
 ExFileView

Provide rich display of file and folder information from within your applications. The
ExFileView component allows creating Windows Explorer-style functionality. Files with
different attributes can be displayed with different color, background color, font, etc. It can
also filter the files based on files extensions using Include or Exclude clauses. The
ExFileView component is able to change the displayed icon, or type file, supports Drag &
Drop, incremental search, mouse wheel and more. The ExFileView control is able to
highlight the folders that contains files changed into a given interval. The ExFileView control
can simulate a FolderView control as well. Impress your customers with this powerful
file/folder view control.

Features of the control include:

Print and Print Preview support
OLE Drag and Drop support
Skinnable Interface support (ability to apply a skin to any background part)
'starts with' and 'contains' incremental searching support
CheckBox support
Search files and folders support
Ability to filter files and folders on the fly, using the control's filterbar
Files or folders with different attributes can be displayed with different color,
background color, font, etc (conditional-format)
Asynchronous support
Ability to display the results from a recursive search
Ability to filter files based on extensions using Include or Exclude clauses
Ability to highlight the folders that contains files changed into a given interval
Ability to change the displayed icon, or type file, for files or folders
Ability to define custom filter patterns for any column
Column sorting
Mouse wheel support
and more

Ž ExFileView is a trademark of Exontrol. All Rights Reserved.

How to get support?

To keep your business applications running, you need support you can count on.

Here are few hints what to do when you're stuck on your programming:

Check out the samples - they are here to provide some quick info on how things should
be done
Check out the how-to questions using the eXHelper tool
Check out the help - includes documentation for each method, property or event
Check out if you have the latest version, and if you don't have it send an update
request here.
Submit your problem(question) here.

Don't forget that you can contact our development team if you have ideas or requests for
new components, by sending us an e-mail at support@exontrol.com (please include the
name of the product in the subject, ex: exgrid) . We're sure our team of developers will try
to find a way to make you happy - and us too, since we helped.

Regards,
Exontrol Development Team

https://www.exontrol.com

https://exontrol.com/exhelper.jsp
https://exontrol.com/update.jsp
https://exontrol.com/techsupport.jsp
https://www.exontrol.com

constants AlignmentEnum
Specifies the object's alignment.

Name Value Description
LeftAlignment 0 The source is left aligned.
CenterAlignment 1 The source is centered.
RightAlignment 2 The source is right aligned.

constants AppearanceEnum
The AppearanceEnum type specifies the control's appearance, as header appearance as
well. Use the Appearance property to specify the control's appearance. Use the
HeaderAppearance property to specify the header's appearance.

Name Value Description
None2 0 No border
Flat 1 Flat border
Sunken 2 Sunken border
Raised 3 Raised border
Etched 4 Etched border
Bump 5 Bump border

constants AutoDragEnum
The AutoDragEnum type indicates what the control does when the user clicks and start
dragging a row or an item. The AutoDrag property indicates the way the component
supports the AutoDrag feature. The AutoDrag feature indicates what the control does when
the user clicks an item and start dragging. For instance, using the AutoDrag feature you can
automatically lets the user to drag and drop the data to OLE compliant applications like
Microsoft Word, Excel and so on.

The flag that ends on ...OnShortTouch indicates the action the control does when the
user short touches the screen
The flag that ends on ...OnRight indicates the action the control does when the user
right clicks the control.
The flag that ends on ...OnLongTouch indicates the action the control does when the
user long touches the screen

The AutoDragEnum type supports the following values:

Name Value Description

exAutoDragNone 0
AutoDrag is disabled. You can use the
OLEDropMode property to handle the OLE Drag
and Drop event for your custom action.

exAutoDragCopy 8

Drag and drop the selected items to a target
application, and paste them as image or text.
Pasting the data to the target application depends
on the application. You can use the
exAutoDragCopyText to specify that you want to
paste as Text, or exAutoDragCopyImage as an
image.

exAutoDragCopyText 9

Drag and drop the selected items to a target
application, and paste them as text only. Ability to
drag and drop the data as text, to your favorite
Office applications, like Word, Excel, or any other
OLE-Automation compliant. The drag and drop
operation can start anywhere

Click here to watch a movie on how
exAutoDragCopyText works.

Drag and drop the selected items to a target
application, and paste them as image only. Ability to
drag and drop the data as it looks, to your favorite

https://www.youtube.com/watch?v=4uA7ZI0W3Sk

exAutoDragCopyImage 10
Office applications, like Word, Excel, or any other
OLE-Automation compliant. The drag and drop
operation can start anywhere

Click here to watch a movie on how
exAutoDragCopyImage works.

exAutoDragCopySnapShot 11

Drag and drop a snap shot of the current
component. This option could be used to drag and
drop the current snap shot of the control to your
favorite Office applications, like Word, Excel, or any
other OLE-Automation compliant.

exAutoDragScroll 16

The component is scrolled by clicking the item and
dragging to a new position. This option can be used
to allow user scroll the control's content with NO
usage of the scroll bar, like on your IPhone.

Click here to watch a movie on how
exAutoDragScroll works.

exAutoDragCopyOnShortTouch2048 Drag and drop the selected objects to a target
application, and paste them as image or text.

exAutoDragCopyTextOnShortTouch2304 Drag and drop the selected objects to a target
application, and paste them as text only.

exAutoDragCopyImageOnShortTouch2560 Drag and drop the selected objects to a target
application, and paste them as image only.

exAutoDragCopySnapShotOnShortTouch2816 Drag and drop a snap shot of the current
component.

exAutoDragScrollOnShortTouch4096 The component is scrolled by clicking the object and
dragging to a new position.

exAutoDragCopyOnRight 524288Drag and drop the selected objects to a target
application, and paste them as image or text.

exAutoDragCopyTextOnRight 589824Drag and drop the selected objects to a target
application, and paste them as text only.

exAutoDragCopyImageOnRight655360Drag and drop the selected objects to a target
application, and paste them as image only.

exAutoDragCopySnapShotOnRight720896Drag and drop a snap shot of the current
component.

exAutoDragScrollOnRight 1048576The component is scrolled by clicking the object and

https://www.youtube.com/watch?v=vunKapyV34g
https://www.youtube.com/watch?v=LIu7eo86GP8

dragging to a new position.

exAutoDragCopyOnLongTouch134217728Drag and drop the selected objects to a target
application, and paste them as image or text.

exAutoDragCopyTextOnLongTouch150994944Drag and drop the selected objects to a target
application, and paste them as text only.

exAutoDragCopyImageOnLongTouch167772160Drag and drop the selected objects to a target
application, and paste them as image only.

exAutoDragCopySnapShotOnLongTouch184549376Drag and drop a snap shot of the current
component.

exAutoDragScrollOnLongTouch268435456The component is scrolled by clicking the object and
dragging to a new position.

constants BackgroundPartEnum
The BackgroundPartEnum type indicates parts in the control. Use the Background property
to specify a background color or a visual appearance for specific parts in the control. A
Color expression that indicates the background color for a specified part. The last 7 bits in
the high significant byte of the color to indicates the identifier of the skin being used. Use
the Add method to add new skins to the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits in the high significant byte of the
color being applied to the background's part. /*not supported in the lite version*/

If you refer a part of the scroll bar please notice the following:

All BackgroundPartEnum expressions that starts with exVS changes a part in a vertical
scroll bar
All BackgroundPartEnum expressions that starts with exHS changes a part in the
horizontal scroll bar
Any BackgroundPartEnum expression that ends with P (and starts with exVS or exHS
) specifies a part of the scrollbar when it is pressed.
Any BackgroundPartEnum expression that ends with D (and starts with exVS or exHS
) specifies a part of the scrollbar when it is disabled.
Any BackgroundPartEnum expression that ends with H (and starts with exVS or exHS
) specifies a part of the scrollbar when the cursor hovers it.
Any BackgroundPartEnum expression that ends with no H, P or D (and starts with
exVS or exHS) specifies a part of the scrollbar on normal state

Name Value Description

exHeaderFilterBarButton 0

Specifies the background color for the drop down
filter bar button. Use the ColumnFilterButton
property to specify whether the drop down filter bar
button is visible or hidden.

exFooterFilterBarButton 1
Specifies the background color for the closing
button in the filter bar. Use the ClearFilter method to
remove the filter.

exShowFocusRect 19 Specifies the visual appearance to display the cell
with the focus.

exSelBackColorFilter 20
exSelBackColorFilter. Specifies the visual
appearance for the selection in the drop down filter
window.

exSelForeColorFilter 21 exSelForeColorFilter. Specifies the foreground color
for the selection in the drop down filter window.
Specifies the background color for the drop down

exBackColorFilter 26 filter window. Use the ColumnFilterButton property
to specify whether the drop down filter bar button is
visible or hidden.

exForeColorFilter 27

Specifies the foreground color for the drop down
filter window. Use the ColumnFilterButton property
to specify whether the drop down filter bar button is
visible or hidden.

exCursorHoverColumn 32

Specifies the visual appearance for the column
when the cursor hovers the column. By default, the
exCursorHoverColumn property is zero, and it has
no effect, so the visual appearance for the column
is not changed when the cursor hovers the header.

exHeaderFilterBarActive 41 Specifies the visual appearance of the drop down
filter bar button, while filter is applied to the column.

exCheckBoxState0 70 Specifies the visual appearance for the check box in
0 state (unchecked).

exCheckBoxState1 71 Specifies the visual appearance for the check box in
1 state (checked).

exCheckBoxState2 72 Specifies the visual appearance for the check box in
2 state (partial, not used).

exSelBackColorHide 166 Specifies the selection's background color, when
the control has no focus.

exSelForeColorHide 167 Specifies the selection's foreground color, when the
control has no focus.

exTreeGlyphOpen 180 Specifies the visual appearance for the +/- buttons
when it is collapsed.

exTreeGlyphClose 181 Specifies the visual appearance for the +/- buttons
when it is expanded.

exColumnsPositionSign 182
Specifies the visual appearance for the position sign
between columns, when the user changes the
position of the column by drag an drop.

exTreeLinesColor 186 Specifies the color to show the tree-lines
(connecting lines from the parent to the children)

exVSUp 256 The up button in normal state.
exVSUpP 257 The up button when it is pressed.
exVSUpD 258 The up button when it is disabled.

exVSUpH 259 The up button when the cursor hovers it.

exVSThumb 260 The thumb part (exThumbPart) in normal state.
exVSThumbP 261 The thumb part (exThumbPart) when it is pressed.
exVSThumbD 262 The thumb part (exThumbPart) when it is disabled.

exVSThumbH 263 The thumb part (exThumbPart) when cursor hovers
it.

exVSDown 264 The down button in normal state.
exVSDownP 265 The down button when it is pressed.
exVSDownD 266 The down button when it is disabled.
exVSDownH 267 The down button when the cursor hovers it.

exVSLower 268 The lower part (exLowerBackPart) in normal
state.

exVSLowerP 269 The lower part (exLowerBackPart) when it is
pressed.

exVSLowerD 270 The lower part (exLowerBackPart) when it is
disabled.

exVSLowerH 271 The lower part (exLowerBackPart) when the
cursor hovers it.

exVSUpper 272 The upper part (exUpperBackPart) in normal
state.

exVSUpperP 273 The upper part (exUpperBackPart) when it is
pressed.

exVSUpperD 274 The upper part (exUpperBackPart) when it is
disabled.

exVSUpperH 275 The upper part (exUpperBackPart) when the
cursor hovers it.

exVSBack 276 The background part (exLowerBackPart and
exUpperBackPart) in normal state.

exVSBackP 277 The background part (exLowerBackPart and
exUpperBackPart) when it is pressed.

exVSBackD 278 The background part (exLowerBackPart and
exUpperBackPart) when it is disabled.

exVSBackH 279
The background part (exLowerBackPart and
exUpperBackPart) when the cursor hovers it.

exHSLeft 384 The left button in normal state.

exHSLeftP 385 The left button when it is pressed.
exHSLeftD 386 The left button when it is disabled.
exHSLeftH 387 The left button when the cursor hovers it.
exHSThumb 388 The thumb part (exThumbPart) in normal state.
exHSThumbP 389 The thumb part (exThumbPart) when it is pressed.
exHSThumbD 390 The thumb part (exThumbPart) when it is disabled.

exHSThumbH 391 The thumb part (exThumbPart) when the cursor
hovers it.

exHSRight 392 The right button in normal state.
exHSRightP 393 The right button when it is pressed.
exHSRightD 394 The right button when it is disabled.
exHSRightH 395 The right button when the cursor hovers it.
exHSLower 396 The lower part (exLowerBackPart) in normal state.

exHSLowerP 397 The lower part (exLowerBackPart) when it is
pressed.

exHSLowerD 398 The lower part (exLowerBackPart) when it is
disabled.

exHSLowerH 399 The lower part (exLowerBackPart) when the cursor
hovers it.

exHSUpper 400 The upper part (exUpperBackPart) in normal state.

exHSUpperP 401 The upper part (exUpperBackPart) when it is
pressed.

exHSUpperD 402 The upper part (exUpperBackPart) when it is
disabled.

exHSUpperH 403 The upper part (exUpperBackPart) when the cursor
hovers it.

exHSBack 404 The background part (exLowerBackPart and
exUpperBackPart) in normal state.

exHSBackP 405 The background part (exLowerBackPart and
exUpperBackPart) when it is pressed.

exHSBackD 406
The background part (exLowerBackPart and
exUpperBackPart) when it is disabled.

exHSBackH 407 The background part (exLowerBackPart and
exUpperBackPart) when the cursor hovers it.

exSBtn 324 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), in normal state.

exSBtnP 325 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when it is pressed.

exSBtnD 326 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when it is disabled.

exSBtnH 327 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when the cursor hovers it .

exScrollHoverAll 500

Enables or disables the hover-all feature. By default
(Background(exScrollHoverAll) = 0), the left/top,
right/bottom and thumb parts of the control'
scrollbars are displayed in hover state while the
cursor hovers any part of the scroll bar (hover-all
feature). The hover-all feature is available on
Windows 11 or greater, if only left/top, right/bottom,
thumb, lower and upper-background parts of the
scrollbar are visible, no custom visual-appearance
is applied to any visible part. The hover-all feature
is always on If Background(exScrollHoverAll) = -1.
The Background(exScrollHoverAll) = 1 disables the
hover-all feature.

exVSThumbExt 503 The thumb-extension part in normal state.
exVSThumbExtP 504 The thumb-extension part when it is pressed.
exVSThumbExtD 505 The thumb-extension part when it is disabled.
exVSThumbExtH 506 The thumb-extension when the cursor hovers it.
exHSThumbExt 507 The thumb-extension in normal state.
exHSThumbExtP 508 The thumb-extension when it is pressed.
exHSThumbExtD 509 The thumb-extension when it is disabled.
exHSThumbExtH 510 The thumb-extension when the cursor hovers it.

exScrollSizeGrip 511 The background of the control, when the Mode is
exSizeGrip.

constants ChangeEnum
Specifies the state for a file or a folder. Use State property to get the change state. The file
or folder's state is valid while the file object is contained by collection passed by the Change
event. Use the Folder property to specify whether the File object refers a file or a folder.

Name Value Description
Unchanged 0 The file or the folder is unchanged.
Changed 1 The file or the folder is changed.
Added 2 The file or the folder is added
Deleted 3 The file or the folder is deleted.

constants CheckBoxEnum
The CheckBoxEnum expression defines the type of check boxes that control supports. Use
the HasCheckBox property to assign a check box for each item in your control. /*not
supported in the lite version*/

Name Value Description
NoCheckBox 0 The control provides no check boxes.

CheckBox -1 The control provides a two-states check box for
each item.

PartialCheckBox 1 The control provides a partial check box (three-
states check box) for each item.

constants DescriptionTypeEnum
The control's Description property defines descriptions for few control parts

Name Value Description
exFilterBarAll 0 Defines the caption of (All) in the filter bar window.

exFilterBarFilterForCaption 1 Defines the caption of "Filter For:" in the filter bar
window.

exFilterBarFilterTitle 2 Defines the title for the filter tooltip.
exFilterBarPatternFilterTitle 3 Defines the title for the filter pattern tooltip.
exFilterBarTooltip 4 Defines the tooltip for drop down filter window.
exFilterBarPatternTooltip 5 Defines the tooltip for drop down filter pattern field.
exFilterBarFilterForTooltip 6 Defines the tooltip for "Filter For:" window.

exFilterBarExclude 7 Specifies the 'Exclude' caption being displayed in
the drop down filter.

constants exClipboardFormatEnum

Defines the clipboard format constants. Use GetFormat property to check whether the
clipboard data is of given type.

Name Value Description

exCFText 1 Null-terminated, plain ANSI text in a global memory
bloc.

exCFBitmap 2 A bitmap compatible with Windows 2.x.

exCFMetafile 3
A Windows metafile with some additional
information about how the metafile should be
displayed.

exCFDIB 8 A global memory block containing a Windows
device-independent bitmap (DIB).

exCFPalette 9 A color-palette handle.
exCFEMetafile 14 A Windows enhanced metafile.

exCFFiles 15 A collection of files. Use Files property to get the
collection of files.

exCFRTF -16639A RFT document.

constants exOLEDragOverEnum
State transition constants for the OLEDragOver event

Name Value Description

exOLEDragEnter 0 Source component is being dragged within the
range of a target.

exOLEDragLeave 1 Source component is being dragged out of the
range of a target.

exOLEDragOver 2 Source component has moved from one position in
the target to another.

constants exOLEDropEffectEnum
Drop effect constants for OLE drag and drop events.

Name Value Description

exOLEDropEffectNone 0 Drop target cannot accept the data, or the drop
operation was cancelled.

exOLEDropEffectCopy 1
Drop results in a copy of data from the source to
the target. The original data is unaltered by the
drag operation.

exOLEDropEffectMove 2
Drop results in data being moved from drag source
to drop source. The drag source should remove the
data from itself after the move.

exOLEDropEffectScroll -2147483648This one is not implemented.

constants exOLEDropModeEnum
Constants for the OLEDropMode property, that defines how the control accepts OLE drag
and drop operations. Use the OLEDropMode property to set how the component handles
drop operations.

Name Value Description

exOLEDropNone 0 The control is not used in OLE drag and drop
functionality

exOLEDropManual 1
The ExFileView control triggers the OLE drop
events, allowing the programmer to handle the OLE
drop operation in code.

Here's the list of events related to the OLE drag and drop support: OLECompleteDrag,
OLEDragDrop, OLEDragOver, OLEGiveFeedback, OLESetData, OLEStartDrag.

constants FileColumnEnum
The FileColumnEnum type specifies the columns into the file-view control. You can use the
ColumnsVisible property to show/hide multiple columns at once. The FileColumnEnum type
supports the following flags:

Name Value Description
exFileColumnName 2 Indicates the Name column.
exFileColumnSize 4 Indicates the Size column.
exFileColumnType 8 Indicates the Type column.
exFileColumnModified 16 Indicates the Modified column.

constants FilterBarVisibleEnum
The FilterBarVisibleEnum type defines the flags you can use on FilterBarPromptVisible
property. The FilterBarCaption property defines the caption to be displayed on the control's
filter bar. The FilterBarPromptVisible property , specifies how the control's filter bar is
displayed and behave. The FilterBarVisibleEnum type includes several flags that can be
combined together, as described bellow:

Name Value Description

exFilterBarHidden 0
No filter bar is shown while there is no filter applied.
The control's filter bar is automatically displayed as
soon a a filter is applied.

exFilterBarPromptVisible 1

The exFilterBarPromptVisible flag specifies that the
control's filter bar displays the filter prompt. The
exFilterBarPromptVisible, exFilterBarVisible,
exFilterBarCaptionVisible flag , forces the control's
filter-prompt, filter bar or filter bar description (
even empty) to be shown. If missing, no filter
prompt is displayed. The FilterBarPrompt property
to specify the HTML caption being displayed in the
filter bar when the filter pattern is missing.

exFilterBarVisible 2

The exFilterBarVisible flag forces the control's filter
bar to be shown, no matter if any filter is applied. If
missing, no filter bar is displayed while the control
has no filter applied.

or combined with exFilterBarPromptVisible

exFilterBarCaptionVisible 4

The exFilterBarVisible flag forces the control's filter
bar to display the FilterBarCaption property.

exFilterBarSingleLine 16

The exFilterBarVisible flag specifies that the caption
on the control's filter bar id displayed on a single
line. The exFilterBarSingleLine flag , specifies that
the filter bar's caption is shown on a single line, so

 HTML tag or \r\n are not handled. By default,
the control's filter description applies word
wrapping. Can be combined to exFilterBarCompact
to display a single-line filter bar. If missing, the
caption on the control's filter bar is displayed on
multiple lines. You can change the height of the
control's filter bar using the FilterBarHeight
property.

exFilterBarToggle 256

The exFilterBarToggle flag specifies that the user
can close the control's filter bar (removes the
control's filter) by clicking the close button of the
filter bar or by pressing the CTRL + F, while the
control's filter bar is visible. If no filter bar is
displayed, the user can display the control's filter
bar by pressing the CTRL + F key. While the
control's filter bar is visible the user can navigate
though the list or control's filter bar using the ALT +
Up/Down keys. If missing, the control's filter bar is
always shown if any of the following flags is present
exFilterBarPromptVisible, exFilterBarVisible,
exFilterBarCaptionVisible.

exFilterBarShowCloseIfRequired512

The exFilterBarShowCloseIfRequired flag indicates
that the close button of the control's filter bar is
displayed only if the control has any currently filter
applied. The Background(exFooterFilterBarButton)
property on -1 hides permanently the close button
of the control's filter bar.

exFilterBarShowCloseOnRight1024

The exFilterBarShowCloseOnRight flag specifies
that the close button of the control's filter bar should
be displayed on the right side.

The exFilterBarCompact flag compacts the control's
filter bar, so the filter-prompt will be displayed to

exFilterBarCompact 2048

the left, while the control's filter bar caption will be
displayed to the right. This flag has effect only if
combined with the exFilterBarPromptVisible. This
flag can be combined with the exFilterBarSingleLine
flag, so all filter bar will be displayed compact and
on a single line.

exFilterBarTop 8192

The exFilterBarTop flag displays the filter-bar on top
(between control's header and files section as
shown:

By default, the filter-bar is shown aligned to the
bottom (between files and horizontal-scroll bar) as
shown:

constants FilterIncludeEnum
Use the FilterInclude property to specify the items being included, when the list is filtered

Name Value Description
exItemsWithoutChilds 0 Filters items without including their child items.
exItemsWithChilds 1 Filters items including their child items.

exRootsWithoutChilds 2 Filters only root items without including their child
items.

exRootsWithChilds 3 Filters only root items including their child items.

exMatchingItemsOnly 4 exMatchingItemsOnly. Only items that match the
filter are included, no parents, no children.

exMatchIncludeParent 240 exMatchIncludeParent. If the value does not match,
check if any parent has a matching value.

constants FilterPromptEnum
The FilterPromptEnum type specifies the type of prompt filtering. Use the
FilterBarPromptType property to specify the type of filtering when using the prompt. The
FilterBarPromptColumns specifies the list of columns to be used when filtering. The
FilterBarPromptPattern property specifies the pattern for filtering. The pattern may contain
one or more words being delimited by space characters.

The filter prompt feature supports the following values:

Name Value Description

exFilterPromptContainsAll 1

The list includes the items that contains all specified
sequences in the filter. Can be combined with
exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptContainsAny 2

The list includes the items that contains any of
specified sequences in the filter. Can be combined
with exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptStartWith 3

The list includes the items that starts with any
specified sequences in the filter. Can be combined
with exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptEndWith 4

The list includes the items that ends with any
specified sequences in the filter. Can be combined
with exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptPattern 16

The filter indicates a pattern that may include wild
characters to be used to filter the items in the list.
The FilterBarPromptPattern property may include
wild characters as follows:

'?' for any single character
'*' for zero or more occurrences of any
character
'#' for any digit character
' ' space delimits the patterns inside the filter

exFilterPromptCaseSensitive 256

Filtering the list is case sensitive. Can be combined
with exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith or exFilterPromptEndWith.

exFilterPromptStartWords 4608

The list includes the items that starts with specified
words, in any position. Can be combined with
exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith or exFilterPromptEndWith.

exFilterPromptEndWords 8704

The list includes the items that ends with specified
words, in any position. Can be combined with
exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith or exFilterPromptEndWith.

exFilterPromptWords 12800

The filter indicates a list of words. Can be combined
with exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith or exFilterPromptEndWith.

constants FilterTypeEnum
Defines the type of filter applies to a column. The ColumnFilterType property defines the
filter's type on specified column.

Name Value Description
exAll 0 No filter applied

exPattern 1

Only items that match the pattern are included. The
Filter property defines the pattern. A pattern may
contain the wild card characters '?' for any single
character, '*' for zero or more occurrences of any
character, '#' for any digit character. If any of the *,
?, # or | characters are preceded by a \ (escape
character) it masks the character itself.

exFilter 240 Only the items that are in the ColumnFilter property
are included.

constants IncludeParentEnum
The IncludeParentEnum type specifies whether the control includes the parent folder. The
IncludeParent property retrieves or sets a value that indicates whether the control includes
the parent folder. The IncludeParentEnum type supports the following values:

Name Value Description
exNoIncludeParent 0 No parent folder is included.
exIncludeParent 1 The parent folder is included as a normal item.

exIncludeLockedParent 2 The parent folder is included as a locked item. A
locked item is not scrolable.

constants IncrementalSearchEnum
The IncrementalSearchEnum type specifies how the control searches for objects while user
type characters inside. An incremental search begins searching as soon as you type the
first character of the search string. Use the IncrementalSearch property to specify how the
control finds objects based on the typed characters.

Name Value Description

exDefaultStartWith -1
Specifies that the control looks for objects that
starts with typed characters, without highlighting the
found result.

exStartWith 0
Specifies that the control looks for objects that
starts with typed characters, with highlighting the
found result.

exContains 1
Specifies that the control looks for objects that
contains typed characters, with highlighting the
found result.

constants OptionEnum
Use the Option property to change the control's options that are listed bellow. Use the
Refresh method to refresh the control's content.

Name Value Description

exModifiedToday 0

Retrieves or sets a value that indicates the caption
being displayed on the 'Modified' column if the file
was changed today. By default, the Option(
exModifiedToday) property is "today".

String expression.

exModifiedDaysAgo 1

Retrieves or sets a value that indicates the caption
being displayed on the 'Modified' column when the
file was changed n-th days ago. By default, the
Option(exModifiedDaysAgo) property is "%i
day(s) ago". The string may contain a single %i
expression that indicates the number of days that
should be displayed. For instance, in German
language it would be better if we could display "vor
10 Tagen" instead "10 day(s) ago", and so the
Option(exModifiedDaysAgo) property should be
"vor %i Tagen".

String expression.

Retrieves or sets a value that indicates the format
of the date being displayed on the 'Modified'
column. By default, the Option (
exModifiedDateFormat) property is "M/d/yyyy ", it
means that the date is being displayed as
"10/13/2004". The exModifiedDateFormat option
may include the following predefined strings:

d (Day of month as digits with no leading zero
for single-digit days.)
dd (Day of month as digits with leading zero
for single-digit days.)
ddd (Day of week as a three-letter
abbreviation.)
dddd (Day of week as its full name.)
M (Month as digits with no leading zero for

exModifiedDateFormat 2 single-digit months.)
MM (Month as digits with leading zero for
single-digit months.)
MMM (Month as a three-letter abbreviation.)
MMMM (Month as its full name.)
y (Year as last two digits, but with no leading
zero for years less than 10.)
yy (Year as last two digits, but with leading
zero for years less than 10.)
yyyy (Year represented by full four digits.)

For instance, use the format "ddd, MMM dd yy" to
get the date displayed as "Wed, Aug 31 94".

String expression.

exModifiedTimeFormat 3

Retrieves or sets a value that indicates the format
of the time being displayed on the 'Modified'
column. By default, the Option(
exModifiedTimeFormat) property is "hh:mm:ss tt",
it means that the time is displayed as "03:45:12
PM". The exModifiedTimeFormat may include the
following predefined strings:

h (Hours with no leading zero for single-digit
hours; 12-hour clock.)
hh (Hours with leading zero for single-digit
hours; 12-hour clock.)
H (Hours with no leading zero for single-digit
hours; 24-hour clock.)
HH (Hours with leading zero for single-digit
hours; 24-hour clock.)
m (Minutes with no leading zero for single-digit
minutes)
mm (Minutes with no leading zero for single-
digit minutes.)
s (Seconds with no leading zero for single-digit
seconds.)
ss (Seconds with leading zero for single-digit
seconds.)
t (One character time-marker string, such as A
or P.)

tt (Multicharacter time-marker string, such as
AM or PM.)

String expression.

exHideFileExtensionsForKnownFileTypes4

Hides or shows the three-letter file-name extensions
for certain files, reducing clutter in folder windows.
By default, the Option(
exHideFileExtensionsForKnownFileTypes) property
is False. If the Option(
exHideFileExtensionsForKnownFileTypes) property
is False, the control shows the extensions for any
file. If the Option(
exHideFileExtensionsForKnownFileTypes) property
is True, the control displays the file name according
to the Windows Explorer option "Hide File
Extensions For Known File Types". For instance,
if the Windows Explorer option "Hide File
Extensions For Known File Types" is checked, the
control control hides file extensions for known file
types, else the file extension is visible.

Boolean expression

exSizeFormat 5

Specifies the format to display the Size column. You
can use the Option(exSizeFormat) property to
indicate whether the Size column should displays
the size of files in GB (GigaBytes), MB
(MegaBytes), KB (KiloBytes) or Bytes. The
Option(exSizeFormat) property can be a BIT
combination of the following flags:

1 indicates the file size in bytes (Bytes)
2 indicates the file size in kilo-bytes (1 KB =
1024 Bytes)
4 indicates the file size in mega-bytes (1 MB =
1024 KB)
8 indicates the file size in giga-bytes (1 GB =
1024 MB)

For instance, if the Option(exSizeFormat) is 1 + 2 +
4 + 8 (=15), the size column may display Bytes for
files with the size less than 1 KB, Kilo-Bytes for files

with the size less than 1 MB, Mega-Bytes for files
with the size less than 1 GB, and GB files. In other
words a file of 100 Bytes, will display 100 Bytes, or
a file of 29,038,225,408 Bytes, will display 27.04
GB. By default the Option(exSizeFormat) is 2 (KB,
in other words the size column is displayed in KB).

Long expression.

constants PictureDisplayEnum
Specifies how the picture is displayed on the control's background. Use the PictureDisplay
property to specify how the control displays its picture.

Name Value Description
UpperLeft 0 Aligns the picture to the upper left corner.
UpperCenter 1 Centers the picture on the upper edge.
UpperRight 2 Aligns the picture to the upper right corner.

MiddleLeft 16 Aligns horizontally the picture on the left side, and
centers the picture vertically.

MiddleCenter 17 Puts the picture on the center of the source.

MiddleRight 18 Aligns horizontally the picture on the right side, and
centers the picture vertically.

LowerLeft 32 Aligns the picture to the lower left corner.
LowerCenter 33 Centers the picture on the lower edge.
LowerRight 34 Aligns the picture to the lower right corner.
Tile 48 Tiles the picture on the source.
Stretch 49 The picture is resized to fit the source.

constants ScrollBarEnum
The ScrollBarEnum type specifies the vertical or horizontal scroll bar in the control. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bars

Name Value Description
exVScroll 0 Indicates the vertical scroll bar.
exHScroll 1 Indicates the horizontal scroll bar.

constants ScrollPartEnum
The ScrollPartEnum type defines the parts in the control's scrollbar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollPartCaption property to specify the caption being displayed in any part of the control's
scrollbar. The control fires the ScrollButtonClick event when the user clicks any button in the
control's scrollbar.

Name Value Description
exExtentThumbPart 65536 The thumb-extension part.

exLeftB1Part 32768 (L1) The first additional button, in the left or top
area. By default, this button is hidden.

exLeftB2Part 16384 (L2) The second additional button, in the left or top
area. By default, this button is hidden.

exLeftB3Part 8192 (L3) The third additional button, in the left or top
area. By default, this button is hidden.

exLeftB4Part 4096 (L4) The forth additional button, in the left or top
area. By default, this button is hidden.

exLeftB5Part 2048 (L5) The fifth additional button, in the left or top
area. By default, this button is hidden.

exLeftBPart 1024 (<) The left or top button. By default, this button is
visible.

exLowerBackPart 512 The area between the left/top button and the
thumb. By default, this part is visible.

exThumbPart 256 The thumb part or the scroll box region. By default,
the thumb is visible.

exUpperBackPart 128 The area between the thumb and the right/bottom
button. By default, this part is visible.

exBackgroundPart 640
The union between the exLowerBackPart and the
exUpperBackPart parts. By default, this part is
visible.

exRightBPart 64 (>) The right or down button. By default, this button
is visible.

exRightB1Part 32 (R1) The first additional button in the right or down
side. By default, this button is hidden.

exRightB2Part 16 (R2) The second additional button in the right or
down side. By default, this button is hidden.

exRightB3Part 8 (R3) The third additional button in the right or down
side. By default, this button is hidden.

exRightB4Part 4 (R4) The forth additional button in the right or down
side. By default, this button is hidden

exRightB5Part 2 (R5) The fifth additional button in the right or down
side. By default, this button is hidden.

exRightB6Part 1 (R6) The sixth additional button in the right or down
side. By default, this button is hidden.

exPartNone 0 No part.

constants SearchStateEnum
The SearchStateEnum value specifies whether the searching files begins or ends. Use the
Search property to search for files.

Name Value Description
StartSearching 0 The searching files starts.
EndSearching 1 The searching files ends.

constants StateChangeEnum
Specifies the new state of the control. Use the StateChange event to notify your application
when the control's state is changed.

Name Value Description

RenameState 0

Fired when a file is renamed. This notification is not
fired if an outside process change or renames a file
in the current view. This notification is sent only if
the file is renamed inside the current control.

SetFocusState 1 The control gains the focus.
KillFocusState 2 The control loses the focus.

SelChangeState 3 Fired when the control's selection is changed. Use
the Get method to collect the selected files/folders.

BrowseChangeState 4
Occurs when the control browses a new folder. The
BrowseFolderPath property indicates the folder
being browsed.

RefreshState 5 Notifies the application once the Refresh method is
invoked.

UpdateChangeState 6
Fired when the browsed folder suffers a change (
like an outside process renamed, deleted or added
a file).

BeforeFilterChangeState 7
Fired just before starting filtering the files. This
notifies your application once the control starts
filtering files and folders based on the UI actions.

AfterFilterChangeState 8
Fired after control has filtered the files. This notifies
your application once the control starts filtering files
and folders based on the UI actions.

BeforeLoadState 9 Notifies the application once the control starts
loading the objects (the name of the objects).

AfterLoadState 10

Notifies the application once the control ends
loading the objects (the name of the objects).
Even if this state is fired, the control still can look
for information about current files or folders until the
ReadyState is sent.

BeforeExpandFolderState 11
Notifies the application once a folder is expanding.
Use this notification to do your work before
expanding an item.

AfterExpandFolderState 12 Notifies the application once a folder is expanded.
Use this notification to do your work after an item is
expanded.

BeforeCollapseFolderState 13
Notifies the application once a folder is collapsing.
Use this notification to do your work before
collapsing an item.

AfterCollapseFolderState 14
Notifies the application once a folder is collapsed.
Use this notification to do your work after an item is
collapsed.

CheckStateChange 15 Fired when the object's checkbox is changed.

BusyState 16

The BusyState event occurs once the control starts
collecting information for current files and folders.
This event notifies your application once the control
start loading information about This state may
occurs only if the Asynchronous property is set on
true.

ReadyState 17

The ReadState event occurs once the control ends
collecting information for current files and folders.
This event notifies that the control is ready, in other
words, all information about current view is loaded.
This state may occurs only if the Asynchronous
property is set on true.

StartFromToState 18 Occurs when the control starts applying the
From/To format.

EndFromToState 19 Occurs when the control ends applying the From/To
format.

ShowContextMenu 20

Occurs when the control is about to display the
object's context menu. The ShowContextMenu
property indicates the items to be displayed on the
object's context menu. The ShowContextMenu
property has effect only during the StateChange
event, when the State parameter is
ShowContextMenu. The ShowContextMenu
property can be used to disable, update, remove or
add new items. The AllowMenuContext property
specifies whether the control shows the object's
context menu when the user presses the right click
over a file or folder.
Occurs when the control is about to execute a
command from the object's context menu. The

ExecuteContextMenu 21

event occurs before executing the command
selected from the context menu. The
ExecuteContextMenu property specifies the
identifier of the command to be executed (id option
in the ShowContextMenu property). The
ExecuteContextMenu property has effect only
during the StateChange event, when the State
parameter is ExecuteContextMenu. The
AllowMenuContext property specifies whether the
control shows the object's context menu when the
user presses the right click over a file or folder.

LoadingState 22 The LoadingState event occurs several time while
the control loads files or folders.

The following VB sample enumerates the selected items:

Private Sub ExFileView1_StateChange(ByVal State As EXFILEVIEWLibCtl.StateChangeEnum)
 If State = SelChangeState Then
 Dim fs As Files, f As File
 Set fs = ExFileView1.Get(SelItems)
 For Each f In fs
 Debug.Print f.Name
 Next
 End If
End Sub

The following C++ sample enumerates the selected items:

void OnStateChangeExfileview1(long State)
{
 switch (State)
 {
 case 0: /*StartSearching*/
 {
 OutputDebugString("Start searching");
 break;
 }
 case 1: /*EndSearching*/
 {

 OutputDebugString("End searching");
 break;
 }
 }
}

The following VB.NET sample enumerates the selected items:

Private Sub AxExFileView1_StateChange(ByVal sender As Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_StateChangeEvent) Handles
AxExFileView1.StateChange
 Select Case e.state
 Case EXFILEVIEWLib.StateChangeEnum.SelChangeState
 With AxExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.SelItems)
 Dim i As Integer
 For i = 0 To .Count - 1
 With .Item(i)
 Debug.WriteLine(.Name)
 End With
 Next
 End With
 End Select
End Sub

The following C# sample enumerates the selected items:

private void axExFileView1_StateChange(object sender,
AxEXFILEVIEWLib._IExFileViewEvents_StateChangeEvent e)
{
 switch (e.state)
 {
 case EXFILEVIEWLib.StateChangeEnum.SelChangeState:
 {
 EXFILEVIEWLib.Files files =
axExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.SelItems);
 for (int i = 0; i < files.Count; i++)
 {
 EXFILEVIEWLib.File file = files[i];

 System.Diagnostics.Debug.WriteLine(file.Name);
 }
 break;
 }
 }
}

The following VFP sample enumerates the selected items:

*** ActiveX Control Event ***
LPARAMETERS state

do case

 case state = 3 && SelChangeState
 with thisform.ExFileView1.Get(0) && SelItems
 local i
 for i = 0 to .Count - 1
 with .Item(i)
 wait window nowait .Name
 endwith
 next
 endwith

endcase

constants TypeEnum
Specifies the type of objects that Get property retrieves. The item could be a file or a
folder. Use the Folder property to specify whether an item (File object), is a file or a
folder.

Name Value Description
SelItems 0 Gets the collection of selected items.
AllItems 1 Gets the entire collection of items.
CheckItems 2 Gets the checked items.
VisibleItems 3 Gets the visible items as they are listed.

The following VB sample displays the list of files as they are displayed:

With ExFileView1.Get(VisibleItems)
 For i = 0 To .Count - 1
 With .Item(i)
 Debug.Print .Name
 End With
 Next
End With

The following C++ sample displays the list of files as they are displayed:

CFiles files = m_fileview.GetGet(3 /*VisibleItems*/);
for (long i = 0; i < files.GetCount(); i++)
 OutputDebugString(files.GetItem(COleVariant(i)).GetName());

The following VB.NET sample displays the list of files as they are displayed:

With AxExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.VisibleItems)
 Dim i As Integer
 For i = 0 To .Count - 1
 With .Item(i)
 Debug.WriteLine(.Name())
 End With
 Next
End With

The following C# sample displays the list of files as they are displayed:

EXFILEVIEWLib.Files files = axExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.VisibleItems);
for (int i = 0; i < files.Count; i++)
{
 EXFILEVIEWLib.File file = files[i];
 System.Diagnostics.Debug.WriteLine(file.Name);
}

The following VFP sample displays the list of files as they are displayed:

With thisform.ExFileView1.Get(3) && VisibleItems
 For i = 0 To .Count - 1
 With .Item(i)
 wait window nowait .Name
 EndWith
 Next
EndWith

constants UIVisualThemeEnum
The UIVisualThemeEnum expression specifies the UI parts that the control can shown using
the current visual theme. The UseVisualTheme property specifies whether the UI parts of
the control are displayed using the current visual theme.

Name Value Description
exNoVisualTheme 0 exNoVisualTheme
exDefaultVisualTheme 16777215exDefaultVisualTheme
exHeaderVisualTheme 1 exHeaderVisualTheme
exFilterBarVisualTheme 2 exFilterBarVisualTheme
exButtonsVisualTheme 4 exButtonsVisualTheme
exCheckBoxVisualTheme 64 exCheckBoxVisualTheme

Appearance object
/*not supported in the lite version*/ The component lets the user changes its visual
appearance using skins, each one providing an additional visual experience that enhances
viewing pleasure. Skins are relatively easy to build and put on any part of the control. The
Appearance object holds a collection of skins. The Appearance object supports the
following properties and methods:

Name Description
Add Adds or replaces a skin object to the control.
Clear Removes all skins in the control.
Remove Removes a specific skin from the control.

RenderType Specifies the way colored EBN objects are displayed on
the component.

method Appearance.Add (ID as Long, Skin as Variant)

Adds or replaces a skin object to the control. /*not supported in the lite version*/

Type Description

ID as Long

A Long expression that indicates the index of the skin
being added or replaced. The value must be between 1
and 126, so Appearance collection should holds no more
than 126 elements.
The Skin parameter of the Add method can a STRING as
explained bellow, a BYTE[] / safe arrays of VT_I1 or
VT_UI1 expression that indicates the content of the EBN
file. You can use the BYTE[] / safe arrays of VT_I1 or
VT_UI1 option when using the EBN file directly in the
resources of the project. For instance, the VB6 provides
the LoadResData to get the safe array o bytes for
specified resource, while in VB/NET or C# the internal
class Resources provides definitions for all files being
inserted. (ResourceManager.GetObject("ebn",
resourceCulture))

If the Skin parameter points to a string expression, it can
be one of the following:

A path to the skin file (*.EBN). The ExButton
component or ExEBN tool can be used to create,
view or edit EBN files. For instance, "C:\Program
Files\Exontrol\ExButton\Sample\EBN\MSOffice-
Ribbon\msor_frameh.ebn"
A BASE64 encoded string that holds the skin file (
*.EBN). Use the ExImages tool to build BASE 64
encoded strings of the skin file (*.EBN). The
BASE64 encoded string starts with "gBFLBCJw..."
An Windows XP theme part, if the Skin parameter
starts with "XP:". Use this option, to display any UI
element of the Current Windows XP Theme, on any
part of the control. In this case, the syntax of the Skin
parameter is: "XP:ClassName Part State" where the
ClassName defines the window/control class name in
the Windows XP Theme, the Part indicates a long
expression that defines the part, and the State
indicates the state of the part to be shown. All known

https://exontrol.com/ebn.jsp
https://exontrol.com/ebn.jsp
https://exontrol.com/exbutton.jsp
https://exontrol.com/exebn.jsp
https://exontrol.com/ebn.jsp
https://exontrol.com/eximages.jsp
https://exontrol.com/ebn.jsp

Skin as Variant

values for window/class, part and start are defined at
the end of this document. For instance the
"XP:Header 1 2" indicates the part 1 of the Header
class in the state 2, in the current Windows XP
theme.

The following screen shots show a few Windows XP
Theme Elements, running on Windows Vista and
Windows 10:

A copy of another skin with different coordinates (
position, size), if the Skin parameter starts with
"CP:". Use this option, to display the EBN, using
different coordinates (position, size). By default, the
EBN skin object is rendered on the part's client area.
Using this option, you can display the same EBN, on a
different position / size. In this case, the syntax of the

Skin parameter is: "CP:ID Left Top Right Bottom"
where the ID is the identifier of the EBN to be used (
it is a number that specifies the ID parameter of the
Add method), Left, Top, Right and Bottom
parameters/numbers specifies the relative position to
the part's client area, where the EBN should be
rendered. The Left, Top, Right and Bottom
parameters are numbers (negative, zero or positive
values, with no decimal), that can be followed by the
D character which indicates the value according to the
current DPI settings. For instance, "CP:1 -2 -2 2 2",
uses the EBN with the identifier 1, and displays it on a
2-pixels wider rectangle no matter of the DPI settings,
while "CP:1 -2D -2D 2D 2D" displays it on a 2-pixels
wider rectangle if DPI settings is 100%, and on on a
3-pixels wider rectangle if DPI settings is 150%.

The following screen shot shows the same EBN being
displayed, using different CP: options:

Return Description

Boolean A Boolean expression that indicates whether the new skin
was added or replaced.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control. By using a
collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the Add method to highlight different files and folders.

The identifier you choose for the skin is very important to be used in the background
properties like explained bellow. Shortly, the color properties uses 4 bytes (DWORD,
double WORD, and so on) to hold a RGB value. More than that, the first byte (most
significant byte in the color) is used only to specify system color. if the first bit in the byte is
1, the rest of bits indicates the index of the system color being used. So, we use the last 7
bits in the high significant byte of the color to indicates the identifier of the skin being used.
So, since the 7 bits can cover 127 values, excluding 0, we have 126 possibilities to store an
identifier in that byte. This way, a DWORD expression indicates the background color
stored in RRGGBB format and the index of the skin (ID parameter) in the last 7 bits in the
high significant byte of the color. For instance, the BackColor = BackColor Or &H2000000
indicates that we apply the skin with the index 2 using the old color, to the object that
BackColor is applied.

The skin method may change the visual appearance for the following parts in the control:

selected file/folder, SelBackColor property
control's header bar, BackColorHeader property
control's filter bar, FilterBarBackColor property
"drop down" filter bar button, "close" filter bar button, and so on, Background property

For instance, the following VB sample changes the visual appearance for the selected item.
The SelBackColor property indicates the selection background color. Shortly, we need to
add a skin to the Appearance object using the Add method, and we need to set the last 7
bits in the SelBackColor property to indicates the index of the skin that we want to use. The
sample applies the " " to the selected item(s):

With ExFileView1
 With .VisualAppearance
 .Add &H23, App.Path + "\selected.ebn"
 End With
 .SelForeColor = RGB(0, 0, 0)

 .SelBackColor = &H23000000
End With

The sample adds the skin with the index 35 (Hexa 23), and applies to the selected item
using the SelBackColor property.

The following C++ sample applies a new appearance to the selected item(s):

#include "Appearance.h"
m_fileview.GetVisualAppearance().Add(0x23,
COleVariant(_T("D:\\Temp\\ExFileView_Help\\selected.ebn")));
m_fileview.SetSelBackColor(0x23000000);
m_fileview.SetSelForeColor(0);

The following VB.NET sample applies a new appearance to the selected item(s):

With AxExFileView1
 With .VisualAppearance
 .Add(&H23, "D:\Temp\ExFileView_Help\selected.ebn")
 End With
 .SelForeColor = Color.Black
 .Template = "SelBackColor = 587202560"
End With

The VB.NET sample uses the Template property to assign a new value to the SelBackColor
property. The 587202560 value represents &23000000 in hexadecimal.

The following C# sample applies a new appearance to the selected item(s):

axExFileView1.VisualAppearance.Add(0x23, "D:\\Temp\\ExFileView_Help\\selected.ebn");
axExFileView1.Template = "SelBackColor = 587202560";

The following VFP sample applies a new appearance to the selected item(s):

With thisform.ExFileView1
 With .VisualAppearance
 .Add(35, "D:\Temp\ExFileView_Help\selected.ebn")
 EndWith
 .SelForeColor = RGB(0, 0, 0)
 .SelBackColor = 587202560

EndWith

The 587202560 value represents &23000000 in hexadecimal. The 32 value represents &23
in hexadecimal

The screen shot was generated using the following template:

Appearance = 0
ExpandFolders = True
IncludeFilesInFolder = True
HasCheckBox = 1

VisualAppearance
{
 ' Header
 Add(1,
"gBFLBCJwBAEHhEJAEGg4BcoDg6AABACAxWgKBADQKAAyDIKsEQGGIZRhhGIwAgaFIXQKMUIxVAcLQxCgCYRiYYJDiWCQ1ARHcpRPDgARbDyVQAhaJYJiSNYWDTJUpzBC8QwHHyaIDAKCXfoSGI6ABNUBzTKtBx3BIUYwFaCaAhaTgAUTAdYxJKYZBqEqua7mMZRQqCJ5lTLHcTATDARypESYbSme44DooAA1UBcMbybJ9dQHGakLqpS5ZchTBQYW7AYa3BQVDS1I66KRnCQ6XrKA5RQLiEB1HhWGABK6taziOwbGhmYpnaTddoTDCwDQTTQABLhEQser6HaRYJSGTSBhIAAtWrbMByOjdMpDPacb5wF7VOLAbSvCKuRiGOo4lgbRpgSVZikCWBIB4EgggSBQ2luOIwCoEhuDeHINiYExgjiRBtDgRYCEECAZAiG5yguDYhCKCBPCMF43GwEAzHADx4hEM58kYNJNmIGIaCqIIoDIC4DGECA+BKA4hEgRgVgSYRoGYGIGmEeB2BqB4hkgfgfgGTZmDwAIJCCUwolgN4LlMWJbgsYp4joMIMmMKJWDGDZjEiYg2g4Y5Im4PoOiQCJ2EGD5kCiQgqgJDYRAOAxOiOPJyDeTpDjyUA4g4aROFWFQlGkZhYhaZR5HYWoXiWSR+GKGBmEmAhmhiZh5hYaIXmQeA2EuApPjOcJ9D2T4TmiaA8g8SRAm+HonkkRh9h6Z5qAaAIgmeegWgKIYoEoHoKiIaJKCKDoimUaJCG4AAglOfoWhwT5TlodQ7E8M5WHcPQpnqBh4iiKgKg6JopGqCoSiqKZqjqJosiuapqkaLYsmeCZqhGC4pDoVoXhyDxTmSe4mg+I5AnUPYsCsEpDjEbILB6SoxiySwmk2MpsmsRpQjSbJ7FaUo1i0Sh+jaFQpCgLhvCqKRjn6GIvGueZWleOZtEuIpYjqborjaaY7m0WxqFGLZNjqZgLjgbg6nqQI7i6S5CnyP5vmwBp9jMLwpEqXIuC2ahSneLpPluEp7kCMAMA8EZEnEC5DAWPWmgMDJDi4bBXBKR4xEwfwijWcR8B6dZCGuK4KjyPoxlyDwgkucpskafJJE4ax0iqN5vgyLpljAcwMgcPpPHQA5bR2M4MG8LJPDMLQHD+UhzB0DwIk2cIsGsKpDHQfQvZ4NYLi8TpJnUDImnmTp1H0MxhlibI9G8GZOHUTYDFmWQ2C2LpDlmMoMC8U5HDSBsMw7RbhkC2IYXYuQ1j4D8NsX47h9j+HqKJe4rh4jAHiBgWoa1JDbB8I0WocAOA/BKKYeIeAbBrFOPATY7gtjEHkDwdwZxlDjA2I4UozQ3C8E+DkZwcA9COGiLoOg/QbhdEEHQDgbwijVHgNwe4XxrD2AmM8DIyx1icGcHUMAeAJivEEH0PAfgXiFHGPgTwRxGjkHyJ4L4nRyh6A8G8UY5R6g6HsHUOQewKj3FkH0fYfh3i1HePsT4BxejwH4J8D4zR4h9A+C8aY8RnCHGqLcbwYwZBpHKEwPwkxLjqD8P4f4zx2j9H+B8c49B/hgAGP8QATx9ACCABgBYABwAzDSE8JItRCCiEIBYfglwGAREEFAJwCgghYWwOAYgGRBhQDcA4FIhxyCDCkFEIggRkCCAkCIEgQzsgsBQIQaApgLBCFoC0BAShkgBIC")

 ' HeaderFilterBarButton

Add(2,"gBFLBCJwBAEHhEJAEGg4BCwEg6AADACAxRDAMgBQKAAzQFAYZhxBaERiGIZ4JhUAIIRZGMQxXAcMQ1DICYRjYYJDiWCQzARHcpRSKUOQvFaLIYleA5EgmNYNSZKcbRfIMBx7GcHUIvfQgASIf6LJxACZwADOI5CTpCIpxUKEEx/DyoKKoWh5RhENQlTIMVbzEKoYTBBKybLqGAwJhoI5WSJMEb0VRlGBnH65oCwHbdATlGS6I6paZpbhrBYDBpcEBhfaMByzLiuIpwGR6PjCHpTYhNUI4ZDsE4fLaiYpsGw6eqoAJpWRZUxXHBIDQTRKBRLhERMNrnEqEbhOG4yVg4AR/H4LNp2bLZUorA40VjrEB5Rr2NQHYLiODxaCYPoyDMGJYJKOpIloIQZiyR4CnCEA8CcZQDAodI2jOexIjabxojMCxgnaDAWl4KoAiSQhCDCEBsCeIAAAQHAnA0HhHgCRAkGEHQHgEfBmBiBhBhALgYgaUZBB4BMWAAuBhEQZA2EIQoECQLhCEGVZEBgRYNkAPZpFaD5zBiUw3ggYhoiqCxiniOgwgyYwolYMYNmMSJiDaDhjkibg+g6JAInYQYPmQKQKCoN4ZBkHgwDKDYDHiPQ1g2OQ+FGFAlCkVhUhWZQ5GYVoWiWCRuF6FxmAkchiheZg5gYZIUiSSIyC6EZQDiQJqDuTwjHybA7k0A4ImaHRnHmWh4h6Z4pnYeYfmeSgCH6IBoEoDoGiCKIKBaCYhmiKgGGmDAmliOJ7D8D5TlyeU9gOSJ0hyDp6HKHocmmeh22sagqhaIYpmoSoiiaKhqkqLouiqKwKjYeIUikAACDAUZpDOdJ2iWTpTkydYmE8SwCkKJosDsBpEjGbBrCaRYymyCwykqMxtAsPpSjOLRKGqHIsmUCpWjcUQrhOVN0muM5onAPRPGuDpljkLhriaaI6m4e42mqO4ukuPpyjwbxLkKdo8m8e5WkCNZnGqUguiQSoqmKFI3i4CheniQZvFwIp5kKcIsDcCZDm8a5uHONgNjsagukCD5cBKYZDjCTBDByR5xmyBwdjscQplKfY2G+epbBeNwwDsfwb1gDIPDGTJzAwQwlkUMRsAcLJGHKbAbDWTIznyUxAlCb4Ml8J5FHKGxsn+NxzluCxBlOdBNEMQpCjQY4an4KowAwYwak+NQdHcU5UjYDISlaRJ0HyZxalMdZ9HsYZaHMHRXFeVhzj0bxOlqNZUCcbJanIFsOybwyhZGsJcSw4BdieHeIUUoXAPgNDsG8LSuhShpE4A8B4ewcB8D+AcYg7BtiOGiLwNwnBLgxDmHITQTgri/HOJwO4NxojzB6CcHYxR5j8DcF8aQ9RODXCyNMdwHQDDlGuHYToJhUixHINoWw9xsD1C0OcNY1h7DbGeHETgcxtj3D2MEPAPgDiVFsPgPYLxFizHoF4L4kxvjoF8G8OoxQ7icAOFcdQeg/MTGwG8XwhRhjxGkP8EI9R5h9A+C8ao8x+h/CeNke4/RviPG2Pkfy5hujwi0AYBI/Rtj/HCPYf4oABj9EAE8fwARgAYASAEcANAEiAFgC4AgQBkAMFKIcaQ/A9DsHKDcR4JQ5gFGoKQDAHxYBqAcEETAPQDDgH4B0QgEBHARCEFgIYCRwgkBQIQaApRoCpGKB4ZQUgpAuEEKUDwGghhYDaA0cIxAciHCgO4DwQxsB9AeNUZgFQjAJFiBQIYFBDgRGkCoIgiQogiBKMQTAmQJjiDkDkJA5giCAEAQE=")

Add(3,"gBFLBCJwBAEHhEJAEGg4BFQEg6AADACAxRDAMgBQKAAzQFAYZhxBaERiGIZ4JhUAIIRZGMQxXAcMQ1DICYRjYYJDiWCQzARHcpRSKUOQvFaLIYleA5EgmNYNSZKcbRfIMBx7GcHUIvfQgASIf6LJxACZwADOI5CTpCIpxUKEEx/DyoKKoWh5RhENQlTIMVbzEKoYTBBKybLqGAwJhoI5WSJMEb0VRlGBnH65oCwHbdATlGS6I6paZpbhrBYDBpcEBhfaMByzLiuIpwGR6PjCHpTYhNUI4ZDsE4fLaiYpsGw6eqoAJpWRZUxXHBIDQTRKBRLhERMNrnEqEbhOG4yVg4AR/H4LNp2bLZUorA40VjrEB5Rr2NQHYLiODxaCYPoyDMGJYJKOpIloIQZiyR4CnCEA8CcZQDAodI2jOexIjabxojMCxgnCEY0HgbY3gqIApDCEIECQGQJHQg5JkIcJRmQeAPJIEZQHgF5GGGCBjBsBpxkwZQLgYIY0HAR4BCecAABCBJYGUGR9tWIQJAuEIQHUcQGBEYxyAcehUHMGJTDeCBiGiKoMGMOJKDSDZjGiZg1g6Y4InIOoPGQCJ+EKD4kEkBhFhCZBpBoLg3hkGQuDQMoNgMeI9DWDY5E4VYVCUaRmFiFplHkdhaheJZJH4YoYGYSYCGaGJmHmFhohWJQIkIMoSlAtxqDuTwjHybA7k0A4ImaHhnjmah8h+Z5qAYfYgmgCgSgKIRogoHoKiGKJKCaDYimiagWG2DQnBiSJ7D8D5TlyeQ+g6A5InSHYOnqAoih2ag6gaJIpmoaomiWKpqgqMoqisawKj6MorisSpGHyFYpEAAg0FGaRznSdomk6U5MnWJxPEsEpGieLB7BaSIymyKw2kmM5sksQpOjQbRLE6Vo0i2Ch6iCLZlEqZo7FEK5TlTdhrnOaJwD0Txrh6aY6C6K42myO5ujuRpujyLwLk6do9G+C5SnqPZvjuZpEjaZ4qmIMolEqKpyhiOIuEobp8kKb4cDKfZDnCbBHA2RJviufh3jcDY7HoMpBg+XAimWRIxAwUwgkicgshck5xGmYwBjccA6msG44DAe4PB+SYyEyHw1k2cxMFMKZGDGLAXDCRxzCwKw5k2NA8mMRJRm+TJvCuRhylsfJ/jgdAbhsRZUnSDRTEaQ40iOGwCCqMBMHMHpQjUXYHFeVY2EyIpakWdI8ncXpUHYPYLGWWxzF0Zxblcc59H8UpbjIOgJo5xehtH2O4D4uQyiaHMF0T4aR8iOAmLsdwGBRAzGIO8DIBwAimDgFoOwoRhjxEwHcC4vw5C3HsM8SoawuAOHSMIdAHBTgxD4O8S4jwljMHiLcQ4HxahuF2GcI41B7AdCOFcUw5R+gGHaroDofhxjNHOxsBIyRzB9EeHUcI7AeifBGNofAGwDhzHCHkTo3Qfi0DmLwQ4PxyDxA8CcS46x6hdHMNMb4bQ+gXE2OsPgGx/i1HQPUTotwujvH6B4Y4xRzjzE2J8A47huC/EaDcfIHwvinHa8oD4rx5j7H+F8d4+B/jfG4AEP40AEj+B4GcUw4RMBEASFwOAKA+jAGQB0AQ4BCANEEDAHwCQghYBSAUcAnAMiCGgGoBQKRQj0GAB8EYvgnBjGSF4YQVQYgJEOOwFAhQoCeAsEITAWwFDhDoDEQwEBnAXGGFgMoDRQikBuHQFQgQkiyGoJwRgoQMhHEQFEBwIgiBYEaBEcQRAkiJCiC4EwRBqh7AQNEUQcAVhDH8B8UgeBWCSCkEQLIih4hqBYEUXAvQLhRHUEsGQJACEBA")

 ' SelectedItem
 Add(4,
"gBFLBCJwBAEHhEJAEGg4BV4Fg6AABACAxWgKBADQKAAyDIKsEQGGIZRhhGIwAgaFIXQKMUIxVAcLQxCgCYRhYABRiUAoJkjkMYhSDOFgzARHcxRPDgARrDyZQAkOQ5FDGFo+ShFQxTRC9CQpHaEYqkeA3fgmTYXTxJM7yfQVFxlCwTIwFGQqJgmVpPABYERyWKoSzJMyERpGCyIDqqbJXVxFYj3DCscw/KIYaqlGS5Ni+IZ2TLNMz4BAdEQfKSEaAgOToboaE5GB5GeRRbT1HYtKDEcQhepIbpaH5YQjkMBibBNZ4pAavcroeK7FqeI5ua7ach5fisB5EAARYREGrcEqPGZ5ShjGJ1MK0CxzIwDboBPbNdwXP56cIAAx8IJbD0GJQGoIQ1jgGAbhmTZXGsLZ7AsTpKDEVolG0QAaJyA4bleZgCiEJpjHmSJaGENgLgwRpTgUCAhAMEIElCSZ+EUAxkCQKB2huJR0BgRQPkAPZuFOCpSGgewckOUACBSBYhFgXgagYYZIGIHoGmGeB2CCCJiCiFghgmYhIiIJoFmEEZtEwAAilKFB9JWUooi2DRjHiWg4g6Y4onYOYPmOSQCD6EBkEkDhGhCJIJBYSYRmOCJIFKCxhmMBIuCwZQpFIU4VGWCReFqFYlkkZjpGWaYGGCGJlnmFhihmJhJh4F4Hg+eY0kULILFmPhxhwJwplYdIdmcOZmHaHongmbh+h8aAJnKAofmgOgGHKGxPnmLgXiIDISli+BonoOtEGkKhWhGJZpEoYoWiYaZKG6HomioCh2iGJ5pAoIoKgUaIDDCOgvCqKoyiuKxrAqPuCisSpGjWLJrGqZo4i6ax6naOoviuSo2iaBRmkmNJQC+DALB6SYyCyKw2kyM5sjsRpOjSLUIFaNRtgsUpajWbY7GaSowlAOguG0NQMCMEpkjmLhbh6ao6G6S4im6OpunuNpwjybwrlacY9m8S5inaOZuAsFJ/DYDBjCMAJAjAHAPAaQRwgwEwKkGcI8CcDJDnCbBHA2RJxAwUwSkCb5bgifw3AyMwzByR4xlwfwikgchMgMJpInIfIXCiSpyiyNwpkucpMkMLpHnGGoiG0OAMnMQw4k6M4cm8PpPHR2BCk+dA9AcRJRnQbQnEWUp0g0MxKk6cxVgYbQ5eSUxUlWNRdF8WpWHWTRjF6Vp1n0dxglidgthcYZZnYTYjGaVZ1BoIJoDWTYNj8cZcDcLZXHSXZ3D2M4dovQ3gbG8P0Xw8ANjnAKL8eAfAHDlFsM0U4WRbBtHiFwM4FxjDyA4H8Eoxw5CcEeCsZI8huDPBiM0eQ/B3g1GeHMTgbwIB/eYPkX40h6D9BuFEao9QuhvCmNceonRDhdGwPYTonw2jZDuB0V4cxtj1A67AOInA+j/EGOAPAXgXiJHGPgPwTxGjlDyB4L7zB9AeDOKUc4+g/CPEKNETw5wcjPHYPsPw1xcjvH2N8B4ux4j8A+CcYo8h+gfB+NUeYfRPhPiiPsToGR4B0E6D8T74A/DfGePEfo/h/jvHoP8T44x/iACgAYAQQAEANAAOAHgBQ/DPGQHUBwoR4gDDBA4QQEAnAJCCFgEYBRwCkAwIIaAZgHBBFwD0AwoQCAdEIDAPwBhdAxHkDsA4ZATiFBgKICoQhsBZAWOELgMRCjQGUBgIYOA2gNDCMQGghwoDeA6MMTAVQEiHDQO0D4MUXDEBQIkCI4gaBJEQLEFwJAiDIEqBMMQhAniKCiDoFQRQMCrAoOIBYowPhDF4HcYouBdgXBEPQMIjAIiOBeMYLAxQMijBIGcRoURTA2CMIg144w+BtEWNENAeBHgRikGMXgdqgjuB6EcbA8wPjjHIIAR40gDBCCQDkBoIBSBEEKJEGQHgdTVHsDwQ4lBHiSBkEIJISQsgpBKOQTgmRJDSDUEwJIuQegnDKAQTglApB+CiMpboI0kj0A+HIUwVRlCpCyCscodBYiVFkM4LASwkhlBaGUYgtxLhSG0F4JYmQ9guHKEujggxqB6GYDkRYMQTA0GSJkCYLgxjMGyJUGYpgyDPE0FMIwagmgJFaDQcwvBqiYGmAgPYjw4j5BuGYfg3hOATEcHEJwWRhg5HOCQdAnBpimDsE4XI3QdCnEIO0TwMxfBumqPoHwRxmD3E+DMcQfQnjZHyD8c58xPjUAVKYHQDQghoCKAQUIVAPTnEyPUHohxoD6A+LQIwiRogqBSEUdAtQMiiFoG4RlfwahHDSAUD4pAqB6EkFIDQSwkDoEXRxLAfgpC6C2EsFIdQYimAoM4S40wtBlCaKkUoNxThUHMJ4KYig+hOHSP0HopRqCojeNEfoUQ1A9CMKkuApQqDaEmFMdQZQoCpGqEYVQVQdCtCoKoYoVRVg1C8KIV41AxCMGoEUMIrAqiOFkFYLQzQsjrCKGkVoVRXCzBIOQUAUwIhqBSK4JArhdAiFUO0Lg6xeh1FeAgUwtxKDSAEQEA=")

Add(6,"gBFLBCJwBAEHhEJAEGg4BKYEg6AADACAxRDAMgBQKAAzQFAYZhxBaERiGIZ4JhUAIIRZGMQxXAcMQ1DKPIYAAYhVCWIokSZCIyjBJMBxXFqLAChGLofD2CQLR7OMgTHBIGQSM45DBMQyTFK4dAuGIbJwRcawEQGIQmaZjEZoJCiCQ/TbPAYRMQFHR1DR/bBfaw3dqWZj8Wg+dpWW7NWzcfC4HruK43WrVdZ3Xg9F5XW6derjP54MBdfA3OwXBjsYhiLp4W5OGrRR5zchcbI8UaZZDkOS4bhuJjTRrFT5wHAcFr9EZ1XTfaY3LZtWzjNK0bZsWxbJqNUZZVjXNTuLRtGyudqmaJod7aFomQ4VTjOM6z7zmMYxTTLMrzfQMSwlheVBlHUGQsHYOwhgyRhjjEWIsGYIwTkaRIElgX52DedYak8aY1lqLZWnuDZOwGexeC8N4rmuTZln4X5PBYBJwGCTp2BibYBliJgsmqApYlOJYPDoGQTh2FA5GERhZhgZoZkYaJhDgTgmgSYA3g2Zogl1K5DHGKhrBqZpBjENZNHMYY2DWDRDFGPQ0k0QxIlIcIcEMQJRDOTJzEGRxyFyNw1lIMwMiMKZWDIXYHFCSAyB2Jxxl4eAeCeEJFDCTA3iEYhZB6U51GgPwfAeRZyD4VwDmGdR9hcZ5knUfwfkeeJygAIAmBoBscjmRJrgKTooDYDxlFkOBSBRJoWG2HYGloMx+B+CBaGiEglGuGpWj2MQ2GKRpglWDAjCabg1g2HBYmYO4PGOdwplKEJkFkJhJDIZI5DWXR3h4R4aFOFRQDeJZrhYZYnj2cIXmYB5R1UZhph0fYaiaKAKASG5gHmQgKh0II4D4EYEmeKZqBgZxZnODoAGkIgqBqBoiGKJpMliIwikaZgziSaQ6FoPIlmQBwxk4dAkEMKphieagZC6I4UCoaRSieFYeikYZthaZZTm6MIYZuXo0hmJoXn2ABghgRgWj2AhnDgMYOGQGQpmYFBlmEeZ5hoZ5hlaCpM00WIelAbBtCiOY3jWKQoloOBxGkeJ5kgcotmochGHWXYagWW45l4G4kkMMVwAqbIqmWG5CF2PJrCWUhlH4a4LmoAY/A6e59gkYgsAwCgOkEDh5msCJRmweBqByB4iAsNwRGqYooiqVJFikCxfBocApHwdoZhAXJZBYR4RmoCQzCbIp3gaJ5LAwLYjC+O4emkcwzhebxJg6d5ODOGYxgGLwzn0AYQYOwYj2BCMsUY4QLBBGKGUNIbQHCaGoLUOIPRRDaDUHEPgYwMi4CcBYWYHgxjSAMEUV45BdgUEyJMXY2QrDRFqCAPIhQtgtHaMcbI9Rpj1A6E8Jw+RPgbE0PYXwTQHjuDqF0b41R2APFAM4XAGRoi/DgAwXwkxhBhFoB4ToEw1ANEcKUCwahOB+BmBsdYFhvgpFaPIdwphghyHmHsE4PRLD0AAAcIo0gqjdCuLwPoLRsizHgLseo7xvhjC4OcSo5Q9jcCCLYDwDRfj3F4BcQIpgoCNBuBMcQtguBnEiMcKQLRtiAHIJ4OQmAcDpASHAGo5xSDmC2AoJoXQEhJBUDkewWghBeG2NwFobw+jVEsNYcQvRMi7FglQVIuwQA1H0DsTI8B2BOEaPEBAMAojMGiJ0eYvwsgrBaEEEQBQGDEEiEsCgfwlhVCOKMCoJhjDRGmM8MY7Q4joFIIgCA5wNgqCiBgRonRLCMBiIIGAYBBDuD2I4So7wZhEGIJkA4sxygeEWOULgQRqAIHaJAIIiAgiwEiPcEIZhID8FCFoDYYR0CNFOKIQYXA2gWEkNQKIzQsjmA4DMRQxxOCrBAIAQ4TB1CyCGKgOw1QJBPDKCcSQBwGAoEaBIBAGQAkB")

}

'BackColor = 2147483652
BackColor = RGB(255,255,255)
BackColorHeader = 16777216 '0x01BBGGRR
FilterBarBackColor = 16777216 '0x01BBGGRR

Background(0) = 33554432 '0x02BBGGRR
Background(1) = 50331648 '0x03BBGGRR
SelBackColor = 67108864 '0x04BBGGRR
SelForeColor = 0
'ForeColorHeader = RGB(255,255,255)
ColumnFilterButton("Name") = True

FileTypes
{
 Add("*WIN*")
 {
 Folder = True
 BackColor = 100663296 '0x06BBGGRR
 Apply()
 }
}

method Appearance.Clear ()

Removes all skins in the control. /*not supported in the lite version*/

Type Description

Use the Clear method to clear all skins from the control. Use the Remove method to
remove a specific skin. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being applied
to the background's part.

The skin method may change the visual appearance for the following parts in the control:

selected file/folder, SelBackColor property
control's header bar, BackColorHeader property
control's filter bar, FilterBarBackColor property
"drop down" filter bar button, "close" filter bar button, and so on, Background property

method Appearance.Remove (ID as Long)

Removes a specific skin from the control. /*not supported in the lite version*/

Type Description

ID as Long A Long expression that indicates the index of the skin
being removed.

Use the Remove method to remove a specific skin. The identifier of the skin being removed
should be the same as when the skin was added using the Add method. Use the Clear
method to clear all skins from the control. If you need to remove the skin appearance from
a part of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the background's part.

The skin method may change the visual appearance for the following parts in the control:

selected file/folder, SelBackColor property
control's header bar, BackColorHeader property
control's filter bar, FilterBarBackColor property
"drop down" filter bar button, "close" filter bar button, and so on, Background property

property Appearance.RenderType as Long
Specifies the way colored EBN objects are displayed on the component.

Type Description

Long A long expression that indicates how the EBN objects are
shown in the control, like explained bellow.

By default, the RenderType property is 0, which indicates an A-color scheme. The
RenderType property can be used to change the colors for the entire control, for parts of
the controls that uses EBN objects. The RenderType property is not applied to the currently
XP-theme if using.

The RenderType property is applied to all parts that displays an EBN object. The properties
of color type may support the EBN object if the property's description includes "A color
expression that indicates the cell's background color. The last 7 bits in the high significant
byte of the color to indicates the identifier of the skin being used. Use the Add method to
add new skins to the control. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being
applied to the background's part." In other words, a property that supports EBN objects
should be of format 0xIDRRGGBB, where the ID is the identifier of the EBN to be applied,
while the BBGGRR is the (Red,Green,Blue, RGB-Color) color to be applied on the selected
EBN. For instance, the 0x1000000 indicates displaying the EBN as it is, with no color
applied, while the 0x1FF0000, applies the Blue color (RGB(0x0,0x0,0xFF), RGB(0,0,255)
on the EBN with the identifier 1. You can use the EBNColor tool to visualize applying EBN
colors.

Click here to watch a movie on how you can change the colors to be applied on EBN
objects.

For instance, the following sample changes the control's header appearance, by using an
EBN object:

With Control
 .VisualAppearance.Add 1,"c:\exontrol\images\normal.ebn"
 .BackColorHeader = &H1000000
End With

In the following screen shot the following objects displays the current EBN with a different
color:

"A" in Red (RGB(255,0,0), for instance the bar's property exBarColor is 0x10000FF
"B" in Green (RGB(0,255,0), for instance the bar's property exBarColor is 0x100FF00

https://exontrol.com/skintut.jsp#colors
https://www.youtube.com/watch?v=-PcCepMVclQ

"C" in Blue (RGB(0,0,255), for instance the bar's property exBarColor is 0x1FF0000
"Default", no color is specified, for instance the bar's property exBarColor is
0x1000000

The RenderType property could be one of the following:

-3, no color is applied. For instance, the BackColorHeader = &H1FF0000 is displayed
as would be .BackColorHeader = &H1000000, so the 0xFF0000 color (Blue color) is
ignored. You can use this option to allow the control displays the EBN colors or not.

-2, OR-color scheme. The color to be applied on the part of the control is a OR bit
combination between the original EBN color and the specified color. For instance, the
BackColorHeader = &H1FF0000, applies the OR bit for the entire Blue channel, or in
other words, it applies a less Blue to the part of the control. This option should be used
with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

-1, AND-color scheme, The color to be applied on the part of the control is an AND bit
combination between the original EBN color and the specified color. For instance, the
BackColorHeader = &H1FF0000, applies the AND bit for the entire Blue channel, or in
other words, it applies a more Blue to the part of the control. This option should be
used with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

0, default, the specified color is applied to the EBN. For instance, the
BackColorHeader = &H1FF0000, applies a Blue color to the object. This option could
be used to specify any color for the part of the components, that support EBN objects,
not only solid colors.

0xAABBGGRR, where the AA a value between 0 to 255, which indicates the
transparency, and RR, GG, BB the red, green and blue values. This option applies the
same color to all parts that displays EBN objects, whit ignoring any specified color in
the color property. For instance, the RenderType on 0x4000FFFF, indicates a 25%
Yellow on EBN objects. The 0x40, or 64 in decimal, is a 25 % from in a 256 interal, and
the 0x00FFFF, indicates the Yellow (RGB(255,255,0)). The same could be if the
RenderType is 0x40000000 + vbYellow, or &H40000000 + RGB(255, 255, 0), and so,
the RenderType could be the 0xAA000000 + Color, where the Color is the RGB format
of the color.

The following picture shows the control with the RenderType property on 0x4000FFFF
(25% Yellow, 0x40 or 64 in decimal is 25% from 256):

The following picture shows the control with the RenderType property on 0x8000FFFF
(50% Yellow, 0x80 or 128 in decimal is 50% from 256):

The following picture shows the control with the RenderType property on 0xC000FFFF
(75% Yellow, 0xC0 or 192 in decimal is 75% from 256):

The following picture shows the control with the RenderType property on 0xFF00FFFF
(100% Yellow, 0xFF or 255 in decimal is 100% from 255):

ExDataObject object

Defines the object that contains OLE drag and drop information.

Name Description
Clear Deletes the contents of the ExDataObject object.

Files
Returns an ExDataObjectFiles collection, which in turn
contains a list of all filenames used by an ExDataObject
object.

GetData Returns data from an ExDataObject object in the form of a
variant.

GetFormat Returns a value indicating whether an item in the
ExDataObject object matches a specified format.

SetData Inserts data into an ExDataObject object using the
specified data format.

method ExDataObject.Clear ()

Deletes the contents of the ExDataObject object.

Type Description

The Clear method can be called only for drag sources. The control fires the OLEStartDrag
event to notify your application that the user stars dragging files. The OLEDragDrop event
notifies your application that the user drags some data on the control.

The following VB sample starts dragging the selected files:

Private Sub ExFileView1_OLEStartDrag(ByVal Data As ExDataObject, AllowedEffects As
Long)
 Data.Files.Clear
 With ExFileView1.Get(SelItems)
 Dim i As Long
 For i = 0 To .Count - 1
 Data.Files.Add .Item(i).FullName
 Next
 End With
 If (Data.Files.Count > 0) Then
 AllowedEffects = 1
 Data.SetData , exCFFiles
 End If
End Sub

The following C++ sample starts dragging the selected files:

#import <exfilevw.dll>
void OnOLEStartDragExfileview1(LPDISPATCH Data, long FAR* AllowedEffects)
{
 EXFILEVIEWLib::IExDataObjectPtr spData(Data);
 spData->Clear();
 CFiles files = m_fileview.GetGet(0 /*SelItems*/);
 for (long i = 0; i < files.GetCount(); i++)
 spData->Files->Add(files.GetItem(COleVariant(i)).GetFullName().operator
LPCTSTR());
 if (spData->Files->Count > 0)
 {

 *AllowedEffects = 1; /*exOLEDropEffectCopy*/
 spData->SetData(vtMissing, COleVariant(long(15))); /*exCFFiles*/
 }
}

The C++ requires #import <exfilevw.dll> to import definitions for ExDataObject and
ExDataObjectFiles objects. The #import <exfilevw.dll> generates the EXFILEVIEWLib
namespace. If the exfilevw.dll file is located in other directory than system folder, the
correct path should be provided, else a compiler error occurs.

The following VB.NET sample starts dragging the selected files:

Private Sub AxExFileView1_OLEStartDrag(ByVal sender As Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_OLEStartDragEvent) Handles
AxExFileView1.OLEStartDrag
 e.data.Files.Clear()
 With AxExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.SelItems)
 Dim i As Integer
 For i = 0 To .Count - 1
 e.data.Files.Add(.Item(i).FullName())
 Next
 End With
 If (e.data.Files.Count > 0) Then
 e.allowedEffects = 1
 e.data.SetData(, EXFILEVIEWLib.exClipboardFormatEnum.exCFFiles)
 End If
End Sub

The following C# sample starts dragging the selected files:

private void axExFileView1_OLEStartDrag(object sender,
AxEXFILEVIEWLib._IExFileViewEvents_OLEStartDragEvent e)
{
 e.data.Files.Clear();
 EXFILEVIEWLib.Files files = axExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.SelItems);
 for (int i = 0 ; i < files.Count; i++)
 e.data.Files.Add(files[i].FullName);
 if (e.data.Files.Count > 0)
 {

 e.allowedEffects = 1;
 e.data.SetData(null, EXFILEVIEWLib.exClipboardFormatEnum.exCFFiles);
 }
}

The following VFP sample starts dragging the selected files:

*** ActiveX Control Event ***
LPARAMETERS data, allowedeffects

Data.Files.Clear
With thisform.ExFileView1.Get(0) && SelItems
 local i
 For i = 0 To .Count - 1
 data.Files.Add(.Item(i).FullName)
 Next
EndWith
If (Data.Files.Count > 0) Then
 AllowedEffects = 1
 data.SetData(, 15) && exCFFiles
EndIf

property ExDataObject.Files as ExDataObjectFiles

Returns a ExDataObjectFiles collection, which in turn contains a list of all filenames used by
a ExDataObject object.

Type Description

ExDataObjectFiles An ExDataObjectFiles object that contains a list of
filenames used in OLE drag and drop operations.

For instance, when the ExDataObject's format is exCFFiles, the Files property retrieves the
files that were dropped to the ExFileView control. The control fires the OLEStartDrag event
to notify your application that the user stars dragging files. The OLEDragDrop event notifies
your application that the user drags some data on the control.

The following VB sample displays the list of files being dragged to the control (open your
Windows Explorer, select some files and drag them to the control) :

Private Sub ExFileView1_OLEDragDrop(ByVal Data As EXFILEVIEWLibCtl.IExDataObject,
Effect As Long, ByVal Button As Integer, ByVal Shift As Integer, ByVal X As Single, ByVal Y As
Single)
 With Data.Files
 Dim i As Long
 For i = 0 To .Count - 1
 Debug.Print .Item(i)
 Next
 End With
End Sub

The following C++ sample displays the list of files being dragged to the control:

#import <exfilevw.dll>
void OnOLEDragDropExfileview1(LPDISPATCH Data, long FAR* Effect, short Button, short
Shift, long X, long Y)
{
 EXFILEVIEWLib::IExDataObjectPtr spData(Data);
 if (spData)
 {
 EXFILEVIEWLib::IExDataObjectFilesPtr spFiles = spData->Files;
 for (long i = 0; i < spFiles->Count; i++)
 OutputDebugString(spFiles->Item[i]);

 }
}

The C++ requires #import <exfilevw.dll> to import definitions for ExDataObject and
ExDataObjectFiles objects. The #import <exfilevw.dll> generates the EXFILEVIEWLib
namespace. If the exfilevw.dll file is located in other directory than system folder, the
correct path should be provided, else a compiler error occurs.

The following VB.NET sample displays the list of files being dragged to the control:

Private Sub AxExFileView1_OLEDragDrop(ByVal sender As Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_OLEDragDropEvent) Handles
AxExFileView1.OLEDragDrop
 With e.data.Files
 Dim i As Long
 For i = 0 To .Count - 1
 Debug.WriteLine(.Item(i))
 Next
 End With
End Sub

The following C# sample displays the list of files being dragged to the control:

private void axExFileView1_OLEDragDrop(object sender,
AxEXFILEVIEWLib._IExFileViewEvents_OLEDragDropEvent e)
{
 EXFILEVIEWLib.ExDataObjectFiles files = e.data.Files;
 for (int i = 0; i < files.Count; i++)
 System.Diagnostics.Debug.WriteLine(files[i]);
}

The following VFP sample displays the list of files being dragged to the control:

*** ActiveX Control Event ***
LPARAMETERS data, effect, button, shift, x, y

With data.Files
 local i
 For i = 0 To .Count - 1

 wait window nowait .Item(i)
 Next
EndWith

method ExDataObject.GetData (Format as Integer)

Returns data from a ExDataObject object in the form of a variant.

Type Description

Format as Integer An exClipboardFormatEnum expression that defines the
data's format.

Return Description

Variant A Variant value that contains the ExDataObject's data in
the given format.

Use GetData property to retrieve the clipboard's data that has been dragged to the
ExFileView control. It's possible for the GetData and SetData methods to use data formats
other than exClipboardFormatEnum , including user-defined formats registered with
Windows via the RegisterClipboardFormat() API function. The GetData method always
returns data in a byte array when it is in a format that it is not recognized. Use the Files
property to retrieve the filenames if the format of data is exCFiles. The OLEDragDrop event
notifies your application that the user drags some data on the control. The control fires the
OLEStartDrag event to notify your application that the user stars dragging files. The
GetFormat property returns a value indicating whether the ExDataObject's data is of
specified format

The following VB sample retrieves the text being dragged to the control:

Private Sub ExFileView1_OLEDragDrop(ByVal Data As EXFILEVIEWLibCtl.IExDataObject,
Effect As Long, ByVal Button As Integer, ByVal Shift As Integer, ByVal X As Single, ByVal Y As
Single)
 With Data
 If .GetFormat(EXFILEVIEWLibCtl.exClipboardFormatEnum.exCFText) Then
 MsgBox .GetData(EXFILEVIEWLibCtl.exClipboardFormatEnum.exCFText)
 End If
 End With
End Sub

The following C++ sample retrieves the text being dragged to the control:

#import <exfilevw.dll>
void OnOLEDragDropExfileview1(LPDISPATCH Data, long FAR* Effect, short Button, short
Shift, long X, long Y)
{

 EXFILEVIEWLib::IExDataObjectPtr spData(Data);
 if (spData)
 if (spData->GetFormat(1 /*exCFText*/))
 {
 CString strText = V2S(&spData->GetData(1 /*exCFText*/));
 MessageBox(strText);
 }
}

The C++ requires #import <exfilevw.dll> to import definitions for ExDataObject and
ExDataObjectFiles objects. The #import <exfilevw.dll> generates the EXFILEVIEWLib
namespace. If the exfilevw.dll file is located in other directory than system folder, the
correct path should be provided, else a compiler error occurs.

The V2S function converts a VARIANT expression to a string, and may look like follows:

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

The following VB.NET sample retrieves the text being dragged to the control:

Private Sub AxExFileView1_OLEDragDrop(ByVal sender As Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_OLEDragDropEvent) Handles
AxExFileView1.OLEDragDrop
 With e.data
 If .GetFormat(EXFILEVIEWLib.exClipboardFormatEnum.exCFText) Then
 MessageBox.Show(.GetData(EXFILEVIEWLib.exClipboardFormatEnum.exCFText))
 End If

 End With
End Sub

The following C# sample retrieves the text being dragged to the control:

private void axExFileView1_OLEDragDrop(object sender,
AxEXFILEVIEWLib._IExFileViewEvents_OLEDragDropEvent e)
{
 if
(e.data.GetFormat(Convert.ToInt16(EXFILEVIEWLib.exClipboardFormatEnum.exCFText)))

MessageBox.Show(e.data.GetData(Convert.ToInt16(EXFILEVIEWLib.exClipboardFormatEnum.exCFText)).ToString());

}

The following VFP sample retrieves the text being dragged to the control:

*** ActiveX Control Event ***
LPARAMETERS data, effect, button, shift, x, y

With data
 If .GetFormat(1) Then && exCFText
 wait window nowait .GetData(1) && exCFText
 EndIf
EndWith

method ExDataObject.GetFormat (Format as Integer)

Returns a value indicating whether the ExDataObject's data is of specified format.

Type Description

Format as Integer A constant or value that specifies a clipboard data format
like described in exClipboardFormatEnum enum.

Return Description

Boolean A boolean value that indicates whether the ExDataObject's
data is of specified format.

Use the GetFormat property to verify if the ExDataObject's data is of a specified clipboard
format. The GetFormat property retrieves True, if the ExDataObject's data format matches
the given data format. Use the Files property to retrieves the filenames if the format of data
is exCFiles. The OLEDragDrop event notifies your application that the user drags some
data on the control. The control fires the OLEStartDrag event to notify your application that
the user stars dragging files.

The following VB sample retrieves the text being dragged to the control:

Private Sub ExFileView1_OLEDragDrop(ByVal Data As EXFILEVIEWLibCtl.IExDataObject,
Effect As Long, ByVal Button As Integer, ByVal Shift As Integer, ByVal X As Single, ByVal Y As
Single)
 With Data
 If .GetFormat(EXFILEVIEWLibCtl.exClipboardFormatEnum.exCFText) Then
 MsgBox .GetData(EXFILEVIEWLibCtl.exClipboardFormatEnum.exCFText)
 End If
 End With
End Sub

The following C++ sample retrieves the text being dragged to the control:

#import <exfilevw.dll>
void OnOLEDragDropExfileview1(LPDISPATCH Data, long FAR* Effect, short Button, short
Shift, long X, long Y)
{
 EXFILEVIEWLib::IExDataObjectPtr spData(Data);
 if (spData)
 if (spData->GetFormat(1 /*exCFText*/))
 {

 CString strText = V2S(&spData->GetData(1 /*exCFText*/));
 MessageBox(strText);
 }
}

The C++ requires #import <exfilevw.dll> to import definitions for ExDataObject and
ExDataObjectFiles objects. The #import <exfilevw.dll> generates the EXFILEVIEWLib
namespace. If the exfilevw.dll file is located in other directory than system folder, the
correct path should be provided, else a compiler error occurs.

The V2S function converts a VARIANT expression to a string, and may look like follows:

static CString V2S(VARIANT* pv, LPCTSTR szDefault = _T(""))
{
 if (pv)
 {
 if (pv->vt == VT_ERROR)
 return szDefault;

 COleVariant vt;
 vt.ChangeType(VT_BSTR, pv);
 return V_BSTR(&vt);
 }
 return szDefault;
}

The following VB.NET sample retrieves the text being dragged to the control:

Private Sub AxExFileView1_OLEDragDrop(ByVal sender As Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_OLEDragDropEvent) Handles
AxExFileView1.OLEDragDrop
 With e.data
 If .GetFormat(EXFILEVIEWLib.exClipboardFormatEnum.exCFText) Then
 MessageBox.Show(.GetData(EXFILEVIEWLib.exClipboardFormatEnum.exCFText))
 End If
 End With
End Sub

The following C# sample retrieves the text being dragged to the control:

private void axExFileView1_OLEDragDrop(object sender,
AxEXFILEVIEWLib._IExFileViewEvents_OLEDragDropEvent e)
{
 if
(e.data.GetFormat(Convert.ToInt16(EXFILEVIEWLib.exClipboardFormatEnum.exCFText)))

MessageBox.Show(e.data.GetData(Convert.ToInt16(EXFILEVIEWLib.exClipboardFormatEnum.exCFText)).ToString());

}

The following VFP sample retrieves the text being dragged to the control:

*** ActiveX Control Event ***
LPARAMETERS data, effect, button, shift, x, y

With data
 If .GetFormat(1) Then && exCFText
 wait window nowait .GetData(1) && exCFText
 EndIf
EndWith

method ExDataObject.SetData ([Value as Variant], [Format as Variant])

Inserts data into a ExDataObject object using the specified data format.

Type Description
Value as Variant A data being inserted to the ExDataObject object.

Format as Variant A constant or value that specifies the data format, as
described in exClipboardFormatEnum enum.

Use SetData property to insert data for OLE drag and drop operations. Use the Files
property is you are going to add new files to the clipboard data. You can use the
RegisterClipboardFormat API function to register a new clipboard format. This format can
then be used as a valid clipboard format. The control fires the OLEStartDrag event to notify
your application that the user stars dragging files. The OLEDragDrop event notifies your
application that the user drags some data on the control. Use the Get property to retrieve
the selected items. Use the FullName property to retrieve the full name of the file. Use the
SingleSel property to allow multiple selection in the control.

The following VB sample starts dragging the selected files:

Private Sub ExFileView1_OLEStartDrag(ByVal Data As ExDataObject, AllowedEffects As
Long)
 Data.Files.Clear
 With ExFileView1.Get(SelItems)
 Dim i As Long
 For i = 0 To .Count - 1
 Data.Files.Add .Item(i).FullName
 Next
 End With
 If (Data.Files.Count > 0) Then
 AllowedEffects = 1
 Data.SetData , exCFFiles
 End If
End Sub

The following C++ sample starts dragging the selected files:

#import <exfilevw.dll>
void OnOLEStartDragExfileview1(LPDISPATCH Data, long FAR* AllowedEffects)
{

 EXFILEVIEWLib::IExDataObjectPtr spData(Data);
 spData->Clear();
 CFiles files = m_fileview.GetGet(0 /*SelItems*/);
 for (long i = 0; i < files.GetCount(); i++)
 spData->Files->Add(files.GetItem(COleVariant(i)).GetFullName().operator
LPCTSTR());
 if (spData->Files->Count > 0)
 {
 *AllowedEffects = 1; /*exOLEDropEffectCopy*/
 spData->SetData(vtMissing, COleVariant(long(15))); /*exCFFiles*/
 }
}

The C++ requires #import <exfilevw.dll> to import definitions for ExDataObject and
ExDataObjectFiles objects. The #import <exfilevw.dll> generates the EXFILEVIEWLib
namespace. If the exfilevw.dll file is located in other directory than system folder, the
correct path should be provided, else a compiler error occurs.

The following VB.NET sample starts dragging the selected files:

Private Sub AxExFileView1_OLEStartDrag(ByVal sender As Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_OLEStartDragEvent) Handles
AxExFileView1.OLEStartDrag
 e.data.Files.Clear()
 With AxExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.SelItems)
 Dim i As Integer
 For i = 0 To .Count - 1
 e.data.Files.Add(.Item(i).FullName())
 Next
 End With
 If (e.data.Files.Count > 0) Then
 e.allowedEffects = 1
 e.data.SetData(, EXFILEVIEWLib.exClipboardFormatEnum.exCFFiles)
 End If
End Sub

The following C# sample starts dragging the selected files:

private void axExFileView1_OLEStartDrag(object sender,

AxEXFILEVIEWLib._IExFileViewEvents_OLEStartDragEvent e)
{
 e.data.Files.Clear();
 EXFILEVIEWLib.Files files = axExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.SelItems);
 for (int i = 0 ; i < files.Count; i++)
 e.data.Files.Add(files[i].FullName);
 if (e.data.Files.Count > 0)
 {
 e.allowedEffects = 1;
 e.data.SetData(null, EXFILEVIEWLib.exClipboardFormatEnum.exCFFiles);
 }
}

The following VFP sample starts dragging the selected files:

*** ActiveX Control Event ***
LPARAMETERS data, allowedeffects

Data.Files.Clear
With thisform.ExFileView1.Get(0) && SelItems
 local i
 For i = 0 To .Count - 1
 data.Files.Add(.Item(i).FullName)
 Next
EndWith
If (Data.Files.Count > 0) Then
 AllowedEffects = 1
 data.SetData(, 15) && exCFFiles
EndIf

ExDataObjectFiles object

The ExDataObjectFiles contains a collection of filenames. The ExDataObjectFiles object is
used in OLE Drag and drop events. In order to get the list of files used in drag and drop
operations you have to use the Files property.

Name Description
Add Adds a filename to the Files collection
Clear Removes all file names in the collection.
Count Returns the number of file names in the collection.
Item Returns an specific file name.
Remove Removes an specific file name.

method ExDataObjectFiles.Add (FileName as String)

Adds a filename to the Files collection

Type Description
FileName as String A string expression that indicates a filename.

Use Add method to add your files to the drag and drop data source. Use the Files property
to retrieve the filenames if the format of data is exCFiles. The OLEDragDrop event notifies
your application that the user drags some data on the control. The control fires the
OLEStartDrag event to notify your application that the user stars dragging files. Use the
Get property to retrieve the selected items. Use the FullName property to retrieve the full
name of the file. You can use the RegisterClipboardFormat API function to register a new
clipboard format. This format can then be used as a valid clipboard format. Use the
SingleSel property to allow multiple selection in the control.

The following VB sample starts dragging the selected files:

Private Sub ExFileView1_OLEStartDrag(ByVal Data As ExDataObject, AllowedEffects As
Long)
 Data.Files.Clear
 With ExFileView1.Get(SelItems)
 Dim i As Long
 For i = 0 To .Count - 1
 Data.Files.Add .Item(i).FullName
 Next
 End With
 If (Data.Files.Count > 0) Then
 AllowedEffects = 1
 Data.SetData , exCFFiles
 End If
End Sub

The following C++ sample starts dragging the selected files:

#import <exfilevw.dll>
void OnOLEStartDragExfileview1(LPDISPATCH Data, long FAR* AllowedEffects)
{
 EXFILEVIEWLib::IExDataObjectPtr spData(Data);
 spData->Clear();

 CFiles files = m_fileview.GetGet(0 /*SelItems*/);
 for (long i = 0; i < files.GetCount(); i++)
 spData->Files->Add(files.GetItem(COleVariant(i)).GetFullName().operator
LPCTSTR());
 if (spData->Files->Count > 0)
 {
 *AllowedEffects = 1; /*exOLEDropEffectCopy*/
 spData->SetData(vtMissing, COleVariant(long(15))); /*exCFFiles*/
 }
}

The C++ requires #import <exfilevw.dll> to import definitions for ExDataObject and
ExDataObjectFiles objects. The #import <exfilevw.dll> generates the EXFILEVIEWLib
namespace. If the exfilevw.dll file is located in other directory than system folder, the
correct path should be provided, else a compiler error occurs.

The following VB.NET sample starts dragging the selected files:

Private Sub AxExFileView1_OLEStartDrag(ByVal sender As Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_OLEStartDragEvent) Handles
AxExFileView1.OLEStartDrag
 e.data.Files.Clear()
 With AxExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.SelItems)
 Dim i As Integer
 For i = 0 To .Count - 1
 e.data.Files.Add(.Item(i).FullName())
 Next
 End With
 If (e.data.Files.Count > 0) Then
 e.allowedEffects = 1
 e.data.SetData(, EXFILEVIEWLib.exClipboardFormatEnum.exCFFiles)
 End If
End Sub

The following C# sample starts dragging the selected files:

private void axExFileView1_OLEStartDrag(object sender,
AxEXFILEVIEWLib._IExFileViewEvents_OLEStartDragEvent e)
{

 e.data.Files.Clear();
 EXFILEVIEWLib.Files files = axExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.SelItems);
 for (int i = 0 ; i < files.Count; i++)
 e.data.Files.Add(files[i].FullName);
 if (e.data.Files.Count > 0)
 {
 e.allowedEffects = 1;
 e.data.SetData(null, EXFILEVIEWLib.exClipboardFormatEnum.exCFFiles);
 }
}

The following VFP sample starts dragging the selected files:

*** ActiveX Control Event ***
LPARAMETERS data, allowedeffects

Data.Files.Clear
With thisform.ExFileView1.Get(0) && SelItems
 local i
 For i = 0 To .Count - 1
 data.Files.Add(.Item(i).FullName)
 Next
EndWith
If (Data.Files.Count > 0) Then
 AllowedEffects = 1
 data.SetData(, 15) && exCFFiles
EndIf

method ExDataObjectFiles.Clear ()

Removes all file names in the collection.

Type Description

Use the Clear method to remove all filenames from the collection. Use the Add method to
add new files to the drag and drop data source. Use the Files property to retrieves the
filenames if the format of data is exCFiles. The OLEDragDrop event notifies your
application that the user drags some data on the control. The control fires the
OLEStartDrag event to notify your application that the user stars dragging files. Use the
Get property to retrieve the selected items. Use the FullName property to retrieve the full
name of the file. You can use the RegisterClipboardFormat API function to register a new
clipboard format. This format can then be used as a valid clipboard format. Use the
SingleSel property to allow multiple selection in the control.

The following VB sample starts dragging the selected files:

Private Sub ExFileView1_OLEStartDrag(ByVal Data As ExDataObject, AllowedEffects As
Long)
 Data.Files.Clear
 With ExFileView1.Get(SelItems)
 Dim i As Long
 For i = 0 To .Count - 1
 Data.Files.Add .Item(i).FullName
 Next
 End With
 If (Data.Files.Count > 0) Then
 AllowedEffects = 1
 Data.SetData , exCFFiles
 End If
End Sub

The following C++ sample starts dragging the selected files:

#import <exfilevw.dll>
void OnOLEStartDragExfileview1(LPDISPATCH Data, long FAR* AllowedEffects)
{
 EXFILEVIEWLib::IExDataObjectPtr spData(Data);
 spData->Clear();

 CFiles files = m_fileview.GetGet(0 /*SelItems*/);
 for (long i = 0; i < files.GetCount(); i++)
 spData->Files->Add(files.GetItem(COleVariant(i)).GetFullName().operator
LPCTSTR());
 if (spData->Files->Count > 0)
 {
 *AllowedEffects = 1; /*exOLEDropEffectCopy*/
 spData->SetData(vtMissing, COleVariant(long(15))); /*exCFFiles*/
 }
}

The C++ requires #import <exfilevw.dll> to import definitions for ExDataObject and
ExDataObjectFiles objects. The #import <exfilevw.dll> generates the EXFILEVIEWLib
namespace. If the exfilevw.dll file is located in other directory than system folder, the
correct path should be provided, else a compiler error occurs.

The following VB.NET sample starts dragging the selected files:

Private Sub AxExFileView1_OLEStartDrag(ByVal sender As Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_OLEStartDragEvent) Handles
AxExFileView1.OLEStartDrag
 e.data.Files.Clear()
 With AxExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.SelItems)
 Dim i As Integer
 For i = 0 To .Count - 1
 e.data.Files.Add(.Item(i).FullName())
 Next
 End With
 If (e.data.Files.Count > 0) Then
 e.allowedEffects = 1
 e.data.SetData(, EXFILEVIEWLib.exClipboardFormatEnum.exCFFiles)
 End If
End Sub

The following C# sample starts dragging the selected files:

private void axExFileView1_OLEStartDrag(object sender,
AxEXFILEVIEWLib._IExFileViewEvents_OLEStartDragEvent e)
{

 e.data.Files.Clear();
 EXFILEVIEWLib.Files files = axExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.SelItems);
 for (int i = 0 ; i < files.Count; i++)
 e.data.Files.Add(files[i].FullName);
 if (e.data.Files.Count > 0)
 {
 e.allowedEffects = 1;
 e.data.SetData(null, EXFILEVIEWLib.exClipboardFormatEnum.exCFFiles);
 }
}

The following VFP sample starts dragging the selected files:

*** ActiveX Control Event ***
LPARAMETERS data, allowedeffects

Data.Files.Clear
With thisform.ExFileView1.Get(0) && SelItems
 local i
 For i = 0 To .Count - 1
 data.Files.Add(.Item(i).FullName)
 Next
EndWith
If (Data.Files.Count > 0) Then
 AllowedEffects = 1
 data.SetData(, 15) && exCFFiles
EndIf

property ExDataObjectFiles.Count as Long

Returns the number of file names in the collection.

Type Description

Long A long value that indicates the count of elements into
collection.

Use the Count property to retrieve the number of files in the drag and drop data source.
Use the Item property to retrieve the file giving its index. Use the Files property to retrieve
the filenames if the format of data is exCFiles. The OLEDragDrop event notifies your
application that the user drags some data on the control. Use the GetFormat property to
retrieve the type of data being carried by the drag and drop data source.

The following VB sample displays the list of files being dragged to the control (open your
Windows Explorer, select some files and drag them to the control) :

Private Sub ExFileView1_OLEDragDrop(ByVal Data As EXFILEVIEWLibCtl.IExDataObject,
Effect As Long, ByVal Button As Integer, ByVal Shift As Integer, ByVal X As Single, ByVal Y As
Single)
 With Data.Files
 Dim i As Long
 For i = 0 To .Count - 1
 Debug.Print .Item(i)
 Next
 End With
End Sub

The following C++ sample displays the list of files being dragged to the control:

#import <exfilevw.dll>
void OnOLEDragDropExfileview1(LPDISPATCH Data, long FAR* Effect, short Button, short
Shift, long X, long Y)
{
 EXFILEVIEWLib::IExDataObjectPtr spData(Data);
 if (spData)
 {
 EXFILEVIEWLib::IExDataObjectFilesPtr spFiles = spData->Files;
 for (long i = 0; i < spFiles->Count; i++)
 OutputDebugString(spFiles->Item[i]);

 }
}

The C++ requires #import <exfilevw.dll> to import definitions for ExDataObject and
ExDataObjectFiles objects. The #import <exfilevw.dll> generates the EXFILEVIEWLib
namespace. If the exfilevw.dll file is located in other directory than system folder, the
correct path should be provided, else a compiler error occurs.

The following VB.NET sample displays the list of files being dragged to the control:

Private Sub AxExFileView1_OLEDragDrop(ByVal sender As Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_OLEDragDropEvent) Handles
AxExFileView1.OLEDragDrop
 With e.data.Files
 Dim i As Long
 For i = 0 To .Count - 1
 Debug.WriteLine(.Item(i))
 Next
 End With
End Sub

The following C# sample displays the list of files being dragged to the control:

private void axExFileView1_OLEDragDrop(object sender,
AxEXFILEVIEWLib._IExFileViewEvents_OLEDragDropEvent e)
{
 EXFILEVIEWLib.ExDataObjectFiles files = e.data.Files;
 for (int i = 0; i < files.Count; i++)
 System.Diagnostics.Debug.WriteLine(files[i]);
}

The following VFP sample displays the list of files being dragged to the control:

*** ActiveX Control Event ***
LPARAMETERS data, effect, button, shift, x, y

With data.Files
 local i
 For i = 0 To .Count - 1

 wait window nowait .Item(i)
 Next
EndWith

property ExDataObjectFiles.Item (Index as Long) as String

Returns a specific file name given its index.

Type Description
Index as Long A long expression that indicates the filename's index.
String A string value that indicates the filename

The Item property gets a file giving its index. The Count property counts the number of files
in the collection. Use the Files property to retrieve the filenames if the format of data is
exCFiles. The OLEDragDrop event notifies your application that the user drags some data
on the control. Use the GetFormat property to retrieve the type of data being carried by the
drag and drop data source.

The following VB sample displays the list of files being dragged to the control (open your
Windows Explorer, select some files and drag them to the control) :

Private Sub ExFileView1_OLEDragDrop(ByVal Data As EXFILEVIEWLibCtl.IExDataObject,
Effect As Long, ByVal Button As Integer, ByVal Shift As Integer, ByVal X As Single, ByVal Y As
Single)
 With Data.Files
 Dim i As Long
 For i = 0 To .Count - 1
 Debug.Print .Item(i)
 Next
 End With
End Sub

The following C++ sample displays the list of files being dragged to the control:

#import <exfilevw.dll>
void OnOLEDragDropExfileview1(LPDISPATCH Data, long FAR* Effect, short Button, short
Shift, long X, long Y)
{
 EXFILEVIEWLib::IExDataObjectPtr spData(Data);
 if (spData)
 {
 EXFILEVIEWLib::IExDataObjectFilesPtr spFiles = spData->Files;
 for (long i = 0; i < spFiles->Count; i++)

 OutputDebugString(spFiles->Item[i]);
 }
}

The C++ requires #import <exfilevw.dll> to import definitions for ExDataObject and
ExDataObjectFiles objects. The #import <exfilevw.dll> generates the EXFILEVIEWLib
namespace. If the exfilevw.dll file is located in other directory than system folder, the
correct path should be provided, else a compiler error occurs.

The following VB.NET sample displays the list of files being dragged to the control:

Private Sub AxExFileView1_OLEDragDrop(ByVal sender As Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_OLEDragDropEvent) Handles
AxExFileView1.OLEDragDrop
 With e.data.Files
 Dim i As Long
 For i = 0 To .Count - 1
 Debug.WriteLine(.Item(i))
 Next
 End With
End Sub

The following C# sample displays the list of files being dragged to the control:

private void axExFileView1_OLEDragDrop(object sender,
AxEXFILEVIEWLib._IExFileViewEvents_OLEDragDropEvent e)
{
 EXFILEVIEWLib.ExDataObjectFiles files = e.data.Files;
 for (int i = 0; i < files.Count; i++)
 System.Diagnostics.Debug.WriteLine(files[i]);
}

The following VFP sample displays the list of files being dragged to the control:

*** ActiveX Control Event ***
LPARAMETERS data, effect, button, shift, x, y

With data.Files
 local i

 For i = 0 To .Count - 1
 wait window nowait .Item(i)
 Next
EndWith

method ExDataObjectFiles.Remove (Index as Long)

Removes a specific file name given its index into collection.

Type Description

Index as Long A long expression that indicates the index of filename into
collection.

Use the Remove method to remove a file name from the collection. Use Clear method to
remove all filenames. Use Add method to add your files to the drag and drop data source.
The control fires the OLEStartDrag event to notify your application that the user stars
dragging files. Use the Get property to retrieve the selected items. Use the FullName
property to retrieve the full name of the file. You can use the RegisterClipboardFormat API
function to register a new clipboard format. This format can then be used as a valid
clipboard format. Use the SingleSel property to allow multiple selection in the control.

ExFileView object
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {F26C97E5-3E86-4CE4-935B-A997AB3DDBE4}. The object's program identifier is:
"Exontrol.ExFileView". The /COM object module is: "ExFileVw.dll"

Provide rich display of file and folder information from within your applications. ExFileView is
an ActiveX component for creating Windows Explorer-style functionality. Files with different
attributes can be displayed with different color, background color, font, etc. It can also filter
the files based on files extensions using Include or Exclude clauses. The ExFileView
component is able to change the displayed icon, or type file, supports Drag & Drop,
incremental search, mouse wheel and more. The ExFileView control is able to show the
folders that contains files change into a given interval. The ExFileView components supports
the following methods and properties:

Name Description
AddColumnCustomFilter Adds a custom filter to the column.

AllowEnterFolder Specifies whether a new folder is opened, once the user
presses the Enter key or double-clicks a folder.

AllowMenuContext Enables or disables the file's context menu.

AllowRename Retrieves or sets a value that indicates whether the
control allows renaming items.

AllowSelectNothing Specifies whether the current selection is erased, once the
user clicks outside of the items section.

AllowShortcutFolders Specifies whether the shortcut-folders are shown as
folders or files.

Appearance Retrieves or sets the control's appearance.
ApplyFilter Applies the filter.

Asynchronous Specifies whether the files and folders information is
loading in the background.

AttachTemplate Attaches a script to the current object, including the
events, from a string, file, a safe array of bytes.

AutoDrag Gets or sets a value that indicates the way the component
supports the AutoDrag feature.

AutoUpdate Determines whether the control is refreshed while a file or
folder is changed, moved, or renamed.

BackColor Retrieves or sets the control's background.
BackColorHeader Specifies the header's background color.

Returns or sets a value that indicates the background

Background color for parts in the control.

BeginUpdate Prevents the control from painting until the EndUpdate
method is called.

BrowseFolderPath Retrieves or sets the browsed folder path.

ChangeNotification Enables or disables control's notifications by firing Change
event, whether the control's list is altered.

ClearColumnCustomFilters Clears the list of column's custom filters.
ClearFilter Clears the filter.
ClearImages Clears the loaded images.

ColumnAutoResize
Returns or sets a value indicating whether the control will
automatically size its visible columns to fit on the control's
client width.

ColumnCaption Specifies the column's caption.
ColumnFilter Specifies the column's filter when filter type is exFilter.

ColumnFilterButton Specifies a value that indicates whether the column
displays the filter button.

ColumnFilterType Specifies the column's filter type.

ColumnsAllowSizing Retrieves or sets a value that indicates whether a user
can resize columns at run-time.

ColumnsVisible Indicates the columns being visible.

ColumnVisible Retrieves or sets a value that indicates whether the
column is visible or hidden.

ColumnWidth Retrieves or sets a value that indicates the column's width.

Copy Copies the control's content to the clipboard, in the EMF
format.

CopyTo Exports the control's view to an EMF file.
Debug Displays information in debug mode.

DefaultItemHeight Retrieves or sets a value that indicates the default item
height.

Description Changes descriptions for control objects.

DisplayFoldersInfo Specifies whether the control displays the Size, Type,
Modified for folders objects.

Enabled Enables or disables the control.
Resumes painting the control after painting is suspended

EndUpdate by the BeginUpdate method.

EventParam Retrieves or sets a value that indicates the current's event
parameter.

ExcludeFilter Specifies the pattern used to exclude files from the
control's list, like '*.tmp *.log'.

ExcludeFolderFilter Retrieves or sets a value that indicates the folders being
excluded.

ExecuteContextCommand Executes a context menu command.
ExecuteContextMenu Executes a command from the object's context menu.
ExecuteTemplate Executes a template and returns the result.
Expand Expands and selects a folder giving its path.

ExpandFolders Retrieves or sets a value that indicates whether the
control expands the folder objects.

ExpandOnDblClk Retrieves or sets a value that indicates whether a folder is
expanded by double click.

ExploreFromHere Specifies the root folder for the control.
FileFromPoint Retrieves the file from the point.
FileTypes Retrieves the control's FileTypes collection.
FilterBarBackColor Specifies the background color of the control's filter bar.
FilterBarCaption Specifies the filter bar's caption.

FilterBarDropDownHeight Specifies the height of the drop down filter window
proportionally with the height of the control's list.

FilterBarDropDownWidth Specifies the width of the drop down filter window
proportionally with the width of the control's column.

FilterBarFont Retrieves or sets the font for control's filter bar.
FilterBarForeColor Specifies the foreground color of the control's filter bar.

FilterBarHeight
Specifies the height of the control's filter bar. If the value is
less than 0, the filterbar is automatically resized to fit its
description.

FilterBarPrompt Specifies the caption to be displayed when the filter
pattern is missing.

FilterBarPromptColumns Specifies the list of columns to be used when filtering
using the prompt.

FilterBarPromptPattern Specifies the pattern for the filter prompt.

FilterBarPromptType Specifies the type of the filter prompt.

FilterBarPromptVisible Shows or hides the filter prompt.

FilterInclude Specifies the items being included after the user applies
the filter.

Font Retrieves or sets the Font object used to paint control.
ForeColor Retrieves or sets the control's foreground color.
ForeColorHeader Specifies the header's foreground color.

FormatABC Formats the A,B,C values based on the giving expression
and returns the result.

FreezeEvents Prevents the control to fire any event.
FullRowSelect Enables full-row selection in the control.

Get Builds and gets the collection of File objects of the given
type.

HasButtons Adds a button to the left side of each parent item.

HasCheckBox Specifies whether the control displays a check box for
each item.

HasLines Retrieves or sets a value that indicates whether the
control links the child items to their parents.

HasLinesAtRoot Retrieves or sets a value that indicates whether the
control draws the lines that link the root items.

HeaderAppearance Retrieves or sets a value that indicates the header's
appearance.

HeaderHeight Retrieves or sets a value indicating the control's header
height.

HeaderVisible Retrieves or sets a value that indicates whether the
control's header bar is visible or hidden.

HideSelection Returns a value that determines whether selected item
appears highlighted when a control loses the focus.

HotBackColor Retrieves or sets a value that indicates the hot-tracking
background color.

HotForeColor Retrieves or sets a value that indicates the hot-tracking
foreground color.

hWnd Retrieves the control's window handle.
ImageSize Retrieves or sets the size of icons the control displays.

IncludeFiles Retrieves or sets a value indicating whether the control
includes the files to the list.

IncludeFilesInFolder Retrieves or sets a value that indicates whether the
control includes files when expanding a folder.

IncludeFilter Specifies the pattern used to include files to the control's
list, like '*.cpp *.h'

IncludeFolderFilter Retrieves or sets a value that indicates the folders being
included.

IncludeFolders Retrieves or sets a value that indicates whether the
control includes the folders.

IncludeParent Retrieves or sets a value that indicates whether the
control includes the parent folder.

IncludeParentIconKey
Retrieves or sets a value that indicates the key of the icon
used for 'Parent' button. Use LoadIcon property to load
icons to control.

IncludeParentLabel Specifies the label for the parent item.

IncludeSubFolderIconKey Retrieves or sets a value that indicates the key of the icon
to highlights folders that includes sub-folders.

IncrementalSearch Specifies how the control searches for the objects while
user types characters.

Indent Retrieves or sets the amount, in pixels, that child items are
indented relative to their parent items.

IsBusy Indicates whether the control still collects information
about current files and folders.

Layout Saves or loads the control's layout, such as positions of
the columns, scroll position, filtering values.

LoadIcon Appends a new icon image to control images collection.
LoadIcons Loads new images to control.

LoadIconsKey Specifies the starting key when the LoadIcons method is
used.

Loading Specifies the HTML caption being displayed in the list if
loading files or folders could take long time.

ModifiedDaysAgo
Specifies a value that indicates whether the Modified
column shows the number of days ago when the file is last
updated.

OLEDrag Causes a component to initiate an OLE drag/drop

operation.

OLEDropMode Returns or sets how a target component handles drop
operations

Option Retrieves or sets a value that indicates an option for the
control.

Picture Retrieves or sets a graphic to be displayed in the control.

PictureDisplay Retrieves or sets a value that indicates the way how the
graphic is displayed on the control's background

Refresh Refreshes the control.
ScrollButtonHeight Specifies the height of the button in the vertical scrollbar.
ScrollButtonWidth Specifies the width of the button in the horizontal scrollbar.
ScrollFont Retrieves or sets the scrollbar's font.
ScrollHeight Specifies the height of the horizontal scrollbar.
ScrollOrderParts Specifies the order of the buttons in the scroll bar.

ScrollPartCaption Specifies the caption being displayed on the specified
scroll part.

ScrollPartCaptionAlignment Specifies the alignment of the caption in the part of the
scroll bar.

ScrollPartEnable Indicates whether the specified scroll part is enabled or
disabled.

ScrollPartVisible Indicates whether the specified scroll part is visible or
hidden.

ScrollThumbSize Specifies the size of the thumb in the scrollbar.

ScrollToolTip Specifies the tooltip being shown when the user moves the
scroll box.

ScrollWidth Specifies the width of the vertical scrollbar.

Search Specifies the list of files and folders including wild card
characters to search for.

SelBackColor Retrieves or sets a value that indicates the selection
background color.

Select Selects a folder, giving its displaying name, relative or
absolute path.

SelectByDrag Specifies whether the user can select multiple files/folders
by dragging.

SelectOnRelease Indicates whether the selection occurs when the user
releases the mouse button.

SelForeColor Retrieves or sets a value that indicates the selection
foreground color.

ShowContextMenu Specifies the object's context menu.

ShowFocusRect Retrieves or sets a value indicating whether the control
draws a thin rectangle arround the focused item.

SingleSel Retrieves or sets a value indicating whether control
support single or multiples selection.

Sort Sorts a column.
Statistics Gives statistics data of objects being hold by the control.
StopSearch Stops the searching operation.
Template Specifies the control's template.

TemplateDef Defines inside variables for the next
Template/ExecuteTemplate call.

TemplatePut Defines inside variables for the next
Template/ExecuteTemplate call.

ToolTipDelay Specifies the time in ms that passes before the ToolTip
appears.

ToolTipFont Retrieves or sets the tooltip's font.

ToolTipPopDelay Specifies the period in ms of time the ToolTip remains
visible if the mouse pointer is stationary within a control.

ToolTipWidth Specifies a value that indicates the width of the tooltip
window, in pixels.

UseVisualTheme Specifies whether the control uses the current visual
theme to display certain UI parts.

Version Retrieves the control's version.
VisualAppearance Retrieves the control's appearance.

method ExFileView.AddColumnCustomFilter (ColumnName as String,
Caption as String, Filter as String)

Adds a custom filter to the column. /*not supported in the lite version*/

Type Description

ColumnName as String
A string expression that indicates the column's name. The
valid values are: 'Name', 'Size', 'Modified', 'Type', 'In
Folder'

Caption as String A string expression that indicates the caption for filter
pattern.

Filter as String
A string expression that indicates filter pattern being
added. The Filter parameter supports wild characters like:
?, *, ...

Use the AddColumnCustomFilter method to add custom filter patterns to the control's drop
down filter window. Use the ColumnFilterButton property to display the filter button in the
column's header. Use the ColumnFilter, ColumnFilterType properties and ApplyFilter method
to apply a filter to the control's content. Use the ClearColumnCustomFilters method to clear
the list of custom filter patterns. Use the FilterBarDropDownHeight property to specify the
drop down filter window. A pattern filter may contain the wild card characters '?' for any
single character, '*' for zero or more occurrences of any character, '#' for any digit
character, '^' negates the pattern, '|' determines the options in the pattern. For instance:
'*.bat|*.exe' specifies all files that have the 'bat' or 'exe' extension.

The following VB sample adds custom filter patterns for executable files:

With ExFileView1
 .FilterBarDropDownHeight = 0.7
 .ColumnFilterButton("Name") = True
 .AddColumnCustomFilter "Name", "(Executable files)", "*.exe|*.com|*.bat"
End With

The following C++ sample adds custom filter patterns for executable files:

m_fileview.SetFilterBarDropDownHeight(0.7);
m_fileview.SetColumnFilterButton("Name", TRUE);
m_fileview.AddColumnCustomFilter("Name", "(Executable files)", "*.exe|*.com|*.bat");

The following VB.NET sample adds custom filter patterns for executable files:

With AxExFileView1
 .FilterBarDropDownHeight = 0.7
 .set_ColumnFilterButton("Name", True)
 .AddColumnCustomFilter("Name", "(Executable files)", "*.exe|*.com|*.bat")
End With

The following C# sample adds custom filter patterns for executable files:

axExFileView1.FilterBarDropDownHeight = 0.7;
axExFileView1.set_ColumnFilterButton("Name", true);
axExFileView1.AddColumnCustomFilter("Name", "(Executable files)", "*.exe|*.com|*.bat");

The following VFP sample adds custom filter patterns for executable files:

With thisform.ExFileView1
 .FilterBarDropDownHeight = 0.7
 .Object.ColumnFilterButton("Name") = .t.
 .AddColumnCustomFilter("Name", "(Executable files)", "*.exe|*.com|*.bat")
EndWith

property ExFileView.AllowEnterFolder as Boolean
Specifies whether a new folder is opened, once the user presses the Enter key or double-
clicks a folder.

Type Description

Boolean
A Boolean expression that specifies whether a new folder
is opened, once the user presses the Enter key or double-
clicks a folder.

By default, the AllowEnterFolder property is True. The AllowEnterFolder property specifies
whether a new folder is opened, once the user presses the Enter key or double-clicks a
folder.

property ExFileView.AllowMenuContext as Boolean

Enables or disables the file's context menu.

Type Description

Boolean A boolean expression that indicates whether the control's
context menu is enabled or disabled.

By default, the AllowContextMenu property is True. Use the AllowMenuContext to disable
the control's context menu. The control's context menu is displayed when the user does a
right click on the file or the folder. The system controls the items being inserted to the
control's context menu. Use the ExecuteContextCommand method to execute a command
from the file's context menu. Use the Get property to retrieve the selected item(s). Use the
Name property to specify the name of the file or the folder. Use the Folder property to
specify whether the File object refers a file or a folder. The ShowContextMenu property
indicates the items to be displayed on the object's context menu. The ShowContextMenu
property has effect only during the StateChange event, when the State parameter is
ShowContextMenu. The ShowContextMenu property can be used to disable, update,
remove or add new items. The ExecuteContextMenu property specifies the identifier of the
command to be executed (id option in the ShowContextMenu property). The
ExecuteContextMenu property has effect only during the StateChange event, when the
State parameter is ExecuteContextMenu.

property ExFileView.AllowRename as Boolean

Retrieves or sets a value that indicates whether the control allows renaming items.

Type Description

Boolean A boolean expression that indicates whether the control
allows renaming items.

By default, the AllowRename property is False. The AllowRename property specifies
whether the control allows renaming files or folders. If the AllowRename property is True, a
file/folder can be renamed at runtime, by pressing F2 or by pressing twice the left mouse
button. Use the AllowContextMenu property to specify whether the control displays the
file/folder's context menu when user does a right click. Use the ExecuteContextCommand
method to execute a command from the file's context menu.

property ExFileView.AllowSelectNothing as Boolean
Specifies whether the current selection is erased, once the user clicks outside of the items
section.

Type Description

Boolean
A Boolean expression that specifies whether the current
selection is erased, once the user clicks outside of the
items section.

By default, the AllowSelectNothing property is False. The AllowSelectNothing property
specifies whether the current selection is erased, once the user clicks outside of the items
section. For instance, if the control's SingleSel property is True, and AllowSelectNothing
property is True, you can un-select the single-selected item if pressing the CTRL + Space,
or by CTRL + click.

property ExFileView.AllowShortcutFolders as Boolean
Specifies whether the shortcut-folders are shown as folders or files.

Type Description

Boolean A boolean expression that specifies whether the shortcut-
folders are shown as folders or files

By default, the AllowShortcutFolders property is True. Use the AllowShortcutFolders
property on False to show shortcut-folders as files. The ExpandFolders property retrieves
or sets a value that indicates whether the control expands the folder objects. Use the
ExploreFromHere property specifies the root folder for the control.

The following screen shot shows the shortcut folders as folders (default):

The following screen shot shows the shortcut folders as files:

property ExFileView.Appearance as AppearanceEnum

Retrieves or sets the control's appearance.

Type Description

AppearanceEnum

An AppearanceEnum expression that indicates the
control's appearance, or a color expression whose last 7
bits in the high significant byte of the value indicates the
index of the skin in the Appearance collection, being
displayed as control's borders. For instance, if the
Appearance = 0x1000000, indicates that the first skin
object in the Appearance collection defines the control's
border. The Client object in the skin, defines the
client area of the control. The files/folders, scrollbars
are always shown in the control's client area. The
skin may contain transparent objects, and so you can
define round corners. The frame.ebn file contains
such of objects. Use the eXButton's Skin builder to
view or change this file

Use the Appearance property to specify the control's border. Use the HeaderAppearance
property to change the control's header bar appearance. Use the Add method to add new
skins to the control. Use the BackColor property to specify the control's background color.

The following VB sample changes the visual aspect of the borders of the control (please
check the above picture for round corners):

With ExFileView1
 .BeginUpdate
 .VisualAppearance.Add &H16, "c:\temp\frame.ebn"
 .Appearance = &H16000000
 .BackColor = RGB(250, 250, 250)

https://exontrol.com/exbutton.jsp

 .EndUpdate
End With

The following VB.NET sample changes the visual aspect of the borders of the control:

With AxExFileView1
 .BeginUpdate()
 .VisualAppearance.Add(&H16, "c:\temp\frame.ebn")
 .Appearance = &H16000000
 .BackColor = Color.FromArgb(250, 250, 250)
 .EndUpdate()
End With

The following C# sample changes the visual aspect of the borders of the control:

axExFileView1.BeginUpdate();
axExFileView1.VisualAppearance.Add(0x16, "c:\\temp\\frame.ebn");
axExFileView1.Appearance = (EXFILEVIEWLib.AppearanceEnum)0x16000000;
axExFileView1.BackColor = Color.FromArgb(250, 250, 250);
axExFileView1.EndUpdate();

The following C++ sample changes the visual aspect of the borders of the control:

m_fileView.BeginUpdate();
m_fileView.GetVisualAppearance().Add(0x16, COleVariant("c:\\temp\\frame.ebn"));
m_fileView.SetAppearance(0x16000000);
m_fileView.SetBackColor(RGB(250,250,250));
m_fileView.EndUpdate();

The following VFP sample changes the visual aspect of the borders of the control:

with thisform.ExFileView1
 .BeginUpdate
 .VisualAppearance.Add(0x16, "c:\temp\frame.ebn")
 .Appearance = 0x16000000
 .BackColor = RGB(250, 250, 250)
 .EndUpdate
endwith

method ExFileView.ApplyFilter ()

Applies the filter. /*not supported in the lite version*/

Type Description

The ApplyFilter method updates the control's content once that user sets the filter using the
ColumnFilter and ColumnFilterType properties. Use the ClearFilter method to clear the
control's filter. Use the ColumnFilterButton property to show the filter drop down button in
the column's caption.

The following VB sample filters for executable files:

With ExFileView1
 .ColumnFilterButton("Name") = True
 .ColumnFilter("Name") = "*.exe|*.com|*.bat"
 .ColumnFilterType("Name") = exPattern
 .ApplyFilter
End With

The following C++ sample filters for executable files:

m_fileview.SetColumnFilterButton("Name", TRUE);
m_fileview.SetColumnFilter("Name", "*.exe|*.com|*.bat");
m_fileview.SetColumnFilterType("Name", 1 /*exPattern*/);
m_fileview.ApplyFilter();

The following VB.NET sample filters for executable files:

With AxExFileView1
 .set_ColumnFilterButton("Name", True)
 .set_ColumnFilter("Name", "*.exe|*.com|*.bat")
 .set_ColumnFilterType("Name", EXFILEVIEWLib.FilterTypeEnum.exPattern)
 .ApplyFilter()
End With

The following C# sample filters for executable files:

axExFileView1.set_ColumnFilterButton("Name", true);
axExFileView1.set_ColumnFilter("Name", "*.exe|*.com|*.bat");
axExFileView1.set_ColumnFilterType("Name", EXFILEVIEWLib.FilterTypeEnum.exPattern);

axExFileView1.ApplyFilter();

The following VFP sample filters for executable files:

With thisform.FileView1
 .Object.ColumnFilterButton("Name") = .t.
 .Object.ColumnFilter("Name") = "*.exe|*.com|*.bat"
 .Object.ColumnFilterType("Name") = 1
 .ApplyFilter
EndWith

property ExFileView.Asynchronous as Boolean
Specifies whether the files and folders information is loading in the background.

Type Description

Boolean A boolean expression that specifies whether the control
loads files/folder in the background.

By default, the Asynchronous property is False. The Asynchronous property on True,
improves drastically the performance while loading ten of thousand of files/folders. The
StateChange(BusyState) event notifies the application once the control is busy updating
data to view. The StateChange(ReadyState) event notifies the application once the control
done loading the files/folders into the view.

method ExFileView.AttachTemplate (Template as Variant)
Attaches a script to the current object, including the events, from a string, file, a safe array
of bytes.

Type Description
Template as Variant A string expression that specifies the Template to execute.

The AttachTemplate/x-script code is a simple way of calling control/object's properties,
methods/events using strings. The AttachTemplate features allows you to attach a x-script
code to the component. The AttachTemplate method executes x-script code (including
events), from a string, file or a safe array of bytes. This feature allows you to run any x-
script code for any configuration of the component /COM, /NET or /WPF. Exontrol owns the
x-script implementation in its easiest form and it does not require any VB engine or
whatever to get executed. The x-script code can be converted to several programming
languages using the eXHelper tool.

The following sample opens the Windows Internet Explorer once the user clicks the control
(/COM version):

AttachTemplate("handle Click(){ CreateObject(`internetexplorer.application`){ Visible =
True; Navigate(`https://www.exontrol.com`) } } ")

This script is equivalent with the following VB code:

Private Sub FileView1_Click()
 With CreateObject("internetexplorer.application")
 .Visible = True
 .Navigate ("https://www.exontrol.com")
 End With
End Sub

The AttachTemplate/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>
<lines> := <line>[<eol> <lines>] | <block>
<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]
<eol> := ";" | "\r\n"
<line> := <dim> | <createobject> | <call> | <set> | <comment> | <handle>[<eol>]{[<eol>]
<lines>[<eol>]}[<eol>]
<dim> := "DIM" <variables>
<variables> := <variable> [, <variables>]

<variable> := "ME" | <identifier>
<createobject> := "CREATEOBJECT(`"<type>"`)"
<call> := <variable> | <property> | <variable>"."<property> | <createobject>"."<property>
<property> := [<property>"."]<identifier>["("<parameters>")"]
<set> := <call> "=" <value>
<property> := <identifier> | <identifier>"("[<parameters>]")"
<parameters> := <value> [","<parameters>]
<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> | <call>
<boolean> := "TRUE" | "FALSE"
<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit16> := <digit10> | A | B | C | D | E | F
<integer> := <digit10>[<integer>]
<hexa> := <digit16>[<hexa>]
<color> := "RGB("<integer>","<integer>","<integer>")"
<date> := "#"<integer>"/"<integer>"/"<integer>" "[<integer>":"<integer>":"<integer>"]"#"
<string> := '"'<text>'"' | "`"<text>"`"
<comment> := "'"<text>
<handle> := "handle " <event>
<event> := <identifier>"("[<eparameters>]")"
<eparameters> := <eparameter> [","<eparameters>]
<parameters> := <identifier>

where:

<identifier> indicates an identifier of the variable, property, method or event, and should
start with a letter.
<type> indicates the type the CreateObject function creates, as a progID for /COM version
or the assembly-qualified name of the type to create for /NET or /WPF version
<text> any string of characters

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character.

The advantage of the AttachTemplate relative to Template / ExecuteTemplate is that the
AttachTemplate can add handlers to the control events.

property ExFileView.AutoDrag as AutoDragEnum
Gets or sets a value that indicates the way the component supports the AutoDrag feature.

Type Description

AutoDragEnum
An AutoDragEnum expression that specifies what the
control does once the user clicks and start dragging an
item.

By default, the AutoDrag property is exAutoDragNone(0). The AutoDrag feature indicates
what the control does when the user clicks an item and starts dragging it. For instance,
using the AutoDrag feature you can automatically lets the user to drag and drop the data to
OLE compliant applications like Microsoft Word, Excel and so on. The SingleSel property
specifies whether the control supports single or multiple selection.

Use the AutoDrag property to allow Drag and Drop operations like follows:

Ability to drag and drop the data as text, to your favorite Office applications, like
Word, Excel, or any other OLE-Automation compliant
Ability to drag and drop the data as it looks, to your favorite Office applications, like
Word, Excel, or any other OLE-Automation compliant
Ability to smoothly scroll the control's content moving the mouse cursor up or down
and more ...

https://www.youtube.com/watch?v=4uA7ZI0W3Sk
https://www.youtube.com/watch?v=vunKapyV34g
https://www.youtube.com/watch?v=LIu7eo86GP8

property ExFileView.AutoUpdate as Boolean

Determines whether the control is refreshed while a file or folder is changed, moved, or
renamed.

Type Description

Boolean
A boolean expression that determines whether the control
is refreshed while a file or folder is changed, moved, or
renamed.

Determines if the control auto updates files/folders if the user changes the folder structure
in the background. If the AutoUpdate property is True, the control receives notification
messages each time the folder structure is changed - for example, in another Explorer
window that is running. If the user or another program changes the folder structure , the
control will update itself accordingly. If the AutoUpdate property is False, the changes in
the folder will be updated next time when the control is refreshed. Call the Refresh method
to update the control's content. The control has tow different ways of updating the current
list: by refreshing, or by applying the changes only. If the ChangeNotification property is
True, the control applies only the changes in the browsed folder. Use the BrowseFolderPath
property to specify the path of the browsed folder.

property ExFileView.BackColor as Color

Retrieves or sets the control's background.

Type Description

Color A color expression that indicates the control's background
color.

Use the BackColor property to specify the control's background color. Use the ForeColor
property to change the control's foreground color. Use the BackColor property to specify
the background color for files or folders that match specified patterns. Use the
BackColorHeader property to specify the background color for the control's header bar.
Use the FilterBarBackColor property to specify the background color for the control's filter
bar. Use the SelForeColor and SelBackColor properties to specify the background and
foreground colors for selected items.

property ExFileView.BackColorHeader as Color
Specifies the header's background color.

Type Description

Color

A color expression that indicates the background color for
the control's header. The last 7 bits in the high significant
byte of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

Use the BackColorHeader property to specify the background color for the control's header
bar. Use the ForeColorHeader properties to specify the foreground color for the control's
header bar. The HeaderVisible property shows or hides the control's header bar. Use the
FilterBarBackColor property to specify the background color for the control's filter bar. Use
the BackColor property to specify the control's background color. Use the SelForeColor and
SelBackColor properties to specify the background and foreground colors for selected
items. Use the Background(exCursorHoverColumn) property to specify the column's
appearance when the cursor hovers it.

property ExFileView.Background(Part as BackgroundPartEnum) as
Color

Returns or sets a value that indicates the background color for parts in the control. /*not
supported in the lite version*/

Type Description
Part as
BackgroundPartEnum

A BackgroundPartEnum expression that indicates a part in
the control.

Color

A Color expression that indicates the background color for
a specified part. The last 7 bits in the high significant byte
of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

The Background property specifies a background color or a visual appearance for specific
parts in the control. If the Background property is 0, the control draws the part as default.
Use the Add method to add new skins to the control. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the Refresh method to refresh the control.

The following VB sample changes the visual appearance for the "drop down" filter button.
The sample applies the skin " " to the "drop down" filter buttons:

With ExFileView1
 With .VisualAppearance
 .Add &H1, App.Path + "\fbardd.ebn"
 End With
 .Background(exHeaderFilterBarButton) = &H1000000
End With

The following C++ sample changes the visual appearance for the "drop down" filter button:

#include "Appearance.h"
m_fileview.GetVisualAppearance().Add(0x01,
COleVariant(_T("D:\\Temp\\ExFileView.Help\\fbardd.ebn")));
m_fileview.SetBackground(0 /*exHeaderFilterBarButton*/, 0x1000000);

The following VB.NET sample changes the visual appearance for the "drop down" filter
button:

With AxExFileView1
 With .VisualAppearance
 .Add(&H1, "D:\Temp\ExFileView.Help\fbardd.ebn")
 End With
 .set_Background(EXFILEVIEWLib.BackgroundPartEnum.exHeaderFilterBarButton,
&H1000000)
End With

The following C# sample changes the visual appearance for the "drop down" filter button:

axExFileView1.VisualAppearance.Add(0x1, "D:\\Temp\\ExFileView.Help\\fbardd.ebn");
axExFileView1.set_Background(EXFILEVIEWLib.BackgroundPartEnum.exHeaderFilterBarButton,
 0x1000000);

The following VFP sample changes the visual appearance for the "drop down" filter button:

With thisform.ExFileView1
 With .VisualAppearance
 .Add(1, "D:\Temp\ExFileView.Help\fbardd.ebn")
 EndWith
 .Object.Background(0) = 16777216
EndWith

The 16777216 value is the 0x1000000 value in hexadecimal.

method ExFileView.BeginUpdate ()
Prevents the control from painting until the EndUpdate method is called.

Type Description

property ExFileView.BrowseFolderPath as String

Retrieves or sets the browsed folder path.

Type Description
String A string expression that defines the browsed folder path.

Use the BrowseFolderPath to change the browsed folder. Call the ExploreFromHere
property to set the folder that's the root of the control. The ExploreFromHere property sets
also the BrowseFolderPath to the newly root folder. Use "" (empty string) to browse "My
computer" folder. The BrowseFolderPath property has no effect (returns empty string), if
the control's ExploreFromHere property includes |, > or \r\n characters (shortly the
BrowseFolderPath property has no effect if the control display multiple root-folders).

The control fires the StateChange event when the user changes the browsed path. The
images collection is updated each time a new folder is browsed. Use the LoadIcon or
LoadIcons method to add new icons to the control. Use the AutoUpdate and
ChangeNotification properties to update the control's content when changes occur in the
browsed folder. Use the Expand method to programmatically expand a folder giving its
path.

If changing the folder fails, the BrowseFolderPath property fires the exception "The
BrowseFolderPath property isn't a valid path or the path is not derived from
ExploreFromHere.". In order to prevent the exception you can on error handler like in the
following samples:

On Error Resume Next
With ExFileView1
 .ExploreFromHere = "\\tsclient"
 .BrowseFolderPath = "D\Users\Mihai"
End With

or in VFP:

ON ERROR return
with thisform.exFileView1
 .ExploreFromHere = "\\tsclient"
 .BrowseFolderPath = "D\Users\Mihai"
endwith

The following VB sample changes the browsed folder:

With ExFileView1
 .BrowseFolderPath = "C:\Temp"
End With

The following C++ sample changes the browsed folder:

m_fileview.SetBrowseFolderPath("C:\\Temp");

The following VB.NET sample changes the browsed folder:

With AxExFileView1
 .BrowseFolderPath = "c:\temp"
End With

The following C# sample changes the browsed folder:

axExFileView1.BrowseFolderPath = "c:\\temp";

The following VFP sample changes the browsed folder:

With thisform.ExFileView1
 .BrowseFolderPath = "c:\temp"
EndWith

property ExFileView.ChangeNotification as Boolean

Enables or disables control's notifications by firing Change event, whether the control's list
was altered.

Type Description

Boolean A boolean expression that indicates whether the Change
event is enabled or disabled.

The ChangeNotification has effect only if the AutoUpdate property is True. If the
ChangeNotification property is True, the control fires Change event each time a new change
occurs in the browsed folder (adding, removing, changing files, or folders). Use the State
property to determine the new state of the file or folder. Use the Folder property to specify
whether the object holds information about a folder of a file. Use the BrowseFolderPath
property to indicates the browsed folder.

method ExFileView.ClearColumnCustomFilters (ColumnName as String)

Clears the list of column's custom filters. /*not supported in the lite version*/

Type Description

ColumnName as String
A string expression that indicates the column's name. The
valid values are: 'Name', 'Size', 'Modified', 'Type', 'In
Folder'

Use the ClearColumnCustomFilters method to clear the column's list of filter patterns added
using the AddColumnCustomFilter method. By default, the control adds no custom filter
patterns. Use the ClearFilter method to remove the control's filter.

method ExFileView.ClearFilter ()

Clears the filter. /*not supported in the lite version*/

Type Description

The method clears the ColumnFilter and ColumnFilterType properties for all columns in the
control. The ApplyFilter method is automatically called when ClearFilter method is invoked.
Use the FilterBarHeight property to hide the control's filter bar. Use the FilterBarCaption
property to specify the caption in the control's filter bar. Use the Description property to
change predefined strings in the control's filter bar.

method ExFileView.ClearImages ()

Clears the loaded images.

Type Description

Clears the images previously loaded using the LoadIcon or LoadIcons methods. Use the
Refresh method to update the control's content. Use the IconIndex property of FileType
object to change the file's icon. Use the BrowseFolderPath property to specify the path to
the browsed folder. The control fires the StateChange event when the user changes the
browsed path.

property ExFileView.ColumnAutoResize as Boolean

Returns or sets a value indicating whether the control will automatically size its visible
columns to fit on the control's client width.

Type Description

Boolean
A boolean expression indicating whether the control will
automatically size its visible columns to fit on the control's
client width.

By default, the ColumnAutoResize property is True. If the ColumnAutoResize is True the
control has no horizontal scroll bar. If the ColumnAutoResize property is False, the
horizontal scroll bar of the control is visible if the sum of visible column's width exceeds the
width of the control's client area. Use ColumnWidth property to change the column's width
at runtime. Use the ColumnVisible property to hide a column. Use the HeaderVisible
property to show or hide the control's header bar.

property ExFileView.ColumnCaption(ColumnName as String) as String
Specifies the column's caption.

Type Description

ColumnName as String
A string expression that indicates the column's name. The
valid values are: 'Name', 'Size', 'Modified', 'Type', 'In
Folder'.

String A string expression that indicates the column's caption
using built-in HTML tags.

Use the ColumnCaption property to specify the column's caption. The column's caption is
displayed on the control's header bar. The HeaderVisible property specifies whether the
control displays its header bar. Use the ColumnVisible property to hide or show a
column. Use the BackColorHeader property to specify the background color for the
control's header bar. Use the ForeColorHeader property to specify the foreground color for
the control's header bar.

In VFP environment, you need to call Object property of the control before calling the
ColumnCaption property, else an error occurs.

The ColumnCaption property supports built-in HTML format like follows:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of

about:blank

the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a

value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

The following VB sample changes the caption of the 'Name' column':

ExFileView1.ColumnCaption("Name") = "Verzeichnis"

The following C++ sample changes the caption of the 'Name' column':

m_fileview.SetColumnCaption("Name", "Verzeichnis");

The following VB.NET sample changes the caption of the 'Name' column':

AxExFileView1.set_ColumnCaption("Name", "Verzeichnis")

The following C# sample changes the caption of the 'Name' column':

axExFileView1.set_ColumnCaption("Name", "Verzeichnis");

The following VFP sample changes the caption of the 'Name' column:

with thisform.FileView1
 .Object.ColumnCaption("Name") = "Verzeichnis"
endwith

property ExFileView.ColumnFilter(ColumnName as String) as String

Specifies the column's filter when filter type is exFilter or exPattern. /*not supported in the
lite version*/

Type Description

ColumnName as String
A string expression that indicates the column's name. The
valid values are: 'Name', 'Size', 'Modified', 'Type', 'In
Folder'

String A string expression that specifies the column's filter.

If the ColumnFilterType property is exFilter the ColumnFilter property specifies the list of
values used in filtering. The values are separated by '|' character. For instance if the Filter
property is "CellA| CellB" the control includes only the items that have captions like: "CellA"
or "CellB". If the ColumnFilterType is exPattern the ColumnFilter property defines the list of
patterns used in filtering. The patterns are separator by '|' character. A pattern filter may
contain the wild card characters '?' for any single character, '*' for zero or more
occurrences of any character, '#' for any digit character, ' '̂ negates the pattern, '|'
separates the options in the pattern. For instance: '1*|2*' specifies all items that start with
'1' or '2'. Use the FilterBarCaption property to change the caption for control's filter bar
header. Use the AddColumnCustomFilter method to add custom filters to the column.

The ApplyFilter method should be called to update the control's content after changing the
Filter or FilterType property. The ClearFilter method clears the control's filter.

The following VB sample filters for executable files:

With ExFileView1
 .ColumnFilterButton("Name") = True
 .ColumnFilter("Name") = "*.exe|*.com|*.bat"
 .ColumnFilterType("Name") = exPattern
 .ApplyFilter
End With

The following C++ sample filters for executable files:

m_fileview.SetColumnFilterButton("Name", TRUE);
m_fileview.SetColumnFilter("Name", "*.exe|*.com|*.bat");
m_fileview.SetColumnFilterType("Name", 1 /*exPattern*/);
m_fileview.ApplyFilter();

The following VB.NET sample filters for executable files:

With AxExFileView1
 .set_ColumnFilterButton("Name", True)
 .set_ColumnFilter("Name", "*.exe|*.com|*.bat")
 .set_ColumnFilterType("Name", EXFILEVIEWLib.FilterTypeEnum.exPattern)
 .ApplyFilter()
End With

The following C# sample filters for executable files:

axExFileView1.set_ColumnFilterButton("Name", true);
axExFileView1.set_ColumnFilter("Name", "*.exe|*.com|*.bat");
axExFileView1.set_ColumnFilterType("Name", EXFILEVIEWLib.FilterTypeEnum.exPattern);
axExFileView1.ApplyFilter();

The following VFP sample filters for executable files:

With thisform.FileView1
 .Object.ColumnFilterButton("Name") = .t.
 .Object.ColumnFilter("Name") = "*.exe|*.com|*.bat"
 .Object.ColumnFilterType("Name") = 1
 .ApplyFilter
EndWith

property ExFileView.ColumnFilterButton(ColumnName as String) as
Boolean

Specifies a value that indicates whether the column displays the filter button. /*not
supported in the lite version*/

Type Description

ColumnName as String

A string expression that indicates the column's name. The
valid values are: 'Name', 'Size', 'Modified', 'Type', 'In
Folder'. The Modified column displays a calendar control
that can be used to filter for files/folder modified within a
range and so.

Boolean A Boolean expression that indicates whether the column
displays the filter button.

Use the ColumnFilterButton property to show or hide the column's filter button. By default,
the control displays no filter buttons. Use the AddColumnCustomFilter method to add
custom filter patterns to the column. Use the FilterBarDropDownHeight property to specify
the height of the control's drop down filter window. Use the FilterBarDropDownWidth
property to specify the width of the control's drop down filter window. Use the
exHideFileExtensionsForKnownFileTypes option to show the file extensions in case your
Windows Explorer, the "Hide File Extensions For Known File Types" is checked. Use the
FilterInclude property to specify whether the child files or folders are included in the list,
after user applies the filter.

The following VB sample adds custom filter patterns for executable files:

With ExFileView1
 .FilterBarDropDownHeight = 0.7
 .ColumnFilterButton("Name") = True
 .AddColumnCustomFilter "Name", "(Executable files)", "*.exe|*.com|*.bat"
End With

The following C++ sample adds custom filter patterns for executable files:

m_fileview.SetFilterBarDropDownHeight(0.7);
m_fileview.SetColumnFilterButton("Name", TRUE);
m_fileview.AddColumnCustomFilter("Name", "(Executable files)", "*.exe|*.com|*.bat");

The following VB.NET sample adds custom filter patterns for executable files:

With AxExFileView1
 .FilterBarDropDownHeight = 0.7
 .set_ColumnFilterButton("Name", True)
 .AddColumnCustomFilter("Name", "(Executable files)", "*.exe|*.com|*.bat")
End With

The following C# sample adds custom filter patterns for executable files:

axExFileView1.FilterBarDropDownHeight = 0.7;
axExFileView1.set_ColumnFilterButton("Name", true);
axExFileView1.AddColumnCustomFilter("Name", "(Executable files)", "*.exe|*.com|*.bat");

The following VFP sample adds custom filter patterns for executable files:

With thisform.ExFileView1
 .FilterBarDropDownHeight = 0.7
 .Object.ColumnFilterButton("Name") = .t.
 .AddColumnCustomFilter("Name", "(Executable files)", "*.exe|*.com|*.bat")
EndWith

property ExFileView.ColumnFilterType(ColumnName as String) as
FilterTypeEnum

Specifies the column's filter type. /*not supported in the lite version*/

Type Description

ColumnName as String
A string expression that indicates the column's name. The
valid values are: 'Name', 'Size', 'Modified', 'Type', 'In
Folder'

FilterTypeEnum A FilterTypeEnum expression that indicates the column's
filter type.

The ColumnFilterType property defines the filter's type on specified column. By default, the
ColumnFilterType property is exAll. No filter is applied if the ColumnFilterType is exAll. The
ColumnFilter property defines the column's filter. Use the ColumnFilterButton property to
display the column's filter button. Use the FilterBarCaption property to specify the caption
for the control's filter bar header.

The ApplyFilter method should be called to update the control's content after changing the
ColumnFilter or ColumnFilterType property. The ClearFilter method clears the control's filter.

The following VB sample filters for executable files:

With ExFileView1
 .ColumnFilterButton("Name") = True
 .ColumnFilter("Name") = "*.exe|*.com|*.bat"
 .ColumnFilterType("Name") = exPattern
 .ApplyFilter
End With

The following C++ sample filters for executable files:

m_fileview.SetColumnFilterButton("Name", TRUE);
m_fileview.SetColumnFilter("Name", "*.exe|*.com|*.bat");
m_fileview.SetColumnFilterType("Name", 1 /*exPattern*/);
m_fileview.ApplyFilter();

The following VB.NET sample filters for executable files:

With AxExFileView1
 .set_ColumnFilterButton("Name", True)

 .set_ColumnFilter("Name", "*.exe|*.com|*.bat")
 .set_ColumnFilterType("Name", EXFILEVIEWLib.FilterTypeEnum.exPattern)
 .ApplyFilter()
End With

The following C# sample filters for executable files:

axExFileView1.set_ColumnFilterButton("Name", true);
axExFileView1.set_ColumnFilter("Name", "*.exe|*.com|*.bat");
axExFileView1.set_ColumnFilterType("Name", EXFILEVIEWLib.FilterTypeEnum.exPattern);
axExFileView1.ApplyFilter();

The following VFP sample filters for executable files:

With thisform.FileView1
 .Object.ColumnFilterButton("Name") = .t.
 .Object.ColumnFilter("Name") = "*.exe|*.com|*.bat"
 .Object.ColumnFilterType("Name") = 1
 .ApplyFilter
EndWith

property ExFileView.ColumnsAllowSizing as Boolean
Retrieves or sets a value that indicates whether a user can resize columns at run-time.

Type Description

Boolean A Boolean expression that indicates whether a user can
resize columns at run-time.

By default, the ColumnsAllowSizing property is False. The ColumnsAllowSizing is used to
specify whether the user can resize the columns in the list section as well, not only on the
header. If this is true, you can have the cursor between columns not necessary into the
header also in the list section. If False, the user still can resize the columns using the
header of the control. Use the HeaderVisible property to show or hide the control's header
bar. The HeaderAppearance property specifies the appearance of the column in the
control's header bar.

property ExFileView.ColumnsVisible as FileColumnEnum
Indicates the columns being visible.

Type Description

FileColumnEnum A FileColumnEnum expression that specifies the columns
being visible.

By default, the ColumnsVisible property is exFileColumnName | exFileColumnSize |
exFileColumnType | exFileColumnModified (30). The ColumnsVisible property indicates the
columns being visible. You can use the ColumnsVisible property to show/hide multiple
columns at once.

property ExFileView.ColumnVisible(ColumnName as String) as Boolean

Retrieves or sets a value that indicates whether the column is visible or hidden.

Type Description

ColumnName as String
A String expression that indicates the columns name. The
following values are valid: 'Name', 'Size', 'Type'and
'Modified'.

Boolean A boolean expression that indicates whether the column is
visible or hidden.

Use the ColumnVisible property to hide a column. Use the ColumnWidth property to change
the column's width. By default, the "Name", "Size", "Type" and "Modified" columns are
visible. Use the HeaderVisible property to hide the control's header bar. Use the
BackColorHeader property to specify the background color for the control's header bar.
Use the ForeColorHeader property to specify the foreground color for the control's header
bar. You can use the ColumnsVisible property to show/hide multiple columns at once.

The following VB sample hides the 'Size' column:

ExFileView1.ColumnVisible("Size") = False

The following C++ sample hides the 'Size' column:

m_fileview.SetColumnVisible("Size", FALSE);

The following VB.NET sample hides the 'Size' column:

AxExFileView1.set_ColumnVisible("Size", False)

The following C# sample hides the 'Size' column:

axExFileView1.set_ColumnVisible("Name", False);

The following VFP sample hides the 'Size' column:

with thisform.FileView1
 .Object.ColumnVisible("Size") = .f.
endwith

property ExFileView.ColumnWidth(ColumnName as String) as Long

Retrieves or sets a value that indicates the column's width.

Type Description

ColumnName as String
A String expression that indicates the columns nam. One
of the following is valid: "Name", "Size", "Type" or
"Modified"

Long A long expression that indicates the column's width in
pixels.

Use the ColumnWidth property to change the column's width. Use the ColumnVisible to hide
a column. By default, all columns are visible. Use the ColumnVisible property to hide a
column. Use the ColumnCaption property to specify the column's caption. Use the
HeaderVisible property to show or hide the control's header bar. Use the
ColumnAutoResize property to specify whether the control resizes the visible columns so all
fit the control's client area.

The following VB sample changes the 'Size' column width:

ExFileView1.ColumnWidth("Size") = 16

The following C++ sample changes the 'Size' column width:

m_fileview.SetColumnWidth("Size", 16);

The following VB.NET sample changes the 'Size' column width:

AxExFileView1.set_ColumnWidth("Size", 16)

The following C# sample changes the 'Size' column width:

axExFileView1.set_ColumnWidth("Name", 16);

The following VFP sample changes the 'Size' column width:

with thisform.FileView1
 .Object.ColumnWidth("Size") = 16
endwith

method ExFileView.Copy ()
Copies the control's content to the clipboard, in the EMF format.

Type Description

Use the Copy method to copy the control's content to the clipboard, in Enhanced Metafile
(EMF) format. The Enhanced Metafile format is a 32-bit format that can contain both vector
information and bitmap information. Use the CopyTo method to copy the control's content to
EMF/BMP/GIF/PNG/JPEG or PDF files.

This format is an improvement over the Windows Metafile Format and contains extended
features, such as the following:

 Built-in scaling information
 Built-in descriptions that are saved with the file
 Improvements in color palettes and device independence

The EMF format is an extensible format, which means that a programmer can modify the
original specification to add functionality or to meet specific needs. You can paste this
format to Microsoft Word, Excel, Front Page, Microsoft Image Composer and any
application that know to handle EMF formats.

The Copy method copies the control's header if it's visible, and all visible items. The items
are not expanded, they are listed in the order as they are displayed on the screen. Use the
HeaderVisible property to show or hide the control's header. The background of the copied
control is transparent.

The following VB sample saves the control's content to a EMF file, when user presses the
CTRL+C key:

Private Sub ExFileView1_KeyDown(KeyCode As Integer, Shift As Integer)
 If (KeyCode = vbKeyC) And Shift = 2 Then
 Clipboard.Clear
 ExFileView1.Copy
 SavePicture Clipboard.GetData(), App.Path & "\test.emf"
 End If
End Sub

Now, you can open your MS Windows Word application, and you can insert the file using
the Insert\Picture\From File menu, or by pressing the CTRL+V key to paste the clipboard.

The following C++ function saves the clipboard's data (EMF format) to a picture file:

BOOL saveEMFtoFile(LPCTSTR szFileName)
{
 BOOL bResult = FALSE;
 if (::OpenClipboard(NULL))
 {
 CComPtr<IPicture> spPicture;
 PICTDESC pictDesc = {0};
 pictDesc.cbSizeofstruct = sizeof(pictDesc);
 pictDesc.emf.hemf = (HENHMETAFILE)GetClipboardData(CF_ENHMETAFILE);
 pictDesc.picType = PICTYPE_ENHMETAFILE;
 if (SUCCEEDED(OleCreatePictureIndirect(&pictDesc, IID_IPicture, FALSE,
(LPVOID*)&spPicture)))
 {
 HGLOBAL hGlobal = NULL;
 CComPtr<IStream> spStream;
 if (SUCCEEDED(CreateStreamOnHGlobal(hGlobal = GlobalAlloc(GPTR, 0), TRUE,
&spStream)))
 {
 long dwSize = NULL;
 if (SUCCEEDED(spPicture->SaveAsFile(spStream, TRUE, &dwSize)))
 {
 USES_CONVERSION;
 HANDLE hFile = CreateFile(szFileName, GENERIC_WRITE, NULL, NULL,
CREATE_ALWAYS, NULL, NULL);
 if (hFile != INVALID_HANDLE_VALUE)
 {
 LARGE_INTEGER l = {NULL};
 spStream->Seek(l, STREAM_SEEK_SET, NULL);
 long dwWritten = NULL;
 while (dwWritten < dwSize)
 {
 unsigned long dwRead = NULL;
 BYTE b[10240] = {0};
 spStream->Read(&b, 10240, &dwRead);
 DWORD dwBWritten = NULL;
 WriteFile(hFile, b, dwRead, &dwBWritten, NULL);
 dwWritten += dwBWritten;

 }
 CloseHandle(hFile);
 bResult = TRUE;
 }
 }
 }
 }
 CloseClipboard();
 }
 return bResult;
}

The following VB.NET sample copies the control's content to the clipboard (open the
mspaint application and paste the clipboard, after running the following code):

Clipboard.Clear()
With AxExFileView1
 .Copy()
End With

The following C# sample copies the control's content to a file (open the mspaint application
and paste the clipboard, after running the following code):

Clipboard.Clear;
axExFileView1.Copy();

property ExFileView.CopyTo (File as String) as Variant
Exports the control's view to an EMF file.

Type Description

File as String

A String expression that indicates the name of the file to
be saved. If present, the CopyTo property retrieves True,
if the operation succeeded, else False it is failed. If the
File parameter is missing or empty, the CopyTo property
retrieves an one dimension safe array of bytes that
contains the EMF content.

If the File parameter is not empty, the extension (
characters after last dot) determines the graphical/
format of the file to be saved as follows:

*.bmp *.dib *.rle, saves the control's content in BMP
format.
*.jpg *.jpe *.jpeg *.jfif, saves the control's content in
JPEG format.
*.gif, , saves the control's content in GIF format.
*.tif *.tiff, saves the control's content in TIFF format.
*.png, saves the control's content in PNG format.
*.pdf, saves the control's content to PDF format. The
File argument may carry up to 4 parameters
separated by the | character in the following order:
filename.pdf | paper size | margins | options. In
other words, you can specify the file name of the PDF
document, the paper size, the margins and options to
build the PDF document. By default, the paper size is
210 mm × 297 mm (A4 format) and the margins are
12.7 mm 12.7 mm 12.7 mm 12.7 mm. The units for
the paper size and margins can be pt for PostScript
Points, mm for Millimeters, cm for Centimeters, in
for Inches and px for pixels. If PostScript Points are
used if unit is missing. For instance, 8.27 in x 11.69 in,
indicates the size of the paper in inches. Currently, the
options can be single, which indicates that the
control's content is exported to a single PDF page.
For instance, the CopyTo("shot.pdf|33.11 in x 46.81
in|0 0 0 0|single") exports the control's content to an
A0 single PDF page, with no margins.
*.emf or any other extension determines the control to

save the control's content in EMF format.

For instance, the CopyTo("c:\temp\snapshot.png")
property saves the control's content in PNG format to
snapshot.png file.

Variant
A boolean expression that indicates whether the File was
successful saved, or a one dimension safe array of bytes,
if the File parameter is empty string.

The CopyTo method copies/exports the control's view to BMP, PNG, JPG, GIF, TIFF, PDF
or EMF graphical files, including no scroll bars. Use the Copy method to copy the control's
content to the clipboard.

The BMP file format, also known as bitmap image file or device independent bitmap
(DIB) file format or simply a bitmap, is a raster graphics image file format used to
store bitmap digital images, independently of the display device (such as a graphics
adapter)
The JPEG file format (seen most often with the .jpg extension) is a commonly used
method of lossy compression for digital images, particularly for those images produced
by digital photography.
The GIF (Graphics Interchange Format) is a bitmap image format that was introduced
by CompuServe in 1987 and has since come into widespread usage on the World Wide
Web due to its wide support and portability.
The TIFF (Tagged Image File Format) is a computer file format for storing raster
graphics images, popular among graphic artists, the publishing industry, and both
amateur and professional photographers in general.
The PNG (Portable Network Graphics) is a raster graphics file format that supports
lossless data compression. PNG was created as an improved, non-patented
replacement for Graphics Interchange Format (GIF), and is the most used lossless
image compression format on the Internet
The PDF (Portable Document Format) is a file format used to present documents in a
manner independent of application software, hardware, and operating systems. Each
PDF file encapsulates a complete description of a fixed-layout flat document, including
the text, fonts, graphics, and other information needed to display it.
The EMF (Enhanced Metafile Format) is a 32-bit format that can contain both vector
information and bitmap information. This format is an improvement over the Windows
Metafile Format and contains extended features, such as the following

 Built-in scaling information
 Built-in descriptions that are saved with the file
 Improvements in color palettes and device independence

The EMF format is an extensible format, which means that a programmer can modify
the original specification to add functionality or to meet specific needs. You can paste
this format to Microsoft Word, Excel, Front Page, Microsoft Image Composer and any
application that know to handle EMF formats.

 The following VB sample saves the control's content to a file:

If (ExFileView1.CopyTo("c:\temp\test.emf")) Then
 MsgBox "test.emf file created, open it using the mspaint editor."
End If

The following VB sample prints the EMF content (as bytes, File parameter is empty string
):

Dim i As Variant
For Each i In ExFileView1.CopyTo("")
 Debug.Print i
Next

method ExFileView.Debug ([dwReserved as Variant])
Displays information in debug mode.

Type Description
dwReserved as Variant Only for internal use.

The Debug property is not implemented in the registered version. The Debug method
displays information only for debug configuration.

property ExFileView.DefaultItemHeight as Long
Retrieves or sets a value that indicates the default item height.

Type Description

Long A long expression indicates the default item height, in
pixels.

By default, the DefaultItemHeight property is 18 pixels. Use the DefaultItemHeight property
to specify the height of the items. Use the Refresh method to update the control's content
after changing the DefaultItemHeight property. The Font property specifies the control's
font.

property ExFileView.Description(Type as DescriptionTypeEnum) as
String
Changes descriptions for control objects.

Type Description
Type as
DescriptionTypeEnum A long expression that defines the part being changed.

String A string expression that indicates the part's description.

Use the Description property to customize the captions for control filter bar window. For
instance, the Description(exFilterAll) = "(Include All)" changes the "(All)" item description in
the filter bar window. Use the Description property to change the predefined strings in the
filter bar window. Use the FilterBarCaption property to change the caption of the control's
filter bar.

property ExFileView.DisplayFoldersInfo as Boolean
Specifies whether the control displays the Size, Type, Modified for folders objects.

Type Description

Boolean A Boolean expression that specifies whether the control
displays the Size, Type, Modified for folders objects.

By default, the DisplayFoldersInfo property is True. If False, the control displays no
information into the Size, Type, Modified columns for all folders objects as you can see in
the following screen shot:

While True, the control should looks as:

property ExFileView.Enabled as Boolean

Enables or disables the control.

Type Description

Boolean A boolean expression that indicates whether the control is
enabled or disabled.

Use the Enabled property to disable the control. Use the ForeColor property to specify the
control's foreground color. Use the BackColor property to specify the control's background
color. Use the Font property to specify the control's font. Use the BackColorHeader
property to specify the background color for the control's header bar. Use the
ForeColorHeader properties to specify the foreground color for the control's header bar.

The following VB sample disables the control:

ExFileView1.Enabled = False

The following C++ sample disables the control:

m_fileview.SetEnabled(FALSE);

The following VB.NET sample disables the control:

AxExFileView1.Enabled = False

The following C# sample disables the control:

axExFileView1.Enabled = false;

The following VFP sample disables the control:

With thisform.ExFileView1
 .Object.Enabled = False
EndWith

method ExFileView.EndUpdate ()
Resumes painting the control after painting is suspended by the BeginUpdate method.

Type Description

property ExFileView.EventParam(Parameter as Long) as Variant
Retrieves or sets a value that indicates the current's event parameter.

Type Description

Parameter as Long

A long expression that indicates the index of the parameter
being requested ie 0 means the first parameter, 1 means
the second, and so on. If -1 is used the EventParam
property retrieves the number of parameters. Accessing
an not-existing parameter produces an OLE error, such as
invalid pointer (E_POINTER)

Variant A VARIANT expression that specifies the parameter's
value.

The EventParam method is provided to allow changing the event's parameters passed by
reference, even if your environment does not support changing it (uniPaas 1.5 (formerly
known as eDeveloper), DBase, and so on). For instance, Unipaas event-handling logic
cannot update ActiveX control variables by updating the received arguments. The
EventParam(0) retrieves the value of the first parameter of the event, while the
EventParam(1) = 0, changes the value of the second parameter to 0 (the operation is
successfully, only if the parameter is passed by reference). The EventParam(-1) retrieves
the number of the parameters of the current event.

Let's take the event "event KeyDown (KeyCode as Integer, ByVal Shift as Integer)", where
the KeyCode parameter is passed by reference. For instance, put the KeyCode parameter
on 0, and the arrow keys are disabled while the control has the focus.

In most languages you will type something like:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 KeyCode = 0
End Sub

In case your environment does not support events with parameters by reference, you can
use a code like follows:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 Control1.EventParam(0) = 0
End Sub

In other words, the EventParam property provides the parameters of the current event for
reading or writing access, even if your environment does not allow changing parameters by

reference.

Calling the EventParam property outside of an event produces an OLE error, such as
pointer invalid, as its scope was designed to be used only during events.

property ExFileView.ExcludeFilter as String

Specifies the pattern used to exclude files from the control's list, like '*.tmp *.log'.

Type Description
String A string expression that may contains wild cards like * or ?

Use the ExcludeFilter property to exclude files that match a pattern or multiple patterns
from the current list. When the ExcludeFilter is set, the control automatically refreshes the
current list, and applies the FileType attributes. Use the IncludeFilter property to include
only the files that match a pattern. To remove a previous exclude filter you can use ("")
empty string. By default, the ExcludeFilter property is "". The IncludeFolderFilter property
specifies a wild characters expression that indicates the folders being included. The
ExcludeFolderFilter property specifies a wild characters expression that indicates the
folders being excluded. The patterns are separated by space character. Use the
exHideFileExtensionsForKnownFileTypes option to show the file extensions in case your
Windows Explorer, the "Hide File Extensions For Known File Types" is checked. Use the
Name property to specify the name of the file or the folder. Use the Folder property to
specify whether the File object holds a file or a folder.

The following VB sample excludes the files with the extensions: 'bat', 'com' and 'sys':

With ExFileView1
 .ExcludeFilter = "*.bat *.sys *.com"
End With

The following C++ sample excludes the files with the extensions: 'bat', 'com' and 'sys':

m_fileview.SetExcludeFilter("*.bat *.sys *.com");

The following VB.NET sample excludes the files with the extensions: 'bat', 'com' and 'sys':

AxExFileView1.ExcludeFilter = "*.bat *.sys *.com"

The following C# sample excludes the files with the extensions: 'bat', 'com' and 'sys':

axExFileView1.ExcludeFilter = "*.bat *.sys *.com";

The following VFP sample excludes the files with the extensions: 'bat', 'com' and 'sys':

With thisform.ExFileView1
 .ExcludeFilter = "*.bat *.sys *.com"
EndWith

property ExFileView.ExcludeFolderFilter as String
Retrieves or sets a value that indicates the folders being excluded.

Type Description
String A string expression that may contains wild cards like * or ?

Use the ExcludeFolderFilter property to exclude folders that match a pattern or multiple
patterns from the current list. The ExcludeFolderFilter property has ni effect if it is empty.
When the ExcludeFolderFilter is set, the control automatically refreshes the current list, and
applies the FileType attributes. Use the ExcludeFilter property to exclude files that match a
pattern or multiple patterns from the current list. Use the IncludeFilter property to include
only the files that match a pattern. Use the exHideFileExtensionsForKnownFileTypes option
to show the file extensions in case your Windows Explorer, the "Hide File Extensions For
Known File Types" is checked. Use the Name property to specify the name of the file or
the folder. Use the Folder property to specify whether the File object holds a file or a folder.

The following VB sample excludes the "Temp" folders:

With ExFileView1
 .ExcludeFolderFilter = "*temp*"
End With

The following C++ sample excludes the "Temp" folders:

m_fileview.SetExcludeFolderFilter("temp*");

The following VB.NET sample excludes the "Temp" folders:

AxExFileView1.ExcludeFolderFilter = "*temp*"

The following C# sample excludes the "Temp" folders:

axExFileView1.ExcludeFolderFilter = "*temp*";

The following VFP sample excludes the "Temp" folders:

With thisform.ExFileView1
 .ExcludeFolderFilter = "*temp*"
EndWith

method ExFileView.ExecuteContextCommand (FileName as String,
Folder as Boolean, Command as String)

Executes a context menu command.

Type Description

FileName as String A string expression that indicates the file whose context
menu is invoked.

Folder as Boolean A boolean expression that indicates whether the FileName
points to a folder or to a file.

Command as String
A string expression that indicates the name of the
command being invoked or a string expression that
indicates the identifier of command being invoked.

The ExecuteContextCommand method executes the object's context menu command. The
control returns no error, if the command is not found. Use the AllowContextMenu property
to disable the control's context menu when user right clicks a file in the browser. Use the
Get property to retrieve the selected item(s). Use the Name property to specify the name
of the file or the folder. Use the Folder property to specify whether the File object refers a
file or a folder.

Here's the list of the identifiers for some known items in the object's context menu :

Create Shortcut (17)
Delete (18)
Properties (20)
Cut (25)
Copy (26)

The following VB sample opens that file being double clicked:

Private Sub ExFileView1_DblClick()
 With ExFileView1.Get(SelItems)
 If (.Count > 0) Then
 With .Item(0)
 If (Not .Folder) Then
 ExFileView1.ExecuteContextCommand .Name, .Folder, "Open"
 End If
 End With
 End If
 End With

End Sub

The following VB sample opens a file that user double clicks (the sample uses the Open's
identifier, in case your application is not displaying the English messages) :

Private Sub ExFileView1_DblClick()
 With ExFileView1.Get(SelItems)
 If (.Count > 0) Then
 With .Item(0)
 If (Not .Folder) Then
 ExFileView1.ExecuteContextCommand .Name, .Folder, "102"
 End If
 End With
 End If
 End With
End Sub

The following C++ sample opens that file being double clicked:

void OnDblClickExfileview1()
{
 CFiles files = m_fileview.GetGet(0);
 if (files.GetCount() > 0)
 {
 CFile1 file = files.GetItem(COleVariant((long)0));
 m_fileview.ExecuteContextCommand(file.GetName(), file.GetFolder(), "Open");
 }
}

The following VB.NET sample opens that file being double clicked:

Private Sub AxExFileView1_DblClick(ByVal sender As Object, ByVal e As System.EventArgs)
Handles AxExFileView1.DblClick
 With AxExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.SelItems)
 If (.Count > 0) Then
 With .Item(0)
 If (Not .Folder) Then
 AxExFileView1.ExecuteContextCommand(.Name, .Folder, "Open")
 End If

 End With
 End If
 End With
End Sub

The following C# sample opens that file being double clicked:

private void axExFileView1_DblClick(object sender, EventArgs e)
{
 EXFILEVIEWLib.Files files = axExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.SelItems);
 if (files.Count > 0)
 {
 EXFILEVIEWLib.File file = files[0];
 axExFileView1.ExecuteContextCommand(file.Name, file.Folder, "Open");
 }
}

The following VFP sample opens that file being double clicked:

*** ActiveX Control Event ***

With thisform.ExFileView1.Get(0) && SelItems
 If (.Count > 0) Then
 With .Item(0)
 If (Not .Folder) Then
 thisform.ExFileView1.ExecuteContextCommand(.Name, .Folder, "Open")
 EndIf
 EndWith
 EndIf
EndWith

property ExFileView.ExecuteContextMenu as Long
Executes a command from the object's context menu.

Type Description

Long A Long expression that determines the identifier of the
command to be executed.

By default, the ExecuteContextMenu property is 0. The ExecuteContextMenu property
specifies the identifier of the command to be executed (id option in the ShowContextMenu
property). The ExecuteContextMenu property has effect only during the StateChange event,
when the State parameter is ExecuteContextMenu(21). The AllowMenuContext property
specifies whether the control shows the object's context menu when the user presses the
right click over a file or folder.

The following sample shows how you can append new items to the object's context menu
and displays a message when a command is selected from the context menu:

Private Sub ExFileView1_StateChange(ByVal State As EXFILEVIEWLibCtl.StateChangeEnum)
 With ExFileView1
 If (State = ShowContextMenu) Then
 .ShowContextMenu = .ShowContextMenu + ",Item 1[id=1][def],Popup[id=2](Sub-
Item 2[id=2],[sep],Sub-Item 3[id=3])"
 Else
 If (State = ExecuteContextMenu) Then
 Debug.Print "You selected the command: " & .ExecuteContextMenu
 End If
 End If
 End With
End Sub

The following sample shows how you can prevent executing a specific command:

Private Sub ExFileView1_StateChange(ByVal State As EXFILEVIEWLibCtl.StateChangeEnum)
 With ExFileView1
 If (State = ExecuteContextMenu) Then
 If Not (.ExecuteContextMenu = 17) Then ' Delete
 Debug.Print "You selected the command: " & .ExecuteContextMenu
 Else
 .ExecuteContextMenu = 0

 MsgBox "Delete is disabled."
 End If
 End If
 End With
End Sub

method ExFileView.ExecuteTemplate (Template as String)
Executes a template and returns the result.

Type Description
Template as String A Template string being executed
Return Description

Variant A Variant expression that indicates the result after
executing the Template.

Use the ExecuteTemplate property to returns the result of executing a template file. Use the
Template property to execute a template without returning any result. Use the
ExecuteTemplate property to execute code by passing instructions as a string (template
string).

For instance, the following sample retrieves the beginning date (as string) for the default
bar in the first visible item:

Debug.Print ExFileView1.ExecuteTemplate("Items.ItemBar(FirstVisibleItem(),``,1)")

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by

"\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

method ExFileView.Expand (Folder as String)
Expands and selects a folder giving its path.

Type Description

Folder as String

A string expression that indicates the name of the folder
being expanded, the relative path of the folder being
expanded, or the absolute path of the folder being
expanded. If the Folder parameter is "*", all visible folders
are recursively expanded, equivalent of expand all.

Use the Expand method to expand and select a folder giving its path. The absolute path
starts with the letter drive (like c:\). Any path is separated by the / character. The Expand
method retrieves no error if it is not able to find the folder. If a relative or absolute path is
giving, the control expands all found folders. Use the ExpandFolders property to assign a +
sign to folders that includes sub folders. Use the ExpandOnDblClk property to expand or
collapse a folder when user double clicks the folder. Use the ExploreFromHere property
specifies the root folder for the control. Use the Get method to retrieve the collection of
selected items.

The following VB sample expands the "winnt\system32" (relative path) folder:

With ExFileView1
 .ExpandFolders = True
 .HasLinesAtRoot = True
 .Expand "WINNT\system32"
End With

The following VB sample expands the "c:\winnt" (absolute path) folder when the control is
browsing the 'Desktop':

With ExFileView1
 .ExpandFolders = True
 .ExploreFromHere = "::{00021400-0000-0000-C000-000000000046}"
 .Expand "C:\WINNT"
End With

The following C++ sample expands the "c:\winnt" folder:

m_fileview.SetExpandFolders(TRUE);
m_fileview.SetExploreFromHere("::{00021400-0000-0000-C000-000000000046}");
m_fileview.Expand("c:\\winnt");

The following VB.NET sample expands the "c:\winnt" folder:

With AxExFileView1
 .ExpandFolders = True
 .ExploreFromHere = "::{00021400-0000-0000-C000-000000000046}"
 .Expand("C:\WINNT")
End With

The following C# sample expands the "c:\winnt" folder:

axExFileView1.ExpandFolders = true;
axExFileView1.ExploreFromHere = "::{00021400-0000-0000-C000-000000000046}";
axExFileView1.Expand("C:\\WINNT");

The following VFP sample expands the "c:\winnt" folder:

With thisform.ExFileView1
 .ExpandFolders = .t.
 .ExploreFromHere = "::{00021400-0000-0000-C000-000000000046}"
 .Expand("C:\WINNT")
EndWith

property ExFileView.ExpandFolders as Boolean

Retrieves or sets a value that indicates whether the control expands the folder objects.

Type Description

Boolean A boolean expression that indicates whether the control
expands the folder objects.

By default, the ExpandFolders property is False. If the ExpandFolders property is True,
each folder that contains a subfolder, displays +/- button, that allows to expand or collapse
the folder. You can use the ExpandFolder property to let ExFileView control simulates a
folderview control. Use the IncludeFolders property to include folders in the current list. Use
the HasButtons property to hide or show the + buttons. Use the IncludeFilesInFolder
property to include files when expanding a folder. Use the Expand method to
programmatically expand a folder giving its path. Use the ExpandOnDblClk property to
expand or collapse a folder when user double clicks the folder. Use the ExploreFromHere
property specifies the root folder for the control. The Folder property specifies whether a
File object holds a file or a folder. The IncludeFolderFilter property specifies a wild
characters expression that indicates the folders being included. The ExcludeFolderFilter
property specifies a wild characters expression that indicates the folders being excluded.
The Indent property retrieves or sets the amount, in pixels, that child items are indented
relative to their parent items.

ExpandFolders = False

ExpandFolders = True

The File.Children property helps you to collect recursively all files/folders of specified
object. The EnumR function displays the full name of each file/folder, and goes recursively
to each subfolder. Use the Folder property to specify whether the File object hosts a file or
a folder. The Children property returns a collection of File objects, if the ExpandFolders
property is True.

Public Sub EnumR(ByVal f As EXFILEVIEWLibCtl.File)
 Debug.Print f.FullName
 For Each c In f.Children
 EnumR (c)
 Next
End Sub

The following VB sample expands the "c:\winnt" (absolute path) folder when the control is
browsing the 'Desktop':

With ExFileView1
 .ExpandFolders = True
 .ExploreFromHere = "::{00021400-0000-0000-C000-000000000046}"
 .Expand "C:\WINNT"
End With

The following C++ sample expands the "c:\winnt" folder:

m_fileview.SetExpandFolders(TRUE);
m_fileview.SetExploreFromHere("::{00021400-0000-0000-C000-000000000046}");
m_fileview.Expand("c:\\winnt");

The following VB.NET sample expands the "c:\winnt" folder:

With AxExFileView1
 .ExpandFolders = True
 .ExploreFromHere = "::{00021400-0000-0000-C000-000000000046}"
 .Expand("C:\WINNT")
End With

The following C# sample expands the "c:\winnt" folder:

axExFileView1.ExpandFolders = true;
axExFileView1.ExploreFromHere = "::{00021400-0000-0000-C000-000000000046}";
axExFileView1.Expand("C:\\WINNT");

The following VFP sample expands the "c:\winnt" folder:

With thisform.ExFileView1
 .ExpandFolders = .t.
 .ExploreFromHere = "::{00021400-0000-0000-C000-000000000046}"
 .Expand("C:\WINNT")
EndWith

property ExFileView.ExpandOnDblClk as Boolean
Retrieves or sets a value that indicates whether a folder is expanded by double click.

Type Description

Boolean A boolean expression that indicates whether a folder is
expanded by double click.

By default, the ExpandOnDblClick property is False. Use the ExpandOnDblClk property to
expand or collapse a folder when user double clicks a folder. When ExpandOnDblClick
property is False, the control browses for a new folder when user double clicks the folder.
Use the Expand method to programmatically expand a folder giving its path. Use the
ExpandFolders property to assign a + sight to folders that include sub folders. The control
fires the DblClick event when the user double clicks a file or a folder. Use the FileFromPoint
property to retrieve the file from the cursor. Use the Get property to retrieve the selected
item.

property ExFileView.ExploreFromHere as String

Specifies the root folder(s) for the control.

Type Description

String A string expression that indicates the folder's path that's
the root of the control.

By default, the ExploreFromHere property is "C:\". The ExplorerFromHere property
specifies the root folder(s) for the control. The ExpandFolders property retrieves or sets a
value that indicates whether the control expands the folder objects. Use the IncludeFolders
property to exclude folders from the current list.

Starting with the version 14.0, the control supports multiple root-folders. The
ExploreFromHere property specifies multiple root-folders if they are separated by | or \r\n
characters. If the ExploreFromHere entity includes a > character, the characters after
indicates the HTML caption to be displayed instead of its default name. For instance: "C:\>"
includes the C system driver as a root folder, rather than listing its content, "C:\>System
C", includes the system C drive as a root folder with the name System C, c in bold,
"C:\|E:\" specifies that the control includes C and E system drives, as root folders,
"E:\Exontrol|::{20D04FE0-3AEA-1069-A2D8-08002B30309D}" specifies to include the
E:\Exontrol folder and the My Computer system folder.

The following screen shots show the control ExploreFromHere property takes different
values such as "C:\", "C:\>", "C:\>System (C:)" or "C:\|D:\|E:\Exontrol"

ExploreFromHere =

"C:\"

ExploreFromHere =

"C:\>"

ExploreFromHere =

"C:\>System (C:)"

ExploreFromHere =

"C:\|D:\|E:\Exontrol"

The ExploreFromHere property changes the BrowseFolderPath property. The
BrowseFolderPath property retrieves or sets the browsed folder path. The
BrowseFolderPath property has no effect (returns empty string), if the control's
ExploreFromHere property includes |, > or \r\n characters (shortly the BrowseFolderPath
property has no effect if the control display multiple root-folders). Use the HasButtons
property to hide or show the + buttons. Use the IncludeFilesInFolder property to include
files when expanding a folder. Use the Expand method to programmatically expand a folder
giving its path. Use the Add method to add rules to highlight the files and folders in the
control. The RelativeName property gets the relative path for the file or folder, based on the
ExploreFromHere property.

The following VB samples browses the "c:\temp" folder:

ExFileView1.ExploreFromHere = "c:\temp"

The following VB samples browses the "Desktop" folder:

ExFileView1.ExploreFromHere = "::{00021400-0000-0000-C000-000000000046}"

The following VB samples browses the "My Network Places" folder:

ExFileView1.ExploreFromHere = "::{208D2C60-3AEA-1069-A2D7-08002B30309D}"

The following VB samples browses the "My Computer" folder:

ExFileView1.ExploreFromHere = "::{20D04FE0-3AEA-1069-A2D8-08002B30309D}"

The following C++ samples browses the "Desktop" folder:

m_fileview.SetExploreFromHere("::{00021400-0000-0000-C000-000000000046}");

The following VB.NET samples browses the "Desktop" folder:

With AxExFileView1
 .ExploreFromHere = "::{00021400-0000-0000-C000-000000000046}"
End With

The following C# samples browses the "Desktop" folder:

axExFileView1.ExploreFromHere = "::{00021400-0000-0000-C000-000000000046}";

The following VFP samples browses the "Desktop" folder:

With thisform.ExFileView1
 .ExploreFromHere = "::{00021400-0000-0000-C000-000000000046}"
EndWith

property ExFileView.FileFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as String
Retrieves the file from the point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

String A string expression that indicates the path of the file from
the cursor.

Use the FileFromPoint property to get the path of the file from the cursor. The control fires
the StateChange event when the user selects a file or a folder. Use Get property to retrieve
the collection of selected items. Use the BrowseFolderPath property to retrieve the
browsed folder path.

The following VB sample displays the file from the cursor:

Private Sub ExFileView1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)
 Dim f As String
 f = ExFileView1.FileFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If Len(f) > 0 Then
 Debug.Print f
 End If
End Sub

The following C++ sample displays the file from the cursor:

void OnMouseMoveExfileview1(short Button, short Shift, long X, long Y)
{
 CString f = m_fileview.GetFileFromPoint(X, Y);
 if (f.GetLength() > 0)
 OutputDebugString(f);
}

The following VB.NET sample displays the file from the cursor:

Private Sub AxExFileView1_MouseMoveEvent(ByVal sender As Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_MouseMoveEvent) Handles
AxExFileView1.MouseMoveEvent
 Dim f As String = AxExFileView1.get_FileFromPoint(e.x, e.y)
 If Len(f) > 0 Then
 Debug.WriteLine(f)
 End If
End Sub

The following C# sample displays the file from the cursor:

private void axExFileView1_MouseMoveEvent(object sender,
AxEXFILEVIEWLib._IExFileViewEvents_MouseMoveEvent e)
{
 string f = axExFileView1.get_FileFromPoint(e.x, e.y);
 if (f.Length > 0)
 System.Diagnostics.Debug.WriteLine(f);
}

The following VFP sample displays the file from the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.ExFileView1
 local f
 f = .FileFromPoint(x, y)
 if (len(f) > 0)
 wait window nowait f
 endif
endwith

property ExFileView.FileTypes as FileTypes

Retrieves the control's FileTypes collection.

Type Description
FileTypes A FileTypes collection associated to the control.

Use the FileTypes property to access the control's FileType objects. Use the Add method to
add new rules for the control's content. Use the Apply method to apply the rules. Use the
Font property to specify the control's font. Use the ForeColor property to specify the
control's foreground color. Use the BackColor property to specify the control's background
color. Use the Get property to get the list of files and folders.

The following VB sample bolds the cpp and h files:

With ExFileView1.FileTypes.Add("*.cpp *.h")
 .Bold = True
 .Apply
End With

The following C++ sample bolds the cpp and h files:

#include "FileType.h"
#include "FileTypes.h"
CFileType fileType = m_fileview.GetFileTypes().Add("*.cpp *.h");
fileType.SetBold(TRUE);
fileType.Apply();

The following VB.NET sample bolds the cpp and h files:

With AxExFileView1.FileTypes.Add("*.cpp *.h")
 .Bold = True
 .Apply()
End With

The following C# sample bolds the cpp and h files:

EXFILEVIEWLib.FileType fileType = axExFileView1.FileTypes.Add("*.cpp *.h");
fileType.Bold = true;
fileType.Apply();

The following VFP sample bolds the cpp and h files:

With thisform.ExFileView1.FileTypes.Add("*.cpp *.h")
 .Bold = .t.
 .Apply()
EndWith

property ExFileView.FilterBarBackColor as Color
Specifies the background color of the control's filter bar.

Type Description

Color A color expression that defines the background color for
description of the control's filter.

Use the FilterBarForeColor and FilterBarBackColor properties to define the colors used to
paint the description for control's filter. Use the FilterBarHeight property to hide the control's
filter bar header. Use the BackColor property to specify the control's background color.

property ExFileView.FilterBarCaption as String
Specifies the filter bar's caption.

Type Description

String A string value that defines the expression to display the
control's filter bar.

By default, the FilterBarCaption property is empty. You can use the FilterBarCaption
property to define the way the filter bar's caption is being displayed. The FilterBarCaption is
displayed on the bottom side of the control where the control's filter bar is shown. While the
FilterBarCaption property is empty, the control automatically builds the caption to be
displayed on the filter bar from all columns that participates in the filter using its name and
values. The FilterBarCaption property supports expressions as explained bellow.

For instance:

"no filter", shows no filter caption all the time

"" displays no filter bar, if no filter is applied, else it displays the current filter

"`<r>` + value", displays the current filter caption aligned to the right. You can include
the exFilterBarShowCloseOnRight flag into the FilterBarPromptVisible property to
display the close button aligned to the right

"value replace ` and ` with `<fgcolor=FF0000> and </fgcolor>`", replace the AND
keyword with a different foreground color

"value replace ` and ` with `<off 4> and </off>` replace `|` with ` <off 4>or</off> `
replace ` ` with ` `", replaces the AND and | values

"value replace `[` with `<bgcolor=000000><fgcolor=FFFFFF> ` replace `]` with `
</bgcolor></fgcolor>`", highlights the columns being filtered with a different
background/foreground colors.

"value + ` ` + available", displays the current filter, including all available columns to be
filtered

"allui" displays all available columns

"((allui + `<fgcolor=808080>` + (matchitemcount < 0 ? ((len(allui) ? `` : ``) + `<r>` +
abs(matchitemcount + 1) + ` result(s)`) : (`<r><fgcolor=808080>`+ itemcount + `
item(s)`))) replace `[` with `<bgcolor=000000><fgcolor=FFFFFF> ` replace
`]` with ` </bgcolor></fgcolor>` replace `[<s>` with `<bgcolor=C0C0C0>
<fgcolor=FFFFFF> ` replace `</s>]` with ` </bgcolor></fgcolor>`)" displays all
available columns to be filtered with different background/foreground colors including
the number of items/results

Use the FilterBarForeColor and FilterBarBackColor properties to define the colors used to
paint the description for control's filter. Use the FilterBarHeight property to specify the
height of the control's filter bar. Use the FilterBarFont property to specify the font for the
control's filter bar. Use the Description property to define predefined strings in the filter bar

caption. The FilterBarPromptVisible property specifies whether how/where the control's
filter/prompt is shown.

The FilterBarCaption method supports the following keywords, constants, operators and
functions:

value or current keyword returns the current filter as a string. At runtime the value
may return a string such as "[EmployeeID] = '4| 5| 6' and [ShipVia] =
1", so the control automatically applies HTML format, which you can
change it. For instance, "upper(value)" displays the caption in uppercase or "value
replace `` with `<fgcolor=808080>` replace `` with `</fgcolor>`" displays the
column's name with a different foreground color.
itemcount keyword returns the total number of items. At runtime the itemcount is a
positive integer that indicates the count of all items. For instance, "value + `<r>
<fgcolor=808080>Total: ` + itemcount" includes in the filter bar the number of items
aligned to the right.
visibleitemcount keyword returns the number of visible items. At runtime, the
visibleitemcount is a positive integer if no filter is applied, and negative if a filter is
applied. If positive, it indicates the number of visible items. The visible items does not
include child items of a collapsed item. If negative, a filter is applied, and the absolute
value minus one, indicates the number of visible items after filter is applied. 0 indicates
no visible items, while -1 indicates that a filter is applied, but no item matches the filter
criteria. For instance, "value + `<r><fgcolor=808080>` + (visibleitemcount < 0 ? (
`Result: ` + (abs(visibleitemcount) - 1)) : (`Visible: ` + visibleitemcount))" includes
"Visible: " plus number of visible items, if no filter is applied or "Result: " plus number of
visible items, if filter is applied, aligned to the right
matchitemcount keyword returns the number of items that match the filter. At runtime,
the matchitemcount is a positive integer if no filter is applied, and negative if a filter is
applied. If positive, it indicates the number of items within the control. If negative, a
filter is applied, and the absolute value minus one, indicates the number of matching
items after filter is applied. A matching item includes its parent items, if the control's
FilterInclude property allows including child items. 0 indicates no visible items, while -1
indicates that a filter is applied, but no item matches the filter criteria. For instance,
"value + `<r><fgcolor=808080>` + (matchitemcount < 0 ? (`Result: ` + (
abs(matchitemcount) - 1)) : (`Visible: ` + matchitemcount))" includes "Visible: " plus
number of visible items, if no filter is applied or "Result: " plus number of macthing
items, if filter is applied, aligned to the right
leafitemcount keyword returns the number of leaf items. A leaf item is an item with no
child items. At runtime, the leafitemcount is a positive number that computes the
number of leaf items (expanded or collapsed). For instance, the "value + `<r>
<fgcolor=808080>` + leafitemcount" displays the number of leaf items aligned
to the right with a different font and foreground color.
promptpattern returns the pattern in the filter bar's prompt, as a string. The

FilterBarPromptPattern specifies the pattern for the filter prompt. The control's filter
bar prompt is visible, if the exFilterBarPromptVisible flag is included in the
FilterBarPromptVisible property.
available keyword returns the list of columns that are not currently part of the control's
filter, but are available to be filtered. A column is available to be filtered, if the
ColumnFilterButton property of the Column object, is True. At runtime, the available
keyword may return a string such as "<fgcolor=C0C0C0>[<s>OrderDate</s>]
<fgcolor> </fgcolor>[<s>RequiredDate</s>]<fgcolor> </fgcolor>
[<s>ShippedDate</s>]<fgcolor> </fgcolor>[<s>ShipCountry</s>]<fgcolor> </fgcolor>
[<s>Select</s>]</fgcolor>", so the control automatically applies HTML format, which
you can change it. For instance, "value + ` ` + available", displays the current filter,
including all available columns to be filtered. For instance, the "value + `<r>` + available
replace `C0C0C0` with `FF0000`" displays the available columns aligned to the right
with a different foreground color.
allui keyword returns the list of columns that are part of the current filter and available
columns to be filtered. A column is available to be filtered, if the ColumnFilterButton
property of the Column object, is True. At runtime, the allui keyword may return a string
such as "[EmployeeID] = '4| 5| 6'<fgcolor> </fgcolor><fgcolor=C0C0C0>
[<s>OrderDate</s>]</fgcolor><fgcolor> </fgcolor><fgcolor=C0C0C0>
[<s>RequiredDate</s>]</fgcolor><fgcolor> </fgcolor><fgcolor=C0C0C0>
[<s>ShippedDate</s>]</fgcolor><fgcolor> </fgcolor>[ShipVia] =
1<fgcolor> </fgcolor><fgcolor=C0C0C0>[<s>ShipCountry</s>]</fgcolor>
<fgcolor> </fgcolor><fgcolor=C0C0C0>[<s>Select</s>]</fgcolor>", so the control
automatically applies HTML format, which you can change it. For instance, "allui",
displays the current filter, including all available columns to be filtered. For instance, the
"((allui + `<fgcolor=808080>` + (matchitemcount < 0 ? ((len(allui) ? `` : ``) + `<r>` +
abs(matchitemcount + 1) + ` result(s)`) : (`<r><fgcolor=808080>`+ itemcount + `
item(s)`))) replace `[` with `<bgcolor=000000><fgcolor=FFFFFF> ` replace
`]` with ` </bgcolor></fgcolor>` replace `[<s>` with `<bgcolor=C0C0C0>
<fgcolor=FFFFFF> ` replace `</s>]` with ` </bgcolor></fgcolor>`)" displays all
available columns to be filtered with different background/foreground colors including
the number of items/results
all keyword returns the list of all columns (visible or hidden) no matter if the
ColumnFilterButton property is True or False. At runtime, the all keyword may return a
string such as "<fgcolor=C0C0C0>[<s>OrderID</s>]</fgcolor><fgcolor> </fgcolor>
[EmployeeID] = '4| 5| 6'<fgcolor> </fgcolor><fgcolor=C0C0C0>
[<s>OrderDate</s>]</fgcolor><fgcolor> </fgcolor><fgcolor=C0C0C0>
[<s>RequiredDate</s>]</fgcolor><fgcolor>", so the control automatically applies
HTML format, which you can change it. For instance, "all", displays the current filter,
including all other columns. For instance, the "((all + `<fgcolor=808080>` + (
matchitemcount < 0 ? ((len(allui) ? `` : ``) + `<r>` + abs(matchitemcount + 1) + `
result(s)`) : (`<r><fgcolor=808080>`+ itemcount + ` item(s)`))) replace `[` with
`<bgcolor=000000><fgcolor=FFFFFF> ` replace `]` with ` </bgcolor>

</fgcolor>` replace `[<s>` with `<bgcolor=C0C0C0><fgcolor=FFFFFF> ` replace
`</s>]` with ` </bgcolor></fgcolor>`)" displays all columns with different
background/foreground colors including the number of items/results

Also, the FilterBarCaption property supports predefined constants and operators/functions
as described here.

Also, the FilterBarCaption property supports HTML format as described here:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break

about:blank

number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property ExFileView.FilterBarDropDownHeight as Double
Specifies the height of the drop down filter window proportionally with the height of the
control's list.

Type Description

Double
A double expression that indicates the height of the drop
down filter window. The meaning of the value is explained
bellow.

By default, the FilterBarDropDownHeight property is 0.5. It means, the height of the drop
down filter window is half of the height of the control's list. Use the
FilterBarDropDownHeight property to specify the height of the drop down window filter
window. Use the ColumnFilterButton property to display a filter button to the column's
caption. Use the Description property to define predefined strings in the filter bar. Use the
FilterInclude property to specify whether the child items should be included to the list when
the user applies the filter.

If the FilterBarDropDownHeight property is negative, the absolute value of the
FilterBarDropDownHeight property indicates the height of the drop down filter window in
pixels. In this case, the height of the drop down filter window is not proportionally with the
height of the control's list area. For instance, the following sample specifies the height of the
drop down filter window being 100 pixels:

With ExFileView1
 .FilterBarDropDownHeight = -100
End With

If the FilterBarDropDownHeight property is greater than 0, it indicates the height of the drop
down filter window proportionally with the height of the control's height list. For instance, the
following sample specifies the height of the drop down filter window being the same with
the height of the control's list area:

With ExFileView1
 .FilterBarDropDownHeight = 1
End With

The drop down filter window always include an item.

property ExFileView.FilterBarDropDownWidth(ColumnName as String)
as Double
Specifies the width of the drop down filter window proportionally with the width of the
control's column. /*not supported in the lite version*/

Type Description

ColumnName as String
A string expression that indicates the column's name. The
valid values are: 'Name', 'Size', 'Modified', 'Type', 'In
Folder'

Double A double expression that indicates the width of the drop
down filter window.

Use the FilterBarDropDownWidth property to specify the width of the drop down window
filter window. Use the ColumnFilterButton property to display a filter button to the column's
caption. BY default, the FilterBarDropDownWidth property is 1. It means, the width of the
drop down filter window is the same with the width of the column.

If the FilterBarDropDownWidth property is negative, the absolute value of the
FilterBarDropDownWidth property indicates the width of the drop down filter window in
pixels. In this case, the width of the drop down filter window is not proportionally with the
width of the column. For instance, the following sample specifies the width of the drop down
filter window being 100 pixels:

With ExFileView1
 .FilterBarDropDownWidth("Name") = -100
End With

If the FilterBarDropDownWidth property is greater than 0, it indicates the width of the drop
down filter window proportionally with the width of column. For instance, the following
sample specifies the width of the drop down filter window being half of the width of the
column:

With ExFileView1
 .FilterBarDropDownWidth("Name") = 0.5
End With

The drop down filter window always include an item.

The following VB sample adds custom filter patterns for executable files:

With ExFileView1
 .FilterBarDropDownHeight = 0.7
 .ColumnFilterButton("Name") = True
 .AddColumnCustomFilter "Name", "(Executable files)", "*.exe|*.com|*.bat"
End With

The following C++ sample adds custom filter patterns for executable files:

m_fileview.SetFilterBarDropDownHeight(0.7);
m_fileview.SetColumnFilterButton("Name", TRUE);
m_fileview.AddColumnCustomFilter("Name", "(Executable files)", "*.exe|*.com|*.bat");

The following VB.NET sample adds custom filter patterns for executable files:

With AxExFileView1
 .FilterBarDropDownHeight = 0.7
 .set_ColumnFilterButton("Name", True)
 .AddColumnCustomFilter("Name", "(Executable files)", "*.exe|*.com|*.bat")
End With

The following C# sample adds custom filter patterns for executable files:

axExFileView1.FilterBarDropDownHeight = 0.7;
axExFileView1.set_ColumnFilterButton("Name", true);
axExFileView1.AddColumnCustomFilter("Name", "(Executable files)", "*.exe|*.com|*.bat");

The following VFP sample adds custom filter patterns for executable files:

With thisform.ExFileView1
 .FilterBarDropDownHeight = 0.7
 .Object.ColumnFilterButton("Name") = .t.

 .AddColumnCustomFilter("Name", "(Executable files)", "*.exe|*.com|*.bat")
EndWith

property ExFileView.FilterBarFont as IFontDisp
Retrieves or sets the font for control's filter bar.

Type Description

IFontDisp A font object that indicates the font used to paint the
description for control's filter

Use the FilterBarFont property to specify the font for the control's filter bar object. Use the
Font property to set the control's font. Use the FilterBarHeight property to specify the height
of the filter bar. Use the FilterBarCaption property to define the control's filter bar caption.
Use the Refresh method to refresh the control.

property ExFileView.FilterBarForeColor as Color
Specifies the foreground color of the control's filter bar.

Type Description

Color A color expression that defines the foreground color of the
description of the control's filter.

Use the FilterBarForeColor and FilterBarBackColor properties to define colors used to paint
the description of the control's filter. Use the FilterBarFont property to specify the filter bar's
font. Use the FilterBarCaption property to specify the caption of the control's filter bar.

property ExFileView.FilterBarHeight as Long
Specifies the height of the control's filter bar. If the value is less than 0, the filter bar is
automatically resized to fit its description.

Type Description

Long A long expression that indicates the height of the filter bar
status.

The filter bar status defines the control's filter description. If the FilterBarHeight property is
less than 0 the control automatically updates the height of the filter's description to fit in the
control's client area. If the FilterBarHeight property is zero the filter's description is hidden.
If the FilterBarHeight property is grater than zero it defines the height in pixels of the filter's
description. Use the ClearFilter method to clear the control's filter. Use the FilterBarCaption
property to define the control's filter bar caption. Use the FilterBarFont property to specify
the font for the control's filter bar. Use the FilterBarDropDownHeight to specify the height of
the drop down filter window.

property ExFileView.FilterBarPrompt as String
Specifies the caption to be displayed when the filter pattern is missing.

Type Description

String

A string expression that indicates the HTML caption being
displayed in the filter bar, when filter prompt pattern is
missing. The FilterBarPromptPattern property specifies
the pattern to filter the list using the filter prompt feature.

By default, the FilterBarPrompt property is "<i><fgcolor=808080>Start Filter...</fgcolor>
</i>". The FilterBarPromptPattern property specifies the pattern to filter the list using the
filter prompt feature. Changing the FilterBarPrompt property won't change the current filter.
The FilterBarPromptColumns property specifies the list of columns to be used when filtering
by prompt. The ColumnFilterButton property specifies whether the column's header displays
a filter button. The control fires the FilterChange once the list gets filtered. Use the
FilterBarCaption property to change the caption in the filter bar once a new filter is applied.
The FilterBarFont property specifies the font to be used in the filter bar. The
FilterBarBackColor property specifies the background color or the visual aspect of the
control's filter bar. The FilterBarForeColor property specifies the foreground color or the
control's filter bar.

The FilterBarPrompt property supports HTML format as described here:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text

about:blank

with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the

red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

The FilterBarPrompt property has effect only if:

FilterBarPromptVisible property is True
FilterBarPromptPattern property is Empty.

property ExFileView.FilterBarPromptColumns as Variant
Specifies the list of columns to be used when filtering using the prompt.

Type Description

Variant

A long expression that indicates the index of the column to
apply the filter prompt, a string expression that specifies
the list of columns (indexes) separated by comma to apply
the filter prompt, or a safe array of long expression that
specifies the indexes of the columns to apply the filter. The
filter prompt feature allows you to filter the items as you
type while the filter bar is visible on the bottom part of the
list area.

By default, the FilterBarPromptColumns property is -1. If the FilterBarPromptColumns
property is -1, the filter prompt is applied for all columns, visible or hidden. Use the
FilterBarPromptColumns property to specify the list of columns to apply the filter prompt
pattern. The FilterBarPromptVisible property specifies whether the filter prompt is visible or
hidden. Use the FilterBarPrompt property to specify the HTML caption being displayed in
the filter bar when the filter pattern is missing. The FilterBarPromptPattern property
specifies the pattern to filter the list. Changing the FilterBarPromptPattern property does
not require calling the ApplyFilter method to apply the new filter, only if filtering is required
right a way. The FilterBarPromptType property specifies the type of filtering when the user
edits the prompt in the filter bar.

property ExFileView.FilterBarPromptPattern as String
Specifies the pattern for the filter prompt.

Type Description

String A string expression that specifies the pattern to filter the
list.

By default, the FilterBarPromptPattern property is empty. If the FilterBarPromptPattern
property is empty, the filter bar displays the FilterBarPrompt property, if the
FilterBarPromptVisible property is True. The FilterBarPromptPattern property indicates the
patter to filter the list. The pattern may include wild characters if the FilterBarPromptType
property is exFilterPromptPattern. The FilterBarPromptColumns specifies the list of columns
to be used when filtering. Changing the FilterBarPromptPattern property does not require
calling the ApplyFilter method to apply the new filter, only if filtering is required right a way.

property ExFileView.FilterBarPromptType as FilterPromptEnum
Specifies the type of the filter prompt.

Type Description

FilterPromptEnum A FilterPromptEnum expression that specifies how the
items are being filtered.

By default, the FilterBarPromptType property is exFilterPromptContainsAll. The filter prompt
feature allows you to filter the items as you type while the filter bar is visible on the bottom
part of the list area. The Filter prompt feature allows at runtime filtering data on hidden
columns too. Use the FilterBarPromptVisible property to show the filter prompt. Use the
FilterBarPrompt property to specify the HTML caption being displayed in the filter bar when
the filter pattern is missing. The FilterBarPromptPattern property specifies the pattern to
filter the list. Changing the FilterBarPromptPattern property does not require calling the
ApplyFilter method to apply the new filter, only if filtering is required right a way. The
FilterBarPromptColumns property specifies the list of columns to be used when filtering by
prompt. The ColumnFilterButton property specifies whether the column's header displays a
filter button. The control fires the FilterChange once the list gets filtered. Use the
FilterBarCaption property to change the caption in the filter bar once a new filter is applied.

The FilterBarPromptType property supports the following values:

exFilterPromptContainsAll, The list includes the items that contains all specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptContainsAny, The list includes the items that contains any of specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptStartWith, The list includes the items that starts with any specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptEndWith, The list includes the items that ends with any specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptPattern, The filter indicates a pattern that may include wild characters
to be used to filter the items in the list. The FilterBarPromptPattern property may
include wild characters as follows:

'?' for any single character

'*' for zero or more occurrences of any character
'#' for any digit character
' ' space delimits the patterns inside the filter

property ExFileView.FilterBarPromptVisible as FilterBarVisibleEnum
Shows or hides the control's filter bar including filter prompt.

Type Description

FilterBarVisibleEnum A FilterBarVisibleEnum expression that defines the way
the control's filter bar is shown.

By default, The FilterBarPromptVisible property is exFilterBarHidden. The filter prompt
feature allows you to filter the items as you type while the filter bar is visible on the bottom
part of the list area. The Filter prompt feature allows at runtime filtering data on hidden
columns too. Use the FilterBarPromptVisible property to show the filter prompt. Use the
FilterBarPrompt property to specify the HTML caption being displayed in the filter bar when
the filter pattern is missing. The FilterBarPromptPattern property specifies the pattern to
filter the list. Changing the FilterBarPromptPattern property does not require calling the
ApplyFilter method to apply the new filter, only if filtering is required right a way. The
FilterBarCaption property defines the caption to be displayed on the control's filter bar. The
FilterBarPromptType property specifies the type of filtering when the user edits the prompt
in the filter bar. The FilterBarPromptColumns property specifies the list of columns to be
used when filtering by prompt. The ColumnFilterButton property specifies whether the
column's header displays a filter button. The control fires the FilterChange once the list gets
filtered.

The following screen show shows the filter prompt:

The following screen show shows the list once the user types "london":

property ExFileView.FilterInclude as FilterIncludeEnum

Specifies the items being included after the user applies the filter. /*not supported in the lite
version*/

Type Description

FilterIncludeEnum A FilterIncludeEnum expression that indicates the items
being included when the filter is applied.

By default, the FilterInclude property is exItemsWithoutChilds. Use the FilterInclude
property to specify whether the child items should be included to the list when the user
applies the filter. Use the ColumnFilter property and ColumnFilterType property to specify
the column's filter. Use the ApplyFilter to apply the filter at runtime. Use the ClearFilter
method to clear the control's filter. Use the ExpandFolders property to include child folders
in the list.

Let's say that we have the following hierarchy:

and the ColumnFilter property is "A*", ColumnFilterType property is FilterPattern.

If the FilterInclude property is exItemsWithoutChilds, the filtered list looks like follows:

If the FilterInclude property is exItemsWithChilds, the filtered list looks like follows:

If the FilterInclude property is exRootsWithoutChilds, the filtered list looks like follows:

If the FilterInclude property is exRootsWithChilds, the filtered list looks like follows:

property ExFileView.Font as IFontDisp

Retrieves or sets the Font object used to paint control.

Type Description

IFontDisp A Font object being used to paint the items within the
control.

Use the Font property to change the control's font. Use the Bold property to bold files that
matches a pattern. Use the Bold property to bold a specified file or folder. Use the Refresh
method to refresh the control.

The following VB sample assigns by code a new font to the control:

With ExFileView1
 With .Font
 .Name = "Tahoma"
 End With
 .Refresh
End With

The following C++ sample assigns by code a new font to the control:

COleFont font = m_fileview.GetFont();
font.SetName("Tahoma");
m_fileview.Refresh();

the C++ sample requires definition of COleFont class (#include "Font.h")

The following VB.NET sample assigns by code a new font to the control:

With AxExFileView1
 Dim font As System.Drawing.Font = New System.Drawing.Font("Tahoma", 10,
FontStyle.Regular, GraphicsUnit.Point)
 .Font = font
 .CtlRefresh()
End With

The following C# sample assigns by code a new font to the control:

System.Drawing.Font font = new System.Drawing.Font("Tahoma", 10, FontStyle.Regular);

axExFileView1.Font = font;
axExFileView1.CtlRefresh();

The following VFP sample assigns by code a new font to the control:

with thisform.ExFileView1.Object
 .Font.Name = "Tahoma"
 .Refresh()
endwith

property ExFileView.ForeColor as Color

Retrieves or sets the control's foreground color.

Type Description

Color A color expression that indicates the control's foreground
color.

Use the ForeColor property to specify the control's foreground color. Use the BackColor
property to specify the control's background color. Use the ForeColor property to specify
the foreground color for files or folders that match specified patterns. Use the SelForeColor
and SelBackColor properties to specify the background and foreground colors for selected
items.

property ExFileView.ForeColorHeader as Color
Specifies the header's foreground color.

Type Description

Color A color expression that indicates the foreground color for
control's header.

Use the ForeColorHeader properties to specify the foreground color for the control's header
bar. Use the BackColorHeader property to specify the background color for the control's
header bar. The HeaderVisible property shows or hides the control's header bar. Use the
FilterBarForeColor property to specify the foreground color for the control's filter bar. Use
the ForeColor property to specify the control's foreground color.

method ExFileView.FormatABC (Expression as String, [A as Variant], [B
as Variant], [C as Variant])
Formats the A,B,C values based on the giving expression and returns the result.

Type Description
Expression as String A String that defines the expression to be evaluated.

A as Variant A VARIANT expression that indicates the value of the A
keyword.

B as Variant A VARIANT expression that indicates the value of the B
keyword.

C as Variant A VARIANT expression that indicates the value of the C
keyword.

Return Description

Variant A VARIANT expression that indicates the result of the
evaluation the ExFileView.

The FormatABC method formats the A,B,C values based on the giving expression and
returns the result.

For instance:

"A + B + C", adds / concatenates the values of the A, B and C
"value MIN 0 MAX 99", limits the value between 0 and 99
"value format ``", formats the value with two decimals, according to the control's panel
setting
"date(`now`)" returns the current time as double

The FormatABC method supports the following keywords, constants, operators and
functions:

A or value keyword, indicates a variable A whose value is giving by the A parameter
B keyword, indicates a variable B whose value is giving by the B parameter
C keyword, indicates a variable C whose value is giving by the C parameter

This property/method supports predefined constants and operators/functions as described
here.

method ExFileView.FreezeEvents (Freeze as Boolean)
Prevents the control to fire any event.

Type Description

Freeze as Boolean A Boolean expression that specifies whether the control'
events are froze or unfroze

The FreezeEvents(True) method freezes the control's events until the FreezeEvents(False)
method is called.

property ExFileView.FullRowSelect as Boolean
Enables full-row selection in the control.

Type Description

Boolean A Boolean expression that specifies how the selection is
shown in the control.

By default, the FullRowSelect property is False, which indicates that the Name column
shows the selected filed. If the FullRowSelect property is True, the entire item (Name,
Size, Type and Modified columns) is shown as selected. The SingleSel property indicates
whether the control supports single or multiple selection. Use the SelForeColor property to
specify the foreground color for selected files or folders. Use the SelBackColor property to
specify the background color for selected files or folders.

The following screen shot shows the control with FullRowSelect property on False (by
default):

The following screen shot shows the control with FullRowSelect property on True:

property ExFileView.Get (Type as TypeEnum) as Files

Builds and gets the collection of File objects of the given type.

Type Description

Type as TypeEnum
Use SelItems to get the collection of selected files/folder,
or AllItems for retrieving the entire collection of
files/folders.

Files A Files collection that contains files based on the specified
type.

Use the HasCheckBox property to assign a check box for each item in your control. Use the
BrowseFolderPath property to specify the path to the browsed folder. Use the Name
property to specify the name of the file or folder. Use the FullName property to get the full
name of the file or folder. Use the Folder property to specify whether the File object hosts a
file or a folder.

Use the Get method to retrieve :

selected files and folders
all items in the browsed folder
checked files, folders
the list of visible items, as they are displayed

The File.Children property helps you to collect recursively all files/folders of specified
object. The EnumR function displays the full name of each file/folder, and goes recursively
to each subfolder. Use the Folder property to specify whether the File object hosts a file or
a folder. The Children property returns a collection of File objects, if the ExpandFolders
property is True.

Public Sub EnumR(ByVal f As EXFILEVIEWLibCtl.File)
 Debug.Print f.FullName
 For Each c In f.Children
 EnumR (c)
 Next
End Sub

The following VB sample displays the list of files as they are displayed:

With ExFileView1.Get(VisibleItems)
 For i = 0 To .Count - 1
 With .Item(i)

 Debug.Print .Name
 End With
 Next
End With

The following VB enumerates the selected files and folders:

Dim i As Long
With ExFileView1.Get(SelItems)
 For i = 0 To .Count - 1
 Debug.Print .Item(i).FullName
 Next
End With

The following C++ sample displays the list of files as they are displayed:

CFiles files = m_fileview.GetGet(3 /*VisibleItems*/);
for (long i = 0; i < files.GetCount(); i++)
 OutputDebugString(files.GetItem(COleVariant(i)).GetName());

The following C++ enumerates the selected files and folders:

CFiles files = m_fileview.GetGet(0 /*SelItems*/);
for (long i = 0; i < files.GetCount(); i++)
 OutputDebugString(files.GetItem(COleVariant(i)).GetFullName());

The following VB.NET sample displays the list of files as they are displayed:

With AxExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.VisibleItems)
 Dim i As Integer
 For i = 0 To .Count - 1
 With .Item(i)
 Debug.WriteLine(.Name())
 End With
 Next
End With

The following VB.NET enumerates the selected files and folders:

With AxExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.SelItems)

 Dim i As Integer
 For i = 0 To .Count - 1
 Debug.WriteLine(.Item(i).FullName)
 Next
End With

The following C# sample displays the list of files as they are displayed:

EXFILEVIEWLib.Files files = axExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.VisibleItems);
for (int i = 0; i < files.Count; i++)
{
 EXFILEVIEWLib.File file = files[i];
 System.Diagnostics.Debug.WriteLine(file.Name);
}

The following C# enumerates the selected files and folders:

EXFILEVIEWLib.Files files = axExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.SelItems);
for (int i = 0; i < files.Count; i++)
{
 EXFILEVIEWLib.File file = files[i];
 System.Diagnostics.Debug.WriteLine(file.FullName);
}

The following VFP sample displays the list of files as they are displayed:

With thisform.ExFileView1.Get(3) && VisibleItems
 For i = 0 To .Count - 1
 With .Item(i)
 wait window nowait .Name
 EndWith
 Next
EndWith

The following VFP enumerates the selected files and folders:

with thisform.ExFileView1.Get(0) && SelItems
 local i
 for i = 0 to .Count - 1

 with .Item(i)
 wait window nowait .FullName
 endwith
 next
 endwith

property ExFileView.HasButtons as Boolean

Adds a button to the left side of each parent item.

Type Description

Boolean
A boolean expression that indicates whether the control
displays a left button for each item that contains child
items.

By default, the HasButtons property is True. Use the HasButtons property to specify
whether the parent items displays a +/- sign to let user expands or collapses items. The
HasLines property retrieves or sets a value that indicates whether the control links the child
items to their parents. Use the HasLinesAtRoot property retrieves or sets a value that
indicates whether the control draws the lines that link the root items. The HasButtons
property has effect only if the ExpandFolders property it True. Use the ExpandOnDblClk
property to expand or collapse a folder when user double clicks the folder. Use the
ExploreFromHere property specifies the root folder for the control.

property ExFileView.HasCheckBox as CheckBoxEnum

Specifies whether the control displays a check box for each item. /*not supported in the lite
version*/

Type Description

CheckBoxEnum A CheckBoxEnum expression that indicates whether the
control displays a check box for each item.

Use the HasCheckBox property to assign a check box for each item in your control. The
control supports partial check feature (three-states check box) too. When partial check
feature is on, the control displays a partial check box for an item that contains checked
items as well as unchecked child items. Use the Checked property to check or uncheck by
code a file or folder. Use the Get method to get the collection of checked items.

The following VB sample displays the checked files and folders:

With ExFileView1.Get(CheckItems)
 Dim i As Long
 For i = 0 To .Count - 1
 With .Item(i)
 Debug.Print .Name
 End With
 Next
End With

The following C++ sample displays the checked files and folders:

CFiles files = m_fileview.GetGet(2 /*CheckItems*/);
for (long i = 0; i < files.GetCount(); i++)
 OutputDebugString(files.GetItem(COleVariant(i)).GetName());

The following VB.NET sample displays the checked files and folders:

With AxExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.CheckItems)
 Dim i As Integer
 For i = 0 To .Count - 1
 Debug.WriteLine(.Item(i).Name)
 Next
End With

The following C# sample displays the checked files and folders:

EXFILEVIEWLib.Files files = axExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.CheckItems);
for (int i = 0; i < files.Count; i++)
 System.Diagnostics.Debug.WriteLine(files[i].Name);

The following VFP sample displays the checked files and folders:

With thisform.ExFileView1.Get(2) && CheckItems
 local i
 for i = 0 to .Count - 1
 with .Item(i)
 wait window nowait .Name
 endwith
 next
EndWith

property ExFileView.HasLines as Boolean

Retrieves or sets a value that indicates whether the control links the child items to their
parents.

Type Description

Boolean A Boolean expression that indicates whether the control
links the child items to their parents.

By default, the HasLines property is True. The HasLines property retrieves or sets a value
that indicates whether the control links the child items to their parents. Use the HasButtons
property to specify whether the parent items displays a +/- sign to let user expands or
collapses items. Use the HasLinesAtRoot property retrieves or sets a value that indicates
whether the control draws the lines that link the root items. The HasLines property has
effect only if the ExpandFolders property it True.

property ExFileView.HasLinesAtRoot as Boolean

Retrieves or sets a value that indicates whether the control draws the lines that link the root
items.

Type Description

Boolean A boolean expression that indicates whether the control
draws the lines that link the root items.

By default, the HasLinesAtRoot property is False. Use the HasLinesAtRoot property
retrieves or sets a value that indicates whether the control draws the lines that link the root
items. The HasLines property retrieves or sets a value that indicates whether the control
links the child items to their parents. Use the HasButtons property to specify whether the
parent items displays a +/- sign to let user expands or collapses items. The
HasLinesAtRoot property has effect only if the ExpandFolders property it True.

property ExFileView.HeaderAppearance as AppearanceEnum
Retrieves or sets a value that indicates the header's appearance.

Type Description

AppearanceEnum An AppearanceEnum expression that indicates the
header's appearance.

Use the HeaderAppearance property to change the appearance for the control's header
bar. Use the HeaderVisible property to hide the control's header bar. Use the HeaderHeight
property to change the height of the control's header bar. Use the ColumnVisible property to
hide or show a column. Use the ColumnCaption property to specify the column's caption.
Use the ColumnWidth property to change the column's width. Use the BackColorHeader
property to specify the background color for the control's header bar. Use the
ForeColorHeader property to specify the foreground color for the control's header bar.

property ExFileView.HeaderHeight as Long
Retrieves or sets a value indicating the control's header height.

Type Description

Long A long expression that specifies the height of the control's
header

By default, the HeaderHeight property is 18 pixels. Use the HeaderHeight property to
change the height of the control's header bar. Use the HeaderVisible property to hide the
control's header bar. The HeaderAppearance property changes the appearance for the
control's header bar.

property ExFileView.HeaderVisible as Boolean

Retrieves or sets a value that indicates whether the control's header bar is visible or hidden.

Type Description

Boolean A boolean expression that indicates whether the control's
header bar is visible or hidden.

Use the HeaderVisible property to hide the control's header bar. Use the HeaderHeight
property to change the height of the control's header bar. Use the ColumnVisible property to
hide or show a column. Use the ColumnCaption property to specify the column's caption.
Use the ColumnWidth property to change the column's width. Use the BackColorHeader
property to specify the background color for the control's header bar. Use the
ForeColorHeader property to specify the foreground color for the control's header bar. Use
the FilterBarHeight property to specify the height of the control's filter bar. Use the
BackColor property to specify the control's background color.

property ExFileView.HideSelection as Boolean
Returns a value that determines whether selected item appears highlighted when a control
loses the focus.

Type Description

Boolean A boolean expression that indicates whether the selected
item appears highlighted when a control loses the focus.

By default, the HideSelection property is False. You can use this property to indicate which
item is highlighted while another form or a dialog box has the focus. Use the SelForeColor
and SelBackColor property to customize the colors for the selected items in the control.

property ExFileView.HotBackColor as Color
Retrieves or sets a value that indicates the hot-tracking background color.

Type Description

Color

A color expression that indicates the background color for
item from the cursor (hovering the item). Use the Add
method to add new skins to the control. If you need to
remove the skin appearance from a part of the control you
need to reset the last 7 bits in the high significant byte of
the color being applied to the background's part.

By default, the HotBackColor property is 0, which means that the HotBackColor property
has no effect. Use the HotBackColor property on a non-zero value to highlight the item from
the cursor. The HotForeColor property specifies the foreground color to highlight the item
from the cursor. The SelBackColor property specifies the selection background color.

property ExFileView.HotForeColor as Color
Retrieves or sets a value that indicates the hot-tracking foreground color.

Type Description

Color A color expression that indicates the foreground color for
item from the cursor (hovering the item).

By default, the HotForeColor property is 0, which means that the HotForeColor property
has no effect. Use the HotForeColor property on a non-zero value to highlight the item from
the cursor. The HotBackColor property specifies the background color to highlight the item
from the cursor. The SelForeColor property specifies the selection foreground color.

property ExFileView.hWnd as Long
Retrieves the control's window handle.

Type Description

Long A long expression that indicates the handle of the control's
window.

The Microsoft Windows operating environment identifies each form and control in an
application by assigning it a handle, or hWnd. The hWnd property is used with Windows API
calls. Many Windows operating environment functions require the hWnd of the active
window as an argument.

property ExFileView.ImageSize as Long
Retrieves or sets the size of icons the control displays.

Type Description

Long A long expression that defines the size of icons the control
displays.

By default, the ImageSize property is 16 (pixels). The ImageSize property specifies the size
of the icons the control displays.

The ImageSize property defines the size to display the following UI elements:

any icon that a cell or column displays
check-box or radio-buttons
expand/collapse glyphs
header's sorting or drop down-filter glyphs

property ExFileView.IncludeFiles as Boolean

Retrieves or sets a value indicating whether the control includes the files to the list.

Type Description

Boolean A boolean expression indicating whether the control
includes the files to the list.

Use the IncludeFiles property to include files in the current list. Use the IncludeFilesInFolder
property to include files when expanding a folder. Use the IncludeFilter property to specify
the patterns for files being included in the list. Use the ExcludeFilter to exclude files from the
current list. Use the IncludeFolders property to include folders in the current list. The
ExpandFolders property retrieves or sets a value that indicates whether the control expands
the folder objects. Use the ExploreFromHere property to specify the root folder for the
control.

property ExFileView.IncludeFilesInFolder as Boolean
Retrieves or sets a value that indicates whether the control includes files when expanding a
folder.

Type Description

Boolean A boolean expression indicates whether the control
includes the files when expanding a folder.

Use the IncludeFilesInFolder property to include files when expanding a folder. The
IncludeFilesInFolder property has effect only if the IncludeFiles property is True, and
ExpandFolders property is True. The ExpandFolders property retrieves or sets a value that
indicates whether the control expands the folder objects. The IncludeFilter and ExcludeFilter
properties filters the files being included in the list. Use the ExpandOnDblClk property to
expand or collapse a folder when user double clicks the folder. Use the ExploreFromHere
property specifies the root folder for the control.

property ExFileView.IncludeFilter as String

Specifies the pattern used to include files to the control's list, like '*.cpp *.h'

Type Description
String A string expression that may contain wild cards like * or ?.

Use the IncludeFilter property to include files that match a pattern. When the IncludeFilter is
called, the control automatically refreshes the current list, and applies the FileType
attributes. To remove a previous include filter you can use "" empty string. By default, the
IncludeFilter is "". Use the ExcludeFilter to exclude files from the current list. The
IncludeFolderFilter property specifies a wild characters expression that indicates the folders
being included. The ExcludeFolderFilter property specifies a wild characters expression that
indicates the folders being excluded. The patterns are separated by space character. Use
the IncludeFiles property to include files in the control's list. Use the
exHideFileExtensionsForKnownFileTypes option to show the file extensions in case your
Windows Explorer, the "Hide File Extensions For Known File Types" is checked.

The following VB sample includes only the files with the extensions: 'frm', 'frx', 'vbp' and
'vbw', and colorize the items differentially:

With ExFileView1
 .IncludeFilter = "*.frm *.frx *.vbp *.vbw"
 With .FileTypes
 With .Add("*.frm *.frx")
 .ForeColor = vbBlue
 End With
 With .Add("*.vbp")
 .Bold = True

 End With
 .Apply
 End With
End With

The following C++ sample includes only the files with the extensions: 'frm', 'frx', 'vbp' and
'vbw', and colorize the items differentially:

m_fileview.SetIncludeFilter("*.frm *.frx *.vbp *.vbw");
CFileTypes fileTypes = m_fileview.GetFileTypes();
fileTypes.Add("*.frm *.frx").SetForeColor(RGB(0,0,255));
fileTypes.Add("*.vbp").SetBold(TRUE);
fileTypes.Apply();

The following VB.NET sample includes only the files with the extensions: 'frm', 'frx', 'vbp' and
'vbw', and colorize the items differentially:

With AxExFileView1
 .IncludeFilter = "*.frm *.frx *.vbp *.vbw"
 With .FileTypes
 With .Add("*.frm *.frx")
 .ForeColor = ToUInt32(Color.Blue)
 End With
 With .Add("*.vbp")
 .Bold = True
 End With
 .Apply()
 End With
End With

where the ToUInt32 function converts a Color expression to an OLE_COLOR type,

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample includes only the files with the extensions: 'frm', 'frx', 'vbp' and
'vbw', and colorize the items differentially:

axExFileView1.IncludeFilter = "*.frm *.frx *.vbp *.vbw";
EXFILEVIEWLib.FileTypes fileTypes = axExFileView1.FileTypes;
fileTypes.Add("*.frm *.frx").ForeColor = ToUInt32(Color.Blue);
fileTypes.Add("*.vbp").Bold = true;
fileTypes.Apply();

where the ToUInt32 function converts a Color expression to an OLE_COLOR type,

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample includes only the files with the extensions: 'frm', 'frx', 'vbp' and
'vbw', and colorize the items differentially:

With thisform.ExFileView1
 .IncludeFilter = "*.frm *.frx *.vbp *.vbw"
 With .FileTypes
 With .Add("*.frm *.frx")
 .ForeColor = RGB(0,0,255)
 EndWith
 With .Add("*.vbp")
 .Bold = .t.
 EndWith
 .Apply
 EndWith
EndWith

property ExFileView.IncludeFolderFilter as String
Retrieves or sets a value that indicates the folders being included.

Type Description
String A string expression that may contain wild cards like * or ?.

Use the IncludeFolderFilter property to include folders that match a pattern or a list of
patterns. When the IncludeFolderFilter is invoked, the control automatically refreshes the
current list, and applies the FileType attributes. The IncludeFolderFilter property has effect
if it is not empty. Use the IncludeFilter property to include files that match a pattern or a list
of patterns. The ExcludeFolderFilter property specifies a wild characters expression that
indicates the folders being excluded. Use the ExcludeFilter to exclude files from the current
list. Use the IncludeFiles property to include files in the control's list. Use the
exHideFileExtensionsForKnownFileTypes option to show the file extensions in case your
Windows Explorer, the "Hide File Extensions For Known File Types" is checked.

The following VB sample includes the "Temp" folders:

With ExFileView1
 .IncludeFolderFilter = "*temp*"
End With

The following C++ sample includes the "Temp" folders:

m_fileview.SetIncludeFolderFilter("temp*");

The following VB.NET sample includes the "Temp" folders:

AxExFileView1.IncludeFolderFilter = "*temp*"

The following C# sample includes the "Temp" folders:

axExFileView1.IncludeFolderFilter = "*temp*";

The following VFP sample includes the "Temp" folders:

With thisform.ExFileView1
 .IncludeFolderFilter = "*temp*"
EndWith

property ExFileView.IncludeFolders as Boolean

Retrieves or sets a value that indicates whether control includes the folders.

Type Description

Boolean A boolean expression that indicates whether control
includes the folders.

The IncludeFolders property specifies whether the control shows the folders. The
ExpandFolders property retrieves or sets a value that indicates whether the control expands
the folder objects. The Folder property specifies whether a File object holds a file or a
folder. Use the ExploreFromHere property specifies the root folder for the control. Use the
IncludeFilesInFolder property to include files when expanding a folder. Use the IncludeFiles
property to include files in the current list. The IncludeFolderFilter property specifies a wild
characters expression that indicates the folders being included. The ExcludeFolderFilter
property specifies a wild characters expression that indicates the folders being excluded.

property ExFileView.IncludeParent as IncludeParentEnum

Retrieves or sets a value that indicates whether the control includes the parent folder.

Type Description

IncludeParentEnum An IncludeParentEnum expression that indicates whether
the control includes the parent folder.

If the IncludeParent property is True, the control adds a new item titled ".." that defines the
parent folder for the browsed folder. If the user clicks on this item, the control browses the
parent folder. The BrowseFolderPath property specifies the path to the browsed folder. The
control fires the StateChange event when the user changes the browsed path. The
ExploreFromHere property specifies the root folder for the control. Use the
IncludeParentIconKey property to specify the key of the icon being displayed for parent
folders. Use the Folder property to specify whether a File object holds a file or a folder. Use
the IncludeParentLabel property to specify a different label for the parent item.

property ExFileView.IncludeParentIconKey as Long
Retrieves or sets a value that indicates the key of the icon used for 'Parent' button.

Type Description

Long A long expression that indicates the index of the icon being
displayed for the Parent item.

By default, the IncludeParentIconKey property is -1. Use the LoadIcon property to load
icons to the control. If the icon doesn't exist the control displays no icon for Parent item.
Use the IncludeParent property to specify whether the browsed folder includes a link to the
parent folder. If the IncludeParent property is True, the control adds a new item titled ".."
that defines the parent folder for the browsed folder. If the user clicks on this item, the
control browses the parent folder. The BrowseFolderPath property specifies the path to the
browsed folder. The control fires the StateChange event when the user changes the
browsed path.

property ExFileView.IncludeParentLabel as String
Specifies the label for the parent item.

Type Description

String

A String expression that specifies the label to be displayed
in the parent item. The expression may include <%0%>,
<%1%>, <%2%> or <%3%>, which indicates the full
name, name , parsed name, or relative name of the parent
folder.

By default, the IncludeParentLabel property is "..". The IncludeParent property indicates
whether the parent folder is being displayed. For instance, the IncludeParentLabel = "
<%0%>" specifies that the parent item should display the full name (including its path) of
the parent folder. The BrowseFolderPath property indicates the path of browsed folder.

The IncludeParentLabel property supports the following fields:

<%0%> - displays the full path of the browsed folder aka C:\Program Files\Exontrol
<%1%> - displays the name of the browsed folder aka SYSTEM (C:) instead of C:\, or
Temp for C:\Temp
<%2%> - displays the parsed name of the browsed folder aka C:\ for SYSTEM (C:) or
Temp for C:\Temp
<%3%> - displays the name of the browsed folder relative to the folder being specified
by the ExplorerFromHere property. If the ExplorerFromHere property is not specified,
the <%3%> is identical with <%0%>. If the ExplorerFromHere property refers a folder
its name is not shown on <%3%>, so only relative name is displayed.

The following screen shot shows the browsed folder (E:\Exontrol):

property ExFileView.IncludeSubFolderIconKey as Long
Retrieves or sets a value that indicates the key of the icon to highlights folders that includes
sub-folders.

Type Description

Long A Long expression that specifies the key of the icon to
highlights folders that includes sub-folders.

By default, the IncludeSubFolderIconKey property is -1, which indicates that the control
displays an arrow when the folder contains sub-folders as can seen in the following screen
shot:

For instance, if IncludeSubFolderIconKey property is 0, the control displays no default
arrow for folders that contains sub-folders.

property ExFileView.IncrementalSearch as IncrementalSearchEnum
Specifies how the control searches for the objects while user types characters.

Type Description

IncrementalSearchEnum An IncrementalSearchEnum expression that specifies how
the control searches for objects while tying characters.

By default, the IncrementalSearch property is exDefaultStartWith, and it is similar with
incremental searching in the Windows Explorer. An incremental search begins searching as
soon as you type the first character of the search string. So, typing characters starts
searching for objects. If no character is typed during one second, the incremental search
ends. If the IncrementalSearch property is exStartWith or exContains, the control highlights
the found characters, while typing as shown in the following screen shots. The exStartWith
option searches for objects that starts with typed characters while, the exContains option
searches for objects that contains typed characters. Once an object is found and
highlighted you can press F3 key for searching the next occurence.

The picture shows the Prog word as being highlighted after the user typed "prog"
characters. In this case the IncrementalSearch property is exStartWith

The picture shows the Files word as being highlighted after the user typed "files"
characters. In this case the IncrementalSearch property is exContains

property ExFileView.Indent as Long
Retrieves or sets the amount, in pixels, that child items are indented relative to their parent
items.

Type Description

Long A long expression that specifies the amount, in pixels, that
child items are indented relative to their parent items.

By default, the Indent property is 12 pixels. Use the Indent property to increase or
decrease the the amount, in pixels, that child items are indented relative to their parent
items. The ExpandFolders property specifies whether the folders shows their sub-folders in
the same list, with indention.

property ExFileView.IsBusy as Boolean
Indicates whether the control still collects information about current files and folders.

Type Description

Boolean A Boolean expression that specifies whether the control is
busy or ready.

The IsBusy property indicates whether the control still loading information about files and
folders. The control fires the StateChange(ReadyState) once all information on current view
is loaded or done. The StateChange(BusyState) event notifies your application once the
control start loading information for current files and folders. The information could be size,
dates, and icons.

property ExFileView.Layout as String
Saves or loads the control's layout, such as positions of the columns, scroll position, filtering
values.

Type Description
String A String expression that specifies the control's layout.

You can use the Layout property to store the control's layout and to restore the layout later.
For instance, you can save the control's Layout property to a file when the application is
closing, and you can restore the control's layout when the application is loaded. The Layout
property saves almost all of the control's properties that user can change at runtime (like
changing the column's position by drag and drop). The Layout property does NOT save the
control's data, so the Layout property should be called once you loaded the data from your
database, xml or any other alternative. Once the data is loaded, you can call the Layout
property to restore the View as it was saved. Before closing the application, you can call
the Layout property and save the content to a file for reading next time the application is
opened.

The Layout property saves/loads the following information:

columns size and position
current selection
scrolling position and size
sorting columns
expanded/collapsed items, if any
BrowseFolderPath property

These properties are serialized to a string and encoded in BASE64 format.

The following movies show how Layout works:

 The Layout property is used to save and restore the control's view.

Generally, the Layout property can be used to save / load the control's layout (or as it is
displayed). Thought, you can benefit of this property to sort the control using one or more
columns as follows:

singlesort="C0:2", sorts descending the name column (index is 0)

https://www.youtube.com/watch?v=TbWWnDJlD9w

method ExFileView.LoadIcon (Icon as Long, IconKey as Long)

Appends a new icon image to control images collection.

Type Description

Icon as Long A long expression that indicates the handle of the icon
being added.

IconKey as Long A long expression that indicates the icon's key used by the
IconIndex property.

Use the LoadIcon to add an icon to the control images collection. Use the LoadIcons
method to load multiple icons. The images collection is used to replace the default
file/folder's icon. Use the IconIndex property of FileType object to change the file's icon.
Use the BrowseFolderPath property to specify the path to the browsed folder.

The following VB sample replaces the default icon for files of BMP and JPG types with the
 icon:

With ExFileView1
 .LoadIcon LoadPicture("C:\Temp\sample.ico").Handle, 1234
 With .FileTypes.Add("*.bmp *.jpg")
 .IconIndex = 1234
 .Apply
 End With
End With

After running the sample the default icons for BMP and JPG files is changed like:

The following C++ sample replaces the default icon for files of BMP and JPG types:

IPictureDisp* pPicture = NULL;
if (LoadPicture("c:\\temp\\sample.ico", &pPicture))
{
 OLE_HANDLE hIcon = NULL;
 if (CComQIPtr<IPicture> spPicture(pPicture))
 spPicture->get_Handle(&hIcon);
 m_fileview.LoadIcon(hIcon, 1234);

 CFileType fileType = m_fileview.GetFileTypes().Add("*.bmp *.jpg");
 fileType.SetIconIndex(1234);
 fileType.Apply();
}

where the LoadPicture function loads a picture from a file, and gets the IPictureDisp
interface:

#include
BOOL LoadPicture(LPCTSTR szFileName, IPictureDisp** ppPictureDisp)
{
 BOOL bResult = FALSE;
 if (szFileName)
 {
 OFSTRUCT of;
 HANDLE hFile = NULL;;
#ifdef _UNICODE
 USES_CONVERSION;
 if ((hFile = (HANDLE)OpenFile(W2A(szFileName), &of;, OF_READ |
OF_SHARE_COMPAT)) != (HANDLE)HFILE_ERROR)

#else
 if ((hFile = (HANDLE)OpenFile(szFileName, &of;, OF_READ | OF_SHARE_COMPAT)) !=
(HANDLE)HFILE_ERROR)
#endif
 {
 *ppPictureDisp = NULL;
 DWORD dwHighWord = NULL, dwSizeLow = GetFileSize(hFile, &dwHighWord;);
 DWORD dwFileSize = dwSizeLow;
 HRESULT hResult = NULL;
 if (HGLOBAL hGlobal = GlobalAlloc(GMEM_MOVEABLE, dwFileSize))
 if (void* pvData = GlobalLock(hGlobal))
 {
 DWORD dwReadBytes = NULL;
 BOOL bRead = ReadFile(hFile, pvData, dwFileSize, &dwReadBytes;, NULL);
 GlobalUnlock(hGlobal);
 if (bRead)
 {
 CComPtr spStream;
 _ASSERTE(dwFileSize == dwReadBytes);
 if (SUCCEEDED(CreateStreamOnHGlobal(hGlobal, TRUE, &spStream;)))
 if (SUCCEEDED(hResult = OleLoadPicture(spStream, 0, FALSE,
IID_IPictureDisp, (void**)ppPictureDisp)))
 bResult = TRUE;
 }
 }
 CloseHandle(hFile);
 }
 }
 return bResult;
}

The following VB.NET sample replaces the default icon for files of BMP and JPG types:

With AxExFileView1
 Dim spPicture As stdole.IPictureDisp =
IPDH.GetIPictureDisp(Image.FromFile("c:\temp\sample.ico"))
 .LoadIcon(spPicture.Handle, 1234)

 With .FileTypes.Add("*.bmp *.jpg")
 .IconIndex = 1234
 .Apply()
 End With
End With

where the IPDH class is defined like follows:

Public Class IPDH
 Inherits System.Windows.Forms.AxHost

 Sub New()
 MyBase.New("")
 End Sub

 Public Shared Function GetIPictureDisp(ByVal image As Image) As Object
 GetIPictureDisp = AxHost.GetIPictureDispFromPicture(image)
 End Function

End Class

The following C# sample replaces the default icon for files of BMP and JPG types:

stdole.IPictureDisp spPicture =
IPDH.GetIPictureDisp(Image.FromFile("c:\\temp\\sample.ico")) as stdole.IPictureDisp;
axExFileView1.LoadIcon(spPicture.Handle, 1234);
EXFILEVIEWLib.FileType fileType = axExFileView1.FileTypes.Add("*.bmp *.jpg");
fileType.IconIndex = 1234;
fileType.Apply();

where the IPDH class is defined like follows:

internal class IPDH : System.Windows.Forms.AxHost
{
 public IPDH() : base("")
 {
 }

 public static object GetIPictureDisp(System.Drawing.Image image)

 {
 return System.Windows.Forms.AxHost.GetIPictureDispFromPicture(image);
 }
}

The following VFP sample replaces the default icon for files of BMP and JPG types:

With thisform.ExFileView1
 local i
 with LoadPicture("C:\temp\sample.ico")
 i = .Handle()
 endwith
 .Object.LoadIcon(i, 1234)
 With .FileTypes.Add("*.bmp *.jpg")
 .IconIndex = 1234
 .Apply
 EndWith
EndWith

method ExFileView.LoadIcons (ImageList as Variant)

Loads new images to the control.

Type Description

ImageList as Variant

An ImageList control whose images are added to the
control's icons collection or a string expression that
represents the image list encoded on BASE64 format (
uses the eximages tool to encode multiple icons to an
image list).

The ImageList control must be provided by the MSCOMCTL.OCX file (Microsoft Windows
Common Controls). The ImageList must contains a collection of icon files. The IconIndex
must use the the key in the icons collection. Use the LoadIconsKey property to define the
starting key when LoadIcons method is used. Use the LoadIcon method to load a single
icon to the control's icons list.

property ExFileView.LoadIconsKey as Long

Specifies the starting key when the LoadIcons method is used.

Type Description

Long A long expression that indicates the starting key, when
LoadIcons method is used.

Use the LoadIconsKey property defines the starting key when the icons will be loaded using
the LoadIcons method. Use the LoadIcon method to load a single icon to the control's icons
list.

property ExFileView.Loading as String
Specifies the HTML caption being displayed in the list if loading files or folders could take
long time.

Type Description

String
A HTML expression that specifies the caption to be
displayed when loading the list of files/folders could take
longer.

By default, the Loading property is "Loading...". Use the Loading property to show a
caption in the center of the control while loading files/folders. The message shows up only if
loading could take longer. The Loading property supports the built-in HTML tags as follows:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.

about:blank

<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,

width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property ExFileView.ModifiedDaysAgo as Long
Specifies a value that indicates whether the Modified column shows the number of days ago
when the file was last updated.

Type Description

Long
A long expression that indicates whether the Modified
column shows the number of days ago when the file was
last updated.

By default, the ModifiedDaysAgo property is 0. If the ModifiedDaysAgo property is 0, the
control displays the date when the file was last updated. If the ModifiedDaysAgo property
is greater than zero (x), the control displays the message "x day(s) ago" (or "today")
message for files that were updated in the last x days, else the normal date is displayed.
Use the Option property to change the caption for "today" or "x day(s) ago" strings.

method ExFileView.OLEDrag ()

Causes a component to initiate an OLE drag/drop operation.

Type Description

This is only for internal use.

property ExFileView.OLEDropMode as exOLEDropModeEnum

Returns or sets how the component handles drop operations.

Type Description

exOLEDropModeEnum An exOLEDropModeEnum expression that defines how
the component handles the drag and drop operations.

By default, the OLEDropMode property is exOLEDropNone. Currently, the ExFileView
control supports only manual OLE Drag and Drop operation. See the OLEStartDrag and
OLEDragDrop events for more details about implementing drag and drop operations in the
ExFileView control.

property ExFileView.Option(Option as OptionEnum) as Variant
Retrieves or sets a value that indicates an option for the control.

Type Description

Option as OptionEnum A long expression that indicates the option of the control
being changed.

Variant
A Variant expression that indicates the value for the option
being changed. The type of the Variant is based on the
Option being changed.

Use the Option property to change a particular option for the control. Please check the
OptionEnum enumeration for the options that can be changed. Use the Refresh method to
refresh the control's content.

For instance, you can change the format of date being displayed on the 'Modified' column
using a VB sample like follows:

With ExFileView1
 .Option(exModifiedDateFormat) = "ddd, MMM dd yy "
 .Option(exModifiedTimeFormat) = "HH:mm:ss"
 .Refresh
End With

The sample displays the date like: "Thu, Oct 9 04"

The following C++ sample changes the format of date being displayed ib the "Modified"
column:

m_fileview.SetOption(2, COleVariant("ddd, MMM dd yy "));
m_fileview.SetOption(3, COleVariant("HH:mm:ss"));
m_fileview.Refresh();

The following VB.NET sample changes the format of date being displayed ib the "Modified"
column:

With AxExFileView1
 .set_Option(EXFILEVIEWLib.OptionEnum.exModifiedDateFormat, "ddd, MMM dd yy")
 .set_Option(EXFILEVIEWLib.OptionEnum.exModifiedTimeFormat, "HH:mm:ss")
 .CtlRefresh()
End With

The following C# sample changes the format of date being displayed ib the "Modified"
column:

axExFileView1.set_Option(EXFILEVIEWLib.OptionEnum.exModifiedDateFormat, "ddd,
MMM dd yy ");
axExFileView1.set_Option(EXFILEVIEWLib.OptionEnum.exModifiedTimeFormat,
"HH:mm:ss");
axExFileView1.CtlRefresh();

The following VFP sample changes the format of date being displayed ib the "Modified"
column:

With thisform.ExFileView1
 .Option(2) = "ddd, MMM dd yy " && exModifiedDateFormat
 .Option(3) = "HH:mm:ss" && exModifiedTimeFormat
 .Object.Refresh
EndWith

property ExFileView.Picture as IPictureDisp
Retrieves or sets a graphic to be displayed in the control.

Type Description

IPictureDisp A Picture object that's displayed on the control's
background.

Use the Picture property to load a picture on the control's background. By default, the
control has no picture associated. Use the PictureDisplay property to layout the control's
picture on the control's background. Use the BackColor property to specify the control's
background color. Use the ForeColor property to change the control's foreground color. Use
the SelForeColor and SelBackColor properties to specify the background and foreground
colors for selected items.

property ExFileView.PictureDisplay as PictureDisplayEnum
Retrieves or sets a value that indicates the way how the graphic is displayed on the
control's background

Type Description

PictureDisplayEnum A PictureDisplayEnum expression that indicates the way
how the picture is displayed.

By default, the PictureDisplay property is exTile. Use the PictureDisplay property specifies
how the Picture is displayed on the control's background. If the control has no picture
associated the PictureDisplay property has no effect. Use the BackColor property to
specify the control's background color. Use the ForeColor property to change the control's
foreground color. Use the SelForeColor and SelBackColor properties to specify the
background and foreground colors for selected items.

method ExFileView.Refresh ()

Refreshes the control.

Type Description

The Refresh method refreshes the control's content. Use the Apply method to apply rules to
the current list.

The following VB sample calls the Refresh method:

ExFileView1.Refresh

The following C++ sample calls the Refresh method:

m_fileview.Refresh();

The following VB.NET sample calls the Refresh method:

AxExFileView1.CtlRefresh()

In VB.NET the System.Windows.Forms.Control class has already a Refresh method, so the
CtlRefresh method should be called.

The following C# sample calls the Refresh method:

axExFileView1.CtlRefresh();

In C# the System.Windows.Forms.Control class has already a Refresh method, so the
CtlRefresh method should be called.

The following VFP sample calls the Refresh method:

thisform.ExFileView1.Object.Refresh()

property ExFileView.ScrollButtonHeight as Long
Specifies the height of the button in the vertical scrollbar.

Type Description

Long A long expression that defines the height of the button in
the vertical scroll bar.

By default, the ScrollButtonHeight property is -1. If the ScrollButtonHeight property is -1, the
control uses the default height (from the system) for the buttons in the vertical scroll bar.
Use the ScrollButtonWidth property to specify the width of the buttons in the horizontal
scroll bar. Use the ScrollWidth property to specify the width of the vertical scroll bar. Use
the ScrollHeight property to specify the height of the horizontal scroll bar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollThumbSize property to define a fixed size for the scrollbar's thumb.

property ExFileView.ScrollButtonWidth as Long
Specifies the width of the button in the horizontal scrollbar.

Type Description

Long A long expression that defines the width of the button in
the horizontal scroll bar.

By default, the ScrollButtonWidth property is -1. If the ScrollButtonWidth property is -1, the
control uses the default width (from the system) for the buttons in the horizontal scroll bar.
Use the ScrollButtonHeight property to specify the height of the buttons in the vertical scroll
bar. Use the ScrollWidth property to specify the width of the vertical scroll bar. Use the
ScrollHeight property to specify the height of the horizontal scroll bar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollThumbSize property to define a fixed size for the scrollbar's thumb.

property ExFileView.ScrollFont (ScrollBar as ScrollBarEnum) as
IFontDisp
Retrieves or sets the scrollbar's font.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical or
the horizontal scroll bar.

IFontDisp A Font object

Use the ScrollFont property to specify the font in the control's scroll bar. Use the
ScrolPartCaption property to specify the caption of the scroll's part. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar. By
default, when a part becomes visible, the ScrollPartEnable property is automatically called,
so the parts becomes enabled. Use the ScrollPartEnable property to specify enable or
disable parts in the control's scrollbar. The control fires the ScrollButtonClick event when the
user clicks a part of the scroll bar.

property ExFileView.ScrollHeight as Long
Specifies the height of the horizontal scrollbar.

Type Description

Long A long expression that defines the height of the horizontal
scroll bar.

By default, the ScrollHeight property is -1. If the ScrollHeight property is -1, the control uses
the default height of the horizontal scroll bar from the system. Use the ScrollHeight property
to specify the height of the horizontal scroll bar. Use the ScrollButtonWidth property to
specify the width of the buttons in the horizontal scroll bar. Use the ScrollWidth property to
specify the width of the vertical scroll bar. Use the ScrollButtonHeight property to specify
the height of the buttons in the vertical scroll bar. Use the ScrollPartVisible property to
specify the visible parts in the control's scroll bar. Use the ScrollThumbSize property to
define a fixed size for the scrollbar's thumb.

property ExFileView.ScrollOrderParts(ScrollBar as ScrollBarEnum) as
String
Specifies the order of the buttons in the scroll bar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the order of buttons is displayed.

String

A String expression that indicates the order of the buttons
in the scroll bar. The list includes expressions like l, l1, ...,
l5, t, r, r1, ..., r6 separated by comma, each expression
indicating a part of the scroll bar, and its position indicating
the displaying order.

Use the ScrollOrderParts to customize the order of the buttons in the scroll bar. By default,
the ScrollOrderParts property is empty. If the ScrollOrderParts property is empty the
default order of the buttons in the scroll bar are displayed like follows:

so, the order of the parts is: l1, l2, l3, l4, l5, l, t, r, r1, r2, r3, r4, r5 and r6. Use the
ScrollPartVisible to specify whether a button in the scrollbar is visible or hidden. Use the
ScrollPartEnable property to enable or disable a button in the scroll bar. Use the
ScrollPartCaption property to assign a caption to a button in the scroll bar.

Use the ScrollOrderParts property to change the order of the buttons in the scroll bar. For
instance, "l,r,t,l1,r1" puts the left and right buttons to the left of the thumb area, and the l1
and r1 buttons right after the thumb area. If the parts are not specified in the
ScrollOrderParts property, automatically they are added to the end.

The list of supported literals in the ScrollOrderParts property is:

l for exLeftBPart, (<) The left or top button.
l1 for exLeftB1Part, (L1) The first additional button, in the left or top area.
l2 for exLeftB2Part, (L2) The second additional button, in the left or top area.
l3 for exLeftB3Part, (L3) The third additional button, in the left or top area.
l4 for exLeftB4Part, (L4) The forth additional button, in the left or top area.
l5 for exLeftB5Part, (L5) The fifth additional button, in the left or top area.
t for exLowerBackPart, exThumbPart and exUpperBackPart, The union between the
exLowerBackPart and the exUpperBackPart parts.
r for exRightBPart, (>) The right or down button.

r1 for exRightB1Part, (R1) The first additional button in the right or down side.
r2 for exRightB2Part, (R2) The second additional button in the right or down side.
r3 for exRightB3Part, (R3) The third additional button in the right or down side.
r4 for exRightB4Part, (R4) The forth additional button in the right or down side.
r5 for exRightB5Part, (R5) The fifth additional button in the right or down side.
r6 for exRightB6Part, (R6) The sixth additional button in the right or down side.

Any other literal between commas is ignored. If duplicate literals are found, the second is
ignored, and so on. For instance, "t,l,r" indicates that the left/top and right/bottom buttons
are displayed right/bottom after the thumb area.

property ExFileView.ScrollPartCaption(ScrollBar as ScrollBarEnum, Part
as ScrollPartEnum) as String
Specifies the caption being displayed on the specified scroll part.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the caption is displayed.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll where the text is displated

String A String expression that specifies the caption being
displayed on the part of the scroll bar.

Use the ScrolPartCaption property to specify the caption of the scroll's part. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar. By
default, when a part becomes visible, the ScrollPartEnable property is automatically called,
so the parts becomes enabled. Use the ScrollPartEnable property to specify enable or
disable parts in the control's scrollbar. The control fires the ScrollButtonClick event when the
user clicks a part of the scroll bar. Use the ScrollFont property to specify the font in the
control's scroll bar. Use the ScrollOrderParts property to customize the order of the buttons
in the scroll bar.

By default, the following parts are shown:

exLeftBPart (the left or up button of the control)
exLowerBackPart (the part between the left/up button and the thumb part of the
control)
exThumbPart (the thumb/scrollbox part)
exUpperBackPart (the part between the the thumb and the right/down button of the
control)
exRightBPart (the right or down button of the control)

The following VB sample adds up and down additional buttons to the control's vertical scroll
bar :

With ExFileView1
 .BeginUpdate

 .ScrollPartVisible(exVScroll, exLeftB1Part Or exRightB1Part) = True
 .ScrollPartCaption(exVScroll, exLeftB1Part) = "1"
 .ScrollPartCaption(exVScroll, exRightB1Part) = "2"
 .EndUpdate
End With

The following VB.NET sample adds up and down additional buttons to the control's vertical
scroll bar :

With AxExFileView1
 .BeginUpdate()
 .set_ScrollPartVisible(EXEXFILEVIEWLib.ScrollBarEnum.exVScroll,
EXEXFILEVIEWLib.ScrollPartEnum.exLeftB1Part Or
EXEXFILEVIEWLib.ScrollPartEnum.exRightB1Part, True)
 .set_ScrollPartCaption(EXEXFILEVIEWLib.ScrollBarEnum.exVScroll,
EXEXFILEVIEWLib.ScrollPartEnum.exLeftB1Part, "1")
 .set_ScrollPartCaption(EXEXFILEVIEWLib.ScrollBarEnum.exVScroll,
EXEXFILEVIEWLib.ScrollPartEnum.exRightB1Part, "2")
 .EndUpdate()
End With

The following C# sample adds up and down additional buttons to the control's vertical scroll
bar :

axExFileView1.BeginUpdate();
axExFileView1.set_ScrollPartVisible(EXEXFILEVIEWLib.ScrollBarEnum.exVScroll,
EXEXFILEVIEWLib.ScrollPartEnum.exLeftB1Part |
EXEXFILEVIEWLib.ScrollPartEnum.exRightB1Part, true);
axExFileView1.set_ScrollPartCaption(EXEXFILEVIEWLib.ScrollBarEnum.exVScroll,
EXEXFILEVIEWLib.ScrollPartEnum.exLeftB1Part , "1");
axExFileView1.set_ScrollPartCaption(EXEXFILEVIEWLib.ScrollBarEnum.exVScroll,
EXEXFILEVIEWLib.ScrollPartEnum.exRightB1Part, "2");
axExFileView1.EndUpdate();

The following C++ sample adds up and down additional buttons to the control's vertical
scroll bar :

m_fileView.BeginUpdate();
m_fileView.SetScrollPartVisible(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ | 32

/*exRightB1Part*/, TRUE);
m_fileView.SetScrollPartCaption(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ , _T("
1"));
m_fileView.SetScrollPartCaption(0 /*exVScroll*/, 32 /*exRightB1Part*/ , _T("
2"));
m_fileView.EndUpdate();

The following VFP sample adds up and down additional buttons to the control's vertical
scroll bar :

With thisform.ExFileView1
 .BeginUpdate
 .ScrollPartVisible(0, bitor(32768,32)) = .t.
 .ScrollPartCaption(0,32768) = "1"
 .ScrollPartCaption(0, 32) = "2"
 .EndUpdate
EndWith

*** ActiveX Control Event ***
LPARAMETERS scrollpart

wait window nowait ltrim(str(scrollpart))

property ExFileView.ScrollPartCaptionAlignment(ScrollBar as
ScrollBarEnum, Part as ScrollPartEnum) as AlignmentEnum
Specifies the alignment of the caption in the part of the scroll bar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the caption is displayed.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll where the text is displayed

AlignmentEnum An AlignmentEnum expression that specifies the alignment
of the caption in the part of the scrollbar.

The ScrollPartCaptionAlignment property specifies the alignment of the caption in the part
of the scroll bar. By default, the caption is centered. Use the ScrolPartCaption property to
specify the caption being displayed on specified part of the scroll bar. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar.

property ExFileView.ScrollPartEnable(ScrollBar as ScrollBarEnum, Part
as ScrollPartEnum) as Boolean
Indicates whether the specified scroll part is enabled or disabled.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the part is enabled or disabled.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll bar being enabled or disabled.

Boolean A Boolean expression that specifies whether the
scrollbar's part is enabled or disabled.

By default, when a part becomes visible, the ScrollPartEnable property is automatically
called, so the parts becomes enabled. Use the ScrollPartVisible property to add or remove
buttons/parts in the control's scrollbar. Use the ScrollPartEnable property to specify enable
or disable parts in the control's scrollbar. Use the ScrolPartCaption property to specify the
caption of the scroll's part. The control fires the ScrollButtonClick event when the user clicks
a part of the scroll bar. Use the ScrollOrderParts property to customize the order of the
buttons in the scroll bar.

property ExFileView.ScrollPartVisible(ScrollBar as ScrollBarEnum, Part
as ScrollPartEnum) as Boolean
Indicates whether the specified scroll part is visible or hidden.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the part is visible or hidden.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll bar being visible

Boolean A Boolean expression that specifies whether the
scrollbar's part is visible or hidden.

Use the ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar.
By default, when a part becomes visible, the ScrollPartEnable property is automatically
called, so the parts becomes enabled. Use the ScrollPartEnable property to specify enable
or disable parts in the control's scrollbar. Use the ScrolPartCaption property to specify the
caption of the scroll's part. The control fires the ScrollButtonClick event when the user clicks
a part of the scroll bar. Use the Background property to change the visual appearance for
any part in the control's scroll bar. Use the ScrollOrderParts property to customize the
order of the buttons in the scroll bar.

By default, the following parts are shown:

exLeftBPart (the left or up button of the control)
exLowerBackPart (the part between the left/up button and the thumb part of the
control)
exThumbPart (the thumb/scrollbox part)
exUpperBackPart (the part between the the thumb and the right/down button of the
control)
exRightBPart (the right or down button of the control)

The following VB sample adds up and down additional buttons to the control's vertical scroll
bar :

With ExFileView1
 .BeginUpdate

 .ScrollPartVisible(exVScroll, exLeftB1Part Or exRightB1Part) = True
 .ScrollPartCaption(exVScroll, exLeftB1Part) = "1"
 .ScrollPartCaption(exVScroll, exRightB1Part) = "2"
 .EndUpdate
End With

The following VB.NET sample adds up and down additional buttons to the control's vertical
scroll bar :

With AxExFileView1
 .BeginUpdate()
 .set_ScrollPartVisible(EXEXFILEVIEWLib.ScrollBarEnum.exVScroll,
EXEXFILEVIEWLib.ScrollPartEnum.exLeftB1Part Or
EXEXFILEVIEWLib.ScrollPartEnum.exRightB1Part, True)
 .set_ScrollPartCaption(EXEXFILEVIEWLib.ScrollBarEnum.exVScroll,
EXEXFILEVIEWLib.ScrollPartEnum.exLeftB1Part, "1")
 .set_ScrollPartCaption(EXEXFILEVIEWLib.ScrollBarEnum.exVScroll,
EXEXFILEVIEWLib.ScrollPartEnum.exRightB1Part, "2")
 .EndUpdate()
End With

The following C# sample adds up and down additional buttons to the control's vertical scroll
bar :

axExFileView1.BeginUpdate();
axExFileView1.set_ScrollPartVisible(EXEXFILEVIEWLib.ScrollBarEnum.exVScroll,
EXEXFILEVIEWLib.ScrollPartEnum.exLeftB1Part |
EXEXFILEVIEWLib.ScrollPartEnum.exRightB1Part, true);
axExFileView1.set_ScrollPartCaption(EXEXFILEVIEWLib.ScrollBarEnum.exVScroll,
EXEXFILEVIEWLib.ScrollPartEnum.exLeftB1Part , "1");
axExFileView1.set_ScrollPartCaption(EXEXFILEVIEWLib.ScrollBarEnum.exVScroll,
EXEXFILEVIEWLib.ScrollPartEnum.exRightB1Part, "2");
axExFileView1.EndUpdate();

The following C++ sample adds up and down additional buttons to the control's vertical
scroll bar :

m_fileView.BeginUpdate();
m_fileView.SetScrollPartVisible(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ | 32

/*exRightB1Part*/, TRUE);
m_fileView.SetScrollPartCaption(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ , _T("
1"));
m_fileView.SetScrollPartCaption(0 /*exVScroll*/, 32 /*exRightB1Part*/ , _T("
2"));
m_fileView.EndUpdate();

The following VFP sample adds up and down additional buttons to the control's vertical
scroll bar :

With thisform.ExFileView1
 .BeginUpdate
 .ScrollPartVisible(0, bitor(32768,32)) = .t.
 .ScrollPartCaption(0,32768) = "1"
 .ScrollPartCaption(0, 32) = "2"
 .EndUpdate
EndWith

*** ActiveX Control Event ***
LPARAMETERS scrollpart

wait window nowait ltrim(str(scrollpart))

property ExFileView.ScrollThumbSize(ScrollBar as ScrollBarEnum) as
Long
Specifies the size of the thumb in the scrollbar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical or
the horizontal scroll bar.

Long A long expression that defines the size of the scrollbar's
thumb.

Use the ScrollThumbSize property to define a fixed size for the scrollbar's thumb. By
default, the ScrollThumbSize property is -1, that makes the control computes automatically
the size of the thumb based on the scrollbar's range. If case, use the fixed size for your
thumb when you change its visual appearance using the Background(exVSThumb) or
Background(exHSThumb) property. Use the ScrollWidth property to specify the width of the
vertical scroll bar. Use the ScrollButtonWidth property to specify the width of the buttons in
the horizontal scroll bar. Use the ScrollHeight property to specify the height of the horizontal
scroll bar. Use the ScrollButtonHeight property to specify the height of the buttons in the
vertical scroll bar. Use the ScrollPartVisible property to specify the visible parts in the
control's scroll bar.

property ExFileView.ScrollToolTip(ScrollBar as ScrollBarEnum) as
String
Specifies the tooltip being shown when the user moves the scroll box.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical
scroll bar or the horizontal scroll bar.

String A string expression being shown when the user clicks and
moves the scrollbar's thumb.

Use the ScrollToolTip property to specify whether the control displays a tooltip when the
user clicks and moves the scrollbar's thumb. By default, the ScrollToolTip property is empty.
If the ScrollToolTip property is empty, the tooltip is not shown when the user clicks and
moves the thumb of the scroll bar. Use the SortPartVisible property to specify the parts
being visible in the control's scroll bar.

The following VB sample displays a tooltip when the user clicks and moves the thumb in the
control's scroll bar:

Private Sub ExFileView1_OffsetChanged(ByVal Horizontal As Boolean, ByVal NewVal As
Long)
 If (Not Horizontal) Then
 ExFileView1.ScrollToolTip(exVScroll) = "Record " & NewVal
 End If
End Sub

The following VB.NET sample displays a tooltip when the user clicks and moves the thumb
in the control's scroll bar:

Private Sub AxExFileView1_OffsetChanged(ByVal sender As System.Object, ByVal e As
AxEXEXFILEVIEWLib._IExFileViewEvents_OffsetChangedEvent) Handles
AxExFileView1.OffsetChanged
 If (Not e.horizontal) Then
 AxExFileView1.set_ScrollToolTip(EXEXFILEVIEWLib.ScrollBarEnum.exVScroll, "Record "
& e.newVal.ToString())
 End If
End Sub

The following C++ sample displays a tooltip when the user clicks and moves the thumb in
the control's scroll bar:

void OnOffsetChangedExFileView1(BOOL Horizontal, long NewVal)
{
 if (!Horizontal)
 {
 CString strFormat;
 strFormat.Format(_T("%i"), NewVal);
 m_fileView.SetScrollToolTip(0, strFormat);
 }
}

The following C# sample displays a tooltip when the user clicks and moves the thumb in the
control's scroll bar:

private void axExFileView1_OffsetChanged(object sender,
AxEXEXFILEVIEWLib._IExFileViewEvents_OffsetChangedEvent e)
{
 if (!e.horizontal)
 axExFileView1.set_ScrollToolTip(EXEXFILEVIEWLib.ScrollBarEnum.exVScroll, "Record "
+ e.newVal.ToString());
}

The following VFP sample displays a tooltip when the user clicks and moves the thumb in
the control's scroll bar:

*** ActiveX Control Event ***
LPARAMETERS horizontal, newval

If (1 # horizontal) Then
 thisform.ExFileView1.ScrollToolTip(0) = "Record " + ltrim(str(newval))
EndIf

property ExFileView.ScrollWidth as Long
Specifies the width of the vertical scrollbar.

Type Description

Long A long expression that defines the width of the vertical
scroll bar.

By default, the ScrollWidth property is -1. If the ScrollWidth property is -1, the control uses
the default width of the vertical scroll bar from the system. Use the ScrollWidth property to
specify the width of the vertical scroll bar. Use the ScrollButtonWidth property to specify the
width of the buttons in the horizontal scroll bar. Use the ScrollHeight property to specify the
height of the horizontal scroll bar. Use the ScrollButtonHeight property to specify the height
of the buttons in the vertical scroll bar. Use the ScrollPartVisible property to specify the
visible parts in the control's scroll bar. Use the ScrollThumbSize property to define a fixed
size for the scrollbar's thumb.

property ExFileView.Search as String
Specifies the list of files and folders including wild card characters to search for.

Type Description

String A string expression that indicates the list of files or folders
to search for.

Use the Search property to get the list of files and folders that match a pattern or multiple
patterns. The Search property includes the patterns separated them by space character. A
pattern may include wild characters like : '*' (Zero or more characters) or '?' (Any single
character). For instance, the '*.txt *.doc' specifies all files with extension 'txt' and files with
'doc' extension. Use the Add method to add rules to customize the found items. Use the
StopSearch method to stop immediately searching the files. The Search event is fired
when searching files starts or when searching the files ends. The Search = "" stops
searching files and restores the control's content to browse the ExploreFromHere path. Use
the Get method to get the list of files and folders in the control.

The following VB sample gets the list of document files and text files:

Private Sub Command1_Click()
 ExFileView1.Search = "*.doc *.txt"
End Sub

Private Sub ExFileView1_Search(ByVal State As EXFILEVIEWLibCtl.SearchStateEnum)
 Select Case State
 Case 0
 Debug.Print "Searching for '" & ExFileView1.Search & "' starts."
 Case 1
 Debug.Print "Searching for '" & ExFileView1.Search & "' ends."
 End Select
End Sub

The following VB sample searches for the '.cpp' files and get them in red color, and '.h' files
and get them in blue color:

Private Sub Command1_Click()
 With ExFileView1
 With .FileTypes
 With .Add("*.cpp")

 .ForeColor = vbRed
 End With
 With .Add("*.h")
 .ForeColor = vbBlue
 End With
 End With
 .Search = "*.cpp *.h"
 End With
End Sub

Private Sub ExFileView1_Search(ByVal State As EXFILEVIEWLibCtl.SearchStateEnum)
 Select Case State
 Case 0
 Debug.Print "Searching for '" & ExFileView1.Search & "' starts."
 Case 1
 Debug.Print "Searching for '" & ExFileView1.Search & "' ends."
 End Select
End Sub

property ExFileView.SelBackColor as Color
Retrieves or sets a value that indicates the selection background color.

Type Description

Color

A color expression that indicates the background color for
selected items. The last 7 bits in the high significant byte
of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

The SelBackColor property specifies the background color for selected items. Use the
SelForeColor property to specify the foreground color for selected items. Use the Get
method to access the selected items collection. Use the BackColor property to specify the
control's background color. Use the ForeColor property to specify the control's foreground
color. Use the BackColor and ForeColor properties to change the background and
foreground colors for a specified file/folder. Use the Selected property to specify whether a
File object is selected or unselected. How do I assign a new look for the selected item?

For instance, the following VB sample changes the visual appearance for the selected item.
The SelBackColor property indicates the selection background color. Shortly, we need to
add a skin to the Appearance object using the Add method, and we need to set the last 7
bits in the SelBackColor property to indicates the index of the skin that we want to use. The
sample applies the " " to the selected item(s):

With ExFileView1
 With .VisualAppearance
 .Add &H23, App.Path + "\selected.ebn"
 End With
 .SelForeColor = RGB(0, 0, 0)
 .SelBackColor = &H23000000
End With

The sample adds the skin with the index 35 (Hexa 23), and applies to the selected item
using the SelBackColor property.

The following C++ sample applies a new appearance to the selected item(s):

#include "Appearance.h"

m_fileview.GetVisualAppearance().Add(0x23,
COleVariant(_T("D:\\Temp\\ExFileView_Help\\selected.ebn")));
m_fileview.SetSelBackColor(0x23000000);
m_fileview.SetSelForeColor(0);

The following VB.NET sample applies a new appearance to the selected item(s):

With AxExFileView1
 With .VisualAppearance
 .Add(&H23, "D:\Temp\ExFileView_Help\selected.ebn")
 End With
 .SelForeColor = Color.Black
 .Template = "SelBackColor = 587202560"
End With

The VB.NET sample uses the Template property to assign a new value to the SelBackColor
property. The 587202560 value represents &23000000 in hexadecimal.

The following C# sample applies a new appearance to the selected item(s):

axExFileView1.VisualAppearance.Add(0x23, "D:\\Temp\\ExFileView_Help\\selected.ebn");
axExFileView1.Template = "SelBackColor = 587202560";

The following VFP sample applies a new appearance to the selected item(s):

With thisform.ExFileView1
 With .VisualAppearance
 .Add(35, "D:\Temp\ExFileView_Help\selected.ebn")
 EndWith
 .SelForeColor = RGB(0, 0, 0)
 .SelBackColor = 587202560
EndWith

The 587202560 value represents &23000000 in hexadecimal. The 32 value represents &23
in hexadecimal

How do I assign a new look for the selected item?

The component supports skinning parts of the control, including the selected item. Shortly,
the idea is that identifier of the skin being added to the Appearance collection is stored in

the first significant byte of property of the color type. In our case, we know that the
SelBackColor property changes the background color for the selected item. This is what we
need to change. In other words, we need to change the visual appearance for the selected
item, and that means changing the background color of the selected item. So, the following
code (blue code) changes the appearance for the selected item:

With ExFileVw1
 .VisualAppearance.Add &H34, App.Path + "\aqua.ebn"
 .SelBackColor = &H34000000
End With

Please notice that the 34 hexa value is arbitrary chosen, it is not a predefined value. Shortly,
we have added a skin with the identifier 34, and we specified that the SelBackColor
property should use that skin, in order to change the visual appearance for the selected
item. Also, please notice that the 34 value is stored in the first significant byte, not in other
position. For instance, the following sample doesn't use any skin when displaying the
selected item:

With ExFileVw1
 .VisualAppearance.Add &H34, App.Path + "\aqua.ebn"
 .SelBackColor = &H34
End With

This code (red code) DOESN'T use any skin, because the 34 value is not stored in the
higher byte of the color value. The sample just changes the background color for the
selected item to some black color (RGB(0,0,34)). So, please pay attention when you
want to use a skin and when to use a color. Simple, if you are calling &H34000000, you
have 34 followed by 6 (six) zeros, and that means the first significant byte of the color
expression. Now, back to the problem. The next step is how we are creating skins? or EBN
files? The Exontrol's exbutton component includes a builder tool that saves skins to EBN
files. So, if you want to create new skin files, you need to download and install the exbutton
component from our web site. Once that the exbutton component is installed, please follow
the steps.

Let's say that we have a BMP file, that we want to stretch on the selected item's
background.

1. Open the VB\Builder or VC\Builder sample
2. Click the New File button (on the left side in the toolbar), an empty skin is created.
3. Locate the Background tool window and select the Picture\Add New item in the

menu, the Open file dialog is opened.
4. Select the picture file (GIF, BMP, JPG, JPEG). You will notice that the visual

https://exontrol.com/exbutton.jsp

appearance of the focused object in the skin is changed, actually the picture you have
selected is tiled on the object's background.

5. Select the None item, in the Background tool window, so the focused object in the skin
is not displaying anymore the picture being added.

6. Select the Root item in the skin builder window (in the left side you can find the
hierarchy of the objects that composes the skin), so the Root item is selected, and so
focused.

7. Select the picture file you have added at the step 4, so the Root object is filled with the
picture you have chosen.

8. Resize the picture in the Background tool window, until you reach the view you want to
have, no black area, or change the CX and CY fields in the Background tool window,
so no black area is displayed.

9. Select Stretch button in the Background tool window, so the Root object stretches the
picture you have selected.

10. Click the Save a file button, and select a name for the new skin, click the Save button
after you typed the name of the skin file. Add the .ebn extension.

11. Close the builder

You can always open the skin with the builder and change it later, in case you want to
change it.

Now, create a new project, and insert the component where you want to use the skin, and
add the skin file to the Appearance collection of the object, using blue code, by changing
the name of the file or the path where you have selected the skin. Once that you have
added the skin file to the Appearance collection, you can change the visual appearance for
parts of the controls that supports skinning. Usually the properties that changes the
background color for a part of the control supports skinning as well.

method ExFileView.Select (Folder as String)
Selects a folder, giving its displaying name, relative or absolute path.

Type Description

Folder as String A String expression that specifies the folder to be
selected.

The Select method selects a folder, giving its displaying name, relative or absolute path.

property ExFileView.SelectByDrag as Boolean
Specifies whether the user selects multiple items by dragging.

Type Description

Boolean A boolean expression that specifies whether the user may
select multiple items by drag and drop.

By default, SelectByDrag property is True. Use the SelectByDrag property to disable
selecting multiple items by dragging. The SelectByDrag property has effect only if the
control supports multiple selection. The SingleSel property controls the number of items that
the user may select. For instance, if the SingleSel property is True, the user can't select
multiple items, and so a single item may be selected at the time. If the SingleSel property is
False, the user can select multiple items using the mouse, keyboard or both. When the
SelectByDrag property is True, the user may click the non text area to start select items by
dragging. Use the SelectByDrag property on False when your control requires OLE drag
and drop operations, like when you select multiple items and drag them to a new position.
Use the OLEDropMode property to specify whether the OLE drag and drop operations
inside the control is allowed. For instance, if the SelectByDrag and OLEDropMode
properties are on, sometimes it is confused what control should do when user clicks and
start to select items. The AllowSelectNothing property specifies whether the current
selection is erased, once the user clicks outside of the items section. The SelectOnRelease
property indicates whether the selection occurs when the user releases the mouse button.

property ExFileView.SelectOnRelease as Boolean
Indicates whether the selection occurs when the user releases the mouse button.

Type Description

Boolean A Boolean expression that indicates whether the selection
occurs when the user releases the mouse button.

By default, the SelectOnRelease property is False. By default, the selection occurs, as
soon as the user clicks an object. The SelectOnRelease property indicates whether the
selection occurs when the user releases the mouse button. The SelectOnRelease property
has no effect if the SingleSel property is False, and SelectByDrag property is True.

property ExFileView.SelForeColor as Color
Retrieves or sets a value that indicates the selection foreground color.

Type Description

Color A color expression that indicates the selection foreground
color.

The SelForeColor property specifies the foreground color for selected items. Use the
SelBackColor property to specify the background color for selected items. Use the Get
method to access the selected items collection. Use the ForeColor property to specify the
control's foreground color. Use the BackColor property to specify the control's background
color. Use the Selected property to specify whether a File object is selected or unselected.

property ExFileView.ShowContextMenu as String
Specifies the object's context menu.

Type Description

String

A String expression that specifies the commands to be
displayed in the object's context menu. The
ShowContextMenu property supports expressions, so you
can combine the default context menu, with your own
context menu for any file/folder.

By default, the ShowContextMenu property is empty. The ShowContextMenu property can
be used to disable, update, remove or add new items. The ShowContextMenu property
indicates the items to be displayed on the object's context menu.

For instance:

"`[debug]` + menu" displays all item's identifiers in the control's default menu
"menu replace `&Delete` with ``" removes the Delete command from any context menu
"Popup(Item 1[id=1001],Item 2[id=1002],Item 3[id=1003]),[sep],Exit[def][id=1000]"
defines a popup, a separator and a default item. This context menu will be shown any
time, no mater if none, one or more files are selected
"filecount > 1 ? `multiple selection[dis]` : menu" displays "multiple selection" displays
the default context menu if the user selected a single file, else invokes the context
menu for multiple-items selection
"`Popup(Item 1[id=1001],Item 2[id=1002],Item 3[id=1003]),` + menu + `,Exit[id=1000]`"
combine's the default selection context menu, so Popup is displayed at the top of the
context menu, and the Exit item at the bottom. The Popup and Exit are always
displayed, while the control's selection default context menu are shown only if available.
"filecount = 0 ? `Popup(Item 1[id=1001],Item 2[id=1002],Item 3[id=1003]),
[sep],Exit[def][id=1000]` : menu" defines a separated context menu when no file/folder
is selected (control's background context menu). The default context menu is shown if
the user right-clicks a file, folder or the selection.

The ShowContextMenu property supports the following predefined keywords:

menu keyword returns a string expression that defines the shell context menu's
tostring representation
filecount keywords returns a numeric expression that specifies the number of
items/files/folders selected in the control
fileattr keyword returns a numeric expression that specifies the attributes of the single-
selected item in the control (the keyword's value is valid while the filecount property is
1)
filename keyword returns a string expression that specifies the name of the single-

selected item in the control (the keyword's value is valid while the filecount property is
1)
fileparsename keyword returns a string expression that specifies the parsed name of
the single-selected item in the control (the keyword's value is valid while the filecount
property is 1)
filefullname keyword returns a string expression that specifies the full name of the
single-selected item in the control (the keyword's value is valid while the filecount
property is 1)

This property/method supports predefined constants and operators/functions as described
here.

The ShowContextMenu property indicates the list of commands to be displayed in the
context menu, separated by comma (,). Each command must have an id parameter, that
specifies the identifier of the command. Optional parameters are def for default item, and
dis for disabled items. The sep parameter indicates a separator item. If adding new items
to the object's context menu, use the ExecuteContextMenu property to get the identifier of
the command to be executed during the StateChange(ExecuteContextMenu) event

For instance, the ShowContextMenu property on "Item 1[id=1][def],Popup[id=2](Sub-Item
2[id=2],[sep],Sub-Item 3[id=3])" shows the context menu as following:

property ExFileView.ShowFocusRect as Boolean
Retrieves or sets a value indicating whether the control draws a thin rectangle around the
focused item.

Type Description

Boolean A boolean expression that specifies whether the focusing
file or folder shows a dotted rectangle around.

By default, the ShowFocusRect property is True. For instance, you can use the
ShowFocusRect property on False, if the SingleSel property is True, or using EBN to show
the control's selection. Use the SelBackColor property to specify the background color for
selected files or folders.

The following screen shot shows the one focused item (ExData), and 2 selected items
(COMMON and HOW-TO-Before):

property ExFileView.SingleSel as Boolean

Retrieves or sets a value indicating whether control support single or multiples selection.

Type Description

Boolean A boolean expression indicating whether control support
single or multiples selection.

By default, the SingleSel property is True. The SingleSel property specifies whether the
user can select single or multiple items in the control. If the SingleSel property is True, the
control may select only a single file/folder. If the SingleSel is False, the user can select
multiple files/folders by dragging a box, or by using SHIFT and CTRL keys. Use the Get
property to get the list of selected files/folders. Use the SelForeColor property to specify
the foreground color for selected files or folders. Use the SelBackColor property to specify
the background color for selected files or folders. For instance, you can use the
ShowFocusRect property on False, if the SingleSel property is True, or using EBN to show
the control's selection. The FullRowSelect property enables full-row selection in the control.

The following VB enumerates the selected files and folders:

Dim i As Long
With ExFileView1.Get(SelItems)
 For i = 0 To .Count - 1
 Debug.Print .Item(i).FullName
 Next
End With

The following C++ enumerates the selected files and folders:

CFiles files = m_fileview.GetGet(0 /*SelItems*/);
for (long i = 0; i < files.GetCount(); i++)
 OutputDebugString(files.GetItem(COleVariant(i)).GetFullName());

The following VB.NET enumerates the selected files and folders:

With AxExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.SelItems)
 Dim i As Integer
 For i = 0 To .Count - 1
 Debug.WriteLine(.Item(i).FullName)
 Next
End With

The following C# enumerates the selected files and folders:

EXFILEVIEWLib.Files files = axExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.SelItems);
for (int i = 0; i < files.Count; i++)
{
 EXFILEVIEWLib.File file = files[i];
 System.Diagnostics.Debug.WriteLine(file.FullName);
}

The following VFP enumerates the selected files and folders:

with thisform.ExFileView1.Get(0) && SelItems
 local i
 for i = 0 to .Count - 1
 with .Item(i)
 wait window nowait .FullName
 endwith
 next
 endwith

method ExFileView.Sort (ColumnName as String, Ascending as Boolean)
Sorts a column.

Type Description

ColumnName as String
A string expression that indicates the column being sorted.
The valid values are: 'Name', 'Size', 'Modified', 'Type', 'In
Folder'.

Ascending as Boolean A boolean expression that indicates how the column is
sorted. True means ascending, False means descending.

Use the Sort method to sort the column at runtime. Use the HeaderVisible property to
specify whether the control's header bar is visible or hidden. The user can select a column
by clicking the column's caption. Use the ColumnVisible property to hide or show a column.
Use the ColumnCaption property to specify the column's caption. Use the ColumnWidth
property to change the column's width. Use the BackColorHeader property to specify the
background color for the control's header bar. Use the ForeColorHeader property to specify
the foreground color for the control's header bar.

property ExFileView.Statistics as String
Gives statistics data of objects being hold by the control.

Type Description

String A String expression that gives statistics data of objects
being hold by the control.

The Statistics property gives statistics information of objects being hold by the control.

method ExFileView.StopSearch ()
Stops the searching operation.

Type Description

Stops the searching files. Use the Search property to search for files or folders that
matches a pattern or multiple patterns. The Search event is fired when searching files starts
or when searching the files ends. Use the Get method to get the list of files and folders in
the control.

The following VB sample displays the list of files as they are displayed:

With ExFileView1.Get(VisibleItems)
 For i = 0 To .Count - 1
 With .Item(i)
 Debug.Print .Name
 End With
 Next
End With

The following C++ sample displays the list of files as they are displayed:

CFiles files = m_fileview.GetGet(3 /*VisibleItems*/);
for (long i = 0; i < files.GetCount(); i++)
 OutputDebugString(files.GetItem(COleVariant(i)).GetName());

The following VB.NET sample displays the list of files as they are displayed:

With AxExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.VisibleItems)
 Dim i As Integer
 For i = 0 To .Count - 1
 With .Item(i)
 Debug.WriteLine(.Name())
 End With
 Next
End With

The following C# sample displays the list of files as they are displayed:

EXFILEVIEWLib.Files files = axExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.VisibleItems);

for (int i = 0; i < files.Count; i++)
{
 EXFILEVIEWLib.File file = files[i];
 System.Diagnostics.Debug.WriteLine(file.Name);
}

The following VFP sample displays the list of files as they are displayed:

With thisform.ExFileView1.Get(3) && VisibleItems
 For i = 0 To .Count - 1
 With .Item(i)
 wait window nowait .Name
 EndWith
 Next
EndWith

property ExFileView.Template as String
Specifies the control's template.

Type Description
String A string expression that indicates the control's template.

The control's template uses the X-Script language to initialize the control's content. Use the
Template property page of the control to update the control's Template property. Use the
Template property to execute code by passing instructions as a string (template string).
Use the ExecuteTemplate property to execute a template script and gets the result.

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values

separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier

property ExFileView.TemplateDef as Variant
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplateDef property has been added to allow programming languages such as
dBASE Plus to set control's properties with multiple parameters. It is known that
programming languages such as dBASE Plus or XBasic from AlphaFive, does not
support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef method. The first call of the TemplateDef
should be a declaration such as "Dim a,b" which means the next 2 calls of the TemplateDef
defines the variables a and b. The next call should be Template or ExecuteTemplate
property which can use the variable a and b being defined previously.

So, calling the TemplateDef property should be as follows:

with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith

This sample allocates a variable var_Column, assigns the value to the variable (the second
call of the TemplateDef), and the Template call uses the var_Column variable (as an object
), to call its Def property with the parameter 4.

Let's say we need to define the background color for a specified column, so we need to call
the Def(exCellBackColor) property of the column, to define the color for all cells in the
column.

The following VB6 sample shows setting the Def property such as:

With Control
 .Columns.Add("Column 1").Def(exCellBackColor) = 255
 .Columns.Add "Column 2"
 .Items.AddItem 0
 .Items.AddItem 1

 .Items.AddItem 2
End With

In dBASE Plus, calling the Def(4) has no effect, instead using the TemplateDef helps you to
use properly the Def property as follows:

local Control,var_Column

Control = form.Activex1.nativeObject
// Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith
Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The equivalent sample for XBasic in A5, is as follows:

Dim Control as P
Dim var_Column as P

Control = topparent:CONTROL_ACTIVEX1.activex
' Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
Control.TemplateDef = "Dim var_Column"
Control.TemplateDef = var_Column
Control.Template = "var_Column.Def(4) = 255"

Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The samples just call the Column.Def(4) = Value, using the TemplateDef. The first call of
TemplateDef property is "Dim var_Column", which indicates that the next call of the
TemplateDef will defines the value of the variable var_Column, in other words, it defines the
object var_Column. The last call of the Template property uses the var_Column member to
use the x-script and so to set the Def property so a new color is being assigned to the
column.

The TemplateDef, Template and ExecuteTemplate support x-script language (Template
script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please

make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

method ExFileView.TemplatePut (newVal as Variant)
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

newVal as Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplatePut method / TemplateDef property has been added to allow programming
languages such as dBASE Plus to set control's properties with multiple parameters. It is
known that programming languages such as dBASE Plus or XBasic from AlphaFive, does
not support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef / TemplatePut method. The first call of the
TemplateDef should be a declaration such as "Dim a,b" which means the next 2 calls of the
TemplateDef defines the variables a and b. The next call should be Template or
ExecuteTemplate property which can use the variable a and b being defined previously.

The TemplateDef, TemplatePut, Template and ExecuteTemplate support x-script language (
Template script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the

Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property ExFileView.ToolTipDelay as Long
Specifies the time in ms that passes before the ToolTip appears.

Type Description

Long A long expression that specifies the time in ms that passes
before the ToolTip appears.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. The
ToolTipPopDelay property specifies the period in ms of time the ToolTip remains visible if
the mouse pointer is stationary within a control. Use the ToolTipWidth property to specify
the width of the tooltip window. Use the Background(exToolTipAppearance) property
indicates the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color.

property ExFileView.ToolTipFont as IFontDisp
Retrieves or sets the tooltip's font.

Type Description
IFontDisp A Font object being used to display the tooltip.

Use the ToolTipFont property to assign a font for the control's tooltip. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. Use the ToolTipWidth property to specify the width of the tooltip
window.

property ExFileView.ToolTipPopDelay as Long
Specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control.

Type Description

Long
A long expression that specifies the period in ms of time
the ToolTip remains visible if the mouse pointer is
stationary within a control.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. The
ToolTipDelay property specifies the time in ms that passes before the ToolTip appears. Use
the ToolTipWidth property to specify the width of the tooltip window. Use the ToolTipFont
property to assign a font for the control's tooltip. Use the
Background(exToolTipAppearance) property indicates the visual appearance of the borders
of the tooltips. Use the Background(exToolTipBackColor) property indicates the tooltip's
background color. Use the Background(exToolTipForeColor) property indicates the tooltip's
foreground color.

property ExFileView.ToolTipWidth as Long
Specifies a value that indicates the width of the tooltip window, in pixels.

Type Description

Long A long expression that indicates the width of the tooltip
window.

Use the ToolTipWidth property to change the tooltip window width. The height of the tooltip
window is automatically computed based on tooltip's description. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. The ToolTipDelay property specifies the time in ms that passes
before the ToolTip appears. Use the ToolTipFont property to assign a font for the control's
tooltip. Use the Background(exToolTipAppearance) property indicates the visual appearance
of the borders of the tooltips. Use the Background(exToolTipBackColor) property indicates
the tooltip's background color. Use the Background(exToolTipForeColor) property indicates
the tooltip's foreground color.

property ExFileView.UseVisualTheme as UIVisualThemeEnum
Specifies whether the control uses the current visual theme to display certain UI parts.

Type Description

UIVisualThemeEnum
An UIVisualThemeEnum expression that specifies which UI
parts of the control are shown using the current visual
theme.

By default, the UseVisualTheme property is exDefaultVisualTheme, which means that all
known UI parts are shown as in the current theme. The UseVisualTheme property may
specify the UI parts that you need to enable or disable the current visual theme. The UI
Parts are like header, filterbar, check-boxes, buttons and so on. The UseVisualTheme
property has effect only a current theme is selected for your desktop. The UseVisualTheme
property. Use the Appearance property of the control to provide your own visual
appearance using the EBN files.

The following screen shot shows the control while the UseVisualTheme property is
exDefaultVisualTheme:

since the second screen shot shows the same data as the UseVisualTheme property is
exNoVisualTheme:

property ExFileView.Version as String

Retrieves the control's version.

Type Description
String A string expression that indicates the control's version.

The Version property is read-only. The Version property specifies the version of the control
you are running.

property ExFileView.VisualAppearance as Appearance

Retrieves the control's appearance. /*not supported in the lite version*/

Type Description
Appearance An Appearance object that holds a collection of skins

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control. By using a
collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part.

he skin method may change the visual appearance for the following parts in the control:

selected file/folder, SelBackColor property
control's header bar, BackColorHeader property
control's filter bar, FilterBarBackColor property
"drop down" filter bar button, "close" filter bar button, and so on, Background property

File object
A File object stores information about a file or a folder. To access a File object you have to
use the Get property, that retrieves a Files collection. The Files object contains a collection
of File objects. For instance the following sample shows how to select by code the "WinNT"
folder: ExFileView1.Get(AllItems)("WinNT").Selected = True. The File object supports the
following properties and methods.

Name Description

Accessed Retrieves the date when the file was last read from,
written to, or for executable files, run.

BackColor Returns or sets the background color of the file.
Bold Specifies whether the file should appear in bold.
Checked Specifies whether the file is checked or unchecked.

Children Returns a collection with child objects of the current
object.

Created Retrieves the date when the file or directory was created.
Folder Specifies whether the object is a file or a folder.
ForeColor Returns or sets the foreground color of the file.
FullName Retrieves the full name of the file.

Ghosted Returns or sets a value that determines whether a file
appears as unavailable (it appears dimmed).

Modified Retrieves the date when the file was last written to,
truncated, or overwritten.

Name Retrieves the file's name.
ParseName Retrieves the file's parse name.
RelativeName Retrieves the relative name of the file.
Selected Specifies whether the file is selected or unselected.
Size Retrieves the size of the file.
State Indicates the file's changed state.

Type Retrieves or sets a value that indicates the string gets
displayed on the Type column.

property File.Accessed as Date
Retrieves the date when the file was last read from, written to, or for executable files, run.

Type Description

Date A DATE expression that indicates the date when the file
was last read from, written to, or for executable files, run.

The Accessed property specifies the date when the file was last read from, written to, or
for executable files, run. The Size property gets the size of the file in bytes. The Size
property gets 0, for folder objects. The FullName property indicates the fully name of the
file or directory. The Modified property specifies the date when the file was last written to,
truncated, or overwritten. The Created property specifies the date when the file or directory
was created.

property File.BackColor as Color

Returns or sets the background color of the file.

Type Description

Color A color expression that indicates the file's background
color.

Use the BackColor and ForeColor properties to change the background and foreground
colors for a specified file/folder. Use the Get method to get the collection of files/folders.
Use the Folder property to specify whether the File object hosts a file or a folder. Use the
SelBackColor property to specify the background color for selected items. Use the Ghosted
property to change the item's appearance.

The following VB sample changes the background color for the item named "Temp":

With ExFileView1.Get(AllItems)("Temp")
 .BackColor = vbBlue
 .ForeColor = vbYellow
 .Bold = True
End With

The BackColor attribute is lost if the control is refreshed or if the Apply property is called.
For instance, If you need a permanent background color for specified folders, you can add
a new FileType object like in the following VB sample:

With ExFileView1.FileTypes.Add("Temp")
 .Folder = True
 .BackColor = vbBlue
 .ForeColor = vbYellow
 .Bold = True
 .Apply
End With

The following C++ sample changes the background color for the item named "Temp":

CFile1 file = m_fileview.GetGet(1 /*AllItems*/).GetItem(COleVariant("Temp"));
file.SetBackColor(RGB(0,0,255));
file.SetForeColor(RGB(255,255,255));
file.SetBold(TRUE);

The BackColor attribute is lost if the control is refreshed or if the Apply property is called.
For instance, If you need a permanent background color for specified folders, you can add
a new FileType object like in the following C++ sample:

#include "FileType.h"
#include "FileTypes.h"
CFileType fileType = m_fileview.GetFileTypes().Add("Temp");
fileType.SetFolder(TRUE);
fileType.SetBold(TRUE);
fileType.SetForeColor(RGB(255,255,255));
fileType.SetBackColor(RGB(0,0,255));
fileType.Apply();

The following VB.NET sample changes the background color for the item named "Temp":

With AxExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.AllItems).Item("Temp")
 .BackColor = ToUInt32(Color.Blue)
 .ForeColor = ToUInt32(Color.Yellow)
 .Bold = True
End With

where the ToUInt32 function converts a Color expression to OLE_COLOR,

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The BackColor attribute is lost if the control is refreshed or if the Apply property is called.
For instance, If you need a permanent background color for specified folders, you can add

a new FileType object like in the following VB.NET sample:

With AxExFileView1.FileTypes.Add("Temp")
 .Folder = True
 .BackColor = ToUInt32(Color.Blue)
 .ForeColor = ToUInt32(Color.Yellow)
 .Bold = True
 .Apply()
End With

The following C# sample changes the background color for the item named "Temp":

EXFILEVIEWLib.File file = axExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.AllItems)
["Temp"];
file.BackColor = ToUInt32(Color.Blue);
file.ForeColor = ToUInt32(Color.Yellow);
file.Bold = true;

where the ToUInt32 function converts a Color expression to OLE_COLOR,

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The BackColor attribute is lost if the control is refreshed or if the Apply property is called.
For instance, If you need a permanent background color for specified folders, you can add
a new FileType object like in the following C# sample:

EXFILEVIEWLib.FileType fileType = axExFileView1.FileTypes.Add("Temp");
fileType.Folder = true;
fileType.BackColor = ToUInt32(Color.Blue);
fileType.ForeColor = ToUInt32(Color.Yellow);
fileType.Bold = true;
fileType.Apply();

The following VFP sample changes the background color for the item named "Temp":

With thisform.ExFileView1.Get(1).Item("Temp") && AllItems
 .BackColor = RGB(0,0,255)
 .ForeColor = RGB(255,255,255)
 .Bold = .t.
EndWith

The BackColor attribute is lost if the control is refreshed or if the Apply property is called.
For instance, If you need a permanent background color for specified folders, you can add
a new FileType object like in the following VFP sample:

With thisform.ExFileView1.FileTypes.Add("Temp")
 .Folder = .t.
 .BackColor = RGB(0,0,255)
 .ForeColor = RGB(255,255,255)
 .Bold = .t.
 .Apply()
EndWith

property File.Bold as Boolean

Specifies whether the file should appear in bold.

Type Description

Boolean A boolean expression that indicates whether the file should
appear in bold.

Use the Bold property to bold files and folders. Use the Font property to specify the
control's font. Use the Get property to retrieve the items collection. Use the
BrowseFolderPath property to specify the path to the browsed folder.

The following VB sample bolds the cpp and h files in the browsed folder:

Dim fs As Files, f As File
Set fs = ExFileView1.Get(AllItems).Get("*.cpp *.h")
For Each f In fs
 f.Bold = True
Next

The Bold attribute is lost if the control is refreshed, or if the Apply property is invoked. For
instance, you can add a new FileType object that bolds the cpp and h files:

With ExFileView1.FileTypes.Add("*.cpp *.h")
 .Bold = True
 .Apply
End With

The following C++ sample bolds the cpp and h files in the browsed folder:

CFiles files = m_fileview.GetGet(1 /*AllItems*/).GetGet("*.cpp *.h");
for (long i = 0; i < files.GetCount(); i++)

 files.GetItem(COleVariant(i)).SetBold(TRUE);

The Bold attribute is lost if the control is refreshed, or if the Apply property is invoked. For
instance, you can add a new FileType object that bolds the cpp and h files:

#include "FileType.h"
#include "FileTypes.h"
CFileType fileType = m_fileview.GetFileTypes().Add("*.cpp *.h");
fileType.SetBold(TRUE);
fileType.Apply();

The following VB.NET sample bolds the cpp and h files in the browsed folder:

With AxExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.AllItems).Get("*.cpp *.h")
 Dim i As Integer
 For i = 0 To .Count - 1
 .Item(i).Bold = True
 Next
End With

The Bold attribute is lost if the control is refreshed, or if the Apply property is invoked. For
instance, you can add a new FileType object that bolds the cpp and h files:

With AxExFileView1.FileTypes.Add("*.cpp *.h")
 .Bold = True
 .Apply()
End With

The following C# sample bolds the cpp and h files in the browsed folder:

EXFILEVIEWLib.Files files =
axExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.AllItems).get_Get("*.cpp *.h");
for (int i = 0; i < files.Count; i++)
 files[i].Bold = true;

The Bold attribute is lost if the control is refreshed, or if the Apply property is invoked. For
instance, you can add a new FileType object that bolds the cpp and h files:

EXFILEVIEWLib.FileType fileType = axExFileView1.FileTypes.Add("*.cpp *.h");
fileType.Bold = true;

fileType.Apply();

The following VFP sample bolds the cpp and h files in the browsed folder:

With thisform.ExFileView1.Get(1).Get("*.cpp *.h")
 local i
 for i = 0 to .Count - 1
 with .Item(i)
 .Bold = .t.
 endwith
 next
EndWith

The Bold attribute is lost if the control is refreshed, or if the Apply property is invoked. For
instance, you can add a new FileType object that bolds the cpp and h files:

With thisform.ExFileView1.FileTypes.Add("*.cpp *.h")
 .Bold = .t.
 .Apply()
EndWith

property File.Checked as Boolean
Specifies whether the file is checked or unchecked.

Type Description

Boolean A boolean expression that indicates whether a file or folder
is checked or unchecked.

Use the Checked property to determine whether a file is checked or unchecked. Use the
HasCheckBox property to assign a check box for each item in your control. Use the Get
method to get the collection of checked items like shown in the following samples. Use the
Folder property to specify whether a File object holds a file or a folder. Use the Name
property to get the name of the file or folder. Use the BrowseFolderPath property to specify
the path to the browsed folder.

The following VB sample displays the checked files and folders:

With ExFileView1.Get(CheckItems)
 Dim i As Long
 For i = 0 To .Count - 1
 With .Item(i)
 Debug.Print .Name
 End With
 Next
End With

The following VB sample checks the selected file, by code:

ExFileView1.Get(SelItems)(0).Checked = True

The following C++ sample displays the checked files and folders:

CFiles files = m_fileview.GetGet(2 /*CheckItems*/);

for (long i = 0; i < files.GetCount(); i++)
 OutputDebugString(files.GetItem(COleVariant(i)).GetName());

The following VB.NET sample displays the checked files and folders:

With AxExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.CheckItems)
 Dim i As Integer
 For i = 0 To .Count - 1
 Debug.WriteLine(.Item(i).Name)
 Next
End With

The following C# sample displays the checked files and folders:

EXFILEVIEWLib.Files files = axExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.CheckItems);
for (int i = 0; i < files.Count; i++)
 System.Diagnostics.Debug.WriteLine(files[i].Name);

The following VFP sample displays the checked files and folders:

With thisform.ExFileView1.Get(2) && CheckItems
 local i
 for i = 0 to .Count - 1
 with .Item(i)
 wait window nowait .Name
 endwith
 next
EndWith

property File.Children as Files
Returns a collection with child objects of the current object.

Type Description

Files A Files collection that includes the files and sub-folders of
the current folder object.

The Children property retrieves an empty collection, if the current object is a file. The Folder
property specifies whether the current object is a folder or a file. A Folder object may
returns empty collection if no files or sub-folders are included. You can use the Children
property to enumerate recursively the files and folders.

The Files collection supports for each statement, so for instance, the following sample
displays the list of files/folders of the current selection:

Private Sub ExFileView1_StateChange(ByVal State As EXFILEVIEWLibCtl.StateChangeEnum)
 If (State = SelChangeState) Then
 With ExFileView1.Get(SelItems)
 If (.Count > 0) Then
 With .Item(0)
 If (.Folder) Then
 Dim f As EXFILEVIEWLibCtl.File
 For Each f In .Children
 Debug.Print "Sub-Files/Folders: " & f.Name
 Next
 End If
 End With
 End If
 End With
 End If
End Sub

property File.Created as Date
Retrieves the date when the file or directory was created.

Type Description

Date A DATE expression that specifies the date when the file or
directory was created.

The Created property specifies the date when the file or directory was created. The Size
property gets the size of the file in bytes. The FullName property indicates the fully name of
the file or directory. The Modified property specifies the date when the file was last written
to, truncated, or overwritten. The Accessed property specifies the date when the file was
last read from, written to, or for executable files, run.

property File.Folder as Boolean

Specifies whether the object is a file or a folder.

Type Description

Boolean
A boolean expression that specifies whether the object
contains a file or a folder. True, the object is a folder,
False, the object is a file.

The Folder property is read-only. Use the Folder property to check the type of object stored
by the File object. Use the Name property to specify the name of the file or folder. Use the
FullName property to get the full name of the file or folder. Use the Folder property to
specify whether the select only folders.

property File.ForeColor as Color

Returns or sets the foreground color of the file.

Type Description
Color A color expression that defines the file's foreground color.

Use the BackColor and ForeColor properties to change the background and foreground
colors for a specified file/folder. Use the Get method to get the collection of files/folders.
Use the Folder property to specify whether the File object hosts a file or a folder. Use the
SelForeColor property to specify the foreground color for selected items.

The following VB sample changes the foreground color for the item named "Temp":

With ExFileView1.Get(AllItems)("Temp")
 .BackColor = vbBlue
 .ForeColor = vbYellow
 .Bold = True
End With

The BackColor attribute is lost if the control is refreshed or if the Apply property is called.
For instance, If you need a permanent foreground color for specified folders, you can add a
new FileType object like in the following VB sample:

With ExFileView1.FileTypes.Add("Temp")
 .Folder = True
 .BackColor = vbBlue
 .ForeColor = vbYellow
 .Bold = True
 .Apply
End With

The following C++ sample changes the foreground color for the item named "Temp":

CFile1 file = m_fileview.GetGet(1 /*AllItems*/).GetItem(COleVariant("Temp"));
file.SetBackColor(RGB(0,0,255));
file.SetForeColor(RGB(255,255,255));
file.SetBold(TRUE);

The BackColor attribute is lost if the control is refreshed or if the Apply property is called.
For instance, If you need a permanent foreground color for specified folders, you can add a
new FileType object like in the following C++ sample:

#include "FileType.h"
#include "FileTypes.h"
CFileType fileType = m_fileview.GetFileTypes().Add("Temp");
fileType.SetFolder(TRUE);
fileType.SetBold(TRUE);
fileType.SetForeColor(RGB(255,255,255));
fileType.SetBackColor(RGB(0,0,255));
fileType.Apply();

The following VB.NET sample changes the foreground color for the item named "Temp":

With AxExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.AllItems).Item("Temp")
 .BackColor = ToUInt32(Color.Blue)
 .ForeColor = ToUInt32(Color.Yellow)
 .Bold = True
End With

where the ToUInt32 function converts a Color expression to OLE_COLOR,

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The BackColor attribute is lost if the control is refreshed or if the Apply property is called.
For instance, If you need a permanent foreground color for specified folders, you can add a
new FileType object like in the following VB.NET sample:

With AxExFileView1.FileTypes.Add("Temp")
 .Folder = True
 .BackColor = ToUInt32(Color.Blue)
 .ForeColor = ToUInt32(Color.Yellow)
 .Bold = True
 .Apply()
End With

The following C# sample changes the foreground color for the item named "Temp":

EXFILEVIEWLib.File file = axExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.AllItems)
["Temp"];
file.BackColor = ToUInt32(Color.Blue);
file.ForeColor = ToUInt32(Color.Yellow);
file.Bold = true;

where the ToUInt32 function converts a Color expression to OLE_COLOR,

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The BackColor attribute is lost if the control is refreshed or if the Apply property is called.
For instance, If you need a permanent foreground color for specified folders, you can add a
new FileType object like in the following C# sample:

EXFILEVIEWLib.FileType fileType = axExFileView1.FileTypes.Add("Temp");
fileType.Folder = true;
fileType.BackColor = ToUInt32(Color.Blue);
fileType.ForeColor = ToUInt32(Color.Yellow);
fileType.Bold = true;
fileType.Apply();

The following VFP sample changes the foreground color for the item named "Temp":

With thisform.ExFileView1.Get(1).Item("Temp") && AllItems
 .BackColor = RGB(0,0,255)
 .ForeColor = RGB(255,255,255)
 .Bold = .t.
EndWith

The BackColor attribute is lost if the control is refreshed or if the Apply property is called.
For instance, If you need a permanent foreground color for specified folders, you can add a
new FileType object like in the following VFP sample:

With thisform.ExFileView1.FileTypes.Add("Temp")
 .Folder = .t.
 .BackColor = RGB(0,0,255)
 .ForeColor = RGB(255,255,255)
 .Bold = .t.
 .Apply()
EndWith

property File.FullName as String

Retrieves the full name of the file.

Type Description
String A string value that indicates the file/folder's full name.

The FullName property is read-only. Use the FullName property to get the path for the file
or folder. Use Folder property to check whether the File object contains a file or a folder.
Use the Name to get the displayed file/folder's name. Use the BrowseFolderPath property
to specify the path to the browsed folder. Use the Get method to retrieve the selected
items. The RelativeName property gets the relative path for the file or folder, based on the
ExploreFromHere property. The Created property specifies the date when the file or
directory was created. The Size property gets the size of the file in bytes. The Modified
property specifies the date when the file was last written to, truncated, or overwritten. The
Accessed property specifies the date when the file was last read from, written to, or for
executable files, run.

The following VB sample displays the full name for all selected items:

With ExFileView1.Get(SelItems)
 Dim i As Long
 For i = 0 To .Count - 1
 With .Item(i)
 Debug.Print .FullName
 End With
 Next
End With

The following C++ sample displays the full name for all selected items:

CFiles files = m_fileview.GetGet(0 /*SelItems*/);
for (long i = 0; i < files.GetCount(); i++)
 OutputDebugString(files.GetItem(COleVariant(i)).GetFullName());

The following VB.NET sample displays the full name for all selected items:

With AxExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.SelItems)
 Dim i As Integer
 For i = 0 To .Count - 1
 Debug.WriteLine(.Item(i).FullName)

 Next
End With

The following C# sample displays the full name for all selected items:

EXFILEVIEWLib.Files files = axExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.SelItems);
for (int i = 0; i < files.Count; i++)
 System.Diagnostics.Debug.WriteLine(files[i].FullName);

The following VFP sample displays the full name for all selected items:

With thisform.ExFileView1.Get(0) && SellItems
 local i
 for i = 0 to .Count - 1
 with .Item(i)
 wait window nowait .FullName
 endwith
 next
EndWith

property File.Ghosted as Boolean

Returns or sets a value that determines whether a file appears as unavailable (it appears
dimmed).

Type Description

Boolean A boolean expression that indicates whether an item
appears as unavailable.

Use the Ghosted property to change the item's appearance. Use the BackColor and
ForeColor properties to change the background and foreground colors for a specified
file/folder. Use the Get method to get the collection of files/folders. Use the Folder property
to specify whether the File object hosts a file or a folder. Use the BrowseFolderPath
property to specify the path to the browsed folder.

The following VB sample marks the tmp files:

With ExFileView1.Get(AllItems).Get("*.tmp")
 Dim i As Long
 For i = 0 To .Count - 1
 With .Item(i)
 .Ghosted = True
 End With
 Next
End With

The following C++ sample marks the tmp files:

CFiles files = m_fileview.GetGet(1 /*AllItems*/).GetGet("*.tmp");
for (long i = 0; i < files.GetCount(); i++)
 files.GetItem(COleVariant(i)).SetGhosted(TRUE);

The following VB.NET sample marks the tmp files:

With AxExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.AllItems).Get("*.tmp")
 Dim i As Integer
 For i = 0 To .Count - 1
 .Item(i).Ghosted = True
 Next
End With

The following C# sample marks the tmp files:

EXFILEVIEWLib.Files files =
axExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.AllItems).get_Get("*.tmp");
for (int i = 0; i < files.Count; i++)
 files[i].Ghosted = true;

The following VFP sample marks the tmp files:

With thisform.ExFileView1.Get(1).Get("*.tmp") && AllItems
 local i
 for i = 0 to .Count - 1
 with .Item(i)
 .Ghosted = .t.
 endwith
 next
EndWith

property File.Modified as Date
Retrieves the date when the file was last written to, truncated, or overwritten.

Type Description

Date A DATE expression that specifies the date when the file
was last written to, truncated, or overwritten.

The Modified property specifies the date when the file was last written to, truncated, or
overwritten. The Size property gets the size of the file in bytes. The FullName property
indicates the fully name of the file or directory. The Created property specifies the date
when the file or directory was created. The Accessed property specifies the date when the
file was last read from, written to, or for executable files, run.

property File.Name as String

Retrieves the file's name.

Type Description
String A string expression that specifies the file/folder's name.

The Name property is read-only. Use the Name property to get the file/folder name. Use the
FullName property to retrieve the full path for file/folder. Use the Folder property to check if
the File object holds a file or a folder. Use the BrowseFolderPath property to specify the
path to the browsed folder. Use the Get method to retrieve the selected items. The
RelativeName property gets the relative path for the file or folder, based on the
ExploreFromHere property. The Created property specifies the date when the file or
directory was created. The Size property gets the size of the file in bytes. The Modified
property specifies the date when the file was last written to, truncated, or overwritten. The
Accessed property specifies the date when the file was last read from, written to, or for
executable files, run.

The following VB sample displays the name for all selected items:

With ExFileView1.Get(SelItems)
 Dim i As Long
 For i = 0 To .Count - 1
 With .Item(i)
 Debug.Print .FullName
 End With
 Next
End With

The following C++ sample displays the name for all selected items:

CFiles files = m_fileview.GetGet(0 /*SelItems*/);
for (long i = 0; i < files.GetCount(); i++)
 OutputDebugString(files.GetItem(COleVariant(i)).GetFullName());

The following VB.NET sample displays the name for all selected items:

With AxExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.SelItems)
 Dim i As Integer
 For i = 0 To .Count - 1
 Debug.WriteLine(.Item(i).FullName)

 Next
End With

The following C# sample displays the name for all selected items:

EXFILEVIEWLib.Files files = axExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.SelItems);
for (int i = 0; i < files.Count; i++)
 System.Diagnostics.Debug.WriteLine(files[i].FullName);

The following VFP sample displays the name for all selected items:

With thisform.ExFileView1.Get(0) && SellItems
 local i
 for i = 0 to .Count - 1
 with .Item(i)
 wait window nowait .FullName
 endwith
 next
EndWith

property File.ParseName as String
Retrieves the file's parse name.

Type Description
String A string expression that indicates the object's parse name

The ParseName indicates the name of the object relative to its folder. The ParseName
property is read-only. For instance, the name of the drive H: includes its label, while the
parsed name is H:\ only. Use the FullName property to retrieve the full path for file/folder.
Use the Folder property to check if the File object holds a file or a folder. Use the Get
method to retrieve the selected items. The RelativeName property gets the relative path for
the file or folder, based on the ExploreFromHere property.

property File.RelativeName as String
Retrieves the relative name of the file.

Type Description
String A string value that indicates the file/folder's relative name.

The RelativeName property is read-only. The relative name of the object does not include
the folder being referred by the ExploreFromHere property. The FullName property gets the
full path for the file or folder. Use Folder property to check whether the File object contains
a file or a folder. Use the Name to get the displayed file/folder's name. For instance, if the
ExploreFromHere' is 'C:\TEMP' and you browse in that folder to
'C:\TEMP\TEXT\OWN\abc.txt' the RelativeName property returns '\TEXT\OWN\abc.txt', so
not the full name and path but the relative path to ExploreFromHere property.

property File.Selected as Boolean

Specifies whether the file is selected or unselected.

Type Description

Boolean A boolean expression that indicates whether the file/folder
is selected or unselected.

The Selected property specifies whether the file or folder is selected or unselected. The
StateChange event is fired, when the user changes the selection. Use the Get property to
get all selected files/folders in the current list. Use the BrowseFolderPath property to
specify the path to the browsed folder. Use the Folder property to specify whether the File
object hosts a file or a folder. Use the SelForeColor and SelBackColor properties to specify
the foreground and background colors for selected items. You can use the Expand method
to expand the parent if necessary, ensures that the giving path fits the control's area and
select it.

The following VB sample selects the ''WINNT" folder:

With ExFileView1.Get(AllItems).Item("WINNT")
 .Selected = True
End With

The following VB enumerates the selected files and folders:

Dim i As Long
With ExFileView1.Get(SelItems)
 For i = 0 To .Count - 1
 Debug.Print .Item(i).FullName
 Next
End With

The following C++ sample selects the ''WINNT" folder:

CFile1 file = m_fileview.GetGet(1 /*AllItems*/).GetItem(COleVariant("WINNT"));
file.SetSelected(TRUE);

The following C++ enumerates the selected files and folders:

CFiles files = m_fileview.GetGet(0 /*SelItems*/);
for (long i = 0; i < files.GetCount(); i++)
 OutputDebugString(files.GetItem(COleVariant(i)).GetFullName());

The following VB.NET sample selects the ''WINNT" folder:

With AxExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.AllItems).Item("WINNT")
 .Selected = True
End With

The following VB.NET enumerates the selected files and folders:

With AxExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.SelItems)
 Dim i As Integer
 For i = 0 To .Count - 1
 Debug.WriteLine(.Item(i).FullName)
 Next
End With

The following C# sample selects the ''WINNT" folder:

EXFILEVIEWLib.File file = axExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.AllItems)
["WINNT"];
file.Selected = true;

The following C# enumerates the selected files and folders:

EXFILEVIEWLib.Files files = axExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.SelItems);
for (int i = 0; i < files.Count; i++)
{
 EXFILEVIEWLib.File file = files[i];
 System.Diagnostics.Debug.WriteLine(file.FullName);
}

The following VFP sample selects the ''WINNT" folder:

With thisform.ExFileView1.Get(1).Item("WINNT")
 .Selected = .t.
EndWith

The following C# enumerates the selected files and folders:

with thisform.ExFileView1.Get(0) && SelItems
 local i
 for i = 0 to .Count - 1
 with .Item(i)
 wait window nowait .FullName
 endwith
 next
 endwith

property File.Size as Long
Retrieves the size of the file.

Type Description

Long A long expression that specifies the size of the file (in
bytes).

The Size property gets the size of the file in bytes. The Size property gets 0, for folder
objects. The FullName property indicates the fully name of the file or directory. The Modified
property specifies the date when the file was last written to, truncated, or overwritten. The
Created property specifies the date when the file or directory was created. The Accessed
property specifies the date when the file was last read from, written to, or for executable
files, run.

property File.State as ChangeEnum

Indicates the file's changed state.

Type Description
ChangeEnum A ChangeEnum expression that indicates the file's state.

The State property specifies if the file/folder was added, removed or changed during the
Change event. The Change event is fired when the system notifies the control that there
was a change in the browsed folder. Use the BrowseFolderPath property to indicates the
browsed folder. The State property is Unchanged, if the State property is called outside of
Change event. Use the Folder property to specify whether the object holds information
about a folder of a file. Use the Item property to access a file giving its index in the Files
collection. Use the Count property to retrieve the number of File objects in the Files
collection.

The following VB sample displays the files that have been changed in the browsed folder:

Private Sub ExFileView1_Change(ByVal Files As EXFILEVIEWLibCtl.IFiles)
 Dim f As EXFILEVIEWLibCtl.File
 For Each f In Files
 Debug.Print "'" & f.Name & "' " & IIf(f.Folder, "foder", "file") & " " & IIf(f.State = Added,
"added", IIf(f.State = Changed, "changed", IIf(f.State = Deleted, "deleted", "unchanged")))
 Next
End Sub

Open a new Windows Explorer instance that browses the same folder as your control. Add
new folders, remove folders, or change regular files. Your VB output should look like the
following:

The 'New Folder (2)' foder - Added
The 'New Folder (2)' foder - Deleted
The 'New Folder' foder was deleted
The 'New Text Document.txt' file was added
The 'New Text Document.txt' file was changed

The following C++ sample displays the files that have been changed in the browsed folder:

#include "Files.h"
#include "File.h"
void OnChangeExfileview1(LPDISPATCH Files)

{
 CFiles files(Files); files.m_bAutoRelease = FALSE;
 for (long i = 0; i < files.GetCount(); i++)
 {
 CFile1 file = files.GetItem(COleVariant(long(i)));
 CString strState;
 switch (file.GetState())
 {
 case 0:
 {
 strState = "unchanged";
 break;
 }
 case 1:
 {
 strState = "changed";
 break;
 }
 case 2:
 {
 strState = "added";
 break;
 }
 case 3:
 {
 strState = "deleted";
 break;
 }
 }
 CString strOutput;
 strOutput.Format("'%s' %s %s\n", file.GetName(), (file.GetFolder() ? "folder" : "file"),
strState);
 OutputDebugString(strOutput);
 }
}

The following VB.NET sample displays the files that have been changed in the browsed

folder:

Private Sub AxExFileView1_Change(ByVal sender As Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_ChangeEvent) Handles AxExFileView1.Change
 Dim f As EXFILEVIEWLib.File
 For Each f In e.files
 Debug.WriteLine("'" & f.Name & "' " & IIf(f.Folder, "foder", "file") & " " & IIf(f.State =
EXFILEVIEWLib.ChangeEnum.Added, "added", IIf(f.State =
EXFILEVIEWLib.ChangeEnum.Changed, "changed", IIf(f.State =
EXFILEVIEWLib.ChangeEnum.Deleted, "deleted", "unchanged"))))
 Next
End Sub

The following C# sample displays the files that have been changed in the browsed folder:

private void axExFileView1_Change(object sender,
AxEXFILEVIEWLib._IExFileViewEvents_ChangeEvent e)
{
 for (int i = 0; i < e.files.Count; i++)
 {
 EXFILEVIEWLib.File file = e.files[i];
 string strOutput = "'" + file.Name + "' ";
 strOutput += (file.Folder ? "folder" : "file") + " ";
 strOutput += (file.State == EXFILEVIEWLib.ChangeEnum.Added ? "added" : (file.State
== EXFILEVIEWLib.ChangeEnum.Deleted ? "deleted" : (file.State ==
EXFILEVIEWLib.ChangeEnum.Changed ? "changed" : "unchanged")));
 System.Diagnostics.Debug.WriteLine(strOutput);
 }
}

The following VFP sample displays the files that have been changed in the browsed folder:

*** ActiveX Control Event ***
LPARAMETERS files

with files
 local i
 for i = 0 to .Count - 1

 with .Item(i)
 wait window nowait .Name + " " + str(.State)
 endwith
 next
endwith

property File.Type as String

Specifies the file's type.

Type Description
String A String expression that indicates the file's type.

The Type property specifies the type of the file. For instance, the type for a folder object is
"File Folder", or for a HTML file it is "HTML Document". The Type property is defined by the
system. The Type property does not retrieve the file's extension. In order to get the file's
extension you have to use the Name property. The Type column of the control, displays the
file types. For instance, the type for *.cpp files is "C++ source", and for *.h files is "C/C++
Header". Even if the Type property is read only you can change the file's type by using Type
property of the FileType object, like in the following samples.

The following VB sample changes the string being displayed in the "Type" column, for cpp
and h files:

With ExFileView1.FileTypes
 .Add("*.cpp *.h").Type = "C++ Files"
 .Apply
End With

The s ample specifies that all files with 'cpp' and 'h' extensions should display on Type
column the "C++ files" string, instead "C++ Source", and "C/C++ Header".

The screen shot shows the control before running the sample:

The screen shot shows the control after running the sample (as you can see the "C++
Source", "C/C++ Header" strings are replaced with the "C++ Files" string):

The following C++ sample changes the string being displayed in the "Type" column, for cpp
and h files:

#include "FileType.h"
#include "FileTypes.h"
CFileType fileType = m_fileview.GetFileTypes().Add("*.cpp *.h");
fileType.SetType("C++ Files");
fileType.Apply();

The following VB.NET sample changes the string being displayed in the "Type" column, for
cpp and h files:

With AxExFileView1.FileTypes.Add("*.cpp *.h")
 .Type = "C++ Files"
 .Apply()
End With

The following C# sample changes the string being displayed in the "Type" column, for cpp
and h files:

EXFILEVIEWLib.FileType fileType = axExFileView1.FileTypes.Add("*.cpp *.h");
fileType.Type = "C++ Files";
fileType.Apply();

The following VFP sample changes the string being displayed in the "Type" column, for cpp
and h files:

With thisform.ExFileView1.FileTypes.Add("*.cpp *.h")
 .Type = "C++ Files"
 .Apply()
EndWith

Files object
The Files object stores a collection of File objects. Use the Get property o the control to
access the Files collection. Use the Get property of the Files collection to filter the File
objects into a new Files collection. The Files collection implements "for each" statement.
Use the Item property to access a File object given its name or its index into collection.

Name Description
Count Returns the number of objects in a collection.

Get Retrieves a new collection that contain files that match the
pattern.

Item Returns a FileType object given its index or its name.

property Files.Count as Long

Returns the number of objects into collection.

Type Description

Long A long value that indicates the number of objects into
collection.

The Count property gets the number of files in the collection. Use the Item property to
retrieve the file or folder giving its index. Use the Get property to get only files that matches
giving patterns. Use the Get property to get files and folder being browsed. Use the
BrowseFolderPath property to specify the path to the browsed folder. Use the Folder
property to specify whether the File object hosts a file or a folder.

The following VB sample displays the list of files as they are displayed:

With ExFileView1.Get(VisibleItems)
 For i = 0 To .Count - 1
 With .Item(i)
 Debug.Print .Name
 End With
 Next
End With

The following C++ sample displays the list of files as they are displayed:

CFiles files = m_fileview.GetGet(3 /*VisibleItems*/);
for (long i = 0; i < files.GetCount(); i++)
 OutputDebugString(files.GetItem(COleVariant(i)).GetName());

The following VB.NET sample displays the list of files as they are displayed:

With AxExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.VisibleItems)
 Dim i As Integer
 For i = 0 To .Count - 1
 With .Item(i)
 Debug.WriteLine(.Name())
 End With
 Next
End With

The following C# sample displays the list of files as they are displayed:

EXFILEVIEWLib.Files files = axExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.VisibleItems);
for (int i = 0; i < files.Count; i++)
{
 EXFILEVIEWLib.File file = files[i];
 System.Diagnostics.Debug.WriteLine(file.Name);
}

The following VFP sample displays the list of files as they are displayed:

With thisform.ExFileView1.Get(3) && VisibleItems
 For i = 0 To .Count - 1
 With .Item(i)
 wait window nowait .Name
 EndWith
 Next
EndWith

property Files.Get (Pattern as String) as Files

Retrieves a new collection that contain a collection of files that match the pattern.

Type Description

Pattern as String A string expression that defines the pattern, like "*.bmp
*.jpg"

Files A Files collection that contains File objects that match the
pattern.

Use the Get property to selects only File objects that match a pattern. Use the Get
property to get files and folder being browsed. Use the BrowseFolderPath property to
specify the path to the browsed folder. Use the FullName property to retrieve the full name
of the file or folder. Use the Name property to retrieve the name of the file or folder. Use the
Folder property to specify whether the File object hosts a file or a folder.

The following VB sample displays BMP, GIF and JPG files as they are displayed:

Dim i As Long
With ExFileView1.Get(VisibleItems).Get("*.bmp *.gif *.jpg")
 For i = 0 To .Count - 1
 Debug.Print .Item(i).FullName
 Next
End With

The following C++ sample displays BMP, GIF and JPG files as they are displayed:

CFiles files = m_fileview.GetGet(3 /*VisibleItems*/).GetGet("*.bmp *.gif *.jpg");
for (long i = 0; i < files.GetCount(); i++)
 OutputDebugString(files.GetItem(COleVariant(i)).GetFullName());

The following VB.NET sample displays BMP, GIF and JPG files as they are displayed:

With AxExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.VisibleItems).Get("*.bmp *.gif
*.jpg")
 Dim i As Integer
 For i = 0 To .Count - 1
 Debug.WriteLine(.Item(i).FullName)
 Next
End With

The following C# sample displays BMP, GIF and JPG files as they are displayed:

EXFILEVIEWLib.Files files =
axExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.AllItems).get_Get("*.bmp *.gif *.jpg");
for (int i = 0; i < files.Count; i++)
 System.Diagnostics.Debug.WriteLine(files[i].FullName);

The following VFP sample displays BMP, GIF and JPG files as they are displayed:

local i
With thisform.ExFileView1.Get(3).Get("*.bmp *.gif *.jpg") && VisibleItems
 For i = 0 To .Count - 1
 wait window nowait .Item(i).FullName
 Next
EndWith

property Files.Item (Index as Variant) as File

Returns a FileType object given its index or its name.

Type Description

Index as Variant A long expression that indicates the index within collection,
or a string expression that indicates the filename.

File A File object being retrieved.

Use the Item property to retrieve the file or folder giving its index. The Count property gets
the number of files in the collection. Use the Get property to get only files that matches
giving patterns. Use the Get property to get files and folder being browsed. Use the
BrowseFolderPath property to specify the path to the browsed folder. Use the Folder
property to specify whether the File object hosts a file or a folder.

The following VB sample displays the list of files as they are displayed:

With ExFileView1.Get(VisibleItems)
 For i = 0 To .Count - 1
 With .Item(i)
 Debug.Print .Name
 End With
 Next
End With

The following C++ sample displays the list of files as they are displayed:

CFiles files = m_fileview.GetGet(3 /*VisibleItems*/);
for (long i = 0; i < files.GetCount(); i++)
 OutputDebugString(files.GetItem(COleVariant(i)).GetName());

The following VB.NET sample displays the list of files as they are displayed:

With AxExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.VisibleItems)
 Dim i As Integer
 For i = 0 To .Count - 1
 With .Item(i)
 Debug.WriteLine(.Name())
 End With
 Next

End With

The following C# sample displays the list of files as they are displayed:

EXFILEVIEWLib.Files files = axExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.VisibleItems);
for (int i = 0; i < files.Count; i++)
{
 EXFILEVIEWLib.File file = files[i];
 System.Diagnostics.Debug.WriteLine(file.Name);
}

The following VFP sample displays the list of files as they are displayed:

With thisform.ExFileView1.Get(3) && VisibleItems
 For i = 0 To .Count - 1
 With .Item(i)
 wait window nowait .Name
 EndWith
 Next
EndWith

FileType object
The FileType object holds a set of attributes like: font attributes, color, icons, that are
applied for files/folders that match the object's Pattern property. You can use any pattern to
build a new FileType, like *.bmp *.jpg a*.exe ????.exe and so on. A rule defined by one
FileType object is not applied to the current folder, if the Apply method of FileType object,
or the Apply method of FileTypes object is not invoked. The FileType' attributes are applied
also, if the control is refreshed, or if the user changes the browsed folder. If the FileType
object has the From and To set, the FileType object is applied only if the files/folders were
changed between From and To dates. In this case, the ExFileView control runs new
threads in the background, that looks recursively for any file that matches the FileType's
pattern property and was updated in the given interval. When one of this file is found the
rule is applied. Using threads the ExFileView control will never lock your application.

Name Description
Apply Applies the changes to the current list.

BackColor Retrieves or sets a value that indicates the background
color for the files that match the FileType's pattern.

Bold Specifies whether the files that match the pattern should
appear in bold.

Folder Retrieves or sets a value indicating whether the changes
are applied only for folder objects.

ForeColor Retrieves or sets a value that indicates the foreground
color for the files that match the FileType's pattern.

From Specifies whether the FileType object is applied for
files/folders that have been changed after given date.

HasPattern
Specifies whether the FileType's pattern contains wild
characters. If the FileType's pattern contains no wild
cards, the pattern defines exactly the file name.

IconIndex Indicates the icon index used to replace the default icon
for files that match the FileType's pattern.

Italic Specifies whether the files that match the pattern should
appear in italic.

Pattern Specifies the pattern that defines the files into a group,
like '*.cpp *h'.

StrikeOut Specifies whether the files that match the pattern should
appear in strikeout.

To Specifies whether the FileType object is applied for
files/folders that have been changed before give date.

Type Retrieves or sets a value that indicates the string gets
displayed on the Type column.

Underline Specifies whether the files that match the pattern appear
as underlined.

method FileType.Apply ()

Applies the changes to the current list.

Type Description

After you define the FileType object you have to call Apply method, in order to reflect the
changes to the current list. Use the BrowseFolderPath property to specify the browsed
folder. The Add method does not invoke the Apply method. If your are going to add more
FileType objects to the FileTypes collection, it is not necessary to call Apply method for
each new FileType, instead you can call Apply method of FileTypes collection.

The following VB sample bolds the cpp and h files:

With ExFileView1.FileTypes.Add("*.cpp *.h")
 .Bold = True
 .Apply
End With

The following C++ sample bolds the cpp and h files:

#include "FileType.h"
#include "FileTypes.h"
CFileType fileType = m_fileview.GetFileTypes().Add("*.cpp *.h");
fileType.SetBold(TRUE);
fileType.Apply();

The following VB.NET sample bolds the cpp and h files:

With AxExFileView1.FileTypes.Add("*.cpp *.h")
 .Bold = True
 .Apply()
End With

The following C# sample bolds the cpp and h files:

EXFILEVIEWLib.FileType fileType = axExFileView1.FileTypes.Add("*.cpp *.h");
fileType.Bold = true;
fileType.Apply();

The following VFP sample bolds the cpp and h files:

With thisform.ExFileView1.FileTypes.Add("*.cpp *.h")
 .Bold = .t.
 .Apply()
EndWith

property FileType.BackColor as Color

Retrieves or sets a value that indicates the background color for the files that match the
FileType's pattern.

Type Description

Color A color expression that defines the background color used
to paint the items that match the Pattern.

Use the BackColor and ForeColor properties to color your items that match a pattern. The
Apply method applies the changes to the current list. Use the BrowseFolderPath property
to specify the path to the browsed folder. Use the BackColor property to specify the
control's background color. Use the BackColor property to specify the file/folder's
background color.

The following VB sample changes the background color for the exe files:

With ExFileView1.FileTypes
 .Add("*.exe").BackColor = vbRed
 .Apply
End With

The following C++ sample changes the background color for the exe files:

#include "FileType.h"
#include "FileTypes.h"
CFileType fileType = m_fileview.GetFileTypes().Add("*.exe");
fileType.SetBackColor(RGB(255,0,0));
fileType.Apply();

The following VB.NET sample changes the background color for the exe files:

With AxExFileView1.FileTypes.Add("*.exe")

 .BackColor = ToUInt32(Color.Red)
 .Apply()
End With

where the ToUInt32 function converts a Color expression to OLE_COLOR type,

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample changes the background color for the exe files:

EXFILEVIEWLib.FileType fileType = axExFileView1.FileTypes.Add("*.exe");
fileType.BackColor = ToUInt32(Color.Red);
fileType.Apply();

where the ToUInt32 function converts a Color expression to OLE_COLOR type,

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample changes the background color for the exe files:

With thisform.ExFileView1.Add("*.exe")
 .BackColor = RGB(255,0,0)
 .Apply()
EndWith

property FileType.Bold as Boolean

Retrieves or sets a value that specifies whether the files that match the FileType's pattern
should appear in bold.

Type Description

Boolean A boolean expression that indicates whether the files that
match the FileType's pattern should appear in bold.

The Bold property specifies whether the file or the folder should appear in bold. Use the
Font property to change the control's font. The Apply method applies the changes to the
current list. Use the BrowseFolderPath property to specify the path to the browsed folder.

The following VB sample bolds the cpp and h files:

With ExFileView1.FileTypes.Add("*.cpp *.h")
 .Bold = True
 .Apply
End With

The following C++ sample bolds the cpp and h files:

#include "FileType.h"
#include "FileTypes.h"
CFileType fileType = m_fileview.GetFileTypes().Add("*.cpp *.h");
fileType.SetBold(TRUE);
fileType.Apply();

The following VB.NET sample bolds the cpp and h files:

With AxExFileView1.FileTypes.Add("*.cpp *.h")
 .Bold = True
 .Apply()
End With

The following C# sample bolds the cpp and h files:

EXFILEVIEWLib.FileType fileType = axExFileView1.FileTypes.Add("*.cpp *.h");
fileType.Bold = true;
fileType.Apply();

The following VFP sample bolds the cpp and h files:

With thisform.ExFileView1.FileTypes.Add("*.cpp *.h")
 .Bold = .t.
 .Apply()
EndWith

property FileType.Folder as Boolean

Retrieves or sets a value indicating whether the changes are applied only for folder objects.

Type Description

Boolean A boolean expression indicating whether the changes are
applied only for folder objects.

By default, the Folder property is False. If the Folder property is True, the FileType'
attributes are applied only for folders, and if the Folder is False the FileType' attributes are
applied only for files. The Apply method applies the changes to the current list. Use the
BrowseFolderPath property to specify the path to the browsed folder.

The following VB sample bolds all folders:

With ExFileView1.FileTypes
 With .Add("*")
 .Folder = True
 .Bold = True
 End With
 .Apply
End With

The following screen shot bolds all files (Folder property is False)

The following C++ sample bolds all folders:

#include "FileType.h"
#include "FileTypes.h"
CFileType fileType = m_fileview.GetFileTypes().Add("*");
fileType.SetFolder(TRUE);
fileType.SetBold(TRUE);
fileType.Apply();

The following VB.NET sample bolds all folders:

With AxExFileView1.FileTypes.Add("*")
 .Folder = True
 .Bold = True
 .Apply()
End With

The following C# sample bolds all folders:

EXFILEVIEWLib.FileType fileType = axExFileView1.FileTypes.Add("*");
fileType.Folder = true;
fileType.Bold = true;
fileType.Apply();

The following VFP sample bolds all folders:

With thisform.ExFileView1.Add("*")
 .Folder = .t.
 .Bold = .t.
 .Apply()
EndWith

property FileType.ForeColor as Color

Retrieves or sets a value that indicates the foreground color for the files that match the
FileType's pattern.

Type Description

Color A color expression that defines the foreground color for
the files that match the FileType's pattern.

Use the BackColor and ForeColor properties to color your items that match a pattern. The
Apply method applies the changes to the current list. Use the BrowseFolderPath property
to specify the path to the browsed folder. Use the ForeColor property to specify the
control's foreground color. Use the ForeColor property to specify the file/folder's foreground
color.

The following VB sample changes the foreground color for the exe files:

With ExFileView1.FileTypes
 .Add("*.exe").ForeColor = vbRed
 .Apply
End With

The following C++ sample changes the foreground color for the exe files:

#include "FileType.h"
#include "FileTypes.h"
CFileType fileType = m_fileview.GetFileTypes().Add("*.exe");
fileType.SetForeColor(RGB(255,0,0));
fileType.Apply();

The following VB.NET sample changes the foreground color for the exe files:

With AxExFileView1.FileTypes.Add("*.exe")
 .ForeColor = ToUInt32(Color.Red)
 .Apply()
End With

where the ToUInt32 function converts a Color expression to OLE_COLOR type,

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long

 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample changes the foreground color for the exe files:

EXFILEVIEWLib.FileType fileType = axExFileView1.FileTypes.Add("*.exe");
fileType.ForeColor = ToUInt32(Color.Red);
fileType.Apply();

where the ToUInt32 function converts a Color expression to OLE_COLOR type,

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample changes the foreground color for the exe files:

With thisform.ExFileView1.Add("*.exe")
 .ForeColor = RGB(255,0,0)
 .Apply()
EndWith

property FileType.From as Date

Specifies whether the FileType object is applied for files/folders that have been updated
after given date.

Type Description

Date
A date expression that specifies that the FileType'
attributes are applied only for files that were updated after
the giving date.

The From and To properties define a date interval. The FileType' attributes are applied only
for files that match the Pattern property and were updated in the given interval. If the
current list contains folders, the control runs a new thread for each folder in order to look
recursively for any file that match the pattern and were updated in the interval defined by
the From and To properties. If the From and To properties are set to 0, the control doesn't
run the any thread. The From and To properties are useful to highlist the files and folder that
contains files that were updated into a given interval. The Apply method applies the changes
to the current list. Use the BrowseFolderPath property to specify the path to the browsed
folder. Use the ModifiedDaysAgo property to specify the string being displayed in the
"Modified" column.

The following VB sample highlights the files and folders that were updated yesterday with
blue color, and updated today, with red color:

With ExFileView1.FileTypes
 With .Add("*")
 .From = Date - 1
 .To = Date
 .ForeColor = vbBlue
 End With
 With .Add("*")
 .From = Date
 .To = .From
 .Bold = True
 .ForeColor = vbRed
 End With
 .Apply
End With

The following C++ sample highlights the files and folders that were updated yesterday with
blue color, and updated today, with red color:

#include "FileType.h"
#include "FileTypes.h"
DATE date = COleDateTime::GetCurrentTime().operator DATE();
CFileType fileType = m_fileview.GetFileTypes().Add("*");
fileType.SetFrom(date - 1);
fileType.SetTo(date);
fileType.SetForeColor(RGB(0,0,255));

fileType = m_fileview.GetFileTypes().Add("*");
fileType.SetFrom(date);
fileType.SetTo(fileType.GetFrom());
fileType.SetBold(TRUE);
fileType.SetForeColor(RGB(255,0,0));

m_fileview.GetFileTypes().Apply();

The following VB.NET sample highlights the files and folders that were updated yesterday
with blue color, and updated today, with red color:

With AxExFileView1.FileTypes
 With .Add("*")
 .From = Date.Today.AddDays(-1)
 .To = Date.Today
 .ForeColor = ToUInt32(Color.Blue)
 End With
 With .Add("*")
 .From = Date.Today
 .To = .From
 .Bold = True
 .ForeColor = ToUInt32(Color.Red)
 End With
 .Apply()
End With

The following C# sample highlights the files and folders that were updated yesterday with
blue color, and updated today, with red color:

EXFILEVIEWLib.FileType fileType = axExFileView1.FileTypes.Add("*");

fileType.From = DateTime.Today.AddDays(-1);
fileType.To = DateTime.Today;
fileType.ForeColor = ToUInt32(Color.Blue);
fileType.Bold = true;

fileType = axExFileView1.FileTypes.Add("*");
fileType.From = DateTime.Today;
fileType.To = DateTime.Today;
fileType.ForeColor = ToUInt32(Color.Red);

axExFileView1.FileTypes.Apply();

The following VFP sample highlights the files and folders that were updated yesterday with
blue color, and updated today, with red color:

With thisform.ExFileView1.FileTypes
 With .Add("*")
 .From = Date() - 1
 .To = Date()
 .ForeColor = RGB(0,0,255)
 EndWith
 With .Add("*")
 .From = Date()
 .To = .From
 .Bold = .t.
 .ForeColor = RGB(255,0,0)
 EndWith
 .Apply
EndWith

property FileType.HasPattern as Boolean

Specifies whether the FileType's pattern contains wild characters.

Type Description

Boolean A boolean expression that specifies whether the FileType's
pattern contains wild characters.

By default the HasPattern property is True. If the FileType's pattern contains no wild cards,
the pattern defines exactly the file name. Use the HasPattern property to specify whether
the Pattern property contains wild cards like: * or ?. The Apply method applies the changes
to the current list. Use the BrowseFolderPath property to specify the path to the browsed
folder.

property FileType.IconIndex as Long

Indicates the icon index used to replace the default icon for files that match the FileType's
pattern.

Type Description

Long A long expression that indicates the icon's key that replace
the default icon for files that match the FileType's pattern.

Use the LoadIcons and LoadIcon properties to add new icons to the control. When you are
using LoadIcon property to add a new icon, you have to use the icon's key for the IconIndex
property. If you are loading a collection of icons using LoadIcons property, you have to use
the index of icon into the icons collection. The Apply method applies the changes to the
current list. Use the BrowseFolderPath property to specify the path to the browsed folder.
The control fires the StateChange event when the user changes the browsed path.

The following VB sample replaces the default icon for files of BMP and JPG types with the
 icon:

With ExFileView1
 .LoadIcon LoadPicture("C:\Temp\sample.ico").Handle, 1234
 With .FileTypes.Add("*.bmp *.jpg")
 .IconIndex = 1234
 .Apply
 End With
End With

After running the sample the default icons for BMP and JPG files is changed like:

The following C++ sample replaces the default icon for files of BMP and JPG types:

IPictureDisp* pPicture = NULL;
if (LoadPicture("c:\\temp\\sample.ico", &pPicture))
{
 OLE_HANDLE hIcon = NULL;
 if (CComQIPtr<IPicture> spPicture(pPicture))
 spPicture->get_Handle(&hIcon);
 m_fileview.LoadIcon(hIcon, 1234);

 CFileType fileType = m_fileview.GetFileTypes().Add("*.bmp *.jpg");
 fileType.SetIconIndex(1234);
 fileType.Apply();
}

where the LoadPicture function loads a picture from a file, and gets the IPictureDisp
interface:

#include
BOOL LoadPicture(LPCTSTR szFileName, IPictureDisp** ppPictureDisp)
{
 BOOL bResult = FALSE;
 if (szFileName)
 {
 OFSTRUCT of;
 HANDLE hFile = NULL;;
#ifdef _UNICODE
 USES_CONVERSION;
 if ((hFile = (HANDLE)OpenFile(W2A(szFileName), &of;, OF_READ |
OF_SHARE_COMPAT)) != (HANDLE)HFILE_ERROR)

#else
 if ((hFile = (HANDLE)OpenFile(szFileName, &of;, OF_READ | OF_SHARE_COMPAT)) !=
(HANDLE)HFILE_ERROR)
#endif
 {
 *ppPictureDisp = NULL;
 DWORD dwHighWord = NULL, dwSizeLow = GetFileSize(hFile, &dwHighWord;);
 DWORD dwFileSize = dwSizeLow;
 HRESULT hResult = NULL;
 if (HGLOBAL hGlobal = GlobalAlloc(GMEM_MOVEABLE, dwFileSize))
 if (void* pvData = GlobalLock(hGlobal))
 {
 DWORD dwReadBytes = NULL;
 BOOL bRead = ReadFile(hFile, pvData, dwFileSize, &dwReadBytes;, NULL);
 GlobalUnlock(hGlobal);
 if (bRead)
 {
 CComPtr spStream;
 _ASSERTE(dwFileSize == dwReadBytes);
 if (SUCCEEDED(CreateStreamOnHGlobal(hGlobal, TRUE, &spStream;)))
 if (SUCCEEDED(hResult = OleLoadPicture(spStream, 0, FALSE,
IID_IPictureDisp, (void**)ppPictureDisp)))
 bResult = TRUE;
 }
 }
 CloseHandle(hFile);
 }
 }
 return bResult;
}

The following VB.NET sample replaces the default icon for files of BMP and JPG types:

With AxExFileView1
 Dim spPicture As stdole.IPictureDisp =
IPDH.GetIPictureDisp(Image.FromFile("c:\temp\sample.ico"))
 .LoadIcon(spPicture.Handle, 1234)

 With .FileTypes.Add("*.bmp *.jpg")
 .IconIndex = 1234
 .Apply()
 End With
End With

where the IPDH class is defined like follows:

Public Class IPDH
 Inherits System.Windows.Forms.AxHost

 Sub New()
 MyBase.New("")
 End Sub

 Public Shared Function GetIPictureDisp(ByVal image As Image) As Object
 GetIPictureDisp = AxHost.GetIPictureDispFromPicture(image)
 End Function

End Class

The following C# sample replaces the default icon for files of BMP and JPG types:

stdole.IPictureDisp spPicture =
IPDH.GetIPictureDisp(Image.FromFile("c:\\temp\\sample.ico")) as stdole.IPictureDisp;
axExFileView1.LoadIcon(spPicture.Handle, 1234);
EXFILEVIEWLib.FileType fileType = axExFileView1.FileTypes.Add("*.bmp *.jpg");
fileType.IconIndex = 1234;
fileType.Apply();

where the IPDH class is defined like follows:

internal class IPDH : System.Windows.Forms.AxHost
{
 public IPDH() : base("")
 {
 }

 public static object GetIPictureDisp(System.Drawing.Image image)

 {
 return System.Windows.Forms.AxHost.GetIPictureDispFromPicture(image);
 }
}

The following VFP sample replaces the default icon for files of BMP and JPG types:

With thisform.ExFileView1
 local i
 with LoadPicture("C:\temp\sample.ico")
 i = .Handle()
 endwith
 .Object.LoadIcon(i, 1234)
 With .FileTypes.Add("*.bmp *.jpg")
 .IconIndex = 1234
 .Apply
 EndWith
EndWith

}

property FileType.Italic as Boolean

Retrieves or sets a value that specifies whether the files that match the FileType's pattern
should appear in italic.

Type Description

Boolean A boolean expression that indicates whether files/folders
that match the FileType's pattern should appear in italic.

The Italic property specifies whether the file or the folder should appear in italic. Use the
Font property to change the control's font. The Apply method applies the changes to the
current list. Use the BrowseFolderPath property to specify the path to the browsed folder.

The following VB sample makes the cpp and h files appear in italic:

With ExFileView1.FileTypes.Add("*.cpp *.h")
 .Italic = True
 .Apply
End With

The following C++ sample makes the cpp and h files appear in italic:

#include "FileType.h"
#include "FileTypes.h"
CFileType fileType = m_fileview.GetFileTypes().Add("*.cpp *.h");
fileType.SetItalic(TRUE);
fileType.Apply();

The following VB.NET sample makes the cpp and h files appear in italic:

With AxExFileView1.FileTypes.Add("*.cpp *.h")
 .Italic = True
 .Apply()
End With

The following C# sample makes the cpp and h files appear in italic:

EXFILEVIEWLib.FileType fileType = axExFileView1.FileTypes.Add("*.cpp *.h");
fileType.Italic = true;
fileType.Apply();

The following VFP sample makes the cpp and h files appear in italic:

With thisform.ExFileView1.FileTypes.Add("*.cpp *.h")
 .Italic = .t.
 .Apply()
EndWith

property FileType.Pattern as String

Specifies the pattern that defines the files into a group, like '*.cpp *h'.

Type Description

String A string expression that defines the pattern to include files
based on the rule.

Use the Add property to add a new FileTypes object to the collection, and to specify the
group's pattern. The Pattern property specifies a string expression that may include wild
cards like * and ?, and defines the files whose name matches the pattern, if the HasPattern
property is True. The control uses the Name property to check the pattern. For instance,
the *.BMP defines all files that has the extension BMP. The Apply method applies the
changes to the current list. Use the BrowseFolderPath property to specify the path to the
browsed folder.

property FileType.StrikeOut as Boolean

Retrieves or sets a value that specifies whether the files that match the FileType's pattern
should appear in strikeout.

Type Description

Boolean A boolean expression that specifies whether the files that
match the FileType's pattern should appear in strikeout.

The StrikeOut property specifies whether the file's font is displayed with a horizontal line
through. Use the Font property to change the control's font. The Apply method applies the
changes to the current list. Use the BrowseFolderPath property to specify the path to the
browsed folder.

The following VB sample draws the cpp and h files with a horizontal line through:

With ExFileView1.FileTypes.Add("*.cpp *.h")
 .StrikeOut = True
 .Apply
End With

The following C++ sample draws the cpp and h files with a horizontal line through:

#include "FileType.h"
#include "FileTypes.h"
CFileType fileType = m_fileview.GetFileTypes().Add("*.cpp *.h");
fileType.SetStrikeOut(TRUE);
fileType.Apply();

The following VB.NET sample draws the cpp and h files with a horizontal line through:

With AxExFileView1.FileTypes.Add("*.cpp *.h")
 .StrikeOut = True
 .Apply()
End With

The following C# sample draws the cpp and h files with a horizontal line through:

EXFILEVIEWLib.FileType fileType = axExFileView1.FileTypes.Add("*.cpp *.h");
fileType.StrikeOut = true;
fileType.Apply();

The following VFP sample draws the cpp and h files with a horizontal line through:

With thisform.ExFileView1.FileTypes.Add("*.cpp *.h")
 .StrikeOut = .t.
 .Apply()
EndWith

property FileType.To as Date

Specifies whether the FileType object is applied for files/folders that have been updated
before give date.

Type Description

Date
A date expression that specifies that the FileType'
attributes are applied only for files that were updated
before giving date.

The From and To properties define a date interval. The FileType' attributes are applied only
for files that match the Pattern property and were updated in the interval. If the current list
contains folders, the control runs a new thread for each folder in order to look recursively
for any file that match the pattern and were updated in the interval defined by the From and
To properties. If the From and To properties are set to 0, the control doesn't run the any
thread. The From and To properties are useful to highlight the files and folder that contains
files that were updated into a given interval. The Apply method applies the changes to the
current list. Use the BrowseFolderPath property to specify the path to the browsed folder.
Use the ModifiedDaysAgo property to specify the string being displayed in the "Modified"
column.

The following VB sample highlights the files and folders that were updated yesterday with
blue color, and updated today, with red color:

With ExFileView1.FileTypes
 With .Add("*")
 .From = Date - 1
 .To = Date
 .ForeColor = vbBlue
 End With
 With .Add("*")
 .From = Date
 .To = .From
 .Bold = True
 .ForeColor = vbRed
 End With
 .Apply
End With

The following C++ sample highlights the files and folders that were updated yesterday with
blue color, and updated today, with red color:

#include "FileType.h"
#include "FileTypes.h"
DATE date = COleDateTime::GetCurrentTime().operator DATE();
CFileType fileType = m_fileview.GetFileTypes().Add("*");
fileType.SetFrom(date - 1);
fileType.SetTo(date);
fileType.SetForeColor(RGB(0,0,255));

fileType = m_fileview.GetFileTypes().Add("*");
fileType.SetFrom(date);
fileType.SetTo(fileType.GetFrom());
fileType.SetBold(TRUE);
fileType.SetForeColor(RGB(255,0,0));

m_fileview.GetFileTypes().Apply();

The following VB.NET sample highlights the files and folders that were updated yesterday
with blue color, and updated today, with red color:

With AxExFileView1.FileTypes
 With .Add("*")
 .From = Date.Today.AddDays(-1)
 .To = Date.Today
 .ForeColor = ToUInt32(Color.Blue)
 End With
 With .Add("*")
 .From = Date.Today
 .To = .From
 .Bold = True
 .ForeColor = ToUInt32(Color.Red)
 End With
 .Apply()
End With

The following C# sample highlights the files and folders that were updated yesterday with
blue color, and updated today, with red color:

EXFILEVIEWLib.FileType fileType = axExFileView1.FileTypes.Add("*");

fileType.From = DateTime.Today.AddDays(-1);
fileType.To = DateTime.Today;
fileType.ForeColor = ToUInt32(Color.Blue);
fileType.Bold = true;

fileType = axExFileView1.FileTypes.Add("*");
fileType.From = DateTime.Today;
fileType.To = DateTime.Today;
fileType.ForeColor = ToUInt32(Color.Red);

axExFileView1.FileTypes.Apply();

The following VFP sample highlights the files and folders that were updated yesterday with
blue color, and updated today, with red color:

With thisform.ExFileView1.FileTypes
 With .Add("*")
 .From = Date() - 1
 .To = Date()
 .ForeColor = RGB(0,0,255)
 EndWith
 With .Add("*")
 .From = Date()
 .To = .From
 .Bold = .t.
 .ForeColor = RGB(255,0,0)
 EndWith
 .Apply
EndWith

property FileType.Type as String

Retrieves or sets a value that indicates the string gets displayed in the "Type" column.

Type Description

String A string expression that indicates the type displayed in the
"Type" column.

Use the Type property to change the string being displayed in the "Type" column. Use the
Type property to get the file/folder's type. The Apply method applies the changes to the
current list. Use the BrowseFolderPath property to specify the path to the browsed folder.

The following VB sample changes the string being displayed in the "Type" column, for cpp
and h files:

With ExFileView1.FileTypes
 .Add("*.cpp *.h").Type = "C++ Files"
 .Apply
End With

The s ample specifies that all files with 'cpp' and 'h' extensions should display on Type
column the "C++ files" string, instead "C++ Source", and "C/C++ Header".

The screen shot shows the control before running the sample:

The screen shot shows the control after running the sample (as you can see the "C++
Source", "C/C++ Header" strings are replaced with the "C++ Files" string):

The following C++ sample changes the string being displayed in the "Type" column, for cpp
and h files:

#include "FileType.h"
#include "FileTypes.h"
CFileType fileType = m_fileview.GetFileTypes().Add("*.cpp *.h");
fileType.SetType("C++ Files");
fileType.Apply();

The following VB.NET sample changes the string being displayed in the "Type" column, for
cpp and h files:

With AxExFileView1.FileTypes.Add("*.cpp *.h")
 .Type = "C++ Files"
 .Apply()
End With

The following C# sample changes the string being displayed in the "Type" column, for cpp
and h files:

EXFILEVIEWLib.FileType fileType = axExFileView1.FileTypes.Add("*.cpp *.h");
fileType.Type = "C++ Files";
fileType.Apply();

The following VFP sample changes the string being displayed in the "Type" column, for cpp
and h files:

With thisform.ExFileView1.FileTypes.Add("*.cpp *.h")
 .Type = "C++ Files"
 .Apply()
EndWith

property FileType.Underline as Boolean

Retrieves or sets a value that specifies whether the files that match the FileType's pattern
appear as underlined.

Type Description

Boolean A boolean expression that specifies whether the files that
match the FileType's pattern appear as underlined.

The Underline property specifies whether the file or the folder is underlined. Use the Font
property to change the control's font. The Apply method applies the changes to the current
list. Use the BrowseFolderPath property to specify the path to the browsed folder.

The following VB sample underlines the cpp and h files:

With ExFileView1.FileTypes.Add("*.cpp *.h")
 .Underline = True
 .Apply
End With

The following C++ sample underlines the cpp and h files:

#include "FileType.h"
#include "FileTypes.h"
CFileType fileType = m_fileview.GetFileTypes().Add("*.cpp *.h");
fileType.SetUnderline(TRUE);
fileType.Apply();

The following VB.NET sample underlines the cpp and h files:

With AxExFileView1.FileTypes.Add("*.cpp *.h")
 .Underline = True
 .Apply()
End With

The following C# sample underlines the cpp and h files:

EXFILEVIEWLib.FileType fileType = axExFileView1.FileTypes.Add("*.cpp *.h");
fileType.Underline = true;
fileType.Apply();

The following VFP sample underlines the cpp and h files:

With thisform.ExFileView1.FileTypes.Add("*.cpp *.h")
 .Underline = .t.
 .Apply()
EndWith

FileTypes object

The FileTypes object contains a collection of FileType objects. The FileTypes collection
contains rule of changes that are applied to the current list. Here's the list of supported
properties and methods:

Name Description

Add Adds a FileType object to the collection and returns a
reference to the newly created object.

Apply Applies the changes to the current list.
Clear Clears all the elements of collection.
Count Returns the number of objects in a collection.
Item Retrieves a FileType object given its index into collection.
Remove Removes a specific member from the FileTypes collection.

method FileTypes.Add (Pattern as String)

Adds a FileType object to the collection and returns a reference to the newly created
object.

Type Description
Pattern as String A string expression that may include wild cards like * or ?.
Return Description
FileType A FileType object that has been created.

Use the Add property to change the appearance for specified files or folders. Use the
FileTypes property to access the FileType objects collection. The new appearance is
applied even if the user changes the browsed folder. The BrowseFolderPath property
specifies the path to the browsed folder. Use the Apply method to apply all changes to the
current list, else they will take effect as soon as the user browses a new folder.

The following VB sample changes the background color for the exe files:

With ExFileView1.FileTypes
 .Add("*.exe").BackColor = vbRed
 .Apply
End With

The following C++ sample changes the background color for the exe files:

#include "FileType.h"
#include "FileTypes.h"
CFileType fileType = m_fileview.GetFileTypes().Add("*.exe");
fileType.SetBackColor(RGB(255,0,0));
fileType.Apply();

The following VB.NET sample changes the background color for the exe files:

With AxExFileView1.FileTypes.Add("*.exe")
 .BackColor = ToUInt32(Color.Red)
 .Apply()
End With

where the ToUInt32 function converts a Color expression to OLE_COLOR type,

Shared Function ToUInt32(ByVal c As Color) As UInt32
 Dim i As Long
 i = c.R
 i = i + 256 * c.G
 i = i + 256 * 256 * c.B
 ToUInt32 = Convert.ToUInt32(i)
End Function

The following C# sample changes the background color for the exe files:

EXFILEVIEWLib.FileType fileType = axExFileView1.FileTypes.Add("*.exe");
fileType.BackColor = ToUInt32(Color.Red);
fileType.Apply();

where the ToUInt32 function converts a Color expression to OLE_COLOR type,

private UInt32 ToUInt32(Color c)
{
 long i;
 i = c.R;
 i = i + 256 * c.G;
 i = i + 256 * 256 * c.B;
 return Convert.ToUInt32(i);
}

The following VFP sample changes the background color for the exe files:

With thisform.ExFileView1.Add("*.exe")
 .BackColor = RGB(255,0,0)
 .Apply()
EndWith

method FileTypes.Apply ()

Applies the changes to the current list.

Type Description

The Apply method applies all the changes to the current list. If the Apply method is not
called, the changes will be reflected as soon as the user browses a new folder, or refresh
the control. Use the BrowseFolderPath property to specify the browsed folder. The Add
method does not invoke the Apply method. Use the Refresh method to refresh the control.

The following VB sample makes the cpp and h files appear in italic:

With ExFileView1.FileTypes.Add("*.cpp *.h")
 .Italic = True
 .Apply
End With

The following C++ sample makes the cpp and h files appear in italic:

#include "FileType.h"
#include "FileTypes.h"
CFileType fileType = m_fileview.GetFileTypes().Add("*.cpp *.h");
fileType.SetItalic(TRUE);
fileType.Apply();

The following VB.NET sample makes the cpp and h files appear in italic:

With AxExFileView1.FileTypes.Add("*.cpp *.h")
 .Italic = True
 .Apply()
End With

The following C# sample makes the cpp and h files appear in italic:

EXFILEVIEWLib.FileType fileType = axExFileView1.FileTypes.Add("*.cpp *.h");
fileType.Italic = true;
fileType.Apply();

The following VFP sample makes the cpp and h files appear in italic:

With thisform.ExFileView1.FileTypes.Add("*.cpp *.h")
 .Italic = .t.
 .Apply()
EndWith

method FileTypes.Clear ()

Clears all the elements of collection.

Type Description

Use the Clear method to remove all FileType objects. Use the Apply method to refresh the
control's list. Use the Remove method to remove a specified FileType object. The Item
property accesses a FileType object by its index. The Count property specifies the number
of FileType objects in the control. Use the FileTypes property to access the FileType
objects collection.

property FileTypes.Count as Long

Returns the number of objects in a collection.

Type Description

Long A long expression that indicates the count of objects into
collection.

The Count property counts the element in the collection. Use the Add method to add new
FileType objects to the control. Use the Remove method to remove a specified FileType
object. Use the Item property to retrieve a specified FileType object. Use the FileTypes
property to access the FileType objects collection. Use the Pattern property to specify the
group's pattern.

The following VB sample enumerates the FileType objects:

With ExFileView1.FileTypes
 Dim i As Long
 For i = 0 To .Count - 1
 Debug.Print .Item(i).Pattern
 Next
End With

The following C++ sample enumerates the FileType objects:

CFileTypes fileTypes = m_fileview.GetFileTypes();
for (long i = 0; i < fileTypes.GetCount(); i++)
 OutputDebugString(fileTypes.GetItem(i).GetPattern());

The following VB.NET sample enumerates the FileType objects:

With AxExFileView1.FileTypes
 Dim i As Integer
 For i = 0 To .Count - 1
 Debug.WriteLine(.Item(i).Pattern())
 Next
End With

The following C# sample enumerates the FileType objects:

EXFILEVIEWLib.FileTypes files = axExFileView1.FileTypes;

for (int i = 0; i < files.Count; i++)
 System.Diagnostics.Debug.WriteLine(files[i].Pattern);

The following VFP sample enumerates the FileType objects:

With thisform.ExFileView1.FileTypes
 local i
 For i = 0 To .Count - 1
 wait window nowait .Item(i).Pattern
 Next
EndWith

property FileTypes.Item (Index as Long) as FileType

Retrieves a FileType object given its index into collection.

Type Description
Index as Long A long expression that indicates the FileType's index.
FileType A FileType object being retrieved.

Use the Item property to retrieve a specified FileType object. The Count property counts
the element in the collection. Use the Add method to add new FileType objects to the
control. Use the Remove method to remove a specified FileType object. Use the FileTypes
property to access the FileType objects collection. Use the Pattern property to specify the
group's pattern.

The following VB sample enumerates the FileType objects:

With ExFileView1.FileTypes
 Dim i As Long
 For i = 0 To .Count - 1
 Debug.Print .Item(i).Pattern
 Next
End With

The following C++ sample enumerates the FileType objects:

CFileTypes fileTypes = m_fileview.GetFileTypes();
for (long i = 0; i < fileTypes.GetCount(); i++)
 OutputDebugString(fileTypes.GetItem(i).GetPattern());

The following VB.NET sample enumerates the FileType objects:

With AxExFileView1.FileTypes
 Dim i As Integer
 For i = 0 To .Count - 1
 Debug.WriteLine(.Item(i).Pattern())
 Next
End With

The following C# sample enumerates the FileType objects:

EXFILEVIEWLib.FileTypes files = axExFileView1.FileTypes;
for (int i = 0; i < files.Count; i++)
 System.Diagnostics.Debug.WriteLine(files[i].Pattern);

The following VFP sample enumerates the FileType objects:

With thisform.ExFileView1.FileTypes
 local i
 For i = 0 To .Count - 1
 wait window nowait .Item(i).Pattern
 Next
EndWith

method FileTypes.Remove (Index as Long)
Removes a specific member from the FileTypes collection.

Type Description
Index as Long A long expression that indicates the FileType's index.

Use the Remove method to remove a specific FileType object. Use Clear method to remove
all FileType objects. Use the Apply method to refresh the control's list. The Item property
accesses a FileType object by its index. The Count property specifies the number of
FileType objects in the control. Use the FileTypes property to access the FileType objects
collection.

ExFileView events
The ExFileView control supports the following events:

Name Description
Change Fired when the browsed folder changes its content.
Click Occurs when the user clicks the list.
DblClick Fired when the user double clicks the item.
Event Notifies the application once the control fires an event.
FilterChange Occurs when the filter is changed.

KeyDown Occurs when the user presses a key while an object has
the focus.

KeyPress Occurs when the user presses and releases an ANSI key.

KeyUp Occurs when the user releases a key while an object has
the focus.

MouseDown Occur when the user presses a mouse button.
MouseMove Occurs when the user moves the mouse.
MouseUp Occurs when the user releases a mouse button.

OLECompleteDrag
Occurs when a source component is dropped onto a
target component, informing the source component that a
drag action was either performed or canceled

OLEDragDrop
Occurs when a source component is dropped onto a
target component when the source component determines
that a drop can occur.

OLEDragOver Occurs when one component is dragged over another.

OLEGiveFeedback Allows the drag source to specify the type of OLE drag-
and-drop operation and the visual feedback.

OLESetData
Occurs on a drag source when a drop target calls the
GetData method and there is no data in a specified format
in the OLE drag-and-drop DataObject.

OLEStartDrag Occurs when the OLEDrag method is called.
ScrollButtonClick Occurs when the user clicks a button in the scrollbar.
Search Occurs when searching files starts or ends
StateChange Fired while the control's state has been changed.

C#

VB

private void Change(object sender,exontrol.EXFILEVIEWLib.Files Files)
{
}

Private Sub Change(ByVal sender As System.Object,ByVal Files As
exontrol.EXFILEVIEWLib.Files) Handles Change
End Sub

C#

C++

C++
Builder

private void Change(object sender,
AxEXFILEVIEWLib._IExFileViewEvents_ChangeEvent e)
{
}

void OnChange(LPDISPATCH Files)
{
}

void __fastcall Change(TObject *Sender,Exfileviewlib_tlb::IFiles *Files)
{
}

event Change (Files as Files)

Fired when the browsed folder has changed its content.

Type Description

Files as Files A Files object that contains the list of files that has been
changed.

Use the Change event to notify your application whenever the browsed folder's content has
been changed, like adding or removing files. The Change event is fired only if the
AutoUpdate property is True, and ChangeNotification property is True. Use the State
property to determine the new state of the file or folder. Use the Folder property to specify
whether the object holds information about a folder of a file. Use the BrowseFolderPath
property to indicates the browsed folder. Use the Item property to access a file giving its
index in the Files collection. Use the Count property to retrieve the number of File objects in
the Files collection.

Syntax for Change event, /NET version, on:

Syntax for Change event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure Change(ASender: TObject; Files : IFiles);
begin
end;

procedure Change(sender: System.Object; e:
AxEXFILEVIEWLib._IExFileViewEvents_ChangeEvent);
begin
end;

begin event Change(oleobject Files)
end event Change

Private Sub Change(ByVal sender As System.Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_ChangeEvent) Handles Change
End Sub

Private Sub Change(ByVal Files As EXFILEVIEWLibCtl.IFiles)
End Sub

Private Sub Change(ByVal Files As Object)
End Sub

LPARAMETERS Files

PROCEDURE OnChange(oExFileView,Files)
RETURN

Java…

VBSc…

<SCRIPT EVENT="Change(Files)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Change(Files)
End Function
</SCRIPT>

Syntax for Change event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComChange Variant llFiles
 Forward Send OnComChange llFiles
End_Procedure

METHOD OCX_Change(Files) CLASS MainDialog
RETURN NIL

void onEvent_Change(COM _Files)
{
}

function Change as v (Files as OLE::Exontrol.ExFileView.1::IFiles)
end function

function nativeObject_Change(Files)
return

The following VB sample displays the files that have been changed in the browsed folder:

Private Sub ExFileView1_Change(ByVal Files As EXFILEVIEWLibCtl.IFiles)
 Dim f As EXFILEVIEWLibCtl.File
 For Each f In Files
 Debug.Print "'" & f.Name & "' " & IIf(f.Folder, "foder", "file") & " " & IIf(f.State = Added,
"added", IIf(f.State = Changed, "changed", IIf(f.State = Deleted, "deleted", "unchanged")))
 Next
End Sub

Open a new Windows Explorer instance that browses the same folder as your control. Add
new folders, remove folders, or change regular files. Your VB output should look like the
following:

The 'New Folder (2)' foder - Added
The 'New Folder (2)' foder - Deleted
The 'New Folder' foder was deleted
The 'New Text Document.txt' file was added
The 'New Text Document.txt' file was changed

The following C++ sample displays the files that have been changed in the browsed folder:

#include "Files.h"
#include "File.h"
void OnChangeExfileview1(LPDISPATCH Files)
{
 CFiles files(Files); files.m_bAutoRelease = FALSE;
 for (long i = 0; i < files.GetCount(); i++)
 {
 CFile1 file = files.GetItem(COleVariant(long(i)));
 CString strState;
 switch (file.GetState())
 {
 case 0:
 {
 strState = "unchanged";
 break;
 }
 case 1:
 {
 strState = "changed";
 break;
 }
 case 2:
 {
 strState = "added";
 break;
 }
 case 3:
 {
 strState = "deleted";
 break;
 }
 }
 CString strOutput;
 strOutput.Format("'%s' %s %s\n", file.GetName(), (file.GetFolder() ? "folder" : "file"),
strState);
 OutputDebugString(strOutput);
 }

}

The following VB.NET sample displays the files that have been changed in the browsed
folder:

Private Sub AxExFileView1_Change(ByVal sender As Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_ChangeEvent) Handles AxExFileView1.Change
 Dim f As EXFILEVIEWLib.File
 For Each f In e.files
 Debug.WriteLine("'" & f.Name & "' " & IIf(f.Folder, "foder", "file") & " " & IIf(f.State =
EXFILEVIEWLib.ChangeEnum.Added, "added", IIf(f.State =
EXFILEVIEWLib.ChangeEnum.Changed, "changed", IIf(f.State =
EXFILEVIEWLib.ChangeEnum.Deleted, "deleted", "unchanged"))))
 Next
End Sub

The following C# sample displays the files that have been changed in the browsed folder:

private void axExFileView1_Change(object sender,
AxEXFILEVIEWLib._IExFileViewEvents_ChangeEvent e)
{
 for (int i = 0; i < e.files.Count; i++)
 {
 EXFILEVIEWLib.File file = e.files[i];
 string strOutput = "'" + file.Name + "' ";
 strOutput += (file.Folder ? "folder" : "file") + " ";
 strOutput += (file.State == EXFILEVIEWLib.ChangeEnum.Added ? "added" : (file.State
== EXFILEVIEWLib.ChangeEnum.Deleted ? "deleted" : (file.State ==
EXFILEVIEWLib.ChangeEnum.Changed ? "changed" : "unchanged")));
 System.Diagnostics.Debug.WriteLine(strOutput);
 }
}

The following VFP sample displays the files that have been changed in the browsed folder:

*** ActiveX Control Event ***
LPARAMETERS files

with files

 local i
 for i = 0 to .Count - 1
 with .Item(i)
 wait window nowait .Name + " " + str(.State)
 endwith
 next
endwith

C#

VB

private void Click(object sender)
{
}

Private Sub Click(ByVal sender As System.Object) Handles Click
End Sub

C#

C++

C++
Builder

Delphi

private void ClickEvent(object sender, EventArgs e)
{
}

void OnClick()
{
}

void __fastcall Click(TObject *Sender)
{
}

procedure Click(ASender: TObject;);
begin
end;

event Click ()

Occurs when the user clicks the list.

Type Description

Use the Click event to notify your application when the user clicks the list. Use Get property
to retrieve the collection of selected items. Use the StateChange event to notify your
application when the current selection is changed. Use the FileFromPoint property to
retrieve the file from the cursor. Use the MouseDown or MouseUp event to notify your
application when the user presses or releases the one of the mouse buttons.

Syntax for Click event, /NET version, on:

Syntax for Click event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure ClickEvent(sender: System.Object; e: System.EventArgs);
begin
end;

begin event Click()
end event Click

Private Sub ClickEvent(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ClickEvent
End Sub

Private Sub Click()
End Sub

Private Sub Click()
End Sub

LPARAMETERS nop

PROCEDURE OnClick(oExFileView)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="Click()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Click()
End Function
</SCRIPT>

Procedure OnComClick
 Forward Send OnComClick

Syntax for Click event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_Click() CLASS MainDialog
RETURN NIL

void onEvent_Click()
{
}

function Click as v ()
end function

function nativeObject_Click()
return

The following VB sample prints the selected file or folder, when the user clicks the control's
list:

Private Sub ExFileView1_Click()
 Dim fs As Files, f As File
 Set fs = ExFileView1.Get(SelItems)
 For Each f In fs
 Debug.Print f.Name
 Next
End Sub

The following C++ sample prints the selected file or folder, when the user clicks the
control's list:

void OnClickExfileview1()
{
 CFiles files = m_fileview.GetGet(0 /*SelItems*/);
 for (long i = 0; i < files.GetCount(); i++)
 {
 CFile1 file = files.GetItem(COleVariant(i));
 OutputDebugString(file.GetName());
 }
}

The following VB.NET sample prints the selected file or folder, when the user clicks the
control's list:

Private Sub AxExFileView1_ClickEvent(ByVal sender As Object, ByVal e As
System.EventArgs) Handles AxExFileView1.ClickEvent
 Dim f As EXFILEVIEWLib.File
 For Each f In AxExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.SelItems)
 Debug.WriteLine(f.Name)
 Next
End Sub

The following C# sample prints the selected file or folder, when the user clicks the control's
list:

private void axExFileView1_ClickEvent(object sender, EventArgs e)
{
 EXFILEVIEWLib.Files files = axExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.SelItems);
 for (int i = 0; i < files.Count; i++)
 {
 EXFILEVIEWLib.File file = files[i];
 System.Diagnostics.Debug.WriteLine(file.Name);
 }
}

The following VFP sample prints the selected file or folder, when the user clicks the
control's list:

*** ActiveX Control Event ***

with thisform.ExFileView1.Get(0)
 local i
 for i = 0 to .Count - 1
 with .Item(i)
 wait window nowait .Name
 endwith
 next
endwith

C#

VB

private void DblClick(object sender)
{
}

Private Sub DblClick(ByVal sender As System.Object) Handles DblClick
End Sub

C#

C++

C++
Builder

Delphi

private void DblClick(object sender, EventArgs e)
{
}

void OnDblClick()
{
}

void __fastcall DblClick(TObject *Sender)
{
}

procedure DblClick(ASender: TObject;);
begin
end;

event DblClick ()

Fired when the user double clicks an item.

Type Description

The DblClk event is fired whenever the user double clicks a file or a folder. Use the
ExpandOnDblClk property to specify whether the folder is expanded or collapsed when the
user double clicks it. By default, if the user double clicks a folder , the control browses for a
new folder. Use the BrowseFolderPath property to specify the path to the browsed folder.
Use StateChange event to notify your application when the current selection is changed.
Use the Get property to retrieve the selected item(s). Use the Folder property to specify
whether the File object holds a file or a folder. Use the ExecuteContextCommand method to
invoke a command from the file's context menu.

Syntax for DblClick event, /NET version, on:

Syntax for DblClick event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure DblClick(sender: System.Object; e: System.EventArgs);
begin
end;

begin event DblClick()
end event DblClick

Private Sub DblClick(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles DblClick
End Sub

Private Sub DblClick()
End Sub

Private Sub DblClick()
End Sub

LPARAMETERS nop

PROCEDURE OnDblClick(oExFileView)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="DblClick()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function DblClick()
End Function
</SCRIPT>

Procedure OnComDblClick
 Forward Send OnComDblClick
End_Procedure

Syntax for DblClick event, /COM version (others), on:

Visual
Objects

X++

XBasic

dBASE

METHOD OCX_DblClick() CLASS MainDialog
RETURN NIL

void onEvent_DblClick()
{
}

function DblClick as v ()
end function

function nativeObject_DblClick()
return

The following VB sample opens that file being double clicked:

Private Sub ExFileView1_DblClick()
 With ExFileView1.Get(SelItems)
 If (.Count > 0) Then
 With .Item(0)
 If (Not .Folder) Then
 ExFileView1.ExecuteContextCommand .Name, .Folder, "Open"
 End If
 End With
 End If
 End With
End Sub

The following C++ sample opens that file being double clicked:

void OnDblClickExfileview1()
{
 CFiles files = m_fileview.GetGet(0);
 if (files.GetCount() > 0)
 {
 CFile1 file = files.GetItem(COleVariant((long)0));
 m_fileview.ExecuteContextCommand(file.GetName(), file.GetFolder(), "Open");

 }
}

The following VB.NET sample opens that file being double clicked:

Private Sub AxExFileView1_DblClick(ByVal sender As Object, ByVal e As System.EventArgs)
Handles AxExFileView1.DblClick
 With AxExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.SelItems)
 If (.Count > 0) Then
 With .Item(0)
 If (Not .Folder) Then
 AxExFileView1.ExecuteContextCommand(.Name, .Folder, "Open")
 End If
 End With
 End If
 End With
End Sub

The following C# sample opens that file being double clicked:

private void axExFileView1_DblClick(object sender, EventArgs e)
{
 EXFILEVIEWLib.Files files = axExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.SelItems);
 if (files.Count > 0)
 {
 EXFILEVIEWLib.File file = files[0];
 axExFileView1.ExecuteContextCommand(file.Name, file.Folder, "Open");
 }
}

The following VFP sample opens that file being double clicked:

*** ActiveX Control Event ***

With thisform.ExFileView1.Get(0) && SelItems
 If (.Count > 0) Then
 With .Item(0)
 If (Not .Folder) Then
 thisform.ExFileView1.ExecuteContextCommand(.Name, .Folder, "Open")

 EndIf
 EndWith
 EndIf
EndWith

C#

VB

private void Event(object sender,int EventID)
{
}

Private Sub Event(ByVal sender As System.Object,ByVal EventID As Integer)
Handles Event
End Sub

C#

C++

private void Event(object sender, AxEXFILEVIEWLib._IExFileViewEvents_EventEvent
e)
{
}

void OnEvent(long EventID)
{
}

event Event (EventID as Long)
Notifies the application once the control fires an event.

Type Description

EventID as Long

A Long expression that specifies the identifier of the event.
Use the EventParam(-2) to display entire information
about fired event (such as name, identifier, and properties
).

The Event notification occurs ANY time the control fires an event.

This is useful for X++ language, which does not support event with parameters passed by
reference.

In X++ the "Error executing code: FormActiveXControl (data source), method ... called with
invalid parameters" occurs when handling events that have parameters passed by
reference. Passed by reference, means that in the event handler, you can change the value
for that parameter, and so the control will takes the new value, and use it. The X++ is NOT
able to handle properly events with parameters by reference, so we have the solution.

Syntax for Event event, /NET version, on:

Syntax for Event event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall Event(TObject *Sender,long EventID)
{
}

procedure Event(ASender: TObject; EventID : Integer);
begin
end;

procedure Event(sender: System.Object; e:
AxEXFILEVIEWLib._IExFileViewEvents_EventEvent);
begin
end;

begin event Event(long EventID)
end event Event

Private Sub Event(ByVal sender As System.Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_EventEvent) Handles Event
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

LPARAMETERS EventID

PROCEDURE OnEvent(oExFileView,EventID)
RETURN

Java… <SCRIPT EVENT="Event(EventID)" LANGUAGE="JScript">
</SCRIPT>

Syntax for Event event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function Event(EventID)
End Function
</SCRIPT>

Procedure OnComEvent Integer llEventID
 Forward Send OnComEvent llEventID
End_Procedure

METHOD OCX_Event(EventID) CLASS MainDialog
RETURN NIL

void onEvent_Event(int _EventID)
{
}

function Event as v (EventID as N)
end function

function nativeObject_Event(EventID)
return

The solution is using and handling the Event notification and EventParam method., instead
handling the event that gives the "invalid parameters" error executing code.

Let's presume that we need to handle the BarParentChange event to change the _Cancel
parameter from false to true, which fires the "Error executing code: FormActiveXControl
(data source), method onEvent_BarParentChange called with invalid parameters." We need
to know the identifier of the BarParentChange event (each event has an unique identifier
and it is static, defined in the control's type library). If you are not familiar with what a type
library means just handle the Event of the control as follows:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 print exfileview1.EventParam(-2).toString();
}

This code allows you to display the information for each event of the control being fired as

in the list bellow:

"MouseMove/-606(1 , 0 , 145 , 36)" VT_BSTR
"BarParentChange/125(192998632 , 'B' , 192999592 , =false)" VT_BSTR
"BeforeDrawPart/54(2 , -1962866148 , =0 , =0 , =0 , =0 , =false)" VT_BSTR
"AfterDrawPart/55(2 , -1962866148 , 0 , 0 , 0 , 0)" VT_BSTR
"MouseMove/-606(1 , 0 , 145 , 35)" VT_BSTR

Each line indicates an event, and the following information is provided: the name of the
event, its identifier, and the list of parameters being passed to the event. The parameters
that starts with = character, indicates a parameter by reference, in other words one that
can changed during the event handler.

Now, we can see that the identifier for the BarParentChange event is 125, so we need to
handle the Event event as:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 ;
 if (_EventID == 125) /*event BarParentChange (Item as HITEM, Key as Variant, NewItem
as HITEM, Cancel as Boolean) */
 exfileview1.EventParam(3 /*Cancel*/, COMVariant::createFromBoolean(true));
}

The code checks if the BarParentChange (_EventID == 125) event is fired, and changes
the third parameter of the event to true. The definition for BarParentChange event can be
consulted in the control's documentation or in the ActiveX explorer. So, anytime you need to
access the original parameters for the event you should use the EventParam method that
allows you to get or set a parameter. If the parameter is not passed by reference, you can
not change the parameter's value.

Now, let's add some code to see a complex sample, so let's say that we need to prevent
moving the bar from an item to any disabled item. So, we need to specify the Cancel
parameter as not Items.EnableItem(NewItem), in other words cancels if the new parent is
disabled. Shortly the code will be:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 ;

 if (_EventID == 125) /*event BarParentChange (Item as HITEM, Key as Variant, NewItem
as HITEM, Cancel as Boolean) */
 if (!exfileview1.Items().EnableItem(exfileview1.EventParam(2 /*NewItem*/)))
 exfileview1.EventParam(3 /*Cancel*/, COMVariant::createFromBoolean(true));
}

In conclusion, anytime the X++ fires the "invalid parameters." while handling an event, you
can use and handle the Event notification and EventParam methods of the control

C#

VB

private void FilterChange(object sender)
{
}

Private Sub FilterChange(ByVal sender As System.Object) Handles FilterChange
End Sub

C#

C++

C++
Builder

private void FilterChange(object sender, EventArgs e)
{
}

void OnFilterChange()
{
}

void __fastcall FilterChange(TObject *Sender)
{

event FilterChange ()

Occurs when the filter is changed. /*not supported in the lite version*/

Type Description

The FilterChange event notifies your application that the user filters files/folders in the
control. Use the ColumnFilterButton property to display a filter button in the column's
caption. Use the AddColumnCustomFilter method to add custom filter patterns to the
column. Use the ColumnFilter, ColumnFilterType properties and ApplyFilter method to apply
a filter to the control's content. Use the Get property to retrieve all, selected or checked
items. Use the Folder property to specify whether the File object holds a file or a folder.

Syntax for FilterChange event, /NET version, on:

Syntax for FilterChange event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure FilterChange(ASender: TObject;);
begin
end;

procedure FilterChange(sender: System.Object; e: System.EventArgs);
begin
end;

begin event FilterChange()
end event FilterChange

Private Sub FilterChange(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles FilterChange
End Sub

Private Sub FilterChange()
End Sub

Private Sub FilterChange()
End Sub

LPARAMETERS nop

PROCEDURE OnFilterChange(oExFileView)
RETURN

Java…

VBSc…

<SCRIPT EVENT="FilterChange()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function FilterChange()
End Function
</SCRIPT>

Syntax for FilterChange event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComFilterChange
 Forward Send OnComFilterChange
End_Procedure

METHOD OCX_FilterChange() CLASS MainDialog
RETURN NIL

void onEvent_FilterChange()
{
}

function FilterChange as v ()
end function

function nativeObject_FilterChange()
return

The following VB sample displays the list of files once that user changes the filter:

Private Sub ExFileView1_FilterChange()
 With ExFileView1.Get(VisibleItems)
 For i = 0 To .Count - 1
 With .Item(i)
 Debug.Print .Name
 End With
 Next
 End With
End Sub

The following C++ sample displays the list of files once that user changes the filter:

void OnFilterChangeExfileview1()
{
 CFiles files = m_fileview.GetGet(3 /*VisibleItems*/);
 for (long i = 0; i < files.GetCount(); i++)
 OutputDebugString(files.GetItem(COleVariant(i)).GetName());
}

The following VB.NET sample displays the list of files once that user changes the filter:

Private Sub AxExFileView1_FilterChange(ByVal sender As Object, ByVal e As
System.EventArgs) Handles AxExFileView1.FilterChange
 With AxExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.VisibleItems)
 Dim i As Integer
 For i = 0 To .Count - 1
 With .Item(i)
 Debug.WriteLine(.Name())
 End With
 Next
 End With
End Sub

The following C# sample displays the list of files once that user changes the filter:

private void axExFileView1_FilterChange(object sender, EventArgs e)
{
 EXFILEVIEWLib.Files files =
axExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.VisibleItems);
 for (int i = 0; i < files.Count; i++)
 {
 EXFILEVIEWLib.File file = files[i];
 System.Diagnostics.Debug.WriteLine(file.Name);
 }
}

The following VFP sample displays the list of files once that user changes the filter:

*** ActiveX Control Event ***

With thisform.ExFileView1.Get(3) && VisibleItems
 For i = 0 To .Count - 1
 With .Item(i)
 wait window nowait .Name
 EndWith
 Next
EndWith

C#

VB

private void KeyDown(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyDown(ByVal sender As System.Object,ByRef KeyCode As
Short,ByVal Shift As Short) Handles KeyDown
End Sub

event KeyDown (KeyCode as Integer, Shift as Integer)

Occurs when the user presses a key while an object has the focus.

Type Description
KeyCode as Integer An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use KeyDown and KeyUp event procedures if you need to respond to both the pressing
and releasing of a key. The control fires the StateChange when the user selects a new file
or folder. You test for a condition by first assigning each result to a temporary integer
variable and then comparing shift to a bit mask. Use the And operator with the shift
argument to test whether the condition is greater than 0, indicating that the modifier was
pressed, as in this example:

ShiftDown = (Shift And 1) > 0
CtrlDown = (Shift And 2) > 0
AltDown = (Shift And 4) > 0

In a procedure, you can test for any combination of conditions, as in this example:
If AltDown And CtrlDown Then

Syntax for KeyDown event, /NET version, on:

Syntax for KeyDown event, /COM version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

private void KeyDownEvent(object sender,
AxEXFILEVIEWLib._IExFileViewEvents_KeyDownEvent e)
{
}

void OnKeyDown(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyDown(TObject *Sender,short * KeyCode,short Shift)
{
}

procedure KeyDown(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyDownEvent(sender: System.Object; e:
AxEXFILEVIEWLib._IExFileViewEvents_KeyDownEvent);
begin
end;

begin event KeyDown(integer KeyCode,integer Shift)
end event KeyDown

Private Sub KeyDownEvent(ByVal sender As System.Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_KeyDownEvent) Handles KeyDownEvent
End Sub

Private Sub KeyDown(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyDown(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

Xbas…

PROCEDURE OnKeyDown(oExFileView,KeyCode,Shift)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="KeyDown(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyDown(KeyCode,Shift)
End Function
</SCRIPT>

Procedure OnComKeyDown Short llKeyCode Short llShift
 Forward Send OnComKeyDown llKeyCode llShift
End_Procedure

METHOD OCX_KeyDown(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyDown(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyDown as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyDown(KeyCode,Shift)
return

Syntax for KeyDown event, /COM version (others), on:

C#

VB

private void KeyPress(object sender,ref short KeyAscii)
{
}

Private Sub KeyPress(ByVal sender As System.Object,ByRef KeyAscii As Short)
Handles KeyPress
End Sub

C#

C++

C++
Builder

private void KeyPressEvent(object sender,
AxEXFILEVIEWLib._IExFileViewEvents_KeyPressEvent e)
{
}

void OnKeyPress(short FAR* KeyAscii)
{
}

void __fastcall KeyPress(TObject *Sender,short * KeyAscii)
{
}

event KeyPress (KeyAscii as Integer)

Occurs when the user presses and releases an ANSI key.

Type Description
KeyAscii as Integer An integer that returns a standard numeric ANSI keycode.

The KeyPress event lets you immediately test keystrokes for validity or for formatting
characters as they are typed. Changing the value of the keyascii argument changes the
character displayed. Use KeyDown and KeyUp event procedures to handle any keystroke
not recognized by KeyPress, such as function keys, editing keys, navigation keys, and any
combinations of these with keyboard modifiers. Unlike the KeyDown and KeyUp events,
KeyPress does not indicate the physical state of the keyboard; instead, it passes a
character. KeyPress interprets the uppercase and lowercase of each character as
separate key codes and, therefore, as two separate characters.

Syntax for KeyPress event, /NET version, on:

Syntax for KeyPress event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure KeyPress(ASender: TObject; var KeyAscii : Smallint);
begin
end;

procedure KeyPressEvent(sender: System.Object; e:
AxEXFILEVIEWLib._IExFileViewEvents_KeyPressEvent);
begin
end;

begin event KeyPress(integer KeyAscii)
end event KeyPress

Private Sub KeyPressEvent(ByVal sender As System.Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_KeyPressEvent) Handles KeyPressEvent
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

LPARAMETERS KeyAscii

PROCEDURE OnKeyPress(oExFileView,KeyAscii)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyPress(KeyAscii)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyPress(KeyAscii)
End Function
</SCRIPT>

Syntax for KeyPress event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComKeyPress Short llKeyAscii
 Forward Send OnComKeyPress llKeyAscii
End_Procedure

METHOD OCX_KeyPress(KeyAscii) CLASS MainDialog
RETURN NIL

void onEvent_KeyPress(COMVariant /*short*/ _KeyAscii)
{
}

function KeyPress as v (KeyAscii as N)
end function

function nativeObject_KeyPress(KeyAscii)
return

C#

VB

private void KeyUp(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyUp(ByVal sender As System.Object,ByRef KeyCode As Short,ByVal
Shift As Short) Handles KeyUp
End Sub

C#

C++

C++
Builder

private void KeyUpEvent(object sender,
AxEXFILEVIEWLib._IExFileViewEvents_KeyUpEvent e)
{
}

void OnKeyUp(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyUp(TObject *Sender,short * KeyCode,short Shift)

event KeyUp (KeyCode as Integer, Shift as Integer)

Occur when the user releases a key while an object has the focus.

Type Description
KeyCode as Integer An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use the KeyUp event procedure to respond to the releasing of a key.

Syntax for KeyUp event, /NET version, on:

Syntax for KeyUp event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

procedure KeyUp(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyUpEvent(sender: System.Object; e:
AxEXFILEVIEWLib._IExFileViewEvents_KeyUpEvent);
begin
end;

begin event KeyUp(integer KeyCode,integer Shift)
end event KeyUp

Private Sub KeyUpEvent(ByVal sender As System.Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_KeyUpEvent) Handles KeyUpEvent
End Sub

Private Sub KeyUp(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyUp(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyUp(oExFileView,KeyCode,Shift)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyUp(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyUp(KeyCode,Shift)

Syntax for KeyUp event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

End Function
</SCRIPT>

Procedure OnComKeyUp Short llKeyCode Short llShift
 Forward Send OnComKeyUp llKeyCode llShift
End_Procedure

METHOD OCX_KeyUp(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyUp(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyUp as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyUp(KeyCode,Shift)
return

C#

VB

private void MouseDownEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseDownEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseDownEvent
End Sub

C# private void MouseDownEvent(object sender,
AxEXFILEVIEWLib._IExFileViewEvents_MouseDownEvent e)

event MouseDown (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)

Occur when the user presses a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event.

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. Use the FileFromPoint property to retrieve the file from the cursor. The
control fires the StateChange event when the selection is changed. Use Get property to
retrieve the collection of selected items.

Syntax for MouseDown event, /NET version, on:

Syntax for MouseDown event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

{
}

void OnMouseDown(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseDown(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseDown(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseDownEvent(sender: System.Object; e:
AxEXFILEVIEWLib._IExFileViewEvents_MouseDownEvent);
begin
end;

begin event MouseDown(integer Button,integer Shift,long X,long Y)
end event MouseDown

Private Sub MouseDownEvent(ByVal sender As System.Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_MouseDownEvent) Handles
MouseDownEvent
End Sub

Private Sub MouseDown(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseDown(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

Xbas… PROCEDURE OnMouseDown(oExFileView,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseDown(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseDown(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseDown Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseDown llButton llShift llX llY
End_Procedure

METHOD OCX_MouseDown(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseDown(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseDown as v (Button as N,Shift as N,X as
OLE::Exontrol.ExFileView.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.ExFileView.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseDown(Button,Shift,X,Y)
return

Syntax for MouseDown event, /COM version (others), on:

The following VB sample displays the file or the folder being clicked:

Private Sub ExFileView1_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As
Single)

 Dim f As String
 f = ExFileView1.FileFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If Len(f) > 0 Then
 Debug.Print f
 End If
End Sub

The following C++ sample displays the file or the folder being clicked:

void OnMouseDownExfileview1(short Button, short Shift, long X, long Y)
{
 CString f = m_fileview.GetFileFromPoint(X, Y);
 if (f.GetLength() > 0)
 OutputDebugString(f);
}

The following VB.NET sample displays the file or the folder being clicked:

Private Sub AxExFileView1_MouseDownEvent(ByVal sender As Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_MouseDownEvent) Handles
AxExFileView1.MouseDownEvent
 Dim f As String = AxExFileView1.get_FileFromPoint(e.x, e.y)
 If Len(f) > 0 Then
 Debug.WriteLine(f)
 End If
End Sub

The following C# sample displays the file or the folder being clicked:

private void axExFileView1_MouseDownEvent(object sender,
AxEXFILEVIEWLib._IExFileViewEvents_MouseDownEvent e)
{
 string f = axExFileView1.get_FileFromPoint(e.x, e.y);
 if (f.Length > 0)
 System.Diagnostics.Debug.WriteLine(f);
}

The following VFP sample displays the file or the folder being clicked:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.ExFileView1
 local f
 f = .FileFromPoint(x, y)
 if (len(f) > 0)
 wait window nowait f
 endif
endwith

C#

VB

private void MouseMoveEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseMoveEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseMoveEvent
End Sub

C#

C++

private void MouseMoveEvent(object sender,
AxEXFILEVIEWLib._IExFileViewEvents_MouseMoveEvent e)
{
}

void OnMouseMove(short Button,short Shift,long X,long Y)
{
}

event MouseMove (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)

Occurs when the user moves the mouse.

Type Description

Button as Integer An integer that corresponds to the state of the mouse
buttons in which a bit is set if the button is down.

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

Syntax for MouseMove event, /NET version, on:

Syntax for MouseMove event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall MouseMove(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseMove(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseMoveEvent(sender: System.Object; e:
AxEXFILEVIEWLib._IExFileViewEvents_MouseMoveEvent);
begin
end;

begin event MouseMove(integer Button,integer Shift,long X,long Y)
end event MouseMove

Private Sub MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_MouseMoveEvent) Handles
MouseMoveEvent
End Sub

Private Sub MouseMove(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseMove(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseMove(oExFileView,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseMove(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseMove(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseMove Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseMove llButton llShift llX llY
End_Procedure

METHOD OCX_MouseMove(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseMove(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseMove as v (Button as N,Shift as N,X as
OLE::Exontrol.ExFileView.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.ExFileView.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseMove(Button,Shift,X,Y)
return

Syntax for MouseMove event, /COM version (others), on:

The MouseMove event is generated continually as the mouse pointer moves across objects.
Unless another object has captured the mouse, an object recognizes a MouseMove event
whenever the mouse position is within its borders. Use the FileFromPoint property to
retrieve the file from the cursor. The control fires the StateChange event when the selection
is changed. Use Get property to retrieve the collection of selected items.

The following VB sample displays the file from the cursor:

Private Sub ExFileView1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As

Single)
 Dim f As String
 f = ExFileView1.FileFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If Len(f) > 0 Then
 Debug.Print f
 End If
End Sub

The following C++ sample displays the file from the cursor:

void OnMouseMoveExfileview1(short Button, short Shift, long X, long Y)
{
 CString f = m_fileview.GetFileFromPoint(X, Y);
 if (f.GetLength() > 0)
 OutputDebugString(f);
}

The following VB.NET sample displays the file from the cursor:

Private Sub AxExFileView1_MouseMoveEvent(ByVal sender As Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_MouseMoveEvent) Handles
AxExFileView1.MouseMoveEvent
 Dim f As String = AxExFileView1.get_FileFromPoint(e.x, e.y)
 If Len(f) > 0 Then
 Debug.WriteLine(f)
 End If
End Sub

The following C# sample displays the file from the cursor:

private void axExFileView1_MouseMoveEvent(object sender,
AxEXFILEVIEWLib._IExFileViewEvents_MouseMoveEvent e)
{
 string f = axExFileView1.get_FileFromPoint(e.x, e.y);
 if (f.Length > 0)
 System.Diagnostics.Debug.WriteLine(f);
}

The following VFP sample displays the file from the cursor:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.ExFileView1
 local f
 f = .FileFromPoint(x, y)
 if (len(f) > 0)
 wait window nowait f
 endif
endwith

C#

VB

private void MouseUpEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseUpEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseUpEvent
End Sub

C# private void MouseUpEvent(object sender,
AxEXFILEVIEWLib._IExFileViewEvents_MouseUpEvent e)

event MouseUp (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)

Occurs when the user releases a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event.

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. the FileFromPoint property to retrieve the file from the cursor. The
control fires the StateChange event when the selection is changed. Use Get property to
retrieve the collection of selected items.

Syntax for MouseUp event, /NET version, on:

Syntax for MouseUp event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

{
}

void OnMouseUp(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseUp(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseUp(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseUpEvent(sender: System.Object; e:
AxEXFILEVIEWLib._IExFileViewEvents_MouseUpEvent);
begin
end;

begin event MouseUp(integer Button,integer Shift,long X,long Y)
end event MouseUp

Private Sub MouseUpEvent(ByVal sender As System.Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_MouseUpEvent) Handles MouseUpEvent
End Sub

Private Sub MouseUp(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseUp(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

Xbas…

PROCEDURE OnMouseUp(oExFileView,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseUp(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseUp(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseUp Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseUp llButton llShift llX llY
End_Procedure

METHOD OCX_MouseUp(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseUp(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseUp as v (Button as N,Shift as N,X as
OLE::Exontrol.ExFileView.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.ExFileView.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseUp(Button,Shift,X,Y)
return

Syntax for MouseUp event, /COM version (others), on:

The following VB sample displays the file or the folder being clicked:

Private Sub ExFileView1_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As

Single)
 Dim f As String
 f = ExFileView1.FileFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
 If Len(f) > 0 Then
 Debug.Print f
 End If
End Sub

The following C++ sample displays the file or the folder being clicked:

void OnMouseUpExfileview1(short Button, short Shift, long X, long Y)
{
 CString f = m_fileview.GetFileFromPoint(X, Y);
 if (f.GetLength() > 0)
 OutputDebugString(f);
}

The following VB.NET sample displays the file or the folder being clicked:

Private Sub AxExFileView1_MouseUpEvent(ByVal sender As Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_MouseUpEvent) Handles
AxExFileView1.MouseUpEvent
 Dim f As String = AxExFileView1.get_FileFromPoint(e.x, e.y)
 If Len(f) > 0 Then
 Debug.WriteLine(f)
 End If
End Sub

The following C# sample displays the file or the folder being clicked:

private void axExFileView1_MouseUpEvent(object sender,
AxEXFILEVIEWLib._IExFileViewEvents_MouseUpEvent e)
{
 string f = axExFileView1.get_FileFromPoint(e.x, e.y);
 if (f.Length > 0)
 System.Diagnostics.Debug.WriteLine(f);
}

The following VFP sample displays the file or the folder being clicked:

*** ActiveX Control Event ***
LPARAMETERS button, shift, x, y

with thisform.ExFileView1
 local f
 f = .FileFromPoint(x, y)
 if (len(f) > 0)
 wait window nowait f
 endif
endwith

C#

VB

// OLECompleteDrag event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

// OLECompleteDrag event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

C# private void OLECompleteDrag(object sender,

event OLECompleteDrag (Effect as Long)

Occurs when a source component is dropped onto a target component, informing the
source component that a drag action was either performed or canceled

Type Description

Effect as Long

A long set by the source object identifying the action that
has been performed, thus allowing the source to take
appropriate action if the component was moved (such as
the source deleting data if it is moved from one component
to another.

The OLECompleteDrag event is the final event to be called in an OLE drag/drop operation.
This event informs the source component of the action that was performed when the object
was dropped onto the target component. The target sets this value through the effect
parameter of the OLEDragDrop event. Based on this, the source can then determine the
appropriate action it needs to take. For example, if the object was moved into the target
(exDropEffectMove), the source needs to delete the object from itself after the move. The
ExFileView control only supports manual OLE drag and drop events. In order to enable
OLE drag and drop feature into ExFileView control you have to check the OLEDropMode
and OLEDrag properties.

The settings for Effect are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move

Syntax for OLECompleteDrag event, /NET version, on:

Syntax for OLECompleteDrag event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

AxEXFILEVIEWLib._IExFileViewEvents_OLECompleteDragEvent e)
{
}

void OnOLECompleteDrag(long Effect)
{
}

void __fastcall OLECompleteDrag(TObject *Sender,long Effect)
{
}

procedure OLECompleteDrag(ASender: TObject; Effect : Integer);
begin
end;

procedure OLECompleteDrag(sender: System.Object; e:
AxEXFILEVIEWLib._IExFileViewEvents_OLECompleteDragEvent);
begin
end;

begin event OLECompleteDrag(long Effect)
end event OLECompleteDrag

Private Sub OLECompleteDrag(ByVal sender As System.Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_OLECompleteDragEvent) Handles
OLECompleteDrag
End Sub

Private Sub OLECompleteDrag(ByVal Effect As Long)
End Sub

Private Sub OLECompleteDrag(ByVal Effect As Long)
End Sub

LPARAMETERS Effect

Xbas…

PROCEDURE OnOLECompleteDrag(oExFileView,Effect)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="OLECompleteDrag(Effect)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLECompleteDrag(Effect)
End Function
</SCRIPT>

Procedure OnComOLECompleteDrag Integer llEffect
 Forward Send OnComOLECompleteDrag llEffect
End_Procedure

METHOD OCX_OLECompleteDrag(Effect) CLASS MainDialog
RETURN NIL

// OLECompleteDrag event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

function OLECompleteDrag as v (Effect as N)
end function

function nativeObject_OLECompleteDrag(Effect)
return

Syntax for OLECompleteDrag event, /COM version (others), on:

event OLEDragDrop (Data as ExDataObject, Effect as Long, Button as
Integer, Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS)

Occurs when a source component is dropped onto a target component when the source
component determines that a drop can occur.

Type Description

Data as ExDataObject

An ExDataObject object containing formats that the source
will provide and, in addition, possibly the data for those
formats. If no data is contained in the ExDataObject, it is
provided when the control calls the GetData method. The
SetData and Clear methods cannot be used here.

Effect as Long

A Long set by the target component identifying the action
that has been performed (if any), thus allowing the source
to take appropriate action if the component was moved
(such as the source deleting the data). The possible
values are listed in Remarks.

Button as Integer

An integer which acts as a bit field corresponding to the
state of a mouse button when it is depressed. The left
button is bit 0, the right button is bit 1, and the middle
button is bit 2. These bits correspond to the values 1, 2,
and 4, respectively. It indicates the state of the mouse
buttons; some, all, or none of these three bits can be set,
indicating that some, all, or none of the buttons are
depressed.

Shift as Integer

An integer which acts as a bit field corresponding to the
state of the SHIFT, CTRL, and ALT keys when they are
depressed. The SHIFT key is bit 0, the CTRL key is bit 1,
and the ALT key is bit 2. These bits correspond to the
values 1, 2, and 4, respectively. The shift parameter
indicates the state of these keys; some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are depressed. For example, if both the CTRL and
ALT keys were depressed, the value of shift would be 6.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

C#

VB

// OLEDragDrop event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

// OLEDragDrop event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

C#

C++

C++
Builder

Delphi

private void OLEDragDrop(object sender,
AxEXFILEVIEWLib._IExFileViewEvents_OLEDragDropEvent e)
{
}

void OnOLEDragDrop(LPDISPATCH Data,long FAR* Effect,short Button,short
Shift,long X,long Y)
{
}

void __fastcall OLEDragDrop(TObject *Sender,Exfileviewlib_tlb::IExDataObject
*Data,long * Effect,short Button,short Shift,int X,int Y)
{
}

procedure OLEDragDrop(ASender: TObject; Data : IExDataObject;var Effect :
Integer;Button : Smallint;Shift : Smallint;X : Integer;Y : Integer);

The OLEDragDrop event is fired when the user has dropped files or clipboard information
into ExFileView control. Use the OLEDropMode property on exOLEDropManual to enable
OLE drag drop support. Use the FileFromPoint property to retrieve the file from the cursor.

The settings for Effect are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

Syntax for OLEDragDrop event, /NET version, on:

Syntax for OLEDragDrop event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin
end;

procedure OLEDragDrop(sender: System.Object; e:
AxEXFILEVIEWLib._IExFileViewEvents_OLEDragDropEvent);
begin
end;

begin event OLEDragDrop(oleobject Data,long Effect,integer Button,integer
Shift,long X,long Y)
end event OLEDragDrop

Private Sub OLEDragDrop(ByVal sender As System.Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_OLEDragDropEvent) Handles OLEDragDrop
End Sub

Private Sub OLEDragDrop(ByVal Data As EXFILEVIEWLibCtl.IExDataObject,Effect As
Long,ByVal Button As Integer,ByVal Shift As Integer,ByVal X As Single,ByVal Y As
Single)
End Sub

Private Sub OLEDragDrop(ByVal Data As Object,Effect As Long,ByVal Button As
Integer,ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long)
End Sub

LPARAMETERS Data,Effect,Button,Shift,X,Y

PROCEDURE OnOLEDragDrop(oExFileView,Data,Effect,Button,Shift,X,Y)
RETURN

Java…

VBSc…

<SCRIPT EVENT="OLEDragDrop(Data,Effect,Button,Shift,X,Y)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">

Syntax for OLEDragDrop event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Function OLEDragDrop(Data,Effect,Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComOLEDragDrop Variant llData Integer llEffect Short llButton
Short llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS llY
 Forward Send OnComOLEDragDrop llData llEffect llButton llShift llX llY
End_Procedure

METHOD OCX_OLEDragDrop(Data,Effect,Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

// OLEDragDrop event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

function OLEDragDrop as v (Data as
OLE::Exontrol.ExFileView.1::IExDataObject,Effect as N,Button as N,Shift as N,X as
OLE::Exontrol.ExFileView.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.ExFileView.1::OLE_YPOS_PIXELS)
end function

function nativeObject_OLEDragDrop(Data,Effect,Button,Shift,X,Y)
return

The following VB sample displays the list of files being dragged to the control (open your
Windows Explorer, select some files and drag them to the control) :

Private Sub ExFileView1_OLEDragDrop(ByVal Data As EXFILEVIEWLibCtl.IExDataObject,
Effect As Long, ByVal Button As Integer, ByVal Shift As Integer, ByVal X As Single, ByVal Y As
Single)
 With Data.Files
 Dim i As Long
 For i = 0 To .Count - 1
 Debug.Print .Item(i)
 Next
 End With
End Sub

The following C++ sample displays the list of files being dragged to the control:

#import <exfilevw.dll>
void OnOLEDragDropExfileview1(LPDISPATCH Data, long FAR* Effect, short Button, short
Shift, long X, long Y)
{
 EXFILEVIEWLib::IExDataObjectPtr spData(Data);
 if (spData)
 {
 EXFILEVIEWLib::IExDataObjectFilesPtr spFiles = spData->Files;
 for (long i = 0; i < spFiles->Count; i++)
 OutputDebugString(spFiles->Item[i]);
 }
}

The C++ requires #import <exfilevw.dll> to import definitions for ExDataObject and
ExDataObjectFiles objects. The #import <exfilevw.dll> generates the EXFILEVIEWLib
namespace. If the exfilevw.dll file is located in other directory than system folder, the
correct path should be provided, else a compiler error occurs.

The following VB.NET sample displays the list of files being dragged to the control:

Private Sub AxExFileView1_OLEDragDrop(ByVal sender As Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_OLEDragDropEvent) Handles
AxExFileView1.OLEDragDrop
 With e.data.Files
 Dim i As Long
 For i = 0 To .Count - 1
 Debug.WriteLine(.Item(i))
 Next
 End With
End Sub

The following C# sample displays the list of files being dragged to the control:

private void axExFileView1_OLEDragDrop(object sender,
AxEXFILEVIEWLib._IExFileViewEvents_OLEDragDropEvent e)
{
 EXFILEVIEWLib.ExDataObjectFiles files = e.data.Files;

 for (int i = 0; i < files.Count; i++)
 System.Diagnostics.Debug.WriteLine(files[i]);
}

The following VFP sample displays the list of files being dragged to the control:

*** ActiveX Control Event ***
LPARAMETERS data, effect, button, shift, x, y

With data.Files
 local i
 For i = 0 To .Count - 1
 wait window nowait .Item(i)
 Next
EndWith

event OLEDragOver (Data as ExDataObject, Effect as Long, Button as
Integer, Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS, State as Integer)

Occurs when one component is dragged over another.

Type Description

Data as ExDataObject

An ExDataObject object containing formats that the source
will provide and, in addition, possibly the data for those
formats. If no data is contained in the ExDataObject, it is
provided when the control calls the GetData method. The
SetData and Clear methods cannot be used here.

Effect as Long

A Long set by the target component identifying the action
that has been performed (if any), thus allowing the source
to take appropriate action if the component was moved
(such as the source deleting the data). The possible
values are listed in Remarks.

Button as Integer

An integer which acts as a bit field corresponding to the
state of a mouse button when it is depressed. The left
button is bit 0, the right button is bit 1, and the middle
button is bit 2. These bits correspond to the values 1, 2,
and 4, respectively. It indicates the state of the mouse
buttons; some, all, or none of these three bits can be set,
indicating that some, all, or none of the buttons are
depressed.

Shift as Integer

An integer which acts as a bit field corresponding to the
state of the SHIFT, CTRL, and ALT keys when they are
depressed. The SHIFT key is bit 0, the CTRL key is bit 1,
and the ALT key is bit 2. These bits correspond to the
values 1, 2, and 4, respectively. The shift parameter
indicates the state of these keys; some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are depressed. For example, if both the CTRL and
ALT keys were depressed, the value of shift would be 6.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

C#

VB

// OLEDragOver event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

// OLEDragOver event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

C#

C++

private void OLEDragOver(object sender,
AxEXFILEVIEWLib._IExFileViewEvents_OLEDragOverEvent e)
{
}

void OnOLEDragOver(LPDISPATCH Data,long FAR* Effect,short Button,short
Shift,long X,long Y,short State)
{
}

State as Integer An integer that corresponds to the transition state of the
control being dragged in relation to a target form or
control. The possible values are listed in Remarks.

The settings for effect are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

The settings for state are:

exOLEDragEnter (0), Source component is being dragged within the range of a target.
exOLEDragLeave (1), Source component is being dragged out of the range of a
target.
exOLEOLEDragOver (2), Source component has moved from one position in the target
to another.

Syntax for OLEDragOver event, /NET version, on:

Syntax for OLEDragOver event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

void __fastcall OLEDragOver(TObject *Sender,Exfileviewlib_tlb::IExDataObject *Data,long *
Effect,short Button,short Shift,int X,int Y,short State)
{
}

procedure OLEDragOver(ASender: TObject; Data : IExDataObject;var Effect :
Integer;Button : Smallint;Shift : Smallint;X : Integer;Y : Integer;State : Smallint);
begin
end;

procedure OLEDragOver(sender: System.Object; e:
AxEXFILEVIEWLib._IExFileViewEvents_OLEDragOverEvent);
begin
end;

begin event OLEDragOver(oleobject Data,long Effect,integer Button,integer
Shift,long X,long Y,integer State)
end event OLEDragOver

Private Sub OLEDragOver(ByVal sender As System.Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_OLEDragOverEvent) Handles OLEDragOver
End Sub

Private Sub OLEDragOver(ByVal Data As EXFILEVIEWLibCtl.IExDataObject,Effect As
Long,ByVal Button As Integer,ByVal Shift As Integer,ByVal X As Single,ByVal Y As
Single,ByVal State As Integer)
End Sub

Private Sub OLEDragOver(ByVal Data As Object,Effect As Long,ByVal Button As
Integer,ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long,ByVal State As
Integer)
End Sub

LPARAMETERS Data,Effect,Button,Shift,X,Y,State

Xbas…

PROCEDURE OnOLEDragOver(oExFileView,Data,Effect,Button,Shift,X,Y,State)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="OLEDragOver(Data,Effect,Button,Shift,X,Y,State)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLEDragOver(Data,Effect,Button,Shift,X,Y,State)
End Function
</SCRIPT>

Procedure OnComOLEDragOver Variant llData Integer llEffect Short llButton Short
llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS llY Short llState
 Forward Send OnComOLEDragOver llData llEffect llButton llShift llX llY llState
End_Procedure

METHOD OCX_OLEDragOver(Data,Effect,Button,Shift,X,Y,State) CLASS MainDialog
RETURN NIL

// OLEDragOver event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

function OLEDragOver as v (Data as
OLE::Exontrol.ExFileView.1::IExDataObject,Effect as N,Button as N,Shift as N,X as
OLE::Exontrol.ExFileView.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.ExFileView.1::OLE_YPOS_PIXELS,State as N)
end function

function nativeObject_OLEDragOver(Data,Effect,Button,Shift,X,Y,State)
return

Syntax for OLEDragOver event, /COM version (others), on:

Note If the state parameter is 1, indicating that the mouse pointer has left the target, then
the x and y parameters will contain zeros.

The source component should always mask values from the effect parameter to ensure
compatibility with future implementations of ActiveX components. As a precaution against
future problems, drag sources and drop targets should mask these values appropriately
before performing any comparisons.
For example, a source component should not compare an effect against, say,
exOLEDropEffectCopy, such as in this manner:

If Effect = exOLEDropEffectCopy...
Instead, the source component should mask for the value or values being sought, such as
this:
If Effect And exOLEDropEffectCopy = exOLEDropEffectCopy...
-or-
If (Effect And exOLEDropEffectCopy)...
This allows for the definition of new drop effects in future versions while preserving
backwards compatibility with your existing code.
The ExFileView control only supports manual OLE drag and drop events.

event OLEGiveFeedback (Effect as Long, DefaultCursors as Boolean)

Allows the drag source to specify the type of OLE drag-and-drop operation and the visual
feedback.

Type Description

Effect as Long

A long integer set by the target component in the
OLEDragOver event specifying the action to be performed
if the user drops the selection on it. This allows the source
to take the appropriate action (such as giving visual
feedback). The possible values are listed in Remarks.

DefaultCursors as Boolean

Boolean value that determines whether to use the default
mouse cursor, or to use a user-defined mouse cursor.True
(default) = use default mouse cursor.False = do not use
default cursor. Mouse cursor must be set with the
MousePointer property of the Screen object.

The settings for Effect are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

If there is no code in the OLEGiveFeedback event, or if the defaultcursors parameter is set
to True, the mouse cursor will be set to the default cursor provided by the control. The
source component should always mask values from the effect parameter to ensure
compatibility with future implementations of ActiveX components. As a precaution against
future problems, drag sources and drop targets should mask these values appropriately
before performing any comparisons.

For example, a source component should not compare an effect against, say,
exOLEDropEffectCopy, such as in this manner:
If Effect = exOLEDropEffectCopy...
Instead, the source component should mask for the value or values being sought, such as
this:
If Effect And exOLEDropEffectCopy = exOLEDropEffectCopy...
-or-
If (Effect And exOLEDropEffectCopy)...
This allows for the definition of new drop effects in future versions while preserving
backwards compatibility with your existing code.

C#

VB

// OLEGiveFeedback event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

// OLEGiveFeedback event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

private void OLEGiveFeedback(object sender,
AxEXFILEVIEWLib._IExFileViewEvents_OLEGiveFeedbackEvent e)
{
}

void OnOLEGiveFeedback(long Effect,BOOL FAR* DefaultCursors)
{
}

void __fastcall OLEGiveFeedback(TObject *Sender,long Effect,VARIANT_BOOL *
DefaultCursors)
{
}

procedure OLEGiveFeedback(ASender: TObject; Effect : Integer;var DefaultCursors
: WordBool);
begin
end;

procedure OLEGiveFeedback(sender: System.Object; e:
AxEXFILEVIEWLib._IExFileViewEvents_OLEGiveFeedbackEvent);
begin
end;

begin event OLEGiveFeedback(long Effect,boolean DefaultCursors)
end event OLEGiveFeedback

The ExFileView control only supports manual OLE drag and drop events.

Syntax for OLEGiveFeedback event, /NET version, on:

Syntax for OLEGiveFeedback event, /COM version, on:

VB.NET

VB6

VBA

VFP

Xbas…

Private Sub OLEGiveFeedback(ByVal sender As System.Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_OLEGiveFeedbackEvent) Handles OLEGiveFeedback
End Sub

Private Sub OLEGiveFeedback(ByVal Effect As Long,DefaultCursors As Boolean)
End Sub

Private Sub OLEGiveFeedback(ByVal Effect As Long,DefaultCursors As Boolean)
End Sub

LPARAMETERS Effect,DefaultCursors

PROCEDURE OnOLEGiveFeedback(oExFileView,Effect,DefaultCursors)
RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="OLEGiveFeedback(Effect,DefaultCursors)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLEGiveFeedback(Effect,DefaultCursors)
End Function
</SCRIPT>

Procedure OnComOLEGiveFeedback Integer llEffect Boolean llDefaultCursors
 Forward Send OnComOLEGiveFeedback llEffect llDefaultCursors
End_Procedure

METHOD OCX_OLEGiveFeedback(Effect,DefaultCursors) CLASS MainDialog
RETURN NIL

// OLEGiveFeedback event is not supported. Use the
DragEnter,DragLeave,DragOver, DragDrop ... events.

Syntax for OLEGiveFeedback event, /COM version (others), on:

XBasic

dBASE

function OLEGiveFeedback as v (Effect as N,DefaultCursors as L)
end function

function nativeObject_OLEGiveFeedback(Effect,DefaultCursors)
return

C#

VB

// OLESetData event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

// OLESetData event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

C#

C++

C++
Builder

private void OLESetData(object sender,
AxEXFILEVIEWLib._IExFileViewEvents_OLESetDataEvent e)
{
}

void OnOLESetData(LPDISPATCH Data,short Format)
{
}

void __fastcall OLESetData(TObject *Sender,Exfileviewlib_tlb::IExDataObject
*Data,short Format)
{
}

event OLESetData (Data as ExDataObject, Format as Integer)

Occurs on a drag source when a drop target calls the GetData method and there is no data
in a specified format in the OLE drag-and-drop DataObject.

Type Description

Data as ExDataObject
An ExDataObject object in which to place the requested
data. The component calls the SetData method to load the
requested format.

Format as Integer

An integer specifying the format of the data that the target
component is requesting. The source component uses this
value to determine what to load into the ExDataObject
object.

The OLESetData is not implemented.

Syntax for OLESetData event, /NET version, on:

Syntax for OLESetData event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure OLESetData(ASender: TObject; Data : IExDataObject;Format : Smallint);
begin
end;

procedure OLESetData(sender: System.Object; e:
AxEXFILEVIEWLib._IExFileViewEvents_OLESetDataEvent);
begin
end;

begin event OLESetData(oleobject Data,integer Format)
end event OLESetData

Private Sub OLESetData(ByVal sender As System.Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_OLESetDataEvent) Handles OLESetData
End Sub

Private Sub OLESetData(ByVal Data As EXFILEVIEWLibCtl.IExDataObject,ByVal
Format As Integer)
End Sub

Private Sub OLESetData(ByVal Data As Object,ByVal Format As Integer)
End Sub

LPARAMETERS Data,Format

PROCEDURE OnOLESetData(oExFileView,Data,Format)
RETURN

Java…

VBSc…

<SCRIPT EVENT="OLESetData(Data,Format)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLESetData(Data,Format)
End Function

Syntax for OLESetData event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComOLESetData Variant llData Short llFormat
 Forward Send OnComOLESetData llData llFormat
End_Procedure

METHOD OCX_OLESetData(Data,Format) CLASS MainDialog
RETURN NIL

// OLESetData event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

function OLESetData as v (Data as
OLE::Exontrol.ExFileView.1::IExDataObject,Format as N)
end function

function nativeObject_OLESetData(Data,Format)
return

C#

VB

// OLEStartDrag event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

// OLEStartDrag event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

event OLEStartDrag (Data as ExDataObject, AllowedEffects as Long)

Occurs when the OLEDrag method is called.

Type Description

Data as ExDataObject

An ExDataObject object containing formats that the source
will provide and, optionally, the data for those formats. If
no data is contained in the ExDataObject, it is provided
when the control calls the GetData method. The
programmer should provide the values for this parameter
in this event. The SetData and Clear methods cannot be
used here.

AllowedEffects as Long

A long containing the effects that the source component
supports. The possible values are listed in Settings. The
programmer should provide the values for this parameter
in this event.

The settings for AllowEffects are:

exOLEDropEffectNone (0), Drop target cannot accept the data, or the drop operation
was cancelled
exOLEDropEffectCopy (1), Drop results in a copy of data from the source to the
target. The original data is unaltered by the drag operation.
exOLEDropEffectMove (2), Drop results in data being moved from drag source to drop
source. The drag source should remove the data from itself after the move.

Syntax for OLEStartDrag event, /NET version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

private void OLEStartDrag(object sender,
AxEXFILEVIEWLib._IExFileViewEvents_OLEStartDragEvent e)
{
}

void OnOLEStartDrag(LPDISPATCH Data,long FAR* AllowedEffects)
{
}

void __fastcall OLEStartDrag(TObject *Sender,Exfileviewlib_tlb::IExDataObject
*Data,long * AllowedEffects)
{
}

procedure OLEStartDrag(ASender: TObject; Data : IExDataObject;var
AllowedEffects : Integer);
begin
end;

procedure OLEStartDrag(sender: System.Object; e:
AxEXFILEVIEWLib._IExFileViewEvents_OLEStartDragEvent);
begin
end;

begin event OLEStartDrag(oleobject Data,long AllowedEffects)
end event OLEStartDrag

Private Sub OLEStartDrag(ByVal sender As System.Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_OLEStartDragEvent) Handles OLEStartDrag
End Sub

Private Sub OLEStartDrag(ByVal Data As
EXFILEVIEWLibCtl.IExDataObject,AllowedEffects As Long)
End Sub

Private Sub OLEStartDrag(ByVal Data As Object,AllowedEffects As Long)

Syntax for OLEStartDrag event, /COM version, on:

VFP

Xbas…

End Sub

LPARAMETERS Data,AllowedEffects

PROCEDURE OnOLEStartDrag(oExFileView,Data,AllowedEffects)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="OLEStartDrag(Data,AllowedEffects)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function OLEStartDrag(Data,AllowedEffects)
End Function
</SCRIPT>

Procedure OnComOLEStartDrag Variant llData Integer llAllowedEffects
 Forward Send OnComOLEStartDrag llData llAllowedEffects
End_Procedure

METHOD OCX_OLEStartDrag(Data,AllowedEffects) CLASS MainDialog
RETURN NIL

// OLEStartDrag event is not supported. Use the DragEnter,DragLeave,DragOver,
DragDrop ... events.

function OLEStartDrag as v (Data as
OLE::Exontrol.ExFileView.1::IExDataObject,AllowedEffects as N)
end function

function nativeObject_OLEStartDrag(Data,AllowedEffects)
return

Syntax for OLEStartDrag event, /COM version (others), on:

The source component should logically Or together the supported values and places the
result in the allowedeffects parameter. The target component can use this value to
determine the appropriate action (and what the appropriate user feedback should be). You

may wish to defer putting data into the ExDataObject object until the target component
requests it. This allows the source component to save time. If the user does not load any
formats into the ExDataObject, then the drag/drop operation is canceled. Use the Get
property to retrieve the selected items. Use the FullName property to retrieve the full name
of the file. You can use the RegisterClipboardFormat API function to register a new
clipboard format. This format can then be used as a valid clipboard format. Use the
SingleSel property to allow multiple selection in the control. The control fires the
OLEDragDrop event when the user drags data over the control.

The user can drag files from the component only if:

OLEDropMode property is exOLEDropManual
The AllowedEffects parameter in the OLEStartDrag event is not zero
The Files or the SetData method is called during the OLEStartDrag event

The following VB sample starts dragging the selected files:

Private Sub ExFileView1_OLEStartDrag(ByVal Data As ExDataObject, AllowedEffects As
Long)
 Data.Files.Clear
 With ExFileView1.Get(SelItems)
 Dim i As Long
 For i = 0 To .Count - 1
 Data.Files.Add .Item(i).FullName
 Next
 End With
 If (Data.Files.Count > 0) Then
 AllowedEffects = 1
 Data.SetData , exCFFiles
 End If
End Sub

The following C++ sample starts dragging the selected files:

#import <exfilevw.dll>
void OnOLEStartDragExfileview1(LPDISPATCH Data, long FAR* AllowedEffects)
{
 EXFILEVIEWLib::IExDataObjectPtr spData(Data);
 spData->Clear();
 CFiles files = m_fileview.GetGet(0 /*SelItems*/);

 for (long i = 0; i < files.GetCount(); i++)
 spData->Files->Add(files.GetItem(COleVariant(i)).GetFullName().operator
LPCTSTR());
 if (spData->Files->Count > 0)
 {
 *AllowedEffects = 1; /*exOLEDropEffectCopy*/
 spData->SetData(vtMissing, COleVariant(long(15))); /*exCFFiles*/
 }
}

The C++ requires #import <exfilevw.dll> to import definitions for ExDataObject and
ExDataObjectFiles objects. The #import <exfilevw.dll> generates the EXFILEVIEWLib
namespace. If the exfilevw.dll file is located in other directory than system folder, the
correct path should be provided, else a compiler error occurs.

The following VB.NET sample starts dragging the selected files:

Private Sub AxExFileView1_OLEStartDrag(ByVal sender As Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_OLEStartDragEvent) Handles
AxExFileView1.OLEStartDrag
 e.data.Files.Clear()
 With AxExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.SelItems)
 Dim i As Integer
 For i = 0 To .Count - 1
 e.data.Files.Add(.Item(i).FullName())
 Next
 End With
 If (e.data.Files.Count > 0) Then
 e.allowedEffects = 1
 e.data.SetData(, EXFILEVIEWLib.exClipboardFormatEnum.exCFFiles)
 End If
End Sub

The following C# sample starts dragging the selected files:

private void axExFileView1_OLEStartDrag(object sender,
AxEXFILEVIEWLib._IExFileViewEvents_OLEStartDragEvent e)
{
 e.data.Files.Clear();

 EXFILEVIEWLib.Files files = axExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.SelItems);
 for (int i = 0 ; i < files.Count; i++)
 e.data.Files.Add(files[i].FullName);
 if (e.data.Files.Count > 0)
 {
 e.allowedEffects = 1;
 e.data.SetData(null, EXFILEVIEWLib.exClipboardFormatEnum.exCFFiles);
 }
}

The following VFP sample starts dragging the selected files:

*** ActiveX Control Event ***
LPARAMETERS data, allowedeffects

Data.Files.Clear
With thisform.ExFileView1.Get(0) && SelItems
 local i
 For i = 0 To .Count - 1
 data.Files.Add(.Item(i).FullName)
 Next
EndWith
If (Data.Files.Count > 0) Then
 AllowedEffects = 1
 data.SetData(, 15) && exCFFiles
EndIf

C#

VB

private void ScrollButtonClick(object
sender,exontrol.EXFILEVIEWLib.ScrollBarEnum
ScrollBar,exontrol.EXFILEVIEWLib.ScrollPartEnum ScrollPart)
{
}

Private Sub ScrollButtonClick(ByVal sender As System.Object,ByVal ScrollBar As
exontrol.EXFILEVIEWLib.ScrollBarEnum,ByVal ScrollPart As
exontrol.EXFILEVIEWLib.ScrollPartEnum) Handles ScrollButtonClick
End Sub

C#

C++

private void ScrollButtonClick(object sender,
AxEXFILEVIEWLib._IExFileViewEvents_ScrollButtonClickEvent e)
{
}

void OnScrollButtonClick(long ScrollBar,long ScrollPart)
{

event ScrollButtonClick (ScrollBar as ScrollBarEnum, ScrollPart as
ScrollPartEnum)
Occurs when the user clicks a button in the scrollbar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that specifies the scrollbar
being clicked.

ScrollPart as ScrollPartEnum A ScrollPartEnum expression that indicates the part of the
scroll being clicked.

Use the ScrollButtonClick event to notify your application that the user clicks a button in the
control's scrollbar. The ScrollButtonClick event is fired when the user clicks and releases
the mouse over an enabled part of the scroll bar. Use the ScrollPartVisible property to add
or remove buttons/parts in the control's scrollbar. Use the ScrollPartEnable property to
specify enable or disable parts in the control's scrollbar. Use the ScrolPartCaption property
to specify the caption of the scroll's part. Use the Background property to change the visual
appearance for any part in the control's scroll bar.

Syntax for ScrollButtonClick event, /NET version, on:

Syntax for ScrollButtonClick event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

void __fastcall ScrollButtonClick(TObject *Sender,Exfileviewlib_tlb::ScrollBarEnum
ScrollBar,Exfileviewlib_tlb::ScrollPartEnum ScrollPart)
{
}

procedure ScrollButtonClick(ASender: TObject; ScrollBar :
ScrollBarEnum;ScrollPart : ScrollPartEnum);
begin
end;

procedure ScrollButtonClick(sender: System.Object; e:
AxEXFILEVIEWLib._IExFileViewEvents_ScrollButtonClickEvent);
begin
end;

begin event ScrollButtonClick(long ScrollBar,long ScrollPart)
end event ScrollButtonClick

Private Sub ScrollButtonClick(ByVal sender As System.Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_ScrollButtonClickEvent) Handles
ScrollButtonClick
End Sub

Private Sub ScrollButtonClick(ByVal ScrollBar As
EXFILEVIEWLibCtl.ScrollBarEnum,ByVal ScrollPart As
EXFILEVIEWLibCtl.ScrollPartEnum)
End Sub

Private Sub ScrollButtonClick(ByVal ScrollBar As Long,ByVal ScrollPart As Long)
End Sub

LPARAMETERS ScrollBar,ScrollPart

PROCEDURE OnScrollButtonClick(oExFileView,ScrollBar,ScrollPart)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="ScrollButtonClick(ScrollBar,ScrollPart)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ScrollButtonClick(ScrollBar,ScrollPart)
End Function
</SCRIPT>

Procedure OnComScrollButtonClick OLEScrollBarEnum llScrollBar
OLEScrollPartEnum llScrollPart
 Forward Send OnComScrollButtonClick llScrollBar llScrollPart
End_Procedure

METHOD OCX_ScrollButtonClick(ScrollBar,ScrollPart) CLASS MainDialog
RETURN NIL

void onEvent_ScrollButtonClick(int _ScrollBar,int _ScrollPart)
{
}

function ScrollButtonClick as v (ScrollBar as
OLE::Exontrol.ExFileView.1::ScrollBarEnum,ScrollPart as
OLE::Exontrol.ExFileView.1::ScrollPartEnum)
end function

function nativeObject_ScrollButtonClick(ScrollBar,ScrollPart)
return

Syntax for ScrollButtonClick event, /COM version (others), on:

The following VB sample displays the identifier of the scroll's button being clicked:

With ExFileView1
 .BeginUpdate
 .ScrollPartVisible(exVScroll, exLeftB1Part Or exRightB1Part) = True
 .ScrollPartCaption(exVScroll, exLeftB1Part) = "1"
 .ScrollPartCaption(exVScroll, exRightB1Part) = "2"

 .EndUpdate
End With

Private Sub ExFileView1_ScrollButtonClick(ByVal ScrollPart As
EXEXFILEVIEWLibCtl.ScrollPartEnum)
 MsgBox (ScrollPart)
End Sub

The following VB.NET sample displays the identifier of the scroll's button being clicked:

With AxExFileView1
 .BeginUpdate()
 .set_ScrollPartVisible(EXEXFILEVIEWLib.ScrollBarEnum.exVScroll,
EXEXFILEVIEWLib.ScrollPartEnum.exLeftB1Part Or
EXEXFILEVIEWLib.ScrollPartEnum.exRightB1Part, True)
 .set_ScrollPartCaption(EXEXFILEVIEWLib.ScrollBarEnum.exVScroll,
EXEXFILEVIEWLib.ScrollPartEnum.exLeftB1Part, "1")
 .set_ScrollPartCaption(EXEXFILEVIEWLib.ScrollBarEnum.exVScroll,
EXEXFILEVIEWLib.ScrollPartEnum.exRightB1Part, "2")
 .EndUpdate()
End With

Private Sub AxExFileView1_ScrollButtonClick(ByVal sender As System.Object, ByVal e As
AxEXEXFILEVIEWLib._IExFileViewEvents_ScrollButtonClickEvent) Handles
AxExFileView1.ScrollButtonClick
 MessageBox.Show(e.scrollPart.ToString())
End Sub

The following C# sample displays the identifier of the scroll's button being clicked:

axExFileView1.BeginUpdate();
axExFileView1.set_ScrollPartVisible(EXEXFILEVIEWLib.ScrollBarEnum.exVScroll,
EXEXFILEVIEWLib.ScrollPartEnum.exLeftB1Part |
EXEXFILEVIEWLib.ScrollPartEnum.exRightB1Part, true);
axExFileView1.set_ScrollPartCaption(EXEXFILEVIEWLib.ScrollBarEnum.exVScroll,
EXEXFILEVIEWLib.ScrollPartEnum.exLeftB1Part , "1");
axExFileView1.set_ScrollPartCaption(EXEXFILEVIEWLib.ScrollBarEnum.exVScroll,
EXEXFILEVIEWLib.ScrollPartEnum.exRightB1Part, "2");

axExFileView1.EndUpdate();

private void axExFileView1_ScrollButtonClick(object sender,
AxEXEXFILEVIEWLib._IExFileViewEvents_ScrollButtonClickEvent e)
{
 MessageBox.Show(e.scrollPart.ToString());
}

The following C++ sample displays the identifier of the scroll's button being clicked:

m_fileView.BeginUpdate();
m_fileView.SetScrollPartVisible(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ | 32
/*exRightB1Part*/, TRUE);
m_fileView.SetScrollPartCaption(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ , _T("
1"));
m_fileView.SetScrollPartCaption(0 /*exVScroll*/, 32 /*exRightB1Part*/ , _T("
2"));
m_fileView.EndUpdate();

void OnScrollButtonClickExFileView1(long ScrollPart)
{
 CString strFormat;
 strFormat.Format(_T("%i"), ScrollPart);
 MessageBox(strFormat);
}

The following VFP sample displays the identifier of the scroll's button being clicked:

With thisform.ExFileView1
 .BeginUpdate
 .ScrollPartVisible(0, bitor(32768,32)) = .t.
 .ScrollPartCaption(0,32768) = "1"
 .ScrollPartCaption(0, 32) = "2"
 .EndUpdate
EndWith

*** ActiveX Control Event ***
LPARAMETERS scrollpart

wait window nowait ltrim(str(scrollpart))

C#

VB

private void Search(object sender,exontrol.EXFILEVIEWLib.SearchStateEnum State)
{
}

Private Sub Search(ByVal sender As System.Object,ByVal State As
exontrol.EXFILEVIEWLib.SearchStateEnum) Handles Search
End Sub

C#

C++

C++
Builder

Delphi

private void Search(object sender,
AxEXFILEVIEWLib._IExFileViewEvents_SearchEvent e)
{
}

void OnSearch(long State)
{
}

void __fastcall Search(TObject *Sender,Exfileviewlib_tlb::SearchStateEnum State)
{
}

procedure Search(ASender: TObject; State : SearchStateEnum);
begin

event Search (State as SearchStateEnum)
Occurs when searching files starts or ends

Type Description

State as SearchStateEnum A SearchStateEnum expression that indicates the
searching state.

The Search event is fired when searching files starts or ends. Use the Search property to
search for files. Use the Add method to add rules to customize the found items. Use the
StopSearch method to stop immediately searching the files. Use the Get property to get the
collection of found files.

Syntax for Search event, /NET version, on:

Syntax for Search event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

procedure Search(sender: System.Object; e:
AxEXFILEVIEWLib._IExFileViewEvents_SearchEvent);
begin
end;

begin event Search(long State)
end event Search

Private Sub Search(ByVal sender As System.Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_SearchEvent) Handles Search
End Sub

Private Sub Search(ByVal State As EXFILEVIEWLibCtl.SearchStateEnum)
End Sub

Private Sub Search(ByVal State As Long)
End Sub

LPARAMETERS State

PROCEDURE OnSearch(oExFileView,State)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="Search(State)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Search(State)
End Function
</SCRIPT>

Procedure OnComSearch OLESearchStateEnum llState
 Forward Send OnComSearch llState

Syntax for Search event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_Search(State) CLASS MainDialog
RETURN NIL

void onEvent_Search(int _State)
{
}

function Search as v (State as OLE::Exontrol.ExFileView.1::SearchStateEnum)
end function

function nativeObject_Search(State)
return

The following VB sample displays a message when searching the files starts or ends:

Private Sub ExFileView1_Search(ByVal State As EXFILEVIEWLibCtl.SearchStateEnum)
 Select Case State
 Case EXFILEVIEWLibCtl.SearchStateEnum.StartSearching
 Debug.Print "Start searching '" & ExFileView1.Search & "' files"
 Case EXFILEVIEWLibCtl.SearchStateEnum.EndSearching
 Debug.Print "End searching"
 End Select
End Sub

The following C++ sample displays a message when searching the files starts or ends:

void OnSearchExfileview1(long State)
{
 switch (State)
 {
 case 0: /*StartSearching*/
 {
 OutputDebugString("Start searching ...");
 break;
 }
 case 1: /*EndSearching*/

 {
 OutputDebugString("End searching ...");
 break;
 }
 }
}

The following VB.NET sample displays a message when searching the files starts or ends:

Private Sub AxExFileView1_SearchEvent(ByVal sender As Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_SearchEvent) Handles AxExFileView1.SearchEvent
 Select Case e.state
 Case EXFILEVIEWLib.SearchStateEnum.StartSearching
 Debug.Print("Start searching '" & AxExFileView1.Search & "' files")
 Case EXFILEVIEWLib.SearchStateEnum.EndSearching
 Debug.Print("End searching")
 End Select
End Sub

The following C# sample displays a message when searching the files starts or ends:

private void axExFileView1_SearchEvent(object sender,
AxEXFILEVIEWLib._IExFileViewEvents_SearchEvent e)
{
 switch (e.state)
 {
 case EXFILEVIEWLib.SearchStateEnum.StartSearching:
 {
 System.Diagnostics.Debug.WriteLine("Start searching '" + axExFileView1.Search + "'
files.");
 break;
 }
 case EXFILEVIEWLib.SearchStateEnum.EndSearching:
 {
 System.Diagnostics.Debug.WriteLine("End searching");
 break;
 }
 }

}

The following VFP sample displays a message when searching the files starts or ends:

*** ActiveX Control Event ***
LPARAMETERS state

do case
 case state = 0
 wait window nowait "Start searching"
 case state = 1
 wait window nowait "End searching"
endcase

C#

VB

private void StateChange(object
sender,exontrol.EXFILEVIEWLib.StateChangeEnum State)
{
}

Private Sub StateChange(ByVal sender As System.Object,ByVal State As
exontrol.EXFILEVIEWLib.StateChangeEnum) Handles StateChange
End Sub

C# private void StateChange(object sender,

event StateChange (State as StateChangeEnum)

Fired while the control's state has been changed.

Type Description

State as StateChangeEnum A StateChangeEnum value that indicates the new control's
state.

The StateChange event notifies your application that the current selection is changed. Use
Get property to retrieves the collection of selected files or folders. Use the Name property
to specify the name of the file or the folder. Use the Folder property to specify whether an
item holds a file or a folder. Use the BrowseFolderPath property to specify the path to the
browsed folder.

The StateChange event is fired in one of the following situations:

(0) RenameState A file was renamed, only if the AllowRename property is true.
(1) SetFocusState, The control gains the focus.
(2) KillFocusState, The control loses the focus.
(3) SelChangeState, The current selection is changed.
(4) BrowseChangeState, The control browses a new folder. Use the
BrowseFolderPath property to specify the path to the browsed folder.
(5) RefreshState, The control did refresh the list of items.
(6) UpdateChangeState, The control was notified by system, that a file/folder was
changed, added, moved, or removed.
(7) BeforeFilterChangeState, The control starts filtering the items.
(8) AfterFilterChangeState, The control ends filtering the items

Syntax for StateChange event, /NET version, on:

Syntax for StateChange event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

AxEXFILEVIEWLib._IExFileViewEvents_StateChangeEvent e)
{
}

void OnStateChange(long State)
{
}

void __fastcall StateChange(TObject *Sender,Exfileviewlib_tlb::StateChangeEnum
State)
{
}

procedure StateChange(ASender: TObject; State : StateChangeEnum);
begin
end;

procedure StateChange(sender: System.Object; e:
AxEXFILEVIEWLib._IExFileViewEvents_StateChangeEvent);
begin
end;

begin event StateChange(long State)
end event StateChange

Private Sub StateChange(ByVal sender As System.Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_StateChangeEvent) Handles StateChange
End Sub

Private Sub StateChange(ByVal State As EXFILEVIEWLibCtl.StateChangeEnum)
End Sub

Private Sub StateChange(ByVal State As Long)
End Sub

LPARAMETERS State

Xbas…

PROCEDURE OnStateChange(oExFileView,State)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="StateChange(State)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function StateChange(State)
End Function
</SCRIPT>

Procedure OnComStateChange OLEStateChangeEnum llState
 Forward Send OnComStateChange llState
End_Procedure

METHOD OCX_StateChange(State) CLASS MainDialog
RETURN NIL

void onEvent_StateChange(int _State)
{
}

function StateChange as v (State as OLE::Exontrol.ExFileView.1::StateChangeEnum)
end function

function nativeObject_StateChange(State)
return

Syntax for StateChange event, /COM version (others), on:

Please check the list of all states in the StateChangeEnum type.

The following VB sample enumerates the selected items:

Private Sub ExFileView1_StateChange(ByVal State As EXFILEVIEWLibCtl.StateChangeEnum)
 If State = SelChangeState Then

 Dim fs As Files, f As File
 Set fs = ExFileView1.Get(SelItems)
 For Each f In fs
 Debug.Print f.Name
 Next
 End If
End Sub

The following C++ sample enumerates the selected items:

void OnStateChangeExfileview1(long State)
{
 switch (State)
 {
 case 0: /*StartSearching*/
 {
 OutputDebugString("Start searching");
 break;
 }
 case 1: /*EndSearching*/
 {
 OutputDebugString("End searching");
 break;
 }
 }
}

The following VB.NET sample enumerates the selected items:

Private Sub AxExFileView1_StateChange(ByVal sender As Object, ByVal e As
AxEXFILEVIEWLib._IExFileViewEvents_StateChangeEvent) Handles
AxExFileView1.StateChange
 Select Case e.state
 Case EXFILEVIEWLib.StateChangeEnum.SelChangeState
 With AxExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.SelItems)
 Dim i As Integer
 For i = 0 To .Count - 1
 With .Item(i)

 Debug.WriteLine(.Name)
 End With
 Next
 End With
 End Select
End Sub

The following C# sample enumerates the selected items:

private void axExFileView1_StateChange(object sender,
AxEXFILEVIEWLib._IExFileViewEvents_StateChangeEvent e)
{
 switch (e.state)
 {
 case EXFILEVIEWLib.StateChangeEnum.SelChangeState:
 {
 EXFILEVIEWLib.Files files =
axExFileView1.get_Get(EXFILEVIEWLib.TypeEnum.SelItems);
 for (int i = 0; i < files.Count; i++)
 {
 EXFILEVIEWLib.File file = files[i];
 System.Diagnostics.Debug.WriteLine(file.Name);
 }
 break;
 }
 }
}

The following VFP sample enumerates the selected items:

*** ActiveX Control Event ***
LPARAMETERS state

do case

 case state = 3 && SelChangeState
 with thisform.ExFileView1.Get(0) && SelItems
 local i

 for i = 0 to .Count - 1
 with .Item(i)
 wait window nowait .Name
 endwith
 next
 endwith

endcase

Expressions

An expression is a string which defines a formula or criteria, that's evaluated at runtime. The
expression may be a combination of variables, constants, strings, dates and
operators/functions. For instance 1000 format `` gets 1,000.00 for US format, while
1.000,00 is displayed for German format.

The Exontrol's eXPression component is a syntax-editor that helps you to define, view, edit
and evaluate expressions. Using the eXPression component you can easily view or check if
the expression you have used is syntactically correct, and you can evaluate what is the
result you get giving different values to be tested. The Exontrol's eXPression component
can be used as an user-editor, to configure your applications.

Usage examples:

100 + 200, adds numbers and returns 300
"100" + 200, concatenates the strings, and returns "100200"
currency(1000) displays the value in currency format based on the current regional
setting, such as "$1,000.00" for US format.
1000 format `` gets 1,000.00 for English format, while 1.000,00 is displayed for
German format
1000 format `2|.|3|,` always gets 1,000.00 no matter of settings in the control panel.
upper("string") converts the giving string in uppercase letters, such as "STRING"
date(dateS('3/1/' + year(9:=#1/1/2018#)) + ((1:=(((255 - 11 * (year(=:9) mod 19)) - 21)
mod 30) + 21) + (=:1 > 48 ? -1 : 0) + 6 - ((year(=:9) + int(year(=:9) / 4)) + =:1 + (=:1
> 48 ? -1 : 0) + 1) mod 7)) returns the date the Easter Sunday will fall, for year 2018.
In this case the expression returns #4/1/2018#. If #1/1/2018# is replaced with
#1/1/2019#, the expression returns #4/21/2019#.

Listed bellow are all predefined constants, operators and functions the general-expression
supports:

The constants can be represented as:

numbers in decimal format (where dot character specifies the decimal separator).
For instance: -1, 100, 20.45, .99 and so on
numbers in hexa-decimal format (preceded by 0x or 0X sequence), uses sixteen
distinct symbols, most often the symbols 0-9 to represent values zero to nine, and A,
B, C, D, E, F (or alternatively a, b, c, d, e, f) to represent values ten to fifteen.
Hexadecimal numerals are widely used by computer system designers and
programmers. As each hexadecimal digit represents four binary digits (bits), it allows a
more human-friendly representation of binary-coded values. For instance, 0xFF,

https://exontrol.com/expression.jsp

0x00FF00, and so so.
date-time in format #mm/dd/yyyy hh:mm:ss#, For instance, #1/31/2001 10:00#
means the January 31th, 2001, 10:00 AM
string, if it starts / ends with any of the ' or ` or " characters. If you require the starting
character inside the string, it should be escaped (preceded by a \ character). For
instance, `Mihai`, "Filimon", 'has', "\"a quote\"", and so on

The predefined constants are:

bias (BIAS constant), defines the difference, in minutes, between Coordinated
Universal Time (UTC) and local time. For example, Middle European Time (MET,
GMT+01:00) has a time zone bias of "-60" because it is one hour ahead of UTC.
Pacific Standard Time (PST, GMT-08:00) has a time zone bias of "+480" because it is
eight hours behind UTC. For instance, date(value - bias/24/60) converts the UTC time
to local time, or date(date('now') + bias/24/60) converts the current local time to UTC
time. For instance, "date(value - bias/24/60)" converts the value date-time from UTC to
local time, while "date(value + bias/24/60)" converts the local-time to UTC time.
dpi (DPI constant), specifies the current DPI setting. and it indicates the minimum
value between dpix and dpiy constants. For instance, if current DPI setting is 100%,
the dpi constant returns 1, if 150% it returns 1.5, and so on. For instance, the
expression value * dpi returns the value if the DPI setting is 100%, or value * 1.5 in
case, the DPI setting is 150%
dpix (DPIX constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpix constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpix returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%
dpiy (DPIY constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpiy constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpiy returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported binary range operators, all these with the same priority 5, are :

a MIN b (min operator), indicates the minimum value, so a MIN b returns the value of
a, if it is less than b, else it returns b. For instance, the expression value MIN 10
returns always a value greater than 10.
a MAX b (max operator), indicates the maximum value, so a MAX b returns the value
of a, if it is greater than b, else it returns b. For instance, the expression value MAX
100 returns always a value less than 100.

The supported binary operators, all these with the same priority 0, are :

:= (Store operator), stores the result of expression to variable. The syntax for :=
operator is

variable := expression

where variable is a integer between 0 and 9. You can use the =: operator to restore
any stored variable (please make the difference between := and =:). For instance,
(0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and prints zero
if it is 0, else the converted number. Please pay attention that the := and =: are two
distinct operators, the first for storing the result into a variable, while the second for
restoring the variable

=: (Restore operator), restores the giving variable (previously saved using the store
operator). The syntax for =: operator is

=: variable

where variable is a integer between 0 and 9. You can use the := operator to store the
value of any expression (please make the difference between := and =:). For

instance, (0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and
prints zero if it is 0, else the converted number. Please pay attention that the := and =:
are two distinct operators, the first for storing the result into a variable, while the
second for restoring the variable

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for ? operator is

expression ? true_part : false_part

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the %0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found') returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

expression array (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D') is equivalent with month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D').

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

expression in (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the value in (11,22,33,44,13) is equivalent with
(expression = 11) or (expression = 22) or (expression = 33) or (expression = 44) or
(expression = 13). The in operator is not a time consuming as the equivalent or version
is, so when you have large number of constant elements it is recommended using the
in operator. Shortly, if the collection of elements has 1000 elements the in operator
could take up to 8 operations in order to find if an element fits the set, else if the or

statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

expression switch (default,c1,c2,c3,...,cn)

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the %0 switch ('not found',1,4,7,9,11) gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

expression case ([default : default_expression ;] c1 : expression1 ; c2 : expression2 ; c3 :
expression3 ;....)

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1) indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8) statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions. Obviously, the priority of the operations inside the expression is
determined by () parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. The type operator may return
any of the following: 0 - empty (not initialized), 1 - null, 2 - short, 3 - long, 4 - float, 5 -
double, 6 - currency, 7 - date, 8 - string, 9 - object, 10 - error, 11 - boolean, 12 -
variant, 13 - any, 14 - decimal, 16 - char, 17 - byte, 18 - unsigned short, 19 - unsigned
long, 20 - long on 64 bits, 21 - unsigned long on 64 bites. For instance type(%1) = 8
specifies the cells (on the column with the index 1) that contains string values.
str (unary operator) converts the expression to a string. The str operator converts the
expression to a string. For instance, the str(-12.54) returns the string "-12.54".
dbl (unary operator) converts the expression to a number. The dbl operator converts
the expression to a number. For instance, the dbl("12.54") returns 12.54
date (unary operator) converts the expression to a date, based on your regional
settings. For instance, the date(``) gets the current date (no time included), the
date(`now`) gets the current date-time, while the date("01/01/2001") returns
#1/1/2001#
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS. For instance, the dateS("01/01/2001 14:00:00") returns
#1/1/2001 14:00:00#
hex (unary operator) converts the giving string from hexa-representation to a numeric
value, or converts the giving numeric value to hexa-representation as string. For
instance, hex(`FF`) returns 255, while the hex(255) or hex(0xFF) returns the `FF`
string. The hex(hex(`FFFFFFFF`)) always returns `FFFFFFFF` string, as the second
hex call converts the giving string to a number, and the first hex call converts the
returned number to string representation (hexa-representation).

The bitwise operators for numbers are:

a bitand b (binary operator) computes the AND operation on bits of a and b, and
returns the unsigned value. For instance, 0x01001000 bitand 0x10111000 returns
0x00001000.
a bitor b (binary operator) computes the OR operation on bits of a and b, and returns
the unsigned value. For instance, 0x01001000 bitor 0x10111000 returns 0x11111000.
a bitxor b (binary operator) computes the XOR (exclusive-OR) operation on bits of a
and b, and returns the unsigned value. For instance, 0x01110010 bitxor 0x10101010
returns 0x11011000.
a bitshift (b) (binary operator) shifts every bit of a value to the left if b is negative, or
to the right if b is positive, for b times, and returns the unsigned value. For instance,
128 bitshift 1 returns 64 (dividing by 2) or 128 bitshift (-1) returns 256 (multiplying by

2)
bitnot (unary operator) flips every bit of x, and returns the unsigned value. For
instance, bitnot(0x00FF0000) returns 0xFF00FFFF.

The operators for numbers are:

int (unary operator) retrieves the integer part of the number. For instance, the
int(12.54) returns 12
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2. For
instance, the round(12.54) returns 13
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument. For instance, the floor(12.54) returns 12
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2.
For instance, the abs(-12.54) returns 12.54
sin (unary operator) returns the sine of an angle of x radians. For instance, the
sin(3.14) returns 0.001593.
cos (unary operator) returns the cosine of an angle of x radians. For instance, the
cos(3.14) returns -0.999999.
asin (unary operator) returns the principal value of the arc sine of x, expressed in
radians. For instance, the 2*asin(1) returns the value of PI.
acos (unary operator) returns the principal value of the arc cosine of x, expressed in
radians. For instance, the 2*acos(0) returns the value of PI
sqrt (unary operator) returns the square root of x. For instance, the sqrt(81) returns 9.
currency (unary operator) formats the giving number as a currency string, as indicated
by the control panel. For instance, currency(value) displays the value using the current
format for the currency ie, 1000 gets displayed as $1,000.00, for US format.
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of

the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

The operators for strings are:

len (unary operator) retrieves the number of characters in the string. For instance, the
len("Mihai") returns 5.
lower (unary operator) returns a string expression in lowercase letters. For instance,
the lower("MIHAI") returns "mihai"
upper (unary operator) returns a string expression in uppercase letters. For instance,
the upper("mihai") returns "MIHAI"
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names. For instance, the proper("mihai") returns "Mihai"
ltrim (unary operator) removes spaces on the left side of a string. For instance, the
ltrim(" mihai") returns "mihai"
rtrim (unary operator) removes spaces on the right side of a string. For instance, the
rtrim("mihai ") returns "mihai"
trim (unary operator) removes spaces on both sides of a string. For instance, the
trim(" mihai ") returns "mihai"
reverse (unary operator) reverses the order of the characters in the string a. For
instance, the reverse("Mihai") returns "iahiM"
a startwith b (binary operator) specifies whether a string starts with specified string (

0 if not found, -1 if found). For instance "Mihai" startwith "Mi" returns -1
a endwith b (binary operator) specifies whether a string ends with specified string (0
if not found, -1 if found). For instance "Mihai" endwith "ai" returns -1
a contains b (binary operator) specifies whether a string contains another specified
string (0 if not found, -1 if found). For instance "Mihai" contains "ha" returns -1
a left b (binary operator) retrieves the left part of the string. For instance "Mihai" left 2
returns "Mi".
a right b (binary operator) retrieves the right part of the string. For instance "Mihai"
right 2 returns "ai"
a lfind b (binary operator) The a lfind b (binary operator) searches the first occurrence
of the string b within string a, and returns -1 if not found, or the position of the result (
zero-index). For instance "ABCABC" lfind "C" returns 2
a rfind b (binary operator) The a rfind b (binary operator) searches the last
occurrence of the string b within string a, and returns -1 if not found, or the position of
the result (zero-index). For instance "ABCABC" rfind "C" returns 5.
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on). For instance "Mihai" mid 2 returns "ihai"
a count b (binary operator) retrieves the number of occurrences of the b in a. For
instance "Mihai" count "i" returns 2.
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result. For instance, the "Mihai" replace "i" with "" returns "Mha" string, as it replaces
all "i" with nothing.
a split b (binary operator) splits the a using the separator b, and returns an array. For
instance, the weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' ' gets the
weekday as string. This operator can be used with the array.
a like b (binary operator) compares the string a against the pattern b. The pattern b
may contain wild-characters such as *, ?, # or [] and can have multiple patterns
separated by space character. In order to have the space, or any other wild-character
inside the pattern, it has to be escaped, or in other words it should be preceded by a \
character. For instance value like `F*e` matches all strings that start with F and ends
on e, or value like `a* b*` indicates any strings that start with a or b character.
a lpad b (binary operator) pads the value of a to the left with b padding pattern. For
instance, 12 lpad "0000" generates the string "0012".
a rpad b (binary operator) pads the value of a to the right with b padding pattern. For
instance, 12 lpad "____" generates the string "12__".
a concat b (binary operator) concatenates the a (as string) for b times. For instance,
"x" concat 5, generates the string "xxxxx".

The operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel. For instance, the time(#1/1/2001 13:00#) returns "1:00:00 PM"

timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance, the timeF(#1/1/2001 13:00#) returns "13:00:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel. For instance, the shortdate(#1/1/2001
13:00#) returns "1/1/2001"
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance, the shortdateF(#1/1/2001 13:00#) returns
"01/01/2001"
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format. For instance, the dateF(#01/01/2001 14:00:00#)
returns #01/01/2001 14:00:00#
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel. For instance, the longdate(#1/1/2001 13:00#)
returns "Monday, January 01, 2001"
year (unary operator) retrieves the year of the date (100,...,9999). For instance, the
year(#12/31/1971 13:14:15#) returns 1971
month (unary operator) retrieves the month of the date (1, 2,...,12). For instance, the
month(#12/31/1971 13:14:15#) returns 12.
day (unary operator) retrieves the day of the date (1, 2,...,31). For instance, the
day(#12/31/1971 13:14:15#) returns 31
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365). For instance, the yearday(#12/31/1971 13:14:15#) returns
365
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday). For instance, the weekday(#12/31/1971 13:14:15#) returns
5.
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23). For instance, the
hour(#12/31/1971 13:14:15#) returns 13
min (unary operator) retrieves the minute of the date (0, 1, ..., 59). For instance, the
min(#12/31/1971 13:14:15#) returns 14
sec (unary operator) retrieves the second of the date (0, 1, ..., 59). For instance, the
sec(#12/31/1971 13:14:15#) returns 15

The expression supports also immediate if (similar with iif in visual basic, or ? : in C++) ie
cond ? value_true : value_false, which means that once that cond is true the value_true is
used, else the value_false is used. Also, it supports variables, up to 10 from 0 to 9. For
instance, 0:="Abc" means that in the variable 0 is "Abc", and =:0 means retrieves the value
of the variable 0. For instance, the len(%0) ? (0:=(%1+%2) ? currency(=:0) else ``) : ``
gets the sum between second and third column in currency format if it is not zero, and only
if the first column is not empty. As you can see you can use the variables to avoid
computing several times the same thing (in this case the sum %1 and %2 .

	Information
	How to get support?
	Appearance
	Add method
	Clear method
	Remove method
	RenderType property

	ExDataObject
	Clear method
	Files property (readonly)
	GetData method
	GetFormat method
	SetData method

	ExDataObjectFiles
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	Remove method

	ExFileView
	AddColumnCustomFilter method
	AllowEnterFolder property
	AllowMenuContext property
	AllowRename property
	AllowSelectNothing property
	AllowShortcutFolders property
	Appearance property
	ApplyFilter method
	Asynchronous property
	AttachTemplate method
	AutoDrag property
	AutoUpdate property
	BackColor property
	BackColorHeader property
	Background property
	BeginUpdate method
	BrowseFolderPath property
	ChangeNotification property
	ClearColumnCustomFilters method
	ClearFilter method
	ClearImages method
	ColumnAutoResize property
	ColumnCaption property
	ColumnFilter property
	ColumnFilterButton property
	ColumnFilterType property
	ColumnsAllowSizing property
	ColumnsVisible property
	ColumnVisible property
	ColumnWidth property
	Copy method
	CopyTo property (readonly)
	Debug method
	DefaultItemHeight property
	Description property
	DisplayFoldersInfo property
	Enabled property
	EndUpdate method
	EventParam property
	ExcludeFilter property
	ExcludeFolderFilter property
	ExecuteContextCommand method
	ExecuteContextMenu property
	ExecuteTemplate method
	Expand method
	ExpandFolders property
	ExpandOnDblClk property
	ExploreFromHere property
	FileFromPoint property (readonly)
	FileTypes property (readonly)
	FilterBarBackColor property
	FilterBarCaption property
	FilterBarDropDownHeight property
	FilterBarDropDownWidth property
	FilterBarFont property
	FilterBarForeColor property
	FilterBarHeight property
	FilterBarPrompt property
	FilterBarPromptColumns property
	FilterBarPromptPattern property
	FilterBarPromptType property
	FilterBarPromptVisible property
	FilterInclude property
	Font property
	ForeColor property
	ForeColorHeader property
	FormatABC method
	FreezeEvents method
	FullRowSelect property
	Get property (readonly)
	HasButtons property
	HasCheckBox property
	HasLines property
	HasLinesAtRoot property
	HeaderAppearance property
	HeaderHeight property
	HeaderVisible property
	HideSelection property
	HotBackColor property
	HotForeColor property
	hWnd property (readonly)
	ImageSize property
	IncludeFiles property
	IncludeFilesInFolder property
	IncludeFilter property
	IncludeFolderFilter property
	IncludeFolders property
	IncludeParent property
	IncludeParentIconKey property
	IncludeParentLabel property
	IncludeSubFolderIconKey property
	IncrementalSearch property
	Indent property
	IsBusy property (readonly)
	Layout property
	LoadIcon method
	LoadIcons method
	LoadIconsKey property
	Loading property
	ModifiedDaysAgo property
	OLEDrag method
	OLEDropMode property
	Option property
	Picture property
	PictureDisplay property
	Refresh method
	ScrollButtonHeight property
	ScrollButtonWidth property
	ScrollFont property
	ScrollHeight property
	ScrollOrderParts property
	ScrollPartCaption property
	ScrollPartCaptionAlignment property
	ScrollPartEnable property
	ScrollPartVisible property
	ScrollThumbSize property
	ScrollToolTip property
	ScrollWidth property
	Search property
	SelBackColor property
	Select method
	SelectByDrag property
	SelectOnRelease property
	SelForeColor property
	ShowContextMenu property
	ShowFocusRect property
	SingleSel property
	Sort method
	Statistics property (readonly)
	StopSearch method
	Template property
	TemplateDef property
	TemplatePut method
	ToolTipDelay property
	ToolTipFont property
	ToolTipPopDelay property
	ToolTipWidth property
	UseVisualTheme property
	Version property
	VisualAppearance property (readonly)

	File
	Accessed property (readonly)
	BackColor property
	Bold property
	Checked property
	Children property (readonly)
	Created property (readonly)
	Folder property (readonly)
	ForeColor property
	FullName property (readonly)
	Ghosted property
	Modified property (readonly)
	Name property (readonly)
	ParseName property (readonly)
	RelativeName property (readonly)
	Selected property
	Size property (readonly)
	State property (readonly)
	Type property (readonly)

	Files
	Count property (readonly)
	Get property (readonly)
	Item property (readonly)

	FileType
	Apply method
	BackColor property
	Bold property
	Folder property
	ForeColor property
	From property
	HasPattern property
	IconIndex property
	Italic property
	Pattern property
	StrikeOut property
	To property
	Type property
	Underline property

	FileTypes
	Add method
	Apply method
	Clear method
	Count property (readonly)
	Item property (readonly)
	Remove method

	ExFileView events
	Change event
	Click event
	DblClick event
	Event event
	FilterChange event
	KeyDown event
	KeyPress event
	KeyUp event
	MouseDown event
	MouseMove event
	MouseUp event
	OLECompleteDrag event
	OLEDragDrop event
	OLEDragOver event
	OLEGiveFeedback event
	OLESetData event
	OLEStartDrag event
	ScrollButtonClick event
	Search event
	StateChange event

