
 ExContextMenu

The eXContextMenu component displays and handles a context menu (also called
contextual, shortcut, and popup or pop-up menu). A context menu is a menu in a graphical
user interface (GUI) that appears upon user interaction, such as a right-click mouse
operation. The eXContextMenu component is written from scratch, and does NOT use the
system's popup menu. For instance, the /NET's System.Windows.Controls.ContextMenu
does not support a modal form, so you have to assign a handler for each item, instead the
eXContextMenu component waits for the user to make the selection, and returns the
selected values. Also another major difference is that the
System.Windows.Controls.ContextMenu is closed once any item is clicked, while in the
eXContextMenu component, this is not required, so you can check multiple check boxes,
and when you click outside, the Select method returns the selected values.

The features include:

Skinnable Interface support (ability to apply a skin to any item)
Keyboard and Mouse Wheel support
Check box / Radio button support
Ability to use any ActiveX control inside sub menus
Ability to assign EDIT, MASK, COLOR, FONT, SPIN, SLIDER, SCROLLBAR,
PROGRESS, ... fields to any item
Multi-lines HTML Tooltip support for any item
Ability to wait for user to select one or more values, as modal
Ability to specify when to close the context menu, not necessary a single click
Incremental Search / Shortcut Keys support (Ability to display/filter the items that
match the typing characters)
Ability to load/save the menu from strings like "Item 1[bld],Item2[chk]", without having
to call the Add method
Ability to group the items, so a sub-menu can be shown in the current item
Ability to define the round frame for the context menu, using the EBN objects.
Images / Icons support
Partially Translucent support
Ability to scroll the menu items
HTML support, including text decorations like shadow, outline or gradient text
Ability to query at once the entire menu for all items being checked, or radio buttons,
that contains EDIT fields, and so on

Ž ExContextMenu is a trademark of Exontrol. All Rights Reserved.

How to get support?

To keep your business applications running, you need support you can count on.

Here are few hints what to do when you're stuck on your programming:

Check out the samples - they are here to provide some quick info on how things should
be done
Check out the how-to questions using the eXHelper tool
Check out the help - includes documentation for each method, property or event
Check out if you have the latest version, and if you don't have it send an update
request here.
Submit your problem(question) here.

Don't forget that you can contact our development team if you have ideas or requests for
new components, by sending us an e-mail at support@exontrol.com (please include the
name of the product in the subject, ex: exgrid) . We're sure our team of developers will try
to find a way to make you happy - and us too, since we helped.

Regards,
Exontrol Development Team

https://www.exontrol.com

https://exontrol.com/exhelper.jsp
https://exontrol.com/update.jsp
https://exontrol.com/techsupport.jsp
https://www.exontrol.com

constants AlignmentEnum
Specifies the object's Alignment. The Alignment property specifies the item's alignment. The
Caption property supports built-in HTML format, so you can use the <c> to centers the
item's caption or <r> to align to the right the item's caption. The AlignmentEnum expression
supports the following values:

Name Value Description
exLeft 0 Left
exCenter 1 Center
exRight 2 Right

constants AllowEditEnum
The AllowEditEnum type specifies the type of editors that can be associated with the item.
The AllowEdit property associates an editor to the current item. The EditCaption property
specifies the value to show in the edit field. The EditWidth property specifies the size/width
of the edit field inside the item. The EditBorder property specifies whether the edit shows a
border around it. The EditOption property specifies different options to be used for a
specified edit field. The control fires the EditChange event when the user changes the edit's
caption. Use the ShowLocalPopup property to provide a drop down list. The ShowAsButton
property specifies the whether the current item displays a button or a select button (drop
down).

 Currently, the supported editors are:

Name Value Description
exItemDisableEdit 0 No editor is assigned to the current item.

exItemEditText 1

A text-box editor is assigned to the current item.
The exItemEditText can be combined with the
exItemEditReadOnly or exItemEditSpin flags.

exItemEditMask 2

A masked text-box editor is assigned to the current
item. The EditMask property specifies the mask of
the edit field. The EditValue property specifies the
value of the edit field, without the masking
characters. The EditOption(exEditMaskFloat)
specifies whether the edit field mask a
floating/decimal/integer point number. The
exItemEditMask can be combined with the
exItemEditReadOnly or exItemEditSpin flags.

A slider editor is assigned to the current item. The
exItemEditSlider can be combined with the
exItemEditReadOnly, exItemEditVertical or
exItemEditSpin flags. The EditValue property

exItemEditSlider 3

indicates the current slider position/value.

The EditOption(exEditMinValue) /
EditOption(exEditMaxValue) specifies the limits
values of the slider editor.
The EditOption(exEditTickStyle) property
specifies the way the ticks are shown on the
slider.
The EditOption(exEditTickFrequency) property
specifies the frequency to show the ticks on
the slider control.
The EditOption(exEditTickLabel) property
specifies labels to be shown on the slider's
ticks.
The EditOption(exEditSmallChange) property
specifies the amount by which the edit's
position changes when the user presses an
arrow key.
The EditOption(exEditLargeChange) property
specifies the amount by which the edit's
position changes when the user presses an
CTRL + arrow key.
The EditOption(exEditChangeToolTip) property
specifies the specifies the expression that
determines the HTML tooltip to be shown when
the item's value is changed.

If exItemEditSlider flag is combined with the
exItemEditVertical you can get:

exItemEditProgress 4

A progress editor is assigned to the current item.
The exItemEditProgress can be combined with the
exItemEditReadOnly, exItemEditVertical or
exItemEditSpin flags. The EditValue property
indicates the current progress position/value.

If exItemEditProgress flag is combined with the
exItemEditVertical you can get:

exItemEditScrollBar 5

A scrollbar editor is assigned to the current item.
The exItemEditScrollBar can be combined with the
exItemEditReadOnly, exItemEditVertical or
exItemEditSpin flags. The EditValue property
indicates the current scroll position/value.

If exItemEditScrollBar flag is combined with the
exItemEditVertical you can get:

The EditOption(exEditMinValue) /

EditOption(exEditMaxValue) specifies the limits
values of the scroll editor.
The EditOption(exEditSmallChange) property
specifies the amount by which the edit's
position changes when the user presses an
arrow key.
The EditOption(exEditLargeChange) property
specifies the amount by which the edit's
position changes when the user presses an
CTRL + arrow key.
The EditOption(exEditChangeToolTip) property
specifies the specifies the expression that
determines the HTML tooltip to be shown when
the item's value is changed.

exItemEditColor 6

A color editor is assigned to the current item. The
exItemEditColor can be combined with the
exItemEditReadOnly or exItemEditSpin flags. The
EditValue property indicates the current color value.

exItemEditFont 7

A font editor is assigned to the current item. The
exItemEditFont can be combined with the
exItemEditReadOnly or exItemEditSpin flags. The
EditCaption property indicates the current font
name.

exItemEditReadOnly 256 Disables the current's item editor. This flag can be
combined with any other option.
A spin editor is assigned to the current item. This
flag can be combined with any other option. The
following picture combines a exItemEditSlider with
the exItemEditSpin

exItemEditSpin 512

The EditOption(exEditSpinStep) specifies the
step to advance when user clicks the editor's
spin.

exItemEditVertical 1024
The editor is vertically oriented. You can combine
this flag with exItemEditSlider, exItemEditProgress
and exItemEditScrollBar

constants BackgroundPartEnum
The BackgroundPartEnum type indicates parts in the control. Use the Background property
to specify a background color or a visual appearance for specific parts in the control. A
Color expression that indicates the background color for a specified part. The last 7 bits in
the high significant byte of the color to indicates the identifier of the skin being used. Use
the Add method to add new skins to the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits in the high significant byte of the
color being applied to the background's part.

Name Value Description

exToolTipAppearance 64 Specifies the visual appearance of the borders of
the tooltips.

exToolTipBackColor 65 Specifies the tooltip's background color.
exToolTipForeColor 66 Specifies the tooltip's foreground color.

exCheckBoxState0 70 Specifies the visual appearance for the check box in
0 state (unchecked).

exCheckBoxState1 71 Specifies the visual appearance for the check box in
1 state (checked).

exCheckBoxState2 72 Specifies the visual appearance for the check box in
2 state (partial, not used).

exRadioButtonState0 73 Specifies the visual appearance for the radio button
in 0 state (unchecked).

exRadioButtonState1 74 Specifies the visual appearance for the radio button
in 1 state (checked).

exMenuFlatLineColor 100 Specifies the color to show the vertical line on flat
appearance.

exMenuScrollBackColor 101 Specifies the background color to show the menu's
scroll bars.

exMenuSelBorderColor 102 Specifies the color to show the frame arround the
selected item.

exMenuSeparatorItem 103 Specifies the color to show the separator item.

exMenuButtonItem 104 Specifies the visual appearance for an item, when
the Appearance property is Button.
Specifies the visual appearance/solid color of the
frame around the grouping items, when its group
includes a single item. The GroupPopup property
specifies the way the item's submenu are grouped.

exGroupPopupFrameSingle 105

Use the exGroupPopupFrameSingle,
exGroupPopupFrameHStart,
exGroupPopupFrameHIntermediate and
exGroupPopupFrameHEnd to specify a different
visual appearance for the frame around grouping
items (horizontally).

The following screen shot shows the grouping items
with an EBN frame:

which has been created using the following 4 EBNs:

exGroupPopupFrameHStart 106

Specifies the visual appearance/solid color of the
frame around the first item (horizontally arranged),
when the its group includes more items. The
GroupPopup property specifies the way the item's
submenu are grouped. Use the
exGroupPopupFrameSingle,
exGroupPopupFrameHStart,
exGroupPopupFrameHIntermediate and
exGroupPopupFrameHEnd to specify a different
visual appearance for the frame around grouping
items (horizontally).

exGroupPopupFrameHIntermediate107

Specifies the visual appearance/solid color of the
frame around an intermediate item (not start or end
item, horizontally arranged), when the its group
includes more items. The GroupPopup property
specifies the way the item's submenu are grouped.
Use the exGroupPopupFrameSingle,
exGroupPopupFrameHStart,
exGroupPopupFrameHIntermediate and
exGroupPopupFrameHEnd to specify a different
visual appearance for the frame around grouping
items (horizontally).
Specifies the visual appearance/solid color of the
frame around the last item (not start or
intermediate item, horizontally arranged), when the
its group includes more items. The GroupPopup

exGroupPopupFrameHEnd 108 property specifies the way the item's submenu are
grouped. Use the exGroupPopupFrameSingle,
exGroupPopupFrameHStart,
exGroupPopupFrameHIntermediate and
exGroupPopupFrameHEnd to specify a different
visual appearance for the frame around grouping
items (horizontally).

exGroupPopupFrameSolid 109 Specifies the solid color of the frame around the
grouping items.

exMenuHotBackColor 110 Specifies the visual appearance/color to show the
item from the cursor.

exMenuHotForeColor 111 Specifies the foreground color to show the item
from the cursor.

exMenuSelHotBackColor 112 Specifies the visual appearance/color to show the
selected item from the cursor.

exMenuSelHotForeColor 113 Specifies the foreground color to show the selected
item from the cursor.

exMenuSeparatorSelectButton114 Specifies the visual appearance/color to show the
separator between select and drop down button.

exMenuSeparatorSelectButtonBottom115
Specifies the visual appearance/color to show the
separator between select and drop down button (
show the drop-down button to the bottom).

exGroupPopupFrameVStart 116

Specifies the visual appearance/solid color of the
frame around the first item (vertically arranged),
when the its group includes more items. The
GroupPopup property specifies the way the item's
submenu are grouped. Use the
exGroupPopupFrameVStart,
exGroupPopupFrameVIntermediate and
exGroupPopupFrameVEnd to specify a different
visual appearance for the frame around grouping
items (vertically).

The following screen shot shows the grouping items
with an EBN frame:

which has been created using the following 4 EBNs:

exGroupPopupFrameVIntermediate117

Specifies the visual appearance/solid color of the
frame around an intermediate item (not start or end
item, vertically arranged), when the its group
includes more items. The GroupPopup property
specifies the way the item's submenu are grouped.
Use the exGroupPopupFrameVStart,
exGroupPopupFrameVIntermediate and
exGroupPopupFrameVEnd to specify a different
visual appearance for the frame around grouping
items (vertically).

exGroupPopupFrameVEnd 118

Specifies the visual appearance/solid color of the
frame around the last item (not intermediate or end
item, vertically arranged), when the its group
includes more items. The GroupPopup property
specifies the way the item's submenu are grouped.
Use the exGroupPopupFrameVStart,
exGroupPopupFrameVIntermediate and
exGroupPopupFrameVEnd to specify a different
visual appearance for the frame around grouping
items (vertically).

constants CloseOnClickEnum
The CloseOnClickEnum type specifies when the user can close the context menu. The
CloseOnClick property specifies how the context menu is closed when user clicks an item.
The CloseOnClickEnum type supports the following values:

Name Value Description

exCloseOnClick 0 The popup menu is closing when the user clicks an
item.

exCloseOnDblClick 1 The popup menu is closing when the user double
clicks an item.

exCloseOnClickOutside 2 The popup menu is closing when the user clicks
outside of the menu.

exCloseOnNonClickable 3

The popup menu is closing when the user clicks a
non-clickable item (regular items).

Here's the list of clickable items:

separator items
item that hosts a sub-menu (popup item)
disabled item
check or radio items

For instance, clicking a check-box item will makes
the check box to change its state instead closing
the context menu.

constants CloseOnEnum
The CloseOnEnum type specifies how an item that contains an ActiveX inside is close. The
CloseOn property indicates how the user closes the context menu when an inside ActiveX
control is clicked. The CloseOnEnum type supports the following values:

Name Value Description
exUser 0 The user is responsible for closing the popup menu.

exLButtonDown 513 The popup menu is closed when user presses the
left mouse button over the ActiveX control.

exLButtonUp 514 The popup menu is closed when user releases the
left mouse button over the ActiveX control.

exLButtonDblClk 515 The popup menu is closed when user double click
the ActiveX control.

exRButtonDown 516 The popup menu is closed when user right clicks
the ActiveX control.

exRButtonUp 517 The popup menu is closed when user releases the
right mouse button over the ActiveX control.

exRButtonDblClk 518 The popup menu is closed when user double click
the right mouse button in the ActiveX control.

exMButtonDown 519 The popup menu is closed when user clicks the
middle mouse button in the ActiveX control.

exMButtonUp 520 The popup menu is closed when user releases the
middle mouse button in the ActiveX control.

exMButtonDblClk 521 The popup menu is closed when user double clicks
the middle mouse button in the ActiveX control.

exClick 61441 The popup menu is closed when user presses any
of the mouse buttons in the ActiveX control.

exDblClick 61442 The popup menu is closed when user double clicks
any of the mouse buttons in the ActiveX control.

constants EditBorderEnum
Specifies the type of the border around the edit control inside the item. Use the AllowEdit
property to assign a single edit control to an item. Use the EditBorder property to specify
the type of the border for the edit control inside the item.

Name Value Description
exEditBorderNone 0 No border.
exEditBorderInset -1 Inset border.
exEditBorderSingle 1 Single border.

constants EditOptionEnum
The EditOptionEnum type specifies different options to be set / get for giving editor. The
EditOption property specifies different options to be used for a specified edit field. The
AllowEdit property associates an editor to the current item. The EditCaption property
specifies the value to show in the edit field. The EditWidth property specifies the size/width
of the edit field inside the item. The EditBorder property specifies whether the edit shows a
border around it. The control fires the EditChange event when the user changes the edit's
caption.

The control supports the following options:

Name Value Description

exEditMinValue 1

Specifies the minimum value for the item's edit field.
By default, the exEditMinValue option is 0. This
option is valid for editors like: exItemEditSlider,
exItemEditScrollBar

(long expression)

exEditMaxValue 2

Specifies the maximum value for the item's edit
field. By default, the exEditMinValue option is 100.
This option is valid for editors like: exItemEditSlider,
exItemEditScrollBar

(long expression)

exEditTickStyle 3

Specifies where the ticks appears on the edit field.
By default, the exEditTickStyle option is 1. The
value of this option could be one of the following:

0 (exBottomRight), The ticks are displayed on
the bottom/right side
1 (exTopLeft), The ticks are displayed on the
top/left side
2 (exBoth), The ticks are displayed on the
both side
3 (exNoTicks), No ticks are displayed

This option is valid for editors like: exItemEditSlider

(long expression)

exEditTickFrequency 4
Indicates the ratio of ticks on the control. By
default, the exEditTickFrequency option is 10. This
option is valid for editors like: exItemEditSlider (long
expression)
Specifies the expression that determines the HTML
labels to be shown on ticks.

For instance:

"value", shows the values for each tick.
" (value=current ? '
<fgcolor=FF0000>' : '') + value", shows the
current slider's position with a different color
and font.
"value = current ? value : ''", shows the value
for the current tick only.
"(value = current ? '' : '') +
(value array 'ab bc cd de ef fg gh hi ij jk kl' split
' ')" displays different captions for slider's
values.

The option supports the following keywords:

value gets the slider's position to be displayed
current gets the current slider's value.
vmin gets the slider's minimum value.
vmax gets the slider's maximum value.
smin gets the slider's selection minimum value.
smax gets the slider's selection maximum
value.

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (
concatenates two strings, if one of the
operands is of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these
with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported ternary operators, all these with the
same priority 0, are :

? (Immediate If operator), returns and
executes one of two expressions, depending
on the evaluation of an expression. The syntax
for is

"expression ? true_part : false_part"

, while it executes and returns the true_part if
the expression is true, else it executes and
returns the false_part. For instance, the "%0 =
1 ? 'One' : (%0 = 2 ? 'Two' : 'not found')"
returns 'One' if the value is 1, 'Two' if the value
is 2, and 'not found' for any other value. A n-ary
equivalent operation is the case() statement,
which is available in newer versions of the
component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from
an array giving its index (0 base). The array
operator returns empty if the element is found,

else the associated element in the collection if
it is found. The syntax for array operator is

"expression array (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements.
The constant elements could be numeric, date
or string expressions. For instance the
"month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D')" is
equivalent with "month(value)-1 case
(default:'';
0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D')"

in (include operator), specifies whether an
element is found in a set of constant elements.
The in operator returns -1 (True) if the
element is found, else 0 (false) is retrieved.
The syntax for in operator is

"expression in (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements.
The constant elements could be numeric, date
or string expressions. For instance the "value
in (11,22,33,44,13)" is equivalent with "
(expression = 11) or (expression = 22) or
(expression = 33) or (expression = 44) or
(expression = 13)". The in operator is not a
time consuming as the equivalent or version is,
so when you have large number of constant
elements it is recommended using the in
operator. Shortly, if the collection of elements
has 1000 elements the in operator could take
up to 8 operations in order to find if an element
fits the set, else if the or statement is used, it
could take up to 1000 operations to check, so
by far, the in operator could save time on
finding elements within a collection.

switch (switch operator), returns the value
being found in the collection, or a predefined
value if the element is not found (default). The

syntax for switch operator is

"expression switch (default,c1,c2,c3,...,cn)"

, where the c1, c2, ... are constant elements,
and the default is a constant element being
returned when the element is not found in the
collection. The constant elements could be
numeric, date or string expressions. The
equivalent syntax is "%0 = c 1 ? c 1 : (%0 = c
2 ? c 2 : (... ? . : default))". The switch
operator is very similar with the in operator
excepts that the first element in the switch is
always returned by the statement if the
element is not found, while the returned value
is the value itself instead -1. For instance, the
"%0 switch ('not found',1,4,7,9,11)" gets 1, 4,
7, 9 or 11, or 'not found' for any other value. As
the in operator the switch operator uses binary
searches for fitting the element, so it is quicker
that iif (immediate if operator) alterative.

case() (case operator) returns and executes
one of n expressions, depending on the
evaluation of the expression (IIF - immediate
IF operator is a binary case() operator). The
syntax for case() operator is:

"expression case ([default : default_expression
;] c1 : expression1 ; c2 : expression2 ; c3 :

expression3 ;....)"

If the default part is missing, the case()
operator returns the value of the expression if it
is not found in the collection of cases (c1, c2,
...). For instance, if the value of expression is
not any of c1, c2, the default_expression is
executed and returned. If the value of the
expression is c1, then the case() operator
executes and returns the expression1. The
default, c1, c2, c3, ... must be constant
elements as numbers, dates or strings. For
instance, the "date(shortdate(value)) case

(default:0 ; #1/1/2002#:1 ; #2/1/2002#:1;
#4/1/2002#:1; #5/1/2002#:1)" indicates that
only #1/1/2002#, #2/1/2002#, #4/1/2002#
and #5/1/2002# dates returns 1, since the
others returns 0. For instance the following
sample specifies the hour being non-working
for specified dates: "date(shortdate(value))
case(default:0;#4/1/2009# : hour(value) >= 6
and hour(value) <= 12 ; #4/5/2009# :
hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# :
hour(value) <= 8)" statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00
AM to 12:00 PM
#4/5/2009#, from hours 07:00
AM to 10:00 AM and hours
03:00PM, 04:00PM, 06:00PM
and 10:00PM
#5/1/2009#, from hours 12:00
AM to 08:00 AM

The in, switch and case() use binary search to look
for elements so they are faster then using iif and or
expressions.

Obviously, the priority of the operations inside the
expression is determined by () parenthesis and the
priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the
object. For instance type(%0) = 8 specifies the
cells that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float

exEditTickLabel 5

5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to
a string
dbl (unary operator) converts the expression to
a number
date (unary operator) converts the expression
to a date, based on your regional settings
dateS (unary operator) converts the string
expression to a date using the format
MM/DD/YYYY HH:MM:SS.

Other known operators for numbers are:

int (unary operator) retrieves the integer part
of the number
round (unary operator) rounds the number ie
1.2 gets 1, since 1.8 gets 2
floor (unary operator) returns the largest
number with no fraction part that is not greater
than the value of its argument
abs (unary operator) retrieves the absolute
part of the number ie -1 gets 1, 2 gets 2
value format 'flags' (binary operator) formats
the value with specified flags. If flags is empty,
the number is displayed as shown in the field
"Number" in the "Regional and Language
Options" from the Control Panel. For instance
the 1000 format '' displays 1,000.00 for English

format, while 1.000,00 is displayed for German
format. 1000 format '2|.|3|,' will always
displays 1,000.00 no matter of settings in the
control panel. If formatting the number fails for
some invalid parameter, the value is displayed
with no formatting.

The ' flags' for format operator is a list of
values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero
with the following meanings:

NumDigits - specifies the number of
fractional digits, If the flag is missing, the
field "No. of digits after decimal" from
"Regional and Language Options" is using.
DecimalSep - specifies the decimal
separator. If the flag is missing, the field
"Decimal symbol" from "Regional and
Language Options" is using.
Grouping - indicates the number of digits in
each group of numbers to the left of the
decimal separator. Values in the range 0
through 9 and 32 are valid. The most
significant grouping digit indicates the
number of digits in the least significant
group immediately to the left of the
decimal separator. Each subsequent
grouping digit indicates the next significant
group of digits to the left of the previous
group. If the last value supplied is not 0,
the remaining groups repeat the last
group. Typical examples of settings for this
member are: 0 to group digits as in
123456789.00; 3 to group digits as in
123,456,789.00; and 32 to group digits as
in 12,34,56,789.00. If the flag is missing,
the field "Digit grouping" from "Regional
and Language Options" indicates the
grouping flag.
ThousandSep - specifies the thousand
separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and

Language Options" is using.
NegativeOrder - indicates the negative
number mode. If the flag is missing, the
field "Negative number format" from
"Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with
the following meanings:

0 - Left parenthesis, number, right
parenthesis; for example, (1.1)
1 - Negative sign, number; for
example, -1.1
2 - Negative sign, space, number; for
example, - 1.1
3 - Number, negative sign; for
example, 1.1-
4 - Number, space, negative sign; for
example, 1.1 -

LeadingZero - indicates if leading zeros
should be used in decimal fields. If the
flag is missing, the field "Display leading
zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of
characters in the string
lower (unary operator) returns a string
expression in lowercase letters
upper (unary operator) returns a string
expression in uppercase letters
proper (unary operator) returns from a
character expression a string capitalized as
appropriate for proper names
ltrim (unary operator) removes spaces on the
left side of a string
rtrim (unary operator) removes spaces on the
right side of a string
trim (unary operator) removes spaces on both
sides of a string
startwith (binary operator) specifies whether a
string starts with specified string
endwith (binary operator) specifies whether a

string ends with specified string
contains (binary operator) specifies whether a
string contains another specified string
left (binary operator) retrieves the left part of
the string
right (binary operator) retrieves the right part
of the string
a mid b (binary operator) retrieves the middle
part of the string a starting from b (1 means
first position, and so on)
a count b (binary operator) retrieves the
number of occurrences of the b in a
a replace b with c (double binary operator)
replaces in a the b with c, and gets the result.
a split b, splits the a using the separator b,
and returns an array. For instance, the
"weekday(value) array 'Sun Mon Thu Wed Thu
Fri Sat' split ' '" gets the weekday as string.
This operator can be used with the array

Other known operators for dates are:

time (unary operator) retrieves the time of the
date in string format, as specified in the
control's panel.
timeF (unary operator) retrieves the time of the
date in string format, as "HH:MM:SS". For
instance the timeF(1:23 PM) returns "13:23:00"
shortdate (unary operator) formats a date as
a date string using the short date format, as
specified in the control's panel.
shortdateF (unary operator) formats a date as
a date string using the "MM/DD/YYYY" format.
For instance the shortdateF(December 31,
1971 11:00 AM) returns "12/31/1971".
dateF (unary operator) converts the date
expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format.
longdate (unary operator) formats a date as a
date string using the long date format, as
specified in the control's panel.
year (unary operator) retrieves the year of the
date (100,...,9999)

month (unary operator) retrieves the month of
the date (1, 2,...,12)
day (unary operator) retrieves the day of the
date (1, 2,...,31)
yearday (unary operator) retrieves the number
of the day in the year, or the days since
January 1st (0, 1,...,365)
weekday (unary operator) retrieves the
number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday)
hour (unary operator) retrieves the hour of the
date (0, 1, ..., 23)
min (unary operator) retrieves the minute of
the date (0, 1, ..., 59)
sec (unary operator) retrieves the second of
the date (0, 1, ..., 59)

The The <VALUE> of [ticklabel] option can display
labels using the following built-in HTML tags:

 displays the text in bold.
<i></i> displays the text in italics.
<u></u> underlines the text.
<s></s> Strike-through text
 displays portions of
text with a different font and/or different size.
For instance, the bit
draws the bit text using the Tahoma font, on
size 12 pt. If the name of the font is missing,
and instead size is present, the current font is
used with a different size. For instance, bit displays the bit text using the
current font, but with a different size.
<fgcolor=RRGGBB></fgcolor> displays text
with a specified foreground color. The RR, GG
or BB should be hexa values and indicates red,
green and blue values.
<bgcolor=RRGGBB></bgcolor> displays text
with a specified background color. The RR, GG
or BB should be hexa values and indicates red,
green and blue values.

 a forced line-break
<solidline> The next line shows a solid-line on

top/bottom side. If has no effect for a single
line caption.
<dotline> The next line shows a dot-line on
top/bottom side. If has no effect for a single
line caption.
<upline> The next line shows a solid/dot-line
on top side. If has no effect for a single line
caption.
<r> Right aligns the text
<c> Centers the text
number[:width] inserts an icon
inside the text. The number indicates the index
of the icon being inserted. Use the Images
method to assign a list of icons to your chart.
The last 7 bits in the high significant byte of the
number expression indicates the identifier of
the skin being used to paint the object. Use the
Add method to add new skins to the control. If
you need to remove the skin appearance from
a part of the control you need to reset the last
7 bits in the high significant byte of the color
being applied to the part. The width is optional
and indicates the width of the icon being
inserted. Using the width option you can
overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the
width is 18 pixels.
key[:width] inserts a custom
size picture into the text being previously
loaded using the HTMLPicture property. The
Key parameter indicates the key of the picture
being displayed. The Width parameter
indicates a custom size, if you require to
stretch the picture, else the original size of the
picture is used.
& glyph characters as & (&), < (<),
> (>), &qout; (") and &#number (the
character with specified code), For instance,
the € displays the EUR character, in
UNICODE configuration. The & ampersand is
only recognized as markup when it is followed
by a known letter or a # character and a digit.
For instance if you want to display

bold in HTML caption you can use
bold

(string expression)

exEditSmallChange 6

The amount by which the edit's position changes
when the user presses an arrow key. By default,
the exEditSmallChange option is 1. This option is
valid for editors like: exItemEditSlider,
exItemEditScrollBar

(long expression)

exEditLargeChange 7

The amount by which the edit's position changes
when the user presses an CTRL + arrow key. By
default, the exEditLargeChange option is 5. This
option is valid for editors like: exItemEditSlider,
exItemEditScrollBar

(long expression)

Specifies the expression that determines the HTML
tooltip to be shown when the item's value is
changed. By default, the exEditChangeToolTip
option is "value". This option is valid for editors like:
exItemEditSlider, exItemEditScrollBar

The option supports the following keywords:

value gets the slider's position to be displayed

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (
concatenates two strings, if one of the
operands is of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these
with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported ternary operators, all these with the
same priority 0, are :

? (Immediate If operator), returns and
executes one of two expressions, depending
on the evaluation of an expression. The syntax
for is

"expression ? true_part : false_part"

, while it executes and returns the true_part if
the expression is true, else it executes and
returns the false_part. For instance, the "%0 =
1 ? 'One' : (%0 = 2 ? 'Two' : 'not found')"
returns 'One' if the value is 1, 'Two' if the value
is 2, and 'not found' for any other value. A n-ary
equivalent operation is the case() statement,
which is available in newer versions of the
component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from
an array giving its index (0 base). The array
operator returns empty if the element is found,
else the associated element in the collection if
it is found. The syntax for array operator is

"expression array (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements.
The constant elements could be numeric, date
or string expressions. For instance the
"month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D')" is
equivalent with "month(value)-1 case
(default:'';
0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D')"

in (include operator), specifies whether an
element is found in a set of constant elements.
The in operator returns -1 (True) if the
element is found, else 0 (false) is retrieved.
The syntax for in operator is

"expression in (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements.
The constant elements could be numeric, date
or string expressions. For instance the "value
in (11,22,33,44,13)" is equivalent with "
(expression = 11) or (expression = 22) or
(expression = 33) or (expression = 44) or
(expression = 13)". The in operator is not a
time consuming as the equivalent or version is,
so when you have large number of constant
elements it is recommended using the in
operator. Shortly, if the collection of elements
has 1000 elements the in operator could take
up to 8 operations in order to find if an element
fits the set, else if the or statement is used, it
could take up to 1000 operations to check, so
by far, the in operator could save time on
finding elements within a collection.

switch (switch operator), returns the value
being found in the collection, or a predefined
value if the element is not found (default). The
syntax for switch operator is

"expression switch (default,c1,c2,c3,...,cn)"

, where the c1, c2, ... are constant elements,
and the default is a constant element being
returned when the element is not found in the
collection. The constant elements could be
numeric, date or string expressions. The
equivalent syntax is "%0 = c 1 ? c 1 : (%0 = c
2 ? c 2 : (... ? . : default))". The switch
operator is very similar with the in operator
excepts that the first element in the switch is
always returned by the statement if the
element is not found, while the returned value
is the value itself instead -1. For instance, the
"%0 switch ('not found',1,4,7,9,11)" gets 1, 4,
7, 9 or 11, or 'not found' for any other value. As
the in operator the switch operator uses binary
searches for fitting the element, so it is quicker
that iif (immediate if operator) alterative.

case() (case operator) returns and executes
one of n expressions, depending on the
evaluation of the expression (IIF - immediate
IF operator is a binary case() operator). The
syntax for case() operator is:

"expression case ([default : default_expression
;] c1 : expression1 ; c2 : expression2 ; c3 :

expression3 ;....)"

If the default part is missing, the case()
operator returns the value of the expression if it
is not found in the collection of cases (c1, c2,
...). For instance, if the value of expression is
not any of c1, c2, the default_expression is
executed and returned. If the value of the
expression is c1, then the case() operator
executes and returns the expression1. The
default, c1, c2, c3, ... must be constant
elements as numbers, dates or strings. For
instance, the "date(shortdate(value)) case
(default:0 ; #1/1/2002#:1 ; #2/1/2002#:1;
#4/1/2002#:1; #5/1/2002#:1)" indicates that
only #1/1/2002#, #2/1/2002#, #4/1/2002#
and #5/1/2002# dates returns 1, since the

others returns 0. For instance the following
sample specifies the hour being non-working
for specified dates: "date(shortdate(value))
case(default:0;#4/1/2009# : hour(value) >= 6
and hour(value) <= 12 ; #4/5/2009# :
hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# :
hour(value) <= 8)" statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00
AM to 12:00 PM
#4/5/2009#, from hours 07:00
AM to 10:00 AM and hours
03:00PM, 04:00PM, 06:00PM
and 10:00PM
#5/1/2009#, from hours 12:00
AM to 08:00 AM

The in, switch and case() use binary search to look
for elements so they are faster then using iif and or
expressions.

Obviously, the priority of the operations inside the
expression is determined by () parenthesis and the
priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the
object. For instance type(%0) = 8 specifies the
cells that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string

exEditChangeToolTip 8

9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to
a string
dbl (unary operator) converts the expression to
a number
date (unary operator) converts the expression
to a date, based on your regional settings
dateS (unary operator) converts the string
expression to a date using the format
MM/DD/YYYY HH:MM:SS.

Other known operators for numbers are:

int (unary operator) retrieves the integer part
of the number
round (unary operator) rounds the number ie
1.2 gets 1, since 1.8 gets 2
floor (unary operator) returns the largest
number with no fraction part that is not greater
than the value of its argument
abs (unary operator) retrieves the absolute
part of the number ie -1 gets 1, 2 gets 2
value format 'flags' (binary operator) formats
the value with specified flags. If flags is empty,
the number is displayed as shown in the field
"Number" in the "Regional and Language
Options" from the Control Panel. For instance
the 1000 format '' displays 1,000.00 for English
format, while 1.000,00 is displayed for German
format. 1000 format '2|.|3|,' will always
displays 1,000.00 no matter of settings in the
control panel. If formatting the number fails for

some invalid parameter, the value is displayed
with no formatting.

The ' flags' for format operator is a list of
values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero
with the following meanings:

NumDigits - specifies the number of
fractional digits, If the flag is missing, the
field "No. of digits after decimal" from
"Regional and Language Options" is using.
DecimalSep - specifies the decimal
separator. If the flag is missing, the field
"Decimal symbol" from "Regional and
Language Options" is using.
Grouping - indicates the number of digits in
each group of numbers to the left of the
decimal separator. Values in the range 0
through 9 and 32 are valid. The most
significant grouping digit indicates the
number of digits in the least significant
group immediately to the left of the
decimal separator. Each subsequent
grouping digit indicates the next significant
group of digits to the left of the previous
group. If the last value supplied is not 0,
the remaining groups repeat the last
group. Typical examples of settings for this
member are: 0 to group digits as in
123456789.00; 3 to group digits as in
123,456,789.00; and 32 to group digits as
in 12,34,56,789.00. If the flag is missing,
the field "Digit grouping" from "Regional
and Language Options" indicates the
grouping flag.
ThousandSep - specifies the thousand
separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and
Language Options" is using.
NegativeOrder - indicates the negative
number mode. If the flag is missing, the
field "Negative number format" from

"Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with
the following meanings:

0 - Left parenthesis, number, right
parenthesis; for example, (1.1)
1 - Negative sign, number; for
example, -1.1
2 - Negative sign, space, number; for
example, - 1.1
3 - Number, negative sign; for
example, 1.1-
4 - Number, space, negative sign; for
example, 1.1 -

LeadingZero - indicates if leading zeros
should be used in decimal fields. If the
flag is missing, the field "Display leading
zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of
characters in the string
lower (unary operator) returns a string
expression in lowercase letters
upper (unary operator) returns a string
expression in uppercase letters
proper (unary operator) returns from a
character expression a string capitalized as
appropriate for proper names
ltrim (unary operator) removes spaces on the
left side of a string
rtrim (unary operator) removes spaces on the
right side of a string
trim (unary operator) removes spaces on both
sides of a string
startwith (binary operator) specifies whether a
string starts with specified string
endwith (binary operator) specifies whether a
string ends with specified string
contains (binary operator) specifies whether a
string contains another specified string
left (binary operator) retrieves the left part of

the string
right (binary operator) retrieves the right part
of the string
a mid b (binary operator) retrieves the middle
part of the string a starting from b (1 means
first position, and so on)
a count b (binary operator) retrieves the
number of occurrences of the b in a
a replace b with c (double binary operator)
replaces in a the b with c, and gets the result.
a split b, splits the a using the separator b,
and returns an array. For instance, the
"weekday(value) array 'Sun Mon Thu Wed Thu
Fri Sat' split ' '" gets the weekday as string.
This operator can be used with the array

Other known operators for dates are:

time (unary operator) retrieves the time of the
date in string format, as specified in the
control's panel.
timeF (unary operator) retrieves the time of the
date in string format, as "HH:MM:SS". For
instance the timeF(1:23 PM) returns "13:23:00"
shortdate (unary operator) formats a date as
a date string using the short date format, as
specified in the control's panel.
shortdateF (unary operator) formats a date as
a date string using the "MM/DD/YYYY" format.
For instance the shortdateF(December 31,
1971 11:00 AM) returns "12/31/1971".
dateF (unary operator) converts the date
expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format.
longdate (unary operator) formats a date as a
date string using the long date format, as
specified in the control's panel.
year (unary operator) retrieves the year of the
date (100,...,9999)
month (unary operator) retrieves the month of
the date (1, 2,...,12)
day (unary operator) retrieves the day of the
date (1, 2,...,31)

yearday (unary operator) retrieves the number
of the day in the year, or the days since
January 1st (0, 1,...,365)
weekday (unary operator) retrieves the
number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday)
hour (unary operator) retrieves the hour of the
date (0, 1, ..., 23)
min (unary operator) retrieves the minute of
the date (0, 1, ..., 59)
sec (unary operator) retrieves the second of
the date (0, 1, ..., 59)

The The <VALUE> of [ticklabel] option can display
labels using the following built-in HTML tags:

 displays the text in bold.
<i></i> displays the text in italics.
<u></u> underlines the text.
<s></s> Strike-through text
 displays portions of
text with a different font and/or different size.
For instance, the bit
draws the bit text using the Tahoma font, on
size 12 pt. If the name of the font is missing,
and instead size is present, the current font is
used with a different size. For instance, bit displays the bit text using the
current font, but with a different size.
<fgcolor=RRGGBB></fgcolor> displays text
with a specified foreground color. The RR, GG
or BB should be hexa values and indicates red,
green and blue values.
<bgcolor=RRGGBB></bgcolor> displays text
with a specified background color. The RR, GG
or BB should be hexa values and indicates red,
green and blue values.

 a forced line-break
<solidline> The next line shows a solid-line on
top/bottom side. If has no effect for a single
line caption.
<dotline> The next line shows a dot-line on
top/bottom side. If has no effect for a single

line caption.
<upline> The next line shows a solid/dot-line
on top side. If has no effect for a single line
caption.
<r> Right aligns the text
<c> Centers the text
number[:width] inserts an icon
inside the text. The number indicates the index
of the icon being inserted. Use the Images
method to assign a list of icons to your chart.
The last 7 bits in the high significant byte of the
number expression indicates the identifier of
the skin being used to paint the object. Use the
Add method to add new skins to the control. If
you need to remove the skin appearance from
a part of the control you need to reset the last
7 bits in the high significant byte of the color
being applied to the part. The width is optional
and indicates the width of the icon being
inserted. Using the width option you can
overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the
width is 18 pixels.
key[:width] inserts a custom
size picture into the text being previously
loaded using the HTMLPicture property. The
Key parameter indicates the key of the picture
being displayed. The Width parameter
indicates a custom size, if you require to
stretch the picture, else the original size of the
picture is used.
& glyph characters as & (&), < (<),
> (>), &qout; (") and &#number (the
character with specified code), For instance,
the € displays the EUR character, in
UNICODE configuration. The & ampersand is
only recognized as markup when it is followed
by a known letter or a # character and a digit.
For instance if you want to display
bold in HTML caption you can use
bold

(string expression)

exEditMaskFloat 9

Specifies whether the mask field masks a floating
point number. By default, the exEditMaskFloat is
False. This flag is valid only for editors of
exItemEditMask type.

(boolean expression)

exEditSpinStep 10

Specifies the step to advance when user clicks the
editor's spin. By default, the exEditSpinStep is 1.
This flag is valid only for editors of exItemEditSpin
type.

(long expression)

constants GroupPopupEnum
The GroupPopupEnum type specifies whether the sub-menu of the current item is shown as
grouped. The GroupPopup property specifies whether the sub-menu of the current item is
shown as grouped. The GroupPopupEnum type supports the following values:

Name Value Description
exNoGroupPopup 0 No grouping is performed on the popup item.

exGroupPopup 1
Groups and displays the sub-menu items on the
current item, arranged from left to right (by default,
the items are horizontally arranged).

exNoGroupPopupFrame 2

Prevents showing the frame around each grouping
item. If the exNoGroupPopupFrame flag is not
present, the control shows a frame around the
grouping items. The frame around grouping items
can be a solid box or EBN frames. The
Background(exGroupPopupFrameSolid) specifies
the color to show the frames around grouping
items, while the The
Background(exGroupPopupFrameSingle),
Background(exGroupPopupFrameHStart),
Background(exGroupPopupFrameHIntermediate),
Background(exGroupPopupFrameHEnd) specifies
the EBN to be shown for single element, starting
element/item of the group, intermediate elements,
and ending element/item. The
exGroupPopupFrameHStart,
exGroupPopupFrameHIntermediate and
exGroupPopupFrameHEnd are valid for horizontally
grouping items (exGroupPopupVertical flag is not
present).

exGroupPopupCenter 4 Shows the grouping popup aligned to the center of
the current item.

exGroupPopupRight 8 Shows the grouping popup aligned to the right of
the current item.

exGroupPopupEqualWidth 16 Shows the items that make the group of the same
width.

exGroupPopupEqualHeight 32 Shows the items that make the group of the same
height.
Forces the grouping items to show the solid frame

exGroupPopupFrameSolidBox64
(exGroupPopupFrameSolid) rather than EBN frame.
The exGroupPopupFrameSolidBox flag can be
combined with the exGroupPopupFrameThickBox to
specify a ticker solid frame. This flag has no effect
if the exNoGroupPopupFrame is present.

exGroupPopupFrameThickBox128

Specifies that the grouping items shows a ticker
frame. The exGroupPopupFrameThickBox flag can
be combined with the
exGroupPopupFrameSolidBox to specify a ticker
solid frame. This flag has no effect if the
exNoGroupPopupFrame is present.

exGroupPopupVertical 256

Arranges vertically the items that compose the
group (by default, the items are horizontally
arranged). If the exNoGroupPopupFrame flag is
not present, the control shows a frame around the
grouping items. The frame around grouping items
can be a solid box or EBN frames. The
Background(exGroupPopupFrameSolid) specifies
the color to show the frames around grouping
items, while the The
Background(exGroupPopupFrameSingle),
Background(exGroupPopupFrameVStart),
Background(exGroupPopupFrameVIntermediate),
Background(exGroupPopupFrameVEnd) specifies
the EBN to be shown for single element, starting
element/item of the group, intermediate elements,
and ending element/item. The
exGroupPopupFrameVStart,
exGroupPopupFrameVIntermediate and
exGroupPopupFrameVEnd are valid for vertically
grouping items (exGroupPopupVertical flag is
present).

constants MenuAppearanceEnum
The MenuAppearanceEnum type indicates the menu's appearance. The
MenuAppearanceEnum type supports the following values:

Name Value Description

exMenuNormal 0

The BackColor property specifies the menu's
background color. The ForeColor property specifies
the menu's foreground color. The following screen
shot shows the menu using the exMenuNormal
option:

exMenuFlat 1

The BackColor property specifies the menu's
background color. The ForeColor property specifies
the menu's foreground color. The
Background(exMenuFlatLineColor) property
indicates the color of line that divides the left to right
side of the menu. The FlatBackColor property
indicates the color to show the left part of the
menu. Use the FlatImageWidth property to specify
the width of the column that displays
icons/images/check or radio buttons.

You can use this option to show all images, check
boxes, radio buttons aligned to the left side as
shown in the following screen shot:

exMenuButton 2

The BackColor property specifies the menu's
background color. The ForeColor property specifies
the menu's foreground color. The
Background(exMenuButtonItem) property indicates
the visual appearance for items in the menu control.
You can use this option to apply a new appearance
for all items in the control by specifying the The
Background(exMenuButtonItem) property to reffer
an EBN object link in the following screen shot:

constants MenuBorderEnum
The MenuBorderEnum indicates the type of the borders to be shown on the menu. The
MenuBorderEnum type supports the following values:

Name Value Description
NoBorder 0 NoBorder
FlatBorder 1 FlatBorder
SunkenBorder 2 SunkenBorder
RaisedBorder 3 RaisedBorder
EtchedBorder 4 EtchedBorder
BumpBorder 5 BumpBorder
ShadowBorder 6 ShadowBorder
InsetBorder 7 InsetBorder
SingleBorder 8 SingleBorder

constants MenuItemTypeEnum
The MenuItemTypeEnum type specifies the type of Item objects to be collected using the
Get method. The Get method can be used to get a collection / safe array of Item objects
with a specified characteristics. For instance, you can collect the items of Edit type, or
items that holds an Edit field inside. The MenuItemTypeEnum type supports the following
values:

Name Value Description

exRegularMenuItem 0
Indicates a regular item. A regular item contains no
sub-menus, no sub-control, no check box, no radio
buttons and it is not a separator item.

exCheckBoxMenuItem 1
Indicates an item with a check box. The Check
property specifies whether the item displays a
check box.

exRadioButtonMenuItem 2
Indicates an item with a radio button. The Radio
property specifies whether the item displays a radio
button.

exSubMenuItem 3 Indicates a sub-menu item or an item that displays
another menu.

exSeparatorMenuItem 4
Specifies a separator item. The SubMenu property
gives access to the items collection being shown in
the popup menu.

exControlMenuItem 5
Indicates a sub-menu item that displays an ActiveX
or a Window inside. The SubControl property gives
access to the Control object being displayed.

exAllMenuItems 15 Indicates any type of item

exImageMenuItem 16
This flag can be combined with any other flag and
value to specify the items that display icons using
the Image property.

exDisplayTFIMenuItem 32 Reserved.

exEditMenuItem 64

This flag can be combined with any other flag and
value to specify the items that display any Edit field
inside. The EditCaption property specifies the
caption to be shown in the item's edit field.

exDisabledMenuItem 128
This flag can be combined with any other flag and
value to specify the disabled items, or items with
the Enabled property on False.
This flag can be combined with any other flag and

exUncheckedMenuItem 256 value to specify un-checked items, or items with the
Checked property on False.

exCheckedMenuItem 512
This flag can be combined with any other flag and
value to specify checked items, or items with the
Checked property on True.

exPartialCheckedMenuItem 768 Reserved.

constants IncrementalSearchEnum
"In computing, incremental search, incremental find or real-time suggestions is a user
interface interaction method to progressively search for and filter through text. As the user
types text, one or more possible matches for the text are found and immediately presented
to the user. ". The IncrementalSearchEnum type specifies how the control performs the
incremental searching while user types characters. The IncrementalSearch property the
control's incremental search type.

Name Value Description

exNoIncrementalSearch 0 No incremental search is performed, when the user
types characters.

exISearchStartWith 1
Specifies that the control looks for objects that
starts with typed characters, with highlighting the
found result.

exISearchContains 2
Specifies that the control looks for objects that
contains typed characters, with highlighting the
found result.

exISearchFilterFor 16 The control displays just the items that match the
typed characters.

constants PictureDisplayEnum
Specifies how a picture object is displayed.

Name Value Description
UpperLeft 0 Aligns the picture to the upper left corner.
UpperCenter 1 Centers the picture on the upper edge.
UpperRight 2 Aligns the picture to the upper right corner.

MiddleLeft 16 Aligns horizontally the picture on the left side, and
centers the picture vertically.

MiddleCenter 17 Puts the picture on the center of the source.

MiddleRight 18 Aligns horizontally the picture on the right side, and
centers the picture vertically.

LowerLeft 32 Aligns the picture to the lower left corner.
LowerCenter 33 Centers the picture on the lower edge.
LowerRight 34 Aligns the picture to the lower right corner.
Tile 48 Tiles the picture on the source.
Stretch 49 The picture is resized to fit the source.

constants ShowAsButtonEnum
The ShowAsButtonEnum type specifies the way a button is shown. The ShowAsButton
property specifies whether the current item is shown a button or a select button. The
ShowAsButtonEnum type supports the following values:

Name Value Description
exShowAsButtonNone 0 No button is associated with the current item.

exShowAsButton 1

A button is associated with the current item. This
flag can be combined with
exShowAsButtonAutoSize flag.

exShowAsButtonAutoSize 2
The size of the button's caption fits the item's
caption. This flag can be combined with any other
flags.

exShowAsSelectButton 17

A select button is associated with the current item (
show the drop-down button to the right). The
exShowAsSelectButton flag has effect only if the
current item is a popup item, so it contains sub-
items. The SubMenu property gives access to the
item's sub menu, while it is a popup item. The
Add(Caption,SubMenu) adds a popup item. The
item's SubMenu is shown bellow the button, when
user clicks the associated arrow. The popup being
shown is a local popup, so clicking any item inside a
local popup makes the popup itself to close
including all its descendent sub-menus, without
closing any ascendant sub-menus.

A select button is associated with the current item (
show the drop-down button to the bottom). The
exShowAsSelectButtonBottom flag has effect only if
the current item is a popup item, so it contains sub-
items. The SubMenu property gives access to the
item's sub menu, while it is a popup item. The
Add(Caption, SubMenu) adds a popup item (an

exShowAsSelectButtonBottom273
item that contains sub-items). The item's SubMenu
is shown bellow the button, when user clicks the
associated arrow. The popup being shown is a local
popup, so clicking any item inside a local popup
makes the popup itself to close including all its
descendent sub-menus, without closing any
ascendant sub-menus.

constants ShowCheckedAsSelectedEnum
The ShowCheckedAsSelected property specifies whether the checked items (all) shows as
selected. The ShowCheckedAsSelected property of the Item object specifies whether the
individual checked item is shown as selected. The ShowCheckedAsSelectedEnum type
supports the following values.

Name Value Description
exDisplayItemCheckDefault 0 No highlighting is applied to item.

exDisplayItemCheckHighlight -1 Highlights or un-highlights the checked/unchecked
item, but still the check/radio buttons are shown.

exDisplayItemHighlight 1 Highlights or un-highlights the checked/unchecked
item, but check/radio buttons are hidden.

exDisplayItemCheckInherit 2 Inherits the value of the control's
ShowCheckedAsSelected property.

constants ShowPopupArrowEnum
The ShowPopupArrowEnum type specifies how the arrow of an item that displays a sub-
menu is shown. The ShowPopupArrow specifies how the arrow of an item that displays a
sub-menu is shown. The ShowPopupArrowEnum supports the following values:

Name Value Description
exPopupArrowNone 0 No arrow is shown.

exShowPopupArrowLight 1 The item shows a light arrow when it displays a
sub-menu.

exShowPopupArrowDark 2 The item shows a dark arrow when it displays a
sub-menu.

constants ShowPopupEffectEnum
The ShowPopupEffectEnum value indicates the effect to be shown, when the user clicks an
item with a sub-menu associated. The ShowPopupEffect property indicates the effect to be
applied when the popup menu is shown. The ShowPopupEffectEnum type supports the
following values:

Name Value Description
exShowPopupDirect 0 The popup menu is shown directly, with no effect.
exShowPopupScroll -1 The popup menu is scrolling before showing.
exShowPopupLightUp 1 The popup menu is lightning up before showing.

constants SubMenuSortOrderEnum
The SubMenuSortOrderEnum type specifies the way the submenu displays the items. The
SortOrder property specifies the sort order to display the items in the sub menu. The
SubMenuSortOrderEnum type supports the following values:

Name Value Description
exSubMenuUnsorted 0 No sort is applied when the submenu is displayed.

exSubMenuAscending 1 The items in the submenu are alphabetically
displayed in ascending order.

exSubMenuDescending 2 The items in the submenu are alphabetically
displayed in descending order.

exSubMenuReverse 3 The items in the submenu are displayed in reverse
order.

constants ItemTypeEnum
The ItemTypeEnum type specifies the type of items to be added to the control. The
ItemType parameter of the Add method specifies the type of the item to be added to the
Items collection. The ItemTypeEnum type supports the following values:

Name Value Description
Regular 0 Specifies a regular item, with no sub menu.

Separator 1

Specifies a separator item. The
Background(exMenuSeparatorItem) property
specifies the visual appearance of the separator
items.

SubMenu 2
Specifies a sub menu. The SubMenu property gets
a collection of Item objects to be displayed on the
sub-menu.

SubControl 3

Specifies a popup menu that hosts an ActiveX
control or a Window. The SubControl property gets
access to the Control object that holds information
about the inside ActiveX or Window hosted by the
item

constants UIVisualThemeEnum
The UIVisualThemeEnum expression specifies the UI parts that the control can shown using
the current visual theme. The UseVisualTheme property specifies whether the UI parts of
the control are displayed using the current visual theme.

Name Value Description
exNoVisualTheme 0 exNoVisualTheme
exDefaultVisualTheme 16777215exDefaultVisualTheme
exHeaderVisualTheme 1 exHeaderVisualTheme
exFilterBarVisualTheme 2 exFilterBarVisualTheme
exButtonsVisualTheme 4 exButtonsVisualTheme
exCalendarVisualTheme 8 exCalendarVisualTheme
exSliderVisualTheme 16 exSliderVisualTheme
exSpinVisualTheme 32 exSpinVisualTheme
exCheckBoxVisualTheme 64 exCheckBoxVisualTheme
exProgressVisualTheme 128 exProgressVisualTheme
exCalculatorVisualTheme 256 exCalculatorVisualTheme

Appearance object
The component lets the user changes its visual appearance using skins, each one providing
an additional visual experience that enhances viewing pleasure. Skins are relatively easy to
build and put on any part of the control. The Appearance object holds a collection of skins.
The Appearance object supports the following properties and methods:

Name Description
Add Adds or replaces a skin object to the control.
Clear Removes all skins in the control.
Remove Removes a specific skin from the control.

RenderType Specifies the way colored EBN objects are displayed on
the component.

method Appearance.Add (ID as Long, Skin as Variant)
Adds or replaces a skin object to the control.

Type Description

ID as Long

A Long expression that indicates the index of the skin
being added or replaced. The value must be between 1
and 126, so Appearance collection should holds no more
than 126 elements.
The Skin parameter of the Add method can a STRING as
explained bellow, a BYTE[] / safe arrays of VT_I1 or
VT_UI1 expression that indicates the content of the EBN
file. You can use the BYTE[] / safe arrays of VT_I1 or
VT_UI1 option when using the EBN file directly in the
resources of the project. For instance, the VB6 provides
the LoadResData to get the safe array o bytes for
specified resource, while in VB/NET or C# the internal
class Resources provides definitions for all files being
inserted. (ResourceManager.GetObject("ebn",
resourceCulture))

If the Skin parameter points to a string expression, it can
be one of the following:

A path to the skin file (*.EBN). The ExButton
component or ExEBN tool can be used to create,
view or edit EBN files. For instance, "C:\Program
Files\Exontrol\ExButton\Sample\EBN\MSOffice-
Ribbon\msor_frameh.ebn"
A BASE64 encoded string that holds the skin file (
*.EBN). Use the ExImages tool to build BASE 64
encoded strings of the skin file (*.EBN). The
BASE64 encoded string starts with "gBFLBCJw..."
An Windows XP theme part, if the Skin parameter
starts with "XP:". Use this option, to display any UI
element of the Current Windows XP Theme, on any
part of the control. In this case, the syntax of the Skin
parameter is: "XP:ClassName Part State" where the
ClassName defines the window/control class name in
the Windows XP Theme, the Part indicates a long
expression that defines the part, and the State
indicates the state of the part to be shown. All known
values for window/class, part and start are defined at

https://exontrol.com/ebn.jsp
https://exontrol.com/ebn.jsp
https://exontrol.com/exbutton.jsp
https://exontrol.com/exebn.jsp
https://exontrol.com/ebn.jsp
https://exontrol.com/eximages.jsp
https://exontrol.com/ebn.jsp

Skin as Variant

the end of this document. For instance the
"XP:Header 1 2" indicates the part 1 of the Header
class in the state 2, in the current Windows XP
theme.

The following screen shots show a few Windows XP
Theme Elements, running on Windows Vista and
Windows 10, using the XP options:

A copy of another skin with different coordinates (
position, size), if the Skin parameter starts with
"CP:". Use this option, to display the EBN, using
different coordinates (position, size). By default, the
EBN skin object is rendered on the part's client area.
Using this option, you can display the same EBN, on a
different position / size. In this case, the syntax of the
Skin parameter is: "CP:ID Left Top Right Bottom"

where the ID is the identifier of the EBN to be used (
it is a number that specifies the ID parameter of the
Add method), Left, Top, Right and Bottom
parameters/numbers specifies the relative position to
the part's client area, where the EBN should be
rendered. The Left, Top, Right and Bottom
parameters are numbers (negative, zero or positive
values, with no decimal), that can be followed by the
D character which indicates the value according to the
current DPI settings. For instance, "CP:1 -2 -2 2 2",
uses the EBN with the identifier 1, and displays it on a
2-pixels wider rectangle no matter of the DPI settings,
while "CP:1 -2D -2D 2D 2D" displays it on a 2-pixels
wider rectangle if DPI settings is 100%, and on on a
3-pixels wider rectangle if DPI settings is 150%.

The following screen shot shows the same EBN being
displayed, using different CP options:

Return Description

Boolean A Boolean expression that indicates whether the new skin
was added or replaced.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control. By using a
collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the Refresh method to refresh the control.

The identifier you choose for the skin is very important to be used in the background
properties like explained bellow. Shortly, the color properties uses 4 bytes (DWORD,
double WORD, and so on) to hold a RGB value. More than that, the first byte (most
significant byte in the color) is used only to specify system color. if the first bit in the byte is

1, the rest of bits indicates the index of the system color being used. So, we use the last 7
bits in the high significant byte of the color to indicates the identifier of the skin being used.
So, since the 7 bits can cover 127 values, excluding 0, we have 126 possibilities to store an
identifier in that byte. This way, a DWORD expression indicates the background color
stored in RRGGBB format and the index of the skin (ID parameter) in the last 7 bits in the
high significant byte of the color. For instance, the BackColor = BackColor Or &H2000000
indicates that we apply the skin with the index 2 using the old color, to the object that
BackColor is applied.

On Windows XP, the following table shows how the common controls are broken into parts
and states:

Control/ClassName Part States

BUTTON BP_CHECKBOX = 3

CBS_UNCHECKEDNORMAL =
1 CBS_UNCHECKEDHOT = 2
CBS_UNCHECKEDPRESSED
= 3
CBS_UNCHECKEDDISABLED
= 4 CBS_CHECKEDNORMAL =
5 CBS_CHECKEDHOT = 6
CBS_CHECKEDPRESSED = 7
CBS_CHECKEDDISABLED = 8
CBS_MIXEDNORMAL = 9
CBS_MIXEDHOT = 10
CBS_MIXEDPRESSED = 11
CBS_MIXEDDISABLED = 12

BP_GROUPBOX = 4 GBS_NORMAL = 1
GBS_DISABLED = 2

BP_PUSHBUTTON = 1

PBS_NORMAL = 1 PBS_HOT
= 2 PBS_PRESSED = 3
PBS_DISABLED = 4
PBS_DEFAULTED = 5

BP_RADIOBUTTON = 2

RBS_UNCHECKEDNORMAL =
1 RBS_UNCHECKEDHOT = 2
RBS_UNCHECKEDPRESSED
= 3
RBS_UNCHECKEDDISABLED
= 4 RBS_CHECKEDNORMAL =
5 RBS_CHECKEDHOT = 6
RBS_CHECKEDPRESSED = 7
RBS_CHECKEDDISABLED = 8

BP_USERBUTTON = 5

CLOCK CLP_TIME = 1 CLS_NORMAL = 1

COMBOBOX CP_DROPDOWNBUTTON = 1

CBXS_NORMAL = 1
CBXS_HOT = 2
CBXS_PRESSED = 3
CBXS_DISABLED = 4

EDIT EP_CARET = 2

EP_EDITTEXT = 1

ETS_NORMAL = 1 ETS_HOT =
2 ETS_SELECTED = 3
ETS_DISABLED = 4
ETS_FOCUSED = 5
ETS_READONLY = 6
ETS_ASSIST = 7

EXPLORERBAR EBP_HEADERBACKGROUND = 1

EBP_HEADERCLOSE = 2
EBHC_NORMAL = 1
EBHC_HOT = 2
EBHC_PRESSED = 3

EBP_HEADERPIN = 3

EBHP_NORMAL = 1
EBHP_HOT = 2
EBHP_PRESSED = 3
EBHP_SELECTEDNORMAL =
4 EBHP_SELECTEDHOT = 5
EBHP_SELECTEDPRESSED =
6

EBP_IEBARMENU = 4 EBM_NORMAL = 1 EBM_HOT
= 2 EBM_PRESSED = 3

EBP_NORMALGROUPBACKGROUND = 5

EBP_NORMALGROUPCOLLAPSE = 6
EBNGC_NORMAL = 1
EBNGC_HOT = 2
EBNGC_PRESSED = 3

EBP_NORMALGROUPEXPAND = 7
EBNGE_NORMAL = 1
EBNGE_HOT = 2
EBNGE_PRESSED = 3

EBP_NORMALGROUPHEAD = 8
EBP_SPECIALGROUPBACKGROUND = 9

EBP_SPECIALGROUPCOLLAPSE = 10
EBSGC_NORMAL = 1
EBSGC_HOT = 2
EBSGC_PRESSED = 3

EBP_SPECIALGROUPEXPAND = 11
EBSGE_NORMAL = 1
EBSGE_HOT = 2
EBSGE_PRESSED = 3

EBP_SPECIALGROUPHEAD = 12

HEADER HP_HEADERITEM = 1
HIS_NORMAL = 1 HIS_HOT =
2 HIS_PRESSED = 3

HP_HEADERITEMLEFT = 2 HILS_NORMAL = 1 HILS_HOT
= 2 HILS_PRESSED = 3

HP_HEADERITEMRIGHT = 3 HIRS_NORMAL = 1 HIRS_HOT
= 2 HIRS_PRESSED = 3

HP_HEADERSORTARROW = 4 HSAS_SORTEDUP = 1
HSAS_SORTEDDOWN = 2

LISTVIEW LVP_EMPTYTEXT = 5
LVP_LISTDETAIL = 3
LVP_LISTGROUP = 2

LVP_LISTITEM = 1

LIS_NORMAL = 1 LIS_HOT =
2 LIS_SELECTED = 3
LIS_DISABLED = 4
LIS_SELECTEDNOTFOCUS =
5

LVP_LISTSORTEDDETAIL = 4

MENU MP_MENUBARDROPDOWN = 4
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUBARITEM = 3
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_CHEVRON = 5
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUDROPDOWN = 2
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUITEM = 1
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_SEPARATOR = 6
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MENUBAND MDP_NEWAPPBUTTON = 1

MDS_NORMAL = 1 MDS_HOT
= 2 MDS_PRESSED = 3
MDS_DISABLED = 4
MDS_CHECKED = 5

MDS_HOTCHECKED = 6
MDP_SEPERATOR = 2

PAGE PGRP_DOWN = 2
DNS_NORMAL = 1 DNS_HOT
= 2 DNS_PRESSED = 3
DNS_DISABLED = 4

PGRP_DOWNHORZ = 4

DNHZS_NORMAL = 1
DNHZS_HOT = 2
DNHZS_PRESSED = 3
DNHZS_DISABLED = 4

PGRP_UP = 1
UPS_NORMAL = 1 UPS_HOT
= 2 UPS_PRESSED = 3
UPS_DISABLED = 4

PGRP_UPHORZ = 3

UPHZS_NORMAL = 1
UPHZS_HOT = 2
UPHZS_PRESSED = 3
UPHZS_DISABLED = 4

PROGRESS PP_BAR = 1
PP_BARVERT = 2
PP_CHUNK = 3
PP_CHUNKVERT = 4

REBAR RP_BAND = 3

RP_CHEVRON = 4
CHEVS_NORMAL = 1
CHEVS_HOT = 2
CHEVS_PRESSED = 3

RP_CHEVRONVERT = 5
RP_GRIPPER = 1
RP_GRIPPERVERT = 2

SCROLLBAR SBP_ARROWBTN = 1

ABS_DOWNDISABLED,
ABS_DOWNHOT,
ABS_DOWNNORMAL,
ABS_DOWNPRESSED,
ABS_UPDISABLED,
ABS_UPHOT,
ABS_UPNORMAL,
ABS_UPPRESSED,
ABS_LEFTDISABLED,
ABS_LEFTHOT,
ABS_LEFTNORMAL,
ABS_LEFTPRESSED,
ABS_RIGHTDISABLED,

ABS_RIGHTHOT,
ABS_RIGHTNORMAL,
ABS_RIGHTPRESSED

SBP_GRIPPERHORZ = 8
SBP_GRIPPERVERT = 9

SBP_LOWERTRACKHORZ = 4

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_LOWERTRACKVERT = 6

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_THUMBBTNHORZ = 2

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_THUMBBTNVERT = 3

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_UPPERTRACKHORZ = 5

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_UPPERTRACKVERT = 7

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_SIZEBOX = 10 SZB_RIGHTALIGN = 1
SZB_LEFTALIGN = 2

SPIN SPNP_DOWN = 2
DNS_NORMAL = 1 DNS_HOT
= 2 DNS_PRESSED = 3
DNS_DISABLED = 4

SPNP_DOWNHORZ = 4

DNHZS_NORMAL = 1
DNHZS_HOT = 2
DNHZS_PRESSED = 3
DNHZS_DISABLED = 4

SPNP_UP = 1
UPS_NORMAL = 1 UPS_HOT
= 2 UPS_PRESSED = 3
UPS_DISABLED = 4

SPNP_UPHORZ = 3

UPHZS_NORMAL = 1
UPHZS_HOT = 2
UPHZS_PRESSED = 3
UPHZS_DISABLED = 4

STARTPANEL SPP_LOGOFF = 8

SPP_LOGOFFBUTTONS = 9
SPLS_NORMAL = 1
SPLS_HOT = 2
SPLS_PRESSED = 3

SPP_MOREPROGRAMS = 2

SPP_MOREPROGRAMSARROW = 3 SPS_NORMAL = 1 SPS_HOT
= 2 SPS_PRESSED = 3

SPP_PLACESLIST = 6
SPP_PLACESLISTSEPARATOR = 7
SPP_PREVIEW = 11
SPP_PROGLIST = 4
SPP_PROGLISTSEPARATOR = 5
SPP_USERPANE = 1
SPP_USERPICTURE = 10

STATUS SP_GRIPPER = 3
SP_PANE = 1
SP_GRIPPERPANE = 2

TAB TABP_BODY = 10
TABP_PANE = 9

TABP_TABITEM = 1

TIS_NORMAL = 1 TIS_HOT =
2 TIS_SELECTED = 3
TIS_DISABLED = 4
TIS_FOCUSED = 5

TABP_TABITEMBOTHEDGE = 4

TIBES_NORMAL = 1
TIBES_HOT = 2
TIBES_SELECTED = 3
TIBES_DISABLED = 4
TIBES_FOCUSED = 5

TABP_TABITEMLEFTEDGE = 2

TILES_NORMAL = 1
TILES_HOT = 2
TILES_SELECTED = 3
TILES_DISABLED = 4
TILES_FOCUSED = 5
TIRES_NORMAL = 1
TIRES_HOT = 2

TABP_TABITEMRIGHTEDGE = 3 TIRES_SELECTED = 3
TIRES_DISABLED = 4
TIRES_FOCUSED = 5

TABP_TOPTABITEM = 5

TTIS_NORMAL = 1 TTIS_HOT
= 2 TTIS_SELECTED = 3
TTIS_DISABLED = 4
TTIS_FOCUSED = 5

TABP_TOPTABITEMBOTHEDGE = 8

TTIBES_NORMAL = 1
TTIBES_HOT = 2
TTIBES_SELECTED = 3
TTIBES_DISABLED
TTIBES_FOCUSED = 5

TABP_TOPTABITEMLEFTEDGE = 6

TTILES_NORMAL = 1
TTILES_HOT = 2
TTILES_SELECTED = 3
TTILES_DISABLED
TTILES_FOCUSED = 5

TABP_TOPTABITEMRIGHTEDGE = 7

TTIRES_NORMAL = 1
TTIRES_HOT = 2
TTIRES_SELECTED = 3
TTIRES_DISABLED
TTIRES_FOCUSED = 5

TASKBAND TDP_GROUPCOUNT = 1
TDP_FLASHBUTTON = 2
TDP_FLASHBUTTONGROUPMENU = 3

TASKBAR TBP_BACKGROUNDBOTTOM = 1
TBP_BACKGROUNDLEFT = 4
TBP_BACKGROUNDRIGHT = 2
TBP_BACKGROUNDTOP = 3
TBP_SIZINGBARBOTTOM = 5
TBP_SIZINGBARBOTTOMLEFT = 8
TBP_SIZINGBARRIGHT = 6
TBP_SIZINGBARTOP = 7

TOOLBAR TP_BUTTON = 1

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6
TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3

TP_DROPDOWNBUTTON = 2 TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SPLITBUTTON = 3

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SPLITBUTTONDROPDOWN = 4

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SEPARATOR = 5

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SEPARATORVERT = 6

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TOOLTIP TTP_BALLOON = 3 TTBS_NORMAL = 1
TTBS_LINK = 2

TTP_BALLOONTITLE = 4 TTBS_NORMAL = 1
TTBS_LINK = 2

TTP_CLOSE = 5
TTCS_NORMAL = 1
TTCS_HOT = 2
TTCS_PRESSED = 3

TTP_STANDARD = 1 TTSS_NORMAL = 1
TTSS_LINK = 2

TTP_STANDARDTITLE = 2 TTSS_NORMAL = 1
TTSS_LINK = 2

TRACKBAR TKP_THUMB = 3

TUS_NORMAL = 1 TUS_HOT =
2 TUS_PRESSED = 3
TUS_FOCUSED = 4
TUS_DISABLED = 5

TKP_THUMBBOTTOM = 4

TUBS_NORMAL = 1
TUBS_HOT = 2
TUBS_PRESSED = 3

TUBS_FOCUSED = 4
TUBS_DISABLED = 5

TKP_THUMBLEFT = 7

TUVLS_NORMAL = 1
TUVLS_HOT = 2
TUVLS_PRESSED = 3
TUVLS_FOCUSED = 4
TUVLS_DISABLED = 5

TKP_THUMBRIGHT = 8

TUVRS_NORMAL = 1
TUVRS_HOT = 2
TUVRS_PRESSED = 3
TUVRS_FOCUSED = 4
TUVRS_DISABLED = 5

TKP_THUMBTOP = 5

TUTS_NORMAL = 1
TUTS_HOT = 2
TUTS_PRESSED = 3
TUTS_FOCUSED = 4
TUTS_DISABLED = 5

TKP_THUMBVERT = 6

TUVS_NORMAL = 1
TUVS_HOT = 2
TUVS_PRESSED = 3
TUVS_FOCUSED = 4
TUVS_DISABLED = 5

TKP_TICS = 9 TSS_NORMAL = 1
TKP_TICSVERT = 10 TSVS_NORMAL = 1
TKP_TRACK = 1 TRS_NORMAL = 1
TKP_TRACKVERT = 2 TRVS_NORMAL = 1

TRAYNOTIFY TNP_ANIMBACKGROUND = 2
TNP_BACKGROUND = 1

TREEVIEW TVP_BRANCH = 3

TVP_GLYPH = 2 GLPS_CLOSED = 1
GLPS_OPENED = 2

TVP_TREEITEM = 1

TREIS_NORMAL = 1
TREIS_HOT = 2
TREIS_SELECTED = 3
TREIS_DISABLED = 4
TREIS_SELECTEDNOTFOCUS
= 5

WINDOW WP_CAPTION = 1 CS_ACTIVE = 1 CS_INACTIVE
= 2 CS_DISABLED = 3

WP_CAPTIONSIZINGTEMPLATE = 30

WP_CLOSEBUTTON = 18
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_DIALOG = 29

WP_FRAMEBOTTOM = 9 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMEBOTTOMSIZINGTEMPLATE = 36

WP_FRAMELEFT = 7 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMELEFTSIZINGTEMPLATE = 32

WP_FRAMERIGHT = 8 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMERIGHTSIZINGTEMPLATE = 34

WP_HELPBUTTON = 23
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_HORZSCROLL = 25
HSS_NORMAL = 1 HSS_HOT
= 2 HSS_PUSHED = 3
HSS_DISABLED = 4

WP_HORZTHUMB = 26
HTS_NORMAL = 1 HTS_HOT =
2 HTS_PUSHED = 3
HTS_DISABLED = 4

WP_MAX_BUTTON

MAXBS_NORMAL = 1
MAXBS_HOT = 2
MAXBS_PUSHED = 3
MAXBS_DISABLED = 4

WP_MAXCAPTION = 5
MXCS_ACTIVE = 1
MXCS_INACTIVE = 2
MXCS_DISABLED = 3

WP_MDICLOSEBUTTON = 20
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_MDIHELPBUTTON = 24
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_MDIMINBUTTON = 16

MINBS_NORMAL = 1
MINBS_HOT = 2
MINBS_PUSHED = 3
MINBS_DISABLED = 4
RBS_NORMAL = 1 RBS_HOT

WP_MDIRESTOREBUTTON = 22 = 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_MDISYSBUTTON = 14
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_MINBUTTON = 15
MINBS_NORMAL = 1
MINBS_HOT = 2
MINBS_PUSHED = 3
MINBS_DISABLED = 4

WP_MINCAPTION = 3
MNCS_ACTIVE = 1
MNCS_INACTIVE = 2
MNCS_DISABLED = 3

WP_RESTOREBUTTON = 21
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_SMALLCAPTION = 2 CS_ACTIVE = 1 CS_INACTIVE
= 2 CS_DISABLED = 3

WP_SMALLCAPTIONSIZINGTEMPLATE = 31

WP_SMALLCLOSEBUTTON = 19
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_SMALLFRAMEBOTTOM = 12 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMEBOTTOMSIZINGTEMPLATE
= 37

WP_SMALLFRAMELEFT = 10 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMELEFTSIZINGTEMPLATE =
33

WP_SMALLFRAMERIGHT = 11 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMERIGHTSIZINGTEMPLATE =
35

WP_SMALLHELPBUTTON
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_SMALLMAXBUTTON

MAXBS_NORMAL = 1
MAXBS_HOT = 2
MAXBS_PUSHED = 3
MAXBS_DISABLED = 4

WP_SMALLMAXCAPTION = 6 MXCS_ACTIVE = 1
MXCS_INACTIVE = 2
MXCS_DISABLED = 3

WP_SMALLMINCAPTION = 4
MNCS_ACTIVE = 1
MNCS_INACTIVE = 2
MNCS_DISABLED = 3

WP_SMALLRESTOREBUTTON
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_SMALLSYSBUTTON
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_SYSBUTTON = 13
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_VERTSCROLL = 27
VSS_NORMAL = 1 VSS_HOT
= 2 VSS_PUSHED = 3
VSS_DISABLED = 4

WP_VERTTHUMB = 28
VTS_NORMAL = 1 VTS_HOT =
2 VTS_PUSHED = 3
VTS_DISABLED = 4

method Appearance.Clear ()
Removes all skins in the control.

Type Description

Use the Clear method to clear all skins from the control. Use the Remove method to
remove a specific skin. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being applied
to the background's part.

method Appearance.Remove (ID as Long)
Removes a specific skin from the control.

Type Description

ID as Long A Long expression that indicates the index of the skin
being removed.

Use the Remove method to remove a specific skin. The identifier of the skin being removed
should be the same as when the skin was added using the Add method. Use the Clear
method to clear all skins from the control. If you need to remove the skin appearance from
a part of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the background's part.

property Appearance.RenderType as Long
Specifies the way colored EBN objects are displayed on the component.

Type Description

Long A long expression that indicates how the EBN objects are
shown in the control, like explained bellow.

By default, the RenderType property is 0, which indicates an A-color scheme. The
RenderType property can be used to change the colors for the entire control, for parts of
the controls that uses EBN objects. The RenderType property is not applied to the currently
XP-theme if using.

The RenderType property is applied to all parts that displays an EBN object. The properties
of color type may support the EBN object if the property's description includes "A color
expression that indicates the cell's background color. The last 7 bits in the high significant
byte of the color to indicates the identifier of the skin being used. Use the Add method to
add new skins to the control. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being
applied to the background's part." In other words, a property that supports EBN objects
should be of format 0xIDRRGGBB, where the ID is the identifier of the EBN to be applied,
while the BBGGRR is the (Red,Green,Blue, RGB-Color) color to be applied on the selected
EBN. For instance, the 0x1000000 indicates displaying the EBN as it is, with no color
applied, while the 0x1FF0000, applies the Blue color (RGB(0x0,0x0,0xFF), RGB(0,0,255)
on the EBN with the identifier 1. You can use the EBNColor tool to visualize applying EBN
colors.

Click here to watch a movie on how you can change the colors to be applied on EBN
objects.

For instance, the following sample changes the control's header appearance, by using an
EBN object:

With Control
 .VisualAppearance.Add 1,"c:\exontrol\images\normal.ebn"
 .Property = &H1000000
End With

In the following screen shot the following objects displays the current EBN with a different
color:

"A" in Red (RGB(255,0,0), for instance the bar's property exBarColor is 0x10000FF
"B" in Green (RGB(0,255,0), for instance the bar's property exBarColor is 0x100FF00

https://exontrol.com/skintut.jsp#colors
https://www.youtube.com/watch?v=-PcCepMVclQ

"C" in Blue (RGB(0,0,255), for instance the bar's property exBarColor is 0x1FF0000
"Default", no color is specified, for instance the bar's property exBarColor is
0x1000000

The RenderType property could be one of the following:

-3, no color is applied. For instance, the Property = &H1FF0000 is displayed as would
be .Property = &H1000000, so the 0xFF0000 color (Blue color) is ignored. You can
use this option to allow the control displays the EBN colors or not.

-2, OR-color scheme. The color to be applied on the part of the control is a OR bit
combination between the original EBN color and the specified color. For instance, the
Property = &H1FF0000, applies the OR bit for the entire Blue channel, or in other
words, it applies a less Blue to the part of the control. This option should be used with
solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

-1, AND-color scheme, The color to be applied on the part of the control is an AND bit
combination between the original EBN color and the specified color. For instance, the
Property = &H1FF0000, applies the AND bit for the entire Blue channel, or in other
words, it applies a more Blue to the part of the control. This option should be used with
solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

0, default, the specified color is applied to the EBN. For instance, the Property =
&H1FF0000, applies a Blue color to the object. This option could be used to specify
any color for the part of the components, that support EBN objects, not only solid
colors.

0xAABBGGRR, where the AA a value between 0 to 255, which indicates the
transparency, and RR, GG, BB the red, green and blue values. This option applies the
same color to all parts that displays EBN objects, whit ignoring any specified color in
the color property. For instance, the RenderType on 0x4000FFFF, indicates a 25%
Yellow on EBN objects. The 0x40, or 64 in decimal, is a 25 % from in a 256 interal, and
the 0x00FFFF, indicates the Yellow (RGB(255,255,0)). The same could be if the
RenderType is 0x40000000 + vbYellow, or &H40000000 + RGB(255, 255, 0), and so,
the RenderType could be the 0xAA000000 + Color, where the Color is the RGB format
of the color.

The following picture shows the control with the RenderType property on 0x4000FFFF
(25% Yellow, 0x40 or 64 in decimal is 25% from 256):

The following picture shows the control with the RenderType property on 0x8000FFFF
(50% Yellow, 0x80 or 128 in decimal is 50% from 256):

The following picture shows the control with the RenderType property on 0xC000FFFF
(75% Yellow, 0xC0 or 192 in decimal is 75% from 256):

The following picture shows the control with the RenderType property on 0xFF00FFFF
(100% Yellow, 0xFF or 255 in decimal is 100% from 255):

Control object
The Control object holds properties to access the ActiveX or Window to be hosted by the
item. The eXContextMenu component can host any ActiveX control or an already created
window. The Control object can be accessed through the SubControl property of the Item
object.

The following screen shot shows the eXContextMenu/NET that hosts a PropertyGrid
control:

The Control object supports the following properties and methods:

Name Description
CloseOn Indicates when the control is closed.
ControlID Specifies the control's identifier.
Create Creates the component.
Height Specifies the control's height.
LicenseKey Specifies the control's runtime license key.
Object Gets the object.
Width Specifies the control's width.
Window Specifies the handle of the window to be hosted.

property Control.CloseOn as CloseOnEnum
Indicates when the control is closed.

Type Description

CloseOnEnum
A CloseOnEnum expression that specifies when the
context menu is closed once the user clicks the inside
ActiveX control.

By default, the CloseOn property is exUser. In other words, the context menu is not closed
once the user clicks the ActiveX control.

property Control.ControlID as String
Specifies the control's identifier.

Type Description
String A string expression that indicates the control's identifier.

The ControlID and LicenseKey properties must be set before calling Create method. The
Create method creates an ActiveX control given its identifier and its runtime license key, if
required. A control identifier, or programmatic identifier, is a registry entry that can be
associated with a CLSID. The format of a control identifier is <Vendor>.<Component>.
<Version>, separated by periods and with no spaces, as in Word.Document.6.

For instance, the control's identifier for Microsoft Calendar Control is "MSCAL.Calendar",
the control's identifier for Exontrol ExGrid Control is "Exontrol.Grid", and so on.

method Control.Create ()
Creates the component.

Type Description

The Create method creates the ActiveX control. The Create method creates the control
based on its control's identifier. Use the ControlID and LicenseKey properties to specify the
control's identifier and the runtime license key for the control, if required (please make sure
that the runtime license key is not identical with your development license key). If the
Create method fails, the Object property gets nothing. Use the Object property to access
the ActiveX control's properties and methods. Use the CloseOn property to specify how the
item that hosts an ActiveX control is closed using the mouse. Use the Width and Height
properties to specify the size of the item that hosts the ActiveX control. The control fires the
OleEvent event when an inside ActiveX control fires an event. The look and feel of the inner
ActiveX control depends on the identifier you are using, and the version of the library that
implements the ActiveX control, so you need to consult the documentation of the inner
ActiveX control you are inserting inside the eXMenu control.

In case you are using the /NET assembly version, you can use the Window property to
assign a Window/Control to an Item.

The following screen shot displays an item with an ExCalendar inside:

The following samples shows how to load an ActiveX control (Exontrol.Calendar)

VB6,VBA (MS Access, Excell...),VB.NET for /COM

With CreateObject("Exontrol.ContextMenu")
 With .Items.Add("Calendar",3).SubControl

https://exontrol.com/excalendar.jsp
https://exontrol.com/excalendar.jsp

 .ControlID = "Exontrol.Calendar"
 .Create
 End With
 .Select
End With

VB.NET

' Add 'exontrol.excontextmenu.dll' reference to your project.
With New exontrol.EXCONTEXTMENULib.excontextmenu()
 With .Items.Add("Calendar",3).SubControl
 .ControlID = "Exontrol.Calendar"
 .Create()
 End With
 .Select()
End With

C++

/*
 Includes the definition for CreateObject function like follows:
 #include <comdef.h>
 IUnknownPtr CreateObject(BSTR Object)
 {
 IUnknownPtr spResult;
 spResult.CreateInstance(Object);
 return spResult;
 };
*/
/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXCONTEXTMENULib' for the library: 'ExContextMenu
1.0 Type Library'
 #import <ExContextMenu.dll>
 using namespace EXCONTEXTMENULib;
*/
EXCONTEXTMENULib::IExContextMenuPtr var_ExContextMenu =
::CreateObject(L"Exontrol.ContextMenu");

 EXCONTEXTMENULib::IControlPtr var_Control = var_ExContextMenu->GetItems()-
>Add(L"Calendar",long(3),vtMissing)->GetSubControl();
 var_Control->PutControlID(L"Exontrol.Calendar");
 var_Control->Create();
 var_ExContextMenu->Select(vtMissing,vtMissing,vtMissing);

C++ Builder

/*
 Select the Component\Import Component...\Import a Type Library,
 to import the following Type Library:
 ExContextMenu 1.0 Type Library
 TypeLib: e:\Exontrol\ExContextMenu\project\Site\ExContextMenu.dll
 to define the namespace: Excontextmenulib_tlb
*/
//#include "EXCONTEXTMENULIB_TLB.h"
Excontextmenulib_tlb::IExContextMenuPtr var_ExContextMenu =
Variant::CreateObject(L"Exontrol.ContextMenu");
 Excontextmenulib_tlb::IControlPtr var_Control = var_ExContextMenu->Items-
>Add(L"Calendar",TVariant(3),TNoParam())->SubControl;
 var_Control->ControlID = L"Exontrol.Calendar";
 var_Control->Create();
 var_ExContextMenu->Select(TNoParam(),TNoParam(),TNoParam());

C#

// Add 'exontrol.excontextmenu.dll' reference to your project.
exontrol.EXCONTEXTMENULib.excontextmenu var_ExContextMenu = new
exontrol.EXCONTEXTMENULib.excontextmenu();
 exontrol.EXCONTEXTMENULib.Control var_Control =
var_ExContextMenu.Items.Add("Calendar",3,null).SubControl;
 var_Control.ControlID = "Exontrol.Calendar";
 var_Control.Create();
 var_ExContextMenu.Select(null,null,null);

C# for /COM

// Add 'ExContextMenu 1.0 Type Library' reference to your project.

EXCONTEXTMENULib.ExContextMenu var_ExContextMenu = new
EXCONTEXTMENULib.ExContextMenu();
 EXCONTEXTMENULib.Control var_Control =
var_ExContextMenu.Items.Add("Calendar",3,null).SubControl;
 var_Control.ControlID = "Exontrol.Calendar";
 var_Control.Create();
 var_ExContextMenu.Select(null,null,null);

X++ (Dynamics Ax 2009)

COM com_Control,com_ExContextMenu,com_Items,com_item;
anytype var_Control,var_ExContextMenu,var_Items,var_item;
;
// Add 'ExContextMenu 1.0 Type Library' reference to your project.
var_ExContextMenu = COM::createFromObject(new
EXCONTEXTMENULib.excontextmenu()); com_ExContextMenu = var_ExContextMenu;
 var_Items = COM::createFromObject(com_ExContextMenu.Items()); com_Items =
var_Items;
 var_item =
COM::createFromObject(com_Items).Add("Calendar",COMVariant::createFromInt(3));
com_item = var_item;
 var_Control = com_item.SubControl(); com_Control = var_Control;
 com_Control.ControlID("Exontrol.Calendar");
 com_Control.Create();
 com_ExContextMenu.Select();

Delphi 8 (.NET only)

with (ComObj.CreateComObject(ComObj.ProgIDToClassID('Exontrol.ContextMenu'))
as EXCONTEXTMENULib.ExContextMenu) do
begin
 with Items.Add('Calendar',TObject(3),Nil).SubControl do
 begin
 ControlID := 'Exontrol.Calendar';
 Create();
 end;
 Select(Nil,Nil,Nil);
end;

Delphi (standard)

with
(IUnknown(ComObj.CreateComObject(ComObj.ProgIDToClassID('Exontrol.ContextMenu')))
 as EXCONTEXTMENULib_TLB.ExContextMenu) do
begin
 with Items.Add('Calendar',OleVariant(3),Null).SubControl do
 begin
 ControlID := 'Exontrol.Calendar';
 Create();
 end;
 Select(Null,Null,Null);
end;

VFP

with CreateObject("Exontrol.ContextMenu")
 with .Items.Add("Calendar",3).SubControl
 .ControlID = "Exontrol.Calendar"
 .Create
 endwith
 .Select()
endwith

XBasic (Alpha Five)

' Occurs when the user presses and then releases the left mouse button over
the control.
function Click as v ()
 Dim oPivot as P
 Dim var_Control as P
 Dim var_ExContextMenu as P
 oPivot = topparent:CONTROL_ACTIVEX1.activex
 var_ExContextMenu = OLE.Create("Exontrol.ContextMenu")
 var_Control = var_ExContextMenu.Items.Add("Calendar",3).SubControl
 var_Control.ControlID = "Exontrol.Calendar"
 var_Control.Create()
 var_ExContextMenu.Select()

end function

Dim oPivot as P

oPivot = topparent:CONTROL_ACTIVEX1.activex

Visual Objects

local var_ExContextMenu as IExContextMenu
// Generate Source for 'ExContextMenu 1.0 Type Library' server from
Tools\Automation Server...
var_ExContextMenu := IExContextMenu{"Exontrol.ContextMenu"}
 var_Control := var_ExContextMenu:Items:Add("Calendar",3,nil):SubControl
 var_Control:ControlID := "Exontrol.Calendar"
 var_Control:Create()
 var_ExContextMenu:Select(nil,nil,nil)

property Control.Height as Long
Specifies the control's height.

Type Description

Long A long expression that indicates the control's height, in
pixels.

By default, the Height property is 128 pixels. Use the Height property to specify the height
of the inside control. The Height property has effect only if Create method is called after.
Use the Width property to specify the control's width.

property Control.LicenseKey as String
Specifies the control's runtime license key.

Type Description

String A string expression that indicates the control's runtime
license key.

The LicenseKey property must be set only if the control that you are going to use requires a
runtime license key. Please contact the vendor of the control to know if the control requires
a runtime license key. The control's runtime license key is not identical with your
development license key. The LicenseKey property must be set before calling Create
method. Please keep in mind that the vendor/provider of the ActiveX control you want to
insert to an item is responsible for the control's runtime license key. Exontrol can provide the
runtime license key for our components only.

property Control.Object as Object
Gets the object.

Type Description
Object An Object created by the Create method.

Use the Object property to access to control's properties and methods. The type of the
created object depends on ControlID property. The Object property gets nothing if no
object was created. Use the Create method to create the inside ActiveX control. The
control fires the OleEvent event when an inside ActiveX control fires an event. The look and
feel of the inner ActiveX control depends on the identifier you are using, and the version of
the library that implements the ActiveX control, so you need to consult the documentation of
the inner ActiveX control you are inserting inside the eXMenu control.

The following screen shot displays an item with an ExSlider inside:

3

The following screen shot displays an item with an ExCalendar inside:

https://exontrol.com/exslider.jsp
https://exontrol.com/excalendar.jsp

property Control.Width as Long
Specifies the control's width.

Type Description

Long A long expression that indicates the control's width in
pixels.

By default, the Width property is 128 pixels. Use the Width property to specify the width of
the inside control. The Width property has effect only if Create method is called after. Use
the Height property to specify the control's height.

property Control.Window as Variant
Specifies the handle of the window to be hosted.

Type Description

Variant A Long expression that specifies the handle of the Window
to be hosted by the Item.

Use the Window property to assign a Window to an item. The Window may be used by the
/COM or /NET version by providing a valid handle to the window to be shown on the item.
The /COM object may use the Create method to create an inside ActiveX control.

 The following VB/NET sample displays the form's PropertyGrid control to an Item (/NET
version):

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load

 ' Add 'exontrol.excontextmenu.dll' reference to your project.
 With Excontextmenu1
 With .Items
 With .Add("PropertiesGrid", 3).SubControl
 .Width = 256
 .Height = 312
 .Window = PropertyGrid1
 End With
 End With
 End With

 PropertyGrid1.SelectedObject = Excontextmenu1

End Sub

 The following C# sample displays the form's PropertyGrid control to an Item (/NET version
):

private void Form1_Load(object sender, EventArgs e)
{
 exontrol.EXCONTEXTMENULib.Items var_Items = excontextmenu1.Items;
 exontrol.EXCONTEXTMENULib.Control var_Control = var_Items.Add("PropertiesGrid", 3,

null).SubControl;
 var_Control.Width = 256;
 var_Control.Height = 312;
 var_Control.Window = propertyGrid1;

 propertyGrid1.SelectedObject = excontextmenu1;

}

ExContextMenu object
The eXContextMenu component displays and handles a context menu (also called
contextual, shortcut, and popup or pop-up menu). A context menu is a menu in a graphical
user interface (GUI) that appears upon user interaction, such as a right-click mouse
operation. The eXContextMenu component is written from scratch, and does NOT use the
system's popup menu. For instance, the /NET's System.Windows.Controls.ContextMenu
does not support a modal form, so you have to assign a handler for each item, instead the
eXContextMenu component waits for the user to make the selection, and returns the
selected values. Also another major difference is that the
System.Windows.Controls.ContextMenu is closed once any item is clicked, while in the
eXContextMenu component, this is not required, so you can check multiple check boxes,
and when you click outside, the Select method returns the selected values.

The eXContextMenu supports the following properties and methods:

Name Description
AllowToggleRadio Allows or prevents toggling the radio state.
AllowToolTip Allows or prevents showing the item's tooltip.
Appearance Retrieves or sets the control's appearance.

AttachTemplate Attaches a script to the current object, including the
events, from a string, file, a safe array of bytes.

BackColor Specifies the control's background color.

Background Returns or sets a value that indicates the background
color for parts in the control.

CloseOnClick
Gets or sets a value that specifies whether the context

menu is closing.

Cursor Gets or sets the cursor that is displayed when the mouse
pointer hovers the control.

Debug Retrieves or sets a value that indicating whether the item's
identifier is visible.

EventParam Retrieves or sets a value that indicates the current's event
parameter.

ExecuteTemplate Executes a template and returns the result.
FlatBackColor Specifies the color to left part of the menu.

FlatImageWidth
Specifies the width of the column to display the
icons/images when the control's MenuAppearance is
exMenuFlat.

Font Retrieves or sets the control's font.
ForeColor Specifies the control's foreground color.
Get Retrieves an array of Item objects that meet the criteria.

GetChecked Retrieves an array of Item objects, that displays a check
box which is checked.

GetRadio Retrieves an array of Item objects of radio type in the
same group, that are checked.

GetUnchecked Retrieves an array of Item objects, that displays a check
box which is unchecked.

HTMLPicture Adds or replaces a picture in HTML captions.

Images Sets at runtime the control's image list. The Handle should
be a handle to an Images List Control.

ImageSize Retrieves or sets the size of icons the control displays.

IncrementalSearch Specifies how the control searches for the objects while
user types characters.

item Returns a specific Item object giving its identifier or
caption.

Items Retrieves the control's Items collection.
LocalAppearance Retrieves or sets the local popup's appearance.

MenuAppearance Retrieves or sets a value that indicates the menu's
appearance.

Notifier Retrieves or sets the handle of the window that receives
notifications/WM_COMMAND messages.

Picture Retrieves or sets a graphic to be displayed in the control.

PictureDisplay Retrieves or sets a value that indicates the way how the
graphic is displayed on the control's background

Refresh Refreses the control.

ReplaceIcon Adds a new icon, replaces an icon or clears the control's
image list.

SelBackColor Retrieves or sets a value that indicates the selection
background color.

Select Displays the shortcut menu at the specified location and
tracks the selection of items on the menu.

SelForeColor Retrieves or sets a value that indicates the selection
foreground color.

ShowCheckedAsSelected Specifies whether the checked items shows as selected.

ShowCheckedAsSelectedTransparencySpecifies the transparency (percent) to show the
checked items when selected.

ShowPopupArrow Indicates the type of the arrow to be shown when the item
displays the sub-menu.

ShowPopupEffect Specifies the effect to show the popup menu when clicking
an item, such as scrolling, lighting up, and so on.

Template Specifies the control's template.

TemplateDef Defines inside variables for the next
Template/ExecuteTemplate call.

TemplatePut Defines inside variables for the next
Template/ExecuteTemplate call.

ToolTipDelay Specifies the time in ms that passes before the ToolTip
appears.

ToolTipFont Retrieves or sets the tooltip's font.

ToolTipPopDelay Specifies the period in ms of time the ToolTip remains
visible if the mouse pointer is stationary within a control.

ToolTipWidth Specifies a value that indicates the width of the tooltip
window, in pixels.

ToString Loads or saves the Items collection using string
representation (shortcut of Items.ToString property).

UseVisualTheme Specifies whether the control uses the current visual
theme to display certain UI parts.

Version Retrieves the control's version.

Visibility Specify the popup's visibility in percents: 90% is barely
visible, and 10% is nearly opaque.

VisualAppearance Retrieves the control's appearance.

property ExContextMenu.AllowToggleRadio as Boolean
Allows or prevents toggling the radio state.

Type Description

Boolean A Boolean expression that specifies whether the radio-
buttons allow toggling its value.

By default, the AllowToggleRadio property is False. The AllowToggleRadio property on
True, allows a radio button to set on zero (unchecked), if the user clicks twice the radio
button. Usually, clicking a radio-button makes the previously checked radio-button in the
same group, to be un-checked, and the newly clicked item to be checked. Now, if the
AllowToggleRadio property is True, clicking again the radio-button, allows the radio-button
to be un-checked, so allows a radio group to have no radio button checked. The control
fires the CheckItem event once a radio-button is clicked. The Radio property specifies
whether the item displays a radio-button. The RadioGroup property specifies a group of
radio-buttons. A radio group allows a single radio-item to be checked. The Checked
property specifies whether the item is checked or un-checked. The GetRadio method gets
a safe array with the radio-items being checked within a radio group. Use the
Background(exRadioButtonState0)/Background(exRadioButtonState1) property to specify
the visual appearance of the radio-buttons in the control. Use the UseVisualTheme property
to specify whether the visual appearance for the radio-buttons to be as indicated by the
current XP theme.

property ExContextMenu.AllowToolTip as Boolean
Allows or prevents showing the item's tooltip.

Type Description

Boolean A Boolean expression that specifies whether the control
displays the item's tooltip when the cursor hovers the item.

By default, the AllowToolTip property is True. Use the AllowToolTip property on False, to
prevent shown the item's tooltip when the cursor hovers the item. The Tooltip property
assigns a HTML tooltip to an item, that's displayed only when the cursor hovers the item.
The TooltipTitle property specifies the title for the item's tooltip. The TooltipDelay property
specifies the time until the tooltip is shown. Use the ToolTipPopDelay property specifies the
period in ms of time the ToolTip remains visible if the mouse pointer is stationary within a
control. Use the ToolTipWidth property to specify the width of the tooltip window. The
ToolTipFont property specifies the tooltip's font. Use the Background(exToolTipAppearance)
property indicates the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color.

property ExContextMenu.Appearance as MenuBorderEnum
Retrieves or sets the control's appearance.

Type Description

MenuBorderEnum

A MenuBorderEnum expression that specifies the menu's
frame appearance, or a color expression whose last 7 bits
in the high significant byte of the value indicates the index
of the skin in the Appearance collection, being displayed
as control's borders. For instance, if the Appearance =
0x1000000, indicates that the first skin object in the
Appearance collection defines the control's border. The
Client object in the skin, defines the client area of the
control. The list/hierarchy, scrollbars are always
shown in the control's client area. The skin may
contain transparent objects, and so you can define
round corners. The normal.ebn file contains such of
objects. Use the eXButton's Skin builder to view or
change this file

By default, the Appearance property is ShadowBorder. The Appearance property specifies
the menu's frame appearance. The SelBackColor property specifies the visual appearance
of the item being selected / highlighted. The BackColor property specifies the control's
background color. The Background property specifies the visual appearance for different
parts of the control, including the radio-buttons, check-boxes or separator items. The
LocalAppearance property specifies the visual appearance of the local popup. The
PopupAppearance specifies a different visual appearance for the current submenu. When
using EBN appearance, using the PopupAppearance, LocalAppearance or Appearance, the
distance between margins/borders and items client area is indicated by the client object of
the skin/ebn object.

The following screen shot shows the control's frame as displayed by default:

The following screen shot shows the control's frame using a different EBN file:

https://exontrol.com/exbutton.jsp

method ExContextMenu.AttachTemplate (Template as Variant)
Attaches a script to the current object, including the events, from a string, file, a safe array
of bytes.

Type Description
Template as Variant A string expression that specifies the Template to execute.

The AttachTemplate/x-script code is a simple way of calling control/object's properties,
methods/events using strings. The AttachTemplate features allows you to attach a x-script
code to the component. The AttachTemplate method executes x-script code (including
events), from a string, file or a safe array of bytes. This feature allows you to run any x-
script code for any configuration of the component /COM, /NET or /WPF. Exontrol owns the
x-script implementation in its easiest form and it does not require any VB engine or
whatever to get executed. The x-script code can be converted to several programming
languages using the eXHelper tool.

The following sample opens the Windows Internet Explorer once the user clicks the control
(/COM version):

AttachTemplate("handle Click(){ CreateObject(`internetexplorer.application`){ Visible =
True; Navigate(`https://www.exontrol.com`) } } ")

This script is equivalent with the following VB code:

Private Sub ContextMenu1_Click()
 With CreateObject("internetexplorer.application")
 .Visible = True
 .Navigate ("https://www.exontrol.com")
 End With
End Sub

The AttachTemplate/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>
<lines> := <line>[<eol> <lines>] | <block>
<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]
<eol> := ";" | "\r\n"
<line> := <dim> | <createobject> | <call> | <set> | <comment> | <handle>[<eol>]{[<eol>]
<lines>[<eol>]}[<eol>]
<dim> := "DIM" <variables>
<variables> := <variable> [, <variables>]

<variable> := "ME" | <identifier>
<createobject> := "CREATEOBJECT(`"<type>"`)"
<call> := <variable> | <property> | <variable>"."<property> | <createobject>"."<property>
<property> := [<property>"."]<identifier>["("<parameters>")"]
<set> := <call> "=" <value>
<property> := <identifier> | <identifier>"("[<parameters>]")"
<parameters> := <value> [","<parameters>]
<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> | <call>
<boolean> := "TRUE" | "FALSE"
<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit16> := <digit10> | A | B | C | D | E | F
<integer> := <digit10>[<integer>]
<hexa> := <digit16>[<hexa>]
<color> := "RGB("<integer>","<integer>","<integer>")"
<date> := "#"<integer>"/"<integer>"/"<integer>" "[<integer>":"<integer>":"<integer>"]"#"
<string> := '"'<text>'"' | "`"<text>"`"
<comment> := "'"<text>
<handle> := "handle " <event>
<event> := <identifier>"("[<eparameters>]")"
<eparameters> := <eparameter> [","<eparameters>]
<parameters> := <identifier>

where:

<identifier> indicates an identifier of the variable, property, method or event, and should
start with a letter.
<type> indicates the type the CreateObject function creates, as a progID for /COM version
or the assembly-qualified name of the type to create for /NET or /WPF version
<text> any string of characters

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character.

The advantage of the AttachTemplate relative to Template / ExecuteTemplate is that the
AttachTemplate can add handlers to the control events.

property ExContextMenu.BackColor as Color
Specifies the control's background color.

Type Description

Color A Color expression that indicates the control's background
color.

The BackColor property specifies the control's background color. Use the FlatBackColor
property to specify the background color of the left side of the control. The ForeColor
property specifies the control's foreground color. The SelBackColor property specifies the
visual appearance of the item being selected / highlighted. The SelForeColor property
specifies the foreground color of the item being selected / highlighted. The Background
property specifies the visual appearance for different parts of the control. The Appearance
property specifies the menu's frame appearance. The BackColor property of the Item
object specifies a different background color / visual appearance for the entire item.

The following screen shot shows the control's frame as displayed by default:

The following screen shot shows the control's frame using a different EBN file:

property ExContextMenu.Background(Part as BackgroundPartEnum) as
Color
Returns or sets a value that indicates the background color for parts in the control.

Type Description
Part as
BackgroundPartEnum

A BackgroundPartEnum expression that indicates the part
to be changed

Color

A Color expression that indicates the background color for
a specified part. The last 7 bits in the high significant byte
of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

Use the Background property to specify a different visual appearance for parts of the
control, such as tooltip, check or radio buttons.

The following screen shot shows the check-boxes, as they are shown by default:

The following screen shot shows the check-boxes, as once a new visual appearance is
applied:

The following samples show how you can change the visual appearance of the check-
boxes:

VB6,VBA (MS Access, Excell...),VB.NET for /COM

With CreateObject("Exontrol.ContextMenu")
 With .VisualAppearance
 .Add
1,"gBFLBCJwBAEHhEJAEGg4BVMMQAAYAQGKIYBkAKBQAGaAoDDcNgwQwAAwjIKEEwsACEIrjKCRShyCYZRhGcTSBCIZBqEqSZL"
 & _

"iEZRQiiCYsS5GQBSFDcOwHGyQYDkCQpAAWL4tCyNc7QHKFAxnAgaaLiIZZUh+TQAA7CNQzVBNFL/K4AKrfeJ5AiACIJFAaJh"
 & _

"nIapZDKGKQAKhQgiNqqGg2QiKFRXHSgMQuaClKbiaqqaTGfh7YAUGBEbgmC4NQjB0QHXbyYz5R6EayQfI8HxXFqXYYhOZYfT"
 & _

"cBpbT7CS40JhNEbvJqcZxpT56IwhPZdQrPVZrKCcLwVSa3ahuO5bOxOC4XWaBcRwXStappQ7HKJyOo6NguE6BLLidQaHoya4"
 & _

"qFaa4xHsOZMi8P4jHwbZ4DQRZOj+EIsGKc46n0NYumUYgHmyPg5n4JhPh+CQVnacp1xCLRXj4E5vFaBpIAQcIAk4GAVFoKpg"
 & _

"geYBWCkIJDE4Dh8kYRw8FOBJYFOZgWFaCYIGSd4GluIpeB6AoMliBgbD2XJxnYJhhEyOIll4boMBiNBYguXhxgmaQ6lyeAgi"
 & _

"sYRGAiZY8gqWJznYPhvB0URoH6EJaiYRRXCCZIGGIShhmIYZ0nCE5LGkRBbhSmJWEYXwbBGWhahKWRpGgdhsFWIxmGIGJmEk"
 & _
 "Xg8hmXBThYahCFAECAg=="
 .Add
2,"gBFLBCJwBAEHhEJAEGg4BJkMQAAYAQGKIYBkAKBQAGaAoDDcNgwQwAAwjIKEEwsACEIrjKCRShyCYZRhGcTSBCIZBqEqSZL"
 & _

"iEZRQiiCYsS5GQBSFDcOwHGyQYDkCQpAAWL4tCyNc7QHKFAxnAgaaLiIZZUh+TQAA7CNQzVBNFL/K4AKrfeJ5AiACIJFAaJh"
 & _

"nIapZDKGKQAKhQgiNqqGg2QiKFRXHSgMQuaClKbiaqqaTGfh7YAUGBEbgmC4NQjB0QHXbyYz5R6EayQfI8HxXFqXYZkaD4fT"
 & _

"cBpbT7CS40JhNEbvJqcZxpT56IwmRC5QrPVZrKCcLwVSa3ahuO5bOxOC4XWaBcRwXSta4XD6qYTiPAVTw3G6bSrlea6LauQo"
 & _

"xAOap0nmXYIE8Y4zkabZAkofgsCuZ5Ll6VB5F8OBfBET4WH2d5hFkfwvD4c5kkuQp7k+PI1F+cwKGAf5bkeHY8H+RgGBWfAq"
 & _

"l0FRcgOApZggNgOgKSA2HGERjlsEZaBaA4ZGgWB2GwW4oE2dIHleRAlAEgIA="
 End With
 .Background(70) = &H2000000

 .Background(71) = &H1000000
 .SelBackColor = RGB(240,240,240)
 .SelForeColor = RGB(0,0,0)
 With .Items
 .Add("Check 1",0).Check = 1
 With .Add("Check 2",0)
 .Check = 2
 .Checked = True
 End With
 End With
 .Select
End With

VB.NET

' Add 'exontrol.excontextmenu.dll' reference to your project.
With New exontrol.EXCONTEXTMENULib.excontextmenu()
 With .VisualAppearance

.Add(1,"gBFLBCJwBAEHhEJAEGg4BVMMQAAYAQGKIYBkAKBQAGaAoDDcNgwQwAAwjIKEEwsACEIrjKCRShyCYZRhGcTSBCIZBqEqSZL"
 & _

"iEZRQiiCYsS5GQBSFDcOwHGyQYDkCQpAAWL4tCyNc7QHKFAxnAgaaLiIZZUh+TQAA7CNQzVBNFL/K4AKrfeJ5AiACIJFAaJh"
 & _

"nIapZDKGKQAKhQgiNqqGg2QiKFRXHSgMQuaClKbiaqqaTGfh7YAUGBEbgmC4NQjB0QHXbyYz5R6EayQfI8HxXFqXYYhOZYfT"
 & _

"cBpbT7CS40JhNEbvJqcZxpT56IwhPZdQrPVZrKCcLwVSa3ahuO5bOxOC4XWaBcRwXStappQ7HKJyOo6NguE6BLLidQaHoya4"
 & _

"qFaa4xHsOZMi8P4jHwbZ4DQRZOj+EIsGKc46n0NYumUYgHmyPg5n4JhPh+CQVnacp1xCLRXj4E5vFaBpIAQcIAk4GAVFoKpg"
 & _

"geYBWCkIJDE4Dh8kYRw8FOBJYFOZgWFaCYIGSd4GluIpeB6AoMliBgbD2XJxnYJhhEyOIll4boMBiNBYguXhxgmaQ6lyeAgi"
 & _

"sYRGAiZY8gqWJznYPhvB0URoH6EJaiYRRXCCZIGGIShhmIYZ0nCE5LGkRBbhSmJWEYXwbBGWhahKWRpGgdhsFWIxmGIGJmEk"
 & _
 "Xg8hmXBThYahCFAECAg==")

.Add(2,"gBFLBCJwBAEHhEJAEGg4BJkMQAAYAQGKIYBkAKBQAGaAoDDcNgwQwAAwjIKEEwsACEIrjKCRShyCYZRhGcTSBCIZBqEqSZL"
 & _

"iEZRQiiCYsS5GQBSFDcOwHGyQYDkCQpAAWL4tCyNc7QHKFAxnAgaaLiIZZUh+TQAA7CNQzVBNFL/K4AKrfeJ5AiACIJFAaJh"
 & _

"nIapZDKGKQAKhQgiNqqGg2QiKFRXHSgMQuaClKbiaqqaTGfh7YAUGBEbgmC4NQjB0QHXbyYz5R6EayQfI8HxXFqXYZkaD4fT"
 & _

"cBpbT7CS40JhNEbvJqcZxpT56IwmRC5QrPVZrKCcLwVSa3ahuO5bOxOC4XWaBcRwXSta4XD6qYTiPAVTw3G6bSrlea6LauQo"
 & _

"xAOap0nmXYIE8Y4zkabZAkofgsCuZ5Ll6VB5F8OBfBET4WH2d5hFkfwvD4c5kkuQp7k+PI1F+cwKGAf5bkeHY8H+RgGBWfAq"
 & _

"l0FRcgOApZggNgOgKSA2HGERjlsEZaBaA4ZGgWB2GwW4oE2dIHleRAlAEgIA=")
 End With
 .set_Background32(70,&H2000000)
 .set_Background32(71,&H1000000)
 .SelBackColor = Color.FromArgb(240,240,240)
 .SelForeColor = Color.FromArgb(0,0,0)
 With .Items
 .Add("Check 1",0).Check = True
 With .Add("Check 2",0)
 .Check = True
 .Checked = True
 End With
 End With
 .Select()
End With

C++

/*
 Includes the definition for CreateObject function like follows:
 #include <comdef.h>
 IUnknownPtr CreateObject(BSTR Object)
 {
 IUnknownPtr spResult;
 spResult.CreateInstance(Object);
 return spResult;
 };
*/
/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXCONTEXTMENULib' for the library: 'ExContextMenu
1.0 Type Library'
 #import <ExContextMenu.dll>
 using namespace EXCONTEXTMENULib;
*/
EXCONTEXTMENULib::IExContextMenuPtr var_ExContextMenu =
::CreateObject(L"Exontrol.ContextMenu");
 EXCONTEXTMENULib::IAppearancePtr var_Appearance = var_ExContextMenu-
>GetVisualAppearance();
 var_Appearance-
>Add(1,_bstr_t("gBFLBCJwBAEHhEJAEGg4BVMMQAAYAQGKIYBkAKBQAGaAoDDcNgwQwAAwjIKEEwsACEIrjKCRShyCYZRhGcTSBCIZBqEqSZL"
 +

"iEZRQiiCYsS5GQBSFDcOwHGyQYDkCQpAAWL4tCyNc7QHKFAxnAgaaLiIZZUh+TQAA7CNQzVBNFL/K4AKrfeJ5AiACIJFAaJh"
 +

"nIapZDKGKQAKhQgiNqqGg2QiKFRXHSgMQuaClKbiaqqaTGfh7YAUGBEbgmC4NQjB0QHXbyYz5R6EayQfI8HxXFqXYYhOZYfT"
 +

"cBpbT7CS40JhNEbvJqcZxpT56IwhPZdQrPVZrKCcLwVSa3ahuO5bOxOC4XWaBcRwXStappQ7HKJyOo6NguE6BLLidQaHoya4"
 +

"qFaa4xHsOZMi8P4jHwbZ4DQRZOj+EIsGKc46n0NYumUYgHmyPg5n4JhPh+CQVnacp1xCLRXj4E5vFaBpIAQcIAk4GAVFoKpg"
 +

"geYBWCkIJDE4Dh8kYRw8FOBJYFOZgWFaCYIGSd4GluIpeB6AoMliBgbD2XJxnYJhhEyOIll4boMBiNBYguXhxgmaQ6lyeAgi"
 +

"sYRGAiZY8gqWJznYPhvB0URoH6EJaiYRRXCCZIGGIShhmIYZ0nCE5LGkRBbhSmJWEYXwbBGWhahKWRpGgdhsFWIxmGIGJmEk"
 +
 "Xg8hmXBThYahCFAECAg==");
 var_Appearance-
>Add(2,_bstr_t("gBFLBCJwBAEHhEJAEGg4BJkMQAAYAQGKIYBkAKBQAGaAoDDcNgwQwAAwjIKEEwsACEIrjKCRShyCYZRhGcTSBCIZBqEqSZL"
 +

"iEZRQiiCYsS5GQBSFDcOwHGyQYDkCQpAAWL4tCyNc7QHKFAxnAgaaLiIZZUh+TQAA7CNQzVBNFL/K4AKrfeJ5AiACIJFAaJh"
 +

"nIapZDKGKQAKhQgiNqqGg2QiKFRXHSgMQuaClKbiaqqaTGfh7YAUGBEbgmC4NQjB0QHXbyYz5R6EayQfI8HxXFqXYZkaD4fT"
 +

"cBpbT7CS40JhNEbvJqcZxpT56IwmRC5QrPVZrKCcLwVSa3ahuO5bOxOC4XWaBcRwXSta4XD6qYTiPAVTw3G6bSrlea6LauQo"
 +

"xAOap0nmXYIE8Y4zkabZAkofgsCuZ5Ll6VB5F8OBfBET4WH2d5hFkfwvD4c5kkuQp7k+PI1F+cwKGAf5bkeHY8H+RgGBWfAq"
 +

"l0FRcgOApZggNgOgKSA2HGERjlsEZaBaA4ZGgWB2GwW4oE2dIHleRAlAEgIA=");
 var_ExContextMenu-
>PutBackground(EXCONTEXTMENULib::exCheckBoxState0,0x2000000);
 var_ExContextMenu-
>PutBackground(EXCONTEXTMENULib::exCheckBoxState1,0x1000000);
 var_ExContextMenu->PutSelBackColor(RGB(240,240,240));
 var_ExContextMenu->PutSelForeColor(RGB(0,0,0));
 EXCONTEXTMENULib::IItemsPtr var_Items = var_ExContextMenu->GetItems();
 var_Items->Add(L"Check 1",long(0),vtMissing)->PutCheck(VARIANT_TRUE);
 EXCONTEXTMENULib::IItemPtr var_item = var_Items->Add(L"Check
2",long(0),vtMissing);
 var_item->PutCheck(VARIANT_TRUE);
 var_item->PutChecked(VARIANT_TRUE);
 var_ExContextMenu->Select(vtMissing,vtMissing,vtMissing);

C++ Builder

/*
 Select the Component\Import Component...\Import a Type Library,
 to import the following Type Library:
 ExContextMenu 1.0 Type Library
 TypeLib: e:\Exontrol\ExContextMenu\project\Site\ExContextMenu.dll
 to define the namespace: Excontextmenulib_tlb
*/
//#include "EXCONTEXTMENULIB_TLB.h"
Excontextmenulib_tlb::IExContextMenuPtr var_ExContextMenu =
Variant::CreateObject(L"Exontrol.ContextMenu");
 Excontextmenulib_tlb::IAppearancePtr var_Appearance = var_ExContextMenu-
>VisualAppearance;
 var_Appearance-
>Add(1,TVariant(String("gBFLBCJwBAEHhEJAEGg4BVMMQAAYAQGKIYBkAKBQAGaAoDDcNgwQwAAwjIKEEwsACEIrjKCRShyCYZRhGcTSBCIZBqEqSZL"
 +

"iEZRQiiCYsS5GQBSFDcOwHGyQYDkCQpAAWL4tCyNc7QHKFAxnAgaaLiIZZUh+TQAA7CNQzVBNFL/K4AKrfeJ5AiACIJFAaJh"
 +

"nIapZDKGKQAKhQgiNqqGg2QiKFRXHSgMQuaClKbiaqqaTGfh7YAUGBEbgmC4NQjB0QHXbyYz5R6EayQfI8HxXFqXYYhOZYfT"
 +

"cBpbT7CS40JhNEbvJqcZxpT56IwhPZdQrPVZrKCcLwVSa3ahuO5bOxOC4XWaBcRwXStappQ7HKJyOo6NguE6BLLidQaHoya4"
 +

"qFaa4xHsOZMi8P4jHwbZ4DQRZOj+EIsGKc46n0NYumUYgHmyPg5n4JhPh+CQVnacp1xCLRXj4E5vFaBpIAQcIAk4GAVFoKpg"
 +

"geYBWCkIJDE4Dh8kYRw8FOBJYFOZgWFaCYIGSd4GluIpeB6AoMliBgbD2XJxnYJhhEyOIll4boMBiNBYguXhxgmaQ6lyeAgi"
 +

"sYRGAiZY8gqWJznYPhvB0URoH6EJaiYRRXCCZIGGIShhmIYZ0nCE5LGkRBbhSmJWEYXwbBGWhahKWRpGgdhsFWIxmGIGJmEk"
 +
 "Xg8hmXBThYahCFAECAg=="));
 var_Appearance-

>Add(2,TVariant(String("gBFLBCJwBAEHhEJAEGg4BJkMQAAYAQGKIYBkAKBQAGaAoDDcNgwQwAAwjIKEEwsACEIrjKCRShyCYZRhGcTSBCIZBqEqSZL"
 +

"iEZRQiiCYsS5GQBSFDcOwHGyQYDkCQpAAWL4tCyNc7QHKFAxnAgaaLiIZZUh+TQAA7CNQzVBNFL/K4AKrfeJ5AiACIJFAaJh"
 +

"nIapZDKGKQAKhQgiNqqGg2QiKFRXHSgMQuaClKbiaqqaTGfh7YAUGBEbgmC4NQjB0QHXbyYz5R6EayQfI8HxXFqXYZkaD4fT"
 +

"cBpbT7CS40JhNEbvJqcZxpT56IwmRC5QrPVZrKCcLwVSa3ahuO5bOxOC4XWaBcRwXSta4XD6qYTiPAVTw3G6bSrlea6LauQo"
 +

"xAOap0nmXYIE8Y4zkabZAkofgsCuZ5Ll6VB5F8OBfBET4WH2d5hFkfwvD4c5kkuQp7k+PI1F+cwKGAf5bkeHY8H+RgGBWfAq"
 +

"l0FRcgOApZggNgOgKSA2HGERjlsEZaBaA4ZGgWB2GwW4oE2dIHleRAlAEgIA="));
 var_ExContextMenu-
>set_Background(Excontextmenulib_tlb::BackgroundPartEnum::exCheckBoxState0,0x2000000);

 var_ExContextMenu-
>set_Background(Excontextmenulib_tlb::BackgroundPartEnum::exCheckBoxState1,0x1000000);

 var_ExContextMenu->SelBackColor = RGB(240,240,240);
 var_ExContextMenu->SelForeColor = RGB(0,0,0);
 Excontextmenulib_tlb::IItemsPtr var_Items = var_ExContextMenu->Items;
 var_Items->Add(L"Check 1",TVariant(0),TNoParam())->Check = true;
 Excontextmenulib_tlb::IItemPtr var_item = var_Items->Add(L"Check
2",TVariant(0),TNoParam());
 var_item->Check = true;
 var_item->Checked = true;
 var_ExContextMenu->Select(TNoParam(),TNoParam(),TNoParam());

C#

// Add 'exontrol.excontextmenu.dll' reference to your project.
exontrol.EXCONTEXTMENULib.excontextmenu var_ExContextMenu = new
exontrol.EXCONTEXTMENULib.excontextmenu();

 exontrol.EXCONTEXTMENULib.Appearance var_Appearance =
var_ExContextMenu.VisualAppearance;

var_Appearance.Add(1,"gBFLBCJwBAEHhEJAEGg4BVMMQAAYAQGKIYBkAKBQAGaAoDDcNgwQwAAwjIKEEwsACEIrjKCRShyCYZRhGcTSBCIZBqEqSZL"
 +

"iEZRQiiCYsS5GQBSFDcOwHGyQYDkCQpAAWL4tCyNc7QHKFAxnAgaaLiIZZUh+TQAA7CNQzVBNFL/K4AKrfeJ5AiACIJFAaJh"
 +

"nIapZDKGKQAKhQgiNqqGg2QiKFRXHSgMQuaClKbiaqqaTGfh7YAUGBEbgmC4NQjB0QHXbyYz5R6EayQfI8HxXFqXYYhOZYfT"
 +

"cBpbT7CS40JhNEbvJqcZxpT56IwhPZdQrPVZrKCcLwVSa3ahuO5bOxOC4XWaBcRwXStappQ7HKJyOo6NguE6BLLidQaHoya4"
 +

"qFaa4xHsOZMi8P4jHwbZ4DQRZOj+EIsGKc46n0NYumUYgHmyPg5n4JhPh+CQVnacp1xCLRXj4E5vFaBpIAQcIAk4GAVFoKpg"
 +

"geYBWCkIJDE4Dh8kYRw8FOBJYFOZgWFaCYIGSd4GluIpeB6AoMliBgbD2XJxnYJhhEyOIll4boMBiNBYguXhxgmaQ6lyeAgi"
 +

"sYRGAiZY8gqWJznYPhvB0URoH6EJaiYRRXCCZIGGIShhmIYZ0nCE5LGkRBbhSmJWEYXwbBGWhahKWRpGgdhsFWIxmGIGJmEk"
 +
 "Xg8hmXBThYahCFAECAg==");

var_Appearance.Add(2,"gBFLBCJwBAEHhEJAEGg4BJkMQAAYAQGKIYBkAKBQAGaAoDDcNgwQwAAwjIKEEwsACEIrjKCRShyCYZRhGcTSBCIZBqEqSZL"
 +

"iEZRQiiCYsS5GQBSFDcOwHGyQYDkCQpAAWL4tCyNc7QHKFAxnAgaaLiIZZUh+TQAA7CNQzVBNFL/K4AKrfeJ5AiACIJFAaJh"
 +

"nIapZDKGKQAKhQgiNqqGg2QiKFRXHSgMQuaClKbiaqqaTGfh7YAUGBEbgmC4NQjB0QHXbyYz5R6EayQfI8HxXFqXYZkaD4fT"
 +

"cBpbT7CS40JhNEbvJqcZxpT56IwmRC5QrPVZrKCcLwVSa3ahuO5bOxOC4XWaBcRwXSta4XD6qYTiPAVTw3G6bSrlea6LauQo"
 +

"xAOap0nmXYIE8Y4zkabZAkofgsCuZ5Ll6VB5F8OBfBET4WH2d5hFkfwvD4c5kkuQp7k+PI1F+cwKGAf5bkeHY8H+RgGBWfAq"
 +

"l0FRcgOApZggNgOgKSA2HGERjlsEZaBaA4ZGgWB2GwW4oE2dIHleRAlAEgIA=");

var_ExContextMenu.set_Background32(exontrol.EXCONTEXTMENULib.BackgroundPartEnum.exCheckBoxState0,0x2000000);

var_ExContextMenu.set_Background32(exontrol.EXCONTEXTMENULib.BackgroundPartEnum.exCheckBoxState1,0x1000000);

 var_ExContextMenu.SelBackColor = Color.FromArgb(240,240,240);
 var_ExContextMenu.SelForeColor = Color.FromArgb(0,0,0);
 exontrol.EXCONTEXTMENULib.Items var_Items = var_ExContextMenu.Items;
 var_Items.Add("Check 1",0,null).Check = true;
 exontrol.EXCONTEXTMENULib.item var_item = var_Items.Add("Check
2",0,null);
 var_item.Check = true;
 var_item.Checked = true;
 var_ExContextMenu.Select(null,null,null);

C# for /COM

// Add 'ExContextMenu 1.0 Type Library' reference to your project.
EXCONTEXTMENULib.ExContextMenu var_ExContextMenu = new
EXCONTEXTMENULib.ExContextMenu();
 EXCONTEXTMENULib.Appearance var_Appearance =
var_ExContextMenu.VisualAppearance;

var_Appearance.Add(1,"gBFLBCJwBAEHhEJAEGg4BVMMQAAYAQGKIYBkAKBQAGaAoDDcNgwQwAAwjIKEEwsACEIrjKCRShyCYZRhGcTSBCIZBqEqSZL"
 +

"iEZRQiiCYsS5GQBSFDcOwHGyQYDkCQpAAWL4tCyNc7QHKFAxnAgaaLiIZZUh+TQAA7CNQzVBNFL/K4AKrfeJ5AiACIJFAaJh"
 +

"nIapZDKGKQAKhQgiNqqGg2QiKFRXHSgMQuaClKbiaqqaTGfh7YAUGBEbgmC4NQjB0QHXbyYz5R6EayQfI8HxXFqXYYhOZYfT"
 +

"cBpbT7CS40JhNEbvJqcZxpT56IwhPZdQrPVZrKCcLwVSa3ahuO5bOxOC4XWaBcRwXStappQ7HKJyOo6NguE6BLLidQaHoya4"
 +

"qFaa4xHsOZMi8P4jHwbZ4DQRZOj+EIsGKc46n0NYumUYgHmyPg5n4JhPh+CQVnacp1xCLRXj4E5vFaBpIAQcIAk4GAVFoKpg"
 +

"geYBWCkIJDE4Dh8kYRw8FOBJYFOZgWFaCYIGSd4GluIpeB6AoMliBgbD2XJxnYJhhEyOIll4boMBiNBYguXhxgmaQ6lyeAgi"
 +

"sYRGAiZY8gqWJznYPhvB0URoH6EJaiYRRXCCZIGGIShhmIYZ0nCE5LGkRBbhSmJWEYXwbBGWhahKWRpGgdhsFWIxmGIGJmEk"
 +
 "Xg8hmXBThYahCFAECAg==");

var_Appearance.Add(2,"gBFLBCJwBAEHhEJAEGg4BJkMQAAYAQGKIYBkAKBQAGaAoDDcNgwQwAAwjIKEEwsACEIrjKCRShyCYZRhGcTSBCIZBqEqSZL"
 +

"iEZRQiiCYsS5GQBSFDcOwHGyQYDkCQpAAWL4tCyNc7QHKFAxnAgaaLiIZZUh+TQAA7CNQzVBNFL/K4AKrfeJ5AiACIJFAaJh"
 +

"nIapZDKGKQAKhQgiNqqGg2QiKFRXHSgMQuaClKbiaqqaTGfh7YAUGBEbgmC4NQjB0QHXbyYz5R6EayQfI8HxXFqXYZkaD4fT"
 +

"cBpbT7CS40JhNEbvJqcZxpT56IwmRC5QrPVZrKCcLwVSa3ahuO5bOxOC4XWaBcRwXSta4XD6qYTiPAVTw3G6bSrlea6LauQo"
 +

"xAOap0nmXYIE8Y4zkabZAkofgsCuZ5Ll6VB5F8OBfBET4WH2d5hFkfwvD4c5kkuQp7k+PI1F+cwKGAf5bkeHY8H+RgGBWfAq"
 +

"l0FRcgOApZggNgOgKSA2HGERjlsEZaBaA4ZGgWB2GwW4oE2dIHleRAlAEgIA=");

var_ExContextMenu.set_Background(EXCONTEXTMENULib.BackgroundPartEnum.exCheckBoxState0,0x2000000);

var_ExContextMenu.set_Background(EXCONTEXTMENULib.BackgroundPartEnum.exCheckBoxState1,0x1000000);

 var_ExContextMenu.SelBackColor =
(uint)ColorTranslator.ToWin32(Color.FromArgb(240,240,240));

 var_ExContextMenu.SelForeColor =
(uint)ColorTranslator.ToWin32(Color.FromArgb(0,0,0));
 EXCONTEXTMENULib.Items var_Items = var_ExContextMenu.Items;
 var_Items.Add("Check 1",0,null).Check = true;
 EXCONTEXTMENULib.item var_item = var_Items.Add("Check 2",0,null);
 var_item.Check = true;
 var_item.Checked = true;
 var_ExContextMenu.Select(null,null,null);

X++ (Dynamics Ax 2009)

COM com_Appearance,com_ExContextMenu,com_Items,com_item;
anytype var_Appearance,var_ExContextMenu,var_Items,var_item;
str var_s,var_s1;
;
// Add 'ExContextMenu 1.0 Type Library' reference to your project.
var_ExContextMenu = COM::createFromObject(new
EXCONTEXTMENULib.excontextmenu()); com_ExContextMenu = var_ExContextMenu;
 var_Appearance = com_ExContextMenu.VisualAppearance(); com_Appearance =
var_Appearance;
 var_s =
"gBFLBCJwBAEHhEJAEGg4BVMMQAAYAQGKIYBkAKBQAGaAoDDcNgwQwAAwjIKEEwsACEIrjKCRShyCYZRhGcTSBCIZBqEqSZLi"

 var_s = var_s +
"EZRQiiCYsS5GQBSFDcOwHGyQYDkCQpAAWL4tCyNc7QHKFAxnAgaaLiIZZUh+TQAA7CNQzVBNFL/K4AKrfeJ5AiACIJFAaJhn"

 var_s = var_s +
"IapZDKGKQAKhQgiNqqGg2QiKFRXHSgMQuaClKbiaqqaTGfh7YAUGBEbgmC4NQjB0QHXbyYz5R6EayQfI8HxXFqXYYhOZYfTc"

 var_s = var_s +
"BpbT7CS40JhNEbvJqcZxpT56IwhPZdQrPVZrKCcLwVSa3ahuO5bOxOC4XWaBcRwXStappQ7HKJyOo6NguE6BLLidQaHoya4q"

 var_s = var_s +
"Faa4xHsOZMi8P4jHwbZ4DQRZOj+EIsGKc46n0NYumUYgHmyPg5n4JhPh+CQVnacp1xCLRXj4E5vFaBpIAQcIAk4GAVFoKpgg"

 var_s = var_s +
"eYBWCkIJDE4Dh8kYRw8FOBJYFOZgWFaCYIGSd4GluIpeB6AoMliBgbD2XJxnYJhhEyOIll4boMBiNBYguXhxgmaQ6lyeAgis"

 var_s = var_s +
"YRGAiZY8gqWJznYPhvB0URoH6EJaiYRRXCCZIGGIShhmIYZ0nCE5LGkRBbhSmJWEYXwbBGWhahKWRpGgdhsFWIxmGIGJmEkX"

 var_s = var_s + "g8hmXBThYahCFAECAg==";
 com_Appearance.Add(1,COMVariant::createFromStr(var_s));
 var_s1 =
"gBFLBCJwBAEHhEJAEGg4BJkMQAAYAQGKIYBkAKBQAGaAoDDcNgwQwAAwjIKEEwsACEIrjKCRShyCYZRhGcTSBCIZBqEqSZLi"

 var_s1 = var_s1 +
"EZRQiiCYsS5GQBSFDcOwHGyQYDkCQpAAWL4tCyNc7QHKFAxnAgaaLiIZZUh+TQAA7CNQzVBNFL/K4AKrfeJ5AiACIJFAaJhn"

 var_s1 = var_s1 +
"IapZDKGKQAKhQgiNqqGg2QiKFRXHSgMQuaClKbiaqqaTGfh7YAUGBEbgmC4NQjB0QHXbyYz5R6EayQfI8HxXFqXYZkaD4fTc"

 var_s1 = var_s1 +
"BpbT7CS40JhNEbvJqcZxpT56IwmRC5QrPVZrKCcLwVSa3ahuO5bOxOC4XWaBcRwXSta4XD6qYTiPAVTw3G6bSrlea6LauQox"

 var_s1 = var_s1 +
"AOap0nmXYIE8Y4zkabZAkofgsCuZ5Ll6VB5F8OBfBET4WH2d5hFkfwvD4c5kkuQp7k+PI1F+cwKGAf5bkeHY8H+RgGBWfAql"

 var_s1 = var_s1 +
"0FRcgOApZggNgOgKSA2HGERjlsEZaBaA4ZGgWB2GwW4oE2dIHleRAlAEgIA=";
 com_Appearance.Add(2,COMVariant::createFromStr(var_s1));
 com_ExContextMenu.Background(70/*exCheckBoxState0*/,0x2000000);
 com_ExContextMenu.Background(71/*exCheckBoxState1*/,0x1000000);
 com_ExContextMenu.SelBackColor(WinApi::RGB2int(240,240,240));
 com_ExContextMenu.SelForeColor(WinApi::RGB2int(0,0,0));
 var_Items = com_ExContextMenu.Items(); com_Items = var_Items;
 var_item = COM::createFromObject(com_Items.Add("Check
1",COMVariant::createFromInt(0))); com_item = var_item;
 com_item.Check(1);
 var_item = com_Items.Add("Check 2",COMVariant::createFromInt(0)); com_item =
var_item;
 com_item.Check(2);
 com_item.Checked(true);
 com_ExContextMenu.Select();

Delphi 8 (.NET only)

with (ComObj.CreateComObject(ComObj.ProgIDToClassID('Exontrol.ContextMenu'))
as EXCONTEXTMENULib.ExContextMenu) do
begin
 with VisualAppearance do
 begin

Add(1,'gBFLBCJwBAEHhEJAEGg4BVMMQAAYAQGKIYBkAKBQAGaAoDDcNgwQwAAwjIKEEwsACEIrjKCRShyCYZRhGcTSBCIZBqEqSZLi'
 +

'EZRQiiCYsS5GQBSFDcOwHGyQYDkCQpAAWL4tCyNc7QHKFAxnAgaaLiIZZUh+TQAA7CNQzVBNFL/K4AKrfeJ5AiACIJFAaJhn'
 +

'IapZDKGKQAKhQgiNqqGg2QiKFRXHSgMQuaClKbiaqqaTGfh7YAUGBEbgmC4NQjB0QHXbyYz5R6EayQfI8HxXFqXYYhOZYfTc'
 +

'BpbT7CS40JhNEbvJqcZxpT56IwhPZdQrPVZrKCcLwVSa3ahuO5bOxOC4XWaBcRwXStappQ7HKJyOo6NguE6BLLidQaHoya4q'
 +

'Faa4xHsOZMi8P4jHwbZ4DQRZOj+EIsGKc46n0NYumUYgHmyPg5n4JhPh+CQVnacp1xCLRXj4E5vFaBpIAQcIAk4GAVFoKpgg'
 +

'eYBWCkIJDE4Dh8kYRw8FOBJYFOZgWFaCYIGSd4GluIpeB6AoMliBgbD2XJxnYJhhEyOIll4boMBiNBYguXhxgmaQ6lyeAgis'
 +

'YRGAiZY8gqWJznYPhvB0URoH6EJaiYRRXCCZIGGIShhmIYZ0nCE5LGkRBbhSmJWEYXwbBGWhahKWRpGgdhsFWIxmGIGJmEkX'
 +
 'g8hmXBThYahCFAECAg==');

Add(2,'gBFLBCJwBAEHhEJAEGg4BJkMQAAYAQGKIYBkAKBQAGaAoDDcNgwQwAAwjIKEEwsACEIrjKCRShyCYZRhGcTSBCIZBqEqSZLi'
 +

'EZRQiiCYsS5GQBSFDcOwHGyQYDkCQpAAWL4tCyNc7QHKFAxnAgaaLiIZZUh+TQAA7CNQzVBNFL/K4AKrfeJ5AiACIJFAaJhn'
 +

'IapZDKGKQAKhQgiNqqGg2QiKFRXHSgMQuaClKbiaqqaTGfh7YAUGBEbgmC4NQjB0QHXbyYz5R6EayQfI8HxXFqXYZkaD4fTc'

 +

'BpbT7CS40JhNEbvJqcZxpT56IwmRC5QrPVZrKCcLwVSa3ahuO5bOxOC4XWaBcRwXSta4XD6qYTiPAVTw3G6bSrlea6LauQox'
 +

'AOap0nmXYIE8Y4zkabZAkofgsCuZ5Ll6VB5F8OBfBET4WH2d5hFkfwvD4c5kkuQp7k+PI1F+cwKGAf5bkeHY8H+RgGBWfAql'
 +

'0FRcgOApZggNgOgKSA2HGERjlsEZaBaA4ZGgWB2GwW4oE2dIHleRAlAEgIA=');
 end;
 Background[70] := $2000000;
 Background[71] := $1000000;
 SelBackColor := $f0f0f0;
 SelForeColor := $0;
 with Items do
 begin
 Add('Check 1',TObject(0),Nil).Check := True;
 with Add('Check 2',TObject(0),Nil) do
 begin
 Check := True;
 Checked := True;
 end;
 end;
 Select(Nil,Nil,Nil);
end;

Delphi (standard)

with
(IUnknown(ComObj.CreateComObject(ComObj.ProgIDToClassID('Exontrol.ContextMenu')))
 as EXCONTEXTMENULib_TLB.ExContextMenu) do
begin
 with VisualAppearance do
 begin

Add(1,'gBFLBCJwBAEHhEJAEGg4BVMMQAAYAQGKIYBkAKBQAGaAoDDcNgwQwAAwjIKEEwsACEIrjKCRShyCYZRhGcTSBCIZBqEqSZLi'
 +

'EZRQiiCYsS5GQBSFDcOwHGyQYDkCQpAAWL4tCyNc7QHKFAxnAgaaLiIZZUh+TQAA7CNQzVBNFL/K4AKrfeJ5AiACIJFAaJhn'
 +

'IapZDKGKQAKhQgiNqqGg2QiKFRXHSgMQuaClKbiaqqaTGfh7YAUGBEbgmC4NQjB0QHXbyYz5R6EayQfI8HxXFqXYYhOZYfTc'
 +

'BpbT7CS40JhNEbvJqcZxpT56IwhPZdQrPVZrKCcLwVSa3ahuO5bOxOC4XWaBcRwXStappQ7HKJyOo6NguE6BLLidQaHoya4q'
 +

'Faa4xHsOZMi8P4jHwbZ4DQRZOj+EIsGKc46n0NYumUYgHmyPg5n4JhPh+CQVnacp1xCLRXj4E5vFaBpIAQcIAk4GAVFoKpgg'
 +

'eYBWCkIJDE4Dh8kYRw8FOBJYFOZgWFaCYIGSd4GluIpeB6AoMliBgbD2XJxnYJhhEyOIll4boMBiNBYguXhxgmaQ6lyeAgis'
 +

'YRGAiZY8gqWJznYPhvB0URoH6EJaiYRRXCCZIGGIShhmIYZ0nCE5LGkRBbhSmJWEYXwbBGWhahKWRpGgdhsFWIxmGIGJmEkX'
 +
 'g8hmXBThYahCFAECAg==');

Add(2,'gBFLBCJwBAEHhEJAEGg4BJkMQAAYAQGKIYBkAKBQAGaAoDDcNgwQwAAwjIKEEwsACEIrjKCRShyCYZRhGcTSBCIZBqEqSZLi'
 +

'EZRQiiCYsS5GQBSFDcOwHGyQYDkCQpAAWL4tCyNc7QHKFAxnAgaaLiIZZUh+TQAA7CNQzVBNFL/K4AKrfeJ5AiACIJFAaJhn'
 +

'IapZDKGKQAKhQgiNqqGg2QiKFRXHSgMQuaClKbiaqqaTGfh7YAUGBEbgmC4NQjB0QHXbyYz5R6EayQfI8HxXFqXYZkaD4fTc'
 +

'BpbT7CS40JhNEbvJqcZxpT56IwmRC5QrPVZrKCcLwVSa3ahuO5bOxOC4XWaBcRwXSta4XD6qYTiPAVTw3G6bSrlea6LauQox'
 +

'AOap0nmXYIE8Y4zkabZAkofgsCuZ5Ll6VB5F8OBfBET4WH2d5hFkfwvD4c5kkuQp7k+PI1F+cwKGAf5bkeHY8H+RgGBWfAql'
 +

'0FRcgOApZggNgOgKSA2HGERjlsEZaBaA4ZGgWB2GwW4oE2dIHleRAlAEgIA=');
 end;

 Background[70] := $2000000;
 Background[71] := $1000000;
 SelBackColor := $f0f0f0;
 SelForeColor := $0;
 with Items do
 begin
 Add('Check 1',OleVariant(0),Null).Check := True;
 with Add('Check 2',OleVariant(0),Null) do
 begin
 Check := True;
 Checked := True;
 end;
 end;
 Select(Null,Null,Null);
end;

VFP

with CreateObject("Exontrol.ContextMenu")
 with .VisualAppearance
 var_s =
"gBFLBCJwBAEHhEJAEGg4BVMMQAAYAQGKIYBkAKBQAGaAoDDcNgwQwAAwjIKEEwsACEIrjKCRShyCYZRhGcTSBCIZBqEqSZLi"

 var_s = var_s +
"EZRQiiCYsS5GQBSFDcOwHGyQYDkCQpAAWL4tCyNc7QHKFAxnAgaaLiIZZUh+TQAA7CNQzVBNFL/K4AKrfeJ5AiACIJFAaJhn"

 var_s = var_s +
"IapZDKGKQAKhQgiNqqGg2QiKFRXHSgMQuaClKbiaqqaTGfh7YAUGBEbgmC4NQjB0QHXbyYz5R6EayQfI8HxXFqXYYhOZYfTc"

 var_s = var_s +
"BpbT7CS40JhNEbvJqcZxpT56IwhPZdQrPVZrKCcLwVSa3ahuO5bOxOC4XWaBcRwXStappQ7HKJyOo6NguE6BLLidQaHoya4q"

 var_s = var_s +
"Faa4xHsOZMi8P4jHwbZ4DQRZOj+EIsGKc46n0NYumUYgHmyPg5n4JhPh+CQVnacp1xCLRXj4E5vFaBpIAQcIAk4GAVFoKpgg"

 var_s = var_s +
"eYBWCkIJDE4Dh8kYRw8FOBJYFOZgWFaCYIGSd4GluIpeB6AoMliBgbD2XJxnYJhhEyOIll4boMBiNBYguXhxgmaQ6lyeAgis"

 var_s = var_s +
"YRGAiZY8gqWJznYPhvB0URoH6EJaiYRRXCCZIGGIShhmIYZ0nCE5LGkRBbhSmJWEYXwbBGWhahKWRpGgdhsFWIxmGIGJmEkX"

 var_s = var_s + "g8hmXBThYahCFAECAg=="
 .Add(1,var_s)
 var_s1 =
"gBFLBCJwBAEHhEJAEGg4BJkMQAAYAQGKIYBkAKBQAGaAoDDcNgwQwAAwjIKEEwsACEIrjKCRShyCYZRhGcTSBCIZBqEqSZLi"

 var_s1 = var_s1 +
"EZRQiiCYsS5GQBSFDcOwHGyQYDkCQpAAWL4tCyNc7QHKFAxnAgaaLiIZZUh+TQAA7CNQzVBNFL/K4AKrfeJ5AiACIJFAaJhn"

 var_s1 = var_s1 +
"IapZDKGKQAKhQgiNqqGg2QiKFRXHSgMQuaClKbiaqqaTGfh7YAUGBEbgmC4NQjB0QHXbyYz5R6EayQfI8HxXFqXYZkaD4fTc"

 var_s1 = var_s1 +
"BpbT7CS40JhNEbvJqcZxpT56IwmRC5QrPVZrKCcLwVSa3ahuO5bOxOC4XWaBcRwXSta4XD6qYTiPAVTw3G6bSrlea6LauQox"

 var_s1 = var_s1 +
"AOap0nmXYIE8Y4zkabZAkofgsCuZ5Ll6VB5F8OBfBET4WH2d5hFkfwvD4c5kkuQp7k+PI1F+cwKGAf5bkeHY8H+RgGBWfAql"

 var_s1 = var_s1 +
"0FRcgOApZggNgOgKSA2HGERjlsEZaBaA4ZGgWB2GwW4oE2dIHleRAlAEgIA="
 .Add(2,var_s1)
 endwith
 .Background(70) = 0x2000000
 .Background(71) = 0x1000000
 .SelBackColor = RGB(240,240,240)
 .SelForeColor = RGB(0,0,0)
 with .Items
 .Add("Check 1",0).Check = 1
 with .Add("Check 2",0)
 .Check = 2
 .Checked = .T.
 endwith
 endwith
 .Select()

endwith

property ExContextMenu.CloseOnClick as CloseOnClickEnum
Gets or sets a value that specifies whether the context menu is closing.

Type Description

CloseOnClickEnum A CloseOnClickEnum expression that specifies how the
user can close the context menu.

By default, the CloseOnClick property is exCloseOnNonClickable, and it means that the
context menu is closed once the user clicks a regular item with no sub menus, check or
radio buttons. Use te CloseOnClick property to specify how the user can close the context
menu. The Select method returns the identifier of the last clicked item. Use the Item's
CloseOnClick property to specify a different way to close the menu when user clicks a
specified item.

property ExContextMenu.Cursor as Variant
Gets or sets the cursor that is displayed when the mouse pointer hovers the control.

Type Description

Variant

A String expression that defines the cursor to be shown
when the cursor hovers the menu. The Valid values are
listed bellow. Also the Cursor property could point to a
cursor file to be loaded and shown while the cursor hovers
the context menu.

By default, the Cursor property is "exDefault". Use the Cursor property to specify a
different cursor when it hovers the menu control. Use the Cursor property of the Item object
to specify a different cursor when it hovers the item only.

The supported values are:

"exDefault", Standard arrow
"exArrow", Standard arrow
"exCross", Crosshair
"exIBeam", I-beam
"exIcon", Reserved
"exSize", Reserved, use the "exSizeAll"
"exSizeNESW", Double-pointed arrow pointing northeast and southwest
"exSizeNS", Double-pointed arrow pointing north and south
"exSizeNWSE", Double-pointed arrow pointing northwest and southeast
"exSizeWE", Double-pointed arrow pointing west and east
"exUpArrow", Vertical arrow
"exHourglass", Hourglass
"exNoDrop", Slashed circle
"exArrowHourglass"
"exHelp", Arrow and question mark
"exSizeAll", Four-pointed arrow pointing north, south, east, and west
"exHand", Hand

Any other value indicates the path to a cursor file to be displayed when the pointer hovers
the menu control.

property ExContextMenu.Debug as Boolean
Retrieves or sets a value that indicating whether the item's identifier is visible.

Type Description

Boolean A Boolean expression that specifies whether the identifiers
of the items

By default, the Debug property is False. Use the Debug property to display the identifiers
for all visible items, for debugging purposes. The First number in the [] parenthesis indicates
the item's ID property.

The following screen shot shows the control with the Debug property on True:

property ExContextMenu.EventParam(Parameter as Long) as Variant
Retrieves or sets a value that indicates the current's event parameter.

Type Description

Parameter as Long

A long expression that indicates the index of the parameter
being requested ie 0 means the first parameter, 1 means
the second, and so on. If -1 is used the EventParam
property retrieves the number of parameters. Accessing
an not-existing parameter produces an OLE error, such as
invalid pointer (E_POINTER)

Variant A VARIANT expression that specifies the parameter's
value.

The EventParam method is provided to allow changing the event's parameters passed by
reference, even if your environment does not support changing it (uniPaas 1.5 (formerly
known as eDeveloper), DBase, and so on). For instance, Unipaas event-handling logic
cannot update ActiveX control variables by updating the received arguments. The
EventParam(0) retrieves the value of the first parameter of the event, while the
EventParam(1) = 0, changes the value of the second parameter to 0 (the operation is
successfully, only if the parameter is passed by reference). The EventParam(-1) retrieves
the number of the parameters of the current event.

Let's take the event "event KeyDown (KeyCode as Integer, ByVal Shift as Integer)", where
the KeyCode parameter is passed by reference. For instance, put the KeyCode parameter
on 0, and the arrow keys are disabled while the control has the focus.

In most languages you will type something like:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 KeyCode = 0
End Sub

In case your environment does not support events with parameters by reference, you can
use a code like follows:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 Control1.EventParam(0) = 0
End Sub

In other words, the EventParam property provides the parameters of the current event for
reading or writing access, even if your environment does not allow changing parameters by

reference.

Calling the EventParam property outside of an event produces an OLE error, such as
pointer invalid, as its scope was designed to be used only during events.

method ExContextMenu.ExecuteTemplate (Template as String)
Executes a template and returns the result.

Type Description
Template as String A Template string being executed
Return Description

Variant A String expression that indicates the result after executing
the Template.

Use the ExecuteTemplate property to returns the result of executing a template file. Use the
Template property to execute a template without returning any result. Use the
ExecuteTemplate property to execute code by passing instructions as a string (template
string).

For instance, the following sample adds a few items, displays the context menu and
returns the selected identifier :

Set n = New EXCONTEXTMENULib.ExContextMenu
Debug.Print (n.ExecuteTemplate("Items.ToString = `Item A[id=1001],Item B,Item C,Item
D`;Select()"))

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

The Template/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>
<lines> := <line>[<eol> <lines>] | <block>
<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]
<eol> := ";" | "\r\n"
<line> := <dim> | <createobject> | <call> | <set> | <comment>
<dim> := "DIM" <variables>
<variables> := <variable> [, <variables>]
<variable> := "ME" | <identifier>
<createobject> := "CREATEOBJECT(`"<type>"`)"
<call> := <variable> | <property> | <variable>"."<property> | <createobject>"."
<property>
<property> := [<property>"."]<identifier>["("<parameters>")"]

<set> := <call> "=" <value>
<property> := <identifier> | <identifier>"("[<parameters>]")"
<parameters> := <value> [","<parameters>]
<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> |
<call>
<boolean> := "TRUE" | "FALSE"
<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit16> := <digit10> | A | B | C | D | E | F
<integer> := <digit10>[<integer>]
<hexa> := <digit16>[<hexa>]
<color> := "RGB("<integer>","<integer>","<integer>")"
<date> := "#"<integer>"/"<integer>"/"<integer>" "[<integer>":"<integer>":"
<integer>"]"#"
<string> := '"'<text>'"' | "`"<text>"`"
<comment> := "'"<text>

where:

<identifier> indicates an identifier of the variable, property or method, and should start with
a letter.
<type> indicates the type the CreateObject function creates, as a progID
<text> any string of characters

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)

character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property ExContextMenu.FlatBackColor as Color
Specifies the color to left part of the menu.

Type Description

Color

A Color expression that indicates the control's background
color. The last 7 bits in the high significant byte of the color
indicates the identifier of the skin being used. Use the Add
method to add new skins to the control. If you need to
remove the skin appearance from a part of the control you
need to reset the last 7 bits in the high significant byte of
the color being applied to the background's part.

Use the FlatBackColor property to specify the background color of the left side of the
control. This property has effect while the control's MenuAppearance property is
exMenuFlat. The BackColor property specifies the control's background color. The
ForeColor property specifies the control's foreground color. The SelBackColor property
specifies the visual appearance of the item being selected / highlighted. The SelForeColor
property specifies the foreground color of the item being selected / highlighted. The
Background property specifies the visual appearance for different parts of the control. The
Appearance property specifies the menu's frame appearance. The
Background(exMenuFlatLineColor) property indicates the color of line that divides the left to
right side of the menu, when the MenuAppearance property is exMenuFlat.

property ExContextMenu.FlatImageWidth as Long
Specifies the width of the column to display the icons/images when the control's
MenuAppearance is exMenuFlat.

Type Description

Long
A Long expression that specifies the width of the column
that displays icons/images/check or radio buttons, when
the control's MenuAppearance is exMenuFlat.

By default, the FlatImageWidth property is 16 pixels wide. Use the FlatImageWidth
property to specify the width of the column that displays icons/images/check or radio
buttons. The Image / HTMLImage property assigns an icon / picture to the item. The
tag can be used in the Caption property of the Item object to display an Icon or a custom-
size picture.

property ExContextMenu.Font as IFontDisp
Retrieves or sets the control's font.

Type Description
IFontDisp A Font object to be used to shown the control items.

Use the Font property to specify a different font to show the items in the context menu. The
Font's height controls the height of the items in the control. You can use the HTML
tag to specify a different font for a specified item in the Caption property. The ForeColor
property of the control specifies the foreground color of items in the control.

property ExContextMenu.ForeColor as Color
Specifies the control's foreground color.

Type Description

Color A Color expression that specifies the control's foreground
color.

The ForeColor property specifies the control's foreground color. The BackColor property
specifies the control's background color. The SelBackColor property specifies the visual
appearance of the item being selected / highlighted. The SelForeColor property specifies
the foreground color of the item being selected / highlighted. The Background property
specifies the visual appearance for different parts of the control. The Appearance property
specifies the menu's frame appearance. You can use the <fgcolor> HTML tag to specify a
different foreground colot for a specified item in the Caption property. The ForeColor
property of the Item object specifies a different foreground color for the entire item.

property ExContextMenu.Get (Criteria as MenuItemTypeEnum) as Variant
Retrieves an array of Item objects that meet the criteria.

Type Description
Criteria as
MenuItemTypeEnum

A MenuItemTypeEnum expression that type of items to be
retrieved.

Variant A Safe-Array of Item objects being returned.

The Get method can be used to get a collection / safe array of Item objects with a
specified characteristics. For instance, you can collect the items of Edit type, or items that
displays an icon using the Image property. The GetChecked property gets a collection of
checked items. The GetUnchecked property gets a collection of checked items. The
GetRadio method gets a safe array with the radio-items being checked within a radio
group. For instance, the GetChecked property is equivalent with the
Get(exCheckBoxMenuItem + exCheckedMenuItem), or in other words all items with the
Check and Checked properties on True. The result of the Get method indicates a Safe-
Array of Item objects, which means that you can use the for each statement to enumerate
the elements in the collection. The ItemType property is a read-only property that gets the
type of the item.

property ExContextMenu.GetChecked as Variant
Retrieves an array of Item objects, that displays a check box which is checked.

Type Description

Variant
A Safe-Array of Item objects that indicates the checked
items in the control. The collection does include only items
with the Check property set on True.

The GetChecked property gets a collection of checked items. The GetUnchecked property
gets a collection of checked items. The GetRadio method gets a safe array with the radio-
items being checked within a radio group. The Check property indicates whether the
current item displays a check box. The Checked property specifies whether the item is
checked or un-checked. The Radio property specifies whether the item displays a radio-
button. The RadioGroup property specifies a group of radio-buttons. A radio group allows
a single radio-item to be checked inside.

The following VB sample displays the caption of the items being checked in the control:

Dim c As Variant
For Each c In contextMenu.GetChecked
 Debug.Print vbTab & c.Caption
Next

The following VB/NET sample displays the caption of the items being checked in the
control:

Dim c As Object
For Each c In Excontextmenu1.GetChecked
 Debug.Print(vbTab & c.Caption)
Next

The following C# sample displays the caption of the items being checked in the control:

foreach (exontrol.EXCONTEXTMENULib.Item i in excontextmenu1.GetChecked)
 System.Diagnostics.Debug.Print("\t" + i.Caption);

property ExContextMenu.GetRadio ([RadioGroup as Variant]) as Variant
Retrieves an array of Item objects of radio type in the same group, that are checked.

Type Description

RadioGroup as Variant
A Long expression that specifies the radio-group being
queried, or zero if you were not used any RadioGroup
call.

Variant

A Safe-Array of Item objects that indicates the radio-
checked items in the control. The collection does include
only items with the Radio property set on True. The
collection may contains zero or one element indicating the
radio-item being checked in the specified radio group.

The GetRadio method gets a safe array with the radio-items being checked within a radio
group. The GetChecked property gets a collection of checked items. The GetUnchecked
property gets a collection of checked items. The Check property indicates whether the
current item displays a check box. The Checked property specifies whether the item is
checked or un-checked. The Radio property specifies whether the item displays a radio-
button. The RadioGroup property specifies a group of radio-buttons. A radio group allows
a single radio-item to be checked inside.

The following VB sample displays the caption of radio-item being checked (single radio-
group, or the RadioGroup property has not been used to create ore groups) :

Dim c As Variant
For Each c In contextMenu.GetRadio
 Debug.Print vbTab & c.Caption
Next

The following VB sample displays the caption of radio-item being checked in the radio-
group with the identifier 100:

Dim c As Variant
For Each c In contextMenu.GetRadio(100)
 Debug.Print vbTab & c.Caption
Next

The following VB/NET sample displays the caption of radio-item being checked (single
radio-group, or the RadioGroup property has not been used to create ore groups) :

Dim c As Variant

For Each c In contextMenu.GetRadio
 Debug.Print vbTab & c.Caption
Next

The following VB/NET sample displays the caption of radio-item being checked in the radio-
group with the identifier 100:

Dim c As Variant
For Each c In contextMenu.get_GetRadio(100)
 Debug.Print vbTab & c.Caption
Next

The following C# sample displays the caption of radio-item being checked (single radio-
group, or the RadioGroup property has not been used to create ore groups) :

foreach (exontrol.EXCONTEXTMENULib.Item i in excontextmenu1.GetRadio)
 System.Diagnostics.Debug.Print("\t" + i.Caption);

The following C# sample displays the caption of radio-item being checked in the radio-group
with the identifier 100:

foreach (exontrol.EXCONTEXTMENULib.Item i in excontextmenu1.get_GetRadio(100))
 System.Diagnostics.Debug.Print("\t" + i.Caption);

property ExContextMenu.GetUnchecked as Variant
Retrieves an array of Item objects, that displays a check box which is unchecked.

Type Description

Variant
A Safe-Array of Item objects that indicates the checked
items in the control. The collection does include only items
with the Check property set on True.

The GetUnchecked property gets a collection of checked items. The GetChecked property
gets a collection of checked items. The GetRadio method gets a safe array with the radio-
items being checked within a radio group. The Check property indicates whether the
current item displays a check box. The Checked property specifies whether the item is
checked or un-checked. The Radio property specifies whether the item displays a radio-
button. The RadioGroup property specifies a group of radio-buttons. A radio group allows
a single radio-item to be checked inside.

The following VB sample displays the caption of the items being un-checked in the control:

Dim c As Variant
For Each c In contextMenu.GetUnchecked
 Debug.Print vbTab & c.Caption
Next

The following VB/NET sample displays the caption of the items being un-checked in the
control:

Dim c As Object
For Each c In Excontextmenu1.GetUnchecked
 Debug.Print(vbTab & c.Caption)
Next

The following C# sample displays the caption of the items being un-checked in the control:

foreach (exontrol.EXCONTEXTMENULib.Item i in excontextmenu1.GetUnchecked)
 System.Diagnostics.Debug.Print("\t" + i.Caption);

property ExContextMenu.HTMLPicture(Key as String) as Variant
Adds or replaces a picture in HTML captions.

Type Description

Key as String
A String expression that indicates the key of the picture
being added or replaced. If the Key property is Empty
string, the entire collection of pictures is cleared.

Variant

The HTMLPicture specifies the picture being associated to
a key. It can be one of the followings:

a string expression that indicates the path to the
picture file, being loaded.
a string expression that indicates the base64 encoded
string that holds a picture object, Use the eximages
tool to save your picture as base64 encoded format.
A Picture object that indicates the picture being added
or replaced. (A Picture object implements IPicture
interface),

If empty, the picture being associated to a key is removed.
If the key already exists the new picture is replaced. If the
key is not empty, and it doesn't not exist a new picture is
added

The HTMLPicture property handles a collection of custom size picture being displayed in the
HTML captions, using the tags. By default, the HTMLPicture collection is empty. Use
the HTMLPicture property to add new pictures to be used in HTML captions. For instance,
the HTMLPicture("pic1") = "c:\winnt\zapotec.bmp", loads the zapotec picture and
associates the pic1 key to it. Any "pic1" sequence in HTML captions, displays
the pic1 picture. On return, the HTMLPicture property retrieves a Picture object (this
implements the IPictureDisp interface). The tag can be used in the Caption property
of the Item object. Use the HTMLImage property to assign a BMP, JPG, GIF or PNG file to
left side of the caption, the same way as you will do with the Image property. Use the
FlatImageWidth property to specify the width of the column that displays
icons/images/check or radio buttons.

https://exontrol.com/eximages.jsp

method ExContextMenu.Images (Handle as Variant)

Sets the control's image list at runtime.

Type Description

Handle as Variant

The Handle parameter can be:

A string expression that specifies the ICO file to add.
The ICO file format is an image file format for
computer icons in Microsoft Windows. ICO files
contain one or more small images at multiple sizes
and color depths, such that they may be scaled
appropriately. For instance,
Images("c:\temp\copy.ico") method adds the sync.ico
file to the control's Images collection (string, loads the
icon using its path)
A string expression that indicates the BASE64
encoded string that holds the icons list. Use the
Exontrol's ExImages tool to save/load your icons as
BASE64 encoded format. In this case the string may
begin with "gBJJ..." (string, loads icons using base64
encoded string)
A reference to a Microsoft ImageList control
(mscomctl.ocx, MSComctlLib.ImageList type) that
holds the icons to add (object, loads icons from a
Microsoft ImageList control)
A reference to a Picture (IPictureDisp implementation)
that holds the icon to add. For instance, the VB's
LoadPicture (Function LoadPicture([FileName], [Size],
[ColorDepth], [X], [Y]) As IPictureDisp) or
LoadResPicture (Function LoadResPicture(id, restype
As Integer) As IPictureDisp) returns a picture object
(object, loads icon from a Picture object)
A long expression that identifies a handle to an Image
List Control (the Handle should be of HIMAGELIST
type). On 64-bit platforms, the Handle parameter
must be a Variant of LongLong / LONG_PTR data
type (signed 64-bit (8-byte) integers), saved under
llVal field, as VT_I8 type. The LONGLONG /
LONG_PTR is __int64, a 64-bit integer. For instance,
in C++ you can use as Images(COleVariant(
(LONG_PTR)hImageList)) or Images(COleVariant(
(LONGLONG)hImageList)), where hImageList is of

https://exontrol.com/eximages.jsp

HIMAGELIST type. The GetSafeHandle() method of
the CImageList gets the HIMAGELIST handle (long,
loads icon from HIMAGELIST type)

The user can add images at design time, by drag and drop files to combo's image holder.
The ImageSize property defines the size (width/height) of the icons within the control's
Images collection. Use the ReplaceIcon method to add, remove or clear icons in the
control's images collection. The tag can be used in the Caption property of the Item
object. Also, the Image property assign an icon to the specified item.

property ExContextMenu.ImageSize as Long
Retrieves or sets the size of icons the control displays.

Type Description

Long A long expression that defines the size of icons the control
displays

By default, the ImageSize property is 16 (pixels). The ImageSize property specifies the size
of icons being loaded using the Images method. The control's Images collection is cleared if
the ImageSize property is changed, so it is recommended to set the ImageSize property
before calling the Images method. The ImageSize property defines the size (width/height)
of the icons within the control's Images collection. For instance, if the ICO file to load
includes different types the one closest with the size specified by ImageSize property is
loaded by Images method. The ImageSize property does NOT change the height for the
control's font.

property ExContextMenu.IncrementalSearch as IncrementalSearchEnum
Specifies how the control searches for the objects while user types characters.

Type Description

IncrementalSearchEnum
An IncrementalSearchEnum expression that specifies the
type of incremental searching the control performs once
the user types characters on the context menu.

"In computing, incremental search, incremental find or real-time suggestions is a user
interface interaction method to progressively search for and filter through text. As the user
types text, one or more possible matches for the text are found and immediately presented
to the user. " By default, the IncrementalSearch property is exISearchStartWith +
exISearchFilterFor, in other words, the control filter for items that match the typing
characters. Use the IncrementalSearch property on exNoIncrementalSearch to
disable/prevent the incremental searching in your context menu. While the incremental
search is on, the F3 or Shift + F3, finds the next occurrence or previously occurrence. The
Back key deletes the last character of the incremental search string, while the Ctrl + Back
key removes the entire incremental search string. If the IncrementalSearch property is
exNoIncrementalSearch, you can use the item's Shortcut property to define the key
combination that the user can press to select the item quickly.

You can use the IncrementalSearch property:

to highlight the items that match the typing characters
to display just the items that match the typing characters

The following screen shot shows the control with IncrementalSearch property on
exISearchStartWith + exISearchFilterFor, while the user types "shi":

he following screen shot shows the control with IncrementalSearch property on
exISearchStartWith, while the user types "shi":

property ExContextMenu.item (ID as Variant) as Item
Returns a specific Item object giving its identifier or caption.

Type Description

ID as Variant
A Long expression that specifies the identifier of the item
being requested or a String expression that specifies the
caption of the item being requested.

Item An Item object with associated identifier.

The Item property searches recursively the item with giving identifier/caption. The ID
property of the Item object specifies the identifier of the item. The Caption property of the
Item object specifies the caption of the item. The Item property gets the first Item object
being found, if multiple objects with the same identifier are found, or Nothing, if no item with
associated identifier is found. The Item property of the Items compared with the Item
property of the eXContextMenu is that the first look in the specified Items collection, while
the second is looking for all Items in the menu object.

property ExContextMenu.Items as Items
Retrieves the control's Items collection.

Type Description
Items An Items object that holds a collection of Item objects.

The Items property gives access to the control's Items collection, so you can add, remove
or update the items being shown in the context menu. The Add method adds a new item to
the Items collection. The ToString property loads or saves the control items from a string.
The Remove method removes a specified item. The Select property shows the context
menu, and waits for the user to make the selection.

The following VB sample loads three items (Item A, Item B and Item C) from a string and
displays the context menu:

Set contextMenu = CreateObject("Exontrol.ContextMenu")
With contextMenu
 .Items.ToString = "Item A,Item B,Item C"
 iSelect = .Select()
 If (iSelect <> 0) Then
 Debug.Print (.Items.Item(iSelect).Caption)
 End If
End With

The Item property accesses an Item object giving its identifier or caption.

property ExContextMenu.LocalAppearance as MenuBorderEnum
Retrieves or sets the local popup's appearance.

Type Description

MenuBorderEnum

A MenuBorderEnum expression that specifies the local's
frame appearance, or a color expression whose last 7 bits
in the high significant byte of the value indicates the index
of the skin in the Appearance collection, being displayed
as control's borders. For instance, if the Appearance =
0x1000000, indicates that the first skin object in the
Appearance collection defines the control's border. The
Client object in the skin, defines the client area of the
control. The list/hierarchy, scrollbars are always
shown in the control's client area. The skin may
contain transparent objects, and so you can define
round corners. The normal.ebn file contains such of
objects. Use the eXButton's Skin builder to view or
change this file

By default, the LocalAppearance property is -1. The visual appearance of the local popup is
specified by the control's Appearance property, while the LocalAppearance property is -1.
The ShowLocalPopup property specifies whether the item's popup is shown as local.
Clicking any item inside a local popup makes the popup itself to close including all its
descendent sub-menus, without closing any ascendant sub-menus. The PopupAppearance
specifies a different visual appearance for the current submenu. When using EBN
appearance, using the PopupAppearance, LocalAppearance or Appearance, the distance
between margins/borders and items client area is indicated by the client object of the
skin/ebn object.

The following screen shot shows the sub-menu with different appearances:

(single appearance)

(shadow appearance)

https://exontrol.com/exbutton.jsp

(ebn appearance)

(ebn appearance)

property ExContextMenu.MenuAppearance as MenuAppearanceEnum
Retrieves or sets a value that indicates the menu's appearance.

Type Description

MenuAppearanceEnum A MenuAppearanceEnum expression that specifies menu's
appearance.

By default, the MenuAppearance property is exMenuFlat. The
Background(exMenuFlatLineColor) property indicates the color of line that divides the left to
right side of the menu, when the MenuAppearance property is exMenuFlat. The
FlatBackColor property indicates the color to show the left part of the menu, when the
MenuAppearance property is exMenuFlat. The BackColor property specifies the menu's
background color. The Background(exMenuButtonItem) property indicates the visual
appearance for items in the menu control, when the MenuAppearance property is
exMenuButton. The Background(exMenuSeparatorItem) property specifies the visual
appearance of the separator items.

The MenuAppearance supports the following values:

exMenuNormal, the BackColor property specifies the menu's background color. The
ForeColor property specifies the menu's foreground color.
exMenuFlat, the BackColor property specifies the menu's background color. The
ForeColor property specifies the menu's foreground color. The
Background(exMenuFlatLineColor) property indicates the color of line that divides the
left to right side of the menu. The FlatBackColor property indicates the color to show
the left part of the menu.
exMenuButton, the BackColor property specifies the menu's background color. The
ForeColor property specifies the menu's foreground color. The
Background(exMenuButtonItem) property indicates the visual appearance for items in
the menu control.

The following screen shot shows the menu while the MenuAppearance property is
exMenuFlat :

property ExContextMenu.Notifier as Long
Retrieves or sets the handle of the window that receives notifications/WM_COMMAND
messages.

Type Description

Long
A Long expression that specifies the handle of the window
that receives the WM_COMMAND when the user selects,
check/uncheck, edit an item.

By default, the Notifier property is 0, which indicates that the property has no effect. Set the
Notifier property to a window that you want to receive notification of the control through the
WM_COMMAND message. For instance, in VFP or C++ it would be easier to handle the
events of the control using the WM_COMMAND messages, rather than using sink
interfaces.

The wParam parameter of the WM_COMMAND message carries the identifier of the event
which occurred like listed bellow:

0 (exSelectItem), occurs when the user selects/clicks an item
1 (exCheckItem), occurs when the user clicks the item's check box, or check the
item's checkbox
2 (exUncheckItem), occurs when the user clicks the item's check box, or uncheck the
item's checkbox
3 (exEditChangeItem), occurs when the content of the item's editor is changed.

The lParam parameter of the WM_COMMAND message carries the identifier of the item
who fired the event. You can use the Item property to access the control's item giving its
identifier. The ID property specifies the item's identifier.

In VFP, you have to assign the hWnd property of the form to the Notifier property of the
control as follows:

contextMenu.Notifier = thisform.HWnd

while the following code:

BINDEVENT(thisform.HWnd, 273, thisform, "oncommand")

adds a handler oncommand for the WM_COMMAND message (273 or 0x111 in hexa, is
the identifier of the WM_COMMAND message).

The oncommand may look like:

LPARAMETERS hWnd, uMsg, wParam, lParam

?wParam

*CheckItem
IF (wParam = 1) then
 thisform.contextMenu_CheckItem(lParam)
ELSE
 * UncheckItem
 IF (wParam = 2) then
 thisform.contextMenu_UncheckItem(lParam)
 ENDIF
ENDIF

property ExContextMenu.Picture as IPictureDisp
Retrieves or sets a graphic to be displayed in the control.

Type Description
IPictureDisp A Picture object that indicates the control's picture.

Reserved. Currently, this property is disabled.

property ExContextMenu.PictureDisplay as PictureDisplayEnum
Retrieves or sets a value that indicates the way how the graphic is displayed on the
control's background

Type Description

PictureDisplayEnum A PictureDisplayEnum expression that indicates the way
how the control's picture is displayed.

Reserved. Currently, this property is disabled.

method ExContextMenu.Refresh ()
Refreshes the control.

Type Description

Call the Refresh method to update the control's content. For instance, if you are changing
the item's Caption, if an OleEvent occurs.

method ExContextMenu.ReplaceIcon ([Icon as Variant], [Index as
Variant])

Adds a new icon, replaces an icon or clears the control's image list.

Type Description

Icon as Variant

A Variant expression that specifies the icon to add or
insert, as one of the following options:

a long expression that specifies the handle of the icon
(HICON)
a string expression that indicates the path to the
picture file
a string expression that defines the picture's content
encoded as BASE64 strings using the eXImages tool
a Picture reference, which is an object that holds
image data. It is often used in controls like
PictureBox, Image, or in custom controls (e.g.,
IPicture, IPictureDisp)

If the Icon parameter is 0, it specifies that the icon at the
given Index is removed. Furthermore, setting the Index
parameter to -1 removes all icons.

By default, if the Icon parameter is not specified or is
missing, a value of 0 is used.

Index as Variant

A long expression that defines the index of the icon to
insert or remove, as follows:

A zero or positive value specifies the index of the icon
to insert (when Icon is non-zero) or to remove (when
the Icon parameter is zero)
A negative value clears all icons when the Icon
parameter is zero

By default, if the Index parameter is not specified or is
missing, a value of -1 is used.

Return Description

Long A long expression that indicates the index of the icon in the
images collection

https://exontrol.com/eximages.jsp

Use the ReplaceIcon property to add, remove or replace an icon in the control's images
collection. Also, the ReplaceIcon property can clear the images collection. Use the Images
method to attach a image list to the control.

The following VB sample adds a new icon to control's images list:

 i = ExContextMenu1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle), i specifies the
index where the icon is added

The following VB sample replaces an icon into control's images list::

 i = ExContextMenu1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle, 0), i is zero, so
the first icon is replaced.

The following VB sample removes an icon from control's images list:

 ExContextMenu1.ReplaceIcon 0, i, where i specifies the index of icon removed.

The following VB clears the control's icons collection:

 ExContextMenu1.ReplaceIcon 0, -1

property ExContextMenu.SelBackColor as Color
Retrieves or sets a value that indicates the selection background color.

Type Description

Color

A Color expression that specifies the background color /
visual appearance of the selected item. The last 7 bits in
the high significant byte of the color indicates the identifier
of the skin being used. Use the Add method to add new
skins to the control. If you need to remove the skin
appearance from a part of the control you need to reset
the last 7 bits in the high significant byte of the color being
applied to the background's part.

The SelBackColor property specifies the visual appearance of the item being selected /
highlighted. The SelForeColor property specifies the foreground color of the item being
selected / highlighted. The ForeColor property specifies the control's foreground color. The
BackColor property specifies the control's background color. The Background property
specifies the visual appearance for different parts of the control. The Appearance property
specifies the menu's frame appearance.

The following screen shot shows the control's selection with the default colors:

The following screen shot shows the control's selection with a different visual appearance:

method ExContextMenu.Select ([Flags as Variant], [X as Variant], [Y as
Variant])
Displays the shortcut menu at the specified location and tracks the selection of items on the
menu.

Type Description

Flags as Variant

A Long expression that indicates the alignment of the
context menu relative to the giving X and Y parameters. If
missing, the 0 is used, so the menu's top-left corner is
aligned to X, Y coordinates.

The Flags parameter can be a combination of the
following values:

Use one of the following flags to specify how the function
positions the shortcut menu horizontally:

0 Positions the shortcut menu so that its left side is
aligned with the coordinate specified by the x
parameter.
4 Centers the shortcut menu horizontally relative to
the coordinate specified by the x parameter.
8 Positions the shortcut menu so that its right side
is aligned with the coordinate specified by the x
parameter

Use one of the following flags to specify how the function
positions the shortcut menu vertically:

0 Positions the shortcut menu so that its top side is
aligned with the coordinate specified by the y
parameter
16 Centers the shortcut menu vertically relative to the
coordinate specified by the y parameter
32 Positions the shortcut menu so that its bottom side
is aligned with the coordinate specified by the y
parameter

For instance, the 4 + 32 indicates that the menu is
horizontally centered relative to x, and vertically it under
the y coorindate.

X as Variant
If missing or -1, the current cursor position is used, else it
should indicate the X position to show the context menu, in
screen coordinates.

Y as Variant
If missing or -1, the current cursor position is used, else it
should indicate the Y position to show the context menu, in
screen coordinates.

Return Description

Long

A Long expression that specifies the identifier of the Item
being clicked. A zero(0) value indicates that the user
makes no selection, or no item has been clicked. A value
different than zero indicates the item with the specified
ID. You can use the Item property of the control to get
the associated Item object based on this identifier.

The Select property shows the context menu, and waits for the user to make the selection.
The Select method displays nothing, if the Items collection is empty. The Select
property returns the identifier of the item being clicked. If no item has been clicked (or the
user clicked outside of the context menu), the Select property returns 0. The Items
property gives accesses to the Items collection of the control, so you can add, remove or
update the items to be displayed. The Add method adds a new item to the Items collection.
The ToString property loads or saves the control items from a string.

In case your context menu displays check-boxes, radio buttons, or items with Edit fields
inside, you can use the GetChecked property gets a collection of checked items. The
GetUnchecked property gets a collection of checked items. The GetRadio method gets a
safe array with the radio-items being checked within a radio group. Also, you can use the
Get method to retrieve a collection of Item objects based on your criteria. The control fires
the SelectItem event when the user clicks an item.

The following samples show how to create the context menu, add a few items and call the
Select method:

VB6, VBA (MS Access, Excell...), VB.NET for /COM

With Pivot1
 With CreateObject("Exontrol.ContextMenu")
 .Items.ToString = "Item A,Item B,Item C"
 Debug.Print(.Select())
 End With
End With

VB.NET

With Expivot1
 ' Add 'exontrol.excontextmenu.dll' reference to your project.
 With New exontrol.EXCONTEXTMENULib.excontextmenu()
 .Items.ToString = "Item A,Item B,Item C"
 Debug.Print(.Select())
 End With
End With

C++

 /*
 Includes the definition for CreateObject function like follows:
 #include <comdef.h>
 IUnknownPtr CreateObject(BSTR Object)
 {
 IUnknownPtr spResult;
 spResult.CreateInstance(Object);
 return spResult;
 };
 */
 /*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXCONTEXTMENULib' for the library: 'ExContextMenu
1.0 Type Library'
 #import <ExContextMenu.dll>
 using namespace EXCONTEXTMENULib;
 */
 EXCONTEXTMENULib::IExContextMenuPtr var_ExContextMenu =
::CreateObject(L"Exontrol.ContextMenu");
 var_ExContextMenu->GetItems()->PutToString(L"Item A,Item B,Item C");
 OutputDebugStringW(_bstr_t(var_ExContextMenu-
>Select(vtMissing,vtMissing,vtMissing)));

C++ Builder

/*
 Select the Component\Import Component...\Import a Type Library,
 to import the following Type Library:

 ExContextMenu 1.0 Type Library
 TypeLib: e:\Exontrol\ExContextMenu\project\Site\ExContextMenu.dll
 to define the namespace: Excontextmenulib_tlb
*/
//#include "EXCONTEXTMENULIB_TLB.h"
Excontextmenulib_tlb::IExContextMenuPtr var_ExContextMenu =
Variant::CreateObject(L"Exontrol.ContextMenu");
 var_ExContextMenu->Items->ToString = L"Item A,Item B,Item C";
 OutputDebugString(PChar(var_ExContextMenu-
>Select(TNoParam(),TNoParam(),TNoParam())));

C#

// Add 'exontrol.excontextmenu.dll' reference to your project.
exontrol.EXCONTEXTMENULib.excontextmenu var_ExContextMenu = new
exontrol.EXCONTEXTMENULib.excontextmenu();
 var_ExContextMenu.Items.ToString = "Item A,Item B,Item C";
 System.Diagnostics.Debug.Print(var_ExContextMenu.Select(null,null,null).ToString()
);

X++ (Dynamics Ax 2009)

 COM com_ExContextMenu,com_Items;
 anytype var_ExContextMenu,var_Items;
 ;
 // Add 'excontextmenu.dll' reference to your project.
 // Add 'ExContextMenu 1.0 Type Library' reference to your project.
 var_ExContextMenu = COM::createFromObject(new
EXCONTEXTMENULib.excontextmenu()); com_ExContextMenu = var_ExContextMenu;
 var_Items = COM::createFromObject(com_ExContextMenu.Items()); com_Items =
var_Items;
 com_Items.ToString("Item A,Item B,Item C");
 print(com_ExContextMenu.Select())

Delphi 8 (.NET only)

with (ComObj.CreateComObject(ComObj.ProgIDToClassID('Exontrol.ContextMenu'))
as EXCONTEXTMENULib.ExContextMenu) do

begin
 Items.ToString := 'Item A,Item B,Item C';
 OutputDebugString(Select(Nil,Nil,Nil));
end;

Delphi (standard)

with
(IUnknown(ComObj.CreateComObject(ComObj.ProgIDToClassID('Exontrol.ContextMenu')))
 as EXCONTEXTMENULib_TLB.ExContextMenu) do
begin
 Items.ToString := 'Item A,Item B,Item C';
 OutputDebugString(Select(Null,Null,Null));
end;

VFP

with CreateObject("Exontrol.ContextMenu")
 .Items.ToString = "Item A,Item B,Item C"
 DEBUGOUT(.Select())
endwith

property ExContextMenu.SelForeColor as Color
Retrieves or sets a value that indicates the selection foreground color.

Type Description

Color A Color expression that specifies the forground color to
show the selected / highlighted item.

The SelForeColor property specifies the foreground color of the item being selected /
highlighted. The SelBackColor property specifies the visual appearance of the item being
selected / highlighted. The ForeColor property specifies the control's foreground color. The
BackColor property specifies the control's background color. The Background property
specifies the visual appearance for different parts of the control. The Appearance property
specifies the menu's frame appearance.

property ExContextMenu.ShowCheckedAsSelected as
ShowCheckedAsSelectedEnum
Specifies whether the checked items shows as selected.

Type Description

ShowCheckedAsSelectedEnumA ShowCheckedAsSelectedEnum expression that
specifies whether the checked items show as selected.

By default, the ShowCheckedAsSelected property is exDisplayItemCheckDefault. Use the
ShowCheckedAsSelected property on non zero, to show the checked items as selected. A
checked item is an item with the Check or Radio property set on True and the Checked
property is True. The SelBackColor property indicates the color to show background of the
selected / highlighted item. The AllowToggleRadio property on True, allows a radio button to
set on zero (unchecked), if the user clicks twice the radio button. The
ShowCheckedAsSelected property of the Item object specifies whether the individual
checked item is shown as selected. The ShowCheckedAsSelectedTransparency property
specifies the transparency (percent) to show the checked items when selected.

The following screen shot shows the control when the ShowCheckedAsSelected property is
exDisplayItemCheckDefault(by default):

The following screen shot shows the control when the ShowCheckedAsSelected property is
exDisplayItemCheckHighlight:

property ExContextMenu.ShowCheckedAsSelectedTransparency as
Long
Specifies the transparency (percent) to show the checked items when selected.

Type Description

Long

A Long expression that specifies the transparency (
percent) to show the checked items when selected. The
valid values are from 0 (opaque), to 100 (fully
transparent).

By default, the ShowCheckedAsSelectedTransparency property is 50 (semi-transparent)
The ShowCheckedAsSelectedTransparency property specifies the transparency (percent)
to show the checked items when selected. Use the ShowCheckedAsSelected property on
non zero, to show the checked items as selected. A checked item is an item with the Check
or Radio property set on True and the Checked property is True. The SelBackColor
property indicates the color to show background of the selected / highlighted item. The
AllowToggleRadio property on True, allows a radio button to set on zero (unchecked), if
the user clicks twice the radio button. The ShowCheckedAsSelected property of the Item
object specifies whether the individual checked item is shown as selected.

The following screen shot shows the control when the ShowCheckedAsSelected property is
exDisplayItemCheckDefault(by default):

The following screen shot shows the control when the ShowCheckedAsSelected property is
exDisplayItemCheckHighlight:

property ExContextMenu.ShowPopupArrow(ItemHighlited as Boolean)
as ShowPopupArrowEnum
Indicates the type of the arrow to be shown when the item displays the sub-menu.

Type Description

ItemHighlited as Boolean
A Boolean expression that specifies whether the arrow is
shown to the selected/highlighted item. In VFP, you should
use 0 or 1, instead .F. or .T.

ShowPopupArrowEnum A ShowPopupArrowEnum expression that specifies the
arrow to be shown on an item that displays a submenu.

By default, the ShowPopupArrow(True) property is exShowPopupArrowLight, and the
ShowPopupArrow(False) property is exShowPopupArrowDark. In other words, when the
item is selected/highlighted a light arrow is displayed, while when the item it is not
selected/highlighted a dark arrow is displayed. Use the ShowPopupArrow property to
specify how the item with sub-menu displays the popup arrow.

property ExContextMenu.ShowPopupEffect as ShowPopupEffectEnum
Specifies the effect to show the popup menu when clicking an item, such as scrolling,
lighting up, and so on.

Type Description

ShowPopupEffectEnum
A ShowPopupEffectEnum expression that specifies effect
to be applied when the user opens the menu or a sub-
menu.

By default, ShowPopupEffect property is exShowPopupLightUp. Use the ShowPopupEffect
property to disable the effect to be applied when the user opens the menu or any sub-
menu.

property ExContextMenu.Template as String
Specifies the control's template.

Type Description
String A string expression that indicates the control's template.

The control's template uses the X-Script language to initialize the control's content. Use the
Template property page of the control to update the control's Template property. Use the
Template property to execute code by passing instructions as a string (template string).
Use the ExecuteTemplate property to execute a template script and gets the result.

For instance, the following sample adds a few items and displays the context menu:

Set n = New EXCONTEXTMENULib.ExContextMenu
n.Template = "Items.ToString = `Item A[id=1001],Item B,Item C,Item D`;Select()"

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

The Template/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>
<lines> := <line>[<eol> <lines>] | <block>
<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]
<eol> := ";" | "\r\n"
<line> := <dim> | <createobject> | <call> | <set> | <comment>
<dim> := "DIM" <variables>
<variables> := <variable> [, <variables>]
<variable> := "ME" | <identifier>
<createobject> := "CREATEOBJECT(`"<type>"`)"
<call> := <variable> | <property> | <variable>"."<property> | <createobject>"."
<property>
<property> := [<property>"."]<identifier>["("<parameters>")"]
<set> := <call> "=" <value>
<property> := <identifier> | <identifier>"("[<parameters>]")"
<parameters> := <value> [","<parameters>]
<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> |
<call>

<boolean> := "TRUE" | "FALSE"
<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit16> := <digit10> | A | B | C | D | E | F
<integer> := <digit10>[<integer>]
<hexa> := <digit16>[<hexa>]
<color> := "RGB("<integer>","<integer>","<integer>")"
<date> := "#"<integer>"/"<integer>"/"<integer>" "[<integer>":"<integer>":"
<integer>"]"#"
<string> := '"'<text>'"' | "`"<text>"`"
<comment> := "'"<text>

where:

<identifier> indicates an identifier of the variable, property or method, and should start with
a letter.
<type> indicates the type the CreateObject function creates, as a progID
<text> any string of characters

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property ExContextMenu.TemplateDef as Variant
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplateDef property has been added to allow programming languages such as
dBASE Plus to set control's properties with multiple parameters. It is known that
programming languages such as dBASE Plus or XBasic from AlphaFive, does not
support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef method. The first call of the TemplateDef
should be a declaration such as "Dim a,b" which means the next 2 calls of the TemplateDef
defines the variables a and b. The next call should be Template or ExecuteTemplate
property which can use the variable a and b being defined previously.

So, calling the TemplateDef property should be as follows:

with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith

This sample allocates a variable var_Column, assigns the value to the variable (the second
call of the TemplateDef), and the Template call uses the var_Column variable (as an object
), to call its Def property with the parameter 4.

Let's say we need to define the background color for a specified column, so we need to call
the Def(exCellBackColor) property of the column, to define the color for all cells in the
column.

The following VB6 sample shows setting the Def property such as:

With Control
 .Columns.Add("Column 1").Def(exCellBackColor) = 255
 .Columns.Add "Column 2"
 .Items.AddItem 0
 .Items.AddItem 1

 .Items.AddItem 2
End With

In dBASE Plus, calling the Def(4) has no effect, instead using the TemplateDef helps you to
use properly the Def property as follows:

local Control,var_Column

Control = form.Activex1.nativeObject
// Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith
Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The equivalent sample for XBasic in A5, is as follows:

Dim Control as P
Dim var_Column as P

Control = topparent:CONTROL_ACTIVEX1.activex
' Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
Control.TemplateDef = "Dim var_Column"
Control.TemplateDef = var_Column
Control.Template = "var_Column.Def(4) = 255"

Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The samples just call the Column.Def(4) = Value, using the TemplateDef. The first call of
TemplateDef property is "Dim var_Column", which indicates that the next call of the
TemplateDef will defines the value of the variable var_Column, in other words, it defines the
object var_Column. The last call of the Template property uses the var_Column member to
use the x-script and so to set the Def property so a new color is being assigned to the
column.

The TemplateDef, Template and ExecuteTemplate support x-script language (Template
script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

The Template/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>
<lines> := <line>[<eol> <lines>] | <block>
<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]
<eol> := ";" | "\r\n"
<line> := <dim> | <createobject> | <call> | <set> | <comment>
<dim> := "DIM" <variables>
<variables> := <variable> [, <variables>]
<variable> := "ME" | <identifier>
<createobject> := "CREATEOBJECT(`"<type>"`)"
<call> := <variable> | <property> | <variable>"."<property> | <createobject>"."
<property>
<property> := [<property>"."]<identifier>["("<parameters>")"]
<set> := <call> "=" <value>
<property> := <identifier> | <identifier>"("[<parameters>]")"
<parameters> := <value> [","<parameters>]
<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> |
<call>
<boolean> := "TRUE" | "FALSE"
<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit16> := <digit10> | A | B | C | D | E | F
<integer> := <digit10>[<integer>]
<hexa> := <digit16>[<hexa>]
<color> := "RGB("<integer>","<integer>","<integer>")"

<date> := "#"<integer>"/"<integer>"/"<integer>" "[<integer>":"<integer>":"
<integer>"]"#"
<string> := '"'<text>'"' | "`"<text>"`"
<comment> := "'"<text>

where:

<identifier> indicates an identifier of the variable, property or method, and should start with
a letter.
<type> indicates the type the CreateObject function creates, as a progID
<text> any string of characters

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"

indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

method ExContextMenu.TemplatePut (NewVal as Variant)
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

NewVal as Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplatePut method / TemplateDef property has been added to allow programming
languages such as dBASE Plus to set control's properties with multiple parameters. It is
known that programming languages such as dBASE Plus or XBasic from AlphaFive, does
not support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef / TemplatePut method. The first call of the
TemplateDef should be a declaration such as "Dim a,b" which means the next 2 calls of the
TemplateDef defines the variables a and b. The next call should be Template or
ExecuteTemplate property which can use the variable a and b being defined previously.

The TemplateDef, TemplatePut, Template and ExecuteTemplate support x-script language (
Template script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the

Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property ExContextMenu.ToolTipDelay as Long
Specifies the time in ms that passes before the ToolTip appears.

Type Description

Long A long expression that specifies the time in ms that passes
before the ToolTip appears.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. Use
the ToolTipPopDelay property specifies the period in ms of time the ToolTip remains visible
if the mouse pointer is stationary within a control. Use the ToolTipWidth property to specify
the width of the tooltip window. Use the Background(exToolTipAppearance) property
indicates the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color. Use the
ToolTip property to assign a tooltip to an item. Use the ToolTipFont property or
HTML element to assign a new font for tooltips.

property ExContextMenu.ToolTipFont as IFontDisp
Retrieves or sets the tooltip's font.

Type Description
IFontDisp A Font object being used to display the tooltip.

Use the ToolTipFont property to assign a font for the control's tooltip. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. Use the ToolTipWidth property to specify the width of the tooltip
window. You can use the HTML element, in the tooltip's description to assign a
different font for portions of text. Use the ToolTip property to assign a tooltip to an item

property ExContextMenu.ToolTipPopDelay as Long
Specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control.

Type Description

Long
A long expression that specifies the period in ms of time
the ToolTip remains visible if the mouse pointer is
stationary within a control.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. The
ToolTipDelay property specifies the time in ms that passes before the ToolTip appears. Use
the ToolTipWidth property to specify the width of the tooltip window. Use the ToolTipFont
property to assign a font for the control's tooltip. Use the
Background(exToolTipAppearance) property indicates the visual appearance of the borders
of the tooltips. Use the Background(exToolTipBackColor) property indicates the tooltip's
background color. Use the Background(exToolTipForeColor) property indicates the tooltip's
foreground color. Use the ToolTip property to assign a tooltip to an item

property ExContextMenu.ToolTipWidth as Long
Specifies a value that indicates the width of the tooltip window, in pixels.

Type Description

Long A long expression that indicates the width of the tooltip
window, in pixels.

Use the ToolTipWidth property to change the tooltip window width. The height of the tooltip
window is automatically computed based on tooltip's description. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. The ToolTipDelay property specifies the time in ms that passes
before the ToolTip appears. Use the ToolTipFont property to assign a font for the control's
tooltip. Use the Background(exToolTipAppearance) property indicates the visual appearance
of the borders of the tooltips. Use the Background(exToolTipBackColor) property indicates
the tooltip's background color. Use the Background(exToolTipForeColor) property indicates
the tooltip's foreground color. Use the ToolTip property to assign a tooltip to an item

property ExContextMenu.ToString as String
Loads or saves the Items collection using string representation (shortcut of Items.ToString
property).

Type Description

String

A String expression that specifies the items to be added.
The list of items is separated by , (comma) character,
while sub-menus are include between () parenthesis. The
[] brackets indicates the options to be applied on the item

The ToString property of the control is equivalent with the ToString property of the Items
object.

The ToString syntax in BNF notation:

<ToString> ::= <ITEMS>
<ITEMS> ::= <ITEM>["("<ITEMS>")"][","<ITEMS>]
<ITEM> ::= <CAPTION>[<OPTIONS>]
<OPTIONS> ::= "["<OPTION>"]"["["<OPTIONS>"]"]
<OPTION> ::= <PROPERTY>["="<VALUE>]
<PROPERTY> ::= "img" | "himg" | "sep" | "id" | "typ" | "group" | "chk" | "button" | "align" |
"spchk" | "show" | "rad" | "dis" | "showdis" | "bld" | "itl" | "stk" | "und" | "bg" | "fg" | "edittype"
| "edit" | "mask" | "border" | "editwidth" | "captionwidth" | "height" | "grp" | "tfi" | "ttp" | "min" |
"max" | "tick" | "freq" | "ticklabel" | "small" | "large" | "spin" | "ettp" | "float" | "close" | "local" |
"popupapp" | "itemspad" | "itemsbg" | "itemsbghot" | "itemsbgext" | "visible" | "tab" | "pad" |
"bghot" | "bgsel" | "bgselhot" | "arrow" | "popupalign" | "popupoffset" | "popupat"

where the <CAPTION> is the HTML caption to be shown on the context menu item. The
<VALUE> indicates the value of giving property.

id=<VALUE>, where <VALUE> is an integer expression, that indicates the identifier of
the item.
bg=<VALUE>, specifies the item's background color, where <VALUE> could be a RGB
expression (RGB(RR,GG,BB), where RR is the red value, the GG is the green value,
and the BB is the blue value), or an integer expression to that refers an EBN object.
bghot=<VALUE>, specifies the item's background color, while the cursor hovers the
item, where <VALUE> could be a RGB expression (RGB(RR,GG,BB), where RR is
the red value, the GG is the green value, and the BB is the blue value), or an integer
expression to that refers an EBN object.
bgsel=<VALUE>, specifies the item's background color, while the item is
checked/selected, where <VALUE> could be a RGB expression (RGB(RR,GG,BB),
where RR is the red value, the GG is the green value, and the BB is the blue value), or
an integer expression to that refers an EBN object.

bgselhot=<VALUE>, specifies the item's background color, while the item is
checked/selected and the cursor hovers it, where <VALUE> could be a RGB
expression (RGB(RR,GG,BB), where RR is the red value, the GG is the green value,
and the BB is the blue value), or an integer expression to that refers an EBN object.
fg=<VALUE>, specifies the item's foreground color, where <VALUE> could be a RGB
expression (RGB(RR,GG,BB), where RR is the red value, the GG is the green value,
and the BB is the blue value), or a integer expression.
sep, specifies an separator item
dis, specifies a disabled item
showdis=<VALUE>, where <VALUE> could be 0 for regular or not zero to specify
whether the item shows as disabled, but it is still enabled
bld, specifies that the item appears in bold
itl, specifies that the item appears in italics
stk, specifies that the item appears as strikeout
und, specifies that the item is underlined
align=<VALUE>, where <VALUE> could be one of the following:

0 (left), to align the item's caption to the left
1 (center), to center the item's caption
2 (right), to align the item's caption to the right

captionwidth=<VALUE>, specifies the width to show the HTML caption of the item.
where <VALUE> could be a integer expression. A negative value indicates that no
limitation is applied to the item's caption, so no truncate caption is shown
height=<VALUE>, specifies the height to show the item, where <VALUE> could be a
positive integer expression
pad=<VALUE>, specifies the padding (space between the menu border and the item
content) to display the item. The <VALUE> is a list of coordinates such as
left,top,right,bottom
img=<VALUE>, where <VALUE> is an integer expression, that indicates the index of
the icon being displayed for the item.
himg=<VALUE>, where <VALUE> indicates the key of the picture to be displayed for
the item.

typ=<VALUE>, where <VALUE> could be one of the following:
0 for default/regular items (no check/radio button is associated with the item),
1 for items that display a check/box (chk),
2 to display radio buttons (rad)

chk[=<VALUE>], where <VALUE> could be 0 for unchecked, or not zero for checked.
The chk option makes the item to display a check box. If the <VALUE> is missing the
item still displays an un-checked check box.

rad=<VALUE>, where <VALUE> could be 0 for unchecked radio button or not zero to
for checked radio button. Use the grp option to define the group of radio where this
button should be associated, If no group of radio buttons is required, the grp could be
ignored.
grp=<VALUE>, defines the radio group. It should be used when you define more
groups of radio buttons. A group of radio buttons means that only one item could be
checked at one time. The rad option specifies that the item displays a radio button.
Use the grp option to define the group of radio where this button should be associated,
If no group of radio buttons is required, the grp could be ignored. The <VALUE> could
be any integer expression.

show=<VALUE>, where <VALUE> could be 0 for regular or not zero to specify
whether the checked item shows as selected
spchk=<VALUE>, where <VALUE> could be 0 for regular or not zero to specify
whether the item's sub menu is shown only if the item is checked.

group=<VALUE>, where <VALUE> could be a bit-or combination (+) of the following
values:

0 (exNoGroupPopup), No grouping is performed on the sub-menu, so the sub-
items are shown to a float popup,
1 (exGroupPopup), Groups and displays the sub-menu items on the current item,
arranged from left to right/horizontally
2 (exNoGroupPopupFrame), Prevents showing the frame around each grouping
item.
4 (exGroupPopupCenter), Shows the grouping popup aligned to the center of the
current item.
8 (exGroupPopupRight), Shows the grouping popup aligned to the right of the
current item.
16 (exGroupPopupEqualWidth), Shows the items that make the group of the same
width
32 (exGroupPopupEqualHeight), Shows the items that make the group of the
same height
64 (exGroupPopupFrameSolidBox), Shows a solid frame around the grouped

items
128 (exGroupPopupFrameThickBox), Shows a solid thick-frame around the
grouped items
256 (exGroupPopupVertical), Groups and displays the sub-menu items on the
current item, arranged from top to bottom/vertically

button=<VALUE>, where <VALUE> could be a bit-or combination (+) of the following
values.

0 (exShowAsButtonNone), No button is shown,
1 (exShowAsButton), Shows the item as a button
2 (exShowAsButtonAutoSize), Fits the button to cover the item's caption instead
showing on the entire item
17 (exShowAsSelectButton), Shows the item as a select button, which is
composed by two-fields, one indicates the default button, while the second field
specifies the drop down button that displays the items in the current's sub-menu
collection. The drop down button is shown to the right-side of the default button.
The item must have a submenu, else no drop down is displayed.
273 (exShowAsSelectButtonBottom), Shows the item as a select button, which is
composed by two-fields, one indicates the default button, while the second field
specifies the drop down button that displays the items in the current's sub-menu
collection. The drop down button is shown to the bottom-side of the default button.
The item must have a submenu, else no drop down is displayed.

ttp=<VALUE>, defines the item's tooltip. The <VALUE> could be any HTML string
expression. The item's tooltip is shown when the user hovers the item.

edittype=<VALUE>, associates an edit field to the item, where <VALUE> could be a
combination of one or more of the following values:

0 (exItemDisableEdit), No editor is assigned to the current item.
1 (exItemEditText), A text-box editor is assigned to the current item.
2 (exItemEditMask), A masked text-box editor is assigned to the current item.

3 (exItemEditSlider), A slider editor is assigned to the current item. This can be
combined with 1024.
4 (exItemEditProgress), A progress editor is assigned to the current item. This
can be combined with 1024.
5 (exItemEditScrollBar), A scrollbar editor is assigned to the current item. This
can be combined with 1024.
6 (exItemEditColor), A color editor is assigned to the current item.
7 (exItemEditFont), A font editor is assigned to the current item.
256 (exItemEditReadOnly), specifies that the item's editor is shown as disabled.
This value could be combined with one of the values from 0 to 7 or 512
512 (exItemEditSpin), A spin editor is assigned to the current item. This value
could be combined with one of the values from 0 to 7 or 256
1024 (exItemEditVertical), The editor is shown vertically rather than horizontally.
This value has effect for exItemEditSlider, exItemEditProgress or
exItemEditScrollBar

edit=<VALUE>, specifies the caption to be shown in the item's edit field, where
<VALUE> could be any string
mask=<VALUE>, specifies the mask to be applied on a masked editor. This option is
valid for exItemEditMask edit. Use the float option to allow masking floating point
numbers. See Masking for more information about <VALUE> of the mask option. See
Masking Float for more information about <VALUE> if the float option is used.
float=<VALUE>, Specifies whether the mask field masks a floating point number. This
option is valid for exItemEditMask edit. See Masking Float for more information about
<VALUE> of mask option, if the float option is used. The <VALUE> could be 0 for
standard masking field or not zero to specify that the field is masking a floating point.
border=<VALUE>, specifies the border to be shown on the item's edit field, where
<VALUE> could be one of the following:

0 (exEditBorderNone), No border is shown.
-1 (exEditBorderInset), shows an inset border
1 (exEditBorderSingle), shows a frame border

editwidth=<VALUE>, specifies the width to show the edit field inside the item, where
<VALUE> could be a integer expression. A negative value indicates that the field goes
to the end of the item
min=<VALUE>, defines the minimum value of the edit field. The <VALUE> could be any
integer expression, and specifies the minimum value for any slider, progress, scroll,
spin, or range editor.
max=<VALUE>, defines the maximum value of the edit field. The <VALUE> could be
any integer expression, and specifies the maximum value for any slider, progress,
scroll, spin, or range editor.
tick=<VALUE>, defines where the ticks of the slider edit appear. This option is valid for
exItemEditSlider edit. The <VALUE> could be one of the following values:

0 (exBottomRight), The ticks are displayed on the bottom/right side.
1 (exTopLeft), The ticks are displayed on the top/left side.

2 (exBoth), The ticks are displayed on the both side.
3 (exNoTicks), No ticks are displayed.

freq=<VALUE>, indicates the ratio of ticks on the slider edit. This option is valid for
exItemEditSlider edit. The <VALUE> could be a positive integer expression.
ticklabel=<VALUE>, indicates the HTML label to be displayed on slider's ticks. This
option is valid for exItemEditSlider edit. See Tick Label Expression for more information
about <VALUE> of the ticklabel option.
small=<VALUE>, indicates the amount by which the edit's position changes when the
user presses the arrow key (left, right, or button). This option is valid for
exItemEditSlider, exItemEditScrollBar edit. The <VALUE> could be a positive integer
expression.
large=<VALUE>, indicates the amount by which the edit's position changes when the
user presses the CTRL + arrow key (CTRL + left, CTRL + right). This option is valid
for exItemEditSlider, exItemEditScrollBar edit. The <VALUE> could be a positive
integer expression.
spin=<VALUE>, specifies the step to advance when user clicks the editor's spin.. This
option is valid for exItemEditSpin edit. The <VALUE> could be a positive integer
expression.
ettp=<VALUE>, specifies the HTML tooltip to be shown when the item's value is
changed. This option is valid for exItemEditSlider/exItemEditScrollBar edit. The
<VALUE> could be any string expression, including built-in HTML tags

arrow=<VALUE>. The <VALUE> could be 0 for hiding the arrow or not zero to show
the arrow. Indicates whether an item that has a sub-menu shows or hides its popup
arrow. If the <VALUE> is missing, the item shows no arrow.
local=<VALUE>. The <VALUE> could be 0 for standard popup or not zero to specify
that the field is a local popup. Specifies whether the item's popup is shown as local.
Clicking any item inside a local popup makes the popup itself to close including all its
descendent sub-menus, without closing any ascendant sub-menus.
close=<VALUE>, Specifies the way the hosting menu is closed when the user clicks the
item. If the close flag is missing, the <VALUE> is 3 (exCloseOnNonClickable), by
default. The <VALUE> could be one of the following values:

0 (exCloseOnClick), The popup menu is closing when the user clicks the item.
1 (exCloseOnDblClick), The popup menu is closing when the user double clicks
the item.
2 (exCloseOnClickOutside), The popup menu is closing when the user clicks
outside of the menu.
3 (exCloseOnNonClickable), The popup menu is closing when the user clicks a
non-clickable item (regular items). The non-clickable items is any item that's not a
separator, popup, disabled or check or radio items, clicking a check-box item will
makes the check box to change its state instead closing the context menu.

popupapp=<VALUE> indicates the visual appearance of the item's submenu when the
popup is shown. The <VALUE> could be a predefine value like shown bellow, or an

integer expression that refers an EBN object.
0 (NoBorder)
1 (FlatBorder)
2 (SunkenBorder)
3 (RaisedBorder)
4 (EtchedBorder)
5 (BumpBorder)
6 (ShadowBorder)
7 (InsetBorder)
8 (SingleBorder)

itemsbg=<VALUE>, specifies the items background color, where <VALUE> could be a
RGB expression (RGB(RR,GG,BB), where RR is the red value, the GG is the green
value, and the BB is the blue value), or an integer expression to that refers an EBN
object.
itemsbghot=<VALUE>, specifies the items background color, while the cursor hovers
the items, where <VALUE> could be a RGB expression (RGB(RR,GG,BB), where RR
is the red value, the GG is the green value, and the BB is the blue value), or an integer
expression to that refers an EBN object.
popupalign=<VALUE>, Indicates how the item's sub-menu is aligned relative to the
parent item. The popupalign has no effect for an item that displays a select- button.
The <VALUE> could be a combination of one or more of the following values:

0 (exShowPopupAlignNone), The popup menu is shown on top of the item,
aligned to the left (no down and right, so up and left)
1 (exShowPopupAlignDown), The popup menu is shown down. If missing, the
popup menu is shown up.
2 (exShowPopupAlignRight), The popup menu is shown aligned to the right, else
if missing, the popup menu is shown aligned to the left.

popupat=<VALUE>, specifies the identifier of the item where the current item's
submenu/popup is displayed. The <VALUE> could be any integer expression. If there is
no identifier with giving value, the option has no effect.
popupoffset=<VALUE>, specifies the offset (horizontal,vertical) to display the item's
submenu/popup relative to its default position.
itemspad=<VALUE>, specifies the padding (space between the menu border and the
item content) to display the items. The <VALUE> is a list of coordinates such as
left,top,right,bottom
visible=<VALUE>, specifies the maximum number of visible items at one time, where
the <VALUE> could be any integer expression.
tab=<VALUE>, specifies the identifier of the item/tab where the current group-popup is
shown instead. The <VALUE> could be any integer expression. If there is no identifier
with giving value, the option has no effect.
itemsbgext=<VALUE>, indicates additional colors, text, images that can be displayed
on the items background using the EBN String Format. The <VALUE> should be in EBN

String Format. For instance, [itemsbgext=bottom[2],bottom[16,text=`</fgcolor><fgcolor
6D6AAA>Views</fgcolor><fgcolor A0A0A0>`,align=0x21]], shows the Views aligned
to the bottom, with a different foreground color.

Masking, (mask option)

For instance, the following input-mask (ext-phone)

!(999) 000 0000;1;;select=1,empty,overtype,warning=invalid character,invalid=The value
you entered isn't appropriate for the input mask '<%mask%>' specified for this
field."

indicates the following:

The pattern should contain 3 optional digits 999, and 7 required digits 000 0000,
aligned to the right, !.
The second part of the input mask indicates 1, which means that all literals are included
when the user leaves the field.
The entire field is selected when it receives the focus, select=1
The field supports empty value, so the user can leave the field with no content
The field enters in overtype mode, and insert-type mode is not allowed when user
pressed the Insert key
If the user enters any invalid character, a warning tooltip with the message "invalid
character" is displayed.
If the user tries to leave the field, while the field is not validated (all 7 required digits
completed), the invalid tooltip is shown with the message "The value you entered isn't
appropriate for the input mask '<%mask%>' specified for this field." The
<%mask%> is replaced with the first part of the input mask !(999) 000 0000

The four parts of an input mask, or the Mask property supports up to four parts, separated
by a semicolon (;). For instance, "`Time: `00:00:00;;0;overtype,warning=<fgcolor
FF0000>invalid character,beep", indicates the pattern "00:00" with the prefix Time:, the
masking character being the 0, instead _, the field enters in over-type mode, insert-type
mode is not allowed, and the field beeps and displays a tooltip in red with the message
invalid character when the user enters an invalid character.

Input masks are made up one mandatory part and three optional parts, and each part is
separated by a semicolon (;). If a part should use the semicolon (;) it must uses the \;
instead

The purpose of each part is as follows:

1. The first part (pattern) is mandatory. It includes the mask characters or string (series

of characters) along with placeholders and literal data such as, parentheses, periods,
and hyphens.

The following table lists the placeholder and literal characters for an input mask and
explains how it controls data entry:

#, a digit, +, - or space (entry not required).
0, a digit (0 through 9, entry required; plus [+] and minus [-] signs not allowed).
9, a digit or space (entry not required; plus and minus signs not allowed).
x, a lower case hexa character, [0-9],[a-f] (entry required)
X, an upper case hexa character, [0-9],[A-F] (entry required)
A, any letter, digit (entry required).
a, any letter, digit or space (entry optional).
L, any letter (entry require).
?, any letter or space (entry optional).
&, any character or a space (entry required).
C, any character or a space (entry optional).
>, any letter, converted to uppercase (entry required).
<, any letter, converted to lowercase (entry required).
*, any characters combinations
{ min,max } (Range), indicates a number range. The syntax {min,max} (Range),
masks a number in the giving range. The min and max values should be positive
integers. For instance the mask {0,255} masks any number between 0 and 255.
[...] (Alternative), masks any characters that are contained in the [] brackets. For
instance, the [abcdA-D] mask any character: a,b,c,d,A,B,C,D
\, indicates the escape character
ť, (ALT + 175) causes the characters that follow to be converted to uppercase,
until Ť(ALT + 174) is found.
Ť, (ALT + 174) causes the characters that follow to be converted to lowercase,
until ť(ALT + 175) is found.
!, causes the input mask to fill from right to left instead of from left to right.

Characters enclosed in double quotation ("" or ``) marks will be displayed literally. If
this part should display/use the semicolon (;) character is should be included between
double quotation ("" or ``) characters or as \; (escape).

2. The second part is optional and refers to the embedded mask characters and how they
are stored within the field. If the second part is set to 0 (default,
exClipModeLiteralsNone), all characters are stored with the data, and if it is set to 1

(exClipModeLiteralsInclude), the literals are stored, not including the
masking/placeholder characters, if 2 (exClipModeLiteralsExclude), just typed
characters are stored, if 3(exClipModeLiteralsEscape), optional, required, editable and
escaped entities are included. No double quoted text is included.

3. The third part of the input mask is also optional and indicates a single character or
space that is used as a placeholder. By default, the field uses the underscore (_). If
you want to use another character, enter it in the third part of your mask. Only the first
character is considered. If this part should display/use the semicolon (;) character is
should be \; (escape)

4. The forth part of the input, indicates a list of options that can be applied to input mask,
separated by comma(,) character.

The known options for the forth part are:

float, indicates that the field is edited as a decimal number, integer. The first part
of the input mask specifies the pattern to be used for grouping and decimal
separators, and - if negative numbers are supported. If the first part is empty, the
float is formatted as indicated by current regional settings. For instance,
"##;;;float" specifies a 2 digit number in float format. The grouping, decimal,
negative and digits options are valid if the float option is present.

grouping=value, Character used to separate groups of digits to the left of the
decimal. Valid only if float is present. For instance ";;;float,grouping=" indicates
that no grouping is applied to the decimal number (LOCALE_STHOUSAND)
decimal=value, Character used for the decimal separator. Valid only if float is
present. For instance ";;;float,grouping= ,decimal=\," indicates that the decimal
number uses the space for grouping digits to the left, while for decimal separator
the comma character is used (LOCALE_SDECIMAL)
negative=value, indicates whether the decimal number supports negative
numbers. The value should be 0 or 1. 1 means negative numbers are allowed.
Else 0 or missing, the negative numbers are not accepted. Valid only if float is
present.
digits=value, indicates the max number of fractional digits placed after the
decimal separator. Valid only if float is present. For instance, ";;;float,digits=4"
indicates a max 4 digits after decimal separator (LOCALE_IDIGITS)
password[=value], displays a black circle for any shown character. For instance,
";;;password", specifies that the field to be displayed as a password. If the value
parameter is present, the first character in the value indicates the password
character to be used. By default, the * password character is used for non-
TrueType fonts, else the black circle character is used. For instance,
";;;password=*", specifies that the field to be displayed as a password, and use

the * for password character. If the value parameter is missing, the default
password character is used.
right, aligns the characters to the right. For instance, "(999) 999-9999;;;right"
displays and masks a telephone number aligned to the right. readonly, the editor
is locked, user can not update the content, the caret is available, so user can
copy the text, excepts the password fields.
inserttype, indicates that the field enters in insert-type mode, if this is the first
option found. If the forth part includes also the overtype option, it indicates that
the user can toggle the insert/over-type mode using the Insert key. For instance,
the "##:##;;0;inserttype,overtype", indicates that the field enter in insert-type
mode, and over-type mode is allowed. The "##:##;;0;inserttype", indicates that
the field enter in insert-type mode, and over-type mode is not allowed.
overtype, indicates that the field enters in over-type mode, if this is the first
option found. If the forth part includes also the inserttype option, it indicates that
the user can toggle the insert/over-type mode using the Insert key. For instance,
the "##:##;;0;overtype,inserttype", indicates that the field enter in over-type
mode, and insert-type mode is allowed. The "##:##;;0;overtype", indicates that
the field enter in over-type mode, and insert-type mode is not allowed.
nocontext, indicates that the field provides no context menu when user right
clicks the field. For instance, ";;;password,nocontext" displays a password field,
where the user can not invoke the default context menu, usually when a right
click occurs.
beep, indicates whether a beep is played once the user enters an invalid
character. For instance, "00:00;;;beep" plays a beep once the user types in
invalid character, in this case any character that's not a digit.
warning=value, indicates the html message to be shown when the user enters
an invalid character. For instance, "00:00:00;;;warning=invalid character"
displays a "invalid character" tooltip once the user types in invalid character, in
this case any character that's not a digit. The <%mask%> keyword in value,
substitute the current mask of the field, while the <%value%> keyword
substitutes the current value (including the literals). If this option should
display/use the semicolon (;) character is should be \; (escape)
invalid=value, indicates the html message to be displayed when the user enters
an inappropriate value for the field. If the value is missing or empty, the option
has no effect, so no validation is performed. If the value is a not-empty value, the
validation is performed. If the value is single space, no message is displayed
and the field is keep opened while the value is inappropriate. For instance, "!
(999) 000 0000;;;invalid=The value you entered isn't appropriate for the input
mask '<%mask%>' specified for this field." displays the "The value you
entered isn't appropriate for the input mask '...' specified for this field." tooltip
once the user leaves the field and it is not-valid (for instance, the field includes

entities required and uncompleted). The <%mask%> keyword in value,
substitute the current mask of the field, while the <%value%> keyword
substitutes the current value (including the literals). If this option should
display/use the semicolon (;) character is should be \; (escape). This option can
be combined with empty, validateas.
validateas=value, specifies the additional validation is done for the current field.
If value is missing or 0 (exValidateAsNone), the option has no effect. The
validateas option has effect only if the invalid option specifies a not-empty value.
Currently, the value can be 1 (exValidateAsDate), which indicates that the field is
validated as a date. For instance, having the mask
"!00/00/0000;;0;empty,validateas=1,invalid=Invalid date!,warning=Invalid
character!,select=4,overtype", indicates that the field is validate as date (
validateas=1).
empty, indicates whether the field supports empty values. This option can be
used with invalid flag, which indicates that the user can leave the field if it is
empty. If empty flag is present, the field displays nothing if no entity is completed
(empty). Once the user starts typing characters the current mask is displayed.
For instance, having the mask "!(999) 000
0000;;;empty,select=4,overtype,invalid=invalid phone number,beep", it specifies
an empty or valid phone to be entered.
select=value, indicates what to select from the field when it got the focus. The
value could be 0 (nothing, exSelectNoGotFocus), 1 (select all,
exSelectAllGotFocus), 2 (select the first empty and editable entity of the field,
exSelectEditableGotFocus), 3 (moves the cursor to the beginning of the first
empty and editable entity of the field, exMoveEditableGotFocus), 4 (select the
first empty, required and editable entity of the field,
exSelectRequiredEditableGotFocus), 5 (moves the cursor to the beginning of
the first empty, required and editable entity of the field,
exMoveRequiredEditableGotFocus). For modes 2 and 4 the entire field is
selected if no matching entity is found. For instance, "`Time:`XX:XX;;;select=1"
indicates that the entire field (including the Time: prefix) is selected once it get
the focus. The "`Time:`XX:XX;;;select=3", moves the cursor to first X, if empty,
the second if empty, and so on

Experimental:
multiline, specifies that the field supports multiple lines.
rich, specifies that the field displays a rich type editor. By default, the standard edit field is
shown
disabled, shows as disabled the field.

Masking-Float, (mask, float option)

The [mask=<VALUE>] property may indicate the followings, if the [float=-1] is present

negative number: if the first character in the mask is - (minus) the control supports
negative numbers. Pressing the - key will toggle the sign of the number. The + sign is
never displayed.
decimal symbol: the last character that's different than # (digit), or 0 (zero) indicates
the decimal symbol. If it is not present the control mask a floating point number without
decimals.
thousand symbol: the thousand symbol is the last character that's not a # (digit), 0
(zero) or it is not the decimal symbol as explained earlier, if present.
the maximum number of decimals in the number (the # or 0 character after the
decimal symbol)
the maximum number of digits in the integer part (the number of # or 0 character
before decimal symbol)
the 0 character indicates a leading-zero. The count of 0 (zero) characters before
decimal character indicates the leading-zero for integer part of the control, while the
count of 0 (zero) characters after the decimal separator indicates the leading-zero for
decimal part of the control. For instance, the Mask on "-###,###,##0.00", while the
control's Text property is 1, the control displays 1.00, if 1.1 if displays 1.10, and if
empty, the 0.00 is displayed.

If the <VALUE> property is empty, the control takes the settings for the regional options
like: Decimal Symbol , No. of digits after decimal, Digit grouping symbol.

Here are few samples:

The <VALUE>"-###.###.##0,00" filter floating point numbers a number for German settings
("," is the decimal sign, "." is the thousands separator). This format displays leading-zeros.

The <VALUE>"-###.###.###,##" filter floating point numbers a number for German settings
("," is the decimal sign, "." is the thousands separator)

The <VALUE>"-###,###,###.##" filter floating point numbers a number for English settings (
"." is the decimal sign, "," is the thousands separator)

The <VALUE>"####" indicates a max-4 digit number (positive) without a decimal symbol
and without digit grouping

The <VALUE>"-##.#" filters a floating point number from the -99.9 to 99.9 ("." is the
decimal sign, no thousands separator)

The <VALUE>"#,###.##" filters a floating point number from the 0 to 9,999.99 with digit
grouping ("." is the decimal sign, "," is the thousands separator).

Tick Label Expression, (ticklabel option)

For instance:

"value", shows the values for each tick.
" (value=current ? '<fgcolor=FF0000>' : '') + value", shows the current
slider's position with a different color and font.
"value = current ? value : ''", shows the value for the current tick only.
"(value = current ? '' : '') + (value array 'ab bc cd de ef fg gh hi ij jk kl'
split ' ')" displays different captions for slider's values.

The The <VALUE> of [ticklabel] option is a formatted expression which result may include
the HTML tags.

The The <VALUE> of [ticklabel] option indicates a formatting expression that may use the
following predefined keywords:

value gets the slider's position to be displayed
current gets the current slider's value.
vmin gets the slider's minimum value.
vmax gets the slider's maximum value.
smin gets the slider's selection minimum value.
smax gets the slider's selection maximum value.

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for is

"expression ? true_part : false_part"

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the "%0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found')" returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

"expression array (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D')" is equivalent with "month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D')".

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

"expression in (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "value in (11,22,33,44,13)" is equivalent
with "(expression = 11) or (expression = 22) or (expression = 33) or (expression =

44) or (expression = 13)". The in operator is not a time consuming as the equivalent or
version is, so when you have large number of constant elements it is recommended
using the in operator. Shortly, if the collection of elements has 1000 elements the in
operator could take up to 8 operations in order to find if an element fits the set, else if
the or statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

"expression switch (default,c1,c2,c3,...,cn)"

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the "%0 switch ('not found',1,4,7,9,11)" gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

"expression case ([default : default_expression ;] c1 : expression1 ; c2 :
expression2 ; c3 : expression3 ;....)"

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the "date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1)" indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: "date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8)" statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions.

Obviously, the priority of the operations inside the expression is determined by ()
parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%0) = 8
specifies the cells that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string
dbl (unary operator) converts the expression to a number
date (unary operator) converts the expression to a date, based on your regional
settings
dateS (unary operator) converts the string expression to a date using the format

MM/DD/YYYY HH:MM:SS.

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1

3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string
lower (unary operator) returns a string expression in lowercase letters
upper (unary operator) returns a string expression in uppercase letters
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names
ltrim (unary operator) removes spaces on the left side of a string
rtrim (unary operator) removes spaces on the right side of a string
trim (unary operator) removes spaces on both sides of a string
startwith (binary operator) specifies whether a string starts with specified string
endwith (binary operator) specifies whether a string ends with specified string
contains (binary operator) specifies whether a string contains another specified string
left (binary operator) retrieves the left part of the string
right (binary operator) retrieves the right part of the string
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on)
a count b (binary operator) retrieves the number of occurrences of the b in a
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result.
a split b, splits the a using the separator b, and returns an array. For instance, the
"weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' '" gets the weekday as
string. This operator can be used with the array

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel.
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance the timeF(1:23 PM) returns "13:23:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel.
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance the shortdateF(December 31, 1971 11:00 AM)
returns "12/31/1971".
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format.

longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel.
year (unary operator) retrieves the year of the date (100,...,9999)
month (unary operator) retrieves the month of the date (1, 2,...,12)
day (unary operator) retrieves the day of the date (1, 2,...,31)
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365)
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday)
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23)
min (unary operator) retrieves the minute of the date (0, 1, ..., 59)
sec (unary operator) retrieves the second of the date (0, 1, ..., 59)

The The <VALUE> of [ticklabel] option can display labels using the following built-in HTML
tags:

 displays the text in bold.
<i></i> displays the text in italics.
<u></u> underlines the text.
<s></s> Strike-through text
 displays portions of text with a different font and/or different
size. For instance, the bit draws the bit text using the Tahoma
font, on size 12 pt. If the name of the font is missing, and instead size is present, the
current font is used with a different size. For instance, bit displays the
bit text using the current font, but with a different size.
<fgcolor=RRGGBB></fgcolor> displays text with a specified foreground color. The
RR, GG or BB should be hexa values and indicates red, green and blue values.
<bgcolor=RRGGBB></bgcolor> displays text with a specified background color. The
RR, GG or BB should be hexa values and indicates red, green and blue values.

 a forced line-break
<solidline> The next line shows a solid-line on top/bottom side. If has no effect for a
single line caption.
<dotline> The next line shows a dot-line on top/bottom side. If has no effect for a
single line caption.
<upline> The next line shows a solid/dot-line on top side. If has no effect for a single
line caption.
<r> Right aligns the text
<c> Centers the text
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method

to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number
(the character with specified code), For instance, the € displays the EUR
character, in UNICODE configuration. The & ampersand is only recognized as markup
when it is followed by a known letter or a # character and a digit. For instance if you
want to display bold in HTML caption you can use bold

EBN String Format, (itemsbgext option)

The EBN String Format syntax in BNF notation is defined like follows:

<EBN> ::= <elements> | <root> "(" [<elements>] ")"
<elements> ::= <element> ["," <elements>]
<root> ::= "root" [<attributes>] | [<attributes>]
<element> ::= <anchor> [<attributes>] ["(" [<elements>] ")"]
<anchor> ::= "none" | "left" | "right" | "client" | "top" | "bottom"
<attributes> ::= "[" [<client> ","] <attribute> ["," <attributes>] "]"
<client> ::= <expression> | <expression> "," <expression> "," <expression> ","
<expression>
<expression> ::= <number> | <number> "%"
<attribute> ::= <backcolor> | <text> | <wordwrap> | <align> | <pattern> |
<patterncolor> | <frame> | <framethick> | <data> | <others>
<equal> ::= "="
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<decimal> ::= <digit><decimal>
<hexadigit> ::= <digit> | "A" | "B" "C" | "D" | "E" "F"
<hexa> ::= <hexadigit><hexa>
<number> ::= <decimal> | "0x" <hexa>
<color> ::= <rgbcolor> | number
<rgbcolor> ::= "RGB" "(" <number> "," <number> "," <number> ")"
<string> ::= "`" <characters> "`" | "'" <characters> "'" | " <characters> "

<characters> ::= <char>|<characters>
<char> ::= <any_character_excepts_null>
<backcolor> ::= "back" <equal> <color>
<text> ::= "text" <equal> <string>
<align> ::= "align" <equal> <number>
<pattern> ::= "pattern" <equal> <number>
<patterncolor> ::= "patterncolor" <equal> <color>
<frame> ::= "frame" <equal> <color>
<data> ::= "data" <equal> <number> | <string>
<framethick> ::= "framethick"
<wordwrap> ::= "wordwrap"

Others like: pic, stretch, hstretch, vstretch, transparent, from, to are reserved for future
use only.

Here's a few easy samples:

"[pattern=6]", shows the BDiagonal pattern on the object's background.

"[frame=RGB(255,0,0),framethick]", draws a red thick-border around the object.

"[frame=RGB(255,0,0),framethick,pattern=6,patterncolor=RGB(255,0,0)]", draws a
red thick-border around the object, with a patter inside.

"[[patterncolor=RGB(255,0,0)]
(none[(4,4,100%-8,100%-8),pattern=0x006,patterncolor=RGB(255,0,0),frame=RGB(255,0,0),framethick])]",
draws a red thick-border around the object, with a patter inside, with a 4-pixels wide

padding:

"top[4,back=RGB(0,0,255)]", draws a blue line on the top side of the object's
background, of 4-pixels wide.

"[text=`caption`,align=0x22]", shows the caption string aligned to the bottom-right side
of the object's background.

"[text=`flag`,align=0x11]" shows the flag picture and the sweden string
aligned to the bottom side of the object.

"left[10,back=RGB(255,0,0)]", draws a red line on the left side of the object's
background, of 10-pixels wide.

"bottom[50%,pattern=6,frame]", shows the BDiagonal pattern with a border arround on
the lower-half part of the object's background.

"root[text=`caption 2`,align=0x22](client[text=`caption 1`,align=0x20])", shows
the caption 1 aligned to the bottom-left side, and the caption 2 to the bottom-right side

property ExContextMenu.UseVisualTheme as UIVisualThemeEnum
Specifies whether the control uses the current visual theme to display certain UI parts.

Type Description

UIVisualThemeEnum
An UIVisualThemeEnum expression that specifies which UI
parts of the control are shown using the current visual
theme.

By default, the UseVisualTheme property is exDefaultVisualTheme, which means that all
known UI parts are shown as in the current theme. The UseVisualTheme property may
specify the UI parts that you need to enable or disable the current visual theme. The UI
Parts are like header, filterbar, check-boxes, buttons and so on. The UseVisualTheme
property has effect only a current theme is selected for your desktop. The UseVisualTheme
property. Use the Appearance property of the control to provide your own visual
appearance using the EBN files. The SelBackColor property specifies the visual
appearance of the selected / highlighted item.

The following screen shot shows the control while the UseVisualTheme property is
exDefaultVisualTheme:

since the second screen shot shows the same data as the UseVisualTheme property is
exNoVisualTheme:

property ExContextMenu.Version as String
Retrieves the control's version.

Type Description
String A string expression that indicates the control's version.

The version property specifies the control's version.

property ExContextMenu.Visibility as Long
Specify the popup's visibility in percents: 90% is barely visible, and 10% is nearly opaque.

Type Description

Long A long expression that indicates the visibility of the popup
menus.

By default, the Visibility is 100. Use the Visibility property to change the menu's visibility.

The following screen shot shows the menu when the Visibility is 100 (opaque, by default):

The following screen shot shows the menu when the Visibility is 80 (semi-transparent):

property ExContextMenu.VisualAppearance as Appearance
Retrieves the control's appearance.

Type Description
Appearance An Appearance object that holds a collection of skins.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control. By using a
collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part. Use the Appearance property to change
the menu's frame using an EBN skin object. The SelBackColor property specifies the visual
appearance of the item being selected / highlighted. The Background property specifies the
visual appearance for different parts of the control, including the radio-buttons, check-boxes
or separator items.

The following screen shot shows the control's frame using a different EBN file:

Item object
The Item object holds information about an item in the context menu. The Item property
searches recursively the item with giving identifier/caption. The Item object supports the
following properties and methods:

Name Description
Alignment Retrieves or sets the item's caption alignment.

AllowEdit Retrieves or sets a value indicating whether the item
contains an edit control.

BackColor Specifies the background color of the item.

Bold Specifies whether the item's caption should appear in
bold.

Caption Retrieves or sets a value that indicates the item's caption.
CaptionWidth Specifies the fixed width to display the item's caption.

Check Retrieves or sets a value that indicates whether the item is
of check type.

Checked Retrieves or sets a value that indicates the item's state.

CloseOnClick Specifies the way the owner menu is closed once the user
clicks the item.

Cursor Specifies the shape of the cursor when mouse hovers the
item.

EditBorder Specifies the border for the inside edit control.

EditCaption Specifies the edit's caption when the item contains an edit
control.

EditMask Specifies the edit's mask when the item contains an
masked edit control.

EditOption Specifies different options for item's edit control.

EditValue Specifies the edit's value when the item contains an edit
control.

EditWidth Specifies the width for the inside edit control.

Enabled Retrieves or sets a value that indicates whether the item is
enabled or disabled.

ForeColor Specifies the foreground color of the item.

GroupPopup
Specifies whether the items of the sub-menu are grouped
and displayed on the current item.

HotBackColor Specifies the hot background color of the item (when the
cursor hovers the item).

HTMLImage
Retrieves or sets a value that indicates the key of the
image (HTMLPicture method) to be displayed on the item
(left side).

ID Retrieves or sets a value that specifies the item's
identifier.

Image Retrieves or sets a value that indicates the item's index
image.

Italic Specifies whether the item's caption should appear in
italic.

ItemHeight Specifies the fixed height to display the item.

Items Retrieves an Items collection that indicates the item's sub
menu. Retrieves Nothing, if the item contains no sub menu.

ItemType Returns the type of the item.

Padding Specifies the padding (space between the menu border
and the item content) to display the item.

Parent Gets the item's parent, if the current item belongs to a
submenu/popup.

Position Specifies the position of the item, within its collection.

Radio Retrieves or sets a value that indicates whether the item is
of radio type.

RadioGroup Indicates the group of radio items that the current item
belongs.

SelBackColor Specifies the background color of the item when it is
selected.

SelHotBackColor Specifies the background color of the selected item when
the cursor hovers it.

Shortcut Specifies the key combination that the user can press to
select the item quickly.

ShowAsButton Specifies whether the item is shown as a button.
ShowAsDisabled Specifies whether the item is shown as disabled.
ShowCheckedAsSelected Specifies whether the checked item shows as selected.

ShowDown
Retrieves or sets a value that indicates whether the item's
submenu is up or down oriented .

ShowLocalPopup

Specifies whether the item's popup is shown as local.
Clicking any item inside a local popup makes the popup
itself to close including all its descendent sub-menus,
without closing any ascendant sub-menus.

ShowPopupArrow Gets or sets a value that indicates whether an item that
has a sub-menu shows or hides its popup arrow.

ShowPopupOnChecked Specifies whether the item's sub menu is shown only if the
item is checked.

Strikeout Specifies whether the item's caption should appear in
strikeout.

SubControl Retrieves the Control object that holds information about
item's inside component.

SubMenu Retrieves an Items collection that indicates the item's sub
menu. Retrieves Nothing, if the item contains no sub menu.

Tab Specifies the identifier of the item/tab where the current
group popup is shown instead.

Tooltip Specifies the item's tooltip.
TooltipTitle Specifies the title of the item's tooltip.
ToString Loads or saves the item using string representation.

Underline Specifies whether the item's caption appears as
underlined.

UserData Associates an extra data to the object.
Visible Specifies whether the item is visible or hidden.

property Item.Alignment as AlignmentEnum
Retrieves or sets the item's caption alignment.

Type Description
AlignmentEnum An AlignmentEnum expression that specifies the item's

The Alignment property specifies the item's alignment. The Caption property supports built-
in HTML format, so you can use the <c> to centers the item's caption or <r> to align to the
right the item's caption.

property Item.AllowEdit as AllowEditEnum
Retrieves or sets a value indicating whether the item contains an edit control.

Type Description

AllowEditEnum An AllowEditEnum expression that specifies whether the
item displays an Edit field inside.

By default, the AllowEdit property is False, which indicates that the item displays no Edit
field inside. Use the AllowEdit property to add a text-box inside the item, so the user can
type any characters inside. The EditCaption property specifies the caption to be shown on
the item's Edit text box. The EditWidth property specifies the width of the text-box inside the
item. The EditBorder property specifies the border to be shown around the item's text box.
You can use the Get method to collect all items of Edit type. The EditChange event notifies
your application once the user alters the item's text-box caption. The EditOption property
specifies different options to be used for a specified edit field. The ShowAsButton property
specifies the whether the current item displays a button or a select button (drop down).

The following screen shot shows an item with a masking editor:

property Item.BackColor as Color
Specifies the item's background color of the item.

Type Description

Color

A Color expression that specifies the item's background
color. The last 7 bits in the high significant byte of the color
indicates the identifier of the skin being used. Use the Add
method to add new skins to the control. If you need to
remove the skin appearance from a part of the control you
need to reset the last 7 bits in the high significant byte of
the color being applied to the background's part.

The BackColor property specifies a different background color or a visual appearance for
the item. The Caption property indicates the item's caption to be shown on the item. You
can use the <bgcolor> HTML tag in the Caption property to specify a different background
color for parts of the caption. The ForeColor property specifies the item's foreground color.
The SelBackColor property specifies the item's background color when it is selected or
highlighted. The HotBackColor property specifies a different background color or a visual
appearance for the item, when the cursor hovers it. The SelHotBackColor property
specifies a different background color or a visual appearance for the item, when item is
selected / checked, and the cursor hovers it. The SelBackColor property specifies a
different background color or a visual appearance for the item, when item is selected /
checked.

property Item.Bold as Boolean
Specifies whether the item's caption should appear in bold.

Type Description

Boolean A Boolean expression that specifies whether the item's
caption is shown in bold.

By default, the Bold property is False. Use the Bold property to show the item's caption in
bold. The Caption property indicates the HTML caption to be shown on the item. The
HTML tag can be used on the item's Caption property to specify different parts of the
caption to be shown in bold.

property Item.Caption as String
Retrieves or sets a value that indicates the item's caption.

Type Description

String A String expression that specifies the HTML caption to be
displayed on the context menu.

Use the Caption property to specify the item's caption. Use the UserData property to
associate any extra data to your items. Use the Tooltip property to specify the item's tooltip
which can be shown when the cursor hovers the item. Use the Check property to assign a
check-box to the item. Use the Radio property to assign a radio-button to the item. The
ForeColor property of the Item object specifies a different foreground color for the entire
item. The BackColor property of the Item object specifies a different background color /
visual appearance for the entire item. The Item property searches recursively the item with
giving identifier/caption. The AllowEdit property assigns an editor to an item. The
CaptionWidth property specifies the fixed width to display the item's caption.

The Caption property supports the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>

about:blank

... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient

color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Item.CaptionWidth as Long
Specifies the fixed width to display the item's caption.

Type Description

Long A Long expression that specifies the width to display the
item's caption.

By default, the CaptionWidth property is -1. If the CaptionWidth is negative, the caption
expands the size of the item to fit entirely. If the CaptionWidth property is positive, it
indicates the width to display the item's caption. The Caption property specifies the HTML
caption to be displayed on the item. For instance, you can use the CaptionWidth to align
editors of the items. The ItemHeight property specifies the height to show the item.

property Item.Check as Boolean
Retrieves or sets a value that indicates whether the item is of check type.

Type Description

Boolean A Boolean expression that specifies whether the item
displays a check box.

The Check property indicates whether the current item displays a check box. The Checked
property specifies whether the item is checked or un-checked. The Radio property specifies
whether the item displays a radio-button. The RadioGroup property specifies a group of
radio-buttons. A radio group allows a single radio-item to be checked inside. The
GetChecked property gets a collection of checked items. The GetUnchecked property gets
a collection of checked items. The GetRadio method gets a safe array with the radio-items
being checked within a radio group. Use the
Background(exCheckBoxState0)/Background(exCheckBoxState1) property to specify the
visual appearance of the check-boxes in the control. Use the UseVisualTheme property to
specify whether the visual appearance for the check-boxes to be as indicated by the current
XP theme. Use the ShowCheckedAsSelected property on True, to show the checked items
as selected.

property Item.Checked as Boolean
Retrieves or sets a value that indicates the item's state.

Type Description

Boolean A Boolean expression that indicates whether the item is
checked or unchecked.

The Checked property specifies whether the item is checked or un-checked. The Check
property indicates whether the current item displays a check box. The Radio property
specifies whether the item displays a radio-button. The RadioGroup property specifies a
group of radio-buttons. A radio group allows a single radio-item to be checked inside. The
GetChecked property gets a collection of checked items. The GetUnchecked property gets
a collection of checked items. The GetRadio method gets a safe array with the radio-items
being checked within a radio group. The AllowToggleRadio property on True, allows a radio
button to set on zero (unchecked), if the user clicks twice the radio button. Usually, clicking
a radio-button makes the previously checked radio-button in the same group, to be un-
checked, and the newly clicked item to be checked. Now, if the AllowToggleRadio property
is True, clicking again the radio-button, allows the radio-button to be un-checked, so allows
a radio group to have no radio button checked. Use the ShowCheckedAsSelected property
on True, to show the checked items as selected.

property Item.CloseOnClick as CloseOnClickEnum
Specifies the way the owner menu is closed once the user clicks the item.

Type Description

CloseOnClickEnum A CloseOnClickEnum expression that determines the way
the hosting menu is closed when the user clicks the item.

By default, the CloseOnClick property is inherited by the control's CloseOnClick property.
You can specify a different way of closing the current item by specifying a different value for
Item's CloseOnClick property. Setting the CloseOnClick property on a negative value,
resets that Item's CloseOnClick property, so closing the item when clicking the items is
specified by the control's CloseOnClick property. For instance, you can specify the Item's
CloseOnClick property on exCloseOnClickOutside, for items of button type, so the hosting
menu won't be closed when the user clicks the button, and so the user can click multiple
times the item without closing the menu. The ShowAsButton property indicates whether the
item should look as a button. The ShowLocalPopup property specifies whether the item's
popup is shown as local. Clicking any item inside a local popup makes the popup itself to
close including all its descendent sub-menus, without closing any ascendant sub-menus.

property Item.Cursor as Variant
Specifies the shape of the cursor when mouse hovers the item.

Type Description

Variant

A String expression that defines the cursor to be shown
when the cursor hovers the item. The Valid values are
listed bellow. Also the Cursor property could point to a
cursor file to be loaded and shown while the cursor hovers
the item.

By default, the Cursor property is "exDefault". Use the Cursor property of the Item object to
specify a different cursor when it hovers the item only. Use the Cursor property to specify a
different cursor when it hovers the menu control.

The supported values are:

"exDefault", Standard arrow
"exArrow", Standard arrow
"exCross", Crosshair
"exIBeam", I-beam
"exIcon", Reserved
"exSize", Reserved, use the "exSizeAll"
"exSizeNESW", Double-pointed arrow pointing northeast and southwest
"exSizeNS", Double-pointed arrow pointing north and south
"exSizeNWSE", Double-pointed arrow pointing northwest and southeast
"exSizeWE", Double-pointed arrow pointing west and east
"exUpArrow", Vertical arrow
"exHourglass", Hourglass
"exNoDrop", Slashed circle
"exArrowHourglass"
"exHelp", Arrow and question mark
"exSizeAll", Four-pointed arrow pointing north, south, east, and west
"exHand", Hand

Any other value indicates the path to a cursor file to be displayed when the pointer hovers
the menu control/item.

property Item.EditBorder as EditBorderEnum
Specifies the border for the inside edit control.

Type Description

EditBorderEnum An EditBorderEnum expression that specifies the border
to be shown around the item's text box.

The EditBorder property specifies the border to be shown around the item's text box. The
EditCaption property specifies the caption to be shown on the item's Edit text box. Use the
AllowEdit property to add a text-box inside the item, so the user can type any characters
inside. The EditWidth property specifies the width of the text-box inside the item. You can
use the Get method to collect all items of Edit type. The EditChange event notifies your
application once the user alters the item's text-box caption.

property Item.EditCaption as String
Specifies the edit's caption when the item contains an edit control.

Type Description

String A String expression that specifies the caption to be shown
on the item's text box.

The EditCaption property specifies the caption to be shown on the item's Edit text box. Use
the AllowEdit property to add a text-box inside the item, so the user can type any
characters inside. The EditWidth property specifies the width of the text-box inside the item.
The EditBorder property specifies the border to be shown around the item's text box. You
can use the Get method to collect all items of Edit type. The EditChange event notifies your
application once the user alters the item's text-box caption. The EditValue property indicates
the edit's value.

property Item.EditMask as String
Specifies the edit's mask when the item contains an masked edit control.

Type Description

String A string expression that indicates the mask of the edit's
field.

By default, the EditMask property is "" (empty string, no masking). The EditMask property
is valid for exItemEditMask editors. The AllowEdit property associates an editor to the
current item. The EditMask property specifies the mask of the edit field. The EditValue
property specifies the value of the edit field, without the masking characters. The
EditOption(exEditMaskFloat) specifies whether the edit field mask a floating/decimal/integer
point number. The EditMask property depends on the EditOption(exEditMaskFloat) value,
as explained bellow.

A) If the EditOption(exEditMaskFloat) property is False (by default), the EditMask
is defined such as:

For instance, the following input-mask (ext-phone)

!(999) 000 0000;1;;select=1,empty,overtype,warning=invalid character,invalid=The value
you entered isn't appropriate for the input mask '<%mask%>' specified for this
field."

indicates the following:

The pattern should contain 3 optional digits 999, and 7 required digits 000 0000,
aligned to the right, !.
The second part of the input mask indicates 1, which means that all literals are included
when the user leaves the field.
The entire field is selected when it receives the focus, select=1
The field supports empty value, so the user can leave the field with no content
The field enters in overtype mode, and insert-type mode is not allowed when user
pressed the Insert key
If the user enters any invalid character, a warning tooltip with the message "invalid
character" is displayed.
If the user tries to leave the field, while the field is not validated (all 7 required digits
completed), the invalid tooltip is shown with the message "The value you entered isn't
appropriate for the input mask '<%mask%>' specified for this field." The
<%mask%> is replaced with the first part of the input mask !(999) 000 0000

The four parts of an input mask, or the Mask property supports up to four parts, separated

by a semicolon (;). For instance, "`Time: `00:00:00;;0;overtype,warning=<fgcolor
FF0000>invalid character,beep", indicates the pattern "00:00" with the prefix Time:, the
masking character being the 0, instead _, the field enters in over-type mode, insert-type
mode is not allowed, and the field beeps and displays a tooltip in red with the message
invalid character when the user enters an invalid character.

Input masks are made up one mandatory part and three optional parts, and each part is
separated by a semicolon (;). If a part should use the semicolon (;) it must uses the \;
instead

The purpose of each part is as follows:

1. The first part (pattern) is mandatory. It includes the mask characters or string (series
of characters) along with placeholders and literal data such as, parentheses, periods,
and hyphens.

The following table lists the placeholder and literal characters for an input mask and
explains how it controls data entry:

#, a digit, +, - or space (entry not required).
0, a digit (0 through 9, entry required; plus [+] and minus [-] signs not allowed).
9, a digit or space (entry not required; plus and minus signs not allowed).
x, a lower case hexa character, [0-9],[a-f] (entry required)
X, an upper case hexa character, [0-9],[A-F] (entry required)
A, any letter, digit (entry required).
a, any letter, digit or space (entry optional).
L, any letter (entry require).
?, any letter or space (entry optional).
&, any character or a space (entry required).
C, any character or a space (entry optional).
>, any letter, converted to uppercase (entry required).
<, any letter, converted to lowercase (entry required).
*, any characters combinations
{ min,max } (Range), indicates a number range. The syntax {min,max} (Range),
masks a number in the giving range. The min and max values should be positive
integers. For instance the mask {0,255} masks any number between 0 and 255.
[...] (Alternative), masks any characters that are contained in the [] brackets. For
instance, the [abcdA-D] mask any character: a,b,c,d,A,B,C,D
\, indicates the escape character
ť, (ALT + 175) causes the characters that follow to be converted to uppercase,
until Ť(ALT + 174) is found.

Ť, (ALT + 174) causes the characters that follow to be converted to lowercase,
until ť(ALT + 175) is found.
!, causes the input mask to fill from right to left instead of from left to right.

Characters enclosed in double quotation ("" or ``) marks will be displayed literally. If
this part should display/use the semicolon (;) character is should be included between
double quotation ("" or ``) characters or as \; (escape).

2. The second part is optional and refers to the embedded mask characters and how they
are stored within the field. If the second part is set to 0 (default,
exClipModeLiteralsNone), all characters are stored with the data, and if it is set to 1
(exClipModeLiteralsInclude), the literals are stored, not including the
masking/placeholder characters, if 2 (exClipModeLiteralsExclude), just typed
characters are stored, if 3(exClipModeLiteralsEscape), optional, required, editable and
escaped entities are included. No double quoted text is included.

3. The third part of the input mask is also optional and indicates a single character or
space that is used as a placeholder. By default, the field uses the underscore (_). If
you want to use another character, enter it in the third part of your mask. Only the first
character is considered. If this part should display/use the semicolon (;) character is
should be \; (escape)

4. The forth part of the input, indicates a list of options that can be applied to input mask,
separated by comma(,) character.

The known options for the forth part are:

float, indicates that the field is edited as a decimal number, integer. The first part
of the input mask specifies the pattern to be used for grouping and decimal
separators, and - if negative numbers are supported. If the first part is empty, the
float is formatted as indicated by current regional settings. For instance,
"##;;;float" specifies a 2 digit number in float format. The grouping, decimal,
negative and digits options are valid if the float option is present.

grouping=value, Character used to separate groups of digits to the left of the
decimal. Valid only if float is present. For instance ";;;float,grouping=" indicates
that no grouping is applied to the decimal number (LOCALE_STHOUSAND)
decimal=value, Character used for the decimal separator. Valid only if float is
present. For instance ";;;float,grouping= ,decimal=\," indicates that the decimal
number uses the space for grouping digits to the left, while for decimal separator
the comma character is used (LOCALE_SDECIMAL)

negative=value, indicates whether the decimal number supports negative
numbers. The value should be 0 or 1. 1 means negative numbers are allowed.
Else 0 or missing, the negative numbers are not accepted. Valid only if float is
present.
digits=value, indicates the max number of fractional digits placed after the
decimal separator. Valid only if float is present. For instance, ";;;float,digits=4"
indicates a max 4 digits after decimal separator (LOCALE_IDIGITS)
password[=value], displays a black circle for any shown character. For instance,
";;;password", specifies that the field to be displayed as a password. If the value
parameter is present, the first character in the value indicates the password
character to be used. By default, the * password character is used for non-
TrueType fonts, else the black circle character is used. For instance,
";;;password=*", specifies that the field to be displayed as a password, and use
the * for password character. If the value parameter is missing, the default
password character is used.
right, aligns the characters to the right. For instance, "(999) 999-9999;;;right"
displays and masks a telephone number aligned to the right. readonly, the editor
is locked, user can not update the content, the caret is available, so user can
copy the text, excepts the password fields.
inserttype, indicates that the field enters in insert-type mode, if this is the first
option found. If the forth part includes also the overtype option, it indicates that
the user can toggle the insert/over-type mode using the Insert key. For instance,
the "##:##;;0;inserttype,overtype", indicates that the field enter in insert-type
mode, and over-type mode is allowed. The "##:##;;0;inserttype", indicates that
the field enter in insert-type mode, and over-type mode is not allowed.
overtype, indicates that the field enters in over-type mode, if this is the first
option found. If the forth part includes also the inserttype option, it indicates that
the user can toggle the insert/over-type mode using the Insert key. For instance,
the "##:##;;0;overtype,inserttype", indicates that the field enter in over-type
mode, and insert-type mode is allowed. The "##:##;;0;overtype", indicates that
the field enter in over-type mode, and insert-type mode is not allowed.
nocontext, indicates that the field provides no context menu when user right
clicks the field. For instance, ";;;password,nocontext" displays a password field,
where the user can not invoke the default context menu, usually when a right
click occurs.
beep, indicates whether a beep is played once the user enters an invalid
character. For instance, "00:00;;;beep" plays a beep once the user types in
invalid character, in this case any character that's not a digit.
warning=value, indicates the html message to be shown when the user enters
an invalid character. For instance, "00:00:00;;;warning=invalid character"
displays a "invalid character" tooltip once the user types in invalid character, in

this case any character that's not a digit. The <%mask%> keyword in value,
substitute the current mask of the field, while the <%value%> keyword
substitutes the current value (including the literals). If this option should
display/use the semicolon (;) character is should be \; (escape)
invalid=value, indicates the html message to be displayed when the user enters
an inappropriate value for the field. If the value is missing or empty, the option
has no effect, so no validation is performed. If the value is a not-empty value, the
validation is performed. If the value is single space, no message is displayed
and the field is keep opened while the value is inappropriate. For instance, "!
(999) 000 0000;;;invalid=The value you entered isn't appropriate for the input
mask '<%mask%>' specified for this field." displays the "The value you
entered isn't appropriate for the input mask '...' specified for this field." tooltip
once the user leaves the field and it is not-valid (for instance, the field includes
entities required and uncompleted). The <%mask%> keyword in value,
substitute the current mask of the field, while the <%value%> keyword
substitutes the current value (including the literals). If this option should
display/use the semicolon (;) character is should be \; (escape). This option can
be combined with empty, validateas.
validateas=value, specifies the additional validation is done for the current field.
If value is missing or 0 (exValidateAsNone), the option has no effect. The
validateas option has effect only if the invalid option specifies a not-empty value.
Currently, the value can be 1 (exValidateAsDate), which indicates that the field is
validated as a date. For instance, having the mask
"!00/00/0000;;0;empty,validateas=1,invalid=Invalid date!,warning=Invalid
character!,select=4,overtype", indicates that the field is validate as date (
validateas=1).
empty, indicates whether the field supports empty values. This option can be
used with invalid flag, which indicates that the user can leave the field if it is
empty. If empty flag is present, the field displays nothing if no entity is completed
(empty). Once the user starts typing characters the current mask is displayed.
For instance, having the mask "!(999) 000
0000;;;empty,select=4,overtype,invalid=invalid phone number,beep", it specifies
an empty or valid phone to be entered.
select=value, indicates what to select from the field when it got the focus. The
value could be 0 (nothing, exSelectNoGotFocus), 1 (select all,
exSelectAllGotFocus), 2 (select the first empty and editable entity of the field,
exSelectEditableGotFocus), 3 (moves the cursor to the beginning of the first
empty and editable entity of the field, exMoveEditableGotFocus), 4 (select the
first empty, required and editable entity of the field,
exSelectRequiredEditableGotFocus), 5 (moves the cursor to the beginning of
the first empty, required and editable entity of the field,

exMoveRequiredEditableGotFocus). For modes 2 and 4 the entire field is
selected if no matching entity is found. For instance, "`Time:`XX:XX;;;select=1"
indicates that the entire field (including the Time: prefix) is selected once it get
the focus. The "`Time:`XX:XX;;;select=3", moves the cursor to first X, if empty,
the second if empty, and so on

Experimental:
multiline, specifies that the field supports multiple lines.
rich, specifies that the field displays a rich type editor. By default, the standard edit field is
shown
disabled, shows as disabled the field.

B) If the EditOption(exEditMaskFloat) property is True, the EditMask is defined such
as:

The EditMask property may indicate the followings:

negative number: if the first character in the mask is - (minus) the control supports
negative numbers. Pressing the - key will toggle the sign of the number. The + sign is
never displayed.
decimal symbol: the last character that's different than # (digit), or 0 (zero) indicates
the decimal symbol. If it is not present the control mask a floating point number without
decimals.
thousand symbol: the thousand symbol is the last character that's not a # (digit), 0
(zero) or it is not the decimal symbol as explained earlier, if present.
the maximum number of decimals in the number (the # or 0 character after the
decimal symbol)
the maximum number of digits in the integer part (the number of # or 0 character
before decimal symbol)
the 0 character indicates a leading-zero. The count of 0 (zero) characters before
decimal character indicates the leading-zero for integer part of the control, while the
count of 0 (zero) characters after the decimal separator indicates the leading-zero for
decimal part of the control. For instance, the Mask on "-###,###,##0.00", while the
control's Text property is 1, the control displays 1.00, if 1.1 if displays 1.10, and if
empty, the 0.00 is displayed.

If the EditMask property is empty, the control takes the settings for the regional options
like: Decimal Symbol , No. of digits after decimal, Digit grouping symbol.

Here are few samples:

The EditMask"-###.###.##0,00" filter floating point numbers a number for German settings
("," is the decimal sign, "." is the thousands separator). This format displays leading-zeros.

The EditMask"-###.###.###,##" filter floating point numbers a number for German settings
("," is the decimal sign, "." is the thousands separator)

The EditMask"-###,###,###.##" filter floating point numbers a number for English settings (
"." is the decimal sign, "," is the thousands separator)

The EditMask"####" indicates a max-4 digit number (positive) without a decimal symbol
and without digit grouping

The EditMask"-##.#" filters a floating point number from the -99.9 to 99.9 ("." is the
decimal sign, no thousands separator)

The EditMask"#,###.##" filters a floating point number from the 0 to 9,999.99 with digit
grouping ("." is the decimal sign, "," is the thousands separator).

property Item.EditOption(Option as EditOptionEnum) as Variant
Specifies different options for item's edit control.

Type Description

Option as EditOptionEnum An EditOptionEnum expression that specifies the option to
be updated.

Variant A VARIANT expression that indicates the option's value.

The EditOption property different options for item's edit control. The AllowEdit property
associates an editor to the current item. The EditCaption property specifies the value to
show in the edit field. The EditWidth property specifies the size/width of the edit field inside
the item. The EditBorder property specifies whether the edit shows a border around it. The
control fires the EditChange event when the user changes the edit's caption. For instance,
the EditOption(exEditSpinStep) property specifies the step to advance when user clicks the
editor's spin.

property Item.EditValue as Variant
Specifies the edit's value when the item contains an edit control.

Type Description
Variant A VARIANT expression that specifies the edit's value.

The EditValue/EditCaption property specifies the caption to be shown on the item's edit text
box. Use the AllowEdit property to add a text-box inside the item, so the user can type any
characters inside. The EditWidth property specifies the width of the text-box inside the item.
The EditBorder property specifies the border to be shown around the item's text box. You
can use the Get method to collect all items of Edit type. The EditChange event notifies your
application once the user alters the item's text-box caption.

The EditValue property indicates the edit's value as shown bellow:

The EditValue property specifies the value of the edit field (string expression), without
the masking characters, when AllowEdit property includes the exItemEditMask flag.
The EditValue property indicates the current slider position/value (long expression),
when AllowEdit property includes the exItemEditSlider, exItemEditProgress,
exItemEditScrollBar, or exItemEditColor flag.

property Item.EditWidth as Long
Specifies the width for the inside edit control.

Type Description

Long A Long expression that specifies the width of the item's
text box.

The EditWidth property specifies the width of the text-box inside the item. The EditBorder
property specifies the border to be shown around the item's text box. The EditCaption
property specifies the caption to be shown on the item's Edit text box. Use the AllowEdit
property to add a text-box inside the item, so the user can type any characters inside. You
can use the Get method to collect all items of Edit type. The EditChange event notifies your
application once the user alters the item's text-box caption.

property Item.Enabled as Boolean
Retrieves or sets a value that indicates whether the item is enabled or disabled.

Type Description

Boolean A Boolean expression that specifies whether the item is
enabled or disabled.

By default, the Enabled property is True. Use the Enabled property to disable an item. A
disabled item (Enabled property is False) shows as grayed, and it is un-selectable, so the
user can select or highlight it. An item (Enabled property is True, ShowAsDisabled property
is True), shows as grayed, but it is selectable, so the user can select or highlight it. You
can use the Visible property to show or hide the item. The Remove method removes an
individual Item object giving its identifier or caption. Use the ShowAsDisabled property to
show the item as disabled, while it is enabled.

property Item.ForeColor as Color
Specifies the item's foreground color of the item.

Type Description

Color A Color expression that specifies the item's foreground
color.

The ForeColor property specifies the item's foreground color. The BackColor property
specifies a different background color or a visual appearance for the item. The Caption
property indicates the item's caption to be shown on the item. You can use the <fgcolor>
HTML tag in the Caption property to specify a different foreground color for parts of the
caption. The SelForeColor property specifies the item's foreground color when it is selected
or highlighted.

property Item.GroupPopup as GroupPopupEnum
Specifies whether the items of the sub-menu are grouped and displayed on the current
item.

Type Description

GroupPopupEnum
A GroupPopupEnum expression that specifies whether the
items of the sub-menu are grouped and displayed on the
current item.

By default, the GroupPopup property is exNoGroupPopup, which indicates that the sub-
menu is not shown as grouped. Use the GroupPopup property to show the item's sub-menu
as a group in the current item. The SubMenu property indicates the item's sub-menu. The
GroupPopup has no effect if the item has no sub-items.

The following screen shot shows the items with no grouping:

The following screen shot shows the items with grouping (horizontally):

The following screen shot shows different type of items grouped horizontally, vertically:

property Item.HotBackColor as Color
Specifies the hot background color of the item (when the cursor hovers the item).

Type Description

Color

A Color expression that specifies the item's background
color, when the cursor hovers it. The last 7 bits in the high
significant byte of the color indicates the identifier of the
skin being used. Use the Add method to add new skins to
the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits
in the high significant byte of the color being applied to the
background's part.

The HotBackColor property specifies a different background color or a visual appearance
for the item, when the cursor hovers it. The BackColor property specifies the item's
background color of the item. The SelBackColor property specifies a different background
color or a visual appearance for the item, when item is selected / checked. The Caption
property indicates the item's caption to be shown on the item. You can use the <bgcolor>
HTML tag in the Caption property to specify a different background color for parts of the
caption. The SelHotBackColor property specifies a different background color or a visual
appearance for the item, when item is selected / checked, and the cursor hovers it.

property Item.HTMLImage as String
Retrieves or sets a value that indicates the key of the image (HTMLPicture method) to be
displayed on the item (left side).

Type Description

String A String expression that indicates the key of the picture to
be displayed on the left side of the caption.

The HTMLImage property assigns a picture to the left side of the caption. The key of the
picture to be displayed must be loaded previously using the HTMLPicture property. The
HTMLImage property has effect only if the Image property is -1 (by default). Use the
Image property to assign an icon from the Images collection to the left side of the caption.
Use the FlatImageWidth property to specify the width of the column that displays
icons/images/check or radio buttons.

The following VFP samples loads the picture using the HTMLPicture method, and displays it
on the left side of the caption using the HTMLImage property.

contextMenu = CreateObject("Exontrol.ContextMenu")
with contextMenu
.HTMLPicture("pic1") = "C:\exontrol\images\colorize.gif"
.Items.ToString = "Item A[himg=pic1]"
iSelect = .Select()
IF (iSelect # 0) then
?(.Items.item(iSelect).Caption)
ENDIF
endwith

or:

contextMenu = CreateObject("Exontrol.ContextMenu")
with contextMenu
.HTMLPicture("pic1") = "C:\exontrol\images\colorize.gif"
.Items.Add("Item A").HTMLImage = "pic1"
iSelect = .Select()
IF (iSelect # 0) then
?(.Items.item(iSelect).Caption)
ENDIF
endwith

These two samples are equivalent.

property Item.ID as Long
Retrieves or sets a value that specifies the item's identifier.

Type Description

Long
A Long expression that defines the item's identifier. This
property can be specified at adding time, by using the ID
parameter of the Add method.

Use the ID property to associate an unique identifier to each item. You can use the Item
property of the exContextMenu component to get the Item object based on its identifier.
Use the Debug property to display the identifiers for all visible items, for debugging
purposes. The First number in the [] parenthesis indicates the item's ID property. Use the
Caption property to specify the item's caption. Use the UserData property to associate any
extra data to your items.

property Item.Image as Long
Retrieves or sets a value that indicates the item's index image.

Type Description

Long A Long expression that specifies the zero-based index of
the icon to be displayed on the item.

By default, the Image property is -1, which indicates no icon associated. The Image is
displayed on the left side of the item's caption. The Images method should be used to
specify a collection of icons to be used by the control. Use the ReplaceIcon method to add,
remove or clear icons in the control's images collection. The tag can be used in the
Caption property of the Item object to display an Icon or a custom-size picture. Use the
HTMLImage property to assign a BMP, JPG, GIF or PNG file to left side of the caption, the
same way as you will do with the Image property.

property Item.Italic as Boolean
Specifies whether the item's caption should appear in italic.

Type Description

Boolean A Boolean expression that specifies whether the item's
caption is shown in italic.

By default, the Italic property is False. Use the Italic property to show the item's caption in
italic. The Caption property indicates the HTML caption to be shown on the item. The <i>
HTML tag can be used on the item's Caption property to specify different parts of the
caption to be shown in italic.

property Item.ItemHeight as Long
Specifies the fixed height to display the item.

Type Description
Long A Long expression that specifies the height of the item

The ItemHeight property specifies the height to display the item. By default, the ItemHeight
property is -1, which indicates that the control sets the item height based on on its content.
If the ItemHeight property is positive, it indicates the height to display the item. The
CaptionWidth property specifies the fixed width to display the item's caption.

property Item.Items as Items
Retrieves an Items collection that indicates the item's sub menu. Retrieves Nothing, if the
item contains no sub menu.

Type Description

Items An Items collection that holds the Item objects to be
displayed in the sub-menu.

The Items and SubMenu properties are equivalents. Use the Items property to access the
Item objects in a sub-menu item. The Parent property of the Item object returns an empty
object, if the item contains no parent. The Parent item property can be used to access the
parent of the item, when it is contained by a sub-menu.

property Item.ItemType as ItemTypeEnum
Returns the type of the item.

Type Description

ItemTypeEnum An ItemTypeEnum expression that specifies the type of
the item.

The ItemType property is a read-only property that gets the type of the item. Use the
Debug property to display debugging information in the item's Caption. Use the Get method
to get a collection of Item objects that meet your criteria.

property Item.Padding as String
Specifies the padding (space between the menu border and the item content) to display the
item.

Type Description

String

A string expression that indicates a list of 4 positive
numbers separated by comma characters, which indicates
the distance in pixels from margin to client, in the following
format: left, top, right, bottom.

By default, the Padding property is empty (0,0,0,0). The Padding property specifies the
padding for a particular item. The Padding property specifies the padding (space between
the menu border and the item content) to display the item. The Caption property indicates
the item's caption to be shown on the item. The BackColor property specifies a different
background color or a visual appearance for the item.

property Item.Parent as Item
Gets the item's parent, if the current item belongs to a submenu/popup.

Type Description

Item An Item object that specifies the parent item of the current
item.

The Parent property of the Item object returns an empty object, if the item contains no
parent. The Parent item property can be used to access the parent of the item, when it is
contained by a sub-menu. Use the Items property to access the Item objects in a sub-menu
item.

property Item.Position as Long
Specifies the position of the item, within its collection.

Type Description
Long A Long expression that specifies the position of the item.

The Position property specifies the position of the item, within its collection.

property Item.Radio as Boolean
Retrieves or sets a value that indicates whether the item is of radio type.

Type Description

Boolean A Boolean expression that specifies whether the item
displays a radio button.

The Radio property specifies whether the item displays a radio-button. The RadioGroup
property specifies a group of radio-buttons. A radio group allows a single radio-item to be
checked. The Checked property specifies whether the item is checked or un-checked. The
GetRadio method gets a safe array with the radio-items being checked within a radio
group. Use the Background(exRadioButtonState0)/Background(exRadioButtonState1)
property to specify the visual appearance of the radio-buttons in the control. Use the
UseVisualTheme property to specify whether the visual appearance for the radio-buttons to
be as indicated by the current XP theme. The AllowToggleRadio property on True, allows a
radio button to set on zero (unchecked), if the user clicks twice the radio button. Usually,
clicking a radio-button makes the previously checked radio-button in the same group, to be
un-checked, and the newly clicked item to be checked. Now, if the AllowToggleRadio
property is True, clicking again the radio-button, allows the radio-button to be un-checked,
so allows a radio group to have no radio button checked. Use the ShowCheckedAsSelected
property on True, to show the checked items as selected.

property Item.RadioGroup as Long
Indicates the group of radio items that the current item belongs.

Type Description

Long

A Long expression that specifies the identifier of the radio
group. A radio group allows a single radio-item to be
checked inside. If the RadioGroup property is not
specified, all radio-buttons in the controls are in the same
group 0.

The RadioGroup property specifies a group of radio-buttons. A radio group allows a single
radio-item to be checked inside. The Radio property specifies whether the item displays a
radio-button. The Checked property specifies whether the item is checked or un-checked.
The GetRadio method gets a safe array with the radio-items being checked within a radio
group. Use the Background(exRadioButtonState0)/Background(exRadioButtonState1)
property to specify the visual appearance of the radio-buttons in the control. Use the
UseVisualTheme property to specify whether the visual appearance for the radio-buttons to
be as indicated by the current XP theme. The AllowToggleRadio property on True, allows a
radio button to set on zero (unchecked), if the user clicks twice the radio button. Usually,
clicking a radio-button makes the previously checked radio-button in the same group, to be
un-checked, and the newly clicked item to be checked. Now, if the AllowToggleRadio
property is True, clicking again the radio-button, allows the radio-button to be un-checked,
so allows a radio group to have no radio button checked.

property Item.SelBackColor as Color
Specifies the background color of the item when it is selected.

Type Description

Color

A Color expression that specifies the item's background
color, when the item is selected/checked. The last 7 bits in
the high significant byte of the color indicates the identifier
of the skin being used. Use the Add method to add new
skins to the control. If you need to remove the skin
appearance from a part of the control you need to reset
the last 7 bits in the high significant byte of the color being
applied to the background's part.

The SelBackColor property specifies a different background color or a visual appearance
for the item, when item is selected / checked. The BackColor property specifies the item's
background color of the item. The SelHotBackColor property specifies a different
background color or a visual appearance for the item, when item is selected / checked, and
the cursor hovers it. The HotBackColor property specifies a different background color or a
visual appearance for the item, when the cursor hovers it. The Caption property indicates
the item's caption to be shown on the item. You can use the <bgcolor> HTML tag in the
Caption property to specify a different background color for parts of the caption.

property Item.SelHotBackColor as Color
Specifies the background color of the selected item when the cursor hovers it.

Type Description

Color

A Color expression that specifies the item's background
color, when the item is selected/checked and the cursor
hovers it. The last 7 bits in the high significant byte of the
color indicates the identifier of the skin being used. Use
the Add method to add new skins to the control. If you
need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high
significant byte of the color being applied to the
background's part.

The SelHotBackColor property specifies a different background color or a visual
appearance for the item, when item is selected / checked, and the cursor hovers it. The
SelBackColor property specifies a different background color or a visual appearance for the
item, when item is selected / checked. The BackColor property specifies the item's
background color of the item. The HotBackColor property specifies a different background
color or a visual appearance for the item, when the cursor hovers it. The Caption property
indicates the item's caption to be shown on the item. You can use the <bgcolor> HTML tag
in the Caption property to specify a different background color for parts of the caption.

property Item.Shortcut as String
Specifies the key combination that the user can press to select the item quickly.

Type Description

String
A character that specifies the key combination that the
user can press to select the item quickly. A null character
indicates that no shortcut is associated with the item.

By default, the Shortcut property is defined as first sequence found in the item's Caption
between <u> and </u> HTML tags. Pressing the shortcut key is similar with selecting the
item and pressing the Enter key. The shortcuts in the context menu have effect only if the
IncrementalSearch property is exNoIncrementalSearch.

property Item.ShowAsButton as ShowAsButtonEnum
Specifies whether the item is shown as a button.

Type Description

ShowAsButtonEnum A ShowAsButtonEnum expression that indicates whether
the item is shown as a button.

By default, the ShowAsButton property is False. Use the ShowAsButton property to add
buttons to your item. The Caption property specifies the caption of the item/button. Use the
Item's CloseOnClick property to specify a different way to close the menu when user clicks
a specified item. You can use the ShowAsButton property on exShowAsSelectButton, for a
popup-item, where the SubMenu property determines the sub-menu/items to be shown
when user clicks the associated arrow (select button).

The following screen shot shows the items with no button appearance (ShowAsButton on
exShowAsButtonNone)

The following screen shot shows the items with button appearance (ShowAsButton on
exShowAsButton)

The following screen shot shows the items with button appearance (ShowAsButton on
exShowAsSelectButtonBottom)

property Item.ShowAsDisabled as Boolean
Specifies whether the item is shown as disabled.

Type Description

Boolean A Boolean expression that specifies whether the current
item is shown as disabled.

By default, the ShowAsDisabled property is False. Use the ShowAsDisabled property to
shows the current item as disabled. The Enabled property specifies whether the item is
enabled or disabled. The ShowAsDisabled property does not change the Enabled property,
the item acts like an enabled item. For instance, you can not highlight a disabled item,
instead you can highlight an item that looks as disabled. A disabled item (Enabled property
is False) shows as grayed, and it is un-selectable, so the user can select or highlight it. An
item (Enabled property is True, ShowAsDisabled property is True), shows as grayed, but
it is selectable, so the user can select or highlight it.

property Item.ShowCheckedAsSelected as
ShowCheckedAsSelectedEnum
Specifies whether the checked item shows as selected.

Type Description

ShowCheckedAsSelectedEnumA ShowCheckedAsSelectedEnum expression that
specifies whether the checked item shows as selected.

By default, the ShowCheckedAsSelected property is exDisplayItemCheckInherit, which
indicates that the control's ShowCheckedAsSelected property specifies how the checked
item is shown. Use the ShowCheckedAsSelected property on non zero, to show the
checked items as selected. A checked item is an item with the Check or Radio property set
on True and the Checked property is True. The SelBackColor property indicates the color to
show background of the selected / highlighted item. The AllowToggleRadio property on
True, allows a radio button to set on zero (unchecked), if the user clicks twice the radio
button. The ShowCheckedAsSelectedTransparency property specifies the transparency (
percent) to show the checked items when selected.

The following screen shot shows the control when the ShowCheckedAsSelected property is
exDisplayItemCheckDefault(by default):

The following screen shot shows the control when the ShowCheckedAsSelected property is
exDisplayItemCheckHighlight:

property Item.ShowDown as Boolean
Retrieves or sets a value that indicates whether the item's submenu is up or down oriented .

Type Description

Boolean A Boolean expression that specifies whether the sub-menu
is shown down or up to the item

By default, the ShowDown property is True. Use the ShowDown property to show the sub-
menu up to the item. The SubMenu/Items property accesses the collection of Item objects
to be shown on the sub-menu.

property Item.ShowLocalPopup as Boolean
Specifies whether the item's popup is shown as local. Clicking any item inside a local popup
makes the popup itself to close including all its descendent sub-menus, without closing any
ascendant sub-menus.

Type Description

Boolean A Boolean expression that specifies whether the item's
sub-menu is closed when user clicks an item.

By default, the ShowLocalPopup property is False. Use the ShowLocalPopup property on
True, to provide drop down list. Clicking any item inside a local popup makes the popup
itself to close including all its descendent sub-menus, without closing any ascendant sub-
menus. The LocalAppearance property specifies a different visual appearance for the local
popup. Use the CloseOnClick property to specify how to close the current popup when user
clicks a specified item. The PopupAppearance specifies a different visual appearance for
the current submenu.

property Item.ShowPopupArrow as Boolean
Gets or sets a value that indicates whether an item that has a sub-menu shows or hides its
popup arrow.

Type Description

Boolean A Boolean expression that indicates whether an item that
has a sub-menu shows or hides its popup arrow.

The ShowPopupArrow property indicates whether an item that has a sub-menu shows or
hides its popup arrow.

property Item.ShowPopupOnChecked as Boolean
Specifies whether the item's sub menu is shown only if the item is checked.

Type Description

Boolean A Boolean expression that specifies whether the item's
sub menu is shown only if the item is checked.

By default, the ShowPopupOnChecked property is False. The Check property assigns a
check box to the current item. The SubMenu property specifies the sub-items of the current
item. The ShowPopupOnChecked property has effect only if the item displays sub items (
the SubMenu.Count property is not zero). The ShowCheckedAsSelected property specifies
how the checked item is displayed.

The following screen shot show items with ShowPopupOnChecked on False (default) (
please notice that all items display the popup-arrow):

The following screen shot show items with ShowPopupOnChecked on True (please notice
that just checked popup displays the popup-arrow, and so the sub-menu):

property Item.Strikeout as Boolean
Specifies whether the item's caption should appear in strikeout.

Type Description

Boolean A Boolean expression that specifies whether the item's
caption is shown in strikeout.

By default, the Strikeout property is False. Use the Strikeout property to show the item's
caption in strikeout. The Caption property indicates the HTML caption to be shown on the
item. The <s> HTML tag can be used on the item's Caption property to specify different
parts of the caption to be shown in strikeout.

property Item.SubControl as Control
Retrieves the Control object that holds information about item's inside component.

Type Description

Control A Control object that holds properties to handle the inside
ActiveX item.

Use the SubControl property when using the ItemTypeEnum.SubControl to add an item that
hosts an ActiveX inside. Use the ControlID property to specify the IDentifier of the object to
be displayed on the item. Use the Create method to create an inside ActiveX control. The
inside ActiveX control fires the events through the OleEvent event.

The following screen shot displays an item with an ExSlider inside:

3

The following screen shot displays an item with an ExCalendar inside:

https://exontrol.com/exslider.jsp
https://exontrol.com/excalendar.jsp

The following samples shows how to load an ActiveX control (Exontrol.Calendar)

VB6,VBA (MS Access, Excell...),VB.NET for /COM

With CreateObject("Exontrol.ContextMenu")
 With .Items.Add("Calendar",3).SubControl
 .ControlID = "Exontrol.Calendar"
 .Create
 End With
 .Select
End With

VB.NET

' Add 'exontrol.excontextmenu.dll' reference to your project.
With New exontrol.EXCONTEXTMENULib.excontextmenu()
 With .Items.Add("Calendar",3).SubControl
 .ControlID = "Exontrol.Calendar"
 .Create()
 End With
 .Select()
End With

C++

/*
 Includes the definition for CreateObject function like follows:
 #include <comdef.h>
 IUnknownPtr CreateObject(BSTR Object)
 {
 IUnknownPtr spResult;
 spResult.CreateInstance(Object);
 return spResult;
 };
*/
/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXCONTEXTMENULib' for the library: 'ExContextMenu
1.0 Type Library'

https://exontrol.com/excalendar.jsp

 #import <ExContextMenu.dll>
 using namespace EXCONTEXTMENULib;
*/
EXCONTEXTMENULib::IExContextMenuPtr var_ExContextMenu =
::CreateObject(L"Exontrol.ContextMenu");
 EXCONTEXTMENULib::IControlPtr var_Control = var_ExContextMenu->GetItems()-
>Add(L"Calendar",long(3),vtMissing)->GetSubControl();
 var_Control->PutControlID(L"Exontrol.Calendar");
 var_Control->Create();
 var_ExContextMenu->Select(vtMissing,vtMissing,vtMissing);

C++ Builder

/*
 Select the Component\Import Component...\Import a Type Library,
 to import the following Type Library:
 ExContextMenu 1.0 Type Library
 TypeLib: e:\Exontrol\ExContextMenu\project\Site\ExContextMenu.dll
 to define the namespace: Excontextmenulib_tlb
*/
//#include "EXCONTEXTMENULIB_TLB.h"
Excontextmenulib_tlb::IExContextMenuPtr var_ExContextMenu =
Variant::CreateObject(L"Exontrol.ContextMenu");
 Excontextmenulib_tlb::IControlPtr var_Control = var_ExContextMenu->Items-
>Add(L"Calendar",TVariant(3),TNoParam())->SubControl;
 var_Control->ControlID = L"Exontrol.Calendar";
 var_Control->Create();
 var_ExContextMenu->Select(TNoParam(),TNoParam(),TNoParam());

C#

// Add 'exontrol.excontextmenu.dll' reference to your project.
exontrol.EXCONTEXTMENULib.excontextmenu var_ExContextMenu = new
exontrol.EXCONTEXTMENULib.excontextmenu();
 exontrol.EXCONTEXTMENULib.Control var_Control =
var_ExContextMenu.Items.Add("Calendar",3,null).SubControl;
 var_Control.ControlID = "Exontrol.Calendar";
 var_Control.Create();

 var_ExContextMenu.Select(null,null,null);

C# for /COM

// Add 'ExContextMenu 1.0 Type Library' reference to your project.
EXCONTEXTMENULib.ExContextMenu var_ExContextMenu = new
EXCONTEXTMENULib.ExContextMenu();
 EXCONTEXTMENULib.Control var_Control =
var_ExContextMenu.Items.Add("Calendar",3,null).SubControl;
 var_Control.ControlID = "Exontrol.Calendar";
 var_Control.Create();
 var_ExContextMenu.Select(null,null,null);

X++ (Dynamics Ax 2009)

COM com_Control,com_ExContextMenu,com_Items,com_item;
anytype var_Control,var_ExContextMenu,var_Items,var_item;
;
// Add 'ExContextMenu 1.0 Type Library' reference to your project.
var_ExContextMenu = COM::createFromObject(new
EXCONTEXTMENULib.excontextmenu()); com_ExContextMenu = var_ExContextMenu;
 var_Items = COM::createFromObject(com_ExContextMenu.Items()); com_Items =
var_Items;
 var_item =
COM::createFromObject(com_Items).Add("Calendar",COMVariant::createFromInt(3));
com_item = var_item;
 var_Control = com_item.SubControl(); com_Control = var_Control;
 com_Control.ControlID("Exontrol.Calendar");
 com_Control.Create();
 com_ExContextMenu.Select();

Delphi 8 (.NET only)

with (ComObj.CreateComObject(ComObj.ProgIDToClassID('Exontrol.ContextMenu'))
as EXCONTEXTMENULib.ExContextMenu) do
begin
 with Items.Add('Calendar',TObject(3),Nil).SubControl do
 begin

 ControlID := 'Exontrol.Calendar';
 Create();
 end;
 Select(Nil,Nil,Nil);
end;

Delphi (standard)

with
(IUnknown(ComObj.CreateComObject(ComObj.ProgIDToClassID('Exontrol.ContextMenu')))
 as EXCONTEXTMENULib_TLB.ExContextMenu) do
begin
 with Items.Add('Calendar',OleVariant(3),Null).SubControl do
 begin
 ControlID := 'Exontrol.Calendar';
 Create();
 end;
 Select(Null,Null,Null);
end;

VFP

with CreateObject("Exontrol.ContextMenu")
 with .Items.Add("Calendar",3).SubControl
 .ControlID = "Exontrol.Calendar"
 .Create
 endwith
 .Select()
endwith

XBasic (Alpha Five)

' Occurs when the user presses and then releases the left mouse button over
the control.
function Click as v ()
 Dim oPivot as P
 Dim var_Control as P
 Dim var_ExContextMenu as P

 oPivot = topparent:CONTROL_ACTIVEX1.activex
 var_ExContextMenu = OLE.Create("Exontrol.ContextMenu")
 var_Control = var_ExContextMenu.Items.Add("Calendar",3).SubControl
 var_Control.ControlID = "Exontrol.Calendar"
 var_Control.Create()
 var_ExContextMenu.Select()
end function

Dim oPivot as P

oPivot = topparent:CONTROL_ACTIVEX1.activex

Visual Objects

local var_ExContextMenu as IExContextMenu
// Generate Source for 'ExContextMenu 1.0 Type Library' server from
Tools\Automation Server...
var_ExContextMenu := IExContextMenu{"Exontrol.ContextMenu"}
 var_Control := var_ExContextMenu:Items:Add("Calendar",3,nil):SubControl
 var_Control:ControlID := "Exontrol.Calendar"
 var_Control:Create()
 var_ExContextMenu:Select(nil,nil,nil)

property Item.SubMenu as Items
Retrieves an Items collection that indicates the item's sub menu. Retrieves Nothing, if the
item contains no sub menu.

Type Description

Items An Items collection that holds the Item objects to be
displayed in the sub-menu.

The Items and SubMenu properties are equivalents. Use the SubMenu property to access
the Item objects in a sub-menu item. The Parent property of the Item object returns an
empty object, if the item contains no parent. The Parent item property can be used to
access the parent of the item, when it is contained by a sub-menu.

property Item.Tab as Long
Specifies the identifier of the item/tab where the current group popup is shown instead.

Type Description

Long A Long expression that specifies the identifier of the item
where the grouping items of the current item is shown.

By default, the Tab property is 0. The Tab property specifies the identifier of the item where
the grouping items of the current item is shown. Use the Tab property to simulate
Tab/Pages into your control. By default, the grouping items are displayed right/bottom after
the item. The GroupPopup property specifies the way the grouping items are shown. Using
the Tab property you can specify where the current grouping items/submenu is shown. Use
the BackColor/HotBackColor properties to specify the background color/visual appearance
for the grouping items. Use the BackColor/HotBackColor/SelBackColor/SelHotBackColor
properties to specify the background color/visual appearance of a specified item

You can use the Tab property in combination with the following properties:

Radio/Check to specify a radio or check-type item. Usually this item indicates the page
of the tab
ShowPopupOnChecked property to specify that its current popup to be shown only if
checked
ShowCheckedAsSelected property to show a checked item as selected/highlighted
instead displaying the check/radio button

The following screen shot shows the Tabbed view feature with EBN files:

For instance, the following VB sample:

Dim context As New EXCONTEXTMENULib.ExContextMenu

Private Sub Form_Load()
 With context
 .Items.ToString = "[group=0x103]([group](Page 1[rad=1][group=3][spchk][tab=999]
[show=1](Info 1[chk=1],Info 2,Info 3),Page 2[rad][group=3][spchk][tab=999][show=1]

(Info 4,Info 5,Info 6)),[id=999])"
 End With
End Sub

Private Sub Form_MouseUp(Button As Integer, Shift As Integer, X As Single, Y As Single)
 context.Select
End Sub

generates the following screen shot:

property Item.Tooltip as String
Specifies the item's tooltip.

Type Description

String A String expression that defines the HTML caption to be
displayed when the cursor hovers the item.

The Tooltip property assigns a HTML tooltip to an item, that's displayed only when the
cursor hovers the item. The TooltipTitle property specifies the title for the item's tooltip. The
TooltipDelay property specifies the time until the tooltip is shown. Use the ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. Use the ToolTipWidth property to specify the width of the tooltip
window. The ToolTipFont property specifies the tooltip's font. Use the
Background(exToolTipAppearance) property indicates the visual appearance of the borders
of the tooltips. Use the Background(exToolTipBackColor) property indicates the tooltip's
background color. Use the Background(exToolTipForeColor) property indicates the tooltip's
foreground color.

The ToolTip property supports the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-

about:blank

line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or

blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Item.TooltipTitle as String
Specifies the title of the item's tooltip.

Type Description

String A String expression that specifies the title of the item's
tooltip.

The TooltipTitle property specifies the title for the item's tooltip. The Tooltip property assigns
a HTML tooltip to an item, that's displayed only when the cursor hovers the item. The
TooltipDelay property specifies the time until the tooltip is shown. Use the ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. Use the ToolTipWidth property to specify the width of the tooltip
window. The ToolTipFont property specifies the tooltip's font. Use the
Background(exToolTipAppearance) property indicates the visual appearance of the borders
of the tooltips. Use the Background(exToolTipBackColor) property indicates the tooltip's
background color. Use the Background(exToolTipForeColor) property indicates the tooltip's
foreground color.

property Item.ToString as String
Loads or saves the item using string representation.

Type Description

String A String expression that specifies the item to be
loaded/saved.

The ToString property of the Items object, builds the context-menu using a string, rather
than adding item one by one. The control's setup installs the WYSIWYG EditContextMenu
Tool, that helps you to define the ToString format.

The ToString property looks like follows:

[id=10][group=0x03]([id=10][group=0x03][itemspad=4,4,4,4][itemsbghot=0x1F000000](
Annoyed1[id=20],Bunny2[id=30],[id=50][edittype=0x01][editwidth=-100],
Cellphone3[id=40]),[id=10][group=0x03][itemspad=4,4,4,4][itemsbghot=0x1F000000](
Annoyed1[id=20],Bunny2[id=30],Cellphone3[id=40]))

Each item is followed by its options, and its sub-items between () parentheses. The item's
option includes the icons, pictures, edit attributes and so on.

The ToString syntax in BNF notation:

<ToString> ::= <ITEMS>
<ITEMS> ::= <ITEM>["("<ITEMS>")"][","<ITEMS>]
<ITEM> ::= <CAPTION>[<OPTIONS>]
<OPTIONS> ::= "["<OPTION>"]"["["<OPTIONS>"]"]
<OPTION> ::= <PROPERTY>["="<VALUE>]
<PROPERTY> ::= "img" | "himg" | "sep" | "id" | "typ" | "group" | "chk" | "button" | "align" |
"spchk" | "show" | "rad" | "dis" | "showdis" | "bld" | "itl" | "stk" | "und" | "bg" | "fg" | "edittype"
| "edit" | "mask" | "border" | "editwidth" | "captionwidth" | "height" | "grp" | "tfi" | "ttp" | "min" |
"max" | "tick" | "freq" | "ticklabel" | "small" | "large" | "spin" | "ettp" | "float" | "close" | "local" |
"popupapp" | "itemspad" | "itemsbg" | "itemsbghot" | "itemsbgext" | "visible" | "tab" | "pad" |
"bghot" | "bgsel" | "bgselhot" | "arrow" | "popupalign" | "popupoffset" | "popupat"

where the <CAPTION> is the HTML caption to be shown on the context menu item. The
<VALUE> indicates the value of giving property.

id=<VALUE>, where <VALUE> is an integer expression, that indicates the identifier of
the item.
bg=<VALUE>, specifies the item's background color, where <VALUE> could be a RGB
expression (RGB(RR,GG,BB), where RR is the red value, the GG is the green value,

and the BB is the blue value), or an integer expression to that refers an EBN object.
bghot=<VALUE>, specifies the item's background color, while the cursor hovers the
item, where <VALUE> could be a RGB expression (RGB(RR,GG,BB), where RR is
the red value, the GG is the green value, and the BB is the blue value), or an integer
expression to that refers an EBN object.
bgsel=<VALUE>, specifies the item's background color, while the item is
checked/selected, where <VALUE> could be a RGB expression (RGB(RR,GG,BB),
where RR is the red value, the GG is the green value, and the BB is the blue value), or
an integer expression to that refers an EBN object.
bgselhot=<VALUE>, specifies the item's background color, while the item is
checked/selected and the cursor hovers it, where <VALUE> could be a RGB
expression (RGB(RR,GG,BB), where RR is the red value, the GG is the green value,
and the BB is the blue value), or an integer expression to that refers an EBN object.
fg=<VALUE>, specifies the item's foreground color, where <VALUE> could be a RGB
expression (RGB(RR,GG,BB), where RR is the red value, the GG is the green value,
and the BB is the blue value), or a integer expression.
sep, specifies an separator item
dis, specifies a disabled item
showdis=<VALUE>, where <VALUE> could be 0 for regular or not zero to specify
whether the item shows as disabled, but it is still enabled
bld, specifies that the item appears in bold
itl, specifies that the item appears in italics
stk, specifies that the item appears as strikeout
und, specifies that the item is underlined
align=<VALUE>, where <VALUE> could be one of the following:

0 (left), to align the item's caption to the left
1 (center), to center the item's caption
2 (right), to align the item's caption to the right

captionwidth=<VALUE>, specifies the width to show the HTML caption of the item.
where <VALUE> could be a integer expression. A negative value indicates that no
limitation is applied to the item's caption, so no truncate caption is shown
height=<VALUE>, specifies the height to show the item, where <VALUE> could be a
positive integer expression
pad=<VALUE>, specifies the padding (space between the menu border and the item
content) to display the item. The <VALUE> is a list of coordinates such as
left,top,right,bottom
img=<VALUE>, where <VALUE> is an integer expression, that indicates the index of
the icon being displayed for the item.
himg=<VALUE>, where <VALUE> indicates the key of the picture to be displayed for
the item.

typ=<VALUE>, where <VALUE> could be one of the following:
0 for default/regular items (no check/radio button is associated with the item),
1 for items that display a check/box (chk),
2 to display radio buttons (rad)

chk[=<VALUE>], where <VALUE> could be 0 for unchecked, or not zero for checked.
The chk option makes the item to display a check box. If the <VALUE> is missing the
item still displays an un-checked check box.
rad=<VALUE>, where <VALUE> could be 0 for unchecked radio button or not zero to
for checked radio button. Use the grp option to define the group of radio where this
button should be associated, If no group of radio buttons is required, the grp could be
ignored.
grp=<VALUE>, defines the radio group. It should be used when you define more
groups of radio buttons. A group of radio buttons means that only one item could be
checked at one time. The rad option specifies that the item displays a radio button.
Use the grp option to define the group of radio where this button should be associated,
If no group of radio buttons is required, the grp could be ignored. The <VALUE> could
be any integer expression.

show=<VALUE>, where <VALUE> could be 0 for regular or not zero to specify
whether the checked item shows as selected
spchk=<VALUE>, where <VALUE> could be 0 for regular or not zero to specify
whether the item's sub menu is shown only if the item is checked.

group=<VALUE>, where <VALUE> could be a bit-or combination (+) of the following
values:

0 (exNoGroupPopup), No grouping is performed on the sub-menu, so the sub-
items are shown to a float popup,
1 (exGroupPopup), Groups and displays the sub-menu items on the current item,
arranged from left to right/horizontally

2 (exNoGroupPopupFrame), Prevents showing the frame around each grouping
item.
4 (exGroupPopupCenter), Shows the grouping popup aligned to the center of the
current item.
8 (exGroupPopupRight), Shows the grouping popup aligned to the right of the
current item.
16 (exGroupPopupEqualWidth), Shows the items that make the group of the same
width
32 (exGroupPopupEqualHeight), Shows the items that make the group of the
same height
64 (exGroupPopupFrameSolidBox), Shows a solid frame around the grouped
items
128 (exGroupPopupFrameThickBox), Shows a solid thick-frame around the
grouped items
256 (exGroupPopupVertical), Groups and displays the sub-menu items on the
current item, arranged from top to bottom/vertically

button=<VALUE>, where <VALUE> could be a bit-or combination (+) of the following
values.

0 (exShowAsButtonNone), No button is shown,
1 (exShowAsButton), Shows the item as a button
2 (exShowAsButtonAutoSize), Fits the button to cover the item's caption instead
showing on the entire item
17 (exShowAsSelectButton), Shows the item as a select button, which is
composed by two-fields, one indicates the default button, while the second field
specifies the drop down button that displays the items in the current's sub-menu
collection. The drop down button is shown to the right-side of the default button.
The item must have a submenu, else no drop down is displayed.
273 (exShowAsSelectButtonBottom), Shows the item as a select button, which is
composed by two-fields, one indicates the default button, while the second field
specifies the drop down button that displays the items in the current's sub-menu
collection. The drop down button is shown to the bottom-side of the default button.
The item must have a submenu, else no drop down is displayed.

ttp=<VALUE>, defines the item's tooltip. The <VALUE> could be any HTML string
expression. The item's tooltip is shown when the user hovers the item.

edittype=<VALUE>, associates an edit field to the item, where <VALUE> could be a
combination of one or more of the following values:

0 (exItemDisableEdit), No editor is assigned to the current item.
1 (exItemEditText), A text-box editor is assigned to the current item.
2 (exItemEditMask), A masked text-box editor is assigned to the current item.
3 (exItemEditSlider), A slider editor is assigned to the current item. This can be
combined with 1024.
4 (exItemEditProgress), A progress editor is assigned to the current item. This
can be combined with 1024.
5 (exItemEditScrollBar), A scrollbar editor is assigned to the current item. This
can be combined with 1024.
6 (exItemEditColor), A color editor is assigned to the current item.
7 (exItemEditFont), A font editor is assigned to the current item.
256 (exItemEditReadOnly), specifies that the item's editor is shown as disabled.
This value could be combined with one of the values from 0 to 7 or 512
512 (exItemEditSpin), A spin editor is assigned to the current item. This value
could be combined with one of the values from 0 to 7 or 256
1024 (exItemEditVertical), The editor is shown vertically rather than horizontally.
This value has effect for exItemEditSlider, exItemEditProgress or
exItemEditScrollBar

edit=<VALUE>, specifies the caption to be shown in the item's edit field, where
<VALUE> could be any string
mask=<VALUE>, specifies the mask to be applied on a masked editor. This option is
valid for exItemEditMask edit. Use the float option to allow masking floating point
numbers. See Masking for more information about <VALUE> of the mask option. See
Masking Float for more information about <VALUE> if the float option is used.
float=<VALUE>, Specifies whether the mask field masks a floating point number. This
option is valid for exItemEditMask edit. See Masking Float for more information about
<VALUE> of mask option, if the float option is used. The <VALUE> could be 0 for
standard masking field or not zero to specify that the field is masking a floating point.
border=<VALUE>, specifies the border to be shown on the item's edit field, where
<VALUE> could be one of the following:

0 (exEditBorderNone), No border is shown.
-1 (exEditBorderInset), shows an inset border
1 (exEditBorderSingle), shows a frame border

editwidth=<VALUE>, specifies the width to show the edit field inside the item, where
<VALUE> could be a integer expression. A negative value indicates that the field goes

to the end of the item
min=<VALUE>, defines the minimum value of the edit field. The <VALUE> could be any
integer expression, and specifies the minimum value for any slider, progress, scroll,
spin, or range editor.
max=<VALUE>, defines the maximum value of the edit field. The <VALUE> could be
any integer expression, and specifies the maximum value for any slider, progress,
scroll, spin, or range editor.
tick=<VALUE>, defines where the ticks of the slider edit appear. This option is valid for
exItemEditSlider edit. The <VALUE> could be one of the following values:

0 (exBottomRight), The ticks are displayed on the bottom/right side.
1 (exTopLeft), The ticks are displayed on the top/left side.
2 (exBoth), The ticks are displayed on the both side.
3 (exNoTicks), No ticks are displayed.

freq=<VALUE>, indicates the ratio of ticks on the slider edit. This option is valid for
exItemEditSlider edit. The <VALUE> could be a positive integer expression.
ticklabel=<VALUE>, indicates the HTML label to be displayed on slider's ticks. This
option is valid for exItemEditSlider edit. See Tick Label Expression for more information
about <VALUE> of the ticklabel option.
small=<VALUE>, indicates the amount by which the edit's position changes when the
user presses the arrow key (left, right, or button). This option is valid for
exItemEditSlider, exItemEditScrollBar edit. The <VALUE> could be a positive integer
expression.
large=<VALUE>, indicates the amount by which the edit's position changes when the
user presses the CTRL + arrow key (CTRL + left, CTRL + right). This option is valid
for exItemEditSlider, exItemEditScrollBar edit. The <VALUE> could be a positive
integer expression.
spin=<VALUE>, specifies the step to advance when user clicks the editor's spin.. This
option is valid for exItemEditSpin edit. The <VALUE> could be a positive integer
expression.
ettp=<VALUE>, specifies the HTML tooltip to be shown when the item's value is
changed. This option is valid for exItemEditSlider/exItemEditScrollBar edit. The
<VALUE> could be any string expression, including built-in HTML tags

arrow=<VALUE>. The <VALUE> could be 0 for hiding the arrow or not zero to show
the arrow. Indicates whether an item that has a sub-menu shows or hides its popup
arrow. If the <VALUE> is missing, the item shows no arrow.
local=<VALUE>. The <VALUE> could be 0 for standard popup or not zero to specify
that the field is a local popup. Specifies whether the item's popup is shown as local.
Clicking any item inside a local popup makes the popup itself to close including all its
descendent sub-menus, without closing any ascendant sub-menus.
close=<VALUE>, Specifies the way the hosting menu is closed when the user clicks the
item. If the close flag is missing, the <VALUE> is 3 (exCloseOnNonClickable), by
default. The <VALUE> could be one of the following values:

0 (exCloseOnClick), The popup menu is closing when the user clicks the item.
1 (exCloseOnDblClick), The popup menu is closing when the user double clicks
the item.
2 (exCloseOnClickOutside), The popup menu is closing when the user clicks
outside of the menu.
3 (exCloseOnNonClickable), The popup menu is closing when the user clicks a
non-clickable item (regular items). The non-clickable items is any item that's not a
separator, popup, disabled or check or radio items, clicking a check-box item will
makes the check box to change its state instead closing the context menu.

popupapp=<VALUE> indicates the visual appearance of the item's submenu when the
popup is shown. The <VALUE> could be a predefine value like shown bellow, or an
integer expression that refers an EBN object.

0 (NoBorder)
1 (FlatBorder)
2 (SunkenBorder)
3 (RaisedBorder)
4 (EtchedBorder)
5 (BumpBorder)
6 (ShadowBorder)
7 (InsetBorder)
8 (SingleBorder)

itemsbg=<VALUE>, specifies the items background color, where <VALUE> could be a
RGB expression (RGB(RR,GG,BB), where RR is the red value, the GG is the green
value, and the BB is the blue value), or an integer expression to that refers an EBN
object.
itemsbghot=<VALUE>, specifies the items background color, while the cursor hovers
the items, where <VALUE> could be a RGB expression (RGB(RR,GG,BB), where RR
is the red value, the GG is the green value, and the BB is the blue value), or an integer
expression to that refers an EBN object.
popupalign=<VALUE>, Indicates how the item's sub-menu is aligned relative to the
parent item. The popupalign has no effect for an item that displays a select- button.
The <VALUE> could be a combination of one or more of the following values:

0 (exShowPopupAlignNone), The popup menu is shown on top of the item,
aligned to the left (no down and right, so up and left)
1 (exShowPopupAlignDown), The popup menu is shown down. If missing, the
popup menu is shown up.
2 (exShowPopupAlignRight), The popup menu is shown aligned to the right, else
if missing, the popup menu is shown aligned to the left.

popupat=<VALUE>, specifies the identifier of the item where the current item's
submenu/popup is displayed. The <VALUE> could be any integer expression. If there is
no identifier with giving value, the option has no effect.
popupoffset=<VALUE>, specifies the offset (horizontal,vertical) to display the item's

submenu/popup relative to its default position.
itemspad=<VALUE>, specifies the padding (space between the menu border and the
item content) to display the items. The <VALUE> is a list of coordinates such as
left,top,right,bottom
visible=<VALUE>, specifies the maximum number of visible items at one time, where
the <VALUE> could be any integer expression.
tab=<VALUE>, specifies the identifier of the item/tab where the current group-popup is
shown instead. The <VALUE> could be any integer expression. If there is no identifier
with giving value, the option has no effect.
itemsbgext=<VALUE>, indicates additional colors, text, images that can be displayed
on the items background using the EBN String Format. The <VALUE> should be in EBN
String Format. For instance, [itemsbgext=bottom[2],bottom[16,text=`</fgcolor><fgcolor
6D6AAA>Views</fgcolor><fgcolor A0A0A0>`,align=0x21]], shows the Views aligned
to the bottom, with a different foreground color.

Masking, (mask option)

For instance, the following input-mask (ext-phone)

!(999) 000 0000;1;;select=1,empty,overtype,warning=invalid character,invalid=The value
you entered isn't appropriate for the input mask '<%mask%>' specified for this
field."

indicates the following:

The pattern should contain 3 optional digits 999, and 7 required digits 000 0000,
aligned to the right, !.
The second part of the input mask indicates 1, which means that all literals are included
when the user leaves the field.
The entire field is selected when it receives the focus, select=1
The field supports empty value, so the user can leave the field with no content
The field enters in overtype mode, and insert-type mode is not allowed when user
pressed the Insert key
If the user enters any invalid character, a warning tooltip with the message "invalid
character" is displayed.
If the user tries to leave the field, while the field is not validated (all 7 required digits
completed), the invalid tooltip is shown with the message "The value you entered isn't
appropriate for the input mask '<%mask%>' specified for this field." The
<%mask%> is replaced with the first part of the input mask !(999) 000 0000

The four parts of an input mask, or the Mask property supports up to four parts, separated
by a semicolon (;). For instance, "`Time: `00:00:00;;0;overtype,warning=<fgcolor
FF0000>invalid character,beep", indicates the pattern "00:00" with the prefix Time:, the

masking character being the 0, instead _, the field enters in over-type mode, insert-type
mode is not allowed, and the field beeps and displays a tooltip in red with the message
invalid character when the user enters an invalid character.

Input masks are made up one mandatory part and three optional parts, and each part is
separated by a semicolon (;). If a part should use the semicolon (;) it must uses the \;
instead

The purpose of each part is as follows:

1. The first part (pattern) is mandatory. It includes the mask characters or string (series
of characters) along with placeholders and literal data such as, parentheses, periods,
and hyphens.

The following table lists the placeholder and literal characters for an input mask and
explains how it controls data entry:

#, a digit, +, - or space (entry not required).
0, a digit (0 through 9, entry required; plus [+] and minus [-] signs not allowed).
9, a digit or space (entry not required; plus and minus signs not allowed).
x, a lower case hexa character, [0-9],[a-f] (entry required)
X, an upper case hexa character, [0-9],[A-F] (entry required)
A, any letter, digit (entry required).
a, any letter, digit or space (entry optional).
L, any letter (entry require).
?, any letter or space (entry optional).
&, any character or a space (entry required).
C, any character or a space (entry optional).
>, any letter, converted to uppercase (entry required).
<, any letter, converted to lowercase (entry required).
*, any characters combinations
{ min,max } (Range), indicates a number range. The syntax {min,max} (Range),
masks a number in the giving range. The min and max values should be positive
integers. For instance the mask {0,255} masks any number between 0 and 255.
[...] (Alternative), masks any characters that are contained in the [] brackets. For
instance, the [abcdA-D] mask any character: a,b,c,d,A,B,C,D
\, indicates the escape character
ť, (ALT + 175) causes the characters that follow to be converted to uppercase,
until Ť(ALT + 174) is found.
Ť, (ALT + 174) causes the characters that follow to be converted to lowercase,
until ť(ALT + 175) is found.

!, causes the input mask to fill from right to left instead of from left to right.

Characters enclosed in double quotation ("" or ``) marks will be displayed literally. If
this part should display/use the semicolon (;) character is should be included between
double quotation ("" or ``) characters or as \; (escape).

2. The second part is optional and refers to the embedded mask characters and how they
are stored within the field. If the second part is set to 0 (default,
exClipModeLiteralsNone), all characters are stored with the data, and if it is set to 1
(exClipModeLiteralsInclude), the literals are stored, not including the
masking/placeholder characters, if 2 (exClipModeLiteralsExclude), just typed
characters are stored, if 3(exClipModeLiteralsEscape), optional, required, editable and
escaped entities are included. No double quoted text is included.

3. The third part of the input mask is also optional and indicates a single character or
space that is used as a placeholder. By default, the field uses the underscore (_). If
you want to use another character, enter it in the third part of your mask. Only the first
character is considered. If this part should display/use the semicolon (;) character is
should be \; (escape)

4. The forth part of the input, indicates a list of options that can be applied to input mask,
separated by comma(,) character.

The known options for the forth part are:

float, indicates that the field is edited as a decimal number, integer. The first part
of the input mask specifies the pattern to be used for grouping and decimal
separators, and - if negative numbers are supported. If the first part is empty, the
float is formatted as indicated by current regional settings. For instance,
"##;;;float" specifies a 2 digit number in float format. The grouping, decimal,
negative and digits options are valid if the float option is present.

grouping=value, Character used to separate groups of digits to the left of the
decimal. Valid only if float is present. For instance ";;;float,grouping=" indicates
that no grouping is applied to the decimal number (LOCALE_STHOUSAND)
decimal=value, Character used for the decimal separator. Valid only if float is
present. For instance ";;;float,grouping= ,decimal=\," indicates that the decimal
number uses the space for grouping digits to the left, while for decimal separator
the comma character is used (LOCALE_SDECIMAL)
negative=value, indicates whether the decimal number supports negative
numbers. The value should be 0 or 1. 1 means negative numbers are allowed.

Else 0 or missing, the negative numbers are not accepted. Valid only if float is
present.
digits=value, indicates the max number of fractional digits placed after the
decimal separator. Valid only if float is present. For instance, ";;;float,digits=4"
indicates a max 4 digits after decimal separator (LOCALE_IDIGITS)
password[=value], displays a black circle for any shown character. For instance,
";;;password", specifies that the field to be displayed as a password. If the value
parameter is present, the first character in the value indicates the password
character to be used. By default, the * password character is used for non-
TrueType fonts, else the black circle character is used. For instance,
";;;password=*", specifies that the field to be displayed as a password, and use
the * for password character. If the value parameter is missing, the default
password character is used.
right, aligns the characters to the right. For instance, "(999) 999-9999;;;right"
displays and masks a telephone number aligned to the right. readonly, the editor
is locked, user can not update the content, the caret is available, so user can
copy the text, excepts the password fields.
inserttype, indicates that the field enters in insert-type mode, if this is the first
option found. If the forth part includes also the overtype option, it indicates that
the user can toggle the insert/over-type mode using the Insert key. For instance,
the "##:##;;0;inserttype,overtype", indicates that the field enter in insert-type
mode, and over-type mode is allowed. The "##:##;;0;inserttype", indicates that
the field enter in insert-type mode, and over-type mode is not allowed.
overtype, indicates that the field enters in over-type mode, if this is the first
option found. If the forth part includes also the inserttype option, it indicates that
the user can toggle the insert/over-type mode using the Insert key. For instance,
the "##:##;;0;overtype,inserttype", indicates that the field enter in over-type
mode, and insert-type mode is allowed. The "##:##;;0;overtype", indicates that
the field enter in over-type mode, and insert-type mode is not allowed.
nocontext, indicates that the field provides no context menu when user right
clicks the field. For instance, ";;;password,nocontext" displays a password field,
where the user can not invoke the default context menu, usually when a right
click occurs.
beep, indicates whether a beep is played once the user enters an invalid
character. For instance, "00:00;;;beep" plays a beep once the user types in
invalid character, in this case any character that's not a digit.
warning=value, indicates the html message to be shown when the user enters
an invalid character. For instance, "00:00:00;;;warning=invalid character"
displays a "invalid character" tooltip once the user types in invalid character, in
this case any character that's not a digit. The <%mask%> keyword in value,
substitute the current mask of the field, while the <%value%> keyword

substitutes the current value (including the literals). If this option should
display/use the semicolon (;) character is should be \; (escape)
invalid=value, indicates the html message to be displayed when the user enters
an inappropriate value for the field. If the value is missing or empty, the option
has no effect, so no validation is performed. If the value is a not-empty value, the
validation is performed. If the value is single space, no message is displayed
and the field is keep opened while the value is inappropriate. For instance, "!
(999) 000 0000;;;invalid=The value you entered isn't appropriate for the input
mask '<%mask%>' specified for this field." displays the "The value you
entered isn't appropriate for the input mask '...' specified for this field." tooltip
once the user leaves the field and it is not-valid (for instance, the field includes
entities required and uncompleted). The <%mask%> keyword in value,
substitute the current mask of the field, while the <%value%> keyword
substitutes the current value (including the literals). If this option should
display/use the semicolon (;) character is should be \; (escape). This option can
be combined with empty, validateas.
validateas=value, specifies the additional validation is done for the current field.
If value is missing or 0 (exValidateAsNone), the option has no effect. The
validateas option has effect only if the invalid option specifies a not-empty value.
Currently, the value can be 1 (exValidateAsDate), which indicates that the field is
validated as a date. For instance, having the mask
"!00/00/0000;;0;empty,validateas=1,invalid=Invalid date!,warning=Invalid
character!,select=4,overtype", indicates that the field is validate as date (
validateas=1).
empty, indicates whether the field supports empty values. This option can be
used with invalid flag, which indicates that the user can leave the field if it is
empty. If empty flag is present, the field displays nothing if no entity is completed
(empty). Once the user starts typing characters the current mask is displayed.
For instance, having the mask "!(999) 000
0000;;;empty,select=4,overtype,invalid=invalid phone number,beep", it specifies
an empty or valid phone to be entered.
select=value, indicates what to select from the field when it got the focus. The
value could be 0 (nothing, exSelectNoGotFocus), 1 (select all,
exSelectAllGotFocus), 2 (select the first empty and editable entity of the field,
exSelectEditableGotFocus), 3 (moves the cursor to the beginning of the first
empty and editable entity of the field, exMoveEditableGotFocus), 4 (select the
first empty, required and editable entity of the field,
exSelectRequiredEditableGotFocus), 5 (moves the cursor to the beginning of
the first empty, required and editable entity of the field,
exMoveRequiredEditableGotFocus). For modes 2 and 4 the entire field is
selected if no matching entity is found. For instance, "`Time:`XX:XX;;;select=1"

indicates that the entire field (including the Time: prefix) is selected once it get
the focus. The "`Time:`XX:XX;;;select=3", moves the cursor to first X, if empty,
the second if empty, and so on

Experimental:
multiline, specifies that the field supports multiple lines.
rich, specifies that the field displays a rich type editor. By default, the standard edit field is
shown
disabled, shows as disabled the field.

Masking-Float, (mask, float option)

The [mask=<VALUE>] property may indicate the followings, if the [float=-1] is present

negative number: if the first character in the mask is - (minus) the control supports
negative numbers. Pressing the - key will toggle the sign of the number. The + sign is
never displayed.
decimal symbol: the last character that's different than # (digit), or 0 (zero) indicates
the decimal symbol. If it is not present the control mask a floating point number without
decimals.
thousand symbol: the thousand symbol is the last character that's not a # (digit), 0
(zero) or it is not the decimal symbol as explained earlier, if present.
the maximum number of decimals in the number (the # or 0 character after the
decimal symbol)
the maximum number of digits in the integer part (the number of # or 0 character
before decimal symbol)
the 0 character indicates a leading-zero. The count of 0 (zero) characters before
decimal character indicates the leading-zero for integer part of the control, while the
count of 0 (zero) characters after the decimal separator indicates the leading-zero for
decimal part of the control. For instance, the Mask on "-###,###,##0.00", while the
control's Text property is 1, the control displays 1.00, if 1.1 if displays 1.10, and if
empty, the 0.00 is displayed.

If the <VALUE> property is empty, the control takes the settings for the regional options
like: Decimal Symbol , No. of digits after decimal, Digit grouping symbol.

Here are few samples:

The <VALUE>"-###.###.##0,00" filter floating point numbers a number for German settings
("," is the decimal sign, "." is the thousands separator). This format displays leading-zeros.

The <VALUE>"-###.###.###,##" filter floating point numbers a number for German settings
("," is the decimal sign, "." is the thousands separator)

The <VALUE>"-###,###,###.##" filter floating point numbers a number for English settings (
"." is the decimal sign, "," is the thousands separator)

The <VALUE>"####" indicates a max-4 digit number (positive) without a decimal symbol
and without digit grouping

The <VALUE>"-##.#" filters a floating point number from the -99.9 to 99.9 ("." is the
decimal sign, no thousands separator)

The <VALUE>"#,###.##" filters a floating point number from the 0 to 9,999.99 with digit
grouping ("." is the decimal sign, "," is the thousands separator).

Tick Label Expression, (ticklabel option)

For instance:

"value", shows the values for each tick.
" (value=current ? '<fgcolor=FF0000>' : '') + value", shows the current
slider's position with a different color and font.
"value = current ? value : ''", shows the value for the current tick only.
"(value = current ? '' : '') + (value array 'ab bc cd de ef fg gh hi ij jk kl'
split ' ')" displays different captions for slider's values.

The The <VALUE> of [ticklabel] option is a formatted expression which result may include
the HTML tags.

The The <VALUE> of [ticklabel] option indicates a formatting expression that may use the
following predefined keywords:

value gets the slider's position to be displayed
current gets the current slider's value.
vmin gets the slider's minimum value.
vmax gets the slider's maximum value.
smin gets the slider's selection minimum value.
smax gets the slider's selection maximum value.

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5

+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for is

"expression ? true_part : false_part"

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the "%0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found')" returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

"expression array (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,

date or string expressions. For instance the "month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D')" is equivalent with "month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D')".

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

"expression in (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "value in (11,22,33,44,13)" is equivalent
with "(expression = 11) or (expression = 22) or (expression = 33) or (expression =
44) or (expression = 13)". The in operator is not a time consuming as the equivalent or
version is, so when you have large number of constant elements it is recommended
using the in operator. Shortly, if the collection of elements has 1000 elements the in
operator could take up to 8 operations in order to find if an element fits the set, else if
the or statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

"expression switch (default,c1,c2,c3,...,cn)"

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the "%0 switch ('not found',1,4,7,9,11)" gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

"expression case ([default : default_expression ;] c1 : expression1 ; c2 :
expression2 ; c3 : expression3 ;....)"

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of

expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the "date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1)" indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: "date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8)" statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions.

Obviously, the priority of the operations inside the expression is determined by ()
parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%0) = 8
specifies the cells that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any

14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string
dbl (unary operator) converts the expression to a number
date (unary operator) converts the expression to a date, based on your regional
settings
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS.

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical

examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string
lower (unary operator) returns a string expression in lowercase letters
upper (unary operator) returns a string expression in uppercase letters
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names
ltrim (unary operator) removes spaces on the left side of a string
rtrim (unary operator) removes spaces on the right side of a string
trim (unary operator) removes spaces on both sides of a string
startwith (binary operator) specifies whether a string starts with specified string
endwith (binary operator) specifies whether a string ends with specified string
contains (binary operator) specifies whether a string contains another specified string
left (binary operator) retrieves the left part of the string
right (binary operator) retrieves the right part of the string
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on)
a count b (binary operator) retrieves the number of occurrences of the b in a
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result.
a split b, splits the a using the separator b, and returns an array. For instance, the
"weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' '" gets the weekday as
string. This operator can be used with the array

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel.
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance the timeF(1:23 PM) returns "13:23:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel.
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance the shortdateF(December 31, 1971 11:00 AM)
returns "12/31/1971".
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format.
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel.
year (unary operator) retrieves the year of the date (100,...,9999)
month (unary operator) retrieves the month of the date (1, 2,...,12)
day (unary operator) retrieves the day of the date (1, 2,...,31)
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365)
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday)
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23)
min (unary operator) retrieves the minute of the date (0, 1, ..., 59)
sec (unary operator) retrieves the second of the date (0, 1, ..., 59)

The The <VALUE> of [ticklabel] option can display labels using the following built-in HTML
tags:

 displays the text in bold.
<i></i> displays the text in italics.
<u></u> underlines the text.
<s></s> Strike-through text
 displays portions of text with a different font and/or different
size. For instance, the bit draws the bit text using the Tahoma
font, on size 12 pt. If the name of the font is missing, and instead size is present, the
current font is used with a different size. For instance, bit displays the
bit text using the current font, but with a different size.
<fgcolor=RRGGBB></fgcolor> displays text with a specified foreground color. The
RR, GG or BB should be hexa values and indicates red, green and blue values.
<bgcolor=RRGGBB></bgcolor> displays text with a specified background color. The
RR, GG or BB should be hexa values and indicates red, green and blue values.

 a forced line-break
<solidline> The next line shows a solid-line on top/bottom side. If has no effect for a

single line caption.
<dotline> The next line shows a dot-line on top/bottom side. If has no effect for a
single line caption.
<upline> The next line shows a solid/dot-line on top side. If has no effect for a single
line caption.
<r> Right aligns the text
<c> Centers the text
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number
(the character with specified code), For instance, the € displays the EUR
character, in UNICODE configuration. The & ampersand is only recognized as markup
when it is followed by a known letter or a # character and a digit. For instance if you
want to display bold in HTML caption you can use bold

EBN String Format, (itemsbgext option)

The EBN String Format syntax in BNF notation is defined like follows:

<EBN> ::= <elements> | <root> "(" [<elements>] ")"
<elements> ::= <element> ["," <elements>]
<root> ::= "root" [<attributes>] | [<attributes>]
<element> ::= <anchor> [<attributes>] ["(" [<elements>] ")"]
<anchor> ::= "none" | "left" | "right" | "client" | "top" | "bottom"
<attributes> ::= "[" [<client> ","] <attribute> ["," <attributes>] "]"
<client> ::= <expression> | <expression> "," <expression> "," <expression> ","
<expression>
<expression> ::= <number> | <number> "%"
<attribute> ::= <backcolor> | <text> | <wordwrap> | <align> | <pattern> |
<patterncolor> | <frame> | <framethick> | <data> | <others>

<equal> ::= "="
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<decimal> ::= <digit><decimal>
<hexadigit> ::= <digit> | "A" | "B" "C" | "D" | "E" "F"
<hexa> ::= <hexadigit><hexa>
<number> ::= <decimal> | "0x" <hexa>
<color> ::= <rgbcolor> | number
<rgbcolor> ::= "RGB" "(" <number> "," <number> "," <number> ")"
<string> ::= "`" <characters> "`" | "'" <characters> "'" | " <characters> "
<characters> ::= <char>|<characters>
<char> ::= <any_character_excepts_null>
<backcolor> ::= "back" <equal> <color>
<text> ::= "text" <equal> <string>
<align> ::= "align" <equal> <number>
<pattern> ::= "pattern" <equal> <number>
<patterncolor> ::= "patterncolor" <equal> <color>
<frame> ::= "frame" <equal> <color>
<data> ::= "data" <equal> <number> | <string>
<framethick> ::= "framethick"
<wordwrap> ::= "wordwrap"

Others like: pic, stretch, hstretch, vstretch, transparent, from, to are reserved for future
use only.

Here's a few easy samples:

"[pattern=6]", shows the BDiagonal pattern on the object's background.

"[frame=RGB(255,0,0),framethick]", draws a red thick-border around the object.

"[frame=RGB(255,0,0),framethick,pattern=6,patterncolor=RGB(255,0,0)]", draws a

red thick-border around the object, with a patter inside.

"[[patterncolor=RGB(255,0,0)]
(none[(4,4,100%-8,100%-8),pattern=0x006,patterncolor=RGB(255,0,0),frame=RGB(255,0,0),framethick])]",
draws a red thick-border around the object, with a patter inside, with a 4-pixels wide
padding:

"top[4,back=RGB(0,0,255)]", draws a blue line on the top side of the object's
background, of 4-pixels wide.

"[text=`caption`,align=0x22]", shows the caption string aligned to the bottom-right side
of the object's background.

"[text=`flag`,align=0x11]" shows the flag picture and the sweden string
aligned to the bottom side of the object.

"left[10,back=RGB(255,0,0)]", draws a red line on the left side of the object's
background, of 10-pixels wide.

"bottom[50%,pattern=6,frame]", shows the BDiagonal pattern with a border arround on
the lower-half part of the object's background.

"root[text=`caption 2`,align=0x22](client[text=`caption 1`,align=0x20])", shows
the caption 1 aligned to the bottom-left side, and the caption 2 to the bottom-right side

property Item.Underline as Boolean
Specifies whether the item's caption appears as underlined.

Type Description

Boolean A Boolean expression that specifies whether the item's
caption is underlined.

By default, the Underline property is False. Use the Underline property to show underlined
the item's caption. The Caption property indicates the HTML caption to be shown on the
item. The <u> HTML tag can be used on the item's Caption property to specify different
parts of the caption as underlined.

property Item.UserData as Variant
Associates an extra data to the object.

Type Description
Variant A VARIANT expression that indicates the item's extra data.

By default, the UserData is empty. Use the UserData property to associate any extra data
to the item. Use the Caption property to specify the item's caption. Use the Tooltip property
to specify the item's tooltip which can be shown when the cursor hovers the item. The Item
property searches recursively the item with giving identifier/caption.

property Item.Visible as Boolean
Specifies whether the item is visible or hidden.

Type Description

Boolean A Boolean expression that specifies whether the item is
visible or hidden.

By default, the Visible property is True. You can use the Visible property to show or hide
the item. Use the Enabled property to disable an item. A disabled item shows as grayed,
and it is un-selectable, so the user can select or highlight it. The Remove method removes
an individual Item object giving its identifier or caption.

Items object
The Items collection supports the following properties and methods:

Name Description

Add Adds an Item object and returns a reference to the newly
created object.

BackColor Specifies the background color of the items.

BackgroundExt
Indicates additional colors, text, images that can be
displayed on the items's background using the EBN string
format.

Clear Removes all objects in a collection.
Count Returns the number of objects in a collection.

HotBackColor Specifies the hot background color of the items (when the
cursor hovers the items).

item Returns a specific Item object giving its identifier.

Padding Specifies the padding (space between the menu border
and the item content) to display the items.

PopupAppearance Retrieves or sets the popup's appearance.
Remove Removes a specific member from the collection.
SortOrder Sorts the items in the submenu.

ToString Loads or saves the Items collection using string
representation.

VisibleItemsCount Specifies the maximum number of visible items at one
time.

method Items.Add (Caption as String, [ItemType as Variant], [ID as
Variant])
Adds an Item object and returns a reference to the newly created object.

Type Description

Caption as String A String expression that specifies the HTML caption to be
displayed on the item.

ItemType as Variant An ItemTypeEnum expression that specifies the type of
the item to be added.

ID as Variant A Long expression that specifies the identifier of the item
to be added.

Return Description
Item An Item object being created.

The Add method adds a new item to the Items collection. The ToString property loads or
saves the control items from a string, so you can use the ToString method to add items
too!. The Remove method removes a specified item. The Select property shows modal the
context menu, and waits for the user to make the selection. The Item property gets the
Item object giving its identifier or caption. The SubMenu property gets a collection of Item
objects to be displayed on the sub-menu. This property returns a not-empty value, if the
ItemType parameter is SubMenu. The SubControl property gets access to the Control
object that holds information about the inside ActiveX or Window hosted by the item. This
property returns a not-empty value, if the ItemType parameter is SubControl.

The Caption parameter supports the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "<font

about:blank

;12>bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font

to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property Items.BackColor as Color
Specifies the background color of the items.

Type Description

Color

A Color expression that specifies the items' background
color. The last 7 bits in the high significant byte of the color
indicates the identifier of the skin being used. Use the Add
method to add new skins to the control. If you need to
remove the skin appearance from a part of the control you
need to reset the last 7 bits in the high significant byte of
the color being applied to the background's part.

The BackColor property specifies the solid color / visual appearance to be shown on the
items' background (inside borders). The BackgroundExt property indicates additional
colors, text, images that can be displayed on the items's background using the EBN string
format. The PopupAppearance property specifies the visual appearance of the items (
including the margins/borders). The HotBackColor property specifies the background color
for items when cursor hovers it. The Padding property specifies the padding (space
between the menu border and the item content) to display the items.

The following screen shot shows different grouping items (Clipboard, Font, Adjust) with
different background appearance.

property Items.BackgroundExt as String
Indicates additional colors, text, images that can be displayed on the items's background
using the EBN string format.

Type Description

String

A String expression ("EBN String Format") that defines
the layout of the UI to be applied on the items'
background. The syntax of EBN String Format in BNF
notation is shown bellow. You can use the EBN's Builder
of eXButton/COM control to define visually the EBN
String Format.

By default, the BackgroundExt property is empty. Using the BackgroundExt property you
have unlimited options to show any HTML text, images, colors, EBNs, patterns, frames
anywhere on the items' background. For instance, let's say you need to display more
colors on the items' background, or just want to display an additional caption or image to
a specified location on the items' background. The EBN String Format defines the parts of
the EBN to be applied on the items' background. The EBN is a set of UI elements that are
built as a tree where each element is anchored to its parent element. The BackgroundExt
property is applied right after setting the object's backcolor, and before drawing the default
object's captions, icons or pictures.

In the following screen shot the Views, Clipboard, Font and Speakers are shown using the
BackgroundExt property:

as "bottom[2],bottom[16,text=`</fgcolor><fgcolor 6D6AAA>Views</fgcolor><fgcolor
A0A0A0>`,align=0x21]", shows the Views aligned to the bottom, with a different foreground
color.

Easy samples:

"[pattern=6]", shows the BDiagonal pattern on the object's background.

https://exontrol.com/ebn.jsp

"[frame=RGB(255,0,0),framethick]", draws a red thick-border around the object.

"[frame=RGB(255,0,0),framethick,pattern=6,patterncolor=RGB(255,0,0)]", draws a
red thick-border around the object, with a patter inside.

"[[patterncolor=RGB(255,0,0)]
(none[(4,4,100%-8,100%-8),pattern=0x006,patterncolor=RGB(255,0,0),frame=RGB(255,0,0),framethick])]",
draws a red thick-border around the object, with a patter inside, with a 4-pixels wide
padding:

"top[4,back=RGB(0,0,255)]", draws a blue line on the top side of the object's
background, of 4-pixels wide.

"[text=`caption`,align=0x22]", shows the caption string aligned to the bottom-right side
of the object's background.

"[text=`flag`,align=0x11]" shows the flag picture and the sweden string
aligned to the bottom side of the object.

"left[10,back=RGB(255,0,0)]", draws a red line on the left side of the object's
background, of 10-pixels wide.

"bottom[50%,pattern=6,frame]", shows the BDiagonal pattern with a border arround on
the lower-half part of the object's background.

"root[text=`caption 2`,align=0x22](client[text=`caption 1`,align=0x20])", shows
the caption 1 aligned to the bottom-left side, and the caption 2 to the bottom-right side

The Exontrol's eXButton WYSWYG Builder helps you to generate or view the EBN String
Format, in the To String field as shown in the following screen shot:

https://exontrol.com/exbutton.jsp

The To String field of the EBN Builder defines the EBN String Format that can be used on
BodyBackgroundExt property.

The EBN String Format syntax in BNF notation is defined like follows:

<EBN> ::= <elements> | <root> "(" [<elements>] ")"
<elements> ::= <element> ["," <elements>]
<root> ::= "root" [<attributes>] | [<attributes>]
<element> ::= <anchor> [<attributes>] ["(" [<elements>] ")"]
<anchor> ::= "none" | "left" | "right" | "client" | "top" | "bottom"
<attributes> ::= "[" [<client> ","] <attribute> ["," <attributes>] "]"
<client> ::= <expression> | <expression> "," <expression> "," <expression> ","
<expression>
<expression> ::= <number> | <number> "%"
<attribute> ::= <backcolor> | <text> | <wordwrap> | <align> | <pattern> |
<patterncolor> | <frame> | <framethick> | <data> | <others>
<equal> ::= "="
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<decimal> ::= <digit><decimal>
<hexadigit> ::= <digit> | "A" | "B" "C" | "D" | "E" "F"
<hexa> ::= <hexadigit><hexa>
<number> ::= <decimal> | "0x" <hexa>
<color> ::= <rgbcolor> | number
<rgbcolor> ::= "RGB" "(" <number> "," <number> "," <number> ")"

<string> ::= "`" <characters> "`" | "'" <characters> "'" | " <characters> "
<characters> ::= <char>|<characters>
<char> ::= <any_character_excepts_null>
<backcolor> ::= "back" <equal> <color>
<text> ::= "text" <equal> <string>
<align> ::= "align" <equal> <number>
<pattern> ::= "pattern" <equal> <number>
<patterncolor> ::= "patterncolor" <equal> <color>
<frame> ::= "frame" <equal> <color>
<data> ::= "data" <equal> <number> | <string>
<framethick> ::= "framethick"
<wordwrap> ::= "wordwrap"

Others like: pic, stretch, hstretch, vstretch, transparent, from, to are reserved for future
use only.

method Items.Clear ()
Removes all objects in a collection.

Type Description

Use the Clear method to clear all elements/items in the collection. The Remove method
removes an item giving its identifier.

property Items.Count as Long
Returns the number of objects in a collection.

Type Description

Long A Long expression that specifies the number of Item
objects in the collection.

The Count property specifies the the number of Item objects in the collection. The Add
method adds a new item to the Items collection, while the Remove method removes an item
giving its identifier. Use the Clear method to clear all elements/items in the collection.

property Items.HotBackColor as Color
Specifies the hot background color of the items (when the cursor hovers the items).

Type Description

Color

A Color expression that specifies the items' background
color, when the cursor hovers it. The last 7 bits in the high
significant byte of the color indicates the identifier of the
skin being used. Use the Add method to add new skins to
the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits
in the high significant byte of the color being applied to the
background's part.

The HotBackColor property specifies the background color for items when cursor hovers it.
The BackColor property specifies the solid color / visual appearance to be shown on the
items' background (inside borders). The BackgroundExt property indicates additional
colors, text, images that can be displayed on the items's background using the EBN string
format. The PopupAppearance property specifies the visual appearance of the items (
including the margins/borders). The Padding property specifies the padding (space
between the menu border and the item content) to display the items.

property Items.item (ID as Variant) as Item
Returns a specific Item object giving its identifier.

Type Description

ID as Variant
A Long expression that specifies the identifier of the item
being requested or a String expression that specifies the
caption of the item being requested.

Item An Item object with associated identifier.

The Item property looks in the Items collection for the item with the specified identifier or
caption. You can use the Item property of the context menu to recursively search for an
item giving its identifier or caption. The ID property of the Item object specifies the identifier
of the item. The Caption property of the Item object specifies the caption of the item. The
Item property gets the first Item object being found, if multiple objects with the same
identifier are found, or Nothing, if no item with associated identifier is found.

property Items.Padding as String
Specifies the padding (space between the menu border and the item content) to display the
items.

Type Description

String

A string expression that indicates a list of 4 positive
numbers separated by comma characters, which indicates
the distance in pixels from margin to client, in the following
format: left, top, right, bottom.

By default, the Padding property is empty (0,0,0,0). The Padding property specifies the
padding (space between the menu border and the item content) to display the items. The
BackgroundExt property indicates additional colors, text, images that can be displayed on
the items's background using the EBN string format. When using EBN appearance, using
the PopupAppearance, LocalAppearance or Appearance, the distance between
margins/borders and items client area is indicated by the client object of the skin/ebn
object. The Padding property specifies the padding for a particular item.

The following screen shot shows the control with no padding:

The following screen shot shows the control with padding 16, 16, 16, 16:

property Items.PopupAppearance as MenuBorderEnum
Retrieves or sets the popup's appearance.

Type Description

MenuBorderEnum

A MenuBorderEnum expression that specifies the popup's
frame appearance, or a color expression whose last 7 bits
in the high significant byte of the value indicates the index
of the skin in the Appearance collection, being displayed
as control's borders. For instance, if the Appearance =
0x1000000, indicates that the first skin object in the
Appearance collection defines the control's border. The
Client object in the skin, defines the client area of the
control. The list/hierarchy, scrollbars are always
shown in the control's client area. The skin may
contain transparent objects, and so you can define
round corners. The normal.ebn file contains such of
objects. Use the eXButton's Skin builder to view or
change this file

By default, the PopupAppearance property is specified by the control's Appearance
property. The PopupAppearance specifies a different visual appearance for the current
submenu. The SubMenu property determines the items to be displayed on the popup item.
The BackColor property specifies the solid color / visual appearance to be shown on the
items' background (inside borders). The BackgroundExt property indicates additional
colors, text, images that can be displayed on the items's background using the EBN string
format. When using EBN appearance, using the PopupAppearance, LocalAppearance or
Appearance, the distance between margins/borders and items client area is indicated by
the client object of the skin/ebn object.

The appearance of the popup is determined by the following:

PopupAppearance, specifies the visual appearance of the current sub-menu.
LocalAppearance, determines the visual appearance of the popup, if it is local (
ShowLocalPopup property)
Appearance, specifies the general visual appearance of the popup items.

The following screen shot shows the sub-menu with different appearances:

https://exontrol.com/exbutton.jsp

(single appearance)

(shadow appearance)

(ebn appearance)

(ebn appearance)

method Items.Remove (ID as Variant)
Removes a specific member from the collection.

Type Description

ID as Variant
A Long expression that specifies the item to be removed.
A String expression that specifies the caption of the Item
to be removed

The Remove method removes an individual Item object giving its identifier or caption. The
Visible property specifies whether the item is visible or hidden.

property Items.SortOrder as SubMenuSortOrderEnum
Sorts the items in the submenu.

Type Description

SubMenuSortOrderEnum A SubMenuSortOrderEnum expression that specifies the
way the submenu displays its items.

By default, the SortOrder property is exSubMenuUnsorted, which indicates that the items
are displayed on the submenu as they were added. Use the SortOrder property to sort the
items to be displayed on the sub menu.

property Items.ToString as String
Loads or saves the Items collection using string representation.

Type Description

String

A String expression that specifies the items to be added.
The list of items is separated by , (comma) character,
while sub-menus are include between () parenthesis. The
[] brackets indicates the options to be applied on the item

The ToString property loads or saves the control items from a string. The Add method adds
a new item to the Items collection. The Remove method removes a specified item. The
Select property shows modal the context menu, and waits for the user to make the
selection.

For instance, the "Item 1,Item 2,[sep],Check 1[chk],Check 2[chk]", generates the following
screen shot:

For instance, the "Item 1,Item 2,Popup(Check 1[chk],Check 2[chk])", generates the
following screen shot:

For instance, the "Calendar[id=20]
[img=0],MSChart[id=30],Record[id=40],Slider[id=50],Radio 1[id=100][typ=2][edit=],Radio
2[id=101][typ=2][edit=],Radio 3[id=102][typ=2][edit=],ComboBox[id=90]", generates the
following screen shot:

The ToString syntax in BNF notation:

<ToString> ::= <ITEMS>
<ITEMS> ::= <ITEM>["("<ITEMS>")"][","<ITEMS>]
<ITEM> ::= <CAPTION>[<OPTIONS>]
<OPTIONS> ::= "["<OPTION>"]"["["<OPTIONS>"]"]
<OPTION> ::= <PROPERTY>["="<VALUE>]
<PROPERTY> ::= "img" | "himg" | "sep" | "id" | "typ" | "group" | "chk" | "button" | "align" |
"spchk" | "show" | "rad" | "dis" | "showdis" | "bld" | "itl" | "stk" | "und" | "bg" | "fg" | "edittype"
| "edit" | "mask" | "border" | "editwidth" | "captionwidth" | "height" | "grp" | "tfi" | "ttp" | "min" |
"max" | "tick" | "freq" | "ticklabel" | "small" | "large" | "spin" | "ettp" | "float" | "close" | "local" |
"popupapp" | "itemspad" | "itemsbg" | "itemsbghot" | "itemsbgext" | "visible" | "tab" | "pad" |
"bghot" | "bgsel" | "bgselhot" | "arrow" | "popupalign" | "popupoffset" | "popupat"

where the <CAPTION> is the HTML caption to be shown on the context menu item. The
<VALUE> indicates the value of giving property.

id=<VALUE>, where <VALUE> is an integer expression, that indicates the identifier of
the item.
bg=<VALUE>, specifies the item's background color, where <VALUE> could be a RGB
expression (RGB(RR,GG,BB), where RR is the red value, the GG is the green value,
and the BB is the blue value), or an integer expression to that refers an EBN object.
bghot=<VALUE>, specifies the item's background color, while the cursor hovers the
item, where <VALUE> could be a RGB expression (RGB(RR,GG,BB), where RR is
the red value, the GG is the green value, and the BB is the blue value), or an integer
expression to that refers an EBN object.
bgsel=<VALUE>, specifies the item's background color, while the item is
checked/selected, where <VALUE> could be a RGB expression (RGB(RR,GG,BB),
where RR is the red value, the GG is the green value, and the BB is the blue value), or
an integer expression to that refers an EBN object.
bgselhot=<VALUE>, specifies the item's background color, while the item is
checked/selected and the cursor hovers it, where <VALUE> could be a RGB
expression (RGB(RR,GG,BB), where RR is the red value, the GG is the green value,
and the BB is the blue value), or an integer expression to that refers an EBN object.
fg=<VALUE>, specifies the item's foreground color, where <VALUE> could be a RGB

expression (RGB(RR,GG,BB), where RR is the red value, the GG is the green value,
and the BB is the blue value), or a integer expression.
sep, specifies an separator item
dis, specifies a disabled item
showdis=<VALUE>, where <VALUE> could be 0 for regular or not zero to specify
whether the item shows as disabled, but it is still enabled
bld, specifies that the item appears in bold
itl, specifies that the item appears in italics
stk, specifies that the item appears as strikeout
und, specifies that the item is underlined
align=<VALUE>, where <VALUE> could be one of the following:

0 (left), to align the item's caption to the left
1 (center), to center the item's caption
2 (right), to align the item's caption to the right

captionwidth=<VALUE>, specifies the width to show the HTML caption of the item.
where <VALUE> could be a integer expression. A negative value indicates that no
limitation is applied to the item's caption, so no truncate caption is shown
height=<VALUE>, specifies the height to show the item, where <VALUE> could be a
positive integer expression
pad=<VALUE>, specifies the padding (space between the menu border and the item
content) to display the item. The <VALUE> is a list of coordinates such as
left,top,right,bottom
img=<VALUE>, where <VALUE> is an integer expression, that indicates the index of
the icon being displayed for the item.
himg=<VALUE>, where <VALUE> indicates the key of the picture to be displayed for
the item.

typ=<VALUE>, where <VALUE> could be one of the following:
0 for default/regular items (no check/radio button is associated with the item),
1 for items that display a check/box (chk),
2 to display radio buttons (rad)

chk[=<VALUE>], where <VALUE> could be 0 for unchecked, or not zero for checked.
The chk option makes the item to display a check box. If the <VALUE> is missing the
item still displays an un-checked check box.
rad=<VALUE>, where <VALUE> could be 0 for unchecked radio button or not zero to
for checked radio button. Use the grp option to define the group of radio where this
button should be associated, If no group of radio buttons is required, the grp could be
ignored.
grp=<VALUE>, defines the radio group. It should be used when you define more

groups of radio buttons. A group of radio buttons means that only one item could be
checked at one time. The rad option specifies that the item displays a radio button.
Use the grp option to define the group of radio where this button should be associated,
If no group of radio buttons is required, the grp could be ignored. The <VALUE> could
be any integer expression.

show=<VALUE>, where <VALUE> could be 0 for regular or not zero to specify
whether the checked item shows as selected
spchk=<VALUE>, where <VALUE> could be 0 for regular or not zero to specify
whether the item's sub menu is shown only if the item is checked.

group=<VALUE>, where <VALUE> could be a bit-or combination (+) of the following
values:

0 (exNoGroupPopup), No grouping is performed on the sub-menu, so the sub-
items are shown to a float popup,
1 (exGroupPopup), Groups and displays the sub-menu items on the current item,
arranged from left to right/horizontally
2 (exNoGroupPopupFrame), Prevents showing the frame around each grouping
item.
4 (exGroupPopupCenter), Shows the grouping popup aligned to the center of the
current item.
8 (exGroupPopupRight), Shows the grouping popup aligned to the right of the
current item.
16 (exGroupPopupEqualWidth), Shows the items that make the group of the same
width
32 (exGroupPopupEqualHeight), Shows the items that make the group of the
same height
64 (exGroupPopupFrameSolidBox), Shows a solid frame around the grouped
items
128 (exGroupPopupFrameThickBox), Shows a solid thick-frame around the
grouped items
256 (exGroupPopupVertical), Groups and displays the sub-menu items on the
current item, arranged from top to bottom/vertically

button=<VALUE>, where <VALUE> could be a bit-or combination (+) of the following
values.

0 (exShowAsButtonNone), No button is shown,
1 (exShowAsButton), Shows the item as a button
2 (exShowAsButtonAutoSize), Fits the button to cover the item's caption instead
showing on the entire item
17 (exShowAsSelectButton), Shows the item as a select button, which is
composed by two-fields, one indicates the default button, while the second field
specifies the drop down button that displays the items in the current's sub-menu
collection. The drop down button is shown to the right-side of the default button.
The item must have a submenu, else no drop down is displayed.
273 (exShowAsSelectButtonBottom), Shows the item as a select button, which is
composed by two-fields, one indicates the default button, while the second field
specifies the drop down button that displays the items in the current's sub-menu
collection. The drop down button is shown to the bottom-side of the default button.
The item must have a submenu, else no drop down is displayed.

ttp=<VALUE>, defines the item's tooltip. The <VALUE> could be any HTML string
expression. The item's tooltip is shown when the user hovers the item.

edittype=<VALUE>, associates an edit field to the item, where <VALUE> could be a
combination of one or more of the following values:

0 (exItemDisableEdit), No editor is assigned to the current item.
1 (exItemEditText), A text-box editor is assigned to the current item.
2 (exItemEditMask), A masked text-box editor is assigned to the current item.
3 (exItemEditSlider), A slider editor is assigned to the current item. This can be
combined with 1024.
4 (exItemEditProgress), A progress editor is assigned to the current item. This
can be combined with 1024.
5 (exItemEditScrollBar), A scrollbar editor is assigned to the current item. This
can be combined with 1024.

6 (exItemEditColor), A color editor is assigned to the current item.
7 (exItemEditFont), A font editor is assigned to the current item.
256 (exItemEditReadOnly), specifies that the item's editor is shown as disabled.
This value could be combined with one of the values from 0 to 7 or 512
512 (exItemEditSpin), A spin editor is assigned to the current item. This value
could be combined with one of the values from 0 to 7 or 256
1024 (exItemEditVertical), The editor is shown vertically rather than horizontally.
This value has effect for exItemEditSlider, exItemEditProgress or
exItemEditScrollBar

edit=<VALUE>, specifies the caption to be shown in the item's edit field, where
<VALUE> could be any string
mask=<VALUE>, specifies the mask to be applied on a masked editor. This option is
valid for exItemEditMask edit. Use the float option to allow masking floating point
numbers. See Masking for more information about <VALUE> of the mask option. See
Masking Float for more information about <VALUE> if the float option is used.
float=<VALUE>, Specifies whether the mask field masks a floating point number. This
option is valid for exItemEditMask edit. See Masking Float for more information about
<VALUE> of mask option, if the float option is used. The <VALUE> could be 0 for
standard masking field or not zero to specify that the field is masking a floating point.
border=<VALUE>, specifies the border to be shown on the item's edit field, where
<VALUE> could be one of the following:

0 (exEditBorderNone), No border is shown.
-1 (exEditBorderInset), shows an inset border
1 (exEditBorderSingle), shows a frame border

editwidth=<VALUE>, specifies the width to show the edit field inside the item, where
<VALUE> could be a integer expression. A negative value indicates that the field goes
to the end of the item
min=<VALUE>, defines the minimum value of the edit field. The <VALUE> could be any
integer expression, and specifies the minimum value for any slider, progress, scroll,
spin, or range editor.
max=<VALUE>, defines the maximum value of the edit field. The <VALUE> could be
any integer expression, and specifies the maximum value for any slider, progress,
scroll, spin, or range editor.
tick=<VALUE>, defines where the ticks of the slider edit appear. This option is valid for
exItemEditSlider edit. The <VALUE> could be one of the following values:

0 (exBottomRight), The ticks are displayed on the bottom/right side.
1 (exTopLeft), The ticks are displayed on the top/left side.
2 (exBoth), The ticks are displayed on the both side.
3 (exNoTicks), No ticks are displayed.

freq=<VALUE>, indicates the ratio of ticks on the slider edit. This option is valid for
exItemEditSlider edit. The <VALUE> could be a positive integer expression.
ticklabel=<VALUE>, indicates the HTML label to be displayed on slider's ticks. This
option is valid for exItemEditSlider edit. See Tick Label Expression for more information

about <VALUE> of the ticklabel option.
small=<VALUE>, indicates the amount by which the edit's position changes when the
user presses the arrow key (left, right, or button). This option is valid for
exItemEditSlider, exItemEditScrollBar edit. The <VALUE> could be a positive integer
expression.
large=<VALUE>, indicates the amount by which the edit's position changes when the
user presses the CTRL + arrow key (CTRL + left, CTRL + right). This option is valid
for exItemEditSlider, exItemEditScrollBar edit. The <VALUE> could be a positive
integer expression.
spin=<VALUE>, specifies the step to advance when user clicks the editor's spin.. This
option is valid for exItemEditSpin edit. The <VALUE> could be a positive integer
expression.
ettp=<VALUE>, specifies the HTML tooltip to be shown when the item's value is
changed. This option is valid for exItemEditSlider/exItemEditScrollBar edit. The
<VALUE> could be any string expression, including built-in HTML tags

arrow=<VALUE>. The <VALUE> could be 0 for hiding the arrow or not zero to show
the arrow. Indicates whether an item that has a sub-menu shows or hides its popup
arrow. If the <VALUE> is missing, the item shows no arrow.
local=<VALUE>. The <VALUE> could be 0 for standard popup or not zero to specify
that the field is a local popup. Specifies whether the item's popup is shown as local.
Clicking any item inside a local popup makes the popup itself to close including all its
descendent sub-menus, without closing any ascendant sub-menus.
close=<VALUE>, Specifies the way the hosting menu is closed when the user clicks the
item. If the close flag is missing, the <VALUE> is 3 (exCloseOnNonClickable), by
default. The <VALUE> could be one of the following values:

0 (exCloseOnClick), The popup menu is closing when the user clicks the item.
1 (exCloseOnDblClick), The popup menu is closing when the user double clicks
the item.
2 (exCloseOnClickOutside), The popup menu is closing when the user clicks
outside of the menu.
3 (exCloseOnNonClickable), The popup menu is closing when the user clicks a
non-clickable item (regular items). The non-clickable items is any item that's not a
separator, popup, disabled or check or radio items, clicking a check-box item will
makes the check box to change its state instead closing the context menu.

popupapp=<VALUE> indicates the visual appearance of the item's submenu when the
popup is shown. The <VALUE> could be a predefine value like shown bellow, or an
integer expression that refers an EBN object.

0 (NoBorder)
1 (FlatBorder)
2 (SunkenBorder)
3 (RaisedBorder)
4 (EtchedBorder)

5 (BumpBorder)
6 (ShadowBorder)
7 (InsetBorder)
8 (SingleBorder)

itemsbg=<VALUE>, specifies the items background color, where <VALUE> could be a
RGB expression (RGB(RR,GG,BB), where RR is the red value, the GG is the green
value, and the BB is the blue value), or an integer expression to that refers an EBN
object.
itemsbghot=<VALUE>, specifies the items background color, while the cursor hovers
the items, where <VALUE> could be a RGB expression (RGB(RR,GG,BB), where RR
is the red value, the GG is the green value, and the BB is the blue value), or an integer
expression to that refers an EBN object.
popupalign=<VALUE>, Indicates how the item's sub-menu is aligned relative to the
parent item. The popupalign has no effect for an item that displays a select- button.
The <VALUE> could be a combination of one or more of the following values:

0 (exShowPopupAlignNone), The popup menu is shown on top of the item,
aligned to the left (no down and right, so up and left)
1 (exShowPopupAlignDown), The popup menu is shown down. If missing, the
popup menu is shown up.
2 (exShowPopupAlignRight), The popup menu is shown aligned to the right, else
if missing, the popup menu is shown aligned to the left.

popupat=<VALUE>, specifies the identifier of the item where the current item's
submenu/popup is displayed. The <VALUE> could be any integer expression. If there is
no identifier with giving value, the option has no effect.
popupoffset=<VALUE>, specifies the offset (horizontal,vertical) to display the item's
submenu/popup relative to its default position.
itemspad=<VALUE>, specifies the padding (space between the menu border and the
item content) to display the items. The <VALUE> is a list of coordinates such as
left,top,right,bottom
visible=<VALUE>, specifies the maximum number of visible items at one time, where
the <VALUE> could be any integer expression.
tab=<VALUE>, specifies the identifier of the item/tab where the current group-popup is
shown instead. The <VALUE> could be any integer expression. If there is no identifier
with giving value, the option has no effect.
itemsbgext=<VALUE>, indicates additional colors, text, images that can be displayed
on the items background using the EBN String Format. The <VALUE> should be in EBN
String Format. For instance, [itemsbgext=bottom[2],bottom[16,text=`</fgcolor><fgcolor
6D6AAA>Views</fgcolor><fgcolor A0A0A0>`,align=0x21]], shows the Views aligned
to the bottom, with a different foreground color.

Masking, (mask option)

For instance, the following input-mask (ext-phone)

!(999) 000 0000;1;;select=1,empty,overtype,warning=invalid character,invalid=The value
you entered isn't appropriate for the input mask '<%mask%>' specified for this
field."

indicates the following:

The pattern should contain 3 optional digits 999, and 7 required digits 000 0000,
aligned to the right, !.
The second part of the input mask indicates 1, which means that all literals are included
when the user leaves the field.
The entire field is selected when it receives the focus, select=1
The field supports empty value, so the user can leave the field with no content
The field enters in overtype mode, and insert-type mode is not allowed when user
pressed the Insert key
If the user enters any invalid character, a warning tooltip with the message "invalid
character" is displayed.
If the user tries to leave the field, while the field is not validated (all 7 required digits
completed), the invalid tooltip is shown with the message "The value you entered isn't
appropriate for the input mask '<%mask%>' specified for this field." The
<%mask%> is replaced with the first part of the input mask !(999) 000 0000

The four parts of an input mask, or the Mask property supports up to four parts, separated
by a semicolon (;). For instance, "`Time: `00:00:00;;0;overtype,warning=<fgcolor
FF0000>invalid character,beep", indicates the pattern "00:00" with the prefix Time:, the
masking character being the 0, instead _, the field enters in over-type mode, insert-type
mode is not allowed, and the field beeps and displays a tooltip in red with the message
invalid character when the user enters an invalid character.

Input masks are made up one mandatory part and three optional parts, and each part is
separated by a semicolon (;). If a part should use the semicolon (;) it must uses the \;
instead

The purpose of each part is as follows:

1. The first part (pattern) is mandatory. It includes the mask characters or string (series
of characters) along with placeholders and literal data such as, parentheses, periods,
and hyphens.

The following table lists the placeholder and literal characters for an input mask and
explains how it controls data entry:

#, a digit, +, - or space (entry not required).
0, a digit (0 through 9, entry required; plus [+] and minus [-] signs not allowed).
9, a digit or space (entry not required; plus and minus signs not allowed).
x, a lower case hexa character, [0-9],[a-f] (entry required)
X, an upper case hexa character, [0-9],[A-F] (entry required)
A, any letter, digit (entry required).
a, any letter, digit or space (entry optional).
L, any letter (entry require).
?, any letter or space (entry optional).
&, any character or a space (entry required).
C, any character or a space (entry optional).
>, any letter, converted to uppercase (entry required).
<, any letter, converted to lowercase (entry required).
*, any characters combinations
{ min,max } (Range), indicates a number range. The syntax {min,max} (Range),
masks a number in the giving range. The min and max values should be positive
integers. For instance the mask {0,255} masks any number between 0 and 255.
[...] (Alternative), masks any characters that are contained in the [] brackets. For
instance, the [abcdA-D] mask any character: a,b,c,d,A,B,C,D
\, indicates the escape character
ť, (ALT + 175) causes the characters that follow to be converted to uppercase,
until Ť(ALT + 174) is found.
Ť, (ALT + 174) causes the characters that follow to be converted to lowercase,
until ť(ALT + 175) is found.
!, causes the input mask to fill from right to left instead of from left to right.

Characters enclosed in double quotation ("" or ``) marks will be displayed literally. If
this part should display/use the semicolon (;) character is should be included between
double quotation ("" or ``) characters or as \; (escape).

2. The second part is optional and refers to the embedded mask characters and how they
are stored within the field. If the second part is set to 0 (default,
exClipModeLiteralsNone), all characters are stored with the data, and if it is set to 1
(exClipModeLiteralsInclude), the literals are stored, not including the
masking/placeholder characters, if 2 (exClipModeLiteralsExclude), just typed
characters are stored, if 3(exClipModeLiteralsEscape), optional, required, editable and
escaped entities are included. No double quoted text is included.

3. The third part of the input mask is also optional and indicates a single character or
space that is used as a placeholder. By default, the field uses the underscore (_). If
you want to use another character, enter it in the third part of your mask. Only the first

character is considered. If this part should display/use the semicolon (;) character is
should be \; (escape)

4. The forth part of the input, indicates a list of options that can be applied to input mask,
separated by comma(,) character.

The known options for the forth part are:

float, indicates that the field is edited as a decimal number, integer. The first part
of the input mask specifies the pattern to be used for grouping and decimal
separators, and - if negative numbers are supported. If the first part is empty, the
float is formatted as indicated by current regional settings. For instance,
"##;;;float" specifies a 2 digit number in float format. The grouping, decimal,
negative and digits options are valid if the float option is present.

grouping=value, Character used to separate groups of digits to the left of the
decimal. Valid only if float is present. For instance ";;;float,grouping=" indicates
that no grouping is applied to the decimal number (LOCALE_STHOUSAND)
decimal=value, Character used for the decimal separator. Valid only if float is
present. For instance ";;;float,grouping= ,decimal=\," indicates that the decimal
number uses the space for grouping digits to the left, while for decimal separator
the comma character is used (LOCALE_SDECIMAL)
negative=value, indicates whether the decimal number supports negative
numbers. The value should be 0 or 1. 1 means negative numbers are allowed.
Else 0 or missing, the negative numbers are not accepted. Valid only if float is
present.
digits=value, indicates the max number of fractional digits placed after the
decimal separator. Valid only if float is present. For instance, ";;;float,digits=4"
indicates a max 4 digits after decimal separator (LOCALE_IDIGITS)
password[=value], displays a black circle for any shown character. For instance,
";;;password", specifies that the field to be displayed as a password. If the value
parameter is present, the first character in the value indicates the password
character to be used. By default, the * password character is used for non-
TrueType fonts, else the black circle character is used. For instance,
";;;password=*", specifies that the field to be displayed as a password, and use
the * for password character. If the value parameter is missing, the default
password character is used.
right, aligns the characters to the right. For instance, "(999) 999-9999;;;right"
displays and masks a telephone number aligned to the right. readonly, the editor
is locked, user can not update the content, the caret is available, so user can
copy the text, excepts the password fields.

inserttype, indicates that the field enters in insert-type mode, if this is the first
option found. If the forth part includes also the overtype option, it indicates that
the user can toggle the insert/over-type mode using the Insert key. For instance,
the "##:##;;0;inserttype,overtype", indicates that the field enter in insert-type
mode, and over-type mode is allowed. The "##:##;;0;inserttype", indicates that
the field enter in insert-type mode, and over-type mode is not allowed.
overtype, indicates that the field enters in over-type mode, if this is the first
option found. If the forth part includes also the inserttype option, it indicates that
the user can toggle the insert/over-type mode using the Insert key. For instance,
the "##:##;;0;overtype,inserttype", indicates that the field enter in over-type
mode, and insert-type mode is allowed. The "##:##;;0;overtype", indicates that
the field enter in over-type mode, and insert-type mode is not allowed.
nocontext, indicates that the field provides no context menu when user right
clicks the field. For instance, ";;;password,nocontext" displays a password field,
where the user can not invoke the default context menu, usually when a right
click occurs.
beep, indicates whether a beep is played once the user enters an invalid
character. For instance, "00:00;;;beep" plays a beep once the user types in
invalid character, in this case any character that's not a digit.
warning=value, indicates the html message to be shown when the user enters
an invalid character. For instance, "00:00:00;;;warning=invalid character"
displays a "invalid character" tooltip once the user types in invalid character, in
this case any character that's not a digit. The <%mask%> keyword in value,
substitute the current mask of the field, while the <%value%> keyword
substitutes the current value (including the literals). If this option should
display/use the semicolon (;) character is should be \; (escape)
invalid=value, indicates the html message to be displayed when the user enters
an inappropriate value for the field. If the value is missing or empty, the option
has no effect, so no validation is performed. If the value is a not-empty value, the
validation is performed. If the value is single space, no message is displayed
and the field is keep opened while the value is inappropriate. For instance, "!
(999) 000 0000;;;invalid=The value you entered isn't appropriate for the input
mask '<%mask%>' specified for this field." displays the "The value you
entered isn't appropriate for the input mask '...' specified for this field." tooltip
once the user leaves the field and it is not-valid (for instance, the field includes
entities required and uncompleted). The <%mask%> keyword in value,
substitute the current mask of the field, while the <%value%> keyword
substitutes the current value (including the literals). If this option should
display/use the semicolon (;) character is should be \; (escape). This option can
be combined with empty, validateas.
validateas=value, specifies the additional validation is done for the current field.

If value is missing or 0 (exValidateAsNone), the option has no effect. The
validateas option has effect only if the invalid option specifies a not-empty value.
Currently, the value can be 1 (exValidateAsDate), which indicates that the field is
validated as a date. For instance, having the mask
"!00/00/0000;;0;empty,validateas=1,invalid=Invalid date!,warning=Invalid
character!,select=4,overtype", indicates that the field is validate as date (
validateas=1).
empty, indicates whether the field supports empty values. This option can be
used with invalid flag, which indicates that the user can leave the field if it is
empty. If empty flag is present, the field displays nothing if no entity is completed
(empty). Once the user starts typing characters the current mask is displayed.
For instance, having the mask "!(999) 000
0000;;;empty,select=4,overtype,invalid=invalid phone number,beep", it specifies
an empty or valid phone to be entered.
select=value, indicates what to select from the field when it got the focus. The
value could be 0 (nothing, exSelectNoGotFocus), 1 (select all,
exSelectAllGotFocus), 2 (select the first empty and editable entity of the field,
exSelectEditableGotFocus), 3 (moves the cursor to the beginning of the first
empty and editable entity of the field, exMoveEditableGotFocus), 4 (select the
first empty, required and editable entity of the field,
exSelectRequiredEditableGotFocus), 5 (moves the cursor to the beginning of
the first empty, required and editable entity of the field,
exMoveRequiredEditableGotFocus). For modes 2 and 4 the entire field is
selected if no matching entity is found. For instance, "`Time:`XX:XX;;;select=1"
indicates that the entire field (including the Time: prefix) is selected once it get
the focus. The "`Time:`XX:XX;;;select=3", moves the cursor to first X, if empty,
the second if empty, and so on

Experimental:
multiline, specifies that the field supports multiple lines.
rich, specifies that the field displays a rich type editor. By default, the standard edit field is
shown
disabled, shows as disabled the field.

Masking-Float, (mask, float option)

The [mask=<VALUE>] property may indicate the followings, if the [float=-1] is present

negative number: if the first character in the mask is - (minus) the control supports
negative numbers. Pressing the - key will toggle the sign of the number. The + sign is
never displayed.
decimal symbol: the last character that's different than # (digit), or 0 (zero) indicates

the decimal symbol. If it is not present the control mask a floating point number without
decimals.
thousand symbol: the thousand symbol is the last character that's not a # (digit), 0
(zero) or it is not the decimal symbol as explained earlier, if present.
the maximum number of decimals in the number (the # or 0 character after the
decimal symbol)
the maximum number of digits in the integer part (the number of # or 0 character
before decimal symbol)
the 0 character indicates a leading-zero. The count of 0 (zero) characters before
decimal character indicates the leading-zero for integer part of the control, while the
count of 0 (zero) characters after the decimal separator indicates the leading-zero for
decimal part of the control. For instance, the Mask on "-###,###,##0.00", while the
control's Text property is 1, the control displays 1.00, if 1.1 if displays 1.10, and if
empty, the 0.00 is displayed.

If the <VALUE> property is empty, the control takes the settings for the regional options
like: Decimal Symbol , No. of digits after decimal, Digit grouping symbol.

Here are few samples:

The <VALUE>"-###.###.##0,00" filter floating point numbers a number for German settings
("," is the decimal sign, "." is the thousands separator). This format displays leading-zeros.

The <VALUE>"-###.###.###,##" filter floating point numbers a number for German settings
("," is the decimal sign, "." is the thousands separator)

The <VALUE>"-###,###,###.##" filter floating point numbers a number for English settings (
"." is the decimal sign, "," is the thousands separator)

The <VALUE>"####" indicates a max-4 digit number (positive) without a decimal symbol
and without digit grouping

The <VALUE>"-##.#" filters a floating point number from the -99.9 to 99.9 ("." is the
decimal sign, no thousands separator)

The <VALUE>"#,###.##" filters a floating point number from the 0 to 9,999.99 with digit
grouping ("." is the decimal sign, "," is the thousands separator).

Tick Label Expression, (ticklabel option)

For instance:

"value", shows the values for each tick.
" (value=current ? '<fgcolor=FF0000>' : '') + value", shows the current
slider's position with a different color and font.
"value = current ? value : ''", shows the value for the current tick only.
"(value = current ? '' : '') + (value array 'ab bc cd de ef fg gh hi ij jk kl'
split ' ')" displays different captions for slider's values.

The The <VALUE> of [ticklabel] option is a formatted expression which result may include
the HTML tags.

The The <VALUE> of [ticklabel] option indicates a formatting expression that may use the
following predefined keywords:

value gets the slider's position to be displayed
current gets the current slider's value.
vmin gets the slider's minimum value.
vmax gets the slider's maximum value.
smin gets the slider's selection minimum value.
smax gets the slider's selection maximum value.

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)

>= (greater or equal operator)
> (greater operator)

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for is

"expression ? true_part : false_part"

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the "%0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found')" returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

"expression array (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D')" is equivalent with "month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D')".

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

"expression in (c1,c2,c3,...cn)"

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the "value in (11,22,33,44,13)" is equivalent
with "(expression = 11) or (expression = 22) or (expression = 33) or (expression =
44) or (expression = 13)". The in operator is not a time consuming as the equivalent or
version is, so when you have large number of constant elements it is recommended
using the in operator. Shortly, if the collection of elements has 1000 elements the in
operator could take up to 8 operations in order to find if an element fits the set, else if
the or statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

"expression switch (default,c1,c2,c3,...,cn)"

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the "%0 switch ('not found',1,4,7,9,11)" gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

"expression case ([default : default_expression ;] c1 : expression1 ; c2 :
expression2 ; c3 : expression3 ;....)"

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the "date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1)" indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: "date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8)" statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions.

Obviously, the priority of the operations inside the expression is determined by ()
parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%0) = 8
specifies the cells that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string
dbl (unary operator) converts the expression to a number
date (unary operator) converts the expression to a date, based on your regional
settings
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS.

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument

abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string
lower (unary operator) returns a string expression in lowercase letters
upper (unary operator) returns a string expression in uppercase letters
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names
ltrim (unary operator) removes spaces on the left side of a string
rtrim (unary operator) removes spaces on the right side of a string
trim (unary operator) removes spaces on both sides of a string
startwith (binary operator) specifies whether a string starts with specified string
endwith (binary operator) specifies whether a string ends with specified string
contains (binary operator) specifies whether a string contains another specified string
left (binary operator) retrieves the left part of the string
right (binary operator) retrieves the right part of the string
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on)
a count b (binary operator) retrieves the number of occurrences of the b in a
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result.
a split b, splits the a using the separator b, and returns an array. For instance, the
"weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' '" gets the weekday as
string. This operator can be used with the array

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel.
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance the timeF(1:23 PM) returns "13:23:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel.
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance the shortdateF(December 31, 1971 11:00 AM)
returns "12/31/1971".
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format.
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel.
year (unary operator) retrieves the year of the date (100,...,9999)
month (unary operator) retrieves the month of the date (1, 2,...,12)
day (unary operator) retrieves the day of the date (1, 2,...,31)
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365)

weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday)
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23)
min (unary operator) retrieves the minute of the date (0, 1, ..., 59)
sec (unary operator) retrieves the second of the date (0, 1, ..., 59)

The The <VALUE> of [ticklabel] option can display labels using the following built-in HTML
tags:

 displays the text in bold.
<i></i> displays the text in italics.
<u></u> underlines the text.
<s></s> Strike-through text
 displays portions of text with a different font and/or different
size. For instance, the bit draws the bit text using the Tahoma
font, on size 12 pt. If the name of the font is missing, and instead size is present, the
current font is used with a different size. For instance, bit displays the
bit text using the current font, but with a different size.
<fgcolor=RRGGBB></fgcolor> displays text with a specified foreground color. The
RR, GG or BB should be hexa values and indicates red, green and blue values.
<bgcolor=RRGGBB></bgcolor> displays text with a specified background color. The
RR, GG or BB should be hexa values and indicates red, green and blue values.

 a forced line-break
<solidline> The next line shows a solid-line on top/bottom side. If has no effect for a
single line caption.
<dotline> The next line shows a dot-line on top/bottom side. If has no effect for a
single line caption.
<upline> The next line shows a solid/dot-line on top side. If has no effect for a single
line caption.
<r> Right aligns the text
<c> Centers the text
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the

picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number
(the character with specified code), For instance, the € displays the EUR
character, in UNICODE configuration. The & ampersand is only recognized as markup
when it is followed by a known letter or a # character and a digit. For instance if you
want to display bold in HTML caption you can use bold

EBN String Format, (itemsbgext option)

The EBN String Format syntax in BNF notation is defined like follows:

<EBN> ::= <elements> | <root> "(" [<elements>] ")"
<elements> ::= <element> ["," <elements>]
<root> ::= "root" [<attributes>] | [<attributes>]
<element> ::= <anchor> [<attributes>] ["(" [<elements>] ")"]
<anchor> ::= "none" | "left" | "right" | "client" | "top" | "bottom"
<attributes> ::= "[" [<client> ","] <attribute> ["," <attributes>] "]"
<client> ::= <expression> | <expression> "," <expression> "," <expression> ","
<expression>
<expression> ::= <number> | <number> "%"
<attribute> ::= <backcolor> | <text> | <wordwrap> | <align> | <pattern> |
<patterncolor> | <frame> | <framethick> | <data> | <others>
<equal> ::= "="
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<decimal> ::= <digit><decimal>
<hexadigit> ::= <digit> | "A" | "B" "C" | "D" | "E" "F"
<hexa> ::= <hexadigit><hexa>
<number> ::= <decimal> | "0x" <hexa>
<color> ::= <rgbcolor> | number
<rgbcolor> ::= "RGB" "(" <number> "," <number> "," <number> ")"
<string> ::= "`" <characters> "`" | "'" <characters> "'" | " <characters> "
<characters> ::= <char>|<characters>
<char> ::= <any_character_excepts_null>
<backcolor> ::= "back" <equal> <color>
<text> ::= "text" <equal> <string>
<align> ::= "align" <equal> <number>
<pattern> ::= "pattern" <equal> <number>

<patterncolor> ::= "patterncolor" <equal> <color>
<frame> ::= "frame" <equal> <color>
<data> ::= "data" <equal> <number> | <string>
<framethick> ::= "framethick"
<wordwrap> ::= "wordwrap"

Others like: pic, stretch, hstretch, vstretch, transparent, from, to are reserved for future
use only.

Here's a few easy samples:

"[pattern=6]", shows the BDiagonal pattern on the object's background.

"[frame=RGB(255,0,0),framethick]", draws a red thick-border around the object.

"[frame=RGB(255,0,0),framethick,pattern=6,patterncolor=RGB(255,0,0)]", draws a
red thick-border around the object, with a patter inside.

"[[patterncolor=RGB(255,0,0)]
(none[(4,4,100%-8,100%-8),pattern=0x006,patterncolor=RGB(255,0,0),frame=RGB(255,0,0),framethick])]",
draws a red thick-border around the object, with a patter inside, with a 4-pixels wide
padding:

"top[4,back=RGB(0,0,255)]", draws a blue line on the top side of the object's

background, of 4-pixels wide.

"[text=`caption`,align=0x22]", shows the caption string aligned to the bottom-right side
of the object's background.

"[text=`flag`,align=0x11]" shows the flag picture and the sweden string
aligned to the bottom side of the object.

"left[10,back=RGB(255,0,0)]", draws a red line on the left side of the object's
background, of 10-pixels wide.

"bottom[50%,pattern=6,frame]", shows the BDiagonal pattern with a border arround on
the lower-half part of the object's background.

"root[text=`caption 2`,align=0x22](client[text=`caption 1`,align=0x20])", shows
the caption 1 aligned to the bottom-left side, and the caption 2 to the bottom-right side

property Items.VisibleItemsCount as Long
Specifies the maximum number of visible items at one time.

Type Description

Long A long expression that indicates the maximum number of
visible items into the popup menu.

By default, the VisibleItemCount property is 12. The control adds scroll buttons to a popup
menu, if the menu contains more items than VisibleItemsCount property. Use the Visible
property to specify whether an item is visible or hidden. Use the Add method to add new
items to the control. The VisibleItemsCount property specifies the number of items being
visible without scroll option.

OleEvent object

The OleEvent object holds information about an event fired by an ActiveX control hosted by
in item that was created using the Add(,SubControl) method.

Name Description
CountParam Retrieves the count of the OLE event's arguments.

ID Retrieves a long expression that specifies the identifier of
the event.

Name Retrieves the original name of the fired event.

Param Retrieves an OleEventParam object given either the index
of the parameter, or its name.

ToString Retrieves information about the event.

property OleEvent.CountParam as Long

Retrieves the count of the OLE event's arguments.

Type Description
Long A long value that indicates the count of the arguments.

Use the CountParam property to count the parameters of an OLE event. Use the Name
property to get the parameter name. Use the Param property to get the event's parameter.
Use the Value property to specify the value of the parameter.

property OleEvent.ID as Long
Retrieves a long expression that specifies the identifier of the event.

Type Description

Long A Long expression that defines the identifier of the OLE
event.

The identifier of the event could be used to identify a specified OLE event. Use the Name
property of the OLE Event to get the name of the OLE Event. Use the ToString property to
display information about an OLE event. The ToString property displays the idenfier of the
event after the name of the event in two [] brackets. For instance, the ToString property
gets the "KeyDown[-602](KeyCode/Short* = 9,Shift/Short = 0)" when TAB key is pressed,
so the identifier of the KeyDown event being fired by the inside User editor is -602.

property OleEvent.Name as String

Retrieves the original name of the fired event.

Type Description
String A string expression that indicates the event's name.

Use the Name property to get the name of the event. Use the ID property to specify a
specified even by its identifier. Use the ToString property to display information about fired
event such us name, parameters, types and values. Use the CountParam property to count
the parameters of an OLE event. Use the Param property to get the event's parameter.
Use the Value property to specify the value of the parameter.

property OleEvent.Param (item as Variant) as OleEventParam

Retrieves an OleEventParam object given either the index of the parameter, or its name.

Type Description

item as Variant A long expression that indicates the argument's index or a
a string expression that indicates the argument's name.

OleEventParam An OleEventParam object that holds information about a
parameter of an event.

Use the CountParam property to count the parameters of an OLE event. Use the Name
property to get the parameter name. Use the Param property to get the event's parameter.
Use the Value property to specify the value of the parameter.

property OleEvent.ToString as String
Retrieves information about the event.

Type Description

String

A String expression that shows information about an OLE
event. The ToString property gets the information as
follows: Name[ID] (Param/Type = Value, Param/Type =
Value, ...). For instance, "KeyDown[-602]
(KeyCode/Short* = 9,Shift/Short = 0)" indicates that the
KeyDown event is fired, with the identifier -602 with two
parameters KeyCode as a reference to a short type with
the value 8, and Shift parameter as Short type with the
value 0.

Use the ToString property to display information about fired event such us name,
parameters, types and values. Using the ToString property you can quickly identifies the
event that you should handle in your application. Use the ID property to specify a specified
even by its identifier. Use the Name property to get the name of the event. Use the Param
property to access a specified parameter using its index or its name.

Displaying ToString property during the OLE Event event may show data like follows:

MouseMove[-606](Button/Short = 0,Shift/Short = 0,X/Long = 46,Y/Long = 15)
MouseDown[-605](Button/Short = 1,Shift/Short = 0,X/Long = 46,Y/Long = 15)
KeyDown[-602](KeyCode/Short* = 83,Shift/Short = 0)
KeyPress[-603](KeyAscii/Short* = 115)
Change[2]()
KeyUp[-604](KeyCode/Short* = 83,Shift/Short = 0)
MouseUp[-607](Button/Short = 1,Shift/Short = 0,X/Long = 46,Y/Long = 15)
MouseMove[-606](Button/Short = 0,Shift/Short = 0,X/Long = 46,Y/Long = 15)

OleEventParam object

The OleEventParam holds the name and the value for an event's argument.

Name Description
Name Retrieves the name of the event's parameter.
Value Retrieves the value of the event's parameter.

property OleEventParam.Name as String

Retrieves the name of the event's parameter.

Type Description

String A string expression that indicates the name of the event's
parameter.

Use the CountParam property to count the parameters of an OLE event. Use the Name
property to get the parameter name. Use the Param property to get the event's parameter.
Use the Value property to specify the value of the parameter.

property OleEventParam.Value as Variant

Specifies the value of the event's parameter.

Type Description

Variant A variant value that indicates the value of the event's
parameter.

Use the CountParam property to count the parameters of an OLE event. Use the Name
property to get the parameter name. Use the Param property to get the event's parameter.
Use the Value property to specify the value of the parameter.

ExContextMenu events
The Check property specifies whether the item displays a check-box inside the item. The
Radio property specifies whether the item displays a radio-button inside the item. The
AllowEdit property specifies whether the item displays a text-box inside. The
eXContextMenu component supports the following events:

Name Description
CheckItem Occurs when the user checks the item.
EditChange Occurs when the user alters the item's text box field.
Event Notifies the application once the control fires an event.
OleEvent Occurs when an inside ActiveX control fires an event.
SelectItem Occurs when the user selects the item.
UncheckItem Occurs when the user unchecks the item.

C#

VB

private void CheckItem(object sender,exontrol.EXCONTEXTMENULib.item Itm)
{
}

Private Sub CheckItem(ByVal sender As System.Object,ByVal Itm As
exontrol.EXCONTEXTMENULib.item) Handles CheckItem
End Sub

C#

C++

C++
Builder

private void CheckItem(object sender,
AxEXCONTEXTMENULib._IExContextMenuEvents_CheckItemEvent e)
{
}

void OnCheckItem(LPDISPATCH Itm)
{
}

void __fastcall CheckItem(TObject *Sender,Excontextmenulib_tlb::IItem *Itm)
{
}

event CheckItem (Itm as Item)
Occurs when the user checks the item.

Type Description
Itm as Item An Item object being checked.

The CheckItem event notifies your application once the user checks the item (the item
displays a check-box or a radio-button). You can use this event to update your object once
the user checks an item. The user can check or uncheck the item by clicking or pressing the
SPACE key while the item is selected/highlighted. The UncheckItem event notifies your
application once an item is unchecked. The Check property indicates whether the Item has
associated a check box. The Checked property specifies whether the item is checked or
unchecked. Use the Radio property to display a radio-button on the item. In C++ or VFP,
you can use the Notifier to get notified through the WM_COMMAND message.

Syntax for CheckItem event, /NET version, on:

Syntax for CheckItem event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure CheckItem(ASender: TObject; Itm : IItem);
begin
end;

procedure CheckItem(sender: System.Object; e:
AxEXCONTEXTMENULib._IExContextMenuEvents_CheckItemEvent);
begin
end;

begin event CheckItem(oleobject Itm)
end event CheckItem

Private Sub CheckItem(ByVal sender As System.Object, ByVal e As
AxEXCONTEXTMENULib._IExContextMenuEvents_CheckItemEvent) Handles
CheckItem
End Sub

Private Sub CheckItem(ByVal Itm As EXCONTEXTMENULibCtl.IItem)
End Sub

Private Sub CheckItem(ByVal Itm As Object)
End Sub

LPARAMETERS Itm

PROCEDURE OnCheckItem(oExContextMenu,Itm)
RETURN

Java…

VBSc…

<SCRIPT EVENT="CheckItem(Itm)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function CheckItem(Itm)
End Function

Syntax for CheckItem event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComCheckItem Variant llItm
 Forward Send OnComCheckItem llItm
End_Procedure

METHOD OCX_CheckItem(Itm) CLASS MainDialog
RETURN NIL

void onEvent_CheckItem(COM _Itm)
{
}

function CheckItem as v (Itm as OLE::Exontrol.ContextMenu.1::IItem)
end function

function nativeObject_CheckItem(Itm)
return

C#

VB

private void EditChange(object sender,exontrol.EXCONTEXTMENULib.item Itm)
{
}

Private Sub EditChange(ByVal sender As System.Object,ByVal Itm As
exontrol.EXCONTEXTMENULib.item) Handles EditChange
End Sub

C#

C++

C++
Builder

Delphi

private void EditChange(object sender,
AxEXCONTEXTMENULib._IExContextMenuEvents_EditChangeEvent e)
{
}

void OnEditChange(LPDISPATCH Itm)
{
}

void __fastcall EditChange(TObject *Sender,Excontextmenulib_tlb::IItem *Itm)
{
}

procedure EditChange(ASender: TObject; Itm : IItem);

event EditChange (Itm as Item)
Occurs when the user alters the item's text box field.

Type Description
Itm as Item An Item object that contains a text-box inside.

The EditChange event notifies your application once the user alters the item's text-box
caption. The EditCaption property specifies the caption of the text-box being altered. Use
the AllowEdit property to add a text-box inside the item, so the user can type any
characters inside. The EditWidth property specifies the width of the text-box inside the item.
The EditBorder property specifies the border to be shown around the item's text box. You
can use the Get method to collect all items of Edit type. In C++ or VFP, you can use the
Notifier to get notified through the WM_COMMAND message.

Syntax for EditChange event, /NET version, on:

Syntax for EditChange event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin
end;

procedure EditChange(sender: System.Object; e:
AxEXCONTEXTMENULib._IExContextMenuEvents_EditChangeEvent);
begin
end;

begin event EditChange(oleobject Itm)
end event EditChange

Private Sub EditChange(ByVal sender As System.Object, ByVal e As
AxEXCONTEXTMENULib._IExContextMenuEvents_EditChangeEvent) Handles
EditChange
End Sub

Private Sub EditChange(ByVal Itm As EXCONTEXTMENULibCtl.IItem)
End Sub

Private Sub EditChange(ByVal Itm As Object)
End Sub

LPARAMETERS Itm

PROCEDURE OnEditChange(oExContextMenu,Itm)
RETURN

Java…

VBSc…

<SCRIPT EVENT="EditChange(Itm)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function EditChange(Itm)
End Function
</SCRIPT>

Syntax for EditChange event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComEditChange Variant llItm
 Forward Send OnComEditChange llItm
End_Procedure

METHOD OCX_EditChange(Itm) CLASS MainDialog
RETURN NIL

void onEvent_EditChange(COM _Itm)
{
}

function EditChange as v (Itm as OLE::Exontrol.ContextMenu.1::IItem)
end function

function nativeObject_EditChange(Itm)
return

event Event (EventID as Long)
Notifies the application once the control fires an event.

Type Description

EventID as Long

A Long expression that specifies the identifier of the event.
Use the EventParam(-2) to display entire information
about fired event (such as name, identifier, and properties
).

The Event notification occurs ANY time the control fires an event.

This is useful for X++ language, which does not support event with parameters passed by
reference.

In X++ the "Error executing code: FormActiveXControl (data source), method ... called with
invalid parameters" occurs when handling events that have parameters passed by
reference. Passed by reference, means that in the event handler, you can change the value
for that parameter, and so the control will takes the new value, and use it. The X++ is NOT
able to handle properly events with parameters by reference, so we have the solution.

The solution is using and handling the Event notification and EventParam method., instead
handling the event that gives the "invalid parameters" error executing code.

Let's presume that we need to handle the BarParentChange event to change the _Cancel
parameter from false to true, which fires the "Error executing code: FormActiveXControl
(data source), method onEvent_BarParentChange called with invalid parameters." We need
to know the identifier of the BarParentChange event (each event has an unique identifier
and it is static, defined in the control's type library). If you are not familiar with what a type
library means just handle the Event of the control as follows:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 print exgantt1.EventParam(-2).toString();
}

This code allows you to display the information for each event of the control being fired as
in the list bellow:

"MouseMove/-606(1 , 0 , 145 , 36)" VT_BSTR
"BarParentChange/125(192998632 , 'B' , 192999592 , =false)" VT_BSTR
"BeforeDrawPart/54(2 , -1962866148 , =0 , =0 , =0 , =0 , =false)" VT_BSTR

"AfterDrawPart/55(2 , -1962866148 , 0 , 0 , 0 , 0)" VT_BSTR
"MouseMove/-606(1 , 0 , 145 , 35)" VT_BSTR

Each line indicates an event, and the following information is provided: the name of the
event, its identifier, and the list of parameters being passed to the event. The parameters
that starts with = character, indicates a parameter by reference, in other words one that
can changed during the event handler.

Now, we can see that the identifier for the BarParentChange event is 125, so we need to
handle the Event event as:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 ;
 if (_EventID == 125) /*event BarParentChange (Item as HITEM, Key as Variant, NewItem
as HITEM, Cancel as Boolean) */
 exgantt1.EventParam(3 /*Cancel*/, COMVariant::createFromBoolean(true));
}

The code checks if the BarParentChange (_EventID == 125) event is fired, and changes
the third parameter of the event to true. The definition for BarParentChange event can be
consulted in the control's documentation or in the ActiveX explorer. So, anytime you need to
access the original parameters for the event you should use the EventParam method that
allows you to get or set a parameter. If the parameter is not passed by reference, you can
not change the parameter's value.

Now, let's add some code to see a complex sample, so let's say that we need to prevent
moving the bar from an item to any disabled item. So, we need to specify the Cancel
parameter as not Items.EnableItem(NewItem), in other words cancels if the new parent is
disabled. Shortly the code will be:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 ;
 if (_EventID == 125) /*event BarParentChange (Item as HITEM, Key as Variant, NewItem
as HITEM, Cancel as Boolean) */
 if (!exgantt1.Items().EnableItem(exgantt1.EventParam(2 /*NewItem*/)))
 exgantt1.EventParam(3 /*Cancel*/, COMVariant::createFromBoolean(true));
}

C#

VB

private void Event(object sender,int EventID)
{
}

Private Sub Event(ByVal sender As System.Object,ByVal EventID As Integer)
Handles Event
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

private void Event(object sender,
AxEXCONTEXTMENULib._IExContextMenuEvents_EventEvent e)
{
}

void OnEvent(long EventID)
{
}

void __fastcall Event(TObject *Sender,long EventID)
{
}

procedure Event(ASender: TObject; EventID : Integer);
begin
end;

procedure Event(sender: System.Object; e:
AxEXCONTEXTMENULib._IExContextMenuEvents_EventEvent);
begin
end;

begin event Event(long EventID)
end event Event

In conclusion, anytime the X++ fires the "invalid parameters." while handling an event, you
can use and handle the Event notification and EventParam methods of the control

Syntax for Event event, /NET version, on:

Syntax for Event event, /COM version, on:

VB.NET

VB6

VBA

VFP

Xbas…

Private Sub Event(ByVal sender As System.Object, ByVal e As
AxEXCONTEXTMENULib._IExContextMenuEvents_EventEvent) Handles Event
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

LPARAMETERS EventID

PROCEDURE OnEvent(oExContextMenu,EventID)
RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="Event(EventID)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Event(EventID)
End Function
</SCRIPT>

Procedure OnComEvent Integer llEventID
 Forward Send OnComEvent llEventID
End_Procedure

METHOD OCX_Event(EventID) CLASS MainDialog
RETURN NIL

void onEvent_Event(int _EventID)
{
}

Syntax for Event event, /COM version (others), on:

XBasic

dBASE

function Event as v (EventID as N)
end function

function nativeObject_Event(EventID)
return

event OleEvent (Itm as Item, Ev as OleEvent)
Occurs when an inside ActiveX control fires an event.

Type Description
Itm as Item An Item object that contains the sub-control.

Ev as OleEvent An OleEvent object that holds information about the fired
event.

The eXContextMenu component may include sub-menus that displays any ActiveX / NET
Component. The inside COM/ActiveX control fires its events through the ExContextMenu's
OleEvent event. Use the ItemTypeEnum.SubControl to add an item that hosts an ActiveX
inside. Use the SubControl property to access the properties to create the inside ActiveX
control.

The following screen shot displays an item with an ExSlider inside:

3

The following screen shot displays an item with an ExCalendar inside:

https://exontrol.com/exslider.jsp
https://exontrol.com/excalendar.jsp

C#

VB

private void OleEvent(object sender,exontrol.EXCONTEXTMENULib.item
Itm,exontrol.EXCONTEXTMENULib.OleEvent Ev)
{
}

Private Sub OleEvent(ByVal sender As System.Object,ByVal Itm As
exontrol.EXCONTEXTMENULib.item,ByVal Ev As
exontrol.EXCONTEXTMENULib.OleEvent) Handles OleEvent
End Sub

C#

C++

C++
Builder

private void OleEvent(object sender,
AxEXCONTEXTMENULib._IExContextMenuEvents_OleEventEvent e)
{
}

void OnOleEvent(LPDISPATCH Itm,LPDISPATCH Ev)
{
}

void __fastcall OleEvent(TObject *Sender,Excontextmenulib_tlb::IItem
*Itm,Excontextmenulib_tlb::IOleEvent *Ev)
{

Syntax for OleEvent event, /NET version, on:

Syntax for OleEvent event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure OleEvent(ASender: TObject; Itm : IItem;Ev : IOleEvent);
begin
end;

procedure OleEvent(sender: System.Object; e:
AxEXCONTEXTMENULib._IExContextMenuEvents_OleEventEvent);
begin
end;

begin event OleEvent(oleobject Itm,oleobject Ev)
end event OleEvent

Private Sub OleEvent(ByVal sender As System.Object, ByVal e As
AxEXCONTEXTMENULib._IExContextMenuEvents_OleEventEvent) Handles
OleEvent
End Sub

Private Sub OleEvent(ByVal Itm As EXCONTEXTMENULibCtl.IItem,ByVal Ev As
EXCONTEXTMENULibCtl.IOleEvent)
End Sub

Private Sub OleEvent(ByVal Itm As Object,ByVal Ev As Object)
End Sub

LPARAMETERS Itm,Ev

PROCEDURE OnOleEvent(oExContextMenu,Itm,Ev)
RETURN

Java…

VBSc…

<SCRIPT EVENT="OleEvent(Itm,Ev)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">

Syntax for OleEvent event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Function OleEvent(Itm,Ev)
End Function
</SCRIPT>

Procedure OnComOleEvent Variant llItm Variant llEv
 Forward Send OnComOleEvent llItm llEv
End_Procedure

METHOD OCX_OleEvent(Itm,Ev) CLASS MainDialog
RETURN NIL

void onEvent_OleEvent(COM _Itm,COM _Ev)
{
}

function OleEvent as v (Itm as OLE::Exontrol.ContextMenu.1::IItem,Ev as
OLE::Exontrol.ContextMenu.1::IOleEvent)
end function

function nativeObject_OleEvent(Itm,Ev)
return

The following samples shows how to load an ActiveX control (Exontrol.Calendar)

VB6,VBA (MS Access, Excell...),VB.NET for /COM

With CreateObject("Exontrol.ContextMenu")
 With .Items.Add("Calendar",3).SubControl
 .ControlID = "Exontrol.Calendar"
 .Create
 End With
 .Select
End With

VB.NET

' Add 'exontrol.excontextmenu.dll' reference to your project.
With New exontrol.EXCONTEXTMENULib.excontextmenu()

https://exontrol.com/excalendar.jsp

 With .Items.Add("Calendar",3).SubControl
 .ControlID = "Exontrol.Calendar"
 .Create()
 End With
 .Select()
End With

C++

/*
 Includes the definition for CreateObject function like follows:
 #include <comdef.h>
 IUnknownPtr CreateObject(BSTR Object)
 {
 IUnknownPtr spResult;
 spResult.CreateInstance(Object);
 return spResult;
 };
*/
/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXCONTEXTMENULib' for the library: 'ExContextMenu
1.0 Type Library'
 #import <ExContextMenu.dll>
 using namespace EXCONTEXTMENULib;
*/
EXCONTEXTMENULib::IExContextMenuPtr var_ExContextMenu =
::CreateObject(L"Exontrol.ContextMenu");
 EXCONTEXTMENULib::IControlPtr var_Control = var_ExContextMenu->GetItems()-
>Add(L"Calendar",long(3),vtMissing)->GetSubControl();
 var_Control->PutControlID(L"Exontrol.Calendar");
 var_Control->Create();
 var_ExContextMenu->Select(vtMissing,vtMissing,vtMissing);

C++ Builder

/*
 Select the Component\Import Component...\Import a Type Library,

 to import the following Type Library:
 ExContextMenu 1.0 Type Library
 TypeLib: e:\Exontrol\ExContextMenu\project\Site\ExContextMenu.dll
 to define the namespace: Excontextmenulib_tlb
*/
//#include "EXCONTEXTMENULIB_TLB.h"
Excontextmenulib_tlb::IExContextMenuPtr var_ExContextMenu =
Variant::CreateObject(L"Exontrol.ContextMenu");
 Excontextmenulib_tlb::IControlPtr var_Control = var_ExContextMenu->Items-
>Add(L"Calendar",TVariant(3),TNoParam())->SubControl;
 var_Control->ControlID = L"Exontrol.Calendar";
 var_Control->Create();
 var_ExContextMenu->Select(TNoParam(),TNoParam(),TNoParam());

C#

// Add 'exontrol.excontextmenu.dll' reference to your project.
exontrol.EXCONTEXTMENULib.excontextmenu var_ExContextMenu = new
exontrol.EXCONTEXTMENULib.excontextmenu();
 exontrol.EXCONTEXTMENULib.Control var_Control =
var_ExContextMenu.Items.Add("Calendar",3,null).SubControl;
 var_Control.ControlID = "Exontrol.Calendar";
 var_Control.Create();
 var_ExContextMenu.Select(null,null,null);

C# for /COM

// Add 'ExContextMenu 1.0 Type Library' reference to your project.
EXCONTEXTMENULib.ExContextMenu var_ExContextMenu = new
EXCONTEXTMENULib.ExContextMenu();
 EXCONTEXTMENULib.Control var_Control =
var_ExContextMenu.Items.Add("Calendar",3,null).SubControl;
 var_Control.ControlID = "Exontrol.Calendar";
 var_Control.Create();
 var_ExContextMenu.Select(null,null,null);

X++ (Dynamics Ax 2009)

COM com_Control,com_ExContextMenu,com_Items,com_item;
anytype var_Control,var_ExContextMenu,var_Items,var_item;
;
// Add 'ExContextMenu 1.0 Type Library' reference to your project.
var_ExContextMenu = COM::createFromObject(new
EXCONTEXTMENULib.excontextmenu()); com_ExContextMenu = var_ExContextMenu;
 var_Items = COM::createFromObject(com_ExContextMenu.Items()); com_Items =
var_Items;
 var_item =
COM::createFromObject(com_Items).Add("Calendar",COMVariant::createFromInt(3));
com_item = var_item;
 var_Control = com_item.SubControl(); com_Control = var_Control;
 com_Control.ControlID("Exontrol.Calendar");
 com_Control.Create();
 com_ExContextMenu.Select();

Delphi 8 (.NET only)

with (ComObj.CreateComObject(ComObj.ProgIDToClassID('Exontrol.ContextMenu'))
as EXCONTEXTMENULib.ExContextMenu) do
begin
 with Items.Add('Calendar',TObject(3),Nil).SubControl do
 begin
 ControlID := 'Exontrol.Calendar';
 Create();
 end;
 Select(Nil,Nil,Nil);
end;

Delphi (standard)

with
(IUnknown(ComObj.CreateComObject(ComObj.ProgIDToClassID('Exontrol.ContextMenu')))
 as EXCONTEXTMENULib_TLB.ExContextMenu) do
begin
 with Items.Add('Calendar',OleVariant(3),Null).SubControl do
 begin
 ControlID := 'Exontrol.Calendar';

 Create();
 end;
 Select(Null,Null,Null);
end;

VFP

with CreateObject("Exontrol.ContextMenu")
 with .Items.Add("Calendar",3).SubControl
 .ControlID = "Exontrol.Calendar"
 .Create
 endwith
 .Select()
endwith

XBasic (Alpha Five)

' Occurs when the user presses and then releases the left mouse button over
the control.
function Click as v ()
 Dim oPivot as P
 Dim var_Control as P
 Dim var_ExContextMenu as P
 oPivot = topparent:CONTROL_ACTIVEX1.activex
 var_ExContextMenu = OLE.Create("Exontrol.ContextMenu")
 var_Control = var_ExContextMenu.Items.Add("Calendar",3).SubControl
 var_Control.ControlID = "Exontrol.Calendar"
 var_Control.Create()
 var_ExContextMenu.Select()
end function

Dim oPivot as P

oPivot = topparent:CONTROL_ACTIVEX1.activex

Visual Objects

local var_ExContextMenu as IExContextMenu
// Generate Source for 'ExContextMenu 1.0 Type Library' server from
Tools\Automation Server...
var_ExContextMenu := IExContextMenu{"Exontrol.ContextMenu"}
 var_Control := var_ExContextMenu:Items:Add("Calendar",3,nil):SubControl
 var_Control:ControlID := "Exontrol.Calendar"
 var_Control:Create()
 var_ExContextMenu:Select(nil,nil,nil)

C#

VB

private void SelectItem(object sender,exontrol.EXCONTEXTMENULib.item Itm)
{
}

Private Sub SelectItem(ByVal sender As System.Object,ByVal Itm As
exontrol.EXCONTEXTMENULib.item) Handles SelectItem
End Sub

C#

C++

C++
Builder

private void SelectItem(object sender,
AxEXCONTEXTMENULib._IExContextMenuEvents_SelectItemEvent e)
{
}

void OnSelectItem(LPDISPATCH Itm)
{
}

void __fastcall SelectItem(TObject *Sender,Excontextmenulib_tlb::IItem *Itm)
{
}

event SelectItem (Itm as Item)
Occurs when the user selects the item.

Type Description
Itm as Item An Item object being clicked.

The SelectItem event notifies your application once the user clicks an item. By default, the
eXContextMenu's Select method is modal, so the component waits for the user to select an
item which ID is returned by the method once the drop down is closed. In other words, you
do not need to handle the SelectItem event to get the item being selected/clicked, instead
the Select method returns the ID of the Item being clicked. The CloseOnClick property
specifies when the user closes the context menu. By default, the context menu is closed if
the user clicks outside of the menu, clicks a regular item (a regular item is an item that
includes no sub-menu, and no check or radio buttons). In C++ or VFP, you can use the
Notifier to get notified through the WM_COMMAND message.

Syntax for SelectItem event, /NET version, on:

Syntax for SelectItem event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure SelectItem(ASender: TObject; Itm : IItem);
begin
end;

procedure SelectItem(sender: System.Object; e:
AxEXCONTEXTMENULib._IExContextMenuEvents_SelectItemEvent);
begin
end;

begin event SelectItem(oleobject Itm)
end event SelectItem

Private Sub SelectItem(ByVal sender As System.Object, ByVal e As
AxEXCONTEXTMENULib._IExContextMenuEvents_SelectItemEvent) Handles
SelectItem
End Sub

Private Sub SelectItem(ByVal Itm As EXCONTEXTMENULibCtl.IItem)
End Sub

Private Sub SelectItem(ByVal Itm As Object)
End Sub

LPARAMETERS Itm

PROCEDURE OnSelectItem(oExContextMenu,Itm)
RETURN

Java…

VBSc…

<SCRIPT EVENT="SelectItem(Itm)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function SelectItem(Itm)
End Function
</SCRIPT>

Syntax for SelectItem event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComSelectItem Variant llItm
 Forward Send OnComSelectItem llItm
End_Procedure

METHOD OCX_SelectItem(Itm) CLASS MainDialog
RETURN NIL

void onEvent_SelectItem(COM _Itm)
{
}

function SelectItem as v (Itm as OLE::Exontrol.ContextMenu.1::IItem)
end function

function nativeObject_SelectItem(Itm)
return

C#

VB

private void UncheckItem(object sender,exontrol.EXCONTEXTMENULib.item Itm)
{
}

Private Sub UncheckItem(ByVal sender As System.Object,ByVal Itm As
exontrol.EXCONTEXTMENULib.item) Handles UncheckItem
End Sub

C#

C++

C++
Builder

private void UncheckItem(object sender,
AxEXCONTEXTMENULib._IExContextMenuEvents_UncheckItemEvent e)
{
}

void OnUncheckItem(LPDISPATCH Itm)
{
}

void __fastcall UncheckItem(TObject *Sender,Excontextmenulib_tlb::IItem *Itm)
{
}

event UncheckItem (Itm as Item)
Occurs when the user unchecks the item.

Type Description
Itm as Item An Item object being un-checked.

The UncheckItem event notifies your application once an item is unchecked (the item
displays a check-box or a radio-button). The CheckItem event notifies your application once
the user checks the item. You can use this event to update your object once the user
checks an item. The user can check or uncheck the item by clicking or pressing the SPACE
key while the item is selected/highlighted. The Check property indicates whether the Item
has associated a check box. The Checked property specifies whether the item is checked
or unchecked. Use the Radio property to display a radio-button on the item. In C++ or VFP,
you can use the Notifier to get notified through the WM_COMMAND message.

Syntax for UncheckItem event, /NET version, on:

Syntax for UncheckItem event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure UncheckItem(ASender: TObject; Itm : IItem);
begin
end;

procedure UncheckItem(sender: System.Object; e:
AxEXCONTEXTMENULib._IExContextMenuEvents_UncheckItemEvent);
begin
end;

begin event UncheckItem(oleobject Itm)
end event UncheckItem

Private Sub UncheckItem(ByVal sender As System.Object, ByVal e As
AxEXCONTEXTMENULib._IExContextMenuEvents_UncheckItemEvent) Handles
UncheckItem
End Sub

Private Sub UncheckItem(ByVal Itm As EXCONTEXTMENULibCtl.IItem)
End Sub

Private Sub UncheckItem(ByVal Itm As Object)
End Sub

LPARAMETERS Itm

PROCEDURE OnUncheckItem(oExContextMenu,Itm)
RETURN

Java…

VBSc…

<SCRIPT EVENT="UncheckItem(Itm)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function UncheckItem(Itm)
End Function

Syntax for UncheckItem event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComUncheckItem Variant llItm
 Forward Send OnComUncheckItem llItm
End_Procedure

METHOD OCX_UncheckItem(Itm) CLASS MainDialog
RETURN NIL

void onEvent_UncheckItem(COM _Itm)
{
}

function UncheckItem as v (Itm as OLE::Exontrol.ContextMenu.1::IItem)
end function

function nativeObject_UncheckItem(Itm)
return

	Information
	How to get support?
	Appearance
	Add method
	Clear method
	Remove method
	RenderType property

	Control
	CloseOn property
	ControlID property
	Create method
	Height property
	LicenseKey property
	Object property (readonly)
	Width property
	Window property

	ExContextMenu
	AllowToggleRadio property
	AllowToolTip property
	Appearance property
	AttachTemplate method
	BackColor property
	Background property
	CloseOnClick property
	Cursor property
	Debug property
	EventParam property
	ExecuteTemplate method
	FlatBackColor property
	FlatImageWidth property
	Font property
	ForeColor property
	Get property (readonly)
	GetChecked property (readonly)
	GetRadio property (readonly)
	GetUnchecked property (readonly)
	HTMLPicture property
	Images method
	ImageSize property
	IncrementalSearch property
	item property (readonly)
	Items property (readonly)
	LocalAppearance property
	MenuAppearance property
	Notifier property
	Picture property
	PictureDisplay property
	Refresh method
	ReplaceIcon method
	SelBackColor property
	Select method
	SelForeColor property
	ShowCheckedAsSelected property
	ShowCheckedAsSelectedTransparency property
	ShowPopupArrow property
	ShowPopupEffect property
	Template property
	TemplateDef property
	TemplatePut method
	ToolTipDelay property
	ToolTipFont property
	ToolTipPopDelay property
	ToolTipWidth property
	ToString property
	UseVisualTheme property
	Version property
	Visibility property
	VisualAppearance property (readonly)

	Item
	Alignment property
	AllowEdit property
	BackColor property
	Bold property
	Caption property
	CaptionWidth property
	Check property
	Checked property
	CloseOnClick property
	Cursor property
	EditBorder property
	EditCaption property
	EditMask property
	EditOption property
	EditValue property
	EditWidth property
	Enabled property
	ForeColor property
	GroupPopup property
	HotBackColor property
	HTMLImage property
	ID property
	Image property
	Italic property
	ItemHeight property
	Items property (readonly)
	ItemType property (readonly)
	Padding property
	Parent property (readonly)
	Position property
	Radio property
	RadioGroup property
	SelBackColor property
	SelHotBackColor property
	Shortcut property
	ShowAsButton property
	ShowAsDisabled property
	ShowCheckedAsSelected property
	ShowDown property
	ShowLocalPopup property
	ShowPopupArrow property
	ShowPopupOnChecked property
	Strikeout property
	SubControl property (readonly)
	SubMenu property (readonly)
	Tab property
	Tooltip property
	TooltipTitle property
	ToString property
	Underline property
	UserData property
	Visible property

	Items
	Add method
	BackColor property
	BackgroundExt property
	Clear method
	Count property (readonly)
	HotBackColor property
	item property (readonly)
	Padding property
	PopupAppearance property
	Remove method
	SortOrder property
	ToString property
	VisibleItemsCount property

	OleEvent
	CountParam property (readonly)
	ID property (readonly)
	Name property (readonly)
	Param property (readonly)
	ToString property (readonly)

	OleEventParam
	Name property (readonly)
	Value property

	ExContextMenu events
	CheckItem event
	EditChange event
	Event event
	OleEvent event
	SelectItem event
	UncheckItem event

