
 ExCascadeTree

The eXCascadeTree component is a multiple-columns-tree-view component that uses miller
columns visualization to display your data. The Miller columns (also known as Cascading
Lists) are a browsing/visualization technique that can be applied to tree structures. The
cascade columns allow multiple levels of the hierarchy to be open at once, and provide a
visual representation of the current location. It is closely related to techniques used earlier
in the Smalltalk browser, but was independently invented by Mark S. Miller in 1980 at Yale
University.

Features include:

Array, ADO, DAO, XML, DataSet, Multiple-Data Source support
Split View support
Group By support
Conditional Format support
Total Fields support (Aggregate functions: sum, min, max, count, avg)
Incremental Search support
FilterBar support
StatusBar support
Customizable Context Menu support
ScrollBar Extension support

Ž ExCascadeTree is a trademark of Exontrol. All Rights Reserved.

How to get support?

To keep your business applications running, you need support you can count on.

Here are few hints what to do when you're stuck on your programming:

Check out the samples - they are here to provide some quick info on how things should
be done
Check out the how-to questions using the eXHelper tool
Check out the help - includes documentation for each method, property or event
Check out if you have the latest version, and if you don't have it send an update
request here.
Submit your problem(question) here.

Don't forget that you can contact our development team if you have ideas or requests for
new components, by sending us an e-mail at support@exontrol.com (please include the
name of the product in the subject, ex: exgrid) . We're sure our team of developers will try
to find a way to make you happy - and us too, since we helped.

Regards,
Exontrol Development Team

https://www.exontrol.com

https://exontrol.com/exhelper.jsp
https://exontrol.com/update.jsp
https://exontrol.com/techsupport.jsp
https://www.exontrol.com

constants AlignmentEnum
Specifies the object's alignment.

Name Value Description
LeftAlignment 0 The source is left aligned.
CenterAlignment 1 The source is centered.
RightAlignment 2 The source is right aligned.

constants AllowSplitViewEnum
The AllowSplitViewEnum type specifies how many vertically split-panels the control support.
The AllowSplitView property specifies whether the user can split the control into multiple-
views. The AllowSplitViewEnum type supports the following values:

Name Value Description
exNoSplitView 0 No vertically split-view is allowed.
exAllowOneSplitView 1 One additional vertically split-panel is allowed.
exAllowTwoSplitView 2 Two additional vertically split-panel are allowed.

constants AppearanceEnum
The AppearanceEnum enumeration is used to specify the appearance of the control's
header bar.

Name Value Description
None2 0 No border
Flat 1 Flat border
Sunken 2 Sunken border
Raised 3 Raised border
Etched 4 Etched border
Bump 5 Bump border

constants AutoDragEnum
The AutoDragEnum type indicates what the control does when the user clicks and start
dragging a row or an item. The AutoDrag property indicates the way the component
supports the AutoDrag feature. The AutoDrag feature indicates what the control does when
the user clicks an item and start dragging. For instance, using the AutoDrag feature you can
automatically lets the user to drag and drop the data to OLE compliant applications like
Microsoft Word, Excel and so on. The SingleSel property specifies whether the control
supports single or multiple selection. The drag and drop operation starts once the user
clicks and moves the cursor up or down, if the SingleSel property is True, and if SingleSel
property is False, the drag and drop starts once the user clicks, and waits for a short
period of time. If SingleSel property is False, moving up or down the cursor selects the
items by drag and drop.

The AutoDragEnum type supports the following values:

Name Value Description
exAutoDragNone 0 AutoDrag is disabled.

exAutoDragPosition 1

The item can be dragged from a position to
another, but not outside of its group. If your items
are arranged as a flat list, no hierarchy, this option
can be used to allow the user change the item's
position at runtime by drag and drop. This option
does not change the parent of any dragged item.
The dragging items could be the focused item or a
contiguously selection. Click the selection and
moves the cursor up or down, so the position of the
dragging items is changed. The draggable collection
is a collection of sortable items between 2 non-
sortable items (SortableItem property). The drag
and drop operation can not start on a non-sortable
or non-selectable item (SelectableItem property).
In other words, you can specify a range where an
item can be dragged using the SortableItem
property. Just set the SortableItem property on
False, for margins, and so the items can be
dragged between these items only.
The item can be dragged to any position or to any
parent, while the dragging object keeps its
indentation. This option can be used to allow the
user change the item's position at runtime by drag
and drop. In the same time, the parent's item could

exAutoDragPositionKeepIndent2

be changed but keeping the item's indentation. The
dragging items could be the focused item or a
contiguously selection. Click the selection and
moves the cursor up or down, so the position or
parent of the dragging items is changed. The drag
and drop operation can not start on a non-sortable
or non-selectable item (SelectableItem property).
In other words, you can specify a range where an
item can be dragged using the SortableItem
property. Just set the SortableItem property on
False, for margins, and so the items can be
dragged between these items only.

exAutoDragPositionAny 3

The item can be dragged to any position or to any
parent, with no restriction. The dragging items could
be the focused item or a contiguously selection. The
parent of the dragging items could change with no
restrictions, based on the position of the dragging
item. Click the selection and moves the cursor up or
down, so the position or parent of the dragging
items is changed. Click the selection and moves the
cursor left or right, so the item's indentation is
decreased or increased. The drag and drop
operation can not start on a non-sortable or non-
selectable item (SelectableItem property). In other
words, you can specify a range where an item can
be dragged using the SortableItem property. Just
set the SortableItem property on False, for
margins, and so the items can be dragged between
these items only.

Click here to watch a movie on how
exAutoDragCopyText works.

exAutoDragCopy 8

Drag and drop the selected items to a target
application, and paste them as image or text.
Pasting the data to the target application depends
on the application. You can use the
exAutoDragCopyText to specify that you want to
paste as Text, or exAutoDragCopyImage as an
image.
Drag and drop the selected items to a target
application, and paste them as text only. Ability to

https://www.youtube.com/watch?v=crG33cuKwC4

exAutoDragCopyText 9

drag and drop the data as text, to your favorite
Office applications, like Word, Excel, or any other
OLE-Automation compliant. The drag and drop
operation can start anywhere

Click here to watch a movie on how
exAutoDragCopyText works.

exAutoDragCopyImage 10

Drag and drop the selected items to a target
application, and paste them as image only. Ability to
drag and drop the data as it looks, to your favorite
Office applications, like Word, Excel, or any other
OLE-Automation compliant. The drag and drop
operation can start anywhere

Click here to watch a movie on how
exAutoDragCopyImage works.

exAutoDragCopySnapShot 11

Drag and drop a snap shot of the current
component. This option could be used to drag and
drop the current snap shot of the control to your
favorite Office applications, like Word, Excel, or any
other OLE-Automation compliant.

exAutoDragScroll 16

The component is scrolled by clicking the item and
dragging to a new position. This option can be used
to allow user scroll the control's content with NO
usage of the scroll bar, like on your IPhone. Ability
to smoothly scroll the control's content. The feature
is useful for touch screens or tables pc, so no need
to click the scroll bar in order to scroll the control's
content. Use the ScrollBySingleLine property on
False, to allow scrolling pixel by pixel when user
clicks the up or down buttons on the vertical scroll
bar. Use the ContinueColumnScroll property on True
to allow scrolling the columns pixel by pixel.

Click here or to watch a movie on how
exAutoDragScroll works.

exAutoDragPositionOnShortTouch256
exAutoDragPositionOnShortTouch. The object can
be dragged from a position to another, but not
outside of its group.

https://www.youtube.com/watch?v=4uA7ZI0W3Sk
https://www.youtube.com/watch?v=vunKapyV34g
https://www.youtube.com/watch?v=LIu7eo86GP8
https://www.youtube.com/watch?v=TDFns1Jt53g

exAutoDragPositionKeepIndentOnShortTouch512
exAutoDragPositionKeepIndentOnShortTouch. The
object can be dragged to any position or to any
parent, while the dragging object keeps its
indentation.

exAutoDragPositionAnyOnShortTouch768
exAutoDragPositionAnyOnShortTouch. The object
can be dragged to any position or to any parent,
with no restriction.

exAutoDragCopyOnShortTouch2048
exAutoDragCopyOnShortTouch. Drag and drop the
selected objects to a target application, and paste
them as image or text.

exAutoDragCopyTextOnShortTouch2304
exAutoDragCopyTextOnShortTouch. Drag and drop
the selected objects to a target application, and
paste them as text only.

exAutoDragCopyImageOnShortTouch2560
exAutoDragCopyImageOnShortTouch. Drag and
drop the selected objects to a target application,
and paste them as image only.

exAutoDragCopySnapShotOnShortTouch2816 exAutoDragCopySnapShotOnShortTouch. Drag and
drop a snap shot of the current component.

exAutoDragScrollOnShortTouch4096
exAutoDragScrollOnShortTouch. The component is
scrolled by clicking the object and dragging to a
new position.

exAutoDragPositionOnRight 65536
exAutoDragPositionOnRight. The object can be
dragged from a position to another, but not outside
of its group.

exAutoDragPositionKeepIndentOnRight131072
exAutoDragPositionKeepIndentOnRight. The object
can be dragged to any position or to any parent,
while the dragging object keeps its indentation.

exAutoDragPositionAnyOnRight196608
exAutoDragPositionAnyOnRight. The object can be
dragged to any position or to any parent, with no
restriction.

exAutoDragCopyOnRight 524288
exAutoDragCopyOnRight. Drag and drop the
selected objects to a target application, and paste
them as image or text.

exAutoDragCopyTextOnRight 589824
exAutoDragCopyTextOnRight. Drag and drop the
selected objects to a target application, and paste
them as text only.

exAutoDragCopyImageOnRight655360
exAutoDragCopyImageOnRight. Drag and drop the
selected objects to a target application, and paste
them as image only.

exAutoDragCopySnapShotOnRight720896exAutoDragCopySnapShotOnRight. Drag and drop
a snap shot of the current component.

exAutoDragScrollOnRight 1048576
exAutoDragScrollOnRight. The component is
scrolled by clicking the object and dragging to a
new position.

exAutoDragPositionOnLongTouch16777216
exAutoDragPositionOnLongTouch. The object can
be dragged from a position to another, but not
outside of its group.

exAutoDragPositionKeepIndentOnLongTouch33554432

exAutoDragPositionKeepIndentOnLongTouch. The
object can be dragged to any position or to any
parent, while the dragging object keeps its
indentation.

exAutoDragPositionAnyOnLongTouch50331648
exAutoDragPositionAnyOnLongTouch. The object
can be dragged to any position or to any parent,
with no restriction.

exAutoDragCopyOnLongTouch134217728
exAutoDragCopyOnLongTouch. Drag and drop the
selected objects to a target application, and paste
them as image or text.

exAutoDragCopyTextOnLongTouch150994944
exAutoDragCopyTextOnLongTouch. Drag and drop
the selected objects to a target application, and
paste them as text only.

exAutoDragCopyImageOnLongTouch167772160
exAutoDragCopyImageOnLongTouch. Drag and
drop the selected objects to a target application,
and paste them as image only.

exAutoDragCopySnapShotOnLongTouch184549376exAutoDragCopySnapShotOnLongTouch. Drag and
drop a snap shot of the current component.

exAutoDragScrollOnLongTouch268435456
exAutoDragScrollOnLongTouch. The component is
scrolled by clicking the object and dragging to a
new position.

constants AutoSearchEnum
Specifies the kind of searching while user types characters within a column. Use the
AutoSearch property to allow 'start with' incremental search or 'contains' incremental search
feature in the control.

Name Value Description

exStartWith 0

Defines the 'starts with' incremental search within
the column. If the user type characters within the
column the control looks for items that start with the
typed characters.

exContains 1

Defines the 'contains' incremental search within the
column. If the user type characters within the
column the control looks for items that contain the
typed characters.

constants BackgroundPartEnum
The BackgroundPartEnum type indicates parts in the control. Use the Background property
to specify a background color or a visual appearance for specific parts in the control. A
Color expression that indicates the background color for a specified part. The last 7 bits in
the high significant byte of the color to indicates the identifier of the skin being used. Use
the Add method to add new skins to the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits in the high significant byte of the
color being applied to the background's part.

Name Value Description

exSplitBar 18 Specifies the visual appearance for control's split
bar.

exHeaderFilterBarActive 41
exHeaderFilterBarActive. Specifies the visual
appearance of the drop down filter bar button, while
filter is applied to the column.

exToolTipAppearance 64 Specifies the visual appearance of the borders of
the tooltips.

exToolTipBackColor 65 Specifies the tooltip's background color.
exToolTipForeColor 66 Specifies the tooltip's foreground color.

exHSplitBar 141 Specifies the visual appearance for horizontal split
bar.

exCSplitBar 142 Specifies the solid color / visual appearance of the
split bar that creates new views.

exSelBackColorHide 166 exSelBackColorHide. Specifies the selection's
background color, when the control has no focus.

exSelForeColorHide 167 exSelForeColorHide. Specifies the selection's
foreground color, when the control has no focus.

exStatusBackColor 168

Specifies the status bar's background color. The
StatusBarVisible property specifies whether the
control's status bar is visible or hidden. The
StatusBarLabel property specifies the HTML label
the control's status bar is displaying.

exStatusForeColor 169

Specifies the status bar's foreground color. The
StatusBarVisible property specifies whether the
control's status bar is visible or hidden. The
StatusBarLabel property specifies the HTML label
the control's status bar is displaying.
Specifies the size of the control's split bar, when

exSplitBarSize 170 resizing the cascade columns is enabled.

exDisableSplitBar 171 Specifies the visual appearance for control's split
bar, when resizing the cascade columns is disabled.

exDisableSplitBarSize 172 Specifies the size of the control's split bar, when
resizing the cascade columns is disabled.

exFocusFrame 173 Specifies the visual appearance of the frame
around the focusing cascade column.

exStatusPanelBackColor 174

Specifies the status panel's background color. The
StatusBarVisible property specifies whether the
control's status bar is visible or hidden. The
StatusBarLabel property specifies the HTML label
the control's status bar is displaying.

exTreeGlyphOpen 180 Specifies the visual appearance for the +/- buttons
when it is collapsed.

exTreeGlyphClose 181 Specifies the visual appearance for the +/- buttons
when it is expanded.

exColumnsPositionSign 182
Specifies the visual appearance for the position sign
between columns, when the user changes the
position of the column by drag an drop.

exTreeLinesColor 186 Specifies the color to show the tree-lines
(connecting lines from the parent to the children)

exVSUp 256 The up button in normal state.
exVSUpP 257 The up button when it is pressed.
exVSUpD 258 The up button when it is disabled.
exVSUpH 259 The up button when the cursor hovers it.
exVSThumb 260 The thumb part (exThumbPart) in normal state.
exVSThumbP 261 The thumb part (exThumbPart) when it is pressed.
exVSThumbD 262 The thumb part (exThumbPart) when it is disabled.

exVSThumbH 263 The thumb part (exThumbPart) when cursor hovers
it.

exVSDown 264 The down button in normal state.
exVSDownP 265 The down button when it is pressed.
exVSDownD 266 The down button when it is disabled.
exVSDownH 267 The down button when the cursor hovers it.

The lower part (exLowerBackPart) in normal

exVSLower 268 state.

exVSLowerP 269 The lower part (exLowerBackPart) when it is
pressed.

exVSLowerD 270 The lower part (exLowerBackPart) when it is
disabled.

exVSLowerH 271 The lower part (exLowerBackPart) when the
cursor hovers it.

exVSUpper 272 The upper part (exUpperBackPart) in normal
state.

exVSUpperP 273 The upper part (exUpperBackPart) when it is
pressed.

exVSUpperD 274 The upper part (exUpperBackPart) when it is
disabled.

exVSUpperH 275 The upper part (exUpperBackPart) when the
cursor hovers it.

exVSBack 276 The background part (exLowerBackPart and
exUpperBackPart) in normal state.

exVSBackP 277 The background part (exLowerBackPart and
exUpperBackPart) when it is pressed.

exVSBackD 278 The background part (exLowerBackPart and
exUpperBackPart) when it is disabled.

exVSBackH 279 The background part (exLowerBackPart and
exUpperBackPart) when the cursor hovers it.

exHSLeft 384 The left button in normal state.
exHSLeftP 385 The left button when it is pressed.
exHSLeftD 386 The left button when it is disabled.
exHSLeftH 387 The left button when the cursor hovers it.
exHSThumb 388 The thumb part (exThumbPart) in normal state.
exHSThumbP 389 The thumb part (exThumbPart) when it is pressed.
exHSThumbD 390 The thumb part (exThumbPart) when it is disabled.

exHSThumbH 391 The thumb part (exThumbPart) when the cursor
hovers it.

exHSRight 392 The right button in normal state.
exHSRightP 393 The right button when it is pressed.

exHSRightD 394 The right button when it is disabled.
exHSRightH 395 The right button when the cursor hovers it.
exHSLower 396 The lower part (exLowerBackPart) in normal state.

exHSLowerP 397 The lower part (exLowerBackPart) when it is
pressed.

exHSLowerD 398 The lower part (exLowerBackPart) when it is
disabled.

exHSLowerH 399 The lower part (exLowerBackPart) when the cursor
hovers it.

exHSUpper 400 The upper part (exUpperBackPart) in normal state.

exHSUpperP 401 The upper part (exUpperBackPart) when it is
pressed.

exHSUpperD 402 The upper part (exUpperBackPart) when it is
disabled.

exHSUpperH 403 The upper part (exUpperBackPart) when the cursor
hovers it.

exHSBack 404 The background part (exLowerBackPart and
exUpperBackPart) in normal state.

exHSBackP 405 The background part (exLowerBackPart and
exUpperBackPart) when it is pressed.

exHSBackD 406 The background part (exLowerBackPart and
exUpperBackPart) when it is disabled.

exHSBackH 407 The background part (exLowerBackPart and
exUpperBackPart) when the cursor hovers it.

exSBtn 324 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), in normal state.

exSBtnP 325 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when it is pressed.

exSBtnD 326 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when it is disabled.

exSBtnH 327 All button parts (L1-L5, LButton, exThumbPart,
RButton, R1-R6), when the cursor hovers it .
Enables or disables the hover-all feature. By default
(Background(exScrollHoverAll) = 0), the left/top,
right/bottom and thumb parts of the control'
scrollbars are displayed in hover state while the

exScrollHoverAll 500

cursor hovers any part of the scroll bar (hover-all
feature). The hover-all feature is available on
Windows 11 or greater, if only left/top, right/bottom,
thumb, lower and upper-background parts of the
scrollbar are visible, no custom visual-appearance
is applied to any visible part. The hover-all feature
is always on If Background(exScrollHoverAll) = -1.
The Background(exScrollHoverAll) = 1 disables the
hover-all feature.

exVSThumbExt 503 The thumb-extension part in normal state.
exVSThumbExtP 504 The thumb-extension part when it is pressed.
exVSThumbExtD 505 The thumb-extension part when it is disabled.
exVSThumbExtH 506 The thumb-extension when the cursor hovers it.
exHSThumbExt 507 The thumb-extension in normal state.
exHSThumbExtP 508 The thumb-extension when it is pressed.
exHSThumbExtD 509 The thumb-extension when it is disabled.
exHSThumbExtH 510 The thumb-extension when the cursor hovers it.

exScrollSizeGrip 511 Specifies the visual appearance of the control's size
grip when both scrollbars are shown.

constants BackModeEnum
Specifies the background mode when painting the selected items. Use the SelBackMode
property to specify the control's selection back mode.

Name Value Description
exOpaque 0 The selection is opaque.
exTransparent 1 The selection is transparent.
exGrid 2 The selection is half transparent half opaque

constants CascadeModeEnum
The CascadeModeEnum type specifies the modes the control supports. The Mode property
indicates the mode the control displays the cascade columns. The CascadeModeEnum type
supports the following values:

Name Value Description

exFixCascadeMode 0

Each cascade column can be displayed with a
different width. The DefColumnWidth property
specifies the width to create a new cascade
column.

exSingleCascadeMode 1 No cascade columns support.

exSplitEqualCascadeMode 2

The cascade column fits equally the control's client
area. The FitCascadeColumns property retrieves or
sets a value that indicates the number of cascading
columns to fit.

exSplitFixCascadeMode 3

The cascade column fits equally the control's client
area. The FitCascadeColumns property retrieves or
sets a value that indicates the number of cascading
columns to fit.

exDisableResizeCascadeColumns256 The user can't resize the cascade columns.

exAutoFitOnResizeClient 512 Each cascade column gets resized as soon as the
control gets resized.

constants CellSelectEnum
Specifies how the control selects cells or items within the control. Use the FullRowSelect
property to enables full-row selection.

Name Value Description
exColumnSel 0 (False) Enables single-cell selection in the control.
exItemSel -1 (True) Enables full-row selection in the control.
exRectSel 1 Enables rectangle selection in the control.

When the FullRowSelect property is exColumnSel the selection looks like:

When the FullRowSelect property is exItemSel the selection looks like:

When the FullRowSelect property is exRectSel the selection looks like:

constants CellSingleLineEnum
The CellSingleLineEnum type defines whether the cell's caption is displayed on a single or
multiple lines. The CellSingleLine property retrieves or sets a value indicating whether the
cell is displayed using one line, or more than one line. The Def(exCellSingleLine) property
specifies that all cells in the column display their content using multiple lines. The
CellSingleLineEnum type supports the following values:

Name Value Description

exCaptionSingleLine -1

Indicates that the cell's caption is displayed on a
single line. In this case any \r\n or
 HTML tags
is ignored. For instance the "This is the first
line.\r\nThis is the second line.\r\nThis is the third
line." shows as:

exCaptionWordWrap 0

Specifies that the cell's caption is displayed on
multiple lines, by wrapping the words. Any \r\n or

 HTML tag breaks the line. For instance the
"This is the first line.\r\nThis is the second
line.\r\nThis is the third line." shows as:

exCaptionBreakWrap 1

Specifies that the cell's caption is displayed on
multiple lines, by wrapping the breaks only. Only
The \r\n or
 HTML tag breaks the line. For
instance the "This is the first line.\r\nThis is the
second line.\r\nThis is the third line." shows as:

constants CheckStateEnum
Specifies the cell's state if CellHasCheckBox or CellHasRadioButton property is True.

Name Value Description
Unchecked 0 The cell is not checked.
Checked 1 The cell is checked.
PartialChecked 2 The cell is partially checked.

constants DefColumnEnum
The Def property retrieves or sets a value that indicates the default value of given
properties for all cells in the same column.

Name Value Description

exCellHasCheckBox 0

Assigns check boxes to all cells in the column, if it is
True. Similar with the CellHasCheckBox property.

(Boolean expression, False)

exCellHasRadioButton 1

Assigns radio buttons to all cells in the column, if it
is True. Similar with the CellHasRadioButton
property.

(Boolean expression, False)

exCellHasButton 2

Specifies that all cells in the column are buttons, if it
is True. Similar with the CellHasButton property.

(Boolean expression, False)

exCellButtonAutoWidth 3

Specifies that all buttons in the column fit the cell's
caption, if it is True. Similar with the
CellButtonAutoWidth property.

(Boolean expression, False)

exCellBackColor 4

Specifies the background color for all cells in the
column. Use the CellBackColor property to assign a
background color for a specific cell. The property
has effect only if the property is different than zero.

(Long expression)

exCellForeColor 5

Specifies the foreground color for all cells in the
column. Use the CellForeColor property to assign a
foreground color for a specific cell. The property
has effect only if the property is different than zero.

(Long expression)

exCellVAlignment 6

Specifies the column's vertical alignment. By
default, the Def(exCellVAlignment) property is
exMiddle. Use the CellVAlignment property to
specify the vertical alignment for a particular cell.

(VAlignmentEnum expression, exMiddle)

exHeaderBackColor 7

Specifies the column's header background color.
The property has effect only if the property is
different than zero. Use this option to change the
background color for a column in the header area.
The exHeaderBackColor option supports skinning,
so the last 7 bits in the high significant byte of the
color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control.

(Color expression)

exHeaderForeColor 8

Specifies the column's header background color.
The property has effect only if the property is
different than zero.

(Color expression)

exCellSingleLine 16

Specifies that all cells in the column displays its
content into single or multiple lines. Similar with the
CellSingleLine property. If using the CellSingleLine /
Def(exCellSingleLine) property, we recommend to
set the ScrollBySingleLine property on True so all
items can be scrolled.

(CellSingleLineEnum type, previously Boolean
expression)

exCellValueFormat 17
Similar with the CellValueFormat property,

(ValueFormatEnum expression, exText)

Specifies the template for the column's filter when
the Filter property or the 'Filter For' field is
populated. This property customizes the filter

exFilterPatternTemplate 21

pattern for the column when the FilterType property
is set to exPattern. It supports the <%filter%>
keyword, which replaces the original filter input. For
example, setting Def(exFilterPatternTemplate) to "*
<%filter%>*" filters for all items containing the
specified sequence, while setting it to "Item*
<%filter%>" filters for all items starting with 'Item'
and ending with the typed characters. If the
Column.Def(exFilterPatternTemplate) property is
empty, the filter is applied as it is (no effect).

(String expression)

exCellFormatLevel 32

Specifies the format layout for the cells. The
CellFormatLevel property indicates the format
layout for a specified cell. Use the FormatLevel
property to specify the layout of the column in the
control's header bar.

(CRD string expression)

exCellOwnerDraw 33 reserved

exCellDrawPartsOrder 34

Specifies the order of the drawing parts for the
entire column. By default, this option is
"check,icon,icons,picture,caption", which means that
the cell displays its parts in the following order:
check box/ radio buttons (
CellHasCheckBox/CellRadioButton), single icon (
CellImage), multiple icons (CellImages), custom
size picture (CellPicture), and the cell's caption.
Use the exCellDrawPartsOrder option to specify a
new order for the drawing parts in the cells of the
column. The RightToLeft property automatically flips
the order of the columns.

(String expression,
"check,icon,icons,picture,caption")

exCellPaddingLeft 48

Gets or sets the left padding (space) of the cells
within the column.

(Long expression)

exCellPaddingRight 49

Gets or sets the right padding (space) of the cells
within the column.

(Long expression)

exCellPaddingTop 50

Gets or sets the top padding (space) of the cells
within the column.

(Long expression)

exCellPaddingBottom 51

Gets or sets the bottom padding (space) of the
cells within the column.

(Long expression)

exHeaderPaddingLeft 52

Gets or sets the left padding (space) of the
column's header.

(Long expression)

exHeaderPaddingRight 53

Gets or sets the right padding (space) of the
column's header.

(Long expression)

exHeaderPaddingTop 54

Gets or sets the top padding (space) of the
column's header.

(Long expression)

exHeaderPaddingBottom 55

Gets or sets the bottom padding (space) of the
column's header.

(Long expression)

exColumnResizeContiguously 64

Gets or sets a value that indicates whether the
control's content is updated while the user is
resizing the column.

(Boolean expression, False)

constants DividerAlignmentEnum
Defines the alignment for a divider line into a divider item. Use the ItemDividerLineAlignment
property to align the line in a divider item. Use the ItemDivider property to add a divider
item.

Name Value Description

DividerBottom 0 The divider line is displayed on bottom side of the
item.

DividerCenter 1 The divider line is displayed on center of the item.
DividerTop 2 The divider line is displayed at the top of the item.

DividerBoth 3 The divider line is displayed at the top and bottom
of the item.

constants DividerLineEnum
Defines the type of divider line. The ItemDividerLine property uses the DividerLineEnum
type. Use the ItemDivider property to define a divider item.

Name Value Description
EmptyLine 0 No line
SingleLine 1 Single line
DoubleLine 2 Double line
DotLine 3 Dotted line
DoubleDotLine 4 Double Dotted line
ThinLine 5 Thin line
DoubleThinLine 6 Double thin line

constants ExpandButtonEnum
Defines how the control displays the expanding/collapsing buttons.

Name Value Description
exNoButtons 0 The control displays no expand buttons.

exPlus -1 A plus sign is displayed for collapsed items, and a
minus sign for expanded items.()

exArrow 1 The control uses icons to display the expand
buttons.()

exCircle 2 The control uses icons to display the expand
buttons. ()

exWPlus 3 The control uses icons to display the expand
buttons. ()

exCustom 4 reserved

constants FilterBarVisibleEnum
The FilterBarVisibleEnum type defines the flags you can use on FilterBarPromptVisible
property. The FilterBarCaption property defines the caption to be displayed on the control's
filter bar. The FilterBarPromptVisible property , specifies how the control's filter bar is
displayed and behave. The FilterBarVisibleEnum type includes several flags that can be
combined together, as described bellow:

Name Value Description

exFilterBarHidden 0
No filter bar is shown while there is no filter applied.
The control's filter bar is automatically displayed as
soon a a filter is applied.

exFilterBarPromptVisible 1

The exFilterBarPromptVisible flag specifies that the
control's filter bar displays the filter prompt. The
exFilterBarPromptVisible, exFilterBarVisible,
exFilterBarCaptionVisible flag , forces the control's
filter-prompt, filter bar or filter bar description (
even empty) to be shown. If missing, no filter
prompt is displayed. The FilterBarPrompt property
to specify the HTML caption being displayed in the
filter bar when the filter pattern is missing.

exFilterBarVisible 2

The exFilterBarVisible flag forces the control's filter
bar to be shown, no matter if any filter is applied. If
missing, no filter bar is displayed while the control
has no filter applied.

or combined with exFilterBarPromptVisible

exFilterBarCaptionVisible 4

The exFilterBarVisible flag forces the control's filter
bar to display the FilterBarCaption property.

exFilterBarSingleLine 16

The exFilterBarVisible flag specifies that the caption
on the control's filter bar id displayed on a single
line. The exFilterBarSingleLine flag , specifies that
the filter bar's caption is shown on a single line, so

 HTML tag or \r\n are not handled. By default,
the control's filter description applies word
wrapping. Can be combined to exFilterBarCompact
to display a single-line filter bar. If missing, the
caption on the control's filter bar is displayed on
multiple lines. You can change the height of the
control's filter bar using the FilterBarHeight
property.

exFilterBarToggle 256

The exFilterBarToggle flag specifies that the user
can close the control's filter bar (removes the
control's filter) by clicking the close button of the
filter bar or by pressing the CTRL + F, while the
control's filter bar is visible. If no filter bar is
displayed, the user can display the control's filter
bar by pressing the CTRL + F key. While the
control's filter bar is visible the user can navigate
though the list or control's filter bar using the ALT +
Up/Down keys. If missing, the control's filter bar is
always shown if any of the following flags is present
exFilterBarPromptVisible, exFilterBarVisible,
exFilterBarCaptionVisible.

exFilterBarShowCloseIfRequired512

The exFilterBarShowCloseIfRequired flag indicates
that the close button of the control's filter bar is
displayed only if the control has any currently filter
applied. The Background(exFooterFilterBarButton)
property on -1 hides permanently the close button
of the control's filter bar.

exFilterBarShowCloseOnRight1024

The exFilterBarShowCloseOnRight flag specifies
that the close button of the control's filter bar should
be displayed on the right side. If the control's
RightToLeft property is True, the close button of the
control's filter bar would be automatically displayed
on the left side.

exFilterBarCompact 2048

The exFilterBarCompact flag compacts the control's
filter bar, so the filter-prompt will be displayed to
the left, while the control's filter bar caption will be
displayed to the right. This flag has effect only if
combined with the exFilterBarPromptVisible. This
flag can be combined with the exFilterBarSingleLine
flag, so all filter bar will be displayed compact and
on a single line.

exFilterBarTop 8192

The exFilterBarTop flag displays the filter-bar on top
(between control's header and items section as
shown:

By default, the filter-bar is shown aligned to the
bottom (between items and horizontal-scroll bar) as
shown:

constants FilterIncludeEnum
The FilterIncludeEnum type defines the items to include when control's filter is applied. The
FilterInclude property specifies the items being included, when the list is filtered. The
FilterIncludeEnum type supports the following values:

Name Value Description

exItemsWithoutChilds 0 Items (and parent-items) that match the filter are
shown (no child-items are included)

exItemsWithChilds 1 Items (parent and child-items) that match the filter
are shown

exRootsWithoutChilds 2 Only root-items (excludes child-items) that match
the filter are displayed

exRootsWithChilds 3 Root-items (and child-items) that match the filter
are displayed

exMatchingItemsOnly 4 Shows only the items that matches the filter (no
parent or child-items are included)

exMatchIncludeParent 240

Specifies that the item matches the filter if any of its
parent-item matches the filter. The
exMatchIncludeParent flag can be combined with
any other value.

constants FilterListEnum
The FilterListEnum type specifies the type of items being included in the column's drop
down list filter. The FilterList property specifies the items being included to the column's
drop down filter-list, including other options for filtering. Use the DisplayFilterPattern and/or
DisplayFilterDate property to display the pattern field, a date pattern or a calendar control
inside the drop down filter window.

The FilterList can be a bit-combination of exAllItems, exVisibleItems or exNoItems with any
other flags being described bellow:

Name Value Description
exAllItems 0 The filter's list includes all items in the column.

exVisibleItems 1
The filter's list includes only visible (filtered) items
from the column. The visible items include child
items of collapsed items.

exNoItems 2
The filter's list does not include any item from the
column. Use this option if the drop down filter
displays a calendar control for instance.

exLeafItems 3 The filter's list includes the leaf items only. A leaf
item is an item with no child items.

exRootItems 4 The filter's list includes the root items only.

exSortItemsDesc 16

If the exSortItemsDesc flag is set the values in the
drop down filter's list gets listed descending. If none
of the exSortItemsAsc or exSortItemsDesc is
present, the list is built as the items are displayed in
the control.

exSortItemsAsc 32

If the exSortItemsAsc flag is set the values in the
drop down filter's list gets listed ascending. If none
of the exSortItemsAsc or exSortItemsDesc is
present, the list is built as the items are displayed in
the control.

exIncludeInnerCells 64

The exIncludeInnerCells flag specifies whether the
inner cells values are included in the drop down
filter's list. The SplitCell method adds an inner cell,
on in other words splits a cell.

exSingleSel 128

If this flag is present, the filter's list supports single
selection. By default, (If missing), the user can
select multiple items using the CTRL key. Use the
exSingleSel property to prevent multiple items

selection in the drop down filter list.

exShowCheckBox 256

The filter's list displays a check box for each
included item. Clicking the checkbox, makes the
item to be include din the filter. If this flag is
present, the filter is closed once the user presses
ENTER or clicks outside of the drop down filter
window. By default, (this flag is missing), clicking
an item closes the drop down filter, if the CTRL key
is not pressed. This flag can be combined with
exHideCheckSelect.

The following screen shot shows the drop down
filter with or with no exShowCheckBox flag:

 or

exHideCheckSelect 512

The selection background is not shown for checked
items in the filter's list. This flag can be combined
with exShowCheckBox.

The following screen shot shows no selection
background for the checked items:

This flag allows highlighting the focus cell value in
the filter's list. The focus cell value is the cell's
content at the moment the drop down filter window
is shown. For instance, click an item so a new item
is selected, and click the drop down filter button. A

exShowFocusItem 1024

item being focused in the drop down filter list is the
one you have in the control's selection. This flag has
effect also, if displaying a calendar control in the
drop down filter list.

The following screen shot shows the focused item
in the filter's list (The Integration ... item in the
background is the focused item, and the same is in
the filter's list) :

exShowPrevSelectOpaque 2048

By default, the previously selection in the drop down
filter's list is shown using a semi-transparent color.
Use this flag to show the previously selection using
an opaque color. The exSelFilterForeColor and
exSelFilterBackColor options defines the filter's list
selection foreground and background colors.

exEnableToolTip 4096 This flag indicates whether the filter's tooltip is
shown.

exShowExclude 8192

This flag indicates whether the Exclude option is
shown in the drop down filter window. This option
has effect also if the drop down filter window shows
a calendar control.

The following screen shot shows the Exclude field in
the drop down filter window:

exShowBlanks 16384 This flag indicates whether the (Blanks) and
(NonBlanks) items are shown in the filter's list

constants FilterPromptEnum
The FilterPromptEnum type specifies the type of prompt filtering. Use the
FilterBarPromptType property to specify the type of filtering when using the prompt. The
FilterBarPromptColumns specifies the list of columns to be used when filtering. The
FilterBarPromptPattern property specifies the pattern for filtering. The pattern may contain
one or more words being delimited by space characters.

The filter prompt feature supports the following values:

Name Value Description

exFilterPromptContainsAll 1

The list includes the items that contains all specified
sequences in the filter. Can be combined with
exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptContainsAny 2

The list includes the items that contains any of
specified sequences in the filter. Can be combined
with exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptStartWith 3

The list includes the items that starts with any
specified sequences in the filter. Can be combined
with exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptEndWith 4

The list includes the items that ends with any
specified sequences in the filter. Can be combined
with exFilterPromptCaseSensitive,
exFilterPromptStartWords,
exFilterPromptEndWords or exFilterPromptWords

exFilterPromptPattern 16

The filter indicates a pattern that may include wild
characters to be used to filter the items in the list.
Can be combined with
exFilterPromptCaseSensitive. The
FilterBarPromptPattern property may include wild
characters as follows:

'?' for any single character
'*' for zero or more occurrences of any
character
'#' for any digit character

' ' space delimits the patterns inside the filter

exFilterPromptCaseSensitive 256

Filtering the list is case sensitive. Can be combined
with exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith, exFilterPromptEndWith or
exFilterPromptPattern.

exFilterPromptStartWords 4608

The list includes the items that starts with specified
words, in any position. Can be combined with
exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith or exFilterPromptEndWith.

exFilterPromptEndWords 8704

The list includes the items that ends with specified
words, in any position. Can be combined with
exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith or exFilterPromptEndWith.

exFilterPromptWords 12800

The filter indicates a list of words. Can be combined
with exFilterPromptContainsAll,
exFilterPromptContainsAny,
exFilterPromptStartWith or exFilterPromptEndWith.

constants FilterTypeEnum
The FilterTypeEnum type defines the type of filter applies to a column. Use the FilterType
property to specify the type of filter being used. Use the Filter property to specify the filter
being used. The value for Filter property depends on the FilterType property. Use the
Description property to customize the captions for control filter bar window. The FilterList
property indicates the values the drop-down filter includes. The FilterTypeEnum type
supports the following values:

Name Value Description

exAll 0

No filter applied. Use the Description property to
change the "(All)" caption in the drop down filter.

exBlanks 1

Only blank items are included. Use the Description
property to change the "(Blanks)" caption in the
drop down filter. The Filter property has no effect.

exNonBlanks 2

Only non blanks items are included. Use the
Description property to change the "(NonBlanks) "
caption in the drop down filter. The Filter property
has no effect.

exPattern 3

Only items that match the pattern are included. The
Filter property defines the pattern. A pattern may
contain the wild card characters '?' for any single
character, '*' for zero or more occurrences of any
character, '#' for any digit character, and [chars]
indicates a group of characters. If any of the *, ?, #
or | characters are preceded by a \ (escape
character) it masks the character itself. The
Def(exFilterPatternTemplate) property specifies the
template for the column's filter when the Filter
property or the 'Filter For' field is populated. The
exFilterDoCaseSensitive flag can be combined with
exPattern or exFilter types, indicating that case-
sensitive filtering should be performed.

For instance:

"*1", only items that ends with 1 are included
"A*|B*", only items that starts with a/A or b/B

Only items (of date type) within the specified range
are included. The Filter property defines the interval
of dates being used to filter items. The interval of
dates should be as [dateFrom] to [dateTo]. Use the
Description property to change the "to" conjunction
used to split the dates in the interval. If the
dateFrom value is missing, the control includes only

exDate 4

the items before the dateTo date, if the dateTo
value is missing, the control includes the items after
the dateFrom date. If both dates (dateFrom and
dateTo) are present, the control includes the items
between this interval of dates. The
DisplayFilterDate property specifies whether the
drop down filter window displays a date selector to
specify the interval dates to filter for.

For instance:

"2/13/2004 to" includes all items after
2/13/2004 inclusive
"2/13/2004 to Feb 14 2005" includes all items
between 2/13/2004 and 2/14/2004

exNumeric 5

Only items (of numeric type) within the specified
range are included. The Filter property may include
operators like <, <=, =, <>, >= or > and numbers to
define rules to include numbers in the control's list.
If the FilterType property is exNumeric, the drop
down filter window doesn't display the filter list that
includes items "(All)", "(Blanks)", ... and so on.

For instance:

"100", filter items with the value 100
"> 10 < 100", indicates all numbers greater
than 10 and less than 100

exCheck 6

Only checked or unchecked items are included. The
CellState property indicates the state of the cell's
checkbox. The Filter property on "0" filters for
unchecked items, while "1" filters for checked items.
A checked item has the the CellState property
different than zero. An unchecked item has the
CellState property on zero.

For instance:

"0", only unchecked items are included
"1", only checked items are included

exImage 10

Only items showing the specified icons (icon index)
are included. The CellImage property indicates the
cell's icon. Multiple icons are separated by the '|'
character. The Filter property defines the list of
icons, separated by the '|' character, to apply the
filter.

For instance:

"1", only items that displays the icons with the
index 1 are included
"2|3", only items displaying the icons with index
2 or 3 are included

Only the items that are in the Filter property are

exFilter 240

included. Multiple items are separated by the '|'
character. The exShowCheckBox flag of FilterList
property displays a check box for each included
item. The exFilterDoCaseSensitive flag can be
combined with exPattern or exFilter types,
indicating that case-sensitive filtering should be
performed.

For instance:

"Item 1", only items with the caption 'Item 1'
are included
"Item 3|Item 3", only items displaying icons
with an index of 2 or 3 are included

exFilterDoCaseSensitive 256

If this flag is present, the column filtering is case-
sensitive. If this flag is missing, the filtering is case-
insensitive by default. The exFilterDoCaseSensitive
flag can be used to enable case-sensitive filtering
within the column. However, this flag is not applied
to the filter prompt feature. The
exFilterDoCaseSensitive flag can be combined with
exPattern or exFilter types.

exFilterExclude 512

The flag indicates that the Exclude field of the
column is checked, meaning items that match the
filter are excluded from the list. The exShowExclude
flag of FilterList property indicates whether the
Exclude option is shown in the drop down filter
window.

constants FormatApplyToEnum
The FormatApplyToEnum expression indicates whether a format is applied to an item or to
a column. Any value that's greater than 0 indicates that the conditional format is applied to
the column with the value as index. A value less than zero indicates that the conditional
format object is applied to items. Use the ApplyTo property to specify whether the
conditional format is applied to items or to columns.

Name Value Description
exFormatToItems -1 Specifies whether the condition is applied to items.

exFormatToColumns 0

Specifies whether the condition is applied to
columns. The 0 value indicates that the conditional
format is applied to the first column. The 1 value
indicates the conditional format is applied to the
second column. The 2 value indicates the
conditional format is applied to the third column, and
so on.

constants GridLinesEnum
Defines how the control paints the grid lines.

Name Value Description
exNoLines 0 The control displays no grid lines.

exAllLines -1 The control displays vertical and horizontal grid
lines.

exRowLines -2 The control paints grid lines only for current rows.
exHLines 1 Only horizontal grid lines are shown.
exVLines 2 Only vertical grid lines are shown.

constants GridLinesStyleEnum
The GridLinesStyle type specifies the style to show the control's grid lines. The
GridLineStyle property indicates the style of the gridlines being displayed in the view if the
DrawGridLines property is not zero. The GridLinesStyle enumeration specifies the style for
horizontal or/and vertical gridlines in the control.

Name Value Description
exGridLinesDot 0 The control's gridlines are shown as dotted.

exGridLinesHDot4 1 The horizontal control's gridlines are shown as
dotted.

exGridLinesVDot4 2 The vertical control's gridlines are shown as dotted.
exGridLinesDot4 3 The control's gridlines are shown as solid.

exGridLinesHDash 4 The horizontal control's gridlines are shown as
dashed.

exGridLinesVDash 8 The vertical control's gridlines are shown as
dashed.

exGridLinesDash 12 The control's gridlines are shown as
dashed.

exGridLinesHSolid 16 The horizontal control's gridlines are shown as solid.
exGridLinesVSolid 32 The vertical control's gridlines are shown as solid.
exGridLinesSolid 48 The control's gridlines are shown as solid.

exGridLinesGeometric 512

The control's gridlines are drawn using a geometric
pen. The exGridLinesGeometric flag can be
combined with any other flag. A geometric pen can
have any width and can have any of the attributes
of a brush, such as dithers and patterns. A
cosmetic pen can only be a single pixel wide and
must be a solid color, but cosmetic pens are
generally faster than geometric pens. The width of
a geometric pen is always specified in world units.
The width of a cosmetic pen is always 1.

constants HierarchyLineEnum
Defines how the control paints the hierarchy lines.

Name Value Description

exNoLine 0 The control displays no lines when painting the
hierarchy.

exDotLine -1 The control uses a dotted line to paint the hierarchy.
exSolidLine 1 The control uses a solid line to paint the hierarchy.
exThinLine 2 The control uses a thin line to paint the hierarchy.

constants HitTestInfoEnum
The HitTestInfoEnum expression defines the hit area within a cell. Use the
ViewItemFromPoint property to determine the hit test code within the cell.

Name Value Description
exHTCell 0 In the cell's client area.

exHTExpandButton 1
In the +/- button associated with a cell. The
HasButtons property specifies whether the cell
displays a +/- sign to let user expands the item.

exHTCellIndent 2

In the indentation associated with a cell. The Indent
property retrieves or sets the amount, in pixels, that
child items are indented relative to their parent
items.

exHTCellInside 4 On the icon, picture, check or caption associated
with a cell.

exHTCellCaption 20 (HEXA 14) In the caption associated with a cell.
The CellValue property specifies the cell's value.

exHTCellCheck 36

(HEXA 24) In the check/radio button associated
with a cell. The CellHasCheckBox or
CellHasRadioButton property specifies whether the
cell displays a checkbox or a radio button.

exHTCellIcon 68
HEXA 44) In first icon associated with a cell. The
CellImage or CellImages property specifies the
cell's icon displayed next to the cell's caption.

exHTCellPicture 132 (HEXA 84). In a picture associated to a cell.

exHTCellCaptionIcon 1044

(HEXA 414) In the icon's area inside the cell's
caption. The tag inserts an icon inside the
cell's caption. The tag is valid only if the
CellValueFormat property exHTML

exHTBottomHalf 2048

(HEXA 800) The cursor is in the bottom half of the
row. If this flag is not set, the cursor is in the top
half of the row. This is an OR combination with the
rest of predefined values. For instance, you can
check if the cursor is in the bottom half of the row
using HitTestCode AND 0x800

exHTBetween 4096

The cursor is between two rows. This is an OR
combination with the rest of predefined values. For
instance, you can check if the cursor is between

two items using HitTestCode AND 0x1000

constants LinesAtRootEnum
Defines how the control displays the lines at root. The LinesAtRoot property defines the
way the tree lines are shown. The HasLines property defines the type of the line to be
shown. The HasButtons property defines the expand/collapse buttons for parent items.

The LinesAtRootEnum type support the following values:

Name Value Description

exNoLinesAtRoot 0

No lines at root items.

exLinesAtRoot -1

The control links the root items.

The control shows no links between roots, and
divides them as being in the same group.

exGroupLinesAtRoot 1

exGroupLines 2

The lines between root items are no shown, and the
links show the items being included in the group.

exGroupLinesInside 3

The lines between root items are no shown, and the
links are shown between child only.

The lines between root items are no shown, and the
links are shown for first and last visible child item.

exGroupLinesInsideLeaf 4

exGroupLinesOutside 5

The lines between root items are no shown, and the
links are shown for first and last visible child item. A
parent item that contains flat child items only, does
not indent the child part. By a flat child we mean an
item that does not contain any child item.

constants InplaceAppearanceEnum
The InplaceAppearanceEnum type supports the following values:

Name Value Description
NoApp 0 No border
FlatApp 1 Flat
SunkenApp 2 Sunken
RaisedApp 3 Raised
EtchedApp 4 Etched
BumpApp 5 Bump
ShadowApp 6 Shadow
InsetApp 7 Inset
SingleApp 8 Single

constants NumericEnum
Use the Numeric property to specify the format of numbers when editing a field.

Name Value Description

exInteger -1

Allows editing numbers of integer type. The format
of the integer number is: [+/-]digit, where digit is
any combination of digit characters. This flag can
be combined with exDisablePlus, exDisableMinus or
exDisableSigns flags. For instance, the 0x3FF (hexa
representation, 1023 decimal) value indicates an
integer value with no +/- signs.

exAllChars 0 Allows all characters. No filtering.

exFloat 1

Allows editing floating point numbers. The format of
the floating point number is: [+/-
]digit[.digit[[e/E/d/D][+/-]digit]], where digit is any
combination of digit characters. Use the
exEditDecimalSymbol option to assign a new
symbol for '.' character (decimal values). This flag
can be combined with exDisablePlus,
exDisableMinus or exDisableSigns flags.

exFloatInteger 2

Allows editing floating point numbers without
exponent characters such as e/E/d/D, so the
accepted format is [+/-]digit[.digit]. Use the
exEditDecimalSymbol option to assign a new
symbol for '.' character (decimal values). This flag
can be combined with exDisablePlus,
exDisableMinus or exDisableSigns flags.

exDisablePlus 256
Prevents using the + sign when editing numbers. If
this flag is included, the user can not add any + sign
in front of the number.

exDisableMinus 512
Prevents using the - sign when editing numbers. If
this flag is included, the user can not add any - sign
in front of the number.

exDisableSigns 768

Prevents using the +/- signs when editing numbers.
If this flag is included, the user can not add any +/-
sign in front of the number. For instance
exFloatInteger + exDisableSigns allows editing
floating points numbers without using the exponent
and plus/minus characters, so the allowed format is

digit[.digit]

constants PictureDisplayEnum
Specifies how the picture is displayed on the control's background. Use the PictureDisplay
property to specify how the control displays its picture.

Name Value Description
UpperLeft 0 Aligns the picture to the upper left corner.
UpperCenter 1 Centers the picture on the upper edge.
UpperRight 2 Aligns the picture to the upper right corner.

MiddleLeft 16 Aligns horizontally the picture on the left side, and
centers the picture vertically.

MiddleCenter 17 Puts the picture on the center of the source.

MiddleRight 18 Aligns horizontally the picture on the right side, and
centers the picture vertically.

LowerLeft 32 Aligns the picture to the lower left corner.
LowerCenter 33 Centers the picture on the lower edge.
LowerRight 34 Aligns the picture to the lower right corner.
Tile 48 Tiles the picture on the source.
Stretch 49 The picture is resized to fit the source.

constants ReadOnlyEnum
Use the Enabled property to disable the control.

Name Value Description

exReadWrite 0
(boolean False) The control allows changes. The
user can use the cell's editor to change the cell's
value.

exReadOnly -1 (boolean True) The control is read only and the
cell's editor is not visible.

exLocked 1

The control is read only, and the cell's editor is
visible but locked. For instance, if the cell's editor
contains a drop down portion, the user can display
the drop down portion of the control, but it can't
select a new value. Also, if the editor contains
multiple buttons they are active as the control is not
read only.

constants ScrollBarEnum
The ScrollBarEnum type specifies the vertical or horizontal scroll bar in the control. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bars

Name Value Description

exVScroll 0 Indicates the vertical scroll bar (cascade column
view)

exHScroll 1 Indicates the horizontal scroll bar (cascade column
view)

exScroll 2 Indicates the control's horizontal scroll bar.

constants ScrollBarsEnum
Specifies which scroll bars will be visible on a control. The ScrollBars property of the control
specifies the scroll bars being visible in the control. By default, the ScrollBars property is
exBoth, which indicates that both scroll bars of the component are being displayed only
when they require.

The horizontal scroll bar is not shown, if the ColumnAutoResize property is True, or if
the ScrollBars property is exNoScroll. The horizontal scroll bar is shown if required, if
the ScrollBars property is exBoth or exHorizontal, else it is always shown if the
ScrollBars property is exDisableBoth or exDisableNoHorizontal
The vertical scroll bar of the control is shown if required, if the ScrollBars is exBoth or
exVertical, else if it is always shown if the ScrollBars property is exDisableBoth or
exDisableVertical. For instance, if the ScrollBars property is exBoth OR
exVScrollOnThumbRelease, the control's content is scrolled when the user releases
the vertical thumb. If your data displays items with different heights, you should set the
ScrollBySingleLine property on True.

Use the Scroll method to programmatically scroll the control's content to specified position.
The ScrollPos property determines the position of the control's scroll bars. The ScrollWidth
property specifies the width in pixels, of the vertical scroll bar. The ScrollHeight property
specifies the height in pixels of the horizontal scroll bar. The ScrollOrderParts property
specifies the order to display the parts of the scroll bar (buttons, thumbs and so on). The
ScrollPartCaption property specifies the caption to be shown on any part of the scroll bar.
Use the SelectPos property to select items giving its position.

The ScrollBars property supports a bitwise OR combination of the following values:

Name Value Description

exNoScroll 0 No scroll bars are shown. This flag should not be
combined with any other.

exHorizontal 1
Only horizontal scroll bars are shown. This flag can
be combined with any other flag greater or equal
with 256.

exVertical 2
Only vertical scroll bars are shown. This flag can be
combined with any other flag greater or equal with
256.

exBoth 3
Both horizontal and vertical scroll bars are shown.
This flag can be combined with any other flag
greater or equal with 256.

exDisableNoHorizontal 5
The horizontal scroll bar is always shown, it is
disabled if it is unnecessary. This flag can be

combined with any other flag greater or equal with
256.

exDisableNoVertical 10

The vertical scroll bar is always shown, it is
disabled if it is unnecessary. This flag can be
combined with any other flag greater or equal with
256.

exDisableBoth 15

Both horizontal and vertical scroll bars are always
shown, disabled if they are unnecessary. This flag
can be combined with any other flag greater or
equal with 256.

exHScrollOnThumbRelease 256

Scrolls the control's content when the user releases
the thumb of the horizontal scroll bar. Use this
option to specify that the user scrolls the control's
content when the thumb of the scroll box is
released.

exVScrollOnThumbRelease 512

Scrolls the control's content when the user releases
the thumb of the vertical scroll bar. Use this option
to specify that the user scrolls the control's content
when the thumb of the scroll box is released.

exHScrollEmptySpace 1024

Allows empty space, when control's content is
horizontally scrolled to the end. If this flag is set, the
last visible column, is displayed on leftmost position
of the control, when the user horizontally scrolls to
the end.

exVScrollEmptySpace 2048

Allows empty space, when control's content is
vertically scrolled to the end. If this flag is set, the
last visible item, is displayed on top of the control,
when the user vertically scrolls to the end.

constants ScrollEnum
The ScrollEnum expression indicates the type of scroll that control supports. Use the Scroll
method to scroll the control's content by code.

Name Value Description
exScrollUp 0 Scrolls up the control by a single line.
exScrollDown 1 Scrolls down the control by a single line.
exScrollVTo 2 Scrolls vertically the control to a specified position.

exScrollLeft 3
Scrolls the control to the left by a single pixel, or by
a single column if the ContinueColumnScroll
property is True.

exScrollRight 4
Scrolls the control to the right by a single pixel, or
by a single column if the ContinueColumnScroll
property is True.

exScrollHTo 5 Scrolls horizontaly the control to a specified
position.

constants ScrollPartEnum
The ScrollPartEnum type defines the parts in the control's scrollbar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollPartCaption property to specify the caption being displayed in any part of the control's
scrollbar.

Name Value Description
exExtentThumbPart 65536 The thumb-extension part.

exLeftB1Part 32768 (L1) The first additional button, in the left or top
area. By default, this button is hidden.

exLeftB2Part 16384 (L2) The second additional button, in the left or top
area. By default, this button is hidden.

exLeftB3Part 8192 (L3) The third additional button, in the left or top
area. By default, this button is hidden.

exLeftB4Part 4096 (L4) The forth additional button, in the left or top
area. By default, this button is hidden.

exLeftB5Part 2048 (L5) The fifth additional button, in the left or top
area. By default, this button is hidden.

exLeftBPart 1024 (<) The left or top button. By default, this button is
visible.

exLowerBackPart 512 The area between the left/top button and the
thumb. By default, this part is visible.

exThumbPart 256 The thumb part or the scroll box region. By default,
the thumb is visible.

exUpperBackPart 128 The area between the thumb and the right/bottom
button. By default, this part is visible.

exBackgroundPart 640
The union between the exLowerBackPart and the
exUpperBackPart parts. By default, this part is
visible.

exRightBPart 64 (>) The right or down button. By default, this button
is visible.
(R1) The first additional button in the right or down

exRightB1Part 32 side. By default, this button is hidden.

exRightB2Part 16 (R2) The second additional button in the right or
down side. By default, this button is hidden.

exRightB3Part 8 (R3) The third additional button in the right or down
side. By default, this button is hidden.

exRightB4Part 4 (R4) The forth additional button in the right or down
side. By default, this button is hidden

exRightB5Part 2 (R5) The fifth additional button in the right or down
side. By default, this button is hidden.

exRightB6Part 1 (R6) The sixth additional button in the right or down
side. By default, this button is hidden.

exPartNone 0 No part.

constants SortOnClickEnum
Specifies the action that control takes when user clicks the column's header. The
SortOnClick Property specifies whether the control sorts a column when its caption has
been clicked.

Name Value Description

exNoSort 0 The column is not sorted when user clicks the
column's header.

exDefaultSort -1 The control sorts the column when user clicks the
column's header.

exUserSort 1 The control displays the sort icons, but it doesn't
sort the column.

constants SortOrderEnum
Specifies the column's order type. Use the SortOrder property to specify the column's sort
order

Name Value Description
SortNone 0 The column is not sorted.
SortAscending 1 The column is sorted ascending.
SortDescending 2 The column is sorted descending.

constants SortTypeEnum
The SortTypeEnum enumeration defines the types of sorting in the control. Use the
SortType property to specifies the type of column's sorting.

Name Value Description
SortString 0 (Default) Values are sorted as strings.

SortNumeric 1 Values are sorted as numbers. Any non-numeric
value is evaluated as 0.

SortDate 2 Values are sorted as dates. Group ranges are one
day.

SortDateTime 3 Values are sorted as dates and times. Group
ranges are one second.

SortTime 4 Values are sorted using the time part of a date and
discarding the date. Group ranges are one second.

SortUserData 5 The column gets sorted numerical using the
CellData property.

SortCellData 6 The column gets sorted numerical using the
CellSortData property.

SortCellDataString 7 The CellSortData property indicates the values
being sorted. The values are sorted as string.

exSortByValue 16 The column gets sorted by cell's value rather than
cell's caption.

exSortByState 32 The column gets sorted by cell's state rather than
cell's caption.

exSortByImage 48 The column gets sorted by cell's image rather than
cell's caption.

constants StatusBarAnchorEnum
The StatusBarAnchorEnum type specifies how the status bar is displayed relative to the
control. The StatusBarVisible property specifies whether the control's status bar is visible or
hidden. The StatusBarLabel property specifies the HTML label the control's status bar is
displaying. The StatusBarAnchorEnum type supports the following values:

Name Value Description
exStatusBarNone 0 The control's status bar is not visible.

exStatusBarAnchorBottom 1 The control's status bar is aligned to the bottom
side of the control.

exStatusBarAnchorTop 2 The control's status bar is aligned to the top side of
the control.

exStatusBarWordWrap 16 The status's label is displaying its content using
word-wrap (multiple lines).

constants ItemsAllowSizingEnum
The ItemsAllowSizingEnum type specifies whether the user can resize items individuals or
all items at once, at runtime. Use the ItemsAllowSizing property to specify whether the user
can resize items individuals or all items at once, at runtime. Curently, the
ItemsAllowSizingEnum type supports the following values:

Name Value Description
exNoSizing 0 The user can't resize the items at runtime.

exResizeItem -1 Specifies whether the user resizes the item from
the cursor.

exResizeAllItems 1 Specifies whether the user resizes all items at
runtime.

constants UIVisualThemeEnum
The UIVisualThemeEnum expression specifies the UI parts that the control can shown using
the current visual theme. The The UIVisualThemeEnum type supports following values:

Name Value Description
exNoVisualTheme 0 exNoVisualTheme
exDefaultVisualTheme 16777215exDefaultVisualTheme
exHeaderVisualTheme 1 exHeaderVisualTheme
exFilterBarVisualTheme 2 exFilterBarVisualTheme
exButtonsVisualTheme 4 exButtonsVisualTheme
exCalendarVisualTheme 8 exCalendarVisualTheme
exSliderVisualTheme 16 exSliderVisualTheme
exSpinVisualTheme 32 exSpinVisualTheme
exCheckBoxVisualTheme 64 exCheckBoxVisualTheme
exProgressVisualTheme 128 exProgressVisualTheme
exCalculatorVisualTheme 256 exCalculatorVisualTheme

constants VAlignmentEnum
Specifies the source's vertical alignment.

Name Value Description
exTop 0 exTop
exMiddle 1 exMiddle
exBottom 2 exBottom

constants ValueFormatEnum
Defines how the cell's value is shown. The CellValueFormat property indicates the way the
cell displays its content. The Def(exCellValueFormat) property indicates the format for all
cells within the column. The CellValue property indicates the cell's value, content or
formula. The ComputedField property indicates the formula to compute all cells in the
column. The FormatColumn property indicates the format to be applied for cells in the
columns.The ValueFormatEnum type supports can be a combination of the following values:

Name Value Description
exText 0 Standard text. No HTML tags are displayed

The control uses built-in HTML tags to display the
caption using HTML format. The control supports
the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor
element that can be clicked. An anchor is a
piece of text or some other object (for example
an image) which marks the beginning and/or
the end of a hypertext link.The <a> element is
used to mark that piece of text (or inline
image), and to give its hypertextual relationship
to other documents. The control fires the
AnchorClick(AnchorID, Options) event when
the user clicks the anchor element. The
FormatAnchor property customizes the visual
effect for anchor elements.
 ... displays portions
of text with a different font and/or different
size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of
the font is missing, and instead size is present,
the current font is used with a different size.
For instance, "bit" displays
the bit text using the current font, but with a
different size.
<fgcolor rrggbb> ... </fgcolor> or

about:blank

<fgcolor=rrggbb> ... </fgcolor> displays text
with a specified foreground color. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or
<bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<solidline rrggbb> ... </solidline> or
<solidline=rrggbb> ... </solidline> draws a
solid-line on the bottom side of the current text-
line, of specified RGB color. The <solidline> ...
</solidline> draws a black solid-line on the
bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values
of the color in hexa values.
<dotline rrggbb> ... </dotline> or
<dotline=rrggbb> ... </dotline> draws a dot-line
on the bottom side of the current text-line, of
specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom
side of the current text-line. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<upline> ... </upline> draws the line on the
top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon
inside the text. The number indicates the index
of the icon being inserted. Use the Images
method to assign a list of icons to your chart.
The last 7 bits in the high significant byte of the
number expression indicates the identifier of
the skin being used to paint the object. Use the
Add method to add new skins to the control. If
you need to remove the skin appearance from
a part of the control you need to reset the last
7 bits in the high significant byte of the color
being applied to the part. The width is optional

exHTML 1

and indicates the width of the icon being
inserted. Using the width option you can
overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the
width is 18 pixels.
key[:width] inserts a custom
size picture into the text being previously
loaded using the HTMLPicture property. The
Key parameter indicates the key of the picture
being displayed. The Width parameter
indicates a custom size, if you require to
stretch the picture, else the original size of the
picture is used.
& glyph characters as & (&), < (<),
> (>), &qout; (") and &#number; (the
character with specified code), For instance,
the € displays the EUR character. The
& ampersand is only recognized as markup
when it is followed by a known letter or a
#character and a digit. For instance if you want
to display bold in HTML caption you
can use bold
<off offset> ... </off> defines the vertical
offset to display the text/element. The offset
parameter defines the offset to display the
element. This tag is inheritable, so the offset is
keep while the associated </off> tag is found.
You can use the <off offset> HTML tag in
combination with the to define
a smaller or a larger font to be displayed. For
instance: "Text with <off 6>subscript"
displays the text such as: Text with subscript
The "Text with <off -6>superscript"
displays the text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines
a gradient text. The text color or <fgcolor>
defines the starting gradient color, while the
rr/gg/bb represents the red/green/blue values
of the ending color, 808080 if missing as gray.
The mode is a value between 0 and 4, 1 if
missing, and blend could be 0 or 1, 0 if
missing. The HTML tag can be used to

define the height of the font. Any of the rrggbb,
mode or blend field may not be specified. The
<gra> with no fields, shows a vertical gradient
color from the current text color to gray
(808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>"
generates the following picture:

<out rrggbb;width> ... </out> shows the text
with outlined characters, where rr/gg/bb
represents the red/green/blue values of the
outline color, 808080 if missing as gray, width
indicates the size of the outline, 1 if missing.
The text color or <fgcolor> defines the color to
show the inside text. The HTML tag can
be used to define the height of the font. For
instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>
" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define
a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the
shadow color, 808080 if missing as gray, width
indicates the size of shadow, 4 if missing, and
offset indicates the offset from the origin to
display the text's shadow, 2 if missing. The text
color or <fgcolor> defines the color to show
the inside text. The HTML tag can be
used to define the height of the font. For
instance the "<sha>shadow</sha>
" generates the following picture:

or "<sha 404040;5;0>
<fgcolor=FFFFFF>outline anti-
aliasing</fgcolor></sha>" gets:

exComputedField 2

Indicates a computed field. The CellValue property
indicates the formula to compute the field. A
computed field can display its content using the
values from any other cell in the same item/row. For
instance %1 + %2 indicates that the cell displays
the addition from the second and third cells in the
same item (cells are 0 based). For instance, if the
cells are of numeric format the result is the sum of
two values, while if any of the cell is of string type it
performs a concatenation of the specified cells. The
ComputedField property indicates the formula to
compute all cells in the column. The
exComputedField can be combined with exText or
exHTML. For instance, the exComputedField +
exHTML indicates that the computed field may
display HTML tags.

The syntax for the CellValue property should be:
formula where %n indicates the cell from the n-
index. The operation being supported are listed
bellow.

For instance %1 + %2 indicates the sum of all cells
in the second and third column from the current
item.

Indicates a total/subtotal field. The CellValue
property indicates the formula for total field that
includes an aggregate function such as: sum, min,
max, count, avg. The exTotalField can be combined
with exText or exHTML. For instance, the
exTotalField + exHTML indicates that the total field
may display HTML tags.

The syntax for the CellValue property should be:
aggregate(list,direction,formula) where:

aggregate must be one of the following:

sum - calculates the sum of values.
min - retrieves the minimum value.
max - retrieves the maximum value.
count - counts the number of items.

exTotalField 4

avg - calculates the average of values.

list must be one of the following:

a long expression that specifies the index of
the item being referred.
a predefined string expression as follows:

all - indicates all items, so the formula is
being applied to all items. The direction
has no effect.
current - the current item.
parent - the parent item.
root - the root item.

direction must be one of the following:

dir - collects the direct descendents.
rec - collects the leaf descendents (leaf items
). A leaf item is an item with no child items.
all - collects all descendents.

Currently, the following items are excluded by
aggregate functions:

not-sortable items. The SortableItem property
specifies whether the item can be sorted (a
sortable item can change its position after
sorting, while a not-sortable item keeps its
position after sorting.
not-selectable items. The SelectableItem
property specifies whether the user can
selects/focus the specified item.
divider items. The ItemDivider property
specifies whether the item displays a single
cell, instead displaying whole cells.

In conclusion, aggregate functions counts ONLY
items that are:

sortable, SortableItem is True, by default.
selectable, SelectableItem is True, by default.
not divider, ItemDivider is -1, by default.

Shortly, by setting to a different value to any of

these properties, makes the item to be ignored by
the aggregate functions.

For instance

count(current,dir,1) counts the number of child
items (not implies recursively child items).
count(current,all,1) counts the number of all
child items (implies recursively child items).
count(current,rec,1) counts the number of leaf
items (implies recursively leaf items).
count(current,rec,1) counts the number of leaf
items (a leaf item is an item with no child items
).
sum(parent,dir,%1=0?0:1) counts the not-zero
values in the second column (%1)
sum(parent,dir,%1 + %2) indicates the sum of
all cells in the second (%1) and third (%2)
column that are directly descendent from the
parent item.
sum(all,rec,%1 + %2) sums all leaf cells in the
second (%1) and third (%2) columns.

The formula on the CellValue property (if the CellValueFormat property indicates the
exComputedField or exTotalField) may include the formatting operators as follows:

The expression supports cell's identifiers as follows:

%0, %1, %2, ...{any} specifies the value of the cell in the column with the index 0, 1
2, ... The CellCaption property defines the cell's value. For example, "%0 format ``"
formats the value in the cell at index 0 using the current regional settings, while
"int(%1)" converts the value in the cell at index 1 to an integer.
%C0, %C1, %C2, ...{string} specifies the caption of the cell, or the string the cell
displays in the column with the index 0, 1 2, ... The CellCaption property gets the
cell's formatted caption. The cell's displayed string may differ from its actual value.
For example, if a cell displays HTML content, %0 returns the HTML format including
the tags, while %C0 returns the cell's content as a plain string without HTML tags. For
instance, "upper(%C1)" converts the caption of the cell at index 1 to uppercase, while
"%C0 left 2" returns the leftmost two characters of the caption in the cell at index 0.
%CD0, %CD1, %CD2, ...{any} specifies the cell's extra data in the column with the
index 0, 1 2, ... The CellData property associates any extra/user data to a cell. For
example, "%CD0 = your user data" specifies all cells in the column with index 0

whose CellData property is equal to your user data.
%CS0, %CS1, %CS2, ...{number} specifies the cell's state in the column with the
index 0, 1 2, ... The CellState property defines the state of a cell, indicating whether it
is checked or unchecked. For example, "%CS0" identifies all checked items in the
column with index 0, while "not %CS1" identifies all unchecked items in the column
with index 1.
%CC0, %CC1, %CC2, ... {number} retrieve the number of child items (this keyword
consistently returns identical results for all cells since it pertains to the item that hosts
each cell). The ChildCount property returns the number of child items. For example,
"%CC0" identifies all parent items, while "%CC0 = 0" identifies all leaf items.
%CX0, %CX1, %CX2, ... {boolean} returns true if the item hosting the cell is
expanded, or false if it is collapsed (this keyword consistently returns identical results
for all cells since it pertains to the item that hosts each cell). The ExpandItem property
specifically indicates whether the item is expanded or collapsed. For example,
"%CX0" refers to all expanded items, while "not %CX0" identifies all collapsed items

This property/method supports predefined constants and operators/functions as described
here.

Usage examples:

1. "1", the cell displays 1
2. "%0 + %1", the cell displays the sum between cells in the first and second columns.
3. "%0 + %1 - %2", the cell displays the sum between cells in the first and second

columns minus the third column.
4. "(%0 + %1)*0.19", the cell displays the sum between cells in the first and second

columns multiplied with 0.19.
5. "(%0 + %1 + %2)/3", the cell displays the arithmetic average for the first three

columns.
6. "%0 + %1 < %2 + %3", displays 1 if the sum between cells in the first two columns is

less than the sum of third and forth columns.
7. "proper(%0)'" formats the cells by capitalizing first letter in each word
8. "currency(%1)'" displays the second column as currency using the format in the control

panel for money
9. "len(%0) ? currency(dbl(%0)) : ''" displays the currency only for not empty/blank

cells.
10. "int(date(%1)-date(%2)) + 'D ' + round(24*(date(%1)-date(%2) - floor(date(%1)-

date(%2)))) + 'H''" displays interval between two dates in days and hours, as xD yH
11. "2:=((1:=int(0:= date(%1)-date(%0))) = 0 ? '' : str(=:1) + ' day(s)') + (3:=round(24*

(=:0-floor(=:0))) ? (len(=:2) ? ' and ' : '') + =:3 + ' hour(s)' : '')" displays the interval
between two dates, as x day(s) [and y hour(s)], where the x indicates the number of
days, and y the number of hours. The hour part is missing, if 0 hours is displayed, or

nothing is displayed if dates are identical.

constants ViewItemStateEnum
The ViewItemStateEnum type specifies different states for an item. The
ViewItemStateStartChanging / ViewItemStateEndChanging notifies your application that an
item expanded or activated / selected, or when a check box has been clicked / changed.
The ViewItemStateEnum type supports the following values:

Name Value Description
exExpandItem 1 An item is expanded or collapsed.
exCheckItem 2 An item is checked or unchecked.
exActivateItem 3 An item is activated / selected

constants ViewItemUpdateEnum
The ViewItemUpdate event notifies your application that a new item has been added or
removed of the View object. The ViewItemUpdateEnum type supports the following values:

Name Value Description
exAddItem 1 The a new item has been added.

exAddGroupItem 2 Occurs after a new group Item has been inserted to
Items collection.

exRemoveItem 3 An item is about to be removed.

constants ViewOperationEnum
The ViewOperationEnum type specifies operations that could start or end. The
ViewStartChanging / ViewEndChanging events notify your application that an operation
starts or ends. The ViewOperationEnum type supports the following values:

Name Value Description
exSplitViewChange 1 The user splits/resizes the view into multiple views.
exResizeCascadeColumn 2 The user resizes the cascade column.
exSelectionChange 3 The view selection is changing.
exDataSourceChange 4 The control's Data source is changing.
exLayoutChange 5 The view layout is changing.

exShowContextMenu 20 Occurs when the control is about to display the
object's context menu.

exExecuteContextMenu 21 Occurs when the control is about to execute a
command from the object's context menu.

Appearance object
The component lets the user changes its visual appearance using skins, each one providing
an additional visual experience that enhances viewing pleasure. Skins are relatively easy to
build and put on any part of the control. The Appearance object holds a collection of skins.
The Appearance object supports the following properties and methods:

Name Description
Add Adds or replaces a skin object to the control.
Clear Removes all skins in the control.
Remove Removes a specific skin from the control.

RenderType Specifies the way colored EBN objects are displayed on
the component.

method Appearance.Add (ID as Long, Skin as Variant)
Adds or replaces a skin object to the control.

Type Description

ID as Long

A Long expression that indicates the index of the skin
being added or replaced. The value must be between 1
and 126, so Appearance collection should holds no more
than 126 elements.

Skin as Variant

The Skin parameter of the Add method can a STRING as
explained bellow, a BYTE[] / safe arrays of VT_I1 or
VT_UI1 expression that indicates the content of the EBN
file. You can use the BYTE[] / safe arrays of VT_I1 or
VT_UI1 option when using the EBN file directly in the
resources of the project. For instance, the VB6 provides
the LoadResData to get the safe array o bytes for
specified resource, while in VB/NET or C# the internal
class Resources provides definitions for all files being
inserted. (ResourceManager.GetObject("ebn",
resourceCulture))

If the Skin parameter points to a string expression, it can
be one of the following:

A path to the skin file (*.EBN). The ExButton
component or ExEBN tool can be used to create,
view or edit EBN files. For instance, "C:\Program
Files\Exontrol\ExButton\Sample\EBN\MSOffice-
Ribbon\msor_frameh.ebn"
A BASE64 encoded string that holds the skin file (
*.EBN). Use the ExImages tool to build BASE 64
encoded strings of the skin file (*.EBN). The
BASE64 encoded string starts with "gBFLBCJw..."
An Windows XP theme part, if the Skin parameter
starts with "XP:". Use this option, to display any UI
element of the Current Windows XP Theme, on any
part of the control. In this case, the syntax of the Skin
parameter is: "XP:ClassName Part State" where the
ClassName defines the window/control class name in
the Windows XP Theme, the Part indicates a long
expression that defines the part, and the State
indicates the state of the part to be shown. All known
values for window/class, part and start are defined at

https://exontrol.com/ebn.jsp
https://exontrol.com/ebn.jsp
https://exontrol.com/exbutton.jsp
https://exontrol.com/exebn.jsp
https://exontrol.com/ebn.jsp
https://exontrol.com/eximages.jsp
https://exontrol.com/ebn.jsp

the end of this document. For instance the
"XP:Header 1 2" indicates the part 1 of the Header
class in the state 2, in the current Windows XP
theme.
A copy of another skin with different coordinates (
position, size), if the Skin parameter starts with
"CP:". Use this option, to display the EBN, using
different coordinates (position, size). By default, the
EBN skin object is rendered on the part's client area.
Using this option, you can display the same EBN, on a
different position / size. In this case, the syntax of the
Skin parameter is: "CP:ID Left Top Right Bottom"
where the ID is the identifier of the EBN to be used (
it is a number that specifies the ID parameter of the
Add method), Left, Top, Right and Bottom
parameters/numbers specifies the relative position to
the part's client area, where the EBN should be
rendered. The Left, Top, Right and Bottom
parameters are numbers (negative, zero or positive
values, with no decimal), that can be followed by the
D character which indicates the value according to the
current DPI settings. For instance, "CP:1 -2 -2 2 2",
uses the EBN with the identifier 1, and displays it on a
2-pixels wider rectangle no matter of the DPI settings,
while "CP:1 -2D -2D 2D 2D" displays it on a 2-pixels
wider rectangle if DPI settings is 100%, and on on a
3-pixels wider rectangle if DPI settings is 150%.

Return Description

Boolean A Boolean expression that indicates whether the new skin
was added or replaced.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control. By using a
collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the BeginUpdate and EndUpdate methods to maintain performance while init the control.
Use the Refresh method to refresh the control.

The identifier you choose for the skin is very important to be used in the background
properties like explained bellow. Shortly, the color properties uses 4 bytes (DWORD,

double WORD, and so on) to hold a RGB value. More than that, the first byte (most
significant byte in the color) is used only to specify system color. if the first bit in the byte is
1, the rest of bits indicates the index of the system color being used. So, we use the last 7
bits in the high significant byte of the color to indicates the identifier of the skin being used.
So, since the 7 bits can cover 127 values, excluding 0, we have 126 possibilities to store an
identifier in that byte. This way, a DWORD expression indicates the background color
stored in RRGGBB format and the index of the skin (ID parameter) in the last 7 bits in the
high significant byte of the color. For instance, the BackColor = BackColor Or &H2000000
indicates that we apply the skin with the index 2 using the old color, to the object that
BackColor is applied.

On Windows XP, the following table shows how the common controls are broken into parts
and states:

Control/ClassName Part States

BUTTON BP_CHECKBOX = 3

CBS_UNCHECKEDNORMAL =
1 CBS_UNCHECKEDHOT = 2
CBS_UNCHECKEDPRESSED
= 3
CBS_UNCHECKEDDISABLED
= 4 CBS_CHECKEDNORMAL =
5 CBS_CHECKEDHOT = 6
CBS_CHECKEDPRESSED = 7
CBS_CHECKEDDISABLED = 8
CBS_MIXEDNORMAL = 9
CBS_MIXEDHOT = 10
CBS_MIXEDPRESSED = 11
CBS_MIXEDDISABLED = 12

BP_GROUPBOX = 4 GBS_NORMAL = 1
GBS_DISABLED = 2

BP_PUSHBUTTON = 1

PBS_NORMAL = 1 PBS_HOT
= 2 PBS_PRESSED = 3
PBS_DISABLED = 4
PBS_DEFAULTED = 5

BP_RADIOBUTTON = 2

RBS_UNCHECKEDNORMAL =
1 RBS_UNCHECKEDHOT = 2
RBS_UNCHECKEDPRESSED
= 3
RBS_UNCHECKEDDISABLED
= 4 RBS_CHECKEDNORMAL =
5 RBS_CHECKEDHOT = 6
RBS_CHECKEDPRESSED = 7

RBS_CHECKEDDISABLED = 8
BP_USERBUTTON = 5

CLOCK CLP_TIME = 1 CLS_NORMAL = 1

COMBOBOX CP_DROPDOWNBUTTON = 1

CBXS_NORMAL = 1
CBXS_HOT = 2
CBXS_PRESSED = 3
CBXS_DISABLED = 4

EDIT EP_CARET = 2

EP_EDITTEXT = 1

ETS_NORMAL = 1 ETS_HOT =
2 ETS_SELECTED = 3
ETS_DISABLED = 4
ETS_FOCUSED = 5
ETS_READONLY = 6
ETS_ASSIST = 7

EXPLORERBAR EBP_HEADERBACKGROUND = 1

EBP_HEADERCLOSE = 2
EBHC_NORMAL = 1
EBHC_HOT = 2
EBHC_PRESSED = 3

EBP_HEADERPIN = 3

EBHP_NORMAL = 1
EBHP_HOT = 2
EBHP_PRESSED = 3
EBHP_SELECTEDNORMAL =
4 EBHP_SELECTEDHOT = 5
EBHP_SELECTEDPRESSED =
6

EBP_IEBARMENU = 4 EBM_NORMAL = 1 EBM_HOT
= 2 EBM_PRESSED = 3

EBP_NORMALGROUPBACKGROUND = 5

EBP_NORMALGROUPCOLLAPSE = 6
EBNGC_NORMAL = 1
EBNGC_HOT = 2
EBNGC_PRESSED = 3

EBP_NORMALGROUPEXPAND = 7
EBNGE_NORMAL = 1
EBNGE_HOT = 2
EBNGE_PRESSED = 3

EBP_NORMALGROUPHEAD = 8
EBP_SPECIALGROUPBACKGROUND = 9

EBP_SPECIALGROUPCOLLAPSE = 10
EBSGC_NORMAL = 1
EBSGC_HOT = 2
EBSGC_PRESSED = 3
EBSGE_NORMAL = 1

EBP_SPECIALGROUPEXPAND = 11 EBSGE_HOT = 2
EBSGE_PRESSED = 3

EBP_SPECIALGROUPHEAD = 12

HEADER HP_HEADERITEM = 1 HIS_NORMAL = 1 HIS_HOT =
2 HIS_PRESSED = 3

HP_HEADERITEMLEFT = 2 HILS_NORMAL = 1 HILS_HOT
= 2 HILS_PRESSED = 3

HP_HEADERITEMRIGHT = 3 HIRS_NORMAL = 1 HIRS_HOT
= 2 HIRS_PRESSED = 3

HP_HEADERSORTARROW = 4 HSAS_SORTEDUP = 1
HSAS_SORTEDDOWN = 2

LISTVIEW LVP_EMPTYTEXT = 5
LVP_LISTDETAIL = 3
LVP_LISTGROUP = 2

LVP_LISTITEM = 1

LIS_NORMAL = 1 LIS_HOT =
2 LIS_SELECTED = 3
LIS_DISABLED = 4
LIS_SELECTEDNOTFOCUS =
5

LVP_LISTSORTEDDETAIL = 4

MENU MP_MENUBARDROPDOWN = 4
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUBARITEM = 3
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_CHEVRON = 5
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUDROPDOWN = 2
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_MENUITEM = 1
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3

MP_SEPARATOR = 6
MS_NORMAL = 1
MS_SELECTED = 2
MS_DEMOTED = 3
MDS_NORMAL = 1 MDS_HOT
= 2 MDS_PRESSED = 3

MENUBAND MDP_NEWAPPBUTTON = 1 MDS_DISABLED = 4
MDS_CHECKED = 5
MDS_HOTCHECKED = 6

MDP_SEPERATOR = 2

PAGE PGRP_DOWN = 2
DNS_NORMAL = 1 DNS_HOT
= 2 DNS_PRESSED = 3
DNS_DISABLED = 4

PGRP_DOWNHORZ = 4

DNHZS_NORMAL = 1
DNHZS_HOT = 2
DNHZS_PRESSED = 3
DNHZS_DISABLED = 4

PGRP_UP = 1
UPS_NORMAL = 1 UPS_HOT
= 2 UPS_PRESSED = 3
UPS_DISABLED = 4

PGRP_UPHORZ = 3

UPHZS_NORMAL = 1
UPHZS_HOT = 2
UPHZS_PRESSED = 3
UPHZS_DISABLED = 4

PROGRESS PP_BAR = 1
PP_BARVERT = 2
PP_CHUNK = 3
PP_CHUNKVERT = 4

REBAR RP_BAND = 3

RP_CHEVRON = 4
CHEVS_NORMAL = 1
CHEVS_HOT = 2
CHEVS_PRESSED = 3

RP_CHEVRONVERT = 5
RP_GRIPPER = 1
RP_GRIPPERVERT = 2

SCROLLBAR SBP_ARROWBTN = 1

ABS_DOWNDISABLED,
ABS_DOWNHOT,
ABS_DOWNNORMAL,
ABS_DOWNPRESSED,
ABS_UPDISABLED,
ABS_UPHOT,
ABS_UPNORMAL,
ABS_UPPRESSED,
ABS_LEFTDISABLED,
ABS_LEFTHOT,
ABS_LEFTNORMAL,

ABS_LEFTPRESSED,
ABS_RIGHTDISABLED,
ABS_RIGHTHOT,
ABS_RIGHTNORMAL,
ABS_RIGHTPRESSED

SBP_GRIPPERHORZ = 8
SBP_GRIPPERVERT = 9

SBP_LOWERTRACKHORZ = 4

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_LOWERTRACKVERT = 6

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_THUMBBTNHORZ = 2

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_THUMBBTNVERT = 3

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_UPPERTRACKHORZ = 5

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_UPPERTRACKVERT = 7

SCRBS_NORMAL = 1
SCRBS_HOT = 2
SCRBS_PRESSED = 3
SCRBS_DISABLED = 4

SBP_SIZEBOX = 10 SZB_RIGHTALIGN = 1
SZB_LEFTALIGN = 2

SPIN SPNP_DOWN = 2
DNS_NORMAL = 1 DNS_HOT
= 2 DNS_PRESSED = 3
DNS_DISABLED = 4

SPNP_DOWNHORZ = 4

DNHZS_NORMAL = 1
DNHZS_HOT = 2
DNHZS_PRESSED = 3
DNHZS_DISABLED = 4
UPS_NORMAL = 1 UPS_HOT

SPNP_UP = 1 = 2 UPS_PRESSED = 3
UPS_DISABLED = 4

SPNP_UPHORZ = 3

UPHZS_NORMAL = 1
UPHZS_HOT = 2
UPHZS_PRESSED = 3
UPHZS_DISABLED = 4

STARTPANEL SPP_LOGOFF = 8

SPP_LOGOFFBUTTONS = 9
SPLS_NORMAL = 1
SPLS_HOT = 2
SPLS_PRESSED = 3

SPP_MOREPROGRAMS = 2

SPP_MOREPROGRAMSARROW = 3 SPS_NORMAL = 1 SPS_HOT
= 2 SPS_PRESSED = 3

SPP_PLACESLIST = 6
SPP_PLACESLISTSEPARATOR = 7
SPP_PREVIEW = 11
SPP_PROGLIST = 4
SPP_PROGLISTSEPARATOR = 5
SPP_USERPANE = 1
SPP_USERPICTURE = 10

STATUS SP_GRIPPER = 3
SP_PANE = 1
SP_GRIPPERPANE = 2

TAB TABP_BODY = 10
TABP_PANE = 9

TABP_TABITEM = 1

TIS_NORMAL = 1 TIS_HOT =
2 TIS_SELECTED = 3
TIS_DISABLED = 4
TIS_FOCUSED = 5

TABP_TABITEMBOTHEDGE = 4

TIBES_NORMAL = 1
TIBES_HOT = 2
TIBES_SELECTED = 3
TIBES_DISABLED = 4
TIBES_FOCUSED = 5

TABP_TABITEMLEFTEDGE = 2

TILES_NORMAL = 1
TILES_HOT = 2
TILES_SELECTED = 3
TILES_DISABLED = 4
TILES_FOCUSED = 5

TABP_TABITEMRIGHTEDGE = 3

TIRES_NORMAL = 1
TIRES_HOT = 2
TIRES_SELECTED = 3
TIRES_DISABLED = 4
TIRES_FOCUSED = 5

TABP_TOPTABITEM = 5

TTIS_NORMAL = 1 TTIS_HOT
= 2 TTIS_SELECTED = 3
TTIS_DISABLED = 4
TTIS_FOCUSED = 5

TABP_TOPTABITEMBOTHEDGE = 8

TTIBES_NORMAL = 1
TTIBES_HOT = 2
TTIBES_SELECTED = 3
TTIBES_DISABLED
TTIBES_FOCUSED = 5

TABP_TOPTABITEMLEFTEDGE = 6

TTILES_NORMAL = 1
TTILES_HOT = 2
TTILES_SELECTED = 3
TTILES_DISABLED
TTILES_FOCUSED = 5

TABP_TOPTABITEMRIGHTEDGE = 7

TTIRES_NORMAL = 1
TTIRES_HOT = 2
TTIRES_SELECTED = 3
TTIRES_DISABLED
TTIRES_FOCUSED = 5

TASKBAND TDP_GROUPCOUNT = 1
TDP_FLASHBUTTON = 2
TDP_FLASHBUTTONGROUPMENU = 3

TASKBAR TBP_BACKGROUNDBOTTOM = 1
TBP_BACKGROUNDLEFT = 4
TBP_BACKGROUNDRIGHT = 2
TBP_BACKGROUNDTOP = 3
TBP_SIZINGBARBOTTOM = 5
TBP_SIZINGBARBOTTOMLEFT = 8
TBP_SIZINGBARRIGHT = 6
TBP_SIZINGBARTOP = 7

TOOLBAR TP_BUTTON = 1

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_DROPDOWNBUTTON = 2

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SPLITBUTTON = 3

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SPLITBUTTONDROPDOWN = 4

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SEPARATOR = 5

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TP_SEPARATORVERT = 6

TS_NORMAL = 1 TS_HOT = 2
TS_PRESSED = 3
TS_DISABLED = 4
TS_CHECKED = 5
TS_HOTCHECKED = 6

TOOLTIP TTP_BALLOON = 3 TTBS_NORMAL = 1
TTBS_LINK = 2

TTP_BALLOONTITLE = 4 TTBS_NORMAL = 1
TTBS_LINK = 2

TTP_CLOSE = 5
TTCS_NORMAL = 1
TTCS_HOT = 2
TTCS_PRESSED = 3

TTP_STANDARD = 1 TTSS_NORMAL = 1
TTSS_LINK = 2

TTP_STANDARDTITLE = 2 TTSS_NORMAL = 1
TTSS_LINK = 2

TRACKBAR TKP_THUMB = 3

TUS_NORMAL = 1 TUS_HOT =
2 TUS_PRESSED = 3
TUS_FOCUSED = 4
TUS_DISABLED = 5
TUBS_NORMAL = 1

TKP_THUMBBOTTOM = 4 TUBS_HOT = 2
TUBS_PRESSED = 3
TUBS_FOCUSED = 4
TUBS_DISABLED = 5

TKP_THUMBLEFT = 7

TUVLS_NORMAL = 1
TUVLS_HOT = 2
TUVLS_PRESSED = 3
TUVLS_FOCUSED = 4
TUVLS_DISABLED = 5

TKP_THUMBRIGHT = 8

TUVRS_NORMAL = 1
TUVRS_HOT = 2
TUVRS_PRESSED = 3
TUVRS_FOCUSED = 4
TUVRS_DISABLED = 5

TKP_THUMBTOP = 5

TUTS_NORMAL = 1
TUTS_HOT = 2
TUTS_PRESSED = 3
TUTS_FOCUSED = 4
TUTS_DISABLED = 5

TKP_THUMBVERT = 6

TUVS_NORMAL = 1
TUVS_HOT = 2
TUVS_PRESSED = 3
TUVS_FOCUSED = 4
TUVS_DISABLED = 5

TKP_TICS = 9 TSS_NORMAL = 1
TKP_TICSVERT = 10 TSVS_NORMAL = 1
TKP_TRACK = 1 TRS_NORMAL = 1
TKP_TRACKVERT = 2 TRVS_NORMAL = 1

TRAYNOTIFY TNP_ANIMBACKGROUND = 2
TNP_BACKGROUND = 1

TREEVIEW TVP_BRANCH = 3

TVP_GLYPH = 2 GLPS_CLOSED = 1
GLPS_OPENED = 2

TVP_TREEITEM = 1

TREIS_NORMAL = 1
TREIS_HOT = 2
TREIS_SELECTED = 3
TREIS_DISABLED = 4
TREIS_SELECTEDNOTFOCUS
= 5
CS_ACTIVE = 1 CS_INACTIVE

WINDOW WP_CAPTION = 1 = 2 CS_DISABLED = 3

WP_CAPTIONSIZINGTEMPLATE = 30

WP_CLOSEBUTTON = 18
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_DIALOG = 29

WP_FRAMEBOTTOM = 9
FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMEBOTTOMSIZINGTEMPLATE = 36

WP_FRAMELEFT = 7 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMELEFTSIZINGTEMPLATE = 32

WP_FRAMERIGHT = 8 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_FRAMERIGHTSIZINGTEMPLATE = 34

WP_HELPBUTTON = 23
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_HORZSCROLL = 25
HSS_NORMAL = 1 HSS_HOT
= 2 HSS_PUSHED = 3
HSS_DISABLED = 4

WP_HORZTHUMB = 26
HTS_NORMAL = 1 HTS_HOT =
2 HTS_PUSHED = 3
HTS_DISABLED = 4

WP_MAX_BUTTON

MAXBS_NORMAL = 1
MAXBS_HOT = 2
MAXBS_PUSHED = 3
MAXBS_DISABLED = 4

WP_MAXCAPTION = 5
MXCS_ACTIVE = 1
MXCS_INACTIVE = 2
MXCS_DISABLED = 3

WP_MDICLOSEBUTTON = 20
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_MDIHELPBUTTON = 24
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4

WP_MDIMINBUTTON = 16

MINBS_NORMAL = 1
MINBS_HOT = 2

MINBS_PUSHED = 3
MINBS_DISABLED = 4

WP_MDIRESTOREBUTTON = 22
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_MDISYSBUTTON = 14
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_MINBUTTON = 15

MINBS_NORMAL = 1
MINBS_HOT = 2
MINBS_PUSHED = 3
MINBS_DISABLED = 4

WP_MINCAPTION = 3
MNCS_ACTIVE = 1
MNCS_INACTIVE = 2
MNCS_DISABLED = 3

WP_RESTOREBUTTON = 21
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_SMALLCAPTION = 2 CS_ACTIVE = 1 CS_INACTIVE
= 2 CS_DISABLED = 3

WP_SMALLCAPTIONSIZINGTEMPLATE = 31

WP_SMALLCLOSEBUTTON = 19
CBS_NORMAL = 1 CBS_HOT
= 2 CBS_PUSHED = 3
CBS_DISABLED = 4

WP_SMALLFRAMEBOTTOM = 12 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMEBOTTOMSIZINGTEMPLATE
= 37

WP_SMALLFRAMELEFT = 10 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMELEFTSIZINGTEMPLATE =
33

WP_SMALLFRAMERIGHT = 11 FS_ACTIVE = 1 FS_INACTIVE
= 2

WP_SMALLFRAMERIGHTSIZINGTEMPLATE =
35

WP_SMALLHELPBUTTON
HBS_NORMAL = 1 HBS_HOT
= 2 HBS_PUSHED = 3
HBS_DISABLED = 4
MAXBS_NORMAL = 1

WP_SMALLMAXBUTTON MAXBS_HOT = 2
MAXBS_PUSHED = 3
MAXBS_DISABLED = 4

WP_SMALLMAXCAPTION = 6
MXCS_ACTIVE = 1
MXCS_INACTIVE = 2
MXCS_DISABLED = 3

WP_SMALLMINCAPTION = 4
MNCS_ACTIVE = 1
MNCS_INACTIVE = 2
MNCS_DISABLED = 3

WP_SMALLRESTOREBUTTON
RBS_NORMAL = 1 RBS_HOT
= 2 RBS_PUSHED = 3
RBS_DISABLED = 4

WP_SMALLSYSBUTTON
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_SYSBUTTON = 13
SBS_NORMAL = 1 SBS_HOT
= 2 SBS_PUSHED = 3
SBS_DISABLED = 4

WP_VERTSCROLL = 27
VSS_NORMAL = 1 VSS_HOT
= 2 VSS_PUSHED = 3
VSS_DISABLED = 4

WP_VERTTHUMB = 28
VTS_NORMAL = 1 VTS_HOT =
2 VTS_PUSHED = 3
VTS_DISABLED = 4

method Appearance.Clear ()
Removes all skins in the control.

Type Description

Use the Clear method to clear all skins from the control. Use the Remove method to
remove a specific skin. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being applied
to the background's part.

method Appearance.Remove (ID as Long)
Removes a specific skin from the control.

Type Description

ID as Long A Long expression that indicates the index of the skin
being removed.

Use the Remove method to remove a specific skin. The identifier of the skin being removed
should be the same as when the skin was added using the Add method. Use the Clear
method to clear all skins from the control. If you need to remove the skin appearance from
a part of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the background's part.

property Appearance.RenderType as Long
Specifies the way colored EBN objects are displayed on the component.

Type Description

Long A long expression that indicates how the EBN objects are
shown in the control, like explained bellow.

By default, the RenderType property is 0, which indicates an A-color scheme. The
RenderType property can be used to change the colors for the entire control, for parts of
the controls that uses EBN objects. The RenderType property is not applied to the currently
XP-theme if using.

The RenderType property is applied to all parts that displays an EBN object. The properties
of color type may support the EBN object if the property's description includes "A color
expression that indicates the cell's background color. The last 7 bits in the high significant
byte of the color to indicates the identifier of the skin being used. Use the Add method to
add new skins to the control. If you need to remove the skin appearance from a part of the
control you need to reset the last 7 bits in the high significant byte of the color being
applied to the background's part." In other words, a property that supports EBN objects
should be of format 0xIDRRGGBB, where the ID is the identifier of the EBN to be applied,
while the BBGGRR is the (Red,Green,Blue, RGB-Color) color to be applied on the selected
EBN. For instance, the 0x1000000 indicates displaying the EBN as it is, with no color
applied, while the 0x1FF0000, applies the Blue color (RGB(0x0,0x0,0xFF), RGB(0,0,255)
on the EBN with the identifier 1. You can use the EBNColor tool to visualize applying EBN
colors.

Click here to watch a movie on how you can change the colors to be applied on EBN
objects.

For instance, the following sample changes the control's header appearance, by using an
EBN object:

With Control
 .VisualAppearance.Add 1,"c:\exontrol\images\normal.ebn"
 .BackColorHeader = &H1000000
End With

In the following screen shot the following objects displays the current EBN with a different
color:

"A" in Red (RGB(255,0,0), for instance the bar's property exBarColor is 0x10000FF
"B" in Green (RGB(0,255,0), for instance the bar's property exBarColor is 0x100FF00

https://exontrol.com/skintut.jsp#colors
https://www.youtube.com/watch?v=-PcCepMVclQ

"C" in Blue (RGB(0,0,255), for instance the bar's property exBarColor is 0x1FF0000
"Default", no color is specified, for instance the bar's property exBarColor is
0x1000000

The RenderType property could be one of the following:

-3, no color is applied. For instance, the BackColorHeader = &H1FF0000 is displayed
as would be .BackColorHeader = &H1000000, so the 0xFF0000 color (Blue color) is
ignored. You can use this option to allow the control displays the EBN colors or not.

-2, OR-color scheme. The color to be applied on the part of the control is a OR bit
combination between the original EBN color and the specified color. For instance, the
BackColorHeader = &H1FF0000, applies the OR bit for the entire Blue channel, or in
other words, it applies a less Blue to the part of the control. This option should be used
with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

-1, AND-color scheme, The color to be applied on the part of the control is an AND bit
combination between the original EBN color and the specified color. For instance, the
BackColorHeader = &H1FF0000, applies the AND bit for the entire Blue channel, or in
other words, it applies a more Blue to the part of the control. This option should be
used with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

0, default, the specified color is applied to the EBN. For instance, the
BackColorHeader = &H1FF0000, applies a Blue color to the object. This option could
be used to specify any color for the part of the components, that support EBN objects,
not only solid colors.

0xAABBGGRR, where the AA a value between 0 to 255, which indicates the
transparency, and RR, GG, BB the red, green and blue values. This option applies the
same color to all parts that displays EBN objects, whit ignoring any specified color in
the color property. For instance, the RenderType on 0x4000FFFF, indicates a 25%
Yellow on EBN objects. The 0x40, or 64 in decimal, is a 25 % from in a 256 interal, and
the 0x00FFFF, indicates the Yellow (RGB(255,255,0)). The same could be if the
RenderType is 0x40000000 + vbYellow, or &H40000000 + RGB(255, 255, 0), and so,
the RenderType could be the 0xAA000000 + Color, where the Color is the RGB format
of the color.

The following picture shows the control with the RenderType property on 0x4000FFFF
(25% Yellow, 0x40 or 64 in decimal is 25% from 256):

The following picture shows the control with the RenderType property on 0x8000FFFF
(50% Yellow, 0x80 or 128 in decimal is 50% from 256):

The following picture shows the control with the RenderType property on 0xC000FFFF
(75% Yellow, 0xC0 or 192 in decimal is 75% from 256):

The following picture shows the control with the RenderType property on 0xFF00FFFF
(100% Yellow, 0xFF or 255 in decimal is 100% from 255):

CascadeTree object
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {4DD131BB-181C-428B-B0F3-8449ADA3AF49}. The object's program identifier is:
"Exontrol.CascadeTree". The /COM object module is: "ExCascadeTree.dll"

The Miller columns (also known as Cascading Lists) are a browsing/visualization technique
that can be applied to tree structures. The cascade columns allow multiple levels of the
hierarchy to be open at once, and provide a visual representation of the current location. It
is closely related to techniques used earlier in the Smalltalk browser, but was independently
invented by Mark S. Miller in 1980 at Yale University. The CascadeTree object supports the
following properties and methods:

Name Description
AllowContextMenu Enables or disables the file's context menu.

AllowSplitView Specifies whether the user can split the control into
multiple-views

AnchorFromPoint Retrieves the identifier of the anchor from point.
Appearance Retrieves or sets the control's appearance.

AttachTemplate Attaches a script to the current object, including the
events, from a string, file, a safe array of bytes.

BackColor Specifies the control's background color.
BackColorAlternate Specifies the control's alternate background color.
BackColorHeader Specifies the header's background color.
BackColorLevelHeader Specifies the multiple levels header's background color.

BackColorSortBar Retrieves or sets a value that indicates the sort bar's
background color.

BackColorSortBarCaption Returns or sets a value that indicates the caption's
background color in the control's sort bar.

Background Returns or sets a value that indicates the background
color for parts in the control.

BeginUpdate
Maintains performance when items are added to the
control one at a time. This method prevents the control
from painting until the EndUpdate method is called.

BorderHeight Sets or retrieves a value that indicates the border height
of the control.

BorderWidth Sets or retrieves a value that indicates the border width of
the control.

ColumnFromPoint Retrieves the column from the point.

DataSource Specifies the control's data as an array, XML, ADO or
DAO.

DefaultView Returns the control's default view.
DefColumnWidth Specifies the width to create a new cascade column.
Enabled Enables or disables the control.

EndUpdate Resumes painting the control after painting is suspended
by the BeginUpdate method.

EventParam Retrieves or sets a value that indicates the current's event
parameter.

ExecuteContextMenu Executes a command from the object's context menu.
ExecuteTemplate Executes a template and returns the result.
FilterBarBackColor Specifies the background color of the control's filter bar.
FilterBarForeColor Specifies the foreground color of the control's filter bar.

FitCascadeColumns Retrieves or sets a value that indicates the number of
cascading columns to fit.

FitToClient Resizes or/and moves the all cascade columns to fit the
control's client area.

Font Retrieves or sets the control's font.
ForeColor Specifies the control's foreground color.
ForeColorAlternate Specifies the control's alternate foreground color.
ForeColorHeader Specifies the header's foreground color.

ForeColorSortBar Retrieves or sets a value that indicates the sort bar's
foreground color.

FormatABC Formats the A,B,C values based on the giving expression
and returns the result.

FormatAnchor Specifies the visual effect for anchor elements in HTML
captions.

FreezeEvents Prevents the control to fire any event.

HeaderAppearance Retrieves or sets a value that indicates the header's
appearance.

HeaderVisible Retrieves or sets a value that indicates whether the the
grid's header is visible or hidden.

HTMLPicture Adds or replaces a picture in HTML captions.

hWnd Retrieves the control's window handle.

Images Sets at runtime the control's image list. The Handle should
be a handle to an Images List Control.

ImageSize Retrieves or sets the size of icons the control displays.
ItemFromPoint Retrieves the item from the point.

Layout
Saves or loads the control's layout, such current selection
for each panel, the widths of the cascade columns, and so
on.

MaxColumnWidth Specifies the maximum width for any cascade column.
MinColumnWidth Specifies the minimum width for any cascade column.

Mode Indicates whether the view allows single or multiple
cascade columns.

Name Selects the path using the name for each view.
Picture Retrieves or sets a graphic to be displayed in the control.

PictureDisplay Retrieves or sets a value that indicates the way how the
graphic is displayed on the control's background

Refresh Refreses the control.

ReplaceIcon Adds a new icon, replaces an icon or clears the control's
image list.

ScrollButtonHeight Specifies the height of the button in the vertical scrollbar.
ScrollButtonWidth Specifies the width of the button in the horizontal scrollbar.
ScrollFont Retrieves or sets the scrollbar's font.
ScrollHeight Specifies the height of the horizontal scrollbar.
ScrollOrderParts Specifies the order of the buttons in the scroll bar.

ScrollPartCaption Specifies the caption being displayed on the specified
scroll part.

ScrollPartEnable Indicates whether the specified scroll part is enabled or
disabled.

ScrollPartVisible Indicates whether the specified scroll part is visible or
hidden.

ScrollThumbSize Specifies the size of the thumb in the scrollbar.

ScrollToolTip Specifies the tooltip being shown when the user moves the
scroll box.

ScrollWidth Specifies the width of the vertical scrollbar.

SelBackColor Retrieves or sets a value that indicates the selection
background color.

Select Selects the path using the key for each view.

SelForeColor Retrieves or sets a value that indicates the selection
foreground color.

ShowContextMenu Specifies the object's context menu.

ShowImageList Specifies whether the control's image list window is visible
or hidden.

ShowToolTip Shows the specified tooltip at given position.
SplitViewHeight Specifies the height of split panels, separated by comma.
StatusBarHeight Specifies the height of the control's status bar.

StatusBarLabel Specifies the HTML label the control's status bar is
displaying.

StatusBarVisible Specifies whether the control's status bar is visible or
hidden.

Template Specifies the control's template.

TemplateDef Defines inside variables for the next
Template/ExecuteTemplate call.

TemplatePut Defines inside variables for the next
Template/ExecuteTemplate call.

ToolTipDelay Specifies the time in ms that passes before the ToolTip
appears.

ToolTipFont Retrieves or sets the tooltip's font.
ToolTipMargin Defines the size of the control's tooltip margins.

ToolTipPopDelay Specifies the period in ms of time the ToolTip remains
visible if the mouse pointer is stationary within a control.

ToolTipWidth Specifies a value that indicates the width of the tooltip
window, in pixels.

UseTabKey
Retrieves or sets a value that specifies whether the Tab or
SHIFT + Tab key navigates through the cascading
columns.

Version Retrieves the control's version.
View Returns the view you are currently working on.
ViewColumnFromPoint Retrieves the view and column from the point.
ViewFromPoint Retrieves the view from the point.

ViewItemFromPoint Retrieves the view and item from the point.
VisualAppearance Retrieves the control's appearance.

property CascadeTree.AllowContextMenu as Boolean

Enables or disables the file's context menu.

Type Description

Boolean A boolean expression that indicates whether the control's
context menu is enabled or disabled.

By default, the AllowContextMenu property is True. Use the AllowContextMenu to disable
the control's context menu. The control's context menu is displayed when the user does a
right click on the file or the folder. The system controls the items being inserted to the
control's context menu. The ShowContextMenu property indicates the items to be displayed
on the object's context menu. The ShowContextMenu property can be used to disable,
update, remove or add new items. The ExecuteContextMenu property specifies the
identifier of the command to be executed (id option in the ShowContextMenu property).

property CascadeTree.AllowSplitView as AllowSplitViewEnum
Specifies whether the user can split the control into multiple-views

Type Description

AllowSplitViewEnum An AllowSplitViewEnum expression whether the control
supports multiple views (arranged vertically)

By default, the AllowSplitView property is exNoSplitView, so no additional view is
supported. The AllowSplitView property specifies whether the user can split the control into
multiple-views. The SplitViewHeight property specifies the height of split panels, separated
by comma. The Background(exHSplitBar) property specifies the visual appearance of the
control's split bar (horizontal split bar)

property CascadeTree.AnchorFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as String
Retrieves the identifier of the anchor from point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

String
A String expression that specifies the identifier (id) of the
anchor element from the point, or empty string if there is
no anchor element at the cursor.

Use the AnchorFromPoint property to determine the identifier of the anchor from the point.
Use the <a id;options> anchor elements to add hyperlinks to cell's caption. The control fires
the AnchorClick event when the user clicks an anchor element. Use the ShowToolTip
method to show the specified tooltip at given or cursor coordinates. The MouseMove event
is generated continually as the mouse pointer moves across the control.

property CascadeTree.Appearance as AppearanceEnum

Retrieves or sets the control's appearance.

Type Description

AppearanceEnum

An AppearanceEnum expression that indicates the
control's appearance, or a color expression whose last 7
bits in the high significant byte of the value indicates the
index of the skin in the Appearance collection, being
displayed as control's borders. For instance, if the
Appearance = 0x1000000, indicates that the first skin
object in the Appearance collection defines the control's
border. The Client object in the skin, defines the client
area of the control. The files/folders, scrollbars are
always shown in the control's client area. The skin may
contain transparent objects, and so you can define round
corners. Use the eXButton's Skin builder to view or
change this file

Use the Appearance property to specify the control's border. The Add method to add new
skins to the control. Use the BackColor property to specify the control's background color.
The BorderWidth / BorderHeight property specifies the size of the control's border.

https://exontrol.com/exbutton.jsp

method CascadeTree.AttachTemplate (Template as Variant)
Attaches a script to the current object, including the events, from a string, file, a safe array
of bytes.

Type Description
Template as Variant A string expression that specifies the Template to execute.

The AttachTemplate/x-script code is a simple way of calling control/object's properties,
methods/events using strings. The AttachTemplate features allows you to attach a x-script
code to the component. The AttachTemplate method executes x-script code (including
events), from a string, file or a safe array of bytes. This feature allows you to run any x-
script code for any configuration of the component /COM, /NET or /WPF. Exontrol owns the
x-script implementation in its easiest form and it does not require any VB engine or
whatever to get executed. The x-script code can be converted to several programming
languages using the eXHelper tool.

The following sample opens the Windows Internet Explorer once the user clicks the control
(/COM version):

AttachTemplate("handle Click(){ CreateObject(`internetexplorer.application`){ Visible =
True; Navigate(`https://www.exontrol.com`) } } ")

This script is equivalent with the following VB code:

Private Sub CascadeTree1_Click()
 With CreateObject("internetexplorer.application")
 .Visible = True
 .Navigate ("https://www.exontrol.com")
 End With
End Sub

The AttachTemplate/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>
<lines> := <line>[<eol> <lines>] | <block>
<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]
<eol> := ";" | "\r\n"
<line> := <dim> | <createobject> | <call> | <set> | <comment> | <handle>[<eol>]{[<eol>]
<lines>[<eol>]}[<eol>]
<dim> := "DIM" <variables>
<variables> := <variable> [, <variables>]

<variable> := "ME" | <identifier>
<createobject> := "CREATEOBJECT(`"<type>"`)"
<call> := <variable> | <property> | <variable>"."<property> | <createobject>"."<property>
<property> := [<property>"."]<identifier>["("<parameters>")"]
<set> := <call> "=" <value>
<property> := <identifier> | <identifier>"("[<parameters>]")"
<parameters> := <value> [","<parameters>]
<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> | <call>
<boolean> := "TRUE" | "FALSE"
<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit16> := <digit10> | A | B | C | D | E | F
<integer> := <digit10>[<integer>]
<hexa> := <digit16>[<hexa>]
<color> := "RGB("<integer>","<integer>","<integer>")"
<date> := "#"<integer>"/"<integer>"/"<integer>" "[<integer>":"<integer>":"<integer>"]"#"
<string> := '"'<text>'"' | "`"<text>"`"
<comment> := "'"<text>
<handle> := "handle " <event>
<event> := <identifier>"("[<eparameters>]")"
<eparameters> := <eparameter> [","<eparameters>]
<parameters> := <identifier>

where:

<identifier> indicates an identifier of the variable, property, method or event, and should
start with a letter.
<type> indicates the type the CreateObject function creates, as a progID for /COM version
or the assembly-qualified name of the type to create for /NET or /WPF version
<text> any string of characters

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character.

The advantage of the AttachTemplate relative to Template / ExecuteTemplate is that the
AttachTemplate can add handlers to the control events.

property CascadeTree.BackColor as Color

Retrieves or sets the control's background.

Type Description

Color A color expression that indicates the control's background
color.

Use the BackColor / BackColorAlternate property to specify the control's background color.
The Background property returns or sets a value that indicates the background color for
parts in the control. Use the ForeColor property to change the control's foreground color.
Use the SelForeColor and SelBackColor properties to specify the background and
foreground colors for selected items.

property CascadeTree.BackColorAlternate as Color
Specifies the background color used to display alternate items in the control.

Type Description

Color

A color expression that indicates the alternate background
color. If the first byte of four is 7F, the color is applied to
the items section only. For instance, a value of
0x7F0000FF indicates that the BackColorAlternate
property is red, and it applied to the items section only, so
the non-items section is not painted.

By default, the control's BackColorAlternate property is zero. Use the BackColorAlternate
property to specify the background color used to display alternate items in the control. The
control ignores the BackColorAlternate property if it is 0 (zero). Use the BackColor
property to specify the control's background color. Use the SelBackColor property to
specify the selection background color. Use the ItemBackColor property to specify the
item's background color. Use the CellBackColor property to specify the cell's background
color. Use the Def(exCellBackColor) property to specify the background color for all cells in
the column. If the first two bytes of the BackColorAlternate property are 0x7F, the non-
items area is not filled.

property CascadeTree.BackColorHeader as Color
Specifies the header's background color.

Type Description

Color

A color expression that indicates the background color of
the control's header bar. The last 7 bits in the high
significant byte of the color indicates the identifier of the
skin being used. Use the Add method to add new skins to
the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits
in the high significant byte of the color being applied to the
background's part.

Use the BackColorHeader and ForeColorHeader properties to define colors used to paint
the control's header bar. Use the HeaderVisible property to show or hide the control's
header. Use the HeaderHeight property to specify the height of the control's header bar.
Use the LevelKey property to allow multiple levels header bar. Use the
BackColorLevelHeader property to specify the background color of the header when it
displays multiple levels. Use the HeaderHeight property to specify the height of the header
bar.

property CascadeTree.BackColorLevelHeader as Color
Specifies the multiple levels header's background color.

Type Description

Color A color expression that indicates the background color of
the control's header bar.

Use the BackColorHeader and ForeColorHeader properties to define colors used to paint
the control's header bar. Use the BackColorLevelHeader property to specify the
background color of the control's header bar when multiple levels are displayed. Use the
LevelKey property to display the control's header bar using multiple levels. If the control
displays the header bar using multiple levels the HeaderHeight property gets the height in
pixels of a single level in the header bar. The control's header displays multiple levels if
there are two or more neighbor columns with the same non empty level key.

property CascadeTree.BackColorSortBar as Color
Retrieves or sets a value that indicates the sort bar's background color.

Type Description

Color A color expression that indicates the background color of
the sort bar.

Use the BackColorSortBar property to specify the background color of the control's sort
bar. Use the SortBarVisible property to show the control's sort bar. Use the
BackColorSortBarCaption property to specify the background color of the caption of the
sort bar. The caption of the sort bar is visible, if there are no columns in the sort bar. Use
the SortBarCaption property to specify the caption of the sort bar. Use the
ForeColorSortBar property to specify the foreground color of the control's sort bar. Use the
BackColor property to specify the control's background color. Use the BackColorHeader
property to specify the background color of the control's header bar. Use the
BackColorLevelHeader property to specify the background color of the control's header bar
when multiple levels are displayed.

property CascadeTree.BackColorSortBarCaption as Color
Returns or sets a value that indicates the caption's background color in the control's sort
bar.

Type Description

Color A color expression that indicates the caption's background
color in the control's sort bar.

Use the SortBarCaption property to specify the caption of the sort bar, when the control's
sort bar contains no columns. Use the BackColorSortBar property to specify the
background color of the control's sort bar. Use the ForeColorSortBar property to specify
the foreground color of the caption in the control's sort bar.

property CascadeTree.Background(Part as BackgroundPartEnum) as
Color
Returns or sets a value that indicates the background color for parts in the control

Type Description
Part as
BackgroundPartEnum

A BackgroundPartEnum expression that indicates a part in
the control.

Color

A Color expression that indicates the background color for
a specified part. The last 7 bits in the high significant byte
of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

The Background property specifies a background color or a visual appearance for specific
parts in the control. If the Background property is 0, the control draws the part as default.
Use the Add method to add new skins to the control. Use the Remove method to remove a
specific skin from the control. Use the Clear method to remove all skins in the control. Use
the Refresh method to refresh the control.

method CascadeTree.BeginUpdate ()
Prevents the control from painting until the EndUpdate method is called.

Type Description

The BeginUpdate method prevents the control from painting until the EndUpdate method is
called. Use BeginUpdate and EndUpdate statement each time when the control requires
more changes. Using the BeginUpdate and EndUpdate methods increase the speed of
changing the control properties by preventing it from painting during changing.

property CascadeTree.BorderHeight as Long
Sets or retrieves a value that indicates the border height of the control.

Type Description

Long A long expression that specifies the height of the control's
border.

The BorderWidth / BorderHeight property specifies the size of the control's border. The
Appearance property retrieves or sets the control's appearance. The Add method to add
new skins to the control. Use the BackColor property to specify the control's background
color.

property CascadeTree.BorderWidth as Long
Sets or retrieves a value that indicates the border width of the control.

Type Description

Long A Long expression that indicates the border width of the
control.

By default, the BorderWidth property is 0. The BorderWidth / BorderHeight property
specifies the size of the control's border. The Appearance property retrieves or sets the
control's appearance. The Add method to add new skins to the control. Use the BackColor
property to specify the control's background color.

property CascadeTree.ColumnFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as Long
Retrieves the column from the point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

Long A long expression that specifies the index of the column
from the point.

The ColumnFromPoint property retrieves the column from the point. The
ColumnFromPoint(-1,-1) property retrieves the column from the current cursor position. The
ViewFromPoint property retrieves the view from the point. The ViewItemFromPoint property
retrieves the view and item from the point. The ViewColumnFromPoint property retrieves
the view and column from the point.

property CascadeTree.DataSource as Variant
Specifies the control's data as an array, XML, ADO or DAO.

Type Description

Variant A VARIANT expression that could be a string, an object as
explained bellow.

The control can automatically handle Array, XML, ADO, DAO, DataSet through the
DataSource properties (control and view objects). You can specify the data source for the
entire control through the DataSource property, or for a particular view using
View.DataSource property. If an internal error occurs while using the DataSource property
the Error event occurs.

For instance,

"...\sample.xml" opens the sample.xml file
"...\sample.dbf" opens the specified sample.dbf table
"Data Member=SELECT * FROM Orders ; Data Source=...\sample.accdb", opens the
Orders table of the specified sample.accdb database
"Data Member=SELECT * FROM Orders ; Data Source=...\sample.mdb", opens the
Orders table of the specified sample.mdb database
"Data Member=Orders ; Driver={Microsoft Access Driver (*.mdb)} ;
DBQ=...\sample.mdb", opens the Orders table of sample.mdb database, using ODBC
"Data Member=Orders ; Driver={Microsoft Access Driver (*.mdb)} ;
DBQ=...\sample.mdb", opens the Orders table of sample.mdb database, using ODBC
"Data Member=SELECT * FROM [Sheet1$] ; Driver={Microsoft Excel Driver (*.xls)} ;
DBQ=...\sample.xls ; DriverID=790" reads the Sheet1 worksheet of the sample.xml file
(Excel)
"Source=...\sample.mdb;Member=Select * FROM
Countries;Key=CountryCode;Tag=Country;Name=CountryName >>> Member=Select *
FROM States WHERE CountryCode IN
(<%Parent.CountryCode%>);Key=StateCode;Name=StateName;Tag=State |||
Member=Select * FROM Cities WHERE CountryCode IN
(<%Parent.CountryCode%>);Tag=City;Name=Name >>> Member=Select * FROM
Cities WHERE CountryCode IN (<%Parent.Parent.CountryCode%>) AND StateCode
IN (<%Parent.StateCode%>);Tag=City;Name=Name", specifies multiple-data sources
for Country, State and City views

where ... indicates the full path to the sample file.

The control's DataSource property in BNF syntax is:

<DataSource> ::= <DataSourceView> [">>>" <DataSourceView>]

<DataSourceView> ::= <AltDataSourceView> ["|||" <AltDataSourceView>]
<AltDataSourceView> ::= <DataField> [";" <DataField>]
<DataField> ::= <DataFieldName> "=" <DataFieldValue>
<DataFieldName> ::= ["Data "]"Source" | ["Data "]"Member" | ["Data "]"Key" | ["Data
"]"Tag" | ["Data "]"Name" | <ExtraDataFieldName>
<ExtraDataFieldName> ::= any extra field
<DataFieldValue> ::= field's value

In other words, the DataSource property provides data source for each view separated by
>>> sequence, and for each view different alternatives to create the view separated by |||
sequence. The DataSource can include sequences between <% and %> which are filled at
runtime, based on the current selection in all views.

Let's examine the following DataSource sequence:

"Source=...\cities.mdb ; Member=Select * FROM Countries ; Key=CountryCode ;
Tag=Country ; Name=CountryName >>> Member=Select * FROM States WHERE
CountryCode IN (<%Parent.CountryCode%>) ; Key=StateCode ; Name=StateName ;
Tag=State ||| Member=Select * FROM Cities WHERE CountryCode IN
(<%Parent.CountryCode%>) ; Tag=City ; Name=Name >>> Member=Select * FROM
Cities WHERE CountryCode IN (<%Parent.Parent.CountryCode%>) AND StateCode
IN (<%Parent.StateCode%>) ; Tag=City ; Name=Name "

which can generate data source for up to 3 views red (country), green (state/city) and
blue(city) as follows:

"Source=...\cities.mdb ; Member=Select * FROM Countries ; Key=CountryCode ;
Tag=Country ; Name=CountryName >>> Member=Select * FROM States WHERE
CountryCode IN (<%Parent.CountryCode%>) ; Key=StateCode ; Name=StateName ;
Tag=State ||| Member=Select * FROM Cities WHERE CountryCode IN
(<%Parent.CountryCode%>) ; Tag=City ; Name=Name >>> Member=Select * FROM
Cities WHERE CountryCode IN (<%Parent.Parent.CountryCode%>) AND StateCode
IN (<%Parent.StateCode%>) ; Tag=City ; Name=Name "

At runtime, these three views may shows as:

In the same time, each view's DataSource shows as:

View("Country").DataSource = "Member=Select * FROM Countries ;
Key=CountryCode ; Tag=Country ; Name=CountryName ; Source=...\cities.mdb"
View("State").DataSource = "Member=Select * FROM States WHERE CountryCode
IN ('US') ; Key=StateCode ; Name=StateName;Tag=State ; Source=...\cities.mdb"
View("City").DataSource = "Member=Select * FROM Cities WHERE CountryCode IN
('US') AND StateCode IN ('AZ','FL','CO','HI','IN') ; Tag=City ; Name=Name ;
Source=...\cities.mdb"

For instance, Antartica has no states, the Member=Select * FROM States WHERE
CountryCode IN (<%Parent.CountryCode%>) generates no results, and so the alternative
data source is used Member=Select * FROM Cities WHERE CountryCode IN
(<%Parent.CountryCode%>), so at runtime the views may shows as:

In the same time, each view's DataSource shows as:

View("Country").DataSource = "Member=Select * FROM Countries ;
Key=CountryCode ; Tag=Country ; Name=CountryName ; Source=...\cities.mdb"
View("City").DataSource = "Member=Select * FROM Cities WHERE CountryCode IN
('AQ') ; Tag=City ; Name=Name ; Source=...\cities.mdb"

Internally, the control's DataSource builds the view's DataSource with code as follows:

Private Sub CascadeTree1_CreateView(ByVal View As Object)
 With View
 Select Case View.Index
 Case 1: ' State or City
 .DataSource = CurrentDb.OpenRecordset("Select * FROM States WHERE
CountryCode IN (" & .ParentView.ValueList("CountryCode") & ")")
 .Key = "StateCode"
 .Name = "StateName"
 .Tag = "State"
 If (.Items.ItemCount = 0) Then
 .DataSource = CurrentDb.OpenRecordset("Select * FROM Cities WHERE
CountryCode IN (" & .ParentView.ValueList("CountryCode") & ")")

 .Key = ""
 .Tag = "City"
 .Name = "Name"
 End If
 Case 2: ' City
 .DataSource = CurrentDb.OpenRecordset("Select * FROM Cities WHERE
CountryCode IN (" & .ParentView.ParentView.ValueList("CountryCode") & ") AND
StateCode IN (" & .ParentView.ValueList("StateCode") & ")")
 .Key = ""
 .Tag = "City"
 .Name = "Name"
 End Select
 End With
End Sub

Private Sub Form_Load()
 With CascadeTree1
 .BeginUpdate
 With .DefaultView
 .DataSource = CurrentDb.OpenRecordset("SELECT * FROM Countries")
 .Key = "CountryCode"
 .Tag = "Country"
 .Name = "CountryName"
 End With
 .EndUpdate
 End With
End Sub

The DataSource property supports the following fields:

Source or Data Source, specifies the data source type, usually a MDB or ACCDB,
but could be XLS, TXT or else. For instance, "Source=C:\Program
Files\Exontrol\ExCascadeTree\Sample\Access\cities.accdb" refers to the cities.accdb
database. The Source or Data Source field is required, else an error occurs (see
Error event).
Member of Data Member, indicates the SELECT SQL statement to be created from
the Data Source. For instance, "Member=Select * FROM Countries", creates a view
with all records from the Countries table. The Member or Data Member field is
required, else an error occurs (see Error event). While this is not a requirement the

DataSource can include ANYWHERE sequences between <% and %> characters that
specifies a runtime-generated string based on the current selection into your views. For
instance, "Member=Select * FROM Cities WHERE CountryCode IN
(<%Parent.Parent.CountryCode%>) AND StateCode IN (<%Parent.StateCode%>)"

Each sequence between <% and %> characters indicates the value of the current
selection into a specified View of the specified Column/Field, and must be of the
following BNF syntax:

<value> ::= "<%" <view> "." <column> "%>"
<view> ::= <parentview> ["." <parentview> | <indexview>
<parentview> := "Parent"
<indexview> := 0 | 1 | 2 | ...
<column> := <index> | <name>
<index> := any index of any field into the Data Member
<name> := any name of the field into the Data Member / any caption of the
column into the view

For instance:

<%Parent.StateCode%>, indicates the value of the selection into the parent
view of the column "StateCode".
<%0.CountryCode%>, indicates the value of the selection into the view with
the index 0 of the column "CountryCode".
<%Parent.Parent.CountryCode%>, indicates the value of the selection into the
parent of the parent view of the column "CountryCode".
<%1.2%>, indicates the value of the selection into view with the index 1, on
the column with the index 2

The View.ValueList property generates the values on the specified column (Key
column) for all selected items, separated by , (comma) character. The ValueList
property automatically includes ' character for strings and # for date fields. For
instance, "'AZ','FL','CO','HI','IN'" or "1,2"

Key or Data Key, specifies the index or the name of the field from the Data Member
that generates keys for the current view. For instance, "Key=CountryCode" specifies
that the CountryCode field of the current view generates keys for next child views. The
Key property of the View object can be used to access the key of the view at runtime.
If the Key refers to an exiting field/column in the current view, it means that the control
generates the next view, once the user selects one or more items into the current view.
If the Key is empty or points to an non-existing field/column in the current view, no view
will be generated once an item in the current view is selected. The control fires the

CreateView event once a new view requires to be created. The
ViewStartChanging(exSelectChange) / ViewEndChanging(exSelectChange) event
notifies your application once the selection into the view is changing. During any event,
you can access the view that generated the event, using the View property of the
control. The Select property of the control generates the path of the current selection
for all views using the Key property of each View (separated by \ backslash character
). For instance, the Select property could return "US\AK". The Key field is not required,
and if missing no view will be generated once the user selects an item into the current
view.
Name or Data Name, indicates the index or the name of the field from the Data
Member, that generates names for the Name property. For instance,
"Name=CountryName", indicates that the CountryName column of the current view
generate values for the Name property. The Name property of the control generates
the path of the current selection for all views using the Name property of each View (
separated by \ backslash character). For instance, the Name property could return
"United States\Alaska\Anchorage", The Name field is not required. By default, the
column with the index 0 specifies the name column.
Tag or Data Tag, specifies any extra data associated with the view. For instance,
"Tag=Country". The Tag property of the View can be used to access the tag of the
view at runtime. The Tag field is not required.
or any additional field like DBQ, Driver, DriverID, Server, SourceType, SourceDB as
specified by your connection string.

The Error event notifies your application once any internal error occurs. You can use the
Description parameter of the Error event to find out more information about connection your
data to the control.

Also the DataSource supports any of the following type of objects:

Safe-Array:

With CascadeTree1.DefaultView
 .LinesAtRoot = exLinesAtRoot
 .DataSource = Array("Item 1", Array("Sub-Item 1", "Sub-Item 2"), "Item 2")
End With

/NET or /WPF Version (VB)

With Excascadetree1.DefaultView
 .LinesAtRoot = exLinesAtRoot
 .DataSource = New Object() {"Item 1", New Object() {"Sub-Item 1", "Sub-Item 2"},
"Item 2"}

End With

/NET or /WPF Version (C#)

object[] items = {"Item 1", new object[] {"Sub-Item 1", "Sub-Item 2"}, "Item 2"};
excascadetree1.DataSource = items;

adds items from a safe-array. If it includes inside-safe arrays, it adds child items, and so
on.

XML file name, a URL, an IStream, an IXMLDOMDocument

With CascadeTree1
 .DataSource = "C:\Program Files\Exontrol\ExCascadeTree\Sample\testing.xml"
End With

or:

With CascadeTree1.DefaultView
 .DataSource = "C:\Program Files\Exontrol\ExCascadeTree\Sample\testing.xml"
End With

or:

With CascadeTree1.DefaultView
 Set xml = CreateObject("MSXML.DOMDocument")
 With xml
 .Load "C:\Program Files\Exontrol\ExCascadeTree\Sample\testing.xml"
 End With
 .DataSource = xml
End With

ADO (Jet):

With CascadeTree1
 Set ado = CreateObject("ADODB.Recordset")
 With ado
 .Open "Countries", "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\Program
Files\Exontrol\ExCascadeTree\Sample\Access\cities.mdb", 3, 3
 End With

 .DataSource = ado
End With

or:

With CascadeTree1
 Set ado = CreateObject("ADODB.Recordset")
 With ado
 .Open "Countries", "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\Program
Files\Exontrol\ExCascadeTree\Sample\Access\cities.mdb", 3, 3
 End With
 .DefaultView.DataSource = ado
End With

ADO (OLEDB):

With CascadeTree1
 Set ado = CreateObject("ADODB.Recordset")
 With ado
 .Open "Countries", "Provider=Microsoft.ACE.OLEDB.12.0;Data
Source=C:\Program Files\Exontrol\ExCascadeTree\Sample\Access\cities.accdb", 3, 3
 End With
 .DataSource = ado
End With

or:

With CascadeTree1
 Set ado = CreateObject("ADODB.Recordset")
 With ado
 .Open "Countries", "Provider=Microsoft.ACE.OLEDB.12.0;Data
Source=C:\Program Files\Exontrol\ExCascadeTree\Sample\Access\cities.accdb", 3, 3
 End With
 .DefaultView.DataSource = ado
End With

DAO:

With CascadeTree1

 .DataSource = CurrentDb.OpenRecordset("Countries")
End With

or:

With CascadeTree1.DefaultView
 .DataSource = CurrentDb.OpenRecordset("Countries")
End With

As Microsoft Access uses DAO, you need to use the View's DataSource property rather
than control's DataSource property as in the following sample:

Private Sub CascadeTree1_CreateView(ByVal View As Object)
 With View
 Select Case .Index
 Case 1: ' State or City
 .DataSource = CurrentDb.OpenRecordset("Select * FROM States WHERE
CountryCode IN (" & .ParentView.ValueList("CountryCode") & ")")
 .Tag = "State"
 .Key = "StateCode"
 .Name = "StateName"
 If (.Items.ItemCount = 0) Then
 .DataSource = CurrentDb.OpenRecordset("Select * FROM Cities WHERE
CountryCode IN (" & .ParentView.ValueList("CountryCode") & ")")
 .Tag = "City"
 .Key = ""
 .Name = "Name"
 .ColumnAutoResize = False
 End If
 Case 2: ' City
 .DataSource = CurrentDb.OpenRecordset("Select * FROM Cities WHERE
CountryCode IN (" & .ParentView.ParentView.ValueList("CountryCode") & ") AND
StateCode IN (" & .ParentView.ValueList("StateCode") & ")")
 .Tag = "City"
 .Key = ""
 .Name = "Name"
 End Select
 End With

End Sub

Private Sub Form_Load()
 With CascadeTree1.DefaultView
 .DataSource = CurrentDb.OpenRecordset("SELECT * FROM Countries")
 .Tag = "Country"
 .Key = "CountryCode"
 .Name = "CountryName"
 End With
End Sub

The sample loads the Countries table into the default view (view with the index 0). Once
the user clicks / selects / activates an item, the control creates a new view (with the index
1, 2 and so on) and fires the CreateView event. During the CreateView event you can load
data from different tables based on the parent's view selection. See the
ParentView.ValueList

property CascadeTree.DefaultView ([Level as Variant]) as View
Returns the control's default view.

Type Description

Level as Variant

A long expression that specifies the vertical level to access
its default view. If missing, the default view for the first
level is returned (0-based). The AllowSplitView property
specifies whether the user can split the control into
multiple-views. The SplitViewHeight property specifies the
height of split panels, separated by comma.

View A View object that specifies the default view.

The DefaultView property specifies the default view on the control. The View property
returns the default view, in case it is not called during an event. During any event, the View
property returns the view where the event occurs. The ActiveView property gets the active
view (the last view with any active items inside). The CreateView event is fired as soon as
the control creates a new view. The Items property retrieves the view' items collection. The
Columns property retrieves the view's columns collection.

The following properties can be used to access a view:

FirstView property, gets the first view
PrevView property, gets the previously view (parent)
ParentView property, gets the parent view (previously)
ChildView property, gets the child view (next).
NextView property, gets the next view (child).

LastView property, gets the last view.

property CascadeTree.DefColumnWidth as Long
Specifies the width to create a new cascade column.

Type Description

Long A long expression that specifies the width to create a new
cascade column.

By default, the DefColumnWidth property is 256. The DefColumnWidth property specifies
the width to create a new cascade column. The Mode property indicates the mode the
control displays the cascade columns. The FitCascadeColumns property retrieves or sets a
value that indicates the number of cascading columns to fit. The FitToClient method resizes
or/and moves the all cascade columns to fit the control's client area. The Width property
specifies the width of the view. The WidthToFit property specifies the width of the view to fit
the control's client area.

The following properties can be used to limit / range the width of each cascade columns:

The MinColumnWidth property specifies the minimum width for any cascade column.

The MaxColumnWidth property specifies the maximum width for any cascade column.

property CascadeTree.Enabled as Boolean

Enables or disables the control.

Type Description

Boolean A boolean expression that indicates whether the control is
enabled or disabled.

Use the Enabled property to disable the control. Use the ForeColor property to specify the
control's foreground color. Use the BackColor property to specify the control's background
color. Use the Font property to specify the control's font.

The following VB sample disables the control:

CascadeTree1.Enabled = False

The following C++ sample disables the control:

m_cascadetree.SetEnabled(FALSE);

The following VB.NET sample disables the control:

AxCascadeTree1.Enabled = False

The following C# sample disables the control:

axCascadeTree1.Enabled = false;

The following VFP sample disables the control:

With thisform.CascadeTree1
 .Object.Enabled = False
EndWith

method CascadeTree.EndUpdate ()
Resumes painting the control after painting is suspended by the BeginUpdate method.

Type Description

The BeginUpdate method prevents the control from painting until the EndUpdate method is
called. Use BeginUpdate and EndUpdate statement each time when the control requires
more changes. Using the BeginUpdate and EndUpdate methods increase the speed of
changing the control properties by preventing it from painting during changing.

property CascadeTree.EventParam(Parameter as Long) as Variant
Retrieves or sets a value that indicates the current's event parameter.

Type Description

Parameter as Long

A long expression that indicates the index of the parameter
being requested ie 0 means the first parameter, 1 means
the second, and so on. If -1 is used the EventParam
property retrieves the number of parameters. Accessing
an not-existing parameter produces an OLE error, such as
invalid pointer (E_POINTER)

Variant A VARIANT expression that specifies the parameter's
value.

The EventParam method is provided to allow changing the event's parameters passed by
reference, even if your environment does not support changing it (uniPaas 1.5 (formerly
known as eDeveloper), DBase, and so on). For instance, Unipaas event-handling logic
cannot update ActiveX control variables by updating the received arguments. The
EventParam(0) retrieves the value of the first parameter of the event, while the
EventParam(1) = 0, changes the value of the second parameter to 0 (the operation is
successfully, only if the parameter is passed by reference). The EventParam(-1) retrieves
the number of the parameters of the current event.

Let's take the event "event KeyDown (KeyCode as Integer, ByVal Shift as Integer)", where
the KeyCode parameter is passed by reference. For instance, put the KeyCode parameter
on 0, and the arrow keys are disabled while the control has the focus.

In most languages you will type something like:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 KeyCode = 0
End Sub

In case your environment does not support events with parameters by reference, you can
use a code like follows:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 Control1.EventParam(0) = 0
End Sub

In other words, the EventParam property provides the parameters of the current event for
reading or writing access, even if your environment does not allow changing parameters by

reference.

Calling the EventParam property outside of an event produces an OLE error, such as
pointer invalid, as its scope was designed to be used only during events.

property CascadeTree.ExecuteContextMenu as Long
Executes a command from the object's context menu.

Type Description

Long A Long expression that determines the identifier of the
command to be executed.

By default, the ExecuteContextMenu property is 0. The ExecuteContextMenu property
specifies the identifier of the command to be executed (id option in the ShowContextMenu
property). The ExecuteContextMenu property has effect only during the ViewEndChanging
event, when the Operation parameter is exExecuteContextMenu(21). The
AllowContextMenu property specifies whether the control shows the object's context menu
when the user presses the right click over a file or folder.

The following sample shows how you can append new items to the object's context menu
and displays a message when a command is selected from the context menu:

Private Sub CascadeTree1_StateChange(ByVal State As
EXCASCADETREELibCtl.StateChangeEnum)
 With CascadeTree1
 If (State = ShowContextMenu) Then
 .ShowContextMenu = .ShowContextMenu + ",Item 1[id=1][def],Popup[id=2](Sub-
Item 2[id=2],[sep],Sub-Item 3[id=3])"
 Else
 If (State = ExecuteContextMenu) Then
 Debug.Print "You selected the command: " & .ExecuteContextMenu
 End If
 End If
 End With
End Sub

The following sample shows how you can prevent executing a specific command:

Private Sub CascadeTree1_StateChange(ByVal State As
EXCASCADETREELibCtl.StateChangeEnum)
 With CascadeTree1
 If (State = ExecuteContextMenu) Then
 If Not (.ExecuteContextMenu = 17) Then ' Delete
 Debug.Print "You selected the command: " & .ExecuteContextMenu

 Else
 .ExecuteContextMenu = 0
 MsgBox "Delete is disabled."
 End If
 End If
 End With
End Sub

method CascadeTree.ExecuteTemplate (Template as String)
Executes a template and returns the result.

Type Description
Template as String A Template string being executed
Return Description

Variant A Variant expression that indicates the result after
executing the Template.

Use the ExecuteTemplate property to returns the result of executing a template file. Use the
Template property to execute a template without returning any result. Use the
ExecuteTemplate property to execute code by passing instructions as a string (template
string).

For instance, the following sample retrieves the beginning date (as string) for the default
bar in the first visible item:

Debug.Print CascadeTree1.ExecuteTemplate("Items.ItemBar(FirstVisibleItem(),``,1)")

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by

"\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property CascadeTree.FilterBarBackColor as Color
Specifies the background color of the control's filter bar.

Type Description

Color

A color expression that defines the background color for
description of the control's filter. The last 7 bits in the high
significant byte of the color to indicates the identifier of the
skin being used. Use the Add method to add new skins to
the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits
in the high significant byte of the color being applied to the
background's part.

Use the FilterBarForeColor and FilterBarBackColor properties to define the colors used to
paint the description for control's filter. Use the FilterBarHeight property to hide the control's
filter bar header. Use the BackColor property to specify the control's background color. Use
the BackColorLevelHeader property to specify the background color of the header when it
displays multiple levels.

property CascadeTree.FilterBarForeColor as Color
Specifies the foreground color of the control's filter bar.

Type Description

Color A color expression that defines the foreground color of the
description of the control's filter.

Use the FilterBarForeColor and FilterBarBackColor properties to define colors used to paint
the description of the control's filter. Use the FilterBarCaption property to specify the
caption of the control's filter bar.

property CascadeTree.FitCascadeColumns as Long
Retrieves or sets a value that indicates the number of cascading columns to fit.

Type Description

Long A long expression that indicates the number of cascading
columns to fit.

By default, the FitCascadeColumns property is 4. The FitCascadeColumns property
retrieves or sets a value that indicates the number of cascading columns to fit. The
FitToClient method resizes or/and moves the all cascade columns to fit the control's client
area. The DefColumnWidth property specifies the width to create a new cascade column.
The Mode property indicates the mode the control displays the cascade columns. The
Width property specifies the width of the view. The WidthToFit property specifies the width
of the view to fit the control's client area.

The following properties can be used to limit / range the width of each cascade columns:

The MinColumnWidth property specifies the minimum width for any cascade column.

The MaxColumnWidth property specifies the maximum width for any cascade column.

method CascadeTree.FitToClient ([FitColumnsCount as Variant])
Resizes or/and moves the all cascade columns to fit the control's client area.

Type Description

FitColumnsCount as Variant A long expression that specifies the number of columns to
fit. If missing, it indicates 4.

The FitToClient method resizes or/and moves the all cascade columns to fit the control's
client area. The DefColumnWidth property specifies the width to create a new cascade
column. The Mode property indicates the mode the control displays the cascade columns.
The FitCascadeColumns property retrieves or sets a value that indicates the number of
cascading columns to fit. The Width property specifies the width of the view. The WidthToFit
property specifies the width of the view to fit the control's client area.

The following properties can be used to limit / range the width of each cascade columns:

The MinColumnWidth property specifies the minimum width for any cascade column.

The MaxColumnWidth property specifies the maximum width for any cascade column.

property CascadeTree.Font as IFontDisp

Retrieves or sets the Font object used to paint control.

Type Description

IFontDisp A Font object being used to paint the items within the
control.

Use the Font property to change the control's font. Use the Refresh method to refresh the
control.

The following VB sample assigns by code a new font to the control:

With CascadeTree1
 With .Font
 .Name = "Tahoma"
 End With
 .Refresh
End With

The following C++ sample assigns by code a new font to the control:

COleFont font = m_cascadetree.GetFont();
font.SetName("Tahoma");
m_cascadetree.Refresh();

the C++ sample requires definition of COleFont class (#include "Font.h")

The following VB.NET sample assigns by code a new font to the control:

With AxCascadeTree1
 Dim font As System.Drawing.Font = New System.Drawing.Font("Tahoma", 10,
FontStyle.Regular, GraphicsUnit.Point)
 .Font = font
 .CtlRefresh()
End With

The following C# sample assigns by code a new font to the control:

System.Drawing.Font font = new System.Drawing.Font("Tahoma", 10, FontStyle.Regular);
axCascadeTree1.Font = font;

axCascadeTree1.CtlRefresh();

The following VFP sample assigns by code a new font to the control:

with thisform.CascadeTree1.Object
 .Font.Name = "Tahoma"
 .Refresh()
endwith

property CascadeTree.ForeColor as Color

Retrieves or sets the control's foreground color.

Type Description

Color A color expression that indicates the control's foreground
color.

Use the ForeColor property to change the control's foreground color. Use the
ForeColorAlternate property specifies the control's alternate foreground color. Use the
BackColor / BackColorAlternate property to specify the control's background color. The
Background property returns or sets a value that indicates the background color for parts in
the control. Use the SelForeColor and SelBackColor properties to specify the background
and foreground colors for selected items.

property CascadeTree.ForeColorAlternate as Color
Specifies the control's alternate foreground color.

Type Description

Color A Color expression that specifies the view's foreground
color for an alternate view.

The ForeColorAlternate property specifies the control's alternate foreground color. Use the
ForeColor property to change the control's foreground color.

property CascadeTree.ForeColorHeader as Color
Specifies the header's foreground color.

Type Description

Color A color expression that indicates the foreground color of
the control's header bar.

Use the BackColorHeader and ForeColorHeader properties to define colors used to paint
the control's header bar. Use the HeaderVisible property to show or hide the control's
header. Use the HeaderHeight property to specify the height of the control's header bar.
Use the LevelKey property to allow multiple levels header bar.

property CascadeTree.ForeColorSortBar as Color
Retrieves or sets a value that indicates the sort bar's foreground color.

Type Description

Color A color expression that indicates the foreground color of
the control's sort bar.

Use the ForeColorSortBar property to specify the foreground color of the caption in the
control's sort bar. Use the SortBarVisible property to show the control's sort bar. Use the
SortBarCaption property to specify the caption of the sort bar, when the control's sort bar
contains no columns. Use the BackColorSortBar property to specify the background color
of the control's sort bar. Use the BackColorSortBarCaption property to specify the caption's
background color in the control's sort bar. Use the ForeColor property to specify the
control's foreground color. Use the ForeColorHeader property to specify the background
color of the control's header bar.

method CascadeTree.FormatABC (Expression as String, [A as Variant],
[B as Variant], [C as Variant])
Formats the A,B,C values based on the giving expression and returns the result.

Type Description
Expression as String A String that defines the expression to be evaluated.

A as Variant A VARIANT expression that indicates the value of the A
keyword.

B as Variant A VARIANT expression that indicates the value of the B
keyword.

C as Variant A VARIANT expression that indicates the value of the C
keyword.

Return Description

Variant A VARIANT expression that indicates the result of the
evaluation the CascadeTree.

The FormatABC method formats the A,B,C values based on the giving expression and
returns the result.

For instance:

"A + B + C", adds / concatenates the values of the A, B and C
"value MIN 0 MAX 99", limits the value between 0 and 99
"value format ``", formats the value with two decimals, according to the control's panel
setting
"date(`now`)" returns the current time as double

The FormatABC method supports the following keywords, constants, operators and
functions:

A or value keyword, indicates a variable A whose value is giving by the A parameter
B keyword, indicates a variable B whose value is giving by the B parameter
C keyword, indicates a variable C whose value is giving by the C parameter

This property/method supports predefined constants and operators/functions as described
here.

property CascadeTree.FormatAnchor(New as Boolean) as String
Specifies the visual effect for anchor elements in HTML captions.

Type Description

New as Boolean Boolean expression that indicates whether to specify the
anchors never clicked or anchors being clicked.

String A String expression that indicates the HTMLformat to
apply to anchor elements.

By default, the FormatAnchor(True) property is "<u><fgcolor=0000FF>#" that indicates
that the anchor elements (that were never clicked) are underlined and shown in light blue.
Also, the FormatAnchor(False) property is "<u><fgcolor=000080>#" that indicates that the
anchor elements are underlined and shown in dark blue. The visual effect is applied to the
anchor elements, if the FormatAnchor property is not empty. For instance, if you want to do
not show with a new effect the clicked anchor elements, you can use the
FormatAnchor(False) = "", that means that the clicked or not-clicked anchors are shown
with the same effect that's specified by FormatAnchor(True). An anchor is a piece of text
or some other object (for example an image) which marks the beginning and/or the end of a
hypertext link. The <a> element is used to mark that piece of text (or inline image), and to
give its hypertextual relationship to other documents. The control fires the AnchorClick event
to notify that the user clicks an anchor element. This event is fired only if prior clicking the
control it shows the hand cursor. The AnchorClick event carries the identifier of the anchor,
as well as application options that you can specify in the anchor element. The hand cursor
is shown when the user hovers the mouse on the anchor elements.

method CascadeTree.FreezeEvents (Freeze as Boolean)
Prevents the control to fire any event.

Type Description

Freeze as Boolean A Boolean expression that specifies whether the control'
events are froze or unfroze

The FreezeEvents(True) method freezes the control's events until the FreezeEvents(False)
method is called.

property CascadeTree.HeaderAppearance as AppearanceEnum
Retrieves or sets a value that indicates the header's appearance.

Type Description

AppearanceEnum A boolean expression that specifies the appearance of the
columns header.

Use the HeaderAppearance property to define the appearance of the columns header bar.
The user can't resize the columns at runtime, if the HeaderAppearance property is None2.
Use the ColumnsAllowSizing property to allow resizing the columns, when the control's
header bar is not visible. Use the Appearance property to define the control's appearance.
Use the HeaderVisible property to hide the control's header bar.

property CascadeTree.HeaderVisible as Boolean
Retrieves or sets a value that indicates whether the the control's header is visible or hidden.

Type Description

Boolean A boolean expression that indicates whether the columns
header bar is visible or hidden.

Use the HeaderVisible property to hide the columns header bar. Use the Visible property to
hide a particular column. Use the ColumnFromPoint property to access the column from
point. If the control's header bar is hidden, the ColumnFromPoint property returns -1. Use
the LevelKey property to allow multiple levels header bar. Use the FormatLevel property to
display multiple levels in the column's header. Use the HeaderHeight property to specify the
height of the control's header bar. Use the BackColorHeader property to specify the
header's background color. Use the AllowSizing property to disable resizing a column when
user clicks the right margin of the column. Use the ColumnsAllowSizing property to allow
resizing the columns, when the control's header bar is not visible. The
Background(exCursorHoverColumn) property specifies the visual appearance of the
column's header when the cursor hovers it.

property CascadeTree.HTMLPicture(Key as String) as Variant
Adds or replaces a picture in HTML captions.

Type Description

Key as String
A String expression that indicates the key of the picture
being added or replaced. If the Key property is Empty
string, the entire collection of pictures is cleared.

Variant

The HTMLPicture specifies the picture being associated to
a key. It can be one of the followings:

a string expression that indicates the path to the
picture file, being loaded.
a string expression that indicates the base64 encoded
string that holds a picture object, Use the eximages
tool to save your picture as base64 encoded format.
A Picture object that indicates the picture being added
or replaced. (A Picture object implements IPicture
interface),

If empty, the picture being associated to a key is removed.
If the key already exists the new picture is replaced. If the
key is not empty, and it doesn't not exist a new picture is
added

The HTMLPicture property handles a collection of custom size picture being displayed in the
HTML captions, using the tags. By default, the HTMLPicture collection is empty. Use
the HTMLPicture property to add new pictures to be used in HTML captions. For instance,
the HTMLPicture("pic1") = "c:\winnt\zapotec.bmp", loads the zapotec picture and
associates the pic1 key to it. Any "pic1" sequence in HTML captions, displays
the pic1 picture. On return, the HTMLPicture property retrieves a Picture object (this
implements the IPictureDisp interface).

The following sample shows how to put a custom size picture in the column's header:

<CONTROL>.HTMLPicture("pic1") = "c:/temp/editors.gif"
<CONTROL>.HTMLPicture("pic2") = "c:/temp/editpaste.gif"

<COLUMN1>.HTMLCaption = "A pic1"
<COLUMN2>.HTMLCaption = "B pic2"
<COLUMN3>.HTMLCaption = "A pic1 + B pic2"

https://exontrol.com/eximages.jsp

property CascadeTree.hWnd as Long
Retrieves the control's window handle.

Type Description

Long A long expression that indicates the handle of the control's
window.

The Microsoft Windows operating environment identifies each form and control in an
application by assigning it a handle, or hWnd. The hWnd property is used with Windows API
calls. Many Windows operating environment functions require the hWnd of the active
window as an argument.

method CascadeTree.Images (Handle as Variant)

Sets the control's image list at runtime.

Type Description

Handle as Variant

The Handle parameter can be:

A string expression that specifies the ICO file to add.
The ICO file format is an image file format for
computer icons in Microsoft Windows. ICO files
contain one or more small images at multiple sizes
and color depths, such that they may be scaled
appropriately. For instance,
Images("c:\temp\copy.ico") method adds the sync.ico
file to the control's Images collection (string, loads the
icon using its path)
A string expression that indicates the BASE64
encoded string that holds the icons list. Use the
Exontrol's ExImages tool to save/load your icons as
BASE64 encoded format. In this case the string may
begin with "gBJJ..." (string, loads icons using base64
encoded string)
A reference to a Microsoft ImageList control
(mscomctl.ocx, MSComctlLib.ImageList type) that
holds the icons to add (object, loads icons from a
Microsoft ImageList control)
A reference to a Picture (IPictureDisp implementation)
that holds the icon to add. For instance, the VB's
LoadPicture (Function LoadPicture([FileName], [Size],
[ColorDepth], [X], [Y]) As IPictureDisp) or
LoadResPicture (Function LoadResPicture(id, restype
As Integer) As IPictureDisp) returns a picture object
(object, loads icon from a Picture object)
A long expression that identifies a handle to an Image
List Control (the Handle should be of HIMAGELIST
type). On 64-bit platforms, the Handle parameter
must be a Variant of LongLong / LONG_PTR data
type (signed 64-bit (8-byte) integers), saved under
llVal field, as VT_I8 type. The LONGLONG /
LONG_PTR is __int64, a 64-bit integer. For instance,
in C++ you can use as Images(COleVariant(
(LONG_PTR)hImageList)) or Images(COleVariant(
(LONGLONG)hImageList)), where hImageList is of

https://exontrol.com/eximages.jsp

HIMAGELIST type. The GetSafeHandle() method of
the CImageList gets the HIMAGELIST handle (long,
loads icon from HIMAGELIST type)

The user can add images at design time, by drag and drop files to combo's image holder.
Use the ReplaceIcon method to add, remove or clear icons in the control's images
collection.

property CascadeTree.ImageSize as Long
Retrieves or sets the size of control' icons/images/check-boxes/radio-buttons.

Type Description

Long A long expression that defines the size of icons the control
displays.

By default, the ImageSize property is 16 (pixels). The ImageSize property specifies the size
of icons being loaded using the Images method. The control's Images collection is cleared if
the ImageSize property is changed, so it is recommended to set the ImageSize property
before calling the Images method. The ImageSize property defines the size (width/height)
of the icons within the control's Images collection. For instance, if the ICO file to load
includes different types the one closest with the size specified by ImageSize property is
loaded by Images method. The ImageSize property does NOT change the height for the
control's font.

The ImageSize property defines the size to display the following UI elements:

any icon that a cell or column displays
check-box or radio-buttons
expand/collapse glyphs
header's sorting or drop down-filter glyphs

property CascadeTree.ItemFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as HITEM
Retrieves the item from the point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

HITEM A long expression that specifies the handle of the item
from the cursor.

The ItemFromPoint property retrieves the item from the point. The ItemFromPoint(-1,-1)
property retrieves and item from the current cursor position. The ViewFromPoint property
retrieves the view from the point. The ViewColumnFromPoint property retrieves the view
and column from the point. The ColumnFromPoint property retrieves the column from the
point.

property CascadeTree.Layout as String
Saves or loads the control's layout, such current selection for each panel, the widths of the
cascade columns, and so on.

Type Description
String A String expression that defines the current's layout.

The Layout property saves or loads the control's layout, such current selection for each
panel, the widths of the cascade columns, and so on. For instance, you can use the Layout
property to save and restore later the current views, which includes the selection in each
panel, and so on.

property CascadeTree.MaxColumnWidth as Long
Specifies the maximum width for any cascade column.

Type Description

Long A Long expression that specifies the maximum width for
any cascade column.

By default, the MaxColumnWidth property is -1. While negative, there is no upper limit, so
the MaxColumnWidth property has no effect. The Mode property indicates the mode the
control displays the cascade columns. The DefColumnWidth property specifies the width to
create a new cascade column. The FitCascadeColumns property retrieves or sets a value
that indicates the number of cascading columns to fit. The FitToClient method resizes or/and
moves the all cascade columns to fit the control's client area. The Width property specifies
the width of the view. The WidthToFit property specifies the width of the view to fit the
control's client area.

The following properties can be used to limit / range the width of each cascade columns:

The MinColumnWidth property specifies the minimum width for any cascade column.

The MaxColumnWidth property specifies the maximum width for any cascade column.

property CascadeTree.MinColumnWidth as Long
Specifies the minimum width for any cascade column.

Type Description

Long A Long expression that specifies the minimum width for
any cascade column.

By default, the MinColumnWidth property is 32. The Mode property indicates the mode the
control displays the cascade columns. The DefColumnWidth property specifies the width to
create a new cascade column. The FitCascadeColumns property retrieves or sets a value
that indicates the number of cascading columns to fit. The FitToClient method resizes or/and
moves the all cascade columns to fit the control's client area. The Width property specifies
the width of the view. The WidthToFit property specifies the width of the view to fit the
control's client area.

The following properties can be used to limit / range the width of each cascade columns:

The MinColumnWidth property specifies the minimum width for any cascade column.

The MaxColumnWidth property specifies the maximum width for any cascade column.

property CascadeTree.Mode as CascadeModeEnum
Indicates the mode the control displays the cascade columns.

Type Description

CascadeModeEnum
A CascadeModeEnum expression that indicates how the
control displays the cascade columns once a file or more
are selected.

By default, the Mode property is exSplitFixCascadeMode | exAutoFitOnResizeClient. The
Mode property indicates the mode the control displays the cascade columns. The
DefColumnWidth property specifies the width to create a new cascade column. The
FitCascadeColumns property retrieves or sets a value that indicates the number of
cascading columns to fit. The FitToClient method resizes or/and moves the all cascade
columns to fit the control's client area.

The following properties can be used to limit / range the width of each cascade columns:

The MinColumnWidth property specifies the minimum width for any cascade column.

The MaxColumnWidth property specifies the maximum width for any cascade column.

The following screen shot shows the control while the Mode property includes
exFixCascadeMode:

The following screen shot shows the control while the Mode property includes
exSingleCascadeMode:

The following screen shot shows the control while the Mode property includes
exSplitEqualCascadeMode:

The following screen shot shows the control while the Mode property includes
exSplitFixCascadeMode:

property CascadeTree.Name as String
Selects the path using the name for each view.

Type Description

String A String expression that indicates the path of selected
items

The Name property is similar with the Select property, excepts it uses the Name column to
build the path. The Name property of each View object specifies the index or the caption of
the column that determines the name of the view. The Name property can select items
using wild characters such as * or ?, if the view's SingleSel property is False.

property CascadeTree.Picture as IPictureDisp
Retrieves or sets a graphic to be displayed in the control.

Type Description

IPictureDisp A Picture object that's displayed on the control's
background.

Use the Picture property to load a picture on the control's background. By default, the
control has no picture associated. Use the PictureDisplay property to layout the control's
picture on the control's background. Use the BackColor property to specify the control's
background color. Use the ForeColor property to change the control's foreground color. Use
the SelForeColor and SelBackColor properties to specify the background and foreground
colors for selected items.

property CascadeTree.PictureDisplay as PictureDisplayEnum
Retrieves or sets a value that indicates the way how the graphic is displayed on the
control's background

Type Description

PictureDisplayEnum A PictureDisplayEnum expression that indicates the way
how the picture is displayed.

By default, the PictureDisplay property is exTile. Use the PictureDisplay property specifies
how the Picture is displayed on the control's background. If the control has no picture
associated the PictureDisplay property has no effect. Use the BackColor property to
specify the control's background color. Use the ForeColor property to change the control's
foreground color. Use the SelForeColor and SelBackColor properties to specify the
background and foreground colors for selected items

method CascadeTree.Refresh ()
Refreses the control.

Type Description

method CascadeTree.ReplaceIcon ([Icon as Variant], [Index as Variant])

Adds a new icon, replaces an icon or clears the control's image list.

Type Description

Icon as Variant

A Variant expression that specifies the icon to add or
insert, as one of the following options:

a long expression that specifies the handle of the icon
(HICON)
a string expression that indicates the path to the
picture file
a string expression that defines the picture's content
encoded as BASE64 strings using the eXImages tool
a Picture reference, which is an object that holds
image data. It is often used in controls like
PictureBox, Image, or in custom controls (e.g.,
IPicture, IPictureDisp)

If the Icon parameter is 0, it specifies that the icon at the
given Index is removed. Furthermore, setting the Index
parameter to -1 removes all icons.

By default, if the Icon parameter is not specified or is
missing, a value of 0 is used.

Index as Variant

A long expression that defines the index of the icon to
insert or remove, as follows:

A zero or positive value specifies the index of the icon
to insert (when Icon is non-zero) or to remove (when
the Icon parameter is zero)
A negative value clears all icons when the Icon
parameter is zero

By default, if the Index parameter is not specified or is
missing, a value of -1 is used.

Return Description

Long A long expression that indicates the index of the icon in the
images collection

Use the ReplaceIcon property to add, remove or replace an icon in the control's images

https://exontrol.com/eximages.jsp

collection. Also, the ReplaceIcon property can clear the images collection. Use the Images
method to attach a image list to the control.

The following VB sample adds a new icon to control's images list:

 i = CascadeTree1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle), i specifies the
index where the icon is added

The following VB sample replaces an icon into control's images list::

 i = CascadeTree1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle, 0), i is zero, so
the first icon is replaced.

The following VB sample removes an icon from control's images list:

 CascadeTree1.ReplaceIcon 0, i, where i specifies the index of icon removed.

The following VB clears the control's icons collection:

 CascadeTree1.ReplaceIcon 0, -1

property CascadeTree.ScrollButtonHeight as Long
Specifies the height of the button in the vertical scrollbar.

Type Description

Long A long expression that defines the height of the button in
the vertical scroll bar.

By default, the ScrollButtonHeight property is -1. If the ScrollButtonHeight property is -1, the
control uses the default height (from the system) for the buttons in the vertical scroll bar.
Use the ScrollButtonWidth property to specify the width of the buttons in the horizontal
scroll bar. Use the ScrollWidth property to specify the width of the vertical scroll bar. Use
the ScrollHeight property to specify the height of the horizontal scroll bar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollThumbSize property to define a fixed size for the scrollbar's thumb.

property CascadeTree.ScrollButtonWidth as Long
Specifies the width of the button in the horizontal scrollbar.

Type Description

Long A long expression that defines the width of the button in
the horizontal scroll bar.

By default, the ScrollButtonWidth property is -1. If the ScrollButtonWidth property is -1, the
control uses the default width (from the system) for the buttons in the horizontal scroll bar.
Use the ScrollButtonHeight property to specify the height of the buttons in the vertical scroll
bar. Use the ScrollWidth property to specify the width of the vertical scroll bar. Use the
ScrollHeight property to specify the height of the horizontal scroll bar. Use the
ScrollPartVisible property to specify the visible parts in the control's scroll bar. Use the
ScrollThumbSize property to define a fixed size for the scrollbar's thumb.

property CascadeTree.ScrollFont (ScrollBar as ScrollBarEnum) as
IFontDisp
Retrieves or sets the scrollbar's font.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical or
the horizontal scroll bar.

IFontDisp A Font object

Use the ScrollFont property to specify the font in the control's scroll bar. Use the
ScrolPartCaption property to specify the caption of the scroll's part. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar. By
default, when a part becomes visible, the ScrollPartEnable property is automatically called,
so the parts becomes enabled. Use the ScrollPartEnable property to specify enable or
disable parts in the control's scrollbar.

property CascadeTree.ScrollHeight as Long
Specifies the height of the horizontal scrollbar.

Type Description

Long A long expression that defines the height of the horizontal
scroll bar.

By default, the ScrollHeight property is -1. If the ScrollHeight property is -1, the control uses
the default height of the horizontal scroll bar from the system. Use the ScrollHeight property
to specify the height of the horizontal scroll bar. Use the ScrollButtonWidth property to
specify the width of the buttons in the horizontal scroll bar. Use the ScrollWidth property to
specify the width of the vertical scroll bar. Use the ScrollButtonHeight property to specify
the height of the buttons in the vertical scroll bar. Use the ScrollPartVisible property to
specify the visible parts in the control's scroll bar. Use the ScrollThumbSize property to
define a fixed size for the scrollbar's thumb.

property CascadeTree.ScrollOrderParts(ScrollBar as ScrollBarEnum) as
String
Specifies the order of the buttons in the scroll bar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the order of buttons is displayed.

String

A String expression that indicates the order of the buttons
in the scroll bar. The list includes expressions like l, l1, ...,
l5, t, r, r1, ..., r6 separated by comma, each expression
indicating a part of the scroll bar, and its position indicating
the displaying order.

Use the ScrollOrderParts to customize the order of the buttons in the scroll bar. By default,
the ScrollOrderParts property is empty. If the ScrollOrderParts property is empty the
default order of the buttons in the scroll bar are displayed like follows:

so, the order of the parts is: l1, l2, l3, l4, l5, l, t, r, r1, r2, r3, r4, r5 and r6. Use the
ScrollPartVisible to specify whether a button in the scrollbar is visible or hidden. Use the
ScrollPartEnable property to enable or disable a button in the scroll bar. Use the
ScrollPartCaption property to assign a caption to a button in the scroll bar.

Use the ScrollOrderParts property to change the order of the buttons in the scroll bar. For
instance, "l,r,t,l1,r1" puts the left and right buttons to the left of the thumb area, and the l1
and r1 buttons right after the thumb area. If the parts are not specified in the
ScrollOrderParts property, automatically they are added to the end.

The list of supported literals in the ScrollOrderParts property is:

l for exLeftBPart, (<) The left or top button.
l1 for exLeftB1Part, (L1) The first additional button, in the left or top area.
l2 for exLeftB2Part, (L2) The second additional button, in the left or top area.
l3 for exLeftB3Part, (L3) The third additional button, in the left or top area.
l4 for exLeftB4Part, (L4) The forth additional button, in the left or top area.
l5 for exLeftB5Part, (L5) The fifth additional button, in the left or top area.
t for exLowerBackPart, exThumbPart and exUpperBackPart, The union between the
exLowerBackPart and the exUpperBackPart parts.
r for exRightBPart, (>) The right or down button.

r1 for exRightB1Part, (R1) The first additional button in the right or down side.
r2 for exRightB2Part, (R2) The second additional button in the right or down side.
r3 for exRightB3Part, (R3) The third additional button in the right or down side.
r4 for exRightB4Part, (R4) The forth additional button in the right or down side.
r5 for exRightB5Part, (R5) The fifth additional button in the right or down side.
r6 for exRightB6Part, (R6) The sixth additional button in the right or down side.

Any other literal between commas is ignored. If duplicate literals are found, the second is
ignored, and so on. For instance, "t,l,r" indicates that the left/top and right/bottom buttons
are displayed right/bottom after the thumb area.

property CascadeTree.ScrollPartCaption(ScrollBar as ScrollBarEnum,
Part as ScrollPartEnum) as String
Specifies the caption being displayed on the specified scroll part.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the caption is displayed.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll where the text is displated

String A String expression that specifies the caption being
displayed on the part of the scroll bar.

Use the ScrolPartCaption property to specify the caption of the scroll's part. Use the
ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar. By
default, when a part becomes visible, the ScrollPartEnable property is automatically called,
so the parts becomes enabled. Use the ScrollPartEnable property to specify enable or
disable parts in the control's scrollbar. Use the ScrollFont property to specify the font in the
control's scroll bar. Use the ScrollOrderParts property to customize the order of the buttons
in the scroll bar.

By default, the following parts are shown:

exLeftBPart (the left or up button of the control)
exLowerBackPart (the part between the left/up button and the thumb part of the
control)
exThumbPart (the thumb/scrollbox part)
exUpperBackPart (the part between the the thumb and the right/down button of the
control)
exRightBPart (the right or down button of the control)

The following VB sample adds up and down additional buttons to the control's vertical scroll
bar :

With CascadeTree1
 .BeginUpdate
 .ScrollPartVisible(exVScroll, exLeftB1Part Or exRightB1Part) = True

 .ScrollPartCaption(exVScroll, exLeftB1Part) = "1"
 .ScrollPartCaption(exVScroll, exRightB1Part) = "2"
 .EndUpdate
End With

The following VB.NET sample adds up and down additional buttons to the control's vertical
scroll bar :

With AxCascadeTree1
 .BeginUpdate()
 .set_ScrollPartVisible(EXEXCASCADETREELib.ScrollBarEnum.exVScroll,
EXEXCASCADETREELib.ScrollPartEnum.exLeftB1Part Or
EXEXCASCADETREELib.ScrollPartEnum.exRightB1Part, True)
 .set_ScrollPartCaption(EXEXCASCADETREELib.ScrollBarEnum.exVScroll,
EXEXCASCADETREELib.ScrollPartEnum.exLeftB1Part, "1")
 .set_ScrollPartCaption(EXEXCASCADETREELib.ScrollBarEnum.exVScroll,
EXEXCASCADETREELib.ScrollPartEnum.exRightB1Part, "2")
 .EndUpdate()
End With

The following C# sample adds up and down additional buttons to the control's vertical scroll
bar :

axCascadeTree1.BeginUpdate();
axCascadeTree1.set_ScrollPartVisible(EXEXCASCADETREELib.ScrollBarEnum.exVScroll,
EXEXCASCADETREELib.ScrollPartEnum.exLeftB1Part |
EXEXCASCADETREELib.ScrollPartEnum.exRightB1Part, true);
axCascadeTree1.set_ScrollPartCaption(EXEXCASCADETREELib.ScrollBarEnum.exVScroll,
EXEXCASCADETREELib.ScrollPartEnum.exLeftB1Part , "1");
axCascadeTree1.set_ScrollPartCaption(EXEXCASCADETREELib.ScrollBarEnum.exVScroll,
EXEXCASCADETREELib.ScrollPartEnum.exRightB1Part, "2");
axCascadeTree1.EndUpdate();

The following C++ sample adds up and down additional buttons to the control's vertical
scroll bar :

m_cascadetree.BeginUpdate();
m_cascadetree.SetScrollPartVisible(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ | 32
/*exRightB1Part*/, TRUE);

m_cascadetree.SetScrollPartCaption(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ , _T("
1"));
m_cascadetree.SetScrollPartCaption(0 /*exVScroll*/, 32 /*exRightB1Part*/ , _T("
2"));
m_cascadetree.EndUpdate();

The following VFP sample adds up and down additional buttons to the control's vertical
scroll bar :

With thisform.CascadeTree1
 .BeginUpdate
 .ScrollPartVisible(0, bitor(32768,32)) = .t.
 .ScrollPartCaption(0,32768) = "1"
 .ScrollPartCaption(0, 32) = "2"
 .EndUpdate
EndWith

*** ActiveX Control Event ***
LPARAMETERS scrollpart

wait window nowait ltrim(str(scrollpart))

property CascadeTree.ScrollPartEnable(ScrollBar as ScrollBarEnum,
Part as ScrollPartEnum) as Boolean
Indicates whether the specified scroll part is enabled or disabled.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the part is enabled or disabled.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll bar being enabled or disabled.

Boolean A Boolean expression that specifies whether the
scrollbar's part is enabled or disabled.

By default, when a part becomes visible, the ScrollPartEnable property is automatically
called, so the parts becomes enabled. Use the ScrollPartVisible property to add or remove
buttons/parts in the control's scrollbar. Use the ScrollPartEnable property to specify enable
or disable parts in the control's scrollbar. Use the ScrolPartCaption property to specify the
caption of the scroll's part. Use the ScrollOrderParts property to customize the order of the
buttons in the scroll bar.

property CascadeTree.ScrollPartVisible(ScrollBar as ScrollBarEnum,
Part as ScrollPartEnum) as Boolean
Indicates whether the specified scroll part is visible or hidden.

Type Description

ScrollBar as ScrollBarEnum A ScrollBar expression that indicates the scrollbar where
the part is visible or hidden.

Part as ScrollPartEnum A ScrollPartEnum expression that specifies the parts of
the scroll bar being visible

Boolean A Boolean expression that specifies whether the
scrollbar's part is visible or hidden.

Use the ScrollPartVisible property to add or remove buttons/parts in the control's scrollbar.
By default, when a part becomes visible, the ScrollPartEnable property is automatically
called, so the parts becomes enabled. Use the ScrollPartEnable property to specify enable
or disable parts in the control's scrollbar. Use the ScrolPartCaption property to specify the
caption of the scroll's part. Use the Background property to change the visual appearance
for any part in the control's scroll bar. Use the ScrollOrderParts property to customize the
order of the buttons in the scroll bar.

By default, the following parts are shown:

exLeftBPart (the left or up button of the control)
exLowerBackPart (the part between the left/up button and the thumb part of the
control)
exThumbPart (the thumb/scrollbox part)
exUpperBackPart (the part between the the thumb and the right/down button of the
control)
exRightBPart (the right or down button of the control)

The following VB sample adds up and down additional buttons to the control's vertical scroll
bar :

With CascadeTree1
 .BeginUpdate
 .ScrollPartVisible(exVScroll, exLeftB1Part Or exRightB1Part) = True

 .ScrollPartCaption(exVScroll, exLeftB1Part) = "1"
 .ScrollPartCaption(exVScroll, exRightB1Part) = "2"
 .EndUpdate
End With

The following VB.NET sample adds up and down additional buttons to the control's vertical
scroll bar :

With AxCascadeTree1
 .BeginUpdate()
 .set_ScrollPartVisible(EXEXCASCADETREELib.ScrollBarEnum.exVScroll,
EXEXCASCADETREELib.ScrollPartEnum.exLeftB1Part Or
EXEXCASCADETREELib.ScrollPartEnum.exRightB1Part, True)
 .set_ScrollPartCaption(EXEXCASCADETREELib.ScrollBarEnum.exVScroll,
EXEXCASCADETREELib.ScrollPartEnum.exLeftB1Part, "1")
 .set_ScrollPartCaption(EXEXCASCADETREELib.ScrollBarEnum.exVScroll,
EXEXCASCADETREELib.ScrollPartEnum.exRightB1Part, "2")
 .EndUpdate()
End With

The following C# sample adds up and down additional buttons to the control's vertical scroll
bar :

axCascadeTree1.BeginUpdate();
axCascadeTree1.set_ScrollPartVisible(EXEXCASCADETREELib.ScrollBarEnum.exVScroll,
EXEXCASCADETREELib.ScrollPartEnum.exLeftB1Part |
EXEXCASCADETREELib.ScrollPartEnum.exRightB1Part, true);
axCascadeTree1.set_ScrollPartCaption(EXEXCASCADETREELib.ScrollBarEnum.exVScroll,
EXEXCASCADETREELib.ScrollPartEnum.exLeftB1Part , "1");
axCascadeTree1.set_ScrollPartCaption(EXEXCASCADETREELib.ScrollBarEnum.exVScroll,
EXEXCASCADETREELib.ScrollPartEnum.exRightB1Part, "2");
axCascadeTree1.EndUpdate();

The following C++ sample adds up and down additional buttons to the control's vertical
scroll bar :

m_cascadetree.BeginUpdate();
m_cascadetree.SetScrollPartVisible(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ | 32
/*exRightB1Part*/, TRUE);

m_cascadetree.SetScrollPartCaption(0 /*exVScroll*/, 32768 /*exLeftB1Part*/ , _T("
1"));
m_cascadetree.SetScrollPartCaption(0 /*exVScroll*/, 32 /*exRightB1Part*/ , _T("
2"));
m_cascadetree.EndUpdate();

The following VFP sample adds up and down additional buttons to the control's vertical
scroll bar :

With thisform.CascadeTree1
 .BeginUpdate
 .ScrollPartVisible(0, bitor(32768,32)) = .t.
 .ScrollPartCaption(0,32768) = "1"
 .ScrollPartCaption(0, 32) = "2"
 .EndUpdate
EndWith

*** ActiveX Control Event ***
LPARAMETERS scrollpart

wait window nowait ltrim(str(scrollpart))

property CascadeTree.ScrollThumbSize(ScrollBar as ScrollBarEnum) as
Long
Specifies the size of the thumb in the scrollbar.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical or
the horizontal scroll bar.

Long A long expression that defines the size of the scrollbar's
thumb.

Use the ScrollThumbSize property to define a fixed size for the scrollbar's thumb. By
default, the ScrollThumbSize property is -1, that makes the control computes automatically
the size of the thumb based on the scrollbar's range. If case, use the fixed size for your
thumb when you change its visual appearance using the Background(exVSThumb) or
Background(exHSThumb) property. Use the ScrollWidth property to specify the width of the
vertical scroll bar. Use the ScrollButtonWidth property to specify the width of the buttons in
the horizontal scroll bar. Use the ScrollHeight property to specify the height of the horizontal
scroll bar. Use the ScrollButtonHeight property to specify the height of the buttons in the
vertical scroll bar. Use the ScrollPartVisible property to specify the visible parts in the
control's scroll bar.

property CascadeTree.ScrollToolTip(ScrollBar as ScrollBarEnum) as
String
Specifies the tooltip being shown when the user moves the scroll box.

Type Description

ScrollBar as ScrollBarEnum A ScrollBarEnum expression that indicates the vertical
scroll bar or the horizontal scroll bar.

String A string expression being shown when the user clicks and
moves the scrollbar's thumb.

Use the ScrollToolTip property to specify whether the control displays a tooltip when the
user clicks and moves the scrollbar's thumb. By default, the ScrollToolTip property is empty.
If the ScrollToolTip property is empty, the tooltip is not shown when the user clicks and
moves the thumb of the scroll bar. Use the SortPartVisible property to specify the parts
being visible in the control's scroll bar.

The following VB sample displays a tooltip when the user clicks and moves the thumb in the
control's scroll bar:

Private Sub CascadeTree1_OffsetChanged(ByVal Horizontal As Boolean, ByVal NewVal As
Long)
 If (Not Horizontal) Then
 CascadeTree1.ScrollToolTip(exVScroll) = "Record " & NewVal
 End If
End Sub

The following VB.NET sample displays a tooltip when the user clicks and moves the thumb
in the control's scroll bar:

Private Sub AxCascadeTree1_OffsetChanged(ByVal sender As System.Object, ByVal e As
AxEXEXCASCADETREELib._ICascadeTreeEvents_OffsetChangedEvent) Handles
AxCascadeTree1.OffsetChanged
 If (Not e.horizontal) Then
 AxCascadeTree1.set_ScrollToolTip(EXEXCASCADETREELib.ScrollBarEnum.exVScroll,
"Record " & e.newVal.ToString())
 End If
End Sub

The following C++ sample displays a tooltip when the user clicks and moves the thumb in
the control's scroll bar:

void OnOffsetChangedCascadeTree1(BOOL Horizontal, long NewVal)
{
 if (!Horizontal)
 {
 CString strFormat;
 strFormat.Format(_T("%i"), NewVal);
 m_cascadetree.SetScrollToolTip(0, strFormat);
 }
}

The following C# sample displays a tooltip when the user clicks and moves the thumb in the
control's scroll bar:

private void axCascadeTree1_OffsetChanged(object sender,
AxEXEXCASCADETREELib._ICascadeTreeEvents_OffsetChangedEvent e)
{
 if (!e.horizontal)
 axCascadeTree1.set_ScrollToolTip(EXEXCASCADETREELib.ScrollBarEnum.exVScroll,
"Record " + e.newVal.ToString());
}

The following VFP sample displays a tooltip when the user clicks and moves the thumb in
the control's scroll bar:

*** ActiveX Control Event ***
LPARAMETERS horizontal, newval

If (1 # horizontal) Then
 thisform.CascadeTree1.ScrollToolTip(0) = "Record " + ltrim(str(newval))
EndIf

property CascadeTree.ScrollWidth as Long
Specifies the width of the vertical scrollbar.

Type Description

Long A long expression that defines the width of the vertical
scroll bar.

By default, the ScrollWidth property is -1. If the ScrollWidth property is -1, the control uses
the default width of the vertical scroll bar from the system. Use the ScrollWidth property to
specify the width of the vertical scroll bar. Use the ScrollButtonWidth property to specify the
width of the buttons in the horizontal scroll bar. Use the ScrollHeight property to specify the
height of the horizontal scroll bar. Use the ScrollButtonHeight property to specify the height
of the buttons in the vertical scroll bar. Use the ScrollPartVisible property to specify the
visible parts in the control's scroll bar. Use the ScrollThumbSize property to define a fixed
size for the scrollbar's thumb.

property CascadeTree.SelBackColor as Color
Retrieves or sets a value that indicates the selection background color.

Type Description

Color

A color expression that indicates the background color for
selected items. The last 7 bits in the high significant byte
of the color to indicates the identifier of the skin being
used. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the
background's part.

The SelBackColor property specifies the background color for selected items. Use the
SelForeColor property to specify the foreground color for selected items. Use the
BackColor property to specify the control's background color. Use the ForeColor property
to specify the control's foreground color.

property CascadeTree.Select as String
Selects the path using the key for each view.

Type Description

String A String expression that defines the path of selected
items, using the Key column in each view.

The Key property indicates the column that defines the key of the view. Based on the key,
and the current selection the next view is created. The Select property can select items
using wild characters such as * or ?, if the view's SingleSel property is False. The Key
property can be specified also through Key field of the control's DataSource property. The
view's Select property selects items within the view and its descendents.

property CascadeTree.SelForeColor as Color
Retrieves or sets a value that indicates the selection foreground color.

Type Description

Color A color expression that indicates the selection foreground
color.

The SelForeColor property specifies the foreground color for selected items. Use the
SelBackColor property to specify the background color for selected items. Use the
ForeColor property to specify the control's foreground color. Use the BackColor property to
specify the control's background color.

property CascadeTree.ShowContextMenu as String
Specifies the object's context menu.

Type Description

String

A String expression that specifies the commands to be
displayed in the object's context menu. The
ShowContextMenu property supports expressions, so you
can combine the default context menu, with your own
context menu for any file/folder.

By default, the ShowContextMenu property is empty. The ShowContextMenu property can
be used to disable, update, remove or add new items. The ShowContextMenu property
indicates the items to be displayed on the object's context menu. The AllowContextMenu
property specifies whether the control shows the object's context menu when the user
presses the right click over a file or folder.

The ShowContextMenu property supports the following predefined keywords:

view keyword indicates the view the context menu is displayed for
hlevel keyword specifies the index of the horizontal cascade column view the context
menu is displayed for.
hlevels keyword gets the count of horizontal cascade columns
vlevel keyword specifies index of the vertical splitting panel the context menu is
displayed for
vlevels keyword gets the count of vertically split panels

This property/method supports predefined constants and operators/functions as described
here.

The ShowContextMenu property indicates the list of commands to be displayed in the
context menu, separated by comma (,). Each command must have an id parameter, that
specifies the identifier of the command. Optional parameters are def for default item, and
dis for disabled items. The sep parameter indicates a separator item. If adding new items
to the object's context menu, use the ExecuteContextMenu property to get the identifier of
the command to be executed during the ViewEndChanging event, when the Operation
parameter is exExecuteContextMenu(21).

For instance, the ShowContextMenu property on "Item 1[id=1][def],Popup[id=2](Sub-Item
2[id=2],[sep],Sub-Item 3[id=3])" shows the context menu as following:

property CascadeTree.ShowImageList as Boolean

Specifies whether the control's image list window is visible or hidden.

Type Description

Boolean A boolean expression that specifies whether the control's
image list window is visible or hidden.

By default, the ShowImageList property is True. Use the ShowImageList property to hide
the control's images list window. The control's images list window is visible only at design
time. Use the Images method to associate an images list control to the control. Use the
RepalceIcon method to add, remove or clear icons in the control's images collection.

method CascadeTree.ShowToolTip (ToolTip as String, [Title as Variant],
[Alignment as Variant], [X as Variant], [Y as Variant])
Shows the specified tooltip at given position.

Type Description

ToolTip as String

The ToolTip parameter can be any of the following:

NULL(BSTR) or "<null>"(string) to indicate that the
tooltip for the object being hovered is not changed
A String expression that indicates the description of
the tooltip, that supports built-in HTML format (adds,
replaces or changes the object's tooltip)

Title as Variant

The Title parameter can be any of the following:

missing (VT_EMPTY, VT_ERROR type) or "<null>"
(string) the title for the object being hovered is not
changed.
A String expression that indicates the title of the
tooltip (no built-in HTML format) (adds, replaces or
changes the object's title)

Alignment as Variant

A long expression that indicates the alignment of the tooltip
relative to the position of the cursor. If missing
(VT_EMPTY, VT_ERROR) the alignment of the tooltip for
the object being hovered is not changed.

The Alignment parameter can be one of the following:

0 - exTopLeft
1 - exTopRight
2 - exBottomLeft
3 - exBottomRight
0x10 - exCenter
0x11 - exCenterLeft
0x12 - exCenterRight
0x13 - exCenterTop
0x14 - exCenterBottom

By default, the tooltip is aligned relative to the top-left
corner (0 - exTopLeft).

X as Variant

Specifies the horizontal position to display the tooltip as
one of the following:

missing (VT_EMPTY, VT_ERROR type), indicates
that the tooltip is shown on its default position /
current cursor position (ignored)
-1, indicates the current horizontal position of the
cursor (current x-position)
a numeric expression that indicates the horizontal
screen position to show the tooltip (fixed screen x-
position)
a string expression that indicates the horizontal
displacement relative to default position to show the
tooltip (moved)

Y as Variant

Specifies the vertical position to display the tooltip as one
of the following:

missing (VT_EMPTY, VT_ERROR type), indicates
that the tooltip is shown on its default position /
current cursor position (ignored)
-1, indicates the current vertical position of the cursor
(current y-position)
a numeric expression that indicates the vertical screen
position to show the tooltip (fixed screen y-position)
a string expression that indicates the vertical
displacement relative to default position to show the
tooltip (displacement)

Use the ShowToolTip method to display a custom tooltip at specified position or to update
the object's tooltip, title or position. You can call the ShowToolTip method during the
MouseMove event. Use the ToolTipPopDelay property specifies the period in ms of time the
ToolTip remains visible if the mouse pointer is stationary within a control. The ToolTipDelay
property specifies the time in ms that passes before the ToolTip appears. Use the
ToolTipWidth property to specify the width of the tooltip window. Use the ToolTipFont
property to change the tooltip's font. Use the Background(exToolTipAppearance) property
indicates the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color.

For instance:

ShowToolTip(`<null>`,`<null>`,,`+8`,`+8`), shows the tooltip of the object moved relative

to its default position
ShowToolTip(`<null>`,`new title`), adds, changes or replaces the title of the object's
tooltip
ShowToolTip(`new content`), adds, changes or replaces the object's tooltip
ShowToolTip(`new content`,`new title`), shows the tooltip and title at current position
ShowToolTip(`new content`,`new title`,,`+8`,`+8`), shows the tooltip and title moved
relative to the current position
ShowToolTip(`new content`,``,,128,128), displays the tooltip at a fixed position
ShowToolTip(``,``), hides the tooltip

The ToolTip parameter supports the built-in HTML format like follows:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).

about:blank

<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the

height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property CascadeTree.SplitViewHeight as String
Specifies the height of split panels, separated by comma.

Type Description

String A String expression that specifies the height for each
vertical split-panel, separated by comma character.

By default, the SplitViewHeight property is "", so no additional view is displayed. The
SplitViewHeight property specifies the height of split panels, separated by comma. The
AllowSplitView property specifies whether the user can split the control into multiple-views.
The Background(exHSplitBar) property specifies the visual appearance of the control's split
bar (horizontal split bar)

property CascadeTree.StatusBarHeight as Long
Specifies the height of the control's status bar.

Type Description

Long A long expression that specifies the height of the control's
status bar.

By default, the StatusBarHeight property is -1, which specifies that status bar height is
automatically computed based on its label. The StatusBarHeight property specifies the
height of the control's status bar. The StatusBarLabel property specifies the HTML label the
control's status bar is displaying. The StatusBarVisible property specifies whether the
control's status bar is visible or hidden. The HeaderVisible property retrieves or sets a value
that indicates whether the control's header bar is visible or hidden. The Background(
exStatusBackColor) / Background(exStatusForeColor) specifies the status bar's
background / foreground color. The Background(exStatusPanelBackColor) specifies the
status panel's background color.

property CascadeTree.StatusBarLabel as String
Specifies the HTML label the control's status bar is displaying.

Type Description

String A String expression that specifies the HTML label the
control's status bar is displaying.

By default, the StatusBarLabel property is "". The StatusBarLabel property specifies the
HTML label the control's status bar is displaying. The StatusBarVisible property specifies
whether the control's status bar is visible or hidden. The HeaderVisible property retrieves or
sets a value that indicates whether the control's header bar is visible or hidden. The
Background(exStatusBackColor) / Background(exStatusForeColor) specifies the status
bar's background / foreground color. The Background(exStatusPanelBackColor) specifies
the status panel's background color. The StatueBarHeight property Specifies the height of
the control's status bar.

The StatusBarLabel property supports the built-in HTML format like follows:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The

about:blank

rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra

FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property CascadeTree.StatusBarVisible as StatusBarAnchorEnum
Specifies whether the control's status bar is visible or hidden.

Type Description

StatusBarAnchorEnum A StatusBarAnchorEnum expression that specifies
whether the control's status bar is visible or hidden.

By default, the StatusBarVisible property is exStatusBarAnchorTop, and so the status bar is
visible and aligned to the top side of the control. The StatusBarVisible property specifies
whether the control's status bar is visible or hidden. The StatusBarLabel property specifies
the HTML label the control's status bar is displaying. The HeaderVisible property retrieves
or sets a value that indicates whether the control's header bar is visible or hidden. The
Background(exStatusBackColor) / Background(exStatusForeColor) specifies the status
bar's background / foreground color. The Background(exStatusPanelBackColor) specifies
the status panel's background color.

property CascadeTree.Template as String
Specifies the control's template.

Type Description
String A string expression that indicates the control's template.

The control's template uses the X-Script language to initialize the control's content. Use the
Template property page of the control to update the control's Template property. Use the
Template property to execute code by passing instructions as a string (template string).
Use the ExecuteTemplate property to execute a template script and gets the result.

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values

separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier

property CascadeTree.TemplateDef as Variant
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplateDef property has been added to allow programming languages such as
dBASE Plus to set control's properties with multiple parameters. It is known that
programming languages such as dBASE Plus or XBasic from AlphaFive, does not
support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef method. The first call of the TemplateDef
should be a declaration such as "Dim a,b" which means the next 2 calls of the TemplateDef
defines the variables a and b. The next call should be Template or ExecuteTemplate
property which can use the variable a and b being defined previously.

So, calling the TemplateDef property should be as follows:

with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith

This sample allocates a variable var_Column, assigns the value to the variable (the second
call of the TemplateDef), and the Template call uses the var_Column variable (as an object
), to call its Def property with the parameter 4.

Let's say we need to define the background color for a specified column, so we need to call
the Def(exCellBackColor) property of the column, to define the color for all cells in the
column.

The following VB6 sample shows setting the Def property such as:

With Control
 .Columns.Add("Column 1").Def(exCellBackColor) = 255
 .Columns.Add "Column 2"
 .Items.AddItem 0
 .Items.AddItem 1

 .Items.AddItem 2
End With

In dBASE Plus, calling the Def(4) has no effect, instead using the TemplateDef helps you to
use properly the Def property as follows:

local Control,var_Column

Control = form.Activex1.nativeObject
// Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith
Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The equivalent sample for XBasic in A5, is as follows:

Dim Control as P
Dim var_Column as P

Control = topparent:CONTROL_ACTIVEX1.activex
' Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
Control.TemplateDef = "Dim var_Column"
Control.TemplateDef = var_Column
Control.Template = "var_Column.Def(4) = 255"

Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The samples just call the Column.Def(4) = Value, using the TemplateDef. The first call of
TemplateDef property is "Dim var_Column", which indicates that the next call of the
TemplateDef will defines the value of the variable var_Column, in other words, it defines the
object var_Column. The last call of the Template property uses the var_Column member to
use the x-script and so to set the Def property so a new color is being assigned to the
column.

The TemplateDef, Template and ExecuteTemplate support x-script language (Template
script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please

make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

method CascadeTree.TemplatePut (newVal as Variant)
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

newVal as Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplatePut method / TemplateDef property has been added to allow programming
languages such as dBASE Plus to set control's properties with multiple parameters. It is
known that programming languages such as dBASE Plus or XBasic from AlphaFive, does
not support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef / TemplatePut method. The first call of the
TemplateDef should be a declaration such as "Dim a,b" which means the next 2 calls of the
TemplateDef defines the variables a and b. The next call should be Template or
ExecuteTemplate property which can use the variable a and b being defined previously.

The TemplateDef, TemplatePut, Template and ExecuteTemplate support x-script language (
Template script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the

Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property CascadeTree.ToolTipDelay as Long
Specifies the time in ms that passes before the ToolTip appears.

Type Description

Long A long expression that specifies the time in ms that passes
before the ToolTip appears.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. The
ToolTipPopDelay property specifies the period in ms of time the ToolTip remains visible if
the mouse pointer is stationary within a control. Use the ToolTipWidth property to specify
the width of the tooltip window. Use the Background(exToolTipAppearance) property
indicates the visual appearance of the borders of the tooltips. Use the
Background(exToolTipBackColor) property indicates the tooltip's background color. Use the
Background(exToolTipForeColor) property indicates the tooltip's foreground color

property CascadeTree.ToolTipFont as IFontDisp
Retrieves or sets the tooltip's font.

Type Description
IFontDisp A Font object being used to display the tooltip.

Use the ToolTipFont property to assign a font for the control's tooltip. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. Use the ToolTipWidth property to specify the width of the tooltip
window.

property CascadeTree.ToolTipMargin as String
Defines the size of the control's tooltip margins.

Type Description

String

A string expression that defines the horizontal and vertical
margins (separated by comma) of the control's tooltip as
one of the following formats:

"value", where value is a positive number, that
specifies the horizontal and vertical margins, such as
"4" equivalent of "4,4"
"value,", where value is a positive number, that
specifies the horizontal margin, such as "4," equivalent
of "4,0"
",value", where value is a positive number, that
specifies the vertical margin, such as ",4" equivalent
of "0,4"
"horizontal,vertical", where horizontal and vertical are
positive numbers, that specifies the horizontal and
vertical margins, such as "4,4"

By default, the size of the tooltip margin is "4" (horizontal and vertical). For instance,
ToolTipMargin = "8" changes the horizontal and vertical margins are set to 8 pixels.
ToolTipMargin = "8,4" changes the horizontal margin to 8 pixels and the vertical margin to 4
pixels. The ToolTipWidth property specifies a value that indicates the width of the tooltip
window, in pixels. Use the ShowToolTip method to display a custom tooltip. Use the
ToolTipFont property to assign a font for the control's tooltip. The ToolTipPopDelay property
specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. The ToolTipDelay property specifies the time in ms that passes
before the ToolTip appears.

property CascadeTree.ToolTipPopDelay as Long
Specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control.

Type Description

Long
A long expression that specifies the period in ms of time
the ToolTip remains visible if the mouse pointer is
stationary within a control.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. The
ToolTipDelay property specifies the time in ms that passes before the ToolTip appears. Use
the ToolTipWidth property to specify the width of the tooltip window. Use the ToolTipFont
property to assign a font for the control's tooltip. Use the
Background(exToolTipAppearance) property indicates the visual appearance of the borders
of the tooltips. Use the Background(exToolTipBackColor) property indicates the tooltip's
background color. Use the Background(exToolTipForeColor) property indicates the tooltip's
foreground color.

property CascadeTree.ToolTipWidth as Long
Specifies a value that indicates the width of the tooltip window, in pixels.

Type Description

Long A long expression that indicates the width of the tooltip
window.

Use the ToolTipWidth property to change the tooltip window width. The height of the tooltip
window is automatically computed based on tooltip's description. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. The ToolTipDelay property specifies the time in ms that passes
before the ToolTip appears. Use the ToolTipFont property to assign a font for the control's
tooltip. Use the Background(exToolTipAppearance) property indicates the visual appearance
of the borders of the tooltips. Use the Background(exToolTipBackColor) property indicates
the tooltip's background color. Use the Background(exToolTipForeColor) property indicates
the tooltip's foreground color.

property CascadeTree.UseTabKey as Boolean
Retrieves or sets a value that specifies whether the Tab or SHIFT + Tab key navigates
through the cascading columns.

Type Description

Boolean A Boolean expression that specifies whether Tab or SHIFT
+ Tab key navigates through the cascading columns.

By default, the UseTabKey property is True, which indicates that TAB activates the next
cascade column, based on the current selection. The UseTabKey property specifies
whether the Tab or SHIFT + Tab key navigates through the cascading columns.

property CascadeTree.Version as String

Retrieves the control's version.

Type Description
String A string expression that indicates the control's version.

The Version property is read-only. The Version property specifies the version of the control
you are running.

property CascadeTree.View as View
Returns the view you are currently working on.

Type Description

View A View object that specifies the view where the event
occurs.

The View property returns the default view, in case it is not called during an event. During
any event, the View property returns the view where the event occurs. The CreateView
event is fired as soon as the control creates a new view. The DefaultView property
specifies the default view on the control. The Items property retrieves the view' items
collection. The Columns property retrieves the view's columns collection.

The following properties can be used to access a view:

FirstView property, gets the first view
PrevView property, gets the previously view (parent)
ParentView property, gets the parent view (previously)
ChildView property, gets the child view (next).
NextView property, gets the next view (child).

LastView property, gets the last view.

property CascadeTree.ViewColumnFromPoint (X as OLE_XPOS_PIXELS,
Y as OLE_YPOS_PIXELS, ppView as View) as Long
Retrieves the view and column from the point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

ppView as View A View object from the cursor.

Long A Long expression that specifies the index of the column
from the cursor.

The ViewColumnFromPoint property retrieves the view and column from the point. The
ViewColumnFromPoint(-1,-1) property retrieves the view and column from the current
cursor position. The ViewFromPoint property retrieves the view from the point. The
ViewItemFromPoint property retrieves the view and item from the point. The
ColumnFromPoint property retrieves the column from the point.

property CascadeTree.ViewFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as View
Retrieves the view from the point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

View A View object from the cursor.

The ViewFromPoint property retrieves the view from the point. The ViewFromPoint(-1,-1)
property retrieves the view from the current cursor position. The ViewItemFromPoint
property retrieves the view and item from the point. The ViewColumnFromPoint property
retrieves the view and column from the point. The ColumnFromPoint property retrieves the
column from the point.

property CascadeTree.ViewItemFromPoint (X as OLE_XPOS_PIXELS, Y
as OLE_YPOS_PIXELS, ppView as View, ColIndex as Long, HitTestInfo as
HitTestInfoEnum) as HITEM
Retrieves the view and item from the point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

ppView as View A View object from the cursor.

ColIndex as Long A Long expression that specifies the index of the column
from the cursor.

HitTestInfo as
HitTestInfoEnum

A HitTestInfoEnum expression that indicates the hit test
code.

HITEM A long expression that specifies the handle of the item
from the cursor.

The ViewItemFromPoint property retrieves the view and item from the point. The
ViewItemFromPoint(-1,-1) property retrieves the view and item from the current cursor
position. The ViewFromPoint property retrieves the view from the point. The
ViewColumnFromPoint property retrieves the view and column from the point. The
ColumnFromPoint property retrieves the column from the point.

property CascadeTree.VisualAppearance as Appearance
Retrieves the control's appearance.

Type Description
Appearance An Appearance object that holds a collection of skins.

Use the Add method to add or replace skins to the control. The skin method, in it's simplest
form, uses a single graphic file (*.ebn) assigned to a part of the control. By using a
collection of objects laid over the graphic, it is possible to define which sections of the
graphic will be used as borders, corners and other possible elements, fixing them to their
proper position regardless of the size of the part.

Column object
The ExCascadeTree control supports multiple columns. The Columns object contains a
collection of Column objects. By default, the control doesn't add any default column, so the
user has to add at least one column, before inserting any new items. The Column object
supports the following properties and methods:

Name Description
Alignment Specifies the column's alignment.

AllowDragging Retrieves or sets a value indicating whether the user will
be able to drag the column.

AllowGroupBy Specifies if the column can be grouped by.

AllowSizing
Retrieves or sets a value indicating whether the user will
be able to change the width of the visible columns by
dragging.

AllowSort Returns or sets a value that indicates whether the user
can sort the column by clicking the column's header.

AutoSearch Specifies the kind of searching while user types
characters within the columns.

AutoWidth Computes the column's width required to fit the entire
column's content.

Caption Retrieves or sets the text displayed to the column's
header.

ComputedField Retrieves or sets a value that indicates the formula of the
computed column.

CustomFilter Retrieves or sets a value that indicates the list of custom
filters.

Data Associates an extra data to the column.

Def Retrieves or sets a value that indicates the default value of
given properties for all cells in the same column.

DefaultSortOrder Specifies whether the default sort order is ascending or
descending.

DisplayExpandButton Shows or hides the expanding/collapsing button in the
column's header.

DisplayFilterButton Specifies whether the column's header displays the filter
button.
Specifies whether the drop down filter window displays a

DisplayFilterDate date selector to specify the interval dates to filter for.

DisplayFilterPattern Specifies whether the dropdown filterbar contains a
textbox for editing the filter as pattern.

DisplaySortIcon Retrieves or sets a value indicating whether the sort icon
is visible on column's header, while the column is sorted.

Enabled Returns or sets a value that determines whether a
column's header can respond to user-generated events.

ExpandColumns Specifies the list of columns to be shown when the current
column is expanded.

Expanded Expands or collapses the column.

Filter Specifies the column's filter when the filter type is exFilter,
exPattern, exDate, exNumeric, exCheck or exImage

FilterBarDropDownWidth Specifies the width of the drop down filter window
proportionally with the width of the column.

FilterList Specifies whether the drop down filter list includes visible
or all items.

FilterOnType Filters the column as user types characters in the drop
down filter window.

FilterType Specifies the column's filter type.
FormatColumn Specifies the format to display the cells in the column.

FormatLevel Retrieves or sets a value that indicates the layout of
columns being displayed in the column's header.

GroupByFormatCell Indicates the format of the cell to be displayed when the
column gets grouped by.

GroupByTotalField Indicates the aggregate formula to be displayed when the
column gets grouped by.

HeaderAlignment Specifies the alignment of the column's caption.

HeaderBold Retrieves or sets a value that indicates whether the
column's caption should appear in bold.

HeaderImage
Retrieves or sets a value indicating the index of an Image
in the Images collection, which is displayed to the column's
header.

HeaderImageAlignment Retrieves or sets the alignment of the image in the
column's header.

HeaderItalic Retrieves or sets a value that indicates whether the

column's caption should appear in italic.

HeaderStrikeOut Retrieves or sets a value that indicates whether the
column's caption should appear in strikeout.

HeaderUnderline Retrieves or sets a value that indicates whether the
column's caption should appear in underline.

HeaderVertical Specifies whether the column's header is vertically
displayed.

HTMLCaption Retrieves or sets the text in HTML format displayed in the
column's header.

Index Returns a value that represents the index of an object in a
collection.

Key Retrieves or sets a the column's key.

LevelKey Retrieves or sets a value that indicates the key of the
column's level.

MaxWidthAutoResize Retrieves or sets a value that indicates the maximum
column's width when the WidthAutoResize is True.

MinWidthAutoResize Retrieves or sets a value that indicates the minimum
column's width when the WidthAutoResize is True.

PartialCheck Specifies whether the column supports partial check
feature.

Position Retrieves or sets a value that indicates the position of the
column in the header bar area.

Selected Retrieves or sets a value that indicates whether the cell in
the column is selected.

ShowFilter Shows the column's filter window.
SortOrder Specifies the column's sort order.

SortPosition Returns or sets a value that indicates the position of the
column in the sorting columns collection.

SortType Returns or sets a value that indicates the way a control
sorts the values for a column.

ToolTip Specifies the column's tooltip description.

Visible Retrieves or sets a value indicating whether the column is
visible or hidden.

Width Retrieves or sets the column's width.

WidthAutoResize
Retrieves or sets a value that indicates whether the
column is automatically resized according to the width of

the contents within the column.

property Column.Alignment as AlignmentEnum
Retrieves or sets the alignment of the caption in the column's header.

Type Description

AlignmentEnum An AlignmentEnum expression that indicates the column's
alignment.

Use the Alignment property to align cells in a column.By default the column is left aligned.
Use the Alignment property to change the column's alignment. Use the HeaderAlignment
property to align the column's caption inside the column's header. By default, all columns
are aligned to left. If the column displays the hierarchy lines, and if the Alignment property is
RightAlignment the hierarchy lines are painted from right to left side. Use the HasLines
property to display the control's hierarchy lines. Use the CellHAlignment property to align a
particular cell. Use the HeaderImageAlignment property to align the image in the column's
header, if it exists. Use the HeaderImage property to attach an icon to the column's
header. Use the Def(exCellDrawPartsOrder) property to specify the order of the drawing
parts inside the cell. The RightToLeft property automatically flips the order of the columns.

property Column.AllowDragging as Boolean
Retrieves or sets a value indicating whether the user will be able to drag the column.

Type Description

Boolean A boolean expression indicating whether the user will be
able to drag the column.

Use the AllowDragging property to forbid user to change the column's position by dragging.
If the AllowDragging is false, the column's position cannot be changed by dragging it to
another position. Use the AllowSizing property to allow user resizes a column at runtime.

property Column.AllowGroupBy as Boolean
Specifies if the column can be grouped by.

Type Description

Boolean A Boolean expression that specifies whether the user can
drag and drop the column to be grouped by,

By default, the AllowGroupBy property is True. The AllowGroupBy property has effect only
if the control's AllowGroupBy property is True. Use the AllowGroupBy property on False, to
prevent a specific column to be sorted/grouped by. The same you can achieve if the
AllowSort property is False. The SortBarVisible property specifies whether the control's
sort bar is visible or hidden. If the control's sort bar is visible, the user can drag and drop
columns to it, so the column get sorted and items grouped. The Group/Ungroup method
groups or ungroup the control's list. For instance, you can remove the grouping items, by
calling the Ungroup method. The GroupByTotalField property determines the formula to be
applied to the column when it gets grouped. The GroupByFormatCell property determines
the format of the cell to be displayed in the grouping item, when the column gets sorted.

property Column.AllowSizing as Boolean
Retrieves or sets a value indicating whether the user will be able to change the width of the
visible column by dragging.

Type Description

Boolean
A boolean expression that indicates whether the user will
be able to change the width of the visible columns by
dragging.

Use the AllowSizing property to fix the column's width. Use the ColumnAutoResize property
of the control to fit the columns to the control's client area. Use the AllowDragging property
to forbid user to change the column's position by dragging. Use the Width property to
specify the column's width. Use the ColumnsAllowSizing property to allow resizing the
columns, when the control's header bar is not visible. Use the HeaderVisible property to
show or hide the control's header bar.

property Column.AllowSort as Boolean
Returns or sets a value that indicates whether the user can sort the column by clicking the
column's header.

Type Description

Boolean A boolean expression that indicates whether the column
gets sorted when the user clicks the column's header.

Sorting by a single column in the control is a simple matter of clicking on the column head.
Sorting by multiple columns, however, is not so obvious. But it's actually quite easy. First,
sort by the first criterion, by clicking on the column head. Then hold the Shift key down as
you click on a second heading. Another option is dragging the column's header to the
control's sort bar. The SortBarVisible property shows the control's sort bar. Use the
AllowSort property to avoid sorting a column when the user clicks the column's header. Use
the SortOnClick property to specify the action that control executes when the user clicks
the column's head. Use the AllowDragging property to specify whether the column's header
can be dragged. Use the DefaultSortOrder property to specify the column's default sort
order, when the user first clicks the column's header. The EnsureOnSort property prevents
scrolling the control's content when the user sorts items.

property Column.AutoSearch as AutoSearchEnum
Specifies the kind of searching while user types characters within the columns.

Type Description

AutoSearchEnum An AutoSearchEnum expression that defines the type of
incremental searching.

By default, the AutoSearch property is exStartWith. The AutoSearch property has effect
only if the AutoSearch property of the control is True. Use the AutoSearch property to
define a 'contains' incremental search. If the AutoSearch property is exContains, the control
searches for items that contains the typed characters. The searching column is defined by
the SearchColumnIndex property. Use the ExpandOnSearch property to expand items while
user types characters in the control.

property Column.AutoWidth as Long
Computes the column's width required to fit the entire column's content.

Type Description

Long A long value that indicates the required width of the column
to fit the entire column's content.

Use the AutoWidth property to arrange the columns to fit the entire control's content. The
AutoWidth property doesn't change the column's width. Use Width property to change the
column's width at runtime. Use the ColumnAutoResize property to specify whether the
control resizes all visible columns to fit the control's client area.

property Column.Caption as String
Retrieves or sets the text displayed in the column's header.

Type Description
String A string expression that indicates the column's caption.

Each property of Items object that has an argument ColIndex can use the column's caption
to identify a column. Adding two columns with the same caption is accepted and these are
differentiated by their indexes. Use the HTLMCaption property to display the column's
caption using HTML tags. To hide a column use the Visible property of the Column object.
Use the HeaderVertical property to display vertically the column's caption. Use the
HeaderImage property to assign an icon to a column. The column's caption is displayed
using the following font attributes: HeaderBold, HeaderItalic, HeaderUnderline,
HeaderStrikeout. Use the Add method to add new columns and to specify their captions.
Use the FormatLevel property to display multiple levels in the column's header.

property Column.ComputedField as String
Retrieves or sets a value that indicates the formula of the computed column.

Type Description

String

A String expression that indicates the formula to compute
the field/cell. The formula is applied to all cells in the
column with the CellValueFormat property on exText (the
exText value is by default).

A computed field or cell displays the result of an arithmetic formula that may include
operators, variables and constants. By default, the ComputedField property is empty. If the
the ComputedField property is empty, the property have no effect. If the ComputedField
property is not empty, all cells in the column, that have the CellValueFormat property on
exText, uses the same formula to display their content. For instance, you can use the
CellValueFormat property on exHTML, for cells in the column, that need to display other
things than column's formula, or you can use the CellValueFormat property on
exComputedField, to change the formula for a particular cell. Use the FormatColumn
property to format the column.

Use the CellValueFormat property to change the type for a particular cell. Use the CellValue
property to specify the cell's content. For instance, if the CellValueFormat property is
exComputedField, the Caption property indicates the formula to compute the cell's content.

The Def(exCellValueFormat) property is changed to exComputedField, each time the
ComputeField property is changed to a not empty value. If the ComputedField property is
set to an empty string, the Def(exCellValueFormat) property is set to exText. Call the
Refresh method to force refreshing the control.

The expression may be a combination of variables, constants, strings, dates and
operators. A string is delimited by ", ` or ' characters, and inside they can have the starting
character preceded by \ character, ie "\"This is a quote\"". A date is delimited by #
character, ie #1/31/2001 10:00# means the January 31th, 2001, 10:00 AM.

Samples:

1. "1", the cell displays 1
2. "%0 + %1", the cell displays the sum between cells in the first and second columns.
3. "%0 + %1 - %2", the cell displays the sum between cells in the first and second

columns minus the third column.
4. "(%0 + %1)*0.19", the cell displays the sum between cells in the first and second

columns multiplied with 0.19.
5. "(%0 + %1 + %2)/3", the cell displays the arithmetic average for the first three

columns.

6. "%0 + %1 < %2 + %3", displays 1 if the sum between cells in the first two columns is
less than the sum of third and forth columns.

7. "proper(%0)'" formats the cells by capitalizing first letter in each word
8. "currency(%1)'" displays the second column as currency using the format in the control

panel for money
9. "len(%0) ? currency(dbl(%0)) : ''" displays the currency only for not empty/blank

cells.
10. "int(date(%1)-date(%2)) + 'D ' + round(24*(date(%1)-date(%2) - floor(date(%1)-

date(%2)))) + 'H''" displays interval between two dates in days and hours, as xD yH
11. "2:=((1:=int(0:= date(%1)-date(%0))) = 0 ? '' : str(=:1) + ' day(s)') + (3:=round(24*

(=:0-floor(=:0))) ? (len(=:2) ? ' and ' : '') + =:3 + ' hour(s)' : '')" displays the interval
between two dates, as x day(s) [and y hour(s)], where the x indicates the number of
days, and y the number of hours. The hour part is missing, if 0 hours is displayed, or
nothing is displayed if dates are identical.

The expression supports cell's identifiers as follows:

%0, %1, %2, ...{any} specifies the value of the cell in the column with the index 0, 1
2, ... The CellCaption property defines the cell's value. For example, "%0 format ``"
formats the value in the cell at index 0 using the current regional settings, while
"int(%1)" converts the value in the cell at index 1 to an integer.
%C0, %C1, %C2, ...{string} specifies the caption of the cell, or the string the cell
displays in the column with the index 0, 1 2, ... The CellCaption property gets the
cell's formatted caption. The cell's displayed string may differ from its actual value.
For example, if a cell displays HTML content, %0 returns the HTML format including
the tags, while %C0 returns the cell's content as a plain string without HTML tags. For
instance, "upper(%C1)" converts the caption of the cell at index 1 to uppercase, while
"%C0 left 2" returns the leftmost two characters of the caption in the cell at index 0.
%CD0, %CD1, %CD2, ...{any} specifies the cell's extra data in the column with the
index 0, 1 2, ... The CellData property associates any extra/user data to a cell. For
example, "%CD0 = your user data" specifies all cells in the column with index 0
whose CellData property is equal to your user data.
%CS0, %CS1, %CS2, ...{number} specifies the cell's state in the column with the
index 0, 1 2, ... The CellState property defines the state of a cell, indicating whether it
is checked or unchecked. For example, "%CS0" identifies all checked items in the
column with index 0, while "not %CS1" identifies all unchecked items in the column
with index 1.
%CC0, %CC1, %CC2, ... {number} retrieve the number of child items (this keyword
consistently returns identical results for all cells since it pertains to the item that hosts
each cell). The ChildCount property returns the number of child items. For example,
"%CC0" identifies all parent items, while "%CC0 = 0" identifies all leaf items.
%CX0, %CX1, %CX2, ... {boolean} returns true if the item hosting the cell is

expanded, or false if it is collapsed (this keyword consistently returns identical results
for all cells since it pertains to the item that hosts each cell). The ExpandItem property
specifically indicates whether the item is expanded or collapsed. For example,
"%CX0" refers to all expanded items, while "not %CX0" identifies all collapsed items

This property/method supports predefined constants and operators/functions as described
here.

property Column.CustomFilter as String
Retrieves or sets a value that indicates the list of custom filters.

Type Description
String A String expression that defines the list of custom filters.

By default, the CustomFilter property is empty. The CustomFilter property has effect only if
it is not empty, and the FilterType property is not exImage, exCheck or exNumeric. Use the
DisplayFilterPattern property to hide the text box to edit the pattern, in the drop down filter
window. The All predefined item and the list of custom filter is displayed in the drop down
filter window, if the CustomFilter property is not empty. The Blanks and NonBlanks
predefined items are not defined, when custom filter is displayed. Use the
DisplayFilterButton property to show the button on the column's header to drop down the
filter window. Use the Background property to define the visual appearance for the drop
down button.

The CustomFilter property defines the list of custom filters as pairs of (caption,pattern)
where the caption is displayed in the drop down filter window, and the pattern is get
selected when the user clicks the item in the drop down filter window (the FilterType
property is set on exPattern, and the Filter property defines the custom pattern being
selected). The caption and the pattern are separated by a "||" string (two vertical bars,
character 124). The pattern expression may contains multiple patterns separated by a
single "|" character (vertical bar, character 124). A pattern may contain the wild card
characters '?' for any single character, '*' for zero or more occurrences of any character, '#'
for any digit character. If any of the *, ?, # or | characters are preceded by a \ (escape
character) it masks the character itself. If the pattern is not present in the (caption,pattern)
pair, the caption is considered as being the pattern too. The pairs in the list of custom
patterns are separated by "|||" string (three vertical bars, character 124). So, the syntax
of the CustomFilter property should be of: CAPTION [|| PATTERN [| PATTERN]] [|||
CAPTION [|| PATTERN [| PATTERN]]].

For example, you may have a list of documents and instead of listing the name of each
document in the filter drop down list for the names column you may want to list the
following:

Excel Spreadsheets
Word Documents
Powerpoint Presentations
Text Documents

And define the filter patterns for each line above as follows:

*.xls
*.doc
*.pps
*.txt, *.log

and so the CustomFilter property should be "Excel Spreadsheets (*.xls)||*.xls|||Word
Documents||*.doc|||Powerpoint Presentations||*.pps|||Text Documents
(*.log,*.txt)||*.txt|*.log". The following screen shot shows this custom filter format.

property Column.Data as Variant
Associates an extra data to the column.

Type Description

Variant A Variant expression that indicates the column's extra
data.

Use the Data property to assign any extra data to a column. Use the CellData property to
assign an extra data to a cell. Use the ItemData property to assign an extra data to an
item.

property Column.Def(Property as DefColumnEnum) as Variant
Retrieves or sets a value that indicates the default value of given properties for all cells in
the same column.

Type Description

Property as DefColumnEnum A DefColumnEnum expression that indicates the property
being changed.

Variant A Variant value that specifies the newly value.

Use the Def property to specify a common value for given properties for all cells in the
column. For instance, you can use the Def property to assign check boxes to all cells in the
column, without enumerating them.

property Column.DefaultSortOrder as Boolean
Specifies whether the default sort order is ascending or descending.

Type Description
Boolean A boolean expression that specifies the default sort order.

Use the DefaultSortOrder property to specify the default sort order, when the column's
header is clicked. Use the SortOnClick property to specify when user can sort the columns
by clicking the control's header. Use the SortOrder property to sort a column. Use the
SortChildren method to sort items at runtime. Use the SingleSort property to allow sorting
by multiple columns.

property Column.DisplayExpandButton as Boolean
Shows or hides the expanding/collapsing button in the column's header.

Type Description

Boolean
A Boolean expression that specifies whether the column's
header displays a +/- (expanding button), to let user
expands or collapse the column, when it is clicked.

By default, the DisplayExpandButton property is True. The DisplayExpandButton property
displays the header's expanding button, only, if it contains child columns specified using the
ExpandColumns property. The HasButtons property indicates the way the +/- (expanding
button) is shown. Use the DisplayExpandButton property on True and ExpandColumns
property to display the columns on multiple levels. The Expanded property expands
programmatically a column. The control fires the ViewEndChanging(exLayoutChange) event
when the user expands or collapse a column. Use the ExpandItem property to expand or
collapse an item. The Index property indicates the column's index. The Visible property
specifies whether a column is Visible or hidden.

property Column.DisplayFilterButton as Boolean
Shows or hides the column's filter bar button.

Type Description

Boolean A boolean expression that indicates whether the column's
filter bar button is visible or hidden.

By default, the DisplayFilterButton property is False. The column's filter button is displayed
on the column's caption. Use the FilterOnType property to enable the Filter-On-Type
feature, that allows you to filter the control's data based on the characters you type.

The DisplayFilterPattern property determines whether the column's filter window includes
the "Filter For" (pattern) field. Use the DisplayFilterDate property to include a date selector
to the column's drop down filter window. Use the FilterBarDropDownHeight property to
specify the height of the drop down filter window. Use the FilterBarDropDownWidth
property to specify the width of the drop down filter window. Use the FilterType property to
specify the type of the column's filter. Use the FilterType property to filter items based on
the caption, check state or icons. Use the FilterList property to specify the list of items
being included in the column's drop down filter list. Use the FilterInclude property to specify
whether the child items should be included to the list when the user applies the filter. Use
the Background(exHeaderFilterBarButton) property to change the visual appearance for the
drop down filter button. Use the FilterCriteria property to filter items using the AND, OR and
NOT operators. Use the CustomFilter property to define you custom filters. Use the
ShowFilter method to show programmatically the column's drop down filter window.

property Column.DisplayFilterDate as Boolean
Specifies whether the drop down filter window displays a date selector to specify the
interval dates to filter for.

Type Description

Boolean
A boolean expression that indicates whether the drop
down filter window displays a date selector to filter items
into a given interval.

By default, the DisplayFilterDate property is False. Use the DisplayFilterDate property to
filter items that match a given interval of dates. The DisplayFilterDate property includes a
date button to the right of the Date field in the drop down filter window. The
DisplayFilterDate property has effect only if the DisplayFilterPattern property is True. If the
user clicks the filter's date selector the control displays a built-in calendar editor to help
user to include a date to the date field of the drop down filter window. If the Date field in the
filter drop down window is not empty, the FilterType property of the Column object is set on
exDate, and the Filter property of the Column object points to the interval of dates being
used when filtering.

property Column.DisplayFilterPattern as Boolean
Specifies whether the dropdown filter bar contains a textbox for editing the filter as pattern.

Type Description

Boolean A boolean expression that indicates whether the pattern
field is visible or hidden.

Use the DisplayFilterButton property to show the column's filter button. If the
DisplayFilterButton property is False the drop down filter window doesn't include the "Filter
For" or "Date" field. Use the DisplayFilterDate property to filter items that match a given
interval of dates. Use the FilterCriteria property to filter items using the AND, OR and NOT
operators. Use the CustomFilter property to define you custom filters. The "Filter For"
(pattern) field in the drop down filter window is always shown if the FilterOnType property is
True, no matter of the DisplayFilterPattern property.

The drop down filter window displays the "Filter For" field if the DisplayFilterPattern
property is True, and the DisplayFilterDate property is False. If the drop down filter window
displays "Filter For" field, and user types the filter inside, the FilterType property of the
Column is set to exPattern, and Filter property of the Column object specifies the filter
being typed.

The drop down filter window displays the "Date" field if the DisplayFilterPattern property is
True, and the DisplayFilterDate property is True. If the drop down filter window displays
"Date" field, and user types selects an interval of dates, the FilterType property of the
Column is set to exDate, and Filter property of the Column object specifies the interval of
dates being used in filtering.

property Column.DisplaySortIcon as Boolean
Retrieves or sets a value indicating whether the sort icon is visible in column's header, while
the column is sorted.

Type Description

Boolean
A boolean expression indicating whether the sort icon is
visible on column's header, if the column was sorted by
clicking in its header.

Use the DisplaySortIcon property to hide the icon of the column. Use the SortOnClick
property to disable sorting columns by clicking in column's header. Use the SortChildren
property of the Items object to sort by a column. Use the SortOrder property to sort a
column. Use the SingleSort property to allow multiple sort columns.

property Column.Enabled as Boolean
Returns or sets a value that determines whether a column's header can respond to user-
generated events.

Type Description

Boolean A boolean expression that determines whether a column's
header can respond to user-generated events.

Use the Enabled property to disable a column. If a column is disabled, the user can select
new items, but any checkbox, radio button, or editor in the cells of the column is disabled.
Use the CellEnabled property to disable a particular cell. Use the EnableItem property to
disable an item. Use the SelectableItem property to specify the user can select an item.

property Column.ExpandColumns as String
Specifies the list of columns to be shown when the current column is expanded.

Type Description

String

A String expression that specifies the list of columns to be
shown/hidden when the current column is expanded or
collapsed. The list indicates the index of each column to
be shown/hidden separated by comma character. For
instance, "2,3" indicates that the columns with the index 2
and 3 are displayed bellow the current column.

By default, the ExpandColumns property is empty. Use the ExpandColumns property to
display the columns on multiple levels, or to allow your users to expand/collapse the
columns. The DisplayExpandButton property specifies whether the column's header
displays a +/- (expanding button), to let user expands or collapse the column, when it is
clicked. The Expanded property expands programmatically a column. The control fires the
ViewEndChanging(exLayoutChange) event when the user expands or collapse a column.
Use the ExpandItem property to expand or collapse an item. The Index property indicates
the column's index. The Visible property specifies whether a column is Visible or hidden.

The control performs showing/hiding the child columns as follow:

If the column is expanded, the child columns are shown, and the current column is
hidden, if the index of itself it is not included in the ExpandColumns property.
If the column is collapsed, the recursively child columns are hidden, and the current
column is shown.

The following screen shot shows the control's expandable header:

The following movie shows how you can use the Expandable Header support.

https://www.youtube.com/watch?v=wWP3pr6dlQo

property Column.Expanded as Boolean
Expands or collapses the column.

Type Description

Boolean A Boolean expression that specifies whether the column is
expanded or collapsed.

The Expanded property expands programmatically a column. The ExpandColumns property
specifies the list of columns to be shown when the current column is expanded. The
DisplayExpandButton property specifies whether the column's header displays a +/- (
expanding button), to let user expands or collapse the column, when it is clicked. The
control fires the ViewEndChanging(exLayoutChange) event when the user expands or
collapse a column. Use the ExpandItem property to expand or collapse an item. The Index
property indicates the column's index. The Visible property specifies whether a column is
Visible or hidden.

property Column.Filter as String
Specifies the column's filter when the filter type is exFilter, exPattern, exDate, exNumeric,
exCheck or exImage.

Type Description
String A string expression that specifies the column's filter.

If the FilterType property is exFilter the Filter property indicates the list of values being
included when filtering. The values are separated by '|' character. For instance if the
Filter property is "CellA|CellB" the control includes only the items that have captions
like: "CellA" or "CellB".

If the FilterType is exPattern the Filter property defines the list of patterns used in
filtering. The list of patterns is separated by the '|' character. A pattern filter may
contain the wild card characters like '?' for any single character, '*' for zero or more
occurrences of any character, '#' for any digit character. The '|' character separates
the options in the pattern. For instance: '1*|2*' specifies all items that start with '1' or
'2'.

If the FilterType property is exDate, the Filter property should be of "[dateFrom] to
[dateTo]" format, and it indicates that only items between a specified range of dates
will be included. If the dateFrom value is missing, the control includes only the items
before the dateTo date, if the dateTo value is missing, the control includes the items
after the dateFrom date. If both dates (dateFrom and dateTo) are present, the
control includes the items between this interval of dates. For instance, the "2/13/2004
to" includes all items after 2/13/2004 inclusive, or "2/13/2004 to Feb 14 2005" includes
all items between 2/13/2004 and 2/14/2004.

If the FilterType property is exNumeric, the Filter property may include operators like
<, <=, =, <>, >= or > and numbers to define rules to include numbers in the control's
list. The Filter property should be of the following format "operator number [operator
number ...]". For instance, the "> 10" indicates all numbers greater than 10. The "<>10
<> 20" filter indicates all numbers except 10 and 20. The "> 10 < 100" filter indicates
all numbers greater than 10 and less than 100. The ">= 10 <= 100 <> 50" filter
includes all numbers from 10 to 100 excepts 50. The "10" filter includes only 10 in the
list. The "=10 =20" includes no items in the list because after control filters only 10
items, the second rule specifies only 20, and so we have no items. The Filter property
may include unlimited rules. A rule is composed by an operator and a number. The
rules are separated by space characters.

If the FilterType property is exCheck the Filter property may include "0" for unchecked
items, and "1" for checked items. The CellState property specifies the state of the

cell's checkbox. If the Filter property is empty, the filter is not applied to the column,
when the ApplyFilter method is called. The drop down filter window displays the (All),
(Checked) and (Unchecked) items.

If the FilterType property is exImage the Filter property indicates the list of icons (index
of the icon being displayed) being filtered. The values are separated by '|' character.
The CellImage property indicates the index of the icon being displayed in the cell. For
instance, the '1|2' indicates that the filter includes the cells that display first or the
second icon (with the index 1 or 2). The drop down filter window displays the (All)
item and the list of icons being displayed in the column.

The Filter property has no effect if the FilterType property is one of the followings: exAll,
exBlanks and exNonBlanks

The ApplyFilter method should be called to update the control's content after changing the
Filter or FilterType property. The ClearFilter method clears the Filter and the FilterType
properties. Use the FilterInclude property to specify whether the child items should be
included to the list when the user applies the filter. Use the FilterCriteria property to filter
items using the AND, OR and NOT operators. Use the CustomFilter property to define you
custom filters. Use the ShowFilter method to show programmatically the column's drop
down filter window.

property Column.FilterBarDropDownWidth as Double
Specifies the width of the drop down filter window proportionally with the width of the
column.

Type Description

Double

A double expression that indicates the width of the drop
down filter window proportionally with the width of the
column. If the FilterBarDropDownWidth expression is
negative, the absolute value indicates the width of the drop
down filter window in pixels. Else, the value indicates how
many times the width of the column is multiply to get the
width of the drop down filter window

By default, the FilterBarDropDownWidth property is 1, and so, the width of the drop down
filter window coincides with the width of the column. Use the Width property to specify the
width of the column. Use FilterBarDropDownHeight property to specify the height of the
drop down filter window. Use the FilterBarHeight property to specify the height of the
control's filter bar. Use the DisplayFilterButton property to display a filter button to the
column's caption.

property Column.FilterList as FilterListEnum
Specifies whether the drop down filter list includes visible or all items.

Type Description

FilterListEnum A FilterListEnum expression that indicates the items being
included in the drop down filter list.

By default, the FilterList property is exAllItems. Use the FilterList property to specify the
items being included in the column's drop down filter list. Use the DisplayFilterButton
property to display the column's filter bar button. The DisplayFilterDate property specifies
whether the drop down filter window displays a date selector to specify the interval dates to
filter for. Use the FilterCriteria property to filter items using the AND, OR and NOT
operators. Use the exSortItemsAsc flag to sort ascending the values in the drop down filter
list. For instance, the exAllItems OR exSortItemsAsc specifies that the drop down filter
window lists all items in ascending order. Add the exIncludeInnerCells flag if you require
adding the inner cells value to the drop down filter window.

property Column.FilterOnType as Boolean
Filters the column as user types characters in the drop down filter window.

Type Description

Boolean
A Boolean expression that specifies whether the column
gets filtered as the user types characters in the drop down
filter window.

By default, the FilterOnType property is False. The Filter-On-Type feature allows you to
filter the control's data based on the typed characters. Use the DisplayFilterButton property
to add a drop down filter button to the column's header. The Filter-On-Type feature works
like follows: User clicks the column's drop down filter button, so the drop down filter window
is shown. Use starts type characters, and the control filters the column based on the typed
characters as it includes all items that starts with typed characters, if the AutoSearch
property is exStartWith, or include in the filter list only the items that contains the typed
characters, if the AutoSearch property is exContains. Click the X button on the filterbar, and
so the control removes the filter, and so all data is displayed. Once, the FilterOnType
property is set on True, the column's FilterType property is changed to exPattern, and the
the Filter property indicates the typed string. Use the FilterCriteria property to specify the
expression being used to filter the control's data when multiple columns are implied in the
filter. Use the FilterHeight property to specify the height of the control's filterbar that's
displayed on the bottom side of the control, once a filter is applied. The "Filter For"
(pattern) field in the drop down filter window is always shown if the FilterOnType property is
True, no matter of the DisplayFilterPattern property.

property Column.FilterType as FilterTypeEnum
Specifies the column's filter type.

Type Description

FilterTypeEnum A FilterTypeEnum expression that indicates the filter's
type.

The FilterType property defines the filter's type. By default, the FilterType is exAll. No filter
is applied if the FilterType is exAll. The Filter property defines the column's filter. Use the
DisplayFilterButton property to display the column's filter button. Use the FilterInclude
property to specify whether the child items should be included to the list when the user
applies the filter. Use the FilterCriteria property to filter items using the AND, OR and NOT
operators.

The ApplyFilter method should be called to update the control's content after changing the
Filter or FilterType property. The ClearFilter method clears the Filter and the FilterType
properties.

If the FilterType property is exNumeric, the drop down filter window doesn't display the filter
list that includes items "(All)", "(Blanks)", ... and so on.

property Column.FormatColumn as String
Specifies the format to display the cells in the column.

Type Description

String A string expression that defines the format to display the
cell, including HTML formatting, if the cell supports it.

By default, the FormatColumn property is empty. The cells in the column use the provided
format only if is valid (not empty, and syntactically correct), to display data in the column.
The FormatColumn property provides a format to display all cells in the column using a
predefined format. The expression may be a combination of variables, constants, strings,
dates and operators, and value. The value operator gives the value to be formatted. A
string is delimited by ", ` or ' characters, and inside they can have the starting character
preceded by \ character, ie "\"This is a quote\"". A date is delimited by # character, ie
#1/31/2001 10:00# means the January 31th, 2001, 10:00 AM. The cell's HTML format is
applied only if the CellValueFormat or Def(exCellCaptionFormat) is exHTML. If valid, the
FormatColumn is applied to all cells for which the CellCaptionFormat property is not
exComputedField. This way you can specify which cells use or not the FormatColumn
property. The FormatCell property indicates the individually predefined format to be applied
to particular cells. The FormatColumn and FormatCell properties support auto-numbering
functions like explained bellow. The ComputedField property indicates the formula of the
computed column.

The CellValue property of the cell is being shown as:

formatted using the FormatCell property, if it is valid
formatted using the FormatColumn property, if it is valid

For instance:

the "currency(value)" displays the column using the current format for the currency ie,
1000 gets displayed as $1,000.00
the "longdate(date(value))" converts the value to a date and gets the long format to
display the date in the column, ie #1/1/2001# displays instead Monday, January 01,
2001
the "'' + ((0:=proper(value)) left 1) + '' + (=:0 mid 2)" converts the name to
proper, so the first letter is capitalized, bolds the first character, and let unchanged the
rest, ie a "mihai filimon" gets displayed "Mihai Filimon".
the "len(value) ? ((0:=dbl(value)) < 10 ? '<fgcolor=808080>' : '') +
currency(=:0)" displays the cells that contains not empty daya, the value in currency
format, with a different font and color for values less than 10, and bolded for those that
are greater than 10, as can see in the following screen shot in the column (A+B+C):

The value keyword in the FormatColumn property indicates the value being formatted.

The expression supports cell's identifiers as follows:

%0, %1, %2, ...{any} specifies the value of the cell in the column with the index 0, 1
2, ... The CellCaption property defines the cell's value. For example, "%0 format ``"
formats the value in the cell at index 0 using the current regional settings, while
"int(%1)" converts the value in the cell at index 1 to an integer.
%C0, %C1, %C2, ...{string} specifies the caption of the cell, or the string the cell
displays in the column with the index 0, 1 2, ... The CellCaption property gets the
cell's formatted caption. The cell's displayed string may differ from its actual value.
For example, if a cell displays HTML content, %0 returns the HTML format including
the tags, while %C0 returns the cell's content as a plain string without HTML tags. For
instance, "upper(%C1)" converts the caption of the cell at index 1 to uppercase, while
"%C0 left 2" returns the leftmost two characters of the caption in the cell at index 0.
%CD0, %CD1, %CD2, ...{any} specifies the cell's extra data in the column with the
index 0, 1 2, ... The CellData property associates any extra/user data to a cell. For
example, "%CD0 = your user data" specifies all cells in the column with index 0
whose CellData property is equal to your user data.
%CS0, %CS1, %CS2, ...{number} specifies the cell's state in the column with the
index 0, 1 2, ... The CellState property defines the state of a cell, indicating whether it
is checked or unchecked. For example, "%CS0" identifies all checked items in the
column with index 0, while "not %CS1" identifies all unchecked items in the column
with index 1.
%CC0, %CC1, %CC2, ... {number} retrieve the number of child items (this keyword
consistently returns identical results for all cells since it pertains to the item that hosts
each cell). The ChildCount property returns the number of child items. For example,
"%CC0" identifies all parent items, while "%CC0 = 0" identifies all leaf items.
%CX0, %CX1, %CX2, ... {boolean} returns true if the item hosting the cell is
expanded, or false if it is collapsed (this keyword consistently returns identical results
for all cells since it pertains to the item that hosts each cell). The ExpandItem property
specifically indicates whether the item is expanded or collapsed. For example,
"%CX0" refers to all expanded items, while "not %CX0" identifies all collapsed items

This property/method supports predefined constants and operators/functions as described
here.

The following VB sample shows how can I display the column using currency:

With View1
 .Columns.Add("Currency").FormatColumn = "currency(dbl(value))"
 With .Items
 .AddItem "1.23"
 .AddItem "2.34"
 .AddItem "0"
 .AddItem 5
 .AddItem "10000.99"
 End With
End With

The following VB.NET sample shows how can I display the column using currency:

With AxView1
 .Columns.Add("Currency").FormatColumn = "currency(dbl(value))"
 With .Items
 .AddItem "1.23"
 .AddItem "2.34"
 .AddItem "0"
 .AddItem 5
 .AddItem "10000.99"
 End With
End With

The following C++ sample shows how can I display the column using currency:

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXG2ANTTLib' for the library: 'ExView 1.0 Control Library'

 #import "C:\\Windows\\System32\\ExView.dll"
 using namespace EXG2ANTTLib;
*/
EXG2ANTTLib::IViewPtr spView1 = GetDlgItem(IDC_G2ANTT1)->GetControlUnknown();
((EXG2ANTTLib::IColumnPtr)(spView1->GetColumns()->Add(L"Currency")))-
>PutFormatColumn(L"currency(dbl(value))");

EXG2ANTTLib::IItemsPtr var_Items = spView1->GetItems();
 var_Items->AddItem("1.23");
 var_Items->AddItem("2.34");
 var_Items->AddItem("0");
 var_Items->AddItem(long(5));
 var_Items->AddItem("10000.99");

The following C# sample shows how can I display the column using currency:

(axView1.Columns.Add("Currency") as EXG2ANTTLib.Column).FormatColumn =
"currency(dbl(value))";
EXG2ANTTLib.Items var_Items = axView1.Items;
 var_Items.AddItem("1.23");
 var_Items.AddItem("2.34");
 var_Items.AddItem("0");
 var_Items.AddItem(5);
 var_Items.AddItem("10000.99");

The following VFP sample shows how can I display the column using currency:

with thisform.View1
 .Columns.Add("Currency").FormatColumn = "currency(dbl(value))"
 with .Items
 .AddItem("1.23")
 .AddItem("2.34")
 .AddItem("0")
 .AddItem(5)
 .AddItem("10000.99")
 endwith
endwith

property Column.FormatLevel as String
Retrieves or sets a value that indicates the layout of columns being displayed in the
column's header.

Type Description

String

A string expression that indicates a CRD string that
layouts the column's header. The Index elements in the
CRD strings indicates the index of the column being
displayed. The Caption elements in the CRD string support
built-in HTML format.

By default, the FormatLevel property is empty. The FormatLevel property indicates the
layout of the column in the control's header bar. Use the HeaderVisible property to show or
hide the control's header bar. Use the HeaderHeight property to specify the height of the
level in the control's header bar. Use the FormatLevel property to display multiple levels in
the column's header. Use the LevelKey property to display neighbor columns on multiple
levels. If the FormatLevel property is empty, the control displays the Caption or the
HTMLCaption of the column. If the FormatLevel property is not empty it indicates the layout
of the column being displayed. For instance, the FormatLevel = "1,2" indicates that the
column's header is horizontally divided such as the left part displays the caption of the first
column, and the right part displays the caption of the second column. Use the Visible
property to specify whether a column is visible or hidden. Use the Add method to add new
columns to the control. Use the DataSource property to bound the control to a recordset.
Use the Def(exCellFormatLevel) property to specify the layout for all cells in the same
column. Use the CellFormatLevel property to indicate the layout for a specific cell.

property Column.GroupByFormatCell as String
Indicates the format of the cell to be displayed when the column gets grouped by.

Type Description

String A String expression that may specify HTML format,
<caption> and value keywords as explained bellow.

By default, the GroupByFormatCell property is "'<caption> (' + value + ')'", which
indicates that the grouping label is shown in bold, followed by the computed value of the
GroupByTotalField property. The GroupByFormatCell property determines the format of the
cell to be displayed in the grouping item, when the column gets sorted. The
GroupByTotalField property determines the formula to be applied to the column when it gets
grouped. When the control is performing a group-by operation, the
Items.FormatCell(Item,Items.GroupItem(Item)) property is set on GroupByFormatCell
property, where the Item is the handle of the item being added during grouping or the Item
parameter of the ViewItemUpdate(exAddGroupItem) event.

In conclusion,

the <caption> keyword in the GroupByFormatCell property is replaced with the
grouping label/value, and the result expression is passed to the FormatCell property.
the value keyword indicates the computed value of the GroupByTotalField property.

For instance:

the "'<caption> (' + currency(value) + ')'" displays the grouping label, and the
aggregate field as a currency, as specified in the regional settings.
the "'<caption> (' + currency(value) + `, inc. VAT ` + currency(1.19*value) +
')'" displays the grouping label, and the aggregate field, including a computed field (
VAT) as a currency, as specified in the regional settings.
the "'<caption> <fgcolor=808080>(Total ' + (value format ``) + ')
</fgcolor>'" displays the grouping label, and the aggregate field as a current
number format, as specified in the regional settings, with a different font and
foreground color.

The value keyword in the GroupByFormatCell property indicates the value to be formatted
(as a result of the GroupByTotalField property):

The expression supports cell's identifiers as follows:

%0, %1, %2, ...{any} specifies the value of the cell in the column with the index 0, 1
2, ... The CellCaption property defines the cell's value. For example, "%0 format ``"
formats the value in the cell at index 0 using the current regional settings, while

"int(%1)" converts the value in the cell at index 1 to an integer.
%C0, %C1, %C2, ...{string} specifies the caption of the cell, or the string the cell
displays in the column with the index 0, 1 2, ... The CellCaption property gets the
cell's formatted caption. The cell's displayed string may differ from its actual value.
For example, if a cell displays HTML content, %0 returns the HTML format including
the tags, while %C0 returns the cell's content as a plain string without HTML tags. For
instance, "upper(%C1)" converts the caption of the cell at index 1 to uppercase, while
"%C0 left 2" returns the leftmost two characters of the caption in the cell at index 0.
%CD0, %CD1, %CD2, ...{any} specifies the cell's extra data in the column with the
index 0, 1 2, ... The CellData property associates any extra/user data to a cell. For
example, "%CD0 = your user data" specifies all cells in the column with index 0
whose CellData property is equal to your user data.
%CS0, %CS1, %CS2, ...{number} specifies the cell's state in the column with the
index 0, 1 2, ... The CellState property defines the state of a cell, indicating whether it
is checked or unchecked. For example, "%CS0" identifies all checked items in the
column with index 0, while "not %CS1" identifies all unchecked items in the column
with index 1.
%CC0, %CC1, %CC2, ... {number} retrieve the number of child items (this keyword
consistently returns identical results for all cells since it pertains to the item that hosts
each cell). The ChildCount property returns the number of child items. For example,
"%CC0" identifies all parent items, while "%CC0 = 0" identifies all leaf items.
%CX0, %CX1, %CX2, ... {boolean} returns true if the item hosting the cell is
expanded, or false if it is collapsed (this keyword consistently returns identical results
for all cells since it pertains to the item that hosts each cell). The ExpandItem property
specifically indicates whether the item is expanded or collapsed. For example,
"%CX0" refers to all expanded items, while "not %CX0" identifies all collapsed items

This property/method supports predefined constants and operators/functions as described
here.

property Column.GroupByTotalField as String
Indicates the aggregate formula to be displayed when the column gets grouped by.

Type Description

String A String expression that indicates the formula to be
displayed on the grouping caption.

By default, the GroupByTotalField property is "count(current,rec,1)", which count recursively
leaf items (implies recursively leaf items) of the grouping item. At runtime, the computed
value of this formula is replaced in the HTML format being specified by the
GroupByFormatCell property, for the value keyword. When the control is performing a
group-by operation, the Items.CellValue(Item,Items.GroupItem(Item)) property is set on
GroupByTotalField property, and the Items.CellValueFormat(Item,Items.GroupItem(Item))
is exHTML + exTotalField (5), where the Item is the handle of the item being added during
grouping or the Item parameter of the ViewItemUpdate(exAddGroupItem) event. The
GroupByTotalField property determines the formula to be applied to the column when it gets
grouped. The GroupByFormatCell property determines the format of the cell to be
displayed in the grouping item, when the column gets sorted.

For instance

"count(current,dir,1)" counts the number of child items (not implies recursively child
items).
"count(current,all,1)" counts the number of all child items (implies recursively child
items).
"sum(parent,dir,%1=0?0:1)" counts the not-zero values in the second column (%1)
"sum(parent,dir,%1 + %2)" indicates the sum of all cells in the second (%1) and third
(%2) column that are directly descendent from the parent item.
"sum(all,rec,%1 + %2)" sums all leaf cells in the second (%1) and third (%2) columns.

The syntax for the GroupByTotalField property property should be:
aggregate(list,direction,formula) where:

aggregate must be one of the following:

sum - calculates the sum of values.
min - retrieves the minimum value.
max - retrieves the maximum value.
count - counts the number of items.
avg - calculates the average of values.

list must be one of the following:

a long expression that specifies the index of the item being referred.
a predefined string expression as follows:

all - indicates all items, so the formula is being applied to all items. The direction
has no effect.
current - the current item.
parent - the parent item.
root - the root item.

direction must be one of the following:

dir - collects the direct descendents.
rec - collects the leaf descendents (leaf items). A leaf item is an item with no child
items.
all - collects all descendents.

Currently, the following items are excluded by aggregate functions:

not-sortable items. The SortableItem property specifies whether the item can be
sorted (a sortable item can change its position after sorting, while a not-sortable item
keeps its position after sorting.
not-selectable items. The SelectableItem property specifies whether the user can
selects/focus the specified item.
divider items. The ItemDivider property specifies whether the item displays a single
cell, instead displaying whole cells.

In conclusion, aggregate functions counts ONLY items that are:

sortable, SortableItem is True, by default.
selectable, SelectableItem is True, by default.
not divider, ItemDivider is -1, by default.

Shortly, by setting to a different value to any of these properties, makes the item to be
ignored by the aggregate functions.

For instance

count(current,dir,1) counts the number of child items (not implies recursively child items
).
count(current,all,1) counts the number of all child items (implies recursively child items
).
count(current,rec,1) counts the number of leaf items (implies recursively leaf items).
count(current,rec,1) counts the number of leaf items (a leaf item is an item with no
child items).
sum(parent,dir,%1=0?0:1) counts the not-zero values in the second column (%1)

sum(parent,dir,%1 + %2) indicates the sum of all cells in the second (%1) and third
(%2) column that are directly descendent from the parent item.
sum(all,rec,%1 + %2) sums all leaf cells in the second (%1) and third (%2) columns.

property Column.HeaderAlignment as AlignmentEnum
Specifies the alignment of the column's caption.

Type Description

AlignmentEnum An AlignmentEnum expression that indicates the alignment
of the column's caption.

Use the HeaderAlignment property to align the column's caption inside the column's header.
Use the Alignment property to align the cells into a column. Use the HeaderImageAlignment
property to align the column's icon inside the column's header. Use the CellHAlignment
property to align a cell. The RightToLeft property automatically flips the order of the
columns

property Column.HeaderBold as Boolean
Retrieves or sets a value that indicates whether the column's caption should appear in bold.

Type Description

Boolean A boolean expression that indicates whether the column's
caption should appear in bold.

The HeaderBold property specifies whether the column's caption should appear in bold. Use
the CellBold or ItemBold properties to specify whether the cell or item should appear in
bold. Use the HTMLCaption property to specify portions of the caption using different
colors, fonts. Use the HeaderItalic, HeaderUnderline or HeaderStrikeOut property to specify
different font attributes when displaying the column's caption.

property Column.HeaderImage as Long
Retrieves or sets a value indicating the index of an Image in the Images collection, which is
displayed to the column's header.

Type Description

Long

A long expression that indicates the index of icon in the
Images collection, that's displayed on the column's header.
The last 7 bits in the high significant byte of the long
expression indicates the identifier of the skin being used to
paint the object. Use the Add method to add new skins to
the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits
in the high significant byte of the color being applied to the
part.

Use the HeaderImage property to add an icon to the column's header. The HeaderImage
property does not set the icon for any of the column cells. Use the CellImage property to
set an icon for a particular cell. Use the HeaderImageAlignment property to align the icon in
the column's header. If the index of the icon in the column's header doesn't exist in the
Images collection, no icon is displayed. Use the DisplaySortIcon property to specify
whether the control displays the sorting icon when the user sorts a column. Use the Images
method to assign a list of icons to the control at runtime. Use the built-in HTML tag to
insert multiple custom size picture/icons to the same header.

property Column.HeaderImageAlignment as AlignmentEnum
Retrieves or sets the alignment of the image in the column's header.

Type Description

AlignmentEnum An AlignmentEnum expression that indicates the alignment
of the icon in the column's header.

By default, the image is left aligned. Use the HeaderImageAlignment property to aligns the
icon in the column's header. Use the HeaderImage property to attach an icon to the
column's header. The RightToLeft property automatically flips the order of the columns

property Column.HeaderItalic as Boolean
Retrieves or sets a value that indicates whether the column's caption should appear in italic.

Type Description

Boolean A boolean expression that indicates whether the column's
caption should appear in italic.

Use the HeaderItalic property to specify whether the column's caption should appear in
italic. Use the CellItalic or ItemItalic properties to specify whether the the cell or the item
should appear in italic. Use the HeaderBold, HeaderUnderline or HeaderStrikeOut property
to specify different font attributes when displaying the column's caption.

property Column.HeaderStrikeOut as Boolean
Retrieves or sets a value that indicates whether the column's caption should appear in
strikeout.

Type Description

Boolean A boolean expression that indicates whether the column's
caption should appear in strikeout.

Use the HeaderStrikeOut property to specify whether the column's caption should appear in
strikeout. Use the CellStrikeOut or ItemStrikeOut properties to specify whether the cell or
the item should appear in strikeout. Use the HeaderItalic, HeaderUnderline or HeaderBold
property to specify different font attributes when displaying the column's caption.

property Column.HeaderUnderline as Boolean
Retrieves or sets a value that indicates whether the column's caption should appear in
underline.

Type Description

Boolean A boolean expression that indicates whether the column's
caption should appear in underline.

Use the HeaderUnderline property to specify whether the column's caption should appear in
underline. Use the CellUnderline or ItemUnderline properties to specify whether the cell or
the item should appear in underline. Use the HeaderItalic, HeaderBold or HeaderStrikeOut
property to specify different font attributes when displaying the column's caption.

property Column.HeaderVertical as Boolean
Specifies whether the column's header is vertically displayed.

Type Description

Boolean A boolean expression that indicates whether the column's
caption is vertically printed.

Use the HeaderVertical property to display vertically the column's caption. Use the
HeaderAlignment property to align the caption in the column's header. Use the Caption
property to assign a caption to a column. Use the HTMLCaption property to specify an
HTML caption to a column. Use the HeaderImage property to assign an icon to a column.

property Column.HTMLCaption as String
Retrieves or sets the text in HTML format displayed in the column's header.

Type Description

String A string expression that indicates the column's caption
using built-in HTML tags.

If the HTMLCaption property is empty, the Caption property is displayed in the column's
header. If the HTMLCaption property is not empty, the control uses it when displaying the
column's header. Use the HeaderHeight property to change the height of the control's
header bar. Use the HeaderVertical property to display vertically the column's caption. Use
the HeaderAlignment property to align the caption in the column's header. Use the
HeaderImage property to assign an icon to a column. The list of built-in HTML tags
supported are here. Use the FormatLevel property to display multiple levels in the column's
header.

property Column.Index as Long
Returns a value that represents the index of an object in a collection.

Type Description
Long A long expression that indicates the column's index.

The Index property of the Column is read only. Use the Position property to change the
column's position. The Columns collection is zero based, so the Index property starts at 0.
The last added column has the Index set to Columns.Count - 1. When a column is removed
from the collection, the control updates all indexes. Use the Visible property to hide a
column. Use the Columns property to access column from it's index.

property Column.Key as String
Retrieves or sets a the column's key.

Type Description
String A string expression that defines the column's key

The column's key defines a column when using the Item property. Use the Index or the Key
property to identify a column, when using the Columns property.

property Column.LevelKey as Variant
Retrieves or sets a value that indicates the key of the column's level.

Type Description

Variant A Variant expression that indicates the key of the column's
level.

By default, the LevelKey is empty. The control's header displays multiple levels if there are
two or more neighbor columns with the same non empty level key. The HeaderHeight
property specifies the height of one level when multiple levels header is on. Use the
BackColorLevelHeader property to specify the control's level header area. The
BackColorHeader property specifies the background color for column's captions. Use the
FormatLevel property to display multiple levels in the column's header.

property Column.MaxWidthAutoResize as Long
Retrieves or sets a value that indicates the maximum column's width when the
WidthAutoResize is True.

Type Description

Long A long expression that the maximum column's width when
the WidthAutoResize is True.

If the WidthAutoResize property is False, the MaxWidthAutoResize and
MinWidthAutoResize properties have no effect. The MaxWidthAutoResize property
specifies the maximum column's width. The control recalculates the column's width each
time when an item is expanded or collapsed. If the MaxWidthAutoResize property is -1,
there is no maximum value for the column's width. Use the WidthAutoResize,
MaxWidthAutoResize and MinWidthAutoResize properties when you don't want to have
truncated the caption for cells in the column. Use the ColumnAutoResize property to specify
whether the control resizes the visible columns so they fit the control's client area.

property Column.MinWidthAutoResize as Long
Retrieves or sets a value that indicates the minimum column width when the
WidthAutoResize is True.

Type Description

Long A long expression that indicates the minimum column's
width when the WidthAutoResize is True.

If the WidthAutoResize property is False, the MaxWidthAutoResize and
MinWidthAutoResize properties have no effect. The MinWidthAutoResize property
specifies the minimum column's width. The control recalculates the column's width each time
when an item is expanded or collapsed. Use the WidthAutoResize, MaxWidthAutoResize
and MinWidthAutoResize properties when you don't want to have truncated the caption for
cells in the column. Use the ColumnAutoResize property to specify whether the control
resizes the visible columns so they fit the control's client area.

property Column.PartialCheck as Boolean
Specifies whether the column supports partial check feature.

Type Description

Boolean A boolean expression that indicates whether the column
supports partial check feature.

The PartialCheck property specifies that the column supports partial check feature. By
default, the PartialCheck property is False. Use the CellHasCheckBox property to associate
a check box to a cell. Use the Def property to assign a cell box for the entire column. Use
the CellState property to determine the cell's state. If the PartialCheck property is True, the
CellState property has three states: 0 - Unchecked, 1 - Checked and 2 - Partial Checked.
The control supports partial check feature for any column that your control contains. Use
the Add method to add new columns to the control. The control fires the
ViewItemStateStartChanging(exCheckItem) / ViewItemStateEndChanging(exCheckItem)
event when the user clicks a checkbox or a radio button in the control.

property Column.Position as Long
Retrieves or sets a value that indicates the position of the column in the header bar area.

Type Description

Long A long expression that indicates the position of the column
in the header bar area

The column's index is not the same with the column's position. The Index property of
Column cannot be changed by the user. Use the Position property to change the column's
position. The EnsureVisibleColumn method ensures that a given column fits the control's
client area. Use the Visible property to hide a column. Use the Width property to specify the
column's width.

property Column.Selected as Boolean
Retrieves or sets a value that indicates whether the cell in the column is selected.

Type Description

Boolean A boolean expression that specifies whether the cell in the
column is selected.

Use the Selected property to determine the cells being selected, when FullRowSelect
property is exRectSel. Use the SelectItem property to programmatically selects an item.
Use the SingleSel property to allow multiple items or cells in the selection. The control fires
the ViewItemStateStartChanging(exActivateItem) /
ViewItemStateEndChanging(exActivateItem) event when user changes the selection.

method Column.ShowFilter ([Options as Variant])
Shows the column's filter window.

Type Description

Options as Variant

A string expression that indicates the position (in screen
coordinates) and the size (in pixels) where the drop
down filter window is shown. The Options parameter is
composed like follows:

the first parameter indicates the X coordinate in
screen coordinate, -1 if the current cursor position is
used, or empty if the coordinate is ignored
the second parameter indicates the Y coordinate in
screen coordinate, -1 if the current cursor position is
used, or empty if the coordinate is ignored
the third parameter indicates the width in pixels of the
drop down window, or empty if the width is ignored
the forth parameter indicates the height in pixels of
the drop down window, or empty if the height is
ignored

By default, the drop down filter window is shown at its
default position bellow the column's header.

Use the ShowFilter method to show the column's drop down filter programmatically. By
default, the drop down filter window is shown only if the user clicks the filter button in the
column's header, if the DisplayFilterButton property is True. The drop down filter window if
the user selects a predefined filter, or enters a pattern to match. If the Options parameter
is missing, or all parameters inside the Options are missing, the size of the drop down filter
window is automatcially computed based on the FilterBarDropDownWidth property and
FilterBarDropDownHeight property. Use the ColumnFromPoint property to get the index of
the column from the point.

property Column.SortOrder as SortOrderEnum
Specifies the column's sort order.

Type Description

SortOrderEnum A SortOrderEnum expression that indicates the column's
sort order.

The SortOrder property determines the column's sort order. By default, the SortOrder
property is SortNone. Use the SortOrder property to sort a column at runtime. Use the
SortType property to determine the way how the column is sorted. Use the AllowSort
property to avoid sorting a column when the user clicks the column. Use the SingleSort
property to specify whether the control supports sorting by single or multiple columns. If the
control supports sorting by multiple columns, the SortOrder property adds or removes the
column to the sorting columns collection. For instance, if the SortOrder property is set to
SortAscending or SortDescending the column is added to the sorting columns collection. If
the SortOrder property is set to SortNone the control removes the column from its sorting
columns collection. The SortPosition property changes the position of the column in the
control's sort bar. Use the DefaultSortOrder property to specify the column's default sort
order, when the user first clicks the column's header. The EnsureOnSort property prevents
scrolling the control's content when the user sorts items. The SortableItem property
specifies whether the item keeps its position after sorting.

The control automatically sorts a column when the user clicks the column's header, if the
SortOnClick property is exDefaultSort. If the SortOnClick property is exNoSort, the control
disables sorting the items when the user clicks the column's header. There are two methods
to get the items sorted like follows:

Using the SortOrder property of the Column object::

View1.Columns(ColIndex).SortOrder = SortAscending

The SortOrder property adds the sorting icon to the column's header, if the
DisplaySortIcon property is True.

Using the SortChildren method of the Items collection. The SortChildren sorts the
items. The SortChildren method sorts the child items of the given parent item in the
control. SortChildren will not recourse through the tree, only the immediate children of
the item will be sorted. The following sample sort descending the list of root items on
the "Column 1"(if your control displays a list, all items are considered being root items

View1.Items.SortChildren 0, "Column 1", False

The SortType property of the Column object specifies the way how a column gets sorted.

By default, a column gets sorted as string. If you need to sort your dates, the following
snippet of code should be used:

With View1
 With .Columns(0)
 .SortType = SortDate
 End With
End With

If you need to sort a column using your special way you may want to use the SortType =
SortUserData, or SortType = SortCellData that sorts the column using CellData /
CellSortData property for each cell in the column. In this case, the CellData or CellSortData
property holds numeric values only.

property Column.SortPosition as Long
Returns or sets a value that indicates the position of the column in the sorting columns
collection.

Type Description

Long A long expression that indicates the position of the column
in the control's sort bar. The collection is 0 - based.

Use the SortPosition to change programmatically the position of the column in the control's
sort bar. Use the SingleSort property to allow sorting by multiple columns. Use the
SortBarVisible property to show the control's sort bar. Use the SortOrder property to add
columns to the control's sort bar. Use the ItemBySortPosition property to get the columns
being sorted in their order. Use the AllowSort property to avoid sorting a column when the
user clicks the column.

property Column.SortType as SortTypeEnum
Returns or sets a value that indicates the way the control sorts the values for a column.

Type Description

SortTypeEnum A SortTypeEnum expression that indicates the way how
control sorts the column.

By default, the column's sort type is string. Use the SortType property to specify how the
control sorts the column. Use the DisplaySortIcon property to hide the sort icon displayed
when the column was sorted. Use the SortChildren method to sort items. Use the
CellCaption property to get the string being displayed in the cell. Use the CellValue property
to specify the cell's value. Use the CellSortData to specify the data being sorted when the
SortType property is SortCellData or SortCellDataString. Use the CellData property to
specify the values being sorted if the SortType property is SortUserData. The SortPosition
property changes the position of the column in the sorting columns collection. the SingleSort
property to specify whether the control supports sorting by single or multiple columns. The
SortOrder property determines the column's sort order. The SortableItem property
specifies whether the item keeps its position after sorting.

property Column.ToolTip as String
Specifes the column's tooltip description.

Type Description

String A string expression that defines the column's tooltip. The
column's tooltip supports built-in HTML format.

By default, the ToolTip property is "..." (three dots). Use the ToolTip property to assign a
tooltip to a column. If the ToolTip property is "...", the control displays the column's caption if
it doesn't fit the column's header. Use the Caption or HTMLCaption property to specify the
caption of the column. The column's tooltip shows up when the cursor hovers the column's
header. Use the CellToolTip property to assign a tooltip to a cell. The ToolTipWidth property
specifies a value that indicates the width of the tooltip window, in pixels.

property Column.Visible as Boolean
Retrieves or sets a value indicating whether the column is visible or hidden.

Type Description

Boolean A boolean expression indicating whether the column is
visible or hidden.

Use the Visible property to hide a column. Use the Width property to resize the column. The
ColumnAutoResize property specifies whether the visible columns fit the control's client
area. Use the Position property to specify the column's position. Use the HeaderVisible
property to show or hide the control's header bar. Use the ColumnFromPoint property to
get the column from point. Use the Remove method to remove a column. Use the
FormatLevel property to display multiple levels in the column's header.

property Column.Width as Long
Retrieves or sets the column's width.

Type Description
Long A long expression that indicates the column's width.

The Width property resizes a column at runtime. Use the AutoWidth property to compute
the width that's required to fit all cells in the column. Use the WidthAutoResize property to
automatically resize the column while the user expands or collapses items. Use the Visible
property to hide a column. The ColumnAutoResize property specifies whether the visible
columns fit the control's client area. If the ColumnAutoResize property is True, the Width
property may not resize the column to the desired value, because all visible columns must fit
the control's client area. By default, the control adds horizontal scroll bar when required.
Use the ScrollBars property to add or remove the control's scroll bars. Use the Visible
property to hide the column. Use the FilterBarDropDownWidth property to specify the width
of the drop down filter window.

property Column.WidthAutoResize as Boolean
Retrieves or sets a value that indicates whether the column is automatically resized
according to the width of the contents within the column.

Type Description

Boolean
A boolean expression that indicates whether the column is
automatically resized according to the width of the
contents within the column.

Use the WidthAutoResize property if you need to display the entire caption of each cell in
the column. If the WidthAutoResize property is True, the user is not able to resize the
column, so the AllowSizing property has no effect in this case. Use the ColumnAutoResize
property to specify whether the control resizes the visible columns so they fit the control's
client area. You can use the AutoWidth property to computes the column's width to fit its
content. For instance, if you have a tree with one column, and this property True, you can
simulate a simple tree, because the control will automatically add a horizontal scroll bar
when required. Use the HeaderVisible property to hide the control's header bar. Use the
BeginUpdate and EndUpdate method to maintain performance while adding columns and
items to the control. Use the MinWidthAutoResize property to specify the minimum column
width, while the WidthAutoResize property is True.

Columns object
The Columns object holds a collection of Column objects. The Columns collection supports
the following properties and methods:

Name Description

Add Adds a Column object to the collection and returns a
reference to the newly created object.

Clear Removes all objects in a collection.
Count Returns the number of objects in a collection.
Item Returns a specific Column of the Columns collection.
ItemBySortPosition Returns a Column object giving its sorting position.
Remove Removes a specific member from the Columns collection.

SortBarColumn Returns the Column from control's SortBar giving its
position.

SortBarColumnsCount Retrieves the count of Columns, in the control's SortBar

method Columns.Add (ColumnCaption as String)
Adds a Column object to the collection and returns a reference to the newly created object.

Type Description
ColumnCaption as String A string expression that defines the column's caption
Return Description

Variant A Column object that represents the newly created
column.

By default, the control has no columns. Use Add method to add new columns to the control.
If the control contains no columns, you cannot add new items to the control. Use the
Remove method to remove a specific column. If the control's DataSource property points to
an ADO recordset the user doesn't need to add columns to the control. Instead, the Add
method can be used to add computed fields for instance. Use the AddItem, InsertItem,
DataSource properties to add new items to the control. Use the BeginUpdate and
EndUpdate methods to prevent control from painting while adding columns or items. Use the
Def property to specify default setting for cells in the column. Use the FormatLevel property
to display multiple levels in the column's header

method Columns.Clear ()
Removes all objects in a collection.

Type Description

Use the Clear method to remove all columns in the Columns collection. If the Clear method
is called, the control removes also all items. Use the Remove method to Remove a
particular column. Use the RemoveAllItems method to remove all items in the control.

property Columns.Count as Long
Returns the number of objects in a collection.

Type Description
Long Counts the columns in the collection.

The Count property counts the columns in the collection. Use the Columns property to
access the control's Columns collection. Use the Item property to access a column by its
index or key. Use the Add method to add new columns to the control. Use the Remove
method to remove a column. Use the Clear method to clear the columns collection.

property Columns.Item (Index as Variant) as Column
Returns a specific Column of the Columns collection.

Type Description

Index as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption or
column's key.

Column A Column object being accessed.

Use the Item property to access to a specific column. The Count property counts the
columns in the control. Use the Columns property to access the control's Columns
collection. The SortBarColumn / SortBarColumnsCount properties can be used to
enumerate the columns in the control's sort bar. The Visible property indicates whether the
column is visible or hidden. The Position property specifies the position of the column. The
user can change the column's position by drag and drop, so the position of the column can
be changed at runtime. Instead the Index property is a read only property that gives the
index of the column in the collection.

property Columns.ItemBySortPosition (Position as Variant) as Column
Returns a Column object giving its sorting position.

Type Description

Position as Variant A long expression that indicates the position of column
being requested.

Column A Column object being accessed.

Use the ItemBySortPosition property to get the list of sorted columns in their order. Use the
SortPosition property to specify the position of the column in the sorting columns collection.
Use the SingleSort property to specify whether the control supports sorting by single or
multiple columns. Use the SortOrder property to sort a column programmatically. The
SortBarColumn / SortBarColumnsCount properties can be used to enumerate the columns
in the control's sort bar.

method Columns.Remove (Index as Variant)
Removes a specific member from the Columns collection.

Type Description

Index as Variant
A long expression that indicates the column's index being
removed, or a string expression that indicates the column's
caption or column's key

The Remove method removes a specific column in the Columns collection. Use Clear
method to remove all Column objects. Use the Visible property to hide a column.

property Columns.SortBarColumn (Position as Variant) as Column
Returns the Column from control's SortBar giving its position.

Type Description

Position as Variant A long expression that specifies the position where the
column is requested

Column A Column object that specifies the sorted/grouped column
at giving position, or empty if no column is found.

The SortBarColumn / SortBarColumnsCount properties can be used to enumerate the
columns in the control's sort bar. Use the SortOrder property of the Column object on
SortAscending / SortDescending to add a column to the sort bar, on SortNone to remove
the column from the control's sort bar. Use the SortType property to determine the way
how the column is sorted. Use the AllowSort property to avoid sorting a column when the
user clicks the column. Use the SingleSort property to specify whether the control supports
sorting by single or multiple columns. For instance, the SortBarColumnsCount counts the
number of grouped columns, if the control's AllowGroupBy property is True.

property Columns.SortBarColumnsCount as Long
Retrieves the count of Columns, in the control's SortBar

Type Description

Long A long expression that specifies the number of columns
being shown in the control's sort bar.

By default, the SortBarColumnsCount property is 0. The SortBarColumnsCount property
counts the columns being shown in the sort bar. The SortBarColumn /
SortBarColumnsCount properties can be used to enumerate the columns in the control's
sort bar. Use the SortOrder property of the Column object on SortAscending /
SortDescending to add a column to the sort bar, on SortNone to remove the column from
the control's sort bar. Use the SortType property to determine the way how the column is
sorted. Use the AllowSort property to avoid sorting a column when the user clicks the
column. Use the SingleSort property to specify whether the control supports sorting by
single or multiple columns. For instance, the SortBarColumnsCount counts the number of
grouped columns, if the control's AllowGroupBy property is True.

ConditionalFormat object
The conditional formatting feature allows you to apply formats to a cell or range of cells,
and have that formatting change depending on the value of the cell or the value of a
formula. Use the Add method to add new ConditionalFormat objects. Use the Item property
to access a ConditionalFormat object. The ConditionalFormat object supports the following
properties and method:

Name Description

ApplyTo Specifies whether the format is applied to items or
columns.

BackColor Retrieves or sets the background color for objects that
match the condition.

Bold Bolds the objects that match the condition.
ClearBackColor Clears the background color.
ClearForeColor Clears the foreground color.
Enabled Specifies whether the condition is enabled or disabled.

Expression Indicates the expression being used in the conditional
format.

Font Retrieves or sets the font for objects that match the
criteria.

ForeColor Retrieves or sets the foreground color for objects that
match the condition.

Italic Specifies whether the objects that match the condition
should appear in italic.

Key Checks whether the expression is syntactically correct.

StrikeOut Specifies whether the objects that match the condition
should appear in strikeout.

Underline Underlines the objects that match the condition.
Valid Checks whether the expression is syntactically correct.

property ConditionalFormat.ApplyTo as FormatApplyToEnum
Specifies whether the format is applied to items or columns.

Type Description

FormatApplyToEnum

A FormatApplyToEnum expression that indicates whether
the format is applied to items or to columns. If the ApplyTo
property is less than zero, the format is applied to the
items.

By default, the format is applied to items. The ApplyTo property specifies whether the
format is applied to the items or to the columns. If the ApplyTo property is greater or equal
than zero the format is applied to the column with the index ApplyTo. For instance, if the
ApplyTo property is 0, the format is applied to the cells in the first column. If the ApplyTo
property is 1, the format is applied to the cells in the second column, if the ApplyTo property
is 2, the format is applied to the cells in the third column, and so on. If the ApplyTo property
is -1, the format is applied to items.

The following VB sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

With View1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C++ sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

COleVariant vtEmpty;
CConditionalFormat cf = m_grid.GetConditionalFormats().Add("%1+%2<%0", vtEmpty);
cf.SetBold(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

With AxView1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C# sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

EXCASCADETREELib.ConditionalFormat cf =
axView1.ConditionalFormats.Add("%1+%2<%0",null);
cf.Bold = true;
cf.ApplyTo = (EXCASCADETREELib.FormatApplyToEnum)1;

The following VFP sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

with thisform.View1.ConditionalFormats.Add("%1+%2<%0")
 .Bold = .t.
 .ApplyTo = 1
endwith

property ConditionalFormat.BackColor as Color
Retrieves or sets the background color for objects that match the condition.

Type Description

Color

A color expression that indicates the background color for
the object that match the criteria. The last 7 bits in the high
significant byte of the color to indicates the identifier of the
skin being used. Use the Add method to add new skins to
the control. If you need to remove the skin appearance
from a part of the control you need to reset the last 7 bits
in the high significant byte of the color being applied to the
background's part.

Use the BackColor property to change the background color for items or cells in the column
when a certain condition is met. Use the ForeColor property to specify the foreground color
for objects that match the criteria. Use the ClearBackColor method to remove the
background color being set using previously the BackColor property. If the BackColor
property is not set, it retrieves 0. The ApplyTo property specifies whether the
ConditionalFormat object is applied to items or to cells in the column.

property ConditionalFormat.Bold as Boolean
Bolds the objects that match the condition.

Type Description

Boolean A boolean expression that indicates whether the objects
should appear in bold.

The ApplyTo property specifies whether the ConditionalFormat object is applied to items or
to cells in the column. The following VB sample bolds all cells in the second column (1), if
the sum between second and third column (2) is less than the value in the first column (0
):

With View1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C++ sample bolds all cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

COleVariant vtEmpty;
CConditionalFormat cf = m_grid.GetConditionalFormats().Add("%1+%2<%0", vtEmpty);
cf.SetBold(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample bolds all cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

With AxView1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C# sample bolds all cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

EXCASCADETREELib.ConditionalFormat cf =
axView1.ConditionalFormats.Add("%1+%2<%0",null);
cf.Bold = true;
cf.ApplyTo = (EXCASCADETREELib.FormatApplyToEnum)1;

The following VFP sample bolds all cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

with thisform.View1.ConditionalFormats.Add("%1+%2<%0")
 .Bold = .t.
 .ApplyTo = 1
endwith

method ConditionalFormat.ClearBackColor ()
Clears the background color.

Type Description

Use the ClearBackColor method to remove the background color being set using previously
the BackColor property. If the BackColor property is not set, it retrieves 0.

method ConditionalFormat.ClearForeColor ()
Clears the foreground color.

Type Description

Use the ClearBackColor method to remove the foreground color being set using previously
the ForeColor property. If the ForeColor property is not set, it retrieves 0.

property ConditionalFormat.Enabled as Boolean
Specifies whether the condition is enabled or disabled.

Type Description

Boolean A boolean expression that indicates whether the
expression is enabled or disabled.

By default, all expressions are enabled. A format is applied only if the expression is valid
and enabled. Use the Expression property to specify the format's formula. The Valid
property checks whether the formula is valid or not valid. Use the Enabled property to
disable applying the format for the moment. Use the Remove method to remove an
expression from ConditionalFormats collection.

property ConditionalFormat.Expression as String
Indicates the expression being used in the conditional format.

Type Description

String

A formal expression that indicates the formula being used
in formatting. For instance, "%0+%1>%2", highlights the
cells or the items, when the sum between first two
columns is greater than the value in the third column

The conditional formatting feature allows you to apply formats to a cell or range of cells,
and have that formatting change depending on the value of the cell or the value of a
formula. The Expression property specifies a formula that indicates the criteria to format the
items or the columns. Use the ApplyTo property to specify when the items or the columns
are formatted. Use the Add method to specify the expression at adding time. The
Expression property may include variables, constants, operators or () parenthesis. A
variable is defined as %n, where n is the index of the column (zero based). For instance,
the %0 indicates the first column, the %1, indicates the second column, and so on. A
constant is a float expression (for instance, 23.45). Use the Valid property checks whether
the expression is syntactically correct, and can be evaluated. If the expression contains a
variable that is not known, 0 value is used instead. For instance, if your control has 2
columns, and the expression looks like "%2 +%1 ", the %2 does not exist, 0 is used
instead. When the control contains two columns the known variables are %0 and %1.

The expression may be a combination of variables, constants, strings, dates and
operators. A string is delimited by ", ` or ' characters, and inside they can have the starting
character preceded by \ character, ie "\"This is a quote\"". A date is delimited by two #
characters, ie #1/31/2001 10:00# means the January 31th, 2001, 10:00 AM.

The expression supports cell's identifiers as follows:

%0, %1, %2, ...{any} specifies the value of the cell in the column with the index 0, 1
2, ... The CellCaption property defines the cell's value. For example, "%0 format ``"
formats the value in the cell at index 0 using the current regional settings, while
"int(%1)" converts the value in the cell at index 1 to an integer.
%C0, %C1, %C2, ...{string} specifies the caption of the cell, or the string the cell
displays in the column with the index 0, 1 2, ... The CellCaption property gets the
cell's formatted caption. The cell's displayed string may differ from its actual value.
For example, if a cell displays HTML content, %0 returns the HTML format including
the tags, while %C0 returns the cell's content as a plain string without HTML tags. For
instance, "upper(%C1)" converts the caption of the cell at index 1 to uppercase, while
"%C0 left 2" returns the leftmost two characters of the caption in the cell at index 0.
%CD0, %CD1, %CD2, ...{any} specifies the cell's extra data in the column with the

index 0, 1 2, ... The CellData property associates any extra/user data to a cell. For
example, "%CD0 = your user data" specifies all cells in the column with index 0
whose CellData property is equal to your user data.
%CS0, %CS1, %CS2, ...{number} specifies the cell's state in the column with the
index 0, 1 2, ... The CellState property defines the state of a cell, indicating whether it
is checked or unchecked. For example, "%CS0" identifies all checked items in the
column with index 0, while "not %CS1" identifies all unchecked items in the column
with index 1.
%CC0, %CC1, %CC2, ... {number} retrieve the number of child items (this keyword
consistently returns identical results for all cells since it pertains to the item that hosts
each cell). The ChildCount property returns the number of child items. For example,
"%CC0" identifies all parent items, while "%CC0 = 0" identifies all leaf items.
%CX0, %CX1, %CX2, ... {boolean} returns true if the item hosting the cell is
expanded, or false if it is collapsed (this keyword consistently returns identical results
for all cells since it pertains to the item that hosts each cell). The ExpandItem property
specifically indicates whether the item is expanded or collapsed. For example,
"%CX0" refers to all expanded items, while "not %CX0" identifies all collapsed items

This property/method supports predefined constants and operators/functions as described
here.

Usage examples:

1. "1", highlights all cells or items. Use this form, when you need to highlight all cells or
items in the column or control.

2. "%0 >= 0", highlights the cells or items, when the cells in the first column have the value
greater or equal with zero

3. "%0 = 1 and %1 = 0", highlights the cells or items, when the cells in the first column
have the value equal with 0, and the cells in the second column have the value equal
with 0

4. "%0+%1>%2", highlights the cells or the items, when the sum between first two
columns is greater than the value in the third column

5. "%0+%1 > %2+%3", highlights the cells or items, when the sum between first two
columns is greater than the sum between third and forth column.

6. "%0+%1 >= 0 and (%2+%3)/2 < %4-5", highlights the cells or the items, when the sum
between first two columns is greater than 0 and the half of the sum between third and
forth columns is less than fifth column minus 5.

7. "%0 startwith 'A'" specifies the cells that starts with A
8. "%0 endwith 'Bc'" specifies the cells that ends with Bc
9. "%0 contains 'aBc'" specifies the cells that contains the aBc string

10. "lower(%0) contains 'abc'" specifies the cells that contains the abc, AbC, ABC, and
so on

11. "upper(%0)'" retrieves the uppercase string
12. "len(%0)>0'" specifies the not blanks cells
13. "len %0 = 0'" specifies the blanks cells

The conditional format feature may change the cells and items as follows:

Bold property. Bolds the cell or items
Italic property. Indicates whether the cells or items should appear in italic.
StrikeOut property. Indicates whether the cells or items should appear in strikeout.
Underline property. Underlines the cells or items
Font property. Changes the font for cells or items.
BackColor property. Changes the background color for cells or items, supports skins
as well.
ForeColor property. Changes the foreground color for cells or items.

The following VB samples bolds all items when the sum between first two columns is
greater than 0:

View1.ConditionalFormats.Add("%0+%1>0").Bold = True

The following C++ sample bolds all items when the sum between first two columns is
greater than 0:

COleVariant vtEmpty;
m_grid.GetConditionalFormats().Add("%0+%1>0", vtEmpty).SetBold(TRUE);

The following VB.NET sample bolds all items when the sum between first two columns is
greater than 0:

AxView1.ConditionalFormats.Add("%0+%1>0").Bold = True

The following C# sample bolds all items when the sum between first two columns is greater
than 0:

axView1.ConditionalFormats.Add("%0+%1>0", null).Bold = true

The following VFP sample bolds all items when the sum between first two columns is
greater than 0:

thisform.View1.ConditionalFormats.Add("%0+%1>0").Bold = .t.

property ConditionalFormat.Font as IFontDisp
Retrieves or sets the font for objects that match the criteria.

Type Description
IFontDisp A Font object that's applied to items or columns.

Use the Font property to change the font for items or columns that match the criteria. Use
the Font property only, if you need to change to a different font.

You can change directly the font attributes, like follows:

Bold property. Bolds the cell or items
Italic property. Indicates whether the cells or items should appear in italic.
StrikeOut property. Indicates whether the cells or items should appear in strikeout.
Underline property. Underlines the cells or items

The following VB sample changes the font for ALL cells in the first column:

With View1.ConditionalFormats.Add("1")
 .ApplyTo = 0
 Set .Font = New StdFont
 With .Font
 .Name = "Comic Sans MS"
 End With
End With

property ConditionalFormat.ForeColor as Color
Retrieves or sets the foreground color for objects that match the condition.

Type Description

Color A color expression that indicates the foreground color for
the object that match the criteria.

Use the ForeColor property to specify the foreground color for objects that match the
criteria. Use the BackColor property to change the background color for items or cells in the
column when a certain condition is met. Use the ClearForeColor method to remove the
foreground color being set using previously the ForeColor property. If the ForeColor
property is not set, it retrieves 0. The ApplyTo property specifies whether the
ConditionalFormat object is applied to items or to cells in the column.

property ConditionalFormat.Italic as Boolean
Specifies whether the objects that match the condition should appear in italic.

Type Description

Boolean A boolean expression that indicates whether the objects
should look in italic.

The ApplyTo property specifies whether the ConditionalFormat object is applied to items or
to cells in the column. The following VB sample makes italic the cells in the second column (
1), if the sum between second and third column (2) is less than the value in the first
column (0):

With View1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Italic = True
End With

The following C++ sample makes italic the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

COleVariant vtEmpty;
CConditionalFormat cf = m_grid.GetConditionalFormats().Add("%1+%2<%0", vtEmpty);
cf.SetItalic(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample makes italic the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

With AxView1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Italic = True
End With

The following C# sample makes italic the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

EXCASCADETREELib.ConditionalFormat cf =
axView1.ConditionalFormats.Add("%1+%2<%0",null);
cf.Italic = true;
cf.ApplyTo = (EXCASCADETREELib.FormatApplyToEnum)1;

The following VFP sample makes italic the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

with thisform.View1.ConditionalFormats.Add("%1+%2<%0")
 .Italic = .t.
 .ApplyTo = 1
endwith

property ConditionalFormat.Key as Variant
Checks whether the expression is syntactically correct.

Type Description
Variant A String expression that indicates the key of the element

The Key property indicates the key of the element. Use the Add method to specify a key at
adding time. Use the Remove method to remove a formula giving its key.

property ConditionalFormat.StrikeOut as Boolean
Specifies whether the objects that match the condition should appear in strikeout.

Type Description

Boolean A Boolean expression that indicates whether the objects
should appear in strikeout.

The ApplyTo property specifies whether the ConditionalFormat object is applied to items or
to cells in the column. The following VB sample applies strikeout font attribute to cells in the
second column (1), if the sum between second and third column (2) is less than the value
in the first column (0):

With View1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C++ sample applies strikeout font attribute to cells in the second column (1),
if the sum between second and third column (2) is less than the value in the first column (
0):

COleVariant vtEmpty;
CConditionalFormat cf = m_grid.GetConditionalFormats().Add("%1+%2<%0", vtEmpty);
cf.SetBold(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample applies strikeout font attribute to cells in the second column (
1), if the sum between second and third column (2) is less than the value in the first
column (0):

With AxView1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C# sample applies strikeout font attribute to cells in the second column (1), if
the sum between second and third column (2) is less than the value in the first column (0
):

EXCASCADETREELib.ConditionalFormat cf =

axView1.ConditionalFormats.Add("%1+%2<%0",null);
cf.Bold = true;
cf.ApplyTo = (EXCASCADETREELib.FormatApplyToEnum)1;

The following VFP sample applies strikeout font attribute to cells in the second column (1),
if the sum between second and third column (2) is less than the value in the first column (
0):

with thisform.View1.ConditionalFormats.Add("%1+%2<%0")
 .Bold = .t.
 .ApplyTo = 1
endwith

property ConditionalFormat.Underline as Boolean
Underlines the objects that match the condition.

Type Description

Boolean A boolean expression that indicates whether the objects
are underlined.

The ApplyTo property specifies whether the ConditionalFormat object is applied to items or
to cells in the column. The following VB sample underlines the cells in the second column (1
), if the sum between second and third column (2) is less than the value in the first column
(0):

With View1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Underline = True
End With

The following C++ sample underlines the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

COleVariant vtEmpty;
CConditionalFormat cf = m_grid.GetConditionalFormats().Add("%1+%2<%0", vtEmpty);
cf.SetUnderline(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample underlines the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

With AxView1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Underline = True
End With

The following C# sample underlines the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

EXCASCADETREELib.ConditionalFormat cf =
axView1.ConditionalFormats.Add("%1+%2<%0",null);
cf.Underline = true;
cf.ApplyTo = (EXCASCADETREELib.FormatApplyToEnum)1;

The following VFP sample underlines the cells in the second column (1), if the sum
between second and third column (2) is less than the value in the first column (0):

with thisform.View1.ConditionalFormats.Add("%1+%2<%0")
 .Underline = .t.
 .ApplyTo = 1
endwith

property ConditionalFormat.Valid as Boolean
Checks whether the expression is syntactically correct.

Type Description

Boolean A boolean expression that indicates whether the
Expression property is valid.

Use the Valid property to check whether the Expression formula is valid. The conditional
format is not applied to objects if expression is not valid, or the Enabled property is false.
An empty expression is not valid. Use the Enabled property to disable applying the format
to columns or items. Use the Remove method to remove an expression from
ConditionalFormats collection.

ConditionalFormats object
The conditional formatting feature allows you to apply formats to a cell or range of cells,
and have that formatting change depending on the value of the cell or the value of a
formula. The ConditionalFormats collection holds a collection of ConditionalFormat objects.
Use the ConditionalFormats property to access the control's ConditionalFormats collection
.The ConditionalFormats collection supports the following properties and methods:

Name Description

Add Adds a new expression to the collection and returns a
reference to the newly created object.

Clear Removes all expressions in a collection.
Count Returns the number of objects in a collection.
Item Returns a specific expression.
Remove Removes a specific member from the collection.

method ConditionalFormats.Add (Expression as String, [Key as Variant])
Adds a new expression to the collection and returns a reference to the newly created
object.

Type Description

Expression as String

A formal expression that indicates the formula being used
when the format is applied. Please check the Expression
property that shows the syntax of the expression that may
be used. For instance, the "%0 >= 10 and %1 > 67.23"
means all cells in the first column with the value less or
equal than 10, and all cells in the second column with a
value greater than 67.23

Key as Variant

A string or long expression that indicates the key of the
expression being added. If the Key parameter is missing,
by default, the current index in the ConditionalFormats
collection is used.

Return Description

ConditionalFormat A ConditionalFormat object that indicates the newly format
being added.

The conditional formatting feature allows you to apply formats to a cell or range of cells,
and have that formatting change depending on the value of the cell or the value of a
formula. Use the Add method to format cells or items based on values. Use the Add method
to add new ConditionalFormat objects to the ConditionalFormats collection. By default, the
ConditionalFormats collection is empty. A ConditionalFormat object indicates a formula and
a format to apply to cells or items. The ApplyTo property specifies whether the
ConditionalFormat object is applied to items or to cells in the column. Use the Expression
property to retrieve or set the formula. Use the Key property to retrieve the key of the
object. Use the Refresh method to update the changes on the control's content.

The conditional format feature may change the cells and items as follows:

Bold property. Bolds the cell or items
Italic property. Indicates whether the cells or items should appear in italic.
StrikeOut property. Indicates whether the cells or items should appear in strikeout.
Underline property. Underlines the cells or items
Font property. Changes the font for cells or items.
BackColor property. Changes the background color for cells or items, supports skins
as well.
ForeColor property. Changes the foreground color for cells or items.

The following VB sample bolds all items when the sum between first two columns is greater
than 0:

View1.ConditionalFormats.Add("%0+%1>0").Bold = True

The following VB sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

With View1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C++ sample bolds all items when the sum between first two columns is
greater than 0:

COleVariant vtEmpty;
m_grid.GetConditionalFormats().Add("%0+%1>0", vtEmpty).SetBold(TRUE);

The following C++ sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

COleVariant vtEmpty;
CConditionalFormat cf = m_grid.GetConditionalFormats().Add("%1+%2<%0", vtEmpty);
cf.SetBold(TRUE);
cf.SetApplyTo(1);

The following VB.NET sample bolds all items when the sum between first two columns is
greater than 0:

AxView1.ConditionalFormats.Add("%0+%1>0").Bold = True

The following VB.NET sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

With AxView1.ConditionalFormats.Add("%1+%2<%0")
 .ApplyTo = 1
 .Bold = True
End With

The following C# sample bolds all items when the sum between first two columns is greater

than 0:

axView1.ConditionalFormats.Add("%0+%1>0", null).Bold = true

The following C# sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

EXCASCADETREELib.ConditionalFormat cf =
axView1.ConditionalFormats.Add("%1+%2<%0",null);
cf.Bold = true;
cf.ApplyTo = (EXCASCADETREELib.FormatApplyToEnum)1;

The following VFP sample bolds all items when the sum between first two columns is
greater than 0:

thisform.View1.ConditionalFormats.Add("%0+%1>0").Bold = .t.

The following VFP sample bolds the cells in the second column (1), if the sum between
second and third column (2) is less than the value in the first column (0):

with thisform.View1.ConditionalFormats.Add("%1+%2<%0")
 .Bold = .t.
 .ApplyTo = 1
endwith

method ConditionalFormats.Clear ()
Removes all expressions in a collection.

Type Description

Use the Clear method to remove all objects in the collection. Use the Remove method to
remove a particular object from the collection. Use the Enabled property to disable a
conditional format.

property ConditionalFormats.Count as Long
Returns the number of objects in a collection.

Type Description

Long A long expression that counts the number of elements in
the collection.

Use the Item and Count property to enumerate the elements in the collection. Use the
Expression property to get the expression of the format.

The following VB sample enumerates all elements in the ConditionalFormats collection:

Dim c As ConditionalFormat
For Each c In View1.ConditionalFormats
 Debug.Print c.Expression
Next

The following VB sample enumerates all elements in the ConditionalFormats collection:

Dim i As Integer
With View1.ConditionalFormats
 For i = 0 To .Count - 1
 Debug.Print .Item(i).Expression
 Next
End With

The following C++ sample enumerates all elements in the ConditionalFormats collection:

for (long i = 0; i < m_grid.GetConditionalFormats().GetCount(); i++)
{
 CConditionalFormat cf = m_grid.GetConditionalFormats().GetItem(COleVariant(i));
 OutputDebugString(cf.GetExpression());
}

The following VB.NET sample enumerates all elements in the ConditionalFormats collection:

Dim c As EXCASCADETREELib.ConditionalFormat
For Each c In AxView1.ConditionalFormats
 System.Diagnostics.Debug.Write(c.Expression)
Next

The following VB.NET sample enumerates all elements in the ConditionalFormats collection:

Dim i As Integer
With AxView1.ConditionalFormats
 For i = 0 To .Count - 1
 System.Diagnostics.Debug.Write(.Item(i).Expression)
 Next
End With

The following C# sample enumerates all elements in the ConditionalFormats collection:

foreach (EXCASCADETREELib.ConditionalFormat c in axView1.ConditionalFormats)
 System.Diagnostics.Debug.Write(c.Expression);

The following C# sample enumerates all elements in the ConditionalFormats collection:

for (int i = 0; i < axView1.ConditionalFormats.Count; i++)
 System.Diagnostics.Debug.Write(axView1.ConditionalFormats[i].Expression);

The following VFP sample enumerates all elements in the ConditionalFormats collection:

with thisform.View1.ConditionalFormats
 for i = 0 to .Count - 1
 wait .Item(i).Expression
 next
endwith

property ConditionalFormats.Item (Key as Variant) as ConditionalFormat
Returns a specific expression.

Type Description

Key as Variant
A long expression that indicates the index of the element
being accessed, or a string expression that indicates the
key of the element being accessed.

ConditionalFormat A ConditionalFormat object being returned.

Use the Item and Count property to enumerate the elements in the collection. Use the
Expression property to get the expression of the format. Use the Key property to get the
key of the format.

The following VB sample enumerates all elements in the ConditionalFormats collection:

Dim c As ConditionalFormat
For Each c In View1.ConditionalFormats
 Debug.Print c.Expression
Next

The following VB sample enumerates all elements in the ConditionalFormats collection:

Dim i As Integer
With View1.ConditionalFormats
 For i = 0 To .Count - 1
 Debug.Print .Item(i).Expression
 Next
End With

The following C++ sample enumerates all elements in the ConditionalFormats collection:

for (long i = 0; i < m_grid.GetConditionalFormats().GetCount(); i++)
{
 CConditionalFormat cf = m_grid.GetConditionalFormats().GetItem(COleVariant(i));
 OutputDebugString(cf.GetExpression());
}

The following VB.NET sample enumerates all elements in the ConditionalFormats collection:

Dim c As EXCASCADETREELib.ConditionalFormat

For Each c In AxView1.ConditionalFormats
 System.Diagnostics.Debug.Write(c.Expression)
Next

The following VB.NET sample enumerates all elements in the ConditionalFormats collection:

Dim i As Integer
With AxView1.ConditionalFormats
 For i = 0 To .Count - 1
 System.Diagnostics.Debug.Write(.Item(i).Expression)
 Next
End With

The following C# sample enumerates all elements in the ConditionalFormats collection:

foreach (EXCASCADETREELib.ConditionalFormat c in axView1.ConditionalFormats)
 System.Diagnostics.Debug.Write(c.Expression);

The following C# sample enumerates all elements in the ConditionalFormats collection:

for (int i = 0; i < axView1.ConditionalFormats.Count; i++)
 System.Diagnostics.Debug.Write(axView1.ConditionalFormats[i].Expression);

The following VFP sample enumerates all elements in the ConditionalFormats collection:

with thisform.View1.ConditionalFormats
 for i = 0 to .Count - 1
 wait .Item(i).Expression
 next
endwith

method ConditionalFormats.Remove (Key as Variant)
Removes a specific member from the collection.

Type Description

Key as Variant A Long or String expression that indicates the key of the
element to be removed.

Use the Remove method to remove a particular object from the collection. Use the Enabled
property to disable a conditional format. Use the Clear method to remove all objects in the
collection.

Items object
The Items object contains a collection of items. Each item is identified by a handle HITEM.
The HITEM is of long type. Each item contains a collection of cells. The number of cells is
determined by the number of Column objects in the control. To access the Items collection
use Items property of the control. Using the Items collection you can add, remove or
change the control items. The Items collection can be organized as a hierarchy or as a
tabular data. The Items collection supports the following properties and methods:

Name Description
AcceptSetParent Verifies whether the item can be child of another item.

AddItem Adds a new item, and returns a handle to the newly
created item.

CellBackColor Retrieves or sets the cell's background color.

CellBold Retrieves or sets a value that specifies whether the cell
should appear in bold.

CellButtonAutoWidth Retrieves or sets a value indicating whether the cell's
button fits the cell's caption.

CellCaption Gets the cell's display value.

CellChecked Retrieves the cell's handle that is checked giving the radio
group identifier.

CellData Specifies the cell's extra data.

CellEnabled Returns or sets a value that determines whether a cell can
respond to user-generated events.

CellFont Retrieves or sets the cell's font.
CellForeColor Retrieves or sets the cell's foreground color.
CellFormatLevel Specifies the arrangement of the fields inside the cell.

CellHAlignment Retrieves or sets a value that indicates the alignment of
the cell's caption.

CellHasButton Retrieves or sets a value indicating whether the cell has
associated a push button.

CellHasCheckBox Retrieves or sets a value indicating whether the cell has
associated a checkbox.

CellHasRadioButton Retrieves or sets a value indicating whether the cell has
associated a radio button.

CellHyperLink Specifies whether the cell's is highlighted when the cursor
mouse is over the cell.

CellImage Retrieves or sets a value that indicates the index of icon in
the cell.

CellImages Specifies an additional list of icons shown in the cell.

CellItalic Retrieves or sets a value that specifies whether the cell
should appear in italic.

CellItem Retrieves the handle of item that is the owner of a specfic
cell.

CellMerge Retrieves or sets a value that indicates the index of the
cell that's merged to.

CellParent Retrieves the parent of an inner cell.
CellPicture Retrieves or sets the cell's picture.

CellPictureHeight Retrieves or sets a value that indicates the height of the
cell's picture.

CellPictureWidth Retrieves or sets a value that indicates the width of the
cell's picture.

CellRadioGroup Retrieves or sets a value indicating the radio group where
the cell is contained.

CellSingleLine Retrieves or sets a value indicating whether the cell's
caption is painted using one or more lines.

CellSortData Specifies the cell's sort data.

CellState Retrieves or sets the cell's state. Has effect only for check
and radio cells.

CellStrikeOut Retrieves or sets a value that specifies whether the cell
should appear in strikeout.

CellToolTip Retrieves or sets a value that indicates the cell's too tip

CellUnderline Retrieves or sets a value that specifies whether the cell
should appear in underline.

CellVAlignment Retrieves or sets a value that indicates how the cell's
caption is vertically aligned.

CellValue Specifies the cell's value.
CellValueFormat Specifies how the cell's caption is displayed.

CellWidth Retrieves or sets a value that indicates the width of the
inner cell.

ChildCount Retrieves the number of children items.
ClearCellBackColor Clears the cell's background color.

ClearCellForeColor Clears the cell's foreground color.
ClearCellHAlignment Clears the cell's alignment.
ClearItemBackColor Clears the item's background color.
ClearItemForeColor Clears the item's foreground color.
ComputeValue Computes the value of a specified formula.

DefaultItem Retrieves or sets a value that indicates the handle of the
item used by Items properties in VFP.

EnableItem Returns or sets a value that determines whether a item
can respond to user-generated events.

EnsureVisibleItem Ensures the given item is in the visible client area.

ExpandItem Expands, or collapses, the child items of the specified
item.

FindItem Finds an item, looking for Value in ColIndex colum. The
searching starts at StartIndex item.

FindItemData Finds the item giving its data.

FindPath Finds the item, given its path. The control searches the
path on the SearchColumnIndex column.

FirstVisibleItem Retrieves the handle of the first visible item in the control.
FocusItem Retrieves the handle of item that has the focus.
FormatCell Specifies the custom format to display the cell's content.

FullPath
Returns the fully qualified path of the referenced item in
the ExGrid control. The value is taken from the column
SearchColumnIndex.

GroupItem Indicates a group item if positive, and the value specifies
the index of the column that has been grouped.

InnerCell Retrieves the inner cell.

InsertControlItem Inserts a new item of ActiveX type, and returns a handle
to the newly created item.

InsertItem Inserts a new item, and returns a handle to the newly
created item.

InsertObjectItem Inserts a new item that hosts the giving object, and returns
a handle to the newly created item.

IsItemLocked Returns a value that indicates whether the item is locked
or unlocked.

IsItemVisible Checks if the specific item is in the visible client area.

ItemAllowSizing Retrieves or sets a value that indicates whether a user
can resize the item at run-time.

ItemAppearance Specifies the item's appearance when the item hosts an
ActiveX control.

ItemBackColor Retrieves or sets a background color for a specific item.

ItemBold Retrieves or sets a value that indicates whether the item
should appear in bold.

ItemByIndex Retrieves the handle of the item given its index in Items
collection..

ItemCell Retrieves the cell's handle given the item and the column.
ItemChild Retrieves the child of a specified item.

ItemControlID Retrieves the item's control identifier that was used by
InsertControlItem.

ItemCount Retrieves the number of items.
ItemData Retrieves or sets the extra data for a specific item.

ItemDivider
Specifies whether the item acts like a divider item. The
value indicates the index of column used to define the
divider's title.

ItemDividerLine Defines the type of line in the divider item.
ItemDividerLineAlignment Specifies the alignment of the line in the divider item.
ItemFiltered Checks whether the item is included in the control's filter.
ItemFont Retrieves or sets the item's font.
ItemForeColor Retrieves or sets a foreground color for a specific item.

ItemHasChildren Adds an expand button to left side of the item even if the
item has no child items.

ItemHeight Retrieves or sets the item's height.

ItemItalic Retrieves or sets a value that indicates whether the item
should appear in italic.

ItemMaxHeight Retrieves or sets a value that indicates the maximum
height when the item's height is variable.

ItemMinHeight Retrieves or sets a value that indicates the minimum height
when the item's height is sizing.

ItemObject Retrieves the ActiveX object associated, if the item was
created using the InsertControlItem method.

ItemParent Returns the handle of the item's parent item.

ItemPosition Retrieves or sets a value that indicates the item's position
in the children list.

ItemStrikeOut Retrieves or sets a value that indicates whether the item
should appear in strikeout.

ItemToIndex Retrieves the index of item in the Items collection given its
handle.

ItemUnderline Retrieves or sets a value that indicates whether the item
should appear in underline.

ItemWidth Retrieves or sets a value that indicates the item's width
while it contains an ActiveX control.

ItemWindowHost
Retrieves the window's handle that hosts an ActiveX
control when the item was created using the
InsertControlItem method.

ItemWindowHostCreateStyle Retrieves or sets a value that indicates a combination of
window styles used to create the ActiveX window host.

LastVisibleItem Retrieves the handle of the last visible item.
LockedItem Retrieves the handle of the locked item.

LockedItemCount Specifies the number of items fixed on the top or bottom
side of the control.

MatchItemCount Retrieves the number of items that match the filter.
MergeCells Merges a list of cells.

NextSiblingItem Retrieves the next sibling of the item in the parent's child
list.

NextVisibleItem Retrieves the handle of next visible item.

PathSeparator Returns or sets the delimiter character used for the path
returned by the FullPath property.

PrevSiblingItem Retrieves the previous sibling of the item in the parent's
child list.

PrevVisibleItem Retrieves the handle of previous visible item.
RemoveAllItems Removes all items from the control.
RemoveItem Removes a specific item.
RemoveSelection Removes the selected items (including the descendents).

RootCount Retrieves the number of root objects in the Items
collection.

RootItem Retrieves the handle of the root item giving its index in the
root items collection.

SelectableItem Specifies whether the user can select the item.
SelectAll Selects all items.

SelectCount Retrieves the handle of selected item giving its index in
selected items collection.

SelectedItem Retrieves the selected item's handle given its index in
selected items collection.

Selection Selects items by index.
SelectItem Selects or unselects a specific item.
SelectPos Selects items by position.
SetParent Changes the parent of the given item.
SortableItem Specifies whether the item is sortable.

SortChildren
Sorts the child items of the given parent item in the
control. SortChildren will not recurse through the grid, only
the immediate children of Item will be sorted.

SplitCell Splits a cell, and returns the inner created cell.
UnmergeCells Unmerges a list of cells.
UnselectAll Unselects all items.
UnsplitCell Unsplits a cell.
VisibleCount Retrieves the number of visible items.
VisibleItemCount Retrieves the number of visible items.

property Items.AcceptSetParent (Item as HITEM, NewParent as HITEM) as
Boolean

Verifies whether the item can be the child of another item

Type Description
Item as HITEM A long expression that indicates the handle of the item.

NewParent as HITEM A long expression that indicates the handle of the parent
item.

Boolean A boolean expression that indicates whether the Item can
be child of the NewParent item.

The AcceptSetParent property doesn't change the parent item. Use the SetParent method
to change the item's parent. Use the ItemParent property to retrieve the item's parent. Use
the InsertItem method to add child items to another item. An item is called root, if it has no
parent (ItemParent() gets 0).

method Items.AddItem ([Value as Variant])

Adds a new item, and returns a handle to the newly created item.

Type Description

Value as Variant
A variant expression that indicates the cell's value for the
first column or a safe array that holds the values for each
column.

Return Description

HITEM A long expression that indicates the handle of the newly
created item.

Use the AddItem property to add new items/cards that have no parent (usually when your
control acts like a list or in CardView mode). Adding new items fails, if the control has no
columns. Use the Add method to add new columns to the control. Use InsertItem to insert
child items (usually when your control acts like a tree). When a new item is added to the
Items collection, the control fires the ViewItemUpdate(exAddItem) event. If the control
contains more than one column use the CellValue property to set the cell's value. Use the
CellValueFormat property to specify whether the value contains HTML format or computed
fields. If the control has no columns the AddItem method fails. Use Add method to insert
new columns to the control. Use the LockedItemCount property to lock or unlock items to
the top or bottom side of the control. Use the MergeCells method to combine one or more
cells in a single cell. Use the SplitCell property to split a cell. Use the BeginUpdate and
EndUpdate methods to maintain performance while adding new columns and items. Use the
ConditionalFormats method to apply formats to a cell or range of cells, and have that
formatting change depending on the value of the cell or the value of a formula.

property Items.CellBackColor([Item as Variant], [ColIndex as Variant]) as
Color

Retrieves or sets the cell's background color.

Type Description
Item as Variant A long expression that indicates the item's handle

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key

Color A color expression that indicates the cell's background
color.

To change the background color for the entire item you can use ItemBackColor property.
Use the ClearCellBackColor method to clear the cell's background color. Use the BackColor
property to specify the control's background color. Use the CellForeColor property to
specify the cell's foreground color. Use the ItemForeColor property to specify the item's
foreground color. Use the SelectedItem property to specify whether an item is selected or
unselected. Use the Def(exCellBackColor) property to specify the background color for all
cells in the column. Use the Add method to add new skins to the control. You can define
new skins and to use it to mark some cells, like in the following samples. Use the
ConditionalFormats method to apply formats to a cell or range of cells, and have that
formatting change depending on the value of the cell or the value of a formula.

property Items.CellBold([Item as Variant], [ColIndex as Variant]) as
Boolean

Retrieves or sets a value that specifies whether the cell should appear in bold.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key

Boolean A boolean expression that indicates whether the cell
should appear in bold.

Use the CellBold property to bold a cell. Use the ItemBold property to specify whether the
item should appear in bold. Use the HeaderBold property of the Column object to bold the
column's caption. Use the CellItalic, CellUnderline or CellStrikeOut property to apply
different font attributes to the cell. Use the ItemItalic, ItemUnderline or ItemStrikeOut
property to apply different font attributes to the item. Use the CellValueFormat property to
specify an HTML caption. Use the ConditionalFormats method to apply formats to a cell or
range of cells, and have that formatting change depending on the value of the cell or the
value of a formula.

property Items.CellButtonAutoWidth([Item as Variant], [ColIndex as
Variant]) as Boolean
Retrieves or sets a value indicating whether the cell's button fits the cell's caption.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

Boolean A boolean expression indicating whether the cell's button
fits the cell's caption

By default, the CellButtonAutoWidth property is False. The CellButtonAutoWidth property
has effect only if the CellHasButton property is true. Use the Def property to specify that all
buttons in the column fit to the cell's content. If the CellButtonAutoWidth property is False,
the width of the button is the same as the width of the column. If the CellButtonAutoWidth
property is True, the button area covers only the cell's caption. Use the CellValue property
to specify the button's caption. Use the CellValueFormat property to assign an HTML
caption to the button.

property Items.CellCaption ([Item as Variant], [ColIndex as Variant]) as
String
Gets the cell's display value.

Type Description
Item as Variant A long expression that indicates the item's handle

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

String A string expression that indicates the cell's value as it is
displayed on the user interface.

The CellCaption property retrieves the cell's display value as it is displayed on the control's
user interface. If the cell has no editor associated (no editor was assigned to the column
and no editor was assigned to the cell), the CellCaption property gets the string
representation of the cell's value. Use the CellValue property to change the cell's value. For
instance, if a cell has a drop down list editor, the CellCaption property retrieves the caption
of the predefined values. Use the CellImage property to assign an icon to a cell. Use the
CellImages property to assign multiple icons to a cell. Use the CellPicture property to
assign a custom size picture to a cell.

property Items.CellChecked (RadioGroup as Long) as HCELL

Retrieves the handle of the cell that is checked, given the radio group identifier.

Type Description
RadioGroup as Long A long expression that indicates the radio group identifier.

HCELL A long expression that indicates the cell's handle. Use the
CellItem property to retrieve the handle of the owner item.

A radio group contains a set of cells of radio types. Use the CellHasRadioButton property to
set the cell of radio type. To change the state for a cell you can use the CellState property.
To add or remove a cell to a given radio group you have to use CellHasRadioButton
property. Use the CellRadioGroup property to add cells in the same radio group. The
control fires the ViewItemStateStartChanging(exCheckItem) /
ViewItemStateEndChanging(exCheckItem) event when the check box or radio button state
is changed.

property Items.CellData([Item as Variant], [ColIndex as Variant]) as
Variant

Specifies the cell's extra data.

Type Description
Item as Variant A long expression that indicates the item's handle

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

Variant A variant expression that indicates the cell's user data.

Use the CellData to associate an extra data to your cell. Use ItemData when you need to
associate an extra data with an item. The CellData value is not used by the control, it is only
for user use. Use the Data property to assign an extra data to a column. Use the SortType
property to get sorted the column by the CellData property.

Note: The intersection of an item with a column defines a cell. Each cell is uniquely
represented by its handle. The cell's handle is of HCELL type, that's equivalent with a long
type. All properties of Items object that have two parameters Item and ColIndex, refer a
cell.

property Items.CellEnabled([Item as Variant], [ColIndex as Variant]) as
Boolean

Returns or sets a value that determines whether a cell can respond to user-generated
events.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

Boolean A boolean expression that indicates whether the cell is
enabled or disabled.

Use the CellEnabled property to disable a cell. A disabled cell looks grayed. Use the
EnableItem property to disable an item. Once that one cell is disabled it cannot be checked
or clicked. Use the SelectableItem property to specify the user can select an item. To
disable a column you can use Enabled property of the Column object.

Note: The intersection of an item with a column defines a cell. Each cell is uniquely
represented by its handle. The cell's handle is of HCELL type, that's equivalent with a long
type. All properties of Items object that have two parameters Item and ColIndex, refer a
cell.

property Items.CellFont ([Item as Variant], [ColIndex as Variant]) as
IFontDisp
Retrieves or sets the cell's font.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption or the
column's key.

IFontDisp A Font object that indicates the item's font.

By default, the CellFont property is nothing. If the CellFont property is noting, the cell uses
the item's font. Use the CellFont and ItemFont properties to specify different fonts for cells
or items. Use the CellBold, CellItalic, CellUnderline, CellStrikeout, ItemBold, ItemUnderline,
ItemStrikeout, ItemItalic or CellValueFormat to specify different font attributes. Use the
Refresh method to refresh the control's content on the fly. Use the BeginUpdate and
EndUpdate methods if you are doing multiple changes, so no need for an update each time
a change is done. Use the ItemHeight property to specify the height of the item.

property Items.CellForeColor([Item as Variant], [ColIndex as Variant]) as
Color

Retrieves or sets the cell's foreground color.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

Color A color expression that indicates the cell's foreground
color

The CellForeColor property identifies the cell's foreground color. Use the
ClearCellForeColor property to clear the cell's foreground color. Use the ItemForeColor
property to specify the the item's foreground color. Use the Def(exCellForeColor) property
to specify the foreground color for all cells in the column. Use the ConditionalFormats
method to apply formats to a cell or range of cells, and have that formatting change
depending on the value of the cell or the value of a formula.

property Items.CellFormatLevel([Item as Variant], [ColIndex as Variant])
as String
Specifies the arrangement of the fields inside the cell.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

String
A CRD string expression that indicates the layout of the
cell. The Index elements in the CRD string indicates the
index of the column being displayed.

By default, the CellFormatLevel property is empty. If the CellFormatLevel property is empty,
the cell displays it's caption. Use the CellValue property to assign a value to a cell. If the
CellFormatLevel property is not empty, it indicates the layout being displayed in the cell's
area. For instance, the CellFormatLevel = "1/2" indicates that the cell's area is vertically
divided such as the up part displays the caption of the cell in the first column, and the down
part displays the caption of the cell in the second column. The height of the item is NOT
changed, after calling the CellFormatLevel property. Use the ItemHeight property to specify
the height of the item. Use the DefaultItemHeight property to specify the default height of
the items before inserting them. Use the Def(exCellFormatLevel) property to specify the
layout for all cells in the same column. For instance, you can have a specify layout for some
cells using the Def(exCellFormatLevel) property (by default it is applied to all cells in the
column), and for other cells you can use the CellFormatLevel property to specify different
layouts, or to remove the default layout. Use the FormatLevel property to arrange the
columns in the control's header bar.

property Items.CellHAlignment ([Item as Variant], [ColIndex as Variant])
as AlignmentEnum
Retrieves or sets a value that indicates the alignment of the cell's caption.

Type Description
Item as Variant A long expression that indicates the handle of the item.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's key or the
column's caption.

AlignmentEnum An AlignmentEnum expression that indicates the alignment
of the cell's caption.

The CellHAlignment property aligns a particular cell. Use the Alignment property of the
Column object to align all the cells in the column. Use the CellVAlignment property to align
vertically the caption of the cell, when the item displays its content using multiple lines. Use
the ClearCellHAlignment method to clear the cell's alignment previously set by the
CellHAlignment property. If the CellHAlignment property is not set, the Alignment property of
the Column object indicates the cell's alignment. If the cell belongs to the column that
displays the hierarchy (TreeColumnIndex property), the cell can be aligned to the left or to
the right. Use the Def(exCellDrawPartsOrder) property to specify the order of the drawing
parts inside the cell.

property Items.CellHasButton([Item as Variant], [ColIndex as Variant]) as
Boolean

Retrieves or sets a value indicating whether the cell has an associated push button.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

Boolean A boolean expression that indicates whether the cell
contains a button.

The caption of the push button is defined by the CellValue property. Use the Def property to
assign buttons to all cells in the column. Use the CellButtonAutoWidth property to specify
whether the buttons fit the cell's content. If you need multiple buttons inside the same cell,
you can split the cell in multiple pieces and add a button to each piece. Use the SplitCell
property to split a cell. Use the Background(exCellButtonUp) or
Background(exCellButtonDown) property to change the visual appearance for the buttons in
the control.

property Items.CellHasCheckBox([Item as Variant], [ColIndex as Variant])
as Boolean

Retrieves or sets a value indicating whether the cell has an associated checkbox.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

Boolean A boolean expression that indicates whether the cell
contains a check box button.

Use the CellState property to change the state of the cell of the check box type. The cell
cannot display in the same time a radio and a check button. Use the CellHasRadioButton
property to add a radio button to your cell. Use the PartialCheck property to enable partial
check feature. Use the Def property to assign check boxes for all cells in the column. Use
the CellImage property to add a single icon to a cell. Use the CellImages property to assign
multiple icons to a cell. Use the CellPicture property to load a custom size picture to a cell.
Use the FilterType property on exCheck to filter for checked or unchecked items. Use the
Def(exCellDrawPartsOrder) property to specify the order of the drawing parts inside the
cell.

property Items.CellHasRadioButton([Item as Variant], [ColIndex as
Variant]) as Boolean

Retrieves or sets a value indicating whether the cell has an associated radio button.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

Boolean A boolean expression that indicates whether the cell
contains a radio button.

Use the CellState property to change the state of the cell of the radio type. The cell cannot
display in the same time a radio and a check button. The control fires
ViewItemStateStartChanging(exCheckItem) / ViewItemStateEndChanging(exCheckItem)
event when the cell's state has been changed. Call the CellHasCheckBox property to add a
check box to the cell. Use the CellRadioGroup property To group or ungroup cells of radio
type. Use the Def property to assign radio buttons to all cells in the column. Use the
CellImage property to add a single icon to a cell. Use the CellImages property to assign
multiple icons to a cell. Use the CellPicture property to load a custom size picture to a cell.
Use the Def(exCellDrawPartsOrder) property to specify the order of the drawing parts
inside the cell

property Items.CellHyperLink ([Item as Variant], [ColIndex as Variant]) as
Boolean
Specifies whether the cell is highlighted when the cursor mouse is over the cell.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

Boolean A boolean expression that indicates whether the cell is of
hyper link type.

A cell that has CellHyperLink property to True, is a cell of hyper link type.

property Items.CellImage ([Item as Variant], [ColIndex as Variant]) as
Long

Retrieves or sets a value that indicates the index of icon to display in the cell..

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

Long

A long value that indicates the index of the icon in Images
collection. The Images collection is 1 based. The last 7
bits in the high significant byte of the long expression
indicates the identifier of the skin being used to paint the
object. Use the Add method to add new skins to the
control. If you need to remove the skin appearance from a
part of the control you need to reset the last 7 bits in the
high significant byte of the color being applied to the part.

The CellImage property assigns a single icon to a cell. Use the CellImage() = 0 to remove
the cell's icon, that was previous assigned using the CellImage property . Use the
CellImages property to assign multiple icons to a single cell. The icon's size is always 16 x
16. Use the CellPicture property to load a a picture of different size. Use the Images or
ReplaceIcon method to load icons to the control. Use the ItemFromPoint property to
retrieve the part of the control being clicked. Use the CellHasCheckBox property to add a
check box to a cell. Use the CellHasRadioButton property to assign a radio button to a cell.
Use the FilterType property on exImage to filter items by icons. Use the HTML tag to
insert icons inside the cell's caption. Use the Def(exCellDrawPartsOrder) property to
specify the order of the drawing parts inside the cell.

property Items.CellImages ([Item as Variant], [ColIndex as Variant]) as
Variant
Specifies an additional list of icons shown in the cell.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Variant
A string expression that indicates the list of icons shown in
the cell. For instance, the "1,2,3" indicates that the icons
1, 2, 3 are displayed in the cell.

The CellImage property assign a single icon to the cell. Instead if multiple icons need to be
assigned to a single cell you have to use the CellImages property. The CellImages property
takes a list of additional icons and display them in the cell. The list is separated by ',' and
should contain numbers that represent indexes to Images list collection. Use the Images or
ReplaceIcon method to assign icons at runtime. Use the Def(exCellDrawPartsOrder)
property to specify the order of the drawing parts inside the cell.

property Items.CellItalic([Item as Variant], [ColIndex as Variant]) as
Boolean

Retrieves or sets a value that specifies whether the cell should appear in italic.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

Boolean A boolean expression that indicates whether the cell
should appear in italic.

Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply different font
attributes to the item. Use the CellItalic, CellUnderline, CellBold or CellStrikeOut property to
apply different font attributes to the cell. Use the CellValueFormat property to specify an
HTML caption. Use the ConditionalFormats method to apply formats to a cell or range of
cells, and have that formatting change depending on the value of the cell or the value of a
formula.

property Items.CellItem (Cell as HCELL) as HITEM

Retrieves the handle of the item that is the owner of a specfic cell.

Type Description
Cell as HCELL A long expression that indicates the handle of a cell.
HITEM A long expression that indicates the item's handle.

Use the CellItem property to retrieve the item's handle. Use the ItemCell property to gets
the cell's handle given an item and a column. Most of the properties of the Items object that
have parameters [Item as Variant], [ColIndex as Variant], could use the handle of the cell to
identify the cell, instead the ColIndex parameter.

Note: The intersection of an item with a column defines a cell. Each cell is uniquely
represented by its handle. The cell's handle is of HCELL type, that's equivalent with a long
type. All properties of Items object that have two parameters Item and ColIndex, refer a
cell.

property Items.CellMerge([Item as Variant], [ColIndex as Variant]) as
Variant
Retrieves or sets a value that indicates the index of the cell that's merged to.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Variant
A long expression that indicates the index of the cell that's
merged with, a safe array that holds the indexes of the
cells being merged.

Use the CellMerge property to combine two or more cells in the same item in a single cell.
The data of the source cell is displayed in the new larger cell. All the other cells' data is not
lost. Use the ItemDivider property to display a single cell in the entire item. Use the
UnmergeCells method to unmerge the merged cells. Use the CellMerge property to
unmerge a single cell. Use the MergeCells method to combine one or more cells in a single
cell. Use the SplitCell property to split a cell. Use the Add method to add new columns to
the control.

property Items.CellParent ([Item as Variant], [ColIndex as Variant]) as
Variant
Retrieves the parent of an inner cell.

Type Description

Item as Variant
A long expression that indicates the handle of the item
where the cell is, or 0. If the Item parameter is 0, the
ColIndex parameter must indicate the handle of the cell.

ColIndex as Variant

A long expression that indicates the index of the column
where a cell is divided, or a long expression that indicates
the handle of the cell being divided, if the Item parameter
is missing or it is zero.

Variant A long expression that indicates the handle of the parent
cell.

Use the CellParent property to get the parent of the inner cell. The SplitCell method splits a
cell in two cells (the newly created cell is called inner cell). Use the InnerCell property to
get the inner cell. Use the CellItem property to get the item that's the owner of the cell. Use
the ItemCell property to get a master cell giving the handle of the item and the index of the
column. The CellParent property gets 0 if the cell is the master cell, not an inner cell. The
parent cell is always displayed to the left side of the cell. The inner cell (InnerCell) is
displayed to the right side of the cell.

property Items.CellPicture ([Item as Variant], [ColIndex as Variant]) as
Variant
Retrieves or sets the cell's picture.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

Variant

A Picture object that indicates the cell's picture. (A Picture
object implements IPicture interface), a string expression
that indicates the base64 encoded string that holds a
picture object. Use the eximages tool to save your picture
as base64 encoded format.

The control can associate to a cell a check or radio button, an icon, multiple icons, a
picture and a caption. Use the CellPicture property to associate a picture to a cell. You can
use the CellPicture property when you want to display images with different widths into a
cell. Use the CellImage property to associate an icon from Images collection. Use the
CellImages property to assign multiple icons to a cell. Use the CellHasCheckBox property
to add a check box to a cell. Use the CellHasRadioButton property to assign a radio button
to a cell. The CellPictureWidth property specifies the width in pixels of the cell's picture. If it
is not specified, the picture's size determines the width to paint the picture inside the cell.
The CellPictureHeight property specifies the height in pixels of the cell's picture. If it is not
specified, the picture's size determines the height to paint the picture inside the cell. Use the
 built-in HTML tag to insert multiple custom size picture to the same cell. Use the Def(
exCellDrawPartsOrder) property to specify the order of the drawing parts inside the cell.

https://exontrol.com/eximages.jsp

property Items.CellPictureHeight ([Item as Variant], [ColIndex as Variant])
as Long
Retrieves or sets a value that indicates the height of the cell's picture.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Long A long expression that indicates the height of the cell's
picture, or -1, if the property is ignored.

By default, the CellPictureHeight property is -1. Use the CellPicture property to assign a
custom size picture to a cell. Use the CellImage or CellImages property to assign one or
more icons to the cell. The CellPictureWidth property has effect on CellPicture property
only. Use the CellPictureWidth property to specify the width of the cell's picture. The
CellPictureWidth and CellPictureHeight properties specifies the size of the area where the
cell's picture is stretched. If the CellPictureWidth and CellPictureHeight properties are -1 (
by default), the cell displays the full size picture. If the CellPictureHeight property is greater
than 0, it indicates the height of the area where the cell's picture is stretched. Use the
ItemHeight property to specify the height of the item.

property Items.CellPictureWidth ([Item as Variant], [ColIndex as Variant])
as Long
Retrieves or sets a value that indicates the width of the cell's picture.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's caption or the
column's key.

Long A long expression that indicates the width of the cell's
picture, or -1, if the property is ignored.

By default, the CellPictureWidth property is -1. Use the CellPicture property to assign a
custom size picture to a cell. Use the CellImage or CellImages property to assign one or
more icons to the cell. The CellPictureWidth property has effect on CellPicture property
only. Use the CellPictureHeight property to specify the height of the cell's picture. The
CellPictureWidth and CellPictureHeight properties specifies the size of the area where the
cell's picture is stretched. If the CellPictureWidth and CellPictureHeight properties are -1 (
by default), the cell displays the full size picture. If the CellPictureWidth property is greater
than 0, it indicates the width of the area where the cell's picture is stretched.

property Items.CellRadioGroup([Item as Variant], [ColIndex as Variant])
as Long

Retrieves or sets a value indicating which radio group a cell is contained in.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

Long A long expression that identifies the cell's radio group.

Use the CellRadioGroup property to add or remove a radio button from a group. In a radio
group only one radio button can be checked. A radio cell cannot be contained by two
different radio groups. Use the CellHasRadioButton property to add a radio button to a cell.
When the cell's state is changed the control fires the
ViewItemStateStartChanging(exCheckItem) / ViewItemStateEndChanging(exCheckItem)
event. The CellState property specifies the cell's state. By default, when a cell of radio type
is created the radio cell is not grouped to any of existent radio groups

property Items.CellSingleLine([Item as Variant], [ColIndex as Variant]) as
CellSingleLineEnum

Retrieves or sets a value indicating whether the cell is painted using one line, or more than
one line.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key

CellSingleLineEnum A CellSingleLineEnum expression that indicates whether
the cell displays its caption using one or more lines.

By default, the CellSingleLine property is exCaptionSingleLine / True, which indicates that
the cell's caption is displayed on a single line. Use the Def(exCellSingleLine) property to
specify that all cells in the column display their content using multiple lines. The control can
displays the cell's caption using more lines, if the CellSingleLine property is
exCaptionWordWrap or exCaptionBreakWrap. The CellSingleLine property wraps the cell's
caption so it fits in the cell's client area. If the text doesn't fit the cell's client area, the height
of the item is increased or decreased. When the CellSingleLine is exCaptionWordWrap /
exCaptionBreakWrap / False, the height of the item is computed based on each cell
caption. If the CellSingleLine property is exCaptionWordWrap / exCaptionBreakWrap /
False, changing the ItemHeight property has no effect. Use the ItemMaxHeight property to
specify the maximum height of the item when its height is variable. Use the CellVAlignment
property to align vertically a cell.

If using the CellSingleLine / Def(exCellSingleLine) property, we recommend to set the
ScrollBySingleLine property on True so all items can be scrolled.

property Items.CellSortData([Item as Variant], [ColIndex as Variant]) as
Variant

Specifies the cell's sort data.

Type Description
Item as Variant A long expression that indicates the item's handle

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

Variant A long expression that indicates the cell's sort data.

The CellSortData property specifies the value being sorted if the SortType property is
SortCellData or SortCellDataString. Use the CellData property to associate an extra data to
a cell. Use the CellValue property to specify the cell's value. Use the CellCaption property to
get the string being displayed in the cell.

Note: The intersection of an item with a column defines a cell. Each cell is uniquely
represented by its handle. The cell's handle is of HCELL type, that's equivalent with a long
type. All properties of Items object that have two parameters Item and ColIndex, refer a
cell.

property Items.CellState([Item as Variant], [ColIndex as Variant]) as Long

Retrieves or sets the cell's state. Affects only check and radio cells.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

Long A long value that indicates the cell's state.

Use the CellState property to change the cell's state. The CellState property has effect only
for check and radio cells. Use the CellHasCheckBox property to assign a check box to a
cell. Use the CellHasRadioButton property to add a radio button to a cell. The control fires
the ViewItemStateStartChanging(exCheckItem) /
ViewItemStateEndChanging(exCheckItem) event when user changes the cell's state. Use
the PartialCheck property to allow partial check feature within the column. the FilterType
property on exCheck to filter for checked or unchecked items.

property Items.CellStrikeOut([Item as Variant], [ColIndex as Variant]) as
Boolean
Retrieves or sets a value that specifies whether the cell should appear in strikeout.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption.

Boolean A boolean expression that indicates whether the cell
should appear in strikeout.

If the CellStrikeOut property is True, the cell's font is displayed with a horizontal line through
it. Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply different font
attributes to the item. Use the CellItalic, CellUnderline, CellBold or CellStrikeOut property to
apply different font attributes to the cell. Use the CellValueFormat property to specify an
HTML caption. Use the ConditionalFormats method to apply formats to a cell or range of
cells, and have that formatting change depending on the value of the cell or the value of a
formula.

property Items.CellToolTip([Item as Variant], [ColIndex as Variant]) as
String

Retrieves or sets a value that indicates the cell's tool tip text.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

String A string expression that indicates the cell's tooltip.

By default, the CellToolTip property is "..." (three dots). If the CellToolTip property is "..." the
control displays the cell's caption if it doesn't fit the cell's client area. If the CellToolTip
property is different than "...", the control shows a tooltip that displays the CellToolTip
value. Use the ToolTipWidth property to specify the width of the tooltip window. Use the
ShowToolTip method to display a custom tooltip.

The tooltip supports the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.

about:blank

<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The

HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

Note: The intersection of an item with a column defines a cell. Each cell is uniquely
represented by its handle. The cell's handle is of HCELL type, that's equivalent with a long
type. All properties of Items object that have two parameters Item and ColIndex, that refers
a cell.

property Items.CellUnderline([Item as Variant], [ColIndex as Variant]) as
Boolean

Retrieves or sets a value that indicates whether the cell is underlined.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

Boolean A boolean expression that indicates whether the cell is
underlined.

Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply different font
attributes to the item. Use the CellItalic, CellUnderline, CellBold or CellStrikeOut property to
apply different font attributes to the cell. Use the CellValueFormat property to specify an
HTML caption. Use the ConditionalFormats method to apply formats to a cell or range of
cells, and have that formatting change depending on the value of the cell or the value of a
formula

property Items.CellVAlignment ([Item as Variant], [ColIndex as Variant])
as VAlignmentEnum

Retrieves or sets a value that indicates how the cell's caption is vertically aligned.

Type Description
Item as Variant A long expression that indicates the item's handle

ColIndex as Variant
A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key.

VAlignmentEnum A VAlignmentEnum expression that indicates the cell's
vertically alignment.

The CellVAlignment property aligns vertically the cell. The CellVAligment property aligns the
+/- sign if the item contains child items. The CellVAlignment property has effect if the item
displays cells using multiple lines. Use the CellSingleLine property to wrap the cell's caption
on multiple lines. Use the ItemHeight property to specify the height of the item. Use the

 built-in HTML format to break a line, when CellValueFormat property is exHTML. Use
the CellHAlignment property to align horizontally the cell. Use the Def(exCellVAlignment)
property to specify the same vertical alignment for the entire column.

property Items.CellValue([Item as Variant], [ColIndex as Variant]) as
Variant

Specifies the cell's value.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant

A long expression that indicates the cell's handle or the
column's index, a string expression that indicates the
column's caption or the column's key. If the Item
parameter is missing or it is zero (0), the ColIndex
parameter is the handle of the cell being accessed.

Variant
A variant expression that indicates the cell's value or
content. The cell's value supports built-in HTML format if
the CellValueFormat property is exHTML.

Use the CellValue property to specify the value or the content for cells in the second, third
columns and so on. The CellValueFormat property indicates the way the cell displays its
content. The Def(exCellValueFormat) property indicates the format for all cells within the
column.

The cell shows its text based on the CellValueFormat property as follows:

exText, the CellValue indicates the text to be displayed without HTML formatting
exHTML, the CellValue indicates the text to be displayed with HTML formatting, such
as to bold a portion of text.
exComputedField, the CellValue property indicates a formula to display the cell's
content based on the values of any cell in the current item. For instance, the %1 + %2
+ %3 adds or concatenates the values from first 3 cells. The exComputedField can be
combined with exHTML that indicates that the computed field may display HTML
format. The ComputedField property specifies the formula to compute the entire
column. The ComputeValue property can be used to get the result of specified formula.
exTotalField, the CellValue indicates a formula to display the cell's content based on
the values of any cell from any column, any item or its descendents. For instance, the
sum(1,0,%1 + %2 + %3) gets the sum of first three columns from the direct
descendents of the first item. The exTotalField can be combined with exHTML that
indicates that the total field may display HTML format. The divider, unsortable or
unselectable items do not count for total fields. The ComputeValue property can be
used to get the result of specified formula.

The CellValue property of the cell is being shown as:

formatted using the FormatCell property, if it is valid
formatted using the FormatColumn property, if it is valid

Use the CellData property to associate an user data to a cell. The CellSortData property
specifies the value being sorted if the SortType property is SortCellData or
SortCellDataString. The AddItem or InsertItem method may specify the value for the first
cell. Use the LockedItemCount property to lock or unlock items to the top or bottom side of
the control. Use the ItemCell property to get the cell's handle based on the item and the
column. Use the CellItem property to get the handle of the item that's the owner of the cell.
Use the SplitCell property to split a cell.

property Items.CellValueFormat([Item as Variant], [ColIndex as Variant])
as ValueFormatEnum
Specifies how the cell's caption is displayed.

Type Description
Item as Variant A long expression that indicates the item's handle

ColIndex as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption or
column's key.

ValueFormatEnum

A long expression that defines the way how the cell's value
is displayed. This value can be an OR combination of
listed values. For instance, exHTML + exTotalField
indicates a total field that may display HTML format

The component supports built-in HTML format. That means that you can use HTML tags
when displays the cell's value . By default, the CellValueFormat property is exText. If the
CellValueFormat is exText, the cell displays the CellValue property like it is. If the
CellValueFormat is exHTML, the cell displays the CellValue property using the HTML tags
specified in the ValueFormatEnum type. Use the Def property to specify whether all cells in
the column display HTML format. Use the CellVAlignment property to align vertically a cell.

The CellValue property of the cell is being shown as:

formatted using the FormatCell property, if it is valid
formatted using the FormatColumn property, if it is valid

property Items.CellWidth([Item as Variant], [ColIndex as Variant]) as Long
Retrieves or sets a value that indicates the width of the inner cell.

Type Description

Item as Variant
A long expression that indicates the handle of the item
where the cell is, or 0. If the Item parameter is 0, the
ColIndex parameter must indicate the handle of the cell.

ColIndex as Variant

A long expression that indicates the index of the column
where a cell is divided, or a long expression that indicates
the handle of the cell being divided, if the Item parameter
is missing or it is zero.

Long A long expression that indicates the width of the cell.

The CellWidth property specifies the cell's width. The CellWidth property has effect only if
the cell contains inner cells. The SplitCell method splits a cell in two cells (the newly
created cell is called inner cell). Use the InnerCell property to get the inner cell. Use the
CellParent property to get the parent of the inner cell. Use the CellItem property to get the
item that's the owner of the cell. Use the BeginUpdate and EndUpdate methods to refresh
the cell's width when changing it on the fly.

The CellWidth property specifies the width of the cell, where the cell is divided in two or
multiple (inner) cells like follows:

if the CellWidth property is less than zero, the master cell calculates the width of the
inner cell, so all the inner cells with CellWidth less than zero have the same width in the
master cell.
if the CellWidth property is greater than zero, it indicates the width in pixels of the inner
cell.

By default, the CellWidth property is -1, and so when the user splits a cell the inner cell
takes the right half of the area occupied by the master cell.

property Items.ChildCount (Item as HITEM) as Long

Retrieves the number of children items.

Type Description
Item as HITEM A long expression that indicates the item's handle
Long A long value that indicates the number of child items.

Use the ChildCount property to count the number of child items. Use the ItemChild property
to get the handle of the first child item, if it exists. Use the ItemHasChildren property to built
a virtual tree. A virtual tree loads items when the user expands an item. Use the
ExpandItem property to expand or collapse an item. Use the InsertItem method to insert
child items. Use the InsertControlItem method to insert child ActiveX controls.

method Items.ClearCellBackColor ([Item as Variant], [ColIndex as
Variant])
Clears the cell's background color.

Type Description
Item as Variant An item's handle that indicates the owner of the cell.

ColIndex as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption
or column's key.

The ClearCellBackColor method clears the cell's background color when the CellBackColor
property is used. Use the ItemBackColor property to specify the item's background color.
Use the BackColor property to specify the control's background color

method Items.ClearCellForeColor ([Item as Variant], [ColIndex as
Variant])
Clears the cell's foreground color.

Type Description
Item as Variant A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the column's index, or a
string expression that indicates the column's caption
or column's key.

The ClearCellForeColor method clears the cell's foreground color when CellForeColor
property was used. Use the ItemForeColor property to specify the item's foreground color.
Use the ForeColor property to specify the control's foreground color.

method Items.ClearCellHAlignment ([Item as Variant], [ColIndex as
Variant])
Clears the cell's alignment.

Type Description
Item as Variant A long expression that indicates the handle of the item.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's key or the
column's caption.

Use the ClearCellHAlignment method to clear the alignment of the cell's caption previously
set using the CellHAlignment property. If the CellHAlignment property is not called, the
Alignment property of the Column object specifies the alignment of the cell's caption.

method Items.ClearItemBackColor (Item as HITEM)
Clears the item's background color.

Type Description
Item as HITEM A long expression that indicates the item's handle.

The ClearItemBackColor method clears the item's background color when ItemBackColor
property was used. Use the BackColor property to specify the control's background color.

method Items.ClearItemForeColor (Item as HITEM)
Clears the item's foreground color.

Type Description
Item as HITEM A long expression that indicates the item's handle.

The ClearItemForeColor method clears the item's foreground color when ItemForeColor
property was used. Use the ForeColor property to specify the control's foreground color.

property Items.ComputeValue ([Expression as Variant], [Item as Variant],
[ColIndex as Variant], [ValueFormatType as Variant]) as Variant
Computes the value of a specified formula.

Type Description
Expression as Variant A string expression that specifies the formula to compute
Item as Variant A long expression that specifies the handle of the item.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's key or the
column's caption.

ValueFormatType as Variant

A ValueFormatType expression that indicates the type of
the formula being interpreted by the Expression
parameter. For instance, if the ValueFormatType
parameter is exTotalField, the Expression parameter
should inidcate a total formula of type
aggregate(list,direction,formula)

Variant A string expression that indicates the result.

The ComputeValue property gets the result of a a computed or total field. The Item and
ColIndex property refers the cells used as the source for the formula. Use the
ComputeValue property to get the result of a total field. For instance, for a total field, the
CellValue property indicates the formula, while the ComputeValue can be used to get the
result of the formula at runtime.

The ComputeValue method returns the:

value of the computed field, where the ValueFormatType is exComputedField, and the
Expression indicates the formula for the computed field.
value of the total field, where the ValueFormatType is exTotalField, and the Expression
indicates a string as: aggregate(list,direction,formula)
text with no HTML formatting, where the ValueFormatType is exHTML, and the
Expression indicates the string including the HTML format.

For instance, based on the ValueFormatType and Expression parameters the result could
be:

exComputedField, dbl(%0) + dbl(%1), the sum between first two cells in the item
referred by Item.
exTotalField, sum(current,dir,dbl(%0) + dbl(%1)), the total of first two columns, for all
direct child items of the item being referred by Item.
exHTML, bold, returns bold (returns the result with no HTML formatting). In

this case, the Item and ColIndex have no effect.

property Items.DefaultItem as HITEM

Retrieves or sets a value that indicates the handle of the item used by Items properties in
VFP.

Type Description

HITEM Retrieves the handle of the item that's used by all
properties of Items object, that have a parameter Item.

The property is used in VFP implementation. The VFP fires "Invalid Subscript Range" error,
while it tries to process a number greater than 65000. Since, the HITEM is a long value that
most of the time exceeds 65000, the VFP users have to use this property, instead passing
directly the handles to properties. The following sample shows to change the cell's image:

.Items.DefaultItem = .Items.AddItem("Item 1")

.Items.CellImage(0,1) = 2

In VFP the following sample fires: "Invalid Subscript Range":

i = .Items.AddItem("Item 1")
.Items.CellImage(i,1) = 2

because the i variable is grater than 65000.

So, if you pass zero to a property that has a parameter titled Item, the control takes
instead the DefaultItem value.

property Items.EnableItem(Item as HITEM) as Boolean

Returns or sets a value that determines whether a item can respond to user-generated
events.

Type Description
Item as HITEM A long expression that indicates the item's handle

Boolean A boolean expression that indicates whether the item is
enabled or disabled.

Use the EnableItem property to disable an item. A disabled item looks grayed and it is
selectable. Use the SelectableItem property to specify the user can select an item. Once
that an item is disabled all the cells of the item are disabled, so CellEnabled property has
no effect. To disable a column you can use Enabled property of a Column object.

method Items.EnsureVisibleItem (Item as HITEM)

Ensures that the given item is in the visible client area.

Type Description
Item as HITEM A long expression that indicates the item's handle.

The EnsureVisibleItem scrolls the control's content until the item fits the visible client area.
The EnsureVisibleItem method expands the parent items. Use the IsItemVisible property to
check if an item fits the control's client area. Use the EnsureVisibleColumn method to scroll
the control's content so a column fits the control's client area. Use the Scroll method to
scroll the control's client area by code. The EnsureVisibleItem method should not be called
during BeginUpdate and EndUpdate methods. The EnsureOnSort property prevents
scrolling the control's content when the user sorts items.

property Items.ExpandItem(Item as HITEM) as Boolean

Expands, or collapses, the child items of the specified item.

Type Description

Item as HITEM A long expression that indicates the handle of the item
being expanded or collapsed.

Boolean A boolean expression that indicates whether the item is
expanded or collapsed.

Use ExpandItem property to programmatically expand or collapse an item. Use the
ExpandItem property to check whether an items is expanded or collapsed. To check if the
item has child items you can use ChildCount property. Use the ItemHasChildren property to
display a +/- expand sign to the item even if it doesn't contain child items. The
ExpandOnSearch property specifies whether the control expands nodes when incremental
searching is on (AutoSearch property is different than 0) and user types characters when
the control has the focus. Use the ExpandOnKeys property to specify whether the user
expands or collapses the focused items using arrow keys.

property Items.FindItem (Value as Variant, [ColIndex as Variant],
[StartIndex as Variant]) as HITEM

Finds an item, looking for Caption in ColIndex colum. The searching starts at StartIndex
item.

Type Description

Value as Variant A Variant expression that indicates the caption that is
searched for.

ColIndex as Variant A string expression that indicates the column's caption, or
a long expression that indicates the column's index.

StartIndex as Variant A long value that indicates the index of item from where
the searching starts.

HITEM A long expression that indicates the item's handle that
matches the criteria.

Use the FindItem to search for an item. Finds a control's item that matches CellValue(Item,
ColIndex) = Caption. The StartIndex parameter indicates the index from where the
searching starts. If it is missing, the searching starts from the item with the 0 index. The
searching is case sensitive only if the ASCIIUpper property is empty. Use the AutoSearch
property to enable incremental search feature within the column.

property Items.FindItemData (UserData as Variant, [StartIndex as
Variant]) as HITEM
Finds the item giving its data.

Type Description
UserData as Variant A variant value that indicates the value being searched

StartIndex as Variant A long expression that indicates the handle of the item
where the searching starts

HITEM A long expression that indicates the handle of the item
found.

Use the FindItemData property to search for an item giving its extra-data. Use the ItemData
property to associate an extra data to an item. Use the FindItem property to locate an item
given its caption. Use the FindPath property to search for an item given its path.

property Items.FindPath (Path as String) as HITEM

Finds an item given its path.

Type Description
Path as String A string expression that indicates the item's path

HITEM A long expression that indicates the item's handle that
matches the criteria.

The FindPath property searches the item on the column SearchColumnIndex. Use the
FullPath property in order to get the item's path. Use the FindItem to search for an item.

property Items.FirstVisibleItem as HITEM

Retrieves the handle of the first visible item in control.

Type Description

HITEM A long expression that indicates the item's handle that
indicates the first visible item.

Use the FirstVisibleItem, NextVisibleItem and IsItemVisible properties to get the items that
fit the client area. Use the NextVisibleItem property to get the next visible item. Use the
IsVisibleItem property to check whether an item fits the control's client area. Use the
RootItem property to get the first visible item in the list. The NextSiblingItem property
retrieves the next sibling of the item in the parent's child list. Use the PrevVisibleItem
property to retrieve the previous visible item.

property Items.FocusItem as HITEM

Retrieves the handle of item that has the focus.

Type Description

HITEM A long expression that indicates the item's handle that is
focused.

If there is no focused item the FocusItem property retrieves 0. At one moment, only one
item can be focused. When the selection is changed the focused item is changed too. Use
the SelectItem property to select a new item. the FocusItem property gets the selected
item too. Use the SingleSel property to specify whether the control supports single or
multiple selection. Use the ShowFocusRect property to indicate whether the control draws
a marking rectangle around the focused item. You can change the focused item, by
selecting a new item using the SelectItem method. If the items is not selectable, it is not
focusable as well. Use the SelectableItem property to specify whether an item is
selectable/focusable.

property Items.FormatCell([Item as Variant], [ColIndex as Variant]) as
String
Specifies the custom format to display the cell's content.

Type Description
Item as Variant A long expression that indicates the handle of the item.

ColIndex as Variant
A long expression that indicates the column's index, a
string expression that indicates the column's key or the
column's caption.

String
A string expression that indicates the format to be applied
on the cell's value, including HTML formatting, if the cell
supports it.

By default, the FormatCell property is empty. The format is being applied if valid (not
empty, and syntactically correct). The expression may be a combination of variables,
constants, strings, dates and operators, and value. The value operator gives the value to
be formatted. A string is delimited by ", ` or ' characters, and inside they can have the
starting character preceded by \ character, ie "\"This is a quote\"". A date is delimited by #
character, ie #1/31/2001 10:00# means the January 31th, 2001, 10:00 AM. The
FormatColumn property applies the predefined format for all cells in the columns. The
CellValue property indicates the cell's value.

The CellValue property of the cell is being shown as:

formatted using the FormatCell property, if it is valid
formatted using the FormatColumn property, if it is valid

For instance:

the "currency(value)" displays the column using the current format for the currency ie,
1000 gets displayed as $1,000.00
the "longdate(date(value))" converts the value to a date and gets the long format to
display the date in the column, ie #1/1/2001# displays instead Monday, January 01,
2001
the "'' + ((0:=proper(value)) left 1) + '' + (=:0 mid 2)" converts the name to
proper, so the first letter is capitalized, bolds the first character, and let unchanged the
rest, ie a "mihai filimon" gets displayed "Mihai Filimon".
the "len(value) ? ((0:=dbl(value)) < 10 ? '<fgcolor=808080>' : '') +
currency(=:0)" displays the cells that contains not empty daya, the value in currency
format, with a different font and color for values less than 10, and bolded for those that
are greater than 10, as can see in the following screen shot in the column (A+B+C):

The value keyword in the FormatColumn property indicates the value to be formatted.

The expression supports cell's identifiers as follows:

%0, %1, %2, ...{any} specifies the value of the cell in the column with the index 0, 1
2, ... The CellCaption property defines the cell's value. For example, "%0 format ``"
formats the value in the cell at index 0 using the current regional settings, while
"int(%1)" converts the value in the cell at index 1 to an integer.
%C0, %C1, %C2, ...{string} specifies the caption of the cell, or the string the cell
displays in the column with the index 0, 1 2, ... The CellCaption property gets the
cell's formatted caption. The cell's displayed string may differ from its actual value.
For example, if a cell displays HTML content, %0 returns the HTML format including
the tags, while %C0 returns the cell's content as a plain string without HTML tags. For
instance, "upper(%C1)" converts the caption of the cell at index 1 to uppercase, while
"%C0 left 2" returns the leftmost two characters of the caption in the cell at index 0.
%CD0, %CD1, %CD2, ...{any} specifies the cell's extra data in the column with the
index 0, 1 2, ... The CellData property associates any extra/user data to a cell. For
example, "%CD0 = your user data" specifies all cells in the column with index 0
whose CellData property is equal to your user data.
%CS0, %CS1, %CS2, ...{number} specifies the cell's state in the column with the
index 0, 1 2, ... The CellState property defines the state of a cell, indicating whether it
is checked or unchecked. For example, "%CS0" identifies all checked items in the
column with index 0, while "not %CS1" identifies all unchecked items in the column
with index 1.
%CC0, %CC1, %CC2, ... {number} retrieve the number of child items (this keyword
consistently returns identical results for all cells since it pertains to the item that hosts
each cell). The ChildCount property returns the number of child items. For example,
"%CC0" identifies all parent items, while "%CC0 = 0" identifies all leaf items.
%CX0, %CX1, %CX2, ... {boolean} returns true if the item hosting the cell is
expanded, or false if it is collapsed (this keyword consistently returns identical results
for all cells since it pertains to the item that hosts each cell). The ExpandItem property
specifically indicates whether the item is expanded or collapsed. For example,
"%CX0" refers to all expanded items, while "not %CX0" identifies all collapsed items

The predefined operators for auto-numbering are:

number index 'format', indicates the index of the item. The first added item has the

index 0, the second added item has the index 1, and so on. The index of the item
remains the same even if the order of the items is changed by sorting. For instance, 1
index '' gets the index of the item starting from 1 while 100 index '' gets the index of the
item starting from 100. The number indicates the starting index, while the format is a
set of characters to be used for specifying the index. If the format is missing, the index
of the item is formatted as numbers. For instance: 1 index 'A-Z' gets the index as A, B,
C... Z, BA, BB, ... BZ, CA, The 1 index 'abc' gives the index as:
a,b,c,ba,bb,bc,ca,cb,cc,.... You can use other number formatting function to format the
returned value. For instance "1 index '' format '0||2|:'" gets the numbers grouped by 2
digits and separated by : character.

In the following screen shot the FormatColumn("Col 1") = "1 index ''"

In the following screen shot the FormatColumn("Col 1") = "1 index 'A-Z'"

number apos 'format' indicates the absolute position of the item. The first displayed
item has the absolute position 0 (scrolling position on top), the next visible item is 1,
and so on. The number indicates the starting position, while the format is a set of
characters to be used for specifying the position. For instance, 1 apos '' gets the
absolute position of the item starting from 1, while 100 apos '' gets the position of the
item starting from 100. If the format is missing, the absolute position of the item is
formatted as numbers.

In the following screen shot the FormatColumn("Col 1") = "1 apos ''"

In the following screen shot the FormatColumn("Col 1") = "1 apos 'A-Z'"

number pos 'format' indicates the relative position of the item. The relative position is
the position of the visible child item in the parent children collection. The number
indicates the starting position, while the format is a set of characters to be used for
specifying the position. For instance, 1 pos '' gets the relative position of the item
starting from 1, while 100 pos '' gets the relative position of the item starting from 100.
If the format is missing, the relative position of the item is formatted as numbers. The
difference between pos and opos can be seen while filtering the items in the control.
For instance, if no filter is applied to the control, the pos and opos gets the same
result. Instead, if the filter is applied, the opos gets the position of the item in the list
of unfiltered items, while the pos gets the position of the item in the filtered list.

In the following screen shot the FormatColumn("Col 2") = "'' + 1 pos '' + ' ' +
value"

In the following screen shot the FormatColumn("Col 2") = "'' + 1 pos 'A-Z' + ' '
+ value"

number opos 'format' indicates the relative old position of the item. The relative old
position is the position of the child item in the parent children collection. The number
indicates the starting position, while the format is a set of characters to be used for
specifying the position.For instance, 1 pos '' gets the relative position of the item
starting from 1, while 100 pos '' gets the relative position of the item starting from 100.
If the format is missing, the relative position of the item is formatted as numbers. The
difference between pos and opos can be seen while filtering the items in the control.
For instance, if no filter is applied to the control, the pos and opos gets the same
result. Instead, if the filter is applied, the opos gets the position of the item in the list
of unfiltered items, while the pos gets the position of the item in the filtered list.
number rpos 'format' indicates the relative recursive position of the item. The recursive

position indicates the position of the parent items too. The relative position is the
position of the visible child item in the parent children collection. The number indicates
the starting position, while the format is of the following type
"delimiter|format|format|...". If the format is missing, the delimiter is . character, and
the positions are formatted as numbers. The format is applied consecutively to each
parent item, from root to item itself.

In the following screen shot the FormatColumn("Col 1") = "1 rpos ''"

In the following screen shot the FormatColumn("Col 1") = "1 rpos ':|A-Z'"

In the following screen shot the FormatColumn("Col 1") = "1 rpos '.|A-Z|'"

In the following screen shot the FormatColumn("Col 1") = "1 apos ''" and
FormatColumn("Col 2") = "'' + 1 rpos '.|A-Z|' + ' ' +
value"

number rindex 'format', number rapos 'format' and number ropos 'format' are working
similar with number rpos 'format', excepts that they gives the index, absolute position,
or the old child position.

This property/method supports predefined constants and operators/functions as described
here.

property Items.FullPath (Item as HITEM) as String

Returns the fully qualified path of the referenced item in an ExView control.

Type Description
Item as HITEM A long expression that indicates the handle of the item.
String A string expression that indicates the fully qualified path.

Use the FullPath property in order to get the fully qualified path of the referenced item. Use
PathSeparator to change the separator used by FullPath property. Use the FindPath
property to get the item's selected based on its path. The fully qualified path is the
concatenation of the text in the given cell's caption property on the column
SearchColumnIndex with the CellValue property values of all its ancestors.

property Items.GroupItem (Item as HITEM) as Long
Indicates a group item if positive, and the value specifies the index of the column that has
been grouped.

Type Description

Item as HITEM A Long expression that specifies the handle of the item
being queried

Long
A Long expression that specifies index of the column being
grouped, or a negative value if the item is a regular item,
not a grouping item.

The GroupItem method determines the index of the column that indicates the column being
grouped. In other words, the CellCaption(Item,GroupItem(Item)) gets the default caption to
be displayed for the grouping item. The Ungroup method removes all grouping items. For
instance, when a column gets grouped by, the control sorts by that column, collects the
unique values being found, and add a new item for each value found, by adding the items of
the same value as children. The (ViewItemUpdate(exAddGroupItem) event is fired for each
new item to be inserted in the Items collection during the grouping.

property Items.InnerCell ([Item as Variant], [ColIndex as Variant], [Index
as Variant]) as Variant
Retrieves the inner cell.

Type Description

Item as Variant
A long expression that indicates the handle of the item
where the cell is, or 0. If the Item parameter is 0, the
ColIndex parameter must indicate the handle of the cell.

ColIndex as Variant

A long expression that indicates the index of the column
where a cell is divided, or a long expression that indicates
the handle of the cell being divided, if the Item parameter
is missing or it is zero.

Index as Variant
A long expression that indicates the index of the inner
being requested. If the Index parameter is missing or it is
zero, the InnerCell property retrieves the master cell.

Variant A long expression that indicates the handle of the inner
cell.

Use the InnerCell property to get the inner cell. The InnerCell(, , 0) property always
retrieves the same cell. The InnerCell(, , 1) retrieves the first inner cell, and so on. The
InnerCells property always retrieves a non empty value. For instance, if a cell contains only
two splitted cells, the InnerCell(, , 3), or InnerCell(, , 4), and so on, always retrievs the
last inner cell. The SplitCell method splits a cell in two cells (the newly created cell is called
inner cell). Use the CellParent property to get the parent of the inner cell. Use the CellItem
property to get the item that's the owner of the cell. Use the CellWidth property to specify
the width of the inner cell. Use the CellParent property to determine whether the cell is a
master cell or an inner cell. If the CellParent property gets 0, it means that the cell is
master, else it is inner.

method Items.InsertControlItem (Parent as HITEM, ControlID as String,
[License as Variant])

Inserts a new item of ActiveX type, and returns a handle to the newly created item.

Type Description

Parent as HITEM

A long expression that indicates the handle of the parent
item where the ActiveX will be inserted. If the argument is
missing then the InsertControlItem property inserts the
ActiveX control as a root item. If the Parent property is
referring a locked item (ItemLocked property), the
InsertControlItem property doesn't insert a new child
ActiveX, instead insert the ActiveX control to the locked
item that's specified by the Parent property.

ControlID as String
A string expression that can be formatted as follows: a
prog ID, a CLSID, a URL, a reference to an Active
document , a fragment of HTML.

License as Variant

A string expression that indicates the runtime license key
for the component being inserted, if required. Only, the
vendor of the component you are going to use is able to
give you such of runtime license, so please contact the
control's vendor for such of key. Your development license
key is not compatible with the runtime license key, so it
can't be used here.

Return Description

HITEM A long expression that indicates the item's handle that
indicates the newly created item.

The control supports ActiveX hosting, so you can insert any ActiveX component as a child
item of the control. If you are using the /NET assembly you can use the InsertObjectItem
property to insert a /NET control as a child item of the control. The InsertControlItem
property creates the specified ActiveX control and hosts to a new child item of the control,
while the InsertObjectItem property hosts the already created object to a new child item of
the control.

method Items.InsertItem ([Parent as HITEM], [UserData as Variant], [Value
as Variant])

Inserts a new item, and returns a handle to the newly created item.

Type Description

Parent as HITEM A long expression that indicates the item's handle that
indicates the parent item where the newly item is inserted

UserData as Variant A Variant expression that indicates the item's extra data.
Use the ItemData property to retrieve later this value.

Value as Variant
A Variant expression that indicates the cell's value on the
first column, or a safe array that holds values for each
column.

Return Description
HITEM Retrieves the handle of the newly created item.

Use the InsertItem property to add a new child to an item. The InsertItem property fires the
ViewItemUpdate(exAddItem) event. You can use the InsertItem(,,"Root") or
AddItem("Root") to add a root item. An item that has no parent is a root item. To insert an
ActiveX control, use the InsertControlItem property of the Items property. Use the
CellValue property to specify the values for cells in the second, third columns, and so
on. Use the CellValueFormat property to specify whether the value contains HTML format or
computed fields. Use the LockedItemCount property to lock or unlock items to the top or
bottom side of the control. Use the MergeCells method to combine one or more cells in a
single cell. Use the SplitCell property to split a cell. Use the ConditionalFormats method to
apply formats to a cell or range of cells, and have that formatting change depending on the
value of the cell or the value of a formula.

method Items.InsertObjectItem (Parent as HITEM, [UserData as Variant],
[Obj as Variant])
Inserts a new item that hosts the giving object, and returns a handle to the newly created
item.

Type Description

Parent as HITEM

A long expression that indicates the handle of the parent
item where the object will be inserted. If the argument is
missing then the InsertObjectItem property inserts the
object as a root item. If the Parent property is referring a
locked item (ItemLocked property), the InsertObjectItem
property doesn't insert a new child, instead places the
object to the locked item that's specified by the Parent
property.

UserData as Variant

A VARIANT expression being specified at creating time,
which can be accessed during the
ViewItemUpdate(exAddItem) event. The ItemData
property indicates the extra data associated with any item.
The ItemData property is initalized with the value of the
UserData parameter.

Obj as Variant

A object being hosted. The most common type is
System.Windows.Forms.Control from the /NET
framework. Generally, the Obj could be any control that
can be placed to a form or dialog and it is visible at
runtime. The Obj can not be a windowless control (a
control that does not require a window, such a line or
circle). The Obj parameter could be also an ActiveX
control (that has already being placed in the form/dialog)
in this case, the Obj should be the result of the property
Object() (VB6, VFP). GetOcx() property. Finally, the Obj
parameter could be of long type (numeric) in which case
it should refer the handle of a window that follows to be
hosted in the newly created item. The handle of the
window can be obtained as m_hWnd member of MFC
classes, hWnd or Handle property in the /NET framework.
After creating the host, the ItemObject property can be
used to retrieve the originally object (Obj parameter).

Return Description

HITEM A long expression that indicates the item's handle that
indicates the newly created item.

The control supports /NET Control hosting, so you can insert any /NET component as a
child item of the control. This property is provided for the /NET assembly, but it is available
for the /COM environment too. The InsertObjectItem property hosts the already created
object to a new child item of the control while the InsertControlItem property creates the
specified ActiveX control and hosts to a new child item of the control. So, the difference
between the InsertObjectItem and InsertControlItem is that the InsertObjectItem does not
create the object, while the InsertControlItem creates the specified control. If you are using
the /NET assembly, the Obj should be the object to be inserted (usually of
System.Windows.Forms.Control type), while for the /COM environment, the Obj should be
the ActiveX control being already placed to a form, or a long expression that specifies the
handle of the window to be hosted in a new child item of the control.

The ItemHeight property specifes the height of the item, and so the height of the
hosted object.
The ItemWidth property specifies the width of hosted object, or the position/column in
the item where the object is displayed.
The ItemAllowSizing property indicates whether the user can resize the item at runtime,
and so the object being hosted.
The ItemObject property retrieves the originally object if the item was previously
created using the InsertObjectItem property, or the created ActiveX control if using the
InsertControlItem property.

property Items.IsItemLocked (Item as HITEM) as Boolean
Returns a value that indicates whether the item is locked or unlocked.

Type Description
Item as HITEM A long expression that indicates the handle of the item.

Boolean A boolean expression that indicates whether the item is
locked or unlocked.

Use the IsItemLocked property to check whether an item is locked or unlocked. A locked
item is always displayed on the top or bottom side of the control no matter if the control's
list is scrolled up or down. Use the LockedItemCount property to add or remove items
fixed/locked to the top or bottom side of the control. Use the LockedItem property to
access a locked item by its position. Use the ShowLockedItems property to show or hide
the locked items.

property Items.IsItemVisible (Item as HITEM, [Partially as Variant]) as
Boolean

Checks if the specific item fits the control's client area.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Partially as Variant
A boolean expression that indicates whether the item is
partially visible or not. If the Partially parameter is missing,
the True value is used.

Boolean A boolean expression that indicates whether the item fits
the client area.

To make sure that an item fits the client area call EnsureVisibleItem method. Use the
FirstVisibleItem, NextVisibleItem and IsItemVisible properties to get the items that fit the
client area. Use the NextVisibleItem property to get the next visible item. Use the
IsVisibleItem property to check whether an item fits the control's client area.

property Items.ItemAllowSizing(Item as HITEM) as Boolean
Retrieves or sets a value that indicates whether a user can resize the item at run-time.

Type Description

Item as HITEM A HITEM expression that indicates the handle of the item
that can be resized.

Boolean A Boolean expression that specifies whether the user can
resize the item at run-time.

By default, the user can resize the item at run-time using mouse movements. Use the
ItemAllowSizing property to specify whether a user can resize the item at run-time. Use the
ItemsAllowSizing property to specify whether all items are resizable or not. Use the
ItemHeight property to specify the height of the item. An item is resizable if the
ItemAllowSizing property is True, or if the ItemsAllowSizing property is True (that means all
items are resizable), and the ItemAllowSizing property is not False. For instance, if your
application requires all items being resizable but only few of them being not resizable, you
can have the ItemsAllowSizing property on True, and for those items that are not resizable,
you can call the ItemAllowSizing property on False. The user can resize an item by moving
the mouse between two items, so the vertical split cursor shows up, click and drag the
mouse to the new position. Use the CellSingleLine property to specify whether the cell
displays its caption using multiple lines. The ScrollBySingleLine property is automatically set
on True, as soon as the user resizes an item.

property Items.ItemAppearance(Item as HITEM) as AppearanceEnum
Specifies the item's appearance while it's of ActiveX type.

Type Description

Item as HITEM A long expression that indicates the item's handle that was
previously created by InsertControlItem property.

AppearanceEnum An AppearanceEnum value that indicates the item's
appearance.

Use the ItemAppearance property to specify the item's appearance if the item is of ActiveX
type. Use the InsertControlItem property to insert an ActiveX control inside. Use the
ItemObject property to access the object being created by the InsertControlItem property.
Use the ItemHeight property to specify the height of the item when containing an ActiveX
control.

property Items.ItemBackColor(Item as HITEM) as Color

Retrieves or sets a background color for a specific item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Color A color expression that indicates the item's background
color.

Use the CellBackColor property to change the cell's background color. To change the
background color of the entire control you can call BackColor property of the control. Use
the ClearItemBackColor property to clear the item's background color, after setting using
the ItemBackColor property. Use the SelBackColor property to change appearance for the
selected items. The HTML colors are not applied if the item is selected. Use the
SelectedItem property to specify whether an item is selected or unselected. Use the Add
method to add new skins to the control. You can define new skins and to use it to mark
some items, like in the following samples. Use the ConditionalFormats method to apply
formats to a cell or range of cells, and have that formatting change depending on the value
of the cell or the value of a formula.

property Items.ItemBold(Item as HITEM) as Boolean

Retrieves or sets a value that indicates whether the item is bolded.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Boolean A boolean expression that indicates whether the item is
bolded.

Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply different font
attributes to the item. Use the CellItalic, CellUnderline, CellBold or CellStrikeOut property to
apply different font attributes to the cell. Use the CellValueFormat property to specify an
HTML caption. Use the ConditionalFormats method to apply formats to a cell or range of
cells, and have that formatting change depending on the value of the cell or the value of a
formula.

property Items.ItemByIndex (Index as Long) as HITEM

Retrieves the handle of the item given its index in the Items collection..

Type Description
Index as Long A long value that indicates the item's index.
HITEM A long expression that indicates the item's handle

Use the ItemByIndex to get the index of an item. Use the ItemCount property to count the
items in the control. the Use the ItemPosition property to get the item's position. Use the
ItemToIndex property to get the index of giving item. For instance, The ItemByIndex
property is the default property for Items object, so the following statements are
equivalents: View1.Items(0), View1.Items.ItemByIndex(0).

property Items.ItemCell (Item as HITEM, ColIndex as Variant) as HCELL

Retrieves the cell's handle given the item and the column.

Type Description
Item as HITEM A long expression that indicates the item's handle.

ColIndex as Variant
A long expression that indicates the the column's index, a
string expression that indicates the column's caption or the
column's key.

HCELL A long value that indicates the cell's handle.

The ItemCell property retrieves the handle of the cell that belongs to the item on the
specified column. The InnerCell properties always returns the handle to the master cells (
master cell is a cell where the splitting starts). Use the SplitCell property to split a cell into
multiple cells. Use the MergeCells property to merge multiple cells.

property Items.ItemChild (Item as HITEM) as HITEM

Retrieves the first child item of a specified item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

HITEM A long expression that indicates the item's handle that
indicates the first child item of the Item

If the ItemChild property gets 0, the item has no child items. Use the ItemChild property to
get the first child of an item. The NextVisibleItem or NextSiblingItem gets the next visible,
sibling item. Use the ChildCount property to count the number of child items. Use the
ItemHasChildren property to built a virtual grid. A virtual grid loads items when the user
expands an item. Use the ItemParent property to retrieve the handle of the parent item. The
control displays a +/- sign to parent items, if the HasButtons property is not zero, the
ItemChild property is not empty, or the ItemHasChildren property is True.

property Items.ItemControlID (Item as HITEM) as String

Retrieves the item's control identifier that was used by InsertControlItem property.

Type Description
Item as HITEM A long expression that indicates the item's handle.

String
A string expression that indicates the control identifier
used by InsertControlItem property to create an item that
hosts an ActiveX control.

The ItemControlID property retrieves the control identifier used by the InsertControlItem
property. If the item was created using AddItem or InsertItem properties the ItemControlID
property retrieves an empty string. For instance, the ItemControlID property can be used to
check if an item contains an ActiveX control or not.

property Items.ItemCount as Long

Retrieves the number of items.

Type Description

Long A long value that indicates the number of items into Items
collection

The ItemCount property counts the items in the control. Use the ItemByIndex property to
access an item giving its index. Use the AddItem, InsertItem, InsertControlItem,
DataSource property to add new items to the control. Use ChildCount to get the number of
child items.

property Items.ItemData(Item as HITEM) as Variant

Retrieves or sets the extra data for a specific item.

Type Description
Item as HITEM A long expression that indicates the handle of the item.
Variant A variant value that indicates the item's extra data.

Use the ItemData property to assign an extra value to an item. Use CellData property to
associate an extra data with a cell. The ItemData and CellData are of Variant type, so you
will be able to save here what ever you want: numbers, objects, strings, and so on. The
user data is only for user use. The control doesn't use this value. Use the Data property to
assign an extra data to a column.

property Items.ItemDivider(Item as HITEM) as Long
Specifies whether the item acts like a divider or normal item.

Type Description
Item as HITEM A long expression that indicates the item's handle.
Long A long expression that indicates the column's index.

A divider item uses the item's client area to display a single cell. You can use the
ItemDivider property to separate the items, display groups of items or display total or
subtotals fields. The ItemDivider property specifies the index of the cell being displayed in
the item's client area. In other words, the divider item merges the item cells into a single
cell. The CellHAlignment property specifies the horizontal alignment for the cell's content.
Use the ItemDividerLine property to define the line that underlines the divider item. Use the
LockedItemCount property to lock items on the top or bottom side of the control. Use the
MergeCells method to combine two or multiple cells in a single cell. Use the SelectableItem
property to specify the user can select an item. A divider item has sense for a control with
multiple columns. The SortableItem property specifies whether the item keeps its position
after sorting.

property Items.ItemDividerLine(Item as HITEM) as DividerLineEnum
Defines the type of line in the divider item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

DividerLineEnum A DividerLineEnum expression that indicates the type of
the line in the divider item.

By default, the ItemDividerLine property is SingleLine. The ItemDividerLine property
specifies the type of line that underlines a divider item. Use the ItemDivider property to
define a divider item. Use the ItemDividerLine and ItemDividerAlignment properties to define
the style of the line into the divider item. Use the CellMerge property to merge two or more
cells.

property Items.ItemDividerLineAlignment(Item as HITEM) as
DividerAlignmentEnum
Specifies the alignment of the line in the divider item.

Type Description
Item as HITEM A long expression that indicates the item's handle

DividerAlignmentEnum A DividerAlignmentEnum expression that specifies the
line's alignment.

By default, the ItemDividerLineAlignment property is DividerBottom. The Use the
ItemDividerLine and ItemDividerLineAlignment properties to define the style of the line into a
divider item. Use the ItemDivider property to define a divider item.

property Items.ItemFiltered (Item as HITEM) as Boolean
Checks whether the item is included in the control's filter.

Type Description
Item as HITEM A long expression that indicates the handle of the item

Boolean A boolean expression that indicates whether the item is
filtered.

Use the ItemFiltered property to check whether an item is included in the control's filter. Use
the FilterType property to specify the type of filter that's applied to a column. The
ApplyFilter method should be called to update the control's content after changing the Filter
or FilterType property. The ItemCount property counts the items in the control's list. Use the
ItemByIndex property to access an item giving its index.

property Items.ItemFont (Item as HITEM) as IFontDisp
Retrieves or sets the item's font.

Type Description
Item as HITEM A long expression that indicates the item's handle.
IFontDisp A font object being used.

By default, the ItemFont property is nothing. If the ItemFont property is nothing, the item
uses the control's font. Use the ItemFont property to define a different font for the item. Use
the CellFont and ItemFont properties to specify different fonts for cells or items. Use the
CellBold, CellItalic, CellUnderline, CellStrikeout, ItemBold, ItemUnderline, ItemStrikeout,
ItemItalic or CellValueFormat to specify different font attributes. Use the ItemHeight
property to specify the height of the item. Use the Refresh method to refresh the control's
content on the fly. Use the BeginUpdate and EndUpdate methods if you are doing multiple
changes, so no need for an update each time a change is done. Use the ItemHeight
property to specify the height of the item.

property Items.ItemForeColor(Item as HITEM) as Color

Retrieves or sets a foreground color for a specific item.

Type Description
Item as HITEM A long expression that indicates the item's handle.
Color A color expression that defines the item's foreground color

Use the CellForeColor property to change the item's foreground color. Use the ForeColor
property to change the control's foreground color. Use the ClearItemForeColor property to
clear the item's foreground color. Use the ConditionalFormats method to apply formats to a
cell or range of cells, and have that formatting change depending on the value of the cell or
the value of a formula.

property Items.ItemHasChildren (Item as HITEM) as Boolean

Adds an expand button to left side of the item even if the item has no child items.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Boolean
A boolean expression that indicates whether the control
adds an expand button to the left side of the item even if
the item has no child items.

By default, the ItemHasChidren property is False. Use the ItemHasChildren property to
build a virtual grid. Use the ViewItemStateStartChanging(exExpandItem) event to add new
child items to the expanded item. Use the ItemChild property to get the first child item, if
exists. Use the ItemChild or ChildCount property to determine whether an item contains
child items. The control displays a +/- sign to parent items, if the HasButtons property is not
empty, the ItemChild property is not empty, or the ItemHasChildren property is True. Use
the InsertItem method to insert a new child item. Use the CellData or ItemData property to
assign an extra value to a cell or to an item.

property Items.ItemHeight(Item as HITEM) as Long

Retrieves or sets the item's height.

Type Description
Item as HITEM A long expression that indicates the handle of the item.
Long A long value that indicates the item's height.

To change the default height of the item before inserting it into the items collection you can
call DefaultItemHeight property. The control supports items with different heights. When an
item hosts an ActiveX control (was previously created by the InsertControlItem property),
the ItemHeight property changes the height of contained ActiveX control too. If the
CellSingleLine property is False, the ItemHeight property has no effect. The
Column.Def(exCellPaddingTop) and Column.Def(exCellPaddingBottom) defines the
vertical padding. Use the ItemMaxHeight property to specify the maximum height of the
item when its height is variable. Use the CellVAlignment property to align vertically a cell.
Use the ScrollBySingleLine property when using items with different heights. Use the
SelectableItem property to specify whether the user can select an item. For instance, in
order to hide an item you can set the ItemHeight property on 0, and SelectableItem
property on False. Use the ItemAllowSizing property to specify whether the user can resize
the item at runtime.

property Items.ItemItalic(Item as HITEM) as Boolean

Retrieves or sets a value that indicates whether the item should appear in italic.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Boolean A boolean expression that indicates whether the item's
font attributes include Italic attribute.

Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply different font
attributes to the item. Use the CellItalic, CellUnderline, CellBold or CellStrikeOut property to
apply different font attributes to the cell. Use the CellValueFormat property to specify an
HTML caption. Use the ConditionalFormats method to apply formats to a cell or range of
cells, and have that formatting change depending on the value of the cell or the value of a
formula.

property Items.ItemMaxHeight(Item as HITEM) as Long
Retrieves or sets a value that indicates the maximum height when the item's height is
variable.

Type Description

Item as HITEM

A long expression that indicates the handle of the item. If
the Item is 0, setting the ItemMaxHeight property changes
the maximum-height for all items. For instance, the
ItemMaxHeight(0) = 24, changes the maximum height for
all items to be 24 pixels wide.

Long A long value that indicates the maximum height when the
item's height is variable.

By default, the ItemMaxHeight property is -1. The ItemMaxHeight property has effect only if
it is greater than 0, and item contains cells with CellSingleLine property on False. Use the
ItemHeight property to get the item's height. Use the CellVAlignment property to align
vertically a cell. Use the DefaultItemHeight property to specify the default height for all
items before loading items.

property Items.ItemMinHeight(Item as HITEM) as Long
Retrieves or sets a value that indicates the minimum height when the item's height is sizing.

Type Description

Item as HITEM

A long expression that indicates the handle of the item. If
the Item is 0, setting the ItemMinHeight property changes
the minimum-height for all items. For instance, the
ItemMinHeight(0) = 24, changes the minimum height for all
items to be 24 pixels wide.

Long A long value that indicates the minimum height when the
item's height is variable.

By default, the ItemMinHeight property is -1. The ItemMinHeight property has effect only if
the item contains cells with CellSingleLine property on False. The ItemMaxHeight property
specifies the maximum height of the item while resizing. The CellSingleLine property
specifies whether a cell displays its caption using multiple lines. The ItemHeight property
has no effect, if the CellSingleLine property is False. If the CellSingleLine property is False,
you can specify the minimum height for the item using the ItemMinHeight property. Use the
ItemAllowSizing property to specify whether the user can resize the item at runtime.

property Items.ItemObject (Item as HITEM) as Variant

Retrieves the item's ActiveX object, if the item was previously created by InsertControlItem
property, or the original object being used when calling the InsertObjectItem property.

Type Description

Item as HITEM
A long expression that indicates the item's handle that was
previously created by InsertControlItem or
InsertObjectItem property.

Variant An object that represents the ActiveX hosted by the item

The ItemObject retrieves the ActiveX object being created by the InsertControlItem method,
or the object being hosted when using the InsertObjectItem property. Use the ItemControlID
property to retrieve the control's identifier. Use the ItemHeight property to specify the item's
height. If the item hosts an ActiveX control, the ItemHeight property specifies the height of
the ActiveX control also.

property Items.ItemParent (Item as HITEM) as HITEM

Returns the handle of the item's parent item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

HITEM A long expression that indicates the item's handle that
indicates the parent item.

Use the ItemParent property to retrieve the parent item. Use the InsertItem property to
insert child items. Use the InsertControlItem property to insert ActiveX controls. The
SetParent method changes the item's parent at runtime. To verify if an item can be parent
for another item you can call AcceptSetParent property. If the item has no parent the
ItemParent property retrieves 0. If the ItemParent gets 0 for an item, than the item is called
root. The control is able to handle more root items. To get the collection of root items you
can use RootCount and RootItem properties. Use the ItemChild property to retrieve the first
child item.

property Items.ItemPosition(Item as HITEM) as Long
Retrieves or sets a value that indicates the item's position in the children list.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Long A long expression that indicates the item's position in the
children list.

The ItemPosition property gets the item's position in the children items list. When the control
sorts a column the position for each item can be changed. Use the handle of the item to
identify an item. Use the SortChildren method to sort the child items. Use the SortOrder
property to sort a column. Use the NextVisibleItem property to enumerate items as they are
displayed. The SortableItem property specifies whether the item keeps its position after
sorting.

property Items.ItemStrikeOut(Item as HITEM) as Boolean

Retrieves or sets the StrikeOut property of the Font object used to paint the item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Boolean A boolean expression that indicates whether the item uses
strikeout font attribute to paint it.

If the ItemStrikeOut property is True, the cell's font is displayed with a horizontal line
through it. Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply
different font attributes to the item. Use the CellItalic, CellUnderline, CellBold or
CellStrikeOut property to apply different font attributes to the cell. Use the CellValueFormat
property to specify an HTML caption. Use the ConditionalFormats method to apply formats
to a cell or range of cells, and have that formatting change depending on the value of the
cell or the value of a formula.

property Items.ItemToIndex (Item as HITEM) as Long
Retrieves the index of an item in the Items collection, given its handle.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Long A long expression that indicates the index of Item in Items
collection.

Use the ItemToIndex property to get the item's index in the Items collection. Use
ItemPosition property to change the item's position. Use the ItemByIndex property to get an
item giving its index. The ItemCount property counts the items in the control. The ChildCount
property counts the child items.

property Items.ItemUnderline(Item as HITEM) as Boolean

Retrieves or sets the Underline property of the Font object used to paint the item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

Boolean
A boolean expression that indicates if the item is
underlined or not. True if the item is underlined, False, if
the item is not underlined.

Use ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to apply different font
attributes to the item. Use the CellItalic, CellUnderline, CellBold or CellStrikeOut property to
apply different font attributes to the cell. Use the CellValueFormat property to specify an
HTML caption. Use the ConditionalFormats method to apply formats to a cell or range of
cells, and have that formatting change depending on the value of the cell or the value of a
formula.

property Items.ItemWidth(Item as HITEM) as Long
Retrieves or sets a value that indicates the item's width while it contains an ActiveX control.

Type Description

Item as HITEM A long expression that indicates the item's handle that was
previously created using InsertControlItem property.

Long A long expression that indicates the item's width.

By default, the ItemWidth property is -1. If the ItemWidth property is -1, the control resizes
the ActiveX control to fit the control's client area. Use the ItemHeight property to specify the
item's height. The property has effect only if the item contains an ActiveX control. Use the
InsertControlItem property to insert ActiveX controls. Use the ItemObject property to
retrieve the ActiveX object that's hosted by an item. Use the CellWidth property to specify
the width of the cell, when it contains inner cells. Use the SplitCell property to split a cell.

The ItemWidth property is interpreted like follows:

If the ItemWidth property is greater than zero, the ItemWidth property indicates the
width in pixels of the ActiveX control. The TreeColumnIndex property indicates the
column where the ActiveX control is shown. For instance, ItemWidth = 64, indicates
that the width of the inside ActiveX control is 64 pixels.
If the ItemWidth property is zero, the ActiveX control uses the full item area to display
the inside ActiveX control.
If the ItemWidth property is -1, the TreeColumnIndex property indicates the column
where the ActiveX control is shown and the inside ActiveX control is shown to the end
of the control.
If the ItemWidth property is less than -32000, the formula -(ItemWidth+32000)
indicates the index of the column where the inside ActiveX is displayed. For instance,
-32000 indicates that the cell in the first column displays the inside ActiveX control,
-32001 indicates that the cell in the second column displays the inside ActiveX control,
-32002 indicates that the cell in the third column displays the inside ActiveX control, and
so on.
If the ItemWidth property is -InnerCell or ItemCell, the ItemWidth property indicates the
handle of the cell that shows the inside ActiveX. This option should be used when you
need to display the ActiveX control in an inner cell. Use the SplitCell property to create
inner cells, to divide a cell or to split a cell. For instance, .ItemWidth(.FirstVisibleItem)
= -.InnerCell(.FirstVisibleItem, 1, 1) indicates that the inside ActiveX control is shown in
the second inner cell in the second column, in the first visible item. Use the CellWidth
property to specify the width of the inner cell.

property Items.ItemWindowHost (Item as HITEM) as Long

Retrieves the window's handle that hosts an ActiveX control when the item was created
using InsertControlItem property.

Type Description

Item as HITEM A long expression that indicates the item's handle that was
previously created by InsertControlItem property.

Long A long value that indicates the window handle that hosts
the item's ActiveX.

The ItemWindowHost property retrieves the handle of the window that's the container for
the item's ActiveX control. Use the InserControlItem method to insert an ActiveX control.
Use the ItemObject property to access the ActiveX properties and methods. Use the hWnd
property to get the handle of the control's window. The Microsoft Windows operating
environment identifies each form and control in an application by assigning it a handle, or
hWnd. The hWnd property is used with Windows API calls. Many Windows operating
environment functions require the hWnd of the active window as an argument.

property Items.ItemWindowHostCreateStyle(Item as HITEM) as Long

Retrieves or sets a value that indicates a combination of window styles used to create the
ActiveX window host.

Type Description

Item as HITEM A long expression that indicates the item's handle that was
previously created by InsertControlItem property.

Long A long value that indicates the container window's style.

The ItemWindowHostCreateStyle property specifies the window styles of the ActiveX's
container window, when a new ActiveX control is inserted using the InsertControlItem
method. The ItemWindowHostCreateStyle property has no effect for non ActiveX items.
The ItemWindowHostCreateStyle property must be called during the
ViewItemUpdate(exAddItem) event, like in the following samples. Generally, the
ItemWindowHostCreateStyle property is useful to include WS_HSCROLL and
WS_VSCROLL styles for a IWebBrowser control (WWW browser control), to include
scrollbars in the browsed web page.

property Items.LastVisibleItem ([Partially as Variant]) as HITEM

Retrieves the handle of the last visible item.

Type Description

Partially as Variant
A boolean expression that indicates whether the item is
partially visible. By default, the Partially parameter is
False.

HITEM A long expression that indicates the item's handle that
indicates the last visible item.

The LastVisibleItem property retrieves the handle for the last visible item. To get the first
visible item use FirstVisibleItem property. Use the FirstVisibleItem, NextVisibleItem and
IsItemVisible properties to get the items that fit the client area. Use the NextVisibleItem
property to get the next visible item. Use the IsVisibleItem property to check whether an
item fits the control's client area. The LastVisibleItem(False) property gets the handle of the
last visible item that's not a partial item. The LastVisibleItem(True) property gets the handle
of the last visible item no matter if it is partially visible or not.

property Items.LockedItem (Alignment as VAlignmentEnum, Index as
Long) as HITEM
Retrieves the handle of the locked item.

Type Description

Alignment as
VAlignmentEnum

A VAlignmentEnum expression that indicates whether the
locked item requested is on the top or bottom side of the
control.

Index as Long A long expression that indicates the position of item being
requested.

HITEM A long expression that indicates the handle of the locked
item

property Items.LockedItemCount(Alignment as VAlignmentEnum) as
Long
Specifies the number of items fixed on the top or bottom side of the control.

Type Description
Alignment as
VAlignmentEnum

A VAlignmentEnum expression that specifies the top or
bottom side of the control.

Long A long expression that indicates the number of items
locked to the top or bottom side of the control.

A locked or fixed item is always displayed on the top or bottom side of the control no matter
if the control's list is scrolled up or down. Use the LockedItemCount property to add or
remove items fixed/locked to the top or bottom side of the control. Use the LockedItem
property to access a locked item by its position. Use the ShowLockedItems property to
show or hide the locked items. Use the CellValue property to specify the caption for a cell.
Use the CountLockedColumns property to lock or unlock columns in the control. Use the
ItemBackColor property to specify the item's background color. Use the ItemDivider
property to merge the cells in the same item. Use the MergeCells method to combine one
or more cells in a single cell.

property Items.MatchItemCount as Long
Retrieves the number of items that match the filter.

Type Description

Long
A long expression that specifies the number of matching
items in the control. The value could be a positive value if
no filter is applied, or negative while filter is on.

The MatchItemCount property counts the number of items that matches the current filter
criteria. At runtime, the MatchItemCount property is a positive integer if no filter is applied,
and negative if a filter is applied. If positive, it indicates the number of items within the
control (ItemCount property). If negative, a filter is applied, and the absolute value minus
one, indicates the number of matching items after filter is applied. A matching item includes
its parent items, if the control's FilterInclude property allows including child items.

The MatchItemCount property returns a value as explained bellow:

0, the control displays/contains no items, and no filter is applied to any column
-1, the control displays no items, and there is a filter applied (no match found)
positive number, indicates the number of items within the control (ItemCount property)
negative number, the absolute value minus 1, indicates the number of items that
matches the current filter (match found)

method Items.MergeCells ([Cell1 as Variant], [Cell2 as Variant], [Options
as Variant])
Merges a list of cells.

Type Description

Cell1 as Variant

A long expression that indicates the handle of the cell
being merged, or a safe array that holds a collection of
handles for the cells being merged. Use the ItemCell
property to retrieves the handle of the cell. The first cell
(in the list, if exists) specifies the cell being displayed in
the new larger cell.

Cell2 as Variant

A long expression that indicates the handle of the cell
being merged, or a safe array that holds a collection of
handles for the cells being merged. Use the ItemCell
property to retrieves the handle of the cell. The first cell in
the list specifies the cell being displayed in the new larger
cell.

Options as Variant Reserved.

The MergeCells method combines two or more cells into one cell. The data in the first
specified cell is displayed in the new larger cell. All the other cells' data is not lost. Use the
CellMerge property to merge or unmerge a cell with another cell in the same item. Use the
ItemDivider property to display a single cell in the entire item. Use the UnmergeCells
method to unmerge the merged cells. Use the CellValue property to specify the cell's value.
Use the ItemCell property to retrieves the handle of the cell. Use the BeginMethod and
EndUpdate methods to maintain performance, when merging multiple cells in the same time.
The MergeCells methods creates a list of cells from Cell1 and Cell2 parameters that need
to be merged, and the first cell in the list specifies the displayed cell in the merged cell. Use
the SplitCell property to split a cell.

property Items.NextSiblingItem (Item as HITEM) as HITEM

Retrieves the next sibling of the item in the parent's child list.

Type Description
Item as HITEM A long expression that indicates the item's handle.

HITEM A long expression that indicates the next sibling item's
handle.

The NextSiblingItem property retrieves the next sibling of the item in the parent's child list.
Use ItemChild and NextSiblingItem properties to enumerate the collection of child
items. Use the FirstVisibleItem property to get the first visible item in the control's client
area. The NextVisibleItem property retrieves the handle of next visible item.

property Items.NextVisibleItem (Item as HITEM) as HITEM

Retrieves the handle of next visible item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

HITEM A long expression that indicates the handle of the next
visible item.

Use the NextVisibleItem property to access the visible items. The NextVisibleItem property
retrieves 0 if there are no more visible items. Use the FirstVisibleItem property to get the
first visible item in the control's client area. Use the RootItem property to get the first visible
item in the list. The NextSiblingItem property retrieves the next sibling of the item in the
parent's child list. Use the IsItemVisible property to check whether an item fits the control's
client area. Use the ItemPosition property to change the position of the item. Use the
SortOrder property to sort a column.

property Items.PathSeparator as String

Returns or sets the delimiter character used for the path returned by the FullPath and
FindPath properties.

Type Description

String
A string expression that indicates the delimiter character
used for the path returned by the FullPath and FindPath
properties.

By default the PathSeparator is "\". The PathSeparator property is used by properties like
FullPath and FindPath.

property Items.PrevSiblingItem (Item as HITEM) as HITEM

Retrieves the previous sibling of the item in the parent's child list.

Type Description
Item as HITEM A long expression that indicates the item's handle.

HITEM A long expression that indicates the handle of the previous
sibling item.

The PrevSiblingItem retrieves 0 if there are no more previous sibling items. The
NextSiblingItem property retrieves the next sibling of the item in the parent's child list. Use
the FirstVisibleItem property to retrieve the first visible item. Use the ItemParent property to
retrieve the parent of the item. Use the RootItem property to get the first visible item in the
list.

property Items.PrevVisibleItem (Item as HITEM) as HITEM

Retrieves the handle of previous visible item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

HITEM A long expression that indicates the handle of the previous
visible item.

The PrevVisibleItem property retrieves 0 if there are no previous visible items. The
NextVisibleItem property retrieves the next visible item. Use the FirstVisibleItem property to
retrieve the first visible item. Use the ItemParent property to retrieve the parent of the item.
Use the RootItem property to get the first visible item in the list.

method Items.RemoveAllItems ()

Removes all items from the control.

Type Description

The RemoveAllItems method remove all items in the control. The Clear method of Columns
object clears the Items collection too. Use the RemoveItem method to remove an item
from the control.

method Items.RemoveItem (Item as HITEM)

Removes the given item.

Type Description

Item as HITEM A long expression that indicates the item's handle being
removed.

The RemoveItem method removes an item. The RemoveItem method does not remove the
item, if it contains child items. Use the RemoveAllItems method to remove all items in the
control. Use the BeginUpdate and EndUpdate methods to maintain performance while
removing the items. The RemoveItem method can't remove an item that's locked. Instead
you can use the LockedItemCount property to add or remove locked items. Use the
IsItemLocked property to check whether an item is locked. The RemoveSelection method
removes the selected items (including the descendents).

method Items.RemoveSelection ()
Removes the selected items (including the descendents).

Type Description

The RemoveSelection method removes the selected items (including the descendents). The
RemoveItem method removes a specific item. The UnselectAll method unselects all items in
the list.

property Items.RootCount as Long

Retrieves the number of root objects in the Items collection.

Type Description

Long A long value that indicates the count of root items into
Items collection.

A root item is an item that has no parent (ItemParent() = 0). Use the RootItem property of
the Items object to enumerates the root items. Use the AddItem to add root items to the
control. Use the InsertItem method to insert child items.

property Items.RootItem ([Position as Long]) as HITEM

Retrieves the handle of the root item given its index in the root items collection.

Type Description
Position as Long A long value that indicates the index of the root item.

HITEM A long expression that indicates the handle of the root
item.

A root item is an item that has no parent (ItemParent() = 0). Use the RootCount property of
to count the root items. Use the AddItem to add root items to the control. Use the
InsertItem method to insert child items. Use the FirstVisibleItem property to get the first
visible item in the control's client area. The NextVisibleItem property retrieves the handle of
next visible item. The NextSiblingItem property retrieves the next sibling of the item in the
parent's child list. Use the RootItem property to get the first visible item in the list. If you
need to enumerate the items as they are added, you may use the ItemByIndex property.

property Items.SelectableItem(Item as HITEM) as Boolean
Specifies whether the user can select the item.

Type Description

Item as HITEM A long expression that indicates the handle of the item
being selectable.

Boolean A boolean expression that specifies whether the item is
selectable.

By default, all items are selectable, excepts the locked items that are not selectable. A
selectable item is an item that user can select using the keys or the mouse. The
SelectableItem property specifies whether the user can select an item. The SelectableItem
property doesn't change the item's appearance. The LockedItemCount property specifies
the number of locked items to the top or bottom side of the control. Use the ItemDivider
property to define a divider item. Use the ItemForeColor property to specify the item's
foreground color. Use the ItemBackColor property to specify the item's background color.
Use the ItemFont, ItemBold, ItemItalic, ItemUnderline or ItemStrikeOut property to assign a
different font to the item. Use the EnableItem property to disable an item. A disabled item
looks grayed, but it is selectable. For instance, the user can't change the check box state in
a disabled item. Use the SelectItem property to select an item. The ItemFromPoint property
gets the item from point. For instance, if the user clicks a non selectable item the
ViewStartChanging(exSelectionChange) / ViewEndChanging(exSelectionChange) event is
not fired. A non selectable item is not focusable as well. It means that if the incremental
searching is on, the non selectable items are ignored. Use the SelectCount property to get
the number of selected items. Use the SelForeColor and SelBackColor properties to
customize the colors for selected items. Use the ItemHeight property and SelectableItem
property to hide an item. The SortableItem property specifies whether the item keeps its
position after sorting.

method Items.SelectAll ()
Selects all items.

Type Description

Use the SelectAll method to select all visible items in the tree. The SelectAll method has
effect only if the SingleSel property is False, if the control supports multiple items selection.
Use the UnselectAll method to unselect all items in the list. Use the SelectItem property to
select or unselect a specified item. Use the SelectedItem property to retrieve a value that
indicates whether the item is selected or unselected. Use the SelectCount property to
retrieve the number of selected items. The SelectPos property selects/unselects items by
position. The Selection property selects/unselects items by index.

property Items.SelectCount as Long

Counts the number of items that are selected in the control.

Type Description

Long A long expression that identifies the number of selected
items.

The SelectCount property counts the selected items in the control. The control supports
single or multiple selection. Use SingleSel property of the control to enable multiple
selection. Use the SelectedItem property to retrieve the handle of the selected item(s). Use
the SelBackColor property to indicate the background color for selected items. Use the
SelForeColor property to specify the foreground color for selected items. The FocusItem
property specifies the handle of the focused item. For instance, if the control supports
single selection the FocusItem property retrieves the handle of the selected item too. Use
the FullRowSelect property to specify how the user can select the cells or items using the
mouse. Use the SelectItem property to programmatically select an item giving its handle.
The control fires the ViewStartChanging(exSelectionChange) /
ViewEndChanging(exSelectionChange) event when user changes the selection in the
control. Use the SelectableItem property to specify whether the user can select an item.

property Items.SelectedItem ([Index as Long]) as HITEM

Retrieves the selected item's handle given its index in the selected items collection.

Type Description

Index as Long Identifies the index of the selected item into selected items
collection. if it is missing, 0 is used.

HITEM A long expression that indicates the handle of the selected
item.

The SelectedItem property gets the handle of the items being selected. If the control
supports multiple selection, you can use the SelectCount property to find out how many
items are selected in the control. Use the SingleSel property to enable single or multiple
selection. If the control supports single selection only a single item can be selected at
runtime. Use the SingleSel property to specify whether the control supports single or
multiple selection. If the control supports single selection, the FocusItem and SelectedItem
property gets the handle of the selected/focused item, that's the same. Use the SelectItem
property to specify whether an item is selected or not. The control fires the
ViewStartChanging(exSelectionChange) / ViewEndChanging(exSelectionChange) event
when user changes the selection in the control. Use the SelForeColor and SelBackColor
properties to specify colors for selected items. Use the SelectableItem property to specify
whether the user can select an item.

property Items.Selection as Variant
Selects items by index.

Type Description

Variant

A long expression that indicates the index of item being
selected, if the SingleSel property is True, or a safe array
that holds a collection of index of items being selected, if
the SingleSel property is False.

The Selection property selects/unselects items by index. Use the SelectItem property to
select an item giving its handle. The ItemPosition property gives the relative position, or the
position of the item in the child items collection. Use the SelectPos property to select items
by position. The SelectPos property selects an item giving its general position.

The SingleSel property specifies whether the control supports single or multiple-selection.
Based on the SingleSel property the Selection value is:

of long type, if the SingleSel property is True (by default). For instance Selection = 0,
indicates that the control selects the item with the index 0.
a safe array of VARIANT, if the SingleSel property is False. For instance Selection =
Array(0,1), indicates that the control selects the item with the index 0 and 1.

property Items.SelectItem(Item as HITEM) as Boolean

Selects or unselects a specific item.

Type Description

Item as HITEM A long expression that indicates the item's handle being
selected.

Boolean
A boolean expression that indicates the item's state. True
if the item is selected, and False if the item is not
selected.

Use the SelectItem property to programmatically select an item. The SelectItem property
indicates whether an item is selected or not selected, giving its handle. Use the
SelectedItem property to get the selected items, giving their indexes. The control fires
ViewStartChanging(exSelectionChange) / ViewEndChanging(exSelectionChange) event
when the user changes the selection. The SelectCount property counts the selected items
in the control, when the control supports multiple selection. Use the SingleSel property to
specify whether the control supports single or multiple selection. If the SingleSel property is
True, the user can select a single item only. Use the FullRowSelect property to specify how
the user can select the cells or items using the mouse. The FocusItem property specifies
the handle of the focused item. The control can have only a single focused item. If the
control supports single selection, the FocusItem property gets the selected item too. Use
the EnsureVisibleItem property to ensure that an item is visible. Use the SelBackColor
property to indicate the background color for selected items. Use the SelForeColor
property to specify the foreground color for selected items. The SelectPos property
selects/unselects items by position. The Selection property selects/unselects items by
index.

property Items.SelectPos as Variant
Selects items by position.

Type Description

Variant

A long expression that indicates the position of item being
selected, if the SingleSel property is True, or a safe array
that holds a collection of position of items being selected,
if the SingleSel property is False.

Use the SelectPos property to select items by position. The SelectPos property selects an
item giving its general position. Use the SelectItem property to select an item giving its
handle. The ItemPosition property gives the relative position, or the position of the item in
the child items collection. The Selection property selects/unselects items by index.

The SingleSel property specifies whether the control supports single or multiple-selection.
Based on the SingleSel property the SelectPos value is:

of long type, if the SingleSel property is True (by default). For instance SelectPos =
0, indicates that the control selects the item with the position 0 (first item).
a safe array of VARIANT, if the SingleSel property is False. For instance SelectPos =
Array(0,1), indicates that the control selects the item with the position 0 and 1.

method Items.SetParent (Item as HITEM, NewParent as HITEM)

Changes the parent of the given item.

Type Description
Item as HITEM A long expression that indicates the item's handle.

NewParent as HITEM A long expression that indicates the handle of the newly
parent item.

Use the SetParent property to change the parent item at runtime. Use the InsertItem
property to insert child items. Use the InsertControlItem property to insert ActiveX controls.
Use AcceptSetParent property to verify if the the parent of an item can be changed. The
following VB sample changes the parent item of the first item: View1.Items.SetParent
View1.Items(0), View1.Items(1). Use the ItemParent property to retrieve the parent of the
item.

property Items.SortableItem(Item as HITEM) as Boolean
Specifies whether the item is sortable.

Type Description

Item as HITEM A long expression that indicates the handle of the item
being sortable.

Boolean A boolean expression that specifies whether the item is
sortable.

By default, all items are sortable. A sortable item can change its position after sorting. An
unsortable item keeps its position after user performs a sort operation. Thought, the
position of an unsortable item can be changed using the ItemPosition property. Use the
SortableItem to specify a group item, a total item or a separator item. An unsortable item is
not counted by a total field. The SortType property specifies the type of repositioning is
being applied on the column when a sort operation is performed. The SortOrder property
specifies whether the column is sorted ascendant or descendent. Use the SortChildren
method to sort the items. Use the AllowSort property to avoid sorting a column when the
user clicks the column. The ItemDivider property indicates whether the item displays a
single cell, instead showing all cells. The SelectableItem property specifies whether an item
can be selected.

The following screen shots shows the control when no column is sorted: (Group 1 and
Group 2 has the SortableItem property on False)

The following screen shots shows the control when the column A is being sorted: (Group 1
and Group 2 keeps their original position after sorting)

method Items.SortChildren (Item as HITEM, ColIndex as Variant,
Ascending as Boolean)

Sorts the child items of the given parent item in the control.

Type Description
Item as HITEM A long expression that indicates the item's handle.

ColIndex as Variant A long expression that indicates the column's index, a
string expression that indicates the column's caption.

Ascending as Boolean A boolean expression that defines the sort order. True
means ascending, False means descending.

The SortChildren method will not recurse through the grid, only the immediate children of
item will be sorted. After sort, the control ensures that the focused item fits the control's
client area. Use the FocusItem property to retrieve the focused item. If your control acts
like a simple list you can use the following line of code to sort ascending the list by first
column: View1.Items.SortChildren 0, 0, True. To change the way how a column is sorted
use SortType property of Column object. The SortChildren property doesn't display the sort
icon on column's header. The control automatically sorts the children items when user
clicks on column's header. Use the SortOnClick property to disable sorting columns by
clicking in the columns header. Use the SortOrder property to get the column sorted, and to
display the sorting icon in the column's header. The EnsureOnSort property prevents
scrolling the control's content when the user sorts items. The SortableItem property
specifies whether the item keeps its position after sorting. Use the AllowSort property to
avoid sorting a column when the user clicks the column.

property Items.SplitCell ([Item as Variant], [ColIndex as Variant]) as
Variant
Splits a cell, and returns the inner created cell.

Type Description

Item as Variant

A long expression that indicates the handle of the item
where a cell is being divided, or 0. If the Item parameter is
0, the ColIndex parameter must indicate the handle of the
cell.

ColIndex as Variant

A long expression that indicates the index of the column
where a cell is divided, or a long expression that indicates
the handle of the cell being divided, if the Item parameter
is missing or it is zero.

Variant A long expression that indicates the handle of the cell
being created.

The SplitCell method splits a cell in two cells. The newly created cell is called inner cell. The
SplitCell method always returns the handle of the inner cell. If the cell is already divided
using the SplitCell method, it returns the handle of the inner cell without creating a new inner
cell. You can split an inner cell too, and so you can have a master cell divided in multiple
cells. Use the CellWidth property to specify the width of the inner cell. Use the CellValue
property to assign a value to a cell. Use the InnerCell property to access an inner cell giving
its index. Use the CellParent property to get the parent of the inner cell. Use the CellItem
property to get the owner of the cell. Use the UnsplitCell method to remove the inner cell if
it exists. Use the MergeCells property to combine two or more cells in a single cell. Use the
SelectableItem property to specify the user can select an item. Include the
exIncludeInnerCells flag in the FilterList property and so the drop down filter window lists
the inner cells too.

method Items.UnmergeCells ([Cell as Variant])
Unmerges a list of cells.

Type Description

Cell as Variant

A long expression that indicates the handle of the cell
being unmerged, or a safe array that holds a collection of
handles for the cells being unmerged. Use the ItemCell
property to retrieves the handle of the cell.

Use the UnmergeCells method to unmerge merged cells. Use the MergeCells method or
CellMerge property to combine (merge) two or more cells in a single one. The
UnmergeCells method unmerges all the cells that was merged. The CellMerge property
unmerges only a single cell. The rest of merged cells remains combined.

method Items.UnselectAll ()
Unselects all items.

Type Description

Use the UnselectAll method to unselect all items in the list. The UnselectAll method has
effect only if the SingleSel property is False, if the control supports multiple items selection.
Use the SelectAll method to select all items in the list. Use the SelectItem property to select
or unselect a specified item. Use the SelectedItem property to retrieve a value that
indicates whether the item is selected or unselected. Use the SelectCount property to
retrieve the number of selected items. The SelectPos property selects/unselects items by
position. The Selection property selects/unselects items by index. The RemoveSelection
method removes the selected items (including the descendents).

method Items.UnsplitCell ([Item as Variant], [ColIndex as Variant])
Unsplits a cell.

Type Description

Item as Variant
A long expression that indicates the handle of the item, or
0. If the Item parameter is 0, the ColIndex parameter must
indicate the handle of the cell.

ColIndex as Variant

A long expression that indicates the index of the column
where a cell is divided, or a long expression that indicates
the handle of the cell being divided, if the Item parameter
is missing or it is zero.

Use the UnsplitCells method to remove the inner cells. The SplitCell method splits a cell in
two cells, and retrieves the newly created cell. The UnsplitCell method has no effect if the
cell contains no inner cells. The UnplitCells method remove recursively all inner cells. For
instance, if a cell contains an inner cell, and this inner cell contains another inner cell, when
calling the UnplitCells method for the master cell, all inner cells inside of the cell will be
deleted. Use the CellParent property to get the parent of the inner cell. Use the CellItem
property to get the owner of the cell. Use the InnerCell property to access an inner cell
giving its index. Use the UnmergeCells method to unmerge merged cells. ("Merge" means
multiple cells in a single cell, "Split" means multiple cells inside a single cell).

property Items.VisibleCount as Long

Retrieves the number of visible items.

Type Description
Long Counts the visible items.

Use FirstVisibleItem and NextVisibleItem properties to determine the items that fit the client
area. Use the IsItemVisible property to check whether an item fits the control's client area.
Use the ItemCount property to count the items in the control. Use the ChildCount property
to count the child items

property Items.VisibleItemCount as Long
Retrieves the number of visible items.

Type Description

Long
A long expression that specifies the number of visible
items in the control. The value could be a positive value if
no filter is applied, or negative while filter is on.

The VisibleItemCount property counts the number of visible items in the list. For instance,
you can use the VisibleItemCount property to get the number the control displays once the
user applies a filter.

The VisibleItemCount property returns a value as explained bellow:

0, the control displays/contains no items, and no filter is applied to any column
-1, the control displays no items, and there is a filter applied (no match found)
positive number, indicates the number of visible items, and the control has no filter
applied to any column
negative number, the absolute value munus 1, indicates the number of visible items,
and there is a filter applied (match found)

The VisibleCount property retrieves the number of items being displayed in the control's
client area. Use FirstVisibleItem and NextVisibleItem properties to determine the items
being displayed in the control's client area. Use the IsItemVisible property to check whether
an item fits the control's client area. Use the ItemCount property to count the items in the
control. Use the ChildCount property to count the child items

View object
The View object supports the following properties and methods:

Name Description
ActiveView Gets the active view.
AllowGroupBy Indicates whether the view supports Group-By view.

AllowSelectNothing Specifies whether the current selection is erased, once the
user clicks outside of the items section.

ApplyFilter Applies the filter.

AutoDrag Gets or sets a value that indicates the way the component
supports the AutoDrag feature.

AutoSearch Enables or disables the incremental searching feature.

BeginUpdate
Maintains performance when items are added to the view
one at a time. This method prevents the view from painting
until the EndUpdate method is called.

CheckImage Retrieves or sets a value that indicates the image used by
cells of checkbox type.

ChildView Gets the child view (next).
ClearFilter Clears the filter.

ColumnAutoResize
Returns or sets a value indicating whether the view will
automatically size its visible columns to fit on the view's
client width.

Columns Retrieves the control's column collection.

ColumnsAllowSizing Retrieves or sets a value that indicates whether a user
can resize columns at run-time.

ConditionalFormats Retrieves the conditional formatting collection.

ContinueColumnScroll
Retrieves or sets a value indicating whether the view will
automatically scroll the visible columns by pixel or by
column width.

CopyTo Exports the view's view to an EMF file.

CountLockedColumns Retrieves or sets a value indicating the number of locked
columns. A locked column is not scrollable.

DataSource Specifies the control's data as an array, XML, ADO or
DAO.
Retrieves or sets a value that indicates the default item

DefaultItemHeight height.

DrawGridLines Retrieves or sets a value that indicates whether the grid
lines are visible or hidden.

EndUpdate Resumes painting the view after painting is suspended by
the BeginUpdate method.

EnsureOnSort Specifies whether the view ensures that the focused item
fits the view's client area, when the user sorts the items.

EnsureVisibleColumn Scrolls the view's content to ensure that the column fits the
client area.

ExpandOnDblClick Specifies whether the item is expanded or collapsed if the
user dbl clicks the item.

ExpandOnKeys Specifies a value that indicates whether the view expands
or collapses a node when user presses arrow keys.

ExpandOnSearch Expands items automatically while user types characters
to search for a specific item.

Export Exports the view's data to a CSV format.
FilterBarCaption Specifies the filter bar's caption.

FilterBarDropDownHeight Specifies the height of the drop down filter window
proportionally with the height of the view's list.

FilterBarHeight
Specifies the height of the view's filter bar. If the value is
less than 0, the filterbar is automatically resized to fit its
description.

FilterBarPrompt Specifies the caption to be displayed when the filter
pattern is missing.

FilterBarPromptColumns Specifies the list of columns to be used when filtering
using the prompt.

FilterBarPromptPattern Specifies the pattern for the filter prompt.
FilterBarPromptType Specifies the type of the filter prompt.
FilterBarPromptVisible Shows or hides the filter prompt.
FilterCriteria Retrieves or sets the filter criteria.

FilterInclude Specifies the items being included after the user applies
the filter.

FirstView Gets the first view.
FullRowSelect Enables full-row selection in the view.

GetItems Gets the collection of items into a safe array,
GridLineColor Specifies the grid line color.
GridLineStyle Specifies the style for gridlines in the list part of the view.
Group Forces the view to do a regrouping of the columns.

HasButtons
Adds a button to the left side of each parent item. The
user can click the button to expand or collapse the child
items as an alternative to double-clicking the parent item.

HasLines
Enhances the graphic representation of a grid control's
hierarchy by drawing lines that link child items to their
corresponding parent item.

HeaderAppearance Retrieves or sets a value that indicates the header's
appearance.

HeaderHeight Retrieves or sets a value indicating the view's header
height.

HeaderSingleLine Specifies whether the view resizes the columns header
and wraps the captions in single or multiple lines.

HeaderVisible Retrieves or sets a value that indicates whether the the
grid's header is visible or hidden.

HideSelection Returns a value that determines whether selected item
appears highlighted when a control loses the focus.

hWnd Retrieves the view's window handle.

Indent Retrieves or sets the amount, in pixels, that child items are
indented relative to their parent items.

Index Indicates the index of the view.
IsGrouping Indicates whether the view is grouping the items.
Items Retrieves the control's item collection.

ItemsAllowSizing Retrieves or sets a value that indicates whether a user
can resize items at run-time.

Key Specifies the index or the caption of the column that
determines the key of the view.

LastView Gets the last view.
Level Indicates the split level of the view.
LinesAtRoot Link items at the root of the hierarchy.

MarkSearchColumn Retrieves or sets a value that indicates whether the
searching column is marked or unmarked

Name Specifies the index or the caption of the column that
determines the name of the view.

NextView Gets the next view (child).
ParentView Gets the parent view (previously).
PrevView Gets the previously view (parent).

RadioImage Retrieves or sets a value that indicates the image used by
cells of radio type.

RemoveSelection Removes the selected items (including the descendents)

RightToLeft Indicates whether the component should draw right-to-left
for RTL languages.

Scroll Scrolls the view's content.

ScrollBars Returns or sets a value that determines whether the view
has horizontal and/or vertical scroll bars.

ScrollBySingleLine

Retrieves or sets a value that indicates whether the view
scrolls the lines to the end. If you have at least a cell that
has SingleLine false, you have to check the
ScrollBySingleLine property..

ScrollPos Specifies the vertical/horizontal scroll position.

SearchColumnIndex Retrieves or sets a value indicating the column's index that
is used for auto search feature.

SelBackMode Retrieves or sets a value that indicates whether the
selection is transparent or opaque.

Select Selects the path

SelectColumnIndex Retrieves or sets a value that indicates the index of the
selected column, if the FullRowSelect property is False.

SelectOnRelease Indicates whether the selection occurs when the user
releases the mouse button.

ShowFocusRect Retrieves or sets a value indicating whether the view
draws a thin rectangle around the focused item.

ShowLockedItems Retrieves or sets a value that indicates whether the
locked/fixed items are visible or hidden.

SingleSel Retrieves or sets a value that indicates whether the view
supports single or multiple selection.

SingleSort Returns or sets a value that indicates whether the view
supports sorting by single or multiple columns.

SortBarCaption Specifies the caption being displayed on the view's sort
bar when the sort bar contains no columns.

SortBarColumnWidth Specifies the maximum width a column can be in the
view's sort bar.

SortBarHeight Retrieves or sets a value that indicates the height of the
view's sort bar.

SortBarVisible Retrieves or sets a value that indicates whether control's
sort bar is visible or hidden.

SortOnClick
Retrieves or sets a value that indicates whether the view
sorts automatically the data when the user click on
column's caption.

Tag Specifies any extra data associated with the view.

TreeColumnIndex Retrieves or sets a value that indicates the index of
column where the hierarchy lines are displayed.

Ungroup Ungroups the columns, if they have been previously
grouped.

Value Indicates the value of the single active item on the
specified column.

ValueList Returns the list of values for all selected / active items in
the view, on the specified column, separated by comma.

Values Returns a safe array with all values of selected / active
items in the view, on the specified column.

View Gets the view giving its index or tag.
Width Specifies the width of the view.
WidthToFit Specifies the width of the view.

property View.ActiveView as View
Gets the active view.

Type Description

View A View object that specifies the active view (the last view
with any active items inside).

The ActiveView property gets the active view (the last view with any active items inside).
The DefaultView property specifies the default view on the control. The View property
returns the default view, in case it is not called during an event. During any event, the View
property returns the view where the event occurs. The CreateView event is fired as soon as
the control creates a new view. The Items property retrieves the view' items collection. The
Columns property retrieves the view's columns collection.

The following properties can be used to access a view:

FirstView property, gets the first view
PrevView property, gets the previously view (parent)
ParentView property, gets the parent view (previously)
ChildView property, gets the child view (next).
NextView property, gets the next view (child).

LastView property, gets the last view.

property View.AllowGroupBy as Boolean
Indicates whether the control supports Group-By view.

Type Description

Boolean A Boolean expression that specifies whether the user can
group the items.

By default, the AllowGroupBy property is False. Set the AllowGroupBy property on True,
to allow the user to group the items by dragging the column's header to control's sort
bar. The SortBarVisible property specifies whether the control's sort bar is visible or hidden.
If the control's sort bar is visible, the user can drag and drop columns to it, so the column
get sorted and items grouped. The ViewItemUpdate(exAddGroupItem) event is fired when
a new grouping items is added to the control's list. You can use the
ViewItemUpdate(exAddGroupItem) event, to add headers or footers during grouping,
customize the aggregate formula to be displayed on different columns, while dropping a
column to the sortbar. The Column.AllowGroupBy property may be used to prevent
grouping a specific column. The AllowSort property indicates whether the user can sort a
column by clicking the column's header. The IsGrouping property specifies whether the
control is grouping/ungrouping items. During grouping, the control keeps the items
indentation, in other words, a child item will be a child after or before grouping. The
ViewEndChanging(exLayoutChange) event is fired when the user changes the layout of the
control, including dragging a column to the sort bar. The SortBarColumnsCount property
indicates the number of the columns being grouped. The SortBarColumn property indicates
the column being sorted giving its position in the sort bar. The Group/Ungroup method
groups or ungroup the control's list. For instance, you can remove the grouping items, by
calling the Ungroup method. The GroupByTotalField property determines the formula to be
applied to the column when it gets grouped. The GroupByFormatCell property determines
the format of the cell to be displayed in the grouping item, when the column gets sorted.

property View.AllowSelectNothing as Boolean
Specifies whether the current selection is erased, once the user clicks outside of the items
section.

Type Description

Boolean
A Boolean expression that specifies whether the current
selection is erased, once the user clicks outside of the
items section.

By default, the AllowSelectNothing property is False. The AllowSelectNothing property
specifies whether the current selection is erased, once the user clicks outside of the items
section. For instance, if the control's SingleSel property is True, and AllowSelectNothing
property is True, you can un-select the single-selected item if pressing the CTRL + Space,
or by CTRL + click.

method View.ApplyFilter ()
Applies the filter.

Type Description

The ApplyFilter method updates the control's content once that user sets the filter using the
Filter and FilterType properties. Use the ClearFilter method to clear the control's filter. Use
the DisplayFilterButton property to show the filter drop down button in the column's caption.
Use the FilterBarDropDownHeight property to specify the height of the drop down filter
window. Use the FilterInclude property to specify whether the child items should be included
to the list when the user applies the filter. Use the FilterCriteria property to filter items using
the AND, OR and NOT operators. Use the ShowFilter method to show programmatically
the column's drop down filter window.

property View.AutoDrag as AutoDragEnum
Gets or sets a value that indicates the way the component supports the AutoDrag feature.

Type Description

AutoDragEnum
An AutoDragEnum expression that specifies what the
control does once the user clicks and start dragging an
item.

By default, the AutoDrag property is exAutoDragNone(0). The AutoDrag feature indicates
what the control does when the user clicks an item and starts dragging it. For instance,
using the AutoDrag feature you can automatically lets the user to drag and drop the data to
OLE compliant applications like Microsoft Word, Excel and so on. The SingleSel property
specifies whether the control supports single or multiple selection.

property View.AutoSearch as Boolean
Enables or disables the incremental searching feature.

Type Description

Boolean A boolean expression that indicates whether the auto
search is enabled or disabled.

By default, the AutoSearch property is True. The auto-search feature is is commonly known
as incremental search. An incremental search begins searching as soon as you type the
first character of the search string. As you type in the search string, the control selects the
item (and highlight the portion of the string that match where the string (as you have typed
it so far) would be found. The control supports 'starts with' or 'contains' incremental search
as described in the AutoSearch property of the Column object. Use the ASCIILower and
ASCIIUpper properties to specify the set of lower and upper characters when auto search
feature is enabled. Use the ExpandOnSearch property to expand items automatically while
user types characters to search for a specific item. Use the MarkSearchColumn property to
specify whether the control draws a rectangle around the searching column. The
SearchColumnIndex property determines the index of the searching column.

method View.BeginUpdate ()
Maintains performance when items are added to the control one at a time.

Type Description

The BeginUpdate method prevents the control from painting until the EndUpdate method is
called. Use BeginUpdate and EndUpdate statement each time when the control requires
more changes. Using the BeginUpdate and EndUpdate methods increase the speed of
changing the control properties by preventing it from painting during changing.

property View.CheckImage(State as CheckStateEnum) as Long
Retrieves or sets a value that indicates the image used by cells of checkbox type.

Type Description

State as CheckStateEnum
A CheckStateEnum expression that indicates the check's
state: 0 means unchecked, 1 means checked, and 2
means partial checked.

Long

A long expression that indicates the index of image used to
paint the cells of check box types. The last 7 bits in the
high significant byte of the long expression indicates the
identifier of the skin being used to paint the object. Use the
Add method to add new skins to the control. If you need
to remove the skin appearance from a part of the control
you need to reset the last 7 bits in the high significant byte
of the color being applied to the part.

Use CheckImage and RadioImage properties to define icons for radio and check box cells.
The CheckImage property defines the index of the icon being used by check boxes. Use the
PartialCheck property to allow partial check feature within the column. The ImageSize
property defines the size (width/height) of the control's check boxes.

property View.ChildView as View
Gets the child view (next).

Type Description
View A View object that specifies the next / child view.

The following properties can be used to access a view:

FirstView property, gets the first view
PrevView property, gets the previously view (parent)
ParentView property, gets the parent view (previously)
ChildView property, gets the child view (next).
NextView property, gets the next view (child).

LastView property, gets the last view.

The ActiveView property gets the active view (the last view with any active items inside).
The DefaultView property specifies the default view on the control. The View property
returns the default view, in case it is not called during an event. During any event, the View
property returns the view where the event occurs.

method View.ClearFilter ()
Clears the filter.

Type Description

The method clears the Filter and FilterType properties for all columns in the control, excepts
for exNumeric and exCheck values where only the Filter property is set on empty. The
ApplyFilter method is automatically called when ClearFilter method is invoked. Use the
FilterBarHeight property to hide the control's filter bar. Use the FilterBarCaption property to
specify the caption in the control's filter bar. Use the Description property to change
predefined strings in the control's filter bar. Use the ShowFilter method to show
programmatically the column's drop down filter window.

property View.ColumnAutoResize as Boolean
Returns or sets a value indicating whether the control will automatically size its visible
columns to fit on the control's client width.

Type Description

Boolean
A boolean expression indicating whether the control will
automatically size its visible columns to fit on the control's
client width.

By default, the ColumnAutoResize property is True. Use the ColumnAutoResize property to
fit all visible columns in the control's client area. Use the Add method to add new columns to
the control's Columns collection. Use the Width property to change the column's width. Use
the Visible property to hide a column. Use the ContinueColumnScroll property to specify
whether the user scrolls the control's content column by column or pixel by pixel. If the
ColumnAutoResize property is True, the control does not display the control's horizontal
scroll bar. Use the ScrollBars property to show or hide the control's scroll bars. By default,
the control adds scroll bars when required.

property View.Columns as Columns
Retrieves the viewl's column collection.

Type Description

Columns A Columns object that indicates the viewl's column
collection.

Use the Columns property to access the Columns collection. Use the Columns collection to
add, remove or change columns. Use the Add method to add a new column to the control.
Use the Items property to access the control's items collection. Use the AddItem,
InsertItem, InsertControlItem method to add new items to the control. Use the DataSource
property to add new columns and items to the control. Adding new items fails if the control
has no columns.

property View.ColumnsAllowSizing as Boolean
Retrieves or sets a value that indicates whether a user can resize columns at run-time.

Type Description

Boolean A Boolean expression that indicates whether a user can
resize columns at run-time.

By default, the ColumnsAllowSizing property is False. A column can be resized only if the
AllowSizing property is True. Use the DrawGridLines property to show or hide the control's
grid lines. Use the HeaderVisible property to show or hide the control's header bar. The
HeaderAppearance property specifies the appearance of the column in the control's header
bar.

property View.ConditionalFormats as ConditionalFormats
Retrieves the conditional formatting collection.

Type Description

ConditionalFormats A ConditionalFormats object that indicates the control's
ConditionalFormats collection.

The conditional formatting feature allows you to apply formats to a cell or range of cells,
and have that formatting change depending on the value of the cell or the value of a
formula. Use the Add method to format cells or items based on a formula. Use the Refresh
method to refresh the control, if a change occurs in the conditional format collection. Use
the CellValue property indicates the cell's caption or value.

The conditional format feature may change the cells and items as follows:

Bold property. Bolds the cell or items
Italic property. Indicates whether the cells or items should appear in italic.
StrikeOut property. Indicates whether the cells or items should appear in strikeout.
Underline property. Underlines the cells or items
Font property. Changes the font for cells or items.
BackColor property. Changes the background color for cells or items, supports skins
as well.
ForeColor property. Changes the foreground color for cells or items.

The ApplyTo property specifies whether the ConditionalFormat object is applied to items or
to a column.

property View.ContinueColumnScroll as Boolean
Retrieves or sets a value indicating whether the control will automatically scroll the visible
columns by pixel or by column width.

Type Description

Boolean
A boolean expression indicating whether the control will
automatically scroll the visible columns by pixel or by
column width.

Use the ContinueColumnScroll property to define how the control scrolls the columns. Use
the EnsureVisibleColumn method scrolls the control's content to ensure that the column fits
the client area. Use the Scroll method to scroll the control's columns, column by column, if
the ContinueColumnScroll property is False. Use the Visible property to hide a column. The
ScrollBySingleLine property retrieves or sets a value that indicates whether the control
scrolls the lines to the end, item by item. Use the ScrollBars property to hide the control's
scroll bars.

property View.CopyTo (File as String) as Variant
Exports the control's view to an EMF file.

Type Description

File as String

A String expression that indicates the name of the file to
be saved. If present, the CopyTo property retrieves True,
if the operation succeeded, else False it is failed. If the
File parameter is missing or empty, the CopyTo property
retrieves an one dimension safe array of bytes that
contains the EMF content.

If the File parameter is not empty, the extension (
characters after last dot) determines the graphical/
format of the file to be saved as follows:

*.bmp *.dib *.rle, saves the control's content in BMP
format.
*.jpg *.jpe *.jpeg *.jfif, saves the control's content in
JPEG format.
*.gif, , saves the control's content in GIF format.
*.tif *.tiff, saves the control's content in TIFF format.
*.png, saves the control's content in PNG format.
*.pdf, saves the control's content to PDF format. The
File argument may carry up to 4 parameters
separated by the | character in the following order:
filename.pdf | paper size | margins | options. In
other words, you can specify the file name of the PDF
document, the paper size, the margins and options to
build the PDF document. By default, the paper size is
210 mm × 297 mm (A4 format) and the margins are
12.7 mm 12.7 mm 12.7 mm 12.7 mm. The units for
the paper size and margins can be pt for PostScript
Points, mm for Millimeters, cm for Centimeters, in
for Inches and px for pixels. If PostScript Points are
used if unit is missing. For instance, 8.27 in x 11.69 in,
indicates the size of the paper in inches. Currently, the
options can be single, which indicates that the
control's content is exported to a single PDF page.
For instance, the CopyTo("shot.pdf|33.11 in x 46.81
in|0 0 0 0|single") exports the control's content to an
A0 single PDF page, with no margins.
*.emf or any other extension determines the control to

save the control's content in EMF format.

For instance, the CopyTo("c:\temp\snapshot.png")
property saves the control's content in PNG format to
snapshot.png file.

Variant
A boolean expression that indicates whether the File was
successful saved, or a one dimension safe array of bytes,
if the File parameter is empty string.

The CopyTo method copies/exports the control's view to BMP, PNG, JPG, GIF, TIFF, PDF
or EMF graphical files, including no scroll bars. You can use the Export method to export
the control's DATA in CSV format.

The BMP file format, also known as bitmap image file or device independent bitmap
(DIB) file format or simply a bitmap, is a raster graphics image file format used to
store bitmap digital images, independently of the display device (such as a graphics
adapter)
The JPEG file format (seen most often with the .jpg extension) is a commonly used
method of lossy compression for digital images, particularly for those images produced
by digital photography.
The GIF (Graphics Interchange Format) is a bitmap image format that was introduced
by CompuServe in 1987 and has since come into widespread usage on the World Wide
Web due to its wide support and portability.
The TIFF (Tagged Image File Format) is a computer file format for storing raster
graphics images, popular among graphic artists, the publishing industry, and both
amateur and professional photographers in general.
The PNG (Portable Network Graphics) is a raster graphics file format that supports
lossless data compression. PNG was created as an improved, non-patented
replacement for Graphics Interchange Format (GIF), and is the most used lossless
image compression format on the Internet
The PDF (Portable Document Format) is a file format used to present documents in a
manner independent of application software, hardware, and operating systems. Each
PDF file encapsulates a complete description of a fixed-layout flat document, including
the text, fonts, graphics, and other information needed to display it.
The EMF (Enhanced Metafile Format) is a 32-bit format that can contain both vector
information and bitmap information. This format is an improvement over the Windows
Metafile Format and contains extended features, such as the following

 Built-in scaling information
 Built-in descriptions that are saved with the file
 Improvements in color palettes and device independence

The EMF format is an extensible format, which means that a programmer can modify
the original specification to add functionality or to meet specific needs. You can paste
this format to Microsoft Word, Excel, Front Page, Microsoft Image Composer and any
application that know to handle EMF formats.

property View.CountLockedColumns as Long
Retrieves or sets a value indicating the number of locked columns.

Type Description

Long A long expression that indicates the number of locked
columns.

The control is able to display two types of columns: locked and unlocked columns. A locked
column is not scrollable, and it is fixed to the left side of the control. An unlocked control is
scrollable. Use the CountLockedColumns property to define the number of columns that are
in the locked area. Use the LockedItemCount property to lock or unlock items to the top or
bottom side of the control. Use the MergeCells method to combine one or more cells in a
single cell.

property View.DataSource as Variant
Specifies the control's data as an array, XML, ADO or DAO.

Type Description

Variant A VARIANT expression that could be a string, an object as
explained bellow.

The control can automatically handle Array, XML, ADO, DAO, DataSet through the
DataSource properties (control and view objects). You can specify the data source for the
entire control through the DataSource property, or for a particular view using
View.DataSource property. If an internal error occurs while using the DataSource property
the Error event occurs. You can use the control's DataSource property to assign a data
source for all views.

For instance,

"...\sample.xml" opens the sample.xml file
"...\sample.dbf" opens the specified sample.dbf table
"Data Member=SELECT * FROM Orders ; Data Source=...\sample.accdb", opens the
Orders table of the specified sample.accdb database
"Data Member=SELECT * FROM Orders ; Data Source=...\sample.mdb", opens the
Orders table of the specified sample.mdb database
"Data Member=Orders ; Driver={Microsoft Access Driver (*.mdb)} ;
DBQ=...\sample.mdb", opens the Orders table of sample.mdb database, using ODBC
"Data Member=Orders ; Driver={Microsoft Access Driver (*.mdb)} ;
DBQ=...\sample.mdb", opens the Orders table of sample.mdb database, using ODBC
"Data Member=SELECT * FROM [Sheet1$] ; Driver={Microsoft Excel Driver (*.xls)} ;
DBQ=...\sample.xls ; DriverID=790" reads the Sheet1 worksheet of the sample.xml file
(Excel)

where ... indicates the full path to the sample file.

property View.DefaultItemHeight as Long
Retrieves or sets a value that indicates the default item height.

Type Description
Long A long expression that indicates the default item's height.

The DefaultItemHeight property specifies the height of the items. Changing the property
fails if the control contains already items. You can change the DefaultItemHeight property at
design time, or at runtime, before adding any new items to the Items collection. Use the
ItemHeight property to specify the height of a specified item. Use the ScrollBySingleLine
property when using the items with different heights. Use the CellSingleLine property to
specify whether the cell displays the caption using multiple lines.

property View.DrawGridLines as GridLinesEnum
Retrieves or sets a value that indicates whether the grid lines are visible or hidden.

Type Description

GridLinesEnum A GridLinesEnum expression that indicates whether the
grid lines are visible or hidden.

Use the DrawGridLines property to add grid lines to the current view. Use the GridLineColor
property to specify the color for grid lines. The GridLineStyle property to specify the style
for horizontal or/and vertical gridlines in the control. Use the LinesAtRoot property specifies
whether the control links the root items of the control. Use the HasLines property to specify
whether the control draws the link between child items to their corresponding parent item.

method View.EndUpdate ()
Resumes painting the control after painting is suspended by the BeginUpdate method.

Type Description

Use BeginUpdate and EndUpdate statement each time when the control requires more
changes. Using the BeginUpdate and EndUpdate methods increase the speed of changing
the control properties by preventing it from painting during changing.

property View.EnsureOnSort as Boolean
Specifies whether the control ensures that the focused item fits the control's client area,
when the user sorts the items.

Type Description

Boolean
A boolean expression that indicates whether the control
ensures that the focused item fits the control's client area
after sorting the items.

By default, the EnsureOnSort property is True. If the EnsureOnSort property is True, the
control calls the EnsureVisibleItem method to ensure that the focused item (FocusItem
property) fits the control's client area, once items get sorted. Use the SortOrder property
to sort a column. The SortChildren method sorts child items of an item. The EnsureOnSort
property prevents scrolling of the control when child items are sorted.

method View.EnsureVisibleColumn (Column as Variant)
Scrolls the control's content to ensure that the column fits the client area.

Type Description

Column as Variant
A long expression that indicates the column's index being
scrolled, or a string expression that indicates the column's
caption or the column's key.

This method ensures that a column is at least partially visible. The control scrolls the
content if necessary. The control automatically calls EnsureVisibleColumn method when the
user clicks a cell in the column. Use the EnsureVisibleItem method to ensure that a
specified item fits the control's client area. Use the ScrollBars property to hide the control's
scroll bars. Use the Scroll method to programmatically scroll the control's content.

property View.ExpandOnDblClick as Boolean
Specifies whether the item is expanded or collapsed if the user dbl clicks the item.

Type Description

Boolean A boolean expression that indicates whether an item is
expanded on dbl click.

Use the ExpandOnDblClick property to disable expanding or collapsing items when user dbl
clicks an item. Use the ExpandOnKeys property to specify whether the control expands or
collapses a node when user presses arrow keys. The ExpandOnSearch property specifies
whether the control expands nodes when incremental searching is on (AutoSearch property
is different than 0) and user types characters when the control has the focus. The control
fires the DblClick event when user double clicks the control. Use the ExpandItem property
to programmatically expand or collapse an item. In CardView mode, the ExpandOnDblClick
property specifies whether a card is expanded or collapsed when a card is double clicked.

property View.ExpandOnKeys as Boolean
Specifies a value that indicates whether the control expands or collapses a node when user
presses arrow keys.

Type Description

Boolean
A boolean expression that indicates whether the control
expands or collapses a node when user presses arrow
keys.

Use the ExpandOnKeys property to specify whether the control expands or collapses a
node when user presses arrow keys. By default, the ExpandOnKeys property is True. Use
the ExpandOnDblClick property to specify whether the control expands or collapses a node
when user dbl clicks a node. The ExpandOnSearch property specifies whether the control
expands nodes when incremental searching is on (AutoSearch property is different than 0)
and user types characters when the control has the focus. If the ExpandOnKeys property is
False, the user can't expand or collapse the items using the + or - keys on the numeric
keypad. Use the ExpandItem property to programmatically expand or collapse an item. In
CardView mode, the ExpandOnKeys property allows expanding or collapsing the cards
using the + or - keys on the numeric keypad.

property View.ExpandOnSearch as Boolean
Expands items automatically while user types characters to search for a specific item.

Type Description

Boolean
A boolean expression that indicates whether the control
expands items while user types characters to search for
items.

Use the ExpandOnSearch property to expand items while user types characters to search
for items using incremental search feature. By default, the ExpandOnSearch property is
False. Use the AutoSearch property to enable or disable incremental searching feature.
Use the AutoSearch property of the Column object to specify the type of incremental
searching being used within the column. The ExpandOnSearch property has no effect when
the AutoSearch property is False. For instance, if the ExpandOnSearch property is True,
the control fires the ViewItemStateStartChanging(exExpandItem) event for items that have
the ItemHasChildren property is True, when user types characters.

method View.Export ([Destination as Variant], [Options as Variant])
Exports the control's data to a CSV format.

Type Description

Destination as Variant

A String expression that specifies the file/format to be
created. The Destination parameter indicates the format
to be created as follows:

"array" indicates that the Export method returns the
control's data as a two-dimensional array
if "htm" or "html", the control returns the HTML format
(including CSS style)
Any file-name that ends on ".htm" or ".html" creates
the file with the HTML format inside
missing, empty, or any other case the Export exports
the control's data in CSV format.

No error occurs, if the Export method can not create the
file.

Options as Variant A String expression that specifies the options to be used
when exporting the control's data, as explained bellow.

Return Description

Variant

The result of the Export method is a:

two-dimensional array, if the Destination is "array".
For instance Export("array","vis") method exports the
control's data as it is displayed into a two-dimensional
array (zero-based). The result includes the columns
headers into the first line, while the rest of lines
contains the control's visible data. For instance,
Export("array", "vis")(1, 5) returns the value of the cell
on the second column and fifth row.
string, that indicates the format being exported. It
could be CSV or HTML format based on the
Destination parameter

The Export method can export the control's DATA to a CSV or HTML format. The Export
method can export a collection of columns from selected, visible, check or all items. By
default, the control export all items, unless there is no filter applied on the control, where
only visible items are exported. No visual appearance is saved in CSV format, instead the

HTML format includes the visual appearance in CSS style. The Export method can export a
collection of columns from selected, visible, check or all items.

The Options parameter consists a list of fields separated by | character, in the following
order:

1. The first field could be all, vis, sel or chk, to export all, just visible, selected or
checked items. The all option is used, if the field is missing. The all option displays all
items, including the hidden or collapsed items. The vis option includes the visible items
only, not including the child items of a collapsed item, or not-visible items (item's height
is 0). The sel options lists the items being selected. The chk option lists all check and
visible items. If chk option is used, the first column in the columns list should indicate
the index of the column being queried for a check box state. The CellState property
indicates the state of the cell's checkbox.

2. the second field indicates the column to be exported. All visible columns are exported,
if missing. The list of columns is separated by , character, and indicates the index of
the column to be shown on the exported data. The first column in the list indicates the
column being queried, if the option chk is used.

3. the third field indicates the character to separate the fields inside each exported line
[tab character-if missing].

4. the forth field could be ansi or unicode, which indicates the format to save the
control's content to Destination. If missing, the control's configuration specifies the way
the control's content is serialized, such as the ANSI version saves as ANSI, while the
UNICODE version will export the control's data in UNICODE format. The Version
property specifies the version of the control, and if this includes the UNICODE string, it
indicates that you are running the UNICODE version of the control. For instance,
Export(Destination,"|||ansi") saves the control's content to destination in ANSI format.

The Destination parameter indicates the file to be created where exported date should be
saved. For instance, Export(Destination,"sel|0,1|;") exports the cells from columns 0, 1
from the selected items, to a CSV using the ; character as a field separator. If Destination
is empty or missing, the Export returns the result as a string.

The "CSV" refers to any file that:

is plain text using a character set such as ASCII, Unicode,
consists of records (typically one record per line),
with the records divided into fields separated by delimiters (typically a single reserved
character such as tab, comma, or semicolon; sometimes the delimiter may include
optional spaces),
where every record has the same sequence of fields

You can use the CopyTo to export the control's view to clipboard/EMF file.

property View.FilterBarCaption as String
Specifies the filter bar's caption.

Type Description

String A string value that defines the expression to display the
control's filter bar.

By default, the FilterBarCaption property is empty. You can use the FilterBarCaption
property to define the way the filter bar's caption is being displayed. The FilterBarCaption is
displayed on the bottom side of the control where the control's filter bar is shown. While the
FilterBarCaption property is empty, the control automatically builds the caption to be
displayed on the filter bar from all columns that participates in the filter using its name and
values. For instance, if the control filters items based on the columns "EmployeeID" and
"ShipVia", the control's filter bar caption would appear such as "[EmployeeID] = '...' and
[ShipVia] = '...'". The FilterBarCaption property supports expressions as explained bellow.

For instance:

"no filter", shows no filter caption all the time

"" displays no filter bar, if no filter is applied, else it displays the current filter

"`<r>` + value", displays the current filter caption aligned to the right. You can include
the exFilterBarShowCloseOnRight flag into the FilterBarPromptVisible property to
display the close button aligned to the right

"value replace ` and ` with `<fgcolor=FF0000> and </fgcolor>`", replace the AND
keyword with a different foreground color

"value replace ` and ` with `<off 4> and </off>` replace `|` with ` <off 4>or</off> `
replace ` ` with ` `", replaces the AND and | values

"value replace `[` with `<bgcolor=000000><fgcolor=FFFFFF> ` replace `]` with `
</bgcolor></fgcolor>`", highlights the columns being filtered with a different
background/foreground colors.

"value + ` ` + available", displays the current filter, including all available columns to be
filtered

"allui" displays all available columns

"((allui + `<fgcolor=808080>` + (matchitemcount < 0 ? ((len(allui) ? `` : ``) + `<r>` +
abs(matchitemcount + 1) + ` result(s)`) : (`<r><fgcolor=808080>`+ itemcount + `
item(s)`))) replace `[` with `<bgcolor=000000><fgcolor=FFFFFF> ` replace
`]` with ` </bgcolor></fgcolor>` replace `[<s>` with `<bgcolor=C0C0C0>

<fgcolor=FFFFFF> ` replace `</s>]` with ` </bgcolor></fgcolor>`)" displays all
available columns to be filtered with different background/foreground colors including
the number of items/results

Use the FilterBarForeColor and FilterBarBackColor properties to define the colors used to
paint the description for control's filter. Use the FilterBarHeight property to specify the
height of the control's filter bar. The VisibleItemCount property specifies the number of
visible items in the list. The MatchItemCount property returns the number of matching items.
The FilterBarPromptVisible property specifies whether how/where the control's filter/prompt
is shown.

The FilterBarCaption method supports the following keywords, constants, operators and
functions:

value or current keyword returns the current filter as a string. At runtime the value
may return a string such as "[EmployeeID] = '4| 5| 6' and [ShipVia] =
1", so the control automatically applies HTML format, which you can
change it. For instance, "upper(value)" displays the caption in uppercase or "value
replace `` with `<fgcolor=808080>` replace `` with `</fgcolor>`" displays the
column's name with a different foreground color.
itemcount keyword returns the total number of items as indicated by ItemCount
property. At runtime the itemcount is a positive integer that indicates the count of all
items. For instance, "value + `<r><fgcolor=808080>Total: ` + itemcount" includes in the
filter bar the number of items aligned to the right.
visibleitemcount keyword returns the number of visible items as indicated by
VisibleItemCount property. At runtime, the visibleitemcount is a positive integer if no
filter is applied, and negative if a filter is applied. If positive, it indicates the number of
visible items. The visible items does not include child items of a collapsed item. If
negative, a filter is applied, and the absolute value minus one, indicates the number of
visible items after filter is applied. 0 indicates no visible items, while -1 indicates that a
filter is applied, but no item matches the filter criteria. For instance, "value + `<r>
<fgcolor=808080>` + (visibleitemcount < 0 ? (`Result: ` + (abs(visibleitemcount) - 1)
) : (`Visible: ` + visibleitemcount))" includes "Visible: " plus number of visible items, if
no filter is applied or "Result: " plus number of visible items, if filter is applied, aligned
to the right
matchitemcount keyword returns the number of items that match the filter as
indicated by MatchItemCount property. At runtime, the matchitemcount is a positive
integer if no filter is applied, and negative if a filter is applied. If positive, it indicates the
number of items within the control (ItemCount property). If negative, a filter is applied,
and the absolute value minus one, indicates the number of matching items after filter is
applied. A matching item includes its parent items, if the control's FilterInclude property

allows including child items. 0 indicates no visible items, while -1 indicates that a filter
is applied, but no item matches the filter criteria. For instance, "value + `<r>
<fgcolor=808080>` + (matchitemcount < 0 ? (`Result: ` + (abs(matchitemcount) - 1)
) : (`Visible: ` + matchitemcount))" includes "Visible: " plus number of visible items, if
no filter is applied or "Result: " plus number of macthing items, if filter is applied,
aligned to the right
leafitemcount keyword returns the number of leaf items. A leaf item is an item with no
child items. At runtime, the leafitemcount is a positive number that computes the
number of leaf items (expanded or collapsed). For instance, the "value + `<r>
<fgcolor=808080>` + leafitemcount" displays the number of leaf items aligned
to the right with a different font and foreground color.
promptpattern returns the pattern in the filter bar's prompt, as a string. The
FilterBarPromptPattern specifies the pattern for the filter prompt. The control's filter
bar prompt is visible, if the exFilterBarPromptVisible flag is included in the
FilterBarPromptVisible property.
available keyword returns the list of columns that are not currently part of the control's
filter, but are available to be filtered. A column is available to be filtered, if the
DisplayFilterButton property of the Column object, is True. At runtime, the available
keyword may return a string such as "<fgcolor=C0C0C0>[<s>OrderDate</s>]
<fgcolor> </fgcolor>[<s>RequiredDate</s>]<fgcolor> </fgcolor>
[<s>ShippedDate</s>]<fgcolor> </fgcolor>[<s>ShipCountry</s>]<fgcolor> </fgcolor>
[<s>Select</s>]</fgcolor>", so the control automatically applies HTML format, which
you can change it. For instance, "value + ` ` + available", displays the current filter,
including all available columns to be filtered. For instance, the "value + `<r>` + available
replace `C0C0C0` with `FF0000`" displays the available columns aligned to the right
with a different foreground color.
allui keyword returns the list of columns that are part of the current filter and available
columns to be filtered. A column is available to be filtered, if the DisplayFilterButton
property of the Column object, is True. At runtime, the allui keyword may return a string
such as "[EmployeeID] = '4| 5| 6'<fgcolor> </fgcolor><fgcolor=C0C0C0>
[<s>OrderDate</s>]</fgcolor><fgcolor> </fgcolor><fgcolor=C0C0C0>
[<s>RequiredDate</s>]</fgcolor><fgcolor> </fgcolor><fgcolor=C0C0C0>
[<s>ShippedDate</s>]</fgcolor><fgcolor> </fgcolor>[ShipVia] =
1<fgcolor> </fgcolor><fgcolor=C0C0C0>[<s>ShipCountry</s>]</fgcolor>
<fgcolor> </fgcolor><fgcolor=C0C0C0>[<s>Select</s>]</fgcolor>", so the control
automatically applies HTML format, which you can change it. For instance, "allui",
displays the current filter, including all available columns to be filtered. For instance, the
"((allui + `<fgcolor=808080>` + (matchitemcount < 0 ? ((len(allui) ? `` : ``) + `<r>` +
abs(matchitemcount + 1) + ` result(s)`) : (`<r><fgcolor=808080>`+ itemcount + `
item(s)`))) replace `[` with `<bgcolor=000000><fgcolor=FFFFFF> ` replace
`]` with ` </bgcolor></fgcolor>` replace `[<s>` with `<bgcolor=C0C0C0>
<fgcolor=FFFFFF> ` replace `</s>]` with ` </bgcolor></fgcolor>`)" displays all
available columns to be filtered with different background/foreground colors including

the number of items/results
all keyword returns the list of all columns (visible or hidden) no matter if the
DisplayFilterButton property is True or False. At runtime, the all keyword may return a
string such as "<fgcolor=C0C0C0>[<s>OrderID</s>]</fgcolor><fgcolor> </fgcolor>
[EmployeeID] = '4| 5| 6'<fgcolor> </fgcolor><fgcolor=C0C0C0>
[<s>OrderDate</s>]</fgcolor><fgcolor> </fgcolor><fgcolor=C0C0C0>
[<s>RequiredDate</s>]</fgcolor><fgcolor>", so the control automatically applies
HTML format, which you can change it. For instance, "all", displays the current filter,
including all other columns. For instance, the "((all + `<fgcolor=808080>` + (
matchitemcount < 0 ? ((len(allui) ? `` : ``) + `<r>` + abs(matchitemcount + 1) + `
result(s)`) : (`<r><fgcolor=808080>`+ itemcount + ` item(s)`))) replace `[` with
`<bgcolor=000000><fgcolor=FFFFFF> ` replace `]` with ` </bgcolor>
</fgcolor>` replace `[<s>` with `<bgcolor=C0C0C0><fgcolor=FFFFFF> ` replace
`</s>]` with ` </bgcolor></fgcolor>`)" displays all columns with different
background/foreground colors including the number of items/results

Also, the FilterBarCaption property supports predefined constants and operators/functions
as described here.

Also, the FilterBarCaption property supports HTML format as described here:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-

about:blank

line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or

blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property View.FilterBarDropDownHeight as Double
Specifies the height of the drop down filter window proportionally with the height of the
control's list.

Type Description

Double A double expression that indicates the height of the drop
down filter window.

Use the FilterBarDropDownHeight property to specify the height of the drop down window
filter window. By default, the FilterBarDropDownHeight property is 0.5. It means, the height
of the drop down filter window is half of the height of the control's list. Use the
FilterBarDropDownWidth property to specify the width of the drop down filter window. Use
the DisplayFilterButton property to display a filter button to the column's caption. Use the
ShowFilter method to show programmatically the column's drop down filter window.

property View.FilterBarHeight as Long
Specifies the height of the control's filter bar description.

Type Description

Long A long expression that indicates the height of the filter bar
status.

The filter bar status defines the control's filter description. If the FilterBarHeight property is
less than 0 the control automatically updates the height of the filter's description to fit in the
control's client area. If the FilterBarHeight property is zero the filter's description is hidden.
If the FilterBarHeight property is grater than zero it defines the height in pixels of the filter's
description. Use the ClearFilter method to clear the control's filter. Use the FilterBarCaption
property to define the control's filter bar caption. Use the ShowFilter method to show
programmatically the column's drop down filter window.

property View.FilterBarPrompt as String
Specifies the caption to be displayed when the filter pattern is missing.

Type Description

String

A string expression that indicates the HTML caption being
displayed in the filter bar, when filter prompt pattern is
missing. The FilterBarPromptPattern property specifies
the pattern to filter the list using the filter prompt feature.

By default, the FilterBarPrompt property is "<i><fgcolor=808080>Start Filter...</fgcolor>
</i>". The FilterBarPromptPattern property specifies the pattern to filter the list using the
filter prompt feature. Changing the FilterBarPrompt property won't change the current filter.
The FilterBarPromptColumns property specifies the list of columns to be used when filtering
by prompt. The DisplayFilterButton property specifies whether the column's header displays
a filter button. The VisibleItemCount property retrieves the number of visible items in the list.
Use the FilterBarCaption property to change the caption in the filter bar once a new filter is
applied. The FilterBarBackColor property specifies the background color or the visual
aspect of the control's filter bar. The FilterBarForeColor property specifies the foreground
color or the control's filter bar.

The FilterBarPrompt property supports HTML format as described here:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of

about:blank

the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a

value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

FilterBarPromptVisible property is True
FilterBarPromptPattern property is Empty.

property View.FilterBarPromptColumns as Variant
Specifies the list of columns to be used when filtering using the prompt.

Type Description

Variant

A long expression that indicates the index of the column to
apply the filter prompt, a string expression that specifies
the list of columns (indexes) separated by comma to apply
the filter prompt, or a safe array of long expression that
specifies the indexes of the columns to apply the filter. The
filter prompt feature allows you to filter the items as you
type while the filter bar is visible on the bottom part of the
list area.

By default, the FilterBarPromptColumns property is -1. If the FilterBarPromptColumns
property is -1, the filter prompt is applied for all columns, visible or hidden. Use the
FilterBarPromptColumns property to specify the list of columns to apply the filter prompt
pattern. The FilterBarPromptVisible property specifies whether the filter prompt is visible or
hidden. Use the FilterBarPrompt property to specify the HTML caption being displayed in
the filter bar when the filter pattern is missing. The FilterBarPromptPattern property
specifies the pattern to filter the list. Changing the FilterBarPromptPattern property does
not require calling the ApplyFilter method to apply the new filter, only if filtering is required
right a way. The FilterBarPromptType property specifies the type of filtering when the user
edits the prompt in the filter bar.

property View.FilterBarPromptPattern as String
Specifies the pattern for the filter prompt.

Type Description

String A string expression that specifies the pattern to filter the
list.

By default, the FilterBarPromptPattern property is empty. If the FilterBarPromptPattern
property is empty, the filter bar displays the FilterBarPrompt property, if the
FilterBarPromptVisible property is True. The FilterBarPromptPattern property indicates the
patter to filter the list. The pattern may include wild characters if the FilterBarPromptType
property is exFilterPromptPattern. The FilterBarPromptColumns specifies the list of columns
to be used when filtering. Changing the FilterBarPromptPattern property does not require
calling the ApplyFilter method to apply the new filter, only if filtering is required right a way.

property View.FilterBarPromptType as FilterPromptEnum
Specifies the type of the filter prompt.

Type Description

FilterPromptEnum A FilterPromptEnum expression that specifies how the
items are being filtered.

By default, the FilterBarPromptType property is exFilterPromptContainsAll. The filter prompt
feature allows you to filter the items as you type while the filter bar is visible on the bottom
part of the list area. The Filter prompt feature allows at runtime filtering data on hidden
columns too. Use the FilterBarPromptVisible property to show the filter prompt. Use the
FilterBarPrompt property to specify the HTML caption being displayed in the filter bar when
the filter pattern is missing. The FilterBarPromptPattern property specifies the pattern to
filter the list. Changing the FilterBarPromptPattern property does not require calling the
ApplyFilter method to apply the new filter, only if filtering is required right a way. The
FilterBarPromptColumns property specifies the list of columns to be used when filtering by
prompt. The DisplayFilterButton property specifies whether the column's header displays a
filter button. The VisibleItemCount property retrieves the number of visible items in the list.
Use the FilterBarCaption property to change the caption in the filter bar once a new filter is
applied.

The FilterBarPromptType property supports the following values:

exFilterPromptContainsAll, The list includes the items that contains all specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptContainsAny, The list includes the items that contains any of specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptStartWith, The list includes the items that starts with any specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptEndWith, The list includes the items that ends with any specified
sequences in the filter (FilterBarPromptPattern property). Can be combined with
exFilterPromptCaseSensitive, exFilterPromptStartWords, exFilterPromptEndWords or
exFilterPromptWords
exFilterPromptPattern, The filter indicates a pattern that may include wild characters
to be used to filter the items in the list. The FilterBarPromptPattern property may
include wild characters as follows:

'?' for any single character
'*' for zero or more occurrences of any character
'#' for any digit character
' ' space delimits the patterns inside the filter

property View.FilterBarPromptVisible as FilterBarVisibleEnum
Shows or hides the control's filter bar including filter prompt.

Type Description

FilterBarVisibleEnum A FilterBarVisibleEnum expression that defines the way
the control's filter bar is shown.

By default, The FilterBarPromptVisible property is exFilterBarHidden. The filter prompt
feature allows you to filter the items as you type while the filter bar is visible on the bottom
part of the list area. The Filter prompt feature allows at runtime filtering data on hidden
columns too. Use the FilterBarPromptVisible property to show the filter prompt. Use the
FilterBarPrompt property to specify the HTML caption being displayed in the filter bar when
the filter pattern is missing. The FilterBarPromptPattern property specifies the pattern to
filter the list. Changing the FilterBarPromptPattern property does not require calling the
ApplyFilter method to apply the new filter, only if filtering is required right a way. The
FilterBarCaption property defines the caption to be displayed on the control's filter bar. The
FilterBarPromptType property specifies the type of filtering when the user edits the prompt
in the filter bar. The FilterBarPromptColumns property specifies the list of columns to be
used when filtering by prompt. The DisplayFilterButton property specifies whether the
column's header displays a filter button. The VisibleItemCount property retrieves the
number of visible items in the list.

property View.FilterCriteria as String
Retrieves or sets the filter criteria.

Type Description
String A string expression that indicates the filter criteria.

By default, the FilterCriteria property is empty. Use the FilterCriteria property to specify
whether you need to filter items using OR, NOT operators between columns. If the
FilterCriteria property is empty, or not valid, the filter uses the AND operator between
columns. Use the FilterCriteria property to specify how the items are filtered.

The FilterCriteria property supports the following operators:

not operator (unary operator)
and operator (binary operator)
or operator (binary operator)

Use the (and) parenthesis to define the order execution in the clause, if case. The
operators are grided in their priority order. The % character precedes the index of the
column (zero based), and indicates the column. For instance, %0 or %1 means that OR
operator is used when both columns are used, and that means that you can filter for values
that are in a column or for values that are in the second columns. If a column is not grided in
the FilterCriteria property, and the user filters values by that column, the AND operator is
used by default. For instance, let's say that we have three columns, and FilterCriteria
property is "%0 or %1". If the user filter for all columns, the filter clause is equivalent with (
%0 or %1) and %2, and it means all that match the third column, and is in the first or the
second column.

Use the Filter and FilterType properties to define a filter for a column. The ApplyFilter
method should be called to update the control's content after changing the Filter or
FilterType property, in code! Use the DisplayFilterButton property to display a drop down
button to filter by a column. Use the CustomFilter property to define you custom filters.

property View.FilterInclude as FilterIncludeEnum
Specifies the items being included after the user applies the filter.

Type Description

FilterIncludeEnum A FilterIncludeEnum expression that indicates the items
being included when the filter is applied.

By default, the FilterInclude property is exItemsWithoutChilds, which specifies that only
items (and parent-items) that match the filter are being displayed. Use the FilterInclude
property to specify whether the child- items should be displayed when the user applies the
filter. Use the Filter property and FilterType property to specify the column's filter. Use the
ApplyFilter to apply the filter at runtime. Use the ClearFilter method to clear the control's
filter. Use the FilterCriteria property to filter items using the AND, OR and NOT operators.
Use the FilterBarPromptVisible property to show the control's filter-prompt, that allows you
to filter items as you type.

The following table shows items to display, when filter for "A" items, using different values
for FilterInclude property:

no filter exItemsWithoutChilds
0

exItemsWithChilds
1

exRootsWithoutChilds
2

exRootsWithChilds
3

property View.FirstView as View
Gets the first view.

Type Description
View A View object that specifies the first view.

The following properties can be used to access a view:

FirstView property, gets the first view
PrevView property, gets the previously view (parent)
ParentView property, gets the parent view (previously)
ChildView property, gets the child view (next).
NextView property, gets the next view (child).

LastView property, gets the last view.

The ActiveView property gets the active view (the last view with any active items inside).
The DefaultView property specifies the default view on the control. The View property
returns the default view, in case it is not called during an event. During any event, the View
property returns the view where the event occurs.

property View.FullRowSelect as CellSelectEnum
Enables full-row selection in the control.

Type Description

CellSelectEnum A CellSelectEnum expression that indicates whether the
entire row is selected.

Use the FullRowSelect property to determine when the item or cell is selected. If the
FullRowSelect property is exColumnSel, the SelectColumnIndex property determines the
selected column. By default, the FullRowSelect property is exItemSel, and so the entire
item is selected. If the FullRowSelect property is exRectSel property, the user can selects a
range of cells by dragging. Use the Selected property to determine whether a cell is
selected, if the FullRowSelect property is exRectSel. Use the SingleSel property to allow
multiple items/cells in the selection. For instance, the FullRowSelect = True (boolean value
) is the same as FullRowSelect = exItemSel, and FullRowSelect = False is the same as
FullRowSelect = exColumnSel.

method View.GetItems (Options as Variant)
Gets the collection of items into a safe array,

Type Description

Options as Variant

Specifies a long expression as follows:

if 0, the result is a two-dimensional array with cell's
values. The list includes the collapsed items, and the
items are included as they are displayed (sorted,
filtered). This option exports the values of cells. This
option exports the values of the cells (CellValue
property).
if 1, the result the one-dimensional array of handles of
items in the control as they are displayed (sorted,
filtered). The list does not include the collapsed
items. For instance, the first element in the array
indicates the handle of the first item in the control,
which can be different that FirstVisibleItem result,
even if the control is vertically scrolled. This option
exports the handles of the items. For instance, you
can use the ItemToIndex property to get the index of
the item based on its handle.
else if other, and the number of columns is 1, the
result is a one-dimensional array that includes the
items and its child items as they are displayed (
sorted, filtered). In this case, the array may contains
other arrays that specifies the child items. The list
includes the collapsed items, and the items are
included as they are displayed (sorted, filtered). This
option exports the values of the cells (CellValue
property)

If missing, the Options parameter is 0. If the control
displays no items, the result is an empty object
(VT_EMPTY).

Return Description

Variant

A safe array that holds the items in the control. If the
control has a single column, the GetItems returns a single
dimension array (object[]), else The safe array being
returned has two dimensions (object[,]). The first

dimension holds the collection of columns, and the second
holds the cells.

The GetItems method to get a safe array that holds the items in the control. The GetItems
method gets the items as they are displayed, sorted and filtered. Also, the GetItems
method collect the child items as well, no matter if the parent item is collapsed. The method
returns nothing if the control has no columns or items. Use the Items property to access the
items collection. You can use the GetItems(1) method to get the list of handles for the items
as they are displayed, sorted and filtered. The GetItems method returns an empty
expression (VT_EMPTY), if there is no items in the result.

/NET Assembly:

The following C# sample converts the returned value to a object[] when the control contains
a single column:

 object[] Items = (object[])view1.GetItems()

or when the control contains multiple columns, the syntax is as follows:

 object[,] Items = (object[,])view1.GetItems()

The following VB.NET sample converts the returned value to a Object() when the control
contains a single column:

 Dim Items As Object() = View1.GetItems()

or when the control contains multiple columns, the syntax is as follows:

 Dim Items As Object(,) = View1.GetItems()

property View.GridLineColor as Color
Specifies the grid line color.

Type Description
Color A color expression that indicates the color of the grid lines.

Use the GridLineColor property to specify the color for grid lines. Use the DrawGridLines
property to show the grid lines. The GridLineStyle property to specify the style for
horizontal or/and vertical gridlines in the control. Use the LinesAtRoot property specifies
whether the control links the root items of the control. Use the HasLines property to specify
whether the control draws the link between child items to their corresponding parent item.

property View.GridLineStyle as GridLinesStyleEnum
Specifies the style for gridlines in the list part of the control.

Type Description

GridLinesStyleEnum A GridLinesStyleEnum expression that specifies the style
to show the control's horizontal or vertical lines.

By default, the GridLineStyle property is exViewLinesDot. The GridLineStyle property has
effect only if the DrawGridLines property is not zero. The GridLineStyle property can be
used to specify the style for horizontal or/and vertical grid lines. Use the GridLineColor
property to specify the color for grid lines. Use the LinesAtRoot property specifies whether
the control links the root items of the control. Use the HasLines property to specify whether
the control draws the link between child items to their corresponding parent item.

method View.Group ()
Forces the control to do a regrouping of the columns.

Type Description

The Group method forces the control to re-group the items. The AllowGroupBy property
specifies whether the control supports Group-By feature. The Group method has no effect
if the AllowGroupBy property is False. The Ungroup method un-groups the items in the
control's list. During execution any of these methods, the IsGrouping property returns True.
You can call the SortOrder property to sort and group by specified column. Use the
SortType property to determine the way how the column is sorted. The
ViewItemUpdate(exAddGroupItem) event is fired when a new grouping items is added to
the control's list. You can use the ViewItemUpdate(exAddGroupItem) event, to add
headers or footers during grouping, customize the aggregate formula to be displayed on
different columns, while dropping a column to the sortbar. The Column.AllowGroupBy
property may be used to prevent grouping a specific column. The AllowSort property
indicates whether the user can sort a column by clicking the column's header.

property View.HasButtons as ExpandButtonEnum
Adds a button to the left side of each parent item. The user can click the button to expand
or collapse the child items as an alternative to double-clicking the parent item.

Type Description

ExpandButtonEnum
An ExpandButtonEnum expression that indicates whether
the control displays a + button to the left of each parent
item.

The HasButtons property has effect only if the data is displayed as a grid. Use the
InsertItem property to let the control displays your data as a grid. Use the TreeColumnIndex
property to select the column where the hierarchy is displayed. Use the LinesAtRoot
property to let the control displays a line that links the root items of the control. Use the
CellVAlignment property to specify where the +/- AND the cell's caption is displayed in the
item's client area. For instance, you can't have the +/- sign aligned to the top of the cell, and
its caption aligned to the bottom. The +/- signs are always centered to the cell's caption,
only the cell's caption can be aligned to the top or to the bottom of the cell's client area.

property View.HasLines as HierarchyLineEnum
Enhances the graphic representation of a grid control's hierarchy by drawing lines that link
child items to their corresponding parent item.

Type Description

HierarchyLineEnum An HierarchyLinesEnum expression that indicates whether
the control displays the hierarchy lines.

Use the HasLines property to hide the hierarchy lines. Use the LinesAtRoot property to
allow control displays a line that links that root items of the control. Use the InsertItem
method to insert new items to the control. Use HasButtons property to hide the buttons
displayed at the left of each parent item. Use the DrawGridLines property to display grid
lines. The GridLineStyle property to specify the style for horizontal or/and vertical gridlines
in the control. Use the InsertControlItem property to insert an ActiveX item.

property View.HeaderAppearance as AppearanceEnum
Retrieves or sets a value that indicates the header's appearance.

Type Description

AppearanceEnum A boolean expression that specifies the appearance of the
columns header.

Use the HeaderAppearance property to define the appearance of the columns header bar.
The user can't resize the columns at runtime, if the HeaderAppearance property is None2.
Use the ColumnsAllowSizing property to allow resizing the columns, when the control's
header bar is not visible. Use the Appearance property to define the control's appearance.
Use the HeaderVisible property to hide the control's header bar.

property View.HeaderHeight as Long
Retrieves or sets a value indicating the control's header height.

Type Description

Long A long expression that indicates the height of the control's
header bar.

By default, the HeaderHeight property is 18 pixels. Use the HeaderHeight property to
change the height of the control's header bar. Use the HeaderVisible property to hide the
control's header bar. Use the LevelKey property to display the control's header bar using
multiple levels. Use the FormatLevel property to display multiple levels in the column's
header. If the control displays the header bar using multiple levels the HeaderHeight
property gets the height in pixels of a single level in the header bar. The control's header
displays multiple levels if there are two or more neighbor columns with the same non empty
level key. Use the HTMLCaption property to display multiple lines in the column's caption.
Use the Add method to add new columns to the control. If the HeaderSingleLine property is
False, the HeaderHeight property specifies the maximum height of the control's header
when the user resizes the columns.

property View.HeaderSingleLine as Boolean
Specifies whether the control resizes the columns header and wraps the captions in single
or multiple lines.

Type Description

Boolean A boolean expression that specifies whether the header
displays single or multiple lines.

By defauly, the HeaderSingleLine property is True. If the HeaderSingleLine property is False
the control breaks the column's caption as soon as the user resizes the column. In this
case the HeaderHeight property specifies the maximum height of the control's
header. The initial height is computed based on the control's Font property. The Caption
property specifies the caption of the column being displayed in the control's header. The
HTMLCaption property specifies the HTML caption of the column being displayed in the
column's header. Use the LevelKey property to display the control's header on multiple
levels.

property View.HeaderVisible as Boolean
Retrieves or sets a value that indicates whether the the control's header is visible or hidden.

Type Description

Boolean A boolean expression that indicates whether the columns
header bar is visible or hidden.

Use the HeaderVisible property to hide the columns header bar. Use the Visible property to
hide a particular column. Use the ColumnFromPoint property to access the column from
point. If the control's header bar is hidden, the ColumnFromPoint property returns -1. Use
the LevelKey property to allow multiple levels header bar. Use the FormatLevel property to
display multiple levels in the column's header. Use the HeaderHeight property to specify the
height of the control's header bar. Use the BackColorHeader property to specify the
header's background color. Use the AllowSizing property to disable resizing a column when
user clicks the right margin of the column. Use the SortOnClick property to specify the
action that control takes when the column's caption is clicked. Use the ColumnsAllowSizing
property to allow resizing the columns, when the control's header bar is not visible. The
Background(exCursorHoverColumn) property specifies the visual appearance of the
column's header when the cursor hovers it.

property View.HideSelection as Boolean
Returns a value that determines whether selected item appears highlighted when a control
loses the focus.

Type Description

Boolean A boolean expression that indicates whether the selected
item appears highlighted when a control loses the focus.

By default, the HideSelection property is False. You can use this property to indicate which
item is highlighted while another form, dialog box or control has the focus. Use the
HideSelection property to hide the selected items when the control loses the focus. Use the
SelBackColor property to indicate the background color for selected items. Use the
SelForeColor property to specify the foreground color for selected items. Use the
SelectItem property to select programmatically items. Use the SelectedItem and
SelectCount property to retrieve the list of selected items. Use the SelectableItem property
to specify whether an items can be selected.

property View.hWnd as Long
Retrieves the control's window handle.

Type Description

Long A long value that indicates the handle of the control's
window.

Use the hWnd property to get the handle of the control's window. Use the ItemWindowHost
property to get the handle of the container window that host an ActiveX control. The
Microsoft Windows operating environment identifies each form and control in an application
by assigning it a handle, or hWnd. The hWnd property is used with Windows API calls.
Many Windows operating environment functions require the hWnd of the active window as
an argument.

property View.Indent as Long
Retrieves or sets the amount, in pixels, that child items are indented relative to their parent
items.

Type Description

Long A long expression that indicates the amount, in pixels, that
child items are indented relative to their parent items

By default, the Indent property is 22 pixels. If the Indent property is 0, the child items are
not indented relative to their parent item. Use HasLines and LinesAtRoot properties to show
the hierarchy lines. Use the HasButtons property to define the +/- signs appearance. Use
the TreeColumnIndex property to define the index of the column that displays the hierarchy.
Use the InsertItem method to insert a child item. Use the InsertControlItem property to
insert an ActiveX item.

property View.Index as Long
Indicates the index of the view.

Type Description

Long A long expression that specifies the index of the view (0-
based)

The Index property specifies the index of the view on the control. The following properties
can be used to access a view:

FirstView property, gets the first view
PrevView property, gets the previously view (parent)
ParentView property, gets the parent view (previously)
ChildView property, gets the child view (next).
NextView property, gets the next view (child).

LastView property, gets the last view.

The ActiveView property gets the active view (the last view with any active items inside).
The DefaultView property specifies the default view on the control. The View property
returns the default view, in case it is not called during an event. During any event, the View
property returns the view where the event occurs.

property View.IsGrouping as Boolean
Indicates whether the control is grouping the items.

Type Description

Boolean A Boolean expression that specifies whether the control is
grouping or ungrouping the items.

The IsGrouping property determines whether the control is grouping/ungrouping the items.
The AllowGroupBy property specifies whether the control supports Group-By feature. For
instance, during grouping, the control may expand or collapse items, you can use the
IsGrouping property to determine if the ViewItemStateStartChanging(exExpandItem)/
ViewItemStateEndChanging(exExpandItem) events occur due user interaction or control's
grouping operation. The GroupItem property indicates the index of the column being
grouped for specified grouping item. The Group/Ungroup method groups or ungroup the
control's list. During execution any of these methods, the IsGrouping property returns True.
The ViewEndChanging(exLayoutChange) event is fired when the user changes the layout of
the control, including dragging a column to the sort bar. The SortBarColumnsCount property
indicates the number of the columns being grouped. The SortBarColumn property indicates
the column being sorted giving its position in the sort bar.

property View.Items as Items
Retrieves the view's item collection.

Type Description
Items Defines the viewl' Items collection.

Use the Items property to access the Items collection. Use the Items collection to add,
remove or change the control items. Use the GetItems method to get the items collection
into a safe array. Use the Columns property to access the control's Columns collection. Use
the AddItem, InsertItem or InsertControlItem method to add new items to the control. Use
the DataSource to add new columns and items to the control. Adding new items fails if the
control has no columns.

property View.ItemsAllowSizing as ItemsAllowSizingEnum
Retrieves or sets a value that indicates whether a user can resize items at run-time.

Type Description

ItemsAllowSizingEnum
An ItemsAllowSizingEnum expression that specifies
whether the user can resize a single item at runtime, or all
items, at once.

By default, the ItemsAllowSizing property is exNoSizing. Use the ItemsAllowSizing property
to specify whether all items are resizable. Use the ItemAllowSizing property of the Items
object to specify only when few items are resizable or not. Use the ItemHeight property to
specify the height of the item. The CellSingleLine property specifies whether a cell displays
its caption using multiple lines. The DefaultItemHeight property specifies the default height
of the items, before loading data to your control .

property View.Key as Variant
Specifies the index or the caption of the column that determines the key of the view.

Type Description

Variant A long or string expression that specifies the index or the
caption of the column that determines the key of the view.

The DataSource property can change the Key property using the Key field as explained
bellow:

Key or Data Key, specifies the index or the name of the field from the Data Member
that generates keys for the current view. For instance, "Key=CountryCode" specifies
that the CountryCode field of the current view generates keys for next child views. The
Key property of the View object can be used to access the key of the view at runtime.
If the Key refers to an exiting field/column in the current view, it means that the control
generates the next view, once the user selects one or more items into the current view.
If the Key is empty or points to an non-existing field/column in the current view, no view
will be generated once an item in the current view is selected. The control fires the
CreateView event once a new view requires to be created. The
ViewStartChanging(exSelectChange) / ViewEndChanging(exSelectChange) event
notifies your application once the selection into the view is changing. During any event,
you can access the view that generated the event, using the View property of the
control. The Select property of the control generates the path of the current selection
for all views using the Key property of each View (separated by \ backslash character
). For instance, the Select property could return "US\AK". The Key field is not required,
and if missing no view will be generated once the user selects an item into the current
view.

The Select property can select items using wild characters such as * or ?, if the view's
SingleSel property is False.

property View.LastView as View
Gets the last view.

Type Description
View A View object that indicates the last view.

The following properties can be used to access a view:

FirstView property, gets the first view
PrevView property, gets the previously view (parent)
ParentView property, gets the parent view (previously)
ChildView property, gets the child view (next).
NextView property, gets the next view (child).

LastView property, gets the last view.

The ActiveView property gets the active view (the last view with any active items inside).
The DefaultView property specifies the default view on the control. The View property
returns the default view, in case it is not called during an event. During any event, the View
property returns the view where the event occurs.

property View.Level as Long
Indicates the split level of the view.

Type Description

Long A Long expression that Indicates the split vertical level of
the view.

The AllowSplitView property specifies whether the user can split the control into multiple-
views. The SplitViewHeight property specifies the height of split panels, separated by
comma. The DefaultView property specifies the default view on the control. The View
property returns the default view, in case it is not called during an event. During any event,
the View property returns the view where the event occurs. The ActiveView property gets
the active view (the last view with any active items inside). The CreateView event is fired
as soon as the control creates a new view. The Items property retrieves the view' items
collection. The Columns property retrieves the view's columns collection.

The following properties can be used to access a view:

FirstView property, gets the first view
PrevView property, gets the previously view (parent)
ParentView property, gets the parent view (previously)
ChildView property, gets the child view (next).
NextView property, gets the next view (child).

LastView property, gets the last view.

property View.LinesAtRoot as LinesAtRootEnum
Link items at the root of the hierarchy.

Type Description

LinesAtRootEnum A LinesAtRootEnum expression that indicates whether the
control links the items at the root of the hierarchy.

The control paints the hierarchy lines to the right if the Column's Alignment property is
RightAlignment. The TreeColumnIndex property specifies the index of column where the
hierarchy lines are painted. Use the Indent property to increase or decrease the amount, in
pixels, that child items are indented relative to their parent items. Use the HasLines property
to enhances the graphic representation of a tree control's hierarchy by drawing lines that
link child items to their corresponding parent item. Use the InsertItem method to insert a
child item. Use the InsertControlItem property to insert an ActiveX item.

property View.MarkSearchColumn as Boolean
Retrieves or sets a value that indicates whether the searching column is marked or
unmarked

Type Description

Boolean A boolean expression that indicates whether the searching
column is marked or unmarked.

The control marks the searching column by drawing a rectangle around it. The
SearchColumnIndex property determines the index of the searching column. Use the
MarkSearchColumn property to hide the searching column. By default, the
MarkSearchColumn property is True. The user can change the searching column by
pressing the TAB ort Shift + TAB key. Use the AutoSearch property to specify whether the
control enables the incremental searching feature. Use the AutoSearch property to specify
the type of incremental searching the control supports within the column. Use the
UseTabKey property to specify whether the control uses the TAB key.

property View.Name as Variant
Specifies the index or the caption of the column that determines the name of the view.

Type Description

Variant
A long or string expression that specifies the index or the
caption of the column that determines the name of the
view.

The DataSource property can change the Name property using the Name field as explained
bellow:

Name or Data Name, indicates the index or the name of the field from the Data
Member, that generates names for the Name property. For instance,
"Name=CountryName", indicates that the CountryName column of the current view
generate values for the Name property. The Name property of the control generates
the path of the current selection for all views using the Name property of each View (
separated by \ backslash character). For instance, the Name property could return
"United States\Alaska\Anchorage", The Name field is not required. By default, the
column with the index 0 specifies the name column.

The Name property of each View object specifies the index or the caption of the column
that determines the name of the view. The Name property can select items using wild
characters such as * or ?, if the view's SingleSel property is False. The Name property is
similar with the Select property, excepts it uses the Name column to build the path.

property View.NextView as View
Gets the next view (child).

Type Description
View A View object that specifies the next / child view.

The following properties can be used to access a view:

FirstView property, gets the first view
PrevView property, gets the previously view (parent)
ParentView property, gets the parent view (previously)
ChildView property, gets the child view (next).
NextView property, gets the next view (child).

LastView property, gets the last view.

The ActiveView property gets the active view (the last view with any active items inside).
The DefaultView property specifies the default view on the control. The View property
returns the default view, in case it is not called during an event. During any event, the View
property returns the view where the event occurs.

property View.ParentView as View
Gets the parent view (previously).

Type Description
View A View object that specifies the parent view.

The following properties can be used to access a view:

FirstView property, gets the first view
PrevView property, gets the previously view (parent)
ParentView property, gets the parent view (previously)
ChildView property, gets the child view (next).
NextView property, gets the next view (child).

LastView property, gets the last view.

The ActiveView property gets the active view (the last view with any active items inside).
The DefaultView property specifies the default view on the control. The View property
returns the default view, in case it is not called during an event. During any event, the View
property returns the view where the event occurs.

property View.PrevView as View
Gets the previously view (parent).

Type Description
View A View object that specifies the previously view (parent).

The following properties can be used to access a view:

FirstView property, gets the first view
PrevView property, gets the previously view (parent)
ParentView property, gets the parent view (previously)
ChildView property, gets the child view (next).
NextView property, gets the next view (child).

LastView property, gets the last view.

The ActiveView property gets the active view (the last view with any active items inside).
The DefaultView property specifies the default view on the control. The View property
returns the default view, in case it is not called during an event. During any event, the View
property returns the view where the event occurs.

property View.RadioImage(Checked as Boolean) as Long
Retrieves or sets a value that indicates the image used by cells of radio type.

Type Description

Checked as Boolean A boolean expression that indicates the radio's state. True
means checked, and False means unchecked.

Long

A long expression that indicates the index of image used to
paint the radio button. The last 7 bits in the high significant
byte of the long expression indicates the identifier of the
skin being used to paint the object. Use the Add method to
add new skins to the control. If you need to remove the
skin appearance from a part of the control you need to
reset the last 7 bits in the high significant byte of the color
being applied to the part.

Use RadioImage and CheckImage properties to define the icons used for radio and check
box cells. The RadioImage property defines the index of the icon being used by radio
buttons. Use the PartialCheck property to allow partial check feature within the column. Use
the Images method to insert icons at runtime. The following samples require a control with
icons, else nothing will be changed. The ImageSize property defines the size (width/height)
of the control's radio buttons.

method View.RemoveSelection ()
Removes the selected items (including the descendents)

Type Description

The RemoveSelection method removes the selected items (including the descendents). The
RemoveItem method removes a specific item. The UnselectAll method unselects all items in
the list.

property View.RightToLeft as Boolean
Indicates whether the component should draw right-to-left for RTL languages.

Type Description

Boolean A boolean expression that specifies whether the control is
drawn from right to left or from left to right.

By default, the RightToLeft property is False. The RightToLeft gets or sets a value indicating
whether control's elements are aligned to right or left. The RightTolLeft property affects all
columns, and future columns being added.

Changing the RightToLeft property on True does the following:

displays the vertical scroll bar on the left side of the control (Scrollbars property)
flips the order of the columns (Position property)
change the column's alignment to right, if the column is not centered (Alignment
property, HeaderAlignment property, HeaderImageAlignment property)
reverse the order of the drawing parts in the cells (Def(exCellDrawPartsOrder)
property to "caption,picture,icons,icon,check")
aligns the locked columns to the right (CountLockedColumns property)
aligns the control's group-by bar / sort bar to the right (SortBarVisible property)
the control's filter bar/prompt/close is aligned to the right (FilterBarPromptVisible
property)

The following screen shot shows how the control looks if the RightToLeft property is True:

(By default) Changing the RightToLeft property on False does the following:

displays the vertical scroll bar on the right side of the control (Scrollbars property)
flips the order of the columns (Position property)
change the column's alignment to left, if the column is not centered (Alignment
property, HeaderAlignment property, HeaderImageAlignment property)
reverse the order of the drawing parts in the cells (Def(exCellDrawPartsOrder)
property to "check,icon,icons,picture,caption")
aligns the locked columns to the left (CountLockedColumns property)
aligns the control's group-by bar / sort bar to the left (SortBarVisible property)

the control's filter bar/prompt/close is aligned to the left (FilterBarPromptVisible
property)

method View.Scroll (Type as ScrollEnum, [ScrollTo as Variant])
Scrolls the control's content.

Type Description

Type as ScrollEnum A ScrollEnum expression that indicates type of scrolling
being performed.

ScrollTo as Variant

A long expression that indicates the position where the
control is scrolled when Type is exScrollVTo or
exScrollHTo. If the ScrollTo parameter is missing, 0 value
is used.

Use the Scroll method to scroll the control's content by code. Use the Scrollbars property
specifies which scroll bars will be visible on the control. Use the ScrollPos property to get
the control's scroll position. Use the EnsureVisibleItem method to ensure that a specified
item fits the control's client area. Use the EnsureVisibleColumn method to ensure that a
specified column fits the control's client area. If the Type parameter is exScrollLeft,
exScrollRight or exScrollHTo the Scroll method scrolls horizontally the control's content pixel
by pixel, if the ContinueColumnScroll property is False, else the Scroll method scrolls
horizontally the control's content column by column. Use the ScrollPartVisible property to
add buttons to the control's scrollbars. Use the Background property to change the visual
appearance of the control's scrollbars.

property View.ScrollBars as ScrollBarsEnum
Returns or sets a value that determines whether the control has horizontal and/or vertical
scroll bars.

Type Description

ScrollBarsEnum A ScrollBarsEnum expression that indicates which scroll
bars will be visible in the control.

By default, the control adds scroll bars when required. For instance, If the
ColumnAutoResize property is False and the width of the visible columns exceeds the width
of the control's client area, the control shows the horizontal scroll bar. Use the ScrollBars
property to hide the control's scroll bars. If the ColumnAutoResize property is True, the
control does not display the control's horizontal scroll bar. Use the ScrollBySingleLine
property to let users scroll the control's content item by item. Use the ContinueColumnScroll
property to specify whether the user scrolls the control's content column by column or pixel
by pixel. Use the EnsureVisibleItem method to ensure that an item fits the control's client
area. Use the EnsureVisibleColumn method to ensure that a specified column fits the
control's client area. Use the Scroll method to scroll programmatically the control. The
ScrollBars property doesn't indicate whether the control displays a scroll bar. Instead, the
WS_HSCROLL and WS_VSCROLL window styles indicate whether the window displays a
scroll bar. Use the hWnd property to determine the handle of the control's window.

property View.ScrollBySingleLine as Boolean
Retrieves or sets a value that indicates whether the control scrolls the lines to the end. If
you have at least a cell that has SingleLine false, you have to check the ScrollBySingleLine
property.

Type Description

Boolean A boolean expression that indicates whether the control
scrolls the lines one by one.

By default, the ScrollBySingleLine property is False. We recommend to set the
ScrollBySingleLine property on True if you have one of the following:

If you have at least a cell that has CellSingleLine property on false
If your control contains at least an item that hosts an ActiveX control. See
InsertControlItem property.
If the control displays items with different height. Use the ItemHeight property to
specify the item's height.

Use the EnsureVisibleItem property to ensure that an item fits the control's client area. Use
the ScrollBars property to hide the control's scroll bars. Use the Scroll method to
programmatically scroll the control's content.

property View.ScrollPos(Vertical as Boolean) as Long
Specifies the vertical/horizontal scroll position.

Type Description

Vertical as Boolean
A boolean expression that specifies the scrollbar being
requested. True indicates the Vertical scroll bar, False
indicates the Horizontal scroll bar.

Long A long expression that defines the scroll bar position.

Use the ScrollPos property to change programmatically the position of the control's scroll
bar. Use the ScrollPos property to get the horizontal or vertical scroll position.Use the
ScrollBars property to define the control's scroll bars. Use the Scroll method to scroll
programmatically the control's content.

property View.SearchColumnIndex as Long
Retrieves or sets a value indicating the index of the column that is used by the auto search
feature.

Type Description

Long A long expression that indicates the index of searching
column.

Use the SearchColumnIndex property to change the searching column. The control changes
the searching column when the user clicks on a column or when the user presses the TAB
key (in this case the UseTabKey property should be True). If the user starts typing
characters in the searching column, the control selects the item that matches the typed
characters. If you want to disable the auto search feature, you have to set the
SearchColumnIndex property to -1. Use the MarkSearchColumn property to hide the
marker of the searching column. If the searching column is moved, the focused column is
moved too.

property View.SelBackMode as BackModeEnum
Retrieves or sets a value that indicates whether the selection is transparent or opaque.

Type Description

BackModeEnum A BackModeEnum expression that indicates how the
selected items are painted.

By default, the SelBackMode property is exOpaque. Use the SelBackMode property to
specify how the selection appears. Use the SelBackColor property to specify the selection
background color. Use the SelForeColor property to specify the selection foreground color.

property View.Select as String
Selects the path

Type Description

String A String expression that defines the path of selected
items, using the Key column in each view.

The view's Select property selects items within the view and its descendents. The Key
property indicates the column that defines the key of the view. Based on the key, and the
current selection the next view is created. The Select property can select items using wild
characters such as * or ?, if the view's SingleSel property is False. The Key property can
be specified also through Key field of the control's DataSource property.

property View.SelectColumnIndex as Long
Retrieves or sets a value that indicates the index of the selected column, if the
FullRowSelect property is False.

Type Description

Long A long expression that indicates the index of selected
column.

The property has effect only if the FullRowSelect property is False. Use the SelectedItem
property to determine the selected items. Use the SplitCell property to split a cell. Use the
SelectableItem property to specify the user can select an item.

property View.SelectOnRelease as Boolean
Indicates whether the selection occurs when the user releases the mouse button.

Type Description

Boolean A Boolean expression that indicates whether the selection
occurs when the user releases the mouse button.

By default, the SelectOnRelease property is False. By default, the selection occurs, as
soon as the user clicks an object. The SelectOnRelease property indicates whether the
selection occurs when the user releases the mouse button. The SelectOnRelease property
has no effect if the SingleSel property is False.

property View.ShowFocusRect as Boolean
Retrieves or sets a value indicating whether the control draws a thin rectangle around the
focused item.

Type Description

Boolean A boolean expression that indicates whether the marker
for the focused cell is visible or hidden.

Use the ShowFocusRect property to hide the rectangle drawn around the focused item.
Use the FocusItem property to get the focused item. If there is no focused item the
FocusItem property retrieves 0. At one moment, only one item can be focused. When the
selection is changed the focused item is changed too. Use the SelectCount property to get
the number of selected items. Use the SelectedItem property to get the selected item. Use
the SelectItem to select or unselect a specified item. If the control supports only single
selection, you can use the FocusItem property to get the selected/focused item because
they are always the same.

property View.ShowLockedItems as Boolean
Retrieves or sets a value that indicates whether the locked/fixed items are visible or hidden.

Type Description

Boolean A boolean expression that specifies whether the locked
items are shown or hidden.

A locked or fixed item is always displayed on the top or bottom side of the control no matter
if the control's list is scrolled up or down. Use the ShowLockedItems property to show or
hide the locked items. Use the LockedItemCount property to add or remove items
fixed/locked to the top or bottom side of the control. Use the LockedItem property to
access a locked item by its position. Use the CellValue property assign a value to a cell.

property View.SingleSel as Boolean
Retrieves or sets a value that indicates whether the control supports single or multiple
selection.

Type Description

Boolean A boolean expression that indicates whether the control
support single or multiple selection.

The SingleSel property specifies whether the control support single or multiple selection. By
default, the SingleSel property is True, and so only a single item can be selected. Use the
FocusItem to retrieve the handle of the focused item. If the control supports single
selection, the FocusItem property gets the handle of the selected item too. The
SelectedItem and SelectCount properties get the collection of selected items. Use the
SelectItem property to programmatically select an item giving its handle. The control fires
ViewItemStateStartChanging(exActivateItem) / ViewItemStateEndChanging(exActivateItem)
event when the selection is changed. Use the SelBackColor and SelForeColor properties to
specify the background and foreground colors for selected items. Use the SelectableItem
property to specify the user can select an item. The FullRowSelect property specifies
whether the selection spans the entire width of the control. the SelectAll method to select all
visible items, when the control supports multiple selection. The SelectPos property
selects/unselects items by position. The Selection property selects/unselects items by
index.

property View.SingleSort as Boolean
Returns or sets a value that indicates whether the control supports sorting by single or
multiple columns.

Type Description

Boolean A boolean expression that indicates whether the control
supports sorting by single or multiple columns.

Use the SingleSort property to allow sorting by multiple columns. Sorting by a single column
in the control is a simple matter of clicking on the column head. Sorting by multiple columns,
however, is not so obvious. But it's actually quite easy. The user has two options to sort by
multiple columns:

First, sort by the first criterion, by clicking on the column head. Then hold the SHIFT
key down as you click on a second heading.
Click the column head and drag to the control's sort bar in the desired position.

By default, the SingleSort property is True, and so the user can have sorting by a single
column only. Use the SortBarVisible property to show the control's sort bar. The SingleSort
property is automatically set on False, if the SortBarVisible property is set to True. Use the
SortOnClick property to specify the action that control should execute when the user clicks
the control's header. Use the SortOrder property to sort a column programmatically. Use
the SortPosition property to specify the position of the column in the sorted columns list.
Use the ItemBySortPosition property to get the columns being sorted in their order.

property View.SortBarCaption as String
Specifies the caption being displayed on the control's sort bar when the sort bar contains no
columns.

Type Description

String A String expression that indicates the caption of the
control's sort bar.

The SortBarCaption property specifies the caption of the control's sort bar, when it contains
no sorted columns. Use the SortBarVisible property to show the control's sort bar. Use the
BackColorSortBar, BackColorSortBarCaption and ForeColorSortBar properties to specify
colors for the control's sort bar. Use the SortBarHeight property to specify the height of the
control's sort bar. Use the SortBarColumnWidth property to specify the width of the column
in the control's sort bar. By default, the SortBarCaption property is "Drag a column
header here to sort by that column.". Use the Font property to specify the control's font.
Use the ItemBySortPosition property to access the columns in the control's sort bar.

The SortBarCaption property may include built-in HTML tags like follows:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>

about:blank

... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient

color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

property View.SortBarColumnWidth as Long
Specifies the maximum width a column can be in the control's sort bar.

Type Description

Long

A long expression that indicates the width of the columns
in the control's sort bar. If the value is negative, all
columns in the sort bar are displayed with the same width
(the absolute value represents the width of the columns,
in pixels). If the value is positive, it indicates the maximum
width, so the width of the columns in the sort bar may
differ.

the SortBarColumnWidth property to specify the width of the column in the control's sort
bar. Use the SortBarVisible property to show the control's sort bar. Use the Width property
to specify the width of the column in the control's header bar. Use the SortBarHeight
property to specify the height of the control's sort bar. Use the SortBarCaption property to
specify the caption being displayed in the control's sort bar when it contains no columns.

property View.SortBarHeight as Long
Retrieves or sets a value that indicates the height of the control's sort bar.

Type Description

Long A long expression that indicates the height of the control's
sort bar, in pixels.

Use the SortBarHeight property to specify the height of the control's sort bar. Use the
SortBarVisible property to show the control's sort bar. By default, the SortBarHeight
property is 18 pixels. Use the HeaderHeight property to specify the height of the control's
header bar. Use the SortBarColumnWidth property to specify the width of the columns
being displayed in the control's sort bar. Use the BackColorSortBar,
BackColorSortBarCaption and ForeColorSortBar properties to specify colors for the
control's sort bar. Use the SortBarCaption property to specify the caption being displayed in
the control's sort bar when it contains no columns.

property View.SortBarVisible as Boolean
Retrieves or sets a value that indicates whether control's sort bar is visible or hidden.

Type Description

Boolean A boolean expression that indicates whether the sort bar is
visible or hidden.

Use the SortBarVisible property to show the control's sort bar. By default, the
SortBarVisible property is False. Use the SingleSort property to specify whether the control
supports sorting by single or multiple columns. Sorting by a single column in the control is a
simple matter of clicking on the column head. Sorting by multiple columns, however, is not
so obvious. But it's actually quite easy. The user has two options to sort by multiple
columns:

First, sort by the first criterion, by clicking on the column head. Then hold the SHIFT
key down as you click on a second heading.
Click the column head and drag to the control's sort bar in the desired position.

property View.SortOnClick as SortOnClickEnum
Retrieves or sets a value that indicates whether the control automatically sorts the data
when the user clicks on a column's caption.

Type Description

SortOnClickEnum
A SortOnClickEnum expression that indicates the action
that control takes whether the user clicks the column's
header.

Use the SortOnClick property to disable sorting items when the user clicks on the column's
header. Use the SortBarVisible property to show the control's sort bar. Use the SingleSort
property to allow sorting by single or multiple columns. Use the AllowSort property to avoid
sorting a column when user clicks the column. Use the DefaultSortOrder property to specify
the column's default sort order, when the user first clicks the column's header. Use the
SortChildren method to sort a column, at runtime. Use the DisplaySortIcon property to hide
the sort icon if the column is sorted. Use the HeaderVisible property to show or hide the
control's header. Use the BackColorHeader property to specify the header's background
color. Use the AllowSizing property to disable resizing a column when user clicks the right
margin of the column.

There are two methods to get the items sorted like follows:

Using the SortOrder property of the Column object::

View1.Columns(ColIndex).SortOrder = SortAscending

The SortOrder property adds the sorting icon to the column's header, if the
DisplaySortIcon property is True.

Using the SortChildren method of the Items collection. The SortChildren sorts the
items. The SortChildren method sorts the child items of the given parent item in the
control. SortChildren will not recourse through the tree, only the immediate children of
the item will be sorted. The following sample sorts descending the list of root items on
the "Column 1"(if your control displays a list, all items are considered being root items
).

View1.Items.SortChildren 0, "Column 1", False

property View.Tag as Variant
Specifies any extra data associated with the view.

Type Description
Variant A Variant expression associated with the view.

The Tag property associates any extra data to the current view. The View property gets the
view giving its index or tag. The DataSource property can change the Tag property using
the Tag field as explained bellow:

Tag or Data Tag, specifies any extra data associated with the view. For instance,
"Tag=Country". The Tag property of the View can be used to access the tag of the
view at runtime. The Tag field is not required.

The Select property can select items using wild characters such as * or ?, if the view's
SingleSel property is False.

property View.TreeColumnIndex as Long
Retrieves or sets a value that indicates the index of column where the hierarchy lines are
displayed.

Type Description

Long A long expression that indicates the index of column that
displays the control's hierarchy.

Use the TreeColumnIndex property to change the column's index where the hierarchy lines
are painted. Use HasLines and LinesAtRoot properties to show the hierarchy lines. Use the
HasButtons property to define the +/- signs appearance. If the TreeColumnIndex property is
-1, the control doesn't paint the hierarchy. Use the Indent property to define the amount, in
pixels, that child items are indented relative to their parent items. Use the InsertItem
property to insert child items.

method View.Ungroup ()
Ungroups the columns, if they have been previously grouped.

Type Description

The Ungroup method removes the grouping items from the control's list. The AllowGroupBy
property specifies whether the control supports Group-By feature. The Ungroup method
has no effect if the AllowGroupBy property is False, or no columns is grouped. The Group
method forces the control to re-group the items. During execution any of these methods,
the IsGrouping property returns True. You can call the SortOrder property to sort and
group by specified column. Use the SortType property to determine the way how the
column is sorted. The ViewItemUpdate(exAddGroupItem) event is fired when a new
grouping items is added to the control's list. You can use the AddGroupItem event, to add
headers or footers during grouping, customize the aggregate formula to be displayed on
different columns, while dropping a column to the sortbar. The Column.AllowGroupBy
property may be used to prevent grouping a specific column. The AllowSort property
indicates whether the user can sort a column by clicking the column's header.

property View.Value ([Column as Variant]) as Variant
Indicates the value of the single active item on the specified column.

Type Description

Column as Variant A long expression / string expression that specifies the
column where the value is being requested.

Variant
A VARIANT expression that specifies the selected value in
giving column. The CellValue property specifies the cell's
value.

The Value property returns the value of the single active item on the specified column. The
Values property returns a safe array with all values of selected / active items in the view, on
the specified column. The ValueList property returns the list of values for all selected /
active items in the view, on the specified column, separated by comma.

As Microsoft Access uses DAO, you need to use the View's DataSource property rather
than control's DataSource property as in the following sample:

Private Sub CascadeTree1_CreateView(ByVal View As Object)
 With View
 Select Case .Index
 Case 1: ' State or City
 .DataSource = CurrentDb.OpenRecordset("Select * FROM States WHERE
CountryCode IN (" & .ParentView.ValueList("CountryCode") & ")")
 .Tag = "State"
 .Key = "StateCode"
 .Name = "StateName"
 If (.Items.ItemCount = 0) Then
 .DataSource = CurrentDb.OpenRecordset("Select * FROM Cities WHERE
CountryCode IN (" & .ParentView.ValueList("CountryCode") & ")")
 .Tag = "City"
 .Key = ""
 .Name = "Name"
 .ColumnAutoResize = False
 End If
 Case 2: ' City
 .DataSource = CurrentDb.OpenRecordset("Select * FROM Cities WHERE
CountryCode IN (" & .ParentView.ParentView.ValueList("CountryCode") & ") AND
StateCode IN (" & .ParentView.ValueList("StateCode") & ")")

 .Tag = "City"
 .Key = ""
 .Name = "Name"
 End Select
 End With
End Sub

Private Sub Form_Load()
 With CascadeTree1.DefaultView
 .DataSource = CurrentDb.OpenRecordset("SELECT * FROM Countries")
 .Tag = "Country"
 .Key = "CountryCode"
 .Name = "CountryName"
 End With
End Sub

The sample loads the Countries table into the default view (view with the index 0). Once
the user clicks / selects / activates an item, the control creates a new view (with the index
1, 2 and so on) and fires the CreateView event. During the CreateView event you can load
data from different tables based on the parent's view selection. See the
ParentView.ValueList

property View.ValueList ([Column as Variant]) as String
Returns the list of values for all selected / active items in the view, on the specified column,
separated by comma.

Type Description

Column as Variant A long expression / string expression that specifies the
column where the value is being requested.

String

A String expression that specifies the selected values,
separated by , (comma) character. Each string value is
returned between '' characters, while a date between ##
characters,

The ValueList property returns the list of values for all selected / active items in the view, on
the specified column, separated by comma. The Value property returns the value of the
single active item on the specified column. The Values property returns a safe array with all
values of selected / active items in the view, on the specified column.

As Microsoft Access uses DAO, you need to use the View's DataSource property rather
than control's DataSource property as in the following sample:

Private Sub CascadeTree1_CreateView(ByVal View As Object)
 With View
 Select Case .Index
 Case 1: ' State or City
 .DataSource = CurrentDb.OpenRecordset("Select * FROM States WHERE
CountryCode IN (" & .ParentView.ValueList("CountryCode") & ")")
 .Tag = "State"
 .Key = "StateCode"
 .Name = "StateName"
 If (.Items.ItemCount = 0) Then
 .DataSource = CurrentDb.OpenRecordset("Select * FROM Cities WHERE
CountryCode IN (" & .ParentView.ValueList("CountryCode") & ")")
 .Tag = "City"
 .Key = ""
 .Name = "Name"
 .ColumnAutoResize = False
 End If
 Case 2: ' City
 .DataSource = CurrentDb.OpenRecordset("Select * FROM Cities WHERE

CountryCode IN (" & .ParentView.ParentView.ValueList("CountryCode") & ") AND
StateCode IN (" & .ParentView.ValueList("StateCode") & ")")
 .Tag = "City"
 .Key = ""
 .Name = "Name"
 End Select
 End With
End Sub

Private Sub Form_Load()
 With CascadeTree1.DefaultView
 .DataSource = CurrentDb.OpenRecordset("SELECT * FROM Countries")
 .Tag = "Country"
 .Key = "CountryCode"
 .Name = "CountryName"
 End With
End Sub

The sample loads the Countries table into the default view (view with the index 0). Once
the user clicks / selects / activates an item, the control creates a new view (with the index
1, 2 and so on) and fires the CreateView event. During the CreateView event you can load
data from different tables based on the parent's view selection. See the
ParentView.ValueList

property View.Values ([Column as Variant]) as Variant
Returns a safe array with all values of selected / active items in the view, on the specified
column.

Type Description

Column as Variant A long expression / string expression that specifies the
column where the value is being requested.

Variant A safe array with all values of selected / active items in the
view, on the specified column.

The Values property returns a safe array with all values of selected / active items in the
view, on the specified column. The ValueList property returns the list of values for all
selected / active items in the view, on the specified column, separated by comma. The
Value property returns the value of the single active item on the specified column.

As Microsoft Access uses DAO, you need to use the View's DataSource property rather
than control's DataSource property as in the following sample:

Private Sub CascadeTree1_CreateView(ByVal View As Object)
 With View
 Select Case .Index
 Case 1: ' State or City
 .DataSource = CurrentDb.OpenRecordset("Select * FROM States WHERE
CountryCode IN (" & .ParentView.ValueList("CountryCode") & ")")
 .Tag = "State"
 .Key = "StateCode"
 .Name = "StateName"
 If (.Items.ItemCount = 0) Then
 .DataSource = CurrentDb.OpenRecordset("Select * FROM Cities WHERE
CountryCode IN (" & .ParentView.ValueList("CountryCode") & ")")
 .Tag = "City"
 .Key = ""
 .Name = "Name"
 .ColumnAutoResize = False
 End If
 Case 2: ' City
 .DataSource = CurrentDb.OpenRecordset("Select * FROM Cities WHERE
CountryCode IN (" & .ParentView.ParentView.ValueList("CountryCode") & ") AND
StateCode IN (" & .ParentView.ValueList("StateCode") & ")")

 .Tag = "City"
 .Key = ""
 .Name = "Name"
 End Select
 End With
End Sub

Private Sub Form_Load()
 With CascadeTree1.DefaultView
 .DataSource = CurrentDb.OpenRecordset("SELECT * FROM Countries")
 .Tag = "Country"
 .Key = "CountryCode"
 .Name = "CountryName"
 End With
End Sub

The sample loads the Countries table into the default view (view with the index 0). Once
the user clicks / selects / activates an item, the control creates a new view (with the index
1, 2 and so on) and fires the CreateView event. During the CreateView event you can load
data from different tables based on the parent's view selection. See the
ParentView.ValueList

property View.View ([Tag as Variant]) as View
Gets the view giving its index or tag.

Type Description

Tag as Variant A VARIANT expression that specifies the Tag of the view
being searched

View A View object by tag.

The View property gets the view giving its index or tag. The Tag property associates any
extra data to the current view. The DataSource property can change the Tag property using
the Tag field as explained bellow:

Tag or Data Tag, specifies any extra data associated with the view. For instance,
"Tag=Country". The Tag property of the View can be used to access the tag of the
view at runtime. The Tag field is not required.

The Select property can select items using wild characters such as * or ?, if the view's
SingleSel property is False.

property View.Width as Long
Specifies the width of the view.

Type Description
Long A Long expression that specifies the width of the view.

The Width property specifies the width of the view. The WidthToFit property specifies the
width of the view to fit the control's client area. The DefColumnWidth property specifies the
width to create a new cascade column. The Mode property indicates the mode the control
displays the cascade columns. The FitCascadeColumns property retrieves or sets a value
that indicates the number of cascading columns to fit. The FitToClient method resizes or/and
moves the all cascade columns to fit the control's client area.

The following properties can be used to limit / range the width of each cascade columns:

The MinColumnWidth property specifies the minimum width for any cascade column.

The MaxColumnWidth property specifies the maximum width for any cascade column.

property View.WidthToFit as Long
Specifies the width of the view to fit the control's client area.

Type Description

Long A long expression that specifies the width of the view to fit
the control's client area.

The WidthToFit property specifies the width of the view to fit the control's client area. The
Width property specifies the width of the view. The DefColumnWidth property specifies the
width to create a new cascade column. The Mode property indicates the mode the control
displays the cascade columns. The FitCascadeColumns property retrieves or sets a value
that indicates the number of cascading columns to fit. The FitToClient method resizes or/and
moves the all cascade columns to fit the control's client area.

The following properties can be used to limit / range the width of each cascade columns:

The MinColumnWidth property specifies the minimum width for any cascade column.

The MaxColumnWidth property specifies the maximum width for any cascade column.

ExCascadeTree events
The CascadeTree object supports the following events:

Name Description
AnchorClick Occurs when an anchor element is clicked.

Click Occurs when the user presses and then releases the left
mouse button over the control.

CreateView A view has been created.

DblClick Occurs when the user dblclk the left mouse button over an
object.

DestroyView A view requires to be destroyed.
Error An internal error occurs.
Event Notifies the application once the control fires an event.

KeyDown Occurs when the user presses a key while an object has
the focus.

KeyPress Occurs when the user presses and releases an ANSI key.

KeyUp Occurs when the user releases a key while an object has
the focus.

MouseDown Occurs when the user presses a mouse button.
MouseMove Occurs when the user moves the mouse.
MouseUp Occurs when the user releases a mouse button.
RClick Occurs once the user right clicks the control.
ViewEndChanging Occurs once the user is about to change the view.
ViewItemStateEndChanging Indicates that the state of the item has been changed.
ViewItemStateStartChanging Indicates that the state of the item is about to be changed.

ViewItemUpdate Indicates that an item has been added or removed from
the working view.

ViewStartChanging Occurs once the user is about to change the view.

C#

VB

private void AnchorClick(object sender,string AnchorID,string Options)
{
}

Private Sub AnchorClick(ByVal sender As System.Object,ByVal AnchorID As
String,ByVal Options As String) Handles AnchorClick
End Sub

C# private void AnchorClick(object sender,
AxEXCASCADETREELib._IGaugeEvents_AnchorClickEvent e)
{
}

event AnchorClick (AnchorID as String, Options as String)
Occurs when an anchor element is clicked.

Type Description

AnchorID as String A string expression that indicates the identifier of the
anchor

Options as String A string expression that specifies options of the anchor
element.

The control fires the AnchorClick event to notify that the user clicks an anchor element. An
anchor is a piece of text or some other object (for example an image) which marks the
beginning and/or the end of a hypertext link. The <a> element is used to mark that piece of
text (or inline image), and to give its hypertextual relationship to other documents. The
AnchorClick event is fired only if prior clicking the control it shows the hand cursor. For
instance, if the cell is disabled, the hand cursor is not shown when hovers the anchor
element, and so the AnchorClick event is not fired. Use the FormatAnchor property to
specify the visual effect for anchor elements. For instance, if the user clicks the anchor
<a1>anchor, the control fires the AnchorClick event, where the AnchorID parameter is
1, and the Options parameter is empty. Also, if the user clicks the anchor <a
1;yourextradata>anchor, the AnchorID parameter of the AnchorClick event is 1, and
the Options parameter is "yourextradata". Use the AnchorFromPoint property to retrieve the
identifier of the anchor element from the cursor. The View property specifies the view
where the event occurs.

Syntax for AnchorClick event, /NET version, on:

Syntax for AnchorClick event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnAnchorClick(LPCTSTR AnchorID,LPCTSTR Options)
{
}

void __fastcall AnchorClick(TObject *Sender,BSTR AnchorID,BSTR Options)
{
}

procedure AnchorClick(ASender: TObject; AnchorID : WideString;Options :
WideString);
begin
end;

procedure AnchorClick(sender: System.Object; e:
AxEXCASCADETREELib._IGaugeEvents_AnchorClickEvent);
begin
end;

begin event AnchorClick(string AnchorID,string Options)

end event AnchorClick

Private Sub AnchorClick(ByVal sender As System.Object, ByVal e As
AxEXCASCADETREELib._IGaugeEvents_AnchorClickEvent) Handles AnchorClick
End Sub

Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

LPARAMETERS AnchorID,Options

PROCEDURE OnAnchorClick(oGauge,AnchorID,Options)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="AnchorClick(AnchorID,Options)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AnchorClick(AnchorID,Options)
End Function
</SCRIPT>

Procedure OnComAnchorClick String llAnchorID String llOptions
 Forward Send OnComAnchorClick llAnchorID llOptions
End_Procedure

METHOD OCX_AnchorClick(AnchorID,Options) CLASS MainDialog
RETURN NIL

void onEvent_AnchorClick(str _AnchorID,str _Options)
{
}

function AnchorClick as v (AnchorID as C,Options as C)
end function

function nativeObject_AnchorClick(AnchorID,Options)
return

Syntax for AnchorClick event, /COM version (others), on:

C#

VB

private void Click(object sender)
{
}

Private Sub Click(ByVal sender As System.Object) Handles Click
End Sub

C#

C++

C++
Builder

Delphi

private void ClickEvent(object sender, EventArgs e)
{
}

void OnClick()
{
}

void __fastcall Click(TObject *Sender)
{
}

procedure Click(ASender: TObject;);
begin
end;

event Click ()

Occurs when the user clicks the list.

Type Description

Use the Click event to notify your application when the user clicks the list. Use the
MouseDown or MouseUp event to notify your application when the user presses or
releases the one of the mouse buttons. The View property specifies the view where the
event occurs. The ViewFromPoint property retrieves the view from the point. The
ViewItemFromPoint property retrieves the view and item from the point. The
ViewColumnFromPoint property retrieves the view and column from the point. The
ColumnFromPoint property retrieves the column from the point.

Syntax for Click event, /NET version, on:

Syntax for Click event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure ClickEvent(sender: System.Object; e: System.EventArgs);
begin
end;

begin event Click()
end event Click

Private Sub ClickEvent(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ClickEvent
End Sub

Private Sub Click()
End Sub

Private Sub Click()
End Sub

LPARAMETERS nop

PROCEDURE OnClick(oCascadeTree)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="Click()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Click()
End Function
</SCRIPT>

Procedure OnComClick
 Forward Send OnComClick
End_Procedure

Syntax for Click event, /COM version (others), on:

Visual
Objects

X++

XBasic

dBASE

METHOD OCX_Click() CLASS MainDialog
RETURN NIL

void onEvent_Click()
{
}

function Click as v ()
end function

function nativeObject_Click()
return

C#

VB

private void CreateView(object sender,exontrol.EXCASCADETREELib.View View)
{
}

Private Sub CreateView(ByVal sender As System.Object,ByVal View As
exontrol.EXCASCADETREELib.View) Handles CreateView
End Sub

C#

C++

private void CreateView(object sender,
AxEXCASCADETREELib._ICascadeTreeEvents_CreateViewEvent e)
{
}

void OnCreateView(LPDISPATCH View)
{

event CreateView (View as View)
A view has been created.

Type Description

View as View A View object being created. The view parameter is
equivalent with the View property.

The CreateView event is fired as soon as a new item has been selected in a previously
view. The CreateView event can be used to initialize the view once the user activates an
item. The ViewStartChanging(exSelectionChange) / ViewEndChanging(exSelectionChange)
events notify your application that an item has been selected.

The following properties can be used to access a view:

FirstView property, gets the first view
PrevView property, gets the previously view (parent)
ParentView property, gets the parent view (previously)
ChildView property, gets the child view (next).
NextView property, gets the next view (child).

LastView property, gets the last view.

Syntax for CreateView event, /NET version, on:

Syntax for CreateView event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

void __fastcall CreateView(TObject *Sender,Excascadetreelib_tlb::IView *View)
{
}

procedure CreateView(ASender: TObject; View : IView);
begin
end;

procedure CreateView(sender: System.Object; e:
AxEXCASCADETREELib._ICascadeTreeEvents_CreateViewEvent);
begin
end;

begin event CreateView(oleobject View)

end event CreateView

Private Sub CreateView(ByVal sender As System.Object, ByVal e As
AxEXCASCADETREELib._ICascadeTreeEvents_CreateViewEvent) Handles CreateView
End Sub

Private Sub CreateView(ByVal View As EXCASCADETREELibCtl.IView)
End Sub

Private Sub CreateView(ByVal View As Object)
End Sub

LPARAMETERS View

PROCEDURE OnCreateView(oCascadeTree,View)

RETURN

Syntax for CreateView event, /COM version (others), on:

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="CreateView(View)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function CreateView(View)
End Function
</SCRIPT>

Procedure OnComCreateView Variant llView
 Forward Send OnComCreateView llView
End_Procedure

METHOD OCX_CreateView(View) CLASS MainDialog
RETURN NIL

void onEvent_CreateView(COM _View)
{
}

function CreateView as v (View as OLE::Exontrol.CascadeTree.1::IView)
end function

function nativeObject_CreateView(View)
return

C#

VB

private void DblClick(object sender)
{
}

Private Sub DblClick(ByVal sender As System.Object) Handles DblClick
End Sub

C#

C++

private void DblClick(object sender, EventArgs e)
{
}

void OnDblClick()
{
}

event DblClick (Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS)

Fired when the user double clicks an item.

Type Description

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates

The DblClk event is fired whenever the user double clicks a file or a folder. The View
property specifies the view where the event occurs. The ViewFromPoint property retrieves
the view from the point. The ViewItemFromPoint property retrieves the view and item from
the point. The ViewColumnFromPoint property retrieves the view and column from the point.
The ColumnFromPoint property retrieves the column from the point.

Syntax for DblClick event, /NET version, on:

Syntax for DblClick event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall DblClick(TObject *Sender)
{
}

procedure DblClick(ASender: TObject;);
begin
end;

procedure DblClick(sender: System.Object; e: System.EventArgs);
begin
end;

begin event DblClick()
end event DblClick

Private Sub DblClick(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles DblClick
End Sub

Private Sub DblClick()
End Sub

Private Sub DblClick()
End Sub

LPARAMETERS nop

PROCEDURE OnDblClick(oCascadeTree)
RETURN

Java… <SCRIPT EVENT="DblClick()" LANGUAGE="JScript">
</SCRIPT>

Syntax for DblClick event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function DblClick()
End Function
</SCRIPT>

Procedure OnComDblClick
 Forward Send OnComDblClick
End_Procedure

METHOD OCX_DblClick() CLASS MainDialog
RETURN NIL

void onEvent_DblClick()
{
}

function DblClick as v ()
end function

function nativeObject_DblClick()
return

C#

VB

private void DestroyView(object sender,exontrol.EXCASCADETREELib.View View)
{
}

Private Sub DestroyView(ByVal sender As System.Object,ByVal View As
exontrol.EXCASCADETREELib.View) Handles DestroyView
End Sub

C#

C++

C++
Builder

Delphi

private void DestroyView(object sender,
AxEXCASCADETREELib._ICascadeTreeEvents_DestroyViewEvent e)
{
}

void OnDestroyView(LPDISPATCH View)
{
}

void __fastcall DestroyView(TObject *Sender,Excascadetreelib_tlb::IView *View)
{
}

procedure DestroyView(ASender: TObject; View : IView);
begin
end;

event DestroyView (View as View)
A view requires to be destroyed.

Type Description

View as View A View object being destroyed. The view parameter is
equivalent with the View property.

The DestroyView event can be used to release any extra data associated with the view.
The ViewStartChanging(exSelectionChange) / ViewEndChanging(exSelectionChange)
events notify your application that an item has been selected.

Syntax for DestroyView event, /NET version, on:

Syntax for DestroyView event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure DestroyView(sender: System.Object; e:
AxEXCASCADETREELib._ICascadeTreeEvents_DestroyViewEvent);
begin
end;

begin event DestroyView(oleobject View)

end event DestroyView

Private Sub DestroyView(ByVal sender As System.Object, ByVal e As
AxEXCASCADETREELib._ICascadeTreeEvents_DestroyViewEvent) Handles
DestroyView
End Sub

Private Sub DestroyView(ByVal View As EXCASCADETREELibCtl.IView)
End Sub

Private Sub DestroyView(ByVal View As Object)
End Sub

LPARAMETERS View

PROCEDURE OnDestroyView(oCascadeTree,View)

RETURN

Java…

VBSc…

<SCRIPT EVENT="DestroyView(View)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function DestroyView(View)
End Function
</SCRIPT>

Syntax for DestroyView event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComDestroyView Variant llView
 Forward Send OnComDestroyView llView
End_Procedure

METHOD OCX_DestroyView(View) CLASS MainDialog
RETURN NIL

void onEvent_DestroyView(COM _View)
{
}

function DestroyView as v (View as OLE::Exontrol.CascadeTree.1::IView)
end function

function nativeObject_DestroyView(View)
return

C#

VB

private void Error(object sender,int Err,string Description)
{
}

Private Sub Error(ByVal sender As System.Object,ByVal Err As Integer,ByVal
Description As String) Handles Error
End Sub

C#

C++

C++
Builder

Delphi

private void Error(object sender,
AxEXCASCADETREELib._ICascadeTreeEvents_ErrorEvent e)
{
}

void OnError(long Error,LPCTSTR Description)
{
}

void __fastcall Error(TObject *Sender,long Error,BSTR Description)
{
}

procedure Error(ASender: TObject; Error : Integer;Description : WideString);
begin

event Error (Error as Long, Description as String)
An internal error occurs.

Type Description
Error as Long A long expression that specifies the code of the error

Description as String A String expression that specifies the description of the
error.

The Error event notifies your application once an error occurs. The DataSource property
specifies the control's data as an array, XML, ADO or DAO. The View property specifies
the view where the event occurs.

Syntax for Error event, /NET version, on:

Syntax for Error event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

end;

procedure Error(sender: System.Object; e:
AxEXCASCADETREELib._ICascadeTreeEvents_ErrorEvent);
begin
end;

begin event Error(long Error,string Description)

end event Error

Private Sub Error(ByVal sender As System.Object, ByVal e As
AxEXCASCADETREELib._ICascadeTreeEvents_ErrorEvent) Handles Error
End Sub

Private Sub Error(ByVal Error As Long,ByVal Description As String)
End Sub

Private Sub Error(ByVal Error As Long,ByVal Description As String)
End Sub

LPARAMETERS Error,Description

PROCEDURE OnError(oCascadeTree,Error,Description)

RETURN

Java…

VBSc…

<SCRIPT EVENT="Error(Error,Description)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Error(Error,Description)
End Function
</SCRIPT>

Syntax for Error event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComError Integer llError String llDescription
 Forward Send OnComError llError llDescription
End_Procedure

METHOD OCX_Error(Error,Description) CLASS MainDialog
RETURN NIL

void onEvent_Error(int _Error,str _Description)
{
}

function Error as v (Error as N,Description as C)
end function

function nativeObject_Error(Error,Description)
return

C#

VB

private void Event(object sender,int EventID)
{
}

Private Sub Event(ByVal sender As System.Object,ByVal EventID As Integer)
Handles Event
End Sub

C#

C++

private void Event(object sender,
AxEXCASCADETREELib._ICascadeTreeEvents_EventEvent e)
{
}

void OnEvent(long EventID)
{
}

event Event (EventID as Long)
Notifies the application once the control fires an event.

Type Description

EventID as Long

A Long expression that specifies the identifier of the event.
Use the EventParam(-2) to display entire information
about fired event (such as name, identifier, and properties
).

The Event notification occurs ANY time the control fires an event. The View property
specifies the view where the event occurs.

This is useful for X++ language, which does not support event with parameters passed by
reference.

In X++ the "Error executing code: FormActiveXControl (data source), method ... called with
invalid parameters" occurs when handling events that have parameters passed by
reference. Passed by reference, means that in the event handler, you can change the value
for that parameter, and so the control will takes the new value, and use it. The X++ is NOT
able to handle properly events with parameters by reference, so we have the solution.

Syntax for Event event, /NET version, on:

Syntax for Event event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall Event(TObject *Sender,long EventID)
{
}

procedure Event(ASender: TObject; EventID : Integer);
begin
end;

procedure Event(sender: System.Object; e:
AxEXCASCADETREELib._ICascadeTreeEvents_EventEvent);
begin
end;

begin event Event(long EventID)
end event Event

Private Sub Event(ByVal sender As System.Object, ByVal e As
AxEXCASCADETREELib._ICascadeTreeEvents_EventEvent) Handles Event
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

LPARAMETERS EventID

PROCEDURE OnEvent(oCascadeTree,EventID)
RETURN

Java…

VBSc…

<SCRIPT EVENT="Event(EventID)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">

Syntax for Event event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Function Event(EventID)
End Function
</SCRIPT>

Procedure OnComEvent Integer llEventID
 Forward Send OnComEvent llEventID
End_Procedure

METHOD OCX_Event(EventID) CLASS MainDialog
RETURN NIL

void onEvent_Event(int _EventID)
{
}

function Event as v (EventID as N)
end function

function nativeObject_Event(EventID)
return

The solution is using and handling the Event notification and EventParam method., instead
handling the event that gives the "invalid parameters" error executing code.

Let's presume that we need to handle the BarParentChange event to change the _Cancel
parameter from false to true, which fires the "Error executing code: FormActiveXControl
(data source), method onEvent_BarParentChange called with invalid parameters." We need
to know the identifier of the BarParentChange event (each event has an unique identifier
and it is static, defined in the control's type library). If you are not familiar with what a type
library means just handle the Event of the control as follows:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 print cascadetree1.EventParam(-2).toString();
}

This code allows you to display the information for each event of the control being fired as
in the list bellow:

"MouseMove/-606(1 , 0 , 145 , 36)" VT_BSTR
"BarParentChange/125(192998632 , 'B' , 192999592 , =false)" VT_BSTR
"BeforeDrawPart/54(2 , -1962866148 , =0 , =0 , =0 , =0 , =false)" VT_BSTR
"AfterDrawPart/55(2 , -1962866148 , 0 , 0 , 0 , 0)" VT_BSTR
"MouseMove/-606(1 , 0 , 145 , 35)" VT_BSTR

Each line indicates an event, and the following information is provided: the name of the
event, its identifier, and the list of parameters being passed to the event. The parameters
that starts with = character, indicates a parameter by reference, in other words one that
can changed during the event handler.

Now, we can see that the identifier for the BarParentChange event is 125, so we need to
handle the Event event as:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 ;
 if (_EventID == 125) /*event BarParentChange (Item as HITEM, Key as Variant, NewItem
as HITEM, Cancel as Boolean) */
 cascadetree1.EventParam(3 /*Cancel*/, COMVariant::createFromBoolean(true));
}

The code checks if the BarParentChange (_EventID == 125) event is fired, and changes
the third parameter of the event to true. The definition for BarParentChange event can be
consulted in the control's documentation or in the ActiveX explorer. So, anytime you need to
access the original parameters for the event you should use the EventParam method that
allows you to get or set a parameter. If the parameter is not passed by reference, you can
not change the parameter's value.

Now, let's add some code to see a complex sample, so let's say that we need to prevent
moving the bar from an item to any disabled item. So, we need to specify the Cancel
parameter as not Items.EnableItem(NewItem), in other words cancels if the new parent is
disabled. Shortly the code will be:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 ;
 if (_EventID == 125) /*event BarParentChange (Item as HITEM, Key as Variant, NewItem

as HITEM, Cancel as Boolean) */
 if (!cascadetree1.Items().EnableItem(cascadetree1.EventParam(2 /*NewItem*/)))
 cascadetree1.EventParam(3 /*Cancel*/, COMVariant::createFromBoolean(true));
}

In conclusion, anytime the X++ fires the "invalid parameters." while handling an event, you
can use and handle the Event notification and EventParam methods of the control

C#

VB

private void KeyDown(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyDown(ByVal sender As System.Object,ByRef KeyCode As
Short,ByVal Shift As Short) Handles KeyDown
End Sub

event KeyDown (ByRef KeyCode as Integer, Shift as Integer)

Occurs when the user presses a key while an object has the focus.

Type Description
KeyCode as Integer (By Reference) An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use KeyDown and KeyUp event procedures if you need to respond to both the pressing
and releasing of a key. The View property specifies the view where the event occurs. You
test for a condition by first assigning each result to a temporary integer variable and then
comparing shift to a bit mask. Use the And operator with the shift argument to test whether
the condition is greater than 0, indicating that the modifier was pressed, as in this example:

ShiftDown = (Shift And 1) > 0
CtrlDown = (Shift And 2) > 0
AltDown = (Shift And 4) > 0

In a procedure, you can test for any combination of conditions, as in this example:
If AltDown And CtrlDown Then

Syntax for KeyDown event, /NET version, on:

Syntax for KeyDown event, /COM version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

private void KeyDownEvent(object sender,
AxEXCASCADETREELib._ICascadeTreeEvents_KeyDownEvent e)
{
}

void OnKeyDown(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyDown(TObject *Sender,short * KeyCode,short Shift)
{
}

procedure KeyDown(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyDownEvent(sender: System.Object; e:
AxEXCASCADETREELib._ICascadeTreeEvents_KeyDownEvent);
begin
end;

begin event KeyDown(integer KeyCode,integer Shift)
end event KeyDown

Private Sub KeyDownEvent(ByVal sender As System.Object, ByVal e As
AxEXCASCADETREELib._ICascadeTreeEvents_KeyDownEvent) Handles
KeyDownEvent
End Sub

Private Sub KeyDown(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyDown(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

Xbas… PROCEDURE OnKeyDown(oCascadeTree,KeyCode,Shift)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="KeyDown(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyDown(KeyCode,Shift)
End Function
</SCRIPT>

Procedure OnComKeyDown Short llKeyCode Short llShift
 Forward Send OnComKeyDown llKeyCode llShift
End_Procedure

METHOD OCX_KeyDown(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyDown(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyDown as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyDown(KeyCode,Shift)
return

Syntax for KeyDown event, /COM version (others), on:

C#

VB

private void KeyPress(object sender,ref short KeyAscii)
{
}

Private Sub KeyPress(ByVal sender As System.Object,ByRef KeyAscii As Short)
Handles KeyPress
End Sub

C#

C++

C++
Builder

private void KeyPressEvent(object sender,
AxEXCASCADETREELib._ICascadeTreeEvents_KeyPressEvent e)
{
}

void OnKeyPress(short FAR* KeyAscii)
{
}

void __fastcall KeyPress(TObject *Sender,short * KeyAscii)
{

event KeyPress (ByRef KeyAscii as Integer)

Occurs when the user presses and releases an ANSI key.

Type Description

KeyAscii as Integer (By Reference) An integer that returns a standard numeric
ANSI keycode.

The KeyPress event lets you immediately test keystrokes for validity or for formatting
characters as they are typed. Changing the value of the keyascii argument changes the
character displayed. Use KeyDown and KeyUp event procedures to handle any keystroke
not recognized by KeyPress, such as function keys, editing keys, navigation keys, and any
combinations of these with keyboard modifiers. Unlike the KeyDown and KeyUp events,
KeyPress does not indicate the physical state of the keyboard; instead, it passes a
character. KeyPress interprets the uppercase and lowercase of each character as
separate key codes and, therefore, as two separate characters. The View property
specifies the view where the event occurs.

Syntax for KeyPress event, /NET version, on:

Syntax for KeyPress event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure KeyPress(ASender: TObject; var KeyAscii : Smallint);
begin
end;

procedure KeyPressEvent(sender: System.Object; e:
AxEXCASCADETREELib._ICascadeTreeEvents_KeyPressEvent);
begin
end;

begin event KeyPress(integer KeyAscii)
end event KeyPress

Private Sub KeyPressEvent(ByVal sender As System.Object, ByVal e As
AxEXCASCADETREELib._ICascadeTreeEvents_KeyPressEvent) Handles
KeyPressEvent
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

LPARAMETERS KeyAscii

PROCEDURE OnKeyPress(oCascadeTree,KeyAscii)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyPress(KeyAscii)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyPress(KeyAscii)

Syntax for KeyPress event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

End Function
</SCRIPT>

Procedure OnComKeyPress Short llKeyAscii
 Forward Send OnComKeyPress llKeyAscii
End_Procedure

METHOD OCX_KeyPress(KeyAscii) CLASS MainDialog
RETURN NIL

void onEvent_KeyPress(COMVariant /*short*/ _KeyAscii)
{
}

function KeyPress as v (KeyAscii as N)
end function

function nativeObject_KeyPress(KeyAscii)
return

C#

VB

private void KeyUp(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyUp(ByVal sender As System.Object,ByRef KeyCode As Short,ByVal
Shift As Short) Handles KeyUp
End Sub

C#

C++

private void KeyUpEvent(object sender,
AxEXCASCADETREELib._ICascadeTreeEvents_KeyUpEvent e)
{
}

void OnKeyUp(short FAR* KeyCode,short Shift)
{
}

event KeyUp (ByRef KeyCode as Integer, Shift as Integer)

Occur when the user releases a key while an object has the focus.

Type Description
KeyCode as Integer (By Reference) An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use the KeyUp event procedure to respond to the releasing of a key. The View property
specifies the view where the event occurs.

Syntax for KeyUp event, /NET version, on:

Syntax for KeyUp event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall KeyUp(TObject *Sender,short * KeyCode,short Shift)
{
}

procedure KeyUp(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyUpEvent(sender: System.Object; e:
AxEXCASCADETREELib._ICascadeTreeEvents_KeyUpEvent);
begin
end;

begin event KeyUp(integer KeyCode,integer Shift)
end event KeyUp

Private Sub KeyUpEvent(ByVal sender As System.Object, ByVal e As
AxEXCASCADETREELib._ICascadeTreeEvents_KeyUpEvent) Handles KeyUpEvent
End Sub

Private Sub KeyUp(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyUp(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyUp(oCascadeTree,KeyCode,Shift)
RETURN

Java… <SCRIPT EVENT="KeyUp(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

Syntax for KeyUp event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function KeyUp(KeyCode,Shift)
End Function
</SCRIPT>

Procedure OnComKeyUp Short llKeyCode Short llShift
 Forward Send OnComKeyUp llKeyCode llShift
End_Procedure

METHOD OCX_KeyUp(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyUp(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyUp as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyUp(KeyCode,Shift)
return

C#

VB

private void MouseDownEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseDownEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseDownEvent
End Sub

event MouseDown (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)

Occur when the user presses a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event.

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

Use the MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. The View property specifies the view where the event occurs. The
ViewFromPoint property retrieves the view from the point. The ViewItemFromPoint property
retrieves the view and item from the point. The ViewColumnFromPoint property retrieves
the view and column from the point. The ColumnFromPoint property retrieves the column
from the point.

Syntax for MouseDown event, /NET version, on:

Syntax for MouseDown event, /COM version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

private void MouseDownEvent(object sender,
AxEXCASCADETREELib._ICascadeTreeEvents_MouseDownEvent e)
{
}

void OnMouseDown(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseDown(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseDown(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseDownEvent(sender: System.Object; e:
AxEXCASCADETREELib._ICascadeTreeEvents_MouseDownEvent);
begin
end;

begin event MouseDown(integer Button,integer Shift,long X,long Y)
end event MouseDown

Private Sub MouseDownEvent(ByVal sender As System.Object, ByVal e As
AxEXCASCADETREELib._ICascadeTreeEvents_MouseDownEvent) Handles
MouseDownEvent
End Sub

Private Sub MouseDown(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseDown(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

VFP

Xbas…

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseDown(oCascadeTree,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseDown(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseDown(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseDown Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseDown llButton llShift llX llY
End_Procedure

METHOD OCX_MouseDown(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseDown(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseDown as v (Button as N,Shift as N,X as
OLE::Exontrol.CascadeTree.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.CascadeTree.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseDown(Button,Shift,X,Y)
return

Syntax for MouseDown event, /COM version (others), on:

C#

VB

private void MouseMoveEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseMoveEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseMoveEvent
End Sub

C# private void MouseMoveEvent(object sender,
AxEXCASCADETREELib._ICascadeTreeEvents_MouseMoveEvent e)

event MouseMove (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)

Occurs when the user moves the mouse.

Type Description

Button as Integer An integer that corresponds to the state of the mouse
buttons in which a bit is set if the button is down.

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

The MouseMove event is generated continually as the mouse pointer moves across objects.
Unless another object has captured the mouse, an object recognizes a MouseMove event
whenever the mouse position is within its borders. The View property specifies the view
where the event occurs. The ViewFromPoint property retrieves the view from the point. The
ViewItemFromPoint property retrieves the view and item from the point. The
ViewColumnFromPoint property retrieves the view and column from the point. The
ColumnFromPoint property retrieves the column from the point.

Syntax for MouseMove event, /NET version, on:

Syntax for MouseMove event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

{
}

void OnMouseMove(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseMove(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseMove(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseMoveEvent(sender: System.Object; e:
AxEXCASCADETREELib._ICascadeTreeEvents_MouseMoveEvent);
begin
end;

begin event MouseMove(integer Button,integer Shift,long X,long Y)
end event MouseMove

Private Sub MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXCASCADETREELib._ICascadeTreeEvents_MouseMoveEvent) Handles
MouseMoveEvent
End Sub

Private Sub MouseMove(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseMove(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

Xbas… PROCEDURE OnMouseMove(oCascadeTree,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseMove(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseMove(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseMove Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseMove llButton llShift llX llY
End_Procedure

METHOD OCX_MouseMove(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseMove(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseMove as v (Button as N,Shift as N,X as
OLE::Exontrol.CascadeTree.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.CascadeTree.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseMove(Button,Shift,X,Y)
return

Syntax for MouseMove event, /COM version (others), on:

C#

VB

private void MouseUpEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseUpEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseUpEvent
End Sub

event MouseUp (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)

Occurs when the user releases a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event.

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers. The View property specifies the view where the event occurs. The
ViewFromPoint property retrieves the view from the point. The ViewItemFromPoint property
retrieves the view and item from the point. The ViewColumnFromPoint property retrieves
the view and column from the point. The ColumnFromPoint property retrieves the column
from the point.

Syntax for MouseUp event, /NET version, on:

Syntax for MouseUp event, /COM version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

private void MouseUpEvent(object sender,
AxEXCASCADETREELib._ICascadeTreeEvents_MouseUpEvent e)
{
}

void OnMouseUp(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseUp(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseUp(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseUpEvent(sender: System.Object; e:
AxEXCASCADETREELib._ICascadeTreeEvents_MouseUpEvent);
begin
end;

begin event MouseUp(integer Button,integer Shift,long X,long Y)
end event MouseUp

Private Sub MouseUpEvent(ByVal sender As System.Object, ByVal e As
AxEXCASCADETREELib._ICascadeTreeEvents_MouseUpEvent) Handles
MouseUpEvent
End Sub

Private Sub MouseUp(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseUp(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

VFP

Xbas…

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseUp(oCascadeTree,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseUp(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseUp(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseUp Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseUp llButton llShift llX llY
End_Procedure

METHOD OCX_MouseUp(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseUp(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseUp as v (Button as N,Shift as N,X as
OLE::Exontrol.CascadeTree.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.CascadeTree.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseUp(Button,Shift,X,Y)
return

Syntax for MouseUp event, /COM version (others), on:

event RClick ()
Occurs once the user right clicks the control.

Type Description

Notifies your application once the user right-clicks the control. Use the MouseDown or
MouseUp event procedure to specify actions that will occur when a mouse button is
pressed or released. The View property specifies the view where the event occurs. The
ViewFromPoint property retrieves the view from the point. The ViewItemFromPoint property
retrieves the view and item from the point. The ViewColumnFromPoint property retrieves
the view and column from the point. The ColumnFromPoint property retrieves the column
from the point.

C#

VB

private void ViewEndChanging(object
sender,exontrol.EXCASCADETREELib.ViewOperationEnum Operation)
{
}

Private Sub ViewEndChanging(ByVal sender As System.Object,ByVal Operation As
exontrol.EXCASCADETREELib.ViewOperationEnum) Handles ViewEndChanging
End Sub

C#

C++

C++
Builder

private void ViewEndChanging(object sender,
AxEXCASCADETREELib._ICascadeTreeEvents_ViewEndChangingEvent e)
{
}

void OnViewEndChanging(long Operation)
{
}

void __fastcall ViewEndChanging(TObject
*Sender,Exmillerlib_tlb::ViewOperationEnum Operation)
{

event ViewEndChanging (Operation as ViewOperationEnum)
Occurs once the user is about to change the view.

Type Description
Operation as
ViewOperationEnum

A ViewOperationEnum expression that specifies the
operation that ended.

The ViewStartChanging / ViewEndChanging events notify your application that an operation
starts or ends. For instance, ViewStartChanging(exSelectionChange) /
ViewEndChanging(exSelectionChange) events notify your application that an item has been
selected. The View property specifies the view where the event occurs. The ViewFromPoint
property retrieves the view from the point. The ViewItemFromPoint property retrieves the
view and item from the point. The ViewColumnFromPoint property retrieves the view and
column from the point. The ColumnFromPoint property retrieves the column from the point.

Syntax for ViewEndChanging event, /NET version, on:

Syntax for ViewEndChanging event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure ViewEndChanging(ASender: TObject; Operation : ViewOperationEnum);
begin
end;

procedure ViewEndChanging(sender: System.Object; e:
AxEXCASCADETREELib._ICascadeTreeEvents_ViewEndChangingEvent);
begin
end;

begin event ViewEndChanging(long Operation)

end event ViewEndChanging

Private Sub ViewEndChanging(ByVal sender As System.Object, ByVal e As
AxEXCASCADETREELib._ICascadeTreeEvents_ViewEndChangingEvent) Handles
ViewEndChanging
End Sub

Private Sub ViewEndChanging(ByVal Operation As
EXCASCADETREELibCtl.ViewOperationEnum)
End Sub

Private Sub ViewEndChanging(ByVal Operation As Long)
End Sub

LPARAMETERS Operation

PROCEDURE OnViewEndChanging(oCascadeTree,Operation)

RETURN

Java… <SCRIPT EVENT="ViewEndChanging(Operation)" LANGUAGE="JScript">
</SCRIPT>

Syntax for ViewEndChanging event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function ViewEndChanging(Operation)
End Function
</SCRIPT>

Procedure OnComViewEndChanging OLEViewOperationEnum llOperation
 Forward Send OnComViewEndChanging llOperation
End_Procedure

METHOD OCX_ViewEndChanging(Operation) CLASS MainDialog
RETURN NIL

void onEvent_ViewEndChanging(int _Operation)
{
}

function ViewEndChanging as v (Operation as
OLE::Exontrol.ExMiller.1::ViewOperationEnum)
end function

function nativeObject_ViewEndChanging(Operation)
return

C#

VB

private void ViewItemStateEndChanging(object
sender,exontrol.EXCASCADETREELib.ViewItemStateEnum Operation,int Item,int
ColIndex)
{
}

Private Sub ViewItemStateEndChanging(ByVal sender As System.Object,ByVal
Operation As exontrol.EXCASCADETREELib.ViewItemStateEnum,ByVal Item As
Integer,ByVal ColIndex As Integer) Handles ViewItemStateEndChanging
End Sub

event ViewItemStateEndChanging (Operation as ViewItemStateEnum,
Item as HITEM, ColIndex as Long)
Indicates that the state of the item has been changed.

Type Description
Operation as
ViewItemStateEnum

A ViewItemStateEnum expression that specifies the item
operation that ends.

Item as HITEM

A Long expression that specifies the handle of the item
where the operation occurs. The View property specifies
the view where the event occurs. The Items property of
the View object gives access to the items collection of the
view.

ColIndex as Long

A Long expression that specifies the index of the column,
where the operation occurs. The View property specifies
the view where the event occurs. The Colums property of
the View object gives access to the view's Columns
collection. For instance, if the cell's check-box state is
changing the ColIndex parameter specifies index of the
column where check-box has been clicked.

The ViewItemStateStartChanging / ViewItemStateEndChanging notifies your application
that an item expanded or activated / selected, or when a check box has been clicked /
changed. The View property specifies the view where the event occurs. The
ViewFromPoint property retrieves the view from the point. The ViewItemFromPoint property
retrieves the view and item from the point. The ViewColumnFromPoint property retrieves
the view and column from the point. The ColumnFromPoint property retrieves the column
from the point.

Syntax for ViewItemStateEndChanging event, /NET version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

private void ViewItemStateEndChanging(object sender,
AxEXCASCADETREELib._ICascadeTreeEvents_ViewItemStateEndChangingEvent e)
{
}

void OnViewItemStateEndChanging(long Operation,long Item,long ColIndex)
{
}

void __fastcall ViewItemStateEndChanging(TObject
*Sender,Excascadetreelib_tlb::ViewItemStateEnum
Operation,Excascadetreelib_tlb::HITEM Item,long ColIndex)
{
}

procedure ViewItemStateEndChanging(ASender: TObject; Operation :
ViewItemStateEnum;Item : HITEM;ColIndex : Integer);
begin
end;

procedure ViewItemStateEndChanging(sender: System.Object; e:
AxEXCASCADETREELib._ICascadeTreeEvents_ViewItemStateEndChangingEvent);
begin
end;

begin event ViewItemStateEndChanging(long Operation,long Item,long
ColIndex)

end event ViewItemStateEndChanging

Private Sub ViewItemStateEndChanging(ByVal sender As System.Object, ByVal e As
AxEXCASCADETREELib._ICascadeTreeEvents_ViewItemStateEndChangingEvent)
Handles ViewItemStateEndChanging
End Sub

Private Sub ViewItemStateEndChanging(ByVal Operation As

Syntax for ViewItemStateEndChanging event, /COM version, on:

VBA

VFP

Xbas…

EXCASCADETREELibCtl.ViewItemStateEnum,ByVal Item As
EXCASCADETREELibCtl.HITEM,ByVal ColIndex As Long)
End Sub

Private Sub ViewItemStateEndChanging(ByVal Operation As Long,ByVal Item As
Long,ByVal ColIndex As Long)
End Sub

LPARAMETERS Operation,Item,ColIndex

PROCEDURE
OnViewItemStateEndChanging(oCascadeTree,Operation,Item,ColIndex)

RETURN

Java…

VBSc…

Visual
Data…

Visual
Objects

X++

<SCRIPT EVENT="ViewItemStateEndChanging(Operation,Item,ColIndex)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ViewItemStateEndChanging(Operation,Item,ColIndex)
End Function
</SCRIPT>

Procedure OnComViewItemStateEndChanging OLEViewItemStateEnum
llOperation HITEM llItem Integer llColIndex
 Forward Send OnComViewItemStateEndChanging llOperation llItem llColIndex
End_Procedure

METHOD OCX_ViewItemStateEndChanging(Operation,Item,ColIndex) CLASS
MainDialog
RETURN NIL

void onEvent_ViewItemStateEndChanging(int _Operation,int _Item,int
_ColIndex)

Syntax for ViewItemStateEndChanging event, /COM version (others), on:

XBasic

dBASE

{
}

function ViewItemStateEndChanging as v (Operation as
OLE::Exontrol.CascadeTree.1::ViewItemStateEnum,Item as
OLE::Exontrol.CascadeTree.1::HITEM,ColIndex as N)
end function

function nativeObject_ViewItemStateEndChanging(Operation,Item,ColIndex)
return

C#

VB

private void ViewItemStateStartChanging(object
sender,exontrol.EXCASCADETREELib.ViewItemStateEnum Operation,int Item,int
ColIndex,ref object Cancel)
{
}

Private Sub ViewItemStateStartChanging(ByVal sender As System.Object,ByVal
Operation As exontrol.EXCASCADETREELib.ViewItemStateEnum,ByVal Item As

event ViewItemStateStartChanging (Operation as ViewItemStateEnum,
Item as HITEM, ColIndex as Long, Cancel as Variant)
Indicates that the state of the item is about to be changed.

Type Description
Operation as
ViewItemStateEnum

A ViewItemStateEnum expression that specifies the item
operation that starts.

Item as HITEM

A Long expression that specifies the handle of the item
where the operation occurs. The View property specifies
the view where the event occurs. The Items property of
the View object gives access to the items collection of the
view.

ColIndex as Long

A Long expression that specifies the index of the column,
where the operation occurs. The View property specifies
the view where the event occurs. The Colums property of
the View object gives access to the view's Columns
collection. For instance, if the cell's check-box state is
changing the ColIndex parameter specifies index of the
column where check-box has been clicked.

Cancel as Variant A Boolean expression that specifies whether the operation
should be canceled.

The ViewItemStateStartChanging / ViewItemStateEndChanging notifies your application
that an item expanded or activated / selected, or when a check box has been clicked /
changed. The The ViewItemStateStartChanging event can be used to cancel any of the
specified operations. The View property specifies the view where the event occurs. The
ViewFromPoint property retrieves the view from the point. The ViewItemFromPoint property
retrieves the view and item from the point. The ViewColumnFromPoint property retrieves
the view and column from the point. The ColumnFromPoint property retrieves the column
from the point.

Syntax for ViewItemStateStartChanging event, /NET version, on:

Integer,ByVal ColIndex As Integer,ByRef Cancel As Object) Handles
ViewItemStateStartChanging
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

private void ViewItemStateStartChanging(object sender,
AxEXCASCADETREELib._ICascadeTreeEvents_ViewItemStateStartChangingEvent e)
{
}

void OnViewItemStateStartChanging(long Operation,long Item,long
ColIndex,VARIANT FAR* Cancel)
{
}

void __fastcall ViewItemStateStartChanging(TObject
*Sender,Excascadetreelib_tlb::ViewItemStateEnum
Operation,Excascadetreelib_tlb::HITEM Item,long ColIndex,Variant * Cancel)
{
}

procedure ViewItemStateStartChanging(ASender: TObject; Operation :
ViewItemStateEnum;Item : HITEM;ColIndex : Integer;var Cancel : OleVariant);
begin
end;

procedure ViewItemStateStartChanging(sender: System.Object; e:
AxEXCASCADETREELib._ICascadeTreeEvents_ViewItemStateStartChangingEvent);
begin
end;

begin event ViewItemStateStartChanging(long Operation,long Item,long
ColIndex,any Cancel)

end event ViewItemStateStartChanging

Private Sub ViewItemStateStartChanging(ByVal sender As System.Object, ByVal e

Syntax for ViewItemStateStartChanging event, /COM version, on:

VB6

VBA

VFP

Xbas…

As
AxEXCASCADETREELib._ICascadeTreeEvents_ViewItemStateStartChangingEvent)
Handles ViewItemStateStartChanging
End Sub

Private Sub ViewItemStateStartChanging(ByVal Operation As
EXCASCADETREELibCtl.ViewItemStateEnum,ByVal Item As
EXCASCADETREELibCtl.HITEM,ByVal ColIndex As Long,Cancel As Variant)
End Sub

Private Sub ViewItemStateStartChanging(ByVal Operation As Long,ByVal Item As
Long,ByVal ColIndex As Long,Cancel As Variant)
End Sub

LPARAMETERS Operation,Item,ColIndex,Cancel

PROCEDURE
OnViewItemStateStartChanging(oCascadeTree,Operation,Item,ColIndex,Cancel)

RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="ViewItemStateStartChanging(Operation,Item,ColIndex,Cancel)"
LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ViewItemStateStartChanging(Operation,Item,ColIndex,Cancel)
End Function
</SCRIPT>

Procedure OnComViewItemStateStartChanging OLEViewItemStateEnum
llOperation HITEM llItem Integer llColIndex Variant llCancel
 Forward Send OnComViewItemStateStartChanging llOperation llItem llColIndex
llCancel
End_Procedure

Syntax for ViewItemStateStartChanging event, /COM version (others), on:

Visual
Objects

X++

XBasic

dBASE

METHOD OCX_ViewItemStateStartChanging(Operation,Item,ColIndex,Cancel)
CLASS MainDialog
RETURN NIL

void onEvent_ViewItemStateStartChanging(int _Operation,int _Item,int
_ColIndex,COMVariant /*variant*/ _Cancel)
{
}

function ViewItemStateStartChanging as v (Operation as
OLE::Exontrol.CascadeTree.1::ViewItemStateEnum,Item as
OLE::Exontrol.CascadeTree.1::HITEM,ColIndex as N,Cancel as A)
end function

function
nativeObject_ViewItemStateStartChanging(Operation,Item,ColIndex,Cancel)
return

C#

VB

private void ViewItemUpdate(object
sender,exontrol.EXCASCADETREELib.ViewItemUpdateEnum Operation,int Item)
{
}

Private Sub ViewItemUpdate(ByVal sender As System.Object,ByVal Operation As
exontrol.EXCASCADETREELib.ViewItemUpdateEnum,ByVal Item As Integer)
Handles ViewItemUpdate
End Sub

C# private void ViewItemUpdate(object sender,
AxEXCASCADETREELib._ICascadeTreeEvents_ViewItemUpdateEvent e)
{

event ViewItemUpdate (Operation as ViewItemUpdateEnum, Item as
HITEM)
Indicates that an item has been added or removed from the working view.

Type Description
Operation as
ViewItemUpdateEnum

A ViewItemUpdateEnum that specifies the operation that
occurred.

Item as HITEM

A Long expression that specifies the handle of the item
that has been added or removed. The View property
specifies the view where the event occurs. The Items
property of the View object gives access to the items
collection of the view. The Colums property of the View
object gives access to the view's Columns collection.

The ViewItemUpdate event notifies your application that a new item has been added or
removed of the View object. The ViewItemStateStartChanging /
ViewItemStateEndChanging notifies your application that an item expanded or activated /
selected, or when a check box has been clicked / changed. The View property specifies
the view where the event occurs. The ViewFromPoint property retrieves the view from the
point. The ViewItemFromPoint property retrieves the view and item from the point. The
ViewColumnFromPoint property retrieves the view and column from the point. The
ColumnFromPoint property retrieves the column from the point.

Syntax for ViewItemUpdate event, /NET version, on:

Syntax for ViewItemUpdate event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

}

void OnViewItemUpdate(long Operation,long Item)
{
}

void __fastcall ViewItemUpdate(TObject
*Sender,Excascadetreelib_tlb::ViewItemUpdateEnum
Operation,Excascadetreelib_tlb::HITEM Item)
{
}

procedure ViewItemUpdate(ASender: TObject; Operation :
ViewItemUpdateEnum;Item : HITEM);
begin
end;

procedure ViewItemUpdate(sender: System.Object; e:
AxEXCASCADETREELib._ICascadeTreeEvents_ViewItemUpdateEvent);
begin
end;

begin event ViewItemUpdate(long Operation,long Item)

end event ViewItemUpdate

Private Sub ViewItemUpdate(ByVal sender As System.Object, ByVal e As
AxEXCASCADETREELib._ICascadeTreeEvents_ViewItemUpdateEvent) Handles
ViewItemUpdate
End Sub

Private Sub ViewItemUpdate(ByVal Operation As
EXCASCADETREELibCtl.ViewItemUpdateEnum,ByVal Item As
EXCASCADETREELibCtl.HITEM)
End Sub

Private Sub ViewItemUpdate(ByVal Operation As Long,ByVal Item As Long)
End Sub

VFP

Xbas…

LPARAMETERS Operation,Item

PROCEDURE OnViewItemUpdate(oCascadeTree,Operation,Item)

RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="ViewItemUpdate(Operation,Item)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ViewItemUpdate(Operation,Item)
End Function
</SCRIPT>

Procedure OnComViewItemUpdate OLEViewItemUpdateEnum llOperation
HITEM llItem
 Forward Send OnComViewItemUpdate llOperation llItem
End_Procedure

METHOD OCX_ViewItemUpdate(Operation,Item) CLASS MainDialog
RETURN NIL

void onEvent_ViewItemUpdate(int _Operation,int _Item)
{
}

function ViewItemUpdate as v (Operation as
OLE::Exontrol.CascadeTree.1::ViewItemUpdateEnum,Item as
OLE::Exontrol.CascadeTree.1::HITEM)
end function

function nativeObject_ViewItemUpdate(Operation,Item)
return

Syntax for ViewItemUpdate event, /COM version (others), on:

C#

VB

private void ViewStartChanging(object
sender,exontrol.EXCASCADETREELib.ViewOperationEnum Operation)
{
}

Private Sub ViewStartChanging(ByVal sender As System.Object,ByVal Operation As
exontrol.EXCASCADETREELib.ViewOperationEnum) Handles ViewStartChanging
End Sub

C#

C++

C++
Builder

private void ViewStartChanging(object sender,
AxEXCASCADETREELib._ICascadeTreeEvents_ViewStartChangingEvent e)
{
}

void OnViewStartChanging(long Operation)
{
}

void __fastcall ViewStartChanging(TObject
*Sender,Exmillerlib_tlb::ViewOperationEnum Operation)
{

event ViewStartChanging (Operation as ViewOperationEnum)
Occurs once the user is about to change the view.

Type Description
Operation as
ViewOperationEnum

A ViewOperationEnum expression that specifies the
operation is about to begin.

The ViewStartChanging / ViewEndChanging events notify your application that an operation
starts or ends. For instance, ViewStartChanging(exSelectionChange) /
ViewEndChanging(exSelectionChange) events notify your application that an item has been
selected. The View property specifies the view where the event occurs. The ViewFromPoint
property retrieves the view from the point. The ViewItemFromPoint property retrieves the
view and item from the point. The ViewColumnFromPoint property retrieves the view and
column from the point. The ColumnFromPoint property retrieves the column from the point.

Syntax for ViewStartChanging event, /NET version, on:

Syntax for ViewStartChanging event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure ViewStartChanging(ASender: TObject; Operation :
ViewOperationEnum);
begin
end;

procedure ViewStartChanging(sender: System.Object; e:
AxEXCASCADETREELib._ICascadeTreeEvents_ViewStartChangingEvent);
begin
end;

begin event ViewStartChanging(long Operation)

end event ViewStartChanging

Private Sub ViewStartChanging(ByVal sender As System.Object, ByVal e As
AxEXCASCADETREELib._ICascadeTreeEvents_ViewStartChangingEvent) Handles
ViewStartChanging
End Sub

Private Sub ViewStartChanging(ByVal Operation As
EXCASCADETREELibCtl.ViewOperationEnum)
End Sub

Private Sub ViewStartChanging(ByVal Operation As Long)
End Sub

LPARAMETERS Operation

PROCEDURE OnViewStartChanging(oCascadeTree,Operation)

RETURN

Java… <SCRIPT EVENT="ViewStartChanging(Operation)" LANGUAGE="JScript">
Syntax for ViewStartChanging event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ViewStartChanging(Operation)
End Function
</SCRIPT>

Procedure OnComViewStartChanging OLEViewOperationEnum llOperation
 Forward Send OnComViewStartChanging llOperation
End_Procedure

METHOD OCX_ViewStartChanging(Operation) CLASS MainDialog
RETURN NIL

void onEvent_ViewStartChanging(int _Operation)
{
}

function ViewStartChanging as v (Operation as
OLE::Exontrol.ExMiller.1::ViewOperationEnum)
end function

function nativeObject_ViewStartChanging(Operation)
return

Expressions

An expression is a string which defines a formula or criteria, that's evaluated at runtime. The
expression may be a combination of variables, constants, strings, dates and
operators/functions. For instance 1000 format `` gets 1,000.00 for US format, while
1.000,00 is displayed for German format.

The Exontrol's eXPression component is a syntax-editor that helps you to define, view, edit
and evaluate expressions. Using the eXPression component you can easily view or check if
the expression you have used is syntactically correct, and you can evaluate what is the
result you get giving different values to be tested. The Exontrol's eXPression component
can be used as an user-editor, to configure your applications.

Usage examples:

100 + 200, adds two numbers and returns 300
"100" + 200, concatenates the strings, and returns "100200"
currency(1000) displays the value in currency format based on the current regional
setting, such as "$1,000.00" for US format.
1000 format `` gets 1,000.00 for English format, while 1.000,00 is displayed for
German format
1000 format `2|.|3|,` always gets 1,000.00 no matter of settings in the control panel.
date(value) format `MMM d, yyyy` , returns the date such as Sep 2, 2023, for English
format
upper("string") converts the giving string in uppercase letters, such as "STRING"
date(dateS('3/1/' + year(9:=#1/1/2018#)) + ((1:=(((255 - 11 * (year(=:9) mod 19)) - 21)
mod 30) + 21) + (=:1 > 48 ? -1 : 0) + 6 - ((year(=:9) + int(year(=:9) / 4)) + =:1 + (=:1
> 48 ? -1 : 0) + 1) mod 7)) returns the date the Easter Sunday will fall, for year 2018.
In this case the expression returns #4/1/2018#. If #1/1/2018# is replaced with
#1/1/2019#, the expression returns #4/21/2019#.

Listed bellow are all predefined constants, operators and functions the general-expression
supports:

The constants can be represented as:

numbers in decimal format (where dot character specifies the decimal separator).
For instance: -1, 100, 20.45, .99 and so on
numbers in hexa-decimal format (preceded by 0x or 0X sequence), uses sixteen
distinct symbols, most often the symbols 0-9 to represent values zero to nine, and A,
B, C, D, E, F (or alternatively a, b, c, d, e, f) to represent values ten to fifteen.
Hexadecimal numerals are widely used by computer system designers and

https://exontrol.com/expression.jsp

programmers. As each hexadecimal digit represents four binary digits (bits), it allows a
more human-friendly representation of binary-coded values. For instance, 0xFF,
0x00FF00, and so so.
date-time in format #mm/dd/yyyy hh:mm:ss#, For instance, #1/31/2001 10:00#
means the January 31th, 2001, 10:00 AM
string, if it starts / ends with any of the ' or ` or " characters. If you require the starting
character inside the string, it should be escaped (preceded by a \ character). For
instance, `Mihai`, "Filimon", 'has', "\"a quote\"", and so on

The predefined constants are:

bias (BIAS constant), defines the difference, in minutes, between Coordinated
Universal Time (UTC) and local time. For example, Middle European Time (MET,
GMT+01:00) has a time zone bias of "-60" because it is one hour ahead of UTC.
Pacific Standard Time (PST, GMT-08:00) has a time zone bias of "+480" because it is
eight hours behind UTC. For instance, date(value - bias/24/60) converts the UTC time
to local time, or date(date('now') + bias/24/60) converts the current local time to UTC
time. For instance, "date(value - bias/24/60)" converts the value date-time from UTC to
local time, while "date(value + bias/24/60)" converts the local-time to UTC time.
dpi (DPI constant), specifies the current DPI setting. and it indicates the minimum
value between dpix and dpiy constants. For instance, if current DPI setting is 100%,
the dpi constant returns 1, if 150% it returns 1.5, and so on. For instance, the
expression value * dpi returns the value if the DPI setting is 100%, or value * 1.5 in
case, the DPI setting is 150%
dpix (DPIX constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpix constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpix returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%
dpiy (DPIY constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpiy constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpiy returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported binary range operators, all these with the same priority 5, are :

a MIN b (min operator), indicates the minimum value, so a MIN b returns the value of
a, if it is less than b, else it returns b. For instance, the expression value MIN 10
returns always a value greater than 10.
a MAX b (max operator), indicates the maximum value, so a MAX b returns the value
of a, if it is greater than b, else it returns b. For instance, the expression value MAX
100 returns always a value less than 100.

The supported binary operators, all these with the same priority 0, are :

:= (Store operator), stores the result of expression to variable. The syntax for :=
operator is

variable := expression

where variable is a integer between 0 and 9. You can use the =: operator to restore
any stored variable (please make the difference between := and =:). For instance,
(0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and prints zero
if it is 0, else the converted number. Please pay attention that the := and =: are two
distinct operators, the first for storing the result into a variable, while the second for
restoring the variable

=: (Restore operator), restores the giving variable (previously saved using the store
operator). The syntax for =: operator is

=: variable

where variable is a integer between 0 and 9. You can use the := operator to store the
value of any expression (please make the difference between := and =:). For
instance, (0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and
prints zero if it is 0, else the converted number. Please pay attention that the := and =:
are two distinct operators, the first for storing the result into a variable, while the
second for restoring the variable

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for ? operator is

expression ? true_part : false_part

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the %0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found') returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

expression array (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D') is equivalent with month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D').

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

expression in (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the value in (11,22,33,44,13) is equivalent with
(expression = 11) or (expression = 22) or (expression = 33) or (expression = 44) or
(expression = 13). The in operator is not a time consuming as the equivalent or version
is, so when you have large number of constant elements it is recommended using the

in operator. Shortly, if the collection of elements has 1000 elements the in operator
could take up to 8 operations in order to find if an element fits the set, else if the or
statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

expression switch (default,c1,c2,c3,...,cn)

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the %0 switch ('not found',1,4,7,9,11) gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

expression case ([default : default_expression ;] c1 : expression1 ; c2 : expression2 ; c3 :
expression3 ;....)

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1) indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8) statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,

04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions. Obviously, the priority of the operations inside the expression is
determined by () parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. The type operator may return
any of the following: 0 - empty (not initialized), 1 - null, 2 - short, 3 - long, 4 - float, 5 -
double, 6 - currency, 7 - date, 8 - string, 9 - object, 10 - error, 11 - boolean, 12 -
variant, 13 - any, 14 - decimal, 16 - char, 17 - byte, 18 - unsigned short, 19 - unsigned
long, 20 - long on 64 bits, 21 - unsigned long on 64 bites. For instance type(%1) = 8
specifies the cells (on the column with the index 1) that contains string values.
str (unary operator) converts the expression to a string. The str operator converts the
expression to a string. For instance, the str(-12.54) returns the string "-12.54".
dbl (unary operator) converts the expression to a number. The dbl operator converts
the expression to a number. For instance, the dbl("12.54") returns 12.54
date (unary operator) converts the expression to a date, based on your regional
settings. For instance, the date(``) gets the current date (no time included), the
date(`now`) gets the current date-time, while the date("01/01/2001") returns
#1/1/2001#
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS. For instance, the dateS("01/01/2001 14:00:00") returns
#1/1/2001 14:00:00#
hex (unary operator) converts the giving string from hexa-representation to a numeric
value, or converts the giving numeric value to hexa-representation as string. For
instance, hex(`FF`) returns 255, while the hex(255) or hex(0xFF) returns the `FF`
string. The hex(hex(`FFFFFFFF`)) always returns `FFFFFFFF` string, as the second
hex call converts the giving string to a number, and the first hex call converts the
returned number to string representation (hexa-representation).

The bitwise operators for numbers are:

a bitand b (binary operator) computes the AND operation on bits of a and b, and
returns the unsigned value. For instance, 0x01001000 bitand 0x10111000 returns
0x00001000.
a bitor b (binary operator) computes the OR operation on bits of a and b, and returns
the unsigned value. For instance, 0x01001000 bitor 0x10111000 returns 0x11111000.
a bitxor b (binary operator) computes the XOR (exclusive-OR) operation on bits of a
and b, and returns the unsigned value. For instance, 0x01110010 bitxor 0x10101010
returns 0x11011000.

a bitshift (b) (binary operator) shifts every bit of a value to the left if b is negative, or
to the right if b is positive, for b times, and returns the unsigned value. For instance,
128 bitshift 1 returns 64 (dividing by 2) or 128 bitshift (-1) returns 256 (multiplying by
2)
bitnot (unary operator) flips every bit of x, and returns the unsigned value. For
instance, bitnot(0x00FF0000) returns 0xFF00FFFF.

The operators for numbers are:

int (unary operator) retrieves the integer part of the number. For instance, the
int(12.54) returns 12
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2. For
instance, the round(12.54) returns 13
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument. For instance, the floor(12.54) returns 12
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2.
For instance, the abs(-12.54) returns 12.54
sin (unary operator) returns the sine of an angle of x radians. For instance, the
sin(3.14) returns 0.001593.
cos (unary operator) returns the cosine of an angle of x radians. For instance, the
cos(3.14) returns -0.999999.
asin (unary operator) returns the principal value of the arc sine of x, expressed in
radians. For instance, the 2*asin(1) returns the value of PI.
acos (unary operator) returns the principal value of the arc cosine of x, expressed in
radians. For instance, the 2*acos(0) returns the value of PI
sqrt (unary operator) returns the square root of x. For instance, the sqrt(81) returns 9.
currency (unary operator) formats the giving number as a currency string, as indicated
by the control panel. For instance, currency(value) displays the value using the current
format for the currency ie, 1000 gets displayed as $1,000.00, for US format.
value format 'flags' (binary operator) formats a numeric value with specified flags. The
format method formats numeric or date expressions (depends on the type of the value,
explained at operators for dates). If flags is empty, the number is displayed as shown
in the field "Number" in the "Regional and Language Options" from the Control Panel.
For instance the "1000 format ''" displays 1,000.00 for English format, while 1.000,00
is displayed for German format. "1000 format '2|.|3|,'" will always displays 1,000.00 no
matter of the settings in your control panel. If formatting the number fails for some
invalid parameter, the value is displayed with no formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with
the following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the

field "No. of digits after decimal" from "Regional and Language Options" is
using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left
of the decimal separator. Values in the range 0 through 9 and 32 are valid.
The most significant grouping digit indicates the number of digits in the least
significant group immediately to the left of the decimal separator. Each
subsequent grouping digit indicates the next significant group of digits to the
left of the previous group. If the last value supplied is not 0, the remaining
groups repeat the last group. Typical examples of settings for this member
are: 0 to group digits as in 123456789.00; 3 to group digits as in
123,456,789.00; and 32 to group digits as in 12,34,56,789.00. If the flag is
missing, the field "Digit grouping" from "Regional and Language Options"
indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the
field "Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing,
the field "Negative number format" from "Regional and Language Options" is
using. The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If
the flag is missing, the field "Display leading zeros" from "Regional and
Language Options" is using. The valid values are 0, 1

 The operators for strings are:

len (unary operator) retrieves the number of characters in the string. For instance, the
len("Mihai") returns 5.
lower (unary operator) returns a string expression in lowercase letters. For instance,
the lower("MIHAI") returns "mihai"
upper (unary operator) returns a string expression in uppercase letters. For instance,
the upper("mihai") returns "MIHAI"
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names. For instance, the proper("mihai") returns "Mihai"
ltrim (unary operator) removes spaces on the left side of a string. For instance, the
ltrim(" mihai") returns "mihai"
rtrim (unary operator) removes spaces on the right side of a string. For instance, the
rtrim("mihai ") returns "mihai"

trim (unary operator) removes spaces on both sides of a string. For instance, the
trim(" mihai ") returns "mihai"
reverse (unary operator) reverses the order of the characters in the string a. For
instance, the reverse("Mihai") returns "iahiM"
a startwith b (binary operator) specifies whether a string starts with specified string (
0 if not found, -1 if found). For instance "Mihai" startwith "Mi" returns -1
a endwith b (binary operator) specifies whether a string ends with specified string (0
if not found, -1 if found). For instance "Mihai" endwith "ai" returns -1
a contains b (binary operator) specifies whether a string contains another specified
string (0 if not found, -1 if found). For instance "Mihai" contains "ha" returns -1
a left b (binary operator) retrieves the left part of the string. For instance "Mihai" left 2
returns "Mi".
a right b (binary operator) retrieves the right part of the string. For instance "Mihai"
right 2 returns "ai"
a lfind b (binary operator) The a lfind b (binary operator) searches the first occurrence
of the string b within string a, and returns -1 if not found, or the position of the result (
zero-index). For instance "ABCABC" lfind "C" returns 2
a rfind b (binary operator) The a rfind b (binary operator) searches the last
occurrence of the string b within string a, and returns -1 if not found, or the position of
the result (zero-index). For instance "ABCABC" rfind "C" returns 5.
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on). For instance "Mihai" mid 2 returns "ihai"
a count b (binary operator) retrieves the number of occurrences of the b in a. For
instance "Mihai" count "i" returns 2.
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result. For instance, the "Mihai" replace "i" with "" returns "Mha" string, as it replaces
all "i" with nothing.
a split b (binary operator) splits the a using the separator b, and returns an array. For
instance, the weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' ' gets the
weekday as string. This operator can be used with the array.
a like b (binary operator) compares the string a against the pattern b. The pattern b
may contain wild-characters such as *, ?, # or [] and can have multiple patterns
separated by space character. In order to have the space, or any other wild-character
inside the pattern, it has to be escaped, or in other words it should be preceded by a \
character. For instance value like `F*e` matches all strings that start with F and ends
on e, or value like `a* b*` indicates any strings that start with a or b character.
a lpad b (binary operator) pads the value of a to the left with b padding pattern. For
instance, 12 lpad "0000" generates the string "0012".
a rpad b (binary operator) pads the value of a to the right with b padding pattern. For
instance, 12 lpad "____" generates the string "12__".
a concat b (binary operator) concatenates the a (as string) for b times. For instance,
"x" concat 5, generates the string "xxxxx".

The operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel. For instance, the time(#1/1/2001 13:00#) returns "1:00:00 PM"
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance, the timeF(#1/1/2001 13:00#) returns "13:00:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel. For instance, the shortdate(#1/1/2001
13:00#) returns "1/1/2001"
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance, the shortdateF(#1/1/2001 13:00#) returns
"01/01/2001"
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format. For instance, the dateF(#01/01/2001 14:00:00#)
returns #01/01/2001 14:00:00#
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel. For instance, the longdate(#1/1/2001 13:00#)
returns "Monday, January 01, 2001"
year (unary operator) retrieves the year of the date (100,...,9999). For instance, the
year(#12/31/1971 13:14:15#) returns 1971
month (unary operator) retrieves the month of the date (1, 2,...,12). For instance, the
month(#12/31/1971 13:14:15#) returns 12.
day (unary operator) retrieves the day of the date (1, 2,...,31). For instance, the
day(#12/31/1971 13:14:15#) returns 31
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365). For instance, the yearday(#12/31/1971 13:14:15#) returns
365
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday). For instance, the weekday(#12/31/1971 13:14:15#) returns
5.
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23). For instance, the
hour(#12/31/1971 13:14:15#) returns 13
min (unary operator) retrieves the minute of the date (0, 1, ..., 59). For instance, the
min(#12/31/1971 13:14:15#) returns 14
sec (unary operator) retrieves the second of the date (0, 1, ..., 59). For instance, the
sec(#12/31/1971 13:14:15#) returns 15
value format 'flags' (binary operator) formats a date expression with specified flags.
The format method formats numeric (depends on the type of the value, explained at
operators for numbers) or date expressions. If not supported, the value is formatted as
a number (the date format is supported by newer version only). The flags specifies the
format picture string that is used to form the date. Possible values for the format
picture string are defined below. For instance, the date(value) format `MMM d, yyyy`

returns "Sep 2, 2023"

The following table defines the format types used to represent days:

d, day of the month as digits without leading zeros for single-digit days (8)
dd, day of the month as digits with leading zeros for single-digit days (08)
ddd, abbreviated day of the week as specified by the current locale ("Mon" in
English)
dddd, day of the week as specified by the current locale ("Monday" in
English)

The following table defines the format types used to represent months:

M, month as digits without leading zeros for single-digit months (4)
MM, month as digits with leading zeros for single-digit months (04)
MMM, abbreviated month as specified by the current locale ("Nov" in English)
MMMM, month as specified by the current locale ("November" for English)

The following table defines the format types used to represent years:

y, year represented only by the last digit (3)
yy, year represented only by the last two digits. A leading zero is added for
single-digit years (03)
yyy, year represented by a full four or five digits, depending on the calendar
used. Thai Buddhist and Korean calendars have five-digit years. The "yyyy"
pattern shows five digits for these two calendars, and four digits for all other
supported calendars. Calendars that have single-digit or two-digit years, such
as for the Japanese Emperor era, are represented differently. A single-digit
year is represented with a leading zero, for example, "03". A two-digit year is
represented with two digits, for example, "13". No additional leading zeros are
displayed.
yyyy, behaves identically to "yyyy"

The following table defines the format types used to represent era:

g, period/era string formatted as specified by the CAL_SERASTRING value
(ignored if there is no associated era or period string)
gg, period/era string formatted as specified by the CAL_SERASTRING value
(ignored if there is no associated era or period string)

The following table defines the format types used to represent hours:

h, hours with no leading zero for single-digit hours; 12-hour clock
hh, hours with leading zero for single-digit hours; 12-hour clock
H, hours with no leading zero for single-digit hours; 24-hour clock

HH, hours with leading zero for single-digit hours; 24-hour clock

The following table defines the format types used to represent minutes:

m, minutes with no leading zero for single-digit minutes
mm, minutes with leading zero for single-digit minutes

The following table defines the format types used to represent seconds:

s, seconds with no leading zero for single-digit seconds
ss, seconds with leading zero for single-digit seconds

The following table defines the format types used to represent time markers:

t, one character time marker string, such as A or P
tt, multi-character time marker string, such as AM or PM

The expression supports also immediate if (similar with iif in visual basic, or ? : in C++) ie
cond ? value_true : value_false, which means that once that cond is true the value_true is
used, else the value_false is used. Also, it supports variables, up to 10 from 0 to 9. For
instance, 0:="Abc" means that in the variable 0 is "Abc", and =:0 means retrieves the value
of the variable 0. For instance, the len(%0) ? (0:=(%1+%2) ? currency(=:0) else ``) : ``
gets the sum between second and third column in currency format if it is not zero, and only
if the first column is not empty. As you can see you can use the variables to avoid
computing several times the same thing (in this case the sum %1 and %2 .

	Information
	How to get support?
	Appearance
	Add method
	Clear method
	Remove method
	RenderType property

	CascadeTree
	AllowContextMenu property
	AllowSplitView property
	AnchorFromPoint property (readonly)
	Appearance property
	AttachTemplate method
	BackColor property
	BackColorAlternate property
	BackColorHeader property
	BackColorLevelHeader property
	BackColorSortBar property
	BackColorSortBarCaption property
	Background property
	BeginUpdate method
	BorderHeight property
	BorderWidth property
	ColumnFromPoint property (readonly)
	DataSource property
	DefaultView property (readonly)
	DefColumnWidth property
	Enabled property
	EndUpdate method
	EventParam property
	ExecuteContextMenu property
	ExecuteTemplate method
	FilterBarBackColor property
	FilterBarForeColor property
	FitCascadeColumns property
	FitToClient method
	Font property
	ForeColor property
	ForeColorAlternate property
	ForeColorHeader property
	ForeColorSortBar property
	FormatABC method
	FormatAnchor property
	FreezeEvents method
	HeaderAppearance property
	HeaderVisible property
	HTMLPicture property
	hWnd property (readonly)
	Images method
	ImageSize property
	ItemFromPoint property (readonly)
	Layout property
	MaxColumnWidth property
	MinColumnWidth property
	Mode property
	Name property
	Picture property
	PictureDisplay property
	Refresh method
	ReplaceIcon method
	ScrollButtonHeight property
	ScrollButtonWidth property
	ScrollFont property
	ScrollHeight property
	ScrollOrderParts property
	ScrollPartCaption property
	ScrollPartEnable property
	ScrollPartVisible property
	ScrollThumbSize property
	ScrollToolTip property
	ScrollWidth property
	SelBackColor property
	Select property
	SelForeColor property
	ShowContextMenu property
	ShowImageList property
	ShowToolTip method
	SplitViewHeight property
	StatusBarHeight property
	StatusBarLabel property
	StatusBarVisible property
	Template property
	TemplateDef property
	TemplatePut method
	ToolTipDelay property
	ToolTipFont property
	ToolTipMargin property
	ToolTipPopDelay property
	ToolTipWidth property
	UseTabKey property
	Version property
	View property (readonly)
	ViewColumnFromPoint property (readonly)
	ViewFromPoint property (readonly)
	ViewItemFromPoint property (readonly)
	VisualAppearance property (readonly)

	Column
	Alignment property
	AllowDragging property
	AllowGroupBy property
	AllowSizing property
	AllowSort property
	AutoSearch property
	AutoWidth property (readonly)
	Caption property
	ComputedField property
	CustomFilter property
	Data property
	Def property
	DefaultSortOrder property
	DisplayExpandButton property
	DisplayFilterButton property
	DisplayFilterDate property
	DisplayFilterPattern property
	DisplaySortIcon property
	Enabled property
	ExpandColumns property
	Expanded property
	Filter property
	FilterBarDropDownWidth property
	FilterList property
	FilterOnType property
	FilterType property
	FormatColumn property
	FormatLevel property
	GroupByFormatCell property
	GroupByTotalField property
	HeaderAlignment property
	HeaderBold property
	HeaderImage property
	HeaderImageAlignment property
	HeaderItalic property
	HeaderStrikeOut property
	HeaderUnderline property
	HeaderVertical property
	HTMLCaption property
	Index property (readonly)
	Key property
	LevelKey property
	MaxWidthAutoResize property
	MinWidthAutoResize property
	PartialCheck property
	Position property
	Selected property
	ShowFilter method
	SortOrder property
	SortPosition property
	SortType property
	ToolTip property
	Visible property
	Width property
	WidthAutoResize property

	Columns
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	ItemBySortPosition property (readonly)
	Remove method
	SortBarColumn property (readonly)
	SortBarColumnsCount property (readonly)

	ConditionalFormat
	ApplyTo property
	BackColor property
	Bold property
	ClearBackColor method
	ClearForeColor method
	Enabled property
	Expression property
	Font property
	ForeColor property
	Italic property
	Key property (readonly)
	StrikeOut property
	Underline property
	Valid property (readonly)

	ConditionalFormats
	Add method
	Clear method
	Count property (readonly)
	Item property (readonly)
	Remove method

	Items
	AcceptSetParent property (readonly)
	AddItem method
	CellBackColor property
	CellBold property
	CellButtonAutoWidth property
	CellCaption property (readonly)
	CellChecked property (readonly)
	CellData property
	CellEnabled property
	CellFont property
	CellForeColor property
	CellFormatLevel property
	CellHAlignment property
	CellHasButton property
	CellHasCheckBox property
	CellHasRadioButton property
	CellHyperLink property
	CellImage property
	CellImages property
	CellItalic property
	CellItem property (readonly)
	CellMerge property
	CellParent property (readonly)
	CellPicture property
	CellPictureHeight property
	CellPictureWidth property
	CellRadioGroup property
	CellSingleLine property
	CellSortData property
	CellState property
	CellStrikeOut property
	CellToolTip property
	CellUnderline property
	CellVAlignment property
	CellValue property
	CellValueFormat property
	CellWidth property
	ChildCount property (readonly)
	ClearCellBackColor method
	ClearCellForeColor method
	ClearCellHAlignment method
	ClearItemBackColor method
	ClearItemForeColor method
	ComputeValue property (readonly)
	DefaultItem property
	EnableItem property
	EnsureVisibleItem method
	ExpandItem property
	FindItem property (readonly)
	FindItemData property (readonly)
	FindPath property (readonly)
	FirstVisibleItem property (readonly)
	FocusItem property (readonly)
	FormatCell property
	FullPath property (readonly)
	GroupItem property (readonly)
	InnerCell property (readonly)
	InsertControlItem method
	InsertItem method
	InsertObjectItem method
	IsItemLocked property (readonly)
	IsItemVisible property (readonly)
	ItemAllowSizing property
	ItemAppearance property
	ItemBackColor property
	ItemBold property
	ItemByIndex property (readonly)
	ItemCell property (readonly)
	ItemChild property (readonly)
	ItemControlID property (readonly)
	ItemCount property (readonly)
	ItemData property
	ItemDivider property
	ItemDividerLine property
	ItemDividerLineAlignment property
	ItemFiltered property (readonly)
	ItemFont property
	ItemForeColor property
	ItemHasChildren property
	ItemHeight property
	ItemItalic property
	ItemMaxHeight property
	ItemMinHeight property
	ItemObject property (readonly)
	ItemParent property (readonly)
	ItemPosition property
	ItemStrikeOut property
	ItemToIndex property (readonly)
	ItemUnderline property
	ItemWidth property
	ItemWindowHost property (readonly)
	ItemWindowHostCreateStyle property
	LastVisibleItem property (readonly)
	LockedItem property (readonly)
	LockedItemCount property
	MatchItemCount property (readonly)
	MergeCells method
	NextSiblingItem property (readonly)
	NextVisibleItem property (readonly)
	PathSeparator property
	PrevSiblingItem property (readonly)
	PrevVisibleItem property (readonly)
	RemoveAllItems method
	RemoveItem method
	RemoveSelection method
	RootCount property (readonly)
	RootItem property (readonly)
	SelectableItem property
	SelectAll method
	SelectCount property (readonly)
	SelectedItem property (readonly)
	Selection property
	SelectItem property
	SelectPos property
	SetParent method
	SortableItem property
	SortChildren method
	SplitCell property (readonly)
	UnmergeCells method
	UnselectAll method
	UnsplitCell method
	VisibleCount property (readonly)
	VisibleItemCount property (readonly)

	View
	ActiveView property (readonly)
	AllowGroupBy property
	AllowSelectNothing property
	ApplyFilter method
	AutoDrag property
	AutoSearch property
	BeginUpdate method
	CheckImage property
	ChildView property (readonly)
	ClearFilter method
	ColumnAutoResize property
	Columns property (readonly)
	ColumnsAllowSizing property
	ConditionalFormats property (readonly)
	ContinueColumnScroll property
	CopyTo property (readonly)
	CountLockedColumns property
	DataSource property
	DefaultItemHeight property
	DrawGridLines property
	EndUpdate method
	EnsureOnSort property
	EnsureVisibleColumn method
	ExpandOnDblClick property
	ExpandOnKeys property
	ExpandOnSearch property
	Export method
	FilterBarCaption property
	FilterBarDropDownHeight property
	FilterBarHeight property
	FilterBarPrompt property
	FilterBarPromptColumns property
	FilterBarPromptPattern property
	FilterBarPromptType property
	FilterBarPromptVisible property
	FilterCriteria property
	FilterInclude property
	FirstView property (readonly)
	FullRowSelect property
	GetItems method
	GridLineColor property
	GridLineStyle property
	Group method
	HasButtons property
	HasLines property
	HeaderAppearance property
	HeaderHeight property
	HeaderSingleLine property
	HeaderVisible property
	HideSelection property
	hWnd property (readonly)
	Indent property
	Index property (readonly)
	IsGrouping property (readonly)
	Items property (readonly)
	ItemsAllowSizing property
	Key property
	LastView property (readonly)
	Level property (readonly)
	LinesAtRoot property
	MarkSearchColumn property
	Name property
	NextView property (readonly)
	ParentView property (readonly)
	PrevView property (readonly)
	RadioImage property
	RemoveSelection method
	RightToLeft property
	Scroll method
	ScrollBars property
	ScrollBySingleLine property
	ScrollPos property
	SearchColumnIndex property
	SelBackMode property
	Select property
	SelectColumnIndex property
	SelectOnRelease property
	ShowFocusRect property
	ShowLockedItems property
	SingleSel property
	SingleSort property
	SortBarCaption property
	SortBarColumnWidth property
	SortBarHeight property
	SortBarVisible property
	SortOnClick property
	Tag property
	TreeColumnIndex property
	Ungroup method
	Value property (readonly)
	ValueList property (readonly)
	Values property (readonly)
	View property (readonly)
	Width property
	WidthToFit property (readonly)

	ExCascadeTree events
	AnchorClick event
	Click event
	CreateView event
	DblClick event
	DestroyView event
	Error event
	Event event
	KeyDown event
	KeyPress event
	KeyUp event
	MouseDown event
	MouseMove event
	MouseUp event
	RClick event
	ViewEndChanging event
	ViewItemStateEndChanging event
	ViewItemStateStartChanging event
	ViewItemUpdate event
	ViewStartChanging event

