
 ExEditors

The Exontrol's ExEditors Library contains 16 data edit controls. Each editor can have a
three-state check box associated and an unlimited number of buttons on the left or right
side. Each button can display an icon or a picture and can have its own tool tip. Most of the
editors are mask based. COM/ActiveX or .NET Assembly available as separate products.

The suite of editors includes:

None: Provides a standard label control
Edit: Provides a standard text edit control
DropDown: Provides an intuitive way for users to select values from a list presented in
a drop down window. Each item can display an icon and a caption. The DropDown
allows custom strings as well.
DropDownList: Provides an intuitive interface for your users to select values from pre-
defined lists presented in a drop-down window. Each item can have an icon
associated. The DropDownList editor has no edit control associated.
Spin: Allows your users to view and change numeric values using a up/down button.
Memo: Provides a multiline edit control.
CheckList: Provides an intuitive way to view and combine one or more values from a
pre-defined list presented in a drop down window. Each item has a check box
attached, and can display an icon and a caption.
Date: Provides an efficient way for selecting dates for a drop down calendar.
Mask: You can use the Mask editor to enter any data that includes literals and requires
a mask to filter characters during data input.
Color,ColorList: Provides an elegant way for selecting colors from a dropdown
window. The Color drop down window contains two tabs the pallette tab shows a grid
of colors, while the system tab shows the current windows color constants.
Font: Presents the list of fonts into a drop down window. Each item into the drop down
window has a preview image for the font selected.
Picture: Provides an elegant way for displaying fields of Picture type. The Picture data
editor can display embedded images stored in OLE Object fields.
Button: Associates single button to a mask edit control.
ProgressBar: Displays your value using a progress bar style.
PickEdit: Provides an intuitive interface for your users to select values from pre-
defined lists presented in a drop-down window. Each item can have an icon
associated.
LinkEdit: Allows your application to edit and display hyperlink addresses.

Ž ExEditors is a trademark of Exontrol. All Rights Reserved.

How to get support?

To keep your business applications running, you need support you can count on.

Here are few hints what to do when you're stuck on your programming:

Check out the samples - they are here to provide some quick info on how things should
be done
Check out the how-to questions using the eXHelper tool
Check out the help - includes documentation for each method, property or event
Check out if you have the latest version, and if you don't have it send an update
request here.
Submit your problem(question) here.

Don't forget that you can contact our development team if you have ideas or requests for
new components, by sending us an e-mail at support@exontrol.com (please include the
name of the product in the subject, ex: exgrid) . We're sure our team of developers will try
to find a way to make you happy - and us too, since we helped.

Regards,
Exontrol Development Team

https://www.exontrol.com

https://exontrol.com/exhelper.jsp
https://exontrol.com/update.jsp
https://exontrol.com/techsupport.jsp
https://www.exontrol.com

constants AlignmentEnum
Specifies the alignment for the icon and the caption of the editor.

Name Value Description
LeftAlignment 0 The caption and the icon are left aligned
CenterAlignment 1 The caption is center aligned, the icon is left aligned
RightAlignment 2 The caption and the icon are right aligned

constants AppearanceEnum
The AppearanceEnum enumeration is used to specify the appearance of the control's
borders. Use the Appearance property to specify the control's border.

Name Value Description
None2 0 No border
Flat 1 Flat border
Sunken 2 Sunken border
Raised 3 Raised border
Etched 4 Etched border
Bump 5 Bump border

constants BackgroundPartEnum
The BackgroundPartEnum type indicates parts in the control. Use the Background property
to specify a background color or a visual appearance for specific parts in the control. A
Color expression that indicates the background color for a specified part. The last 7 bits in
the high significant byte of the color to indicates the identifier of the skin being used. Use
the Add method to add new skins to the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits in the high significant byte of the
color being applied to the background's part.

Name Value Description

exDropDownButtonUp 0 Specifies the visual appearance for the drop down
button, when it is up.

exDropDownButtonDown 1 Specifies the visual appearance for the drop down
button, when it is down.

exButtonUp 2 Specifies the visual appearance for the button
inside the editor, when it is up.

exButtonDown 3 Specifies the visual appearance for the button
inside the editor, when it is down.

exDateHeader 8 Specifies the visual appearance for the header in a
calendar control.

exDateTodayUp 9 Specifies the visual appearance for the today button
in a calendar control, when it is up.

exDateTodayDown 10 Specifies the visual appearance for the today button
in a calendar control, when it is down.

exDateScrollThumb 11 Specifies the visual appearance for the scrolling
thumb in a calendar control.

exDateScrollRange 12 Specifies the visual appearance for the scrolling
range in a calendar control.

exDateSeparatorBar 13 Specifies the visual appearance for the separator
bar in a calendar control.

exDateSelect 14 Specifies the visual appearance for the selected
date in a calendar control.

exSpinUpButtonUp 22 Specifies the visual appearance for the up spin
button when it is not pressed.

exSpinUpButtonDown 23 Specifies the visual appearance for the up spin
button when it is pressed.

exSpinDownButtonUp 24 Specifies the visual appearance for the down spin

button when it is not pressed.

exSpinDownButtonDown 25 Specifies the visual appearance for the down spin
button when it is pressed.

exToolTipAppearance 64 Specifies the visual appearance of the borders of
the tooltips.

exToolTipBackColor 65 Specifies the tooltip's background color.
exToolTipForeColor 66 Specifies the tooltip's foreground color.

constants CheckStateEnum
Specifies whether the editor's checkbox displays two or three states. The PartialCheck
property specifies whether the checkbox of the editor displays two states or three states.
Use the HasCheckBox property to assign a checkbox to an editor.

Name Value Description
Unchecked 0 The associated check box is unchecked.
Checked 1 The associated check box is checked.
PartialChecked 2 The associated check box is partially checked.

constants EditorOptionEnum
Specifies different options for a built-in editor. The Option property specifies the editor's
options. The following options are supported:

Name Value Description

exMemoHScrollBar 1

Adds the horizontal scroll bar to a MemoType or
MemoDropDownType editor. By default, the
Editor.Option(exMemoHScrollBar) is False. (
boolean expression

exMemoVScrollBar 2

Adds the vertical scroll bar to a MemoType or
MemoDropDownType editor. By default, the
Editor.Option(exMemoVScrollBar) is False. (
boolean expression)

exEditRight 3 Right-aligns text in a single-line or multiline edit
control.

exEditDecimalSymbol 4 Specifies the symbol that indicates the decimal
values while editing a floating point number.

exEditPassword 5 Displays all characters as an asterisk (*) as they
are typed into the edit control.

exEditPasswordChar 6 Specifies the password char for an edit control.

exEditLimitText 7 Limits the length of the text that the user may enter
into an edit control.

exProgressBarBackColor 8 Specifies the background color for a progress bar
editor.

exProgressBarAlignment 9 Specifies the alignment of the progress bar caption.
exProgressBarMarkTicker 10 Marks the outside rectangle of a progress bar.
exDateAllowNullDate 11 Allows empty date to an DateType editor.

exEditSelStart 48

Sets the starting point of text selected, when an
EditType editor is opened. By default, the
exEditSelStart property is 0. If the exEditSelStart
property is 0, the text gets selected from the first
character. If the exEditSelStart property is -1, the
cursor is placed at the end of the text. (long
expression)
Sets the number of characters selected, when an
EditType editor is opened. By default, the

exEditSelLength 49
exEditSelLength property is -1. If the
exEditSelLength is 0, no text is selected, instead
the exEditSelStart changes the position of the
cursor. If the exEditSelLength property is -1, the
text from the exEditSelStart position to the end gets
selected. (long expression)

exEditAllowOverType 200

Specifies whether the editor supports overtype
mode. The option is valid for EditType and
MemoType editors. (boolean expression, by
default it is False).

exEditOverType 201

Retrieves or sets a value that indicates whether the
editor is in insert or overtype mode. The option is
valid for EditType and MemoType editors. (boolean
expression, by default it is False).

exDateTodayCaption 202 Specifies the caption for the 'Today' button in a
DateType editor.

exDateMonths 203 Specifies the name for months to be displayed in a
DateType editor.

exDateWeekDays 204 Specifies the shortcut for the weekdays to be
displayed in a DateType editor.

exDateFirstWeekDay 205 Specifies the first day of the week in a DateType
editor.

exDateShowTodayButton 206 Specifies whether the 'Today' button is visible or
hidden in a DateType editor.

exDateMarkToday 207 Gets or sets a value that indicates whether the
today date is marked in a DateType editor.

exDateShowScroll 208 Specifies whether the years scroll bar is visible or
hidden in a DateType editor.

exDateWeeksHeader 209
Sets or gets a value that indicates whether the
weeks header is visible or hidden in a drop down
date editor.

exSpinStep 210 Specifies the proposed change when user clicks a
spin control.

exDropDownBackColor 55 exDropDownBackColor. Specifies the drop down's
background color.

exDropDownForeColor 56 exDropDownForeColor. Specifies the drop down's
foreground color.

constants EditTypeEnum
The control's EditType property defines the control's type. The Editor object supports the
following types:

Name Value Description

NoneType 0 Provides a standard label control. The Value
property defines the caption in the label.

EditType 1 Provides a standard text edit control. The Value
property specifies the caption for the edit control.

DropDownType 2

Provides an intuitive way for users to select values
from a list presented in a drop down window. Each
item can display an icon and a caption. The
DropDown allows custom strings as well. The
DropDownType editor associates a standard text
edit field too. Use the AddItem method to add new
items in the control's predefined list. The editor
displays the Value property.

DropDownListType 3

Provides an intuitive interface for your users to
select values from pre-defined lists presented in a
drop-down window. The DropDownList editor
doesn't associate a standard edit control. Use the
AddItem method to add new items in the control's
predefined list. The control displays the caption of
the item that has the value equal with the Value
property. If the control cannot find an item with
specified value, nothing is displayed.

SpinType 4

Allows your users to view and change numeric
values using a up/down button. The Value property
determines the caption being displayed in the edit
control.

MemoType 5 Provides a multiline edit control. The Value property
provides the text inside a Memo editor.

CheckListType 6

Provides an intuitive way to view and combine one
or more values from a pre-defined list presented in
a drop down window. Each item has a check box
attached, and can display an icon and a caption.
The control displays the items that are a bit
combination of Value property.
Provides an efficient way for selecting dates for a

DateType 7 drop down calendar. The Value property specifies
the date being selected.

MaskType 8

You can use the Mask editor to enter any data that
includes literals and requires a mask to filter
characters during data input. The Value property
specifies the text of the Mask control, and the Mask
property determines the control's mask.

ColorType 9

Provides an elegant way for selecting colors from a
dropdown window. The Color drop down window
contains two tabs the pallette tab shows a grid of
colors, while the system tab shows the current
windows color constants. The Value property
specifies the color being selected.

FontType 10

Presents the list of fonts into a drop down window.
Each item into the drop down window has a
preview image for the font selected. The Value
property specifies the name of the font being
selected.

PictureType 11

Provides an elegant way for displaying fields of
Picture type. The Picture data editor can display
embedded images stored in OLE Object fields. The
Value property specifies the OLE object, as they
are passed from a recordset, or a Picture object.

ButtonType 12
Associates single button to a mask edit control. The
Value property determines the caption of the mask
control.

ProgressBarType 13
Displays your value using a progress bar style. The
Value property specifies the value being displayed
as %.

PickEditType 14

Provides an intuitive interface for your users to
select values from pre-defined lists presented in a
drop-down window. Each item can have an icon
associated. Use the AddItem method to add new
items in the control's predefined list. The control
displays the caption of the item that has the value
equal with the Value property. If the control cannot
find an item with specified value, nothing is
displayed.

LinkEditType 15
Allows your application to edit and display hyperlink
addresses. The Value property specifies the

hyperlink address being displayed.

ColorListType 16

The editor hosts a predefined list of colors. By
default. the following colors are added: Black,
White, Dark Red, Dark Green, Dark Yellow, Dark
Blue, Dark Magenta, Dark Cyan, Light Grey, Dark
Grey, Red, Green, Yellow, Blue, Magenta, Cyan.
The AddItem method adds new colors to the editor
. The Value property specifies the color being
selected.

constants InplaceAppearanceEnum
Specifies the control's appearance.

Name Value Description
NoApp 0 No border
FlatApp 1 Flat
SunkenApp 2 Sunken
RaisedApp 3 Raised
EtchedApp 4 Etched
BumpApp 5 Bump
ShadowApp 6 Shadow
InsetApp 7 Inset
SingleApp 8 Single

constants NumericEnum
Use the Numeric property to specify the format of numbers when editing a field.

Name Value Description

exInteger -1

Allows editing numbers of integer type. The format
of the integer number is: [+/-]digit, where digit is
any combination of digit characters. This flag can
be combined with exDisablePlus, exDisableMinus or
exDisableSigns flags. For instance, the 0x3FF (hexa
representation, 1023 decimal) value indicates an
integer value with no +/- signs.

exAllChars 0 Allows all characters. No filtering.

exFloat 1

Allows editing floating point numbers. The format of
the floating point number is: [+/-
]digit[.digit[[e/E/d/D][+/-]digit]], where digit is any
combination of digit characters. Use the
exEditDecimalSymbol option to assign a new
symbol for '.' character (decimal values). This flag
can be combined with exDisablePlus,
exDisableMinus or exDisableSigns flags.

exFloatInteger 2

Allows editing floating point numbers without
exponent characters such as e/E/d/D, so the
accepted format is [+/-]digit[.digit]. Use the
exEditDecimalSymbol option to assign a new
symbol for '.' character (decimal values). This flag
can be combined with exDisablePlus,
exDisableMinus or exDisableSigns flags.

exDisablePlus 256
Prevents using the + sign when editing numbers. If
this flag is included, the user can not add any + sign
in front of the number.

exDisableMinus 512
Prevents using the - sign when editing numbers. If
this flag is included, the user can not add any - sign
in front of the number.

exDisableSigns 768

Prevents using the +/- signs when editing numbers.
If this flag is included, the user can not add any +/-
sign in front of the number. For instance
exFloatInteger + exDisableSigns allows editing
floating points numbers without using the exponent
and plus/minus characters, so the allowed format is

digit[.digit]

constants UIVisualThemeEnum
The UIVisualThemeEnum expression specifies the UI parts that the control can shown using
the current visual theme. The UseVisualTheme property specifies whether the UI parts of
the control are displayed using the current visual theme.

Name Value Description
exNoVisualTheme 0 exNoVisualTheme
exDefaultVisualTheme 16777215exDefaultVisualTheme
exButtonsVisualTheme 4 exButtonsVisualTheme
exCalendarVisualTheme 8 exCalendarVisualTheme
exSpinVisualTheme 32 exSpinVisualTheme
exCheckBoxVisualTheme 64 exCheckBoxVisualTheme
exProgressVisualTheme 128 exProgressVisualTheme

Appearance object
The component lets the user changes its visual appearance using skins, each one providing
an additional visual experience that enhances viewing pleasure. Skins are relatively easy to
build and put on any part of the control. The Appearance object holds a collection of skins.
The Appearance object supports the following properties and methods:

Name Description
Add Adds or replaces a skin object to the control.
Clear Removes all skins in the control.
Remove Removes a specific skin from the control.

method Appearance.Add (ID as Long, Skin as Variant)
Adds or replaces a skin object to the control.

Type Description

ID as Long

A Long expression that indicates the index of the skin
being added or replaced. The value must be between 1
and 126, so Appearance collection should holds no more
than 126 elements.

Skin as Variant

A string expression that indicates:

1. an Windows XP Theme part, it should start with
"XP:". For instance the "XP:Header 1 2" indicates the
part 1 of the Header class in the state 2, in the
current Windows XP theme. In this case the format of
the Skin parameter should be: "XP:
Control/ClassName Part State" where the ClassName
defines the window/control class name in the
Windows XP Theme, the Part indicates a long
expression that defines the part, and the State
indicates the state like listed at the end of the
document. This option is available only on Windows
XP that supports Themes API.

2. a copy of another skin with different coordinates, if it
begins with "CP:" . For instance, you may need to
display a specified skin on a smaller rectangle. In this
case, the string starts with "CP:", and contains the
following "CP:n l t r b", where the n is the identifier
being copied, the l, t, r, and b indicate the left, top,
right and bottom coordinates being used to adjust the
rectangle where the skin is displayed. For instance,
the "CP:1 4 0 -4 0", indicates that the skin is
displayed on a smaller rectangle like follows. Let's
say that the control requests painting the {10, 10, 30,
20} area, a rectangle with the width of 20 pixels, and
the height of 10 pixels, the skin will be displayed on
the {14,10,26,20} as each coordinates in the "CP"
syntax is added to the displayed rectangle, so the
skin looks smaller. This way you can apply different
effects to your objects in your control. The following
screen shot shows the control's header when using a
"CP:1 -6 -6 6 6", that displays the original skin on
larger rectangles .

3. the path to the skin file (*.ebn). The Exontrol's
exButton component installs a skin builder that should
be used to create new skins

4. the BASE64 encoded string that holds a skin file (
*.ebn). Use the Exontrol's exImages tool to build
BASE 64 encoded strings on the skin file (*.ebn) you
have created. Loading the skin from a file (eventually
uncompressed file) is always faster then loading from
a BASE64 encoded string

A byte[] or safe arrays of VT_I1 or VT_UI1 expression
that indicates the content of the EBN file. You can use this
option when using the EBN file directly in the resources of
the project. For instance, the VB6 provides the
LoadResData to get the safe array o bytes for specified
resource, while in VB/NET or C# the internal class
Resources provides definitions for all files being inserted. (
ResourceManager.GetObject("ebn", resourceCulture)).

Return Description

Boolean A Boolean expression that indicates whether the new skin
was added or replaced.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control, when the "XP:"
prefix is not specified in the Skin parameter (available for Windows XP systems). By using
a collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the Refresh method to refresh the control.

https://exontrol.com/exbutton.jsp
https://exontrol.com/eximages.jsp

method Appearance.Clear ()
Removes all skins in the control.

Type Description

method Appearance.Remove (ID as Long)
Removes a specific skin from the control.

Type Description

ID as Long A Long expression that indicates the index of the skin
being removed.

Use the Remove method to remove a specific skin. The identifier of the skin being removed
should be the same as when the skin was added using the Add method. Use the Clear
method to clear all skins from the control. If you need to remove the skin appearance from
a part of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the background's part.

Editor object
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {ED8B26D2-1855-42D5-B622-FEE85395DFB3}. The object's program identifier is: "Exontrol.Editor". The
/COM object module is: "ExEditors.dll"

The ExEditors Library, a 100% ATL based component suite, contains 16 data edit controls
in a single ActiveX control. Each editor can have a three-state check box associated and an
unlimited number of buttons on the left or right side. Each button can display an icon or a
picture and can have its own tool tip. Most of the editors are mask based. The Editor object
supports the following methods and properties:

Name Description

AddButton Adds a new button to the editor with the Key and aligned
to the left or right side of the editor.

AddItem Adds a new item to editor's predefined list.

Alignment Retrieves or sets a value that indicates the caption's
alignment.

Appearance Retrieves or sets the control's appearance.
BackColor Retrieves or sets the control's background color.

Background Returns or sets a value that indicates the background
color for parts in the control.

ButtonWidth Retrieves or sets a value that indicates the button's width.

CheckState Retrieves or sets a value that indicates the check box's
state.

ClearButtons Clears the buttons collection.
ClearItems Clears the items collection.
DropDown Shows up the control's drop down list.

DropDownAlignment Retrieves or sets a value that indicates the item's
alignment into control's drop down list.

DropDownAutoWidth
Retrieves or sets a value that indicates whether the
control's drop down list width is automatically computed to
fit the entire list.

DropDownMinWidth Specifies the minimum drop down list width while the
DropDownAutoWidth is False.

DropDownRows Retrieves or sets a value that indicates the maximum
number of rows into a drop down list.
Retrieves or sets a value that indicates whether the

DropDownVisible control's drop down window is shown or hidden.

EditText Specifies the editor's caption.

EditType Retrieves or sets a value that indicates the type of the
contained editor.

Enabled Retrieves or sets a value that indicates whether the
control is enabled or disabled.

EventParam Retrieves or sets a value that indicates the current's event
parameter.

FindItem Finds an item given its value or caption.
Font Retrieves or sets the control's font.
ForeColor Retrieves or sets the control's foreground color.

HasCheckBox Retrieves or sets a value that indicates whether the check
box is visible or hidden.

HTMLPicture Adds or replaces a picture in HTML captions.
hWnd Retrieves the control's window handle.
Images Sets the control's handle image list.
ImageSize Retrieves or sets the size of icons the control displays.
ItemCaption Gets the item's caption giving its index.
ItemCount Counts the items in the collection.

Mask Retrieves or sets a value that indicates the mask used by
the editor.

MaskChar Retrieves or sets a value that indicates the character used
for masking.

Numeric Specifies whether the editor enables numeric values only.
Option Specifies an option for the editor.

PartialCheck Retrieves or sets a value that indicates whether the
associated check box has two or three states.

PopupAppearance Retrieves or sets a value that indicates the popup
window's appearance.

ReadOnly Retrieves or sets a value that indicates whether the
control is read-only.

Refresh Refreshes the control.
RemoveButton Removes a button given its key.

RemoveItem Removes the item from editor's list given its value.

ReplaceIcon Adds a new icon, replaces an icon or clears the control's
image list.

SelBackColor Retrieves or sets a value that indicates the selection
background color.

SelForeColor Retrieves or sets a value that indicates the selection
foreground color.

ShowImageList Specifies whether the control's image list window is visible
or hidden.

SortItems Sorts the list of items in the editor.

ToolTipDelay Specifies the time in ms that passes before the ToolTip
appears.

ToolTipFont Retrieves or sets the tooltip's font.

ToolTipPopDelay Specifies the period in ms of time the ToolTip remains
visible if the mouse pointer is stationary within a control.

ToolTipWidth Specifies a value that indicates the width of the tooltip
window, in pixels.

UseVisualTheme Specifies whether the control uses the current visual
theme to display certain UI parts.

Value Retrieves or sets the control's value
Version Retrieves the control's version.
VisualAppearance Retrieves the control's appearance.

method Editor.AddButton (Key as Variant, [Image as Variant], [Align as
Variant], [ToolTip as Variant], [ToolTipTitle as Variant])
Adds a new button to the editor with the Key and aligned to the left or right side of the
editor.

Type Description

Key as Variant
A string expression that indicates the button's key. The
Key parameter is passed to the ButtonClick event when
user clicks the button.

Image as Variant
A long expression that indicates the index of icon being
displayed into the button, or a Picture object that contains
the buttons' image. 0 means no icon.

Align as Variant An AlignmentEnum expression that indicates the button's
alignment in the editor's client area.

ToolTip as Variant
A string expression that indicates the button's tool tip. The
tooltip shows up when the user moves the cursor over the
button.

ToolTipTitle as Variant A string expression that indicates the button's tool tip title.

The AddButton method adds new buttons to the control. Use the ClearButtons to clear the
buttons collection. Use the RemoveButton method to remove a button given its key. The
ButtonClick event notifies your application that the user clicks a button in the editor. Use the
ButtonWidth property to specify the width of the button , in pixels.

The following sample adds two left aligned buttons, and three right aligned buttons:

Editor1.AddButton "Add", 1, LeftAlignment, "Click here to add new items", "Add"
Editor1.AddButton "Load", 2, LeftAlignment, "Click here to load a file", "Load"

Editor1.AddButton "Save", 3, RightAlignment, "Click here to save the file.", "Save"
Editor1.AddButton "Remove", 4, RightAlignment, "Click here to remove the current item",
"Remove"
Editor1.AddButton "Clear", 5, RightAlignment, "Click here to clear the items", "Clear"

The following sample adds a new button using a picture file:

Editor1.AddButton "Save", LoadPicture("save.gif"), RightAlignment, "Click here to save the
file.", "Save"

method Editor.AddItem (Value as Long, Caption as String, [Image as
Variant])
Adds a new item to editor's predefined list.

Type Description
Value as Long A long expression that indicates the item's value.

Caption as String A string expression that indicates the item's caption. The
Caption property supports built-in HTML format.

Image as Variant A long expression that indicates the index of the icon being
displayed in the item.

The AddItem method adds new items for editors of the following type: DropDown,
DropDownList, CheckList and PickEdit. Use the EditType property to change the editor's
type. Adding an item with the same value removes the old one and add the new one. So,
please make sure that you are using different values. If the editor's type is CheckList the
Value property is a bit combination of checked items in the drop down list. If the editor's
type is DropDowList or PickEdit the editor's value is the item's value. If the editor's type is
DropDown, the editor's Value is the item's caption. Use the RemoveItem method to remove
an item from the editor's predefined list. Use the ClearItems method to clear the entire list
of predefined items. Use the Refresh method to refresh the control. Use the FindItem
property to get the caption of the item's value. The ItemCount property counts the number
of items in the control's predefined list. The ItemCaption property gives the caption of an
item giving its index. Use the SortItems method to sort the list of items.

The Caption parameter supports built-in HTML format like follows:

 bold
<u> underline </u>
<s> strikeout </s>
<i> italic </i>
<fgcolor = FF0000> fgcolor </fgcolor>
<bgcolor = FF0000> bgcolor </bgcolor>

 breaks a line.
<solidline> draws a solid line
<dotline> draws a dotted line
<upline> draws the line to the top of the text line
<r> aligns the rest of the text line to the right side.
text displays portions of text with a different font and/or
different size. For instance, the bit draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, <font

;12>bit displays the bit text using the current font, but with a different size.
& glyph characters as & (&), < (<), > (>), &qout ("), &#number, For
instance, the € displays the EUR character, in UNICODE configuration. The &
ampersand is only recognized as markup when it is followed by a known letter or a #
character and a digit. For instance if you want to display bold in HTML caption
you can use bold

Newer HTML format supports subscript and superscript like follows:

<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript

Also, newer HTML format supports decorative text like follows:

<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,

width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

The following sample shows how to combine the value for a CheckList type editor:

With Editor1
 .AddItem 1, "CanLink", 1
 .AddItem 2, "CanShare", 2
 .AddItem 4, "CanMove", 3
 .AddItem 8, "CanRestore", 3
 .EditType = CheckList
 .Value = 1 + 4 ' CanLink + CanMove
End With

property Editor.Alignment as AlignmentEnum
Retrieves or sets a value that indicates the caption's alignment.

Type Description

AlignmentEnum An AlignmentEnum value that indicates the caption's
alignment.

If the Alignment is LeftAlignment the icon and the caption are left aligned. If the Alignment is
RightAlignment the icon and the caption are right aligned. If the Alignment is
CenterAlignment the caption is center aligned, and the icon is left aligned. Use the
DropDownAlignment property to align the items into a drop down window

property Editor.Appearance as AppearanceEnum
Retrieves or sets the control's appearance

Type Description

AppearanceEnum

An AppearanceEnum expression that indicates the
control's appearance, or a color expression whose last 7
bits in the high significant byte of the value indicates the
index of the skin in the Appearance collection, being
displayed as control's borders. For instance, if the
Appearance = 0x1000000, indicates that the first skin
object in the Appearance collection defines the control's
border. The Client object in the skin, defines the
client area of the control. The control's client area are
is displayed in the skin's client area. The skin may
contain transparent objects, and so you can define
round corners. The normal.ebn file contains such of
objects. Use the eXButton's Skin builder to view or
change this file

Use the Appearance property to hide the control's border. Use the PopupAppearance
property to change the appearance for the drop down window. Use the BackColor property
to specify the control's background color. Use the Background(exToolTipAppearance)
property indicates the visual appearance of the borders of the tooltips

https://exontrol.com/exbutton.jsp

property Editor.BackColor as Color
Retrieves or sets the control's background color.

Type Description

Color A color expression that indicates the control's background
color.

Use the BackColor property to change the control's background color. The BackColor
property does not change the drop down window's background color. Use the ForeColor
property to change the control's foreground color.

property Editor.Background(Part as BackgroundPartEnum) as Color
Returns or sets a value that indicates the background color for parts in the control.

Type Description
Part as
BackgroundPartEnum

A BackgroundPartEnum expression that indicates a part in
the control.

Color

A Color expression that indicates the background color for
a specified part. The last 7 bits in the high significant byte
of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

The Background property specifies a background color or a visual appearance for specific
parts in the control. If the Background property is 0, the control draws the part as default.
Use the Add method to add new skins to the control. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the Refresh method to refresh the control.

property Editor.ButtonWidth as Long
Retrieves or sets a value that indicates the button's width.

Type Description

Long A long expression that indicates the button's width in
pixels.

By default, the ButtonWidth property is GetSystemMetrics(SM_CXHSCROLL). The
GetSystemMetrics function retrieves various system metrics (widths and heights of display
elements) and system configuration settings. Use the ButtonWidth property to specify the
width for all buttons. Use the DropDownVisible to show or hide the drop down button. If the
ButtonWidth property is 0, no buttons are displayed (including the drop down button).

property Editor.CheckState as CheckStateEnum
Retrieves or sets a value that indicates the check box's state.

Type Description

CheckStateEnum A CheckStateEnum expression that indicates the state of
the control's check box.

Use the CheckState property to change the control's check box state. The
CheckStateChanged event notifies your application that the CheckState property is
changing. Use the HasCheckBox property to show or hide the control's check box. Use the
PartialCheck property to allow two or three states for the check box.

method Editor.ClearButtons ()
Clears the buttons collection.

Type Description

Use the RemoveButton method to remove a button given its key.

method Editor.ClearItems ()
Clears the items collection.

Type Description

The ClearItems removes all predefined items of the control. Use the AddItem method to
add a new value to the control's predefined list. Use the RemoveItem method to remove a
specific item. Use the FindItem property to retrieve the caption of an item in the predefined
list of items.

method Editor.DropDown ()
Shows up the control's drop down list.

Type Description

Use the DropDown property to programmatically display the control's drop down window.
Use the EditType property to change the control's type. If the DropDownVisible is False, no
drop down window is shown. The DropDown property shows the drop down window only if
the control's EditType property is one of the following: DropDown, DropDownList,
CheckList, Date, Color, Font, Picture, ColorList, PickEdit.

property Editor.DropDownAlignment as AlignmentEnum
Retrieves or sets a value that indicates the item's alignment into control's drop down list.

Type Description

AlignmentEnum An AlignmentEnum expression that indicates the item's
alignment.

The DropDownAlignment property specifies the alignment for the items in a drop down
window. The DropDownAlignment property has effect only if the EditType property is one of
the following: DropDown, DropDownList, CheckList, PickEdit and Font. Use the Alignment
property to change the caption's alignment.

property Editor.DropDownAutoWidth as Boolean
Retrieves or sets a value that indicates whether the control's drop down list width is
automatically computed to fit the entire list.

Type Description

Boolean
A boolean expression that indicates whether the control's
drop down window width is automatically computed to fit
the entire list.

By default, the DropDownAutoWidth property is False. If the DropDownAutoWidth property
is True, the DropDownMinWidth property has no effect. The DropDownAutoWidth property
has effect if the control's EditType property is one of the followings: DropDown,
DropDownList, CheckList, Font, PickEdit or ColorList.

property Editor.DropDownMinWidth as Long
Specifies the minimum drop down list width while the DropDownAutoWidth property is
False.

Type Description

Long A long expression that indicates the minimum width of the
drop down window, in pixels.

By default, the DropDownMinWidth property is 64. Use the DropDownMinWidth property to
specify the minimum width for the drop down window. The DropDownMinWidth property
has effect only if the DropDownAutoWidth property is False. The DropDownMinWidth
property has effect only if the control's EditType property is one of the followings:
DropDown, DropDownList, CheckList, PickEdit or ColorList.

property Editor.DropDownRows as Long
Retrieves or sets a value that indicates the maximum number of rows into a drop down list.

Type Description

Long A long expression that indicates the maximum number of
rows into a drop down list.

Use the DropDownRows property to ensure the number of visible items into control's drop
down window. The DropDownRows property has effect only if the control's EditType
property is one of the followings: DropDown, DropDownList, CheckList, Font, PickEdit or
ColorList.

property Editor.DropDownVisible as Boolean
Retrieves or sets a value that indicates whether the control's drop down window is shown
or hidden.

Type Description

Boolean A boolean expression that indicates whether the control's
drop down window is visible or hidden.

The DropDownVisible property hides the drop down button. The property has effect only if
the control's EditType property is one of the followings: DropDown, DropDownList,
CheckList, Date, Color, Font, Picture, PickEdit or ColorList.

property Editor.EditText as String
Specifies the editor's caption.

Type Description

String A string expression that indicates the text inside an editor
that contains an edit control.

Use the EditText property to specify the text inside the editor while the user edits the text.
The property has effect only if the editor displays an edit control inside.

property Editor.EditType as EditTypeEnum
Retrieves or sets a value that indicates the type of the contained editor.

Type Description

EditTypeEnum An EditTypeEnum expression that specifies the type of the
control.

The EditType property specifies the control's type. Use the AddItem method to add new
items to the control's predefined list, if the editor is of drop down type. Use the
HasCheckBox property to assign a check box to the control. Use the AddButton method to
add new buttons to the editor. The Value property of the control determines the control's
value, and it determines the caption that control displays based on the control's type. The
EditTypeEnum type defines all types of supported editors and how the Value property is
interpreted.

property Editor.Enabled as Boolean
Retrieves or sets a value that indicates whether the control is enabled or disabled.

Type Description

Boolean A boolean expression that indicates whether the control is
enabled or disabled.

Use the ReadOnly property to make your editor read only. If the ReadOnly property is True,
the Value property cannot be changed by the user, but the buttons are enabled. If the
Enabled property is False, the Value property cannot be changed by the user, and the
buttons are disabled.

property Editor.EventParam(Parameter as Long) as Variant
Retrieves or sets a value that indicates the current's event parameter.

Type Description

Parameter as Long

A long expression that indicates the index of the parameter
being requested ie 0 means the first parameter, 1 means
the second, and so on. If -1 is used the EventParam
property retrieves the number of parameters. Accessing
an not-existing parameter produces an OLE error, such as
invalid pointer (E_POINTER)

Variant A VARIANT expression that specifies the parameter's
value.

The EventParam method is provided to allow changing the event's parameters passed by
reference, even if your environment does not support changing it (uniPaas 1.5 (formerly
known as eDeveloper), DBase, and so on). For instance, Unipaas event-handling logic
cannot update ActiveX control variables by updating the received arguments. The
EventParam(0) retrieves the value of the first parameter of the event, while the
EventParam(1) = 0, changes the value of the second parameter to 0 (the operation is
successfully, only if the parameter is passed by reference). The EventParam(-1) retrieves
the number of the parameters of the current event.

Let's take the event "event KeyDown (KeyCode as Integer, ByVal Shift as Integer)", where
the KeyCode parameter is passed by reference. For instance, put the KeyCode parameter
on 0, and the arrow keys are disabled while the control has the focus.

In most languages you will type something like:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 KeyCode = 0
End Sub

In case your environment does not support events with parameters by reference, you can
use a code like follows:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 Control1.EventParam(0) = 0
End Sub

In other words, the EventParam property provides the parameters of the current event for
reading or writing access, even if your environment does not allow changing parameters by

reference.

Calling the EventParam property outside of an event produces an OLE error, such as
pointer invalid, as its scope was designed to be used only during events.

property Editor.FindItem (Value as Variant) as Variant
Finds an item given its value or caption.

Type Description

Value as Variant
A long expression that indicates the value of the item being
searched, a string expression that indicates the caption of
the item being searched.

Variant
A long value that indicates the value of the item giving its
caption, or a string expression that indicates the caption of
the item giving its value.

The FindItem property searches for an item in the control's predefined list. Use the AddItem
method to add new entries to the control's predefined list. Use the Value property to get the
control's value. The ItemCount property counts the number of items in the control's
predefined list.

The following sample displays the value of the item "CanShare":

Private Sub Form_Load()
 With Editor1
 .AddItem 1, "CanLink", 1
 .AddItem 2, "CanShare", 2
 .AddItem 4, "CanMove", 3
 .AddItem 8, "CanRe store", 4
 .EditType = EXEDITORSLibCtl.CheckList
 .Value = 1 + 4 ' CanLink + CanMove

 Debug.Print .FindItem("CanShare")

 End With
End Sub

The sample displays 2 as a result.

The following sample displays the caption of the item with the 2 value:

Private Sub Form_Load()
 With Editor1
 .AddItem 1, "CanLink", 1

 .AddItem 2, "CanShare", 2
 .AddItem 4, "CanMove", 3
 .AddItem 8, "CanRe store", 4
 .EditType = EXEDITORSLibCtl.CheckList
 .Value = 1 + 4 ' CanLink + CanMove

 Debug.Print .FindItem(2)

 End With
End Sub

The sample displays "CanShare" as a result.

property Editor.Font as IFontDisp
Retrieves or sets the control's font.

Type Description
IFontDisp A Font object that indicates the control's font.

Use the Font property to change the editor's font.

property Editor.ForeColor as Color
Retrieves or sets the control's foreground color.

Type Description

Color A color expression that indicates the control's foreground
color.

Use the ForeColor property to change the editor's foreground color. Use the BackColor
property to change the editor's background color.

property Editor.HasCheckBox as Boolean
Retrieves or sets a value that indicates whether the control's check box is visible or hidden.

Type Description

Boolean A boolean expression that indicates whether the control's
check box is visible or hidden.

Use the HasCheckBox property to associate a check box to your editor. Use the
CheckState property to change the check box state. Use the PartialCheck property to allow
two (unchecked, checked) or three (unchecked, checked, partial-checked) states to
your check box. The CheckStateChanged event notifies your application that the control's
check box state is changing.

The following sample assigns a check box to an editor of Date type:

Private Sub Form_Load()
 With Editor1

 .Value = Date
 .EditType = EXEDITORSLibCtl.Date
 .HasCheckBox = True
 .CheckState = Checked

 End With
End Sub

property Editor.HTMLPicture(Key as String) as Variant
Adds or replaces a picture in HTML captions.

Type Description

Key as String
A String expression that indicates the key of the picture
being added or replaced. If the Key property is Empty
string, the entire collection of pictures is cleared.

Variant

The HTMLPicture specifies the picture being associated to
a key. It can be one of the followings:

a string expression that indicates the path to the
picture file, being loaded.
a string expression that indicates the base64 encoded
string that holds a picture object, Use the eximages
tool to save your picture as base64 encoded format.
A Picture object that indicates the picture being added
or replaced. (A Picture object implements IPicture
interface),

If empty, the picture being associated to a key is removed.
If the key already exists the new picture is replaced. If the
key is not empty, and it doesn't not exist a new picture is
added.

The HTMLPicture property handles a collection of custom size picture being displayed in the
HTML captions, using the tags. By default, the HTMLPicture collection is empty. Use
the HTMLPicture property to add new pictures to be used in HTML captions. For instance,
the HTMLPicture("pic1") = "c:\winnt\zapotec.bmp", loads the zapotec picture and
associates the pic1 key to it. Any "pic1" sequence in HTML captions, displays
the pic1 picture. On return, the HTMLPicture property retrieves a Picture object (this
implements the IPictureDisp interface).

https://exontrol.com/eximages.jsp

property Editor.hWnd as Long
Retrieves the control's window handle.

Type Description

Long A long expression that indicates the control's window
handle.

The Microsoft Windows operating environment identifies each form and control in an
application by assigning it a handle, or hWnd. The hWnd property is used with Windows API
calls. Many Windows operating environment functions require the hWnd of the active
window as an argument.

method Editor.Images (Handle as Variant)
Sets the control's handle image list.

Type Description

Handle as Variant

The Handle parameter can be:

A string expression that specifies the ICO file to add.
The ICO file format is an image file format for
computer icons in Microsoft Windows. ICO files
contain one or more small images at multiple sizes
and color depths, such that they may be scaled
appropriately. For instance,
Images("c:\temp\copy.ico") method adds the sync.ico
file to the control's Images collection (string, loads the
icon using its path)
A string expression that indicates the BASE64
encoded string that holds the icons list. Use the
Exontrol's ExImages tool to save/load your icons as
BASE64 encoded format. In this case the string may
begin with "gBJJ..." (string, loads icons using base64
encoded string)
A reference to a Microsoft ImageList control
(mscomctl.ocx, MSComctlLib.ImageList type) that
holds the icons to add (object, loads icons from a
Microsoft ImageList control)
A reference to a Picture (IPictureDisp implementation)
that holds the icon to add. For instance, the VB's
LoadPicture (Function LoadPicture([FileName], [Size],
[ColorDepth], [X], [Y]) As IPictureDisp) or
LoadResPicture (Function LoadResPicture(id, restype
As Integer) As IPictureDisp) returns a picture object
(object, loads icon from a Picture object)
A long expression that identifies a handle to an Image
List Control (the Handle should be of HIMAGELIST
type). On 64-bit platforms, the Handle parameter
must be a Variant of LongLong / LONG_PTR data
type (signed 64-bit (8-byte) integers), saved under
llVal field, as VT_I8 type. The LONGLONG /
LONG_PTR is __int64, a 64-bit integer. For instance,
in C++ you can use as Images(COleVariant(
(LONG_PTR)hImageList)) or Images(COleVariant(
(LONGLONG)hImageList)), where hImageList is of

https://exontrol.com/eximages.jsp

HIMAGELIST type. The GetSafeHandle() method of
the CImageList gets the HIMAGELIST handle (long,
loads icon from HIMAGELIST type)

The user can add images at design time, by drag and drop files to control's image panel.
The ImageSize property defines the size (width/height) of the icons within the control's
Images collection. Use the ReplaceIcon method to add, replace or remove icons in the
control's Images collection at runtime. Use the ShowImageList property to hide the control's
Images panel.

The following sample uses the Microsoft Image List control:

Editor1.Images ImageList1.hImageList

property Editor.ImageSize as Long
Retrieves or sets the size of icons the control displays.

Type Description

Long A long expression that defines the size of icons the control
displays.

By default, the ImageSize property is 16 (pixels). The ImageSize property specifies the size
of icons being loaded using the Images method. The control's Images collection is cleared if
the ImageSize property is changed, so it is recommended to set the ImageSize property
before calling the Images method. The ImageSize property defines the size (width/height)
of the icons within the control's Images collection. For instance, if the ICO file to load
includes different types the one closest with the size specified by ImageSize property is
loaded by Images method. The ImageSize property does NOT change the height for the
control's font.

property Editor.ItemCaption (Index as Variant) as Variant
Gets the item's caption giving its index.

Type Description

Index as Variant A long expression that indicates the index of the item being
retrieved.

Variant A string expression that indicates the item's caption.

The ItemCaption property gets the caption of the item by index. Use the FindItem property
to look for an item giving its value or its caption. The ItemCount property counts the number
of items in the control's predefined list. The AddItem method adds new entries to the
control's predefined list.

The following sample displays the items in the control's predefined list:

Private Sub Form_Load()
 With Editor1

 .AddItem 1, "CanLink", 1
 .AddItem 2, "CanShare", 2
 .AddItem 4, "CanMove", 3
 .AddItem 8, "CanRestore", 3
 .EditType = CheckList
 .Value = 1 + 4 ' CanLink + CanMove

 For i = 0 To .ItemCount - 1
 Debug.Print .ItemCaption(i)
 Next

 End With
End Sub

property Editor.ItemCount as Long
Counts the items in the collection.

Type Description

Long A long expression that indicates the number of items in the
control's predefined list.

The ItemCount property counts the items in the control's predefined list. Use the AddItem
method to add new entries to the control's predefined list. Use the RemoveItem property to
remove an item from the control's predefined list. Use the FindItem property to look for an
item. Use the ItemCaption property to get the caption of the item by specifying its index in
the control's predefined list.

The following sample displays the items in the control's predefined list:

Private Sub Form_Load()
 With Editor1

 .AddItem 1, "CanLink", 1
 .AddItem 2, "CanShare", 2
 .AddItem 4, "CanMove", 3
 .AddItem 8, "CanRestore", 3
 .EditType = CheckList
 .Value = 1 + 4 ' CanLink + CanMove

 For i = 0 To .ItemCount - 1
 Debug.Print .ItemCaption(i)
 Next

 End With
End Sub

property Editor.Mask as String
Retrieves or sets a value that indicates the mask used by the editor.

Type Description
String A string expression that indicates the editor's mask.

Use the Mask property to filter characters during data input. Use the MaskChar property to
change the masking character. If the Mask property is empty no filter is applied. The Mask
property is composed by a combination of regular characters, literal escape characters,
and masking characters. The Mask property can contain also alternative characters, or
range rules. A literal escape character is preceded by a \ character, and it is used to
display a character that is used in masking rules. Here's the list of all rules and masking
characters:

Here's the list of all rules and masking characters.

(Digit), Masks a digit character, [0-9]
x (Hexa Lower), Masks a lower case hexa character, [0-9],[a-f]
X (Hexa Upper), Masks an upper case hexa character, [0-9],[A-F]
A (AlphaNumeric), Masks a letter or a digit. [0-9], [a-z], [A-Z]
? (Alphabetic), Masks a letter. [a-z],[A-Z]
< (Alphabetic lower), Masks a lower case letter. [a-z]
> (Alphabetic upper), Masks an upper case letter. [A-Z]
* (Any), Masks any combination of characters.
\ (Literal Escape), Displays any masking characters. The following combinations are
valid: \#,\x,\X,\A,\?,\<,\>,\\,\{,\[
{nMin,nMax} (Range), Masks a number in a range. The nMin and nMax values should
be numbers. For instance the mask {0,255} will mask any number between 0 and 255.
[...] (Alternative), Masks any characters that are contained in the [] brackets. For
instance, the [abcA-C] mask any character: a,b,c,A,B,C

The following sample shows how to mask an IP address:

Editor1.Mask = "{0,255}\.{0,255}\.{0,255}\.{0,255}"

The Mask property has effect for the following types: DropDown, Spin, Mask, Font, Button,
PickEdit and LinkEdit.

property Editor.MaskChar as Long
Retrieves or sets a value that indicates the character used for masking.

Type Description

Long A long expression that indicates the ASCII code for the
masking character.

The default masking character is '_' . Use the Mask property to filter characters during data
input.

For instance, the following sample uses '0' for masking numbers into a masked number
field:

With Editor1
 .EditType = EXEDITORSLibCtl.Mask
 .Mask = "####"
 .MaskChar = Asc("0")
 .Value = 10
End With

property Editor.Numeric as NumericEnum
Specifies whether the editor enables numeric values only.

Type Description

NumericEnum A NumericEnum expression that indicates whether integer
or floating point numbers are allowed.

The Numeric property has effect only if the editor contains an edit box. Use the Numeric
property to add intelligent input filtering for integer, or floating points numbers. Use the
exSpinStep option to specify the proposed change when the user clicks a spin control, if the
cell's editor is of SpinType type. Use the exEditDecimaSymbol option to specify the symbol
being used by decimal value while editing a floating point number.

property Editor.Option(Name as EditorOptionEnum) as Variant
Specifies an option for the editor.

Type Description

Name as EditorOptionEnum An EditorOptionEnum expression that indicates the editor's
option being changed.

Variant A Variant expression that indicates the value for editor's
option

The Option property of Editor object provides the ability to add scroll bars to a memo editor
using the exMemoHScrollBar and exMemoVScrollBar options.

property Editor.PartialCheck as Boolean
Retrieves or sets a value that indicates whether the associated check box has two or three
states.

Type Description

Boolean A boolean expression that indicates whether the
associated check box has two or three states.

Specifies whether the editor's check box has two (unchecked, checked) or three (
unchecked, checked, partial-checked) states. Use the HasCheckBox property to assign a
check box to the control. Use the CheckState property to change the state of the control's
check box.

The following sample assigns a check box to a Mask editor:

With Editor1
 .EditType = EXEDITORSLibCtl.Mask
 .Mask = "####"
 .MaskChar = Asc("0")
 .HasCheckBox = True
 .PartialCheck = True
 .Value = 10
End With

property Editor.PopupAppearance as InplaceAppearanceEnum
Retrieves or sets a value that indicates the popup window's appearance.

Type Description

InplaceAppearanceEnum An InplaceAppearanceEnum value that indicates the drop
down window's appearance

Use the PopupAppearance property to change the popup's appearance. Use the
Appearance to change the editor's appearance.

property Editor.ReadOnly as Boolean
Retrieves or sets a value that indicates whether the control is read-only.

Type Description

Boolean A boolean expression that indicates whether the editor is
read only.

Use the ReadOnly property to make your editor read only. If the ReadOnly is True, the
editor's Value cannot be changed by the user. For instance, if the editor is of one of the
drop down types, the drop down window can be visible, but you cannot change the current
value. Use the DropDownVisible property to hide the drop down button. Use the Enabled
property to disable the editor.

method Editor.Refresh ()
Refreshes the control.

Type Description

Use the Refresh method only if you need to force updating the control.

method Editor.RemoveButton (Key as Variant)
Removes a button given its key.

Type Description

Key as Variant A string expression that indicates the key of the button
being removed.

Use the ClearButtons method to clear the buttons collection. Use the ButtonWidth property
to hide all buttons. Use the AddButton method to adds new buttons to the control.

method Editor.RemoveItem (Value as Long)
Removes the item from editor's list given its value.

Type Description

Value as Long A long expression that indicates the value for the item
being removed.

The RemoveItem method removes an item giving its value. Use the AddItem method to add
new entries to the control's predefined list. Use the FindItem property to retrieve the value
of the item giving its caption. Use the ClearItems method to remove all items.

method Editor.ReplaceIcon ([Icon as Variant], [Index as Variant])
Adds a new icon, replaces an icon or clears the control's image list.

Type Description

Icon as Variant

A Variant expression that specifies the icon to add or
insert, as one of the following options:

a long expression that specifies the handle of the icon
(HICON)
a string expression that indicates the path to the
picture file
a string expression that defines the picture's content
encoded as BASE64 strings using the eXImages tool
a Picture reference, which is an object that holds
image data. It is often used in controls like
PictureBox, Image, or in custom controls (e.g.,
IPicture, IPictureDisp)

If the Icon parameter is 0, it specifies that the icon at the
given Index is removed. Furthermore, setting the Index
parameter to -1 removes all icons.

By default, if the Icon parameter is not specified or is
missing, a value of 0 is used.

Index as Variant

A long expression that defines the index of the icon to
insert or remove, as follows:

A zero or positive value specifies the index of the icon
to insert (when Icon is non-zero) or to remove (when
the Icon parameter is zero)
A negative value clears all icons when the Icon
parameter is zero

By default, if the Index parameter is not specified or is
missing, a value of -1 is used.

Return Description

Long A long expression that indicates the index of the icon in the
images collection

Use the ReplaceIcon property to add, remove or replace an icon in the control's images

https://exontrol.com/eximages.jsp

collection. Also, the ReplaceIcon property can clear the images collection. Use the Images
method to attach an image list to the control.

The following sample shows how to add a new icon to control's images list:

 i = Editor1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle), where i is the index to
insert the icon

The following sample shows how to replace an icon into control's images list::

 i = Editor1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle, 0), in this case the i is
zero, because the first icon was replaced.

The following sample shows how to remove an icon from control's images list:

 Editor1.ReplaceIcon 0, i, in this case the i is the index of the icon to remove

The following sample shows how to clear the control's icons collection:

 Editor1.ReplaceIcon 0, -1

property Editor.SelBackColor as Color
Retrieves or sets a value that indicates the selection background color.

Type Description

Color A color expression that indicates the background color of
the selection in the control.

Use the SelBackColor and SelForeColor properties to change the color for the selection in
the control.

property Editor.SelForeColor as Color
Retrieves or sets a value that indicates the selection foreground color.

Type Description

Color A color expression that indicates the foreground color of
the selection in the control.

Use the SelBackColor and SelForeColor properties to change the color for the selection in
the control.

property Editor.ShowImageList as Boolean
Specifies whether the control's image list window is visible or hidden.

Type Description

Boolean A boolean expression that specifies whether the control's
image list window is visible or hidden.

Use the ShowImageList property to hide the control's Images panel. The Images panel of
the control shows up only at design time. The ShowImageList property has effect only in
design mode. Use the Images method to assign a list of icons to the control at run-time.
Use the ReplaceIcon method to add, remove or replace icons at run-time.

method Editor.SortItems ([Ascending as Variant], [Reserved as Variant])
Sorts the list of items in the editor.

Type Description

Ascending as Variant A boolean expression that indicates the sort order of the
items.

Reserved as Variant For future use only.

Use the SortItems method to sort items in a drop down editor. Use the AddItem method to
add new items to the control's predefined list.

property Editor.ToolTipDelay as Long
Specifies the time in ms that passes before the ToolTip appears.

Type Description

Long A long expression that specifies the time in ms that passes
before the ToolTip appears.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. Use
the ToolTipPopDelay property specifies the period in ms of time the ToolTip remains visible
if the mouse pointer is stationary within a control. Use the ToolTipWidth property to specify
the width of the tooltip window. Use the Background(exToolTipAppearance) property
indicates the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color.

property Editor.ToolTipFont as IFontDisp
Retrieves or sets the tooltip's font.

Type Description
IFontDisp A Font object being used to display the tooltip.

Use the ToolTipFont property to assign a font for the control's tooltip. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. Use the ToolTipWidth property to specify the width of the tooltip
window. You can use the HTML element, in the tooltip's description to assign a
different font for portions of text.

property Editor.ToolTipPopDelay as Long
Specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control.

Type Description

Long
A long expression that specifies the period in ms of time
the ToolTip remains visible if the mouse pointer is
stationary within a control.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. The
ToolTipDelay property specifies the time in ms that passes before the ToolTip appears. Use
the ToolTipWidth property to specify the width of the tooltip window. Use the ToolTipFont
property to assign a font for the control's tooltip. Use the
Background(exToolTipAppearance) property indicates the visual appearance of the borders
of the tooltips. Use the Background(exToolTipBackColor) property indicates the tooltip's
background color. Use the Background(exToolTipForeColor) property indicates the tooltip's
foreground color.

property Editor.ToolTipWidth as Long
Specifies a value that indicates the width of the tooltip window, in pixels.

Type Description

Long A long expression that indicates the width of the tooltip
window, in pixels.

Use the ToolTipWidth property to change the tooltip window width. The height of the tooltip
window is automatically computed based on tooltip's description. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. The ToolTipDelay property specifies the time in ms that passes
before the ToolTip appears. Use the ToolTipFont property to assign a font for the control's
tooltip. Use the Background(exToolTipAppearance) property indicates the visual appearance
of the borders of the tooltips. Use the Background(exToolTipBackColor) property indicates
the tooltip's background color. Use the Background(exToolTipForeColor) property indicates
the tooltip's foreground color.

property Editor.UseVisualTheme as UIVisualThemeEnum
Specifies whether the control uses the current visual theme to display certain UI parts.

Type Description

UIVisualThemeEnum
An UIVisualThemeEnum expression that specifies which UI
parts of the control are shown using the current visual
theme.

By default, the UseVisualTheme property is exDefaultVisualTheme, which means that all
known UI parts are shown as in the current theme. The UseVisualTheme property may
specify the UI parts that you need to enable or disable the current visual theme. The UI
Parts are like check-boxes, buttons and so on. The UseVisualTheme property has effect
only a current theme is selected for your desktop. The UseVisualTheme property. Use the
Appearance property of the control to provide your own visual appearance using the EBN
files.

property Editor.Value as Variant
Retrieves or sets the control's value

Type Description
Variant A Variant value that indicates the editor's value.

The Value property specifies the value of the editor. The control displays the value based on
the type of the control. The type of the control is determined by the EditType property. The
ValueChanged event occurs when user changes the control's data.

If the EditType property is None, the control is able to use built-in HTML format like follows:

 bold
<u> underline </u>
<s> strikeout </s>
<i> italic </i>
<fgcolor = FF0000> fgcolor </fgcolor>
<bgcolor = FF0000> bgcolor </bgcolor>

 breaks a line.
<solidline> draws a solid line
<dotline> draws a dotted line
<upline> draws the line to the top of the text line
<r> aligns the rest of the text line to the right side.
text displays portions of text with a different font and/or
different size. For instance, the bit draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, bit displays the bit text using the current font, but with a different size.
& glyph characters as & (&), < (<), > (>), &qout ("), &#number, For
instance, the € displays the EUR character, in UNICODE configuration. The &
ampersand is only recognized as markup when it is followed by a known letter or a #
character and a digit. For instance if you want to display bold in HTML caption
you can use bold

Newer HTML format supports subscript and superscript like follows:

<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript

Also, newer HTML format supports decorative text like follows:

<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

The following sample displays a simple caption:

With Editor1
 .EditType = EXEDITORSLibCtl.None
 .Value = "Just an <fgcolor=0000FF>HTML</fgcolor> caption."
End With

property Editor.Version as String
Retrieves the control's version.

Type Description
String A string expression that indicates the control's version.

The Version property gets the version of the control.

property Editor.VisualAppearance as Appearance
Retrieves the control's appearance.

Type Description
Appearance An Appearance object that holds a collection of skins.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control. By using a
collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part.

ExEditors events
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {ED8B26D2-1855-42D5-B622-FEE85395DFB3}. The object's program identifier is: "Exontrol.Editor". The
/COM object module is: "ExEditors.dll"

The ExEditors control supports the following events:

Name Description
ButtonClick Occurs when the user clicks one of the control's buttons.

CheckStateChanged Occurs when the control's check box state has been
changed

Click Occurs when the user presses and then releases the left
mouse button over the control.

DblClick Occurs when the user dblclk the left mouse button over
the control.

KeyDown Occurs when the user presses a key while an object has
the focus.

KeyPress Occurs when the user presses and releases an ANSI key.

KeyUp Occurs when the user releases a key while an object has
the focus.

MouseDown Occurs when the user presses the mouse button.
MouseMove Occurs when the user moves the mouse.
MouseUp Occurs when the user releases the mouse button.
ValueChanged Occurs just before changing the control's Value.

C#

VB

private void ButtonClick(object sender,object Key)
{
}

Private Sub ButtonClick(ByVal sender As System.Object,ByVal Key As Object)
Handles ButtonClick
End Sub

C#

C++

C++
Builder

Delphi

private void ButtonClick(object sender,
AxEXEDITORSLib._IEditorEvents_ButtonClickEvent e)
{
}

void OnButtonClick(VARIANT Key)
{
}

void __fastcall ButtonClick(TObject *Sender,Variant Key)
{
}

procedure ButtonClick(ASender: TObject; Key : OleVariant);

event ButtonClick (Key as Variant)
Occurs when the user clicks one of the control's buttons.

Type Description

Key as Variant A string expression that indicates the key of the button
clicked.

The ButtonClick event notifies your application that the user clicks a button. The AddButton
method adds a new button to the editor. Also, the ButtonClick event is fired when user
clicks the drop down button of an editor of one of the following types: DropDown,
DropDownList, CheckList, Date, Color, Font, Picture, PickEdit and Button . In this case, the
Key parameter is an empty string.

Syntax for ButtonClick event, /NET version, on:

Syntax for ButtonClick event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin
end;

procedure ButtonClick(sender: System.Object; e:
AxEXEDITORSLib._IEditorEvents_ButtonClickEvent);
begin
end;

begin event ButtonClick(any Key)
end event ButtonClick

Private Sub ButtonClick(ByVal sender As System.Object, ByVal e As
AxEXEDITORSLib._IEditorEvents_ButtonClickEvent) Handles ButtonClick
End Sub

Private Sub ButtonClick(ByVal Key As Variant)
End Sub

Private Sub ButtonClick(ByVal Key As Variant)
End Sub

LPARAMETERS Key

PROCEDURE OnButtonClick(oEditor,Key)
RETURN

Java…

VBSc…

<SCRIPT EVENT="ButtonClick(Key)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ButtonClick(Key)
End Function
</SCRIPT>

Syntax for ButtonClick event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComButtonClick Variant llKey
 Forward Send OnComButtonClick llKey
End_Procedure

METHOD OCX_ButtonClick(Key) CLASS MainDialog
RETURN NIL

void onEvent_ButtonClick(COMVariant _Key)
{
}

function ButtonClick as v (Key as A)
end function

function nativeObject_ButtonClick(Key)
return

The following sample displays the key of the button that user clicked:

Private Sub Editor1_ButtonClick(ByVal Key As Variant)
 Debug.Print "The user clicks the " & IIf(Key = "", "drop down", "'" & Key & "'")
& " button"
End Sub

Private Sub Form_Load()
 With Editor1

 .EditType = DropDownList
 .AddItem 1, "One"
 .AddItem 2, "Two"

 .AddButton "KeyA", 1

 .Value = 1
 End With

End Sub

C#

VB

private void CheckStateChanged(object sender)
{
}

Private Sub CheckStateChanged(ByVal sender As System.Object) Handles
CheckStateChanged
End Sub

C#

C++

C++
Builder

Delphi

private void CheckStateChanged(object sender, EventArgs e)
{
}

void OnCheckStateChanged()
{
}

void __fastcall CheckStateChanged(TObject *Sender)
{
}

procedure CheckStateChanged(ASender: TObject;);
begin
end;

event CheckStateChanged ()
Occurs when the control's check box state has been changed

Type Description

The CheckStateChanged event notifies your application that user changes the checkbox
state. Use the HasCheckBox property to associate a checkbox to the editor. Use the
CheckState property to retrieve the state of the editor's checkbox. The PartialCheck
property specifies whether the checkbox of the editor allows two (unchecked, checked) or
three states (unchecked, checked and partial-checked).

Syntax for CheckStateChanged event, /NET version, on:

Syntax for CheckStateChanged event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure CheckStateChanged(sender: System.Object; e: System.EventArgs);
begin
end;

begin event CheckStateChanged()
end event CheckStateChanged

Private Sub CheckStateChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CheckStateChanged
End Sub

Private Sub CheckStateChanged()
End Sub

Private Sub CheckStateChanged()
End Sub

LPARAMETERS nop

PROCEDURE OnCheckStateChanged(oEditor)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="CheckStateChanged()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function CheckStateChanged()
End Function
</SCRIPT>

Procedure OnComCheckStateChanged
 Forward Send OnComCheckStateChanged

Syntax for CheckStateChanged event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_CheckStateChanged() CLASS MainDialog
RETURN NIL

void onEvent_CheckStateChanged()
{
}

function CheckStateChanged as v ()
end function

function nativeObject_CheckStateChanged()
return

The following sample associates a check box to the editor and prints the state of the check
box when user clicks the editor's checkbox area.

Private Sub Editor1_CheckStateChanged()
 With Editor1
 Debug.Print "The user changes the state of the editor's checkbox to " &
.CheckState
 End With
End Sub

Private Sub Form_Load()
 With Editor1

 .EditType = DropDownList
 .AddItem 1, "One"
 .AddItem 2, "Two"

 .HasCheckBox = True

 .Value = 1
 End With
End Sub

C#

VB

private void Click(object sender)
{
}

Private Sub Click(ByVal sender As System.Object) Handles Click
End Sub

C#

C++

C++
Builder

Delphi

private void ClickEvent(object sender, EventArgs e)
{
}

void OnClick()
{
}

void __fastcall Click(TObject *Sender)
{
}

procedure Click(ASender: TObject;);
begin
end;

event Click ()
Occurs when the user presses and then releases the left mouse button over the control.

Type Description

The Click event is fired when the user releases the left mouse button over the control. Use
a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click MouseDown and MouseUp events
lets you distinguish between the left, right, and middle mouse buttons. You can also write
code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT keyboard
modifiers

Syntax for Click event, /NET version, on:

Syntax for Click event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure ClickEvent(sender: System.Object; e: System.EventArgs);
begin
end;

begin event Click()
end event Click

Private Sub ClickEvent(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ClickEvent
End Sub

Private Sub Click()
End Sub

Private Sub Click()
End Sub

LPARAMETERS nop

PROCEDURE OnClick(oEditor)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="Click()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Click()
End Function
</SCRIPT>

Procedure OnComClick
 Forward Send OnComClick

Syntax for Click event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_Click() CLASS MainDialog
RETURN NIL

void onEvent_Click()
{
}

function Click as v ()
end function

function nativeObject_Click()
return

C#

VB

private void DblClick(object sender,short Shift,int X,int Y)
{
}

Private Sub DblClick(ByVal sender As System.Object,ByVal Shift As Short,ByVal X
As Integer,ByVal Y As Integer) Handles DblClick
End Sub

C#

C++

private void DblClick(object sender, AxEXEDITORSLib._IEditorEvents_DblClickEvent
e)
{
}

void OnDblClick(short Shift,long X,long Y)
{
}

event DblClick (Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS)
Occurs when the user double clicks the left mouse button over the control.

Type Description

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates

The DblClick event is fired when the user dbl clicks on the control. Use the DblClick event to
notify your application that a cell has been double-clicked.

Syntax for DblClick event, /NET version, on:

Syntax for DblClick event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall DblClick(TObject *Sender,short Shift,int X,int Y)
{
}

procedure DblClick(ASender: TObject; Shift : Smallint;X : Integer;Y : Integer);
begin
end;

procedure DblClick(sender: System.Object; e:
AxEXEDITORSLib._IEditorEvents_DblClickEvent);
begin
end;

begin event DblClick(integer Shift,long X,long Y)
end event DblClick

Private Sub DblClick(ByVal sender As System.Object, ByVal e As
AxEXEDITORSLib._IEditorEvents_DblClickEvent) Handles DblClick
End Sub

Private Sub DblClick(Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub DblClick(ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long)
End Sub

LPARAMETERS Shift,X,Y

PROCEDURE OnDblClick(oEditor,Shift,X,Y)
RETURN

Java… <SCRIPT EVENT="DblClick(Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

Syntax for DblClick event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function DblClick(Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComDblClick Short llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS
llY
 Forward Send OnComDblClick llShift llX llY
End_Procedure

METHOD OCX_DblClick(Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_DblClick(int _Shift,int _X,int _Y)
{
}

function DblClick as v (Shift as N,X as OLE::Exontrol.Editor.1::OLE_XPOS_PIXELS,Y
as OLE::Exontrol.Editor.1::OLE_YPOS_PIXELS)
end function

function nativeObject_DblClick(Shift,X,Y)
return

C#

VB

private void KeyDown(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyDown(ByVal sender As System.Object,ByRef KeyCode As
Short,ByVal Shift As Short) Handles KeyDown
End Sub

event KeyDown (ByRef KeyCode as Integer, Shift as Integer)
Occurs when the user presses a key while an object has the focus.

Type Description
KeyCode as Integer (By Reference) An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use KeyDown and KeyUp event procedures if you need to respond to both the pressing
and releasing of a key. You test for a condition by first assigning each result to a temporary
integer variable and then comparing shift to a bit mask. Use the And operator with the shift
argument to test whether the condition is greater than 0, indicating that the modifier was
pressed, as in this example:

ShiftDown = (Shift And 1) > 0
CtrlDown = (Shift And 2) > 0
AltDown = (Shift And 4) > 0

In a procedure, you can test for any combination of conditions, as in this example:
If AltDown And CtrlDown Then

Syntax for KeyDown event, /NET version, on:

Syntax for KeyDown event, /COM version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

private void KeyDownEvent(object sender,
AxEXEDITORSLib._IEditorEvents_KeyDownEvent e)
{
}

void OnKeyDown(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyDown(TObject *Sender,short * KeyCode,short Shift)
{
}

procedure KeyDown(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyDownEvent(sender: System.Object; e:
AxEXEDITORSLib._IEditorEvents_KeyDownEvent);
begin
end;

begin event KeyDown(integer KeyCode,integer Shift)
end event KeyDown

Private Sub KeyDownEvent(ByVal sender As System.Object, ByVal e As
AxEXEDITORSLib._IEditorEvents_KeyDownEvent) Handles KeyDownEvent
End Sub

Private Sub KeyDown(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyDown(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

Xbas… PROCEDURE OnKeyDown(oEditor,KeyCode,Shift)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="KeyDown(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyDown(KeyCode,Shift)
End Function
</SCRIPT>

Procedure OnComKeyDown Short llKeyCode Short llShift
 Forward Send OnComKeyDown llKeyCode llShift
End_Procedure

METHOD OCX_KeyDown(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyDown(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyDown as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyDown(KeyCode,Shift)
return

Syntax for KeyDown event, /COM version (others), on:

C#

VB

private void KeyPress(object sender,ref short KeyAscii)
{
}

Private Sub KeyPress(ByVal sender As System.Object,ByRef KeyAscii As Short)
Handles KeyPress
End Sub

C#

C++

C++
Builder

private void KeyPressEvent(object sender,
AxEXEDITORSLib._IEditorEvents_KeyPressEvent e)
{
}

void OnKeyPress(short FAR* KeyAscii)
{
}

void __fastcall KeyPress(TObject *Sender,short * KeyAscii)
{
}

event KeyPress (ByRef KeyAscii as Integer)
Occurs when the user presses and releases an ANSI key.

Type Description

KeyAscii as Integer (By Reference) An integer that returns a standard numeric
ANSI keycode

The KeyPress event lets you immediately test keystrokes for validity or for formatting
characters as they are typed. Changing the value of the keyascii argument changes the
character displayed. Use KeyDown and KeyUp event procedures to handle any keystroke
not recognized by KeyPress, such as function keys, editing keys, navigation keys, and any
combinations of these with keyboard modifiers. Unlike the KeyDown and KeyUp events,
KeyPress does not indicate the physical state of the keyboard; instead, it passes a
character. KeyPress interprets the uppercase and lowercase of each character as
separate key codes and, therefore, as two separate characters.

Syntax for KeyPress event, /NET version, on:

Syntax for KeyPress event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure KeyPress(ASender: TObject; var KeyAscii : Smallint);
begin
end;

procedure KeyPressEvent(sender: System.Object; e:
AxEXEDITORSLib._IEditorEvents_KeyPressEvent);
begin
end;

begin event KeyPress(integer KeyAscii)
end event KeyPress

Private Sub KeyPressEvent(ByVal sender As System.Object, ByVal e As
AxEXEDITORSLib._IEditorEvents_KeyPressEvent) Handles KeyPressEvent
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

LPARAMETERS KeyAscii

PROCEDURE OnKeyPress(oEditor,KeyAscii)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyPress(KeyAscii)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyPress(KeyAscii)
End Function
</SCRIPT>

Syntax for KeyPress event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComKeyPress Short llKeyAscii
 Forward Send OnComKeyPress llKeyAscii
End_Procedure

METHOD OCX_KeyPress(KeyAscii) CLASS MainDialog
RETURN NIL

void onEvent_KeyPress(COMVariant /*short*/ _KeyAscii)
{
}

function KeyPress as v (KeyAscii as N)
end function

function nativeObject_KeyPress(KeyAscii)
return

C#

VB

private void KeyUp(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyUp(ByVal sender As System.Object,ByRef KeyCode As Short,ByVal
Shift As Short) Handles KeyUp
End Sub

C#

C++

C++
Builder

private void KeyUpEvent(object sender,
AxEXEDITORSLib._IEditorEvents_KeyUpEvent e)
{
}

void OnKeyUp(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyUp(TObject *Sender,short * KeyCode,short Shift)
{

event KeyUp (ByRef KeyCode as Integer, Shift as Integer)
Occurs when the user releases a key while an object has the focus.

Type Description
KeyCode as Integer (By Reference) An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use the KeyUp event procedure to respond to the releasing of a key.

Syntax for KeyUp event, /NET version, on:

Syntax for KeyUp event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure KeyUp(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyUpEvent(sender: System.Object; e:
AxEXEDITORSLib._IEditorEvents_KeyUpEvent);
begin
end;

begin event KeyUp(integer KeyCode,integer Shift)
end event KeyUp

Private Sub KeyUpEvent(ByVal sender As System.Object, ByVal e As
AxEXEDITORSLib._IEditorEvents_KeyUpEvent) Handles KeyUpEvent
End Sub

Private Sub KeyUp(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyUp(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyUp(oEditor,KeyCode,Shift)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyUp(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyUp(KeyCode,Shift)
End Function

Syntax for KeyUp event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComKeyUp Short llKeyCode Short llShift
 Forward Send OnComKeyUp llKeyCode llShift
End_Procedure

METHOD OCX_KeyUp(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyUp(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyUp as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyUp(KeyCode,Shift)
return

C#

VB

private void MouseDownEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseDownEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseDownEvent
End Sub

C# private void MouseDownEvent(object sender,
AxEXEDITORSLib._IEditorEvents_MouseDownEvent e)
{
}

event MouseDown (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user presses the mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event.

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers.

Syntax for MouseDown event, /NET version, on:

Syntax for MouseDown event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnMouseDown(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseDown(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseDown(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseDownEvent(sender: System.Object; e:
AxEXEDITORSLib._IEditorEvents_MouseDownEvent);
begin
end;

begin event MouseDown(integer Button,integer Shift,long X,long Y)
end event MouseDown

Private Sub MouseDownEvent(ByVal sender As System.Object, ByVal e As
AxEXEDITORSLib._IEditorEvents_MouseDownEvent) Handles MouseDownEvent
End Sub

Private Sub MouseDown(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseDown(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseDown(oEditor,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseDown(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseDown(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseDown Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseDown llButton llShift llX llY
End_Procedure

METHOD OCX_MouseDown(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseDown(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseDown as v (Button as N,Shift as N,X as
OLE::Exontrol.Editor.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Editor.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseDown(Button,Shift,X,Y)
return

Syntax for MouseDown event, /COM version (others), on:

C#

VB

private void MouseMoveEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseMoveEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseMoveEvent
End Sub

C#

C++

private void MouseMoveEvent(object sender,
AxEXEDITORSLib._IEditorEvents_MouseMoveEvent e)
{
}

void OnMouseMove(short Button,short Shift,long X,long Y)

event MouseMove (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user moves the mouse.

Type Description

Button as Integer An integer that corresponds to the state of the mouse
buttons in which a bit is set if the button is down.

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

The MouseMove event is generated continually as the mouse pointer moves across objects.
Unless another object has captured the mouse, an object recognizes a MouseMove event
whenever the mouse position is within its borders.

Syntax for MouseMove event, /NET version, on:

Syntax for MouseMove event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

void __fastcall MouseMove(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseMove(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseMoveEvent(sender: System.Object; e:
AxEXEDITORSLib._IEditorEvents_MouseMoveEvent);
begin
end;

begin event MouseMove(integer Button,integer Shift,long X,long Y)
end event MouseMove

Private Sub MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXEDITORSLib._IEditorEvents_MouseMoveEvent) Handles MouseMoveEvent
End Sub

Private Sub MouseMove(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseMove(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseMove(oEditor,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseMove(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseMove(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseMove Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseMove llButton llShift llX llY
End_Procedure

METHOD OCX_MouseMove(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseMove(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseMove as v (Button as N,Shift as N,X as
OLE::Exontrol.Editor.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Editor.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseMove(Button,Shift,X,Y)
return

Syntax for MouseMove event, /COM version (others), on:

C#

VB

private void MouseUpEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseUpEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseUpEvent
End Sub

C# private void MouseUpEvent(object sender,
AxEXEDITORSLib._IEditorEvents_MouseUpEvent e)
{

event MouseUp (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user releases the mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event.

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers.

Syntax for MouseUp event, /NET version, on:

Syntax for MouseUp event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

void OnMouseUp(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseUp(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseUp(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseUpEvent(sender: System.Object; e:
AxEXEDITORSLib._IEditorEvents_MouseUpEvent);
begin
end;

begin event MouseUp(integer Button,integer Shift,long X,long Y)
end event MouseUp

Private Sub MouseUpEvent(ByVal sender As System.Object, ByVal e As
AxEXEDITORSLib._IEditorEvents_MouseUpEvent) Handles MouseUpEvent
End Sub

Private Sub MouseUp(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseUp(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseUp(oEditor,Button,Shift,X,Y)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseUp(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseUp(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseUp Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseUp llButton llShift llX llY
End_Procedure

METHOD OCX_MouseUp(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseUp(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseUp as v (Button as N,Shift as N,X as
OLE::Exontrol.Editor.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Editor.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseUp(Button,Shift,X,Y)
return

Syntax for MouseUp event, /COM version (others), on:

C#

VB

private void ValueChanged(object sender,ref object NewValue)
{
}

Private Sub ValueChanged(ByVal sender As System.Object,ByRef NewValue As
Object) Handles ValueChanged
End Sub

C#

C++

C++
Builder

Delphi

private void ValueChanged(object sender,
AxEXEDITORSLib._IEditorEvents_ValueChangedEvent e)
{
}

void OnValueChanged(VARIANT FAR* NewValue)
{
}

void __fastcall ValueChanged(TObject *Sender,Variant * NewValue)
{
}

procedure ValueChanged(ASender: TObject; var NewValue : OleVariant);
begin

event ValueChanged (ByRef NewValue as Variant)
Occurs just before changing the control's Value.

Type Description

NewValue as Variant (By Reference) A Variant expression that holds the new
value for the editor.

The ValueChanged event is fired just before changing the editor's Value property. The
ValueChanged event notifies your application that the value of the editor is changing. The
FindItem property gets the caption associated to a value if the editor contains a predefined
list (DropDownList).

Syntax for ValueChanged event, /NET version, on:

Syntax for ValueChanged event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

procedure ValueChanged(sender: System.Object; e:
AxEXEDITORSLib._IEditorEvents_ValueChangedEvent);
begin
end;

begin event ValueChanged(any NewValue)
end event ValueChanged

Private Sub ValueChanged(ByVal sender As System.Object, ByVal e As
AxEXEDITORSLib._IEditorEvents_ValueChangedEvent) Handles ValueChanged
End Sub

Private Sub ValueChanged(NewValue As Variant)
End Sub

Private Sub ValueChanged(NewValue As Variant)
End Sub

LPARAMETERS NewValue

PROCEDURE OnValueChanged(oEditor,NewValue)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="ValueChanged(NewValue)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ValueChanged(NewValue)
End Function
</SCRIPT>

Procedure OnComValueChanged Variant llNewValue
 Forward Send OnComValueChanged llNewValue

Syntax for ValueChanged event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_ValueChanged(NewValue) CLASS MainDialog
RETURN NIL

void onEvent_ValueChanged(COMVariant /*variant*/ _NewValue)
{
}

function ValueChanged as v (NewValue as A)
end function

function nativeObject_ValueChanged(NewValue)
return

The following sample shows how to restore the old value after user changes the editor's
data:

Option Explicit
Dim iChanging As Long

Private Sub Editor1_ValueChanged(NewValue As Variant)
 If (iChanging = 0) Then
 With Editor1
 NewValue = .Value
 End With
 End If
End Sub

Private Sub Form_Load()
 iChanging = 0
 With Editor1

 .EditType = DropDownList
 .AddItem 1, "One"
 .AddItem 2, "Two"

 iChanging = iChanging + 1
 .Value = 1
 iChanging = iChanging - 1
 End With
End Sub

The following sample displays the newly value:

Option Explicit
Dim iChanging As Long

Private Sub Editor1_ValueChanged(NewValue As Variant)
 With Editor1
 Debug.Print "The user changes the editor's value to " & NewValue
 End With
End Sub

Private Sub Form_Load()
 iChanging = 0
 With Editor1

 .EditType = DropDownList
 .AddItem 1, "One"
 .AddItem 2, "Two"

 iChanging = iChanging + 1
 .Value = 1
 iChanging = iChanging - 1
 End With
End Sub

	Information
	How to get support?
	Appearance
	Add method
	Clear method
	Remove method

	Editor
	AddButton method
	AddItem method
	Alignment property
	Appearance property
	BackColor property
	Background property
	ButtonWidth property
	CheckState property
	ClearButtons method
	ClearItems method
	DropDown method
	DropDownAlignment property
	DropDownAutoWidth property
	DropDownMinWidth property
	DropDownRows property
	DropDownVisible property
	EditText property
	EditType property
	Enabled property
	EventParam property
	FindItem property (readonly)
	Font property
	ForeColor property
	HasCheckBox property
	HTMLPicture property
	hWnd property (readonly)
	Images method
	ImageSize property
	ItemCaption property (readonly)
	ItemCount property (readonly)
	Mask property
	MaskChar property
	Numeric property
	Option property
	PartialCheck property
	PopupAppearance property
	ReadOnly property
	Refresh method
	RemoveButton method
	RemoveItem method
	ReplaceIcon method
	SelBackColor property
	SelForeColor property
	ShowImageList property
	SortItems method
	ToolTipDelay property
	ToolTipFont property
	ToolTipPopDelay property
	ToolTipWidth property
	UseVisualTheme property
	Value property
	Version property
	VisualAppearance property (readonly)

	ExEditors events
	ButtonClick event
	CheckStateChanged event
	Click event
	DblClick event
	KeyDown event
	KeyPress event
	KeyUp event
	MouseDown event
	MouseMove event
	MouseUp event
	ValueChanged event

