
 ExEMail

A built from the ground up using 100% ATL-based code, The ExEMail can be dropped into
any language that supports ActiveX thus enabling an application to support full mail and file
attachment transfers. ExEmail is fully SMTP RFC-compliant and provides support for binary
(MIME) attachments and HTML email.

What does ExEMail provide and other SMTP components doesn't?

The ExEMail is able to find the SMTP server where the email message should be sent,
from the recipient's email address, by queering a DNS server. The ExEMail doesn't block
your application while delivering a message. It provides a range of events to let you know
how the email message is delivered. The object model is intuitive, rich and flexible.

How ExEMail component delivers a message?

Here are the steps that ExEMail component follows in order to deliver an email message:

1. The component sends a query to the DNS server in order to get the SMTP hosts that
are responsible for the domain recipient's email address.

2. Based on the DNS's response, the component is trying each SMTP server found to
deliver the email message.

3. The component prepares and sends the information about the sender and recipients
email addresses to the SMTP server.

4. If the server accepts the sender and the recipients, it prepares the message's data
and sends it.

5. Once that message's data was sent, the component is going to close the connection.
6. The client is going to inform the server that wants to close the connection, by sending

QUIT command
7. The client is disconnected

Here's a sample how to send an email message using non-blocking mode:

Dim WithEvents e As EMail

Private Sub e_EndSend(ByVal Msg As EXEMAILLibCtl.IMessage)
 If Msg.LastError = 0 Then
 MsgBox "The message was succesfully delivered."
 End If
End Sub

Private Sub Form_Load()
 Set e = New EMail
 Dim m As New Message
 Set m.Notifier = e

 m.Send "myaccount@usermail.com", "sss@colam.com", "Test", "This is a test message",
"c:\winnt\system32\setup.exe"
End Sub

The non-blocking mode does not block your application during delivering the messages, and
your application can handle each message' notifications (events).

The following sample shows how to send an email message using blocking mode:

Private Sub Form_Load()
 Dim m As New Message
 If (0 = m.Send("myaccount@usermail.com", "sss@colam.com", "Test", "This is a test
message", "c:\winnt\system32\setup.exe")) Then
 MsgBox "The message was succesfully delivered "
 End If
End Sub

The blocking mode blocks your application during delivering the message, and it doesn't fire
any event. In order to create EMail and Message object for your application you have to
use NewEmail and NewMessage properties that manages to license the objects at runtime.

Ž ExEMail is a trademark of Exontrol. All Rights Reserved.

How to get support?

To keep your business applications running, you need support you can count on.

Here are few hints what to do when you're stuck on your programming:

Check out the samples - they are here to provide some quick info on how things should
be done
Check out the how-to questions using the eXHelper tool
Check out the help - includes documentation for each method, property or event
Check out if you have the latest version, and if you don't have it send an update
request here.
Submit your problem(question) here.

Don't forget that you can contact our development team if you have ideas or requests for
new components, by sending us an e-mail at support@exontrol.com (please include the
name of the product in the subject, ex: exgrid) . We're sure our team of developers will try
to find a way to make you happy - and us too, since we helped.

Regards,
Exontrol Development Team

https://www.exontrol.com

https://exontrol.com/exhelper.jsp
https://exontrol.com/update.jsp
https://exontrol.com/techsupport.jsp
https://www.exontrol.com

constants AuthMethodEnum
Specifies the authentication method.

Name Value Description
NoAuth 0 No Authentification.
AuthLogin 1 Login
AuthPlain 2 Plain

constants BodyEncodingEnum
Specifies the type of encoding the message' body supports. The BodyEncoding property
specifies the way the body of the message is encoded. By default, the message's body
goes as BASE64. The BodyEncodingEnum type supports the following values:

Name Value Description

NoBodyEncoding 0 The message's body encoding could be 7BIT or
8BIT.

BodyEncodingBASE64 1 The message's body encoding is BASE64 (by
default).

constants PriorityEnum
Specifies the email message's priority.

Name Value Description
High 1 High priority.
Normal 3 Normal priority (Default).
Low 5 Low priority.

Use the Priority property to change the message's priority.

constants SendStateEnum
Specifies the state of the message while it is delivering.

Name Value Description

LookupMX 1 The component is looking for mail exchange
information, by queering the DNS server.

Connecting 2 The client is going to connect to the SMTP server.
Connected 3 The client is connected to the SMTP server.

Opening 4 The connection is going to be opened, by saying
HELO to the SMTP server.

Opened 5 The connection is opened, and ready to send the
email.

Closing 6 The connection is about to be closed.
Closed 7 The connection is closed.
Data 8 The client sends the message's data.

Disconnecting 9 The client is going to be disconnected from the
SMTP server

Disconnected 10 The client is disconnected.

Login 11
The client is about to login to the SMTP server. The
Login state is sent only if the AuthMethod property
is AuthLogin or AuthPlain.

Logged 12
The client is logged to the SMTP server. The
Logged state is sent only if the AuthMethod
property is AuthLogin or AuthPlain.

Use the StateChange event to check the email message's state while delivering.

EMail object

The EMail object provides a range of events that let the user know how the message
delivering goes. In order to create a licensed EMail object, you have to use NewEmail
property. If you deploy an application that uses CreateObject or New statements in order to
create new EMail objects, it fails because the EMail object is a licensed ActiveX
component. The New and CreateObject statements work only on machines where the
ExEMail component was licensed for design mode. A Message object sent notifications (
events) to the application only if Notifier property points to an EMail object. Use the EMail
object to handle message' notifications, or for retrieving a description for the last error
occured. Use the NewMessage to create licensed Message objects at runtime.

For instance, the following sample shows how to send an email message using non-
blocking mode:

Dim WithEvents e As EMail

Private Sub e_EndSend(ByVal Msg As EXEMAILLibCtl.IMessage)
 Debug.Print e.Error(Msg.LastError)
End Sub

Private Sub Form_Load()
 ' Creates an EMail object, that will receive Message notifications
 Set e = Runtime1.NewEMail()
 ' Creates a Message object
 Dim m As Message
 Set m = Runtime1.NewMessage()
 ' Message' notifications are sent through EMail object
 Set m.Notifier = e
 ' Sends a message to one user
 m.Send "m@malibu.com", "marfa@cool2.com", "Test", "The message has one
attchament", "c:\winnt\system32\setup.exe"
End Sub

The following sample shows how to send an email message using blocking mode:

Private Sub Form_Load()
 Dim e As EMail
 ' Creates an EMail object, that will receive Message notifications
 Set e = Runtime1.NewEMail()
 ' Creates a Message object
 Dim m As Message
 Set m = Runtime1.NewMessage()
 ' Sends a message to one user

 Debug.Print e.Error(m.Send("m@malibu.com", "marfa@cool2.com", "Test", "The
message has one attchament", "c:\winnt\system32\setup.exe"))
End Sub

The samples do the same thing, but the difference between them is that non-blocking mode
fires events, and doesn't block your application, and the blocking mode doesn't fire events,
and it blocks your application during delivering the message.

Name Description
error Gets description for an error code.

property EMail.error (Code as Long) as String

Gets description for an error code.

Type Description
Code as Long A long expression that describes the error code
String A string expression that describes the error.

Use the Error property to get a description for an error code. Use the LastError property to
get the last error occurred in delivering the message. If the Notifier property points to an
EMail object, use the EndSend event to check the last error occured. The following sample
shows how to check whether a message was successfully delivered, using non-blocking
mode:

Dim WithEvents e As EMail

Private Sub e_EndSend(ByVal Msg As EXEMAILLibCtl.IMessage)
 If (Msg.LastError <> 0) Then
 Debug.Print e.Error(Msg.LastError)
 End If
End Sub

Private Sub Form_Load()

 ' Creates an EMail object, that will receive Message notifications
 Set e = Runtime1.NewEMail()
 ' Creates a Message object
 Dim m As Message
 Set m = Runtime1.NewMessage()
 ' Message' notifications are sent through EMail object
 Set m.Notifier = e

 ' Sends a message to one user
 m.Send "m@malibu.com", "marfa@cool2.com", "Test", "The message has one
attchament", "c:\winnt\system32\setup.exe"
End Sub

The following sample shows how to print the description for last error occurred using
blocking mode (when the Notifier property is set to nothing). It's not recommended using

blocking mode because it blocks your application while the message is delivered.

MsgBox Runtime1.NewEMail.Error(Runtime1.NewMessage().Send("m@malibu.com",
"marfa@cool2.com", "Test", "The message has one attchament",
"c:\winnt\system32\setup.exe"))

The following sample shows how to send an email message using a single line of code:

If 0 = Runtime1.NewMessage().Send("m@malibu.com", "marfa@cool2.com", "Test", "The
message has one attchament", "c:\winnt\system32\setup.exe") Then
 MsgBox "OK"
End If

Message object

A Message object holds information about an email message. Use the Send method to
send the email message. Use the NewMessage property to create a licensed Message
object. Using the ExEMail component there are two ways to send email messages: non-
blocking and blocking mode. The following sample shows how to send an email message
using non=blocking mode:

Dim WithEvents e As EMail

Private Sub Form_Load()
 ' Creates an EMail object, that will receive Message notifications
 Set e = Runtime1.NewEMail()
 ' Creates a Message object
 Dim m As Message
 Set m = Runtime1.NewMessage()
 ' Message' notifications are sent through EMail object
 Set m.Notifier = e
 ' Sends a message to 2 users
 m.Send "me@malibu.com", "bula@bulat.com,robingo@calcuta.fom", "Test", "The
message has one attchament", "c:\winnt\system32\setup.exe"
End Sub

The following sample sends the email message by blocking the application while it delivers
the message:

Private Sub Form_Load()
 ' Creates a Message object
 Dim m As Message
 Set m = Runtime1.NewMessage()
 ' Sends a message to 2 users
 m.Send "me@malibu.com", "bula@bulat.com,robingo@calcuta.fom", "Test", "The
message has one attchament", "c:\winnt\system32\setup.exe"
End Sub

Here's the list of supported properties:

Name Description
Retrieves or sets a value that indicates a list of files

Attachment attached to the message separated by semicolon.

AuthMethod Retrieves or sets a value that indicates the authentication
method.

Bcc
Retrieves or sets a value that indicates the blind carbon
copy recipient's email address(s) (separated by commas,
if there are more than once).

BodyEncoding Specifies the way the message's body is encoded.

BodyHTML
Retrieves or sets a the message's body in HTML format.
The HTML content is attached as an alternative to plain
text.

BodyText Retrieves or sets the message's body as plain text.

Cc
Retrieves or sets a value that indicates the carbon copy
recipient's email address(s) (separated by commas, if
there are more than once).

Date Retrieves or sets the message's date.
DNS Retrieves the list of DNS servers.
ExtraHeader Retrieves or sets any extra field to the message's header.

From Retrieves or sets a value that indicates the email address
of the sender.

Helo

Specifies the string being sent by HELO command to the
e-mail server. As a result, the receiver-SMTP will not have
to perform MX resolution on this name in order to validate
the HELO parameter.

Host

Retrieves or sets a value that indicates the host where the
message should be delivered. If the Host is empty, the
control queries the DNS where the message should be
delivered.

LastError Retrieves the last error that occurs in delivering the
message.

LogonPassword Retrieves or sets the value that indicates the login's
password.

LogonUser Retrieves or sets a value that indicates the login user
name.

Notifier Changes or gets the message's object notifier. The object
notifier receives all the message events.

Port Retrieves or sets the server's port.

Priority
Retrieves or sets a value that indicates the message's
priority.

Send Sends the email message to the recipients.

SendOnce

Indicates whether the message is sent once to the mail
server, for all recipients, and the server takes the
responsibility to delivery the message per all assigned
recipients.

Subject Retrieves or sets a value that indicates the subject of the
message.

Timeout Specifies the amount of time (in seconds) the control will
wait for the server response.

To
Retrieves or sets a value that indicates the recipient's
email address, or a list of recipient's email addresses
separated by commas.

property Message.Attachment as String

Retrieves or sets a value that indicates the list of message' attached files separated by
semicolon.

Type Description

String

A String expression that indicates the files to attach as:

a list of files (including the full path) to attach,
separated by semicolon
a multi-line string defining the file name to attach, with
subsequent lines specifying the content of the file to
attach (ability to attach a file with its content without
physically having it)

To include attachments in your email message, there are two methods you can use:

Attachment property: Set the Attachment property of your email message object. This
property allows you to specify the files you want to attach directly within your email
composition process
Attachment argument of Send method: Alternatively, when calling the Send method to
send your email, you can pass an Attachment argument. This argument lets you include
files as attachments at the time of sending the email

Both approaches provide flexibility in how you attach files to your emails, depending on your
specific programming or email sending scenario.

The following method shows two different ways how you can attach files to a Message
object:

Private Sub Form_Load()
 Dim m As Message
 Set m = Runtime1.NewMessage
 If (0 = m.Send("myaccount@usermail.com", "sss@colam.com", "Test", "This is a test
message", "c:\winnt\system32\setup.exe;c:\winnt\system32\setup.bin")) Then
 MsgBox "The message was succesfully delivered "
 End If
End Sub

Private Sub Form_Load()
 Dim m As Message

 Set m = Runtime1.NewMessage
 m.Attachment = "c:\winnt\system32\setup.exe;c:\winnt\system32\setup.bin"
 If (0 = m.Send("myaccount@usermail.com", "sss@colam.com", "Test", "This is a test
message")) Then
 MsgBox "The message was succesfully delivered "
 End If
End Sub

property Message.AuthMethod as AuthMethodEnum
Retrieves or sets a value that indicates the authentication method.

Type Description

AuthMethodEnum An AuthMethodEnum expression that indicates the
authentication method.

By default, the control uses no authentication method. Use the AuthMethod property to
specifies the authentication method. The "AUTH LOGIN" and "AUTH PLAIN" supported. The
authentication method depends on the SMTP server you are using. Use the LogonUser and
LogonPassword properties if the authentication method is AuthLogin or AuthPlain. The RFC
2554 describes the SMTP Authentication.

http://www.ietf.org/rfc/rfc2554.txt

property Message.Bcc as String

Retrieves or sets a value that indicates the blind carbon copy recipient's email address's)
separated by commas.

Type Description

String A string expression that indicates the blind carbon copy
recipient's email address's) separated by commas.

Use the Bcc property to add blind carbon copy email addresses to your email message. By
default, the Bcc property is empty. If the Bcc is empty, no Bcc field is added to message's
header.

The following sample shows how to add Cc and Bcc fields to your message:

Dim m As Message
Set m = Runtime1.NewMessage
m.Cc = "norton@macrosoft.com,steve@segal.com"
m.Bcc = """Bill Gates"" <bil@macrosoft.com>,bala@segal.com"
If (0 = m.Send("myaccount@usermail.com", "sss@colam.com", "Test", "This is a test
message")) Then
 MsgBox "The message was successfully delivered. "
End If

property Message.BodyEncoding as BodyEncodingEnum
Specifies the way the message's body is encoded.

Type Description

BodyEncodingEnum A BodyEncodingEnum expression that defines the
encoding type of the message's body.

By default, the BodyEncoding property is BodyEncodingBASE64. Use the BodyEncoding
property to specify the encoding type of the message's body. The BodyText / BodyHTML
property specifies the message's body to be sent.

The BodyEncoding property could be:

NoBodyEncoding, which indicates that the message's body goes as 7BIT or 8BIT
BodyEncodingBASE64, which indicates that the message's body is encoded as
BASE64.

property Message.BodyHTML as String

Retrieves or sets a the message's body in HTML format. The HTML content is attached as
an alternative to BodyText text.

Type Description

String A String expression that indicates the HTML alternative for
the BodyText property.

Use the BodyHTML property to send your message in HTML format. Use the BodyEncoding
property to specify the encoding type of the message's body. If the property is empty, the
email message is sent as plain text.

Here's a sample that shows you how to send an HTML message:

Dim m As Message
Set m = Runtime1.NewMessage
m.BodyHTML = "<html>Hello world</html>"
If (0 = m.Send("myaccount@usermail.com", "sss@colam.com", "HTML format", "Hello
world")) Then
 MsgBox "The message was successfully delivered "
End If

property Message.BodyText as String

Retrieves or sets the message's body as plain text.

Type Description
String A String expression that indicates the message's body.

Use the BodyText to set the message's body. Use the BodyHTML to send your email
message in HTML format. You can set also the email message's body by setting the
Message optional parameter of the Send method. Use the BodyEncoding property to
specify the encoding type of the message's body.

The following samples show how to set the message's text:

Dim m As Message
Set m = Runtime1.NewMessage
m.BodyText = "Hello world!"
If (0 = m.Send("myaccount@usermail.com", "bul@bulstone.com", "Test")) Then
 MsgBox "The message was successfully delivered "
End If
Dim m As Message
Set m = Runtime1.NewMessage
If (0 = m.Send("myaccount@usermail.com", "bul@bulstone.com", "Test", "Hello world!"))
Then
 MsgBox "The message was successfully delivered "
End If

property Message.Cc as String

Retrieves or sets a value that indicates the carbon copy recipient's email address's
separated by commas

Type Description

String A String expression that indicates the carbon copy
recipient's email address's separated by commas

Use Cc property to set Cc (Carbon Copy) field for your email message. By default, the Cc
property is empty. If the Cc property is empty, no Cc field is added to message's header.

The following sample shows how to add Cc and Bcc fields to your message:

Dim m As Message
Set m = Runtime1.NewMessage
m.Cc = "norton@macrosoft.com,steve@segal.com"
m.Bcc = """Bill Gates"" <bil@macrosoft.com>,bala@segal.com"
If (0 = m.Send("myaccount@usermail.com", "sss@colam.com", "Test", "This is a test
message")) Then
 MsgBox "The message was successfully delivered "
End If

property Message.Date as Date

Retrieves or sets the message's date.

Type Description
Date A Date expression that indicates the message's date.

Use the Date property to set the message's date. By default the message's date is the
current date.

The following sample shows how to send an message dated as yesterday:

Dim m As Message
Set m = Runtime1.NewMessage
m.Date = Date - 1
If (0 = m.Send("myaccount@usermail.com", "bul@bulstone.com", "Test", "Hello world!"))
Then
 MsgBox "The message was successfully delivered "
End If

property Message.DNS as String
Retrieves the list of DNS servers.

Type Description

String A string expression that indicates the list of local DNS
servers.

The DNS property gets the list of the local DNS servers separated by comma. The control
sends queries to a DNS server to determine the SMTP server that's responsible for an e-
mail address.

property Message.ExtraHeader(Field as String) as String

Retrieves or sets any extra field to the message's header.

Type Description
Field as String A string expression that indicates the field's name.
String A string expression that indicates the field's value.

Use the ExtraHeader property to add any extra field to the message's header. You can use
your personalize fields, or you can check the RFC 822. The following sample shows how to
add the "Reply-To" field to the message's body:

Private Sub Form_Load()
 Dim m As Message
 Set m = Runtime1.NewMessage
 m.ExtraHeader("Reply-To") = "Me@mascro.com"
 If (0 = m.Send("myaccount@usermail.com", "bul@bulstone.com", "Test", "Hello
world!")) Then
 MsgBox "The message was successfully delivered "
 End If
End Sub

property Message.From as String

Retrieves or sets a value that indicates the email address of the sender.

Type Description

String

A string expression that indicates the email address of the
sender. The string can contain the name of the sender
between "" and the email address between brackets <>,
like this "Mike" <mike@margs.com> or simple like:
mike@margs.com

Use From property to specify the email address of the sender. Also, you can use the From
optional argument of the Send method to set up the sender's email address. Some SMTP
servers doesn't accept any email address for the sender. Some of the SMTP servers
checks if the domain of the email address exists. The following sample shows how to set
the name of sender:

Dim WithEvents e As EMail

Private Sub e_EndSend(ByVal Msg As EXEMAILLibCtl.IMessage)
 Debug.Print e.Error(Msg.LastError)
End Sub

Private Sub Form_Load()
 Set e = Runtime1.NewEMail()
 Dim m As Message
 Set m = Runtime1.NewMessage
 Set m.Notifier = e
 m.From = """Mike Philips"" <mike@sodkex.com>"
 m.Send , "jhon@margo.com", "Hi", "Hi buddy!"
End Sub

property Message.Helo as String
Specifies the string being sent by HELO command to the e-mail server.

Type Description

String A String expression that indicates the string being set by
HELO command.

By default, the Helo property indicates the name of the host, who sends the message. As a
result, the receiver-SMTP will not have to perform MX resolution on this name in order to
validate the HELO parameter. The HELO receiver MAY verify that the HELO parameter
really corresponds to the IP address of the sender. However, the receiver MUST NOT
refuse to accept a message, even if the sender's HELO command fails verification.

property Message.Host as String

Retrieves or sets a value that indicates the host's address where the message should be
delivered.

Type Description

String A String expression that indicates the host where the
message should be delivered.

By default, the message's Host is empty. If the Host is empty, the control queries the DNS
for the SMTP servers where the email should be delivered. You can use the Host property
to force control using a certain SMTP server. If the Host is not empty, the Send method
does not query the DNS server for the mail exchange information. If the Host property is not
empty, the component doesn't check if the host is valid. Use the LastError property to
check the last error occurred.

The following sample shows how to use Host property:

Dim WithEvents e As EMail

Private Sub e_EndSend(ByVal Msg As EXEMAILLibCtl.IMessage)
 Debug.Print e.Error(Msg.LastError)
End Sub

Private Sub Form_Load()
 Set e = Runtime1.NewEMail()
 Dim m As Message
 Set m = Runtime1.NewMessage
 Set m.Notifier = e
 m.Host = "unknown.com"
 m.Send "me", "mike2@Unknown.com", "Test", "Hello world!"
End Sub

property Message.LastError as Long

Retrieves the last error occurred.

Type Description
Long A long expression that indicates the last error occurred.

Use the LastError to check whether the email message was successfully delivered. If the
message failed, the LastError retrieves the last error code. If the message was
successfully sent the LastError gets 0. Use the Error property to get the description for an
error code. If the Notifer property points to an EMail object then the Send method retrieves
0. In this case, 0 means that the control has started delivering the message. Use EndSend
event to check out if the message was delivered ok. If the Notifier property is set to nothing
the Send method retrieves the last error code.

The following samples show how to check whether a message was successfully sent:

Dim WithEvents e As EMail

Private Sub e_EndSend(ByVal Msg As EXEMAILLibCtl.IMessage)
 If (Msg.LastError = 0) Then
 MsgBox "The message was delivered OK."
 End If
 Debug.Print e.Error(Msg.LastError)
End Sub

Private Sub Form_Load()
 Set e = Runtime1.NewEMail()
 Dim m As Message
 Set m = Runtime1.NewMessage
 Set m.Notifier = e
 m.Send "me", "mike2@Unknown.com", "Test", "Hello world!"
End Sub

Private Sub Form_Load()
 Dim m As Message
 Set m = Runtime1.NewMessage
 If (0 = m.Send("me", "mike2@Unknown.com", "Test", "Hello world!")) Then
 MsgBox "The message was delivered OK."

 End If
End Sub

property Message.LogonPassword as String
Retrieves or sets the value that indicates the login's password.

Type Description
String A string expression that specifies the login's password.

Some SMTP Servers require an username and a password. The value for the LogonUser
and LogonPassword are sent to the SMTP server only if the AuthMethod property is
AuthLogin or AuthPlain.

property Message.LogonUser as String
Retrieves or sets a value that indicates the login user name.

Type Description
String A string expression that indicates the login user name.

Some SMTP Servers require an username and a password. The value for the LogonUser
and LogonPassword are sent to the SMTP server only if the AuthMethod property is
AuthLogin or AuthPlain.

property Message.Notifier as EMail

Changes or gets the message's object notifier.

Type Description
EMail An EMail object that receives all notifications.

By default, the Notifier property is set to nothing. The Notifier property specifies the way
how the message is going to be delivered: non-blocking or blocking mode. In non-blocking
mode the control fires events through EMail object, and it doesn't block the application while
delivering the message. In blocking mode, the control doesn't fire any event, and the
application is blocked while the control delivers the message. If the Notifier property points
to an EMail object, then all message's notifications are handled by EMail object' events. The
following sample shows how to deliver an email message using non-blocking mode:

Dim WithEvents e As EMail

Private Sub e_EndSend(ByVal Msg As EXEMAILLibCtl.IMessage)
 If (Msg.LastError = 0) Then
 MsgBox "The message was delivered OK."
 End If
 Debug.Print e.Error(Msg.LastError)
End Sub

Private Sub Form_Load()
 Set e = Runtime1.NewEMail
 Dim m As Message
 Set m = Runtime1.NewMessage
 Set m.Notifier = e
 m.Send "me", "mike2@Unknown2.com", "Test", "Hello world!"
End Sub

The following sample shows how to deliver an email message using the blocking mode:

Private Sub Form_Load()
 Dim m As Message
 Set m = Runtime1.NewMessage
 If (0 = m.Send("me", "mike2@Unknown2.com", "Test", "Hello world!")) Then
 MsgBox "The message was delivered OK."

 End If
End Sub

property Message.Port as Long
Retrieves or sets the server's port.

Type Description
Long A long expression that indicates the SMTP server port.

By default, the Port property is 25. Some SMTP servers require another port to send data
to.

property Message.Priority as PriorityEnum

Retrieves or sets a value that indicates the message's priority.

Type Description

PriorityEnum A PriorityEnum expression that indicates the message's
priority.

Use the Priority property to change the message's priority. By default, the message's
priority is Normal. The following sample shows how to send an high priority message:

Private Sub Form_Load()
 Dim m As Message
 Set m = Runtime1.NewMessage
 m.Priority = High
 If (0 = m.Send("me", "mike2@Unknown2.com", "Test", "Hello world!")) Then
 MsgBox "The message was delivered OK."
 End If
End Sub

method Message.Send ([From as Variant], [To as Variant], [Subject as
Variant], [Message as Variant], [Attachement as Variant])

Sends the email message to the recipients.

Type Description

From as Variant

An optional string expression that indicates the email
address for the sender. If the parameter is missing, the
control considers the From property been the sender's
email address.

To as Variant

An optional string expression that indicates the recipients
where the email message should be delivered. If the
parameter is missing, the control considers the To
property been the recipient email addresses. The list of
recipients should be separated by commas.

Subject as Variant

An optional string expression that indicates the email
message's subject. If the parameter is missing, the control
considers the Subject property been the email message's
subject.

Message as Variant

An optional string expression that indicates the email
message's body as plain text. If the parameter is missing,
the control considers the BodyText property being the
email message's body text.

Attachement as Variant

An optional string expression that indicates the
attachments of the email message. A String expression
that indicates the files to attach as:

a list of files (including the full path) to attach,
separated by semicolon
a multi-line string defining the file name to attach, with
subsequent lines specifying the content of the file to
attach (ability to attach a file with its content without
physically having it)

If the parameter is missing, the control considers the
Attachment property being the attachments for the
message. To include attachments in your email message,
there are two methods you can use:

Attachment property: Set the Attachment property of
your email message object. This property allows you
to specify the files you want to attach directly within

your email composition process
Attachment argument of Send method: Alternatively,
when calling the Send method to send your email, you
can pass an Attachment argument. This argument lets
you include files as attachments at the time of sending
the email

Return Description

Long
A long expression that indicates the error's code. If the
Notifier property points to an EMail object then value
returned is 0

The Send method sends the email message to the To, Cc and Bcc recipients. To send an
email message using blocking or non-blocking mode use Notifier property, before calling
Send method. If the message's Notifer is set to nothing, the Send method retrieves the last
error occurred. Use the Error property to get the description given the error code. If the
Notifier property points to an EMail object the Send method retrieves 0, that means, that
the control has started delivering the email message using non-blocking mode. Use the
SendOnce property On True, to prevent overloading the mail server, when the message
should be delivered to multiple recipients, so the message is sent only once, and the server
is responsible for delivering the message to recipients.

The following sample shows how to send an email message using non-blocking way:

Dim WithEvents e As EMail

Private Sub e_EndSend(ByVal Msg As EXEMAILLibCtl.IMessage)
 If (Msg.LastError = 0) Then
 MsgBox "The message was delivered OK."
 End If
 Debug.Print e.Error(Msg.LastError)
End Sub

Private Sub Form_Load()
 Set e = Runtime1.NewEMail
 Dim m As Message
 Set m = Runtime1.NewMessage
 Set m.Notifier = e
 m.Send "me", "mike2@Unknown2.com", "Test", "Hello world!"
End Sub

The following sample shows how to send the email message using blocking mode:

Private Sub Form_Load()
 Dim m As Message
 Set m = Runtime1.NewMessage
 If (0 = m.Send("me", "mike2@Unknown2.com", "Test", "Hello world!")) Then
 MsgBox "The message was delivered OK."
 End If
End Sub

property Message.SendOnce as Boolean
Indicates whether the message is sent once to the mail server, for all recipients, and the
server takes the responsibility to delivery the message per all assigned recipients.

Type Description

Boolean

A Boolean expression that specifies whether the message
is sent once to the mail server, for all recipients, and the
server takes the responsibility to delivery the message per
all assigned recipients.

By default, the SendOnce property is False, which indicates that the message is sent
individually to each recipients. The Send method sends the email message to the To, Cc
and Bcc recipients. Use the SendOnce property On True, to prevent overloading the mail
server so the message is sent only once, and the server is responsible for delivering the
message to recipients.

property Message.Subject as String

Retrieves or sets a value that indicates the subject of the email message.

Type Description

String A String expression that indicates the email message's
subject.

Use the Subject property to set up your email message's subject. Changing the Subject,
optional parameter of the Send method is equivalent with changing the Subject property.

The following sample shows how to send an email message with the Subject "hello":

Private Sub Form_Load()
 Dim m As Message
 Set m = Runtime1.NewMessage
 If (0 = m.Send("me", "mike2@Unknown2.com", "Hello")) Then
 MsgBox "The message was delivered OK."
 End If
End Sub

property Message.Timeout as Long

Specifies the amount of time (in seconds) the control will wait for the server response.

Type Description

Long A long expression that Specifies the amount of time (in
seconds) the control will wait for the server response.

Use the Timeout property to increase or decrease the amount of time (in seconds) the
control will wait for the server response. By default, the Timeout property is set to 5
minutes. -1 is used to be an infinite timeout. Be carefully when you use Timeout = -1, and
blocking mode, because it may block indefinitely your application.

property Message.To as String

Retrieves or sets a value that indicates the recipient's email address, or a list of recipient's
email addresses separated by commas.

Type Description

String A String expression that indicates the recipient's email
addresses separated by commas.

Use the To property to specify the email address where you want to send the email
message. You can set the To property, by using To optional parameter of the Send method.

The recipient's email addresses should be separated by commas, like in the following
sample:

Private Sub Form_Load()
 Dim m As Message
 Set m = Runtime1.NewMessage
 If (0 = m.Send("me",
"mike1@Unknown2.com,mike2@Unknown2.com,mike3@Unknown2.com", "Hello")) Then
 MsgBox "The message was delivered OK."
 End If
End Sub

Runtime object
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {963635DE-2172-450C-A133-6983D6185794}. The object's program identifier is: "ExEMail.Runtime".
The /COM object module is: "ExEMail.dll"

The Runtime object provides licensed EMail or Message objects at runtime. Here's the list
of supported properties:

Name Description
NewEMail Creates and initializes a licensed EMail object at runtime.

NewMessage Creates and initializes a licensed Message object at
runtime.

Version Retrieves the control's version.

property Runtime.NewEMail as EMail

Creates and initializes a licensed EMail object at runtime.

Type Description
EMail An EMail object being created

Use the NewEMail property to create licensed EMail objects at runtime. If you deploy an
application that uses CreateObject or New statements for creating new EMail objects, the
application wont work on the machine where the ExEMail wasn't licensed. Instead, you
have to use NewEmail and NewMessage properties to create licensed objects at runtime.

The following sample shows how to send an email using blocking mode:

Private Sub Form_Load()
 Dim m As Message
 Set m = Runtime1.NewMessage
 If (0 = m.Send("me",
"mike1@Unknown2.com,mike2@Unknown2.com,mike3@Unknown2.com", "Hello")) Then
 MsgBox "The message was delivered OK."
 End If
End Sub

The following sample shows how to send an email using non-blocking way:

Dim WithEvents e As EMail

Private Sub e_EndSend(ByVal Msg As EXEMAILLibCtl.IMessage)
 If (Msg.LastError = 0) Then
 MsgBox "The message was delivered OK."
 End If
 Debug.Print e.Error(Msg.LastError)
End Sub

Private Sub Form_Load()
 Set e = Runtime1.NewEMail
 Dim m As Message
 Set m = Runtime1.NewMessage
 Set m.Notifier = e

 m.Send "me",
"mike1@Unknown2.com,mike2@Unknown2.com,mike3@Unknown2.com", "Hello"
End Sub

property Runtime.NewMessage as Message

Creates and initializes a licensed Message object at runtime.

Type Description
Message A Message object being created.

Use the NewMessage to create licensed Message objects at runtime If you deploy an
application that uses CreateObject or New statements for creating new Message objects,
the application wont work on the machine where the ExEMail wasn't licensed. Instead, you
have to use NewEmail and NewMessage properties to provide licensed objects at runtime.
The following sample shows how to send an email using blocking mode:

Private Sub Form_Load()
 Dim m As Message
 Set m = Runtime1.NewMessage
 If (0 = m.Send("me",
"mike1@Unknown2.com,mike2@Unknown2.com,mike3@Unknown2.com", "Hello")) Then
 MsgBox "The message was delivered OK."
 End If
End Sub

The following sample shows how to send an email using non-blocking way:

Dim WithEvents e As EMail

Private Sub e_EndSend(ByVal Msg As EXEMAILLibCtl.IMessage)
 If (Msg.LastError = 0) Then
 MsgBox "The message was delivered OK."
 End If
 Debug.Print e.Error(Msg.LastError)
End Sub

Private Sub Form_Load()
 Set e = Runtime1.NewEMail
 Dim m As Message
 Set m = Runtime1.NewMessage
 Set m.Notifier = e
 m.Send "me",

"mike1@Unknown2.com,mike2@Unknown2.com,mike3@Unknown2.com", "Hello"
End Sub

property Runtime.Version as String
Retrieves the control's version.

Type Description
String A string expression that indicates the control's version.

The Version property specifies the version of the control that's running.

ExEMail events
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {963635DE-2172-450C-A133-6983D6185794}. The object's program identifier is: "ExEMail.Runtime".
The /COM object module is: "ExEMail.dll"

All of the ExEMail events are fired only if the Notifier property points to an EMail object. The
following sample shows how to set the Notifier property:

Dim WithEvents e As EMail

Private Sub Form_Load()
 ' Creates an EMail object, that will receive Message notifications
 Set e = Runtime1.NewEMail()
 ' Creates a Message object
 Dim m As Message
 Set m = Runtime1.NewMessage()
 ' Message' notifications are sent through EMail object
 Set m.Notifier = e
 ' Sends a message to 2 users
 m.Send "me@malibu.com", "bula@bulat.com,robingo@calcuta.fom", "Test", "The
message has one attchament", "c:\winnt\system32\setup.exe"
End Sub

In order to use ExEMail events in C++, you can use the following class's header:

#if
!defined(AFX_EMAILNOTIFIER_H__73B49333_43C5_4E00_B3B8_44D124A2FB6C__INCLUDED_)

#define
AFX_EMAILNOTIFIER_H__73B49333_43C5_4E00_B3B8_44D124A2FB6C__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#include <comdef.h>
#include <atlbase.h>

struct __declspec(uuid("84f98dce-e10f-4002-a605-5c39baffc801"))
/* interface */ _IEMailEvents;

struct __declspec(uuid("84f98dce-e10f-4002-a605-5c39baffc801"))
_IEMailEvents : IDispatch
{
// Methods:
HRESULT BeginSend (struct IMessage * Msg);
HRESULT StateChange (struct IMessage * Msg, enum SendStateEnum
NewState);
HRESULT EndSend (struct IMessage * Msg);
HRESULT Debug (struct IMessage * Msg, _bstr_t Description);
HRESULT Data (struct IMessage * Msg, double Percent,
VARIANT_BOOL * Cancel);
};

class EMailNotifier :
 public _IEMailEvents
{
public:

 // Constrcutor & Destrcutor
 EMailNotifier() : m_dwCookie(NULL){
 };
 virtual ~EMailNotifier(){
 };

 // IUnknown
 STDMETHOD_(ULONG, AddRef)() {
 return 1;
 }

 STDMETHOD_(ULONG, Release)() {
 return 0;
 }

 STDMETHOD(QueryInterface)(REFIID iid, void** ppvObject) {
 if (!ppvObject)
 return E_POINTER;

 // check for the interfaces this object knows about
 if (iid == IID_IUnknown)
 {
 ppvObject = (IUnknown)this;
 AddRef();
 return S_OK;
 }
 if (iid == IID_IDispatch)
 {
 ppvObject = (IDispatch)this;

 AddRef();
 return S_OK;
 }
 if (iid == __uuidof(_IEMailEvents))
 {
 ppvObject = (_IEMailEvents)this;
 AddRef();
 return S_OK;
 }

 // otherwise, incorrect IID, and thus error
 return E_NOINTERFACE;
 }

 // IDispatch
 STDMETHOD(GetTypeInfoCount)(unsigned int*) {
 return E_NOTIMPL;
 }
 STDMETHOD(GetTypeInfo)(unsigned int, LCID, ITypeInfo**) {
 return E_NOTIMPL;
 }

 STDMETHOD(GetIDsOfNames)(REFIID, LPOLESTR*, unsigned int,
LCID, DISPID*) {
 return E_NOTIMPL;
 }

 STDMETHOD(Invoke)(DISPID id, REFIID, LCID, unsigned short,
DISPPARAMS* p,
 VARIANT*, EXCEPINFO*, unsigned int*) {
 switch (id)
 {
 case 1: // BeginSend
 {
 BeginSend((IMessage*)V_DISPATCH(&p->rgvarg[0])
);
 break;
 }
 case 2: // StateChange
 {
 Sending((IMessage*)V_DISPATCH(&p->rgvarg[1]),
(SendStateEnum)V_I4(&p->rgvarg[0]));
 break;
 }
 case 3: // EndSend
 {
 EndSend((IMessage*)V_DISPATCH(&p->rgvarg[0])

);
 break;
 }
 case 4: // Debug
 {
 Debug((IMessage*)V_DISPATCH(&p->rgvarg[1]),
V_BSTR(&p->rgvarg[0]));
 break;
 }
 case 5: // Data
 {
 Data((IMessage*)V_DISPATCH(&p->rgvarg[2]),
V_R8(&p->rgvarg[1]), V_BOOLREF(&p->rgvarg[0]));
 break;
 }
 }
 return S_OK;
 }

 // _IEMailEvents
virtual HRESULT BeginSend (struct IMessage * Msg) = NULL;
virtual HRESULT Sending (struct IMessage * Msg, enum
SendStateEnum SendState) = NULL;
virtual HRESULT EndSend (struct IMessage * Msg) = NULL;
virtual HRESULT Debug (struct IMessage * Msg, _bstr_t
Description) = NULL;
virtual HRESULT Data (struct IMessage * Msg, double Percent,
VARIANT_BOOL * Cancel) = NULL;

 // Function name : Start
 // Description : Starts sinking the pIEMail
 // Return type : virtual void
 // Argument : IDispatch* pIEMail
 virtual HRESULT Start(IDispatch* pIEMail) {
 if (CComQIPtr<IConnectionPointContainer> spCPC(pIEMail
))
 {
 CComPtr<IConnectionPoint> spCP;
 if (SUCCEEDED(spCPC->FindConnectionPoint(
__uuidof(_IEMailEvents), &spCP)))
 return spCP->Advise(this, &m_dwCookie);
 }
 return E_FAIL;
 }

 // Function name : Stop
 // Description : Stops sinking the pIEmail

 // Return type : virtual void
 // Argument : IDispatch* pIEMail
 virtual HRESULT Stop(IDispatch* pIEMail) {
 if (CComQIPtr<IConnectionPointContainer> spCPC(pIEMail
))
 {
 CComPtr<IConnectionPoint> spCP;
 if (SUCCEEDED(spCPC->FindConnectionPoint(
__uuidof(_IEMailEvents), &spCP)))
 return spCP->Unadvise(m_dwCookie);
 }
 return E_FAIL;
 }

protected:

 // Attributes
 DWORD m_dwCookie;
};

#endif //
!defined(AFX_EMAILNOTIFIER_H__73B49333_43C5_4E00_B3B8_44D124A2FB6C__INCLUDED_)

Here's the list of supported events:

Name Description
BeginSend Fired just before starting sending the message.
Data Occurs during sending the message's data.
Debug Fired while the control communicates with the host.
EndSend Fired after the control has done sending the message.

StateChange Occurs during sending the message, when the
connection's state is changing/changed.

event BeginSend (Msg as Message)
Fired just before starting sending the message.

Type Description
Msg as Message A Message object being sent.

The BeginSend event is fired when Send method starts sending the message. The
BeginEnd event is fired only if the Notifier property points to the EMail object. Once that
BeginSend message was fired, the Message object is not released until EndSend event is
fired. Use the BeginSend event to notify your application when a Message starts to be
send. The following sample shows how to send two email messages:

Dim WithEvents e As EMail

Private Sub e_BeginSend(ByVal Msg As EXEMAILLibCtl.IMessage)
 Debug.Print Msg.Subject & " message begins. "
End Sub

Private Sub e_EndSend(ByVal Msg As EXEMAILLibCtl.IMessage)
 Debug.Print Msg.Subject & " message ends."
End Sub

Private Sub e_Debug(ByVal Msg As EXEMAILLibCtl.IMessage, ByVal Description As String)
 Debug.Print Msg.Subject & " DEBUG: " & Description
End Sub

Private Sub Form_Load()
 ' Creates an EMail object, that will receive Message notifications
 Set e = Runtime1.NewEMail()
 ' Creates two Message objects
 Dim m1 As Message
 Set m1 = Runtime1.NewMessage()
 ' Message' notifications are sent through EMail object
 Set m1.Notifier = e
 Set m2 = Runtime1.NewMessage()
 ' Message' notifications are sent through EMail object
 Set m2.Notifier = e

 ' The email addresses are absolutely arbitrary!

 ' Sends a message to one user
 m1.Send "me@malibu.com", "user1@yahoo.com", "Test1", "TEST"

 ' Sends a message to 2 users
 m2.Send "me@malibu2.com", "user2@yahoooo.com,user3@cobra.com", "Test2",
"TEST"
End Sub

event Data (Msg as Message, Percent as Double, ByRef Cancel as
Boolean)

Occurs during sending the message's data.

Type Description
Msg as Message A Message object being sent.

Percent as Double A double value that indicates the percent of the data sent.
The valid range is [0..100].

Cancel as Boolean (By Reference) A boolean reference to let user cancels
sending the message.

The Data event is fired each time when a new line of message's data was sent to the host.
The Data event is fired only if the Notifier property points to the EMail object. The Percent
value specifies the amount of data in % that has been already delivered. Use Data event to
provides progress capabilities to your application. You can cancel sending the message's
data by changing the Cancel value to True. We cannot guarante that the message can be
canceled. It depends on SMPT server implementation. The following sample shows how to
add progress capabilities to your form. In order to run the following sample your form
requires a Microsoft ProgressBar ActiveX control, or something similar:

Dim WithEvents e As EMail

Private Sub e_BeginSend(ByVal Msg As EXEMAILLibCtl.IMessage)
 Debug.Print Msg.Subject & " message begins. "
End Sub

Private Sub e_Data(ByVal Msg As EXEMAILLibCtl.IMessage, ByVal Percent As Double,
Cancel As Boolean)
 ProgressBar1.Value = Percent
End Sub

Private Sub e_Debug(ByVal Msg As EXEMAILLibCtl.IMessage, ByVal Description As String)
 Debug.Print Msg.Subject & " DEBUG: " & Description
End Sub

Private Sub e_EndSend(ByVal Msg As EXEMAILLibCtl.IMessage)
 Debug.Print Msg.Subject & " message ends."
End Sub

Private Sub Form_Load()
 ProgressBar1.Min = 0
 ProgressBar1.Max = 100

 ' Creates an EMail object, that will receive Message notifications
 Set e = Runtime1.NewEMail()
 ' Creates a Message object
 Dim m As Message
 Set m = Runtime1.NewMessage()
 ' Message' notifications are sent through EMail object
 Set m.Notifier = e

 ' Sends a message to one user
 m.Send "me@malibu.com", "testttt@hotmail.com", "Test", "The message has one
attchament", "c:\winnt\system32\setup.exe"

End Sub

event Debug (Msg as Message, Description as String)

Fired while the control communicates with the host.

Type Description
Msg as Message A Message object being sent.

Description as String
A string expression that indicates the command sent to the
host, or the reply message from the host. The commands,
and replies are conformed to RFC 821, 822.

The Debug event is fired each time when the control sends a command to the SMTP
server,or when the SMTP server replies. Also, the Debug event is fired when the control is
trying to find the SMTP hosts responsible for the recipent's email address. For instance, if
you are trying to send a message "testsss@hotmail.com", the control queries a DNS server
for the SMTP hosts that are responsible for the domain email address. Once that DNS
replies the SMTP servers, the control is trying one by one SMTP server until the message
was delivered successfully. The Debug event shows how delivering the message goes. The
following sample displays the SMTP server where the current message is delivered:

Dim WithEvents e As EMail

Private Sub e_Debug(ByVal Msg As EXEMAILLibCtl.IMessage, ByVal Description As
String)
 If (Description Like "Trying host:*") Then
 Debug.Print Msg.Subject & " - " & Description
 End If
End Sub

Private Sub Form_Load()

 ' Creates an EMail object, that will receive Message notifications
 Set e = Runtime1.NewEMail()
 ' Creates a Message object
 Dim m As Message
 Set m = Runtime1.NewMessage()
 ' Message' notifications are sent through EMail object
 Set m.Notifier = e

 ' Sends a message to one user
 m.Send "me@malibu.com", "testsss@hotmail.com", "Test", "The message has one
attchament", "c:\winnt\system32\setup.exe"
End Sub

http://www.ietf.org/rfc/rfc0821.txt
http://www.faqs.org/rfcs/rfc822.html
mailto:user@hotmail.com

event EndSend (Msg as Message)

Fired after the control has done sending the message.

Type Description

Msg as Message A Message object that contains the email message being
sent to the SMTP server.

The EndSend event is fired when sending the email message is done. The EndSend event
is fired only if the Notifier property points to the EMail object. After the EndSend event was
fired, the EMail object releases the Message object. The Message's count reference is
increased by BeginSend event, and it is decreased by the EndSend event. In order to check
whether the message was delivered OK you must handle the EndSend event. To check the
latest error occurs use the LastError property. Use Error property to get the description for
an error code. The following sample shows how to check whether the message was
successfully delivered:

Dim WithEvents e As EMail

Private Sub e_Debug(ByVal Msg As EXEMAILLibCtl.IMessage, ByVal Description As
String)
 Debug.Print Description
End Sub

Private Sub e_EndSend(ByVal Msg As EXEMAILLibCtl.IMessage)
 If (Msg.LastError = 0) Then
 MsgBox "The message '" & Msg.Subject & "' was was successfully delivered."
 Else
 MsgBox "The message '" & Msg.Subject & "' failed. " & e.Error(Msg.LastError)
 End If
End Sub

Private Sub Form_Load()

 ' Creates an EMail object, that will receive Message notifications
 Set e = Runtime1.NewEMail()
 ' Creates a Message object
 Dim m As Message
 Set m = Runtime1.NewMessage()
 ' Message' notifications are sent through EMail object
 Set m.Notifier = e

 ' Sends a message to one user

 m.Send "me@malibu.com", "robingo@calcuta.fom", "Test", "The message has one
attchament", "c:\winnt\system32\setup.exe"
End Sub

event StateChange (Msg as Message, NewState as SendStateEnum)

Occurs during sending the message, while the sending's state is changing/changed.

Type Description

Msg as Message A Message object that contains the email message being
sent to the SMTP server.

NewState as
SendStateEnum

A SendStateEnum expression that indicates the state of
the sending operation.

The StateChange event is fired each time when the sending state is changing/changed. Use
the Debug event to debug sending a message. Here are the steps that the ExEMail
component follows in order to deliver an email message:

1. The control fires BeginSend() event
2. The control takes the domain recipent's email address. The control fires

StateChange(...,LookupMX)
3. The control sends a query to the DNS server in order to get the SMTP hosts that are

responsible for the domain.
4. Based on the DNS's response, the control is trying each SMTP server found to deliver

the email message. The control fires Debug event, in order to let the application knows
what's the host where the control is trying to deliver the email message. The control
fires StateChange(...,Connecting)

5. Once that the control is connected to the SMTP server, the
StateChange(...,Connected) is fired.

6. When the control says hello to the server. it fires StateChange(...,Opening)
7. The control fires StateChange(...,Opened), after server replies to the hello command.
8. The control prepares and sends the information about the sender and recipents email

addresses.
9. If the server accepts the sender and the recipents, the control prepares the message's

DATA to send it to the SMTP server. Before starting any data to the server, the control
fires StateChange(...,Data). During sending message's data the control fires Data
event.

10. Once that message's data was delivered, the control is going to close the connection.
It fires StateChange(...,Disconnecting)

11. The client is going to inform the server that wants to close the connection. The control
fires StateChange(...,Closing)

12. The client sends QUIT command to the server, and fires the StateChange(...,Closed)
13. The client is disconnected, and the control fires StateChange(...,Disconnected)
14. The control fires EndSend() event

The events are fired only if the Notifier property points to an EMail object. For instance the
following sample displays the message's state during sending:

Dim WithEvents e As EMail

Private Sub e_StateChange(ByVal Msg As EXEMAILLibCtl.IMessage, ByVal NewState As
EXEMAILLibCtl.SendStateEnum)
 Select Case NewState
 Case SendStateEnum.LookupMX
 Debug.Print "LookupMX"
 Case SendStateEnum.Connected
 Debug.Print "Connected"
 Case SendStateEnum.Connecting
 Debug.Print "Connecting"
 Case SendStateEnum.Opening
 Debug.Print "Opening"
 Case SendStateEnum.Opened
 Debug.Print "Opened"
 Case SendStateEnum.Data
 Debug.Print "Data"
 Case SendStateEnum.Closing
 Debug.Print "Closing"
 Case SendStateEnum.Closed
 Debug.Print "Closed"
 Case SendStateEnum.Disconnecting
 Debug.Print "Disconnecting"
 Case SendStateEnum.Disconnected
 Debug.Print "Disconnected"
 End Select
End Sub

Private Sub Form_Load()

 ' Creates an EMail object, that will receive Message notifications
 Set e = Runtime1.NewEMail()
 ' Creates a Message object
 Dim m As Message
 Set m = Runtime1.NewMessage()
 ' Message' notifications are sent through EMail object
 Set m.Notifier = e

 ' Sends a message to one user
 m.Send "m@malibu.com", "marfa@cool.com", "Test", "The message has one
attchament", "c:\winnt\system32\setup.exe"
End Sub

	Information
	How to get support?
	EMail
	error property (readonly)

	Message
	Attachment property
	AuthMethod property
	Bcc property
	BodyEncoding property
	BodyHTML property
	BodyText property
	Cc property
	Date property
	DNS property (readonly)
	ExtraHeader property
	From property
	Helo property
	Host property
	LastError property (readonly)
	LogonPassword property
	LogonUser property
	Notifier property (readonly)
	Port property
	Priority property
	Send method
	SendOnce property
	Subject property
	Timeout property
	To property

	Runtime
	NewEMail property (readonly)
	NewMessage property (readonly)
	Version property

	ExEMail events
	BeginSend event
	Data event
	Debug event
	EndSend event
	StateChange event

