEvents_BeforeExpandEvent);
begin
end;

begin event BeforeExpand(oleobject SelFolder,boolean Cancel)
end event BeforeExpand

Private Sub BeforeExpand(ByVal sender As System.Object, ByVal e As
AxEXFOLDERVIEWLib._IExFolderViewEvents_BeforeExpandEvent) Handles
BeforeExpand
End Sub

Private Sub BeforeExpand(ByVal SelFolder As
EXFOLDERVIEWLibCtl.IExShellFolder,Cancel As Boolean)
End Sub

Private Sub BeforeExpand(ByVal SelFolder As Object,Cancel As Boolean)
End Sub

LPARAMETERS SelFolder,Cancel

PROCEDURE OnBeforeExpand(oExFolderView,SelFolder,Cancel)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="BeforeExpand(SelFolder,Cancel)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function BeforeExpand(SelFolder,Cancel)
End Function
</SCRIPT>

Procedure OnComBeforeExpand Variant llSelFolder Boolean llCancel
 Forward Send OnComBeforeExpand llSelFolder llCancel
End_Procedure

METHOD OCX_BeforeExpand(SelFolder,Cancel) CLASS MainDialog
RETURN NIL

void onEvent_BeforeExpand(COM _SelFolder,COMVariant /*bool*/ _Cancel)
{
}

function BeforeExpand as v (SelFolder as
OLE::Exontrol.FolderView.1::IExShellFolder,Cancel as L)
end function

function nativeObject_BeforeExpand(SelFolder,Cancel)
return

Syntax for BeforeExpand event, /COM version (others), on:

C#

VB

private void BeforeSelChanged(object
sender,exontrol.EXFOLDERVIEWLib.ExShellFolder
OldFolder,exontrol.EXFOLDERVIEWLib.ExShellFolder NewFolder,ref bool Cancel)
{
}

Private Sub BeforeSelChanged(ByVal sender As System.Object,ByVal OldFolder As
exontrol.EXFOLDERVIEWLib.ExShellFolder,ByVal NewFolder As
exontrol.EXFOLDERVIEWLib.ExShellFolder,ByRef Cancel As Boolean) Handles
BeforeSelChanged
End Sub

C#

C++

private void BeforeSelChanged(object sender,
AxEXFOLDERVIEWLib._IExFolderViewEvents_BeforeSelChangedEvent e)
{
}

void OnBeforeSelChanged(LPDISPATCH OldFolder,LPDISPATCH NewFolder,BOOL

event BeforeSelChanged (OldFolder as ExShellFolder, NewFolder as
ExShellFolder, ByRef Cancel as Boolean)
Fired before a folder is selected.

Type Description
OldFolder as ExShellFolder A Folder being un-selected.
NewFolder as ExShellFolder A Folder being selected.

Cancel as Boolean (By Reference) A Boolen expression that indicates
whether the operation is executed or canceled.

This event is fired before the current selection is changed. Setting the Cancel parameter to
True prevents the selection from being changed. The NewFolder parameter lets you know
which folder will become selected if you do not cancel the selection change and the
OldFolder parameter lets you know which folder is currently selected. The SelectedFolder
property indicates the selected folder, at runtime. The control fires the AfterSelChanged
event after the user changes the selection.

Syntax for BeforeSelChanged event, /NET version, on:

Syntax for BeforeSelChanged event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

FAR* Cancel)
{
}

void __fastcall BeforeSelChanged(TObject
*Sender,Exfolderviewlib_tlb::IExShellFolder
*OldFolder,Exfolderviewlib_tlb::IExShellFolder *NewFolder,VARIANT_BOOL *
Cancel)
{
}

procedure BeforeSelChanged(ASender: TObject; OldFolder :
IExShellFolder;NewFolder : IExShellFolder;var Cancel : WordBool);
begin
end;

procedure BeforeSelChanged(sender: System.Object; e:
AxEXFOLDERVIEWLib._IExFolderViewEvents_BeforeSelChangedEvent);
begin
end;

begin event BeforeSelChanged(oleobject OldFolder,oleobject NewFolder,boolean
Cancel)
end event BeforeSelChanged

Private Sub BeforeSelChanged(ByVal sender As System.Object, ByVal e As
AxEXFOLDERVIEWLib._IExFolderViewEvents_BeforeSelChangedEvent) Handles
BeforeSelChanged
End Sub

Private Sub BeforeSelChanged(ByVal OldFolder As
EXFOLDERVIEWLibCtl.IExShellFolder,ByVal NewFolder As
EXFOLDERVIEWLibCtl.IExShellFolder,Cancel As Boolean)
End Sub

Private Sub BeforeSelChanged(ByVal OldFolder As Object,ByVal NewFolder As
Object,Cancel As Boolean)
End Sub

VFP

Xbas…

LPARAMETERS OldFolder,NewFolder,Cancel

PROCEDURE OnBeforeSelChanged(oExFolderView,OldFolder,NewFolder,Cancel)
RETURN

Java…

VBSc…

Visual
Data…

Visual
Objects

X++

XBasic

dBASE

<SCRIPT EVENT="BeforeSelChanged(OldFolder,NewFolder,Cancel)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function BeforeSelChanged(OldFolder,NewFolder,Cancel)
End Function
</SCRIPT>

Procedure OnComBeforeSelChanged Variant llOldFolder Variant llNewFolder
Boolean llCancel
 Forward Send OnComBeforeSelChanged llOldFolder llNewFolder llCancel
End_Procedure

METHOD OCX_BeforeSelChanged(OldFolder,NewFolder,Cancel) CLASS
MainDialog
RETURN NIL

void onEvent_BeforeSelChanged(COM _OldFolder,COM _NewFolder,COMVariant
/*bool*/ _Cancel)
{
}

function BeforeSelChanged as v (OldFolder as
OLE::Exontrol.FolderView.1::IExShellFolder,NewFolder as
OLE::Exontrol.FolderView.1::IExShellFolder,Cancel as L)
end function

function nativeObject_BeforeSelChanged(OldFolder,NewFolder,Cancel)
return

Syntax for BeforeSelChanged event, /COM version (others), on:

C# private void BeforeShellMenuCommand(object sender,string Command,int ID,ref
bool Cancel)
{

event BeforeShellMenuCommand (Command as String, ID as Long,
ByRef Cancel as Boolean)
Fired before a context-menu item is executed.

Type Description

Command as String A string expression that specifies context menu item
selected.

ID as Long A long integer that represents the unique ID of selected
menu item.

Cancel as Boolean
(By Reference) A boolean expression that, if set to True,
execution of selected context menu item will be denied. If
set to False, menu item will be executed.

Right clicking on a folder results in the folder's context menu being displayed. If some item
from this menu is selected, the control fires a pair of events to notify you. Before the menu
item is executed, this event is fired. After the menu item is executed,
AfterShellMenuCommand event is fired.

When this event is fired, you may deny execution of the selected menu item. Command
variable holds name of selected menu item, and nID variable holds its unique index inside
menu-items collection. Depending on user's choice, setting Cancel value to True will deny
execution of selected menu item.

When checking Command's value, please keep in mind that some menu items have
underscored letters. For example, 'Open' menu item usually have letter 'O' with underscore,
which means that pressing ALT+O will result in executing of 'Open' command. Such
underscored letters are stored internally in Windows OS by prefixing such letter with a '&'
sign. So, if you check Command, don't forget to include this sign into string you will check
Command with.

Following following code will not work correctly:

 If Command = "Open" Then MsgBox "Folder will be opened"

because '&Open' and 'Open' is not the same string. Rather, use this line (tested in VB):

 If Command = "&Open" Then MsgBox "Folder will be opened"

Syntax for BeforeShellMenuCommand event, /NET version, on:

VB

}

Private Sub BeforeShellMenuCommand(ByVal sender As System.Object,ByVal
Command As String,ByVal ID As Integer,ByRef Cancel As Boolean) Handles
BeforeShellMenuCommand
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

private void BeforeShellMenuCommand(object sender,
AxEXFOLDERVIEWLib._IExFolderViewEvents_BeforeShellMenuCommandEvent e)
{
}

void OnBeforeShellMenuCommand(LPCTSTR Command,long ID,BOOL FAR*
Cancel)
{
}

void __fastcall BeforeShellMenuCommand(TObject *Sender,BSTR Command,long
ID,VARIANT_BOOL * Cancel)
{
}

procedure BeforeShellMenuCommand(ASender: TObject; Command :
WideString;ID : Integer;var Cancel : WordBool);
begin
end;

procedure BeforeShellMenuCommand(sender: System.Object; e:
AxEXFOLDERVIEWLib._IExFolderViewEvents_BeforeShellMenuCommandEvent);
begin
end;

begin event BeforeShellMenuCommand(string Command,long ID,boolean Cancel)
end event BeforeShellMenuCommand

Private Sub BeforeShellMenuCommand(ByVal sender As System.Object, ByVal e As

Syntax for BeforeShellMenuCommand event, /COM version, on:

VB6

VBA

VFP

Xbas…

AxEXFOLDERVIEWLib._IExFolderViewEvents_BeforeShellMenuCommandEvent)
Handles BeforeShellMenuCommand
End Sub

Private Sub BeforeShellMenuCommand(ByVal Command As String,ByVal ID As
Long,Cancel As Boolean)
End Sub

Private Sub BeforeShellMenuCommand(ByVal Command As String,ByVal ID As
Long,Cancel As Boolean)
End Sub

LPARAMETERS Command,ID,Cancel

PROCEDURE OnBeforeShellMenuCommand(oExFolderView,Command,ID,Cancel)
RETURN

Java…

VBSc…

Visual
Data…

Visual
Objects

<SCRIPT EVENT="BeforeShellMenuCommand(Command,ID,Cancel)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function BeforeShellMenuCommand(Command,ID,Cancel)
End Function
</SCRIPT>

Procedure OnComBeforeShellMenuCommand String llCommand Integer llID
Boolean llCancel
 Forward Send OnComBeforeShellMenuCommand llCommand llID llCancel
End_Procedure

METHOD OCX_BeforeShellMenuCommand(Command,ID,Cancel) CLASS
MainDialog
RETURN NIL

Syntax for BeforeShellMenuCommand event, /COM version (others), on:

X++

XBasic

dBASE

void onEvent_BeforeShellMenuCommand(str _Command,int _ID,COMVariant
/*bool*/ _Cancel)
{
}

function BeforeShellMenuCommand as v (Command as C,ID as N,Cancel as L)
end function

function nativeObject_BeforeShellMenuCommand(Command,ID,Cancel)
return

C#

VB

private void Click(object sender)
{
}

Private Sub Click(ByVal sender As System.Object) Handles Click
End Sub

C#

C++

C++
Builder

Delphi

private void ClickEvent(object sender, EventArgs e)
{
}

void OnClick()
{
}

void __fastcall Click(TObject *Sender)
{
}

procedure Click(ASender: TObject;);
begin
end;

event Click ()
Occurs when the user presses and then releases the left mouse button over the control

Type Description

The Click event is fired when the user releases the left mouse button over the control. Use
a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers.

Syntax for Click event, /NET version, on:

Syntax for Click event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure ClickEvent(sender: System.Object; e: System.EventArgs);
begin
end;

begin event Click()
end event Click

Private Sub ClickEvent(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ClickEvent
End Sub

Private Sub Click()
End Sub

Private Sub Click()
End Sub

LPARAMETERS nop

PROCEDURE OnClick(oExFolderView)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="Click()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Click()
End Function
</SCRIPT>

Procedure OnComClick
 Forward Send OnComClick

Syntax for Click event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_Click() CLASS MainDialog
RETURN NIL

void onEvent_Click()
{
}

function Click as v ()
end function

function nativeObject_Click()
return

C#

VB

private void DblClick(object sender)
{
}

Private Sub DblClick(ByVal sender As System.Object) Handles DblClick
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

private void DblClick(object sender, EventArgs e)
{
}

void OnDblClick()
{
}

void __fastcall DblClick(TObject *Sender)
{
}

procedure DblClick(ASender: TObject;);
begin
end;

procedure DblClick(sender: System.Object; e: System.EventArgs);
begin
end;

begin event DblClick()
end event DblClick

event DblClick ()
Occurs when the user dblclk the left mouse button over an object.

Type Description

The DblClick event is fired when user double clicks the control.

Syntax for DblClick event, /NET version, on:

Syntax for DblClick event, /COM version, on:

VB.NET

VB6

VBA

VFP

Xbas…

Private Sub DblClick(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles DblClick
End Sub

Private Sub DblClick()
End Sub

Private Sub DblClick()
End Sub

LPARAMETERS nop

PROCEDURE OnDblClick(oExFolderView)
RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="DblClick()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function DblClick()
End Function
</SCRIPT>

Procedure OnComDblClick
 Forward Send OnComDblClick
End_Procedure

METHOD OCX_DblClick() CLASS MainDialog
RETURN NIL

void onEvent_DblClick()
{
}

Syntax for DblClick event, /COM version (others), on:

XBasic

dBASE

function DblClick as v ()
end function

function nativeObject_DblClick()
return

C#

VB

private void DropFiles(object sender,exontrol.EXFOLDERVIEWLib.ExShellFolder
Folder,int Effect)
{
}

Private Sub DropFiles(ByVal sender As System.Object,ByVal Folder As
exontrol.EXFOLDERVIEWLib.ExShellFolder,ByVal Effect As Integer) Handles
DropFiles
End Sub

C#

C++

C++
Builder

private void DropFiles(object sender,
AxEXFOLDERVIEWLib._IExFolderViewEvents_DropFilesEvent e)
{
}

void OnDropFiles(LPDISPATCH Folder,long Effect)
{
}

void __fastcall DropFiles(TObject *Sender,Exfolderviewlib_tlb::IExShellFolder
*Folder,long Effect)

event DropFiles (Folder as ExShellFolder, Effect as Long)
The user drags a collection of files over the control.

Type Description
Folder as ExShellFolder An object reference to a Folder object.

Effect as Long A long integer that represents the desired drag-and-drop
effect.

This event occurs after the user drags and drops files into the control. Folder is the target
of the drag and drop operation. Effect holds the desired effect of the drag and drop. Use
the DropFilesCount property to count the files being dropped. Use the DropFilesPathName
property to retrieve the path of the dropping folder. The DropFiles event is fired only if the
AllowDropFiles property is True.

Syntax for DropFiles event, /NET version, on:

Syntax for DropFiles event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

procedure DropFiles(ASender: TObject; Folder : IExShellFolder;Effect : Integer);
begin
end;

procedure DropFiles(sender: System.Object; e:
AxEXFOLDERVIEWLib._IExFolderViewEvents_DropFilesEvent);
begin
end;

begin event DropFiles(oleobject Folder,long Effect)
end event DropFiles

Private Sub DropFiles(ByVal sender As System.Object, ByVal e As
AxEXFOLDERVIEWLib._IExFolderViewEvents_DropFilesEvent) Handles DropFiles
End Sub

Private Sub DropFiles(ByVal Folder As EXFOLDERVIEWLibCtl.IExShellFolder,ByVal
Effect As Long)
End Sub

Private Sub DropFiles(ByVal Folder As Object,ByVal Effect As Long)
End Sub

LPARAMETERS Folder,Effect

PROCEDURE OnDropFiles(oExFolderView,Folder,Effect)
RETURN

Java…

VBSc…

<SCRIPT EVENT="DropFiles(Folder,Effect)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">

Syntax for DropFiles event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Function DropFiles(Folder,Effect)
End Function
</SCRIPT>

Procedure OnComDropFiles Variant llFolder Integer llEffect
 Forward Send OnComDropFiles llFolder llEffect
End_Procedure

METHOD OCX_DropFiles(Folder,Effect) CLASS MainDialog
RETURN NIL

void onEvent_DropFiles(COM _Folder,int _Effect)
{
}

function DropFiles as v (Folder as OLE::Exontrol.FolderView.1::IExShellFolder,Effect
as N)
end function

function nativeObject_DropFiles(Folder,Effect)
return

Here is a VB sample that lists the files dragged in the Immediate debugger window.

Private Sub ExFolderView1_DropFiles(ByVal ExShellFolder As
EXFOLDERVIEWLibCtl.IExShellFolder, ByVal Effect As Long)
 Dim I As Long
 For I = 0 To FolderView1.DropFilesCount - 1
 Debug.Print FolderView1.DropFilesPathName(I)
 Next I
 If (Effect & 1) = 1 Then
 Debug.Print "Copied to " & Folder.PathName
 Else
 Debug.Print "Moved to " & Folder.PathName
 End If
End Sub

C#

VB

private void DropQueryEffect(object
sender,exontrol.EXFOLDERVIEWLib.ExShellFolder Folder,int KeyState,ref int Effect)
{
}

Private Sub DropQueryEffect(ByVal sender As System.Object,ByVal Folder As
exontrol.EXFOLDERVIEWLib.ExShellFolder,ByVal KeyState As Integer,ByRef Effect As
Integer) Handles DropQueryEffect
End Sub

C#

C++

private void DropQueryEffect(object sender,
AxEXFOLDERVIEWLib._IExFolderViewEvents_DropQueryEffectEvent e)
{
}

void OnDropQueryEffect(LPDISPATCH Folder,long KeyState,long FAR* Effect)
{

event DropQueryEffect (Folder as ExShellFolder, KeyState as Long,
ByRef Effect as Long)
Fired while the user is dragging a folder.

Type Description
Folder as ExShellFolder A Folder object being droped.

KeyState as Long A long integer that represents the current state of certain
keys on the keyboard.

Effect as Long (By Reference) A long integer that represents the desired
drag-and-drop effect.

Fires while a drag-and-drop operation is in progress. This event fires just prior to the end of
a drag-and-drop operation (i.e., just before the DropFiles event). The Folder parameter is
the target of the drag-and-drop operation. The KeyState holds the state of keys (such as
Shift, Ctrl, Alt, etc.) at the end of the operation. Effect holds the desired effect on the files
in the operation. The AllowDropFiles property determines whether or not the control will
accept files dragged-and-dropped from another application (such as Explorer).

Syntax for DropQueryEffect event, /NET version, on:

Syntax for DropQueryEffect event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

void __fastcall DropQueryEffect(TObject
*Sender,Exfolderviewlib_tlb::IExShellFolder *Folder,long KeyState,long * Effect)
{
}

procedure DropQueryEffect(ASender: TObject; Folder : IExShellFolder;KeyState :
Integer;var Effect : Integer);
begin
end;

procedure DropQueryEffect(sender: System.Object; e:
AxEXFOLDERVIEWLib._IExFolderViewEvents_DropQueryEffectEvent);
begin
end;

begin event DropQueryEffect(oleobject Folder,long KeyState,long Effect)
end event DropQueryEffect

Private Sub DropQueryEffect(ByVal sender As System.Object, ByVal e As
AxEXFOLDERVIEWLib._IExFolderViewEvents_DropQueryEffectEvent) Handles
DropQueryEffect
End Sub

Private Sub DropQueryEffect(ByVal Folder As
EXFOLDERVIEWLibCtl.IExShellFolder,ByVal KeyState As Long,Effect As Long)
End Sub

Private Sub DropQueryEffect(ByVal Folder As Object,ByVal KeyState As Long,Effect
As Long)
End Sub

LPARAMETERS Folder,KeyState,Effect

PROCEDURE OnDropQueryEffect(oExFolderView,Folder,KeyState,Effect)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="DropQueryEffect(Folder,KeyState,Effect)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function DropQueryEffect(Folder,KeyState,Effect)
End Function
</SCRIPT>

Procedure OnComDropQueryEffect Variant llFolder Integer llKeyState Integer
llEffect
 Forward Send OnComDropQueryEffect llFolder llKeyState llEffect
End_Procedure

METHOD OCX_DropQueryEffect(Folder,KeyState,Effect) CLASS MainDialog
RETURN NIL

void onEvent_DropQueryEffect(COM _Folder,int _KeyState,COMVariant /*long*/
_Effect)
{
}

function DropQueryEffect as v (Folder as
OLE::Exontrol.FolderView.1::IExShellFolder,KeyState as N,Effect as N)
end function

function nativeObject_DropQueryEffect(Folder,KeyState,Effect)
return

Syntax for DropQueryEffect event, /COM version (others), on:

Here is a VB sample that shows you how to cancel a drag-and-drop operation if the target
is the "My Computer" folder. In all other cases (targets), the operation is changed to "copy".

Private Sub ExFolderView1_DropQueryEffect(ByVal ExShellFolder As
EXFOLDERVIEWLibCtl.IExShellFolder, ByVal KeyState As Long, Effect As Long)
 If (Folder.DisplayName = "My Computer")

 Effect = 0 ' cancel
 Else
 Effect = 1 ' copy
 End If
End Sub

event Event (EventID as Long)
Notifies the application once the control fires an event.

Type Description

EventID as Long

A Long expression that specifies the identifier of the event.
Use the EventParam(-2) to display entire information
about fired event (such as name, identifier, and properties
).

The Event notification occurs ANY time the control fires an event.

This is useful for X++ language, which does not support event with parameters passed by
reference.

In X++ the "Error executing code: FormActiveXControl (data source), method ... called with
invalid parameters" occurs when handling events that have parameters passed by
reference. Passed by reference, means that in the event handler, you can change the value
for that parameter, and so the control will takes the new value, and use it. The X++ is NOT
able to handle properly events with parameters by reference, so we have the solution.

The solution is using and handling the Event notification and EventParam method., instead
handling the event that gives the "invalid parameters" error executing code.

Let's presume that we need to handle the BarParentChange event to change the _Cancel
parameter from false to true, which fires the "Error executing code: FormActiveXControl
(data source), method onEvent_BarParentChange called with invalid parameters." We need
to know the identifier of the BarParentChange event (each event has an unique identifier
and it is static, defined in the control's type library). If you are not familiar with what a type
library means just handle the Event of the control as follows:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 print exgantt1.EventParam(-2).toString();
}

This code allows you to display the information for each event of the control being fired as
in the list bellow:

MouseDown/-605(1 , 0 , 102 , 644)
SelChange/2
MouseMove/-606(1 , 0 , 105 , 646)

C#

VB

private void Event(object sender,int EventID)
{
}

Private Sub Event(ByVal sender As System.Object,ByVal EventID As Integer)
Handles Event
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

private void Event(object sender, AxEXEDITLib._IFolderViewEvents_EventEvent e)
{
}

void OnEvent(long EventID)
{
}

void __fastcall Event(TObject *Sender,long EventID)
{
}

procedure Event(ASender: TObject; EventID : Integer);
begin
end;

procedure Event(sender: System.Object; e:
AxEXEDITLib._IFolderViewEvents_EventEvent);
begin
end;

begin event Event(long EventID)

end event Event

MouseUp/-607(1 , 0 , 128 , 682)
Click/-600

Syntax for Event event, /NET version, on:

Syntax for Event event, /COM version, on:

VB.NET

VB6

VBA

VFP

Xbas…

Private Sub Event(ByVal sender As System.Object, ByVal e As
AxEXEDITLib._IFolderViewEvents_EventEvent) Handles Event
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

LPARAMETERS EventID

PROCEDURE OnEvent(oFolderView,EventID)

RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="Event(EventID)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Event(EventID)
End Function
</SCRIPT>

Procedure OnComEvent Integer llEventID
 Forward Send OnComEvent llEventID
End_Procedure

METHOD OCX_Event(EventID) CLASS MainDialog
RETURN NIL

void onEvent_Event(int _EventID)
{
}

Syntax for Event event, /COM version (others), on:

XBasic

dBASE

function Event as v (EventID as N)
end function

function nativeObject_Event(EventID)
return

C#

VB

private void FolderUpdate(object sender)
{
}

Private Sub FolderUpdate(ByVal sender As System.Object) Handles FolderUpdate
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

private void FolderUpdate(object sender, EventArgs e)
{
}

void OnFolderUpdate()
{
}

void __fastcall FolderUpdate(TObject *Sender)
{
}

procedure FolderUpdate(ASender: TObject;);
begin
end;

procedure FolderUpdate(sender: System.Object; e: System.EventArgs);
begin
end;

event FolderUpdate ()
This is fired when one of the logical drive was change the state.

Type Description

This is fired when one of the logical drive changes its state. Let's suppose that we have an
Explorer opened. Activate it, and rename a folder. You can see that the ExFolderView
control fires this event. So, this event is fired when the user delete, create, changes, ...
anything on one of the disks. The event is fired only if the AutoUpdate property is True.

Syntax for FolderUpdate event, /NET version, on:

Syntax for FolderUpdate event, /COM version, on:

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin event FolderUpdate()
end event FolderUpdate

Private Sub FolderUpdate(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles FolderUpdate
End Sub

Private Sub FolderUpdate()
End Sub

Private Sub FolderUpdate()
End Sub

LPARAMETERS nop

PROCEDURE OnFolderUpdate(oExFolderView)
RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="FolderUpdate()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function FolderUpdate()
End Function
</SCRIPT>

Procedure OnComFolderUpdate
 Forward Send OnComFolderUpdate
End_Procedure

METHOD OCX_FolderUpdate() CLASS MainDialog
RETURN NIL

void onEvent_FolderUpdate()
{

Syntax for FolderUpdate event, /COM version (others), on:

XBasic

dBASE

}

function FolderUpdate as v ()
end function

function nativeObject_FolderUpdate()
return

C#

VB

private void IncludeFolder(object
sender,exontrol.EXFOLDERVIEWLib.ExShellFolder Folder,ref bool Include)
{
}

Private Sub IncludeFolder(ByVal sender As System.Object,ByVal Folder As
exontrol.EXFOLDERVIEWLib.ExShellFolder,ByRef Include As Boolean) Handles
IncludeFolder
End Sub

C#

C++

C++
Builder

private void IncludeFolder(object sender,
AxEXFOLDERVIEWLib._IExFolderViewEvents_IncludeFolderEvent e)
{
}

void OnIncludeFolder(LPDISPATCH Folder,BOOL FAR* Include)
{
}

void __fastcall IncludeFolder(TObject *Sender,Exfolderviewlib_tlb::IExShellFolder
*Folder,VARIANT_BOOL * Include)
{

event IncludeFolder (Folder as ExShellFolder, ByRef Include as Boolean)
Occurs when the user includes folders to the control

Type Description
Folder as ExShellFolder A Folder object being included in the control's list

Include as Boolean
(By Reference) A Boolen expression that specifies
whether the Folder is included or excluded from the
control's list.

The IncludeFolder event notifies your application that a new folder is included in the
control's list. Use the IncludeFolder event to customize the list of folders being included in
your list. The IncludeFolder event is fired only if the IncludeFolder property is True.

Syntax for IncludeFolder event, /NET version, on:

Syntax for IncludeFolder event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure IncludeFolder(ASender: TObject; Folder : IExShellFolder;var Include :
WordBool);
begin
end;

procedure IncludeFolder(sender: System.Object; e:
AxEXFOLDERVIEWLib._IExFolderViewEvents_IncludeFolderEvent);
begin
end;

begin event IncludeFolder(oleobject Folder,boolean Include)
end event IncludeFolder

Private Sub IncludeFolder(ByVal sender As System.Object, ByVal e As
AxEXFOLDERVIEWLib._IExFolderViewEvents_IncludeFolderEvent) Handles
IncludeFolder
End Sub

Private Sub IncludeFolder(ByVal Folder As
EXFOLDERVIEWLibCtl.IExShellFolder,Include As Boolean)
End Sub

Private Sub IncludeFolder(ByVal Folder As Object,Include As Boolean)
End Sub

LPARAMETERS Folder,Include

PROCEDURE OnIncludeFolder(oExFolderView,Folder,Include)
RETURN

Java… <SCRIPT EVENT="IncludeFolder(Folder,Include)" LANGUAGE="JScript">
</SCRIPT>

Syntax for IncludeFolder event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function IncludeFolder(Folder,Include)
End Function
</SCRIPT>

Procedure OnComIncludeFolder Variant llFolder Boolean llInclude
 Forward Send OnComIncludeFolder llFolder llInclude
End_Procedure

METHOD OCX_IncludeFolder(Folder,Include) CLASS MainDialog
RETURN NIL

void onEvent_IncludeFolder(COM _Folder,COMVariant /*bool*/ _Include)
{
}

function IncludeFolder as v (Folder as
OLE::Exontrol.FolderView.1::IExShellFolder,Include as L)
end function

function nativeObject_IncludeFolder(Folder,Include)
return

C#

VB

private void KeyDown(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyDown(ByVal sender As System.Object,ByRef KeyCode As
Short,ByVal Shift As Short) Handles KeyDown
End Sub

C# private void KeyDownEvent(object sender,

event KeyDown (ByRef KeyCode as Integer, Shift as Integer)
Occurs when the user presses a key while an object has the focus.

Type Description
KeyCode as Integer (By Reference) An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use KeyDown and KeyUp event procedures if you need to respond to both the pressing
and releasing of a key. By default, the Refresh method is called when the user presses the
F5 key. You test for a condition by first assigning each result to a temporary integer variable
and then comparing shift to a bit mask. Use the And operator with the shift argument to test
whether the condition is greater than 0, indicating that the modifier was pressed, as in this
example:

ShiftDown = (Shift And 1) > 0
CtrlDown = (Shift And 2) > 0
AltDown = (Shift And 4) > 0
In a procedure, you can test for any combination of conditions, as in this example:
If AltDown And CtrlDown Then

Syntax for KeyDown event, /NET version, on:

Syntax for KeyDown event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

AxEXFOLDERVIEWLib._IExFolderViewEvents_KeyDownEvent e)
{
}

void OnKeyDown(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyDown(TObject *Sender,short * KeyCode,short Shift)
{
}

procedure KeyDown(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyDownEvent(sender: System.Object; e:
AxEXFOLDERVIEWLib._IExFolderViewEvents_KeyDownEvent);
begin
end;

begin event KeyDown(integer KeyCode,integer Shift)
end event KeyDown

Private Sub KeyDownEvent(ByVal sender As System.Object, ByVal e As
AxEXFOLDERVIEWLib._IExFolderViewEvents_KeyDownEvent) Handles
KeyDownEvent
End Sub

Private Sub KeyDown(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyDown(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

Xbas…

PROCEDURE OnKeyDown(oExFolderView,KeyCode,Shift)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="KeyDown(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyDown(KeyCode,Shift)
End Function
</SCRIPT>

Procedure OnComKeyDown Short llKeyCode Short llShift
 Forward Send OnComKeyDown llKeyCode llShift
End_Procedure

METHOD OCX_KeyDown(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyDown(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyDown as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyDown(KeyCode,Shift)
return

Syntax for KeyDown event, /COM version (others), on:

The following VB sample starts renaming the selected folder, when the user presses the F2
key:

Private Sub ExFolderView1_KeyDown(KeyCode As Integer, Shift As Integer)
 If (KeyCode = vbKeyF2) Then
 ExFolderView1.SelectedFolder.InvokeRename

 End If
End Sub

The following VB sample displays the object's Properties dialog, when the user presses the
F2 key:

Private Sub ExFolderView1_KeyDown(KeyCode As Integer, Shift As Integer)
 If (KeyCode = vbKeyF2) Then
 ExFolderView1.SelectedFolder.InvokeCommand ("Properties")
 End If
End Sub

C#

VB

private void KeyPress(object sender,ref short KeyAscii)
{
}

Private Sub KeyPress(ByVal sender As System.Object,ByRef KeyAscii As Short)
Handles KeyPress
End Sub

C#

C++

C++
Builder

private void KeyPressEvent(object sender,
AxEXFOLDERVIEWLib._IExFolderViewEvents_KeyPressEvent e)
{
}

void OnKeyPress(short FAR* KeyAscii)
{
}

void __fastcall KeyPress(TObject *Sender,short * KeyAscii)
{
}

event KeyPress (ByRef KeyAscii as Integer)
Occurs when the user presses and releases an ANSI key.

Type Description

KeyAscii as Integer (By Reference) An integer that returns a standard numeric
ANSI keycode.

The KeyPress event lets you immediately test keystrokes for validity or for formatting
characters as they are typed. Changing the value of the keyascii argument changes the
character displayed. Use KeyDown and KeyUp event procedures to handle any keystroke
not recognized by KeyPress, such as function keys, editing keys, navigation keys, and any
combinations of these with keyboard modifiers. Unlike the KeyDown and KeyUp events,
KeyPress does not indicate the physical state of the keyboard; instead, it passes a
character. KeyPress interprets the uppercase and lowercase of each character as
separate key codes and, therefore, as two separate characters

Syntax for KeyPress event, /NET version, on:

Syntax for KeyPress event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure KeyPress(ASender: TObject; var KeyAscii : Smallint);
begin
end;

procedure KeyPressEvent(sender: System.Object; e:
AxEXFOLDERVIEWLib._IExFolderViewEvents_KeyPressEvent);
begin
end;

begin event KeyPress(integer KeyAscii)
end event KeyPress

Private Sub KeyPressEvent(ByVal sender As System.Object, ByVal e As
AxEXFOLDERVIEWLib._IExFolderViewEvents_KeyPressEvent) Handles
KeyPressEvent
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

LPARAMETERS KeyAscii

PROCEDURE OnKeyPress(oExFolderView,KeyAscii)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyPress(KeyAscii)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyPress(KeyAscii)
End Function
</SCRIPT>

Syntax for KeyPress event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComKeyPress Short llKeyAscii
 Forward Send OnComKeyPress llKeyAscii
End_Procedure

METHOD OCX_KeyPress(KeyAscii) CLASS MainDialog
RETURN NIL

void onEvent_KeyPress(COMVariant /*short*/ _KeyAscii)
{
}

function KeyPress as v (KeyAscii as N)
end function

function nativeObject_KeyPress(KeyAscii)
return

C#

VB

private void KeyUp(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyUp(ByVal sender As System.Object,ByRef KeyCode As Short,ByVal
Shift As Short) Handles KeyUp
End Sub

C#

C++

C++
Builder

private void KeyUpEvent(object sender,
AxEXFOLDERVIEWLib._IExFolderViewEvents_KeyUpEvent e)
{
}

void OnKeyUp(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyUp(TObject *Sender,short * KeyCode,short Shift)
{

event KeyUp (ByRef KeyCode as Integer, Shift as Integer)
Occurs when the user releases a key while an object has the focus.

Type Description
KeyCode as Integer (By Reference) An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use the KeyUp event procedure to respond to the releasing of a key.

Syntax for KeyUp event, /NET version, on:

Syntax for KeyUp event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure KeyUp(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyUpEvent(sender: System.Object; e:
AxEXFOLDERVIEWLib._IExFolderViewEvents_KeyUpEvent);
begin
end;

begin event KeyUp(integer KeyCode,integer Shift)
end event KeyUp

Private Sub KeyUpEvent(ByVal sender As System.Object, ByVal e As
AxEXFOLDERVIEWLib._IExFolderViewEvents_KeyUpEvent) Handles KeyUpEvent
End Sub

Private Sub KeyUp(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyUp(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyUp(oExFolderView,KeyCode,Shift)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyUp(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyUp(KeyCode,Shift)
End Function

Syntax for KeyUp event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComKeyUp Short llKeyCode Short llShift
 Forward Send OnComKeyUp llKeyCode llShift
End_Procedure

METHOD OCX_KeyUp(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyUp(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyUp as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyUp(KeyCode,Shift)
return

C#

VB

private void MouseDownEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseDownEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseDownEvent
End Sub

C# private void MouseDownEvent(object sender,
AxEXFOLDERVIEWLib._IExFolderViewEvents_MouseDownEvent e)
{

event MouseDown (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Fired when the user release one of the buttons mouse.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. Use the FolderFromPoint property to retrieve the folder from the
cursor.

Syntax for MouseDown event, /NET version, on:

Syntax for MouseDown event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

}

void OnMouseDown(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseDown(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseDown(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseDownEvent(sender: System.Object; e:
AxEXFOLDERVIEWLib._IExFolderViewEvents_MouseDownEvent);
begin
end;

begin event MouseDown(integer Button,integer Shift,long X,long Y)
end event MouseDown

Private Sub MouseDownEvent(ByVal sender As System.Object, ByVal e As
AxEXFOLDERVIEWLib._IExFolderViewEvents_MouseDownEvent) Handles
MouseDownEvent
End Sub

Private Sub MouseDown(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Single,ByVal Y As Single)
End Sub

Private Sub MouseDown(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

Xbas… PROCEDURE OnMouseDown(oExFolderView,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseDown(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseDown(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseDown Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseDown llButton llShift llX llY
End_Procedure

METHOD OCX_MouseDown(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseDown(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseDown as v (Button as N,Shift as N,X as
OLE::Exontrol.FolderView.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.FolderView.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseDown(Button,Shift,X,Y)
return

Syntax for MouseDown event, /COM version (others), on:

Below example displays the folder from the cursor:

Private Sub ExFolderView1_MouseMove(ByVal Button As Integer, ByVal Shift As Integer,
ByVal X As Single, ByVal Y As Single)

 With ExFolderView1
 Dim f As EXFOLDERVIEWLibCtl.ExShellFolder
 Set f = .FolderFromPoint(-1, -1)
 If Not (f Is Nothing) Then
 Debug.Print f.DisplayName
 End If
 End With
End Sub

C#

VB

private void MouseMoveEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseMoveEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseMoveEvent
End Sub

C# private void MouseMoveEvent(object sender,
AxEXFOLDERVIEWLib._IExFolderViewEvents_MouseMoveEvent e)
{
}

event MouseMove (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Fired when the user move the mouse over the ExFolderView control.

Type Description

Button as Integer An integer that corresponds to the state of the mouse
buttons in which a bit is set if the button is down

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

The MouseMove event is generated continually as the mouse pointer moves across objects.
Unless another object has captured the mouse, an object recognizes a MouseMove event
whenever the mouse position is within its borders. Use the FolderFromPoint property to
retrieve the folder from the cursor.

Syntax for MouseMove event, /NET version, on:

Syntax for MouseMove event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

void OnMouseMove(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseMove(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseMove(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseMoveEvent(sender: System.Object; e:
AxEXFOLDERVIEWLib._IExFolderViewEvents_MouseMoveEvent);
begin
end;

begin event MouseMove(integer Button,integer Shift,long X,long Y)
end event MouseMove

Private Sub MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXFOLDERVIEWLib._IExFolderViewEvents_MouseMoveEvent) Handles
MouseMoveEvent
End Sub

Private Sub MouseMove(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Single,ByVal Y As Single)
End Sub

Private Sub MouseMove(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

Xbas… PROCEDURE OnMouseMove(oExFolderView,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseMove(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseMove(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseMove Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseMove llButton llShift llX llY
End_Procedure

METHOD OCX_MouseMove(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseMove(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseMove as v (Button as N,Shift as N,X as
OLE::Exontrol.FolderView.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.FolderView.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseMove(Button,Shift,X,Y)
return

Syntax for MouseMove event, /COM version (others), on:

Below example displays the folder from the cursor:

Private Sub ExFolderView1_MouseMove(ByVal Button As Integer, ByVal Shift As Integer,
ByVal X As Single, ByVal Y As Single)

 With ExFolderView1
 Dim f As EXFOLDERVIEWLibCtl.ExShellFolder
 Set f = .FolderFromPoint(-1, -1)
 If Not (f Is Nothing) Then
 Debug.Print f.DisplayName
 End If
 End With
End Sub

C#

VB

private void MouseUpEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseUpEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseUpEvent
End Sub

C# private void MouseUpEvent(object sender,
AxEXFOLDERVIEWLib._IExFolderViewEvents_MouseUpEvent e)
{

event MouseUp (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Fired when user release the mouse over the ExFolderView control.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event.

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. Use the FolderFromPoint property to retrieve the folder from the
cursor.

Syntax for MouseUp event, /NET version, on:

Syntax for MouseUp event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

}

void OnMouseUp(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseUp(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseUp(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseUpEvent(sender: System.Object; e:
AxEXFOLDERVIEWLib._IExFolderViewEvents_MouseUpEvent);
begin
end;

begin event MouseUp(integer Button,integer Shift,long X,long Y)
end event MouseUp

Private Sub MouseUpEvent(ByVal sender As System.Object, ByVal e As
AxEXFOLDERVIEWLib._IExFolderViewEvents_MouseUpEvent) Handles
MouseUpEvent
End Sub

Private Sub MouseUp(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Single,ByVal Y As Single)
End Sub

Private Sub MouseUp(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

Xbas… PROCEDURE OnMouseUp(oExFolderView,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseUp(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseUp(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseUp Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseUp llButton llShift llX llY
End_Procedure

METHOD OCX_MouseUp(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseUp(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseUp as v (Button as N,Shift as N,X as
OLE::Exontrol.FolderView.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.FolderView.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseUp(Button,Shift,X,Y)
return

Syntax for MouseUp event, /COM version (others), on:

Below example displays the folder from the cursor:

Private Sub ExFolderView1_MouseMove(ByVal Button As Integer, ByVal Shift As Integer,
ByVal X As Single, ByVal Y As Single)

 With ExFolderView1
 Dim f As EXFOLDERVIEWLibCtl.ExShellFolder
 Set f = .FolderFromPoint(-1, -1)
 If Not (f Is Nothing) Then
 Debug.Print f.DisplayName
 End If
 End With
End Sub

C#

VB

private void QueryContextMenu(object
sender,exontrol.EXFOLDERVIEWLib.ExShellFolder Folder,ref string Items,ref string
Separator)
{
}

Private Sub QueryContextMenu(ByVal sender As System.Object,ByVal Folder As
exontrol.EXFOLDERVIEWLib.ExShellFolder,ByRef Items As String,ByRef Separator
As String) Handles QueryContextMenu
End Sub

C#

C++

private void QueryContextMenu(object sender,
AxEXFOLDERVIEWLib._IExFolderViewEvents_QueryContextMenuEvent e)
{
}

void OnQueryContextMenu(LPDISPATCH Folder,LPCTSTR FAR* Items,LPCTSTR
FAR* Separator)
{
}

event QueryContextMenu (Folder as ExShellFolder, Items as String,
Separator as String)
Fired when the context menu is about to be active.

Type Description
Folder as ExShellFolder A Folder object whose context menu is displayed

Items as String A string expression that specifies the context menu items
to display.

Separator as String A string expression that contains the separator text to use
in the Items parameter.

Fires when the context menu is about to display. This allows you to customize the control
context menu. You can then react to the context menu through the
BeforeShellMenuCommand and AfterShellMenuCommand menus.

Syntax for QueryContextMenu event, /NET version, on:

Syntax for QueryContextMenu event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall QueryContextMenu(TObject
*Sender,Exfolderviewlib_tlb::IExShellFolder *Folder,BSTR * Items,BSTR * Separator)
{
}

procedure QueryContextMenu(ASender: TObject; Folder : IExShellFolder;var Items
: WideString;var Separator : WideString);
begin
end;

procedure QueryContextMenu(sender: System.Object; e:
AxEXFOLDERVIEWLib._IExFolderViewEvents_QueryContextMenuEvent);
begin
end;

begin event QueryContextMenu(oleobject Folder,string Items,string Separator)
end event QueryContextMenu

Private Sub QueryContextMenu(ByVal sender As System.Object, ByVal e As
AxEXFOLDERVIEWLib._IExFolderViewEvents_QueryContextMenuEvent) Handles
QueryContextMenu
End Sub

Private Sub QueryContextMenu(ByVal Folder As
EXFOLDERVIEWLibCtl.IExShellFolder,Items As String,Separator As String)
End Sub

Private Sub QueryContextMenu(ByVal Folder As Object,Items As String,Separator
As String)
End Sub

LPARAMETERS Folder,Items,Separator

PROCEDURE OnQueryContextMenu(oExFolderView,Folder,Items,Separator)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="QueryContextMenu(Folder,Items,Separator)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function QueryContextMenu(Folder,Items,Separator)
End Function
</SCRIPT>

Procedure OnComQueryContextMenu Variant llFolder String llItems String
llSeparator
 Forward Send OnComQueryContextMenu llFolder llItems llSeparator
End_Procedure

METHOD OCX_QueryContextMenu(Folder,Items,Separator) CLASS MainDialog
RETURN NIL

void onEvent_QueryContextMenu(COM _Folder,COMVariant /*string*/
_Items,COMVariant /*string*/ _Separator)
{
}

function QueryContextMenu as v (Folder as
OLE::Exontrol.FolderView.1::IExShellFolder,Items as C,Separator as C)
end function

function nativeObject_QueryContextMenu(Folder,Items,Separator)
return

Syntax for QueryContextMenu event, /COM version (others), on:

The following sample code adds two new menu items to the folder context menu.

Private Sub ExFolderView1_QueryContextMenu(ByVal Folder As
EXFOLDERVIEWLibCtl.IExShellFolder, Items As String, Separator As String)
 Items = Separator & "New Item1" & Separator & "New Item2"
End Sub

	Information
	How to get support?
	ExFolderCombo
	Enabled property
	EventParam property
	Font property
	hwnd property (readonly)
	OpenedFolder property
	SmallIcons property
	Version property

	ExFolderView
	AllowDropFiles property
	Appearance property
	AttachTemplate method
	AutoUpdate property
	BackColor property
	BorderStyle property
	CanRename property
	DisplayShareName property
	DropFilesCount property (readonly)
	DropFilesPathName property (readonly)
	Enabled property
	EnableShellMenu property
	EnsureVisible method
	EventParam property
	ExecuteTemplate method
	ExploreFromHere property
	FirstVisibleFolder property
	FolderFromPoint property (readonly)
	FoldersCheck property (readonly)
	Font property
	ForeColor property
	HasButtons property
	HasCheckBoxes property
	HasLines property
	HasLinesAtRoot property
	HiddenFolders property
	HideSelection property
	HorizontalHeight property (readonly)
	HorizontalOffset property
	HorizontalOversize property (readonly)
	hwnd property (readonly)
	IconsVisible property
	IncludeAttributeMask property
	IncludeFolder property
	ItemHeight property
	MouseIcon property
	MousePointer property
	OverlayIcons property
	PartialCheck property
	Refresh method
	Scrollbars property (readonly)
	SelectedFolder property
	ShellFolder property (readonly)
	SmallIcons property
	SpecialFolderPath property (readonly)
	Template property
	TemplateDef property
	TemplatePut method
	Version property
	VerticalOffset property
	VerticalOversize property (readonly)
	VerticalWidth property (readonly)
	VisibleCount property (readonly)

	ExShellFolder
	Attribute property (readonly)
	Attributes property (readonly)
	Check property
	DisplayName property (readonly)
	Expanded property
	FolderPath property (readonly)
	Folders property (readonly)
	Handle property (readonly)
	ID property (readonly)
	InvokeCommand method
	InvokeRename method
	Loaded property (readonly)
	Name property (readonly)
	Parent property (readonly)
	PartialCheck property
	PathName property (readonly)
	ShareName property (readonly)
	UserData property

	ExShellFolders
	Add method
	Count property (readonly)
	Item property (readonly)
	Remove method
	RemoveAll method

	ExFolderCombo events
	NewFolderOpened event

	ExFolderView events
	AfterCheck event
	AfterCollapse event
	AfterExpand event
	AfterSelChanged event
	AfterShellMenuCommand event
	BeforeCollapse event
	BeforeExpand event
	BeforeSelChanged event
	BeforeShellMenuCommand event
	Click event
	DblClick event
	DropFiles event
	DropQueryEffect event
	Event event
	FolderUpdate event
	IncludeFolder event
	KeyDown event
	KeyPress event
	KeyUp event
	MouseDown event
	MouseMove event
	MouseUp event
	QueryContextMenu event

